diff --git a/.gitattributes b/.gitattributes index a6344aac8c09253b3b630fb776ae94478aa0275b..ad479bed6b47a01fa458d1d7c562cabdfe7f0fca 100644 --- a/.gitattributes +++ b/.gitattributes @@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text *.zip filter=lfs diff=lfs merge=lfs -text *.zst filter=lfs diff=lfs merge=lfs -text *tfevents* filter=lfs diff=lfs merge=lfs -text +OPERA/teaser.png filter=lfs diff=lfs merge=lfs -text diff --git a/OPERA/LICENSE b/OPERA/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..dc0118ef7c9a5f81c6f4ce6a37b5c699bf625b40 --- /dev/null +++ b/OPERA/LICENSE @@ -0,0 +1,21 @@ +MIT License + +Copyright (c) 2023 QidongHuang + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. diff --git a/OPERA/README.md b/OPERA/README.md new file mode 100644 index 0000000000000000000000000000000000000000..4a17fc113de7dd22046d26a3d603c2d29d0b5dbb --- /dev/null +++ b/OPERA/README.md @@ -0,0 +1,185 @@ +# OPERA: Alleviating Hallucination in Multi-Modal Large Language Models via Over-Trust Penalty and Retrospection-Allocation (CVPR 2024 Highlight) + +[![License: MIT](https://img.shields.io/badge/License-MIT-g.svg)](https://opensource.org/licenses/MIT) +[![Arxiv](https://img.shields.io/badge/arXiv-2311.17911-B21A1B)](https://arxiv.org/pdf/2311.17911.pdf) +[![Hugging Face Transformers](https://img.shields.io/badge/%F0%9F%A4%97-Transformers-blue)](https://github.com/huggingface/transformers) +[![GitHub Stars](https://img.shields.io/github/stars/shikiw/OPERA?style=social)](https://github.com/shikiw/OPERA/stargazers) + + +This repository provides the official PyTorch implementation of the following paper: +> [**OPERA: Alleviating Hallucination in Multi-Modal Large Language Models via Over-Trust Penalty and Retrospection-Allocation**](https://arxiv.org/pdf/2311.17911.pdf)
+> [Qidong Huang](https://shikiw.github.io/)1,2, +> [Xiaoyi Dong](https://scholar.google.com/citations?user=FscToE0AAAAJ&hl=en)2, +> [Pan Zhang](https://panzhang0212.github.io/)2, +> [Bin Wang](https://wangbindl.github.io/) 2, +> [Conghui He](https://conghui.github.io/) 2, +> [Jiaqi Wang](https://myownskyw7.github.io/)2, +> [Dahua Lin](http://dahua.site/)2, +> [Weiming Zhang](http://staff.ustc.edu.cn/~zhangwm/index.html)1, +> [Nenghai Yu](https://scholar.google.com/citations?user=7620QAMAAAAJ&hl=en)1
+> 1University of Science and Technology of China, 2Shanghai AI Laboratory
+ + +## Overview + +

teaser

+ +Hallucination, posed as a pervasive challenge of multimodal large language models (MLLMs), has significantly impeded their real-world usage that demands precise judgment. Existing methods mitigate this issue with either training with specific designed data or inferencing with external knowledge from other sources, incurring inevitable additional costs. In this paper, we present OPERA, a novel MLLM decoding method grounded in an Over-trust Penalty and a Retrospection-Allocation strategy, serving as a nearly free lunch to alleviate the hallucination issue without additional data, knowledge, or training. Our approach begins with an interesting observation that, most hallucinations are closely tied to the knowledge aggregation patterns manifested in the self-attention matrix, i.e., MLLMs tend to generate new tokens by focusing on a few summary tokens, but not all the previous tokens. Such partial overtrust inclination results in the neglecting of image tokens and describes the image content with hallucination. Based on the observation, OPERA introduces a penalty term on +the model logits during the beam-search decoding to mitigate the over-trust issue, along with a rollback strategy that retrospects the presence of summary tokens in the previously generated tokens, and re-allocate the token selection if necessary. With extensive experiments, OPERA shows significant hallucination-mitigating performance on different MLLMs and metrics, proving its effectiveness and generality. + +## Setup + +The main implementation of OPERA is in `transformers-4.29.2/src/transformers/generation/utils.py`. + +So it is convenient to use OPERA decoding by just installing our modified `transformers` package. +``` +conda env create -f environment.yml +conda activate opera +python -m pip install -e transformers-4.29.2 +``` +#### Note: to implement OPERA on other version of transformers, you can follow the steps as the follows: +- Find the file at `transformers-4.29.2/src/transformers/generation/utils.py`. +- Add the arguments in `transformers.generate` function [here](https://github.com/shikiw/OPERA/blob/aa968c7501f4d3d8362f4b3bcab855024f4da5f6/transformers-4.29.2/src/transformers/generation/utils.py#L1156-L1162). +- Add the code in `transformers.generate` function [here](https://github.com/shikiw/OPERA/blob/aa968c7501f4d3d8362f4b3bcab855024f4da5f6/transformers-4.29.2/src/transformers/generation/utils.py#L1619-L1665). +- Copy and paste the `opera_decoding` function [here](https://github.com/shikiw/OPERA/blob/aa968c7501f4d3d8362f4b3bcab855024f4da5f6/transformers-4.29.2/src/transformers/generation/utils.py#L3116-L3674). + +## TL;DR +After setup the environment, you can directly use OPERA on your own MLLM model by: +``` +# specify the location indexes of some input tokens +START_INDEX_of_IMAGE_TOKENS = +END_INDEX_of_IMAGE_TOKENS = +NUM_of_TOKENS_IN_THE_PROMPT = + +key_position = { + "image_start": START_INDEX_of_IMAGE_TOKENS, + "image_end": END_INDEX_of_IMAGE_TOKENS, + "response_start": NUM_of_TOKENS_IN_THE_PROMPT, +} + +# add some arguments in the generate function +outputs = MLLM_model.generate( + input_ids=input_ids, + inputs_embeds=inputs_embeds, + attention_mask=attention_mask, + do_sample=False, + num_beams=5, + max_new_tokens=512, + # opera + opera_decoding=True, + key_position=key_position, + scale_factor=50, + threshold=15, + num_attn_candidates=5, + penalty_weights=1, +) +# for a more efficient version, please use the setting below: +outputs = MLLM_model.generate( + input_ids=input_ids, + inputs_embeds=inputs_embeds, + attention_mask=attention_mask, + do_sample=False, + num_beams=5, + max_new_tokens=512, + # opera + opera_decoding=True, + key_position=key_position, + scale_factor=50, + threshold=25, + num_attn_candidates=1, + penalty_weights=1, +) +``` + +Please refer to `demo.ipynb` [here](https://github.com/shikiw/OPERA/blob/1e74d8b5d082579c81e0e77ef1cf4a44d20ab91e/demo.ipynb) for more details. + + +## Evaluation + +The following evaluation requires for MSCOCO 2014 dataset. Please download [here](https://cocodataset.org/#home) and extract it in your data path. + +Besides, it needs you to prepare the following checkpoints of 7B base models: + +- Download [LLaVA-1.5 merged 7B model](https://huggingface.co/liuhaotian/llava-v1.5-7b) and specify it at [Line 14](https://github.com/shikiw/OPERA/blob/bf18aa9c409f28b31168b0f71ebf8457ae8063d5/eval_configs/llava-1.5_eval.yaml#L14) of `eval_configs/llava-1.5_eval.yaml`. +- Download [Vicuna 7B v1.1 model](https://github.com/lm-sys/FastChat) and specify it at [Line 25](https://github.com/shikiw/OPERA/blob/bf18aa9c409f28b31168b0f71ebf8457ae8063d5/minigpt4/configs/models/blip2_instruct_vicuna7b.yaml#L25) of `minigpt4/configs/models/blip2_instruct_vicuna7b.yaml`. +- Download [Vicuna 7B v0 model](https://huggingface.co/Vision-CAIR/vicuna-7b/tree/main) and specify it at [Line 18](https://github.com/shikiw/OPERA/blob/bf18aa9c409f28b31168b0f71ebf8457ae8063d5/minigpt4/configs/models/minigpt4_vicuna0.yaml#L18) of `minigpt4/configs/models/minigpt4_vicuna0.yaml`. +- Download [MiniGPT-4 7B pretrained weights](https://drive.google.com/file/d/1RY9jV0dyqLX-o38LrumkKRh6Jtaop58R/view?usp=sharing) and specify it at [Line 8](https://github.com/shikiw/OPERA/blob/bf18aa9c409f28b31168b0f71ebf8457ae8063d5/eval_configs/minigpt4_eval.yaml#L8) of `eval_configs/minigpt4_eval.yaml`. +- Download [Shikra merged 7B model](https://github.com/shikras/shikra#checkpoint) and specify it at [Line 14](https://github.com/shikiw/OPERA/blob/bf18aa9c409f28b31168b0f71ebf8457ae8063d5/eval_configs/shikra_eval.yaml#L14) of `eval_configs/shikra_eval.yaml`. + +### Arguments + +| Argument | Example | Description | +| -------------------- | ------------------- | ------------- | +| `--model` | `llava-1.5` | Specify the MLLM model, this codebase supports `instructblip`, `minigpt4`, `llava-1.5`, `shikra`. | +| `--data-path` | `/path/to/dataset` | Path to the dataset file or folder, e.g., `COCO_2014/val2014/`. | +| `--pope-type` | `random` | Type for POPE evaluation, supports `random`, `popular`, `adversarial`. | +| `--scale_factor` | `50` | The scale factor to scale up the self-attention weights. Default: 50. | +| `--threshold` | `15` | The threshold for attending retrospection. Default: 15. | +| `--num_attn_candidates` | `5` | The number of candidates per beam. Default: 5. | +| `--penalty_weights`| `1` | The weight of penalty term in decoding. Default: 1. | + +### POPE +```bash +python pope_eval.py --model MODEL_NAME --data_path /path/to/COCO --pope-type random --gpu-id GPU_IDs --beam 5 --scale_factor 50 --threshold 15 --num_attn_candidates 5 --penalty_weights 1 +``` +Result on `Random` split: + +| Model | Accuracy | Precision | Recall | F1 score| Yes ratio | +| ----- | -------- | --------- | ------ | ------- | --------- | +| InstructBLIP 7B | 90.3 | 93.8 | 87.0 | 90.3 | 47.8 | +| MiniGPT-4 7B | 79.8 | 89.7 | 68.7 | 77.8 | 39.5 | +| LLaVA-1.5 7B | 89.4 | 90.4 | 88.8 | 89.6 | 50.6 | + +Result on `Popular` split: + +| Model | Accuracy | Precision | Recall | F1 score| Yes ratio | +| ----- | -------- | --------- | ------ | ------- | --------- | +| InstructBLIP 7B | 83.4 | 81.2 | 87.0 | 84.0 | 53.6 | +| MiniGPT-4 7B | 73.6 | 75.9 | 69.0 | 72.3 | 45.4 | +| LLaVA-1.5 7B | 86.0 | 84.1 | 88.8 | 86.4 | 52.8 | + +Result on `Adversarial` split: + +| Model | Accuracy | Precision | Recall | F1 score| Yes ratio | +| ----- | -------- | --------- | ------ | ------- | --------- | +| InstructBLIP 7B | 80.7 | 77.3 | 87.0 | 81.9 | 56.3 | +| MiniGPT-4 7B | 71.6 | 72.9 | 68.9 | 70.8 | 47.3 | +| LLaVA-1.5 7B | 79.1 | 74.4 | 88.8 | 81.0 | 59.7 | + +### CHAIR +- Generate the MLLM's responses and save them in a jsonl file: +```bash +python chair_eval.py --model MODEL_NAME --data_path /path/to/COCO --gpu-id GPU_IDs --beam 5 --scale_factor 50 --threshold 15 --num_attn_candidates 5 --penalty_weights 1 +``` +Note: Please check out our released results in `log/chair_eval_results` for reproduction. + +- Calculate CHAIR using the generated jsonl file: +```bash +python chair.py --cap_file /path/to/jsonl --image_id_key image_id --caption_key caption --coco_path /path/to/COCO/annotations_trainval2014/annotations/ --save_path /path/to/save/jsonl +``` + +### GPT-4V +The GPT-4V evaluation requires you to specify your API key in [Line 88](https://github.com/shikiw/OPERA/blob/559556048224d5c3eae995a21d529156fb150d5f/gpt4v_eval.py#L88) of `gpt4v_eval.py`. +```bash +python gpt4v_eval.py --model MODEL_NAME --data_path /path/to/COCO --gpu-id GPU_IDs --scale_factor 50 --threshold 15 --num_attn_candidates 5 --penalty_weights 1 +``` + + + + +## Acknowledgement +This repo is based on the MLLM codebase of [LAVIS](https://github.com/salesforce/LAVIS) and [MiniGPT-4](https://github.com/Vision-CAIR/MiniGPT-4) and the CHAIR code of [Maxlinn](https://github.com/Maxlinn/CHAIR-metric-standalone). Thanks for their impressive works! + +## Citation +If you find this work useful for your research, please cite [our paper](https://arxiv.org/pdf/2311.17911.pdf): +``` +@inproceedings{huang2024opera, + title={Opera: Alleviating hallucination in multi-modal large language models via over-trust penalty and retrospection-allocation}, + author={Huang, Qidong and Dong, Xiaoyi and Zhang, Pan and Wang, Bin and He, Conghui and Wang, Jiaqi and Lin, Dahua and Zhang, Weiming and Yu, Nenghai}, + booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, + pages={13418--13427}, + year={2024} +} +``` + + diff --git a/OPERA/chair.py b/OPERA/chair.py new file mode 100644 index 0000000000000000000000000000000000000000..7d9b4fb357352fb9d0729c6a88267d452b7355f7 --- /dev/null +++ b/OPERA/chair.py @@ -0,0 +1,484 @@ +''' +Copied from: https://github.com/LisaAnne/Hallucination/blob/master/utils/chair.py + +Modified by: Maxlinn + +1. adapt calculation of CHAIR-i and CHAIR-s for Python3, supports for both json and jsonl file input. +2. integrate synonyms.txt to make the script standalone. +3. remove machine-translation based metrics BLEU-n, CIDEr, ROGUE +4. add new metric Recall, which represents the node words(i.e. lemmas of objects) coverage overall. +5. add pickle cache mechanism to make it fast for repetitive evaluations. +''' + + +import os +import sys +import nltk +import json +# from pattern.en import singularize +from nltk.corpus import wordnet +from nltk.stem import WordNetLemmatizer +import argparse +import tqdm +import pickle +from collections import defaultdict + + +# copied from: https://github.com/LisaAnne/Hallucination/blob/master/data/synonyms.txt +synonyms_txt = ''' +person, girl, boy, man, woman, kid, child, chef, baker, people, adult, rider, children, baby, worker, passenger, sister, biker, policeman, cop, officer, lady, cowboy, bride, groom, male, female, guy, traveler, mother, father, gentleman, pitcher, player, skier, snowboarder, skater, skateboarder, person, woman, guy, foreigner, child, gentleman, caller, offender, coworker, trespasser, patient, politician, soldier, grandchild, serviceman, walker, drinker, doctor, bicyclist, thief, buyer, teenager, student, camper, driver, solider, hunter, shopper, villager +bicycle, bike, bicycle, bike, unicycle, minibike, trike +car, automobile, van, minivan, sedan, suv, hatchback, cab, jeep, coupe, taxicab, limo, taxi +motorcycle, scooter, motor bike, motor cycle, motorbike, scooter, moped +airplane, jetliner, plane, air plane, monoplane, aircraft, jet, jetliner, airbus, biplane, seaplane +bus, minibus, trolley +train, locomotive, tramway, caboose +truck, pickup, lorry, hauler, firetruck +boat, ship, liner, sailboat, motorboat, dinghy, powerboat, speedboat, canoe, skiff, yacht, kayak, catamaran, pontoon, houseboat, vessel, rowboat, trawler, ferryboat, watercraft, tugboat, schooner, barge, ferry, sailboard, paddleboat, lifeboat, freighter, steamboat, riverboat, battleship, steamship +traffic light, street light, traffic signal, stop light, streetlight, stoplight +fire hydrant, hydrant +stop sign +parking meter +bench, pew +bird, ostrich, owl, seagull, goose, duck, parakeet, falcon, robin, pelican, waterfowl, heron, hummingbird, mallard, finch, pigeon, sparrow, seabird, osprey, blackbird, fowl, shorebird, woodpecker, egret, chickadee, quail, bluebird, kingfisher, buzzard, willet, gull, swan, bluejay, flamingo, cormorant, parrot, loon, gosling, waterbird, pheasant, rooster, sandpiper, crow, raven, turkey, oriole, cowbird, warbler, magpie, peacock, cockatiel, lorikeet, puffin, vulture, condor, macaw, peafowl, cockatoo, songbird +cat, kitten, feline, tabby +dog, puppy, beagle, pup, chihuahua, schnauzer, dachshund, rottweiler, canine, pitbull, collie, pug, terrier, poodle, labrador, doggie, doberman, mutt, doggy, spaniel, bulldog, sheepdog, weimaraner, corgi, cocker, greyhound, retriever, brindle, hound, whippet, husky +horse, colt, pony, racehorse, stallion, equine, mare, foal, palomino, mustang, clydesdale, bronc, bronco +sheep, lamb, ram, lamb, goat, ewe +cow, cattle, oxen, ox, calf, cattle, holstein, heifer, buffalo, bull, zebu, bison +elephant +bear, panda +zebra +giraffe +backpack, knapsack +umbrella +handbag, wallet, purse, briefcase +tie, bow, bow tie +suitcase, suit case, luggage +frisbee +skis, ski +snowboard +sports ball, ball +kite +baseball bat +baseball glove +skateboard +surfboard, longboard, skimboard, shortboard, wakeboard +tennis racket, racket +bottle +wine glass +cup +fork +knife, pocketknife, knive +spoon +bowl, container +banana +apple +sandwich, burger, sub, cheeseburger, hamburger +orange +broccoli +carrot +hot dog +pizza +donut, doughnut, bagel +cake, cheesecake, cupcake, shortcake, coffeecake, pancake +chair, seat, stool +couch, sofa, recliner, futon, loveseat, settee, chesterfield +potted plant, houseplant +bed +dining table, table, desk +toilet, urinal, commode, toilet, lavatory, potty +tv, monitor, televison, television +laptop, computer, notebook, netbook, lenovo, macbook, laptop computer +mouse +remote +keyboard +cell phone, mobile phone, phone, cellphone, telephone, phon, smartphone, iPhone +microwave +oven, stovetop, stove, stove top oven +toaster +sink +refrigerator, fridge, fridge, freezer +book +clock +vase +scissors +teddy bear, teddybear +hair drier, hairdryer +toothbrush +''' + + +def combine_coco_captions(annotation_path): + + if not os.path.exists('%s/captions_%s2014.json' %(annotation_path, 'val')): + raise Exception("Please download MSCOCO caption annotations for val set") + if not os.path.exists('%s/captions_%s2014.json' %(annotation_path, 'train')): + raise Exception("Please download MSCOCO caption annotations for train set") + + val_caps = json.load(open('%s/captions_%s2014.json' %(annotation_path, 'val'))) + train_caps = json.load(open('%s/captions_%s2014.json' %(annotation_path, 'train'))) + all_caps = {'info': train_caps['info'], + 'licenses': train_caps['licenses'], + 'images': val_caps['images'] + train_caps['images'], + 'annotations': val_caps['annotations'] + train_caps['annotations']} + + return all_caps + +def combine_coco_instances(annotation_path): + + if not os.path.exists('%s/instances_%s2014.json' %(annotation_path, 'val')): + raise Exception("Please download MSCOCO instance annotations for val set") + if not os.path.exists('%s/instances_%s2014.json' %(annotation_path, 'train')): + raise Exception("Please download MSCOCO instance annotations for train set") + + val_instances = json.load(open('%s/instances_%s2014.json' %(annotation_path, 'val'))) + train_instances = json.load(open('%s/instances_%s2014.json' %(annotation_path, 'train'))) + all_instances = {'info': train_instances['info'], + 'licenses': train_instances['licenses'], + 'type': train_instances['licenses'], + 'categories': train_instances['categories'], + 'images': train_instances['images'] + val_instances['images'], + 'annotations': val_instances['annotations'] + train_instances['annotations']} + + return all_instances + +class CHAIR(object): + + def __init__(self, coco_path): + + self.imid_to_objects = defaultdict(list) # later become a dict of sets + + self.coco_path = coco_path + + #read in synonyms + synonyms = synonyms_txt.splitlines() + synonyms = [s.strip().split(', ') for s in synonyms] + self.mscoco_objects = [] #mscoco objects and *all* synonyms + self.inverse_synonym_dict = {} + for synonym in synonyms: + self.mscoco_objects.extend(synonym) + for s in synonym: + self.inverse_synonym_dict[s] = synonym[0] + + #Some hard coded rules for implementing CHAIR metrics on MSCOCO + + #common 'double words' in MSCOCO that should be treated as a single word + coco_double_words = ['motor bike', 'motor cycle', 'air plane', 'traffic light', 'street light', 'traffic signal', 'stop light', 'fire hydrant', 'stop sign', 'parking meter', 'suit case', 'sports ball', 'baseball bat', 'baseball glove', 'tennis racket', 'wine glass', 'hot dog', 'cell phone', 'mobile phone', 'teddy bear', 'hair drier', 'potted plant', 'bow tie', 'laptop computer', 'stove top oven', 'hot dog', 'teddy bear', 'home plate', 'train track'] + + #Hard code some rules for special cases in MSCOCO + #qualifiers like 'baby' or 'adult' animal will lead to a false fire for the MSCOCO object 'person'. 'baby bird' --> 'bird'. + animal_words = ['bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'animal', 'cub'] + #qualifiers like 'passenger' vehicle will lead to a false fire for the MSCOCO object 'person'. 'passenger jet' --> 'jet'. + vehicle_words = ['jet', 'train'] + + #double_word_dict will map double words to the word they should be treated as in our analysis + + self.double_word_dict = {} + for double_word in coco_double_words: + self.double_word_dict[double_word] = double_word + for animal_word in animal_words: + self.double_word_dict['baby %s' %animal_word] = animal_word + self.double_word_dict['adult %s' %animal_word] = animal_word + for vehicle_word in vehicle_words: + self.double_word_dict['passenger %s' %vehicle_word] = vehicle_word + self.double_word_dict['bow tie'] = 'tie' + self.double_word_dict['toilet seat'] = 'toilet' + self.double_word_dict['wine glas'] = 'wine glass' + + self.get_annotations() + + def _load_generated_captions_into_evaluator(self, cap_file, image_id_key, caption_key): + + ''' + Meant to save time so imid_to_objects does not always need to be recomputed. + ''' + #Read in captions + self.caps, self.eval_imids = load_generated_captions(cap_file, image_id_key, caption_key) + assert len(self.caps) == len(self.eval_imids) + + def get_wordnet_pos(self, tag): + if tag.startswith('J'): + return wordnet.ADJ + elif tag.startswith('V'): + return wordnet.VERB + elif tag.startswith('N'): + return wordnet.NOUN + elif tag.startswith('R'): + return wordnet.ADV + else: + return None + + def caption_to_words(self, caption): + + ''' + Input: caption + Output: MSCOCO words in the caption + ''' + + #standard preprocessing + words = nltk.word_tokenize(caption.lower()) + tagged_sent = nltk.pos_tag(words) + lemmas_sent = [] + wnl = WordNetLemmatizer() + for tag in tagged_sent: + wordnet_pos = self.get_wordnet_pos(tag[1]) or wordnet.NOUN + lemmas_sent.append(wnl.lemmatize(tag[0], pos=wordnet_pos)) + # words = [singularize(w) for w in words] + words = lemmas_sent + + #replace double words + i = 0 + double_words = [] + idxs = [] + while i < len(words): + idxs.append(i) + double_word = ' '.join(words[i:i+2]) + if double_word in self.double_word_dict: + double_words.append(self.double_word_dict[double_word]) + i += 2 + else: + double_words.append(words[i]) + i += 1 + words = double_words + + #toilet seat is not chair (sentences like "the seat of the toilet" will fire for "chair" if we do not include this line) + if ('toilet' in words) & ('seat' in words): words = [word for word in words if word != 'seat'] + + #get synonyms for all words in the caption + idxs = [idxs[idx] for idx, word in enumerate(words) \ + if word in set(self.mscoco_objects)] + words = [word for word in words if word in set(self.mscoco_objects)] + node_words = [] + for word in words: + node_words.append(self.inverse_synonym_dict[word]) + #return all the MSCOCO objects in the caption + return words, node_words, idxs, double_words + + def get_annotations_from_segments(self): + ''' + Add objects taken from MSCOCO segmentation masks + ''' + + coco_segments = combine_coco_instances(self.coco_path ) + segment_annotations = coco_segments['annotations'] + + #make dict linking object name to ids + id_to_name = {} #dict with id to synsets + for cat in coco_segments['categories']: + id_to_name[cat['id']] = cat['name'] + + for i, annotation in enumerate(segment_annotations): + sys.stdout.write("\rGetting annotations for %d/%d segmentation masks" + %(i, len(segment_annotations))) + imid = annotation['image_id'] + + node_word = self.inverse_synonym_dict[id_to_name[annotation['category_id']]] + self.imid_to_objects[imid].append(node_word) + print("\n") + + def get_annotations_from_captions(self): + ''' + Add objects taken from MSCOCO ground truth captions + ''' + + coco_caps = combine_coco_captions(self.coco_path) + caption_annotations = coco_caps['annotations'] + + for i, annotation in enumerate(caption_annotations): + sys.stdout.write('\rGetting annotations for %d/%d ground truth captions' + %(i, len(coco_caps['annotations']))) + imid = annotation['image_id'] + + _, node_words, _, _ = self.caption_to_words(annotation['caption']) + # note here is update, so call get_annotations_from_segments first + self.imid_to_objects[imid].extend(node_words) + print("\n") + + + def get_annotations(self): + + ''' + Get annotations from both segmentation and captions. Need both annotation types for CHAIR metric. + ''' + + self.get_annotations_from_segments() + self.get_annotations_from_captions() + # deduplicate + for imid in self.imid_to_objects: + self.imid_to_objects[imid] = set(self.imid_to_objects[imid]) + + def compute_chair(self, cap_file, image_id_key, caption_key): + ''' + Given ground truth objects and generated captions, determine which sentences have hallucinated words. + ''' + self._load_generated_captions_into_evaluator(cap_file, image_id_key, caption_key) + + imid_to_objects = self.imid_to_objects + caps = self.caps + eval_imids = self.eval_imids + + num_caps = 0. + num_hallucinated_caps = 0. + hallucinated_word_count = 0. + coco_word_count = 0. + len_caps = 0. + + # :add: + num_recall_gt_objects = 0. + num_gt_objects = 0. + + output = {'sentences': []} + + for i in tqdm.trange(len(caps)): + cap :str = caps[i] + imid :int = eval_imids[i] + + #get all words in the caption, as well as corresponding node word + # pos = cap.rfind('.') + # cap = cap[:pos+1] + words, node_words, idxs, raw_words = self.caption_to_words(cap) + + gt_objects = imid_to_objects[imid] + cap_dict = {'image_id': imid, + 'caption': cap, + 'mscoco_hallucinated_words': [], + 'mscoco_gt_words': list(gt_objects), + 'mscoco_generated_words': list(node_words), + 'hallucination_idxs': [], + 'words': raw_words + } + + # :add: + cap_dict['metrics'] = {'CHAIRs': 0, + 'CHAIRi': 0, + 'Recall': 0, + 'Len': 0, + } + + #count hallucinated words + coco_word_count += len(node_words) + hallucinated = False + + # add + recall_gt_objects = set() + for word, node_word, idx in zip(words, node_words, idxs): + if node_word not in gt_objects: + hallucinated_word_count += 1 + cap_dict['mscoco_hallucinated_words'].append((word, node_word)) + cap_dict['hallucination_idxs'].append(idx) + hallucinated = True + else: + recall_gt_objects.add(node_word) + + #count hallucinated caps + num_caps += 1 + len_caps += len(raw_words) + if hallucinated: + num_hallucinated_caps += 1 + + # add + num_gt_objects += len(gt_objects) + num_recall_gt_objects += len(recall_gt_objects) + + cap_dict['metrics']['CHAIRs'] = int(hallucinated) + cap_dict['metrics']['CHAIRi'] = 0. + cap_dict['metrics']['Recall'] = 0. + cap_dict['metrics']['Len'] = 0. + + + if len(words) > 0: + cap_dict['metrics']['CHAIRi'] = len(cap_dict['mscoco_hallucinated_words'])/float(len(words)) + + # add + if len(gt_objects) > 0: + cap_dict['metrics']['Recall'] = len(recall_gt_objects) / len(gt_objects) + + output['sentences'].append(cap_dict) + + chair_s = (num_hallucinated_caps/num_caps) + chair_i = (hallucinated_word_count/coco_word_count) + # add + recall = num_recall_gt_objects / num_gt_objects + avg_len = (0.01*len_caps/num_caps) + + output['overall_metrics'] = {'CHAIRs': chair_s, + 'CHAIRi': chair_i, + 'Recall': recall, + 'Len': avg_len,} + + return output + +def load_generated_captions(cap_file, image_id_key:str, caption_key:str): + #Read in captions + # it should be list of dict + ext = os.path.splitext(cap_file)[-1] + if ext == '.json': + caps = json.load(open(cap_file)) + elif ext == '.jsonl': + caps = [json.loads(s) for s in open(cap_file)] + else: + raise ValueError(f'Unspported extension {ext} for cap_file: {cap_file}') + + # list of int + imids = [obj[image_id_key] for obj in caps] + + # list of str + caps = [obj[caption_key] for obj in caps] + + return caps, imids + +def save_hallucinated_words(cap_file, cap_dict): + with open(cap_file, 'w') as f: + json.dump(cap_dict, f, indent=2, ensure_ascii=False) + +def print_metrics(hallucination_cap_dict, quiet=False): + sentence_metrics = hallucination_cap_dict['overall_metrics'] + + for k, v in sentence_metrics.items(): + k_str = str(k).ljust(10) + v_str = f'{v * 100:.01f}' + print(k_str, v_str, sep=': ') + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + + parser.add_argument("--cap_file", type=str, default='', + help="path towards json or jsonl saving image ids and their captions in list of dict.") + parser.add_argument("--image_id_key", type=str, default="image_id", + help="in each dict of cap_file, which key stores image id of coco.") + parser.add_argument("--caption_key", type=str, default="caption", + help="in each dict of cap_file, which key stores caption of the image.") + + parser.add_argument("--cache", type=str, default="chair.pkl", + help="pre inited CHAIR evaluator object, for fast loading.") + parser.add_argument("--coco_path", type=str, default='coco_annotations', + help="only use for regenerating CHAIR evaluator object, will be ignored if uses cached evaluator.") + + parser.add_argument("--save_path", type=str, default="", + help="saving CHAIR evaluate and results to json, useful for debugging the caption model.") + + args = parser.parse_args() + + if args.cache and os.path.exists(args.cache): + evaluator = pickle.load(open(args.cache, 'rb')) + print(f"loaded evaluator from cache: {args.cache}") + else: + print(f"cache not setted or not exist yet, building from scratch...") + evaluator = CHAIR(args.coco_path) + pickle.dump(evaluator, open(args.cache, 'wb')) + print(f"cached evaluator to: {args.cache}") + + cap_dict = evaluator.compute_chair(args.cap_file, args.image_id_key, args.caption_key) + + print_metrics(cap_dict) + + if args.save_path: + save_hallucinated_words(args.save_path, cap_dict) + + +# CUDA_VISIBLE_DEVICES=5 python chair.py \ +# --cap_file ../POPE-Adv/text_feat/chair-eval/instructblip/ours.jsonl \ +# --image_id_key image_id --caption_key caption \ +# --coco_path /mnt/petrelfs/share_data/wangjiaqi/mllm-data-alg/COCO_2014/ori/annotations_trainval2014/annotations/ \ +# --save_path ../POPE-Adv/text_feat/chair-eval/instructblip/ours_outputs.json \ No newline at end of file diff --git a/OPERA/chair_eval.py b/OPERA/chair_eval.py new file mode 100644 index 0000000000000000000000000000000000000000..6491db4e2a7a3fb0895de016cf2d6549cafaa27d --- /dev/null +++ b/OPERA/chair_eval.py @@ -0,0 +1,192 @@ +import argparse +import os +import random + +import numpy as np +import torch +import torch.backends.cudnn as cudnn +from tqdm import tqdm + +from torchvision import transforms +from torchvision.transforms.functional import InterpolationMode +from torchvision.utils import save_image + +from pope_loader import POPEDataSet +from minigpt4.common.dist_utils import get_rank +from minigpt4.models import load_preprocess + +from minigpt4.common.config import Config +from minigpt4.common.dist_utils import get_rank +from minigpt4.common.registry import registry + +# imports modules for registration +from minigpt4.datasets.builders import * +from minigpt4.models import * +from minigpt4.processors import * +from minigpt4.runners import * +from minigpt4.tasks import * + +from PIL import Image +from torchvision.utils import save_image + +import matplotlib.pyplot as plt +import matplotlib as mpl +import seaborn +import json + + +MODEL_EVAL_CONFIG_PATH = { + "minigpt4": "eval_configs/minigpt4_eval.yaml", + "instructblip": "eval_configs/instructblip_eval.yaml", + "lrv_instruct": "eval_configs/lrv_instruct_eval.yaml", + "shikra": "eval_configs/shikra_eval.yaml", + "llava-1.5": "eval_configs/llava-1.5_eval.yaml", +} + +INSTRUCTION_TEMPLATE = { + "minigpt4": "###Human: ###Assistant:", + "instructblip": "", + "lrv_instruct": "###Human: ###Assistant:", + "shikra": "USER: ASSISTANT:", + "llava-1.5": "USER: ASSISTANT:" +} + + +def setup_seeds(config): + seed = config.run_cfg.seed + get_rank() + + random.seed(seed) + np.random.seed(seed) + torch.manual_seed(seed) + + cudnn.benchmark = False + cudnn.deterministic = True + + + + + +parser = argparse.ArgumentParser(description="POPE-Adv evaluation on LVLMs.") +parser.add_argument("--model", type=str, help="model") +parser.add_argument("--gpu-id", type=int, help="specify the gpu to load the model.") +parser.add_argument( + "--options", + nargs="+", + help="override some settings in the used config, the key-value pair " + "in xxx=yyy format will be merged into config file (deprecate), " + "change to --cfg-options instead.", +) +parser.add_argument("--data_path", type=str, default="COCO_2014/val2014/", help="data path") +parser.add_argument("--batch_size", type=int, default=1, help="batch size") +parser.add_argument("--num_workers", type=int, default=2, help="num workers") + +parser.add_argument("--beam", type=int) +parser.add_argument("--sample", action='store_true') +parser.add_argument("--scale_factor", type=float, default=50) +parser.add_argument("--threshold", type=int, default=15) +parser.add_argument("--num_attn_candidates", type=int, default=5) +parser.add_argument("--penalty_weights", type=float, default=1.0) +args = parser.parse_known_args()[0] + + + + + + +os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_id) +args.cfg_path = MODEL_EVAL_CONFIG_PATH[args.model] +cfg = Config(args) +setup_seeds(cfg) +device = torch.device("cuda") if torch.cuda.is_available() else "cpu" + +# ======================================== +# Model Initialization +# ======================================== +print('Initializing Model') + +model_config = cfg.model_cfg +model_config.device_8bit = args.gpu_id +model_cls = registry.get_model_class(model_config.arch) +model = model_cls.from_config(model_config).to(device) +model.eval() +processor_cfg = cfg.get_config().preprocess +processor_cfg.vis_processor.eval.do_normalize = False +vis_processors, txt_processors = load_preprocess(processor_cfg) +print(vis_processors["eval"].transform) +print("Done!") + +mean = (0.48145466, 0.4578275, 0.40821073) +std = (0.26862954, 0.26130258, 0.27577711) +norm = transforms.Normalize(mean, std) + + +img_files = os.listdir(args.data_path) +random.shuffle(img_files) + +with open(args.data_path + '../annotations_trainval2014/annotations/instances_val2014.json', 'r') as f: + lines = f.readlines() +coco_anns = json.loads(lines[0]) + +img_dict = {} + +categories = coco_anns["categories"] +category_names = [c["name"] for c in categories] +category_dict = {int(c["id"]): c["name"] for c in categories} + +for img_info in coco_anns["images"]: + img_dict[img_info["id"]] = {"name": img_info["file_name"], "anns": []} + +for ann_info in coco_anns["annotations"]: + img_dict[ann_info["image_id"]]["anns"].append( + category_dict[ann_info["category_id"]] + ) + + +base_dir = "./log/" + args.model +if not os.path.exists(base_dir): + os.mkdir(base_dir) + + +for img_id in tqdm(range(len(img_files))): + if img_id == 500: + break + img_file = img_files[img_id] + img_id = int(img_file.split(".jpg")[0][-6:]) + img_info = img_dict[img_id] + assert img_info["name"] == img_file + img_anns = set(img_info["anns"]) + img_save = {} + img_save["image_id"] = img_id + + image_path = args.data_path + img_file + raw_image = Image.open(image_path).convert("RGB") + image = vis_processors["eval"](raw_image).unsqueeze(0) + image = image.to(device) + + qu = "Please describe this image in detail." + template = INSTRUCTION_TEMPLATE[args.model] + qu = template.replace("", qu) + + with torch.inference_mode(): + with torch.no_grad(): + out = model.generate( + {"image": norm(image), "prompt":qu}, + use_nucleus_sampling=args.sample, + num_beams=args.beam, + max_new_tokens=512, + output_attentions=True, + opera_decoding=True, + scale_factor=args.scale_factor, + threshold=args.threshold, + num_attn_candidates=args.num_attn_candidates, + penalty_weights=args.penalty_weights, + ) + img_save["caption"] = out[0] + + # dump metric file + with open(os.path.join(base_dir, 'ours-s_{}-t_{}-num_can_{}-p_{}.jsonl'.format(args.scale_factor, args.threshold, args.num_attn_candidates, args.penalty_weights)), "a") as f: + json.dump(img_save, f) + f.write('\n') + + + diff --git a/OPERA/dataset/README_1_STAGE.md b/OPERA/dataset/README_1_STAGE.md new file mode 100644 index 0000000000000000000000000000000000000000..6f52204fb3a9daa1faab87c71f98f1d4c3fee0a7 --- /dev/null +++ b/OPERA/dataset/README_1_STAGE.md @@ -0,0 +1,96 @@ +## Download the filtered Conceptual Captions, SBU, LAION datasets + +### Pre-training datasets download: +We use the filtered synthetic captions prepared by BLIP. For more details about the dataset, please refer to [BLIP](https://github.com/salesforce/BLIP). + +It requires ~2.3T to store LAION and CC3M+CC12M+SBU datasets + +Image source | Filtered synthetic caption by ViT-L +--- | :---: +CC3M+CC12M+SBU | Download +LAION115M | Download + +This will download two json files +``` +ccs_synthetic_filtered_large.json +laion_synthetic_filtered_large.json +``` + +## prepare the data step-by-step + + +### setup the dataset folder and move the annotation file to the data storage folder +``` +export MINIGPT4_DATASET=/YOUR/PATH/FOR/LARGE/DATASET/ +mkdir ${MINIGPT4_DATASET}/cc_sbu +mkdir ${MINIGPT4_DATASET}/laion +mv ccs_synthetic_filtered_large.json ${MINIGPT4_DATASET}/cc_sbu +mv laion_synthetic_filtered_large.json ${MINIGPT4_DATASET}/laion +``` + +### Convert the scripts to data storate folder +``` +cp convert_cc_sbu.py ${MINIGPT4_DATASET}/cc_sbu +cp download_cc_sbu.sh ${MINIGPT4_DATASET}/cc_sbu +cp convert_laion.py ${MINIGPT4_DATASET}/laion +cp download_laion.sh ${MINIGPT4_DATASET}/laion +``` + + +### Convert the laion and cc_sbu annotation file format to be img2dataset format +``` +cd ${MINIGPT4_DATASET}/cc_sbu +python convert_cc_sbu.py + +cd ${MINIGPT4_DATASET}/laion +python convert_laion.py +``` + +### Download the datasets with img2dataset +``` +cd ${MINIGPT4_DATASET}/cc_sbu +sh download_cc_sbu.sh +cd ${MINIGPT4_DATASET}/laion +sh download_laion.sh +``` + + +The final dataset structure + +``` +. +├── ${MINIGPT4_DATASET} +│ ├── cc_sbu +│ ├── convert_cc_sbu.py +│ ├── download_cc_sbu.sh +│ ├── ccs_synthetic_filtered_large.json +│ ├── ccs_synthetic_filtered_large.tsv +│ └── cc_sbu_dataset +│ ├── 00000.tar +│ ├── 00000.parquet +│ ... +│ ├── laion +│ ├── convert_laion.py +│ ├── download_laion.sh +│ ├── laion_synthetic_filtered_large.json +│ ├── laion_synthetic_filtered_large.tsv +│ └── laion_dataset +│ ├── 00000.tar +│ ├── 00000.parquet +│ ... +... +``` + + +## Set up the dataset configuration files + +Then, set up the LAION dataset loading path in +[here](../minigpt4/configs/datasets/laion/defaults.yaml#L5) at Line 5 as +${MINIGPT4_DATASET}/laion/laion_dataset/{00000..10488}.tar + +and the Conceptual Captoin and SBU datasets loading path in +[here](../minigpt4/configs/datasets/cc_sbu/defaults.yaml#L5) at Line 5 as +${MINIGPT4_DATASET}/cc_sbu/cc_sbu_dataset/{00000..01255}.tar + + + diff --git a/OPERA/dataset/README_2_STAGE.md b/OPERA/dataset/README_2_STAGE.md new file mode 100644 index 0000000000000000000000000000000000000000..d51a25cfbd29693934d14bce8beb62ff16a4c1fa --- /dev/null +++ b/OPERA/dataset/README_2_STAGE.md @@ -0,0 +1,19 @@ +## Second Stage Data Preparation + +Our second stage dataset can be downloaded from +[here](https://drive.google.com/file/d/1nJXhoEcy3KTExr17I7BXqY5Y9Lx_-n-9/view?usp=share_link) +After extraction, you will get a data follder with the following structure: + +``` +cc_sbu_align +├── filter_cap.json +└── image + ├── 2.jpg + ├── 3.jpg + ... +``` + +Put the folder to any path you want. +Then, set up the dataset path in the dataset config file +[here](../minigpt4/configs/datasets/cc_sbu/align.yaml#L5) at Line 5. + diff --git a/OPERA/dataset/convert_cc_sbu.py b/OPERA/dataset/convert_cc_sbu.py new file mode 100644 index 0000000000000000000000000000000000000000..6b6b738ee71ab94c24a029fb846352ea434f0615 --- /dev/null +++ b/OPERA/dataset/convert_cc_sbu.py @@ -0,0 +1,20 @@ +import json +import csv + +# specify input and output file paths +input_file = 'ccs_synthetic_filtered_large.json' +output_file = 'ccs_synthetic_filtered_large.tsv' + +# load JSON data from input file +with open(input_file, 'r') as f: + data = json.load(f) + +# extract header and data from JSON +header = data[0].keys() +rows = [x.values() for x in data] + +# write data to TSV file +with open(output_file, 'w') as f: + writer = csv.writer(f, delimiter='\t') + writer.writerow(header) + writer.writerows(rows) diff --git a/OPERA/dataset/convert_laion.py b/OPERA/dataset/convert_laion.py new file mode 100644 index 0000000000000000000000000000000000000000..6accc3e1b4f80da48bdcc52bac7374829f634d56 --- /dev/null +++ b/OPERA/dataset/convert_laion.py @@ -0,0 +1,20 @@ +import json +import csv + +# specify input and output file paths +input_file = 'laion_synthetic_filtered_large.json' +output_file = 'laion_synthetic_filtered_large.tsv' + +# load JSON data from input file +with open(input_file, 'r') as f: + data = json.load(f) + +# extract header and data from JSON +header = data[0].keys() +rows = [x.values() for x in data] + +# write data to TSV file +with open(output_file, 'w') as f: + writer = csv.writer(f, delimiter='\t') + writer.writerow(header) + writer.writerows(rows) diff --git a/OPERA/dataset/download_cc_sbu.sh b/OPERA/dataset/download_cc_sbu.sh new file mode 100644 index 0000000000000000000000000000000000000000..dc70a16d2c6dabc13fbb8bce41cc7ba78b948edb --- /dev/null +++ b/OPERA/dataset/download_cc_sbu.sh @@ -0,0 +1,6 @@ +#!/bin/bash + +img2dataset --url_list ccs_synthetic_filtered_large.tsv --input_format "tsv"\ + --url_col "url" --caption_col "caption" --output_format webdataset\ + --output_folder cc_sbu_dataset --processes_count 16 --thread_count 128 --image_size 256 \ + --enable_wandb True diff --git a/OPERA/dataset/download_laion.sh b/OPERA/dataset/download_laion.sh new file mode 100644 index 0000000000000000000000000000000000000000..2e3419117d09a27657538db71a1c639be0d59d92 --- /dev/null +++ b/OPERA/dataset/download_laion.sh @@ -0,0 +1,6 @@ +#!/bin/bash + +img2dataset --url_list laion_synthetic_filtered_large.tsv --input_format "tsv"\ + --url_col "url" --caption_col "caption" --output_format webdataset\ + --output_folder laion_dataset --processes_count 16 --thread_count 128 --image_size 256 \ + --enable_wandb True diff --git a/OPERA/demo.ipynb b/OPERA/demo.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..4d34f1e997907e5ccec887142f8b9358ff82be98 --- /dev/null +++ b/OPERA/demo.ipynb @@ -0,0 +1,383 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initializing Model\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "125aa92491324f429f31dc42d0411418", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Loading checkpoint shards: 0%| | 0/2 [00:00 ###Assistant:\",\n", + " \"instructblip\": \"\",\n", + " \"lrv_instruct\": \"###Human: ###Assistant:\",\n", + " \"shikra\": \"USER: ASSISTANT:\",\n", + " \"llava-1.5\": \"USER: ASSISTANT:\"\n", + "}\n", + "\n", + "\n", + "def setup_seeds(config):\n", + " seed = config.run_cfg.seed + get_rank()\n", + "\n", + " random.seed(seed)\n", + " np.random.seed(seed)\n", + " torch.manual_seed(seed)\n", + " cudnn.benchmark = False\n", + " cudnn.deterministic = True\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "parser = argparse.ArgumentParser(description=\"POPE-Adv evaluation on LVLMs.\")\n", + "parser.add_argument(\"--model\", type=str, help=\"model\")\n", + "parser.add_argument(\"--gpu-id\", type=int, help=\"specify the gpu to load the model.\")\n", + "parser.add_argument(\n", + " \"--options\",\n", + " nargs=\"+\",\n", + " help=\"override some settings in the used config, the key-value pair \"\n", + " \"in xxx=yyy format will be merged into config file (deprecate), \"\n", + " \"change to --cfg-options instead.\",\n", + ")\n", + "parser.add_argument(\"--data_path\", type=str, default=\"/mnt/petrelfs/share_data/wangjiaqi/mllm-data-alg/COCO_2014/ori/val2014/val2014/\", help=\"data path\")\n", + "parser.add_argument(\"--batch_size\", type=int, help=\"batch size\")\n", + "parser.add_argument(\"--num_workers\", type=int, default=2, help=\"num workers\")\n", + "args = parser.parse_known_args()[0]\n", + "\n", + "\n", + "args.model = \"llava-1.5\"\n", + "# args.model = \"instructblip\"\n", + "# args.model = \"minigpt4\"\n", + "# args.model = \"shikra\"\n", + "args.gpu_id = \"0\"\n", + "args.batch_size = 1\n", + "\n", + "\n", + "os.environ[\"CUDA_VISIBLE_DEVICES\"] = str(args.gpu_id)\n", + "args.cfg_path = MODEL_EVAL_CONFIG_PATH[args.model]\n", + "cfg = Config(args)\n", + "setup_seeds(cfg)\n", + "device = torch.device(\"cuda\") if torch.cuda.is_available() else \"cpu\"\n", + "\n", + "# ========================================\n", + "# Model Initialization\n", + "# ========================================\n", + "print('Initializing Model')\n", + "\n", + "model_config = cfg.model_cfg\n", + "model_config.device_8bit = args.gpu_id\n", + "model_cls = registry.get_model_class(model_config.arch)\n", + "model = model_cls.from_config(model_config).to(device)\n", + "model.eval()\n", + "processor_cfg = cfg.get_config().preprocess\n", + "processor_cfg.vis_processor.eval.do_normalize = False\n", + "vis_processors, txt_processors = load_preprocess(processor_cfg)\n", + "print(vis_processors[\"eval\"].transform)\n", + "print(\"Done!\")\n", + "\n", + "mean = (0.48145466, 0.4578275, 0.40821073)\n", + "std = (0.26862954, 0.26130258, 0.27577711)\n", + "norm = transforms.Normalize(mean, std)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "img_files = [\n", + " \"COCO_val2014_000000175440.jpg\",\n", + " \"COCO_val2014_000000063154.jpg\",\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAF7CAYAAAD4/3BBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9S8xtS3YWCn4jIuaca63/sR/nnDzptDPNLeliHhIgGUgsQQcZWTSQEG5QbiCE6FTDbpDQwB2Mq2NVCxpA46oQqEpCPKSqUun6ilvCTWRfdE11UMlcHiX8zHQ+zjl7//+/1pozYozbGGNExFxr/XvvkyTOh/842udfa645Y8aMGTHGN94kIoKn9tSe2lN7ak/tqT2176AWvt0DeGpP7ak9taf21J7aUzttTwDlqT21p/bUntpTe2rfce0JoDy1p/bUntpTe2pP7TuuPQGUp/bUntpTe2pP7al9x7UngPLUntpTe2pP7ak9te+49gRQntpTe2pP7ak9taf2HdeeAMpTe2pP7ak9taf21L7j2hNAeWpP7ak9taf21J7ad1x7AihP7ak9taf21J7aU/uOa08A5ak9taf21J7aU3tq33Ht2wpQ/v7f//v4Pb/n92Cz2eCLX/wi/s2/+TffzuE8taf21J7aU3tqT+07pH3bAMo/+2f/DF/60pfwMz/zM/i3//bf4g//4T+MH/uxH8Nv//Zvf7uG9NSe2lN7ak/tqT2175BG365igV/84hfxx/7YH8Pf+3t/DwDAzPj85z+Pn/qpn8Lf/Jt/843XMjN+8zd/Ezc3NyCi34nhPrWn9tSe2lN7ak/tv7KJCF6/fo3Pfe5zCOHNOpL0OzSmVZvnGb/8y7+Mn/7pn67HQgj40R/9UfziL/7i2fnH4xHH47F+/43f+A38gT/wB35HxvrUntpTe2pP7ak9tW9t+7Vf+zX8wA/8wBvP+bYAlK997WsopeDDDz9cHf/www/xK7/yK2fn/9zP/Rx+9md/9lt2fwLwO6U2Or3Xp733m/RDp/18Gl0SdX9Dd1AIICIIyG5AABGIgl1DqrUigIJ+DiEihKD/KIIo2jHSY3EAQgCFBPLzoL9TjAik11OMCDEhRu0jxoQQo34PhBgHvT4RQhyQwohgv1G0e8aIGILd366NEUSESAkh6v21P70nhQgQIVLQ54nRHluAzBAu4JJBZQGVIwIvAGfEsiCUGUkWkDBEGITQ5ociIMHeVAZKgZSMgqx9CoMhYAEEAuEMEKGwgIhAApRSAGGABWBBDDo/U0rAkEBxRBSCICPLgrxkLPMMWWakSNhubzBdP8f2+hk204SbqytcbTcYd1tsNzukNCBFIFBBIIAZYBaUnFHygmW+hywzZGFIERRZUJhRmMAUUESQy4w8H5GXI/IyY1ky5jnjcDzisD9gf3zAfr/Hfj7ieJyxnw845gXzvEAWxsIMIUZKEWnaYdre4Or6JbbXL7HdvcDm6hab7RWGaYs4bRBTAoWkazQEiOiuYtZ/hRm5FORSMNtfFoJQgFAA7P2wMIQZ3CmRRRiCaGtd9NURQewzBWq7JxACEUQAzoyyzJgP99jfv8L9R1/B/cdfxetPfht3H/06Dq8/wnIQFN+3EaCYkIYNhrRBSBPCMCGFydar7hXy/qFLACIQCmAKYAQIix5j1nEFAmICKCBQAlEExQEUJt1/iGB9JDADwqR9EOveGLeI4w7j9gZhugKNG6RxQkwJgXw8Ai4CsfmmFIEYQQhIacCw3WG8vsL25gbT1TVSHBFTQhpHpJQgBTguBctckG3PxEiIMWIYA6bNgOvNhJtNwLONYLshbAfB9YawSYIpAuMADEHfQy6CXAjHLDguwD4T7o7A/UGwMKEwkJlRSgAJEINgTIKrEdgNhO0o2KaAMQqGBETofDuBLdB3ID7/9tmmXv9B56WSUnJq6Y11TxOhKv1J9Lj9xyzWj/ZdWJRyMIPZ1idnMBcUzmBmcBZwOYDLApYCkQKRDAqCQIQYEogmo4cjiBLE6ErOM+Z5xnxc8HDcY7/f43jco/CMGAIiEVJK+m8cEMKAFAeln6T8oZQFpSyYD3vk/T2W+QGlLDp5gUBDUrodEyIGSAE+/sbX8H/7v/yfcHNz81Y+9W0BKJ+2/fRP/zS+9KUv1e+vXr3C5z//+W+qLyUvRnC6Y+fnEfgRKHEJZJwBESJb0ev+qT8gF/o5GQxdGELFDai30Od6A0LpDXnd7RG6MbF1IgZZQggQ0ZlicCXbDlJIqBIt3ZAKZEIIiB0QIFJGEhy4UDsvRAUnoFjBSAgRFJKBldCOxQSKETESQkwIcbDfCJRSBSQKaAKi/U4UQCEihvabj5HsOzlAiTpm5gIS0VXABJGCIIIoQCRRXiAFRECUiBAGm5Ng74cUrIAAKHEUygAFsARwWMDCKCIQw4IkCpSKCIQBKQUkik9SJMQIDMOA7bRFGgZISCgIYGZAAkgIYIEgIUtRwIMjiDJICiIJpgCMkbCJAZshYNqMGMYJ46iEiBB1XIVRyoI8P4DnGTIvQM4o+Yi5CHIRFAiKCBYuOC5H5MMBed7jeHhADAdwKZghQGHkZcH8sMd+f8B+mbHPM3JeQEsBkyDEAKERxIJAUeejLl5fkxECAyTMACmDVsagm0mMgUCgEycMYUHhAiHSuRYFIhAxpiC2H1iZLxSMk/elQ7D96YAdIApgApgJkgtKPmKZH7Ac77EcH5DnPSQfIaUYuAFIlPaQACQFxDOEA4QJKGTPnYAoIEkgGMCt71Ypjc6IjZttnOTiBoFCRIjKVGjYADSCwqDAHzpPwcAol6L7PRIojqBxgzBuEQYDTnFCiIPt5QAqNn9ghADA9i+FhDDa+cMWcbNDmHaIwxZDGhBTRBwSgAAqgrjoOiMKADFSGjBtAq62I67HEdeT4GoDXG2B643gdhuxHQSbJIjR3oEImIGlEOaFcJgZwwLICOQkoBKQC4EXwbIwpCygwKARiBNh2BKmFDANEVMEpkQIwQCJrRUHB3AQIQSuQEXfma67CwCF2vvy7+03QAEKAAnaJxz8kAkwQGFuoIgZbOBEmME5g/ME5oxSMkQWAIu+GwoIMYHiZEAlgcIASEC29ZriESEcUcDI+YjlKFhyBrMgk6AMCczJBAjYu4LR9ogURwROCCAUAsbNgMLF5kcMDBNiigAIkoDpZrOaoze1bwtAef/99xFjxFe+8pXV8a985Sv47Gc/e3b+NE2Ypul3ZGw9YXxM2/E2zYVLGf3v1H3pAcLqN6wBh2s0Vvfrf79w70/bnJZD7HkJYCnKWCmopCVKUPV/HcF0oi0AWECxjaZtWOrGaLvswsKkisTEBdz6sCLGfIw8Q5QwAYwiACghnb4Vmzs21uagLlCbWyYl/xCVNgKRbXztWwpDlgXCC5BnkCwI5QjiBSQZgWdEGNHpHq89CRvAFGV+RECKKJnBxpB0zqkyQGGuUi0vBeCCRIKBBGOM2KSIIQiYAJECkgwpBcuygIsgLxnHecZy3INkj1Je4Xh4wH73Gsv1e4gZ4BLAohJ6SoRpHDDEEWMagRgrkSxSIGWHssxYDgdwnhHLjLgAuRQsOWPhApSMTBHMxrxoQZEjcgHmTDgac5iPjHkpyItKfiULkAsYQBAgpghGRC5AzgXLPCOEPYQiCvSeMR8NIDSQQCEa2GBkVsmzMGPJR8w5oxTGUvQ+ui6NgHIAwJUR+OYTUo2Vr1L2t2n3g1CTInX04MLI8xHLYY/Dw2vsHz7C8fAKy/EeOc+2pqgpZQQqJsli9y4gMEgKECKIIyQMCoIAiATVoCDq/XSnANxoDYUA4QBCMkYiQICB+6AAiUQBVdE16ftEO4h6b4qqVWIGsYBzUfBLuoGYyUAxNxAuDGIGiMFUkA8LlsMRadxCIiAFoMF3tRIbigRiqlpLCrofYlAlkCpmSP8F0b1L0tFEguoglf0XERTTPuRCWLLgmAVzFhyOGfslQ5bX2KSChIgcAkqMKDyBA4Coc6trhKoWxee3aU6aFqUKcIZinPaLSP2s9KZR/UYCCSKNPrKtDQfNxf722hvV0CYQMpxDEQYV/DBCsECQdT2JAmKnqU6kiAQxBoAHxMiIoSgQLgCKQI6CeT5COIOoII0BwzhgGEekYUJIA1KyzyEhkABUEFIAsQo5AiBnBrJp+DJQeFbN5jLjXdu3BaCM44gf/uEfxi/8wi/gz//5Pw9AX/Av/MIv4Cd/8ie/ZffpgcCb2unv0v3/Uh8NbJAtmnYOGRGi7pR3Heebfr/0DCttzDvdo/XUX2bKYRCUUQC2KTkrURYgdKptl1gdAftmbGoaMQnLiFedjP4pXHLVzRygZJckmjTIAJTxkBECMuYCCYAEiLDKi3aOEwIHXA5sVC2v2hAy0NXhKxsNVN0sqrJgzqA8g0oG5yNCWUCygMoMkhkEtuc1pqOT1M2mES8uAEklZI2woTIrNmIEKWrSoWDPQ5hixBAJUQqGQJhShIigzIuqfkW1GPOxQBhYSsYyP2D/8DGO9x+B8xHDMOH2+fvAe0cMDEAIQoQ0BFxtRrUKQDVcMQ6QoGa7UgSlZJQ0AiEiLwNC2SBEBuUMHhaUvIDmjJiBJQIlFmQkZA7IQsgQZBGwqHlFECEoei8SNXVQgMSAgoBQBCUXzHlBOh5B2BvQzMjLg2q/iMx8qOY7UKjMojBQhJG54DDPWJZF1dmFUWy1q/bEJWNZSb9sUq0ClMZQua4SA0cIBpDM+sYMno9YZjXz5MMr5OUeOR/BXCDdaqtaS7Y1QhksggCG8AyJapoRSqadAEgSggQFs1CQJCIGWsiYYTBwM5pkE1Ubw7nOke6rAJh5q+3jBAkRIZhZSEIF71JKk+5JQTSz7j2dhAGIIzgE5JKBJSAuC8p8RJlnSMyQEBXo2A4pAnBR7QcRQDHotDMbUxelOQJwUTPOkoFEhED63DHobDIDRQhLEcwFOHLAsQCHQniYFxz2RxwORxz2Dwj8GmEsWHhEkQ2YthCKEI6ARDjVOuMJHV1se5iqpqBSvqZuadcSmUAF080JxD71WnQ36TAE4AA2UCu2Rgmi5nMAoAAmQUojEJOal53mEUNYzcht9QbTxuniSykAkjCYmW6Td+CdIEhClAmB73Cc91iOe8yHA2I6YBgCxmlCmiakccIwbpGGDUIkRBRQAIJpWJR2qxlbSJCXWQWzUpCP3+EABQC+9KUv4S//5b+MP/pH/yj++B//4/i7f/fv4v7+Hn/lr/yVb0n/yk6pSd14O1DpW69JaT2t77BW6bUb9IBCOrByyhH9PO5+qqpkv6QHO1CQewZ6BOuLHnmeHpz4P+7HbZqJYDZ3Z+IEqCTV20+7nmll5tFNot7ZigTcxi1G1PtrFdysJ+gSqHNQ4QNyIOEanabmlwpmiF2yVGYT2UBOcKmm9c9GiIMISBhcZlCeVXNS9gCrmYRkNtOOEgsiMpW3TxY1YAIYoLLZN7MNCoOKKOOUYoILgXmBWcNAIAxDxADS+0IZzLwsYCEsZQEjoXDAzISF9djx/g73r7+Gu9dfx/HuFfJBNQ53rz7C4eFrWA4f47h8DkyfxW7zfZCy7dTWwYCKqoYBQSlsaE6ZsoDAsiCDkAXIrM9RMmPJBYdlwX5esD8ueDjOeDge1fdkXrC4JoMVCAYATAESIiREwPxKmBklZyw4goTAlFUjYz4VweYoJjUDCgWwLY4CxlIyci44LhlLVtA3l4JS9ysb8HUTjgLqCpllve+cObumTbUouvQCqSo+5wzJGWVZkOc9eN6DlwNKntU3AAYmHBg3LG9EoKifDxtzoajzHgIoKHgjimBSDYZATYFKO4KCPBCEEoIURBR9WyEAlECia5Wh65+LSurOTGIMCOPUpGIEgEUBKKkZzpmkcIEUXbegiJAm1aDEAg4MLoAcBXQEhuOEJY4KwpEQS2zajqLPkkLS/RqBAsF8XLCEgDJESNK5FvOXYRbkDITAQAzmNyWqdSuCOTMejoL7o+D+IePu/g73d5/geLgHP3wMkk8QtoKtPEMOL4ARoM10JqwIYFqvdoCFbe6lakpX4BYmLBkBY2b1wzB/Ml9LTgx6E4eI+VCZeQnCBnzEQJCCO/VzU6lRtSJB/7FqvYNDICU21g/bGm5cjaD7Rw8p6I1hwJg2GNNWgeo+ASAcj8BynMGLagL9uXWgBVEGCAGDmcdTUHMOWPnVwgsKMYoUNbXKOYh7rH3bAMpf/It/EV/96lfxt/7W38KXv/xl/JE/8kfwL//lvzxznP1mm8nmZ9oHP963xzQU/jpp9Wr9t/UVDkROj5/296bv/Q067FPvvQI99EgfJ92RXD6PT8+zzwVQJk3tPq5S9W3YgAitxtn6cidbg19kdnFR2URVgsYIq6q+mV90AZNuMKikQMQmA6gUwAFqgxd/owXBpBpyaUEAAYMpIFbwQAhiGopSqsrIJSGSAipZHWGLARSZkcqCBAUpikWUOOpYnCAtShB8fgrXWVMmnoFizm2F1VbLDDX/QG21URWkOhe68oo7f8oCWhZlUqVAiFGQkAsjlwX7h0/w6uOv4fWrj7G/ew1ZihJuzrjfv8Krj1/j7qNv4PP7b+A6Mfj6CvlwgzLPyNMMlIQgE6IkMAewZIgU5KKaiJwLcg7IJaAwcDjO+u8w43g84mF+wP3+Hnf397h7eMD98R73hwccHw44LjOWskC4GHAklepDBEHNCsAAUAKLILPgkI8oEAyUkcpBgbAQojs4hwExjipKBwcKRZ1kuWDJ6iw75wUlc9tH1Y7K1dPRAbxDeK6iPaqmIpBK/gBMi6ILt4g6Uqtdf0FZDsg5I5eCIgXExmB9k8ia4rjUrcKC+hOZcwfA6k8CqFJf/cQiCsgcqBWYOEAhSmDOqjXpGGvgBRRipWT+l3gA0gZhiBjGBJo2iMMWiRLUgKOO3cIZUmYUPgKlAEUBM8UIGSbQMAExgZYJSBMoj9hDnSVLWTCMOwybLSKSalAABb8skGFAThFpmCASMR8Ex8g4zAN2w4RAEWMARsqIJIhBveG4CDIT5gXYZ8HDEbjfB3x8d8Q37l7hax99jPvXH+P4+iMs+09QHn4NlI9IL9/HEgfw5lbnQnSfVpONOM0l02K4tsQ0J07pzSbjtNT/BmnaNwWfUoHJKSjp+YqIQDLrO+4dmKUbi3Bdk9qfC3k2KhME4eDFKaaw0nJ24EOq8UgBQ1CTYEpRnebTCJD657mG6ljUZBMWRhozwEmFz2xEO5IOLQ2goMJNSgVCCbSQmvApq1BQvgsACgD85E/+5LfUpHOpvavW5DGQcqkvZ+j1/NOL6fzjpb79sgtKidZl17c8dv5jmpNTcHJhML2kKKc/i9tL1Uci2tZ0DG4m7gaWKuFvD6GaCvNTJ6pMvdp1WcVVB+TuJuhOty7NupqzaiN8jKYVIVGCoRuBgaAbmSgqEQxGJIRBZjtnAahkGy4DPEMKg8sCKgsCL6otkSNCUfu6CNRkJMaYbH5Y1BzCJdexSmEDSTCHtkWd2oxIADDHQ3V4FIrKAe0+HCJmPgIiCCzgeVaHRotEYSzIAA7zEXf3r/HJJx/h/tUrHI8zOGcIizJNc9LkDIzpAa9vXuP+k29g//wjzDc3OG62SMMEpgGUsznpkjrKZsa8MOY5Yz4eMM8zlmPGko94OOyxnxc8HGY8HB7wcLjDwycfY//6Dvv9He7u73B4/Rr5MGOej8h5AXhR7Zc5RRNpxAnMAdrfuZQCEZWoC88IRwWZFAgpWYRXSAhxBqJrdmARDjBgkpFLRilq/gKgJpL+vTHj0u50/yn/LBCUDrUHW6Pu18LMqj1Z9B2TmQsD2x6zvSK2ln1vVHAOFyik88oUe66CyMH0V/re1QQlYNsxUp13B0RksCwQyYhlBpUFHCeEMCjKsmcgiqBkPgwRGDdb0EajbgiEwgThBVzuFHQd77EsDyglg4pqsjSCbgSGQR1p4w6SRtAwQfIWR54hDw+Yxy3SNIEjIVJEoBGFA7IIQhoQR8E0bVHGEUkmzGHAMmxRtgBooxqeqEJHzmZWK8BcgKUAh6Xg4/sDPrl7wDde3eGr33iFr/32V3B8/VXMr34dx1dfBh72uL29Qbx+gYEjBkSE6gNi0TNsTN/flTSA6r4nK/pl57G0PQ1pQESDXXot8Qmt9PdngIdFNLKPHTwrUIEIWNys3NoK8ABqavbwDiJEUmALASKR0Q79TYg1QAABwygarTMoQPEgBqqCJuF4YBQ2sD+I0fQAMe1eiAEhJTUzQkxoyEghQEICI0EkN/D2Du27IornXVpvXvhm2mMAor6fCz/201xp1yOde1/rzh/HFvX4CmJfPk+w1pS8C4ihy4cvHhSTCDyuSRdkC4Vdm2lOuug0JIr2yZzdfAPr4ibzQhF3gNQb216iFZBa34eN4VAHnqQdE9bIGlO9kjGobE6QAQIqDMkZJAcIM4jVvEO8IJQCkaNKfSEC0KiNAIEwKygRtfPmUsBcAKiGRJVHNiIuIM4mPdhIqQG0GFRzlA1YBCJkaBQOs46vHI/gXJRYElBKxn454Hg84vXdHe7v98hzgRJbUn+UXAAGhgCkNCDGKywL4e71a7z++Gu43l0jhgEAYWQFWiEmIBDmMqPkguNhxvHhAcfDAx4eXmN+uMP+eMTDPCtAOR5x/3CHw/4VlvsHHB/usX/Y43DYoxxnlFlDESXPIFHfIiJSn4c4QEh9SZjcTyWAM4NJOQYFQEy9FmMEo6gmK6iDq4qcwSIfVONUSgEXDQ9XqZHqGrAXoqHHvZm2W++o6whtQxnK6Q2+zbeomRnJ/4kgCiGfODyR9angFHb+yZ4XA/7UQDmZSUcq99QIEPbREEGwQHhGTAMgM5h1HYMS2ML8SXQ+KY6IYIRhQkxAHBLimDCkQfsvGXw8opQ9eH6NvP8YZbkDl4KAaCYeASGazW1EGK7Aww487RBlB+YD5mGDmAbEcUKgCUga2l9sj8cYEYYRZTOhbDYYeQeO1whbghSClIicBywIyPYyCtSvZ1kED4cDXj/c4ZPXr/D67h77V69w/MZXsP/y/x8PX/tNLK++AZkPmMYdxvAM0dIICJmOvXqQBlSA7K9bUOdcHWfbemnalQZORNTnKorTGsGp1mT12aK6NN2AaWWYK2BRX8DmeOtmp0q/q5bPlmkvMQIoIdQR95YV9e/W59YgKgEiMIQAcFR5jQU5M7KZZrNpInNWTWXIM2IadTSkZkYX/ASuiRc1WZv28zzq483tewag/DdLiHuqhXBI4AuiO/WiFkbWx89MInR+rvdlmr71+Y8M8zEMI/bjivhdOP+SFmfduQ6up9cEtXFXxQm1C1cOtB3Bdic92xpNVe5yjPu5+MZ7y2quv1oX2nsjFmyhpkFcWkaVDLio01bkDOQFUo5qpsl7hDIjyIzErOG+ISCG1Gk+gJIVoHh4amYDKCSm2bGcKq6+KAXExXxXzHcGLgkzKCU1T2Q1/ZTCYGKUXCBlgSxHcF6QS8ZhXnCcj3g43GFZMpaFUXJjXixiYAcYE2EaIrbbLTbTNYQTHu6P+Pgbn2BKXwUVBTObJeO4f215awiHfAAXwjILDscZx8NrvHr1DXz09d/G/f0ec2Yc84LjvMfD/g7L8QHLYY98mJHnGfOcgWLRHqxhziqxJUicEOOgfiekOVXcedf9iooIpGR9Z0JA0FBwKazZI6RAhMxMFzS6xMxDxcMwzb+mScQCCrYiRc7Wfe/wWPdIp/XrmY7/LX2Yr2u3DIST5eFxXwDz1MXJttdn7DZ/D1hCCGpyI5Wsq36FjO4Z5lUBoJi2Ts1OgTOIZ8D9pSjoRIQAGrYato8bdTqOpJYlMCgwghSAZlA5oBw/Qdl/FZxf6x5xR10doWoq0wCZd6Bxi5InyHINmm8gwxUkTShp0Hwp5vxaoGH2IQXEFDFPI/h6h116D7h+DwGCwEGdNjH4S1CTGOlzzvsFh1cfY//qGzi8+gjL3T3y69c4fuXX8fAb/xn33/gKKGdM4whQ0Si1GFXrVidZqhaksJqhdR+Zz46sgSgMLBTmmsOo0hvXfrnfiXQ07WSdAVAfqwsApa5FFvO/4ZrzxuGxLzmGAp1OEqyCkYIdHwPVsTmvCRTaGrRr00iYZFPzCZWSMS8z8ryg2N+cMkKcUYYMigNKLgYegUL6ngKZEz/EIuUYjAKhgndt3zMA5Zttb1I2nbLGS0SlCldv6FtO/l66xwXlyvr8DihdGsdj47zUHhtXkyDP+1AHMFTi6S5X6jhrppV+XHKyKVbQppdQfcPJ6jwKDmCM6EqwTdU0MgCAQBbl0SIr6nM22xOq/tYkbhZRU06eq3Qv5Qiej0C+h5QjSBiRWZPPWS4WzzkhBHUULJoYCQCKZGWG9ojqpGgwkxnIGUEAd7IUYZs3k5SCSqJ50QRKbrYoXMB5Rj4+YFnUzHI8zuoIOh/BmUGIqjEyFS+YESGICZjGhM00YruZEIYIlojjEvHJqyOAr2PJjN1hj+3r1xgmNfdICCglasgmF+yPe9zdfwMfffxVfP1rX8PruwOWIsh5RlmOmI97BU+LJosTVjOa5r2JpgpWp1aiAQgTcohgEJg8zwlVJ1TmDAkA+9wFjdTKhREpdlKvM4yizrJoERjF1pXrJ5w3N0BN3ZrvoHCTQbp1qj+YdaRqFV0AFwPUBEBIHVtVLZE1109RZ2mmBor8Eah+0WsDXNAUzY1j+kt3YC5cUASIiBpkG+w51cnA1npWjVxZlGF1/0QEiAkDMmTcQngGs5qmwrxoWHBggHVf8PIAnj8GH78Gnj+B8KIOxxShYc8GKkOAhAlIG5RxgzBsINM14rgFhklNQaJp0EqZUcoMlmwWvmuMuy3S++8h3AIDb5H4BoNkJClIzOqMzlnXBqB78TiDDwvkYQbuZ2CfgT0jzBG0QPd6CMjQiLiYRsQ4YAgRCVSjFuE5cNgcqBE0hNnMGxWkGPhndzy14ygKBBgGWm2h9U6zp62lT0ALdXefqA6cMGvKg+B0wummNDosdc3YurZoN5D6yHlYfI0+C6RJGUkdW0XYIjUN6wwBwzhi2kyY5w02xy3KfMQyK/0JR31vYTxAKIJLhDAhFwXpIaDmcCnMur5Ehbk+MeLb2u96gKKylyPLhmwfa+fRPGsGb+CxHj+Vwhp/NjbvGhZnut210l/XXf6WAa7GtTpfujH2w+geoocP/XlVhQhAw3UT1LzifYTuypMmaPHLhFWIb8tnIapdoea0VsFKN0yq/28aFz+VRF1PVMspEDKpBEU3dDETAAokF/ByAPIRXI7g5QgsD8ByBM97lLKYz4ytjkDKaEUThhWKmoPEN56reY3rBBAgBQxl1iiwxG8C5bwM28ImPxGYon7LGhrLIBReMC9ZCcPhAXk+Yl4K5qyZXd2/gWhBCLqWI0Hzm4SEFAnjOGAaJ6Q4ANBspoeZIXf3KMI45IKrwwGbTz7GOE7Y7m4QhgmEAQWCJS+437/G3d3HeP3qI7z+6Cv46JM7ZAaWnGsEimEFEKmz3WAZRIP5/RQyfwVoCG0AYXENmpiho5r+TOOmImglrr4q2G8mCknY8lZoCCspUDGKHfp9Td1iP9lrduO6gan7nztuN9BrAqd4MD3pc0Ft7IEGkIGTISYgFCwigJS678QjMfy7oZWWXcRMXtSNhQGKAcEYJZlpk4M7SzazVQDXUFWY1sL3DgmAOEOWgwGQeyzzawWKaQBFIJcjeH4NXl6hzJ+Al09A+c60WmTM15LnQZklI4JSAuURkhLkOCEOOyBtIGlA5ABGxrIcwKxCQCCBpA3ScoOw/QGkeYdYniGVZxiQMZCBbRBA0baPGkBjCKBIum8oaDLHQBA+QsoDIAcQBhCNmvhxGDWBHQVlyBFwNl/zPYmaiN2c4+9elxu3BItiif78OhfamBuIdZrbaZR7HsOmEXKworlcWM3OBlK4FDV1Gpo57aPNvS9KB6OW+ddC+QOFmi1bTayqaakmcPb1rVwxJGAYE6ZpxGY7YZlHbOYN8nzA8bgHI6METYQ3xgElmt9fjEgxVqG1cEFZMiQvauIub+VitX3PApSOzry1NRXd287r+n/kNzk5tgIJDkYAGPy9eI+VJFc7db3FGsiA1te96Rl6wOEEr1d8rO7dj8kOMlVZSX0JLF+H5iRx0ECtb6KK6GGE1qXBZto5GaMxIg2bcGBEDZM4lhTPJEA1Yy2gxB3uTiiGi6SAi+YNAavZgMseZT5C8gJe9ijzHXh5AI5HyHzUZHUhKkHzzKYUEQMhpAGFAlBmSDFpihtIUX8YgUgGl0XfGhM8+RehC0U2JssUgBg07NhCcXPOOCwHHI8LluOMvMxmtmih6VGnCZE0qdUQI8aYMMaoUqJl4k1RQ3hFgKUwymHGITP2BdjMe2wefhtDGnF19QwvX34fKOwgQUOKmQX3D68x7/fIDzOOr15jfq3MjBlQD6JWriCNEzabLVJM9nyW2j8QiCYIggI8W4nMmtslEVXpNFjoZF3wpKAkGAMuLABlENSfgG1TuALB/aIcYDrxrsn4bFFLt+5qrp0L+yY4g6nnw0CF1O/6L5imrSBSAIeIEjVRWuQAieb/1G9yMgdNIkQJTaPizMb2HiCQQBrdYXsDbl4SRqggTGwv4OI+c0bHZQGXB/Byhzxfgw6vABFw1qyxXGbwco+l3EHyPUI+mAOwye2icFej0Jx6KPgnyaAcIeGAEh/UtBLUH0dYTasQZZKICWEIwLhHzEfEAlD23a1wVEPLFQSqkqOAJYNlxrIccVxmzHnBcTlgXl7jcHiNvCzwpHUxENI0Io4bxDTVDNZCXuhDwSOzazd9fbSoF1WUiOUfUkBeE7RZF2z+I/re3LGfKmDRTu39iMEKQQUixXIbuUlHj5uQ4+at2o1UGlvTLBCp75YBlEChJusLIWBxTZ86hiBaJCUDoOCZwW3xGDIOMSINA8ZxwjKNGIaI4zHguF8gcqfaurRBpgCBIKaInBSgkIF7zhYkUDKKLHjX9j0LUD6FFukxuf/Rcy/hvx4z+PceX9CFY/WiTqNw2nn/VboPp+PwtMxvHDu1jXTpHtyN6QIGav2ISX9OnFfQx8KKTQpxdM7iobNtIK3uj92vs40CTp9tc9um8xDeJpWo5F3hG5kjr6hKGNmER9baE5wLZFlQ8gN43uvn5Q7z8TXkuAfygsDFJLMEkVLT2CMEzR+x7NVHhLMyCyNMNQW1S1NWN8MJHos55lpIaDECRABCyBACcslYFs3SOs+zZkLN7lNg8xJaSHYgIAVgTFHzpsSIaRiQrGaP1j1qPhdLLiA+AKEAOeL+uAd9fATya6R4xPf/nv8O09UzpOFGpfNQLJ1CgkgAEWuoLzQ8eLBaRilolEVMCXHcYJw26owIBnHSdxODZbGNKCEqyJSARSKS5d9byqLSovTrT9dW9aGo9XSCrR3VNziWid16pkC6JHXBNOnR+272nn47rhc7OgDTbYgmLEjdzxQ0jL2QRquUEDUXRogISRCLqHPv0sBq64iqkzhMwvX9RRWoKzghUi1Kgfn4SARV2MomTChYV5ORGwNs7iyvDucD8vGVhhrTgFAyOE7KwPgInu/Bx1eQ5UHBtsB0Ge744mbVTptK7udlen4qmjuFACCAPB8RtD6XlrZQE2ryMFV7t+x1lbggiIKJIhnHnHE8HHD/cI+Hh3ut+bTf4+H+Ne7vX2P/cKc1rYKWuxinEdura2y2VxjHCeNg+4OCglxWjSvcnOwUzUEEzGmUzRzjnrOmQSm6yc39TBpNd6DT/xV34lctjYIQiwQzkAJ7dgdzXCxHjtfm8r6CO9C2JesZfRSYhVb/LFr4uvmoRKJaP82BMgIhGq1Q3yfWuj4xIqaIIWk4eskD9oeMfX5AXvYYpw1SmuCJMGOKoBRNQBT19+OCXDLy0gr/vq19zwKU36lWaYt/OWvUVHNnF3bXvtOdVpeeS3oXDz42rrffrR9a9a+6dLKZZqiqrKX7rMTdsjrUvlagjS5MRCcNUjBwYqQiEcyxEiAxiZLImKdKdZSVCJRijpJcUJYjyrIoUZ7vwIcDeN4Dyz04qw9FEFYpPUYQMSQLMmYFK9DsjiUvmmHVIoVYOs2HS0wilo9CmWslIjVfgRI1EXWsFcubsSyMbMTKhSWj/zZXqJqTFLRg2pgixkFNCSklTGlAjAkg0y7YmJhFNSKW6r1YLpa8PICOgqttxGc+I3j9+hU2VwmbeIUEQAphijtgKMglIqYB07hV4BasEGMAhhSVUI0bLSBnAw+SlNhR1EyvllguxISZk2YtFUIWzULKzFBH2gJPAe+LWB2zo6FOS5jmUvAKWLvGg5Qndys3hKDvp/cPEFQbvkfiwk12veDbI5TTbdD7ekC1SZGT1kFJnrk12PoqftvV2Ny5FoHMv8tgjLQcpK5ZUT5IlcGSkK2rYFun88sinxV1bnV/B8kZMt+D49cwSwYvV6CkxeWQDyjzPfLxI5Tj62raQdA+KPi+dS2B72itLVRr9yAaOHE/jZ4QUKUPUUOJtAglA3kRLFmQs2AxR3VhxpIXHI8HPOwf8PruTgHK4QEPD69wd/8RXr3+CIeHewQI4pAwThvcPHuO22cf4PrqFtvNDuO4wTAMSEGjTwCydQeb5WYq0xBjTUDHvpddG8uy1shVpCC++hSMGBDV/e6aVt/njOIAhY2OWHi8/y6WO4m7bNe+MBU0ipNLc0ZVP5rodkjS/UYGWMgcztVXRbV+7qUdgvo2uXDDzOYrRCBzaA5J+1hmQZ6POO73GMcJKWlh2BATYhrUp8x3jGmN2ZMJvUN7Aij4pnl4bT16XUevXOpbj7zLPevvnebjrXiGzs9512czYfDihJxrjtpGFFOHKE1v9vNKS02D0DZxG2efrTZUEOJOn1a2UGBMnxBNUdMYPteNpdoMBsE3dYFkBsoMzkeUeY+cZyzHe5T5AXQ8QJYDkPcgyQjGPACCFEaWglrcgzKK1YRhLlY9VCASUIT1Xw1n9QgSrS4KKeZcq+GxSog8x4cSuSVr/g4WrOfeNAKRgET6l6AF/4YQMMaAKSUMQ0IMUSMxYFV24bkb9D6LFQBc8gHLklGWUvM7jEHw/PoZaLhCWQA5MMr2wbQ9ESEoQZe9Og1vpi1i0BogIEGIwDAOGKcJMY0qgUOq3w3FAQwFKIKIwISFEgQJwfQxgRdQtCgd0aRuwYrSue1GIJXxOTsBNebtyVGJCOEkjLhFTqBfmPA6U+xQoW4EfwduluS2FzpgcyolA2QaiFakEi7FBvU/4s5XROCqcJViGAo2FIR0QcjklKO7tTH3hqrsFxIz+XQmIrFxS8vJgiKQ+WC5b2bwsoHEUc/LM5D3kPlBwQkRNG+NgneqElYjGu73EIJH48FAuVTNDQWxYD4rzknBitlFMBMWr/M0LzgeFxyOGjbtpo/5eMThsMf93T3u7+7wcPcaD3evcf/6E9y//gTH13eQnDXp2Dhie3OL6/fex9XtS1xd3WK33WGaNkhJK/PGWlepvQ/PlWOvpDnHu68ZSxcldg5SRGqGGriGrYYKd8BENQsOTDQqMOesVYJzNmBUVte4WRh9mLNrTfweNt/BtHKK4w2cUFuL7lBL5L9pBWSBAEEUvEhAzqzZq8WjgjQ/YoGavZZDBi8FaUhabTwOiFEBbbCq3xRQn/ld2xNA+SZaI0MXfrtgZ/Glb7I0un3bkkr2nUk7f9XJmwbTn+JCzZuuO7/8bKyniqHLXbmBxRi7b2pZh9Z5MT7NHkqNB3TABR4B05FhV4nWhErOEMRn04gJVDoULnD/jrzM4PkAlAN42SMf7lAWdYjl5YCYZ1CZtcKpiGoEojrBsoSWJ0ACipCCEyIUIWQJNSNiETPZshILt0MXKWr2KYsRnQwpWi+G2etoBc2AC+rmvJkSov0biBSURGVIY0qa+ZEUqMSQTJthDK4ICnKNJijMmHPGcT4q4SsFknXgIwG7ZxNuXn4ONL2HMO4QxxEhTqatEAgihBl5XpBoQBqpI3TAMA0Ypg3iMFRGFGBMkqCSsSQLF06ARDVLhAEckuYczQf1VSgMmHMxiYM8Zx6lzlDw9UEATLvFViTNK/ZyXSuon92so3Ns0KYWVTvPXeGe6s2nar3+fZ1WAESuNVRNhWqPNOQ4+nq29yRmV2XLKxR843IrDSEi5lDbHNFXIMmPVK0KFBS4ydTMpL3AwPW5FIyLHIF8gAStkq1AKgOiuXuCjd+1DVSjd/xeTiVarSsQWZFCv4bA5p+FAIuMa1XNCVpIczkesRz3OB732D88IA26Bpc8QAqwzDMOD3s8POxxeHjA/uGAw8Meh4c95ocDJDPGcaPak90Vrl+8xO3L93Fz+x6urm6x3W4wjqNVPncTVZvXNdhw59hGi6pvyAk48aR/dS2IA+tO89IBFGFNIaBmrIy8aGLBbL4aXJR+5JKr9kSBEpt/VjMV6XAVOGntJ668Rix/k2uqtZSFmnbcF0UBtFV6dy2fr0mKarZcLJ+RgyvJEA8CEEJeimmtC2JicGTVxhC0Uja3uXzX9gRQHmlv0nD0TPxNzZf8W7UefnIvBF0YQUBNo1DP6H+rXcnbx3bh1qs79iCl78u13ud3cLOOAwclsI7sYRu9iFiobUc07e7OMFwK8/uxu7X4mIwAMgGpT2vPnpI7o+Qj8vGActwD+QF8fEA53muysJIRWasRE3vMRLQso+rj4AnDIIQSkxIGmCSkCmkgqsQuXPS+sqCmuLSBs5lulMgAXALcoS0CQFCzVC0EbQwmBc/g7rZiQrKIkBACUiTEEGyGzTnY052zIEOZczGwNi9HzMsRy5IBy/AfRO/z/GaD9z/4DN67fYZxHBHSCI4KJJgGsBzBvMfh+Bp5ZoxxVMIORkwRMSVstjuM0w5I0bJhwpKosZoCYkLAiGhVYsYwItEGI0UUSpghCMsAnoppUIo5UmadR/YEIkp4XTMEL8QoAFiQ7DxlGlwBga89iJkMRcGT55/wTUM+l0Blus5UehPqypWWbON6ngrWNc6mYIgUwFH9NoTV7h8pqPYiSJPSRR2EyTSQzEW1C6ZZ7Cm7F+estIioDsXdYhVzBZOkfTOTKWPMudND3iFAFgjNynRi7ACXxdCIZiENBgh7Eca1QDXENdr+Ia1QDXhUkoKTCMDTqYcQLT9K1MrchwMe7l9jGCZEiwbJeUFKCWBCWQqOxwP2D3s8HI44LguWYgUZQ0QcNhh3V9heX2N7fYPrZy9xffsM19fPcH1zg912i2kcMY7q8FnDa6vWxLXCriFBO96BE8/6KgSLxDFNxgqgmMMr+uu1X9WcLFgya1HLrJmoOWfkpaDkWTO3lkWL7Fmourh22O/pAEWs+rQwCmzPuDZF3IeL6jukkMxMp74pGmig9bgoRTiMJy9JEgDJjJwXLMtR60wV1fawpVrgRRBKBDMjRtGcSsSgQuY7l96VIwL4XQBQTrUAn+7aS0HFn575+zguXifr8952l9N+Lvqd+ImXunmXwcuFy6W7Xz3GRrQMnMCIOkEXpYfoQgmodPZIP+4+Fb3GpN3D7NgBVcOg55gJCYCneWRotlUpR8hysNTce5TjPXh+UFPO8qB5TVhAZj4IptKkkFAiwGISX9AcDwJoPosgFurH1QlzzrnWfYE5dwKeKdciSCQiEmmoqUk8njPBHgaeOdKKLiOIlZwn0iRW5o1PZtsNIYFQbOyWiTcm1UyQpqhnYfOTUYksZ3XY1agfldSHCFztEt77zAs8f/4etsOA7RAwDsmqpNq8gsHlAF4OGEOCDIQYgUiMcRoxThtsNjuEOIBNW8BEyEWdI7Ve3QAJW2TWomRIVyhhNLNZQGDWei5mHitFx6vAr3TSqTkLStEcKQKwqNYsGhgTYywOkDwcNHQSpzs3ViZSmYqgZW+lDqVL1U6st5CaY4KZO8Q0bRqKj8oUgkXxwBi/lKDgxJJ9tS0lpgUzZunIoiIOc/LtJQjbKwKFDdVM6SYY1xL5nqr/59o1iCAhNcHBtZ1ouWkAWLJFrBu1SCEhz8bq9/XVpuDBTUNie7vmyfHrWZCPexwe7jCYLwwL47jMSMOoic1yxjLPOB73OB5nLEuGiGqqpmmDsL3CtN3g+vY5tlc32F3fYLe7wdX1FXa7LaZpg2EYkVKykgmWNNHfub/3ThR1n5T6z9eBm3uggNQFzHqlOAA1jUvnt8JctGJ4LlVbIpYYTUrRshiWndr91IrtYzX72Fp34F0jfwoKrJIwq7bFUzcovfUFFw2/UnOeNUGHqie+H4PSYhBkIZRFhcBlOapW2gAKUUBMqpEUFoQi6goXoNrYWNB5Ib21fc8DlEutzxXw5vbNwJqmeu1t0kDLcNpz/0p3sDq1Y9hrBn46uhWQoDeP+oyuyPlv/b2Y2nkVWNiHGmlQiTdZJJETQJPM7PxiegermmIAg+qzq/RhmolTeESo+T6MI6GplV2dycjLAskH0LJXf5P9HcrxNXjeI0pGyJp3Qf1kgkkQwVKtG6ES3UgcIkCpEXdhZF4snLhgWWaUvFQvfC2AF+HVZ/1ZY2hrQEQstNM2qDFK4gx1BqX6DgIp8aYYkWpRRVbP+JAwpC2GpCpqhFaLRgRAKMhlQckLlmWP+bhAGCAWDCAMQTU22yng/fee48Xzz+D66hbT5hrbaUIcBzXx0AimorXhlgOwZAxRQVIKhJQCNpsNps0WcUhACOr4GzQZXKKkznVRgDBAwogUtkDcgYdJAUrUFPWhCKJ5+gsXkzAtKRcvTcNQioEM+2tARAm11lEqFgbKlTiL5QMRaOi3S8oFxIxQQY/moEgOJMWLxXHNmOzar8pQgSqhBqK6Z2BgPFCAxABidUoERRRS1beG2TLI8vT0ScFU4rXnIwMTJs2yhPoZIqoB8D1KoY7Nw0fFKAV156lZ0XKsBGpmr9BEiEAt4imEPlyZLKy4gZsaGUWuWQnG6FT7J7AstRSN2YcaQRIwWNSP5TeZZyz7e+zjqHuSgGFZEOKASApQitW1yvMMMCNGwrSZsNlsMEwbbLY77K5vsNldYbu7wm53hd12wjRtMYwTkgEUCqHuOqIITZ7o2pSVNIa+idXrATf62P+/UXwFgZ6i3tcxLGtPfdeivlBFVHuIqhlRM6CCGK7ZrzX837QkqsYFVZ+YXKsGFyvQWR17HRyIoBYVhMADHQxaq4CFYKp5A5gdGAZDEzPOWvdLx2zrR4o5gQ8qcEpQB2hLRsec8a7tdyVAudQuKSK+OXjSA5MLvXW810GFL3Duf/dxnX6/NNhL6OWkUaMt9d7hwnly8rfXppyCp8u3N1QiMI0JVYkuQs0V1bmO2lZeS4N9z6RipGfLhBKHQGpGKhBlQnlWlePxHmL/+HgHLHt1viwqgSjtVDDiYbhEERSSqfbVLFK4aKI3AEUKlqwVfYtVIy6l5SwVNjkxJJDlA1HtiavRHbAyio3bZdogAmJNh1+dgityJMQ4mtMrEIJgmCZsNldIwxViSOrLIBaKmTNmPlRTzry4qpgRoE62UxSMBAwp4Pmza3z2g/exff4Su6sbjNMOw2aDMCTEQCiBQZyRjw/g4wEpJoQ4IiFiGhOmzYhpu9PMs/by2FycCws4qUZKIOAwQsKIMF4hTFfgYYMSEhgRWTSMNnURC2K2dOai0iQchNhxT+neRUWwaV4il9W1WJ2TLf+Mvlc2jZYTzegRE6axoQqIHNScOkOar0ewGBVRE47WnLLYNVIQjMBANPpABEIBm5+Tan3MjFUTg5nzbM1JocBAiKHaPVsnjM4s2jQllb6gqfbVHGEScZcqAIHMWTjaNebQWze47eMa+ty2LQAzMblfkpltgBo+DNsfzYxqIa4hIoTByitoNFKejzg83Fc6wiUjDpNGhXgEFmtmVZaCkAjTsMWEK6SYME0bbK522O52mKYtNpsNttsrTNOAYZg0eicmxNj85Jo5q/kgrZyebUZrYkmxGbZ5E6YuVaW/X0CrdDNC0IrmXni1+k4RWt/icxnhRjNVzSjB7tedWm9UMGIPP3YtowNzZs2h4mC9Bz2iEWWwfeWtmTxbbr+qFSIzaUlLYCnm1KsBAfq8XBJCSgr2zA9F4ZDW+KrlAN6hfU8BlNNNc/r5Te1dwMml/vvfHr9XMxSZwqH90gGA2kcHXi6NiS78dmmc519aJ2/CNNI9TA0NRr9Qu+6JTMV90udJUSg1XzCICYidOr2fAIFKcqH9pFKM965qQ7IQBC4FQYC8HCD5COQjyuE1yv4VaNkjsNbTUXuteaQHrbhJwTaLK2tZoxSKCBYWZGEUAZZSUDgrOOFsEg8Baqk1FTwqyCEjzBo+aaprn08SDCFBor5gRkEQHRc6xqfzoZs4hIIQRgxpxGYcMW12GDdbLbJnyiQpRT3pQcgimJeCZV7AhQBJCKFgBDAGwhQ0TPv57RU+8977eHbzHJurG2yvrjFM14jDZCXTIxY54jg/APM9BhIM0wZpGDGGiM12wjRtME47SBg0d4Nokb5cZjP1EQo00yjTCIw3iNMNaFINCocRTAnRzC/FAABb1FN1JCxKeLUOjQOYFoJZHLwUByWmPmd36NM8DBDVyHg4eGCTVKvKvANI5uDoCfjY7ueaFlefUzXTKAhkUf8TcQcUIggFldZJsxgDALOawRxUqYmiJZHjmuuCTcBVKVZIHbIkiKbBD6iRS57vxsFKxf9EbStKA8yhqwela9QdWgH3BfO1DZimhfwKAyQgi/I2hk7Rst+qmUAsGVqA1esxc6WQFn6sZss0gWiAsGlIjjNmeQCEkPOs/ijDaLlSNDKKhgHDqOUTNKx1wpB0XW63W0zThHEaMY0TNhsNgdUMx8m0OQK8kUOcAhgHcfpqg9ftCWJ6XzcBuRTYKHYNvhEoPaOkVaGtPlWgaE6pESEIOEUERfiQoCU3JIgGtAVdz2SkSCOk1L9HxApK2iADmS8RmQawd2Yuus7buJWuaobwYlGJXDVwdd07rGUxIcz9dOw+JYLKoPtjKFpziywzr4Ozd2zfUwAF+Oa0Hm8GF+/a9+Ve3Jnt0/bnCoU3go1P2+RCnyddq/17rUnpAdSpRkevaU6tMGltVSCrM5i7VNB+a52LqXXaLaT7Q7WrYCpN3UQZshwh8x5lvoccH0DlCOKsIaqFIQVqFgnmsGVRBWzjUkam/hYLM2YGlszIAquMq4xL+U2oYysAwH3kEUMhictSpio1CdtTiHnUkUpHpQNiJ7ljQkAMjDgEbHY73GxvMG12CMOEEDQC4JiVKS/CmKWgSABbHgpxNTtC82khxnYz4vb2OW5vX+D66hmurq4x7q6QNleIaQtKSRnIvKDwAgoBcXuFGEekYcB2HDBNE+I4IQ0bSBiQLZEULbNquGC1RSiAkRDjDmF7i7C9BQ1bSJxQYkIJScsTsGrDmD1LZ4uOKPa+3fG1SoMWtVP8MxugKFKdbBWoKEEXqE+LasE0QyfMb4XNX6ZYngYvX+AaF3HNinj4eEuihQqOMpgK2LQIJUfNOBwIyIZrQwRK0YRoIRiTUqbPwqBsTMMq2CpRlyYcCFQDx8omKrMgVlMlmVkBgKAl4e83MfUUwP3EPEqIgjFgXTctqR2t/cjIc5yYZgbumGvaQwdJwYA6mUkVBngC1Lzi+TKi+4NEM2NpZAvNB4BUGBmENddGHDCME8ZpwjAmAx4j0rCrx6dxxDCOGIcB4zBgGkakIbXw2qo16P0M1xRZa9QYXaL2zz8Gp5XBkqJJc97WCE3uNDEEwDVzsR6PsfkTMYImSQOpE1pqtAAEIAcwCqophouGfwuBqei7Eakh7lEAiRGlRJCtYZLYaVCaaVGj5fRZHZQrv6BqRtUXrcIUpEUjKWoS86VicFCQDgICNG9LhuZuKgS4g/a7tO8pgPImrUf/e4/gHgMnbwItlzUpj4AQebvPcmPfToDWPzpS7o9Td0vj6+uRUPfZWq/l6J/PHW3rb97vyVhqXiYfa30wNYsEogoclJDF9nSi+SuYTNtS1cuuTQE8NFLEDLsI5nvSDcglEzHH1GL1RI4PKIcHUD4iSgZJAUqphfQCqdoR5sIoQlbIShlWKaJZXJmxsGoi3BmOJYLFqJH7vpAGupq23jJ6CiQlpJAUpJi4pcRM/VuKzZ4AKPCX2hzY1ASmcxlBGOKANKqKenetZhgaJhBE7cvHGXNRLYOWQpcKvASqKYgwLQ1pafvd1TWurm8w7a6xu3mGq+trjNsd4rQBxREhRuQyIx8yNjGANqo5oTggxYBpHJHGESENCGkE4gASHY+GaIkWToSAaESMG4TpBmFzA4xXoGEDGjdqEqNofiAaZVNDKWH2dLTwYC5Zn4t78FIqcBHoPNQwyP5f0fkA53aO56dh1vIHzF1yLEvPz0vVlpRcqklJf1fVulhyLfFrSkYpMyhnUF5AZamfmRnBij9K0WrDnFt4ppD70pgjsGtUIGi5htDWjQFkgjFdgmotzJdCfWekS6pGOCVu5GUoXLtimXqDO7z22XuDamocoKhUbroUiwYJRmk0rwYMdJipx8EPkSbziwPCsEFMCWkYEIektXLioPk0AiFGddyeNqOabHZXGKctpnGDcRrN4XXEOG6QxglpHNSMkxLGNCDFiGRh+TXfiaJCU+Aa1PPfaqzkOqw8BDIDJoF8fl1j5WYRd0Y1ocOjegJFBa+BUYpqykJwyk0GZHOdn0CLUqqg5RIQAmJQB9pQIkrMuh7DotmKOQMlQ1gQEWpWbkhQ2ueO5e5vxQwEc4LvIoJQLT/BHMwZIPWVK6ZVJDPJiqiQJgLN22P00tP2y6KGyMYmmiH4Xdv3FEB5rJlsiksgogfHnTDv8oB9d1PApX5bP6fHLjW3aNQ8Dna2X+MgouH7BmCMh9fzAx6/V3/uKVhRgNCASX9OD1ZO++4UISfNtBsu7a1HAU8c5JVcdWxS029XCcORvfmp6G+aTl6D6TXQWkoByaKpt/MMPmgYMZUZQ1AUIKZyD2lAoATb+TqemuBIkC03SF4EuQiyCAqhJiQCQWv4dKtEoBJGEMu4GNXpViWYAZJYJWXPMyFWwI6BkrNKS2RVijmbdCNIoUtwBTJAMWC7vcL17TPcXN0ipgGSEkpJoCIYaI+0LKreL7BkT6otYGOwwc0F0FwWm+3WHAdvsL16hu3tM2x2G6Rxp34CKJiPM2i7gSTL90IBaRgxDVafKEWNyogjECJyUTt7sFAkzhohFYYNKF0jbG8QNteQ8VoByjChkJrJWPms+ZeYqYiNSfu6khat4+GaXIEMo/hvftz9WWBRDV6DSSxtuIiVKvCIHq4AxcOaXdviQIHNNCTsZQ607oyIFlSUXLRCL5uvUl7Ay4LMGVIW5OzHNdGfsEZqSFksUZdHaGSrkt2Zlqp0DtP6uD9WrXenz0r6eyDbY+z5MGKrEIB+Pesf95txx1YEMg2MmmBQzTswJ3CCR+jU8gEGaDQDqeYu8dwaZE7fHiFCMWhRwajgYhgS0qAh7mnaYNxszd9qg+1WfaOmzRWGaYtp2mm6+mmjTq/uV5KSgWZLXBgtV1CIlvJdBai2vwhuJ/VjRARmdUgvMOfhKtCaDwqaeazGKRY2jQGppoIazxGB6xM1x0gIKKUghIC8FAN20czDBkRyQA4BoTA4JcQlQVKxLNYLSo7gxCgloTjIdS2e5jNQoCtFs0FXTYmtqaql7CKCDLiQpKpVrKkCWABRWkUMTeVQ1CGekPT5/T6mdWNmhJwtI7KCw1KgGph3bN/zAKXJsNocfPSAowcpgK/bXvH3LrqSy9qJ0/Pp5Iy6V+x3tgvMzaISoXUflnG1AwqngOZ0TP6l14oE67v+LKgOu5eeMXTjaKYrAcCo6b276wX+EJ7ExNWTAcVTdxthrZ7wwlowjUmZTyQABdHsvUoXlHlQ0YrEPO9BZUaigkBFz2ENDQ5Ry9T7HCl9L8iFkTljKRlLARYhVStDHU49dDCbxA6LbmAWiKVqZiqaQSVrJAVHIMiMUBIkRnAl5ASGRrhwMR8EscyzXBBFJTIJqkKPISDGgGEYMe52uL19gRc3L7Hd7hCDxoIVAl4XAdIOcbhDCIKMBVmOljshA0UjHQSWfyYEzaWSEsZxi2m7RdpcI01XGDaqRRmGBF6OiBQQ44BQFqBkU8crE6Dk2USVyLOZBygLiAmcNG15iBPC+AxhvAGNV8B0BZmugbSFRI2QIvUbrdEmhbXabxRN9V/ETBkC1VYYoHVnWQgscsEcaGvkg5cKkE7rYcymuKOt1GgfQecca2Ha1QGX21+l11LV61qfpqg0m7NGT5Wl5rPgkrHkBWWZMbLnuSgGYhZI1j6Y3dlwBoqGk2bRMHbJyjyKaHZjcg2QhVlXOiGK4d0cqeYAT2Eu8MrHXbpd+BYloBbOi7ZHBRESo8OQpkWxaKSaHwOxJmGEaW0ctMSk+YUo2HoKgwKcFKtZJ40j0jRiGLZI4wab3Q7TVoHIsNlUX6fRInA0THjCMG4wjAZwDJhQjIghWX4eLe4ZXZkJGAiwTDdiTsgnRDIEoCVQVB8TN2UEK4KlOVBUm6LJB5W+MlgTJooYDTdgAHeeNr8NIoRSFLCVoNpeK9ZXctb8MGXQdVAKOGrocSyDrjPPmWL/SjLgUWzvm7CnmkPXjrigwk37R6ZVKU2TWETXn8SmnWRmLXbp+44jIg+aEVgAzedk/mAG/qpIV6wEAzGY8u9OgPKm0GGP/mjfL51z8uUNqpBLP9Hqs0vaj93HNAvoc36c91cZvay1HZd7PteY1I8dKKFH/voX17y4hmb1M6EW+NPvFn4GwDPHkru4o0U4NPSuzMZBmliiKkv7aUDAHA3rCFw7Y4tavUKNKSgDBhcQFYTALYlUBABGJEIirYDqnuY6AiWwMQZQXADOYJiKX1hD+9hUmO4PIK556cGsNDt0ATIVSCiW48HSrUPDT4ton4CHE6qUm4gQSYmiuY1gCgnTOOFmu8Wz2xvcXN9iTCMUrjEyRQx8wLIcIeUey/wVHO7ucDwaCMrFmJEy/wwggUEBiGOChASOCTREDMMG47jDZrPDOCVwDoiRMSwJKAuCFHNwVEYTwgC2Nymk+RcARgoMJEIKEwgBZdggTQpQZNpBxivIsAPiBA7RQlp1bURRYh44mVCrYZ7RtQZw7Ypl1ITUkvcEBR1OSBmo2hQvMdBrXrwvDz9mcSfcpsHxa2rdFKtb1LKANomVhFQDkt2/RfNXFMsImrMn4WoZQrMluRL7pwBlAfOiTs95VkmZtR8qxcopaDRa1eLAQk9tzohQI5DEdCU19NeknRC7UGCPyiELvTchwCv9qmbE3j1Bc5ZQMPMcWZg+WX4e1SqQOa1SjZSLiHFATIOWQbDquMkcX4fJtCbjFsO4MUdw1Y6MnlBt1BpPwzhiGNUZNg0j0jAiGtChGDXfTCDNTEtU6Q2d0kQnaDCQAqfbJi2KOr56tlglPR5ZZb4VwXO+QAEb1PciBGrmEjKQHKTLvWOaGs39Xv3NmCM4FHCMZnZmlBgRmXVtcVafuoGRCpumLYPzbHQrQ8pg5kb3yXKAYtE9xHUc6mtiYNtBflkQxRzJzXzJRcOWC5t2sXMm12KA2n8QdfpH94ymsrP3EaAJOx9hehfa9wxAOQUnLuCfToV0/3+0L/tfZaQXzu9Byvk9HoMQ52M4e1V2YY8xqyf5ycn919VYpJ3r4+wBCaFpSnrVkT/3Y+CsWWKa095FfY1IRUtNOyqK4IPt2lpgUGU13RxANK/zQlw1MrrFslYzZfUlkLIglxkyLwhgpAQQqUSpqmINBUqREIk1t8JR1ftEUR3oYsJSZsx8B9S6Fx7KWqP7FEidT4cBi44IQgA2bS8JiopgqrEjUadb66jYzEUjaKpBAYQEMRDGccA0DthtN3i+2+F2uwXCAEDAecG+zEC+x/HuG3j19d/Cx1//Bu7vGGzVm736rdbSUaFFWKDOlIQiGl2jBcAikCJCUmZAY8I0DcjzAl6OgKgauqYAlwhiQoZ7+BcEEiABQRLGkIBhq4Ak3ioombaQYQukHdgyWCrBaqYZUf9BI3a62DRvAtdjHv0l4JrTRkQg0SMRfHe5c61rrTzSgG0pcj2//fO13f/m5wtazpXSJFLPKlpNMeaY64m2jMDXY5WpOGBh9XMpnoRLc3yUvIB5tpwf6l/godMOfFi6cGrRCCqYxgh1DYtBFbJ5w4pbkyflgploRDRfi5V8UFDaiswF8jB6BSghRcsq6Gnr1dcrxMFAiTrBDsmAxDgiphFxmNRfJI1av2kcFaAME9I4mglni3EYMIzuBDsipsF8VcykE5Jp+zSXkSpxZPWMvnkpOFFsOnV1JFe/ClSg0lE0vyRGLftla0+1qc2s0ZJGmRbJEliK7X+D87ZfCIWDJYwUELWINHWyZq0eXAo4pgpMSzFQbE774kncyqb6TJWsmr3C2Zy9TaAD4Jll4fvAzUDF135BKcdm3unMjaEsGknkUXal+a60iDOpUW51HuuUq/aNIpkv2bu17xmActqcMfpEvUEh8tb2X3PtG/u9ACQdWH0KkLm+3j/IhWP9d3rzc9HJj6490c/NiFM9zIGOwLvsdtlLpjE18ykR05YQANZwOarMocCrtcKLtVlKe1iOixQJwzDWHAkRAyIGjdwZAkiO4DIDkhHIMpmGBOWGwY5FDMNgJhyuQCz2C+hkfmKASUAmpPq8GaEr4rENZPV69MlZgMxVoEU0aU2jN9R/YBgGTNMGz66vsL3aYNwOSDKhlII9F5S8R9nfY7n7Oh5ef4TDniHF8qVYJWkvPRBRtfxgtlDgvCAvlrSM1ERFMQJhQIojwrQBdpotUnMpCPI8o8yLVSPVdwTOmoyNCJQChjiApitgVH8TideQtAGnCZJGSJwgIWmRMRFEMe1W4AoIVZGmzsxBYOGO5q9EmnXWNW6aC0LT9QnBHPvUqTSZ56dKkU6YTRo25sIGQCBofh1wBm9gh5sk7QnhdDLbGEotDMkNsJRWF8p9X0qNCDJfGA97ZgMi1XF7Ue2KZStWwKKgpxSv6+SOvOrgm/MCEUbO5kzcaYCaWGRM0/yx/K/7DsC1JF5Azv6FqEkDPSxYEwiqpkSi/h5isvwiGsafxgEhjoiD/YsRKQ0YTXMSB9WoDOOEwTR5yf1JhgHDoGAmJevXzEIhKRhCsn0LT4Ln/g8eoeebtf5PtR8dcSMStLphZNo7/61FIgaQpT8Q0wCw+ekIgoTqT1dFy/7+0rJsk63jSKg5bVzLzMzgqGni1ccpgQtrKgLOGLmlyOdSzNlbNRtSXMtnGjwDrxAGcun8u7iuUZjWTdcpbI0O8FB9EQcoi5qZigES6x/MVfPiGuaCtaDg/k5k9dcoBKXF79i+qwEKdf9/s86inX/prPPMr2hqQbncs5x8XqHuN2hdTj9XrYXf7/TES+N9889n43zsfE/VsIIRdDIm+98aTAmqu2tdiE4Eu7m0SB11yGrnqxWok2hBdSUqslcnNdWSigEWqLNV0BBWsKasl2C+FSlhHCbdEEVzRIQwYBg1rDMSYSDNDkshqbrWDBVDiMCwwTJEBApY5oxsDAaeh1zaHHl9LZZmolu/bc9F0IgdA5bnA5WAiv1QWNPORwGGELEZJmymDW5un+Hq9iWGcaMMIgxAjiCx0MJ8j3z4BHk+QliBCeCui6ianWj/SIBlydgf97jKD1jyEXkpyJnVXOKSpzGDOADCGxRLlS8SwFkguUW2eJInigFIlohtewseryHDlZp30oQSBhSKQBw1Twark3DwctYGeNQHyyV+ZRgUpa4uADUTb5+4Kth8enZZsfWioKw05AMARFXq425/94QVVVWtDKlYaK8zMIFrc9wPxEOkSwUtq5wqrHOs56gJCdWZtwEY4aIOv1zUF8aZi6j0LDmbRJ0h2dKjS6nAUxzM1DTone9N1SJJk4R6bYJH7rhTK8Vaq0XLKSgQQYiW6NASpwU18Wh14KRgJWm5hJAG9UcahioEpJQMeJhDaxoQU1QtSRw0HDg1s02KCSmqo2sIqt0JJiFEIniifDYgoFrLtl56GcPlKepoGlsyI3/3tQKwiJlreoHXHECre6w5zlbNXajr2aMTRdqVlZlb7hhC0yaEEJBLUdORFSMNQcN0A0cQ5xrGzCxqvvWkhKUB41JBazFHaTFQYto29ig2guYGYnMMt+g7FtPUuHknI5kJ07Uunp1W8wt1mkZ4MjdH/c0B2R2t83LEu7bvaoCiC+9doMnlVjemyNnxFYDA+YK/PBb/3AEdd30/Y2Hn1/owTgX23gH2beNYjdUxwdn49H/ndtmT2byoerG+qGlSGjixN+ISA4CWo97i5I2Z1EqrcG6vizsE6CaoWhm130YKLfjPH5BVQxBCxJA05wFRUXV4roMEESGlAZtJ02oz1AyTUTAggtMIcj/7AkQhZCZwJBAXdbYU32xkqcVt4yeL0nHp3lS/Dg50rqUjhvZMRkSD5ycJpjmhgGkYMI0Tnj1/D9ub56BhxALVJGhV5YiMjMPyNTw8fA3H/QwRIAZTJZOY6UjBZ4KaowIB87Hg7v4Om5vXuJrvsV8WXC+MZbFskCRqxx8GjNMGIhnLcgDjgJAYMRXkIpCyoGbZtmKAcdwhba5B0y3EtCgYdihhBIfBTF1WmCMAxLGtFXHbvms3kmk12loWRRtawwZNIyUQcNF16H5TLEA2BhFlUD+ZupHI1OnOVNZgp+0RrvsnipudNCJLz1GbvgmlAFEnUaIzA7kDrwKbWujQAZBJogUMlIxsHUqGJp0jQMQyIdu4Wcx5VtiqZpuDL4s57namKzR/G0DXbQheZrI1zV+iTNZzmFgRFTPv2F8DKBSi+phETZzmGWRpSApmgoKMmAbVngR1XPUSDu47kqzgZLBQ5DAOluI+IARSDYo5nIeoIdHJAEJdGyK6DgmgAvRRmCBYOn8nCVKjzZysNUrmBhyqvkyqaTJTtIk1AWq2rWDIQEqtEVY1KuTkDUBRkFtvGsEk5pRsdMHWM8wfDczqMC4MYq/Y7T4lAkhEcxJvmgy2FAtq+nNfk2yg2Z3DAaIMcK4m1iK6x6oDrgNotoSCBnAKe60s1yJmeOVnfX4XALoFphtdE7e9Y/uuBijAGkA83mpS8ovXXupTgFWtmjeBoJ7xn2pp1lqZk1/tgkc1HBfufQpSTsfthhXqvp8+gzOCwAQJglLDD2Ge/tJMTRfwip6rACMwIRvT9hLywZ1n6yBcTVPZCTxXSgFbzhQN2VMHWQKYkWzjFi6qjQn6QEKmxYgFKGSfRSui0oQYF0jUcLhQGCQDQtwhbRYAEREDkgChLKA8qy9+KEgCzBKQQ0TMCyBaHJAt06eY+cWdgzVzo27gJIJisEQk1NweqJoisqyxOofRCFsEEElAkTDEgGFSx9Xts1tsr24htIXkCMkFS9gjS8F82GOZX+G4f4X7u4xSCGNQZhT8/ds7jV6p1Rk8AYfXd7gbvozNmPD85XvY7V8ibTfYLAvGkjGSJlLjMGpKbVil2RjBw6hhhlkTMpEMQIoaOjw9g0w3CNtrhPEKCFtg3CGmyaRMoCAgWwbKZE6CAjXlKLjVqAsPy6yVGU3ToaYgqftZXBEQV2JuM5vBtVjtd9/bsS7Qzlxk6kK3o1dTAaEGofm6FG45HrwekOftUebmjvs9WLB94EN10AClFVlylcZZNNyaRH0VXLvkqnWGS7Cdw6/7CZgsa048djv7a+hYBQ0XTXxjeybaUAlJpGR+KqJRMEQKSKIlgguhmghrAcCQEGOoOVBiMDORaWWC1cEJXm4ipKohieakGy1KSIHRWijyea2FEV0QtGcLtujVsdefkavZxvsSESRLKcB2LPi79b6dcVuLhHr/lThZjzuN0HMI+g4oaJZd910SIsQYa0ZhATDECIi+qUIa2Rdg2WBNC+eOqAQ0YOoaTVvLzAweDSx3piEPAgBsrbg/iwHZUUQ1eMXBRzMhcvEcKqVqAavZs/Yb6n7zkGzlQ+6KLFiOD3jX9l0PULz1ocSnkgFdOPau7V2u8mV66Xxn9N1AztspSHGaSF3f0l3e9sP5OM8G0K6t1xl9lNB1utpn1G20S8M1yqW7H30Zbx1rI7Che7ZeUnanMfKIH+hCh9mQPRGQE1Bmq79DVOm7F6YXoGW5JINf6l6izIsjhgGQMFrNkICcixIaEJg0HTyzRjIsJvlpuF7BEGNzBjMixiCQBFWpUqjMzbVE6EL73BQUTbgSUQAhYloOAxIhJYRBIxrCsEWhhLIsmBMr6Mta1fVhv8fd4QGv7x9wzOqqGv1Z0aKvvO4HSWcioQG5CO5e7xHGr+Lm5W9g2jxHmgib3Rabq2vMRZOJyXGG+ggRQAkIA5gKlsDIMWFhCz8et6DNc9B4DdpcIUzXoEGLAmLcaLSQMVmSoAmqPMKhe586flc1tRgyhxXq2B0swouaBkVahFW3/Owq06r0oMD/uZmP+uuoMfR63KPR+r1CLSoDjb4QVHj0eiuu3mdIh5G6TXGivRVwHStDn6sHPVVqENRoJqkMp2lvWrSEuNpOpXpz3PRdV/1M6uM2vxRPYa/gQLm+pr23EOK67w2kkCdnI9WumGOthtjGWviPzAnXo1eCJXcLQbU2AVal25UR3eyQpXOvZgP/U2lc0+DCwEnzx6oYDKjPCjSlR/cuyKJ7xPsB2NS6biKroK46DEoFQ74aao8xVmAtlsAOgGmBqdY9ckdTEi0FUM2Ofk9pnIzsN8/Ng05D1zuB08r5n9H7jPQZkkVEzYrk5kkHKC2hIRwEgysoBwO1inhAi67rxku6JEEA5uHdYcf3BEAhXNaQtPZmmHGR0X+L2opYrrQp/zWdvnsHHe6om82ba1sUbvhmp6Y9qQnNLt1SqoSoJIvhqa8ViMA2zAkxVjqpG9RyXsCLdlFUzGP5AGL0XBvOExzQ6JNRjMqmiNSnhAUluH+CjkSfUSzDJSyzJmk/mUE0gGKqTqOI9qyBkJLK4KHM1bbrzEmgwIc5IHCo0rawIHOpiaxKEDMRmbuYtHVQbO7HSBgDYYgRKSRVgQphnjMSLWpeCFqj5Hg84nA84P7hAff7IwoDMVrOXtHwxgoIqYVYOkEXm+OcGfd3r/H1r34ZV9fvYXe1wfHwDMfjgjhkhLSo/ZtgmUQjhBKYIhgRTAkSR0iMGKZbhOkZwuYaNO0gwxaSNqA0AmkwqdE0Z6RrrSb3QgMnvrQB0+61lbbO8yOmhO+IdR8C7guuag8NLPRChGpMOskXUsdAVJGEwmjXlFBjWDWtQT2Aqh0J0gOUnjJ1UN2fvyPmPro+GaPtINs6DrIMDKPr38ai5zRG6mNqqd0d2lEbh3Po6hfhe46qObUCEUMNLY09te+m7fBFF2o+FM8ma+dWvxYHEGTZabuZovb2e0Cx/nvpm78nY5DBx491JmzqHGPRUh/U/1eg4SYfHTdLi8Tr0zp4WR+PICpVg6AaGI8w1M/UUDLFWoPJ8uOrhlja+qnCoijYrmDcmX8HYgQaadRHGHlxxeY0rf+8hERbQwpACqj6Tvmx5lNlIBjNNKm0z41TDSyRmNmS1qAuxCZ8vK191wMU30Auw1zk2/Wcd+ivO/VdwcqlbVPHYh2e9nU61kvfHxvPpWesiYgeGXc3TWf9nBEAQSVSOi4nGr340TEZ0SoSEKko2Xs71cAoDTKg4gTOxRjSKJA0DNVWXR3jAEAKArGxfgJkgpRZ0ynHAZTMAQ9mbzYJAMFUkwGaBA0BAQwJmsI+CiFkQorAUjJC9nLlUIoiCS01urm/ilTQkYzDamgfI0mwjavJnKTzmoc7TRqhIwjGFDHGgM2YMI0DppgQIShlxoEnTFklmGPJmJcZh4c9Hh4eUBZBDBpaqfWJ1AamWmQ24qVzHkxtHjx5XYoAR9x9fMDHX/sybq5ucH39Eof9naYXD4I0DlYnZdCMnxIRJQCRwCEAfAMaJsjmCrK9Bo07BEvFjzhZltkEkBHVGCxnChCiA0iPdELNgiqwAUMJG6Om67A1bEyyggpn6rrKnfk6GTz1MRM44db5Wt13tVL7m+Lyxuv67JAEqneMOAOHrnE/sQc53j0ZoDbNhzij96XjYKEDKK45cF+J1p3UGlFioMmfgYQt5DYYYzPwEdpDkgMUkCqzOiDif0MVDU+OkflpVdCh/VLPlxwouLByYk+nDiBU7RX6uexfDFaaEXE6RA4YpNKqHgjW8XkFwAoy9KtWNXJQoFe5hqQYw22A0cZh6zYCzexEusoFZMUl3T/FHLmh+5JtwwZTr5I0AGsP1rQSVavnpkm0NXwCjF0ro+TMgUrRe7v/kwEcfQ3cxscebticX6XSvwaK/DyBqDnLzGYFvj65vqCUfpdpUDzeHDhn9AC6TftoBwBOCdSnGsBZDx15W/mBrMaFdQTNCtR0x/q/4fSH7ly/p3Q/v0vTfBl6dZXUAFRVSgUdzUbfKIx+d0bTwot1RI/S9Lq3BWBC8DDDcYNx2mCw+hwhBMTkhDQrwREy2zQ0yykKUgwIg2pdIkUk0uyWnu0Tw0EZtUtSWICcIZIgIMQyoxRBYsaQNbOnh4EyF4UaBlLIHMMglhSMnQh4VAWMCJUKbDyiQ69VpzWLZsaQAsakTqlpnBDigCyCo4cJFvXoP5aM43LAYb7DYb8HaEBKhEwFVEOEjK1Y/vNgBD4GVJu/BGgyrWGLzAmvXr3C17762xg3z5CGASDBMOi8jzQCFDXz6ygIlDCUARwB5lHNO6PmtwhpA4kTkDZaoycksNmkaxVVczB24FRXkmtTyIl9MCLYrRVUGQ2+dHy9V7Yjp6uO2g842U9i9+l3C7VEUo2ZvaUZj2/fe+aAynxNfuxu1e7jc1Cg/kk6F870rduq2vRIk/a+22393lQZyfkmFHUotYl182Tsnte1C/qnaTGaQFhPaqTg4pytryVx4GTPbpMnJ6+MHDRWUuRgzjW8vWal3qoy6+rA76ad0PVtH4OX3ghOXwDXvriJJ5BmjzaRpk5ndHBw0qkLdoaL2phhPi4uwXlHDjgsRYAPo81DB1IuaN38czgBu71mTYWDzlwEAxSEFknmc8JuBmzX+5x6hA5U4kCN4FOEUvdv9REzetQZmPXe8hhHPG/fcoDyt//238bP/uzPro790A/9EH7lV34FAHA4HPDX//pfxz/9p/8Ux+MRP/ZjP4Z/8A/+AT788MNv9VBWzff25R/fBcTUU8+Y/2PQpqMX794caJ1sPicM4eTUuoHREWl0Xx5pPZgBVEJwp7RSg2QB6eCVq+adhQjcKRYr6aQSV/tCnXRkNAAMdVIksvwJaYPN5hrD9hrTZodps9OkTuZE53cj0YiNUCUy9ZdIJAikqahTGBGipnUXzpAlY2SztzODkCFyRGLWXAMiYBSrl1Na7g8LsxMpJlOsndCohruqj4yUrDMiLlG0JF21rkqe1bRlUksAYUgRMWnhs2nSZGlh3AJpQIiacVJCAHhGyUccyj0oBmy3tyhCmDFr+nZFRpq91oCmm3miOy+mSbVIgSzxVQKQcJxnfPL6G9hc77C9udbEUCGgxARELQgoEZqAq+wwDgGZRg0ttoRZIUUgJSAOQBggFC23iViZBKmh0JWwSreiK6M2mVRa3ghfq8GlfmpMQR1SXZd/eaU34k118ev+YTRjEjX1+zsKLHo+GcAiE7WVO3Fd8HrMfTvUebPCjrZvRP2UGuAQIKgGpS8z4ZK0KlrOuXRjiv5kxozQaZ768fvNO42C790KJHyP+7j8bhVs+DNKm+M24xWkwaX9XkAR16KdMFk4sPC+29ipjqv5nDRTTWj37wmjjb+ae/qRE1m0lPVZn7+jvaT5jHrnT3fSbg96Pq/1XfURPMGcZY3WUp1H7VD3Sk9nu7mmRovJ/Itc+1ZnzsG7yEqTyJ0GE6Iane5RmwO1gYxqXrL5rZq6k99gwLOZSjulgZmEHOSM3+48KH/wD/5B/Kt/9a/aTTqVzl/7a38NP//zP49/8S/+BZ49e4af/MmfxF/4C38B//pf/+tPfZ+2idbHLhGWN9WYQUcAa7+PnCvv8PujY71wzun5te/+Rn7M6R8ef5az/uxAb8Pvb+aClKvQdbsEBPJFZYSgAyVOVN3GSqaO1PPM7izuMR+ahIhGFFRyCkBMSNMO2+tnuLp9gXFzg2l7hXGzQxonNfWQ1sVweuw2TkBTTqsPjXqyB1Ive4rqZEZCCFI0UgYEYqWMmuTK1JDMyNJn+9SEV8XqWqjza6kUs0hGQUEqpvK1fATEnTkHApFcs35KsURbRbPgwvK/OEAbB82kmYYJ22lADEmTz6URgoJCRzAxJAwYppeI8RblekFmxiQGpkTHQEKrOk0E0agLyy0RY0BKA4Y0aW2TzYB4s0O4fg5sryHTFXi8Qo5XiGGDkCZICGAr8hYx2IpI4JCAECEhQtIAsu9M+maYemZor80ixYJAgZefI43fEhNAwQpMGlGFQCz2xpt7U2if57ZtfXdY+R6sWFwwybLfIVZbqNsmq7FVKd0BQGdfbaUg3ATSInkcy0CqIsn2RzfeEyYn5g/jfB/U+YgY+HFfsaa9aDlLdd46wANUECH1wXw8DlJ66iLdtdLt5Z5Acf0sJpAQXSqwqkCuU8zqGbWIX6vPRWdg05huBRn2jGJOzkSorkPOGQ2nuH+LM31/d2094tzUU2/r71YXQICbYmgFeE7NiG0uDDizmECmmlNdN2RvKtTJUPd7Nmf+/jxUBl8LFHbjsMe1w+ZjJ2jmcXuHGl6u70vnuamWhIsFTjTw59eJSAMz3MYDoAET7sFdAz4N2Og7zsflbK4ea/9NAEpKCZ/97GfPjn/yySf4h//wH+Kf/JN/gj/9p/80AOAf/aN/hN//+38/fumXfgl/4k/8iYv9HY9HHI8tucurV6/q58dBx+V2Ci56FE1vObdvcuG8t92z//6263u75wrcUCOYn/bZHxsX1f93NlqKgBS4HfrsWgKaE6b7CxggqWnCgv3r/VUU9gQkxGGLze4Gu9uXuLp5iavbl5g2V5i2V0jTBsM4mQalo+xODEzyVeDpG1IQLcdBgCaXCgBIWGtnwIm+JsFaAxTzgmdNjlUsD4CGbBbLbQIQooIVYsvWT/U68iyiXsdFtE4G50UBitdqKdkIouaKSMOENI0Yh22t7BqIkEKy6IEZOR+B4Rppm3HFgpJn5LxgMQ0PoONRrYmFQRsL1SghK54W7d8wIg0TxnGDzbjFNI3YXW8w3j4H7V4Cm1tw2iGnCQgKPChqunKh0RajhaNS9Lhv/R6als2JqNP/YMRYIEAw7YEzLXTmUFHU3PVkq7RjwqJE3yVfDys9X99OcPtfTnd9WpWHIKxBvVRTSUUplWHW5+nuuuZX/U4zLUPlK+3EtXmk07j4ngf1XKhK3a6E6pUhlVGgAZRTEcyTkbkyag1MaDWe/nmaT4h/D/Uc17Tofc/pk5zStJXtqGKw7pzuLdLqSu080OprPaNOXXe9++9CdDFSWA3QtWf1kHdk757g9JdWK6fOySMPKVZMUAAFkwZMFCY0B2V3SLXRrhh9ndMLBL9/TytTWKDVeQ1Eaey+a1NqHzGszlu9//Pbru9JDtybfs7BOXl+CJuLGL7NYcb/4T/8B3zuc5/DZrPBj/zIj+Dnfu7n8IUvfAG//Mu/jGVZ8KM/+qP13N/3+34fvvCFL+AXf/EXHwUoP/dzP3dmNqqtW8z9unBwecl0I6ef5fJvFvl/hpDPuqxq4fbrCa15tJ2y/o4Pr8iaP1OvWemPn/Z3el7/e/0uJxdVWhGqfXtN5k+IMUEzuVbVMdDyDPi1zhzceS4ihhFp2GFz9RzXz9/H9fP3sb15ieubl5i2WwzTFmmc1A8lBhtPN+Bq+2zUhCxrbYTnZHFdkDM5ts/mGFm4qlw1qZfmjvA00p6gqNZfsaBmj10O7lwJqhFL6i1fUCy0GGVBKXMFKV5zRURUuxMiYhhqfZJhmCybpmqdYogQWVRjVDST42Lp0plnrXRq/iwBHZEMXWyW0Z0YtFaJA5SUPJ34BsMwWO2fiOFmh3B9Dd5cAdM1ZBhUMxInUJrM6dWJoM9uAEJjg20/NGnMtSan/KVZPTyawoh/pMqP++JiayYeVgxWfMn6r7Y83P+l1+S11ST1WzMXOGtcb1yVZpu2sD5qZ69vPyjt8Igxl9gv79oTemEdrAHV+vOZpkWaqahOedU6XOoHBpII/WupNPRkQJe+X9IarM47pS82trOnocaoLzHHvp0CpSa0nN+/0iO0WafKKHyuzJG5A1elm8s+9EIEyvRVLbAaqwCmSGsTTvV6/eYmO5WlfNDm2E4eJgxUhxmRR+fZTrC9Y4DEUG+ok9z2nj9r9xUpapSiAxp0z90m64JWshtTb9a/dN4pxGHWiK53bd9ygPLFL34R//gf/2P80A/9EH7rt34LP/uzP4s/9af+FP7dv/t3+PKXv4xxHPH8+fPVNR9++CG+/OUvP9rnT//0T+NLX/pS/f7q1St8/vOfr9/Pt7u2cylGLp7/htdfNzngm1keuab1/Vin/X69vP1Ozu8G2shoR0zecG0P2E7phG+L6kFfb2jo3qXCEMwkIpWbVEJb94AOstFerhIcVTleIExAiAhxxDBdYXP9EjfPPsDNy89gd/sSm+vnuLp5gWmjJdWHcUIaphqGWJ0sbZzNZOeakc7xsqpOtfBegEYaOfFwycSlEWYgCkNkrvkCCJa5lTOINc8sw4k5qcmoSoqWhEQ8aZLZeosXhJtR8gIvwkUETf8dh1pcLaaEIU1aXM0K6QUKKChW80Y07bQULFKs31KloBo5QVbWHZ7bwgCbVSH25FmqTVGQEmKysvUR4yYh7CZzfh1BaQANIyiMQEwQhM7sUEVS9EpfEZhph3x5nAsKYa2ZC6ZJaYzG1yxVdfeb1npV+VO3RyozbKYJ8v1MjVBL3Qf63qsS/OS2l0SU83DY9UXrKJ3++CWm/4ZnXCGSjjEas7zE0KlNwOPt5L28s2PwW86tgMmZnwG5CmNPsRJdmBMrGHr53qjP3pRbPTvs37kNoadZ9r79bLiggQvmfmpfHMAqrmsOoO0a62sFGtX84YDZz/d8VI3hO1HrR3CByvt+M9Poes7aPLiQSJ50yQC89173Bvxdnc6Pa77XZqL2DghdQqP6XqrGqUOjquUllLzu723tWw5Q/uyf/bP18x/6Q38IX/ziF/GDP/iD+Of//J9ju91+U31O04Rpms6OS/2ftjdvrcfZ+WOalrMeOqeg1RLqnYW6sTy6xN6BblQ31W4/vwlUnd77sfP8d+8/oi3UClwAZRZWgMuLolV1KjWTDXlOke6OvtlCBQpk2SMnjNvnuLp9iesXn8HNiw9xY+nct1fPsN3dYNhuMVqV01oU7OQFVUIiAALXzd4AEaDSfTC7aYBX8q3iTzdPXhfGnV/d5srCKMIgKXCbvkrElpoeoYKcQFTTmZOImZA8HbQWfavSlIilCU8VoFDSmiOUIoKFGhICqn+wCESszoYUZMsgWt+HPZGWUonmYGcgxQGKZ/E005LWVgkIiayOCmnk1DRogrWUIHGApAgObs7xEEgncQZQXZIS1PDXtnaNQfkJZBFYdSPYekGL5pDunZ9LaR37kPbcJC3Dx3q9++wYa3Di6cxkBTgM4DbU0vWDztTj5zfNyGWNQk/U27mPM/cefKyfv51Cp6d/U636tbyxj14kekt/l0ASeTTRGpCeCU0+3Y3E4NxIRGtcYUKJSAu59k5DB5mJpBWrcy7sgKh2p895iQ/4yLme2YQCQu+Q7k90YR3YQ6kPi+YtQqBacRsGOJoArHlRek24fvbfBd10Pa5paVvkRKPRxlQBSj1mT13Xdr9WWg/9WiZxOlA70LwxcA1nAgu0cvI7rifgdyDM+Pnz5/i9v/f34j/+x/+IP/Nn/gzmecbHH3+80qJ85Stfueiz8i6tJ5NrVvvma9584N3u+03/XpHz5euUtTQflLPmG6w/dHltrkDOCtA5b+hzHMBRr21W2G8191KTDvoBU4htu4j6IYiEeowoIgxbTFcvcPPic7h9+Rlcv/gMbp+9j93Nc+yub7G7usa0uULYTFpG3QuTXZQM1w9DaCGDbtwAPJVGN6Ou3fHDLlVALCxYa10IMzSwuFhSJAI8jblvyGCqfiNSrp5lkprKGpYeGvCibaWNmSyDZlAnWdWoWPpwUmc2iGpq/AWyFETLN1Arrq7epRKgmrXT3TT98UnThztggWlqYtBU5jGRhnQHTcJWImlkTrDnJYAsSkkcwEpbK30IcEfpuhdH8IJhVQPWrTdIc3hdOfkSmmakW9B1ffq67TZWxR++TF072B92qfFkjZVubk+Fl+AhqbULB2ay+tz/1je/suZ1WW3KdZ/934tOmA627Nv5KW8DQXYOtePrPqT7+XJf5+NyRuVjB7oUGGi+GrJ6bKc77bxHhm63ENuLrsEIYrVxem4u0LB1cgrQnntlMsYaaDgIF7S59/fkgLP53YhP0xo3+r7o/A6c5IB6/6YuVBkmEFILAlj152NeCQer3QB9hyf+Q8Qdf6D6DpqGswdcWFVmdwdj1/ascvrZSb6M1ILl+1n5RTATbCCt4P540o3L7b85QLm7u8N/+k//CX/pL/0l/PAP/zCGYcAv/MIv4Md//McBAP/+3/97/Oqv/ip+5Ed+5Ju+h6Di33qMLvz+pnZpPzS8eQ55Tvvv/572dUIrK8usUoOcnIy2/OTkGqCBEQJWhPzSq69r+sKgax0TW2ECtCgE6p8fmjtjNTiq16g6PKDP0lZVhiEiDTtsdy9x+/yzePbe9+Pm5Qe4fv4erm9fYHv1DLvra2y2Oy2vPmiF02B+GBADa82a0MYqFkZrz+AAyzesO7C3CAisJ6JOriUvguYB0LwHXpSrQNyUIQ6GyDZdqITS78ngmlq8hvWJRhvU3AMgwOuMWMG1WGuTaFSHO7ips6/2XUP4jJCa+zGqhsIz8FZE0t6lT5D+riCSTDsVzNwSYkCy5HkhBlBUEFIf3yhs6dcFeiYlq+mt1zgaWS1MP2ntqFev99Sc9R6+j1VzdbanpN+j7lfQ29T7MQiqjF0H2ZhRT6DXAKaFhJ48MfoHfLuZRDpzxhrsXI4GOeWA4j90tz6dkfYMfZdS7Qqnoz4ddzdfcuH9ic3xauwd6OlaCOsx9GcoCJCa8XUFGuyk/ieHwKeOunqeXlCrGq/uY+84GBDqfiWiFgmFPlPrmvK3Z+yfG+bg2nyX+hsL+nwpLSNIhfKrV2oO1DaRF32brHM9ve2PS95VjTK153WzWwBq8VUxzY7TNvNPB1GrFK0AqwOQHU2t9MnACFWA0qg1EQGs5tryVm7c2rccoPyNv/E38Of+3J/DD/7gD+I3f/M38TM/8zOIMeInfuIn8OzZM/zVv/pX8aUvfQkvX77E7e0tfuqnfgo/8iM/8qiD7KdpPRPv2+Wt+3gf7ZrmtPepWkcV6B3uLhe+dIC3/STtWU7/1jGfEZK3jNWpP1HN7Npn96zPU7uiyvgqoaj3bxvebA0Yxi22N+/h2cvP4vnL78PtB5/F9Yv3cXXzAle3zzDtrjFutpimCcMwgFKqTFZEVMIOwGP1L70cOtn9e2bu3x3EXLja5lVhVpX2LLVztDwF60K4xsBP1aVE8DwtWnPGxlGjgwTF8gFAgtYNCmRRSlrdNXjtkkAaKk20/gdeEatAhCDmYxMADgSC+q5EZ76hrQkij25qlWldAvJw8EAaCaUZfPV1KzigKmmxP++plHeiWfO14gf01diqpQu7tVtnqop3ILqa6QpEG/Luu2yMrVclO0ZrPQA9ge8G3Unv0p9moLExMv3NI5FsOILu/ioFrMw1dVrWz/4YqKnXVua9Zo7S3fMU4PheaDNw8rEy4PZc9VnXU45+luqxzv6wyjPTzc1pX6fMljqtiU9Of6wGwUo38ytwRatl4McrczQtqh9bGRjEn9chA+HS/NaT642Nqq+AuTHnLrDA/WDaHDW+UkdqD9abSKsLysmUnyVic0B9Mp+1HxPgXOu3WterNdh/b8JW5SerV9v54KyWrIOTbp/Zpus9Tlis+Os7tm85QPn1X/91/MRP/AS+/vWv44MPPsCf/JN/Er/0S7+EDz74AADwd/7O30EIAT/+4z++StT2zbZT9v8YSHlTu8S72rY9//V0K9LJ8dPkNqfjeZfxCc7BhrLA9vnTPufp/SshlfVmjGgrTcQ1FGu1u17fnKhCFzUipCaEOF5hun0fzz74PJ5/8Dk8f/khbl9+Ble372F3c4Pd9S2GzRbDMGp6+6jmBI8J8gUOIkSRGsrmBEKdX1EZMXXj8pnqLd/OHJxxAGgJKQAkIXBgRLGCWzYfgUvVsDQm7467ZOMxe3jNy6IT6+phEQZZdI8XOdSS9F7xVbUnMURoumvzGwFqsbYVITJm7M6lVP/68XV+DY10pJP31vVJ7jNk2iFztHc6WUFrhzlO2ftq852AlQrUqY3B3089TS7tNr+kYwq0BvC6F5pm4zSBWV1H9Tut1lGPXs9wAjWif6k1YGFE3oBTz5xdz2VnPXJ9DzLa72eahxXTPKV+67YGA0aJLpy+BmTfLFV5vPXD6Mfv76Wfc+rmsKe0ori+jtMjb+znhpfQra2eUQInTPq06Q+9Ftox9iVsdnZ1RVRUXcO8k1Me735rvlYVI2mcodTk8HUEuia6kOBTzUr/nkspXe4TpQHMBWp2LxCoCVm3UZtjHYvSvGC0pc2JORx3GnL96MCsUrzVnLd91wReZkbhdzfzkDwew/Qd2169eoVnz541htNvgJNzqZvkS+1R56ILfeHk3PYKL9+Dzj50rV+xp/D/9LA0SaJ0p602ti/6/l7Sxshdp3X5EmqNFvWrUMdNwGzttnlqLZB677ZQlREyApIxbXWGnbY3uLr9DJ6//wN4/uEX8Oy9z+Lm+fu4ffYSu5tn2FxdYdpsMU4bxCGZE6fVHQmk/6DOZC3/pduZgVUhZmdgFVedEDhpb6lJt/Ys1GvIAsRCikUE7LnZ4MnXrBeBqYrbfDSHsgaMAHe6RSUwIqiJnoKXqe8/B7J0/ApevG99R6eqa39gvV+gULUYBNRMlHWcnSOb0581c9BniKSZZ1uUV/Um6pfWqm99to6h2BpZ2ehPzveeiMisYmu7fzewuhaZdXyAElRnqasgLwJEGnitkaGWPNDH6iDtXUjgpfNOtR6nvimNgTz68Bfus6ZnvUbmtN9LjrRvfpbL3LaBxw4FdCa2R9sqDcGFny+M5cxPJ3TMrDLk7plZhYkejzQNQ9eXrIFd7ccfB9B8SIFqJXHpHtG1dF4xoo5Gzn17xN7laeoJB5febzXsiDNntKrB0F3F0Jpf7OUyoFpXEelohjTwLtJdfz6v3lqhRh1TcHUowfLfaM0wpx9iNIcCIZHT0p6u6b3JhbEKRNahyUKW2oGkXksQiATsj8DHdzP+y6/+Gv7P/8f/Hp988glub2/xpvbdX4vnrbTlU7vMXm4doX7sDsonK1yHf60b65L0svrfOcA5Fd781G4/vxEAPfbT6fHTYzXHh0uGopoV91GpW4wsXoYAICDQgHG6wc3zz+LZ+9+PZ+/9AJ6//zncPP8At89e4Or2OTa7K4xbNeuo7wVVgNKPufm8qOmiAQBpuUcI1ZxCHcf19PjqU9CcxiqQc9U8VAOkNEU3EixnqTuwMatGgdBJaZ1hnboN3YCS3c+ATc0uCzLHsWDjtPOMcCo4oaZZkUZs9DztL6L5/zgMJc9FQlSZeJOQjNg4wyMlLj33a7Znnye2t3BqkNCJuLRzetK5YrR0fpYOtdMxrjQ6bT+sQv0dbXRA8xScK/9odve3UYB3ab0T7GlzUNF+phqRxC61O/CQ9TXdHXSsZ0Nt/iqnmoF+Ht8NqJwSk1N6RujzgrwVTzkRktNn6U5ZjaeZXlfXd8/twobXeTEsj7Opege63xFXCDx1fAvNboN+5EE/jewuHuUn6NFU7UHqLkX1P3FtYB2L/XpqysH5+5TufgQ0weQC6FZfODRNh3gxP6psR6AlToKErq5a8/9Z8QZ/lo5lqXOxXuU8Qs3velwEKAzkIpiXb6OJ53e61SV2tuHfva0m/20nnJwtZ793xAJ13b1xbCLtzqcS/qOXSbvtBTq3GuljfRDcQ13qola0rVyqMlyQJUWTetwDdr0EOYQQ44Bx9wxXLz7E88/8d3j+wefw7P3P4tnLD3F9+wxXt8+w2d1orpNhwDAMLYyYrC/bGA2Y2Xa27KxeydM3Z+xMO3pQ/TnEElmob0UfVbAGQWefDTgwszn3qR+MXxf0pG4GccY4XOMBNAfBEDopqLsrUcsBohotqVE4DspWJhkDKF41dvXqa2JMwVqJ2hh9MKpSk0x2nLUBrdVlJ9ei0ybhDCysBQJjDtTm+JzHmwns9GglnD1g7e4izUHc92DPcxwUrHtuYauXsMZj2pRLwORMQ9LdoSbsunTtBXOR0q5+XO3hHZCdzc+q/zdrgdy52teqv/LGv32W+789iHwM9PTfLzP5NbBT5lijR84u6RdeG08/GqUNa8O5+5Y0jU5/vV+n38+cWdHeH69W2+Umj5xTAYf9rcwfWK0TccItXkPKnyEa0OP1oFbj1GNc1TTOY6QCJKc7PWDVd15Q6yRZ7ii2BK86fwSiCBZGRqX6COKeKQCCaln80UgAEqVR4n5+zvTINZj6rosICguWXHA8fptr8fxOtdUylPOo+b6dSgprQvrYeSc3ql8eOdMG8jbBo79Xlf4u9Xi6/x2UVDTenr0f0Upyfaw/6EI3PUNjtB2NWEltAFyzoJqStpk0O+wG0/Y5rl98iBcffgEvP/wCbl9+iNuX7+HZi/exvbrB1jQn47RpRQBbgIxtEj3AUBVnYAFyAXvondW7cTNOKYTgjqgghDhAOAExgpL7xcRO+9LNcwVgTqypkzYaqoyWcRF1w6mEpxkR+/etmpG1elWZg0cGOLBq6lLVfATTfnhSNX08V5WGqllR4tABJOdlBLMROwH0Nd7b3Zs5q643as/eXr8+qxM7AiwM+0JbLdoWpVAZ9MnJK23jhVUv3XFB/7O/D+neW2Pq0j3bY27t/fnK1FFBY7+v+A3aktOR0upIm3Mnzqv7tyXVrug0fr3TZetcB+XmuXpshcRO57QHOv3z+/Eeoby9vd0E1t95NaT6PE3w8uc4O2l1r54WtUdtE1ipErnGgTrm2NNC32ftc//Om9CwBkKPNllHCbWnsh7Fgwe69aCbfiWIKl3ogJuN3XdQP45q4rF/bRN3Qg/ZyitoIflEFpXjdLwDP0QqhJEFRbiJzEzXvvfVa8V4gVi0U7e2xH4XAYJFzgmpHw6TgGIrYpiLIBfGvOS3zXJt39UABYCv0douYXon9v76e6VvlSzOrlovk5qqAedk9Xyf91y+GwPWBKqxRzm78tKzCFpZrtUYui7qR+oIxtkztv7dedL3ts+Qp4WvWhZS9FxscyZL2sVgRBqw2T3D1YvP4dlnfgDPP/N51Zy8+ADXt8+xu36O7e4a07TBMKaagE2cCPWEXASBFfxwzmpfKRkiWUVm1ho3bq4QEApndWQNATIU8DAgYACFQU0xcLAVKm1380Yt5lVnlABic3SzjW07sJpJTM1AJyryGgnTmWRCMJVpJVAAhA18aHBfWAEUH6/5TjiIIdRkZPUEJ/IdaHHzmxixJF905GDllGk1guqrokuNU8lQqypri+YNTZOsOQvpoUOT5Bsz01Wm1VqdeAPgyspWrg7Sj9eHU3/R8x71K6HTD6cgoxH/tYbkfN4cK7W50wGx73kHAkBlRD1ofcx/5fGxr4+dFoEjOh1zNydA/d0/n7Nin0UB3vx6z8bs+6T6XOCUjnU+C+2ttkfrgNuKFNRV3eZrTX+dGlLTQtG6DyIyp9R1TJd0a0Ac5PSmmQ7M9M/q79IBALo5qITXwUI9v4MdHVihQCgFlUAz2IQ+3ZXcgxK/iwMUUS2vzzmTQSwDCBza3qcaxXPK5RRe1PpAJFZmXuuNOe0UakIc1eds64TNV86TVJLRrZoMQAjMwMKMpTAOv1s0KAB6mnIR/VakTI1BXAIx7Xw5+d79fQu87pZq7ee0/544938fBVYw4PAICLt0j9VvJ8Clv9bKndQ+yW7qqvNVMh7PIGortRAQEBHjBpvr9/Dsve/H8w++gOcffA63730Wz168j9vnL7G9ucH26hqbzQ7jOIEimq+E+1+sVMi2yawCMMoCygVgBhVLlsYFXBiBAQhDeFEQkBIkZwQelcEJgQYDC0EBlSZYuzSLZmpobvWVsJInPrKfNA9KrH30JpjgGVcrUQ2Gb6TLr2AQwsxJ1PnfuO+MEgCqRKE5oilpZSPEAtT+lWgZE++c8VbSqAGzc0bUx5p0R2VN8G05PLrXAAeO3n2/4h8ByT7bFSCjM1e1gaz215tMGo+ox3uN4KnPxqVjbwMpDTTZ/4l04Er2K1A8A4V0ad2f//7YuE7bZRPU2TBx+a093t7qQCzrm5yNwoDQydOcd3NhjQGwxKrSndcx6w5QV0dQA+qnwQpCUFOGpxUAqoO19ruOvOnf+WOPX4E/1iCkMv6KRbrx21/2MVUAq0f7PXsKTFCvbSAQpKaTqpEV95wDREITpHz9dMKaiIYf84WQI2abU/dBM5oWBChmhA/UBIXKQ0R6zNii6QTIhVAYOMwLHg77y5N6oX1XA5R3BPqPLjKgAzCP3eDT7emLN6iE9V0H/IbWl1nq9ugZ+Oi/0OmhS8/VqUabhqAxZhCBOCAGVtUdAoZ0hd31c1y9/H68+ODzePHB9+PZ+9+Hmxfv4+b5S1xd3WBztcO03SINI2JUL1Cx/kInTfYASrgAXEAlg3IGzwuCMMrxCJQCyQWcZwhnTSlfsm6+cQMaN6Alg6YCmlhzkmA0oOFRMzYNlWE1U4wSCZdkepZotW4QmwnmBKDo57gCLG16paZPF2aTaBvB6FuTyNvt3cbuhIm6dVXQABAzdcTNABZcF0ZVGgIsMoJauQNC55tS7+3rojHTxwWBcLKf/BuhAbb1NWfrdj0JPnmXzljd6bH2JlONrzvXjnKnBXiX6+vw0AsVdJKXrs03n8zKu97jXcZw6fzHHGd7sNVrVZwx+TmnWoS+NY1Hoy5n4dhnwPY86qj1x2fjPDvP/HHONeYraLC6VzXnUHPEFXsAB9SPLaEmT/R0APqcvhHtbzPvXSKtHdCxvX3u+ydrgHLSjx8PoJr8EUA1eSsoYngUljCr5qSjReT3s/lYmTKJajLOSpPFHV6hzv7uZEsaEh38+aWlKKhaFbTjRWudIhfB4TjjOP8u0aC4hO8LzV/tYwT0sfYm8rfS4vlxEyEfJxvnqLl+IZcA3zCgk2sqQzl5tp7Q+X4BcEIgT8ZxQvdPc4v0Ghf9EJskRLoRAwLSsMVme4vdzXu4vtWssNc3z3F1fYurqxvstleqNZm2GMbRnGF9f3bk2wmkDZLZNn9hSC7AkkF5gSwzMB+AZYYsC8pxD1n2oFzAOYNCRNjsQJtr/btsICUjMGttG0A1LBIAy6DvGo614axj7NQYqyphPGeJn7sm8v5odPJ8Z9K7p3uvzCGcACJ0xEsnRv80aSeajO4jZpw6r64XGKOF51bpBu70q2PxbAZUn78jYB2xR/fOGkFtPjWAprhuc+kgZT0nPph+j62YmP+1td/DESWkPvg3MdL13PdjqM9VnwaXN/wjrb7bOqZLrVEnN2W9a78+HH+OS+vt1DT0LlqWS+coOL8MHs7m1qTiCqQvhSQ/Qhw/Ldiqt7T91s/1KS18273qDK60MOoL0gOFR8fgPwnqvmxZENcjWWkDT7p0jU5z9mdUt3anEad5T+r99FZu/oGIJpZ0aiCtWKvAaI14RM1acHItSr0Ptz1cza2EBmxCgMSoHMByphChBTZQA2mw52cBWEhNO3PGYT7iYX//6Byftu9qgLJeoB3q7k8yerMmbm+Tu85v0PfpnuBy4bfTcT3W6MIgHCAQ2ro/hTrOSi/d69LWX5GO7p4V2NgeqyxEagUXELWwVWUkEYSCGBOmcYfN7hbT9gbTbofN7grT9grTRjUm4zRZhdwBIXbJDvzfI+OuAb/CQF6AZQbmI3h/D1n2wLxA5gV0PKAc7yD7e5TjQQvdba8Qtrfgq1vE7TVknsHZiuoJQ3jSwnwUVZtTVb5kYXqu2eidyhqYaAAFNsZzgt5rZ3R+T4k3Ncm9rlru+KI66fq76ftYM6PiV9ZziudPsKcKRIhwQGXSUL+m/aV3i7EnNN5vZQo2yF6ZrWPoziX/K5VQgtq967o7BcrdDGEFUrAetD7aekYfASenbcX4rduL5SHegYmGbuDOpx3snLoK1wq+bwAQb2rul7A+Jm/8DlwGMqe/X9JWvM2sU/m0rdf6/J+irfeOCUhvmhtynwozWRjN4jaCNbjs3ksdb8cL6oGT8bTvZwM4/63eam0KcpPPpX78/hUoBXfabXu8OcP2PE1qOn4fi/T/2MGOHRGH9FoklNlB2NqPzolNCOqL0pJPOn1QU08IAcym5QotQgc2/y7kOjghABRViMrMKAzMOeNwPOBhf3c6uY+2736A8jZ0UBfEO8OSs9ZQ+8q9tt2iShMnF10AOKcjOJW+3rbPwyPnPPZkcvJlBW6ou29lmsaMyQCKLbpoxetSmDCOE3bbG1xdP8Pti/fw/L0P8PzFS9w+e47rmxt1iN3uMG42iGOqtVxM8WREuxEnF8BIBOACyTNkPgLLEeX4gPJwD+zvIfMBmAtkLqpROc6ghzvg4ZVWDh43KNtX4P1zpKsXSFdZPcs1G536agRAOCDG+uArgap36APWoddr0w2DKJpqus3pqbYAfX/dQnHNRX1JTkirOni9gHqJmpmrTsHPdbNUyx7RgJcIVY2DE6A388m102UPRxp7r1OEXi1cJUsAnuOEHFHYnwqYuidcF29rz+8aPjkdsL+z0AM4O/aItuCM8QpAoY2DYEkJqYExH0q/Rvqh9t9VsaAg0WuaVLW3sM0BoWYPO2mXlTduCrhsDvyvaafz4WUjek3M2ZxdIKMrDPmG4Z2allx4d81fCxBpUTfu+Kprp/lTdEtqdVuvgt3Tm/X47cgFZHpqyvG592MOvts57u8h3f49uZ2hpLUWxGgANY0aAasoaZ9mNQ23bpkZqm8hTfqGpk0hkS4E2RekwAuF6lBahKF54Z88ex10zWANBkqUrj6YjlhN3qSmQWjEjlrhxMZFKKS5tecyI+cFh/0dPv7qb55P/iPtuxqgAKgL1RudfXaU1witgxUj1R3oWLfHfrsMWAAPdKaOWHZA8/EH6DrtF2z/oS5Y79Mu7db0xXaZFLZbNwLL6v1ta1pBhBZmCyBEiojDiGlzje3Vc9y8pxWJn734EDcvP8DN8w9w/ewFNtc3mHYarUNRIMRQB6ugTq2dHVnrC1p2WBG1p5aCsizAkvXf8QA53oMOR9CcIaVASgbyUbUohzvk199AOB6AOEJ2zxCWgpL1vrSbgLwB5QGUIiADNKdK6iQvABJ0QzKgOQP83QULo44IIXUE1hFOc2ptzIPRgIq/nd6M5DZafw9igT22bgwUtPA/BwyoHMxYciViAqBAXQSd7Lm2p0pLpCuWnOO2xAWNkVbuS9WODfQAyfaO+EpfE7fGZD1KSZxGmtTVlp/eiirfPpdMG5Nx4NycJJ1r6SI+VV2/qVUwFdb7qWqI7HoPXDrjZSuCQ0aDNIKnsi/bWxZ4plK1MzFiyx+x9sk4H3dT15+2d9UaPdYuXb/WAjzWt8+Y+2HRyW+X73WxJ+nMb2vVRvfca4ooRHVNXURD4vvLmCY5OG9jE9i7P3mxvZ/KKWVv/juAVM1rN44LoK2eL9KZbKju7Wped2TiYMST1Pk9nSaTOayWollx7QYE80NDB+qgtCzYPkaAmnv6zSWC0gFGWBZYdlLlJp/gjt9aHDWKgKKlqYiWQTwo1SEHR+aAK6LFVwsV/Np/+c/4X/+n/wf+y//6P52/t0fadz9AOWn06H7pQUn/k5x87y9fQ5/1tw7+kJ9/kmfjwjjqvejSie2cN7VTcPKtbB5GRqHzT0gj4rTD1dVzXN2+xPWzD3D73oe4fv4+rm/M/+TZC2yvbzFuNxgGr0ZsAczVhkQ1cqchOAN0nbMXwSWSoL4laQRvjMceM5BnSH5AWR5QSlYmwgUUCkgyJM+AzKCQQcgAzyDeKMGSFq3SmF7PgANiVI2Ev+MY3PH1nNj22pb1Gzp9O6EyUu45tRNUcW2DS0QFRbgWJZSOCDZbr9QFqHczomzP4WtWfUlaJk0H9arubfQR8NfT7YmOifTS48X9Ys8l7TadZN20Ng2HuEr5pDlutJ9CsPDwaumg9YmVUTwevtvmDVUr2N+ughtqe9tt7P2zC/rlrGuHuyciQJ0Te/pQP62Pvh1gtOc8BwNvbm8z+bxLexsIOpvzT02MuvfY1IyGO11zdKnjVmdqBTzOxmrM9jH00F13ur4b0qbuPB/eek1V5UjX3+leETfl2D73/lcOrjY479M1NlXDjJZPycfL3b0vmf3YgJHiD/V1a6DQhQCqTIVdUFmBVQYxIUhsmmcUpKD9FWGQhysHpdm5FCRi7DYBv/HJa/zLf/Hz+Df/7/8rlq//Z1wh4xO8W/ueACgrTHK2n1zJ3EOSx/t4RAaw36R+Wy3S0wXaveE1gVqdBF91K9bmfPvCZn/T/nfQ8mmbAek2JOsrQKx2xQab7TPsbt/Hi/e+DzfPP8Du2fu4efG+5jjZ3WB3fYPt9TWGzQZpTCALC1E84qDE/DyI1rPpAlnHPAHShZ4SaNwCEAxhAiOgoIA4A9udJjXbjBi2O5T71wqopglhSkAMQBQNUYkEREIJarqKlaB6VIxLCQGa6UhV6r1UTnS6Qk6BSiO2rl3oF2P9JM1HpAIO+52FzXmOYfHUJnn3bqLVDbX26kQ8guHEmxArQKwmO9sL3DH7KqVagiYCELr8Lg5S9E+LiFgNvH6hLoxZm4dPr2btZCob6++ZQatp5FKmCtmnzF0X0Ddj+mCx6APbBGcZ3qk9/6m/UQ+yKrjzd+NaIZwy+TXgeIz5nybDsiF0d+3OfQvIOXWe/dS+OhdACnWVOeu43lBQsb/vOYC8/Lkdu/Re1/vq8TdvlFr8vayvvTS+NeDRPvr12Zy1vW+noWugtF6fjcy5M+sq/YPtIzcnV63LyZjO3kN9pxeepwoDYqTEdXzN/6Ttzbc4B7PS42BjU5BCCGx0owRkJlgZN0jO2OwCmDL+1b/6FfyP/8P/gG/8b/8jNjcJacM45odH73XavqsBSt3D/SJff13JWita+sj7uPzTY0agR8YEqYT0m22nJO3SM53f9/z6N11z6TxAEEgABMS4wXT1Arcvv1+rEb//Odw+fx/bmxeauv7mCptpi7SdME4j0jggpoQYk5pDPOJFoCpVQrUhizOG1RjVUzykCOEAMZMM0RYIBQiEMCTQeAWZF5T5CJ73CJs9aLiG5AWgAKQBRCNQImQBqJAy7JCsqI5uOCcYACpoUeLrxNQ9fjp2VEUbGDJtBEg/KLjpiYoTMDEm2L8Tr0rMEAsZVPRA1BTJOoHNudbH2Rhpr+GQClCCHdcaP+030axOcOc2sURKhRgcCUnT1prU1T2dbTipn9v91T+gfT9dXCun2O66BthOAV8DYA5MWhhr/05a5JDP92lzJnbKqOnkHL/ZCoTV8Xya/Wz+QT74s5+lzdGl9pZbfVrTziVw0s/FY9f0Jphzxo1Oo3iJOr3bGM8fhVZ/Gko8uQ7d81Rtx2nf9uZda7Hu+JGxtLniC86uvlYdSJzyhovvRpTuecLGjmzA1CIXx0NENWGkO8XX49aBZyBuCmmp38WBu2iVYzKgIa4a752EsX6WFUAl0to9ElfHl2VGkoSQBgtn1jxTZdnj//tL/xH/z//7/wu/+r/8f3A1/Ba2Nwnz8YhlWdRE/47tuxqgrACH/+neddsqjQSeot13vsdJ6/fECsU7Gn7kSsKb6U9bIG28j9GRN0sP3frr+cuj95VKxBmEmDaYrt/H7csfwIsPv4AXn/k+PHv5IW5uX2J3c4vd9RWmacIwjAhTwjBMoJjM7yFa8Tt3tPW6KW3CWj6ONjbNy6FZVRWcMECjRgFtAMojaN6CDgtwnBHTHpkSgAhi0syzRAgpIo5bxLgBIWnRCQbISzqTZ0jUsZCNrQmtrjnp/7kEoi9HXCrxRWBOtIIAYm5ZICGt5kbHmMgdh0X/ZQgCC4hMeyLK8IOJJefanNAxGFvfXcggQX2DTwvCuUmiSX4wUKXOiiwCjspcBytg2K/nLg9TA2F+R7+XNIDeoN35/jPIdL4nPe12NQudemZJVbjpfFzGAW9qK+fZN+yv/q49IFydVzGrzkHdlxfGVJ/ggjr+baDh0nXfynYR3F28nz5hr5Fow9a12y+6S2aY3t/j8mDojfSN7KbSkML5/J0wiDc5TEt3rnSXrkw13TW+5k7ByaNaMfvrdFD33Rv8H7v5qVq6DoScP8fJTEnbi/5y1FzEEKZV4lJfq+5D5XtbRECeMDEQQoyQ2CBDShE5ZyQhpF1Epox/+0v/P/wvP/8/4z/8m/8Z8vBf8GKXceAZxwcABSBiSHyjZ+SqfVcDFACrFfKmDNynON+PPXbu41fZvU4Oy9mHBi4cbPQ/N0L1+IB6on7p3oTzsOOLgzoZQ983nRASIkIcJmyunuH2ve/Hy+/7P+DFZ74fz977DG5evoeb62fY7a6x2e4wjANSHEBDREwJoKiWgqghuUxkRgcbMzlTXz+MghNSJi8BiBFBUkvBnNTBNsQACZrLhJnBHBF4AHOC8AQaR02jPyTQMAHbHbCZgGnQdMzk/i62+diNJtJeFrW50LlrCeUq4RKxtM5AK41uz4BWbNABil6zVpuH2Jtd9CURNGeLAIiBQKw5B8gLKgJouUk6jYoPNZhDIEwDE/r1oteow6ZHAEn7Z9WWg7hTJ0AJGFwLI10OjwpY1sS7PYvOqZcykHrN+VqV/qAYk+9RDZyx6By3ABhZ93GxVWmh24t6coCOjUVW4wrw94gVcQdQTbkrc3GV0qHhl3Vsa/DWQ91+9O8OCr65tnKa7MyQ+lv37REi8k7OuMRYS+NioLcxxvX9z8HE6dr4NDPge7K/V/vhMii5pBHyxmcajXMw1ft+nN13NTh9Ms9yxNSvIZ2nR9dAN36xfb1+vvNr++izU9OQa2SEBEwt/N3Dl8Wigkq/ZizHigs/PjdEhFIKdv87eX8Wa1uW3vWCv9HMZrW7P11EZGRkY2OqdEEFkoXgAYQlEE8XeLHEAwIJS0hGQoCQeEAICwkJnvALSNSVjKqgruoCvveaxgbbmLSv02mnIe20M91kOp2Z0ZyIE+fsZu3VzDnHGF89jDHmnGvtfSIib1FVirozc8dZa67ZjDnmGN/4f/+vm04wteVrX/sW/+Gf/U987Zf+Ldp9i7KEzgi3mwaRliABZfIzVff31T3bxx+gjLa9CXf428vOGX0eg4FDrekOSDg4775Njdp0n3D+oK3XNu9px31tetm+lz33oAUzpCTWGmVrZvMHHJ2/xtmjNzh/+CpHFzF1/ezolMl0lkKIJxSFxdi0YsRSvKkRAQgYiUuWT9dXeZYKEDKVntojsdZP0AGFRbTClAZCIHQuontvgA7RnmAUQRu00mhTYioTF29joSyhqlHlFFXMQVfEhHMp16n4IVd89j5XyTs9dUwIAsqgAnTKx/YmmjYyENEBTUmMmskgQ5KnO5IiOLIQYnj2+FljtMYkliCat2wyxyQDTh8KnZoaOzruUnoQXUYN2ErdiQPrHV+DZAfhbOvO9T5CSpCXxgCCF8HpmPvGqvhkkdhJjrzJT2IcWjw2tvj0sNnpOj9KlLlp0QuxvQOASv1zjyY89vW4f8sDK9UF6Tt6BHhG0MLvgalhy4FmvSBOYyMEwcmQ2Or+RXfcHpX+H9CSwU2uOfTyR/lOwcnLfDvG7VB7fXvway8IGH8YXT+diKJntu40Qg9ySo2u0tdjUj1Q1wcgZWjHPoD/oFc9Vh5Uuo+MO/UDuvDlzMkANvfbf/eiGbdGf667zNce+EngPYev57o0qMismlwDdXSXHrwyxIb1/ZcOygBpnCNPGABp/gviUYydY3XqN4VXvjdHj1lNF3yq+RMQZXAiWN2hvEfbIiaF1FCWBd/63W/xsz/67/jyz/x7gvsdjhYa56HZdji/jmuBMqALgiSlbJSE7sO2/78BKOPQ4fG+D/MeOZwI6s7ngWocuTfubcPv91/zvnbm88aAo9dkRkDrA1s/Wtz7do3mU//xJbJdlEqOgvFzUUyYL885OnuFswef4OziVY5OH7I8Pmd2dMJssaSeTCiqkqKICdhymwViJA5xYHvxyY9Ap/unyZ4lmIqTNwuZnmnQNgnNmGNEi6CUx3c7lAheAFEYVSDKxeyG1vRvWhuLNiWqT1AWYup8FcFE8LFdznkiP2FSd4UIpHzsrADJYdUn59UBlPS5OYgLUAQpoLRhnK46EEPsct/E+8Rn1iEQtEYSSDEmsUfZ1VKpfuT15h2lBsmkR+Mpv/+9he9w5Aye+3lMBxFcELwfKkSLDxFkaY3xqYqyEfQo02WQXOgxvbM0AA+rvGYwtN+qARxFSiMv5D3CGs7PzMlLsnUeDGbGd49C+XDxVgcrdGrb+PJqX4PuGZJ7tsHklvp0RLcfmoBRuX0yuu5wnb1zx0+YwRnjPrqnDcOV9x7vPkBx6Fsy3DpHzQyXEaEPMx1AyMtZlfHiPRBQA+Dog1XU4bu5277D7cMcfj9IQT28xsu2fszkvrvnYv375nCcsPce87FBhKCyL9rAehoZHLP7+7L/fe++xJQMkYXJCCUOtGwq7sHNHlBx/RWkpyFjmGYOBe5NOoDykUlxPqC1Q0mg1ZagA6URrHje+8bb/PrP/Ty//rl/z/b6d5jOBF0odusdznUEfDJjWwQD6bmVwIetyePtYw1Q1N4nOdi33xH3An/ujr99UHMw2D4E8Nw3MQ7EzfB5tDuPs/6IEfDozSMHrVHsT8gx/X7YlsN2DcIvmRhEUZiKyfSE6eKc2eKMenZENV1STheUk5gltqyq6AhrNKI8Plami47c/cKc/kb0eI4kif4oqR5PkPzLXktj9V/SMWl5M1FDCkFF35RgCWIJwYIv43V1C8GBCYhqI0jqBNEBpTuk8YBHiUdLQNsSSEmG8sxRWTiSFlGPDz6ahEJIZqWo8kSNPqbJV70WNUobTQY0yQcl+6soUCpmd9RaY4xBjIkASAckpPDs1C1mVOAr1xHse1UNo0tnAJLfcL8AHC4CQ4RNEHAu0DkHhJQKX4FYxEQeIjvjahVNZAQ1zLQQ796Dp9GAziHPSRWN3/p+TUAtLeS5P8cZOFWfUnk06oUBjd/ZFPvz6e7ikftxWEx6Bxt67HbP/H7ZgjlcZ3/+jloEopNv1YBYtOznVpEEuvvv4/3DlXJXjp5lXzZ8UITMcJ37+yVfb38b+mdsevswkufACsHei2GYY0qPv38QrLgfyPTn9uPofjmfjzu4Yv7lnn15fN4PFPIR4z7fG2OjK4+Tr+0tK6MCg4eg4rCDe5YkM7Hj15gBzkjuxmsk4AJRTufDk2Kh0nzrx30IUcYRCMGlbEqCeJeUOkddz7h6tuKL/+k/8Ltf+Gna2zcxhWc2hXbX4TqH1gIELBrlNV7lqMLc3HG2oA/fPtYAZdgGYfwdMqQfaRuCyz4YnQ8tyeft4+wDBXGsvO1dQMF+llfYv8bB/o8y9e77XaUU66W11JM58/kxs8Upk+WS6XLBdDljtpgxnU4TOCmxdggjjsWpom2UkJiGcYt6sKTQKlYTRtucn5pe61TZ4VMIPqSFTZDgIyvTebR3SJdq8rgd0u2Q0KJVh0hD8G2sveMFfMwcK7ZAqNCqJmiPSRpiEI9J9S+UHKauj70TJPplhODwEgjBE7yPieLSs0n2B0nCo9dK04qX7chC0lSSWURrgygNWDQWIeBCiGAlRCGiUhSNhME4ksGGVipyrKO3mfO0jEFrFtwRwKl+ggzp8QPBO1zXoYIj4PE5MZ0pCFYjoSBIjAjqwxJzRFDqLp3NVEr1i5zIUNtHssaXvmST2ni7by3tAW8aG4oIWvees/88gIX87yFw+DDNP4/Vl4GgD9O877ASMiRKPGSXhof+EGfRD9juP29fRbvnhncW++FrWjQlQt58gzBMi/7Gd6N37l7vZc91n1nso5i2Xg4yDu73YUL64Hp3AZJ62aONzjvsw/zQpDk/MusCeuTDlf1QPugeh2NVkcLiicMz1wvMWGdcFJDElAjjshkROOQqx0I0vfRYKSlhIh7xCqQjhA7vAmVhuV1f8/M/9R/4tf/048j1t6nmhqqG3WaHdx1GHFHP0ogqkjNwSA0dHkIh3Ckq+QHbxx6g3AUEH37sBx8zVlGGEzNVvde16fdx7pI9mm3cptFN+3bc854OxcuHtvkAlB0C9nGfjK+lFRhjsFXNYnnG8viCxekTji9e4ej8CScXT5ifnDFdzKlnNWVZYGwMI5Pc9uRYGSQkqtDv0eoDpIu21Gzv7J+7l04e8uQK0X9FhYAEhziPdC76oXQ73GaF392iuo7Qdfh2Dc6BE5RovIo5UKRITllEq41WKhXpi1EymR0xivQ9Mkm94JA0YYNLf4HgPN773gE2Ls6pFHmKWMpajqTzB544/js4xkZQJ0qlOhnDxFUqZu4FRRA3MnWkJE6M1E8G4Tg2ZSgVuY+Y9yAwilKM7VEq3l88OnhC8ER7t4+lR70nSCqkKDZVcM62/vTsiQEbBGNEBFrRL2Jj60xUGvW+1jem7NUoP0QYwI7qc6ukOTga72NAkv/dN1v0/+kB+aBFviya4GCFVfctYvdvcjAZZaSijO38Q4rxD71kvNThgtUDIbnz+8uB2P3SpD9UDo9Vw/DNp42e4b7eyIt3f9RATUVZpO7eL46pwD5wkT2Tzp1n7Qv6DjL5Duj9EECZ/73PhySC28N+2u+/eyFaBtPZKV6RZ0m87nh1UGqvKOB9bRyuEW8oycTbtyy9iDvKqlI5ZOhgTuTEbarvsKBG8grBhw486GDYrtd86Ve/yK/97L9n/e7XmE0t5VFB07Rsdh3iW0qlccqiEl0UfbiSosnQB6CiYnaYwvcDto89QBmPkl5bG8sINSDNfMzh+f0C/h1oMqN5NwAV7huwH3yd+0RkXiT7ZDsvaVc/IEdAae926dnH8iW2XWGLksnshMXxQ47OnkRfk7OHzE8vODq6YHZ8xnR5wmQ+p6xqTGGGBfRAkN2ZeDLcZ1gQVL8uwuHkzaemZctHkILziOuQzuF3DdJtkN0NYXWF2jYo7xEvMYRYaUQrMBpTVpi6grJEyhpVVeiiBGMQHasxq8zojPpEkFHegQiqgni888MEzlSopHwnfVEdnXxI+gxoEawkQafVEIkTuyj5gYQY+qfsOHV+7o79Fx9r/9Bf+zDMODvVQdTYJIEciSoW2QQlkp4huGgWw6fzEkhSErPyogCPF1LulAR3U7NCTmbXv+9RxephiYr7xj4iWSDGWw1MVD9mVD92cuLhHL00LCYDCOkXRUlZenOitMP+Q6F1jG7KICXf82AIDs+Tx7Manml4Hx8OWIaVYwxO2JsjH8Ye3Ac+Pggw3fXNyDdLfRg+CGwNKs14Qd4DR3rUHsZ9N1r0c3/lduZ3shchc6g63f8cHwYOZXiV9z+RUn1G1UOBfB+bo5KsyjLqniveuUb2SRMGkK2zTBHBM2Qc7jPDqkQmv+x9jbboXJ0Af6YuBZQfnNdh5KumxjJ5BHb6B1WITv+qOG+y+VrZgs36kt/4r7/IV3/xZ7h68zeZlIGjoxrnWta3N4QQohzVJb5/xz4O9yApGtHT1/4hySIU9GVCPnz7WAOUDOj7ASr3DPUReLlndz9Q7tv2NLXRf+9c62DO3Sm+2g/8e+7xks/jnVlkKPa9vcebzosGgzzNbE5WnjVR4BfVNDnDfoKTB69xdP6Yo5MHzI5OmS2Oo2lnfsRkukymHYMxYa8WzfjZlE4Loui0wEsfiSJKo5RJA9UMQp9xLgvJsiwyJyrSk0oBwRG6W0y7w23XsF6jNltk2yDegy5i1UwLqtSYqkJPayhLdFWj6ymUFVIYlC3AFmBtzFKrpC+I1dttk9YYWSGP9zGVs3eOEDrwYSQwdcrNmGpOIKmAVlyKdWF7ITV0VjbdxHsbLRiTF0NSv6TFul8I8huNv+lUIE9SzZ/sfDmOohnOGnlBhbhwBIksUPAekZCKfOlYeycJuMjipKKOIr0QioAkf87gPzNDYeQEeRCZMPqhZxmzVieGVNEsgZWRuUQNC5zKmmJ/rTiWQqDXqGOEVaphM9Z4VSrOlrwSlRnzJxnsZJA09PfokPTb3QVtb+sBWgJReHon3157uruoD+cPPgR3/BsUEUgm7ei+hWx/33CvXn2QlE2UYeodPtfQFrU3jvKF8j1ChpxJ0Rj8bNL87oFOOnGER4a5Pz5y3A2q77IxGM1yYjwrDjN5K/KCnLF8jibL5tfclyQApYc27vXe6D31v35whFFss+yNDUn7otKZWUlN2Kc1h/bfw9xkxjrP9B5+KNU/ByrOdq2GdyNpBci+LT4dp4PDBotXcfqFzlGUBtd1fO0Lv8TP/9T/wvW7v83EehbzgtC2bG6vCYkJ1yY6vnqS7Er9LZBkYHLEVansQ//CPxyQj7ePPUC5R7Hpf/t/99of1o37+H9YmF5680PgwliE3D1v3AYZH5In9giJ98eooU8GGZAK8gG2nHJ6/gnOHr3B6cNPcPzgFeZHZ8yPjpnOl9TTGdWkop7MqOoqZYbVaJOdXAc7OwyLu8qTItPnyRnWKJMyyo4Ti43Pj40VUeCHUDgJIdpmXGRS/K5FWo8OGnSFVHGhFGtRVkNh0UWFqieYyRTKGmwJ5QRVlqgi1vRRNpqAtLZ936hepUkwtC/WFT8HH5kO8ZAok6HfM0BTqq94rPVg8sn7+reXi8alQnz5eKXyNfK+dF6OKyT7oITU5mxgYRgAgGTHZxX1lVgYMY0BGRZxH3yqoQEmtRMdr2eT864xemhPbkUS6GMGMX+WnFcm7TBArzkzjJvQ65p58UqmF/QwiPvRr/p3FAVgWi5VXoTi77nGa2bz8h16n6DUUEV0XM5h3HkxGwCFpMVxzOrw0bd+scy9s8+Rxlsl8J3T9/fzN0QnZBldDIZjRiDqzm/3bmr/k6QsyWr8S27XsATnqwswmGrvPCajtzHq4/yf4TnGjzOyLNzDHAxt3gccY7kRP4U8NjLI7YfMGBSNQKQwLOuSrpnHigzmpX0GbQApA0v3AS6eMgCI4f2kkZgbmaNmCKk/DkBo2oaqxPnJR305ZkNUBHPRB0X6CDStxukdLIUEHAElHUECOyyojiJAgca5jt/41V/liz/573jrd3+JaeE5mZU4F1hvtgTnojzoQ8oj+OjLJiaZaUzeo9DKIAdFJe8Dgh+0fawBCsTp31dy/ABg8LIuGU9uNfpvf+JLju+FsxxM9j3EcacZBxc7uNa9DWRvoqt7jhszkb3WkI7Pw0WjqSdzjk5f4cFr/yfOH3+S4wePOT57lDLDzqmnE4pqQmENtiwjA2AM2uiUbyQzKDJMDAQlFhHBqKQ9pAVSJ8ZEax2TrMnwFGo8ySCmgpZ4zRz8K0oj2mBNga9qjLWossBXJeKib4aYAoxBFRZlC3RVo6oJUlQoW6LLCl1YsCaludcpJUrMvZ8Fpoxq3ygt6BAnY44Q8o4YVZTUhFhvJaZ+lpD7Oz0rpo/S0VpFIJLekE5mGjFD9ItSoLRg9Kh2ju7h0/4Cm/pfJ62lpxVS1+a8CdmfZhg7ScD2V1Po3B8jgawktsMaEy1gagBBexEwjM0vGUQkvxE19FMq8RPnaE/9jwf/YFaCQLbXj0b33uceRoyjXvbA7iAE1d7kGDopL7p9lBh5ouQLqN769x2Bk4P25L4ZL5Z5nco+CT3YQuhDpccCYfT+xv0S+zkveve0YThy9N/ht2Hv6GYHhcDGzz480hhA6P207fuHjGDF6MsBg7T/QLl9+/Bk/HWvHWo0IsYo6D5h3/dxvs74WfcZtN5nKM+Xj7Ce7vunjODbnvweoHOWoVGW3AWGh1s46LKxuVOr6JMT9sDVoBgFJQQDwbvk/K8oaVC2pusavv6bX+ZLP/sTvPPb/4WSDSeLCYSWzWaHcw6tDQVATi8gkkx1ITrf5/Ug1VwLmS1RmsxTZrkVWfGPPqk+9gAFhgmQBfLehGDQPu4dZ/fMFxn992XbHWb27gVeClT+P70N1Gb8ro2lnp1wfPYqF48/xYPXv4uTB6+wPLlgeXLBZDJjMp1SVBXa2pjlNKU2NulPaR0dN/O6yKgkuGRNJk+/EMdn0vJFGPlFpU7pI3lym5OPRM8QGLRNyFwiWFHBgSuQ1oIPMRrG1jHFvo0ARZUVlBUUJdgCbQuUjdlYB0/3rBke0uix/UGE4KPzqFIWrUuCjflUemczpQg+HGj1KrEgBq0N1mT2yfT36RN9ceB3odNvKew5H3d3EMWBHgv8HlLJSUIJPUuRs/vnCBydnjW7xKjRQBkDFKMzs3T39v1HNf4av4S80Az2n/RTdvgbAIjqc6BEgNLH/Ujah+qTzMU7SKo9ksd4tMmHVEugZxTj29inynNb0/1Uf1Ruay5OqBF8H02Vf45tMP37+iCH1H5Mkc1N0bQUvOBzZk4FOax6D4TmM3swf9D96ZFMKkOQ38HYfT93+7BYqgQE89XpTSej7oE7RQDzU4zm+WiOqNGiPnR1BjphYF/uMFFD36ncyp4RGAOgUUPGdXH6n0ZtULmNd7rszrYPtjJAkf63vI5kcPEyk8R4DAzXPQQbcrBn/5h8/uDTQwL/d/2o7jhKw1DdePS/nsdRKkYDisK2ng6N1z6WsJCK3/7yr/Drn//3vP3b/wVNw3QSUzj47QYfWrQlJbI0YAqyJhbldPKDyu1SFogsrSIqPrHNg2wd3vtLXsw928ceoNyHOIVBGWD0+0fpl48wvu/eiwF1jyz+/822XuZ/wGVH83QQ4ESQMZ2fcvrwM5w/+TQXTz7J+ZPXWJ49YHl0ynR+TDUy52hjUTonHkuMgI65HGJ68ByZYZL2JH0Ss7iAhwQ+Avu2/ISaxkuahD7DpupNGilZmQCFTTLEUFgLvkNch7IlAEYXeKtR1qCLAmMsqiihKBFbokyBNjGhXF6dei3/bi/3PSkieO0RhEIEl51kU8ZVLxGAhVG+69wPCoXRCmNVWkQU1qjUhuiHk0us5/tqpXoQiAhKq56d2HvHI40b6P0ueto727lTWyAn91WJyRhFzEhmufIikpIBq+jjEqFltpGPF9B9QJM/jOfcoEyqEUaJyMGLEHzq56RdeWTkPKl6E9FY24rjURG6kW9DMunEEab7hX6g1TMII+UUiuwcWqVEwsJePcihxDPZlj8eGiO+ZfxWDpib/d/yIhO84HyIPk0+Rk0NaGBYKAczI2QUn7FBBMBD/hxjTFQkVM6XE/pW9i0erYkZTB+283ARTKvO6H3u92lfZ6pfkIf7HAIS3TOuA1vZj7cBD6V3cc/YQqUQ7dFcG/e35Pkwnr+H72G4FuT2j0FTgngysGvxuP2+eTlQGfo2y//RcpzVhLvnHbYuARCdWYpRq9UYhDHI+dyuvq+1RrxEh9p0pAqCNxYlAdsJb339q/ziT/4o3/zqz1EUBbO6wnVCt9vh6dC6AzQuWKBAKR1T1ZPncXL677fIlHgBpXPiy9Qe5UeyLC9Q93bHvdvHGqBkljtPvmwnT78CA3CAj47cBrAxutfBjsHVM194NIGGC/WTcu/6WWjLh7dprHQcvts9BTGtSeN9VVmxWFxwfPEJHrz63Zw/eYOTB084efCIxfEps/mSerqgnFRYaxADyhhU0H3iryHGXpLTq+qnnyApFDeA94h3iHMpTNUhWVcNMbQ3a8iHoXMkpyuV/vq8KMqgCg26RBcVwXfg25iuHoVSFqs1yuj+XGUsFEWsyZOrKo/6RJTqWYTYh8MqNLbr5urGIikFv0QTVAghx+Wh0DERW/Z+ZwCrMQnYWFyl55Xo0SnBD2m/lY4LJokhIJm7DsYM+VpCv0AMCwX0vjNBIkBMNXzyOM2eJL2PSwKGmhjZYtJil/8ygFCp3wbzjtkf67lvMlgKEXQGwEnM/hvCQEMHJ3TO43wbGZA0Tnr/EUnCOk/s+OKigE7AUIKPzwjxhioWqtTJXyou3PE96by4w+AnhIoWP+LiaFR8zxGgJYYjOVDHbMb7viSDiWX0XeijwPo2J63SBxdz6riWrmtxXYv3WQtN76mnGTMACCPAEs2kxmqsLijLCmwFhY3s4D1tHC9gw78ZZIQ+cqMPm+9BHmgtEQCNGK8MVLz4/nN2SB7GYUYhKvo2jXzPxqGtA5OZgAzZ76ofVfsCb1jx98yE0ZdkkMMql5rY74k4Svo2yx7I2mNV85T8AJZsH6ikGZ6wVWYKZXSsHMzlgV0cAxkGsJ1wqhrdQyTLmOFdjCPoctdLBoMMtceKqqLb7Pj2177Cb/7Cf+BrX/rPdN2W5WKGEsdus4ppBgwoCSAVgsk4NYYCaPq+VUleIWpQWtlnpLMf3DAchvc+jPMP375jgPK5z32Of/gP/yG//Mu/zDvvvMOP/uiP8t//9/99/7uI8Hf+zt/hn/7Tf8rV1RV/+A//Yf7xP/7HfPazn+2PefHiBX/lr/wVfuzHfgytNX/2z/5Z/tE/+kfM5/PvqC1ZRgzYedgCcufY8UEy2vkRccuwCQdXl490jaxwjOccjORcVjbGv48XV4bJ2SfaHF+HFE2DYIuS+dEDTi8+xdmTNzh/7ZOcXrzCyemDaNaZL6inkwhOyqK/YByQZNieHB3pF7qAxMiKAOJjnRzpWsS10HZI28ZIF+9AYnSRBI/P0QcpM6mMMp1qowlFiS5KrI2mGYwBo1Eq+sEoAjoVBQSS+hUzskpieVRcZVO6+3Ev3tWO9kJ098ZB3q/7BVPp6BNjUPgQc7REUOIQ5YezVHZkzb4rUcPNgjo+eAqhhmEFQQiujYjb2uRcluvFBPoIlz1gkvKx5L+eSsmaU/Jp0apnwCT53cR6O7HR2edHA4bc/jSuJKSkbjE6K/go5L3ESCACBDSdd/gg+BDIdnuFpQseFwKt02lBdHin8N7RdTvarsV5RfRWjUnxwBCURgdF8CA64FUHYjGikSA07Ybg235BCSGGRBs7wVYVRWkpihKjQOEwyiaTFSnEPALvGKUUwYlJJk1tNEWh0KrAGo3VAavjcNQK7CiXTgQ0earEmah09gVIJstAQm4xa7HzDuc7fLuj63a4tiXWstFRq1curV+hL+AY54vGlAW2LJFyGoGYtuigR9ryWBLsS6Q+8iZE9iAC7sTm+Bit1peqUII2hsJYjNYjkC/9OJMEEkPwQz0aBp+NaFKN8zMXsez9InqlZ5AHVsdojz02JAnMsYwjg4B8PRkUgLgwD+aaMbAIwffKRGRCQ5+METV2TjepIvtgXszFI4fovYO+TXM5Rrzl1tELZ53negYuieFUQu9z3z91EkdhtBZE9+9Bocv/BhWfR2udwqgl+e0FxDmKwtAqy9d+46v86s/8KG/+6ucI3S1FZSmMxTdbnGsRfJSbKkXTScyg1IfGakP2P4mvT6U8L/Edx3cbktyQfqwoAoUGtOllF4C/U4zx5dt3DFDW6zW/7/f9Pv7iX/yL/Jk/82fu/P4P/sE/4Id/+If5Z//sn/HGG2/wt//23+ZP/Ik/wVe+8hXqugbgz/25P8c777zDf/yP/5Gu6/gLf+Ev8AM/8AP8i3/xL77T5gB3F+r7flfjMU8/9vtzs1AeX2U83fPA2AfPA9k8nHNPK3qEf7eNe/e4Z3//ffSQ4ymSn7sH5YAtKpbHDzh79BkePPkMF698gtPHr3F88pDl8pTp8ohiUlNVFbawCfQkfiNFOISkQQoK0VGgF16D+Pg83kHrCG2HNA3SbJFmC9sddC3iGiRESj9mKQ0EFQe2ySFoELXdsoCqQlVTwqRCVRPQVZwwJocnG1R01RoEnVY9paiiXSI+h85vJXbIod12f4sdm/sv7ok+MCjQInvno1Ss/+NjQa1oK/aQEhMZHcGJsQZrTaI5ZSgamBadoWZPDoEUlNHgIYeSiiIlT8r1M1QCJSlMOHh0Eny+a2NyJDNorYEoeDE6mZAEpUwEjSliRhQoHRmQ1gsETRCF9wEVNG2Azntc6AjB4wFtDM61NJ2j7TRdB223wzuHqCmiPWjBe6ELHa1ziA94r+ncDte1dG2Dazd0bYNvE9PiWhQmVqIOIeZZ0SHqcl2BVpagtuyaW4J3xJIBNppLJGCLCeX0iKKuKcs6Mm3Kx0XWkMZkwNgymgTTQmS1wagCZSxKG+rCUxYltigoC0tlLdZYtBashrLQ0YSnAlYJRXKGRoVYU2nghFBojBG8dxg8GgehAb/D7W5odxt853Ahhm8GPyxuQ6SHRltNOZ2h1ZxQVD0DkhkBlUsR9ArYeEzLAQuQmKeEOkNKZy457DVpfnHM2jTsh/ILw2KbIqdCGORbAkA5ZD2o0K+8ua9RIDo5kSdmVRKbM57fGQzlBTpvevRM+0LyQGqGwQNEQnwH3jtEQqo/FetQZWdPpTXG2BQQYDAprcK4PTICGcPtBkA03hMyeBKJIe+So8oST3W4oGQaDgZAghpyn0StAU9MDYATdDD9M3qjILQU2kAx491vv8VP/asf4Xf+y4+jaKgnNV5N2HYNhC1aXHLgLyKkkhwSPBQ/jX6EZpBHkiFlljEkxSz7cCVWVkVQqySPDR9zo4jBuY9OCSj5ToKSD09Wao9BERGePHnCX//rf52/8Tf+BgDX19c8fPiQH/mRH+H7v//7+epXv8rv/b2/l1/6pV/iD/7BPwjAj//4j/On/tSf4s033+TJkycfet+bmxuOjo4oUlK6vEgPL/WwoexTYaN/0897C9Th76Tf7wMo/dEv6cW96x4o7XlS7znPJ8R9JyJJhkvkc8fPqxL9UdY1y5NHXDz+bh688l1cPHqNkwePWJ4/ZLE8YzpbUM0nFFUR09arnMsjsydpcTdZw1G9Y6z1KmkiPoGSHaFp8Ldr/G5F2N4i6zVqtyE06/jcPg7S7PQFmfxQYC2mKNF1DZMJZrrAzI/Q0yVqMov7jUWM6XOw9H8AI1+NXA6815hIQjpN6rFX++G/0fwE45DQO90fuU1CCHQh4Jyja7MG6fvc0yYxOdaY1L9Jq1QRnOToJUnp87PNWaOiqUrbZErL8igJ6r5Yoe9ZEyUpcZx3BO+AaMc3OoOj5Nyc+g8Vq0SjFEFFICKSNDTRuPRsrXOJ3WiS30QEJ3GAFEBF23m2bcv16obtek3b7PDtBqUrdD3DlDXeRxOYc4JvfSoZ4AhtwO3WNM01fr1FdTtadtxeX0IXKKbnKLMgKEfwO6wqkFChC0GkoWlawKB1SaEs3nU4WWFKqGbHFJMFZVXGrMc+LQfB0TZr6tL20KEqp8kRMJYfsMmPoyg0VaraXU8nWFugtMFaTaEtdVFR1hXWKgpjKK2lNBF2V1ZTFDoGjelkvhGJbKNvce2WrtkStte02xu26yua7Yrd7hbX7dDBENIiGqe9QllDNV0wXZ5SL88pp6dUkyWTyQxrbfpL7MNI2AiZMUnfRyAgBI8PHd47nHME5waAoFUyj2qMttG3K7EM8dzIhmWQnRf7fVMSg2ljEFIRgKporlKprIJObOOhY3Oe50EkVceOl9KSlbKXL3SDeStVAw4B71q8dz24j4yKB6JpT2kVTcMqmgmNroDhuftrExIQG8mG2OCoNGXGhVRBXKk+h0l26g0yVEXfU6BGVdOj2T6bPQXlJZmCiWFxPqA07EJkX42PTurf/Oa3+a//8d/waz/7L2mad1keLfEodptbjGtAg9eGEJJZNDZ21Hc53QMJsMRw4cGpezCV5ufWyUyqlCSmRSNK0AguKIIL+K6LBUq952r1PtfX1yyXy5e+Q/hv7IPyjW98g6dPn/J93/d9/b6joyO+93u/l89//vN8//d/P5///Oc5Pj7uwQnA933f96G15gtf+AJ/+k//6TvXbZqGpmn67zc3N0Bc6PZCq0bn3D90x3v3EcUHgZO88w6r0VOJ+1hln98Y33s4fo+9edk9X9Ly5ALRgxVFdEiqpjPmJ484f/gZHrzyezh/5XVOzx9yfHrO7OiM6WxJNakpqxJdGDIdn/0EEVJmruQElcBSTCMfB1ZwPqad320JmzVhs0HW17j1Ff72Bf7mErm9hmaLIlbCVGRH27jwamPQRYmqJqjpAswCVYKEMjnOSi+slNExqZrONXMyuIgNDon6UjKY2YZoIulroAyBvgf9uicQ2RsIQ4jooK3lzI9RQwrJtyA5ayZho3swMQxM0apPtiTiGTxDgDSpo++IjzSthCiUkzYanZBzBlifSgHEf+Pi4qLviDUYpVAkr/qcwExFM5sXwYnQieA8uBBonML5QNM5mmZH025p2x27dhtNAK4D8VhboYsaxYyu02ybHc/ff8bqxTV0HgkdujTUyzPK+ij5OAiEguA7gjRpTDmMNNShQFUBWym67gYn16zXN/irF/hygRGF0LGzFl1MoyOo6whBYYoJmA4vQtusaZsV2gph09BNtnS1RqmAawNGElBqb9hpR5CSsjqjrZvIBnmFcy2hW+HcFUobyukxk8UZk8USpRXee4xpsVphzZR6MqeYWqqioqoqppOKqioprKXQBYWN/lFl9okRQYUWXINvGkIHwRmaThG8jsFrnaPbrAi+Q4mPDKZSmKpCysgq6RDNVCaZJIzJEVdZKx+NckmVyrOcSQpHxNoqggVCZCr1IIkGU+ggYaJ/S2SclHboYPCRMkkJ8LJKkJWyvuJTP7eyo2fv/0RUXvq2H0i66CuSrqr29+XPjM9KgjU7q8ZPuV1hxFrC2BcsyhGNRkeCWCsEG/MEqcE8nIW2pHNDTxvlxsU+l/SsgzNvGOS10LdMhsfq8570RUXZ95npuycQfYAI0dnbBSgMouDtN9/kv3zuJ/jy5/5nNtdvUdUVS3uEa5sEagJBRxN5ZKH0iI0iKWCSZG0eASlUDJWY7Nj+fs1TWbmNY0mpmEU2qCh4XKeiqTetHUBKVvfRtv+mAOXp06cAPHz4cG//w4cP+9+ePn3KgwcP9hthLaenp/0xh9vf//t/n7/7d//unf1K6yio8/s7XOnHc5U8fT769jJ8fngbOZQLo18HX5EM+4eTx+vhnZblYw+2Ph+nGq6tMZTVjOOzVzh5+CkePP4s549f5+zhY5bHZyyOjpkmnxOTqhGThNnYh0f3znZxAAdFWiQDeIdvd0jnkF1H2Nzib1eEmxvczRXu5hnh6h38i6ewuka5JjqwWIsqJ5iyjhWES4tWFSYUGFVj7AxTLlHlEl3OoShRRRlTv2uVHBWjNprmEn2kQeqkGGE0ej8qCs5xV2ZtRaHiAr6nfWXNQPbe3WHoYRCh8z6aPHxc8J3EpGchCDpFFGgtaBG0yunjST43KmWiDWiJgjoG7kQn5PxSoxNirCwqwuBnkqKkQghR0/IecZGiR0J0dHZRIDofizemSgC4ILTB0/nA1nt2ztG2js45dqGlbTy7bUezbdit12w3a0LTRgYHhTFFqmwd2Yaudey2z7h58Zz2BkK3IsgGW9d0TUAXlxhj8BI9/JVYJGxBbagLmM+mLI9q7LRAM6W7nKA6g+/+Czdvvos3J2hdgOpAOopyijMGLRpbzjHa45xj165otpfgWpQp8H6Latap0KHHuRDNCKrFtRuCE+r6FNcJrlFoq0FZXOtodte07SWWhrC5IGxa2us13vsIYPwG121BSurpBClbrCmZzM+ZL5fU01gSwmhDYQqs1VhrqesZVVljEIw0hLZBRW9hQmvRXYW0E3znMUqhjUMrHxkYaymnU8rpCWV9hClmGFtiTDFE8ej7ZVV2hh5H3GgVaz+lGZ/GvicyUm7EBuhkGouFI3UyyQAxWZcezIsRjI/ni+D94EjbJ0LMQk0yoIrSK2Y43mc4Dx1Rh+iVsVqXZ/dY0VBxnvQ2b5+yuIZexnnv02yPbVXa9QAs3iuabaP7eER4km6p8nzMzsG53TI4oJOyafdMShL0AoOlJrVd5fIMvbwZPmdppNL30Mu7GLKuglDOp7z/zjt84cd/jF/5uf+F7dW3KEvDbDKhaxp20uGVYLWNY4HsIWOwqonFWU2B1gUu6FgeoydGhJzHKsvPHPWnFDE1QnLGRXUR6IpFROGd4DpH6DxdcAgeo1VUjrXl+uaeAXvP9rGI4vlbf+tv8df+2l/rv9/c3PDaa6/FycY+aXEXh48HxP7WD+ke6e7vH0cF9dc9tAXdd9F7fr5vdyYsPugy9+EUJfSaEdpSTZccnbzKxauf5eLJpzl9+CrH5w85On3AbHnMbLGgqmtsVUaB3D9fovFERgzHiCoOEs0XriM0LWw2yK7Bbze49RXh+gXu8jnh+jnu8ilcvwurqE0rW6LqGbpYoufHmNkSO52jJnWkUcspup7BZIaazlHTKdQT9HQKVQWFATOKIEi9lR0Co8xT/SI+Fm6BGAosBxqJUioK3UMTD2PBN3o/WUgojfOBLnjazkenUO/7P9dF6lyJwmibkiwKmgGgBBVZEy1RIFuif4tGJ8ZD7Qn4CFCiaUCypieRsvch7U9/ePCdEEJD8LtIiYcISjqB1nmarmHnOlqnaJyi6QK7ztF2jmYneBfoWodrWrrdjna3o9BdDD23GmMbut2ObXlJaWt2myvWl09pbm/BZye9gO8sTXNFoI3VmZUFMahQYswt06lnsTjiweSCs7OC+ek54o+5Ms9x3Ybry5JbeYGlJQaHdeALQtOgLKiqQJcqOmeHBnYvkPWzaEI0M1BC8OvEXgUMUJeKo7OWujCsV5rN9ikl11hRhE6xXgdCpzB06PY5yARkRdM6WvMM8R7XdtFE4DaIh50xtOESrUpmx59kdXSOqSaRbXEtrluDNOhCMVs+YHn6BFsUFMl3xXgoigKdwaqUKJkjrqZUnkJ7SgWTyZTi+IR6eko9P8JOZthqkq6lsSb7htwvk4axnyNWUui50jGcXMcyFgOgGELgcw4fowsGK4ckqr+IppbxmO3HrmDt4aK7Dzj2M0uPnF7HfhySHcKHxdowhLwPkV6BkJIq9veR4V4kWdEXKx3Nf2Ojn0AfYdQzJLlVGaRIn/ywd0jNz57NeIkZiFGCkdUdnMYjmOlNVfn3bAJQoyZn5iSTM/mRRHDKUTjBqpIX2xVf/Df/mi/82x9hu3qTxXROOZ2x3d6gugaUx1tNIZrO+Wgmz7opBgkWSX5pgZjxO/p0RR+4vktUWm8kRh6a5GSvVAwAiAa46OjtPHSuw3We4FwqYF9QlRNKK6jQ0TQfEZ3w3xigPHr0CIB3332Xx48f9/vfffddfv/v//39Me+9997eec45Xrx40Z9/uFVVpFEPt9GY6hFuItf2D3wZnlB5obsHiHAfTt/HJntmnXwNxV1Aka91AKIOD7rvfodtUpm8lKgN1LNjTs6fcP74u3j02mc5ffgaR+cXLE/OWB6fUc3mFJMqJiwzmpAW+JwXI9oYU48loBI/xtBh1XWopkE2G/z2lnC7wa1XdKvncPMu7vl7uBdPCbeXyOYG1TlUtYDFKXZ5il2eoBen6NkSM5uj6gqsiXb9cgLJB0VXsbgfZR0Trmkb/TFSqHCcVboXgiEJ05heXXDkCaVT4ERiNnzY0540lqB876mfQ/uSwXWvz7NTmMvRFy4yDk3X0XUu5bQIeJ/SpytNSncy5I0haZBKUuRINMGIAqtyAjlD9lMhtSeH6EZ7u+qPCWh8CNEEs9nQ7droZNl52l2D67Z03tF5aAM0Xct6u6HtfAQsrsJJgfOSAEBABRV9Q1yHBIdSQmEF53YEZ1Aupsju8NHpTQKhe4Hf3qC6HZ4NqBpFgW8coipEDJ0EFDEKC1q0bSixLI7WnFaGs3LGstYY23Fc1szLArVR2OuKq6s1u20HIphiisNiQofIBN9u8BIZBhMEE0AI+NDRyS00K4LsmE00pyeWVx+f8OTx65wenYEE3nvxFl7Dw4evU00mfOvNN/nSf/0Kly8UpS5RdOBXuOZ9PC3Bd3TNDu8MRjyIwQk4t6awExogdDcU1TFKGdrdLdv1Nb7doLVme7Rmc7KjqGeUdY0pLKacUlUxbFMrQ2FmaKYo32GkwfgthRWmFHR1yXFRoEOBNRW2mGBtmcw8h9JivMBnuZLNn2lRVdFRXZTCaCEEgzV6VGgxMQ4qzRkto2v2Ov2+DExs7DgcPS+0hxItsie6NyvEuT1iQARyVmFR0RlYJ3CAGpSWHIGW5X6WoGqvGF1yVFTRUTpXDVfKJFZjADRCykGisvKSBbukYwfmtje9ZBMzSZ7K4eoz4mQTWOsVYZGhWGBmWYTeLB5kUEoIIUXaVDy7ueTXPv9v+NWf/B959u0vU85qJosFm3aLbLdYL2AKghRUTuFMlEuxynCS8V5AT6K/W85dZaLk0dqk8h3Z34SUJTbEHE+5aGl6uiAK7zRd9l1zHqVU9MUqaqrSoKTDtVu8i6zmR93+mwKUN954g0ePHvFTP/VTPSC5ubnhC1/4An/5L/9lAP7QH/pDXF1d8cu//Mv8gT/wBwD46Z/+aUIIfO/3fu93dsOM8hiBlDxaxoeRYctdI89Yb77DcCQfhHx9YM+hdLxphqJ8YzR8WMiqv+nonnLwWzhoUNbuI3s4gJPJ7IiT89c4f/QZzl/5NGePXuPk/DGL41hbZzKfR4FoLaow/eROJsUEmvLUynMvTkafcppIsyNs17jba8LtNXJ9g1tf0129C5dPaS/fRW43KOdRqoLZAnP8gOLsEcXxGcX8BD09Qk9m6GmNqivE2qiVFQXYEl2WUBRgdJ/9VduCJFEIKhUeTEIkswvZ7t2LhIheEAEfPM67GF2TBY7E8Fjp6+n0HUwWHP0IyfSsxPBZHwLeebxzeNfFXBY+MTSoFGkQwZBOFG9Ipqbod5NyTOgUBaR1DL/T0ZZvU8G+EPP9Y0RDiPR0SI6rza6j2XW0u5bNesV2vabbdbSdo+0aNutbXNvSdQovhqYLbJubRL8WCDo5NHY430XQ5AMSHCHsop+EGIw1BNVRuDY64YrD00SwAISwA3+L9it82EZzhXQIBd7b6CdDzP1RQIwiNi1WHLZVmKbDdAVlKDGtotATTCUUpzvq7/4Er50f8c57T/ndr7/JW09XiNsgqsUHjWxbbIjCNQC+2+JDZAKQBt9uIWjqyZaL0zNeefyQN157hQcPL1guTihsxWuvX6ArzfmjT3J09Bpde8tnP/Uf+Mmf+Dzf+uY1rSqgXcfItJBy77QujhPvUapAMFjfoVSHX7dot4LifcSHGDrsFUYUurC47RUbBFtPaBIYLyYzdl3MN2EoUOlPeyF0G/AbqrpmLuCMYx0aNuw4ouSIKUHHStqVTkqLSmbCBHAzI0EuXNf7EaQxLhodU+SlkgcpRUHILKruRWkuX7EXEzsWUP1cGsKJ9+TaGNT0hSAzmMgTsC892MukPBuVqCGDMPvpAiIlMJimBwA1zPkcJRQfMrW7xx3SsyYZcEiSLbHY5JCbhlTEdCys+zWHlFtnv1eAzKjEvYO/TnwnXhEBtnfkyDvJGbVjpgYMAVtNuLm55Stf+Ck+9xP/nBfv/DpV0CwXZ2yaW9rdNajo8OttAnESrx9Bht4DUZhc4kKhdME482tM2eAxOkeHZWBnkg+di8VF0exah3NC6ALOdwQ8hS2oqwm2MHg2+HYb2dkQCKJQ6qPDju8YoNze3vK1r32t//6Nb3yDL33pS5yenvKJT3yCv/pX/yp/7+/9PT772c/2YcZPnjzpI32+53u+hz/5J/8kf+kv/SX+yT/5J3Rdxw/+4A/y/d///R8pgme8xdBS1aOAYZElDbrx0fvDJh93v+5x7yn3H/PyQ+/+nhWFg5t+UIbYvXuKwiBoUzCZHnP+8JNcvPJZzh9/mtNHr3Fy/oCj0wtmyyMm8wVlXWKTL0decFVEN/e3Ok1w8R7xntC1hHaHNBv89ga5fIZ//ylh9Qx/+R7h5hrdeSgnMLfRbDM7xp49pjx9gJnPMfUMPVmg6mlkSaoCYw0KEzVrk4GKiY6kNkaeyCgjIaScAVmQjDWYkd0WUnSCz8mnAgEfTVmSfE9k1KMjQbeXPCgzXYlGkcQa5Do3PW2enehUiizoqWJJ9tlBgOkUXROjIgzGxO/axKgBk1FvGh+hCwQXWLWO9aZhvd6xWW/Yrq/ZbFZs1xtC6+jajs4FWgfeK5yraZoOcQLBYYziwcUDUJqu82xub2l2K4zr8KFLIcugzRokEFyF9RNKI3QS8G5LcFugiQAM0KFFuZbQOZR3iO8IThPweFFEutcTiIu6+EBhWowRbBdgvWH3Ys2uvKZST7HdGaY8YmZh/uQxn3z903ymgVc/8bv83Bd+lq//2pt4sQmEKLq2Q+kYXhxcC87HEG00ih1VYTlZLLg4OuN4NmMxsyyWlqoq0IkdOn/wgPNXP83x8iHKeM4uTnntlVf53E/+BF/+0rd59v4K7w2N30Ewqd7JFiUtiEFj0EQgoigQf4NXsTZTCBLBuq7BFbjNjq55n6Ks0UWJriomixN8OUUpS+MheA3K0LS3tM1zCMJ08QrL7hNsuprp9obrjWN6tWV51HF2fsJiWTItDKUxVIWmSFmLTWJHlfIpg26aG0DMcRHHaNTeh4VLq5gKPcIbMwirPGf2BOohq3KP3FJ351n6Cpm5zb4ZJCDUkwmJtRA9zPV0z5j7I6ud9KAsK18DaTM4zo+dXAc1JOXzSD4kAxEjEDy6r9OTHGolhTPmYo8kmRQSPFFj9kT2+iXkSuHkm0QSI+c5CmIjeAgudpAXlA6UquDWVfzqf/5JPv8//xNu3v06FsvUWBp3y67tQBxGKyQkhpmo/KicbqFXmFOhv968ppOSrwbGRAtGhb70hlKqN98S4r4ggW3TIgGazuNdQCmPKQpqM6OuNApH27Z0ncP5gChDUU9ipJy/v4rzfdt3DFC++MUv8sf+2B/rv2ffkD//5/88P/IjP8Lf/Jt/k/V6zQ/8wA9wdXXFH/kjf4Qf//Ef73OgAPzzf/7P+cEf/EH++B//432ith/+4R/+TpvSD/xDFuJlIOK+7YMYlfuu1S9oo5M/zC3lw7YxQzN+lsEEkZdpoTAFs+UFJw8+ycNXv4vzJ5/m5GEEJ4vjY2aLJfVsRjmpIhBImaSiBpQdujgIYx45dAExFaigQkB5Dy5GHwS/xndrQrtBKSjnR5hyCvUR1BPUZIqaLSiWZxSLJXq+QE3mqGoaKw0XFrGj3CZ6lAErgc0c9jw4xcUtZ5UXDrzbw75WEwIDOMlgptfa7GBrvrPFENP+jagkvBjlZjAaIzo6o4pgdM6oqvYHipIUoqkTwxK11FzjxqTEcuM6R2J07+uw23lutx036x03tyvW6w3r2zXNZsdus6LZrtntWtyuI3QeU8wIaoExc7x4VHGDosUQmC9rFsfHKFOmHBs7XHuJSHQ+VThs0ITQEhCs1hTGoBGsbbB6hzErDC0WH6NY7A5NDHN2QdM0mt16y65xbJrAetfRhA6UwmmLINhKCA10KtDqDWu/4vnuCrf6NkcnT5gtHzM9uWB28irl7FWWXigmJ1w1K9782je5vfR4ZeNCsV2D8gRxcQFO49loYVIpltUxy9ozKzsmFvBbdqvfwXTvYJiiK0dd1hxNA4upUJSaef2E0+Wf4tXX3+DXf+nn+MUvfJEvfvFr+CtBlMdpjw4xlDJGb3mUuJHPVodIhGaIxuNAd5H1bCOL1t6CKEM9P6JtL9BmAtrStQ2di9fqVld0zfOYnPBkA8Gw6bbYy4DBU1Sa5ekpJ4+fcHR6wWI2ZzqpWExLJlXBtCyoSkNpFIXR2JQpeIgeCSApmVfWoFWgNMKkjmxj12k2W0UbAB19q/IAvwtG1Eho3jGu93NndPQgdUb+KyhBQpZBY+UDBD/IJNTAiKiQtZa9q39Y5gxRo2MEVDD5ATL3giKyD5nByWuNGp2bF3nRipw1OMuiQ9+bzACNmSEhmnC9OCTlDTHKo8SCLlmvrvi1X/88n/+xf8bvfOVnKSc1ZVGz67b4bUMIHQhoUw2sewrjVqiUrFKSU3Q2keUcVMn/JrVIaTBGko9evlhMZGFMcqwOgV3T0joIXmItsuCxhcWUBYUtUKLYdS2d84gylMWU+SRdUxRaW0xlgbc/8B3l7TsGKH/0j/7RDxwASil+6Id+iB/6oR966TGnp6f/u5OyHd4rh6ipe5iIHuXe09yBCNwHGDLax+G+e65x3/4PbffB+S/dRv4IKLC2Yn70gLPMnDz5FMfnTzi+eMD85DSCk+mUqo6p63N9m37ZTeF9uVDYYR4BOZjoWXkSAK0J1mIWJyhboxcOowuoaopqEgFKPYV6ipkusLM5ehL3qbLufWBE0ydY0xG2HwCy3DMjXSREEaXITrFjBiWM2q722OTe5huiA1tQgaChT54T4j11XmTueZOKKKCyg62YyOxEjTpln0yTX3rsk8Zj0tB6LUUxMCcp26yg8C6w3TZsdx2r9Y7r21tuN1tW61u2q20UCtsW1wTcDrpdhfcVvuswBIypYztsi/hACQTp0KplMpmDseiiRvQOSsHR0Pod4jtEHMqDoaBEU4QtU7WhtnBSC0dTqJTGGou1BVVpKYs51gjaWKCm6Tyb1SW7bcvt1vP8asXz6/dZ3d6waTo6HwgtdMHQCLS2YBcUpm0ImxVutcOd36KLHfMHJ1TzgsLNmfuK80evMJk5Xjzdok2BBE2QFuhQOeEYCm0ClS2ZVzWLGualUOsdVt3Q3ja8uF7RlsJ0YTl5fEapPoVSW6zpsEypjFDP5+hP/nfU9UMW568TzL/iP//EL7PbWoJJMRQpvDRIcoIWnZiJgIgn5eJEETVbghC6BgltYuE0Xja0XYsppiil6do1rXOEoFG7DnwDxQS3XdOt3kb5FzgHu801nV9jphMWF69z+uizzI/OqScFy+WU5WLJYr5gsZgyqQrq0jIpLbVR2JRkzhjdF5MNXiGhReuGojTM64KyMATR3Gi4Wgtd0srvl1Y9bzEoPCNhe5gXZTjtEEgk342R1jc4oHaJ3UxzVplEhGTtMM1xEbKpZ7jNMJ8zONgz0aRG+z7JWBYb2U8kJtxDjRic0TNls1Liq5A9rW/crv2+6B1gJfqZRbaqpUOoyiXb2zVf+/Ln+MJ/+Jc8/c0vstusOJqf07qWzeY6PUMBqsQakKDQWMSM3omS0XqYS4dEcBdzvmi0ckmRyqUhElBL0TshSCqcGujaGDXXdh4fFMZYiqLAGKgKgxaFF4Wji3KimGBUhxGPtiWmnFFMj5gcnVBMp/zWN7/CR9k+FlE8L9u0jk6fql/Fh6VtL+yUDwYD+Zx9dM89e4fjuXPs/b8fgpE7v8nd/eO2Z9BdFFOWRw85ffQZLl55g/PHb3D64AlHp+csT06YLBZMZjPKssRY29OnfRbEbBdOzpp3nilpJxAXc0EhJmYhVbZElzOq6QN00eJdRO5GFUhZYaoCyjI6vVYTdDVBTSaoMvqXKBsL+WmT2ByVBdqAICV3pIRRl2fHtCzAwt7rGDvj5YnZV1LWCTaEnMUxyqO4sOR3Hm22ORPMHgmS/qO1SpE3RGFoIhVeaEv2BYo6agJKSvVWR6AXBvGiKhV1UzgPrQ9smpbNtmG1uuXq5pbr9YbVapP8TRq8KwmhwHUG3wboYsIvFW4prccWHlNscQEMVRQ24umkQauA7xqa5gblHG2zYbPa4FpP6ATfRCdjQ0BLQ8GOmW44EmFpSi7qguOppa6gnkwpy4qqNtSFpSorTDFB9CRGFbkd7XbDdufZbLdcXb/Hixfv8vxqxWrbcdvs6LoWQkfbbtkFsN6jvEd1ASOOcq5Ybl8lSIM2RyhjCQRKa9FCDPUVwSgfGYvMnhkotWFWa47nJSfzCYvaUCiH325pmoZSbyNom82Z1kfUxXEEvN6BatEmYEPJoiroTh7x5Ml388an/898Yf4lrlZrgpQx38hoYYzDSsX8DipHvyTHztDEMRECuA5CCyklf7P22E6wRY3Q0TU3MTNsiLlbtI6FO0VWyFYTuoLGeUK3JTS3dCuNdgG2gcvibdBQTSsWx2csjy84Pj9huZwzX8xZzKdMSk2pobaWaV1QlBqrNDiBsAFzg1UlZfWQ0hKLhSrwSri5BRficw4zQ+I8Hq/1+1/uCpixPHsZcLn3WsN9+70qOtAO18n5TT5IVYwyJMjAqOYs0T7nKBo1XySyZUh+9kOu/hBI7T/LOAFb7/s4Bk9pfREV0F2HtRZMyVe+9Ev8b//r/8A3fu1zMUuDMhTWsNq9IIjDYGPOJ9WBGJRUQ+6qlNRRVKygHQ0p0ZyuUvK5TFYbDaJMX/9Ik3LmpBIAPhW37FyH7zy+S6UslGY6nVNXNeAI7FA2MkkFQhGE0DoKZanKI6rjc6anF1TLM0w9xSGsNv8/iuL5//aW668o5feG0He07U20fokeQRPpL3x47Tv+JPdsw9K5N9f2zhvdvp8oavTfoqw5On7Mgwef4uz138PZ49c5uXiFk7NzlsfHzBcLismUoqpSjQ7d3zCi83ypVNNBRQjXh/COzCmKVLhOK5S1SFFB5SlEIcUc8Q2aDqUUVlWILVBlDcZgixJTlKiiQJJfiTKxro4oRUiCYbCJHnZqEnwM2klfewiS+TcChOw8yoihiL/nzK3Dfi0pU6Ut0DZnpB1eYKS9c3KisQYWtbASg8t2WjGjl6aGc9KLlvQOo8xQaXxGwehdDOdtuo7bTcvNdsfl6parmxsun7/P1eVz2u2O4GuMOQa1jIlbiTZdrXeI3aBkRW22VKXFmAIQGt8S3IYQDBIMBE/XtbzYXVGs30dTsdtu2dzc0G03+G2Dbxu0D3h3i9YbUBtM0VFMhcnEYv0xJTVTXTLVcyqjmRcF5dxS1ROKaokp6uj9H2Yot8R1nmbb0G7nbNZn3Kxb1k3gdttyfXvL9eqSm5v3aG5v2G4bgnOIbzC2Y3p7TLeFdlOADqxur7m9vaFry0hBK01wLSIuOhWiUFqwFqaTkuVsytF8ytGyYjYpsarE+IBRLbO55fTsjKPzU5bHDynLJaUA7TVOrxEzR6sK7RVBC5Q1lJrGXSNOsBIIusSr+D6QGN2VizpqFctDhAAKD8oRxEVQkqMwvI9O0m6Dk47QlQTfErodxhYYqpiYkA7d3cC2owkbWj2NSbnaBuU8hTaE22u27tuAofM7nArY6RHTo4fMTo+ZLk9YHD3k+OSY6cRSF5r5ZMJyPmc+q5mVNUXwWF7g7PvUdsbOHWGLmkJp6jJwdqSpLDy78XRumIgSBqf6DzOn9DM7H6cyn3ufw60a5q2ExEjo5JAZXdHHyguyDwQO7zU4zuYJPQYYaeZLwIQc0ZNbpsjRP0NFY5XEk95bHTJLMlw1M7pZjuWjwh62kcTGaAWdMvzub32dz/3o/5Wv/tK/xSJU02Ncu2bdXeG8w6qKQtcxM7CyoGLWaS8h1jHyAZUypUTFyYCKyRptrsllwKhUPFMn7xcdeWmRgAse8ULrPa6NVdydD4SgKG3FbDKhqgpMKUhymvdiIxPddWgxTCcPmH3iAfXFQ8ziFFNWSPDs1hvef/cdnq1vudrdfqQxAx9zgDLQVcROSgvDHSA9WnfyuiSj7xmkjIHJfnbDfezcr/cH97qPOUHt779zgAxTdVzBNhDRblVNODp5lZOHn+bi1U9z9uobnFw84ujsguUyViQuJxNMFQudoaNNNOc4gVRbR6J2H00WKZQ4tSzndsn/6miLiPxCVcbFv6gQ14HMsbmXdPShwFqUsTHyxljEWpSNRftyLvqxj8t9Zuw80cebhAwSoo9/dKfR/UnGGlQw9wioEGWRNn0xK61tjGZKwq63BycqdBxKmRPWZQZKK6HQCiO2z/iaq/32hePGqaDVAKhQisb7aAbZ7bjdNNyud1zfbri8ueH6+orrF5dsrtbstg6hpqxmUJaUtcKW0UdB6Q2lXWGLHRQBG6AoAloXWG0oXcet7/Ctw3Uu1rzZbXDbFZ6GgMc1Htc6fNPi2w2m22LCDu1uUOoGa7dR+ARDKyWtW7HpJlCXhOkUc3KCs0vsbobQoNhQqiOMrsF6dCHoWhOmJc6d0LQzzlpP52G3Eza3HVfX7/Ps/QnvPnuLyxfP6ZoNIppiovFe0+4KblcbWiU8u3zKe2+/x7aFUFSoIFgDKiiUUXjxWCvM6oKjac1yPmG2nFFOa2xZYw2UFRyfLDm7eMDp2QWL0xnzo7OY7dK1UQC7Ahei2bF1jl2z4nb1jKtnXydsA0YVxBpFDpRFQtRCnfcILtUYIY6tFLItskOki2NPSdJ6iRlinaC8J7BBvEMrC94TTIuVImr6YQddQPm2D7mPxdksmoLQvqBzV7hWEHwsoni9gNWW5sWMm/mMy+VT3p2eUNeawrZM5zOOTx9xfHzCfFowV4Fl8YLlpKHUFcX0Bo0wrSsKDbMaLAqvNM9fKLogPVNIXsQPmIR9R1F6P7p8jLoHmAQJSVfIQCFlCxn5vvQKnqTMIveCknzeqC09QBgrYpERFRVTx+vcviSrVbgbBjuUHhitCYfmm2wSEkGUIYhCh2iG9H2EVarFrgydC3zjt3+N//rT/5rf+uJPsV09YzadEwLsbp9FOaY0hakQFF5Ciga00YcvB4ekSEIhm85jqLVWOmYaNp5YsTunkVCgDCjXs8tdF/+8C4SuwwVBsBg7ZTItqWowJgA7XOvQAYxoJvWEyXLJ5PgB9ugUszzBVhPwgc31itt33uHm+j3W2xU7NK6sKIxid6eH798+3gBFjzynPyJ9kpi1AR/sMRajzyJ7O0d4YrhWPveDmMUPassAzFObBndYlKKoZixPH3P+5Ls4f/wZLp68ztnDJyxOzpgfR3AymcwwpUGn2jl9BO2IjckP0DMH+YbkfUkjSg8SAG3iJIjhsGV0Rg0+TbI4yZVSkStMjp652BpGo/RdYXXo57OPVMb5SHr9LGOX1CeDcEvW1Fg0a+yTkkwyISSBoFU/UePFIj3cJ24d2cPHn8ff+wy7eRRoNYBUpZNgyntSH4ZA5zy7rmO127Ha7LhaXXNzu+bmZsPtumO39exuPe16Stem4nNFST0pKWrBVi02KMpyjSo3aBw2FEgoEV8gCEUZ/QuUqmh2LevdNe12w257RbddEbzDNS4KuBDAOXBbVHuD6q7A3yJyTaAhFIEgli4Ydp1hvWsIK0s7rQnHR1gx6GCgc8iuINRbZNJR1QvKqkAVYKyltJZgNGVRUNcWEYP3mt0yMF9a5lOYW3gqjvefd2ybjt36lu3tLaura7bmKZ1a8Ozpc957ek3rLNZOUNJEP6JUeqFQgaoyTCcTZvMZs8WMST3DmhKtFGWpmM1Ljs9POX7wGrOjCyaLgqKqIsPhO9q2xUqFMXOcrNh0O1aXz7h893e5vXKcnDykba7YNkMW35wrREL0j/BkhSImwBnqv8QK0amoSqqcm8Cz+P4Y0QFUICjfI3iNimYhujjatUEZQ1FPMTaakHwruKaFEAu+2UoT1m8jboq0C9hu6KpnbEyFEkU1nXC9vObdec18ZjiewaMzAw+OqVpB3azwOAJLjuazaBKwUFYKpQPiNUjKX6L9XhLEYUrf//1wno0X9Rz9JuIjyFc54iUnhwi9CIiKotyj5eyzKYfZaIXo3KyTNivpYnp8bi9qxgzMYVbb/efaT1QX2Q3xARPrWsSyJHgIBgkBWyiCFHzza1/lF376/8lv//xP0GxuKK3BViWb3QrlusR+JI+mlIYfciHU2FchtVlrDWLRxERs2oQYjaMD1ggQ/UxSqGGSlw6co/XEkhetjzlKgkMrQzmpKKqSQhuUOLxvkabDBM20njJ9+JDi+IzZyUPqyTGUU7wIu92aq2fP2N1csVld49sVITRUBqwp8aXGa83qTo/ev328AUq27ycP2d6h+wB0yMG/9/46AjhycMQwMYYtAc87Vxudcmff3QcYrpWGXfyuNNPJkuXpE86efIYHr343Z49e5/T8MUdnZ0yPjmLq+smMorQRJDAqJNVfR/WaRw9O+vvuMxuo5EDWmz9igiYJGmyaiCJ90SudqQ0Vo1tyBE4ObQsyaI1xQu1P6J4aSe3N4EwSUMtgJZ9vte6ByDjjZBZf+f0MWSIjjTkU+opOjSnxevqdoS2jt3UokEKvUY1GhhqitbN2Jgq8i+nwbzc7rldrVustV+sVl6sbbq427LbQdYag5qBKsC3VfMd0UWGMUBUFk1mFtTGdeNh4XFBoNQGZR1+Mbk2z3dE12xgSGApCFzBdR9dccnv9Pu32hrbbRlv0DgwW7wXjO4qwxrhrSn+J8Su0NFTao71CuqjBogzt1qMpMSqwtRXa7nCyjm2aKMLUoLsdxndYWaCliO8x9YuJsdOxorXqqFV0Ki3llAnCRGsqq3n2/Bm7bsfV5QvkvbepZMlOtjx955rN2qDNBKXbGHqpLNoKMbRSU5SGalpQT2vKssAYhVaewigmk4LFcsZkfoSpJ5hphaksypQobXA0lB6C1LSmYdu2bFaO999+xurZC47nn+C1N25w7dd5/2pF23QEn8Bwql7dO1Qmli8Wc5E0og0xcbAHSWbonBpUYvhqSHMKFfX/oDw6xEVUKfpaMdoWaDOjLqeU9RyFxruWjbqmbXa4bodrN2gpwVWEdka3ex9VVlizwNol4jua3Rb9nuI903F6bhFeoVp8kqI9Q1aaxq3pug6tSuZ1hVKeHJqsteorSIgPWcXhg7b7HGXvW/Bz0b7xMSKOfaP7+FqH0ndfIN8BSun3yIQMSq1Kskl6gT4yy/Tf79d89/xMJLexxajI7gUTI2h0KFDao4zl7Tef8jM/9j/w1Z//X5HbNo5La9i012kcJSbaR/9KY8yQQykDYxnS3sfIxCpl/U0V1U0sbKmJJpzgW5QyeImJGQkK7zwbF/CdQ7oINk1pmdZTdKUxOOhWuC5gdcFyOmVx/hqTi1cpzh5jJ0sUmtIYjNU0bcdudYPvttjgqAqNnk9pg01V0AWnDaGMBWA/6vaxBijRB2VAyx/RHHoXgHAXkP/vIUX2qhLz4SBlXGE5H6eVoZ4fc3L6WozUeeUznD15jeOzhxyfPWC+jAnYqsmEoogmFMnpi/vFOYOOvGjHu8jomPEmo/mtRk4wotRgoiFO5qzdqf6Y8TVzDohs4ohZBnMq6fych74eAzQb7TkwDY2rIY+1sRzVk7dca8Mku2vEQUnAkiKac/KhdO++TSPWJN/nkE2J983Fv7LzsYqmgdaz3my52bS8uL7i6uYF19drbm5adhuDCxaRiro8oqwqbOmoKkNdTimMUFeW0hoKawkS6FzDrmrZbFq6tqVzkZre7Rzryxvc9j1UFVKYoeB3Htobdqvn+KZBgotmiC4+ZwiOQhyWLRN1y8TssKoFCRRaUeqYQyMvE8YIWntQHUo1EG5xrWPtLc4ZXFsiwaNVEYWomWNMFZm3RK8Hkb64mUiDpqUoFJPFMUdO43xMXne53dA1mqvLFZYNt15xfSloOeJkcUZJgK4guA2dawkeSlMxn0xYTOZMqyllWVJaT11CVer4V5QU2mJUizU3aD1FyQRNDV5oxdC6lqZ7zma95fmL3+X9t95BXMnp2QmvvPYa7XqLl6dcXd7QSJeWygHoCvSZGkNy2IwF+Gw0I0DUXsOgwRqBMKrDgkRbP8lXS7yk0MyQzIhQlJZ6Mmc2v6CsKkLomG5m7NbXrNcvWK+u8d6AGLy5hXKCtjVOvY+2BcV2gZkssGaCLgKb24LV9gFrN+X51rLeauTyhvnUsXELTpYFpVXcboVNl5gNBB2ycnG/dPuofin788xA8jHZPz3nIPqg66c8SR9w34GBGSukKSowjJ5D9t1dB2vP/UBlH4DF+elyBmUfHdCda/jmW2/xpZ/9MX7lZ/4fbC9fUNcnUCluu+fYzicfJouRWNVZjOkZXgEkSBpbyXzDBK1trNdkOrR2mFRvR+uhfEZ+WOc8rRdcF3AJmHR4jLIUkxm6iIn7LA7btVhtmMxPmJ2cUZ8+ZHL8CnZ6QlHVFKakrCbowkafuqahpEUfFbhuRxc6WtdROsesc1GJVELQimAtKMPX7vTk/dvHGqBEE08sYqVVtPUNAWPj7Z6BNd4XCZh7jrr31J6VoGc+hs93Dr8PDe1dK2sIYLRlOjvl5OEnuXjyGS6efIrTR5/g6OKCxfFJTMA2m1FWVSr4lydGZC8OWnj/DbkfpKRVOgrXdLbkLJUj0mMc75/7UMLYPBLTKWc/j/ECn4uXRcDQQ4O+TX2r0meNGh4l061quP7w/OmQBHyynTU/ZkyEpnOaot6vJN9xzNjctx36pCgdnSS9UjStZ9u23GzW3NxuuFltuby55Ob2ltXK02wNyBHokroqUEVgPgnMZzCdzJnUZWyL0RSFpjAKawu6rmWzXbPbNaA0IWi2u4Z219DcrtjdbJDbS0p7TTkrMJMzrJ0wqZfU1Ybb5nlMYtbsYsVjPEoatHKUpqE2a6bsKGP5VowSCgtlEShNQOuAUmW04GkhhB2u8WgKunKC1gXa1DSNYtsUmKqMGXKVwqopok2sG5RAivNCcAYXNJ1vccGjtKWuj5hPH9CGlrUUtBtNo3Z0zDFes5wWTMKE4/kSgkWbmmryKm7bsr15gQodi6llUhVMCkNdKOpSURaC0Q5FA7JDhS20AVUqFEdRYDpD8MLNesVqfcuLt3+T9771MwTOmR79dxydLHnCJ9ltN2y2sb4I6w2d85EVwhKCRsQTMwZH7VylxIgKmxJ5pcSBKUuwVgp0rCwNKRRdSBlGNUoL4JAUAKCJJOmkgqoKTCZCOYkO6NPZhG5+wupmBj6wvr1EXMDYlhDWoCtEoleHu6kwk2NsPcFYhVXHrC5vePbsfbadwXths3obq1ueXc+4eCRMqynN1iNSMZ1aaqsp7igYdxmSw5o6h9vApObPMcQ1MhlZuI6F54jWGGl043wm991vrLzuycj+kJFCEk/oQcqHma/G++K/LqZmISCFwXWG5++8yS/89L/ktz7/49w8ewerLWU9pXVXEIQigNcF0a8k+lZJriuUGTZRxBhiHZWBPC60wxpFURiUthhTJn0yJBOzw7loumk7h3Oj3DdGM9cV3nRovaHygWlRMZkvmSwfUB5dUB8/oJ6fYusZxfyI6WRCURQx7wsK3zl0FzDFBOc6vO9wrqH0jsp3CBIZG4nuuyrGuX9kIgE+5gDFaItPxd+MGgoxHYZ85W2secfj4tY71r6k4w6nybCQDgeo8TH3UScH8ygvzZmxUNownR1zdvE6F698N2evvsHZxWscXzxkeXbKbHHEdHpMXVtMTluviAzKuO3ZdJLZkkR1HDanX/fvdhJKdN+HPesR4iIqoz4OvQmHRP1KAg/77MPQBTncLvlsHDA+SqloFur7Z2DFlIo+FD5rU2qgVbOluu92rVJ6bJXq70Rt12BSnZyUuOolgORwnOQskPkvBGidY7VruLndcLvZcnlzzeXtmtWqZbdWKH2MwlJNDGVVgu6Y1JaTxYSz5ZSiVHTeAwXBW0wZMCngKoii9dB0QrPrWN80tNuG7a6l2exobne0mxW2WePbZ1Bp6uIxRfUEVSlCuYT3fpft5VOcRKc2gsOIw6qOgoZKOWojVKiY1lopCmPiwqU1VlswQice4wsKr+i6mLSpUy1labHKgAS6bsW29YhegnI4cYix0f4uihA0TQc+GLyLlZCbzZp2vWXXrnFBA1U0VTXQqWuwjkXtWBQ7iuMjnJ9QVp6jJ6+xmD+hXTc8/fav8t63fw2rCqrKUJWa0mhsGq+EBmGN97dIM0Fai28Drd3hzQoVZuy6Lc/ff8G73/o6v/vr/47VW1/mle/6PuyJYTp9QlEdcbu9ZnW1YrvZRlDRNPi2jSNPGbQYBI9ykSkiESUh5fYQUQSfStknkO11jkxJQFxSwUkVHSM1gtaC1QatobIVtTWUqqXQG4y22HKBmU/x8zN0taR1jk1zReu2BOfRoUBMiFlR8XRyS/BbQlNjC8NGd7z/1rfpwoT58Qt2zZbdzS1uJ7z9dsviwdssFg/QxjCfHnN+Ouf8eM6yLimMxLDrPWCQJcYAUl4mi4dzIsOk+2g8oI+U8T1blSVI4i2zdNiTLYfAZd9/ZJ8J7T8P1Mqe3BrOub/Nh9/jvhCzYasZl2+/zRd+5n/il//zv2L77BnWTjBG08kG3zo0JpqbdBkTPqoYeaNFp2jHfM1kxtElmgKUx1qPtWC0wmqLNQalY+2xtmnpuo5YuE9omjaGB0tMLGmjlzmm0GjZMdeGo+kJ8/NHVGdPqI8f4ooJ08kRy+Up06Ml5XQKuohjOQgupZkotENsIASPkxIB2i7WzxLvCd7jTXS6F0BbjVI21kf7iNvHGqDETKQJdeax9oFbAgMvu94HEw/9uf0hI9DxQafplxwjyf5pjGF59IizB5/m4pXP8PC1Nzh58Go06RydMV0eMZnPqCqb0sDHyTyU+h61P09nlds7SietVF+KAnXIWvQXiIIz0VF9CJ1S0Zsql+xW9GW4I70aRpNeevCQZUY2icTQ5+SvZUjAITc3FvUK6X4CKZ18wElfGxifohZickJJfZycFPOjJOfYGEWRw+tG73/kxwIZlEj/wiR5+SOxeJYQF5h213Gza3ixXnN9fc2LqxtW6w23mxbvZ2jOKaqa2dygS4e1FaUueHBkeXJWcHFWYwvL7Trw3ostL9YbmrBFNbG+EF4RgmHT7FhfXbO73dJ1gc4L7bahW3e49S262VKpaIsOxRFmekZRnVMvSiaTitp4Lq3lRpc0q/eQbkUhYMVjVYdVsdaG1WC1QUEEJ8bEEMWU7dYT2PkO2QpNa+hCQTWdYjuNLUBCRwiK0M3wRcBJg2y6mMQPRdtuY80cahpn2W5auu2Wze2azXrDZr1j3XRsg7BTFuc3aK+w9YZJNWE6P2Fia0xlmZ8tOX/0aSaTC7xXPHh1yW+aS9bPriiLgGJHUAUuBKxzdG1B605BzxFtWW8dnb+lbARTNzR+xWbtuXzvm1x96zfpnm9YTo8oC4cyGlt5piy4OH/C5YPnXF1t2XUOJy0+KFwnMbxTxTT1QQtBYpQP4gihjaPad3hp4mIXUoVgQnRETzl0oqtJQPAR2KUEWoXVmFJT1gXaCFq3KLmNGY3FUBiDN1PaZsZ8fsZiMqXb3AIeCQqlS1AGLz6C1G4D0uC8hhvPWk9w64aryW/Rbm/wzqJsxc1lDb9RgK4pSsv84QMefvJ7eP1T38OjsyUntWFeaqyOYa4hKERJzK8RsyrGZxGSepAdXcdgQ2IJChSoJmVD1cmXUIFYYjDsoPnnLbkh340JCgNLOgCJCAMl+f1ABi8jRUqNmNieWc1KWHR81Tr6lqAFlaO6xm3ylvdfPONLn/+/8wv/5ke4efoW0+kRpqwJ7grnorM6qkBUTKRZ6OQI2y8QEeh4saAqrK6TetlSFDuK0mJNibUWTZS/nWto1rEgaNcGUAWua0E8VguYAqU11giliVWyF9Mpx2dPKE4fYJYPmcwvMOWE6WLJ0cPHLJbH2KKMZUOcR3ysRxZCiFXKJaSUBrHfbJL/VUru5iWxhQmsx2ALjTbRDPRRt481QIkL9JAxNYddjdbsgxOGj73mz0uOpScfXgpo+qMOUtiqgy85fDhr+sMxgrEF0+VDLp58hoevfJbzx29w8vBVjs/PWRyfMl0cU89mFFWBsnHB7dO1DyTEwOCM2YjRJO01h4OFeWim2tMW4mRO52fQkQBN7/GegUiQ0Tn7KlW2o8Y25N4estmixt/jrhwEHf8bKc/I7A7e9xD1K5WeTUgZYdOz6BHjYcb99DJQokiVkXVki3RMqpWL3+18x2qz4/LqlsurS569eMb1VcPttkPUHPQ5ZT2hntTMp5qjuWVaT1guas6OCl5/WHG6VJQWtjvN2yierjZcrd9h9cKhQkUoCowUeO/ZbFc0uxWhbVHGUs9rnAiu2yK7G7Rdo/FMijlFMaEshXru0IWlKCbgH6Bdh2puWHcCfeXfgCEKZK+gS31nU2RSNDtEQb6O9hloPBvVUFQVtS5ZTipKMwFV00nBtDjBTJ5AeYpTCs8tOqXSd0HRuUj17tot69WWzWrLZuPZbguarqN1JZ2k3LDdFq077OScSVWzmJ8wmy6o5zWL8yNOHr7CfPYqxirmx4rQXvHWr/9v3L64QoKi2zV0OFocyh7jwjlNc4IEjZYrCE9BGWw5wQXLZrtlvbrG7TxnZ59hOv0U88Uxs2KLCg1bCkw1YXY04eiopt0tcE2DbxwBl/KiZK3cD3M+AOJjbZXgk89J/C36B9SokE2eHtEdQRxCZKYKrSkqG7PBFpqiEOpCsNqhQoPyO8SVhDaalIxqKUxDWSiqQuFc9C0SiYBIBY+SLjpDikF8IGxv2fEO3XaNKjTK2RiWbzTKGLwvwU940W549uaEm8tr2i3cvv4GR0cTjqqKZV1xNNVUNkTWzQ9gJDoS61hF9zCs8MCmLsEO/hYyTs1/DwOSQnZ7KZHNPgcMyT6vvb9JP86jfMuK3LAiKBCNKE9QDmUghJjzI947Fh0NWiNB8+LNb/PlL/4kv/rz/5a3f/vLGF0zmZ0Swpqu2UZRR5FMozophwaVfG9EBQKaGL1jMaoE5TCmwRhHXZYUdoa1BTlnyabZsNvtcF2sqO69pDHmIvtmLUYrSoGigslkwmx5wez0MfXJBaY+pVocM1mecXz6gMVyyaSuI8MXBJ8GrM7pGiT7wcQSHjoEBnNBNumP19S0nzhGY46bIZDio2wfa4CidcxrEWPCHeOx+1KQ8iHb+JwP68Z+eRvPhfuu2YOUmD+DBFhsUTE/uuDs8e/h4auf5eLxJzh98BpHZ4+ZncyZzpdMMjgxKTOqUsMLPgBPh06yInLn95eZNfrnEUnha9kcE7OzDkt/AjKy7wcysKUH1KpArukQ6cootMaMTd5y5E/EfPH6gRgFEjINEwaGaHiW5LCYhGF2EMugVb/0mfenEjoLxrg7iMJ1cLPteLG64r2rS549f87li2s2q0DbTtD2jMnyiLIuqCrLdGo5XWqOZxWns4JXH1Y8PtecLQStHK0zbIFt53j3/Ruevn2N3wQ0jlZrCAblNE3XIqIpUJR1jS1mKLHI7ho2LdobJmrKrKqoTUWhtkyKK0xVYRX4Hbip0NUOW0ZAIq5FBY8VUBi8UrRKCMoRAOtiFEkIMTy7E4kOhIEYVWQW1LNXkcUryPKUUNf4yuCnp7jZJ5B6ji8Cmg4XYp0gbzztzrH1DevmitXmXdbbwK4NtBi8WuJtLA4ZF4sOwce2prBQZW18rrKgLj3TuU0JAF/n9d/7fSCab3/ll9hdXsbopm6Hlg5tAmYSJWapd7jtt2lW7xA6T1HGlO7ORV8So2om8yPKcoaSCr8LGL0lqAC7HTM75+LJQ+aLGSdHNe+/9xbPLi+52TpCF1k6T0B0THDVuh1ah9gGXWLNNJruugbnfKr6WlIVNjJYQYMUQKrTVBpsralKqHWgtFAah5E25oEJJfgNofOI6tChw+qG6aTCLWbsthvEa0xlMUWF956uMfgu0vNWJy14cw3tFmUCHRZtZuhigbYlSgkKx1QJ7XrF5q03eap+nW5zxfHFghfzOcfzE44Xc44XU6b1hIkJlAVRJucCfJJli9qbc0kopd8Hw0008+ZjcmmLcUmLPEezjBnAzr5PyJitGRSSAx0qKbUyYnqzAIiyJPSOuqFnUpUG0QU3z1/wq7/wb/jif/pRnn/z22jnKasZXm0R36AcKFtGfy4bgyBi3whBHEF7JBiUmmJUQSCgDVRmh7WWspzF/E1G0fmWddvQbh3dro3V1YPH4aPsE01pBG08pYHaBGazGfXJOZPjJ5jJGeVkSTk94vjiMbOHpxwvjqmqWB1boRAXcD7EVPipfpBS4L2P4JqkLGpBRJPrJiTCfeC0ku7pk69fBijRh7B7iTy+u33MAYruKy7mMNp+SI7ZvXu23PGH231mnsEP4p7jRwfL6MM9l9k7rqzmHB1fcPbo0zx67fdy9viTHF9ccHx2wfL4hGo+pZ5MEqWnh4alxV8lR6X8iIc5R4bn6afbS7eeCUnsRJzvo5W6B8nSC5k79t+DJ84gJQsFlYCDVrpnNyBam2NyIz2EYJIK/alY8TNFxkXw4xMAiuE4yTw0XDfeI4o7pfbbM+qVxOxI/3gQfW+UCniEtlPcbltubrc8vbrl8vI5zy+fc7sF786RoqJeLKlrYTqzTCrL0bzkaD5lWhYsJ5azJVycwKxy4DW7YLhs4N11x++8/Q7f+t23uHq/I3QWrQRn2pi4S6DrOvAds5mmNiS/hIJKGcRE2v9oMmdRa2ZTw6wSpmqH0YGiUIR6h5ts6KYbym2DtEIIFt96gi9iXgYVw2C9rFOK64ASD96ndSMKz8JO0PWS4vh1Zg+/h9mj72KyOKEoFcZ0hKqgq09jccgqjtXgAu3O4auOzna00nB7o7nerdjutnTegU7ZhjGga7Q2scKytHTdLbvNiqIs0cZjqhbXCK49xcmWylTM6gk8+Aytc6x3LU9/49dodpfsdhvotuDeRIKhu11h1Zr11ddor64xorC2RWuwZoYu5lTTmsI2FHaO3z6iUbdI8xTPFLVuqbTmtSevUFQzTFmwa1a8eO8t3vnmt3n23rM4N0KgazvW6y1X11c4EerpCZPpEq0qfNNwc/2C9c1zQrOlMIFSeQrxWBWwVuOURQqDrgpsoaOJxwqlAa0CiAMxBL+NMqALCA4jQlUaFkfHWG3Y1CvAYKsJVX2MYNjcrnj//Xfo2hbRVawh5T0SWpTuQDyYltBtEVugdY1SFV6VaCymu6F98XVu1AvYPKCZLumOjnkxOWJ+fM7Z+THHM8OsKKgnFZVWaMn1bEhgJLHIPaiIwQ2ismwLvUSJsmnfX2GfoU3SJ7xMumXFKM7vlzu9Sv/72Hel0ypmL+4k+oyoCFKUMdy+2PIrn//X/MJP/gjvf/t3sapGa42zW6w4Ckcsw1LXWDExo4k2BAI+OMCi1ZxALD6qVIyYm1SaqjZMyhkSIHhP0zVsblu22w7nXPThEElMVaCwNq4TRaAU4fTohGp2wvTiE5RHj/FmgtUlxydnnL/yhMX5BWZSo52FNjr2Bgmx0GgAYyw+h7crFeWCHrPxkU2Ja0Z2EwipJlnuU42WGKAwBKRHoKm8e8n7urt9rAFKpIuK6Fykh+qTkPX1NA9ehhZeBmI+OgO1d62XE4rjnIsKW0xYnLzCxZNP8eDJZ7h45XVOHsQcJ/OjY6bzSQojLmIish546b3HUPd9OjBhSPr3vjb1wKQfbBm4ZSrqJQ8KdyZ7uuEe+BiYnFRULwGU+HnUbFEDsapIzAl4Cak6MdG8lJnXJFA0CpsignrgQwaNH0Rr9XkXU9K1jOwDnYPVVnhxs+H9q/e5vHqf96+v2dyC98fU04eURxVVZalqy3JqOZsrjmaKSV3E59aaslB467h1ENrYqptNw7fefY+vfP0b/Mavv8XVu2DMEaooY+SGUvg24NsG1+yg2aJcS6EmSHmKCgEtt5S6ZbH0PHqwYLk4YTapKApBKYMpZ9QoZ3kejAABAABJREFUdADf1kg7Z6MXuG1F17R03Q7fNtGu7HLOzhlepcgUceC7mH8jRJayqCbYxTmTkydMzh4zPXtEMTuKmWPZoIxHbAATUNoSsLE6s+1oO8fWexpxdAgdgS44fBJSxji0GIJRaDtFpEScxYUd2/UaJR4lG5A5pd5R1BNUXaGWgbqYU+iSo6PXefKp/wubqzXdxqG3K9zuitXzd/DNit1sQlGA+F1kM+wEbRqq0lLXDzD1Al1qWulorl9Q3t5QVg/wZkkbDK14/KJiMf0ky9MLlqenaGPoPr3jxaee8uY3voG4DqMVu23LZttyeXPF1XqHrk6p6gW+9WyunlHpb1J7h1MSTT9+S6E6CgWF1wSpU9BGdJSNuYRSyKkkI7HvkE4l5dWjdI1Wmqo0aGoKragqDdpQTJbUs4coqbitnrNeX7HbPSM4sJQoImsjQaHEoPAgsVKuWB9r8xmHQuh2O5RZU1aOrjrGiuW623LdXVMu15ysbjk/P+VsMeesUyxnBZVWFMl8GELoE46NaJU0W/1IUCdFKJuM1SCvyDKqV6Y+QB5leSJCNhwPZt2xbBgiDsfX0uL6rMExJNzw/NkzvvorP8cv/8z/yNtf+RVKaspygg9bdOgwAcCidYk2EZDYVBA1Vle3CZAblDYxj4gR6spQV6naOop161LJiJa2cTFfCZ6Q0qVH8FpQWcOsMkynNdPFCeXygunZa6j6hLKcUVc1pxcXHD96SDGfxzQ9ncBG6MwWbeK4ipGY0b/ReZ/kI9Cb7/0dRj52aI4+O2DGUpK6EHJ/DgyY+P+DMCiRxs8Mio5Z9rIfyvg4udt9wxVk3xN9/+f4zwcAlvE6G0bfR7o7KhFfoqCsJyxPHvPgyad58MpnOX30GicPH7I8PWW+PGE6W1BNamyhUSbyZHlBztNKqXGMe7/z3uX40KRzGA7ok+acPbTHbNRYMIyjWPb9WobPGYSM/WSUVgedn3JHJBCkEirpSV0JBGJqfi8qlfSOb0alSldKMWJMYgI33T+/vJwe2+uPhOYT6OtcYLUL3Kw3vHf5gnefP+PycsV61dJsLC5MKCYzilnN8rjm9KjiYg4PjwoeHmtqK2zbwLpRvVlqswXnFMp4rjbv841vfpNv/PZT3n1ri2+gLmaInWCqGi8l0nVI49k1a9z2GnX7Pnq9omgsMjlDK4ts3mGiN5wfH/Pw0ROOTl/DFgWwwrsWpevIjCgbzQjGsp0d025X7DZrmt2KbndLt93Guj/OI74kqJRFUjxKleA94DG1hckMPV1gJjVSeIJswSzQZYnRU0rr0cbgXEcQTxCH94Gm2bJZXbNdb9jeNqxW77DZvEXX3hDTmteI2FSUTYhaZYUoQxsqurZjJ7dY3aDYUegAhaEkENqGavlJtFqgTcF08YjTB6/SXD7D7a5gW+LlFr/e0DqPmk+pp3P0BIraUFUnzGan1JMLivljtH6C2wk3V1/jxc2vIc+/ReuWNHjEeurzY+bHM6rJlNn8mLI8Rpan1LMapTXd1lHbiqYVNlvHyWbNi5s1nhp0QbNdo/2O3XPPLqwpVUBpjxaP8R3GCcorTNGhvMZ3Fl9aQmlj9uC6QhWxaKKkfkZcrEZsXJ8O35iOqtQUZhIdfSdTpvMjxFeEbkddFojfEXw0iaJiGHms96CShtuhvESgalxMAGkC4itEBZpCszbg2hsCFVc3K/R0we3lEzaPP8H24pzd0Zz1smJeGxbTmmll+0y7e0pOzzab0bwVSKXuxj5n2S9uJMDumeE5xUF22M/OsT4uwHusSZYJWUkbZEQIkZnSeoJ3mpvL9/nyL/5HfuXnfpR3vvFV2o2jsDNQDufXSZ6UWB1rjwUNRmuM1wgmPp+KkThKe7R1VJNAXZZYGxUb13m2zY7tdkfXeLrWRQZJCbowKFMxKQyVDkwLxdFyzuLkIdXyMUyOoKqpJnNmy1OOTs+Zn5xRTxex/EgQum2e3xHcqpDipASMqN6nKgLhlBE5RU3mgI5BdqbPgaG/+3eZE8kNfToowslc9BG3jzlA0cNf0oRVQuRDbdEP0qOHkNb7MKAe3kG63+haefEen5PmVr5/XjAjftAU9Yyjs0ecP36DB69+mrPHn+Dk/DFHZxfMj06YzBZUkwpbmBQPL1GLyjc+WHTv+pMMk1/nYZUo1SCpMJQyqXJqXKBdHix7IC0NrMyEQGqL2jMnqfQOIsOTAUo8wyrdV1BWOZEcQ92L+F3vgzk1+KAJEHxsp+r7OwIgQwQmg5/JQDPm/lcSNY0MYA97KQTQRnAibFu4vNnw3vWKZ8/f5MXlDTe3HT4scXJC49Y0zRXHky2LyZRXLs559djzyrnhyYVnXim2nee9K4VB43ce7xQ7p3i+6mi7lhe3De9fl5jqNV553TKZV9hJyXbT8eztHZuNwwWhNRZxDre9geZd7O6Shgq1u8JIwPgV06ljsaw5OnmF+fFrKAvBTwjdLULUzKy1FFYxmc5pjh/SNBt2mxua1TW720t2myu26xfsbq7xO4tIizhFCFVMy65ctCEXBaqcg6nx3tM2N2x271FUmqo+o5hMk9+G0Oxu2N2+g7SerjNs2zXNZsX2dsXmdkVz+Yzm+hld2yG6wliFsh5jipR3pYu5VNCIFIh42jawXnegthh9CRq0c0x2aybbjnr2BNcViNOU9QWTo8c0t5eEzQuUdxGEFxaKClUUFDWYuqBaLCinF5TzxxT1Y1zzAApLV2y53X6dyxfv0KzfZdc4VN1y4S9YXJS0W0W3U9RljdIzqsJxelKyLguMXVB4jW07ymZJMdtxvbphdxtQ3YZud0W7eYrevaDwBUo5dMgUu6ZxHu3B6OhXIlqhSgjTioKTmDhPBYQG71VMkicBVYCyJSIxcgMlmEJjjaUoDEXlkRAoyljRVkQTgsOpBm08mpjhFx0QHZ02ffAo8UkJiJMqiBDkhi4Ebm5u8OpbiDFs2x12sqS7eQ/jb7HyGOPOcd0xVzUs2xMulqfMqzj/CuJzBInZY+OsAZ+iYnKETZIqg1DtBVRmZjNDMiRrzLJA0nF9UEJmUiRQGEtwMYV8RxP9T1SqSh7S4qoUMGF12fLlX/73/NJP/d94+lu/DV7F6EOjMbRo8ZFi0RUQ/YlEqwgec+0kPY1+Q3ZLVTpm1YSymJALSm83Ddtty3a7w3VdNAHpaMYuypJ6UlPrQG08x5Mp1ewYe/oAMz8jUKLKKfPTBxw9eo3zBxeUVU2OWiIIwXe9/I2EiAelcELft0Lun8QmZaVRIntCkqljIJcdeLKDsU+MX2a+hsPSdxXv37mWj7p9zAGKwmiDMRGda52c1WRYqsd/4/NG0P0eZmXYPui3Q+Qztnj267vERbKeHXN8/gkunrzB+ZNPDuDk9Jz58TGT6YKyrrA25j3I5w9+oNmf4y7cGrMC43brEZMZj4mDNvjImngfBVG+mY6zOIZvpwfKl9bJiQo9AIKD4KUMX+74e5CfJR8zII6DdyQ9KAkhxtH3PkY9EyODuShyr6PnTv/2UV1DMruxL44QQAu7VvNiteb59RXvvP+M95495XrVIvKA6fwTmHLCeruiXT9lubzm1Qef4HtePeGzrwtPjjVHS8W0LMBDi6XzHdu2Zbsr8aLpvEQGhRjxUJ1ewIkwnRqqwuA6zeXaEcJTzNUzmlVH19wg2y1WOowVrJgYyrtrKJSj1Bum1lAXgbqy1HUFBfi2wtGkLtdoVaLVkqqe4hYndF1D127YrVd0mzXb9RXrm/e4fv6U9eV7NDuFakysuCuBEMqYbM1YvKrwQbPrNnAbCLphUir8fEJRP6ScPcJ1LbLbsbp+n931M5Rf4FXJpvPcbrbs1jesb2/Zbho651FGUaoCW5RgStAlPqhovkCB8zgfQ6E762m7QNsqNjcNrn2f4nZNfXnDdPkMZRexLk27o7CaqqwI0yWdLlGisQpMQQJdGi0V4itaB363Qnvomi3b25anz36DF++8xfXl+2xvN2ybLfVSMT+yhMsruuc3bM0zvANlF7SbwLbJmYU1ejqjmleoXcDJc64v32b17E1evHib529/nZv33yPsWrzqKK2gdIiJ2BSUCtpdTGqnJIKJ4AJWGkKxQcwUUSaVaHGIT46HWiM6yr/oZC7JyTEWwTRaE1SJsgXGaow2dJ2LxewkgNEYUxCCw/suRh6pgDGpHowxMTNziFFk3nf4ZBYIBDoPMjmmVBCOJ4R1TVNNUW1gR8fl3LO9qHlwMmFRCcFqyiTklMSCi54UQcSYSBkqA8cPqpcfh5p5/jwWgGM/uSGKUbMLDm1iCYKYxyZG6gUc6JLgA9eXV/zOr/wiP/uT/5i3fuvLqG5OUZV41miJ70uMQlQdC5GqWM4gKAhaE2SC1TUGoSxBFw3zao4xJU6ETdOy3ezY7GJeFO9jaQNtFFVZMK0q6rJkWigmhWJyfII6foKZHmPKClvWTJfHHJ8/4vjxa0xnS0xQfUI2rUbZdVO/hL6fImvUZzYe/Za/uySPJSXFzOb1kLXHvt+Ha+Zr9BYFSQEXErKBhxAC3v0fxMQjSvoQY1TOCzKYdD7gzH4ixG/DNjZhSL9vdGxe8O+5qkoHZ1udSLThT+fHnFy8ysUrv4fzx5/m7METjh88ZHlyymy5ZDqbU1YxeVLvvNmbSXSfbp5D0w73sSh5070TU0YZcaxmAJCQsAzt7aN8QpQQPRBJOUW0Pkg3r1KSqf676tkU6RmOoScF+npBPaRSOSV6wKd29Vk3919ZBCWMwFKQlBGW4fnSscnfPh1LAoqRtnRBWG0c711d8+77z3jv/Xd579m77JoaWz3i6PwJi+MpwXWgW85nSx4evcFnXn/C7/nMgkfHgcIqRDtaV9A64cVGeH7T8eJ2R9eCKaqYe8AWSNBIgMkEqtJztFDMCk3bBGxV4osjjk9qbq/WlGXLi63HbwuMW1AEweodRVhTqS2l3GK9oRAHvsWHFsTEYnU65VvHIVphqwpbTSmFlMPAMT9paduW7e011eUDlD1ClCJcXaIlmXyS2S8QFy4RhXcdvt0ROoXqQIVLtD6hKh11VbJFIdbERFHXG5Sd0aU8CuKFtvU0TUfnAj4QcymoEnSNUBF8QQgB57vo/9AFvGupKk01naLNHO8ndI3QNTdw8z62fId69hbFZIlSE3brHb65IYQGZU3UNO0kLtCsaN0LpOvovNB0HrXeIaGm7f5f5P1ZrKxrftYJ/t7pG2Jc89rjmU9mOj1gtw0uF91VGFPYprolsNUtS1wwSNA35oYLJLhqCyTUghvgAqS+QJYAqVFTIFBVGaim0wY7bZzpdKadmSczz3z2PnteU6yI+IZ36Iv/+0XE3nls7FK5W5bj5M61VqxY8X3xDe/7vM//+T/PmnZ1yfXFgmdnT1lfN3RNgw8dygbKeoZxjq4PLC6uiTzGLhZoUxG8IySLssdQFNhihNN7xC6idUe/fMzVg69wcfaExZMHrC+Xco1bube1UTiVsntswhSQekMIgaQturAiju07lPco7/ApgYlYFVHRQzCg263WCxlHtE4S+GcKdKqxupRFHCK+JJGjKrIJo7Kk2OceaS/3s44knLQJhx4Vuk2bbIqB1AdMkuwgvzA0FzO6/QP6+oDYah4+fUirHvP09oKzOzc4Hk/Zm9YcTEpqY/OYoFAx+8nEbceOUgPHvQs+tkwJO2WH3+rrdpyElDxJSbBeIqCTQUVFrzxOKWIseHp2xtu/8fP85i/+j3z0m19ktW6xdoZxgRQvEHdlI2ApRzzIgFYQ0SRVYFWB0ZqyVBRFoiwsOo5oQ+LsakG3lsiIrsng0DqK0lAVidImplXFqBpRTvdgNINqii4nVPWM6WzG/PCE6dEt6vEehSsFMK47ghrWa5kVySAi7gC950r8cagb7ACZFEm5FBZ3X5u23Z071Mjmd7vWEyqDw0HuvGtHkVIk/UERyWq1dY/dTJ6fMF9/IlhRz/8i7cxyL/IRn5SZ84mPPDsOmS9gGY33OTx+jePbr3Ny93X2ju+wd3jEbP+I8XxONaqljdRaNjMpOtth6w24QG0ScL5NhPqJe6dgMEXbpdo2AOCFlccAUkx2XlVab4IYN460OzqXXb3JBkzp7fFSWdS6i6l3jdu2TYUCTvwwKeabQOmcVpxZEK2S2NXnEo/KEe0DKNns184R2bI8uc0tQdNHLq5XPHzyhPc+fo+PP77PamFQ6Zh6dsJoPmU8nzKaVDgVODlS3N17iVePx9w51RxNIyWGlY+skqFp4WrleXLZ8vjMs+695GJkercLiaZtaX1HXRYUKgtprRyjWkdOzZjGzLgq98Csic1TuosJplWoPqF8wIaEU1BqR1GVOFMQvafvVijlUDk8DyXpt2hDwpGUBSWmXyYbsMWkWa9WuNEeUTlCbEkh0kRPtw7EaLBKY5ShHJWMxgXz/RGHN445unGT/cMDJvsHjA6OGM2nOGMx15HuGurpGNXv41NB1ydSZyAUiGFIXkhojbI12o7Eil05YoCuXdN3C2JoSJ1HqYQ1M/A1Ws1BO7r+gthdEborjI605VnOEqnxrcevryEsMS5RFGOK6gilK3x/Qbv0dM0lTX+ND48JfUv0mr5d0jVLQgTnHNPX5sxmr1BORtTTgtnBKfODQ8oSok/062dcna3o+oS2Y7Q7opqUUBzCOomzZ9TEsKS5fsji6Xsszq5YXV7Rd55oNCZa2iilWKPAqYh1oEpQoSS1PUkbVLEn5ZD2nKCv0CZgKw2qAiXCSZV8br/POo8da2xhUVRuZR2618SFNGwWYjmlOVs2oG2efHKPXcw2/ilsxjZlDFbbXIqOpHiNXytWZxMuyorVsiVEy7MnH9I0DWcPXuPs2Xdx++ZtTk4OaA5mHE5HjMoSld2NiXFTtoWhc+/FMW47lm3KQJsF2G+9LJXAT42KEaMbYi4hkgpUMlwu1rz99Z/nCz//T/j4rbfoFh1RJYxLxLTGKovVNX5oE0bOM8mRcKAsxmiMUdQFlIXCOkfXe65WDevFmjaPA1EprKkoJ7XkRZmGyibGo32K8QGjg0NSOSJoQ1mPmO0dcHLrJeYHt7DlWIwUkXT5vl3mc603OVCb7KJIZobic8dxW8rZbd3ezgkp+S1rNZT7X/i6YU92WJmYf1aD1oQti5NS9kyJkdS1v+V5evHx+xqgDFyfYttyHHNdJT3/qi3YYGcy+y3RxvYv/suv3T50/r8YQVEwmhxxdPt1jm++ycntVzm8eYfZwQGz/X3Gsz2q0YSiFLW3Mtttq2whnXJZZgMS+GRwsllN5B3e4pxMh0oBWVwBY/ztRUq5NKJNttPXW1CiN0BEbQDIZp93yjZq51/K6OH5o7lF1nGTUyJtxdk9PVPmauP5YiGX8IZuHZHVhnwD6OG4bXQz4leQtDBAPiYW6zWPzy758OF97r3/VT7+6Cltc8RofofJ0R5qpLG15WhWcvOgZL+GGwcVh/PErCwobKSNkesETVCsLhMfP1xy1SQuloF1O0JbK9bt1uGj5qrtObtasF5fMR+PsPt7jGtHEzQxQm0j04kiuMRZU9J1e/T7c3oFfhHw65KEwWlL7UaM6z0m+zNcdSA17r5B6RalI+iYV7cGqysiBQkDRqGtwbkCY0coU1FPWqx1dH1Lu35G7BucjfTdNUoZnBkx2xsz3Zsx3dvj8PgGBycvs3d8R4R5I2nNtdaikqGeXVOPjjk6+sMQI50PXC2uePThxzx47xnLpXQDJaXFBdVN0XZMjBBCR+h7uvWCdn1J6FaosKYoKijHkGpIFT70pBDp1h2hWWPpCG1H7BuUkZDI1HuIjZQyKkcxqbFuQugU1jb4osb3K0I4x/oGCgPFTVxxSDU9ZH58xOzoFQ6OXmI0nVPPxozG+5RFSdKe68WC66f3uHjyDa4vH6PthLaP9Ksr1s/u000adLGibTounrzP9fnHxH4NnYDAgLCYffKoqGlTwuhE0pHKOsrxKdpMcH5Bs0yg9oiqIa7PSKsFqA7DFMVIwB6RQI/Go3QgaSdjQEKASxKBaIxrYlyTYi+krNHihBsjMXgUDVqXGexrYV1ybkoMPSlF0bUZQ0Sjk5R9bGEIoSVEj40t4fIBZ80SXd6jDbC+eAj9mvDsPt3ZUxYnt3h88zanL7/JnbuvcLI/Yr82WDuC6BEbWp+dadXQe7MZZ7bdINsha1d/8kkgZbMYSwmTNCFpguqJqaS57nnvG7/AF37+n/DRV7+AuS7RJpDsAh0VJhVoW8rYpB1lzMZlWuznQdyXi0JJ1ILT+ATLVcv6Ysl6taLvO7Q2KCzjYi8HhCbqUlE7Qz19jWJ+CpMJkURhDNV8n9Nbb3B8+irVeE4Xe7zq8IhuySTLQIAoPQCODE6GMTVJLtnGWn6DKbaanW8HJwmVnmdW5L12WauYwY1+DuzEHdAyABQdtyyOyuxO/IPSxSOZLsOFmZ/LQvEXr9PnVtj/BbAxwJOBOJBt7Xz5bf4+RjC2YjI+4OTWpzh5+bMc3HyJo9NbzA9PmcznTKYT3GgkoX9a5wk8l3OUkpjt4XMNq57tLL8txTy302oLogZKYUCvSE7DUDp5juaDzYW8mdyN3rzfsO3hOO++js0XEaPtwo8twHqewQFyXXL7b3jolEgqYXc+m8nvKocpZRM26T2OKaJ8yOdUk4yRVDWVnWnzar3pO84WS+4/fsRH9z/i/ocf8fTxGp3uMt2/QTmdoIxhVDluHVtePra8dkNz8yAxrxUxOUKMXPWJqwYuF+f0V1d0F4pVu8fSwLIPtMHn7gqL8ZE+9Ky6Fq01I1dTKIOPDa3XjNFMqsFmXrEyEZs66spwMDthTWKtGkKyhGQoKKkKK62Ek32Sm4qhUnuFSQHrDKYuMabAmBqlKyJOVslW4QpHWY5xbkZMBSmuqeoVk9k+/eEtKm2I+3ugxB+kLkqm00Pq6ZR6PGJ+dMD04JjJ/imT+R5VtU/hHM5CiokqFYwmE6L3aAp88HTtipObD5gfz3j7q7/Jww9AryMpGaGQgNj3tH1L360JfUPse0IXUN4TVIeiRZl1tnmvs05gRQjXhNBKR0rqMdZA0qQgg2sxqpge7DOaH+KqMTHOgH0sFVqXBNWQksMYS6kdriwoJjNGsyMm+weMp3uU1Yh6PGJUFBROYVKiP1Ssb32Kpv0BmmZFSgUpdiwu7vH0wYe0zROa9SMuP37Gs/vv0S6u0FGhYyd8hFRD8AxjF7RJnDtVAZPRPvXkVbRfQfgmvW/wccW6D+gu4WOiiKB9ohyXIlxRScotCH+rgpIIkAxUom9ygu2SFHqMM9hgCIR8f4vLrJQtxGp+w0wDKSlpT1XS/eE9KCsLFaMVqIJC1RhlSKGhWywIlw/oe0XqxfjPhwekoAnXT1k/fJ9nD+5xdvG93H35dW4fH3E4cdSFoTRgiSgdNyGKzw022bBhGCJ+6/ZiWaDsPCPuyURi1Fxf9Xz0zS/wm1/8F7z9a5+nve7RStOqS4hQUKKdBeXQyqJilM9vDdEarHaUtsA58alRSuO95+xixfWqpelalAJnHONRTVXL+FI7RVmVuNEcVc0pqj1UWWLLgtF4wsHJHY5uv8poNEO5kj54Gr8W5gfRBKkYhDHLn4cgzQFqSI7PxEYIkeDDNq1+KOVn0Do0Q2wErbmMM4yvKQ6dVDtylQxChg4sIM8pYeNCvensIe2M9VsQ5P/AAJRhwsyTPOSToLbU/sClvMiobB5p+3PceXIAKbvlg+HnQXy6+/PAGDhTMZoccnjyKke33uTw1msc3rjB3sEhs/kho+mMclxjSrthImJKQs1mgEJKbIxCNogqA5CcMLzZ0zTYP7/4eTKTlGSVlAbdyXDT7pRrtDUiNs7Bi0mz1cHARqRqkN3aKOORAU1CztgwKlEu8c3+bY5d2paX4iYiebD6yfuWRDwnnY8RvQFJWko+CYherLpj3FhiS68qGdANoC+xvO54cnHOR48/4IOP7vHk4QWra0tRv8FsdoCtDcoZ9vcm3D6Z8MadGW/eLTk+gNLJjdl0gWWreXjW88HH93h6/5tU6xXjyQ1SFWhsha3G6Fqx6sCHgLWKaaWYT0qMrrcOxzpQGEdpNCMnAsk+JNAao3rqQhGnNSYWqK7Ad442SKupdQ7tarBjgqrpfEdsVtjg0apGR4NWY4wp0brEJwUpoIzBaUdhKpQpiV2E2KJSwCpLXc6oDzzKT1DE3KoKVT2iHpdUlaEsPM40OL1EI86oxmpph08Jh6UqNJLWa0kh4fsRdT2mns6Z7J/yrYOv8OD9M/pGEaOn7zr69QITOrwafBYcVgeCipv7C5VEU+NGxOiIRSA40Yj40ELbk3xAa+mMsZVhun/K4emnqfduYesR2mlcYbB6jKLApw7lexIeTYcyPa6qqccTRtMxVV1RlAbnAsZ6CmskURgYF45ufESfR22tFN3pbW7f/Qyr62uurxa49Dkev/sIgiGZEcZJeWbwMokB+pQdOwGvwGqNme8zrl5Cp0uuz78BvhPmRWmCD5Q65NwYT9tBYay0oKZCJhsl7rtDAKGKgdR3+L7De7Fcl7wlKVHEQXdAnpikiCPzTJTEbjkJUkIgp/Xq1NIng48Wa0qMLZB2JC8r8JCwoafzjZRv8bCAEFr84ozzJx9w/uQ+F09/kLM3PsXp3oSjgz1uHEyZlWBCL+dfKbSYwIsOJg0tgWI1L0NZgmTzWCNBeUPFWfogA4qICpZF2/PBt77E137pX3H/G/+Z6/MrovcYAjFKmdTaCq0M2uTtxYRxFmUsaE1RFpSFxVpL1weuVw3rpqFd9+J1Zw17kzllaakLQ11bXFlRjKaYeh/slKTBFlAf3+Do8AZHh7cZTw8xthBPohhJzVrGZzWUS/pNl2qvZVwXVkIToyRqswsKhpE37HiQkGfFwRAvRrat24kUAlI+2rIw8rfDWJ4y8Ev5f4OQlp333HbtbJ7LYz8JCRv8HT5+XwOUTXbDgPazZmLIwnxOxc3zIGX3h/Ti74bXp+0PL/5+o31Qu/k60tY5mx0xP7rF/ukd9o9O2D88Zba3z3gyoxyNsYXL6eIZBGhhTzbMhB4M1nb3ZstIyEteLPFswdSmhpvIqxcp60gddqcEs+PCa4zZgpEBcCkycMq+IwP4Q1ZVCpUj5Lf7OACTmA/Si2ZwG6HVcKsksf83spE8UG5pRkXu5MmtiCkEYp8pZ60ximzEP4BUMRny3nC5XHP/8cfcf/CAD+99yMWFJfY3mcwqRvuH1HVNdJ7JxPDZ2zf41F3L3RtwOE4oFei8ZtVpHi49H3x8xvsfnnP26AzVGPbKGa0zqNSLA/DeGKUSHkdSiFmW1WKVnRJ9SPRJkaKltkosqZXBZmZIq4hTirqwxJGBriKOxnRdjYoTVBdkxZR6+n6NbiDYiPOiPwg2EYoKbQPJxNyxkvIxNFgjK8EYPdCQ0pLQL0jtFY4GZTuMjlgd0cZjTBRxZmxIwRD7NbEP+Cbgy0SoCtHZUGO06JFiPkcmX8PRGrQd4Yo7VPU+ZXVMNfoGzx4tadeetl3QLJ6htFh8x2hJscGnBp0sylqStmBLlHVoV6Ao0b5BuTF0C+keij3JaqwBWyjq0R7j2S3qvVMme4cU9ZiiHlFUE7ETj57er/DdNbFbk2JLIqEJ6OQzyBfEHfAkZYhKUyhFmbVXnYIm379OJXAaykOavX3aAKOR5vzJRzy6/whVaLQtsLanrCxt36ACRCVp0bFTaAulLuiaEVYZWe3316h+hFIOax22qinHtzHlBFePUPYaW3iUbiHfJ1qbDUAHSDHg+4bQR6JfY5SwkNqAwaIH7yNjpGSY8oIjB/SlgdjdjHsps5d5sksKrcQdNQk+RWuNs5INo1Ur7Ewn3i0+BpQdAx1Nc8nHl2cs3v8N7t/c4+XP/iDRfTdKj5goRVLSRk3aaSdUIHTOsJIXn5aYhvyshI6AsnS6x0SPTo7V2vPh+2/x1hf+Oe/82udYnbf0aS0dL1FcXguT9R1KY4yV/CSlUE6ji4KiKClciSKwWrc8Pb+ia1pip9G2pBqNxDCtClTWUxQV5fiAYnqDXheS8u000/0phzde4ej0debzKUlZyb1JiRA7KVuTNpYMMbc+qzzpSBhfXpylbACX4gvjbMyTlhy/zfkig4Yo4aQDcBgaCELww2pyc76HMvzwGN5byQWW92/Y1gvjfXy+nKQSpP4PiA+KFnJyQAobZ9FevXAAdikQ8kr2xTfbYQCGhMxNUmZ+/aaNeBft5IPvrKGqpxwc3+Dwxqsc33mNoxt3ODg8kdC/2YxqJNb1w4Q/TNTS1rsDOFDP3Y/P8ThpF7iQ8xLS5neyS8OFHQhB8hr6KCtUg9oo+bXWGxX6AHgUAhZUFumKtwzo3NkzbEPlVcrQKaTUAEq+nS35pHJOHt2yU2YCbbBKBHlkt0SFrB50iqgQN7VwlYESKRGMQpFLOxqSLli3gWeXl3x4/0Peu/8eDx9dsr6eMJ7dpti3VKOSejxjNJ2yv295/Ybju18qOd3XWBvpQ2DRap5ce+4/afjm2/d48nTJ9dWKMib2ZqesTUmbLBM3YTKp2J8q6hKwmuRBBVn1JCRHKETwQVJrXU4WTUCXRB+jgtyMtbVQVuh6gvIRk1qcA38dif6aENa0TYLUURYWkxRBa/ou4jqPMq0k42ojvgNaU5pEYoQPiRB7Yt/Srnua6wXd9T365QOIK0qjiAYILSiPi5oQDZ6SYCf06w5vG/oS+qrE2pJkHcnIMKIHCjkzkEZpGdy1Quk99MvfRdIj3PRjlhc9zXpFc33I9cUz3NWU9eKKdrXENwUqSgjiaH5COd3HjaeoshLmL4ww7YzQr2RAjx5NQhtNWY+oRge4Ygy6I6orlLG4YkZVjlAoet9nzw3RO5D9RLCBFHtC3xN8QHuNcZI2q5WiIGHzYFDIVJjX64mCgDWaSiW8UxSvfJrv++P/Rx58+HWufvEC7Rx1PSXohgKHVwEV8ypUgU+KZRsoLx4SQ2S1/pD26opKJ5IFhUfbMV5PSW4fbUvJzSkMyjyGdI7WDoPLuiuDMlaM87oVvvX062tS7KUt1uSSRZSxR2XxZxi6LFIPyog+LplsrJjLcsP9H6U81KWG4KWtWcWAVsJYJCLaGGz06BTx/bWMMEVE2xFhfc1q9Rbp/DFXDw/xYR9dn5BeeYmDylC7xEQJdzroHHQu4Ut2UQRtMGjR8STxz4kpYPqIRXHdaB589BZf+5V/yXtf/l9YPr1ER0sfV6RkcEljygqjDFrbbNeedXjWUZQlrixQRuPblsuLZ6yWDV3vpfumGFHNLbPSMBuPME6TzBjGh6hqRDCORntme3scnr7E6c03mM2OUNbi87WWNgFgMXfc6A0QGYol6oVxVOfUYI94XalsIJViznketCHkgL+461Ei43LI/iYSkpoXjjFkm/uduSQOTMuwME9sWsCHzhyGX+4sRFNCJ7XpFpJ247Rxkf6dPH5fA5RE7h0fdBE7898uhhi6SdRzfzsUMHbQylApeX6+f449yfMquZSMUlAUI6aTPfaO7ggyvvUGhzdeZn50zGRvj9F4QlWPcE7ASRr+kRmKzYbzbqjt/m4LMWlnv4acm+d3bPfHGCUeOySJvt5e7KCUxhiDsWZbHtoADzbgZGgnFFC0mzE8XKT59hkOfWZsXgQlG3CS0y9THLIkkOWZ1mAgKp3DtAQODsCEkEj4DVhCsWGdonGgerTRJEoWy5aPHz/j3oMPuXfvfc7OIlHfZnI8ZzqfgtKUY8NkYrlzPOL1WyWv3kicjMVa/LqHs7XhwdMrvvbNe7z77oKLJ1fgO4xqMNMp0VaY0YxqXDHbLxiNLaNaMapEWeAV0kYaIUSFzm6WOoqY1ySV58U8gPgESeO0prQaKosKFQqPUYd0VtPphF9pVGw3QAAMShWkZIje0TUQ/AptG5S2AtqsdHa0psEUI5QuCN7iO0ffevrmCX71AKMT0Wh6ldCqxxlPiIkUrLhpOgidJnaK2IyI3R6xnBNjJVHqwptsrlm5rGS17jTUVSJiOPa3CdpyNrlktUisl/vU0yNWi0NWV1d065UYzoUe50rK8ZxyckBRj0ErQvBoW2HKKdYLkFLJ4opEPaoZTyaUdYUxDbG/wDeKWFTE2Er7sZZlvrAGCaUiIB4WqW/x+hprHb1JJFWj7ZiUja+kmTuztYBLCiHEDSgDSlKLTfJgNK+9/v380I//n7n/9v+d5ZVFOUeNImhF13XE4EkhkYKsSmPbcH31Ial9n9Ximq6NeNeivccHT2xbAg9wnNP2iaq6QzE+whUzVOxFg6AtSgXAChsSEj409G1L365IQcrJJlsIJSXptCGXb0IKkoQc29y2rrC2BiXsTEqi+VLGQpJW4xh6Aj4zgeJFJYJ2g9IVxhop2faeGK5JnQg3Q1rSx4aQnlFYuHz3q7znCtZNy8npTU6mJftlpLIwdZoi58HEZHdYFZlUBSxBUBG0Y9VE7n/0dd769X/HR1/5JS4+fh+8RgfowhVGjTHGoqzPRoEOpaVrqSwLnHNoLYxju7pmvW5o+0BSBleNmB+U1IWjdJayqijGc3Q9wWtDjIlyNGUyO2T/+JTj0zvMp8foqiIpadnHr4Ul1sJCxbhrSxLzmDo8MZRRhAlRAdGIIMyFShGVxxIpkybUxiE8C1rz+JsSwlYm0S0N7eJxB7jwCczHJ7Hh7L423xcpbstJMYr2cfs3AnxC+IPSxZNPHjmxVu2wAJAnzW+r7Tz3BpuJdadKsXl5/MS/AZnKhBYr6wl7+7c5OLrD/Pgljm68zMHpXWaHR0wPDhnNZtSjEc45BkemocgxtBHnU/tceWbYobT5nMOeDUr154Wtzwlfk3TsiBHbQM8NZjvZ6EybPACxs70tOBmEsgMKkmOpntvG5qLcoR59jJua5+bYD+AkRAg9BE8KnoSSwcE5NFZyIRR5ZRnkxtsV9WbNTtKyL0ppjIooXdL5xGJ1xf1Hz3jnw7f46P5D2naPcvISxWiKcwX1qMAUMJs4XjoZ8+k7JXcOFJORpyXQ9oaH156vvv2Yd95+xr33H3G9eEa/7qn0iOm0pp4fUMxnTKdTbuwXTCrLOAsofSeJvD5p1i20bSIERQyyTNZJBL6egCHJqliRV36gI9ikiMpBMYKgcChaY2itoXMFqlvhdMQ4h3IOXAFWEdB0vUf7XBLTBmU1pqjwuqfRS3TSaD0h9tD5nr6/pF09w/QRbQfwHEgEUmrxKpfQ+p7QN4TOEXpH8tfgV1L+ST1JvEExKKxSGyp6AK5KgdWJwkVm0xEp3cSaEdd1x/VySjc5YDzfo1mu6Nue5NcEpK3cuhJTVOKbEj2+X+fW3IAzEEqNMRNKC3VRUJYOZy3EDtoWVcTsqRLwwWNxKOUwZozRDRiD75UAFN8RVUenOlRak9SMojTEMJHOMjMUR4VeN0qSVVREOj8AMCitJLRtPOK7/8hPcP5n7/Ev/uHfI55ZSjfGJ4dpO6LvpdQTI9H3xNBBc0XXWXQXsabEe/Ek6XxCh2v6vqVdGaKNqBuasZpiijk6BmK/kvFEJVKUUndQAd/3+GZN6LoNeyzaLlkJi++NQiWTxZFeYhOAGIVTNcVIUnljICWf11TCbIi5Yg+I86zSKrNmg8u3FX2bdQLG6SBcQBQQHFGkpmH56Ousm0dcnt/j6vXvZ3HrdQ4PHPNaczIrOagtdlhBKhljfJLRWGtNINF3iWeP7vHVX/uf+dav/E80T58QeikL+9CTksKVkqVEApdGJB2lYcEVaGtAQR96musVzXpNCFAUBQd7U+qqoioMe/MZbVKEYoSqZnQxYJ1iMj/k8PQVjm++wt7+AdpWRD2YlgXwEgbqE8RkpfuKHPynhJtKUa5HMmBQCQg7zEgYumxkDmLolBlKLANrkoGBGjxvUhBea9OGLF9j9M8x3kOb8DDPbBsrMiBJw0Iz5Ck4l6CiytvdgpKQBmlB1gwCof8DAlDkQOTVeMpGXmpw5hheJF+GEg27v9t9r93nFZ9cBsqvCUSUstSTfQ5PXuXk1uscnNxhdnTKfP8GewfHjOZTRrMx5ahGF0biqbUAgOG/LTjJ77zD5Gye2imZbC7WYaImbVqGB4Oebe1P0GvYKe0Ykyd1Y1HGMATlDcAo5a/DruhM94iolS1QGpD1Dn0o28y98EOL2wAYE5KQ6z2p7yB0qBA2AsHBAVijISqUyhoUJd4MKSVUrg0nraUlW+VCQrL0PvHkfMmHDx/w7kff5NGTK9B3mN98GV2N0DZRKEddlRztl3zqdsWnXkrsTRQptiw7y0Wn+ejhgi9/7R3ee/cZ/mLEetGxWp4zmR1weHqHo1vHHJwccrg34+gQDksgKaJKXDWJpBRdn1hdt6yuVvj1NTa1mLDGpBWWKCtsDVaJxbgxBq1s9ngpZcUZDS5CqTSdq6m0oS0qunpKCmsIPdKwZMSoTg1unLISIySgx0RDVIFkAkH16LgkEYjesFo+o1k9JrXXKGJe7Yoxm8Hl+6VHp0QMLbGD6JVM5mGEiteQliQmpORAuU05crhUEtnLQoFOikJbRkUijkpi3MPaa4qqoht52raiaVt8H4mhJUQh2wUUyzvH0GH6Em0dzmqC06QOrCopbcLZiFZBWMkQwK+J3TW+qwndHrEIRO3yOGFxbi6De+gIoYPQSElEtQQ80QZCW9OVY1qnaYymQmEHGhWFTWlnzFH5rhB55kgHTmcVf+S//b+yXK/5j//Dv+HsScTGnmKUCD4AslBIvqVbXhFW19Ilox1Je0iK3iuSN9lCwUr+UVVQ1PuYYkpRTiC09CwZmKwUAyFFQlL0TUvbriUrKWQWTxk0Ue6zFITJSYGEAEy10ZmsUdqhihqNwShFiF5aZzHoJOAkBsmNCXnQ0jplbVuBtQVohzOGaHs6vyL0iYTFqEICRLsFbf+QeHmP7ulD1g8fcvn6/56juy9zfHyADzUhGvYqKLSAo4THaktsAldnD7hanbO8eMJv/Md/yTd+7f+NpiSlQN+tcGbGpJIWe5Ikq2MUuiqxtkAbSwiR5XLJarUUl1lbMJnvMZtMqKoSa8X0MRQ1y3qKVwXWOcracfv0JW7f/Szz/ZvU44I+JnwAiBgPuX8oSxKMLMBUJwzrpnFAmJOhVr7RUMa0ASFDqUcydHIS9GaxKCDoeZYjsxkpMyobFnsozTwvho0xQp4z2Jl3hoaElAFHytqgXcYkZRGsbGvoKkukINsh5v34g2J1D8OJILMgecU/jGmfwJy8WOZ57vkBpWRw8mIK8qAUUcYxmhxzdON1brz8GQ5uvMz88EScYSd7TGZzqklNUZZY51DGSAlCDfS32lxY7DA/5HLJrgblk/ZbPnC2mh50HmxrfaA2dGHKf621lJOMsWgzxAIMKvjtPqGy38kGRIGovBVRxTz5yWMLgNgE+gkyl9bCpHIJKyWxUO89+B7lexQBpSwmBQid3ChKo7Nvh3iiCHWuDOKIqQvQubUOWdk1UfHw8RXv3HuHD+6/w9mFYTR9g/nJDYp6j75XGAejEo5GhtduVnz6juZo7OlT5KqzPDpf8979a771/hn3Pz6nXa0JzTUpBQ4O9zg9fo294zsc3JhyclRzPNOMa482mi5ErjtYLD3tcsXq/CnLs4e0V/dhcZ+yv2Sirqj1NVZFnJZ6eTAKawBboIsaZfZIZoIrDjB2jNUjoq6xeorXJa4c48uamHpC8Kgkcegq9SRBD6ToickjKyuNwkHU+C5HnK8TiRbfJ1ZXj2kXF9L9oloSFqVkIlFYyXBKZyJADRBDIIpcg+ArYrgUuj7OSYw2N4oYeSliPu3DFTmwmUYnXBEZjTQhlGgdaa3FlhrbleLVE4Jcv3kQHVjAGByhc9J9YjzRNqi2QKW1lL6U3w6+QSFGwBrdFRTdAT506KhFEEpE4TCmJLmxtJH2AZ3WArBDS+zEb6UrFrjS0rmK4oV70gBeSS+QS2SBfgICJhnGOnHnZI8f+D/8ZdbXjl/+n/8Vvp3jfSPW/tqhlUMnj69nrC8fslosAA9BmFoxRotoZ7BlTTWdUs5HjPdOqEcTXFESvEZFkyMOLME39N2avu/ou04SrIN0zCkdxYtGaaKWYrWMIbmDJ1qggODzPZiPaTb9Cr6n942MJyDsSRomtSxYz6wgWpGiJgZNwGBSwqSSpDxJR1JYk2JD16xRxmFiiV9/xFW4xJhAaH+I1eUdrq5WnB9OeOm44sZBTeU0BMPlgwc8uf8Vzh5+iegTqZ3TXbVYXRFWHcY66vERI1fhXCkCVGUwhQNt8CnSdB3N9ZKu84BmMp4xnVSMxlOsVSQdicoQizEUU2xZUdYjjk5uc3j6EgcnL1GPZygl+p3GCyMhov5B2yFjqE4xl+ASMWkpMSot5TlCjhkIELfs+Ybd2PlZJvyQ2QuVu7EGUBI3i9TEFjSkGKSpYbCbIDMgQ7loozPJwuSBHdkBNnGwq0hh0168WUBnsDKwNySRFwyWEDJJRGL/BwigyIptaC2VgKUNTknPsyayJtvgUp5L403bdxxeHzegJyNRZGUzmd7g8ObrnNz5NCd3XuPg5BbT/WMm4yn1ZEwxqnCF1DHNkGOBytPqwFnwCRSN0HVDuB68wJxEYTJ0hJhyEFpKGTNsC1Ji9CYgxyHAyGjp1NFaibZEb5mT4cNJB48Al6Sky2BTXBpWVC+g7ZAiCb1B3pubZGhTzq3NyQcxGCJuugK0CujYkqISC3VtScaisGjrpEyhrZTUjCIoQ1KtGEolTdt6Pj675OvvfYF333mf62vH3tFnOLh9m/HsgJA0UXeMC8vR2HBj33AwVTinaHTiuoO3PvqYb3zrfa4vHau1ZVLUHI2mxPEVTl+zPz+mnBxSVJ7DacvBZExVgjKatldcN5HH51c8O7vg6sFHXN/7MutHbxHO3qXuz5lYTSgjcZyoyoJkHUaJoqYsC3RZYcsCrT5AGYMyU4ybossp0c3R5THWHmDNIcFMCXaCdwqfvISKJQF9MbQk1QDdZoAKQWjs0Es7bQiBELw40C6eEBfX6BhIyhPiCh0CWnmp46cekzqIvQyYvSX1ntR7fG+J3ZzUHYI/INk8qCpLStkdGLI+4/lrWcqxUmIonMv0rwFj0c7jvd+ClJhXf7GVQTEYgoaoAyEqfL9C6WsIjWw/aYhI9xGB4CH4jtCu8d2S0K2I1uwsRrZBb0pHkuqIqUNjQReyXzFAbKUbbmAz8z0zjB4h39tapVzGA5TNnzsxMnD7xg0++4d/mPe/8SU+/uYzjKmyuWCB1TWGSG9LUmpR2uDXK3TXEpLJxo8JbWqK8ZR6/wb1/IB6OqIoEkpdo5TCFXs4W2N0Rd+t8OEJftVI1ouX1mYZH6SN30q7FX20oCIp61ZIgE4oI07EypRyXwcJMAzJk3xDyAujXJfdLqpSIiXRuUmCcCBGTUqRqHog5cy0NhuYGRINMen8+xa9XtE9fsD59X/i2UeBR/svcXn3uwivn+LUMQeTOYuHX+GdL/0bVotnEARw+vCMPlxSmAo7GVHXFc4ZrC3wWpF0QUCTYqS/XtI1DREoqorx3h6z0ZjSaVShUWpCGzTeaGxVMJ5OOTq5w9HpXeaHp4ynh2hTyOdKnbToxoFJy1YLOo/bOmSaW20mby1ztyz88lymUVK2SsDAeqSd9yHmjp5cnmFYoKcNSBniAoYFaxzARc7ZGhgX6eZJ2d5hYL4zM5KbEQTURAYjNunoyQBroy8hb09Az25ez8CwC6Mic8TvqQblF37hF/g7f+fv8MUvfpEHDx7wL//lv+RP/+k/vfn9n//zf56f/dmffe5vfvRHf5Sf+7mf2/x8dnbGX/krf4V/82/+DVprfvInf5K/9/f+HpPJ5He1L0PFAdiwJlsTs7R5ms1Pzz/3IsWSdt5T3k4sjXXKYiRdMpkdc3D305zeeYPjW69zfPMuewfHTOYH1NMJRVWirNRcjdQvMmjayl1jSjv7+fxjW2rZjG+bFjBgayMcAt57fF75JB1zd45CRRGoDRqVlGLu77fbY6T1thtmQzmRa9j525A2gU9Dq9nQbiZai8GeXoBVHAyESJv8ngSoGNGpRyePxqOViLqUjzLBJql7KBdIZmfftQNrSVojWTMRg4NoWXQtHz17xje/9RXe+tZb9M2cyeGrzG+eMNubYauCdd9jgud0XvLyYcnxnqEsFctecXFl+ejhgt/46rt8/PE76O4mRX2Lu7deYmxK5uUVVbliNNojlo6orqkrzaiUY9r2mvOV58nDc548fsTZo484f/dLXH3wi/RPvkGxXuGLAsY1dlbj3BhbVjgMPusdiB0qZmdVo8GsUbpD9QtSX2BchW3uE9wc427RuTuk8phkKymPKUNA3JNF7Ojxmb0Sz5ueEFsBJr2nb5d430jGUHuF8RcUscWYnmAimg4Cm3Nk1JJoPMEHQm+JnSe2kdAW9O0lRXtB6JcY1xLNiIilZxhL0wYyy5ipttQzEaPAWk2RhIeIKqLyeRfH47BxPo6xzCu23LnnlyjVkFgQ00ImhiT0u3R6daAzH9C2WLumX19hipGExLkqg1/pxJHVviclL8yRLkFNUaZEGYtSE6AAtHRkKSW2O0ntmGAJUNkOqGm4nbBo5qPEK698lje/+3t59N6/R+MIiEBcqQRKYygYzY4oy5quuRZa3TgpsdiCiMXVc8bz2xR1jVILFGtQUcoPeoq1Y5QqJDDV1kQW9D4JWzMUArSs2LWRjjIdFdYavFeEqFDWQHBoJQLgpAthwmKPTTIqRiXeG0qJxkSiRvKqW+XJVmu0dgyi/hiDtA4P+jFt0brIYDpAXOXJuAAcfn2BWj6kCZeExYpF8QqrwznN07d5772v8/TtX2f15BGqEPF78JFIiU1jxuMaqzVFaVGFQ5kROhqKdYvvLmjjmqgM071Dqr0DrI4Yk4imYhkrop7iCkU1KTk5PubmzTc4OX6Z0XRMUmIlMNxfOuvLwOZIADn/asMCpucWo891M+ZLRdaYg8gV0eHtNhOkoVSSCydpK2qNzwESMqjYYTY2DMjzXZUDONkAkMyMqLytmEL2V0kbIW3cvG77egb2Pv88tC+TGRaC+Nj4JHlgwf8edvEsl0v+0B/6Q/zFv/gX+Ymf+IlPfM2P/diP8Y//8T/e/FyW5XO//7N/9s/y4MED/v2///f0fc9f+At/gb/8l/8y/+yf/bPf5d4MJz/rEbTUFgNihqQRZi0NpRv5k81jt4ITd77fXkuRweVE25Lx7Ka4w77yGU5vvcrB8W3mRyfM9vbFgG1UoazZYSd2NplByfPszW/12BHH7nTRJGTyCUFWmp0PmdWxoII4SGYfBJP1OJkfFpGazsyJ1tmRdejMyXdIRsAhI+uBzovD8UlJDIRyDTRk4AKZvRsufEBFJWFmWWi5yfeJOcQwSSaAShnMGCPOjVZvgJVGPg/G4NSgiTGcNQ3v3r/Pr7/1n/ng7XtU9mVmRy8xP9xjPD2iHM2lq6Bb8/qB4Xteq9kbKYzWdCFwdZ14vOi596BlcWlprxQ1GjtqqUeBaVlxPNPsjWZMxjNaF/BhRIqWovD00XK9jDw7O+fJ4/tcPrrP4uNvcXXva6wfvke8PkeHxNp3xLjC6Anj0YQ0PyRVlQxsakGMS5LvMF7hg6zsC62xLqLDmtR4bNGBOieYhyj7ERR3wZ6AO5BwN23lxg9BNCIBQkh0fUPoW0K3pm9W+HZN212T+jUqeiwthVpAWkuYMAF8IKmI1QFlIsG0QJTUVg++S4QmSUfI+pquXuD6ZV5JSaljWxOX61gGaUVIZF2Uz6tCLdoDLexeoUUTQNbUxCD3cFAyCcaoiDGgCYR4Dv1jtL8ixY4UFXLJRoJfSyeTNtik0XpNsCu69Tm6rDFFidLiCUMycn2nDh+WxNDitENpK8Agxz3IJODpgmGNIRkoUzYuTKLv2soWpcwzMJoCmgK1hulkzmuf/SG+/Iv/icXTPh+rSNKBiEYXCmemqNEE0jGqrLH1nLKeSzAhBl3UOHuEpmd9/Q369kwM88xIynO6ICUtwEqLY29S2w4rTRS9kwajQi7DaVLUdECXTeHAZbZE42MiqZ5EEuE0GmtHBN2jlUXbYsOUyMQoQtqQK7Eq2+emGPApZENIjeTXuM3rdYiE1GWGoCGsH0MoKMo9VK/oFu9xee8Rj5dnrJ++TeyhmhzThzWxl/Hr+vp9lstz7KhmNNpDUaFiTwxXmKYhxoApLdXoFkU9IfhIcgpvb7DSU9yoYj4SEezByW0OT19hOj/CaIVSkZACIbZ5DNeY5DL5sJ1BVGYoBh8idlj7YT7YMONk3d7g5Jj/ZtezaijxkLblww1jMYCOOJR4hlLKUHLZYb3joGHJtvRheD4DjTQkmcv1zsB8DOPLRlAds/ln2JR4RCcj5z/ssDNKpbzQHXx1YvZi+p09ftcA5cd//Mf58R//8d/2NWVZcuPGjU/83de//nV+7ud+jl/91V/lB37gBwD4B//gH/Cn/tSf4u/+3b/LrVu3fhd7s221HZiA9Amveq4DWX1CZWX7q2/jVBIK6yqm+7c4vPEmN+58htPbr3Jweov5/nFOJJ5S1pU4D5q8X3n635j05Y6YoW9mM5EPQlK1zZGQi3L4brv/SWt8CPiYpAUUQc8qeTH1yW0wRpksoMxW+UZtupyMFjHkRni1W18OgoIDgaH3PSRRaMu6V0o5fQYtw94OaJq0LRUZozNYyp9R281qS5FQjg07lUgkg7Ao2mxKO8MkIRk7EJLiYt3xzscf8eUvfY4Pv/4uyr7M7JVXMLMpdlSilUygbb/iZKT5zlsz9isBrx2Jtk9cNZrHVy0Xq5aQKqrxHJOuca5iOtPMppakLrG1pq4jxipCqKTTwXiaNaybhvXiGc3lY9rLj2mvHhKaJToWJGp8uqbxntAa9OKK0byhpsIW+7iiIDZX+PYyT7AGnTw2rul1oEgFxmm0jvjG5ytxDekCzBOMPqYrTvBmTrR7eFPQp4BPHu97fNfRNgt8d01oFvjVgq5b0vZrVOywKuG0R9kWpTs6BSn1RN2BSWAjQ9Ck+OxYQiqIfYHvHbpVdG2Pa1b07Rpd9SgT0CZsbqKh5DqMuzGRDQNFH5LHxQ2QFyw9LCrE+yKqsBGVm6RJqUeFFfin4M+QGo7K7pdIkF/XEfo11tY4J2UJ369QbYlvrwndjGgnck+FRPI90TdCOyuN0mW+/gIJm5mcpTj6GoMqxN+lyBlRYiEoWYgboD+sehnWGBGrLJNaceul7+L0pbssnr2D0U7KqEls3bX2aGskQqAeYSfHuPER9fgE62pJ/jYF0Y9R/grvLTEonC2y06khKcnPMcFgXIl1hZROVZ4slNkYWUqtNQrDMSTYbgZI8X9RSYH3+JDLbLpAuxHKlpjY5/coBMylAL5DEaV0kVkAk2u6IQ7sQsgpymStWsrjlUNHRZd6CJck70DPUakirr/J4sO3ePdh4GI6Yjpy7J/MqZXCBEsg0PZLutUVMQWcG0m3YP8UpxLWapjvQz3BlVOaNrDyia4uKaavMds/ZDypOTqacXB4zGhyRFVWoIbSRCIGWfaK8iZrQ1KQc6hz0OHQwDiAhe0wvmHbxIY/bgDKAEqGa2fXy2T4DzKQGViqzWtfKOtsRLJxA2I2GpJNM8OgEcmsRxyAid/8bldrsslKi9llNgwalB3BbBDmZdtyLJ8nqFyBCJFs/Pucz8p/6fF7okH53Oc+x8nJCfv7+/zxP/7H+Vt/629xeHgIwOc//3n29vY24ATgT/yJP4HWml/5lV/hz/yZP/Nt79e2LW27rVtdXV3l7wYR0A7lRb4H1BYcfBJoGR67YGUorez+gTE1k/ktjm6+yendT3N861UOT+8wPzxiMttjPJ1SliXabDtrhmLOBm7silB3t/sCi/JcAOAL+zmwF1HJai1qhUoabeQm0NmnwBgrhkNZCItWmxC9wf46+UAKQWi8fCOoOFzE24s8RkkZ9gNKVwafkpSVkgxqwMZcTaFy+2JuM1RIKSIzNpqYYwJkItokHuf6ZFJgjANboGyJclZAn6yxeLZqeef9B3zp1/4d73zlG5T+mP2X5rh6RlmNCXSgPLHtKFlxYz6nrAzrqLheerqux+qSZR9Z9j2BgoPD2xQ35qyWj7lzcovj+R7OJBSaJnV0SQy4jJNSVtMY1k1P0y1pri8I62tiu0KFDmsdsRxBX2CSEr+SGOnXPYvLM+r9Z+jRGDc6QI1qlJvSdyu6rsd0VxTxipGOmKRQWOn8ip4kyUyo6DE8JXGB1k/Qeo+gD/F6RK8dPZouQu97+vaavrnCN1d0zUJKOyGX2AwEEwgqkLQmRLF9R7Ui4svwWmsn+qCoiVGL7sOD6SJ909KtlxTNEjtaE2yzvW2S6ImUlpbJ4VoKKRGiJiYBm1KG0jvUckCxbYkk+c21SOhJviX5c1J3kUtkmZnJLZl9gN53ECM6ip6K0IsLblcQ22v8+hqjC1LoiWgRGfuAVhXKRmmlVRkgY0mIxXsICRsGvcn2/pYCq8rfyQS/vY/VhiFMESod2ds75LXv+H4++tZ9mrWYC6rcfpno0RaUc5jS4eqCejKmntQCCpQGV+HbgrheZtW+3OPaWFRRCGuSDCpZgg+s1w163UFPbl/1EuCmIQ0oIZcgjAbrNAQBDGHQvihhs7wg1nyPCusir8imgFlkKXk+lqT8xgFVDRMwWtpa8Wit8H1EmwTKgTHSndZ10jKNQxce5Ve4lChaRTKJR1ePWcxmFKMJ43kUIJ4U7bqhXzfExrPunxCMZzyZUMxOUOWUiKPzPU8ur2jMlL0b38Erd76L/cMR8/mY2XTCaDRFK0XA50Vc1uQkKXsOnTEAMVsxirB4aKHYFDZ3rpEhKy5txvLNojPtPAfPdezs+o8o4oZl2YCXnXlvcHcVInxnVTC8Jn+/7diR7i0GUBMjKQzlIi8AZSjj5DbhNJR8sg4lRS8t5rkspPKiWf4n2wtJFjuDyDeSxAjwd/j43xyg/NiP/Rg/8RM/wauvvso777zD3/gbf4Mf//Ef5/Of/zzGGB4+fMjJycnzO2EtBwcHPHz48BPf82//7b/Nz/zMz3zi7zaRLgzdJ+S8GHm8WO6DLZId/m7zzc5zCijtiOnebU7ufoaTl97k+NYrHJzeYe/ohMl8vjFg01ZW6KRhsMo3fhaoqoES2QUgu/4iL+7f7i4l0Zz4EGi9xydZiQyrRnGGNSLGNQZjXU5H1jK5i9GG7FcUP4gYxGMkxdwhkdG0SiGLWiEgHTohpZzAqkBLWJn30r4oA7nBGC2VGKU3wERrEclpY7ftxkreQ2vpIJBOkQgh62E0MkHYguRMLk/J53960fCtD97lS1/8D7z361+jLF5j+tLLlIeHWO0pq4JqfEhVG5Tv2S8NVifO1onL86fcf3CfWX3E0d5N+pAwaUqp4WS/oHJHuNuvcniQmDmLVYp1OyexJBmN0Y6gIt5H1q2h61tWy2tC14lhlzI466hGNcbP6OlITUHqL0mxIQbF4nKBfvghMVl8MNjRFG0s0Vg6GlLosOuEz+WuZK2U7PqV6AlMgbO1gGDfUjYfo9MTUPfoKSFNiWmPXlX0SuH7luA7YS2U6Hl0ztBQJgsY9bCisoTks/4DuYuSxuqhpd7LeTS9tMCuI6502PWCtrnENJcoPcpuwyJUVdqhdCIqK7Xr4Ale4z14n4T8CIk+ekLIK7YUZKXlIyGIb4UPQQC17wndktheELtWmBOZNoFACAkv5hKSK2WMrOi8x5PQztGtr1C6xPseW9Ro5zDKZjA2QuuYQ/YcqEK0BsmSkpOSZFCkkAha0l3QO7lfSUrLfZIbV2/GIyXNpQoKlRhXjtc/84d5/+tf5b13Hklbte+ygBK8NPMSc/ChONsu0dai3BjnKnRytJ1G6xKtrSwIjJE8HF2gU4GuAj5AUa0wxQr6rPVKIVMXAjpiyt15CbTR2JSFr9puW42VAlVikiJRZPdpYatDdhFNMX+OENFDrILOjGzsUQNTlBkemRgVKXp00hgD2kqOkFEO0oqkxLzQmE46k1jj+w7nK8y6oTm/oCk1wV+T+kRYtvTtEpSh3j9m//CUSX3Ecrni0dMPWCzXeHPE4Svfy3d99vt46dXXmM+mTMsSjBUWzGffjqQAnyeIlH9WoOLOWC7C301354bryOBDbXVXW4JkW/JRmxdmkLLTgCBjNnKc872hBqCzA1xIO3+XgcFGczKIYwejtjTc71nkGvptR8/QDTqAjyySVTFmPYqX/chCVzHok3/Dp05RbPIjW5Ck2Hb1iJwlbFim38njf3OA8lM/9VOb77/7u7+b7/me7+H111/nc5/7HD/yIz/yv+o9//pf/+v81b/6Vzc/X11dcffuXRiEo8RNiJLaYcsGx9ftRfPtxZ3Bljuw/RuFwrmKvf27HNz+NEcvfYqjO69weHKTvf1jJrM96ol4ESgVUUlWhZq8attoTWJmLX7rz6Z2vn4iWEmJ4BM+JPpOaqApBXSSds6BMXF2AASDhiNPNFHJTRd8riP2AkLC9mbY7m1im3I5IHdZTceUEXYGLCFI+6PUZg1ifa+xxuGMlt8ZjbUifDSIsNCoJCtBbYYPiM61UgUyMRuDdhqdIikqzhYNb73/Ll/6z/+O9770ZSrzMvXxq9TTm2h7gJ1GpnPD/qymLsAmTYqOq6bl0dWSB48es758ij8p0eUMpWq6YLHTiJsmphXsjyzTGkZ1rh87i0pzjFG5e0njvaLxnnXbCkgwjtYqyrrAj6eoXrJOnDaEpcOvE9ob8bhoGy4efEDfXLFeX1HPbuFsjaUj9JeE5hl6fY0tSgpbkDBYQk4q9blF2RCVFQ0RoHwDcZUXQwU9M4yagT0lqhpjQakSbSek2ILvSaqh0AlnEkZJ509ILUolyYYR6SYJARJKK/HX84qgDd6AMp6u6TDlEnP1FFs+QpkJhkri3VMA32N0JOJkwIoR7zV9l/BBmBix3g+EINeTD57O97S9J/U9fSeGYdH3KC/OsHp9RQqekHpSWmGiJlKA6ih0h9cJYyqUs0T6PAEakofYdvTqkhQ8KoxIYYwqRmBKKUNsuBAR9YZk0MlAAOU9remJnYhBozNMlKJSZEZQJqO1Ag+MUo5wADQOUsCiqZ3i+M6bfPp7/yir1S9x9vCKXq1IqYNYoaIhxIT3Laa7wq8tRnmMVZTVFEWFsQqlE0o7rBsTEV2PRazglVYk4zBdRVHUuKLGdD0xaEzI50fnWSKq3N0ISYOOEacjCelwsip3EcWSPsqIprUVIBllTRxjtu3vA55E0gGNRquKpHpiXBNiJ2yuKVDGZeDihRtNMjakoCQk0sg5dEa6IFVMJL8mqURRjZiMpswPjqjqGQQDqqRLDZHIZH7E7OAu+4e3aPuGRx+/x4Onj1i7MTdf+yFe/87/ipdf/06OD/dxVkTPKok2SoCeIoaBVTLbMo3e6uukVDEgDkVM2/y3jW9VLpkxTPT5HlB5pBPBKTsMydChMySLZdMz4sa2PGV7eym6+83ilaR2Skq5dDOYqWWgEFPcGnXm/cqNQWyDAfMiYSgPhZhBRxJQMuhUvLAo0vyQf517VDeeLJvS2IC/MotGRO6Q39nj97zN+LXXXuPo6Ii3336bH/mRH+HGjRs8fvz4udd47zk7O/stdStlWX6b0BYGULil3NRQ8N55RLZlmxcRrkKAsbBfGq3khNqiZnZ4l6Nbn+L47psc3XqNw9Nb7B0cMZ7tMZ5NsaUV18EMrgd/k91Av9/uITTfUBb65EdMojXpg6ePgZA8IQYBQkq6coyxmT1RWTWv8nGA6IWqy8tVUpCUTJ2PWyRreHZQ3bBPMcYsYMvHTgvFbxHUZ3RWwGUlstYWaxxF4SisdCYMehdjpMQjwt3h8+em60GXs0FqBiGkJKPmfNnwtQ/e55d/+V/w8a9/DfpTiltztE5EkxiNFLO65qAacTpNjCfQenjyTPHs6Tnnz56xvFyDtlxeRkx5jR4llB4xqgomo8T+LHE4kxWus0hwF9nREfAkOp9Yd5G+lxVApQ2hcJR1Df1ErPBTwBlDZy19WWJWJbRXqG4J3TWxW7J69phudU09eZ9qPMfZQso43TWmW0uEsor4MKEsHA5wRroaQjTSH5o6FJ0EDUZQIeC7XgLECkWv9kh2SnBzlDJE7YmhydRsh44Ro3oUK0jXkNakJCyLUj1RybWmU0BHg4qOEBwxOmI0xF7TNwFtV1h3QbN8TLJTiai347wia+lVC6okJpdBjqbPDIoPGXTHRPDC7PV9n/+19E2Dbxp8vyD6Bh09Oi6hvyL0a6LvxVcHBcpgjIAEa92miy9Gvw26G1aQMRBDR+hlokXL5KKSJqncrWcLYjTo6ITNoaWDLLYs8aEkxhJTOoyRsEBNkpIcbCattKVP84IhUmrNfFrz6mf+MJdXkdZ/gfXSEnsvQZhxTVKBEBpCp/BtgXMG7yt836JTDyi89yg9RruOlFpiZjy1kv3XQWNswNgRrhhhbUcwnmQNBgnyG8aglOR+HSZSnVPoNAqUxmsNyWCGkk6K+NQRdMD3svAJMRIUWRArbrYxRTFEy2yDLOAQMJPPG8gkG2OBsRHrwDDJgK8nhAYVA2VZUo1K9o9uM9u7gwGa1VPaXjqBNA2j8QH13hEkxYOPvs7jZ48JynL85h/i5e/7YV5/7XuZHx9hjcVsvIRA6mwvFPszvbFbrks7Y+S3aQjz5LxZnG4Wf2qz4BvG/WG40yA+IWwLQ2rwjcpzVhzIG9QGXOzOeQNcGZjmDaDaeQwWFdv9GliW9Bw4CTuaEpFLbG0jNuWmLJId9iMOoOi5iJPIoFxkAFFsP/+3dTH9No/fc4By7949nj17xs2bNwH4oR/6IS4uLvjiF7/I93//9wPwH/7DfyDGyA/+4A/+rt9fDZRXvo7U0LnyvD5p55vnH8OxMkhbmCsnzA5e4vTuZzi+8yZHN17m8PQu84MjCfybTikqu72gB4Jks8nd1l35eZiIP3n7Oxf1C7sak1jWt0GyOHwMgmSVza19TiZ/s33/jVFPTKQgdX2GvwviHBkT2SclswWb1mYJzPIpZRd+JTVnBjpXYWOkTxHvfUbKiUJL9LixRvQau4BJCUDRSlC+zgN2SsM+q1wRy4CNRNKe6A3n65avvv8Bv/Yr/5r7X/wamjsUs7voYiZUt41ol5iMLbeOI6eziDLwtNN0Tcejhw9Ynp+j04h6/4SyHGNToDaR6cQyHcHpTHE4M5TWg5aJBQXGZuaqV4QY6fpEH2RYscZQugJfVvjRSPxdFFijaV2JK2tCPSOO9ojNlbi19tfE9prULgntBddnj2mvziiKEqMtKvbY1EEn3RBNs6Kua0pXUpclZUKCzbQSz4coKawpgSVSaE1EPCv6wmFGJaGqSNqSFITQocmDTujRsReTrDCGcIkJBVp3GBqgIdKCDvikITp0KvDRonyezFqPMWs6d4GpHqPdHNQE4xQkQ/BrBNrVxFThoyFEQ+eVRDD44dqO+L7Dty1d1+LbhrZd066X+PUVobuE2OOswZmIStek0JB8T4qSCK2MRcWB65MhLYRGJlk1CLXJ90IPSQsgia0wK9GTcplSwHgj1LUPRBw6aUJa46NBUxPTCKUC16oilpZSmY1Y1uRrPKmEH4A/Q4OSRBfMioL94zu8+dnEcr3i4UcPaZYt0fcEf07s1mjVolMg+QWxj8QuEduS6D0hGdr2WuzaiwkxarTq5f7RVtrzk0HpnmRKtB1hXS/tnWnQGchkJt0iA4iS+z4OBXNlSdlX2EYxBRwC57yKRCsEXxcDq+QJOUtLjBoDKGmB15kt1UrnsU0yb1QewEWz5nFOU7gSQ6Jrl4ReykXT2ZjDo9vsH93BFhMunt3j/Nl79PS8NHqTMgHU4Gqurh7x7Nk51z7y0vf813z6e/84d+/+EQ4O9gBPVD2KHmWsxFAohd4Ale14LPhEbcfHJDyTVrmlNjPmUvlRWdg6rL7yOK7y2PbC5JPyNRIZROhxp6yUK3ApZeF1Xszmr8Ncn2LiuXk+iRjVD+/1guZEDfs4iF13GRa2Qlw1gJwMdKQLNomLca4ufNucOhAFMW32BdJON1PewjBX/14ClOvra95+++3Nz++99x6//uu/zsHBAQcHB/zMz/wMP/mTP8mNGzd45513+Gt/7a/xxhtv8KM/+qMAfMd3fAc/9mM/xl/6S3+Jf/SP/hF93/PTP/3T/NRP/dTvsoNn+xiU/uxeIC8eg81Fs2VPNn+fn6/rPfYOX+H4zqc5vvs6BzdfYf/olL2DI2Z7e5SjGlc7qVOnfDKzMlltQNL2nTcdLL/FY7OLL6Dx4aL03tN0Heu2yY6tkeQTVidMYVFFvvnVgFbZoFwRwfpNmmQabEBTyi3D+QYbSjTGZc8FS5HLREOlNCklq/MQZQAOAWPkOa00TkkN2ZiENQprZRLXWmXmJBcNNqsSUAwCO7l4txd+wkfLxbLja++9y5e++O/46MsfUJvvJYwKzGREVR1QjyaM6hkTZzialJzuO6aV5bpNXLcrVr0iqX10oSndmMOjG9zcLziaRUaTinoi5ZzZKFFYGTx91PiQD2OULKOYjHSdRI1JCmMC1hpSURJCTwozLBpnCgpXUVZj/GSOb5aEtiH2LSm0pOaa0C6I7YK0viQ0C/q+oSNiNAKQVCRo6FRFShWEiqg1oe3pY0/h1zitsApMcgIoTV75mjGuuImuT3DVMW50iC9HBCWCaaGwA6QO4poUGmJfEvtKAEgYY1KDjit0WqJZAiGDVNFE9D7mSd+jdKJvNWa1QpcLTHGFUuckp4CS3jfE1BFjR0idpCJHS5+1JzEIyG27jq5d0jVrQruma65Zr65Yr57RrxcQVjhroJ6iS4tWrQhmhwpFijIREkEpbI5EQEnytdHCMFoNWnm06tEYtA4o5DXC8w/GBAqCFXsePCk5otboaOhTiUkR6z0+9Ky9p48TSit6HZNLniaXy2LKDG5KFErj8jVeG9ifVfhbd3n9+vtIvM/yStrAw/qIvrkk9gsMS4zqUGENDXilSbolqhkkJB/HG7Q3KNUKuIgOghWthzEoW4CtUa7DeE+MYKIi0UtphiCGlikbrSm9aZtWeXCzsRW3577JSceG0pRi+FglvDMs+sRVH+mDdIJonUg5cSopRVIWj8LqiNIma01UFuZaKhuwWpNCm9m7yGTu2D88Zf/wNbSpaBYrzs++SBMuOTp9mZu3Xqcs4OLpU55cfsSiW+KmLzH+zh/mU9/7p/jOT/0AxxUUphUdDFEARhLRsoxD4uMxDNNbZmTTb7lhJZQykGT8irmbRqns4jqIjfMUsGFUtjMMDKwCO0LWzVyhNuNjimLhoPJ+CGESnt/GQLEk8vvGDFLIhMbzTMUneq+8sL8yfYlMQWJEtn+j09BKv+F+NuP25lV5EZqX5Ns5absTz7FJv5PH7xqgfOELX+CHf/iHNz8P2pA/9+f+HP/wH/5DvvKVr/CzP/uzXFxccOvWLf7kn/yT/M2/+TefK9H803/6T/npn/5pfuRHfmRj1Pb3//7f/93uCqScLjoAkuGg75542KHDts/tfq+1oajn7J28xsnNT3F05w2Obr7E3vEN5oeHjCZTylFNUbpMXe7Y3rNtp9Q752Mrg0q/LUjZfJQBWKSs8wiBtutpuo6+7/FeLM6TV1SlonCDhiRt5v6NWC0EopdAPh2GRMkgrWBA1KKZUUroUaMlL0NbKyGCWWC7KYhJARVtpC6Z3bFRUS5QMd0yudyks0mdGNXJfbd7tHfPxZbuHEpNMWmWq8jbH97jC7/877j31juU5g3U0TEmthRugqkL7LjGmMT+1HDzYMy0lgj7i3VgseyJccrB3ogwumQ2qbhxtM/hKHCw11NNLK5CjN8M4jibxOsjDpRkVKiYu2dyecqqhCUL9m1BKmt0SjilcbagL0rKqiJ0IlCNfUcInuB7km+IvsO3Daq5JrRL+vaa5NeY6LORnsFZQ1FUlEWNdSVWR4gNnpaUWvrYoFNLSSd1+2RAl4wnt6lOPos5OKWxFctU4VUtQlwdWTcNoY+kVKKo0Kkj9g2+b4h+TAprdFyj/BIdrlDeQWqFOiYIGIsBhRGjPW1QvYI2odcNdnWFVuekMpEY4UOgD9IFFmLAe4uPRnQMwRN6sV9vuhVdc0W3XtK3K/r1Fc3qnPXykr5pMASoxjhlsUg+jVJxCyZSRCPgThnQ1qFxJNMTowgujRMgp3XAGI/RHq0kC0VnxbzODAxKo0KBaCs6QtCScmssMVTgnST59hXRt3jf4l2NNgXKWayxWGOwaFSSYVyphDdQavEhQUPhFKNxxfGtl7lcJuzTBU2zxK+XdKs9fHNB7C8gLkD3gCX6CMaTtM8GZ4hAXxkSlkBCJwsYSBZlaowbYdwa6zpC36N6TzIhM05e2rlT7hIBVMr5PDlx1xApEQG992v6rkNrS2ETlSspnAVTMPVQrz1Plx1NJyNj3LjY5c6wzMi6smRUVlSFyl4sXpKOY0eMPVVt2btxi6P9V6inR6xXC54+/Abr9TmT+TGffu2/4s7Lr7N3csz1uudy+QUuLt/Fzz7F4af+L5x86o9y+PINvFOc9Wv2rNy7MmGafJ7lOjJRbOxfXNBuJ1fFAGA2Jmr5PxHB5tcqtW2G2H1kUCETtnx+6XrcIKLtprUi+cx47JaE0kA85LlkKCvtDM+QF8uDW/Auoz7MLxtZQQb0mw+7ZUfks+g8rQzjc57H8meWQV1nMBI320tqYFLkPWU7YfiYYmmx+3l/B4/fNUD5Y3/sj/22COjf/tt/+198j4ODg/8Vpmzf/khp6KvPdUypU/BiS+/weBGYgAhNq3rO/skbnN79DEe3XuHw5kscntxmMt9nPJ9RjkbYosgpujEP0oIW45asJA3GRHq7ATlWzwOVAXmStvbEIWRTtBjFJTZ42j7QR3GM7bqWdt2gKHDGbfrUQ5AVPaQMTALR93jvxTG0lxCvSBKQgSFpRTQOU1Ro44iIRTm5XCBrh6xnyQIRbRQpGWLvhRrVSgBKvhCVyd082m5WR/o5YPbC3QSbypzWQ9kHVmvPtz78gM//8j/nvS/9OgXfgT15CTcdo1RLVU6YHM5xZc3eVDHdryiqEW2bWHu4Wlxjw5qTkaGa1DjtGI0iB5OWqkwUo55JPUY7JZR9AuWHXRN2KgRkVR0VfQy5zVYuMB0DhswqGIcqpLvBGkdwBb50JB8kOTb0eYETUUFo79B78G0+vy3Rd5goehJjS8pyhHMlZT0RAyytIAR0aGUl3V0Ruwv6cIXABUlanZzeYf7yZ6nmtwnasvJi6leWJbq0XCzOWVydc73o6ZpBlzQiZWfHGNYSRNgv0b4mrR3aX6EIGNVjtSaGBu89zhTEWOC9gz6h2zV6dQ5UWB9JqqMPij4oOt/R+47gLSGZbO7XiYFcu6JtV3TdJb65xjcr+uaSbn1Od7nAd72wFynRWskIss6ISFQN0RERFYPkN+k81iaFMobCGowusQ7QCmsT1oF2snKHbmNVqAdaMSlCaojBErRc9woF2mGNImhHZwtMUaO7C+y6RLsSbQq0G2PtCOPkvhIABUkrXOEorcOpzLCQ0E4zmk45PD2g9w6zqmidw5QloRnhm5rY1ei4JplGyk26IOXuEqVzfpIxxCSeLZKtY0nJAhpjxli7RJtG9tEU6Ohzy7HKTtCy6FIg13gI6HYpydkqYE2BSnqTCqxcwCgonWY8LqknM3HZXnS0j87pU4/3aVMq0EkEqM4WjGd7zOYHjKoS1a/o1pe065YUIq6w7E3m7B/cZr53ig+Jhx/9JpfLp4ymc26/9ClO77zC7Tde5+jmDUbjV4kPL7nuv0A3+hR2/3t4tlqyuPfLrMv/Heruy4xtogwlc91tJ2sg6jTcPUD//DwxaEzyhCGL0Cx6DlsW5PkZhefASD718pqsFdsMfnLoNwzMBhzk/dNK2s83IlhyY8HAPuzIC3Y3v7s4f27+U2zE6ylnqSmtBThuxujcWDFElGjZSTWAM61QycjnUPnYKClLJdlpWceGYeOKF5HIhrD5Heo04fd5Fo9CEUSrT1TiFjFYC2+ZjOG1zx8vBWhlGY+P2T99naO7n+bk7usc3bjJ3sEp84NjqtlUUiwLJypuQCc5kQwa0XwBBc0mlTc9t2G92ebu9iOiEwk+W9Z7EcDGwSo4Y6/QdzTrhtVqRd91lIWW1r7czZMEd6CUaCV8kMyVmEFN6Htin0AbjC3BOelQ0Yo+9ZgQcQSUMhilSdoSEZCxKZ0pAXIxgXIFSid0TPgoAIpNcmU+MJsLMH37gR9uSrKq2+ZQseRZNYGvfXSPz//Sv+Cbv/gLlOlT6NMTzCxQT2dYY5nsT6nGM6xumEwMYzfm8XXDw6tLWD9EtYmZVUwmlvnsiFFpsK6hLC7R2qFNgdHXWOUorM07Z1C6w2jJTwkm0qWWzkdU51GdwSRDigkXe4wKRJOojCKaSHKB9UrhbST2ltAmkjMEn29yg9DdKQ8yuS02hkAIkuFhtcaVFltUFNUMV05whUS142UCjVEATeg9qV+IQDaeU5uWvdMR05M93HgKGkaxxPuO6WTEaFzQhwPOnp7z5PFjrpuWddPgvcP7FqIi0mP6hthcQFNTFWN0+ACHYjovmZ++zLJ5xLOP32V93RFjTRfFa0NfRUgLUtA470k2EdKY4C1t09J2DT5qoCCFSPAr+u6Kvr/emAPGFPGxI/hI1ygxnOub7IK6AmVQqSKlGlIhuqtkxWbcajHxSAqTApo1AM5YjNVgNbYwWGfQ1kgFSHkUPSnmnKzUM/jzJOTax2j6zLwXStEZUMahjQXr0LZGmxHOCHuIHWOLMbqopFVcWVAGZwu8H9EXE4qixClNIKB0oHAFs8keq7lEEiQzw1qFN5bWeXzj0L2XzhsnWgClHCYU4HI5K0o2i4BgaR1O4g1MUIaoBZgYW6OsJ/kgE1EKJKQd28RIF0B3S2iuUH6JShHrCpLV0ILbc9x55XXi9RXLJ08YVSWT6YT5rTfQxT7u2T2eXVzRecWV8aS2R4eePkXKSc3e9Jj53g1GdUn057TdJc36khh7JrM9Dg5O2ZufovWIi7OPePr0HfRozCtvfi97kwmTqeXg1RPuvPE6hyefoV96fu5X/we+de8J1DeJiyuevP8OYewozWucHNxlMp/Rm0CvLDa2JCLRgPGSxNyZDhW3k+muADYhrdcDUEjyREbBQ0AfAnRi7sHJLIqKeT7K/PG2S1kE2ahEMJBC2oCFFAc9YMykhnRrDRtPadPQI4AjChungsnvn/J9IPrDtAOAZK7SOV9tYNDlXtAM5mwCQiTnOkgUVVSgAjqIN1R2ERBmVVkJbk2BQTdgtBHn6CH2ZKPfiRglreUqmd9mVn/+8fsaoAA7rcQSpLfJvRnmyJ1SXWJjVwK6pJ4ec3jjNY5uv8HJ7Tc4unmXveNjJvN9RrM9ilGBMToPaLmMg8pnaAfJsgUqso2d8kje9u6FH7NQqe89Xd/R9z67LGYEnVtdovd0bUPbXNN3LQowNmJ0QGfalaQZQvzaztN3nYCdXkpDfeNJSVOUOnujQEye0ItxlqxsDC5aEoW85oX65VCfNPn4apWIEfBxY8AzeNBsnXHz594wSM8/Usq+J1GskNde896TZ3z5i5/j3V/9IkX4DKOTNyj3XmI0nzCaHKB1pKonOFVQ2gVa9ZwvF5zdf8bVo68y4T3unh4x2r9FmQ6p7YRROcW6KpegwJoOY8RuWykjNzgWYxJO1VJfDh3rcIHzK5zt6FUgpRKSI4ZEjD2qiNJGGQPGAqlk1axoli2+jaTQi5dMgL7TxF6u0qg0IZV54ApEETtIuclZbCEmXbZy4tVBkbUASurouVQXulv45QU0AVs8IVlPH87pG9ElyZixRnFC749oumfY+CG39zTrOKJrKlbLwLIvRZeQWmaVobITlot79OceEw6JseP07uucvPz9eBRnL7/Fh29/hbOPPsb0PV00pLLHrz2ehiJ6bF2BmeKTpgsNXQiSZhsTKYjTq++XxNRiXY2hJqkJXSt+LGJAavHBElAykHc9xhmMKbAmgQ6gc5K21sIMpECKLVGJpwsWsAnrDNaWGFNsfHoSku4rPiop67PEpl0rjcqt71HJfe5RYJS4neo6+8IsMc7SKSPbtyO0G6GLCmtKlHVo40iuxIY+W/InvC4gGXwMaC2hkeNxTdd59FWgdwUqRKzZozVn9H2JiZo01EzJycVYCexLIppGewji9CwsbCdGWUbCGGXxkcP5ojBz9J2cE9+g+5XoTPo1iijeKlpa3pMOHN+5yw/99/83DqfXvPWb/xrtW0LTU45uYIsTYloz3h9jmhVl0Ky12MLXTjOrHXuzmkJfs149oGtaUh+EEZ3OOTg8piz2Wa8WXJz/Cl2MHL30nbx053uYFo5oPmb/pSNeevOPcOPOH6LeO+TsvYe8/ZXfpL2eMn1lH2KPsgtMnLB88A3e+9qC69uv8tIrL1FNEihDmQIxm/RFZdBxQ5N8YmXguXHwuY6erLd4QXdhVB779RZUyPi/+UZE5nm83LR4Z+afoTFBOhmI6I11vDgsZwJDSWyJNE3IOGv0YHoo16wYBObW5qG8kzPYZPyV0pZGhOJasfGuGdxylc6VATO432b/HCUBk0opdOD50o2SBomBRAkbDfJQSfidG6H8vgYow9S3EcsPIpwdEu45Bi7/bE3FaHbK4c03Ob79Okc3X+HoxsvsHZ8y29+jnkwoR5V0JLxQe5T3TCStNiZsg0vr5nWKLfWlhv1ioy3xXmj1ru/E9TNn6ojATiCqD56u7+m7VsoCMWGMoSgMVut8oQ51VVFvd8HT9j2+93k7iaQM2jqitTTRk5oOkA6KocWtLB1KjwjZQn/rNri9QYf2N+nWzzemSlidC0LZMVYPpR31/M3+HK2Xb9CUIgpNmzwPLq740q/9R9751c/Beow7OKE4OGR+OMNMDsFGglrjo2NcWaxJtL7j6b1zPvjGF1nc/1VOJ2eM2tfRfQtxRWESTp1i1ARlK8kfsSICLpyANWG9jKSrKtGcmKQxbo80HhPyOYiD9X/f4vuWQTJmbIUr97FuRufHLBfP6JuOGDSJMT4mrpePWV1f4DvRu6hUotSYhBOgp7IGxZW4UlbGtrAYV2G0AYzU84NC5Wj7Ll3RrR+gu1+nVw2r5ibhwpLMNUEbulWDTZF20WLMPbQ/Q3cXFG6CG02ZTI842SvwOGlP9S2jskCVU5pVxeN3/zPxrKIYTxmNx9hKU41PGe3doBzf4avt/5OLe49QxhGoyFM7UVuckc4aHxU9OYE4KllhpiEN1WDNBFvsk1SFoUeZlUQp9C2+T6Dk+CQPqgt0pscZj3VCXxojAvGhe05bhQoAEWU0GCNlMiuhk9HIRDS4XuocYBhTzKZVYkDlk5cJf1PCzYJu7bBWofQalAB+52pQDdquQF+jbIUtRrhiIqUeV4Lv8nYUwXuMq0EVZIdwtIayrKirSN9IKJsqe0pt6Io5Tduz7hxJOTCOmGL2X0wkn7NRwiAW9sQoImJh2FTWpTiI4jBLsMQ+kroW5VcQGnS3RnUNKYqHicrnMFmT/TN6anXJeLLgzmf/G45f/05CXNOvL1gtn7C4vMLOv4Nlp1l3X2JxueY89nTGMi3H7NUlhEuaJtCFHmtqytGI6WjKfHKCBs7O3mHdX1COD3nl5vcy3x9D/5imP+f47ndy+up/QzX7DJfXHR8//Ty/+v/5tzx5+ohgPe3VU2w5Z7T3JtX8BgWweO8BiyctMRziXp0xLhSHVuwEyPoRnVIGAN8ORHZ1HMMCczvGZ0AxgJMdAetAGmcpRp411GauSrvQZJNflS0ndF7eDl02MrrKdStc3wYADVk/kjosfycdUWzsLpKHjdw3RVTMHKGWhfIwpUnnWUTMRXM2T7SSraNEhqu0ADqV/XKiFi1TUomYtTUpfz6VReciRpauzc2q9Xfx+H0NUKTUtZ34nkOi+Vcb4Jr/GTNmMj/h6PabHN/9Dg5uvMzh6S0Ojk6Z7u1RT8YUdYVxoHOHwCAMGsqIg4X8xsAjg5Bhr3bLjSnXYBIJH6KAjr6n74XpiEmAgtYqAy2fwUai954+SqvdyJY456hciTMWqw3WOBA7L/rcWeCjDAAxJLGit5B0IqhtGrHQ7NkBUEnnjcyUsts+RXSU8EGtZXCO2btAQgJhkMEbIyF3g6W9zgzW5hDkg/+cb0BSxOixSkSEHy8afu03f5Uv/C//hOahptz7FMXsFvPjO4z2pphxKSs6PeLg0DG2FeuV5fzsggfvfo373/g8/ZOvUuzDk6oCrQj+AvpLQv+U2f4xk3BCNZqJOZobU1UGayJOg8scUK8kbyMqiy6KXFNNND5lq/iG2K3oW0WKAvSMS9STEu0KKg6xRcXy4kLaet0BIUzBVqAL2iYzXL3MujI+dCgVMNbhnMXYCrRBxYLkNUF7yOLB0F8T2wv86hnLqw/onv0GRViQJjP6vsY5CVq7eHzJ03tfZL82VLWhrA3j2RH1aIYKLUXdMHnlj2L27zIeTXB2H+wRloZ+fUERJzT7Y5bdh8z2X2U0m6L0Aq1GVOMTbr703UTf8OX+X3Dx8RIdFH0Qm/2WjjIt0E4M1Hy0xCSUsRj8iW+GzRooVdWkaKEXirvvA77zhOxKKUZFntAl8SIxC3RhKE2NVQadWgitTKhR6HcV5Z5UIaGdwRgnQC8L+1TWRgTVk5IS8XK4lvZLr1Ghx0dPIIlYWhptgQZvPShLshptHU0fMMqKYaEJaJsIvca3Fl0abOWIMRHoMfEa7RM2RpQLQCH7pJPsoynQpkWnFePpktlsjtIj2mXk8gpWraMLpSwsVBA7AOVRweOTBww6JXHEVZGIJiVDwiCJzeTutJboV8T+CvolNnXSPYNY5mOcsFKuRFsH/grDGv9U8+Rr/5S7b55wePO76ExPiq9BSDTLxzy9/wExLIn9x1yfn/Pskebxck1ZVRg83XWPMoayGFNXY+piQmEti+UDum6NrTS373wH+/uvkOI5z57+Bnr/gFc/9d9xePpf8/TRU37pF/8ffPDNX+Ls4cfocEg9UqzbBf35W6xNBeMj6tld9Mkp6vKCp/f/I9f2GWrv/8Sb+1NMUuwXFpe7UOLAZuwAkN9KY7l5zXZ4f+55pQQkxAFYZFCBEiZjaKJIeQE7jJIbTWLWuqDTxp+LIAZrJuoc8yb6v8F+Hi1kjULOrdYpG8cJn7/9LCkLowX4qM1nEA1hihGlgrg/xyTi+xCIZO+qHFmB1qSk5V6JBlSAoDBBERD7e6W1mPgpskZxOLb5I+r/P2fx/P/yIRdCNvxSSgRGfFJRQaPdiOn+bY5uvcHx7Tc4vvMGB6e3mO0dMN8/YDQZY8oS49QGnDwnoVDbvnfZxoCwd8pH37bhlMFJEMDhO7oMToYkSiFdt0GCYjylQRnG2craKPEXKZSmciVlWeGKkkDCB7+xL96kW6bsAaHBWIXRStTq2pCsIhhxlU1I3TDGSPSB4ASR+xgFjqSE1oNIS/D78JkGsdRwg4soVj7LdjXx7WdCAVonfLKcLxve+sZv8Muf+ycs7nXY8R2CLairEcVogpucUJcVxmiO9isODhyr1ZrHjxY8+PAeDz94m+Xjh6jrFUuTuHr6hKooML7F+oiOLaG9pJstmO/fprBH6KrGaUNhNJZIqbYew8HkTzeIxVIiWU+KYgutBqfOFHH5/BqlKYyWFUM5oq+u8F5W7zoanB9T9icSLxAkvM/3S1AdyorjJkYTTc4wSQq6lbQDx5YYVsR+Qb9+THf9gG7xEL+4h14vMNbQR0PfPuGq6VgsnvHg3a/SXJ3hXv0+3N4CGw8wNpL0Ja4qmVe3cbokxgXWF9g6UdU1Tk1orGNpnnGsv4fT0+8g2khZ3UK7hHXS6TUuCm68/INcLM65uvplQlsQiYS+IrSKLi1R2qNUBWqGspWE2OWkW+USyjqUK/EhiCeKb0jJYywUtZNz0HnwnhAafMgrxFbTtQFroI8RQ0LbJOnPKKwBW5eYssA5ychKRqhyQ5FFgB2S/q2F7o89SIWH0HXge7qQRFAYNUl3YHrKaiTGbjplrZdBZ42HN0ZKQMFhU4GNBRqL146oawo7woVSQuz0GKsrtClEN9ZrtA4kVpjYc7yvuXHjdeZHd8Wvo4Xzs2dcLa9ZLAOLheJ6KalAmg5PblvNDxsinfIEhbBXWd/T+xW+uyatz4nNOalboGIWjyZF0Aq0wbqSoigZVxVFSsRkCF4Tgcv3f5PVB7/B/vTTmKIl6hblSmZ7R2hV4psFrmqh9Tx5/x5f/vJvsvaKtm1Fu5WStOurRN9d0XUJrGd2cMzB0Q1K51g8fYvHZx9j65scnXw/i9UJ7/3Kv+aLP//PefDefVwxYzQ7Yv+4Eq1UOWHZRvp1JPlHNPc/ZlQeoJRif/5ZJntvMrEl1kCnDF3Kvlcql0cGz6wd5mQXqHybMdvu9+wwLJlZjqjnfEo2DMuwaM2zik5DazvbnRjmm0HsodPW0iLFvADXWaogLdPRyAIxZhsJHbdMjzZaLmw0SScIXkC6kjDSXZ+UkEuQWsXMwEg5VEWNVgLqh9yflJmWmD/vUFJSQUMMW78YY3a0ksPx3eoy/0uP3/cABRg0S5u63iAy3giKlMK6msn8Bse33+Tozqc4uvkKh6e32Ts6YjydMZpOcFVJMppBpBTV8H75BKQt8BnYGWFx8pN6OxkPKHtA3DFnHMShDDW0vRExGArtRGi3iXiHIZwpIdSz0YrK1ZRFRVGWKGsIsUfa+GSfrNEoZ0UYqCVsT8zcdLZKFiOmGFOu90ecc5SuQFmbtyufY7fUY4ZuHsiTd8rMUtafZEguDMr2XHzSQ3wSLEuf+OYHH/Br/+lf8eytJxTFHfT4BuP9Y8rZDAoDSizPi1nNfDqidopHiyuePfqI8/v3WD9+QLh6ig4LWq9Zrhesri4pXKQyTlo7o4T5OQtVpairEWHkCOhMrcr+hsx+xU2EgiJFI2yS74ndgtQ3aO/FfltN0JSEXoHz4kyqNKaY4qMmxJouBbwyBF3RpyVdu6JZPcV3C2zhcGYqHH80eaJu5Trpr/HdJak5g9AQuwXd8ozu+glxfU4IHqtk8EnLS/Sq5vriIevz95ngGY3HOL2gnL1BGnfoUY2ppxRTzejkZdzkFMoC4/YwZkylLCUKU85RriCWHcYURC15Kxab81AkNyhZQ733Cnb6hJUXJsJGTeodmxwTMlCxtbSwZ/rZ6BJlSyJS/ojdCuKSokyo6R7OWlx5TXd9TVgvKTTYoqDvIXQtfbPAFx7rDK60IjwtK8p6SjXex1Z7FON9qnJMjGt6fwkhYbXLCxi5fmNo6MMCsaEviTHQNhf0zTVquaRfLUm9opydMDu9w+HtNxiNp1SFI/k1fbPi6cPHfPzgXGzxkeTnFCqSrjDBkXqLKmoMMww1IY0xqWYzM6ZECiXR9/R+zf6R5u7dz3Kwd4Irso4hFoynI5rW0zQ9i+srPrz3hCdnCUUBKKLSJDyaHq/EYVelBL7HNyvCakG4vqBfPMUvH8u1HNaAIijpsPIJcYMuS6bTilmliMsrltFTm0Boe64fLvjo1/5fuOMjTm5/N51XxNDitEEXBTfe+D6Obr1C8h1Pbn0ZV8A333qXR0/XNL2MrV27ALzEYoxGTPZPGM/ntO2as4cfcn5+RpumpC5w70s/T/cL/xPPntxnvVgzqvbAKDrfcL24YjbZoy4CfeiIqSKqCc3lPS4flkyOXyeZNb6/4PLqjMSY8aQWkaYJlNpj0idXHV5s0919fvAI2S1bbww3d8CLUio7uKZNoTBCFsVKmVENE/wLo6VKueyiTQZEMV8yssNi8CaCV6LKfkAqp9qzk+sjni9m6OJJ8n6atBHRChjLpR0t0SMChgJohYlRupdyqKBOgajy+w17rkEHDUo6xKSbRzo9Yxzamw0xaqD7LWaGb3/8vgYogweiitIa65FyBhp01CgVSUkmjOn+XU5uv8HJ3Tc5uPEyB0c32Ts8ZjLfox6PcFWR0WoOf1IaM1ybGfANLAlqI3nJSZ95MtvZN7XzNWVxlNQbhZkwOfpcqYJCOwpXYq3DGEfU0KeOFDzRK5LXYJwAiWokrZbGkhD/Bp1UXtlpnLUUxmJUpraNIFuTtSJRabGljpEU3aZMIy3Cw1e1cf/btkYPE/mOsGsAhEreX7Qxg0dABmlJAI1OIgv1yH52IfDo8QX/+Yv/I+9/+UsU6mXUdI/p9IDZ4Ru44hQdC9brFagrDkZ3Ucpzdn3Bk8fvcvn4Ce35Oc3iI/ruCZXx6FgRuo6+XdCtFE1Zc10kjO0xxlCOSprxiG5ySNfPhFrXskIcTuggZ9qlwmJKBL/At4+g70nRSeYaCq8gFR4bVVbDa1KaknTCR+h9lNyZrqNbX7BePKC5egpRoykIpUInQ98FUrckhmu6ZkG/fkK/fkrqzsTPJka69QVh9ZTYd0KT6l7KiX5CCk/prs9wyVNMRxTWMikj1k1x09uoKlLNJkymM9TsDnpyQkyddNz4NY2F3lhiAKsKcBXGBawuCclvSgShD7ThGb4b063XBD+n7VaE7hyjHFVd4soRFIGke1kxxzUpWpRBvF3MFDDE2BPjCp3WYHuqUYWzBbaco80FKShGsxH7xy8xHh/QdWf01w8wRjOeHjCeHVGO5qL1sBNcOaaoCrQd46p9inJOwuP7a1Rs0boArVFYjIoE1ZLSCmcczsxIBGJcETvowzOWVw/xDewd3KWazhnP59STmnE9Z241KnnOX72i+Mov8843zonOov+/5P1prGzZfd0J/vZwppjufO+bc2CSSVIcJcuWZIkuy7LpbleVq90NdKPQkNFfDAhyAx7QMOxPNgxYMLqB/mQD3V1uq9CA7Yar7bJd8iDLomWJSkokJTKZSSZzfvnmd+eYzjl77A/7nIi4L0mXqgAXIDCQL999N06cOBGxY++113/91xKWGHPaADpItAdpI86ZFCWgPLZtCaEAk7Rmi8WSxeIc6Rt2Dw7Y3blNWUZyJQmhJsQFUkayXDMcDZlMJmRZQYz3OD63hJCRyUiUKTpAqM5+3EeCcfhmgW0uMMtjmvkTYn2BEJGUYaSIQhJUYqMGZcH+zpjtbU0uYYnDLA3RRYwxXJxGTp+c8hIjyvIIMzulrY9pY0oiL0a77O39EDLOGYwzxju77F37Ju+++Rpvvv5Nnpw0UE7A5chMo/IMEQ0Xx/dYnF7S1p4aRYNgeXFBPb/AuUBGgVCOlkDuNJ4ljUgMQVXBINPEoIlZTr14h/pJRKuKtmkQ8zGPZt9gfvAyB7evUVwv0bpC5hop50mX0XUWhtCZE/YFkA3QAazYpvX2F3oX7GeZFSBZU3Stub0etzdTi0BInQepw4YEAEQgSVSForeOX22Z+kTjjciSBFPW827vzhtjYnx9zFJitu8aAzrtiSd1h6VzJQM6H0mVg+CTO3WIeOlBJf1K6DSKxJCE5TIgfAoS7I0do5AIJFF4hEjXEDpnWylA6vx/ZGVf335fA5RejCNE71EtUgClkAThCUKRVVvs7D/P7o2PcHjrRQ5uvMDuwQ0mO/sMt7YpRyUqVwgl1qwHPc3GCtvGFTG3ZgaS5qdDqf2I45kB2j82gkShhUfIBIakSF0JeZaj85QSmtqPfXJ7jCl7ReWaLMvRWiMzvVJICwRKKrSK5EQ0kqjiqtQlOwalF/L21xWIpO7ONOyVTIrwtMPd6EBalbDSl6S3rIY1SBGit7Rfn78PGUy8eWpjTCZSChU9DsfxpeGr33qF13/tnxGbLQaTQ+JkBzk6xEmo7QMyv0cZt8lExmgYadvI+cxwdjxledlSN3OMWSBiREuNQONspG0dprW0dUtTaYplRpG3OJPMqry3SSTs0+SjROdz0H/ukS7YKy3KwkuEi2AcoXXJayZahFySFQVSpPwfH6F1kdZFrDG0NmC6n01b0y6XtMsG6x2ZLIiANS3WpcRXZ0MS5S6n2PoE25yi/EU36jJ82+BbS3SO2I1vIVwyd/JNEnoKhfULCmERrsDOfhedLxD5i5SDWwy3b6PzHKwkhgWRQNAVjZ91I9WkUlQMFMUeId9BioyIIYQGby/JyfFygCdyfv6E6fETXHs/dVmNr7O1/1mq4QEiU105rEVIh1QOoSRRKAQOIQwyC127d473EicBLK1pKHcP2Ns/4vrtTzMa7RLclHpxlq6tLMmLMtXE6b02WnxoCK4BYwks0ocZffqGekuMLi0WCqQakukxRVWgMo0QBVLsp3Lb8g5CPKTNPgA5wxtPsGkhUGqchKRCsTPZ5XM/+oeR4RU+ePsUXw6RoqCQZZcz5DHNEhEtPpvj20vyskoiYm9w3rKYW9rZnFydo8kI/gzBCCVLFAOEzLGyBuOx0VJWBdeujQgcwPvnnJxZjMqREVTwhFgkkaP0gElhfX5JCC0QIC/TQpnaHonRIWWkLDJ2Dgbs7I+oKk0WJdJF5uohrpEEH5nLiM0KROiE+6LGLk+RURIzgawqdGkodYXWdyiHR4xuf5Q7P/FFPvnuW/zmv/rnfPfbb4Cf0lxCqOcshWfWzGlaaOQIl+8gdJZKF6VmEAS27dgvbwgyIMhoG0NWeLRaIgnk2ZLW7xLcCLOc0p4/oaiuc/7ky8zee8TBZ34SP/kZBtsfZWtXYqKh8hqkTy22ImU5XbGH/x6gA1hpLHqufPPuFUfXsyz9L7qN7qah5+ZGNgWudmXzDb1L6D2pOqMzFVK7ue/KOZC0fDJ0AYXdahWjSDEIXTNCwCNj8lhJEelAkEl7EhPAjcEnz5MOTaVyUYrfIEpkiF3MRsq6Cj5pnbywCSB11v1K+XUOXFSdA3HyTZH+B6TNuBcg9ehXiLi2MpY5eTVhe+8F9q+/zN7159m/fpOdwxuMdw4YjMfkwxKZ6wROuq6T1D4Gvd5ks6zz7E12iGYNUvrr2rjGrsMniReSF0mQqT1LqQytMqRWyWRKpteUqiSaSCDr9ChKpZRfIZ/5MsjEgBRCELu2ywQ0FFIpes+R/lrW3Tl9LTRdeX/OZN0cVj4ofXfOJsBJZS2xAiUSUsvb5he6u7boWccARFBCcNYaXn//NX731/4h5mFLtXWEz0vKfEKWDfHeMiwmDMp9BqOM/dGQrIgsmzPOTy5YnCyxsxnWzAneJfMrpQCJdwLnJM6l0D9nuxRoF8Eli/XkP+LxXkLX29/nkUb6VM+wYg2ca9NuU20T1ZIoAiKWiKxC5AdEMcJaiQuCprW0rcUZh3Ee4zytMUkc6wOIHKmy1DFlavAGUFhX44zDNS12eY5rTnD2AhWWHQNWpdZhp8G3BBGQokjK+wDRGwQtAkseLFoYQvQo8xAxNzjlMbv7WPawy6eo2KABrwQUA4JwIAzJYTM5DJswx9sLpKrSpIVMgrxco0NBLjR+8S6zx99Nmhc1IHsukt94juHoGvlghEPiwyTVwUWDiEnPE2MqQ+h8kubJIHAEgkjt2VJuMxzvs7X7AsOtQ7LCEa1AygrvDUo48FOCNQTf4rxPLbwBpCpQ+TJ18IiO8xMacAgaVC7JyoJB1SDUPiGMECGgVYm1NYuTU2Zn92mnjymziI4lZSZI/rAjFB4p9WpuGBcjfuQP/SRV9Ru8/dZThC5QWoMY4KPFtAtc2yCVI8sryuEuWVGAEHjXINwS7VtyMUO2Ga7eI5YDROGS4SEZUgVEDjLU+NBQFgXXjg4ggrOPOL5IQtsgDJ2UhK7m2nn/DNFqmzyXOL8gOoOIJmmrsCgpGJeaQaFQktSiHJLOxwnN1FkKBUOp4OKc2dv/HH9wi+3tW8xnj6nnp0ilyYQFc4GxOYHIeHuHrd0J9pbm+ds/DGGL+eP/K+dn7yCi4nLmafwII3LaIGmsI5eRXJLe42KHaCORFtEGQgAnNSEGclVhnIc6kIkFReGIrQZ/CW6HeXsXpxX4HTIs2l9jLLZo5jPszjZOj7jwC3ZETPYhrDdtott0PsugrMJdeyOzDUv8K2vT99WxxFVDQv88MvZWDd3GU3ZdPBvrSf94n6BHqg6qgHIAyd9EpH7hNNWGpG8Rq26fkDbu/fZbxmSJLVOECiGJ1JXwaU0LAhGSoV3KCupqBCGVj5KhnyKI5MclvcDLJEVInio+lcalSlUJlYwEY/B4/wPSZpxKeWmWSHkjCWVKXVAUu0x2brF//SX2b77I7tEtdvavMd7dYzCeUFYluuhMm3qVa1+PEZ2CIj4DUDYBS9y4I3alJSE7MVO/4HfFn45h2NSoiA5ECNmJi0THWwRQUaUBp1QympKdy98z4GR9nnT+0N3Zg4rUIbAiK1cgo3+ZPcr/UAJmoOve2Wgf3vh3/4Xp6SWRhBvpmjfEYMkArEvk6MyJFj7w3qOn/O4r/5Tpd0/Jh9dRgyH58AClJUXuUWXOoEoulVvbQ4aVx7Q1p6dTHt/9LuePf5f68gRhWqRIGUJ0tdwQUgu18wLjBNYJrE8dVNYnvxnvU4K20iniTURBn7yX4t+T6DjGdC4bAjKrUCInZp3mjAhqgJcjrJMpisBFTGOwLnR/PMZaTNNiTDIh8x5soAtudARjCE7gfIszDb6dYxZnuPaMEGbkpBBGJ0OaUKImxtRO6mJX2+5S7mKIQCoHOR+QPoKVyOYcL79D/WRAUWZkusXHKaGPm9cKpXVi0rRCqgKZD5C+hNwRdIVQJVAihSbEAcE2DPWClz+6z2Sw4PSJoTlzjIcDtra2mOxU6HyL2ksslmghhjwtiN6QLPcTSIkhTbw+tPgIngydl1TDJATHL3HLp8R2hjE13rWAT63AIflaONd2LdsFUlcItUiBmkIihExdKdKgdYA4JNMZ0RXETOD9EuEzzqfv09RTzNlDzPIJMjTEqiRmI0TMkaQSVLbKZJGIGHBIymzMJz79B1nO/zmP33ubsPMJgs6RosDYhqa9JMZLdKExLBmK2xTVNiqTlEWDbJeoeIZrNE1zhm4lg/ImWqluXEpyLVGxwHqDD4aqgIPdIeb6Ps5MObUepwqiXKJ1wGmNzjLycoCtxomBsy2hXiQ2JdYk631BlueUVUkuJWa6xPgFjVliW3C+QmlDLtPiWF8YZu+9yuIT32Hr2mfY2prg6rtkagfUENME2vldrNZM9q4zqY6o8pI2a7nx3DYvf+aAavvjbE+u8eDJE9749j1ef+MUIwqUdojgsaFBC8lQSaQ3tLHBR3BI8jLgQsty1rFjVY3SMJ8a2nhGjBVabiPFBGUcUnpCdUYRW9rLCwJnPNzJGO+OaEzECEmmuhLtqgUzdv9dBSlrZ3CxwalfnY/74z6kUdk45gpD3wURJrsR1X2Pu8UmxpUnT3osqaTf780VKBnxdOGhfamp/zum8jpCdqxw74Tr00aEJGJFhLRJlwpWYtw0p8gYOuf0zpFcJL2KFx1ICxItRGo9Dm4FUOgsBUSMSbcSQpIt+Ktg7j92+30NUIiQCN6wck9EDxkUO4x37rB77QUOrr/A7rUbbO9dY7y9y2AypizzDY+T1PudPniucG+pJXFd7uEqq3cVM3d1xp7JExvH9G3KvfX7iomQ0Af9iSg2apNJ2LqpKk+llw/fhBBo1dNqagVYemanZzs2GZCuH2JVlkoU3voL2DMmkMo/PUBZvTWrN2FVdl292B6cdZg9dVBEmQCMkjw5P+cbX/83vP+VryKzG+jhIcPtOxSjMY02VNs7jPevE21ABkOZRWJYcHp2xtN7JyxPT2gWC0Ci9ACVj5AMEcqlHan3tPWStsoxxmKtw7mAczGp1KMmRHDeI51Nn5MSXQ01EKMldAAldK3eIkqUGqN0QRTJNTg1TUWs8TjfYL1JQXiOTnviMMbQtoa2aWjqmmZZ07QGZ2K3i0i7l+BJbedt0grYxTkxLJHC4WWBiBnB2BRd0HVrCZGBLEBkCAoEGYEBJji0XKB8ABuxtUUpQa4uMadfo84aKG+CfIxVJmlUioyYDfHZgKwYEHWi/kXukV6hpCCKkihd+rbZC6SH8aTkM3/of8Mn1Yh6esLD97/Mxcyxe+05yu0dvNDEUCBs1mldstTeLm3yBiFF3rvoujZ5RYw5uYKYCbJKEViwnM/A3Sc0c6J1xGggum7n51PbrLcQM6IcgGiIUifwKQRKOGSmyMqIjCVRa4Kx1LkhczWVVlye3uX48etgFaK5xDYP0Cog5R5VrFAiJXPnakgusv7bk74LIRKFY5Dv8MnP/RTG/v84ufsVRPkCVNeQRhBrAaHAO43TEZdJ8mqIzvYQfoDjKfgLRDxEyiyVobrzCpm6dVIGmCATEi0iWV6gxxF5Mxmqvfn+BU9OHEEOE/uqAkVe4YoSW5SYXIFyiLAkxpQ2LbRG6Yq8GCHLAcbPmJ9Mqec1xrUE0vOUOSiR42LDfLbg8f1HXHvwVW68+CfZPfwUKIUPGnzO5fEjHrz/7wkUHNz+ccz1nJ0b+1Rlzp3nr7P4o3+U4cEf4Oj65wm15P3XXuGX/vu/x1dffx/rSvCgzSX7WWBXR472PNnhPlbdwakpP/xHfoa9/SNe+8Zv8qVf/hqPn57TigleLFLyi4ws2/vkl7vYomb76NNoJ3j6xr+haWtu/9Af5/J+y71YsF8MeNpccm1ngAhtV0ZhtcnalPpfadldbUBT/eb7sexCiBUrA4klj5G0KaIDIEokRoLedwdSnlLo/K9EN892jIwKiChQyM4PJ3RZUh1k2jBnW11zCJ1jrlyteVHEVcszIRB8QKBZ60si0ftOnyLTMSGkcSljNxelFmUpFCJ6RFDp36FjoTvAErtSf5QZMvyAMCgxdpFhUQCpPU6Ve4x2brJ79By7R3fYP7rDZHef8fYeg/GIvErprj0VsS5zdJIn2bMnnVWxYC34pAMt0NFl6da31fZFog/dBFfQdP/Ma8OUDiH3u73u+Ku2y2mwdXBqfa7ekr7T4aweJzbM5Z5RpAdYV8ZE//71ICU5xQohVxqTnjES8up5ugvoxMpxHV4lRBKEdVRNL7C9rAPfeu0bfOfX/wVmIai2tsmqffLJHsVkh8kwZ7x/k3yyTaxrymJJ8J7TWeDxk2OmpyfEVpGXz+GUATMlj2dItUDGGqkcMVqcNdhmjqlL7EDhTIm1geCT1iFGhY8+lYDo2TNHwPX0CMmWXibGoEOmMX1H8cHgrMM5Ur6OT+LElNsjsM5jbYtpDW3d0tZLbNNgrcF6R9saokuBjCEGnLU4U2PbGb6+xNklInqk1jhSacM2M2JYotDpvdY5UilQGT5CdI7gIjIWGAk6ZojWInyDUAVSOpyY0xy/ia+eoPSSIlPIwTY+jlBCgK5AFig5RKmKqHOQmsgwOUsKTRQFMuZYUteNzhpEdYTfO6TcGvL08fuU1ZisHNAGkK0kWIWhK28Jh09iCaIHYz3eeqxpMWaJDJZcenKtyTCE9gRbN0R7An6ZKmJ4YrRJU+I8PpgEqKQgCJtKpVJ3Y9qhRUOeZwRR4GWBdy3eLoiNRsWc+eUTHr/7Nez8KQQH/jGZsuhynyzTaO3JZCAvMpTW9BJxui4wBUQpCUGws/0Sn/nCX+Dut/4tr3/lVwnnN7ChxPophSqRdgcXliybJzgryKotMl8T3ZRcKIQco9QuZXGUyr/CI8nwAmRcpr1vqAnRIYVgUAyRWwopxhAVOjzh4ZMFlC25iuRSEZsco3MyVZDpnJCVqQze2axHAQ6LbxoulidMz5aYNqAzQZ5XXaCoQypLLgTaOppLx/n7X2P56a+wtftfsX/0IzTNjLNH7/OtX/9HfOtX/r8EL9m+8TFe/EMf55P/2f+O23e+SLn7Inc++TOQa4rJiDCK7H/kJj/1hT9KWPxDnt57igwBaY6ZlJ6DGzt87LOf4vqnf5YyC0T5Bjd++E+zd+vT/PR/8ef4mT/1H/jaV77MG9/8LX77N79G22qkdITlKfXlB2S7z2Hm+zSLE5YXb0JR8YEu0G/MePqJT/IHfuTHiW2grA17pSRhhWcZk/W8tl58+om8O1aE7y8FkH25p5MfdD+LCKHTf6y4GMGqS5IounIyK+ChRd+549HdnBuiQKNWpaGeSSd2pptpy0sUAtV17AiZ2KLQmagJGbqGgUhAJz+TGNFap5JOtKkbp0u1lzFpmEQMRBkIIiBiSv2OISSQFFMr/0oXE3w61v+AiGTpW3VF2k3ng20G23fYPrzN3rU7bO9fZ2v3kNH2TmojLjKQIqVQ0iuv6agwsWIGelBC7FuLI3GtfCLIJGaK/QBlRbBAf1h/iaJnRuIqjyEd1IOavhO+hy1d8if9a+v0Md05rgCdTl/SM3rQoWYC9CzfBnCgBxsrduXqV6rP3nnWSbE/b18a6o5enbdP3Fy7K6bfBwKKgEcRI9w7PuabX/03zN+/QGWHKKkpxlvIUqAKzWTriOFIk48kFBKtIz5IFo3EtBUujPDCogcOHSe4VoPdAU7R1ifvGJmqtM442maBrQtsWdC2NdZ0AYvBE1xMLbQyEJVFSJ9s5GUnLo66HwQ4D63LiFHQeoNpamIrMTG5kPaOoC4ErLfYzinYGpNAibU4HzqnXpl2+jGVe0IIeOtwpsaZeaLgXUifXVBEPLZp8HaR9AgqI2qP1AVB5BA7HxzXQmgpRISoOv2AIdg2efpEIGqEPCW2l+gKsuERLuQofQTZHaIqEHofVe6itEaqCpRPbZFKg8yAIr3emNpjCUtkOENqxXi4g9u9RGcBrVO3hYoRTCQj4DOPaSzLpU/iYbcgNBZnlni7xDUzRGzROQiZ49sFsWnxfkG0lx1rohB4YkhpyNG7brglj5MgQ3fNSegrvCMIQ4wWkQG6QSiFlJpMKOYXl5zef43l8Tso5dAyUOQBpVJrdKYHFPmQrJDJIVao9fcz9nR9x0eK9F3Iq4L9j32B3fuPePO3v0zbtHgWDAe3UHmFDUuEGJGNJqgqZzwZMK6myFFG8FNae4wPWx0gTGJILTRSlnhvEFJ0eUYLQkiBkkpZDnYlrtG0y0sWtUFWAlcGcArTFjSLkqLaRkZo6gtMvcRbC8EiY6CupyzqBdYmiwW0QhY5kkAhFVUOKqYOELMwXD54zOXjbzG69UX0cEilC0R8n7N759x709EsDdsPv8Hu9R3cVHLx5HVav6AxF2RhiMneRTMhm0ju/Mhn+Unu851//69YXM6JYchwa8DRp3+E2z/8v2fr4EVs/RpZ+RJ5qVG+Jaqc5z/9B7n20o/zhT/1hE/8i3/I3/9//B2sD4RwmdK3jWF5/hqBCYPtnyDXe2g3QmtNSYEoNeNqG9O2+CJt1jz2ypy8aXGfmnL6SXBTTCvWi4BYb3JX8+wG69zzMqm7sYO7myFuIhmqiciqJTmufk7Pn7qD1pS+UKEjZDrdYceeJH8T38WKbGx6Yyrh9FEksXN8Ez370uWSJTv/QAwygbAeeMS0UhFcEr2L1NyRykQdyxJ9yjej17E4YlcG+r3efp8DFEFAIbOCrNpnsnOdycEL7B7dYmvvOpOdA8Y7OwwmY3Suk4ud2GASvO98EfpWYa7UBgPpDVpZ6ffQo9NtrCaojopYiUE7yCL63Xl3rSuc0UOaHlT0RkGrK+kZDtFXjvqTpLNuMhisny89TnSugD39uLqLHslc6TjaeM7+XDFefVhPt6R1Lq6eZ/XU8EwXT7pDIQgx6WzOZkteffVL3H/16/igsfVd5Khif/JH0MMhg/GAbDKhqBSF1mTlEB1z5rNLXBsQbKGrgM4F2AFKZLgWYjsBRmRtRGFS7IhMqePWOpqmZrlU5IOKul5S1w0jEwgOggr46LpAOoEiJ5PJNi+gsYCJkWjTxtoFm/KOnCZ6gyNpW6LvdC/OYb3BuSQEsyaVl0L/ZRYaqYvkIipMSp32KdTR2SXWNkTv0zQYHLY1OBPw9hKtBLLY7vQgniA0kTJ9wr4mBocWotP7OAjtqrOn9g5vFsi6IHcl2bjEZbeoxScoBi9TTQ4Qg0NkWSDKHUKWEbVAiwJYQKhT9E3s/RtacC3Bt0TvCY3Bi2N83ZLFOcINwM2QYc5QVhSjDJEP0IMdlvMl9x88YnHa4o3DLi8wzRRvFth6isQiCgFFhhQ1KrSIWIOvkUJ148sTbMr0SVkkAkRASpKWyOt+ywm+C8bzFiVDyizxARc87fyM6ckT5qePqUSi03WsE83d6WDyIkfrHF2UZPmkGx+CPpK+/3qkJ/REkj1BUQ649uIP8+bXf5WL979FkCXLCcjgaOf3CSJSFIJsIIjPfZLxnZuE0S0EjuhmWDPDl0O0YjWPKJEl4CVy8I7WPcQZQxQ5GQWllhzuWOLtiifHgcZoGhkRux6NRAWHGUekHuHNAfPz+8xPHlNfNshomNeBtg3IPCOXBZnMEM6CNgRdUQ5KlLd409JaOH9qefTd16g+8jY7o89Q5JJyfIN8dxdTFFxeGLYyzdb1HyIbf4LLi3eZT+/iGFKMFY6W2LxLHU+pdj7Pp/7Y/4XR3kscP/wGy8cPcTj27zyPHpcsm7eJcU41ugVSYozBRkddX2KDpdiq+M/+y/8j3/jG13jlP3yJXJcY22Kmx9h6Cfkpzaihnp7RjiZcf+kPMtj5CItzhd4JBAoumgX7w4gOOcJ5gkyMde8SuzGR0jMc/XoiRMcU9DEeK04kdpvOtf8O9JTIxiwrunkzdOMppiaN3io0ElPHWuydkGW3ienZG9l130Fq4U+autTA0D8ugZa1RwqdodxGy7IIXYRK57PShU+mHtTQtQ735afk3xRJwCUIQey1cp3FR5Shez0RGTRJ1/cD4iQbg0ZlI8rhPuPdW+wc3mayd5Ot/UPGO/sMx9sMxiN0kaUJLPYlj87AbVUs6YFFR52EfmfUz0FxPbY65uBZC/3+mF57IlYDMBma9cf1YCOsnnN9nnT4ipZAhK4lTYhkvgMbqLk/LK6ulf48K+V4T1OyAR7WYKYvS/Wlmx5bxY5h6VmRZ0s6m49dXUdfzlmxPL3qHLzzvPH263z7y/8MZgo5GFPKPcrBS8m/RUd0MUDKgsXco6VjkOcY65nOHBdnMyKS4dYhSg2YLU8RvkZmY2K7S9CH6KZE+DmS5A4rZSAKibWWplnS1gvaxZzF/IzRckpRVIQY0FqhwxClB8Q8w1u6RNiQWAgb8LbG+0DwDu8FzstkNeRTG6l3Fud8chcNMUUYON8BFd+J9rsWvM5IT5CSjJMjaVpsvbMQBCqCswbTLIjGIpVA5jvocojQAhELeu1SKkU6lAzooNJrxyGCSy6rIhmSNd4hQ4MuRsTBEGU8dvY2ckdhxQRBQyZzgqgJoUH5ES7zFGoPIlhziQxtUuG7JaZ22OWCYGdIJanNHFO/QwgLvJ8ktkY7lD6kqPYoymsMt4eI3TFZFljM3+Ds7AS7bGibc/ALXDNFRkvdgs8ESrZoPDJ6pPBoVSJVYhS8dXjjU/eBEERhUJ3LL9Ij6MTDUiGSlxnOSCJNavHPYX46w12ckMWA9dPkoKkg+hIhy4458kgtkXpCmU2S9udDwKT/QnYdb91XbHRwi2svfZZ73/wyi3qOMg7ROuzyHKUKXKkZ7VdkokQoSxABJTzSz4jNObbaSp1RgIjJgoCu9CpV8k7CLmjaS4gDSlkgyog4HJDlgbNjy/nSEZmxv5UxyLZonaEoJuRqjGk+xcXpCRfH9zh/8oiTh9/F+IiQBTLPCdHirUEqjao0VDk5E8L8nEVjESdTnr76bbLr/xLyaxwcXCMb7rN1+BKqzFKJL8/JDw6p9o6w50umyxm4CYs51FPB07deZXr6O9z87AOuP/fHufO5n+b5z/3n+JPf5e1v/1uK3WtkegsvluTZdWR+SAwS61qiD0RraZslrTtDyBt8/KWf5He+/BWsTfEhPixRDDHtKUVxjaKO1O//KtPBiEDDvbfOuPORz3PzhecZVQOMa5HKojd0eFdn+R6AsHLOjhvzXlyBjrQYxG7NiaGn5f2V+Vpuzq8R+iC92C3mvc8JMvQLB30uWooU6luKIzJKPF2gn5DJ1E1AarNPa4eMcVUCSlEOoQtMTPN36tYhAZCVyDadK8ak45MxgQ8ZU6kphtQZKbrnijIiQm9E0d1CAmohBLA/ICUepQcMxods7d1m6+AOW/s3GO8cMd7ZZTiZMBiNUHlq103ma2tE0A0tIHXRrImONbPRg4YrCzGswcIGM7Eqf3RgZGU93Z0vEteZCRvnkhsnj888pgcMvSB7dV2btVA2AE4HmvqOm2db3NaP62m9dAsxrgY6YgPMrLieNYDpAdCV9ytefZ9SqQciHiUkD56e8q1v/Ftmb99FDO5QqUNEtUs+PqSoJFU1psqGBDtn0c4oVEFV7bFoGxZLwWI+oxwNGe1cA1ngioZoQDWGzO9CuUQ0A2J7gXAaHQwKu0pG9z5iW8NyMaeZTmm2L6mLIcaLzl9mQJ4JaCzJ/N8TrQWXvoguKrwM+JATfEjdJiEQvUhJ1N4moBICzka8S4Iz5xzOe1xIf0LnL9Kr3INLC0CwDcEZggtID94FrEnnFBhkuYsoh0CG8CmLQ8mC5HGxJMQ5MlokITEQwSKwCDxCOKToFvLW0Jo5Mt6mUhlVLlOXUAioAMLMidj0fdAzMJJGlsh8krQnoiCSgugcAofC2EuEj7hW0Swagov4WCOkRWYZuUyC2uBLrFkyGI24du0GpydPOb13F2dagm3wdk70Dc4nc7doPFoakstCQKoIeZfg67u8HttRzUKD1ECJlCUxZgilEVmByHJErhBS47HE3DEYfgSR7WHMf8A2lwTviL4hy8BGjfAaqcouJTmiixyVj1Gq4upWoFt8ui+gFCrpgUhp1gHH4Quf5fZnv8A73/4mZlkQgqKRJQUp+qKQGUJneFujg0GGBcJKXHNCXU+QWoEuULL3uSgRRJSGsijI5AF5OadtZ6hYIWONdTX72yPKeEFmax7WTzBNpJRjhsMd8uE2WTHEhSHlZMDewQ3m1x/yYJxx7913WEwbnDO0ZoEKkYlW5MUQ8kH6TlcBOz9lulC89+57mN/8l2TbHwX9RVQsEbHCNSkTSMscIQfILJKVWxTlHU4fvsvx/bscv/Mmr//Wv0PGKS88uc/is1PuPPcxnvvo59n74S+we/OIs9mcYrCFlNfIVEbTXuBsgcgjiCKBfhnxTc3Z2Ts8ePdV2naGUJqsqMAropQotglhynx+hrMLLt/9JugxezdGaBXIywhZwbKV7MialdpvozSzOYeuyjoxrPdsiI25li6urO/YWfma90euzi02N6UxAdDQP36lJ1VpLhYdzcJa86JImr/YPb73S+l1iCtRalLUrkpAPdzqu4XSY7pKABvJyB0zlPJ/dCoZidi9FrFiiKSUqSwdQyeJSHMpkDxWYmp7ljrj93r7fQ1QqvEh2/vPsXVwi639m0x2rzHc2mG8vUVRlUjd0WDdh+dZ7+57HLKSocDVzdDqxw3GQvQZtqyoPNkj6p55WD1+oxQS1zqQVcpk97/NQd/bJfdod3WuFatxldHowcEVtqabLT+kH9lE6qsX3zNBax1LXzslrl93n0sT46podOWca0/FdI5A3/0kaNvAG299i3d/58vgh8gi2XzrPKMa7CPVhGowRuYRaxxb5ZjJeIgNM6xVKWlXlGT5iGIwxqvIUO+i7BhfSYKqiU0gNiN8XRDbAuwSGRqUCEgNQklCLDBNYDGvmV6cIVRJXhVkWYVWkqWs8aElOI8KLblMO3IXBI4thJ4QRMREkyhSl1xAnbNJ0xJCZ/6Wou69cysGxTtP8MkDgNj5sFi3Bie2wXdGRjEEfGcdn2UD8mwLORghM4GzC7RIOTNalAS7xLsF0dUIl4RqUfq0QAqB7xKYZUwhYt4JTD2jXMwQ1QCptpNltWvwdkqQOhkDqhwpkxlXjOcEc4ZHIcSASJ5oYZGRVy+j9B1szBElDPUNlov7eDMl+CnRWqKGoFzS7eQPCGIXne+ws7tDNZAsLhqARPt24855B9YRhUl+LyTBppQeLRPwMyaVyITMkJnuFqucqArQOeiCmA9QWUWuK7I8x4sGlSlUvsPl7APqyyd4t0AwRHiFBwqpko2n1Gg9QKtR13adJV8ONoF+WC1Kgd5Fh248GKJfUFYZtz/+OXzrOX6wwBjBSBziYyAKSzkuyXQgWk9wLcLNwAV8XdCoYTJaHB2QqRwteovyEk9iisg0OhuDmhBdQwaM1RbWCUQUCCySmqePnjCfHhNriReX5OXHGBaHiOYCN/AMRjcpq4rheJf7777Oow8eEWoIUVHHlvl0gcwyRKHIlEYVBaExzKaBR6+9ic3/W6Zzz2j0Mt95/XeYni9REpbNkosnj2hnFiFKnI3cf/11vvKr/x33vvs+zcxSlY7gfov85F32//AnGX3mh5hsjxkOPs94bli6FrSgEBXhqaVu5nihyNUI7yKtc7St5PTRPb7znVeom0BRebJoUFHhmmMQObraR5dbSJnjl6dk2jE+eB7j4Px0wfRpZHuoGOxHctUBgnh1vlvN06tFIs1+3arCqp+n26yuQgQ7A1c25u4UKRLWdDyRPv4gMYCdhqWXJPTzakgdOOs1ZS1EXesoO30MILtlfsXIdJoWRUgjduP3xB6IsLbT7/70c/96XQmdpjMShae3y1+fL6zeg03RcfKs+r3dfl8DlO2DF9m98RHGe4ddp84Bg/GQcjhItCyQPrSV+GRVooiw+qBgo6SzMfg6f9rutrF36tDMyhJ5tZD3zEdCFFJsDHA2mna68xEjH2JDNp4/HS9WNTwiCZl2J1yh+RBXiJUNILIymnumTLPStGxSQ931rMHIlTtXgtuIuPK4uHpsf4puMAsBQfDw9IRXv/o/0DycMtx+mZjv0fqaQaHwasHF4h221STpZvwZe1svMRyMmLY5pvEslh9QDjK03mbZtmRDyXA4phQ+da6UAd9W+HqGa4aE5YRoluDmqcwhIsmoNMfEkkXt0ReXeBRlNSCXFTKe0JoZpjlG+3vsjMcMDj9HVuwQzAnt/FWiHUK+TxjdwKtBAibedYZvHUBxSYvig3/mT2JZgk/iWedN6vKxLc61eG+6dFBH8BaBIS80SiUzr2gaggEhFZQlGdtEe4ZrTgimRkaTdjXRgzTELjwsxaU7Ih4RQAiHM3Pc4i5+fJPaHKEpSeVqhRYTlCrQmUbrXYK0CHdBaGbg5oRwkdKIybFoVi3b5IkxcAucb4heIuMQQYM3Ok262iPrgNeCKJdUA83h0YTZyQXLhUeSE4KBAMEFXAwEXHK/FJEoJFIFPOm9s9YQfUqBRuSgM5xMXRhCCLRUKSFal6iyROoxQm6h4pz24pj5k7fx8zlBlmRSQXTJU0KXFOWos2HXKJ2h1QCly0TH40l9O2uQ0m8gkk9HwASDtTWYFh1qqqph/9aE4C+4eLpA5hMot4lIBpMKLwLWRtr2EmMiIvNEoZEIjDREGZDVdYZakxOS83EsQG2RKYujBmTqjoqWItslizLta3VFlh9SDh5y+vgtzh6/z/L0Lr45Zzi6jZ0f47wiG44ZjRXX73yM0WBElX2Nu2/d5/IysmhAPTkDt4SdbXQ1oZgI2nyKJXJy2fDk37/Cq1/7JrOF4r23n+Jqy6CSLC6XvPf1f8/tl36S3Vuf5OTBI77+6/+Sb371uyhgWMH2MGPYRtzFGc38AXXzGCU/hdKRLC/RYUkUFUHl6PwQu3icQlf1FGMWLOZLzEIwfdIwX7REKaibhhAbMj2hKgcYH5FKkI32yM0ObT1j9tavYktHuH6TY59TX3xAWQVu/eRPMBBm5RiS5r+rJpRXN4tXS0Hp/rCxRqR5UXYuq3G1fsi1JrL/u5u0e00IghVggJhK/F2AkJDdv7tk5LWNRMexrObwdQmHGFa/VyE1fISOAhchoGJMacndeiNi6uyh0zWm15BMEUVIIbaxf0xXMqJ7jbF7PjpGJ8SYdJ/yB4RBmRzcYtLZ1o+2d6hGyba6N/frO29SX/hGDbFnCkQ/2MRGXXCzqMEGoFjJQ1GdvfAq2bY/9Bn2peuJWQ80sXnfml1ZP2gNnlbllNU1dICmPwCumMit4q03EfwGaFg/hegYu/WrTV+W2H03OkTcnX9t6NIBpL6es3m+AEHF1WXStdLV1vLdt1/l/ddeIZcHCDVGMCSrxqDH6GzMcKujJE1ku9KMhoalPeH0tGU+i2hZMBjtYmJkOT1lR24x2C0YVgIRx4iBwjUlthnh6hLfTAjtnGjnyBCRwaOEI8slIs/wIWc5dzh/SZXN0SKkRXt2n8qcIbMc9cIL5NUnySa7kF0wPz6hPv8GYjhC6S/gihtY7wjOJXbke4CT4DsraOeJ3nfMSsQ5izMW5yzWtHhTE10HUJwBl5xOi2qIkAPMcoZdPkYJSVZtYUyNbR8hw5Jgl0gfCaElhibth0TECwjKp5C9LncmhY9BdIHF9BJRFPh8THX4Mq1tyYYDhD5AdO60UefobJuod7CcYhbv490J0bbJtyXQ6XICIZTYeomtT3DOEkJDjDVSCnQ5SQZeRhFrnXJ25IhcV9y8fsDl8QUP7jXgS2xoiN4hhMJ5m4yfYky5QyIiVSDiVpN8RHR5JZpkYCfSBIgFXSJFngz2yoooJThNW0+xs3v4+pLgFTEaTH3MQGmUFFBkZKpA5wKZ+U4fVZFnE1Yt9/Sag82fk6gxpTNborPEjplCeIJsqarIJccsZscM/U1UVZHJvGtt9ojlFFNFhIoIMoIQuKUEnbMkR1YToqrQQpCSxjXJZ1Yj1CUiDikKiQ8R6XLKvCA4TRwP2VEvUo72KceHPP3gt1icP2VR19hQE12LNAeIvKDUOXJ7l1vPvYwQ8MH7Dzg/DyznEUWTbPh3FYXSRDlhWTecntVczmcsmhnGJRaq0CIJJ1vBg1d/l68M/w7XXvhJHr77Fm+9cRfpBXsjONjKGBaRQgdUE5h/cMLy4TdwL/4xRkhGA4+IE2oraFpPY6BpamyY4eOc5cUJ8/NzpqdzvvW1X+fy8hIlNNZbjI2Uwwyd5yyXNXb5FGdmROeg3MM0hqlZsjv5CNs3DnjuI4do0eKExESZ8o1iWG8EBR17uB4HVxeJNGunbVwviu3v893+sWfwO9Gt6MWtV71Beq2LgDR2uzP3TrLdbhohY4rWEeLKVciekSF1K/aMePJP6RmN2G2S+2m+7xjqnyOuQEYQqaVYdCAqJRnHlTBXxBQeiFCp6NMzMf3ziM6zTAW0/QEJC9zaP2Kye8Boq/M4KfPUatrVdToGqlvoVzUMemTbf4Z9iWN1EyK9wZLVIEmP4goLszq8S5iMfc2oZyP650WsUGpy1+iHcbo9K0Jdl3bWoGNtuLPBAm0g5D7NuccUV9qoe2D0fQSuwPpLt/Fiu9LjlePThmEDkQMg8dGlLosQEELjQuDx+QWv/+6/gbMI4zFOtPh4Rq52QbVoZdkafozgIrlqONo/JIoFFxcLZmcSZwXbWzcot3dw9Rn2+ByWgcG1iq1RjmKMLEvagcaailDnuOUYaxu8m6OcR/uAlA7wZJ2hkasNwixA+LRALc9R9ROKYYkY7uCjwNpzqiwnDieEcgdvR2C2CUYQlcWH5FLfsycp9yLtEAgBHzo3WmewLuIA7wzeG6yrMW2Daxu8qdFdd5SIEak0uhihshHBRYRdYMycXFYoPSMYR/CJuhcd4xJcA9Ekgzmp0F1wXFCCTEkymSUaWFgyJfDO056doof7OAN4mbqO7AXRN0grCXEfLRQiiKTRyW9ig8K0jzHNU9o6iXqdjcSgse1lWvTdkugNiEjQgmAXEGPyoPGWqAJD4aAoqcb77Oyf8eR4im0DUab7ow8EqRBepvCyYNAhGdqhUp2bmKXvqPNI2Xbp9BlCqBVb6YVK3i5iksp8dko9e0x7fka0ERMC2seU1FwosixLERG6RWqHUhqZDxDZgExV9L1e6bu0HvtJwNjFIoSItw2hPcebE4I/JzRTtF2idKQoJYuzS86mb1NsTxhVGd6U2NzgGk+ofedLIrAKMDmqqUBkLIUgVDljqVFEgsg6Ch8gI6oZQiqcC/hoyYpAFQNFpsmLgnKYk1UZo+0j5qf3+ODNX8fNLFLk+DhDeoi2JgZDMc65fvNj4AJaPGU2NSxbMOcty/YJhcpwPnAxN1wsItaDFoIyj0g8XiX7eBsEx8eGi3/779Dlb3M2tSwvZ2wPI1tjTZFblIhkQrJsLRcnLU/f+wrXPvOEcnuPbQShUKmkYRT3H73Ne++8yqA4YrGc8uiDN3l87wF333uD9+9+lzZKpAxkWiUwGxxlniHJWbYS39aofIdi9wWGRzeQ4yO8jizqOUU54aOHEy4vDGLQclAWiaXoRIchumRf3qf+rclzruxAEfTM91pAqzoBrLyyfKw5GbkSyPYmE8nkZM3URGJKpY8xlYe6pGTZCRmvst7JxC1N4j6tEaHfNofUBCCTeZrs5/LemX21MCY2JGXtpM6hFGYYkEoiZfJZEb31fUJAndImdroTv1o7ZAhp06J+77Dj9zdA2T1ivLPHYDjqmBORMkM2yzismRHR7XQ24cUmSEgLtFih2fTXVUAiEDjW+hMZeuM2QYibZ4R1CWezF54N8LJ5aDdUY1yzMhvGaP3YM6IDOYK1aVz3tKvXAquSzOYvNilK2AAs3fOua6biCvhh46ewQt1rIJaSLpMZkAgRIS0LF/nOG1/n/u/8NoU6RBe7UGRomTMcHlAMDyG/YGbfYiTG7OwdUpSO48sTLk9aTOMpstsoXVAUBRO5B/UFg8owKj2jUqKkQkZNYSzWSFyW4fUQXy8gFAhXI0OLwONNi7BLhDMYf4YPC1ohQFiK+SUinCDGL6OL52maEuMVIQzxFrzPMERwGtFYhIg4As4s8MFDFEnK6SPex2QgZlMgofWOaGuCrbGmxbWe2BpCbXDtEmcMQTi0dohCIyhBFJj6AlsfQz0Dt8ALy9JLktl3133mLPiUbSO7TIzY21BLcFJipEBr0BIyIci1pMwC1i6R0xNYPsWbHWxzATKkfA+dI6TBy8sURilLZFEi/XXIPWJp8O05zeyUaCzeJpM519Z4d4kInigyKDNyPUD6AYj0fQk2iZalGhGLmMoutYTL9xHuHCFHSK3wNoIrEMogVBK7GiKiMRDBOZUACxaER8qYGE2tEgPjHMo2eNfgQo4Wo+Qy3M6xtUWENuUXyUhWamSRoYoCXUjIQSmZuoayEaiKTMor88bmLbVkdkmv3hHMDN+c4JpTbLvAmwZvZwR7TqaTmHk+O0EMEqCytqH0gmBbXC1xcoqQAa8iQipaCQKPzgpyPSIUOtHtMSCTTWRqQVZjfNQIFiAaNAWCCSE4ZCYpyoKi1JS7R+zd/imkHHL3tV8BuUsUEYdPgYTtJfhAnpfs7O7jjEXJUy4uLdM5nC8sPlhsx6RJQItkuS5Zr9POw9IJWg9hZlDhjFwK9kaCyUhQKEeGQkawxuEdnD6d8+av/zbF7n9L8+P/J3aH29QtNC7SLB2v/st/wNe//M+ojm4xb+Dh0ymXl5b5YgakwNUobQr39JHgIghFORgQwoIFEqsihagpqxHLk0cs3r9PPdrl5T/yU3zyIzcYx5LFImOv8GiV8rsinRO4EKntdu1K2e8jr/58ZS5el16ujJtnyuj9Eb2bbYyhK+ck8Wt/fy+079m7K46xG5N1v7FNACS1ACdSQyZc3ZeMYlzpNPtNvBA9AErjXkpBR9WsmP/Vc3alq+6i0xjoSjo+VboSYCExOPIHBaAMt/cYjLbIC41UKvVw9yu1uOq42t9ihzo3LeF7S3tEX1L5HkxDx36sVdkd1UVcu6aujls/77NDcPODffa+1aNi10re/bwpipUhgfjNrvrVda8gWd/u9r1OToe5voefSpdw2Qt5exOq/uEfNihORKQPDo0kBI+KAR/h0ckxr3/tn2GPz8l3D5LgNGoyNcT4mjKL7O//AbywlOqC8SjihGM6dSzmC5ypyLKWk4t3MXqLo92X2Ll9i1FZMx5M0CpD60hwDkUOwSPCJQVPyeQpMs4IegpuiTUB65Z4O8UulrTNlOgso+GIYlQg9JysdQQ7w5oTrKvJ7gnaZkG9eJvzu+9iFhY5cQgjkNLgYqTTvBI6W/IQkr+Gjx4itK3FBgcu4o3A+YhplzT1AmuXGDPHt1OIlqJKwZEhRIK7wLanmOYUjEVEnxJpgwPpkUF17X2+80RINv0SUKRE4KTFiCghUBK0FmQCjE47ogzF/OKc5uIh2eQQnQ3RusDrIYgCGSPKS4Qc4IhIvYWqAiI00GhYhgTy6seY2ZzQNng3xds6lR+kQunrZNkBsdpHjW6iqh2i0vgg0V4Q6sDlkzeZ3f132JO3yUODqo6Qgx2kXzKfnuI9oPaYywltnCNiTZVnKJIXCjKnrUCVHl1WhJCRZQKVC1rdQH1BFILAkGA9wSsckKmCStSABdW1Z0pHlDmyqMjzMXm+jSq20cUw+SVtMpPP3FJpzRDCguCmYKZgLgnNRdIQtTXt8gzXzIi+RUqFLvcIAuziHCcldhRxdcQIC13oX0AQYrILr4TGRME8XkOVIwZCJmfQrlNCigwpcgQZqCXIJVIqgrOozBOCJiuGKNfStjXXP/ajTGfvcfbwBBck3gu8M0TjCWZJ254TZctglNG2Axqz5LJ2zFqw3SSrhUArUCLZlzVdqrfv1rrkPhrJtWQykgy1pywhVwIsGB+IKtLa1L3ircHYBywu/2989+u/wvbOS7RySDvz3H3/fX7pX3yJ5bwlvnNJLI4IusRHiReaXCRTQR/oLNYFwbUsFueMxhKhBJkqIM/RSnP23muc33+DZvZtKjnBmj/P3tFf5OV9h4qGuo0MB6SogajonWCFvGql0E+QIooVUElTfVwvCzEiNkBuvxEMHShYldxXc3K/UezC+2LXvk7SVIaQygPiGYASY1yx9dDbW6huHk+sR691UYRkWU8yjEykTGpFFgDd9QbWhm6IuBbPdrqUntF5FjTJmJixJMWNhNTYTFDPQrXvf/t9DVCK4Qhd5iBTHg8kcNAv7MAV4JBYhQ3wsPpQO2wa6ViLDabh2cmoQ4ir0D2R+soFbGhCNtiYHjD0g6ZDmT246NmX1e1D/N8anEASNq1KMWLjSjumZo051o+LsBpM31OJ3p1D9C+918ysLqmnGLl6DhK4k53jahRpcW694u23X+XRt19F5zsoNUEp0NmEanKLOswJMqLLlOFQ5fuoMtDYjEUTkXKMLoaQaXJyaOdU+ZLJaEye5+SZR0ZHbAOmrvGLU9TyEaV5E+UfoqJL93uPaef45QK7DNTLBW17Tqklz33k82wdfIz68hGLi7doli1uesnUv4WIgumj3yHSYKf3CfqQfPtFdHUbFTKEM92k0ekeuhbiJJi12JC6eLxp8MuzZOpmh7h6jmovydoF2BnWLGiWZ0hdYoscFwzeLInNDGdnuGAQIiRGwrUpzThYBDIZsnXhXyGm3rLkgpnaHlX3J3SMdPSCINMiFIkUKsNe1kzPT8mvtYTlI7y0DAY3EGKMwZJJjVR7oDRC63Re/xyyEoi8QcgZ1jymXZ4T6jmuuSB4g5QekVWokSY4hWst3gWq6mYShdolTdMyPbnH7P3XYX6J1DsEEwiNIfOP0PkudnHG5dkZy8VdFi5NlKWCne0RW1vbCBSzxRnWP0Lnkmy8xXD3JuV4n2r7EJlpotNIC+hAu5zRzqcIb0GnVs00pwa0zpIhm84Ti5ONENkIlQ3JsnJNl3/PW2q0DKRFzJsaUz/GNo/x7QXB1LTzJWa2xNZziIFqsI3KxrTtJTqe4qTCZTku0yANyKTFUaHfBQvazk6/tg35+BBZ7aUOoyiALs4eiRCppKFVKi0EtST6gAuSKAWlVEgCYXfC7Y9/AcJv8PjuB7StxJsZIRiscakTKXiUEgwGA0YGzhazlCUlIBMRTbdDFymstLUBH8WqIWCgIiMZGRaRwSCSqUhRJLO7pg60PvmVdDUUWiuYGXh8ckHxrS/hxb9jaSQXbeTxpWIuR2SDMeQVuiiRUhGbNpX2Q3IVVlohRYVvLdG1mOUlcThCqgpnGoblEflgyPz4GG0bimKLva0tqkdnfOuXv8LWT7/MR67v4oxN86KUiNB16HSakc3tpegkBYi+yJ6m58j32tRx5f5+TG1aQVy1hFhrWVbMBSFtrns9SFf+ISZTNckGu9E5ll+Zx3sAQS/ajavKlYzpc1ivgl1TGxBlBzViWk/SRrbP9nmGyYlxTQaEkLpduzZnLX5AuniyXCNVXIXw9RRbv/Cv6h6CjWNY37sx4fRefz2N1Z9vDQE2kE5/atENwH5ndWX+2gAlKwHu+uHhe0x2q+veYHDWrEpC4Iir1/1hPQhr1kPwzJwav+8c2x+7fpXdl02ITuzUv46NE6xYznXvv0BxfnnOW9/8Eua8IctGOOXI1BZegdCa7cmL7B3cRihFsBds736MYrRgdvwUJUcMqjFtDJSDMXuTEftbc/Z3W7TKaCM4k3aA7eIcN3+DbPkeQ3uM1sk0TLiE2NvGsZxdspyfs5i1RAHDrTHPvfjDfOzTP0utNO6df4Z6qogusLRn+OUp2AaosK5GqV2oMjwZZSwSQLA6fRay0zqEBE6c67t1WoyNnH73O0zf+acMJ9dxQTJRS7aHgixEpMpxOxln1YBFK/A4alvT1BeEekpRSCaTXapiHykkNs5wdsn85B7NxUXaUYWI6FNIRYpUCEGCiAQRCAi8lGRKEjwoFYkhgZioM3SwXJ5PmSyXCOGJwaGiIo+STO7iXWqZ1aokRIkLDTLPKYpbnIX3sSInhGsEd4JZLPHNIrnLSoWqcpRZ4OsZKjfY+hznz9DqeVyrMG3g/Kxl+uQuBVuYStGGKdZB5mAwvEkxLAln3+Fy8Zi5CWilMNFCkGTFLvloh2nrmJ8+RERLPrxEH18ii4Jq+4Ctm59k/9ZHkEi8O2V59hA7vUS4JVQSVWRkKkdpi9CCIHKCGCLEgKgrRFGh8wohNOusi2e+sx1wDwhc1IRYJI1Pc0m7PMHWF7j2kmBmYA3RJopBa4c0Z7QXDqXOKXTBoBxjswZEgRASKeYkLYHAIzBKE6IicwaJZykEotilUDlKaEQXeJm6QDICEaUCxCJ992VMQYnCIIgUZOxf/yjCR7wJ3H3n2yljyns8Dm8hWgUykOVQDQqGg5aibgi+31xBiCJpskIgRMh1JEeghaLMHaUGrVM8ggoCayNZplCFxtaeZZO+R3mQRKmpFwYjAl4KylwgMoXIRoyOKrYGhwxLSzXM0NkOs6bhyfE59Syl80aROrtkXmFCSLoen7yJMp1YFikVwS4Z7hzio6LMND4W1A8f8ODyH3DzhT/HndvXkCa9Htl5RAmhk75CSIhhY04XVzdvG5Ps9xo1V0spcqXz+x6zMv2MvA4x7MAQvpubN1ga0ZdXOufYrgQfOmZDdGz8FSDRLXcx9NYbkWS+EkF0zEv/mnrUuSFHkCSvqNWmu9+Ah+SFEjppg4isgEr2gwJQhIwdousX6S5oj9V6uvqM1x9Wz6R8mL2IYW1ic4U36ZGr6I8XXZ5PeqLNduIeFK2Etx9iNrjK7sT1gO39FASsDHo2QUsMIZWT+kEb6XZP6fcf+oL07Uz9NXUgIj7z3IkyXL8vsnvSzZZm6Frf6I3d1tb9PbJxHnRU3Lv3Hu996zeQQabANTmgjoaJegmnBKWsaOMFrs0ppGMwriHUtLMa145pW0s2HDIeDbh1XfLC0YiocmbzOctpjbs4xc4fYOffYljfRcsFMtOEoLFOYJuGuq0xbU09XWKXhjwTXLt5h6PDF8mrQ2aXv0Vtn7A4fYBtI3VUaAe29RjTIrxED3cJ2Q5UY0R2jah38KH78ivX1WhTG7G1nd+JswQfOX3/Hq/+h/8XxdkjRuU7lFsF5VgjdyYc3tihHOaoXPKp8oi68Tyetdw7sTycK5zMmGzdYv/wIxQ7FdXkCFGMyMQWZ3d/lw/e+GVmD97F2ybBYBlXC4XqxncQEGJAiCSWlSqxb9GnzxHnKTK4OH7K7tN30fvXkT7QqilObVGVB2gDIjNEMyIrIloXWAteOLwqIN/B622cG7JcWHxTp+A+LVEqJ9YGP79kUExR7hDflEzPHtPUJ9j2Fg/fu8/pg3tkfkEYjJBxjG8zLi7fIZ6+Tab3KPOM0XjC7LymDQITwU8bpDpmFApap1lahTUe4Txx+pToWhDvMLr3Djc/+mmu3/ksWaVpL9+gtAYRHYPiGlklkNRdK3aBUCWqSF4vqGR1r3VJsr6XpBbjD81CpFGQ9EfJ60ITvSK4jGANzk3JskCmQIaIcxHjpvjTt4jZADV2GCMxdYPQOjngIhLrqBVBKVqVoZbnRBeQZcSXFd7mGJV0PKUYIEViuUSnkVBEbLT4MCMlO2dIkYBeFB6ExFnN9vVbPCf+IMv5KffffYvgNcZmmLbGmyVeFPjoUEJSZJpCQzLxFTQiJuAhIFcwKgTDSqJ9IHeRogChwTmJa0ihchKKMsE6RwSlaa3jAoEwlgCMtwtuPr/HR19+nsMXP0FV7dI4gWlqJsUAOYBgBc4anj4+4yu/9S3uPnxIFAqpNFLlZMUolQGJGGfJxSUyRpbTe5hH75Dt3mL3zmcYHfwQRuwjCsXRzhaj6x/F+ICvG/JMM650CqLsF3o65oBucxw/XFJfM+cbm74NJmOTXe+3fauxtWJKNifqrtNyxa4kQ7R+E7leUNLf63WgBx4C+kyuLpMnhJA2Wqw38DGmTsAeiKTHpfEkulTlGNPmhxiQicPtNupxnTvXMTy962xfQooA2Q+IBgWu6j1kt1CG1YfYlWFiImFZv+9s1pJjT2s9W2rpFu+eCImkz0p2hjurMs8KTYcOFYsVxfU9g/dgNdBWtUGhVqUpsQkkNq8FWOU/BEAEfF+mEiCkXJW40oavUyix0Qr5DPvSd+13vwDAd/WulWlbd72KZzqMurwITyQLES0y5sbwxnd+HXN8RpW/hJAFZBNo57TqHlHk7E72qUZb5PmYw+EYpQLzixnT2ZLFbMF82TJw+2xNQDCiVODCBXZ+jj85ZXnyHeTiPoMwoyo8lSyTS2qomS8XNPMZi+US27bkSjLcGrGzf43d/ZvILNDOvsni+AIZr0GrWS5P8ItTIgOCGBDCCGjIpEAXOaLYRubbOFkivccrg3YKROy6dZKrqXMW71qMCdx760u0D+6RjXKK3LM73qZQgbppaRpLrucIa0DO2RvtMCrgcCh4fmufB+cFYTih3JEMtg8pB/sIrVFSc3jnk1g3x9nA9MkDQpv8T6RIcvCASwsUSa1PDIjObj96kaj5IImZIwBqtqSZX1JOdvDS41RBrrfI8zmCjNicIrMSJ0qsmSPJqJtUMohqhNMF1lhsXWON6Zwwc2ztiac1klO8uIvPwG3dILLP9OSSi+MFb77y39AcP0makTpDqhobxlhXYc/PabMlOh9Q5APGA8VlYzqWShCmU+bhHi5W1F7RhkhsFsiOSYKIe3iMmf8287Nz9g+vk4cLKBXlcIhpLwGNUg3DagCyROYj8uEB+WiXanRAlo8JKIJUONLuT6++p91cg8DGtGEJscXaiPGS1mfAHsE/IRqDIJVKhIhdxxQQDDYGnClol5Z51iC0AA2ZHJPZHFM3EFVKsRakGDsl0UuJk4GWQERCllFIRRbTl1/KjAjoaHGxwccFWo4QriCIIbkaI6VNQmFGbB28xJ3P/DTNsubd77xFU09xC4d3BoQmerDeQGiT4FqBjRGfpk60hKqQTMaashAI48AGpE7zi+i6yowF20RCnXxnUgXC0UQJNpAVghu3xnz6sz/MCy9/jt0bR4y3DlBZhsAQoyHTFV5Iore0U8NouEdsIlVY8v7JnIjE2wtQOUpLnGlY1E/I8+uMBxoVK+7Xd2nPLcutm1j3LkE+4PAzP84Ln/8UH7leEaMgq4rOLA00ycFZx/R+J0OyboURXTkjxNTKL9Kmsbe0iB0geNZkU3bQZHOe73Ur6w30er3qgUc/l0skYbWTjYnViWGVntyRFwg2On9iXAGdlVPYM2uDXG1s14xL0jVK+hZqpULnPBeS8BVWu/QQEoBJmT6+a6CgC0YU8IPCoKxbuNKqGbotfT8YVuAA1kxFjwbTCdbS6g0A0dvdRyGvsiyb4AaeWey7v0PSwwh6JXbXE/89gMr6gRu/i32bVs8CXR20cXVYzx6R0Ei3QPVZHYlSoTNeWz9m0+6//+vKaxHQo5CV18MGkLsabNgxLqQtexSW48tj3nv9q0iTE3NFZImzc2ShySa7ZIMJ451DhuMtrLd47Whsw/F0QWM0SlTkmUHEDGMuaBvBxbnD+4c054+wpw8R84fkePJsTFAz5naJXTaY2rOcLrGLBdHW5HnO/sEOW7uHZPkQ38wwS4lvZ1g/S6ZaVuKsI9gcFx1Cx5QYjCBqiSrHyPFtRDEmiOT9AREvPCEmrUlwAedDCvvrXDcvPngPnWmqccb+zoijvYosSxkyweVI5SkyTztrKBAM8pJqd4fDvcjtZcmUfZaD24RqD5kNESKmxbp8nkPTQtvyUMLlk7tEF8GXaYKTlhA8qa8oTYEhiLQD7GvLoltQhUC2ML9cMNi6AL0H1kJ9xkIPGcQhSg2wLmlr6vkpiiHt/JTl/BQfFCLfoSFyaR2XJwUuVDRNIDaGTNxnd+uU24evs/XiAY9f+zZy64gXPvUpDvY02Y9+nm+bGQ8eP2G5mKFCjdVzpB7g9YDW1Ai7AO3I85LSKxYUKR+pdbQs0JnAy9RZ4X3iM0SMKCUIPjI/m+Ld6wQ75XB/QJaVxDBMos7WIQdDZLaFrEpktU1W7TCaHJENbiKLQ7SuIASM1N2ELlI2Dl1eE+BFchz2IdDaKdY1iDCkdfcI0Sa6m0BUAhcUMSicCSglVyGT3mU4G3FGoFqPpMVIiRQai8BJRZCQS4mSEiNVAqV92RcB2S5SpdZREdKmR8ktZP4Cxj/EuAWEIYN8jJSDZILnLiC2hFCxd/NlPvpZz+npE87feIp1GklGcA5rUzp3CLETXUP0ycw2V1DkgrJQ6EyhMo1UGV61tM4msa8UOBmxCJoQcRGCSwyE9xGRRXa2FDduH/DSpz7K7dsfpxqWRDsnmCFFuUMx2mEwPkLqMa4+xxlHU9bUs29w7aDi8vmbXCze5WRaY805w+1bNNUQUzcUtWJy+4CDW7eZP24opgf4wQ2Wjz8gzL8B2zepXvgUpl1S25xxmSHKAgK44MllJEiFjKljsV/9++pMl6e3MaFuzPWbXlkbmpArjMqz8/P3uH/ztnnf+nHr/KAehFwhWPrbil3p/myy+BGIavX7bse8ZtF71IPqSgdiVVJKG+HUgtzT9OmvuH5OATL7AQEom7dNsNB/YP2fPv1gxSbQcyvrD6YfbJvoNe2Qet8SVkBhrUfp2pG7f/WK6v45+vNH/GrAJtatG0iR7zkgN8/5LLpNlsI9hZJAkBAygaB4tesm0XV0TMnV22YpaJOdvMqodO9b95pC3LiuDfQfSCp3GwLv3PsOp+99l0wMUbpCV3tQ3iAf7zM6eBGRjxGDEa1LFC2DnHZpsU1qEdR5RiYF21uH7GyNiNFyMXtIbC2Lywc0s/fQVqKyCTa2MIu4JtLWkWbZYJsmifcGmtE4o8w1wpxhlh8wr2coInm1A8NrNE2NWU4JPsNKBTZCsKh8AHoPubtHdf1lwuAjOKHxIq48ECIB5w3BOaIPWB8w1iCC4/zxXczZXbKiAJ8zn8+5dTTk5q0XaK3k5Owc0VTcGG8zmuScn77LpBqRSY/UlqPtIdeGmimGU1tzaTVORoJvQZ2jssDR8x+nmmwxPXnE8vIe87NHNLMlrU0hiQqZWo5DwEWT2kA7j0kfBMKlkdzUkYuzU0a7Y0IxYaA06ECtTpDZNtoI1LIiy/bxscDYmkW7YDFvePzm29x947c5fu8ei8uaxfmcGBZUWWSrENjoKHzDVI+451veeeN1Pv6/+kmGP/5jDHcGfOxH/iI//plP81v/6u/xS7/6DlMHvpkhaIlC4WNJ07TILCB0oFASE0talZhD4SHiU0cVqX0Z0ldDx0imUtKqrwVuNkVu5xRqi7yoCFKidI0sNLLMKKuSQTVCiRJRVOTlOAElEbGhARfJVEafWZXeSYlHJAfZkEz6nGtw7RxvI956gpV44zoyM9X0k6haYK1Ha5EE1b6LImg9UhlEVFipUCp544jW4OIS4UD51LdjZAKiMbRYB6FQqME2OSlyQQrFsm65mB4TJRTVDYbDA0qdIYUmxoARcxphqQaa4AbElz7BD4f/Glv/v/ngu48xUeLaBmMcxiY/Da0lOqZvfxSQCchVRIuu2yOA0imzxdgU2+BCxPgETKwA1y+wpFyh/cOKj71wh/2jfQ53PwLBQxDofEIxGKNLTTkomIyv4UgOqHV4CkXJZHKI83CwPOXovuP8+ClOD1DFCO0FuhwR5BnL9pLTs4yTh3exVAyrCl9HmvIOkhH1+/f5YHKdLBuxKOfcvgnbISMGgdGBDA8yS6WVmDZ/YQUU1ix0WjvEam7tizjd+vx95/wPOX5/H+Dy7Dz+bAfQZidQ0kGGK8evfla9Y2w6Jm2qBb3wtn9da1+tNSnQnWClXZEdYO93/DLGzoWWdeBct8bK/1RdPL/wC7/AP/kn/4Q33niDqqr4iZ/4Cf723/7bvPzyy6tjmqbhL//lv8w/+kf/iLZt+eIXv8jf/bt/l6Ojo9UxH3zwAT/3cz/Hl770JUajEX/2z/5ZfuEXfgGt/6fhpZUXx+bvNn7uEWSIMfXmio2aoNgAFv3xdAmPMSJ79iSd6IqoNXaUzAoOdP9+tjPm2fav/pqFiInmSrzYFQZD9ACVZwbx6ty6ey5xBflCTG3W4ioNuPFmpXOFdfnoe305Vg67z9CR0K3NXH1sAigeFWDWNLz92itw2RDLA7LxNoODl2hcRrSeenqPoxc+g85BqohfPk27wXZOEadEvYfJR7Tmkli0qGIHHx3zWhNnNfUsYpaK1hicWpCpgAga7zVBSFRWUGYazRwh5mgVaNoFoQUVDK5x2GjwYkJWjPAhwxqDaS0mgsg0uhyQb9+i2vsIo1sfJ9v6NHV7iVlcpkURiM4Tgk95Kj5l6lhnU9Dd0jJ78CY6tiAFOsC8drx39xHbo30oS0ZFCTbnyfE5+5NtRjvPk5UDBpnC+zNqE9gaeo7yxww4pVruc+YGLILHhYDWgnywze5wyP7zn8Q1hvnpU44fv8HDN79Je3GGjN2CLdJ48TF2reuy+7fEBoF1kkcnDeVwykG1JBuWRKtQs4Y6PGBAydI9QFeaxlsevvNN3v/d3+D1L/33PHnvIa2weJOEv0oGciUxbeDYQoHAek9eGsYHQ/LDjLvffo9Q/x32ho5PvPhp9g62+NP/2z/H/vVX+MX/z3/HSd0ku+08S+VD4/DOEjKPlTmCgizPaVuHdQ5Mg+smYk/XhCdJrabRg4YgG4ScIHSJ0JE8F0SZykdZVlJmGqUVqBzyAiErQrvEymOErNBygIkOkecElSXALyRKaAgCF8B6RbAe4aBtLlnOHmCXS9qlIfiI8w3egSRHsEzCTREwDRQ5mNZRlJJGO2Jt0yZGa2gkEUseW5SMeOUxjUOogNQOLwURTXSKaFrsdMjsYsZifomSEqUdehCZbB8RVcSypGCPGB0SwajcwoUZtV1S5gVxWyJf/mF+HMFs8X/ng7ePcVZgXcSGmCIHZPqsfbfjVl2Lu7cOEz3BOnym8CFivcIGkcCJCzjXbXQ6TUWZCa4djvn4x15g/+AIkdW4eoqKoPfHlIMhUUCeZ+Rqi+AvQI7R1YhKOOJ8iRpukS+W7G7d5vDgIR88OMfqbaIoyHOBLeYEtjFzw+n8LvOZxQXHsjgDNCKc0F4YxNMttucvU8+eMFL7nDwV3NzzXC5bruUlQXQ+T8hVEF/axHYwRIjkxN1B2F5AjRBdO/h6Xv9+oGOz02bzd9/v9mznz7PnFR0jHvmwrUQIYU2mrMpAmy3D6zWUjTXoijRCbpaJktlcXzmIq/N3UonuHVDiPxFA+bVf+zV+/ud/nh/90R/FOcdf+2t/jT/xJ/4E3/72txkOhwD8xb/4F/mlX/ol/vE//sdsbW3x5//8n+fP/Jk/w5e//GUgOW/+qT/1p7h27Rq/+Zu/yaNHj/jZn/1Zsizjb/2tv/U/5XJSLzhrAaro615icwDE9bGy028gPgRkPjQIVoNEPPPr9eCRYnPIXf1pbabDlXvXoqPu0kRPjfUDbM1ubAKBleFb1xdP79AXu9ezCoxidfzq+nvovnENceN364vuSbk1axKv3r0+f1z/rhcJPjl5wJPv/g4y5HiZE6LEtwLvZiAaMvECkGrjolVsDXZQWST4XWKosXGOjxOq0SE6L2jdEiUN0SraVtE0I6zdQcY5mdKgU4uiEkNwNcKeo9wFdmFQToPPcbkiygwZKkReQhQ4hrhmStM62iDwSiPlPnqwTb5zk+3bP85g7yV0tY2LitaZLoMmRd6LYLuOBUewFmdbrDPgPIvTJ8wefTuletJiTY0sB1xODU+ePiYrx3gh2NvfQYmK4/MFVdNw+7mP4ooSFW8QFh+gBSzMgspn3BrmVMuGe5dLTlsQwx0KsQQZkVqSF4qdwxuU40Pq5YL7i6/iWo9UeVfuM52QW3VjCNKeRyKkZrkQPH00J44foPZ+lEofYpr3KVCIiUCFgrPv/hZvffUV3vzNf8Xj996gWca0kxUC75M3RPRgTLcAidRBpKPDx0Ax2kKNbqHyQ7avv8T2dolxJwQ1oqkNH335E/zo5z7Dv/vq1zHe4W0gBIFTpEXNG6S2CBlRqiBKRdO0KJ9KJ32pNsQV7ifEVCbXOkMXFUGXOBGx7ZJyIFBKoVQOuiKKMUKlnBnfXOBiixQDWl8hmiW6KCBUSJ1ceRESqQpEUPiQghm9M+BbQjunrZ9ST6e0TcvSeOrG4xqDsw67+o6nBc22DlcmobXKs9RJYyw687jMpesUHitrlGwRKiDsADd3zGcznLeY+IQYHYSAyiR5mVGVObnMUSEFCRINaQuWWphj9Oi8pHATbAz4sqUwijDOuP6xP8Jn/shjHj/8b1ie1tgAJghsSNnwSnWC7AgahZBJc+EjRBtxPnWZ+KgIMW0OhXTQe1URKTLJ9cMxL790nf29CcQ5MmokLSoTSJ2htaAscwo9IfgW70ed42lGVl5D2jlBneNaj/KOLN8mK7eRVlPPpjhzjqkvGRYlwTVoPSD6eQKAbUusxmTDaxTjCp9PUEWOFxnXbo5Y3p3ztpmzv53DqmAqrrAlsv8su7k7jT/R7TRFZ6YpuyDhfvF/ZtrdWH/+Y2Wdzbl9xdz0wGETnGxsdnvGnmeZ+Lj2M0nHrcFEun/9c+i7ODutSezWWBHiGoT1L6qznBACohT0kYTpXMnMTcn/RCWef/2v//WVf//iL/4ih4eHfP3rX+cLX/gCl5eX/L2/9/f4B//gH/DTP/3TAPz9v//3+cQnPsFXvvIVfuzHfoxf/uVf5tvf/ja/8iu/wtHREZ/73Of4m3/zb/JX/spf4a//9b9Onue/5+u58hlufOidh9qaXegX49iBmH6SFn2N7HuBlPWHsfkUm4Ngc/lOZI5csRqbrMeV8dh/jt0Hm7xTQgoiuzJyr36IK1V43wUdO4lV7M6pNk6fKBn6H7/H01/FLf3g7sDy6jH9ABVdyaxLWN5MokidTRJjAx/c/Q4Xd99EqglSde2ZckY53Ccrt9DjXZw/YXFeE+OC527ewVNxOjtl2RoEYxo/ZzjYpyyHCHGZWjbbwNJovCnRDKgKw3DggRYRDbmWxDjH1qe4+pRgW2Q2xgHRKlz0CciUE4SUyUZelVjdIooJalAiix10uUO1fRs9voMRkmV9Rt1eYIxDumTiZYNBxpYQIt4bQutw1uG9I9qWiyfvszi/i4oCvMVJiQ6pemRCoNAV8+kF7egSPXIMygnO5Hzw9mvs3r7Dzu4d5Og5FtbgnMK4huGuY3fYkiNRs4JZsLR+gRAKTIDQEoNkNNrj5gsv4+0Fi/N7LGdzbAsqFEQkTgRi8ElIHVNJMIuayIBjO6J9mGHVW+wePaHSS/z4Jub8nHtf+W1++3/4RU7uv0tYtLgATki8CxQKvFc4AaabfAspKIgoGVE5bB8c0Ixe5o///J/l1sufwkjHjs6wiznOTnGP3uDkyQdcu/4C48n7TE2OtI7F4oxAxDsQUhIMeFVjZQQlEEoTfZr0go89kZjy1ERqwSRTKF2mHaxfdnbfOcgJQo8Q5RZODRAyx/mGxcVdLBFbFShTUGYDKLaRwy2y4MiyAoFM1LVu8ajOsC/g6yXt8hLXLAhmQb1YYJoKxHXmixOoDSEqVDYmzmvqOqIGgiJXOOtpTUte5ATA1hbvF+TRpZ0ugSBTvIN1A/ws4uIlQl0gVIYWOSqGVB6qBqC3wFmE86gsQ4YZMlZISiKWGFJnElKisgGFiAhhCLpmoHOEEHzs8/9rvvuNr3HyG6/Q+mRnb33nDhpFJ8jvd4c6hVSS5sGABBEIXVBrplK/h/OWGCAvBDePtvnoCwdMRmk+0VGggkYXFeV4SD4aoSpFNTpE6hJBwBsLoUbkCkuBb5YQAjEfYL3D2Atcc8HlRYtzSTOWZ5IWj0ZBtoUsRijfEmKD9EumsycMDz7J9Rc+yb2v/EsWp89x4+Bneel2yeJc0ThwXqIz0MrhgubqSpEGXgCE7DyxhEzNGt39IvS+WUlY/f1KOZv//o/dkokffV/G+nErpma95q07G67errI18pk1cL1hVl0pKG64zgpYpRL2m35i3KgmpU1zatNIYv2ELAP/i4lkLy8vAdjd3QXg61//OtZafuZnfmZ1zMc//nHu3LnDK6+8wo/92I/xyiuv8OlPf/pKyeeLX/wiP/dzP8frr7/O5z//+Q89T9u2tG27+vd0OgUStRbiml4DEKso6h4Jdj4RHRUV4robZY2D17fesC3G1IcvRO+u1x8RCdGzUQCi+wieKR311FfnBsgKWZAErQlg9L28V0FMGgGbpSRip3vtRLBCirQL6MKGvEjdRaKD8b67DhU3PGC4ipA3njC9H6Kzc+7bmXvg0nUMBdFPSWnn3A/aSKBuHe+98ypxdonXY4SIqEIiy1u00RHbhq1iSFZkeDslIxLslLbWLGYtbePQwwytJK1Z4FrIMBhvoJ3Szpd4Y5DUSHlCtIYYa6KziBgIi0uaxRnOC4rqEK8UzjaI0KJURhA5qAmqHBOyiqiHqKIkigEqG4AuoBjjsozLxQl+kdp2e6bBRwh2SYwRFyLBGZxfgrVYmxKKQyNYXLyHcC4ZWAlFUBrjPSI6Ls4vOLx+kLqaggZV4kXNQChaPeDpw/cp8JRlhdMaa2uq0S4Ki55kSGV5rii5dzHlciFBZQRdoPIKshyRRW48/xmObn+KenbGyaM3efj+q1w8fA9fG6Ivu8RtQRCSTEhQA4Qq0Uyo/YQnpyOWc8+wWmDnv8F3v/mLHN99QHCG1mcpyzckLgkS9Y/0qCjIoyDLk+mTtYIoA4fXD9g6vEamM5rFlPnplKPre6ijMfviBtbWhBvXqZUivHePgapo1YC5X6ayQVR4IsYFcpF0NMq3aClwWqbvj0tFHhXBiyxl5kRP1FBqQaY9QiikFcTQIOUO6BJd7qLLA7xfIuonzJfvkuuAyXJMKcirCXF0hB8sGdoaY5fobAAopNCpgyJmWCsIdg7B0yzOaJcXyZhPZpzWdzl+MOetV2vy7Yprtz9CS83ZfMGdn/qTTJ/e49Hv/CYvfPolRjc+x4MPfo2b17coiozRC59BVzuI5jFLpVBBE+qIm8/IaZCZSpViIYlKgwoE4ZBxDtIS1QQKAcJCXKDslMwMUDqA8MgoiQQyVWGCJytzBm6IlQGvGnb8ET/0+S9w7523qU1DdODbmsZJWuchdsC83/Z1YXEhqMQmRY1wKVTOBY8UgjxLGUrXDsZ84qM7jHRDFkpUbJCFQueKwThjvLvDYLDLsLoOUqCKIQKLtxZvDIIJxlnmixOcaVAy5/R8wenxEy5nDc0iBdIJrbEuIIJjUm4xLAuMs8AE1BBvA838gnz4gMFBwaee+8/57i//U16Z/Atu/R/+KwYTwcmjKfvbgi0kAQ2yizXpNsAClRgKInoFNpJIPTnEB4KUqw1uJIKS/fq+AtmyE65HAcKvXVqvztRp3ZOxS4Xq15t+XhfrNSlN4Wm9WbMh/RZ0vYFNZF7SCsXQfZYyPMPshBUrKULqFlp1wvYSA0CoXmibnjNxtrKzw+8F+/8LAJQQAn/hL/wF/vAf/sN86lOfAuDx48fkec729vaVY4+Ojnj8+PHqmE1w0t/f3/e9br/wC7/A3/gbf+PDd/TtlN17FENMQkbRMxOds2wUqc2y6+++ymt0H2j/ppKQpYCVo96Vw1eUXv/wnsrbPE1cAVixMTg2n27FVfR/fQhR9wnM3ZZwxVxsXHdfH6SzwO9O2wOT/nmuMD8bP6/oue58kc4npjtv8t/p4VbaEfR1pb6vKMaIjJLp9JSLh+8SwphIoFAZkRG2npIPd7C+IS9KyuGYdhHZzqHSkYdnr+GWW+iwjW8D1WiAjZa6PkFFUMHhFzVmcUFszrHhEusvkPESGR0IxbI1hHqekoNlCTInipygc6RMFL7UA9RoF13uEtWQIAuEKJG6QuqSICRSpjbcEDrA2WmcYucUG7xPO2VvcW2D855oFgQf8G2LXS4w0xMyoZE6kmnQSiBCwFvJdGGZnZ9wdO0Ws7nh5P5jdve2KHYyBlZi3JiH77zNR15+meA81XAHVUi0GhCMIB8oduQlhYf3bMtFyGisIqdAxQkuWmSm0PmQnWs32Tq4xdFzn+bsyTucHr/Hw/e+TXu8ICKTL4oqCKUg5APafMDu8IB2vuD9R6e44zeYnr5BfQmxc9KE1DrqIilELc2zZHkaG8EFPBmNCcgAu1uC67dGXE6fcvzwHZ68/us8/+In2Nr9JJ/44p8hvvgSNs6Rs/vsVJ7PfP4ar71R8u433ibKMU7vI8eg8wUspjTeIp0HCSoIhgharah9REWNDJ6iyvFSIL1BhkieaURZIoY5Oi8ITiKKXfLt5xBVhV3cBzfDKVA6sYVWW6xVOJcRmNM6hykasrpG6Ryp8tQBRYUPkbY+x9s5xjqEm7E8v2AxW3L+9ILjtz7g/rsPMJeWtg6cPH2D3C/JZMbJt77L1sd/mvJH7/B4/hD/GN78yn3OPn2H5z71CT45PiI2S1o5xtklWVOjpMMpjxc1hVcIIZEqAWGRCzIVwUWimycvFq+I3nUUfkwbmk7cnxa6iJKCTGWY0IKETEWqqInjko//xB+jnd/nvbfeADnCiZis8G3K1TXG0polxMSMmDZijKFpWhaLS4xZ0DYeY0IqbUkYjzQfvbPNzkCihEiLdayhUWQFDIa32d55EV0VJG8rg9SaGCWZqpCupJ1POT3+NvXcUhvL2eVdjp+8ybtv3+V8ZojIFJrpfepgA3yeIXJFJQrMdIoY5HiXkymYHH2K4dE1br38KWJxRLnvWU4j33zlt9g52sXcHlPpjFok4/gV+35lOdpkJNabwnVnDat55UppRIrOGqCbe4krf5LN+bpfPvr25NWyJNaW91eZnf7/q+1zv09fX+dqEyy75aQv8n/4THQsempjTt07qwaf73cTm2sWSCmvtDH/j93+ZwOUn//5n+e1117jN37jN/7nnuL3fPurf/Wv8pf+0l9a/Xs6nXL79u0rx6wC/khvblyVdFh9gKl75io0SeyEuMKHpCESuxgu1sBl4yOH9CH1jxQI/GZk9jOL/2qxe6ZkJMSzg7lb/uMaBvQHx06vkvxT0qAToUfNiTXZBDuiY0++F8H3ISFWf0GbAz+sX8eq317Auq7U/SwCp5dPuLj/DoKAUBVVdYRzHts84fDgCENBUHNkNiLgKTPL9nbJ08uMxfQxWXbAfLFEqOsU1YBMFEjn8e4Sb89xvoboME7TuBIfZ6mUkGfJyl0Pu2C3ARS7CL1FLitkPuzEkRUUY0Jegc6RKkOKDIGGztsiSsVa8taxb9ETvcf7lEQcvCc4gzdNen31lGAucO0UO7P4+RnK+xQoKSNaSgZ5SZAZtam5OD5lpyrY2T/knacPmT55yIsfu8nBtTtcns7JxQhkRVSBWT1jb7KDcRe0swtENSQfjqm2K27nAf90ifAV3iuimOP9AusyCA7hHTIr2TrYZ/vGR7ltBNvXX+Gb/+Hv42YVOvfkYkxrFVlecuvaNX78p36S+2+/yr3X3+ZhnnNyrog6EozHaoFpIyoqdBbIdBpbkogPAdfbMXTpznkOO/tH3H9scL6hxDDWSx6++13s5SkPvuzwZz+CznLE0FMaw9Bn/Nd/+nNYb3nlGw9wwiJERSgmCDlALc5x9RzRZUYFlQR3WVZibcvkxh5Htz7J7u4hs+kDhsMhubLkeKyUGD+jVNuQDQj1jPnyCcJPqfICtCYEj8OhjSU4ibcB7yyqKGjzElWco/MRUk+SBslB8EvM4hTfTgm1I3rBdHbCm7/1O7z99Xscz1oMQBD4+RIdJEJBKBzi3m+CuUAVB1SH1wjZIWHpOLv3kIXf5/zkjJv7GVUB1dDTWAkYMunREpoMMpml9zDLCTIZisngwAJOgdeI0CYb+OiJwuGDIVODTrjYZzgJShStSpkpKkqU8uwd3uLzf/L/jKz+n5ze/Q5STHDRdcnSEEVGW1tiaBERWhPx3lPPF8wuc87OJTlLmrCk8R5VKO7cGHGwnZHriFI5NgryrEIGgQoZi8UHbNnnUHEC/3/y/jzYluw678R+e8jhDPfc8c3v1asRBRTGAkAARYAiRYqUOLRMkxpCEiWyxXY7ZIphWQ47ot3qf9Sh6A7ZDnW4m5ZtWUFJHU3RrZYoqjlJAAESAzGQmAtAzVWv3nzne8+UmXtY/mNnnnPuq6IE/tEdjVCSqHfvuXky82Tus9e3v/Wtb1mTFgcSQSeQ4l1gMt6jOZoxP3id48mcw71bvPrCC+wfNwRalpll5YlWlkJbVFCJbRquo8qCcHSXcn2H8tJDTG7tco9XmR/N2T884Lu/6wrrQ8vJ0T6z+VX8egkxoMSeWSr+WwM0S0DSze+LKCGJe4oJdaRrDiyqcrtjLxdLy/d1AGlVb6lbceuiV84izb9k6Vdh1VmGJu3TmbGlxecq074EWSuBABStgadaALREEKQzRekW2u35omD0/8QA5a//9b/Or/3ar/HJT36Sq1evLl6/ePEiTdNwfHx8hkW5f/8+Fy9eXOzzhS984czx7t+/v/jbm21FkTraPrgtAMUKckyBtlNYd3Ks9Bcty2D+huPIclTEloZLDMjykXapvFbF8gCf0T7+DqQ8EPyXh1fLP4skC5OWLVmeq2M9OhClloBhcf2tJqUlCmXxriXO0Gcv48z2ZhVHPPB5V9/cmd+dGfgquRFGo7lz5xXmh8eUZoNgN2iYEKsxm2tPUZQjisGAzfPn6JUbTMM+RvdxcYpWkOkRTfQopXG1Q6mKsh9QWRLjaVsQ8h6oEcb2ECmIMiDohpAVmFxDjChtUXaAydfQZoA2A1QxQJkcZWzqiqsNRluiNks3YN0C2hBBdJvW80jbU0ckBSrnGoJzSKjxTUVsHH4+ppruEv2EelLjmzGGgIoBV0WUMeQhwxpFr5dTDHpE7RgM4G3vfJwXn32RF7/1GqOLF/GFohofUPbfg+qXjG/t0jSG4bnrTPZPkPkRthygejkDA5eqCbuzCUehT/QmjaMYgArfznhZVpKbit5ojYff9n3cufE5jl66RVAllYJrDz/G1cevcGF7hLGHPPPMo3zfH38PH/v1T/Gtr32LTEWaVpfdyw05EZWn5y5RaGJyFQ0CAVASKbWit1Zyd2+Kn805t11QKyEWJetbNcMNjeYOfXOJcnQNihLRlmncYtT3/J//t3+a/+N/+t/z4t4Ril1wJeQjKDKIOVLVeBF0dAiBPC/p93q4aUM42ePu8T2CGRBDj0EBT3z4+zl38QK//5v/iFjA9PgeYW7JcoXOcsaNQ7mm7StTo4jYTGHMjHx6itEZxhborCDLhohqwUx9QqwrfF1BrMmHm3gHL376sxzf2GM6D5ho2BKPE6Fu1755ofEhMpk5ioNvwjByeifjZWfRhWIyz/jwn/5zfOaf/Qov/ObvUo96vPU9V3jXOy/g55P0MEqNiTnR1AiSmr6FiARNNEkLIO4UcRmEOYQK3/5P2TlRhgv7hPQdtDSy7PFidMBmc6JSrG32eef7foJnm3/C/ZvfIsiAiEPFiM2GlOUIpCRSo3ODMSPy/CQxsko4FYdqShRjNrd6XLu2TX/QR7uAIpCbDKUsMQ+ILqC2WK9QxiAm9duJIRId+GZOM5lQuSkxK4lxxPzkDi9+4yu88MoRs3YO1mpZEBExmKKHMSVWaxwRrTOG/XVsuYM/dRx/4xuoWYa9sMN7/vj76BWOjWHJO575EHfvz2hklkqq2+agspzK07y/uiD+w+ZVWSTDaClxlrN5O9drFl4psng+K1U67WfqYpxZWEssz/PGTbVhY7loXi7cW5NRaRdnIq2MQK8AvOUxu2aDafG2RFFd9dKKBKUdX2ZFVtCCF/WHBKU32f5IAEVE+Pmf/3l+5Vd+hd/5nd/hkUceOfP3973vfWRZxm//9m/zkz/5kwA8//zzvP766zzzzDMAPPPMM/ydv/N32N3d5fz58wB89KMfZTQa8dRTT/1RLqe9qCVzolfpEVLAFrVUXUeRhctmlyGhYyzSB1y8t8MSHRW3EAZ1AwQWgEZk5cE8cL8ULPKC3SA7g1yjLEdmew3d4O9gSIc34wKt0rr0SYLbrY5lFaStCM2XZm2rWpQzQzUdtPtCr2C15VFVSnXA0v+k06PUznP7tedppvuYbJ1B/zKiC1ycgh1w5/UvM1y/wPnNS5zKPXTmCXiqquD09JS8PIcpNimdoLTHWCjKjLKnUXEdlVlKa/Guh/I1RnrYeB6rQFuTJlVIolxToGyBMaYFLEXqyqk1KIMoTdCWRRtxlfr2SOxszGUlneMRSRUVHWCRGAk+9fYQ5/EAMkBiSfC3EfEoDbk2qbmfi1RUGBUobIaLOWNnMbsHPPTIozz5gaf41jducP/WPR5+8mle3N3nxivf4rG3fYBQnTLZP6S33kcyzemdezS6x+hCn2gDo/V1dAHupGbSJDMsUY5GNDYkvVBoKkK+hs4U6+cv8eTTf56vH/+/kTmc7O9Run0mN4/Q8/OEw0305W22Nx0f+NAHuHFU88rXn+Pwha+TZzVWAo1O36MQwIUETnxM3gYiCiOaXk9wMbJ/ULHe1wSVhKX9UZ+t4Qa51RirET/H1RNyJdTTCp3VjMeKLC/4qT/3bv6rf/BJjuYRGyqCGIw2qLIkiEqANMLw8nne8V3v44WvfZOj/RN2T04JtceEe/j9AFffQjMX7r98g3NXHmPuJhA8lVM0TtAyRWSGQmFtgcFjM0nVLYOSsrdGVqyR94aY0Sb9wTb9/hCJgcnJTWI1Z7B+EdvfogmKT//6v+LLX9rDTWpqEdZFpc8bk5nbbhMJPlKi8ESC0TBv2N7a4tz5y4x3n6WejfmNv/f/REKkP4Brb3kLL3zrlO31MedHDo9HyMh1QBuNUQGtG4LOiCYjNbHUSKgRP4UwQ+IMCXNiqNLPumYpVtQYYymUTsyQjojVKOUxUtEvcuKVh3n8Q3+Byv0Su69/Hdc4FFCpGTabYLM8aVCkj9KbSZSuB2zvPATuWWL1CloMV65sMFobYHWOVgERh8kKdJah9XZqJDk+5vTkBhtbF5Ewp6kb3HgPUQO888yP92iqwGx2zHi+y+7uK7zy8k2cixitCRJQup1ajUKp9H2fO4dUJ0gzxfkhtW+oD3apj2+gY0YoHdeH38/+zV2CMdx7aY7tBXTs0cstGZG5Mi2IoJ03O5TRxZmVOfaM6HQJUtJSoi17UEnlxiqQiSludRPxmWKNDtEsVscrqfsHA9AD2yLuSHv8DiGRFmZIaoSYQlL7Ibu4IEsRbdIdLhfs0gKULmV45nNLTIBHFKlvWFzmmb6N7Y8EUH7u536OX/qlX+JXf/VXWVtbW2hG1tfX6fV6rK+v87M/+7P8zb/5N9na2mI0GvHzP//zPPPMM3zoQx8C4Id+6Id46qmn+Mt/+S/zd//u3+XevXv8rb/1t/i5n/u5N2VJ/u3bKo3Vsh8LloMW2XVCHhalUbp1nuyEsi3Dtnxfd/RVwLIStINqw9sCgLQJF+lQcocyuzC+PPCb17h3zERClx3a7ViSBTEnIMouLroTz0JoiVo5o4Xp7svqZ3qQBVla17e5zdgCthWxVQt7QcISxUvq4KqUYjZt2Lv1MjaUxFJDDkVxjqy3AyYyyHdoqooQG8Jc0dNDMuM5PR0zGc8oi4qy36OZnhKJDId9RqMeeeYwSqNchu/l+HoIvkaFKVYsVjuMUiidgJvSBqUztG6N8JRBKbuSv9XL593aUy90RiLEtmwuSlgwBCEEZOX3xXNIb8VLjpg+EhtiaA04TPrXKoW3QtQRFSISDfXccbIX8LOCtfUpRdmnb+D263fZ2hjxyNse5+ju60zH9+j1NU3tmRwdoMoMj+L0+JRyyzFcv4QLkUI5zjWGqj6lCqB8hgue6GtsoVFmhpufopTF5CfUEUzvAgc3v0E43OXm148Y9QLzcxc56W0y3r/G9vYWO+cv8uN/5T/i1smEf/Kf/V9wt7+KRxMaoRHwQvK2iEnlr42gQlp518FQHTlEhKLM2L58nqLfp59H+he2INMpzRIz3GSMqipoAtX4EFdNGR8F3v32d/PHP3iXX/ndr6Azj/YNURp8UEiWsWb6SJGxsbbOrW++ivc9Br2cJs4499ankZN9MjfmiQ/9BHWxzp3nPk2cv87OxasEIn46Q9wEcmE47KG8oPOM7YceZ23zEqa3hc5Lyl6Z3GeJyVVUFKdVMlvDXiTkc46nNfXRi/iq5sUvfp3j4waPooqRBoXBctg4gm9daEUxF4VRcHTcEIxm7fojrA9H3HkhsnW+ZHL0GvNJzdY5xfjFb5KX69y+FRg9ZinVFKOGBN1gM0s0hmgETIbYXtu4zxB8wLkK10wxTR9TzJFYI9IgMbkmL6h7NLnSaB0RrWhCQKucJhrqUJMVls2rj/GOD/8sL5e/wsvf+G3q2QwwONNg20oiUTMqv4ubzQiTKY3ZR5pDCoTRRp/17RGZ0eSA4HA4xOQoHSHMsVEwWUFdVzTVKfq4xM1uocWj8y18MDRjwVUzmlnFvVsv8LUvP8v+YQPa0HUxjCh0W9lgNKjoCbPjxDRh0VqYH+4z3b+ZUk0bV8g3LqCspVhfp1wv2JGKb33qy5Q72+jLl3CiyQxIXPWMUiz0eIuA/4dvHa5YLDphUQ3V/S3q1LdmlY7oyok7KNKdK6ouTukFaxHjWT+s1XOzMv8vOktJ4jrS3C6LVNFZyKNIHGlaS0vUtPZsi+WqUckK/4yMoZ0rtdJt0YGgzb/jJq1sfySA8vf//t8H4Pu+7/vOvP6Lv/iL/MzP/AwAf+/v/T201vzkT/7kGaO2bjPG8Gu/9mv8tb/213jmmWcYDAb89E//NH/7b//tP8qlpE10249g5aXu4QiLhwQr6ZKVNMriAYhK9DSwOsK69cVqeiPt0tJqD0BWaUeVSGyfDAuGhsVbNQtH2eU7WY5GvfI3vcw/qrYCSXxHdSyaV6VrDIsysAU9qFMnVG3ac6p25dkNwAXIbY/R6lUi8WxnZqXo/i8IENrUVIxobTicHDO7dxOdFah8M1HEZQ98Qz07YOPSU6iY0zAjtyUmKEw54PTkEKmFaCMSZjgRVPSUuWIw6KGUSWZs+RoxWGJREJsKFXoLkKFaoLZkjLqnuALNZPnlTOxSoihjDHSq+iiCC4neV779ogWHhLSvihEvCmJIwCQqAhojkSABExyutXnWoonKI9rTyy3OBURbdJ5TR5hNa/LMEMIpg40+Vx/aZjw+4aVnX+K7fmCH3toW49MJ2xcvcue1Zzk5uEFWbNHbukjd5Cg3R2SOzA7xvmRtWDKa96imc6JLjbt8PCT6AU4ZipBSgV/+zO/y+V//H7l0ZY1mcoJyDTNloBb83i7l4ITZ/qvsDnYoCsXVY4e78BSzaU2sDJIHmiDEoPHA3AvKKLLMErwjyxNo2x9HMm3YKIUL59c5d2GdelwTxxNwJaOtLUprqGpFoQN+kEOvT103NHuvMrp8hXoe+J4PvoXPfPUV7s9mhCago8cGReUj3jhmU83p4T4K6K1doDSRS2Xg/OaIG/UWT/3JD3HuyhV6vYJ6skuvfDf99W3U6T0qd5/Bxoj1czusjTYJvkHpSF5YcrEpaSqBZl7TNKnfkvYN4EEiMXiib9B4KjdGO8crX3qeGy++gLeKqoq4qDm1ggkepVVb5p2qL5ROrqpIJA+K+WzC6e1bTBuhN24YjtbwseRkfsKVtTGjfJ3B8DJ7hze4thmROMZKjuiK2FiCNogB8YoYYuqVBMlCv5mCXwcfiL5OolnbtGWwhs7VelkzmtGzqf7CltsYNUfiCT5TrF+9zFuyv4Dub/LNz/1L6vGU2tWUmcfmglJz3GyGryqq6ZTG7RNqQdnA1sY6fZuRiSP4OUSD0opMFShX4uuDVFmXlYgE6sk+bnZKnFcYqSlKTRMs3inm8yOOdm/z9S9+ldduHuFCXM61Kt1X085zIdZEckIQTG4psnVkpsGW1M1D6LUttp/+ES68/e1cvHSVtbKkP7I8eb3P01ee5ne+sE8MEa+EQlJrhcVCsF2QprlFloFdmZZ5iC1BvWSiVziVJLg9M2+xWFjHlYRACvIrzL3IilpuZY4D1Blr/QXRsjhQV7GZfm+BjbRAp+u3o1pvrdg6xCqFUqaNaZGFl0dbwbTYZKn7WQAiOtaf5HPzP1UVz4O6hTfbyrLkF37hF/iFX/iFP3Sf69ev8xu/8Rt/lFO/6eZ9Q4wlovUCxS2udfEA5AHtCMvg3IKIxada0acoWorwwZzecpd0eFZ/X030dD0y2qZSZ46zwtNJ6pEii/N2Aza2IraEapVuMWxIeeLF5+jOHOOKoc7qsRKY0kbTjXi1aCKYLqND3N1HSSh45Za0r6VmT4kdSIxRGqS3bn2F6vAORo+IcYbEOdrkuKjIs22mx3fo9Q3b5WVCWdMr19F5QCYFo41HoFgDZbBqSllYCt1gbEh5f+3QAlnsEa1BFRaCT0CBCCF5RKx+SVJpdKI40pdu2Ro9lUa3ZXKSWJGIEENEOY/SEa8MIdRkOqKVQ7WlriYGGhEkViQ79oYggosgEvCtsr0bX93zKbKMpmqYjE/QjUAwVDs9qmLETPU49+TTXHrq3eze2ufOy8+T9UZMlHD+seuU6yOOb99ktJ1jtTAY9ohugtvf5fW7r7J98XEkHnCpnzGuhHFoMDoniqFpGmT3Lm5zjW/93id4/pOfwlYz7h43ZIrkYXIygQyaWaQ4NpQlrJHT33qMeOub3PjKH1Ad3sQaT2gUPihcjCirKLL2++Uc1mp8SMfpF4p+EbmyXbLWv8Jg+21MZ7fphwnnRoq17R2K9REmC2Rln2JjndNjR/AjTg7mrK3vkm2UXL22zh9/7+P88m/8PjGPaNEYIjZ6rLGsl5rGGRofmB3fZxbg2mMX+NAzf4yf+sifYm8m9DYvs/fKcxzfOqZ820U2nnwvhzdeY1hcp6emRKWZTCq0NGQmUs0dPu8BnhhD6sock64hgeHQMhANxArvJjSuojk95bOf/ByzKWRlDz+fpp5AIVH/CiEzCtfOElmMYPpced/3cPiVz3H7+W+hsVx66DHG92/z0Ls+xNOPXOOz//gfUK8J+f4d7p9MOPfEFaryhDLOqPpzSslTsPSB0ESCDlgrRAPBGrIsg1Djmyl6PibvjXB+jjYzTDZs55iOfU0zRqMSp1yJIEYwgz49k6FmNRKmFOvrXH/qR2nmDV/99H8HboKLJYoKgsXPK+pqjnOeGBVoQ6/oMRz1yY0GcXg/p8jXyfIsLRBU0qxUVcVm/zJx5mlOxhhpcG6KmEBUPXzIqScVhwcHPP+Nb/LqKzfwoa3Ak3ZxSqvMa1MZ2qRqJ2NLCm2pxGP6mxTFGvPjPdzpy4TXXuPmvWP2vnGbS+94J2/5wFvZPejz2Lkhj75lSHBp7JeZRweb2ki0wbibS2Vlnl/Op4plRJE37Ld8ryw0fbSMQ6cuiYneTvNZWmW3C261KKaQ1pJ+AXMWIGH1vB2QWkSoRdQ8E520alnidEDdLqpjbE1XVgQ3CwL+gdTOGazQLgK7Pj7qf44qnv8lbAuzs+5mtSuBVXprgSRJD3rxILoH3P5xdbX94DkW/y5Q7oNetKsP5MFHvhyoi3SNLJF2AjgJpa7SakqlduvpCGqRu3rQDRASwDibOlrA+0QhdoDiTK7yLAN0Ju1zZqB1Nyv5HEjLWHSX6mJk//arNKcn2KxAmxojObPpCd4dk5ucyk1QlKBKtjYHjAYD0DUHh+vEvEIXGk1OqBtsb5hKgwMYK62fiEYyQSmLjgqiRYJHxwg26UIS6AjQsUgJ+7WpmbAoFVYJkbUN3LqUTnqPwuO9o1EK4xr62TH9vie3BfPxAUzvoIrr3JcBhzVQN5jg8N63GpaaoAzia7R4FIpqVlNkWaLOUdTeUGaCMoaT0xMkCuOTI0Y7m5x/9CpFYdi/cZ/5vKKezzn/xAeY7e1x9/XnGW1d5trFh2iqGXv3b3FwZ0xv0zIcnCeOX2RjeBkXtwk6ZzaZMti4wLwJvPDsl3ju818lTKcEcWgl+MwQQsQGAZcmpZkWRlnBsFyn9pYw2uH6hQEfmc959gtfZ3cywak0WWqSGRpKMEbjg+AaQIOXSJFpinKEbFzhXT/8/Tz3qa8w/fo9VLmFNwX1LNIvFRiDP/XkWQ+ztobKhtTO4OdCsQV/+n/1dr72jVf42s19tIqoHBQWXyVvC6syPOBUJC8LvnpjwuQ3vsxf+cCf5ty1HSYTz+uvvMi9V18j3z4PX3kBwhGxPEDlGZmFTHvAEUwqgwzNnCAerRLjK6n2PjVhFI9IQ/Sps693E3wzY3I4ZjydUQ6HuFhRDkrqqkqBzKexUOYZRkdqF6lFY3sbvOP7/wy/v3vE5MbvkxdJr+SaCl+dcOs1TcxK9k8q3nFNOD1tmDFiEiNrfox1yWE2aocyHXOiEGcQm6WWDCG1CiA2EOc01QRdzAnZHKEGldPR+4ldjCjRjKsxtU9/V6pAK02eF+lnM0dEuPqOH8DVnhd//9do6tPUT6g6TSX4dUBCSpeiNGUvo7Ck7snGMeiXaK1ogkNpC6pM84d4qvkBVhQilqgTa5HlOcEojqcVu7de5+Xnn+el557HuXYRuIjD7RzWTsFKK6zN0JJhVEYwJUoyZge3mRUD9OgC6+vn8b0eIWiq1+9w4+AYxYDiPW+l1Abv97l5+5SHLz2GkqyNF8u5+uy2CNmL+ZqVePGATPUN8+2yAmf1vSyMRVe1BosefN1eKzW/C1IyzHEAAQAASURBVBZEViqFOtDSOcLCgo3p4qcsmBkWGYcHr7F7z5nX4lkV5qI9irSAsT1HVGnu+3a372iAAimwa0kVC1EtzW0eFCitrqAXKSCEJb25Moi6YL36ft3yL+24PKvTWIKFJJTqHsADVMvKqjr9G+mU0w9qUzqFtF4Urnf/nAUnDzI8Zz77AgSlKhd5YN9uezBX+eC9W+wnsWuc3N4fTeM90+MDLHrBsjRekyuPMj20MYy2HmOwc4HjCvS04vz2gPNb65zOHKfHu+AjLk6Yzu6xMdTghNgYVJajjUJJyhmLSRU2KVMlYPSSfVq0E00tAKIk4atIK3aNvgUoqRtpjBE69qTzOZGIjgZxM+L0OWr3GlFPMVlBONrl3Pp5hgPHKDvP2PS4YTL29k/QYUp0xxDmRKWx2iLOp6IgLxgimU6w1mmdur0WfYLPcEFY642YzwS5e4/GOLK1nOZ4zuHumEtXn+TKd/8ou//yn3H//k0ee+970XHCF14Zc+ekh7lxiytvuUjlN5iPrnLh4ffiJaNXz6hOT/mdf/pPePkTnyCnIgN6pcF5j3btfTBQe8itxhagoqaqPePxEd/8wh5b5x9jZ3PEUx96G/ufepZsPkVbTRDBK7CZwYW2zFilfjgmZPSt4L2h7A2YHzVM7hyxOVT0N3qcv5QTqwIyiy17KNPH2pLJ/pjZ/oxwYQNjFEFyzl8e8lf+ww/zX/zfP8pxXZOVBb5SNGFCYXKUiVir6Zkhld/g8qPv5dFnvpebdyaMVc5ooNi9vcvo+pPY0QbVZBfUBGGKjhZvPIE5SmqsBq0twVoiAWsNIbhkXKiFKA6lIt41ROcwSqirMfPTY772pZtEckQHfB2xWiM2o6ocmTEtiyc0MZKv9anmwjN/5qewqkgVKVpjBkNODw4o8sj+i18n9IfojR7xJHC069jZdqjBkKzcIPpX0HqI1kkf4wOYoPBesCF5+YTQVSRqvHcoNyePIemlYk2ITQLOYtLcpwJGIvOjXSaT2zQSUdkGgkXbHqKKJITM+6xtFkg2JFQ9br/2B8xv7BKaiPdTxMfEJKpk0KVURlGYtNhwNUjEZgVKxeTDogSRhjrUGLOOiCJGw2y2S2zmqNFlGt/j6PU7vPLC67z80vMcHO4RmpRu1fosMy4xTQdK61S9pxPIDBq0yXDTGc43jHauk+08jNEbnL70PHN/l97We3niR3+Kpz94nc0B3LgVeevFdV57ZYLXgrZJ5rKck9WZaf4sF/EgW7KYcDnbkO+BOLLCcqTFaZt6UyBqmSt489k8nbSb/5f6O1m8Y4FzVj7Gg14rCe88ULXZZSristgjtsdWbfXX6jWIWtHOnCET/j0BKN3t0C26XBV8Pvj0lrSSnNnlwbTVH2YzrNqHspIcefOgrjp/QJUoucVx34hCpbUbXwUoaZ+Y+vwsftcJIUt8w+dKKQtZsAEd+m7/2GpupO2m+kbEv0ordsfuOnWe2VvaipfYdvIkuXNWdc3JwV1c49BZAG0JqsaIwcUZpl8yunidoAJzf8L4vufCE5e4fGWdGwdjjPEonyPR0O+tU5Q5Uea4xpLnBoPGGo8KYfGl6pim2FZwLRdPyxK42LImIgERD5JKf0VSp1cJYbF/FI9Imniir3EHXyVzd7D5mPXhGvOTQzbKi5jiMtUMQjjl2uaIy+96P7/1iV/nZHxMMz8iM4qgLE2oMJJSOxHwPqBNcumVEIgeDg+PQEjlscpgtKJ2mhA1eT7gRPa59eJXsOsDrr73e/ngX/0bvPr5f83pyT5f2hP++3/9dQbrD3H31ikfMn223vdj3LnxPHzp45APaOqaL3/8s9z61OfIZZYmtAyQiMkU4pNplwN6RqGziAQ4Gc+YVa+gBYphn3u37tK/cIXtrRHvfPIhXnz1VbyT1ASvTT9rq4lBIIMiGkYW+mt9ap3jZrd47bOfQqa30Krg5KXb9Nyc3sYVRoNeSoGsFYSZ4+DGqxSDnMHmOczmCOUDzRze+4H38JEP3+ajn3mFsrdOFeaYngNr0Mpx5dJVHnrvD3Pp6T/OxcffxmMPX+M3/tEn+Zf/5T/n+3/yhzh47VtkReTmV7/IYCPn/NYQaaZMbYXVAZcFch3xGiQmVinv96kIEB2oFhxHIfgaxON9TTWdEP2c/TuHPPf1PaIdUdXHhFpIfZSXc0RR5DTeIZKcsfujc7z+0ot88eOfoLn/GtsXH8bXE+bTOaqnmR5MKaaBjccfI24p3v7+d5FNXmc2eoKt9bvkByZdF0KUZKQnYpOLa5eKVRrvk0V9gUIINK7CBI8NNSHWZLK0UwgoVIic7L7KvLqHmAFen6KyAqXXMHadKA6AxpfUkzlVdYCvAm5ygvdJpyDR40JyK8b2sFlB2UueQIqYKuzSYCSzBqUDdXWKUn1snuFxzFzEqpIQ5hzv7rN/cIebr97m3q07NDFVmtQ+rcaTo2/6DL6bc1VbptzOb1opojjq6hRUjhmdh2yIuIA3Dc7m2N4FRBpcjMxUwb3nK97ykOZLXz7h7u4YIRKlQZOlKXExF3eavo7xWCbsFwy6dHt2k2z7n9UYwvJPi3UzLQCTdoJeZVXesLDsdjlrhCGL8y55fNrCju5Nqz18FoviuLLYVapdnKpuydu+P5Ubp7JuOXMdq/GnXdWiUf/zGLX9L2HrgnEHOUSWJblvZExa/LaaeWkR8ComeZDJ6F5j5W3dG94AbtryR1lQbS2oWAzK1bRTt/I/C04WjEpbBiutRgW6wfLAtaQL6YYsC8KvGwRtqoMWyZ7dkr6FuETyIrJIMa5C7O5ago5tKVnAaHCuwc9nYHKM6iExkmUWNzvl8lu/B7uzzTxMKU1JDANcmXFvKpy+eMLhYQVYPDVNdGidEXVBkIgLgmsajNZY1fW+kAUFGVRK6URfpy9STMLA2KZvYmxb0YeQBIOhteWWNr3jO4ASCMHRVerMxmOq1z7HzqjP8PoW/cF55ke75DtXiAyILoWeO4cnZC8+z5CayoDXJUF7VN7HT0/RSgjRo236wisRQiuwLaImTOfMS41z6zRHp5TDPnM8R/t3OL95juGla9jjA+rjE3af/zzZYAfXf4wbe3f4rX/5We7tHrNeGYrBO/jt33iWD9iHqWxg/+XnCN5x++Xnef1br1DVIaUuMJiQxmKuY2r0ZhSiFV4isVap664IUXl8UOjTMaOyoNH3mO7vUo5KRjvr3L5zmNxboyb6gMnaaS8o1nLPaN0yx1IEx05RsTE85dH3nkdNhvQ4QoVIRo2aHiKmxPo+1UnD9OiQtYfXwGzi5wPyPiibgw+8+93X+cwfvILIEVU1Q+dFskCXktnxhJObL3Gwe8rXfvVz/Nhf/4/4c3/xI/z+r/+/+Nrv/H+ZxT6anGHRQ1cTJkdH+LKmlwVsYQlB40zqsA2p6Z+bJ2MzExxGQVQtWxccIVTE0BB9RfRVai2P4vR0RhSPQZMXFte4xDRFQYWQQJxAL+9Tne5z67O/ShNh49wVrr3zu7j94vNMj/fRlSBGUexc5K3f/cfY+8Yd7PlHefYLX+ZP/O+e4d6Xf5myTWfG4ElpGEOMmhg1IYIPAeMdKhiIhqZxiJ5RlKnCKzEoNSK+BQttjyabMRhscn/vJcgmiNIYvY5kHskFpXpomXF0fJOTo0PuvfgV9l7/Or7J8TgQjUSTOh2b1HfIFhlZMccoi8mEol9isgHeV6lnkoS0qrcFPmZM6jFVAFzDeNxw67WX2b97RIjJRTh9lwRbWFxoF1M+LR5br8XUyLLFDFE8SmdYm2O1TQyXiuAq3HSG+MD2E+/m8nt+iI3HH2Jra8BWHjnaPeKrt5/jve96J7dvnxJUTcGIWq3MtsJi4bfgH5S0U2q7uGx/7oDM6hpz1Vk2xkgMq3Ehpt5hxixTQK3+RHgT9lyt2FCsTt+JfEG3zFLnpaJIgJyV96X9l9fZgZWALEBTInPa1E0bZ/QZRojF+zuLfOnSiCIpNfxtbt/RACUJiVjkG4EzA6C74VE6PmuJJaEt8ToDTs4e/81EwQkIdn11HmBRSIMKuqqfboW/pCDPPJo2QHbHkZYKg9YMSIUzaaduIC3wjm4Dg1p2cJXO/n8VP3fiqpZ56K6p+8zSgqjOLrk95Mo9W8CedM0xCbiCRJx3ydchK/BSgW0wZHhOkViR5yBzS1CBUjnK8jzPvb5HT004Pq5pqkhelLjJmNn4NsNepMxKwBBig6gifTmEtvw3JNAXE/gIjQfxKNGEhfDVI771M2kncfGeWDsIgRg9jR+n/dwMbUpMf4tmvMds/wVUPSWTAgSqUDE69yjRrmOzknl4lTzf5uD+Eccv3SHoCj9NFQliDCor8BIpdUoxKZtcaqMCJZoYIrULZJVnNlXsHY3J+kO2LuwweekVTu/vYb3i0lvfjjcZ49Mxut/j/usH/Le//Bkms4r6+BBC4Ph4H57/MsN+wb/6b/5v2F5BmI2xtk8TKzKtmeaBxoFqy4CLoMm1RulWj+MiEU2DIhBRLjWDy61FmUClPM3khIiCCZi8z/rGiHp+jBEhy9K4aEJkrTBsbJRkvR5BEqXvpg0yjegCNjdz1rcvMuhtoaQg6pymnqGqivHpCS40NJWhmh5QKEO+c5VstAZxxkPXLnP+wjmmszFyP61mlRGcUrjZKd/85h9gjEWpHT76a49w8r53cVpPGYhGuTmH918nntugHs8ZrefImkeVibmzjSVa0F3Zeow0dYWyChUTEBcBfHJhjSGJPF1Vo6Vh796UxoU0/lBoIlpHrElV55lWRAKSKXwjbF24yNHhCdXJLgOtkDDl9vPPYnPD5qjHWtYjuIr1q4/jTxseeddb8W5Ok5esP/Qod1/9Lsa7X6OY75P3DcYYUGbh3xMlS/NJEBBDiJ4YSpRK4N+7BuMdRgJB6hag2DR3RMiyESeHp5jhFHyJUjW6VxGyGTEOaKaB04M99u7e4Nkv/zonpxOQEpDE/JpemliVIuoe1hoy6xBxiDKYPEvBWKmkufA1UfWYnJzy6o1XGM/6YIVmNqaez1KzzqxdnNRqsWAKMfUBijHNhcSF2UKay6KkuUIrxJj2882JjYMiJyt0aiQ62KLc2aJudrnzLceNW/fZeXSbi48+yVBdo39xwPmTt9KjRIygQ5ocO5HsEoCwBCur8ahNl8S4Wg16dlEYYyCGZAy5EKOSFhZKq7YDsDpz7EVMUmoR2VQ7qWu15HE6Q74OqMQ2LnQWF93iL+3cCW9XTySLGLYqi1i0hFlJEywW4C0NlBbt0nY2bvf99gmU73CAYkxbUpXu6IIlgUXgXmVS6JiUVaHp4j+rT31Br6ygwjY4d689cJzOfr5j+paMiGrJ3jd5KkKLsFuWp2NcVEIi0uYdYsuspNWAPjsgHxhEqx9qca10JcnAoq12GpyLrs/IcrAJC1X46m1R6AQKorQGZ5G6qYhuTAgBOxhR2IsMBztw7jFCucV0pllbW2N9cx2Va4KqKNtVHk1A4VGqRClPmQ8pMouQRKdGGQiglBA1hA7gtauIGDoNjyZKxEcFMaB9IOJomgo/PSLOD5F6DrEixDkSAs3slOAqZpP7jDYfZ/va+zmePEd18i1sM2VgR5w//wjzWUUzP2W732f39u8Tp0ewbSlKzWkzo2kMzemEKgay9avk+SZjeTVpAlpGVuu0wvAxJEJNhNo1xNNT0KmnibUZWRDW1gaEeY0Whx0OOLx3n/u+4PX7JzTTE/buHlJqxVqZhkpdn1A5BT7Sa2aMSkPjTkAMa2WfXn/EvYOTFEDRTH0gM4rCJO1IzDJc5QkxBSdjwBRQrmX4uSeIUNcNLkLdRISaoqdZH1qcSwGnnkcyo1gbQDboEYtLKAdZaTn/lkfI+jn1+AAyg/Ib2N6IYriFMkPq4wnV0QnjWzdZ62vU9Jjx/SkDO8c1m2Rcwvb7XHnI8fYn3sJXvvU6NtvFM6eape+N1QFl+xixNNUBz3/2n/LCFz7KUx/8EPuHe8wnzxNmexzc3EU0FPlVtEwxsSA0QpYV+BagWKUJoSHLSpQxqapLEgunRPDetcLTCvGB+azizu0ZtRM6eCKSjPyS0L1dKATBZJAZ2Lt7h7lr0BgyBfH0iKaJhKzAYzl34WHGe69z9Mo3yMRx44VvsT00hKM7fOyX/xlvedf7uPNij4u5gPFYFdAqUOSmDQgK7yO6dujME70jBiFEjfMB7R0hpAaXTWhQOmDJEVIqZGNznVwVnBzcwRhP0IE4dWgTOT6+w96d1zi8f4Pbrz7Pye4doh7RRDA2T11LY4YioLVBoqWPJjMlPowpRNC2xGAwQePjHB8i4+MxL7ywy72DOeXGwxidY/OS6I+o6yNijPiOXWjnW6UF8dJqTlLKUnxiV5RWC8EpkowaVV0zE403Q9Z2LpGVGxhGMNpAsnVGD1/H33N89Zuf4caX9njPn/wJ3vcjP8r4wHH79hG9j+ykXkgxWwTodjpq51NZBOhuLlZttI/tz8mwbBXctLFGkeYyQhIWt2NpCSkMxiwFtF1sWnX+7tbp3XUFJD3TlbDWTeld89vVuKZaUElMTf7Soqq75i44dDG0C5PLDISQ2JdF+bO03wezLJHuWKFvd/uOBihRUgVGKpRTZ9CZiLRdeFeRnnRvXMbdBYg5m9NYiIzavywH3hL0dGmTBTuyksdbbmq5Lx3Lwsq+LYptH7govXQOFJKWgqSdSKnAVtBGp19RD55p5QJXP2OHPP7wAb7cJB37gWMlpiWBrSABlKWuptSzE5Q4VLQoW0JRUvs5Rzc+w1q2Rb1+hXDpMheeeJz9/ftpNb1WkGWSPBFig9EDsoHQH/TJizbt0pZtS6vqktiWAyPtswfEEAVcqJI+pgnJfn6+Rz09ROo9lJ+gJJUGhujw02Nm+68xm0wRPCqA4AmzA1zt6RlLOVxjdrTLwf07bF96Fzee/12q01fYeOQDDC5fYXLnPlkx4fhUUVUV4+lt5ruvYXVJNVepOqQ0+BgoSNUgPlVFU1cCKiDMyH1OPfM89wdfxc1O2L64yc7Fy+y+doPh+jbTScO96X32dic4N6VUitwo+qXB18Kp8ygxNCFNzEYngFtaS13V9NZKzm2MODg4oQ7C2Gl0iOheQDRoByFqbNbWsceIsTCvZuiQ7q0PkUAruiQSJpEsC0QFdRVRaPIMsAW1HZGvbaPHJwxs5MLWDn4+wTdTXMiZz2uGdYRBTja8jNI11bxhsGOZjL9BPgrokBFiJENQjSPSZ9g/x/Url/nEF55Hq0iuDAGP1YlFqeYVI2pOZnPUbMw7P/KnuPXqS1x9/K2cGMfdl7+Cq6asrW8TyZnPDiiMR6xChYBowZjUwdya1K3azTzGJA0AShGCxzUOgie4iMSaw/2a8dhjMwN1SAFJQeOT2VYMgLV471HtXEU1pW8M+XBAM5kjCG56gtna4fGnv5u9r7+IUobm5B6vf/WQXpkxLkuK2T7Ht7/G7KFH8CdHHK9rBo2mnxtiE8l1QEzyrvAupI7PzlHN54gqUEWDLT3B1akbt6/RWU3W0vAKRSBgi4ILFx7l7pdeJhs0uAC+mXL39td48YWvc7S/RzMTRAxarxGlwiqLj4qofAIfuo+zGq3ypG+JHq0ynO4RJQMiKu8xm9WcHDluv37C3qmn3L7K1s7bUWKYjfdAz5KppghKNEppIj51SA7JMHBRodimp5feUZoYQqqGVIqQa3yoiNJjtnuf/jBgRgp9H+5/+fe594WP8sSf+ll+/D//LxjfnjG+d8LNY8fj2zAaDTFa6GGIOjXMlK40hiXZ0C04l2FALRjpjrHoOgoLglYxxbCQrn3h3dUZdnZH0UvWBZYxTdrYYlqw8yBzw8r83l1Te8WL9ItiBcwpFimg1FdyqamRLo5qaRe2LRPTxowOw3ROubEV9i6D0FJc++1u39EABVhJtbQ/vyGq0gb2br9V4epZkdHq+7p0zBvquldZk3bfrlfCAoRId1nqzPFYpIA6NMIC4HQHlM6zI3aAJrRpoOR0qnRCpUkrZejMgdQZUevqAJDu/89c9+J6VgDUCqe0OM5qUir1MgIIrcZD09QzpPIokyUqWWqa+W2UZGz0zkM5wBthethwdPeQ6vgusrmN7vdxYY9MX8BTo1TEmiJZd1tJbsjiEZJNcvBd+iaCtHqTtnGfix7nITY17nSXZvwa1IcgAUET6aGVwTdjqvk+YXJMPT9GZwPy/g427zOZ7CazvjrQl5rJyQFqdkq+fpW9g5vce/4PePxd7+H6B34MekMq+xpr+1N2d18gF08mfe4f3Mb7gJJIXkCjIZj0pY82iRVFEhMRI+S5RudTynKASJO65jqLsxnuZM7RwYvMjh2nWtHMK+bzuHRAbhwxKowofIwImibA6Twy7BnWNzY4PjqirscU/R7DkaWYNgyi4TRCUwlrVmFxFBkUpcX59vsR0r+e0JpHqmUb9tj2ofMKowVj08rQDEr0cJNsuEV/YKmOxtTTMd/8zOcZlpqdfsWsHJH1S+bTKb11wdqMuDYgHwTWix6Da+eQ+pRsvQ/K0zSnlMph8gKjocgDx8d71DU0MbFqNtNE73FVg/TA6uTEuXv7VdZ2HuLG1z9FnhlsrnG1MJ1OCUG3rr4VlBaJDms0WgvWQtQKrRIbGnwSdabqdU9oPOIdwTkaN2srwDohZjvXsJDJU2SGEDyQzP1EpcndoDGlRasSf+rp93tsnrvE+M4u2088ziNvfzcf/Sf/D2LTcOHJ97N17Sm++fH/D6OTV4juFlo5pAk4r1IbAAEfBNvqM1Iqul2Bi2pXrYqmblC6xroG5RpiVhNMQ1SDRbEBKK5ce4KvfOFzTCZT6mbC3t1jXnnueY4PThKLq0HE4hREY1KANAqtCnRURGuQLPmP1E3N8eEJGyXkfUuoaup6htN9pvMZs6MZ47kgNifvXSB4z/7eZ8E5gg+kQSh0KvkoCudk0aBSGY3Wpp0jUhVfluUYa5GYFgdpSafI1rZwIafojRgMLjCXgM0ytJ8wfvVlXvnYFo8981be+c4tbl4Y8pH3KWTX882ZJ+sLsRFMEiUlO6auuvYBC++zusallECk7QYcO51K4kmi0ihlExjGgErzqzamTe+sGnh251CrwWbB3Hc/L80rV2zqz+hEVhbv3fG6AKEWb13UZsTuuEp1S8dVIqVtTtvdghY+rWpTFpU+/54AFK3UMtfWgpMu3dPdqAUnski5LLc/rJz2wX1gGbYXWhE6wkYlvUiHWM+cNWVEl+ftRnNb5trRfStnkK6kbFXbIpy99tajXylpBbmyTOEszpC2rl5/+T16kPFZovA3fPY33It2SOqEqomCb+ZJvGY0WnmMxMRI5Glw20EPoWCwUaBHhh6b1H5OPReMyqmbI9AZJvlRk3LKEWM0UTxgW+BDAiYxQuvi6Z0jek/jaqJ3zE/2GO9+HVUfkWmb/FTwKfcdBfFVcr+1a/Q2HiUbbBCVT88hOnw1J05m5Ft97t16Hdnc4fLFd/DqNz+DxMjO4x8gO/coUYTe9pRzO1vcKi3zRhHmMQVHAkGgdlAbyEn3wTcRFyBTmiwH8UJTG9TUc2h26WWWSEaIGbPYI6pAHeDu8TGhv83+/UNmE4c2YJWiVyiCg57R1EQan8AYOn2pj/b20xMMQu0dJipUJkQc641i7BXHTQIpJhj83KF18i8hkISjMbF2xqTVlm7TFSlABDID1sBoc43BxhbDzU22trbILMxDw2Q+5v7dGnt+SChKmpkjzGrm2SnVxhiZ3MeNC2qT8dpr93j9Cy+yVt5kfUdx7vwGQQIxzigKh8SC0folti4+wXzvRY7uH5Bn4JpU0VGWKYXWNxq1NsJVc5owZXZ4n3lsGI62cE1NM604PNhla6RoGodSQtAe8gytU9rQAFpnWGuTGaSxKRAtejG1mibnyK2hVxqmjcdYRWxBaAo0gs00ogTn4kIvr4i40OAPjrFoTKZRheW9f+JP8YWP/Rv2v/o57tx8BWkaehvr9J78EN/14z/OK7/3rzk9Utx4/lV6zRzb12Qqo/E6MT2iyZSFAJnKCGKIXrU+IxbvIgGHyUIqBfYNrpmhdYXWgULZND8oYbCxSV5scvfuHvd3j9i7c5vT42kSUkdF1Aqr227ShcKFSONiKr8mgsnBaIoifW+P9sYU/Rzbc+SZEBrP6elrBL1BFdeYzyZYJcT5HY7Ht4jNBIvGxQZ0JERSmjdEQlTE2M77iz5bywCrjcJmqbzY2PRznpdsbO1QB03tG4abW9STCYc3v8jWtfdz6ZmfIO8VDK88jg89TipPFiKXNko+/XsNk/F9olxlpnX63G1LEIJ6YOpcLlLfbDbtKmxkUeyZNDRaG5QyGGNZWlCk/XWrP+nm+NWI9aAxXOeJBe3CuWUzVBewVkCKUQ8EydWr7dbQS7llAiOrC/yV867GxO5kHfRZbXbIv08MSnJPFTpuabWEK9Vgp1+7ypS4EnI7vYpeRGgSrdZiwq5sd7HvKpDoHqp0gqOWi1gZLLJgch5gM7pDSFdB/iZ/jp09cvfXtldCW9nTHbNLuax2lkzX0HU3pkM3K2663fmFN7BDi5vzRnDS3p6k8I4xsSmtmDCLQiOaTCmmx3cYDs9h1IjYBEI1wRrL4b3bXNncQKTEu2OieKzt0dQgNBgbyfMRWlu0jq2iva3K6ViDGIiuaf/n8K7BuTH1zONnYyZ7L1Od3CTXETEWo/opRod5EprZEpVvIqpG4Wh0RAUhNg4nNW4yp1Se8eQUUzn0tcucVJrZwQnv//G/wIVnfhynFM3kAHJDfuUya9sbTI4P0ZJSUi5A0zpB93wL5lqzIpTCZpqsCGDBzyPVLFLVHldotDIIR+iLl4m6YFZVVNEy3j3h4O4YJTlV8Awt+Bgxogkh0CsMMRNO6kjtIeRJR5EXChWEDEF0wGiFEk3eA9UIcw8nAcYh0DPCeiviDEbhtLSun7JILwZpy9WdYAz4oAgRbNbjkUcfoRyUZCbj5HiXpp5jiZTDAf2tNfo7Jf3ROlk2QCLMj/bwQVO7AmkMRy+/xnS+z04xQw7n6CcMNgeaCj85xgwv8pbvepTt39rkuRtzMmXIBaZVQKzGWkEcYAXvE4iYvfIc5y9fZzpXeDdjtOU4rO+zt3uLPkP0wIMPFEWkCSGVwWqHMgadqRYgBYie6KUtWyeB3RhQ0aDx5HYJPgCM1amUXWA+dyjT5vPb75tBKAxoK9hBj+Zkgp6NufGZT7M1GDB2c+a3X0PFyPraJT74Pd/D3T94le/5gR/g2rveTn7pGl/7Z68g/nlE9YiqJMaAVRlB5WhlEtglI4pNlT2iyJQlz3ugEtugmwb0HJ+1VXQ2I8cgMaCLnIuXr/P5L3yew5MD6vmM6AOumRJiRMjwFogWm1m2L29z/ZEnWN/YZLA+4vy5axwfHvDsV77E4f27zE/H3Lpxn2sDGF55nLWr34Wd3WF86Dicv8b19zyJn1bcu7lHNZ4jocB7CLg05yhwUdFEofGSUuEqlREr07rhKp+qgmximL1zKSWuTWJemhnVrMa7jPHePhI1g+3HuPD297H+zveys3OB3sULPHFpwLUtwVWR/WnDgJtc3qopM4V3Ppn3aYW1iqBiC0p1O4WvstTtvLnCpq++pnW7yNWd1QSk6stU/ZN8SNL8HCR1vF8N8G9WxLFI1bAEDUu7C+kwSjuf6zPhacnAqDalRBLN0rnbqrbhbjqOVio5dqcTn7meZZFGy76oFJFWe9p9O9t3NEBZ3N0O1bWBuBPILm/Qak4wPYTYpUVEtYKhDgE+IArq8okiS6OzBSjqLuNsHXk3RNXqsJCWx1i5ji49s3qcJRLtBqwsjq9avi1JxWLLeMYWjhgWA5ClKLarzImrIO4MO/PG1I4ISwtlWaGt23sgwsJbwGgNJpAFRahnBAKZ6XF89/N4sZxf+wEkh/l4j+bwgOzcED8O2Owcld/DBYPWPWKo0RbyotdWmHiUtq21f8phS4xE54muwc3nNNWMuppQzyqayX1mp6+iXU3QFu/mGOPSyjFU6QvjQ/IhcQ11M0bFSHQVBPDRo+Zz/OSQ2szZGq0zC8Luy19GZznnrj1FdXpAbQJulu5ZVpb0NrcI9lWU8uRWM1OaiNCIMHOJzi3yxRPF5gaVCTZLqxMXDL6KmBiJNuLnc+KrNzD9EafjU05u77M/rplXAtERUOzWkQtWo5qIGA1BWCssTgIuwmkTMALBQN8CJpJbRQwaCZHgITOK4VqJc46q8VSN4u5MkSlF36YqpEZBbg0iqZTYaIVyEQkGL76tStCMT6ccH9xmFPqYfJ3ZZI4SyNDgPJnS9Ms1BqMrlJsXEt2tNSKa7YvncGbIZi2sf+0qJpuBjvhxj/LaebA5URqoay6eX+cdV9f5xMc9TjReOZyA8REVNbOY7rNupoyyjFnVMJuekOfnCC4xb1oL0+mMaqbJMo2yQm4U3jvEaIwOhCxNpCHG1GJCa6TV+KQ0Y1t6GTUSYdhT5JlKgROg9Tcy3fenzefHKFidvn8hCMYEOB6zOdxmY6PP6cltzj/6FuJwk2Zvl8JaZiev8dFf/EeM1kZcHDQc7p1y+Po3KDa3kb2IENEmbzMzlqAySmMRaQOztmlmi+nzeBcwGdR1BbZCZQNiCPjQUOsCTbKNJwrXH32UQuUQamItxNoRZg1VPWH7ygXe+vR7efTxt3D5kUc4d/06585dQ9sMnWm0Lshtzo9Uf4H5fM7xzdd55UtfwmxoNq49ysWH3sna2haT6T7TyTG2P8TWivu3X+Lo8B6QIdOKT//ab/DJT/wGXgXmrmVPkEUFo9YatEHQBHyytlcW74UgisJmaDTWGISM2eE+UpYoXxPnHmTIAMOl6Ll7WLE5MMiVBFZP78947tNz5vWAbA2mPo33DNXqkmSR+mhtlRbswdml6QrLsJKGSS8uWvYttCe0MUx1XlihS63QnWSxzzK2LM/4IEOhtU6MPakPlKg3kPQrISilIVeLL2hBE6vpoDZQLHxOVj9S9zFkGYtpF5lKrfQU+ja272iA0rJQCKsmbYvoSjtfnQEgkPJ/KhVOpoe8oh1ZbNJa3XQnSS+yTNu0NFgHbKIsUGYapx3abPOn7bnSeVqRUQeA4nJgdIFsccYFEwMSfeof2SHgKAtdyOIdqyOvo1HSBS4tjLtv1eIcskiSymp339WPLUJIcBwlGUIkapeYIywqh2AMw/wRghbOXXqcpn8NLzDMhxTrmmAE7SDvnQOjKLKCOtM0BMJ0Cj1LpE9mitZkNwljPY7gfLLudg5Xz6nnp9STU5r5BDev8fNjXFWho0v9q0KDi63ALoZEyYeG6B0h+tQYsBF8SI3gTDTYOEOqCpsZJCs53N/lzo07PPHoQ8QsY3xyh2J9gywfMg81eTmgjjOUMmgytFXkuaapAk6gFihD+wA6DaoIIYDJNbavUN7SuIpZAyYAtkGNx7jTCdPxjMmpQwUhNzBvc8HzAAczYaOdJKOBXDWcG5WMm8h46nBRUUrSiWjduj6adADbDgxFTaYiWanoWc24joybSO2EUkGpOrGlLMCpa4SAR2soTQoQ83HFi8++xsVL61x8xDA9voOJM7KexlqDyTbpbbyT/mMfZHDxMnF6gjveTeMsXydf3+D6U4r57kdw++cZXVpHrV1j6grWS4U2OZlNjOHlCyO0yYh+hvi0VrAmfWtsaWhCoJk3+OaIKA5/t8LkJ0RdI03K86sgnNSO0lu0CLXSWJtchnVUOHzLepG8TFodQBBBY9oFjkZ0SqHkvQAx8ZuBiF8IudPz0p1OSFqdiCaVdXtDoSLnLm1x/b1/jOc/+yk0DR/8we/nqx/7XaYH95hVNXe/+i8x2+fI/tL/iQtvfzfVs1/g6JUXGNoiBeboyYoeOu8T0HgErS1iCsh7RFPgI2Qrq3dRFkWGjkBoEEmF5l5pDAqrFFsXdrh8/SK1ntDvlfSKS2gVmM4rPvJjf5J3v/+DKW4h+KbhePc1TNmn7A8ojeE4gM6H5IMRV9/5Xq6962kCoFUgM32sNvTKC6wNLtKYVBq7cekqkYysjGwT+fD3/hA3f/qAr37x9xBjcMGDyoiSGBSlhEJpglGcO3cZXac+UdYGLl++ylve8iSFEa5e3mGwdpGP/qsv8/lX9pjYCNkEd7THya0vcvn8w6hLG7z6O99g9qUx2Y+8l0KV/LEPrfGb//qI4cU+pyc1pc0xJHZRSKloq1I61C8AynJBgug3gAG1so9pUzdxEdFXOPIWAOi09mzBbjcht0BiMeV3zP8SAC2rhR5Mq7RMRutNcdbckwVP38Wf0C2Su+vv9lXJvA1RmLbbO1otFvLd/inF9CZal29j+44GKEI7caZf2gcKS2aFBQOyxC/xLN5YRvAzD7Yr7T1LlUBXvKXaY6VtiStlwTx0IKFLAp09TuogvGxVvRzA8cx1dJ+Tjn0RlnbHkibo9DECqfvkEhB1lUBLoulBrmTl9chCX6NX6LnOP0V3nwtBosOYhOy1NhhbYM2EykeqQaCmpgwFp7s3ULVD7zyE3bxC7Q3zw9fZ7g8IM0UMNcFnmLxP0DlIRgwBW+ZAaFcMiuAD4gPBOVxdUc8nVJNj6vEx1WyyMGKDFDCquiKGKlHzMeK9T2K7EFJzwRhxEsAporJ40RhRWElBREeL+JyZa5iOK649/V5if4vp+DYqH+A5wVdzZtMKYtOCXJUEk34JMF2AGVBYocw1WgmuSXoYrZLY2fuGQOpyWzWCjQ70mOAV1WmrC9GaGJIAVMWkkZgEhQ5C5iGLUJSKLHgubI4QZpyMq1SZosAaTR2TCZvWqboozwwhRnRm8c6T6UAIwryBChgLOAGroNCazKfvVgSMNa09eRrbRmtms8Drt05R5SH6ZMzQWPobBReffBfXn/5eHn3/B7n4licJvYz5+JDm7hru4B6T+QQ/KXAh460fegsx7lDmBb3+OvP9Q9zpGCFVoGQS2FnPMTGVP2tJglaFYAqNspDlQ4a9DWYnBxRkkBcYC71sjbVrT2DinFe++mmiF5omoLPEQkoUVJZoaqvaHjFK0TiPySLWRGJMeocYu2ChQTRaa0alIsyhbqcDFVMESMdOAtrOh0Ik2aJJiOQaxvu7PPzkk3in+YOP/wse/+4d8tGQ0/1ILyhMFjiZ7PL6x/9HBmaNXOf0rUX3t9CZpa4bxKT+VYU1BGPBGqI2iC7I7DpG5yhKjMmIKqPISkJwODdHmhnZoK3QE2k/Y8T2LD/8536MokwfSuU2ieMjBGUIWuF8QBlNofsQPUZbbGbIVMTOK6Lk2CzHFj0sERcCShX0s4xSPLqX0WSwN3U4a9ChIUpDFixTlSEXL/HhP/kX+cIXfo8yt4zyko1expXLG4yKkjwv2N4eMRoVXLh0iX5/jePTMa889xr9/jpXtkryoDh68R7f8zf+DD/2Ez/B7/zmZ/hv/vEXuEePeHmf1+/vkZ1MuHh9xPOf+ecczD9G4/4cb33vD/NwPuT09hFvf9dDHEwPGJkBsVeSZzb12DJp8WFylXoPtSxaVF05cZpxlVIsVpaLTS377smDf6Fl1NPvnaZSVBdn5MzeqzH/jO9WC1KWPX6EhT3Fqp5ELRfOaiVWKcWijUkXTlC0lZVLD5VubhC94k22WOyupo/496fMuO2ksvy9u7nS3QxZmM6kcSKLvM9Zqc9ij3ScN+G+zhiydXkPdJqkF3qOVE2xynp0VIV07EtXnSMpTZMyLq1PinST/gObWvbrMZ0eY4VWEwW6LV1bQB6lFu9ZuWFn78liMMoi10n7KTrDuEU5WXs/O/oleA/KkNkcbVOlQg5YF5nfv03GCMkLfAjUzRg5fJXTVz7PU9//E0xmU1xjUzO2eMrx4SHWDPFUaOm39yGVFUps/U5iTNUaTUU9n1LPxrj5lNDM8S4QfYX3pE6jIRB9hgTdmlclEyulkqA56kiIqcFaUAovARVdEu6GSK0aTk6PmExqrlw/h8trbj//26xtXsHlG7jaU4cGbE7W26YOr6C0UNicqarajkAkK/bCMnUNSgm2vfHGaLwHCG3Ah7pOk1rTCJOTBmMUmWkN1GpBa0OWRXIHxLRKrhEqgbyBgU1sgExnnN8cEppIXQcqG6G1Ak+NzwImS4C0qZLOx1sWK7FcKYzSKJvcZolJTKeIGAVZplOQ0VBkyeOn8QElmmoaeOmbN3nigqIcjbh4/Wne92N/iUfe/x42z+2Q93pMvRBURjEaEFVBHM9R1T3WR+v0R+cQt83k8AAqwR+NmWjPuc2IdwZbBPqlR+EW3g4mpnlfHPSLHg0Z2hrWNzbpDc9j1i5Q9taoJnc5ufctFBkhM8zrhlmVRKELB+igsEoQZQhtEIgqIr5bEaamiDEEOiGjYMhs5NxOIO5FfKWYiyKQmKqkJYgtta3bSb4toRaI5ZDJ+nW+8Y2bPP74O/n6Jz/KVz7xMarJlHNFJLeWQnKU9cxnz/H8F/4p2+51zl+fYuwOQkgNAn3AVw1l2UNRoDDkpo81ayizRjlcxxZ9irURJutjtKWpxxiJBFXixlPUsEdWKLwLNHVFwLN24Xwyp4uCrxzRt0LiMkeTUegIoSJWM2Jw2HKAKEM0gs0KolFoHJacUhl6WYZXEQtk2kIUCgtbA2F/LkS3Ry6OUfkY9+eO/f1jwuQ+f+w9V1gfjBiMBigt9Iaj1HtIW+zaGmCpZjl5f0h/tE5/dACMETViNm14/flv8N/93X/A4+97mre85zH+0T/8Gf7ef/lxfvWT94nTmzz/uX/D5nd9hA//b36M135bcfHSRX70Bzd59vOOabmGhIrTvRkyFCqZ0i+GjPQW1oJWHo3CSEoZxiDtV04lG/4u9LRsw2qg70ZWt7B+Q5xZzOUsUu0JLKxUgy4n9wVVo5YHp3MVfzAeLBfiixfS4nulZ0z356Wvi1o2YuyyBKiWgV/ld2iTDUvx7B+FOem273CAwoJJWOTCYHlTVhCiLGht1ZZOLdmEzh12NahrrRe/nznnIh3U/dulidoDLRMprOZREqINLCBzO8iWh1/mIjlzjgSvF7qZuHK8blUWWbgUJkYp0aXdmVKqaTl8OnS9IFgWquuVz7gCfhb3UQILrYuE1CnUWHTbQj2KgywjqEA0yYG1LC/hrWX/9jewp8c0k4ps1GfixpRZxBZD9PQYaTxx7hdeJxIlOZtK2+nZRUIIRO9TFUWU1oY56VOS+2K+EENHY0l9eAKpk1GykUZHogoQdSrZjmB8QDVz/Kwm00CRM68rpmPHW595K7UowvEBWbGGNvto3SMAXoS1nYfJel9nfpiOKYvUYYtFTUbjPLWPyVq+dbgt8pTHjmFp7pdKWTWNh35uceKo5xrXJFBhiWQC0kR6SmGtpopC5YUD59nKNMwrchE2eobTmedwJvS8pp8l/UtRmuR0mmlsVuAmNdHHlIIyae2VqUhhIQgEJ6ACKpmVJlAdEitjjeCCTgxXJAnrgmBVj4fe8nbe84M/wuX3vIf+xU2iUhydNuzdvoc/uk0vn2DKQDEq8GWB3biGWstxhxMm0118fUS5uY6YTWI+IM8SErGk3ji2/b5n0ubqVaRyc2KoOT46JjeGcnQRW+bEZsL85Ag/P0rNHG1K1fhgaHyqvtIkwbzWQvCCDwGtFb1BDx8CwQtZppdRIrTPuzU0HA4LjK3pTyM394S61balNAApHdWK8K3WFBqChw//2Z9m/fw6//y//gVevnqdYGu2djY4qaesZ+lag/UU/ZwqZlzYKek1niglWUwW7uQKVCBTgdykeUarEpFUyZaXA7JyA9tbxxQjirxsxcEwXO9h8n4Sm0ZHU1UEV1PNZzgBlQ+JcQgqokwFEbz2uBgpTJo7giiUydBK0j2MFptvQJ50MGXZI1OanjZ0oFyrBHSU1skw0CrWSsPRrOSFL/0e89t3OTzc496NT3LjxS+xsb4F2ZC5GHyweNmimYwZ7awxLLepXaT38ENslBZ/tI+dzbl/MOVg7y5XH7vKUz/0Pdz75ut882P/nPze27n8V/8K/ewA1vo89D3/CRvXHqGoCsxOyZ/6mz/N9nBIrHO++/0Z+wdbKD9lEo/I8wpRI4gaa3O0Lii1JjcaY1Xbsw2ib+frM9FjhUJrEcpirbvycydUXY10y8zAEig8GJM61mXlbMv48ibg4M2Y+gUQad97Nk3EQtrQ6UgUix2T1mUl5ur2vEqWQvuz5qL/7u07GqBAxypAl/pYBNZuD2kDPEvQsgjVCyCz/H0JPLqUSgdD2/90OpEF17XKxkjLiLzJdS7O3Uq3W65jcT2yynzELlqlSa0DSqu5QjrQQwriZ2yUWxakuw+rQE3iG5oqdjioG2gibZVOOxg7rUwnKhZ8248HrLH0hxtMc4PU0JzcxxQlvSyjmp0SzAa63GLj4uNMfEGRFThlONk7YO3qTmrprjU2N0ynpzTNBlmRviYhRhSBIKmHTmxBpVYGY3J0HsljEi96aZIFasyJaJR4kiOtJ2ghmgRwJETwqWGHKAcqoKWmme2jGscgT2zVuGoQYxEdqZxFN3N62Qk6s5i1h1BOERqHb2qEgA+O2Aa17ksaYmTeOJSA9UAU8tYQzc8jWQbWGpwPqX+KgPORntXULuADOB+wVmFNMv2yQJarVJoaI9orvAKVWWyeo6gJVYPJLXkWUcEyn0VqLVQxsLFVYkwgKzNcHVJaJKR0VFOlCSrE5DEhIQUSrVoPnNAuBtCJnTIamyWAJz51MlYItujz5Puf4a0f+QDD82vM5pGjuwfMd+8xOXgRbQ4YrpVsZedw5ZBssEG2uYMeZmAyCneR3A3YurhDMFv42YQec8RPGJYZA2txwS9WakJKqcTgqX0Cic5FjndfZ6fMaRyIeBoXCa5Ca08dcooANkRC1HiVnH+DpFJsLaAwiU1wLmlQ/Dz1/+k87KPgQiCG1jkVw0ZfmPWF+8fgad1O04yOkkimkvV9ZiEf9SiN5gu/+lvk9SkH975Fz2gaByMJlJkmDAtsLzLQBjYfxZ7ewdqGGDcRqYmZkKHR0WGDRzeGLBuQ52uYPEdnBagsVW8ZgzQ1rh4Dc7ICfJPhEWzuaWZjosyTt1BVITr18UHn1N6hvMfXFS7O0d5T2QLyEolCZgqKfINyuIWojF6ZkxnNuJqjtU3i4JhckzURJYaUog9kWlNNFS9/8oiPf/SXef0rv0Q9d0ghRB2I9FHlGspa3LwGY+hXp2g3ZnbkiEHj6sAo1/SubrN9eYf3/eCHeeHZ5yAIea7JpMfT3/s01tc8+uS7ydwhe6/sUlx5B/ngAj7kFIOCvqoZbFziYDfy/Q/BvXs1w501BsyIswGBSMiTDqvOJxgtkA/BKDKT0mNJ9yUL916hXduJLFIji+V1F0fORK0Hf16+tgjyesVIUy1Ziy4+CMuCi+VSvlvIcyad86Cv1+LflfTQ6rb6EdJMqhbpSyWywPDdf/VKXHqzT/Vv276jAcoqPZUSLksGpMMTi+DagYAzXNmKfoX0w5uldxaRWsV2kLUgJQKSyn/TRbzBvmalM3A3GNt/JSyLgbs8ikqrOIlL5kVJcu9cvZTuOB3QkLgKgLr9zlYDdR+ycw8EtTjPqqutUmnVF2Ma9bH9vSuIXzglIkQfKGxOVm6mKhvtiX5Gv3eZyekBpjLU+Q7zo9tsXn0H69efoM77xOjwyjIZz/HuhGFRUjnFYNBbaEYQDzaJPBOb0nYvbu+30jlRRZR2GJ0lcJKBaEX0GqIHPASHDqmjsSEgyuFMADHE0BpnxTn13JOJoqKgOq3JjWB7wunBLaKqiNTUp/tczN7P1mBIox0xzrl78wWO9nfxrk7nE5UqVGJAolDVDQYoi4yin6HE471Do6hqSRUoCuoALmiEgChhNo+EoCgKjSUZUGUqmYnlucGYgA+CFsXAGyZTx425ZyuDtVxRVx6rDUWhmInQOM3JaSTEimFfs54VGK2Z+zkhGX8kN1iExivqWiEqYruxkryjQBSZFfIyYDMhiEFrTWZBeUXlQPUvcO76ddZ3RqgsY2//mJe+9WXk4EUyc0i/p2kYcmQMg2AI/XVsUDRNhrE9iuEAaTxTySnXBmQm0hwFdPQE57EBsrYBoyMZZxllaebJYTQ3Cm0NJ0cH1PMxm2vrOJXSagqfqqd8w3SWNDZeR1RU2JQrRUXIswwRlfQdIkho8/gIEkJq/tdRAQYQl1aQXnH5nIEscPdIEEnCXYNggdIqcguojGF5kS9/4lPU80NyBc3UUSlhQ2tUKYwrTeEN6rSgeP8P8h/81Z/ik//wP6HJBD+fEnWFngNa6GcRqaCqTpHBBmo6IyvXmOk7HBtDv6fpDWAwKsnXN+n1RsRsHd9YimGP0GggJ9Ckz+brZLzuAEqCBFw1QfyUhhpcMoUTNFGXhHINBPKBJytKTJaTR0+pLYIlSCRTERdVCjqxwbnAdF/44idf5Xd//fe4//JHieWzzOcniOmD12gD8+kRW6XGSk483SPLDY6Swdo61XzG7NYNsrUR82bI3dcPmc0NJQHj05wyurjD1cevc+XcOaYh4+pDl3j2U1/hZXOF+Y3XmOgt9r72MSbf+yE+8mf+Y/yJ5tHLmlIcv/z/e5kr793BhBmlrinCgFwKcjIkwNw1iJ6DzlDGkGudjNw0BKWgM3PTalFJ05HoiZlYSgJ0CzqUnGXu31hxE5cYZxk60ryoZMGYd8Cli2+rxEXHjii1PN+i7nRlof9GtmOpK+mYoDPwSnUFxm38U8uMRGyFtH8UkPIdDVASs9ta6kormqNNcQiLm9M9rDO6DOkC+gNBvWsZHSHx3qE7WztIUpCU7gHRaklgMYpWn2lcvpzOFzsRqqDiCoOS9kjXL6uA5OzjXEnEtNRZC0I6OCIsrwdaEKLagdwug1FtB9blURefERAJCRW3bI9Ip2wxKBoU4GnBjgjlqI/WfbR3RAJog3OWcn2Ij5HB5jWCOyEvh5wc30BVwvmHH2N6fIvNckBDqqzA5uluhoiIx2qbxIsRxKcy40WjRm0IJNo8sz2MCA2GqFM+mBAJYdaCSoXShig1SsKiIDsoQemYDLyadNw5DcZA2evRP7/F6aymvvscRbGJWvOc7r1Ob+cJpFhj3oxpZjNiVbWjQAghBbuuJ4USuHhxkyff9hD9foGbHHOyf8TJwZjJpKKqk8YjeEWUVEY5nkCv0IxGKa3jPHifnqvSqtWQaJRK+hJrI9YlBuawTiCtryNRJR3KoJejLYS5w82F9cvbmNxTTWa4tvFjXUe8bx1jJSYL+ZbIC+240qTvlLVpBMcgNN6lQN4IjY8ENFE56njK/f0DvMy5f/MGbrqLyl1KdVQ1XlK1i5t71i5usT0wuKiY1RGlc8QFZid3kWZK1tNIv49Mc6LdwmSGwgUIlmgaMqPJlFBmBTEzYGJLdBqcV8zqGU3TkGuFRMOsdmlRESPeaxojGCJOSCK/DPCBTCtUAJtZRAnep4nWh05XkGz+syxLmiKTnGclBi5taAaZsHsiTGoQ0W3SN/Lwk29n+PAzrD/8BHv376HuPM8rB3exm5vUp7sMBdBbPPn9P8xT73ia/toGo0ffzp0vfYp45w7z7ZqeCFE3qJC8OKoionoWYzImu2NUsU9/fYf+9lWG2+epgme+e4SqFcE4RCpsmaPlkMYrbLmG1iVRciLgfYXSGYHU5webEVUfV1e42BDqCTp60BGdjTAaYm5wzZysKJEYcMqATVU7GkVMyklmwXDzq6/w5U98lRc++yI3X/sYsf9asiNoFFnep3IhBbXGUeQK76ZIrPAusVjMIzMxuDqiVIG1luPjMSdxTB0aSvHkNmfnkYd4+G1vYaNYh96Iy1trIGP+6b/4GvfNI2w+fJmJczzxkz/D+77nLaxlmjBreOS6IjjL6Oo6tpmjjg+xhVCUJZmqsTOIpHLmqWis0fTEoAxYJSidgLNSpJRhO++ndH1IjRIxy0CGgGp1d8CKkf0bYkrH3i9f6+JO+2/SHdCJ9zvNSBdPFMtq0wfTPAsW5sz5Vvfpyudbth0W7Al0Na7dRWu6GmmFSh41Wlpn3G9v+44GKN22TGt0Qbh9fVWvgSx8iROqlOV7H2BQlimViOpSLKhF5U3r8/zvvJ6V06ycN/09tsdf5P1kpcz4TY69fG0pulWrIKsjZtQKe9JZXq9Y1CnSeR9Qx9DlN5f3Jn3WFaDcpk26e5R20VqxvnUFpTV5VlBFYTI+YH1ni9nR62RecNmApqrw4ZhhU9K7dJ2br77IznDI3E8AQcWCSE5TpwkJlTp8pqomTyCmAC6teVuMbfkmiPIEFZPXRazQsf18OqZeM1ohPmJRVIq2qZhvgVwkSJpAIkITYZglb4XR5kWmcc705BTvZxhrmM+nnB7fwxZTZvu77N56lRgavPepvFSbtKqXSFSwtd7nrU9cZ/3cDlYp4mBI3l/H9u+Rn5xwuDulmQRiy1YFEUaFYtQTFLJipZ18SNJ3W3A+aVeMUWQoShGaAJUIp3VAl4qeNsnjwnkKUhpjLsKrd4/Z3igojSLvKXSWEcc1ai4ESWLd0N0dgRCSj4dVyWSsbiJZnuFcQEWNCqkqyRhQKjKfT3ju2Wc5qCqU6iNSUZYNKhqaWuHriLg5oZ6QT47AbJM99TaiawhuDkbjATs9xPgpterTyx1RCcPL2zx09WFev/8i+AYVQJeGXEW08qytbeE8qUqrKNm5/hTF2g7Pf+n32L/7MkIyl0O1zTejELzCdyXbIhiv2i7UgpJWn0MLIEPouMgEmF3AeY9WmqZOZhhphRxZ62n6ueJkrjk8Dq07r0IXa2xfuY6Lwv7nPk1z+5sM1s/z3j/7F/ncL/5X9PqbfPjP/zR//m/8DGuXz1GYIUMin+8fc/O3Hyecfg0Kh88h6kDjDAaLNRlZnnxN8uCRoKiOZth4B1NEdDHiKGwzbDbxRmG8I8snmKYhq8aIGRCVRVROlAxjclRu8d7RVFOIAe8DBIWrpsQwwWQZ+LT618aS5zNcbDj1inK0w3A4IraNFEMmTA8qfvdf/B5f+NV/yP7hl2nCDKfGODdC6QH5cADhFGqPdhE/r1GDHmpWU7uG0DSoYFBBUi8hmzFaX6coB+AbQjXn1FfofsH5xx7h6qNPslYMqBrD+qU1+lubvPRbX+M3P/cy7tGCrbd+hP7gHN/3H7ydS9sDfv/jhzz2+IALg4x7twNbF3c4l+3hX5tQZgZZV6jMEOssLdLQiI3MMiitIVs0HQ7J0C1XRAXad/O4QiuzjOSRs1DkDGFxlr3otIJLgn1libkiT+iARAIaSfS64iW+mPcVstx3Me9zBg2tGnouGPbVGKmWV9+VMy81i7I41uK1hI74drfvaIDyoCpZHvjbYlNLxmRhCbzyc2dKtgj+Z7QenUvrSsnYAyBiCWjSJNcB1rgI7AsKZXHu5e/L9M8qol2kn2gpvu4TyjKdo9rrERF0K5npDNlEEru0Ck66AbsAZwtwsjyvtHBYSRKWpleTzLT1m2fpYCuIsYy2LpHlBfVpa4gmNVrX+GlFf+tRxrM9zj/0GPMqsH//VcpTy87Dj9G4OWU/Y+YPEWpM1cMbRwipi2wgLlYcElI7cgmBEDrNhycGcNWMWDVUx6+QmQadrRPRGAxR67SfeDIVkhttC+6U0smqO88TTe+EqLNUqeEFry1N7aidxxaBSE4xPEfVVLiTU1752heZH9xBS1rtSStWNtrQIPSN5uL5DXTuMBIZXbqOC4G8PCRIQ8QjynBiZpyeNsx9Sp/owhBIbJcSlcZRC6CMSs3gkqNvJ14TMt2NO4UTaBpFLh5tFR5B+eSyabViPK5oKsf6UNPLIoNMUirHgtaCpIUxqKRNCZJ8P6IkozEVNeOpo8wVum1ippRqm3MKd27v8Tv/+nd57PVXefjaRfqbI6qsIIQG4hQThQoHcUoWPPdu1zg3YP3SRWw2pch6hKDwlUPrgGssuZ1DZtnY3uDCxR2k0NQq5+6NlymVB6nY2Mgp+4FZ1YDVhBiJx7vUp2O0nzNVihZvkOkcHxs6vj2EpBXxBnKhpcrBaI1uU7BaaXzwLaPUsrSicG1rhhAEYppFkndFQKEY9FNPntkMTk7h5W9+ndrPKTauEeZ3iKN1nvhf/yWOTnOK7cv8xP/hp3nmh3+AfLiJryyDtSTh/cCf+DBW/+f8+n/996n3PgF61vq2KJQuCAEcihh6nOyegjmk36+YViNG61cZbF1D9Db99acIzR3q6h6hGeNw2HwNYy3aDECViLYcn1bYfIuNtQ281DS+IviACjVuMoY4w2nQuSPToMSQ2x6GHGtyqqNdgleonkac5vP/w7N85d98kVdf+mW8ep7xLJm/6WjQ60JuZqiZpx7PEWAWJ+gYMB7GUVHYgrlXGF2gZ4GNbcVgTbG2FqmbE3Jt8X6Cjobh+Sd5y3vexcUrlzm5c0xxYcD21joqz/mt3/wit+ZTsm9+DLxw/U//dSaH8K9+8cvMJ8/x9JN/ks3+Jp8/jDQukFdTmJ1itcGLIDZHTIbXGtd4vNUElbRAuc4oy1R+LhIRndKy2uoE+GOaYxep9jZWq0UcYVH8sJy4u1+WQOBNpQhntpaHUSzi3yKWSMfkLKBJ+8fVnTp8sQQYi90eSPssOhWvpG86ecGZ/b99XLLYvrMBSruSXmxt5Ypql/3S0WZdMm7FAbbbB2hTGA+W9ya6e+Ee2z27RS5x5ToWxyGxLrDCbrQPj9Wqne51WdI8rKDM5X8W4IXFMVsGph2wXXVOV7bcVSep9v7EVi67sKnrWKDuHpy5rha8qZR+6oBYMsJL5ZJAy2ykCVxLxNqMgMNah2BxztHMHLoYUZ6/xNraJnfu3UL293nk6R+kKTR2rcfJ8Rjmnp3eOk30VH6KqQp8z2BMxCelIhJcahnfOLzzqVW8a3BuTqjH+Nkx4/uvMj9+ia2tbUIvgi2JPjXZynzE45nGGk1oBZ/Jm8J7T1kUlIMe8/EMJDL2kS1TEPI13GSK1hlZtkZ//SFGF97B1HmmRzc4vbOL8bp1rYxgWm1OTELkyzsDtjYKbAa9niGzfbLcMBdPL5wHm2GzfaxKXWaPT4VqBlUjmCLNEyq0aTuVUired6DWECSgJSZAASlIkLRRPigoWuFeNASbnnEpScxaN5G9w0A/BzepU18OlQBuZqEQhY1CDVQRvEQ6z7mUmoSiTJbuXUAujBDQNE3kxW/eZP/mPQ4f2+biYxcphj3KQY9e32K0IsPimxlqVuGmu5zcfImN81c4d/0R1h96lDI35LrEFzlBDRG9jhkUYB31vGEymXP+0Ufx1ZTZ7qv0+iVGjSjzNQin1FWNxGPmpweE4DjXs1y+1kNby6wSdo9qxk7jYzK+CygKEQrSzxIi4gO5Ne0ckqzGfedzEVOKVYvCRTA24h1t08GkSVNGJ2dVlZ7/9lbG5rTh+KTh7nPPYczLZFlg8/ozPPTE0xzd+DLf95/+Zd714Q+hyKmnewxMH+aRphySZznf/UMf4fJj1/gX/9f/lrvf+B+Q3l2U1QTfsqqupjAK089RxqAKSzHYwOSbeBlSlD0OD14myyM2H4EqEJnTVBGtHTEcgtJkRY9BlhP8Psf7d1JmW2eIzsHPCc0ccROMqSDMcdZS9EZEqQn00cWA4Comh89z94W7fO5f/Ru++Xu/TZMdoo2gQp7KkwtP0ctR0jCfNIhkaF+hlSY3FkxG5k2aU5RHWc32Iw9hRaObMf3M4CdjZqcVpxLIexnXHnkbj737CYaba7jThnJ7g62tDCuOG194nV/6+G0e//H/mIcffids97h48TybF3NUPKA2L/Fdb/9RJneEl24JDz0R8F+cQujRxIBUFbOTE5wW5soxCxFfC6NBa/ZIj0yV5KadS+k8URK7qEhjRrW9mhYFC+0CeIFLpM0ItAvOGB9gLlaD0h+ydSmf9LNazvGyXKSedV1fpnlQHX/+xkaDq8dEZKH9RKUmgksotdyk2/+PuH1HA5TEiy+4BaQtc0v0a/sQtFrarS3IiVU6DFbN0bq/J6jT+pyg2trwdL5Vmc+Z47bKDRaMTNojSgcCZOX4qw9x+foi5aNW2ZSOMUmDYKmIXn7+pYg0ff4oHdsS2n3bNNIKKEo5yrhyPzq6zy86WC63ZQqqA2giaXWdZTkbO1c5ufU6RgzOaubVAWUzxh7fw5dDLl9/iMnWeW69/BJbj5znYHzExuYmeb9tMjg7QcIUVwnRFynQhtiWhKfS4uA9wbVgxTeEeo7UE+L0gPnJq2gJGJPhwgyiR4klKJssvn0SP0ZvqaqGXENeZgiK6axBF5vILKB9TdHLoNQcH9ykHu/RszlK9SiGa4TMcnJwm5e+9ilmx7v4Zk7TeJxACEKUlB7pW8XOuSGZFTKjITNEcWR5QS+u4Yqa2BeyzKIsKHNIns2Z5sm9tfZgo8Lojllbxdjdc1tOYt2cY0wCKvNGqKJQto0KBcEYjXKRsrXjcaKZNhErikGeBMnWtKZQTii6Vh1BUfkWkCrITExGbz6V5KLSebVOHV5RJEbHNVgVsLlLY9dHou+T5T1QDuci+ICjYXpwE+PGGBtoDOxcfgTd6xNVH/IRMtghG/aJB3OcDxR5g2omDIbnaGYnqOaEMDniZD5Fm0gMnvnckReKzXMblP0R1A3l2gDJC86Px5wcnXIwdZzWcxpJTrDRBzLVeb9oQlTUTddRXC9Yq6VAvk2DNRGb5WR51i6aAgioGMFojMkpBwPWdjKu5ApDgXfCdKJ4+keeZl2+xjs+co0LV9eYTaYM8wzfT0zXRClK4zBqgKfHw48+xk/9Z/97fu0fX+Prv/uPsfoGqDH4DGULYmHoj0qcsThd0vgGMzmFbETMLbk3Sa9lB9isT5FtEBtPiBVexomxjBaRnBg8lVfkMeL8DGwyOoxRtQsgh9UObTRicrwq0LZPqBw3n3uZb376s3ztcx/neP9VYlbjImifMTg/wp5C5hTNqcNJhgj0hgN88Elf5QFjmYVICEKvyNhZLynqGXl/QNNoTg9n1FWDm9f0Rj22L5/j+iNXufLYJQqV+vZcOLdGaRwueH71n32a+bu+h0fe9gTYEuV7qKhQMfKRn/ow1cEjPHW+5HMfuwvFkIHSHPgxoQAVLUFHKu+pqjlj7ZnpiNPQeIVRqX+FhMiwX1AUNoWMGMm0wtj0fe56WC3WqSvb6oJ0Oe/ypttqwF+UAP8hTIesxA5Z2OkvIsPiXMv9lzoVeHNwcjb9kzbTgpTUI+8s+5Lcaw164WL0796+swFKNysvugJ2TEVS3cMK1dSix44pkRZoJIe9+AaU2IX9TjGdNB/tsVdSQ2cup5Xo6sXDbM8uwiooAhZ+JdANruXfE6PTHqEbea3tu9LL93YAJXUgbZFu2041/V9oGzsJEhW0LMhS9PpGM7d0H9oGfXJ2EOu2BFlidx9A0GS2ZPPCQ4zv3SUGhc372LygsJtM52PmL36Lyx/8ACEojl79OqPBB9l+7FEaHZlNGk72X2VjI0OTpRRM255eEdEmsR0+hOQI2+ahpanx8zlM51TjE4zKyAYlVawwyhLFEaLGkBOxuLnj8sWH+bM/+x9ya+82k5O7PP7kNbwojvZPePaLf8ALX/kK890bbI4GTLxjtn8XE+dk/SGNq1Ha433D0d37nN68i3cVMXhEJ1fQGBNgA9gc5QwHBXnW9gFRGlePycpU4bBx7jwqV4SqAJX8FLTeR+kx44mjntOyYekhdFhckYJjatiWGD1UO4YiFFajY6DWmgZBrKIJAazBEggqGcMVEbwXPHAUBBoYZUlrIlrAKnRMupKcVhAL6KgwSiiMIkhETIt3Y5u6DIYYIyoTytwyHK2RFQO0sWhr0bqkKHIkQNErUYUi3I9UBwc0WUFVn7DmKiTXRAP1LFD3NGVvjZAPuXV7wt7xhK31EgmBRgwm76MySRUixTpKKyb7rzEaaIqiYL3XQ4mjLosk4p1OieJZO3eO0TnN3Xu77O0fEoxCjBAbyC0YrVr7cgGtMcaiNBht0qoxSqqw8w5rDFlZYrMMjRBcjRKH0oItLHmZYXJDXpSUgyG94TrFcJ317R0uXdvA4IjxlOPDmkF/TDOYM1AbSCaoskBFTRMKbOZB/f/J+++g67I0qxP7bXfMda/7vM2srMryri3V3dMUrhuagZkRCk0IAU1AANNREAGEIlqgJgYTTAsiRoE0CkFMjARC0AqhoVtMNKjd0Jb2pmyWy8xKU5n52dddc8w2j/7Y59z3flnV1VUoZkIVc6Iqv/e6c88999y9117PetZSXLlxwB/9M/8pxAmf+nc/hKhfJeoMars+EZTCuQLVRJSJBL2mXz5kgqWramzyFFGQiSJhCMpiVI2tSoIEqOdYuwApmVcHnN37DDG8gVaJGC0xVYjaI8UKZQqaTlPKlMX+DU7feI1f/e/+Oz73Gz/H+elLJJ2PQfmC0uaGu+Xj17BNFk2KaELTYJSmj8coeqKpCCpiQ6SsZzhXMisc9axClw4VA6Ft6bqWTb8htBv292dcPrzE03cvw9mKVV1w9e4BTlp0dDx6+VV+/lc+R7f3VpqTjoNrjvm1GW99S8nLv37M8dmS//zPPYtetnzhXuLO+2bo9iGb1BBLRdkHVgQaFE3YsFwn1jEQjCUSc1kwZrajFyi7iLMaZzWkiCk0xgxL6J0S/i4mkYFV0YO/z8imjEJTNdIbO9tul8+bAcPFzR2Jwo5W5Ev3xra0kxfSMr79toNztK2X3X28aX/bRtnhIPTOsRn1PxWRrJBXNsMJVYPyKO2UcmKM297vkQEZTd0EckrkwE6M5ZI4lEvGQMf8LafthZWImRLnQk+Sv7wMi6OwZVLGAx3fbxTlZno45+qkbbmH7UUkEjHK5BbbUeVNgrjj5zLQa7mkEAZtAhnMSBaZbsGPIrfejshYhJjiNrUy729ws90pdyW1M1GOGeFb0AMQsZKFstQ1ZrlGmYSpLMpZ+nDOwf4hm7OOvb2a2Xf/borqEDur0LqkNic8PkngplgdCdERe8HVik30ECxKZ2CS+nYAKB1919B3S/r1I9r2HGOA2BG7HrEOURrCjKQ8fRe5fv0p/ud/9j9l/+ZV1F5JijepNfgUmD61x6WjPX73H/oDnC9P+bWf/Vle+/gn8OdC0CBJYVyF6Aldu+LRyy+x6fpsV68SOiVUzI2khRMuLQpuXl+gdUC0IxEwEkixxahIMhlsHhxcoVmf4ZMwtwpT1JiTY4w7Y+U2NBuP9woTFSoKZtCZRCUYrbbt69pofMiUV5SIUVC7xLoV1tWUpBtUyuBENNiU81YiiaDAJzhLkNAsLNiU8ntpcmdKm3CGQWyXr4kQE2jB2iEobQC8yiicJKYo9o5mHLzlOuVihjOa2mnq6ZxqNiP0K4pNolv2qL7n6n7F1UsVbZ/Y3H9Evb/E7CdkEmi7PWarFWfLlp/8sV9lsz6l0J4UNNFcJqgFjXdUR9e5fPttPHr500yre8xsgxSGzWbDzNSI65G+pd47oGQGRqPKCW3oOD8957wLGJtBn1JQlw5tLCFFtM3ZO+i8ClRxpLIDttRobUGXCAZrNYU1BN9irEW5AucqlAmYUlHO9qkOrrF3tMf+Xkl/co/oV1RTh+lrtN+jchFq0Emj4wYdC1Tp0ZSoZEBrrlw74E/8b/4EP/ZPZ/zkf/M8dnZCUEKlC6xYxBiiGDrf47sGVAvqBB02FKWlDxPqXmEmOXCw7ZssHBYoQ0W1X+Iml8EVBDUlyh5JGZJRhC5CiHSxRyQg6w2b9Qm/+C//BR//iR/j9PgzJGnwPtK2ORvI2ISpS0ga7XuEXLJMJMrKsm56fBOpymz6Zosqj0/acOXSIVrB2ZlndlQxqTw6aMRHxFrS/gHXnrnBO7/h3RhrOX6w4vb7rlL1PZv1mv1LV/m5f/1JPnqvR4UT3vjUF3nxNx/we//sdxGayIPXH1G6hhuF8MYXe47ry9TB8er9hzw0Qk3kjIgXoQ0NTatoVTbENE5o1z2P0hk+BHpp6f0cpxWF01QTx7yYUqkSVYIxCYkar8luiAzzDrkclCnJwZRzl6UYtAMZ4ujtfDECijcvdJ8EIk+axkmSQSe1w7hsl6NbYh5BoZVs96HH0tRYZXgTSyIweL0Mh5ubRvM8IoJRCqMu5pffafu6BigxpcGg7OKLUeriC9plLpRSF0SLjBO+XJRjdko3Y/je2O77JnYr03j6zfbBFyzMxXvsvNewT0S2YiIlO6LWoUf8AhQNDqqDODIDnrgFC3m3MnQuXZi+KXY/d9ZZPCnKHWrsI2AagkW26HooH3zpZ2D7GbfIS/JjfVJMZgdMCktTZDHY8RsvM5sFbrztBpP5Hs1miXeCDxW67Xnt/vNMzJzirU9z61u/k+ZsQ3j0RZA16zbgihIVAxCJoUdCIEZPCD3e94S+JXYN3nuUdihV5nPlgZB/CEFtSGHCU3dv8of+l3+UK3dvkeKavYmi8zbn+DRrfNviyZk5UxTf8i3fjP3Qt7DenHN28ph21aAx1NM562aN0YYrN++wPj7j/OwxMcWs0Ujw9M0j5osJRQWKCCmiiHTNKbU12QnV1KjC4UNkMt9DqZL1+hTnplhXoY0dro8NXeoJKbvACoKPaWArwBSGGLMpmVIaa0BpobCatI4EBY/O1hQCC60wRQbfgQRaUTpFCkIj4JVwFiKmU8ws2fVWSW6b1IpkhD4q/KCxigiWvMobfZwSwACUJvsTnnr32zi4cZtquoczCuugnE2wTuMfLhE6iiJx7W1H7BVPUZb7RBVpV4F2+QhroNu01Ek4WTW8+PlHfPKXP4oqPK8+aikXkfrAYacLmFQUrkDQzK89Qyo1m/ufoGo9YoSzPlFEw+TSPvWVQ0JnwBmOz06JyVNNptxfnyEJKgOHBzPKukTphA6ZzXNx0NxINgdMktAmASbnzViDpIBIFg8XZUHShso6dGwJ54HzZWBeHDC77ihNoF0uUWGVTfWSG7qiGkK/IvQlUk2R1CISGPV02Y8lTzJlobj5rrez4YiFWhFF0QtZ2G0HQz0ShUt43yLNGaUsiLHGlJ51/xjnz/EodARSVq01qxXufM3iUks/PaK8/BR2vWBz/Fr2MfINYXUfIw1Nrzm994Dnf/qXeOm53yTQ0PnIpumIETAGpSLTckJ71mYhOZoonhCyy3JdlVSVZlGVGKUJYkiUuKKgsEJMHl1MmMxLrO5z63dt0E1JVcCNWzd4x7veSV1pjpeRa++8w5VLU1zrUWrKwwcrPna6z/SDH2ayf4Xr738Wa2rCWvjUrzzm5V/5FP/b/93vpioVZ6uIqRPXqg2fvfeQ89SxUhFcyPYFQUhRY43CGo3orGXz64bHfYNvVvjpAbWdUFWaOjrUrKDUBZWRXELUOZwyGpuTsiXP9Yas6xsI/yFMMM8HFyGDw1C+oxN4Myj5cltmQcbXD8Bjt6yz+5/hDS6KPHnOUDv37mZLyfjeeXYaWsrZhqRu24/VCMK+uu3rGqAwlCu2s//Q2nnxODvc2VB7Y9SNbOmKLSAZyyHpSyZmngQeIk8IZWUHyu6CmV3x7FZru4Nw0yAieKI1egABSQQt6aKcM3SyjIrubJ62s0+VLlKR04XoNwk7mpGRB9x+quGYd1D3gKNHgDOujZ94/ZsAICjKYkI5mbNeL3FWUWiAjpNHD+mLA/aOajZNS4qatB852DugX2u+8Gu/xbMfeCs2rVg9eIhyAcoJfQHGJbro809jKP2E4AmhI4UOoieHJCokKlLS2ehO5fOhlWI+nfAdv/8/4MYzN3GFw9iChGKmDO1mRbd+jPh1BitJobSlKBcYY9jbO+DWrbcQQgJJhOCJRG7duETfblgeP+Rzn/okj+89wmA4Pz9nsV+TfEcKIbuOGkMKDaEVqCdIEopyAsahjKdrW1xRsiiu0E08rl5gqym2qHHuMefqhGbT5esijBeSBh2zA20cr6+B8SCHArbD0yYY2hg5F5iEYVWj8/OtVkxkaGBSmk4Sp15oE0ydpSBkbyElgwlKzoLSw+9ID0yDMZAk19djEpy13HzmLs+8/91MLh9SlDVK+vwZrENpsEojxlHsFRSTOeX8Mq7eY2IdB5IIZkJhFakTwvkJj87u8/pzX8D6Y27fvcG9B4+oTGJ99hx1WbOoHak5pTxtqSaXiYe3keVDZPkiFocqhf35nPLgKosrd9iEQLdpkGZJUsJZs8EHhdUWL4HOQ1WDwaJMRCdFKAyCwvseYsSaHIeRYsodZlbQRlFOZyhtUQhGRQoLRVFQlHv0YrDzGmvWdKsTjLSUhWBwKAxGe7TyqNSB9GgCJI8wfNGJ7NUyrKYFuHblGpX7Jtr2HuUkxw9YR17goHLJoY8o5ZnVNdrCqvXotsG4SJ9GG7kwhFkmlCnAPWZzdoybXsHNDsBH/GpFpCG25/TtCi0N3euPee2zL7A+OSeqRDeEbIpAPa1RStN2iW4TkJAnWu/7XP4yClEWrbN5oSNfoEY7iqKkdAWENbHvqWd7LPZn4FtC51muFLPFIVevX2Lv0gEHV2+w7gyHV6ZMbOL4C/c5uH6JCZ5/9n/5Jf7FLzymvvsObKGY37zJU9dnHD/wPG4iv+/Pfgfvf2pO1wY+/3pNNfWslo945fQBtlLYkCMgdAzgE4UyOGspisxUtQE6FQi9p21bNk1CFz26cljv8Lqk1YaoNM46rJgMcBgm7HhhgKaGhSejuPZNxm0yLqq5YCq+Gp3Iru5y65ny5gX12N2zM4+OzMqXtpHsMKdPlHjUwPJA0nmOUTIwPGo7bX1V29c3QOFiomRnkh+rKxf6CcXYArM9oXJx+wnmgRFwPHki3/zlP9k9tAN2tu//5ufvgpBhYk+jiZxs/UtGNoWha0JGECZpSCrevaBkB0hwcTHK+B5pwE0yiPmGTz9EY47nR9LIIA337bRls8MO7dYx80NDaJpEnNEc3nyW87NHqNDhqprYtUS/4fTey6SHx6j9GxRXroP0SF+jDhLq+Jzl8QlXnpqjzyybkzUTY1mtApeO9ghtg4gihTC0FQdSCvlcSMQqIajhF6U0IQVIPaIdauN5xzsOufX2p0nBkLSn63tqY0k4qkKjggJdURYT2m5N2XXZ8KMuSaJIG4+eOLS1dG0Dm3PqeY2xAQk17/mG91HVE6yrOTs55fjh6zx8+Xk2pw+zw6lO+LZFq4TElkSPcgbtKpLP4FEDWjukciRdEMUgqqCc7uEmDzl7/ADfrPEbTxsyi2IBhcYP5bzSyIDTFanL1vrG5hV/bQ2dJFYJCqAcfg9BEm4Q7vmQsEqzFmHphTZG9pzFSdwOREZlitdptgNQ/s1ownANKZU/y9HlI6pJQfAe4wokRQqlUVEhUZhMjpCqQqcei7A5P2diimwY4TROB0wJs70JRYjMSojpnNfvfYF5ZVikEqWERZUQ25FihzWOuHwDtV5zcP0Z0pUbTK5f4vzeF5lemTEpKxZX7uDmR9x/9UX6tmV9fs7Jg8dsNj7rU1KgMkLX9xTllKqaUBhDCh2+j1l3k2O8wQtOlyQrOJOt8ucHR5R7V7l0/SmCj5wfv4KWJc5qjC24enhAPZnQLk8wJoDpEaMQCkQi0Wsk1UgKeZ2qFcpYtLZDd5DeatGUSgQ6rj+1x//qr/+v+ckfPuLhy/+SpDaYZAGNNoZoAsVixlve9QGOrl0nMaNvDZ//5Z/BqDO896AL+tATe4+kmN/T1qyX51T1GdV8D4lC730O9ezOYXnKGy98jtOHD4gEkETXtDR9RGnDfFqRYmK9ahDRKKvB5nTyorIE32UzMy0En1u+fQJXlWirs0mvTngR5osjbFkTidS2pI2J+aLm8pUFt5+6y+nZmvWqZ1KXTGJD/zCxf22fUml+/Id/jv/qv/13xKvvYv/mXd71B7+Ju0cTSgXrwnHrVsUf+mDiyjySkmP+lkh31vPpz72A1ytsnGJiLrXazqO6nhJDVVUUqkCcxniAgAk9Ogp6Dbby2LIibQpWMUIfMNOacjKlsBUTpalNbgRQKLZrTrWbJ3wxz7Ezll+AA54AMvk3eTFnfTnNypPbxaJ6q4l88zFIHluerEBczHNbWLIr2h32Mc6l2+PYYXG+mu3rGqA8UcIZ2IAtwzBMxqihWWpgU57IltkSCm9mEfL2RNIjT57YseMG8qpGiWSL8x3gsJ3xhR3X2GHfDF05SbZagjQKWCW3+eZyUG4V3ipVZJfduGCDsnI6swb5sHLOxROXzPbYhoPavdBkZI5k27E0OsWOP4o45hON6E1GrY7gpaeaXcKVcySscLZgExUJD+0Jdq/k8NYBa23YPH6EzDV1vU9hhOd//l/j9H/M5PqzdOcfoz8/QS3mtE2PNgVd3w3fX/aDyGh8GLitywnGpiBKIoonhVxa6ZZnHB7NIXT0bUPXBrSFs9PH3H+j4fRszenzn+G9z17j+vvuMJ8vkDpgsr87PiZkVhB1RRhFausVSimqosLuHXL8+BGrs3NmM2FSl8T9fXS4xUPlaZfHhFXDtLYoSfhuQ7d5jLI104ObaO1ADF27QukG7TK9XVYVSvbRWlDWYqxlffKADWeISSiv8E0kBIgpE67FoFdKknN0tM6rGG+ywZhFaAaGzYrGkFnAILkspAsok6A9dCi6JBx3gYmGUmm0VXiRLVOjgLFpbGTviBrRQhs9n/vU82zWK+68/Q6zg5qmDRzt73P1LU9TupobN97PZG/O2eufRlZvcH4sbFaRftlQTKYsLlVIKgixpJzsYSqNmp9ydPvb2LtxmdvvuE5YnvHZn/l59Oo+hWlIJjC7fZNv/O7/iLvf/h2cnD3gtY99lMJOKff2ePzq5xAiXVWQNhuO773OZnlG9Jp1ALFQ1wU3Dyvu3rlMVRZDgGJJs1GEuIIQKK2h7Xou3X2a60+/I+tX7r+KVT2unjPbv4wpZ0znFaFdIZ1QupjLfuGM9uwUowO2yO6aJA1JYyiHVtSASMi/yaRBWRCLEoc2ZruoAYWlJlrFt/3BOxze+Qv807+f2Jz9AklHXLWg6Vbs7VU89bZnmB0dIfUcpQ8oy5Lp4dOc33uOQIcPG5JPmUGRhBBRRqhVgagWMz2E1BHaM9puhX/8Cscvf55ufY62ir5PtOcBRKinNbpwdG2g2XisKTA6UZTZb8ZLRNmC1Ld54QUgNmu6yB1QyQsaTZ9ainJCPZ9RziakMEQPmMjl6zP2FwtOHj9GY0n9ObefuY1rGuYHC+rZhBc//hx/75/+Mlc+/Ee5/Lb3c+3td2FlCXuCrROnjzu+8a0ldxcalxQPjgOVLcD33Hv9lMV0SooQtacMilo0RVC4GHDSYZRD6TIHNiZP33bYoKh0wrU9uvLofkKvNCf+DLqWMgam04jRBcY6rFIYlQFnzu7RFyw/O2zJl6UedpqDx0rAdqh/ktH/7fxTxuercfpUF6WdwfyXi1nxAnTszCy8GXNsG0neRLtkMvZ/IIDygz/4g/zwD/8wn/nMZ6jrmm/7tm/j7/29v8fb3/727XM+/OEP87M/+7NPvO4v/IW/wD/6R/9oe/uVV17h+77v+/jpn/5pZrMZ3/u938sP/uAPYu3Xhpdkp9SSzV1zxsr2cS7absevcRddIqMF2ZPg4bf7+4n9XjzhgvuKceeLk0EAleHjBdjZKSNJQm1D8EZGJTMaURI59iwDjS/Vl+T96RGwjOdj55iFlC+GrYGObC/Ci04entjfCHZGcLR7rnLf3zAxbc+ZEEWRdGBWVywOrvDo9DEqRApVY3TE2D2oJzx6/Q3U5BLBa8yBp990HLztA9S37uBLR9UrMI64WeIrS+8nzKYlnW+3Kwu9LXHYAaBU6BBJyqCTAp0D4br1GantqQvH+uwRpvPMD65QzQ6ZzeYcXA0cPz7lvt1QLEpMWeBcQbJ2e56sSiSdUMETvEeFNcaf48MatKaqHVcv73F67Gk2Z4jKbcvT/UtYLRy/AZuzR6QUsl14CKT1Bu/O6MoFZbWHcwZvOrpmQ2o1RbnAofCpxTkBqZD9Q5QyoBxqdYbuOrQC1UuOG4rgU/Z3SSkzZFGynsmJIiqGiRZCErqYQ+usVvgoaEVuKdaCWCCBTdArg0+RzeDMaxPMTS4ZjKzhGCZobeZUgta0beLR6/eo1DlGzpktLHVl6NItuHuVev8yd5/5IGoyIyRHWl3HHQnT0NMsTwit4GZH1LPLGaBNHdgZ7/ufPc07vucPU85L5nsLNmdn/MTRUzz/679BevQyh67gQ3/2z3D07HvQbY+xJfXlKywOr4OUNNLjN0s2Z2ecNSs27Rl9DJyuejrRVEZz50rN5aMJSlpS8Egs8m9QgTYKPfigGOvYv3KDp9/7LbRt4vEXn+f4lc/glOQgvZMHrEMLYU1hhKJMiHj6FoyKOBeRXoGxaIpsSCYhB0CmlH2IEvm3GwFxaOXGAuzF2APolEApnn3bDf7UX/3P+NRLv5d+veTy9UN+7d/+MNPiIYu9OfiWbnlM350g+jI3Pvgh4sfg/ou/SYo9MUb6LveJazt0Ka1bSrVGzs6x1tGcLVm9/jn6s1cJ/ZqkhbDuCY0Ho6nmM3QSlqdrUtAUzuHKgd30CUJAAvStRyRLtVGCtWrQ12RzRLSmdAoXE1cOjrh+dYLWhm5j6ZtzisqwfnxGWgdmezOOrs155u23WOzto4saJRXLe0v+yX/7HG9c/wDf+qFvZrZ/leWZ8Fu/8Bu87zvezQc+cJU9nbi7l7g8hb6F0loK6WmWD6BaUaQS0ULQCisBlzR10tgkqBCR4DG+pxBDHTzFxmP6QMXQ9TXJbfzJFrRs6JXnXAU2JJSek4xjYhWVAasNOuYS7YU91jBfIMMkN4zNatR8qK2+Y7TT2DInO+vQLwdOtoz58MRdDQnDeDtMknkRPjabXLxwy46oi1d96f7Vha2+2nnpV7N9TYjgZ3/2Z/nIRz7CN3/zNxNC4K//9b/Od33Xd/Hcc88xnU63z/tzf+7P8bf/9t/e3p5MJtu/Y4z84T/8h7l27Rq/+Iu/yBtvvMGf+lN/Cucc/8V/8V98LYfzBHsiQ2SODIZKWyaDrHp+It+GHeZh/LLlYmJ/IrPn4s22Z1YLxKHdVw3C1lGlDAxaljxokNJOzXDYVYq5FRO2JZxtd8+wshXJQsSYwgCOc3klewQoxis4a0wy/M3g4+LYZTgpSobyznCBoHZATYr59i7Do9LO7R1AtPVMGc/lRblJQkQby3xxyP0U0UYoiynh/CGdtPStsLiicJMZSRTL1x/h2+fZXL6LLqf0cg/vNNPFZR4/eg2HHSh3KK2jDyGnohpH0AZlLbp0RFUh9KjcbgOhJfke8R1lXZFUz+rsEZUXinJBMW+pZwfMXMHhlX3e+vbrSN8jogjKEEKfz1sKqBiwkpOQKxUhCKm2lNohsac5X7JZneKIRN3jY2I+naGNpZ/WGSAq2Jw+AFHE5GmaFbpe0DUnaMDEgKzPsaLpdE/oIjE6Qr+mb84RcWiV04fL2RyJASUBLbnTxsY8sKYAXg0R52kcrDRGZcFwTEKpFMpAk7Klf6E0VnI9uk9gTHYo0CphnKIQoVGgUgYyPXA2GMdVDvQgpjUKigJ0Bes+ApagBFdprGnQVlHPKsoqEDcN6tCgXUG3FkJjaXqDc5bpdI/p4QE2FSgzxVYlxlmSnZCc4loJyTjEFIgY3KU5f+TP/Ye0f+LDPP7iA07unXJw6w6x6UiSqKsDyumGLhrEL1GSW65P7j9EsCitaTctK5+73WKMfOG1cx49XnP3bs3R3gGFTlnQaDViBC0WrTSYjtXpY7q+oagP2Lt8G1TJ8vSLrNePseIR1kyKXEJLvc9AFbBOo4KgtM4DfzJolaMclBo1dWq7Ak5Jk4zFSM6OZRtOOnQe6jzsKxd45/tvcuUdN3jtfoPXibuvvcDmwS/Sb85xVYeVQ1QEpRq0M8wWl3mpE8JmifcNXd8RAxQu61JMNaFdbzh3Swrn2Lz+HK65j5dA7CK+afARismMutIE39OsErFN2DJ3uSQPMYYMSJSmsAoRT4opOxcnlcs6QXHeNqTYU1QViimuUOztHzI/uMZsUbF8+TO8frxm2QfOWs03futNptOaW3euYQpLSnPETSn3p/y7H/skP39yyOTKdXSxx/TynIOrJdpo1GKPs5PAh95jeMcNoUiGWAgnr7ac9ELaNEyn+/RBiMQsCtaaZBSxMuA9mERyis70SJ9QbY/ddOAD0Rr6FKFVFMbk+AYjNLanxbNJ5O+fEiYF2ihqkyhMrjC3ORgKyNYQaoxB0Wq4bxjPt5N/jv4YB/jt7Dfc9WZz0e1cpIYZcQQz4wNvaiFWemskPpI127k0v+MT0CbPk2R9TRoA01Zc+6Z05K+0fU0A5cd+7MeeuP1P/sk/4cqVK/zGb/wG3/md37m9fzKZcO3atS+7j5/4iZ/gueee46d+6qe4evUqH/jAB/g7f+fv8P3f//38zb/5NymK4kte03UdXddtb5+fnwPZ0fRi0t0pv+SaCuNKmB2GYQQm44kcE3K3eosnwEn+NvLrdugyySbwCbIR0wBQctkot83JUEIagcdYvhkn/LGPZmuotp34d2qCaadrZosdRlZjpEZlMI8awPW2G2mnzLUDtsaOo+FE5c+/fU4czsnw/LEjSvL7EdMgohqPaaibaslmamiqyYzFwWWWp48gxZzzknoMG6RMHL/xRSZ7VzhZ3ad78Hmuz0rc9Aqnr95nUziuLN5KmpT4dUecB3oKbDlB9x4xWWSpnUVhiCHzj0YZfMhBYs3mDJUihXVcuXqZwmmWZ4/zaq7ep9oU6Ok+RVETFEAFJuaOFN9mMBdbRCucdhit8SkbddlYIpN5/lEHx96BILJic3aK9Rt0qsBrUrDolDi8eo35ouaNl8A3S3TfYfWK9vxhNqHr1xhXMrt2F9ElevmQ5f03sMZQFoYQSuJmjVGJwiZU7TBxikggyYqYPAZFUUIvQghZBwEpm6oNrfEpDV0CRuEElMnNNiElIrmEE1TCxJxe7AxgFckn8uI3l/2cUnQpsZbc/mpivn6TAXrBKPBdLgWetYkHZ4nJXst0UdP2c9T83Vx95nehi5JPf+ozdM05ZZ1QRZHZIb1AlQtMMcdowfsVElosnqQNXmkkhCwo1RplHJN5RT1fcHD5GsFnEXWzbmkajwTF9Xc8S+UsL73wKv7xGecPjzl//Dp9+4h+03K+bOjDsLKLiihw1geOHyZmVcve5VukBOF8SaEt4jyCUJqK/b0ZzfF9NnrJer1m7+ASOnU8PH4dE8+YVD2VcaSYCJseZwVjItYojCkxymFV7trIDtRDl47SaGVQxmWxrc5txduc2O1Qlx2exwWXyq6GLArDel7xYB3Zn1+l+2JLd9rRVgZbeXQxJW0aTu69xPlZom/XLDcr6BOhbUh+Q9t7pJwh+gRbTIjpVfZcIm0eEUIPUdi0HSkpyrrMC4FlQGOIIeAKjSkGVnebZ5SD8/LxZ8G/1gZjCpyzdG0HWJxTOGvYO5qzN5szmTu69YbZpT0+/fyGxycPme1d4f3f8h6efusNah+p3JT9+TVStHi94cEnX+BffHzJ44crjn/pRzn93Ct8x3/2Z/iWb36aqpjx4kuem+8ouH7FcGsvZmuJpuO5VzzNdIWXnr3JPk3oaHxDo4VOIp01WGWICmJM9H2eh2wMmLZF9R0mKVLGFoTQ07UaKTXB6bwIkkifNI+UyeVRs4c1NeXAGikjoBVdl4gRtNLbjs8nHGG5kB28mZUYZ6/tlfImecJX3HY6gbYNHQOIGRe4I6ZRO+xIvu+i22d7VF9ycL/D++9s/z9pUM7OzgA4PDx84v5//s//Of/sn/0zrl27xh/5I3+Ev/E3/saWRfmlX/ol3vve93L16tXt87/7u7+b7/u+7+NTn/oUH/zgB7/kfX7wB3+Qv/W3/taXOYI82cquvoJ48RA51XSM5BNkWxLZvlpk62snjOwHw4R90WYsXAwMKW3t3kDyyidbX4+lnLQDLsanjdaBo7YjTx6jz+vY7ju8Q37PlI9t+yMXEMkUbNqKbvO+tv0227pjpgWzDfHYAn3BOo1c3QhoLpxux7LZLqAZ/k0RkbTzuNqyNqTMQtiiYn75GuvVKaUPrGNL22xwxZywPqPQU9T6nMuHl1HvfA+bxye88q//OdfvfoDFN307IlCaI0Qaui4wqxLJlBhXZuBnDMZYfJ9bZIMPpC4h7ZqwPka6E6wOuGnJndvXILb4ZkmHpTmbYFzEKkeKmmIyx5UlusidGKV1FK4g9AqJ3ZY1EwVVWYHEzNJoTehblNcsDgIm9qy6lk1zDjGgpEArg6krxFZcunKTk3uvolKkaZZUWiMpEdoV1cEVFkdXCMpRKovRFevTe8R2jQ0dqIBvW4iJQhukdIQ4yd87G3QXCCJQKloEH4aHBOwwSI5VSMMQ6qcySFGiiDEHJaIvSNpSk80GNTjYXusqZZa5EVj5DFBrBzpJzjwSRRicWBMKVdQEM+HxWcXNS2/hylvezfTyVVIf8M2GejpjspiQTIlVBWW9B+WCajqnUvD45AGxuY8NHco4oiswapAHC8NCwBAxSARtSqx2zGxFPU8ENMbV6ATOOl70a1746K/SLB+xWa1YrRrO1/m3Uyg1nLfsMXN21nG2pzm45Ll06RqKxPlxR1Hm8Ld6uofRwurBG6AKkiTu3fsi/el9THhMPQmUNpHS0BWTOgxZYFwYh7Fj2u3F6KOGYDeUHkSxDm0cymZAlvu5nxztB3KepMBIZlYLJVyZGTbnPWc3bjBtv53Vi7+O4QE62pyn0wVYn9OdO5rNmr4LpHZD32eDQ6v3wR0Sz+6zkQcc1Qk2bWYOysEHRRumsxoE+r7LSdWSKJxGGRAl+MGTyjiDJD3UIAUwFKXeagdjnzIo0pqicEynE9x0yv7Ny8ysJmxO+ZUff51Vv2RydINn3v8W3vdNb6VoE/uXF0wW+7SbSFUKr/zWZ/mH//oxn+hn+KLm+rf/HiY3n6GeTnn1FY8pE++82fG+q5a7hwpHbtf/9OfXNHPN41cf482EyUSTGqEJLUEJQQUEaLVHGU8is4qSoE6RykTK0qLFZM2a03gl2fguRLquxytD1EJU0GpY2UiJYaIcE11S6+F3m01p6Yd1c/YxHn+j42p1t2yzLQNsJ6ptJWGMexkX218B1OQl344ec3zuuAJWb3rB9hp88n3znJHv0nLxrC/7xl9h+/cGKCkl/vJf/st8+7d/O+95z3u29//xP/7HuXv3Ljdu3ODjH/843//9389nP/tZfviHfxiAe/fuPQFOgO3te/fufdn3+mt/7a/xV//qX93ePj8/5/bt2/kblDj0XOdTm1mTC8Zh62mynXCfBCi75Zdxgs/PGwHKkxfBlhlJDO9/UaLJosF8W5GN0GTnWMZgt5RiLv2Mxyeyw5/tshaSnUl3xKoymK1d0G05F2erXx1W0OM+wpdlTmSre5EtoNkFVDtlpzSkBw/sU0oxH79k7w3NYMUcc9Jx0opyMmcymRFWDbWraLUmEFGrFWVtWK2WBG0I6w6Jgf13fyP64DZNv+L05cc4v6aqe7oXnmf6rm+kmpTookQkYFJB4UqkdUQcUTl02mD8OcafUruEMQWLvUMWezWb9TkTB7iS2BzTnEFZTalnh5CmaBGcMcRB26KtxhU65/+kQArZ/l6jyOF9IzjTiLZ0m45UHlDvQ4oP6JoVMUSsqWjW0Plsy2+lQOhIyRObDdELqTYUrScsHyOTBUpZyskhKXZ0fg06ZCO/bQdXRCSghqTUsnBZgBIlMx6i6Bjs5wViyoPFtnuLoV6sskuqQRNJ+CRDUnLWHYzGa1bnslGpFCYJnmydrxU0XjgLgFbUIniyN5BgshGTwGYNvUx4+zvfyft/1zdy9c5lYh8xGFy9yNpQNcG6Ga5UJDtlUu1xWCkUjnV5wLpdktJ5BkfJIXowGRRPwqPE5EFQKbRYUtQoyUH2ShuMciQU+4sr3Hj6Fto4Nidr/Lrj5KylDZpEREt2zTUOjEDvA2+8seH69SVKX+HqW55mtelp148oS4dOith3NOkYkRKfPCUts2JJl5Z0wQ+uygZiC7FFO0dhSqwyGKuwzuW8HG0yENGDCFZplLGgHdqU2QRuUCYLsp0AxgWT3v6G1TBpJapCcf1Kyen5NcJT34hWBY8/9SPoWTtEDkDTLzl77Zjl6Ql915C8p+07dLVHvX8Z9u+giyny2q9SOgV9z6S2nK09XjTz/RKRRGgE3+ZBqSxzGUqGsEUFaGO2Y6vWCa0zC6B1Rv8pCc2qyeVrY7DOUrgSKJnO9mnXa+69ccb0uuPS/J1Mbc0zt/fZU45g4eD6DVTXYaTjud98lf/zTzzg9MpdrpZHFI9bnvmO38WNt1+je73l3/4f/iVv+70f4A/+6fdzdg71ZSGSWD2OfPaxcNLc52y1Qlc5DEuMwws0IdDGQC/5+ggpZ4ElBVoZpmKZawuVQ5QbdEsJHwMm9dAuiS4hboIKYLqE0wlUoIlwZoS62qN0Rb7WlcLarDnxOTZ5u1Aeg24FdtLOv7Sp48ntd2YtxgXsCDOekCXs3L8DNXZe+2aGZnC9HQDSzjP/x+ni+chHPsInP/lJfuEXfuGJ+//8n//z27/f+973cv36dX7f7/t9vPDCCzzzzDP/Xu9VliVlWX7J/cK4mteogUm4UDBfPG9Hb3RRvnhiL7u3Lq6ElPIkPJZ/Bn5hm06cRbpxCx5G1kVGViPlDIm8Otr5Ep9gMMZ/LxiUbNo2BPKl3NaohuNhrEXuMCWki8ziL1ueUm+6fwRUcOESu2PCJnEEPfm4RoAyskXjPtQIlLQMC6OsvbHGMZ3tsUmJ0ATmqsb3gTauaZs1smmZVTUn5x3z6QH15bv0TU88fxW7WCCzfVQZWR2/wr0XP81b6m9BTwqU5CRiUsA0Ddb19F1LsglVQKXmOenUzDi8PAHVEb1ka/zK022OEetAFD54wmpJSjWdUWhrsdpAYTHOoGxEpYCykVJPCH2L7QoKV1BVFT702ZLfaFZO01vN1CiK9Tltu4KoKFJP8p6NbzIoFJtjAFxFMI7J5TvoYsLZ5pwyBpIp8X1H9BuccxTzPVTrSWLoN2tIAec0MVhSDKhkcmeH9NClLHAV6CRjFh/HAS2zXCoJRoNTg2Fbinnl7bIXitEZzKSU9StKJbQmsy4WrM0kkkkgg5Zl7QWMwsp4Tehsq28T129MefbZ67z7vc9weHSV2BcoJTkzywllNcOYCahECBZtHKUzlAhN7DG6QKmSKIIKfWYXbECMQSlHPmo3lDYMXnoSEaUTCYWoiiQGVE2wHcKCe2clzTqwPF6xbPLkZAFroKgUVikkJHzSrFaR88eB5f4Z0/KAO8++i5c+83FU6Ildz1n/mKKqEeVAafYPS9qmJbYtEjustUSXIDRMKk2JptYRYwJicguwMQZjDdYZjM2Os8YVaFegTAm6QKlB9/IlK9hxUTZMG6JQyuauPxEWk8jR/ICoNP7SGd4v6P05hkTbR2Lfs14+pl2dIwSaVmGcwbqSzjc0r79A1Z1yaCPrdWBRC+tWI1KwuFTma7Hz9DFiTYG1EWMjIQzakyjIYNyXxdSOqHK5NAQoC0sfhL739L1HO4dzE5J1mKLmYH8PkYrf/LVfpyfyDU+/n3d+8INMJFARKJTh8p2nKM0cUzzm+Rde4Keed/RX383p517kpd/8eaY3386zH/4Q/Rs9yz5R36z4/d91xLxIHM4UU6NIKfKwNVSzmlc+8xwNljJM0a4kRE/T93Qhsok+O+f6QN+uCf1yaLsvs/miLZHCUDtNUpoutnS+gxTBKlQI1D5RtZoqJRappkhTJHnOdcAasAeHYMtsG4CgjMYq8D5twchY5lEMuVnDdJZnwSdBxXZ7s2hk5/5tx47sMis7+xmvL3Z4kJ3qzXYeGrmUHfZl1J1cVCVHJ9yvbvv3Aih/8S/+RX70R3+Un/u5n+PWrVtf8bnf+q3fCsDzzz/PM888w7Vr1/jVX/3VJ55z//59gN9Wt/LbbSnJlq1gYEJGScXu95HkQosS1YgNBDOWP95MmY0siQyMSEqDNchYSBlSg3eByQAosn41DmWfofTD0IEzNFiNX88uaJCUBjic9yUD+5KN23YC/USDijslmXxhbXvU1Y6odVu+iVtqb/w8W7CytbG/uP9CtDt+ttEwbkcku8PqIIGkiqG84UkiGFdiioK2bVgUmrZUrFNis1qjiDTdktneEV2zwmwe0HU9cXnGwc2nODk5RR0csDh8C6df/A0e1TOuvvd9mKIiSB7wagWuLDBWaF2E+X5OKE5Q6J7pokVxTugVXdNjbZM7fM5OePTqC/QhYesFm6KgrCrKekJVTSnVDDup0UahJKJG/UkxwRUNoS+QNCFGj/ctRekonKIpHGl+iA89E+8Jmw7pepZnjzDLU4r1Gt80RN+RUsAkIZ6+TqcN5WxBLx20a5qHD1kvTyn35uBKyqKi3K9pi5rV+TE+NGhrcKVjSFND4RAToYsDOwK9V3S95BBJ2OobLsDqYLI2PG4Q1NDRk4YBJ6VhAMxVBwqdtSriFTOtsCTaBOeB3FqpoK6F+b7hHc9e4ZlnD7l8c4/54SHiFCIdIg7lCoydo5JFVALlMCishj4JGwWrZIgqYHTIUqcQUXGDThqxRQ500cXwe9co1Q/HHIfPWVzkbNFjVMX+5X1+zx/9Q/zL+xuOX/zXBHmENTGLhy0oJejRAhxITvPpz79GkJ4bDdx597u5+7Z388qnP8lydUazbpjUU8pSUxjHydojfkORIqHtaWJPWUb25pqySDgTMuuoNEECEj3aGbTOgnkzMCnGFhhXonTW5hjjsg5hEEeOg1v+yefPmNc+F1OJVpokMLsGm3tzVLzN/RvvpTv5LCmdIb7n/MFDXr93xtm6QyRlF2Nb4qNnc7yiCh11OicSmU41QStCSswvT9BWoYJifdrg+4hxBq01Wpsc8SD5SIwCHYdMsAh9zOOZj9n7pGmGRoVosDlxkttve4a9yYKTszOOHz2msIFL84orkxlzI9QoJpOKcm8PNZljHHzm1z/P3/g//iLzD/8R5lcOuLx6O+eimN14N83S8PH/249iruzzl//z/4gPvrWkUorb04TRis254aSPPL7/Ai++/BrFnsXVlzGFI4XI+WpJ33fE0JNCJPmWlBogopXBOYW2iU719ALLmPAKNv2a6FuMJHRfUFtNIVCEljqsKYOiSAtIh4i0dMAqgVnskVwuE2d7p1wOTCk7tCo1AgF2yjdPbqPvyFfUm6gn9Uxb5mTLpF/MpSMQ2Qpvd3xSRmM5NbS+j4qL4RAG9vlin19DhedrAygiwl/6S3+JH/mRH+FnfuZnePrpp3/H13z0ox8F4Pr16wB86EMf4u/+3b/LgwcPuHLlCgA/+ZM/yWKx4F3vetfXcjhsvyQZGATJ1PsT5NRwUi/yBOXi9jgJq/Hkp4v7YDsR77IVsp3Mx+fJdrLesiwpDQLei9cncjFu68o3vn5rxHYBJGRgTVKK2w+RRjGueC5Q6q7B3JijcwEs8u047GvnM21ByQWQufjcA6M0MieDnmbUnWQ9TAZQSoQUE1EC0MNgoJaGDiBnSoqabMi0jojukD5QFXMms5qWiJlX6EpjY0ewia4/x1SR40efZdoeMdu/yesvfYzp0SUOnn4LqtD4VaBfejZf/CzrBy8iBbj6gProbSQrlN2rGDknYUhoEEUMntQbiBuaswcYaylnh/TW0ZclfjKBg8soZTGuxBmLYFBGY1SBkpSFjbbE+w0qebTJaaUsDplWFSFE+hizrqPt8O2GYnFAuTwmtC39ZkXfLmnWK9pVQ+gbqvmcunK0kpFAPd/LgX5ao0KkD5G+9WiE6XyOMtCu10jSJGMQa1FkwyetAsF7UgnW51DAvoMYwKGw5OskSr7+jM4NioNOfDsQqYFh0SrT2XneU7n9WCvEKjQ6D5wauqiwES4daW7fnvHMU4dcvjTBTRyL/QN0URCjwro80GqlUMqTB8MsChXRIJEgkTNfDjqvniQBUl6EJBUh6mwHbxTKCphASnkY01qjZRvBjKSOwaQIiYp6WvGh3/vtXL5xi3/+X93lZ370v8apN0hasApSGpYPOocu+pjQytC2HQ+/+BLL1SmXD68isaNvOyR26KSwlDiTsgtsDTooold0XaCuNEVhUIQh30gQZbFaYc2QPu0cxmXmThubfTVMNYhkFaJMBl3E3G4OjBNBnlie7IoYF0Ep5QF+seeQdJVb7/vdPPr8gvuv/DRGLHiNbxNeDCollBckdYgKqLChMoEokaLI4CgmYe9giqkEvxHOT9YQFdXEYQs1MG8Z1MaUkKhyBTJEtNZ0MdKHBEkRMBAjEg1Yiy4LZvsVdeUoqxleCkRrZnPL9Ut3ufPWaxxduYQxjsnEMZ8mUu+w4njuN57nv/w//QRmeompthTVjKMP3uXW93wbe5cPKEzNQv8emsdf5O03hNVGuHkpYbUmieG8iZwer/nURz/Gujknuj28WpGCxveRtu3ouw4JPaWxKFdmcbIq0WgqU1M6Swiejd/gfYcH2r6B5LHKUNiCKiasbzH+AWn5Cg1rwqSiWNxE988iKtDTsAkLYn1IMV2gTJG9cnRmNc3wDSd2OnhUHtdHfxHZooCxHKO+pKqQH32Tff7wM5e0AyjeNI9uyRJ2io1qF3TIkECfnzFE9zyRyPw/GED5yEc+wg/90A/xr/7Vv2I+n281I3t7e9R1zQsvvMAP/dAP8T3f8z0cHR3x8Y9/nL/yV/4K3/md38n73vc+AL7ru76Ld73rXfzJP/kn+ft//+9z7949fuAHfoCPfOQjX7aM85W2baouDMhMsTX+GZ/DwHmM35mkQaYx5gVcMA65zjayJaMwdbgtY1R1nuC3mo6BURidabf95kOZJsawNRZDXzx+wVCM3T0j4xIvQE2KF89Po0j2wh324hOmAYhc6EbUtg05bsFNZphGhmj8fDsszg44SylH1o8OtnH0VJc0+LKkQa8wlF0koiQQYn48xWw25Qy0mxbBMSlLqsMFbQux60E8pdb4pqWelDDRqBAgRVRI9P0Z2mlYlHz213+ct8VvpTu+x/Jzv87m+GWCPyalllldsEkl6emew3d8C2UbcDEN7rGaFCPJ94ROYwtN6BtWZ49oO09RT/BlRQxtzhjp8/c5CXOUKdDOYIpMnZMS2hmcccQY8eKwhaEUi7ETTOgwfSClnugKYlUxmdTsHR3QtS1d09Ctl6zOM2AJPgvtJAUmpqRzCu0KalGEriESSKnF6ETocwaRlkTlDEFle3SvFEFHTIxoreiH469qTUqKrofVKtA3uWNHBiF3lm1daBeSCMZks7fhV0EcALDOTxniFwRnMy1eWkVdQIoFd29PeMezc+ZTQ1UbXKWo9/aZ7B+glEFJGFjFHqJCG0tSAaNNvs6dAelJ3RrfdhiVkLhhNFqUFGDoWGHUcCWfazOSSywi+TOLVlvNhoYhA1NBmFMUjm/8tndTzAz3Xv4ML3ziR9BFixWNT/m5Y5io0vn6RuUW5LN7b/Dw5deoa0vhNAeXpoMOCIwRXGGxpkDZ3AY+KXrqSqEtGFehC40YQzKGwmpcYTGFQVuDMQ5lC4yrceUca+doU2bwIaODtOxw6mNPD9tl8LgsU0ojZABaO8GbhFklDm7c4eSN14i9xcuGTtVYN8c0SwKGmCKRTDHvm54KSAaUSgRRVLMK6zSxTaxPViiBYuJQ4yySIikmvBeaJpKixqeUM35UokehtMZog0XwyaJKQ7mYU88WTCsDqef43gMme0fMq5KD/Sk37lzh+qU59XSfyzevM3FC13jmN+7w0nOv8H/9V7+If+oZrl67S1osSNND1qfw+R/9Ze7+rm/mg9/2dt7+obfwTbefJiXLrYlh3wYSBnrPg03gxRde5MHDR0gSgjiSCH3X4LtA9AFJHaU1lLpGi0dZCClkS35TopNGpR7fNrQJkrVDNAmDNZeQQkdQkVXzkNX6FQrVUBQl9fqcuotMTYfTD1DxgHZySOAmuryB0TZfmJFst6/1wIjKNtQvSwhkK0lIu1eEjPqSXcaEL0EK42MjqGF7PQ2/BzV2tI4PDdq2LZsiF7vVmaUd9ysD+lE8qVf5nbavCaD8w3/4DwH48Ic//MT9//gf/2P+9J/+0xRFwU/91E/xD/7BP2C9XnP79m3+2B/7Y/zAD/zA9rnGGH70R3+U7/u+7+NDH/oQ0+mU7/3e733CN+Wr3dLILHDxc92ltLa1MHJvj0qSTZAkvzboAeXtiEBHhiWlHTCRZAAoowCW/MwtuzKUUHZorAwwxtsyIKWY9y5pa9Q2ajpkKBNd6EBy6SkNrx9Bhh4zObag6kITsm0JS2EAIWzZDHnifXZA2fg5BvFrBiaDGDQGZLSYT1mQfLGaTfgU8Slm8DeAlpiGooIEovdYDKYwKG3p24bkoA8R05zivULXBlvPWS3P8aFFpTPW5+fsXzkgSmLzxj32XCSdv8wrP/ITBN/SxMRsUSIq4pLQti0pdsiLv8zE9dR7noCgg87JoSnmULKuQ9CIakhiCFHnCTvl71BJIMs8N+AvYdwMWxhSWeGKAlM4jK2wqs5dNcUE71v6dkPoN4hvSb4jxo7eNzmPhymSIr7v6bqGrtkwOdijXa2IPtJuGs6OH6HaDcW0pvE9ELBGE7ygYyBFj1GRslC0bRrSQnPui3Uarcf2TcGYOjM4oUcpYTZ1FJVhdd7SNUIX4hB9Dj7u+ihAIg60ryaF3JqsDdtJcRxWHAmcJuiESY4blwre864jqrrYCiKtmzJfLKichtSSooXUIsnk/cXc6ZFE0F4TJebfY2igi3QSUCaSYpfFlMlAyjV5zQC8o8+x9NJnBnEQk2auKOfmJCCFgBKdgw5lAv2U67ev8u5vucMXnnMo3ULIbdm95IWPlmy1LkkIXjATk6+Zpmc6m7I3rzCqy+msTmGtQtthtSvgKoeZGoqyoJ4UTKYVaE9SCVdNscUAfgf9k3YZLOjpEcXkkKKYo3WJ0hZtNEbZvH6Wr25wHzhbVDJIJ2jl8KHn4PoV7r1wi+b+cySzgLnQnSyJ0VBODMF7yn5NVXtSNNQTjdUJXVlMqTPQPvWYJNT7ZQ7J7COSDKHLWok+MIiVhwgAkwWxpVJELUgMuWsnOaaXZlx+6g51ecTJa6/hQ089N0jo6DwcvfUyt2/sU9eHlPWEvTr/BqP3vPDFNf/oH/04H/3Ep3jmd383+7c+yKuffswbjz/N649XHH/y/8P5i5/C8RH+F//JbWYm4oLh1jRgMEjqWWrH+WrJ85/5OHGqMG1J0GkQHmus0eihQ7PUFoejMBXO9Jz3TV6ImUgUj6Qeks+ARlcYazHKYJRCSUcIcNJ3qLbBxD1KdUgVC6Z9AU2gXb3MOnlim9DTp+nCN2D2SsTNEeUoVPZTqU3WSqUxOHTLlORZUSm1FRMkZGBY1AAaLq6Q3XLOm0HDl8MQY9lufHx3rn3z68dMtGEllE1HRYYy5Vd1CQP/HiWer7Tdvn37S1xkv9x29+5d/s2/+Tdfy1v/tsdzUS+7mMwvHs/VdxgcWuXCj0QQUtxNa2SHQRjKKWlkNxgwwMhW7LINQ9ljyFSBoUQzghN0XgXKhU5l1IGkgY24YEaGchFqABHje10cx2iBnR8P2/dRaezWGNmWi/2Nxzd24GRxcab2UxzuE59Tg1Pcai9UiKTQk8KYfTO2K+e2Rk/EM4i3xnM6QvYUicETRFGUM7q+RQXNpCyRStH5E7BzjK6IXUNdaorphLYX5gmq9YvE9oRi8wAta8RqAokV4FGkVbedSIpCYZTF1jMm6gFKZoOr6w5ATIIf8jJEdVgsSjui0WgViVrwJv+/1R2oRFFuiEGI3YRQ1BSTPap6gSosrgBTGWIqCdOaGOZE35BCS/SetlsT+i6Do75H2RZXlczmE/p+yunJGaGLTPcS1WTBZvmIFALzyYK2dpw8Ps5uqErwREJo0dZQlQ5vDLpLeHINPUUhGo1xw2cMuR84hkAcDAFns4J6IvR9JPQJ8Zq+z+UopaEo1VDOGa6ZQYuSkgadto6xRiuQvEJPQVFNFW95ZoLTILFHWUNRTZgt9qinc5TJDIlOHRIbSHnCJbns7ZECVhWI5HKAUqCjRwk449DaEJIgVuVr0rih5ChIUgM4Hn4fOoG2g3GhQlTCWjU0+/V0YQVRSFgevfaAz3/sCxgthKQIaXTFVcN1rJEUMQZOT1doSmal4+b1BXv7NYXTaDUBhELrbP41ADltHEYJ1mjKsmSymOGcI4Q11gpVMcMWOhvjGbDW4sopxeSQcnIFV+1hqwmmqFGuBjMZAMpXBie73hUak8eH4Dl/tGK1OefRgxMqW3Bw822c3XuB1WrD+bIhKJU7maopRYzMbcQIiB7MvxI4KzgSqU0YEezM5XEjQPKKvvXEpIgJJCXqQmO1JqqE0pndkpTHqYClTwFblJhYcPJow7Vvehe6Czx67QvooHCl4vpTVzg4nDGrC+rFHuX0CFPMCaHnp37sY/w/fuZ5zk/uc/mZZzhrDGe//hnOTj1n9jLOaeorNdoldN9yZT+yfFXx3juCMRYRaILhtWP42K9/ltcev07cS8RCEY3HJkPpymwYF2u6boMKEQNUOmEQIND7FcYmSluBaEpT0MdE0oqimlC5EgdECZgEUQzBHGLMAUnVuBLETkmqJvSRGNf0zUOK+BJJ3yC4Oam6RqCiNxpdzSiUwei84Ear/B0NlYRxkZ3j1rJNRdzWZS7cYpGd5pHhmnnSbfbNXijj3scy8JPX4tiM8eSd2/9clIF+Bwzx5u3rOosnhYjYNMRSjI5145eVJ+otLSVZzBMYW38vGA8ZVj0XpZ4sOrsAKMOXk7KPRBg6d7aMSa6fZOZgl52IQ+mFDIwYO34Y0k93xK+7DMfIuOS/47bUlMs3O2BmBDFDWScOTMeuXmQU+CZJ+OiJ0efnxZAH+iF8j+QzZZ4CSvpckw6B5EPWb4xCBciTn9YEnd1u87w2nvtBtZ3iAKCgS2usrbHWQOypipp+3eDXLXoqJB04XwrNOjE7XKC7M9Tqs6T2jE5pkito20AImRnSCWLMq4Skc8nLzCuOLh3iEEwucw8OwrkGbrSglMmv8wlNm0PaTEJ0RLlsxd21kNTAskRwpieZY7SbEn2PBMV0PkdPLEoZjNIoZ7G2JBVltgwPEVPPiH4DIRJ9oG1W9P0GiQFXzbDFjL7vkZTYu3pAszri+LXXid2G/b05hVWcGCE0nrQGQ0RLLlWpmLUfWINoQxgmAQNom3AJgjek5PA+0XYtqDwZaqvwugeTMBa6AMnrHCEvUBhLTLlcFGMixJSFjmpkWRRogys9E2e5e3vKZFIgRLSCuiyZLyaUtUXwxLTBRIMyCoku/99YkuqRqDFosDEH/am87tdlAW0iSdYDRYlI8ihJubOi3wzlR8hGL1lLkwE4oBW2sJnCH7Qyse8yKxRXGHoevPgZ7n3h41jnAYcqEkYJkjRWBbxSRMneI4vSMHea0vRMihKnNKQAVmchq9YoI2iTZfBWawwWoyK2UCiTSOIxRihKjXEK4xzW6qw9KWbY6RHV/i3qvTsUVYUpK2w1xxZzjJ5itRlK2PyORfztmKcNhMDrX3hM1CukW3J+foouHEEVdJsNq9OHRMntwamPKN+hVST1BltE0pB/FXtP3wf6VcrfrVGEHrq1J8RcLk/DqrmqDK4wOY4BmzUupqBbrkE8XS/oxYwrhxOOXz/H957XP/oJUu+Z7U145v1PUUTPnesHXLpyCe3mSExM9gzL1Rn/4l89z89/4lWmd65w5zu+GasXPHjuNR5+4tc53SjsN38PWm3Yv3yLye1385989zWKzvLM9chhfVH2OO01z3/+Ab/18vPI5QMKAiRDMGBKR+VK6qJGRbDa4fsGYo8Plr53GL2PsysQlQXGxoCyeBS9sdTVjMVkRqk1fd8Q+ohWFX1VQowUxjAphElhcdWESEcTjmnaDZVqccUZ0bXE0NJbg9IJrQ1FYQdB8ThvZRC5XWS/ifG8KNWQ58FhzrtwXH/iaU+IZyVdgJGd6iKyveNNL1dqhyHZmR+3R7NVsnxV29c1QMk5FWlbB7ugq8bTsBO6t1vikAtGRXiSCdllRvL/8hSsBhOkNAAXJO979zt6okNG8kpCSBeszZaFGASoW0ZlZHvyvlJKqBHMpBHIDMLbcKFVkRSRmIFJiD0xeOLw2LaVa+wGkkQYAEoIPv+d0qC5GYDJAFAk+NzRMRyjDJ4tKIMoRRRF1JlSTwrCcA5HwZVC0BLRyeO9x9karTXBZqYj+h5UYDKvaZYPib6B+T71YkZQG3z3kIWKFNrQpcSqbYkipOwNRWFgWmZzpaghDY6bhfVEawkSsAy6hCTEEOmVx+oAxuSFduwxXSBKB7HFSESlBcSCkBLYDsSD3uClQbsJ1vekpFFKYcwc64azLHoQmFYoXWJsQJsi+7+n/B0W0wld0+A7T5IeV/X0fYcPLb5vsbZCKcPpw3v4Zokxjv39I1ZuTdQKUUJsNmjJWUOZpQOtDc4aVNJEwJp8/RVVgSiD7wJqpUh9xCchph5jNSKR0mmcdoQemo0nBslpSxpQGaSHBJDt2lFCUgolgSsHE27fmGDN2EofcqjbbIpxFqVzEzCdz5oMF4EAEgbr7kHUahxJaVQCLRZTTHDVlEiLD56ynFI6S7byBiQSfYSUW7dz0OaFjgsEVE7+jT7i2wbv28yqmAmT2vHyZ7/Af/O//7+zPH8INlFaTWTwI1ERksFqodBQOs31ywWLMuHcFK0F33mKKndLaaMpnMUYhbO53KbILKRWgjUZ8DtXYYoCW2ZQYiuHcw5XzagW15gcPsPi2rtYHN7KQDopTFFTVzMqW+bJXoZYj3GQ+4pbBmx1rbB6yeOHLyK+4cG916hLRVg3+K7HuYTvEpvHG5TZMJMOPcsLAJOg8xEdFSlkRkkPpUE2nhgMSQYDTAuly0FOWhsSirbvSdFgp3OqasrZ/SVJG4K27B/sI32fE7WVxQCXr+5x9eqEt73lOpPpEfv7i6yVSx5TK15/8Q3+3n/9cb4YKq5cuoXCktQ1Zrffgr35FGcsWH7iJdzHvoCaFhzeeZY//qd/P3dvzdlXkdtzhdYgSbEOntfeEH7jueco9iyFHGH6HqULAgFfgrYVzubW+GgrfPD40BHI5VNXGoyb51KQ3cOZHGm9iT3iLFU9YTZZMNWaUGp8l+hTwKWK6JdYWVKpJbUEXFvTrjuaeEySjiIl6ukrWHeFGEoal6As0EVPFSIWszUG1WoUtw7zn4yToOywHcMcNmx5vJKtmHar5UQNWpaLJ44YZts9tPO6kQwYn7ydD3e6fLb7GHHK11Dj+boGKKMwVTLM2yKFbb7Ajt5iPLEKhkl7BCdc0NrjyZahqjewHchYP+MCRg4eIaMgKdOqsi3dZIfWuD2+NOg3xttjp44McH70GtmWaGLMr09ZgBtCIPievm8JwZPG/4/AJAbCwIbI0IqrhLzSI5dxYgrEFAkxEGMkSr4YjSQMAT0yKDHlCYOLizJT5pC0JciWF9pe9GN+UFaTj8FnHicJHRLJG2xVI0pTDhOSKhx9lbBljehEPHmVJniUTRynkokNmNDRJ0UFqAKE7CIafSCVBhFLC1Spx9iCpAqSdhiVg8fQF5qizIxlDw2RnhA8YyRCrzXaVBgt4CB0S1q/IbDGGgt2QyEAFUks2pRU8xJjcnusNTZfCzGzAGms1hkBkyido6imhBAzKGk7it7nVst2jddnw6pX06yXrE/PgQ0T5UBZXFHSr5a09hQpTBbjrVt832FchdJFXlWJGvxNsuGXNkJdT/DWI31P8pZgEkkURpdgHUURKSclwSdiiEjKxUodBIl5JR40jGLNFPL1r1PCWkPpPHU5pXKC+A1aOayFhB8+v87dKcpkh1Rr0abAlhW6qCApEgpnJrm8UUzR8wrpO2xZZx2JSO72CR0502VYMKQhElPlRDNJkZg6RFb0YWQbIamaajoDgf/3D/0MH/+NH6cqGyQZTJ/7qXsVcMowm0y5tO+YuoAhUU8UZTHD6hJlBecKlAScdtknRieMtoOvSR6HtGLbqWOdy+WMQqGcwVU1rjDYoqaYHFHv3WJ2cJfpwW2q2SWUMgQvWOOoncvCyGFKuRiEvvy2tR5Ash5HRYie9fkpKnp07Pn8b3yc44dvkIxif1YR+w5VlAgB2ytUhJ6IVRonQgpCP5TNbAkqADHlTi+rsxmdVjiX24wR2LQ9EkeH2HMedSeIj4TCUU8nEAMnD5ZcvnubWX2Z288+za2rjqnpWJ9vuHbrfUjh2Dx6A+MiL//Wff6fP/OAs73LvPupQ3w34byDjimnMXLl7rO8989+gDvLwBc+e59nbu7zjncs+Na31KRGceMqOcsoebqoefk48YkXV3Sd5khbTDRQgGDwoumNIZgczphMjnPwIkQMRWFwTkPsCT6gJHvZKKWGsr2gjcY5Q2EtpXG5K0wLVerpYscmrlD9ik1/j5QeYyTig9DHgs7uMeMyk3JCTUsqz2htgqqAFCgEVFWjlcNoS+VMLr0OVYRxWntCUD3OjxdEBozz4Qh6fwd27kvaj9X4H3ZAygBekhoPgPGK3Pq3/I9h1Pb/D1saPCoYC2qylcpugcVWLwJblPik/4hsqdOxNWp8fbaaT1sIOZq8ydDZM5qn5alaBnAw3JIsvJQ0sicXYCprQOKWicmzWWRr1iajJ8oAdqLQ9w1tu6HdnGYzr+AJvkGiJ8aeEEIu3UhEqTyc5V3krhjy6SFIyuKqgcfL3gUKpRJaEpLCAJAgKZUH3AHxpiGzJWozeGskFEP8OwqRsdvHYwbGymmGLpQVsSnQpcanMKwAehazCeumZ3P+GN+dolTCypReFzhpmI6rMpO2jFkQaIaJUqlISobqsEJpRQiJykVs4XJXCgw9+pl+zd95ICmFpsAHya3baoPRazo9BWux0pPSKUGHnGJbGGLQpFgTk0XpgsRlitKSCoBcCrEWRCxgianM55JETD77jtiESROszaGGwQdUUdG7AlvNKKYL6s2GyXzNZr2m2ywp24Z2vWGzPEcvj2F9jDo9IQYgbTAkQmizq6ponDJ4AjIIPd2kwkmJ85GuCzTrFX3XDuxLSUy5Ll9ODWrQFMXht9B3AdGW3ie6piH6hiCC1YIyiaJylDY3usaYEGUQVSFqirZ76OoQWx3gqjm6qNBugnYzjJugXI1yVQ561BpTH6DdFGsssbJY69BWE9uWGHz2AE/Z4ZfhN4cyaBxmMiP1HbFdAYHQbUg4RBskGexkH1vVvPDR5/jEr/47yqLN1yBqQOJQINy8vselvQJLR6kVVlt0UaKrmsoWAzuUtTNaIsYojLYYYzJ7ohJKK7Qa3GGdRhcFqjAop7FFgS3qXOKp5pTza9T7t6nmV7HlJLeyO4tzQilQqix+lhGc7K5Mv+KWez0lKc5Pe0QZbD2lSB5tikHvnihLS1UZtDH0m0AU6DpBtKb1uWzltCKqhMnzO16noTNRKMvBHVtA6Qha03shJugDdD203uccmcLgnEG1HX3QVNN97OQS7/zOD3GlhsuHmn51irgJ6+MvcvboMa8/3PDxVxteemyor13j2uGM45fOSanBXbnC8qVTVieaaG8yu1Vy5+aMp+/sczRxfNuzkbAS7i6EQhyiEiEqjn3iuU+d8vqxZ5+GItXomDDRkJSiUUIfFN0AWlfSs4kNrUoYa3LnmFLgNSF0eZzvAxKErtvQpYhVKrPVqcdrlZsOtKbQjkBA2woVD+i9x4eA71aEkGhVSWcOWalrzPt9ivOArRt0UULTsvSBKghuHnJ5sKzQqsIVuYxKzOxXxpNZ/6hGwDJ0o+cKQl7ojUBGDQvQ/IQ3/TvefIJJUTtY+ULXsiNh+dJd/DaeLV9p+7oGKBfaDQbkmCfdi7bZUeA6lmzGcoo8cfe2XXj776hTSds2rhEZM2hL1BOvG0P/RkZkBCVZa5JFhzKqDgfmZGzjvdCJjJ0048GlYR8xBrp2Rbs5pVk/oNmsCd4TQrct9YQBp+WW+ew1kVJCQrg4D9aQlGYb38zoIJr1C4b8kGcE08MVPNYgB88Ko7My3aARNHGo/WeGYjSWG85NIossCfTrM0rl0Kaii0J51pFm+Ry5wpKiwzdLBIMuLGtvMRJwksWcKWfe08RI2wnKaUoLShKzukYrIcYutzqG7FteFBPcZI4onX01UkuUgFI12s5JCN57jEpYHUhlS+gTXbtEx3O07sEYXL2HDw1RzoimIBiLoJjMZkRfkApHWWmcVtnOWymMzucnJVAxd7ckDUWqsGpCcoGI4JIndBu6rsF3a3yzppuumLYb1k1D37dsVivc2RnF9BCzPMEVJ9jqmHZ1Src5I25W0HVoLSjrsMaRyJk/GMG5Eq1LXCFU1YR12+B99nax6Gwnq/NkoxnLd4q29aSkMF1Am4rYVfncaMEYjXUajCJphSrmFNMbFLOruPkR1eKIanZAVc9xRQkmt9NqWyN2sHkXg3YVVTllMpmTsAQZtCQixNARQ04nJkrulAp9ZvhUkcWsGJQr0MnRxx50B6ihXDShXUbqssa3G3713/4SD175FMZBoQzaBEQ5+hbmi5L5VHhwb4WRDZcPC+raUluDKxxF4TKWGfQdSue0aK1z+2xeGGSxvNVkjUlhMUWBtvmaNuUEW06xRUVZL6hmR9TzI8rZHsZNQBu0UlijcNsV7u8kj/2yo2MG7D1sNi2urrF2ilOK/etPc/zGq2yWZ0TfDdqEhNV5Ytv05PiDIPROUevBw0YNaymdqAuwJvdHKqMxoojek5LG95rNBtZNXuQoZzFqiP/oPcW05Ob73s073v8ezl69z+2bB5TNMYUqiKpmtfT85i9+kp/+tU/zejeH8jp7VxcY7zDFVXr9iM0J7F+7zOJdVxEp6eqIeryi7CY8favm3U83FLHi8iJyUCqStChxrLE8vH/Orzz3RQ6vHnGAoewjsfNIDHiJBCVYKTG6IkdLdChiFkLbAm2zCFrjiL2iDRuW/Xn+/JKT1tGaLvSsumZgGwWhwJDwESIVnn2MKYCajT+l14FUFKTyEol9VDdllizOJ1zZgemJJtAbh1eOtVqiqxK3d4nKVnksVNmAMcShEzU32n/p5ZGjhvOVMnbbjPPi2FvyFbZdEuSChXlS9zISMnJx19e8fV0DlJTCts14K9JMO4xJfiCfqN1OmDR8IVsQs+OsOrAqW5HtUAKKO6zLtlRDFr6O6cXbMtHOvwylHkkx06IDYMnMSRgYlnz8aWRRUFuBrkjun5fQEPolXbPO7boxDnoTQUSBhCH1UmUQpMYSV9yW/KIPYB0jpafVADjIYEMrMxh/B1JWuJEGtCxaYZQB5bbdFfn8ZdfKGHsUemB8cgidUSAm/621IH1Dsz6jnipsUgQjpNNj9o4u08cir0y0y+6mKqFdnZNgxdNFhY/5/oDCK8kdGSFxtJhQVRN8FGxVY+sZWjuSGIr5EYsbTyPa0R9/EX/+KiIdRIUxNcoUiDb0KPAB060y7uxPMLIhmoArKmKqMDEzLaKPIQlN8BD38OUCme9hXY02kIZVL6P/jRomq2H1mxxEm7sgRkAdJ3P6vqddr/FVQzlt6bsNxXpDCC37hx3tes3y9JR2s2K9WrE6f0yzfMTq+CGr00d0Z+fE0GQAJgljNKbILAJEFB0aQ1XX2Kqi7SUbqFmbe0GNRm+FzhqFo5po+qDQXUTsir5rmDhLPfN5Aoyg3B7V3hGzy3e4dP1tTC5dw9ULymqatRfWkk2hss2AMgVKu4HBA9wEV+9RlYq2T8QgSMqurFECCsFaQ4qB2C0hdSgSorLAFFuTAvhuSZQuD4opYkSQ6MAaAoEXPvEcv/jf/zhanWfXVgDJOqVprbl57RDVe0Jzzv5BwbR21BODKw2usNltNgxaGKtR1qC1GhhIPSwQ7JCzM/ic2Nxi78oCU5VZID2ZU06mFNN93OwIV+9ji1nWLQ2l5QxthxXHm4zYvsrRERDOz1qitJQTTUBTlvvY+T6rdcNmuaINHT4GiqLGR08r0HTQASopNhEmRnGkHYo81k2dxthcBpeQGdkYFW0LfZAszI6CVxpblggDOxsixaSgPrRMS0eBojLHLF/+NI0q+OjDV3h0vOZXP/o8n375HHPpiHrq2KsT08Nr7F+9xVkD+tpbufVNNyjm+6S64NXfeonNzz3k7b/rG5hpzZ3LCk4r4gSuTiBKxK8cj1Ogi/CzP/FZ7qkD7iTBKEWZcvZSaDeQerRWGJVwOFxZYV2Bch3YBpSidBW1FBglqE7TNi2SNMqVWCwYTUjQth0SFa1uUKFHB8FqR9SWEBK+DZAsyh7QmQk9MZs0yhQdPFZ5psEwCx0uWJRNoHs6OedM8m9Kb9b01ZTWVTiXWRBXDPqhbrDgGKoEsm0gyfBBdlCGGj2RxiqOPKnrzM958gpTW8UtiPw2iGZ4Sl7r7jAvX+X2dQ1QYFi1ww4tNWbl7Kh7tuAhDSfzgl3JuO8CVGz1O2nQoWxBwIVGRG9bfXd9TdLWx2TsvmFoN85lk/yaNLQAIzKwH28qBw0ur1FGvxNIoWcMqtsGv2mDVZqohxbimFkcnWRY5ZEBFhf25lm1nXKuB3lQNWl09gSURencYbBr4ZJ7kVRmNlROWc3sgBBj9kfRcmGVnPkSNWgyoNQ6dwVpRe9bdN9QlzXrZoVSJel8hZkvKIspsQ2k9jwbQmHo9AQvnt73mYAarvixpTMkcsCWsogumO9fZbJ/BAK+6xEzRbsF9WKP3hrOfYvqz0BFvM+iUzElgkN0wvkN2nek7gylA8lqRAJWCWIS1nvCpqGLggoNStak1FNPC5IU9B6U6NxBoccMkjzFGCsYldtSExC1IpLLKZosnCzcIMbzPTF6Zq2n6zak5GlWK3R5TNmsqZsVi8NLdM0NlmenbM7O2Jyd0Jw/YnP2mL7Z4AcRIilhdNanpKEcqE1FXWQhbVFNMogxFq2zf4hgSKpCaUstlrKDxGOUbiiKxGS6xJWJclYx2bvE4spT7N16B3s330a9dwmlbPaQYPhxSkQB2jm0LVDG5k4XO0G7GlGGthe8F1ARiRtCvwJJmKLK4sy+xbfnSMwhbSEl6onDljXdck1ojvFphdYzVBLi5hx8SbV/RNs95t/92H/Pq1/4FLgIEUQLzlomtebatZqDuUeaxMQVTGpFXUWqusA4PfiVDK3EETBkUzejMxOk8lrVGo2xJptzaZdX286iXIUtZ7jpAcX8kGq2oKz3cPURyk3RpkCrLLI1whB2uMu5f20hayLZYXZ12tOsV0wmEeWygFlraNoNq2aTrz+lUSF7RXmlWAfBa5CQwxQ6idguUtu8hqh9BjBmKPsI4IPCR03nhSYI0Q7yrhCwFqISVGnQRtM1kddeeRmUh9Tz2Zc+zeuvL3m0PufB4w3ntuLyO55lUl8lUrO4cp3Zlad49PKG82Vk7/13UNNDeltxdl/x6F7k7uWKqwcFb3lWc+kgsW+EW6VBaUVaCp9/A/q54VO/9gK/8uqay9/8TtTZq7gg9D7ifcyJzjHiCofzGjNTlM6hCkenKjptSCoxLSsmqkDpltQ12PWaoDXWTbKYHaHte6IPhD6xkYT0K6xfYbQlistsu98Qe4sUFnEF4goS4HxkkmDue+oYcKbDTQVduiyE17DxG3CBQJtzm0Sj9YyyKnK32MCm9H3a6hyfYDMYAcjYbKwvDNW215C86bmy/VuNEpM37XN3UzCAoHE+/tp5wK9zgDJ24wzeIWP5RnaKazulnm0w3gBY1PbLGXUgYwuabA3UVAKJeeWQZMiUGMsvo6PqDvCQYUIQSUgMA9syaDMGMJSGSf1JgHIBXEar/PG4Ygxb1keNieuSJ3yLJmlNSDnhVXZse2RYgW3D/nQGLloJRhl0yvHvJmWaOgthh/YzPeQrDNb1cSgLWS66nWRogQ5Dt1IG1CoPCnJhvW+VwYzwXCvWzTqfqyQoa1HSoUOHEkVVGwJ5dIteEGsJMkEpjfgeRcIatdXRKHL7XYoRYyxFUWHshGBULklg6NYNZTXHTvZwBzeI5yXJn5J8g04t2oFoRRTB+IBPG1Jo0NZmW3UMWJW/M6VBZVvrvh20Lq4i9EtCpwdASk6mdRZtctCbVnlNjAUnYLUQhhVFZvgYMowMZWFIqSSlRFNDFbKgt5p4JnvX2TQrutUmsy1dx5XbkKLn/OwR9176FCf3XiKsl6zXJzSbJb7tSV6GCmMghkDXLEGBKyqsNhTTGbYqc4quykm6SdcobVGmxnWK9SZiVEWBp6w9ZR2Y7S+o9w6p9q8yO7pNtbhMUc2zCHcAZ5AghiwoLTL9Pa6kFCXWWgTYtCo/VwdiuyH6LpeRbAbDElskebQaWuPFE9ozovf0m4YUGpSOSAxZn6QrrDNo47n30n1++d/+EqFbYYqC+Vxz9fqcw31NXXq0CKlNYCLlrMLoiDUKMzA9SQKqz+BY21zmHOUrmQnKAEWPv08MSVuwBaasUeUEMzmi3LvOZO8q1eyQoppiij1scYAxZWaYVE5XysBuKKHslFm/+i2fXasNoV0TGlDkgMvu5IRmtSTElC1zjCGlHu8jorPfUCRfxzEqvGjOVO4kO3BCVEIfcheWEaHvhc4H+pgXDDl8V2FVQqtETBCNJojCtyCdp1Ub7n3s85w9bliu10Tn6Lzgiz3mVy5RJyiCRq7fYX7rndRHM6objsPZLaaX94hdzyufeIA+rHn/H3gP163j5tUZRw6kU9y+JBQk2ga+cF9YTyIPXm74xU+9jL55k4mFLqw40+cUKoEDKS3iBWXNACo12jmUdRijKfUEASpXMzEOksEXc2bTHhcSpqhJCjZdi3ifO+BSRMUEXcDHDqM8Rd9C2LBqTpEIsZqiJntYu8hjTRLKUOJSwPiQW/QT2DQHaTGuYGN7zlZrklGoYkJZz6BQ7BcWN4ijC5fzmFCjw0V2ms1Ghxdz6MW/wzW2XaWP5qdf4RobKgxfspftfwZmZkekIv9T6eLZTuTjCM8gZE0X6uR8Ascy0IUIVbaeJDtIcVATySDGjIyOghFIuSQzlHt2SzBbgBEDEtMglo1DiSj7WaY4+plkwHHB6GTmI0U/HNsFMwOjnXzIICmByFDr1mCVBqVz7oUZafwsdE1JQJuBelNIyr4RRufSjkGwKGzM7Ec+LYpInjiTHvIeRLZdOxIFVDbRyjNPIqY8AEH2iDEDCIkDYASdI8cHXZkiIaI5bxv2ZgsKpZFCaNcnlNM9ZL5PbwuWy1OsMcR2jRZQRYFzljB0MckQHiMSya6quXW2WZ+TTIUqK4x2RBHafoNenVHVFdP9a/iioj2BuA5IGLqg+k1mpEwgSkskYlFUqkKVNVFUXtVam/UaVtDWoZShbVfI8T18t0aTGRfnLMV0D1dNCboA0SRvIWmUyxWVQNbV5ErP2HmVRc7W6MGPBYK2SFGgp1nP0nU9QRl8H/C9H/QQkdXqmMnBEQ9euUNYn7FZPWZ59ojN6Snt6pwY1oSuyZb7jcf3gW7T0vePcG1LNfdU0z1clVu0a20Q57DVlHJWs/GKs8cn6E0LeomxkbKaUs4PWRzeYr64TOkmWF2QRuMzMwxzpshVJHcRIQFCIuRSoxaiFRSDwV/X40wWlcYY8L5D4iZrnFIk+jWCwq8DiTqzPlpDMAiBlDTGVdh6wub8jJ/8f/00b3zx81y+WnLz1j63ntpnWhukV/TNOWHT0EqD7zuKuaZwJpeFAWuydsuiEaOys6vWmTU0g8BXKwql8ufVClOUFFWNLUtMNaWaH1HvXaPeu8308DbV/MoApkvKek5VlxjD4IGb9V65pp+v80EtsDP6PQlY3myimR/1KOUJ/RLfGgqXDRNf+dxnCH1PiBGwELMFQYgRUWob1ZWrlJmVbZyiTELysBJog8odXkqG3/+4eBJUUiifnbp7FQgRxGtiUnQSafoef+xpRWNKwU0MfW/p9q5SSkH/xpqz+SH1tQXvvHKJZRc4PTEc3D3i2tOXSGXJ6595gzd+4Rd53x/4D/jA2y9TmsRbn9bsJ8/b9jRWLBICX3hF8bgQzl8+5XOPDI27xKWDOxQRWt/g24SOPZOqoqqnw2IUpK5IZU0sa7xNRHpQglEOa6dY7Qi6w7iSxeLKgCw1behpU0A5hx5KpjoKobe4vqZ0NeWiQDdL+uOes+XrqIXCmilSRrRoLCmz9LEh9D1RcpSFUxYdCk7DQ9aLipUEdCGcd6dUTZ29D8uCqppmPyEki3rJHUgSd2o47P7Nzn0ZbG+vqd3W5B2Q/EQ5iCfS777sX/n1+T9fC9b+ugYoiMq94GOphYHIkgxG1AhOxrOp0uAxIltgADnY6iIhUmAndyZKHMBG3A4CY7fOKITNdZCEinEAAhc5NknIttyScjYDF7byKuV69rbtWI0MSm71jemiMycOLcQKtS0ZWJPr00pBFE0ImVFgaC8dDegSQsBk62k0hWicZJCiRbLVoALJ6AUZdREptxvnjxczbS6eFBO9HlbA48A41DmNGtZ/Sm9fF5WiR7Bjb75RoBzr1RqzmBH6iDEVbhAEi/dU1mUg50qscqATqWuxpkK0I4TsaKlswHvNuu8oa4fvNrB8RBUWSFFCUZJaTbIaj2aymGMXlwFFQyKt76H8ktT1eImIsxiTV74iBcFN0XpOgUEFSF0PLlEWe1STIrNOIdGtl6gUKMuSwrlcIhFPTGEo+WSNQkyONqjMbgskssmaHej94VIiyMBgGbDG5ZqwThirgDKHA05Lel+w6aDvAypNuHT1DvPFIV3b0KyXnD58g3Z1yvr8OOcPnR3Tb5Z0zYbQZQ+W6D2xW9FslrTFI6rpAlfUpHKOOTzEyZyysly7cYPYKyQuUTrgipqyXFAfHDHfv4QqKwRFijkcTunMpo0DntYAETNQywFwygwfOj+uxCH0GJcBNwi+X5L6DhU7jII+RWLqIXRo0yMFaLuXwZ7k3512B7jJAUoiz3/sM3z6oz/HN3zjNW49PaOuKiyR5D1iArY0SJ8oC3CqpqodipA7oMoCN5mQTNZuqYGVFLLmzVmNtjobtBmFdjlrx7iSopxg6wnl4pD64DrTvZvUB3eoD+4y3TukcjazL0ZjNJRD98foawGDlin/wLgAJV/FCD8sDl5+6T5dc0w4Ac6WnD+4z/r0daaVxlYFPmhWbSIph+hIMgldKHwraKXwGtDgOsGjeJDy33boyFCi6TQUw2rbJ0VAkKTxPqcX9wJ9UvQi9CmXVG3lmJZ5mSR2wfTWW7l6cES/1lAULK49TXdm+czHW6bXO3T/Gq998h7Nf3iJZ999yNHly3zLf/x7+KZvu82B1sz2NJNeeM/lAnRABeFzL8GrUTCrNfeT5XEIzPaPOLhckVYnrPsTQlzhrCY4Ra8NpcnOyT2aVEDnPOc60krMBnxKkdjQiCUaSyznuErhrMssb3tOUXWUAQzZasFoyeZ71uRrwtYoWzLZa2j6U7wCnM7t90rhJdHgWefWKKxoKhGW3ZJo/7/k/VmsrWl+1gn+3uGb1rCnM0eciMiMyDnT2EmCnQlFmwJk40YIGtRCqhZYLa4s4AJzgSwhBELGiDukFr5oIQSqtiiZElBVVBcGA6bKeMZpp9M5RmZkDCfiDPvsvdfwDe/YF//3W/tEZtLOrFZdZLOkM+y911577bW+7/2e9/k/Q8uYK3ZTxrc1xrS4XNNPkXaCzcWIzYb1qpYIBJXBFOlCohgdynWvbEzNDH8LIH1W6jo7b641Jt/Ifqiv//TMC5SvPTs6kvHQt45QvqMByhzdfhhhUNDcQYcie7SZLQGuxzHyQRnXzG/JLGyVHV6Is58lXXfRUKzFcbYFF6dNiqiZOSmhaiQRyaYUiQer8dxyLDvJ8MxYR9SZ8tiu0PoheOYckxRngCJlUYKzojwGgIZUGBNVxl2zsHeWPaoMRmcRxiYOXF+eWagM2RRWp+xyNbPVMUsCbtGT6Fzizw8NqxzYHQCfSiQ6krsRklRcJQSMRRL9rmd1dEQ2lmAy2e1prMzPY0hUdSWqdD+RsgEtoVjO71A5YGzD4GGzGzhadNBJLHz0FVVl0EmT/JbgFFVj8S5T1S31YoUfjxjHC5LfS6ljcNJSamuMWUgHhl0TtVClaXIi9Gs7TNehqgYRJ3tpoq0qTLMSS6CCmDR4sUJbKxfrnJGckpwJIaKTomlqlGiOBWhnRcxS7qdTJmdzWCRSVHifiANolQgx0O9H9vsd09hjjGK5XpVxV0O3WDH0O4b9hml3yeb8EfvLc3abC9K4x017hmFHGAbCsGfab9lvnkofn7XUi2NOb7+PWy9/iLo7YdFFmpg5WrYs1iu61THd6pSqWULZLGhdrmrPrEMSylaYIiSLRpsOa+tCawNJfm+tDappCMOOvN9B6svYMZFVjTKNZLPkRE6GqjrFdrfJZhCgpizV6iZVt+Lp22/wuU//Ki+/Yrh75wSlrehPfEKZDDHRivWNetmKSLvYhbXW2KrD1rWUTmZ1YCGtkhGGKRZ9a7TY2rXG2AbbLjHtknp5xPLoJsv1bdr1LdrVTdrVMetFxcIYdJqr6oXZnAdf17evVw78zrdcaPRhB1/6/KuEcE7sLbv9I0I/0R4ds3/TsL/qMcslisTkR3JUTC6VXzATYkInhU6ykd7kzEmlaRuNUhJa6V0iRENUlhQgqkAMSYBKgH2ESYOPqeh9DVUlbOQ4KViewfFdFsdn5HiM95Hl2Qss736Q05cW7B5OXL35VZ6+eUH33Cvcu7Xm3qnmfc8dc/v7bhKmQKNhtUh84Ex8hWT4wuczX+wTOV3x5t6QTo6ZxsesT5ZUlWIKIsAegYlMNOCsY1lVWLtgzEFqPFQkG2hpqIpQePKeq36LDx6lMq2pqXWNURqNxuqGqvKQNFpZVBpJyuGZAEkeTkqh1y0mHpNshV506KYDND4ErqJDVaC0ZpktQRmmnBhyYsiKoIyMArWmVjV1bMjjyOh2PJoW9NMJ65MlrdVUyqKMwlTCoqSIsH6RQ9x95pos+XpAkQpDPueYfLPbNwcd33jnd9XTfAu372yAEgMx2sMvfT3mEk3EYeZV3DQKGQGlmTGZxzMHXcozoOMw2rnWhOQ0A5QgysZDXH0sAW2BuY1YAEosSYjPgJAZoABzyaCQNWLDy0kC2aYw4FwJEyuPeajGVoqUlYx2Uiopq1EWOGOeeS2kyTdEPw+MZHx1OJbKbjCLWydnGSkII/UsGSgzcaUlOXVmoVJOWGOwxqDnr3GdWKiUkS6OLKLQlDJZJdFiJMjaMAWP7XuahWaKnrpuybnYLK1lmqbigLGoSvpVYhaQkYOGIq4cBo+bHNOg0G2mtjUqNYd5fg4TKY54JyOyqmrR1RLsAvQOsiGhiaqAE7sGuyKpVhwiKaJNhW7FtqxtI/P7rLBVTVVX2HpJ1R1R1TXRi6vJFk1HygkXPKJjmd1ZEYO8fqpEmWcEDMXymhFnVxeF1ZIwOB+DpKROe6ZpIPqJ7AfGwZNjZNj3TOMosNQYTL1kcVTRrU7oTzdcPnnItHvKuLug6i/p9QUuy4BPVwk3Tqg04bcDb26uePzoAS994g/S1Jp161itpWOmOz6jXhyRtTkEJ8q7L+/7vGMSRiWjlbQPKt1gqhWm6ojx+lhMMYu4WFs5F9wVxC1Z12RtQTciKDUd1mSyXmCrI+rlCcE26H4gR1DdEozi6YM3wb3D3dsKQ0WKGc0gzIRB2qnpUGEgpkzGYhtLXdcYY1FUhJwFiEiMNFZJmrFRRTOTI0qJVkWZCtt1VEt5Tt3xmehyVrflz/JMLMYKKiIGYTqfGUq/C57MI9p5T3p9ITgM9r9hwZ8F8W999TFvvf1rKNMTxpZMJFUVJy+8F7e9Ih9pxuiodo7paSSUx/E5kXUuGgph84wBp8DmRBwV0YINYI/WnNx9Ly9/3/czXPT80r/470nxigHFEKOwSYigNiKPNQ0TVVXT3XoRU62oHKRxyT62TC7QqhNycwe9XqI2lzi/pPnoy3zo938vz71yxPNnltvrwMpGklG4PvOhY8NR5QjJ8sXfCPz7t+A9L048euTZrU5QcaI6PgIrdRd++4g0bfFhwuoeX0WyPZN+HJXxFUw6YIyiaxc0uqWlJufElg19v2XvdoQYWVQdyYBOir0b8D7Kepw1JktOlAqKccpERmGqcSSj0cs1bd1QLdaYpiXGjI+RqDSjgh0JlRJTigxxZJwmovKgFnS5IRuD8pk8JDa7DSmc0xwvcSqJwH/RYWpFrRXKZpKW8yyEMqVX6vpaSQEa6fqYOuhH8rsdPd8wUvx6gHJAOPNf3x7Inm/f2QBljoEvbbTfEMR2YFJKwd2cJlr0FClF5vQ/dXDhzHZkWWxjfIYNoYxikiuhYfEakOTrMj4o45xnWZNDqmy+HjsVfco8JhJXjMOHAT8VF0YQ0KNQGGOKxkYYnZjm2PuETlKvrrUplLoIq4JWRfAm3+fJ2ARoEbzOu3rZsceyexfBaHrmINPI46YsupxYYvC1kj4chT6wU/IeJCi/c8pywpVjvyzCWgR5KrDrd8Tg6boloDCmIpuadrFANzUuevyuJ8cJoiemTNcuSVVHyA4XHNpWQo/uepqoCKYV54+WOPdKW0zVoVRFDomgEqbq0LYjZEvWjWRq2BWYNaZa07Qr2tWRvOZuD8pgqo66XRHRRNcXYFlDvUDrDqUsoEnpWuioi1gtpkj0Dj/KWCXnjKkqIpGKFZWVi7cECRcbpymjsigibWmMlnC5zETKExkH2ZHSJJXufoI4kP0gZYDGkJzUxmutqaqGo9ObuMqiVUaHQK4nsh3xesTYGmOkpTrpQK16/OVXeeszNXdffC8rO7JYtizWa5rlEXW7gkreXxlJXIsYtNZiMy75MCWlB6hQukJZiXWfXT4py+gm+x7iSIo9MffomNCxIekAaLGIVxofLZOXYEBbLWkWd4jeo5Rme/6ER6+/Sq176rYRAW0K5FhRF5o75IhWmjatSC6TgowYkoIQoKlriELv60oRxlHSypTkv1CEh2DEZtousc2aZnVMd3yL9ugW3fEd2uO7LI5vsVyvWDSaRpXkaf0s46m+DqG8C6p83f//czS5CN77zcRv/spv4nZvk80eZSLW1PRjT1YddC3KLWlSzaqrOD69zYN3HvLkyZVUG1kZBfiQ8RkMhmpK9FaRbEZHw9Err/DJP/kneemV7+bkPe8nZ83TaPlPP/szDLt3qLqJRmlSyowRYrLYlDHLG7TPv5fMgvHBJe39+zT33kerWxZqzdHLH2L94i3CHsx64v4f+BQv/+738/JzHbeOFXdXiUWtqbWwiTfWkcYoQo68/hXFz30p093d8tqrD9i2d1ChwjSWs6PM1ZCwKhKDItdQtWdYdVM2PwlcGEnG4slEFdGpo7UrTtqOWkkZojEQQyJGzcX2gs1wxZAuyDEz+YhzMo63phH3YnQkDFhNwGGTpWtbTL2k0zcwdYNuOhKacZzoU2Aik6ITLaASwe8+OtwUIe5Q0wrftIx+gUqRsOixusEkTXOkyN4z7R290hhtsbXUN5jC0qmUcF6uR1prZg9mVshGAl2iNTgwJwdPyTc76g6A5XpclLKMr58F1oc4kG/x9h0NUPKB1cgCMGIia3XNqDwzzlHPjm+YO2YCcw7Fu7pxyiiDQ6/OPMqRiHhVNC8HQJJiceY84+xJ1yCEHA7sSxHGFKEg5evIek6C6ElhkjyL4AtAKWOdIjDKzPoUYSuMUhgjmQsCUgQshBznH8ecs6JQuKxISREUzJfRhIyhxMlTOmzm3fAhhKpM4RWy6yudGyEjrxcCXObFVCNOjqyE6ZBBUyqan4BSFcZWxJQYnUMrTVfXaG2F9cmJSiliiMQcJV7fWHlfYi5R9RmFlVm2trhpQHlHRRYRYJSo/RAiShnW6xMyisEFsYcaS8yGrGp01WKaE0x7iu3WmKqhqjui6CAxSpOCIUQDlcE7R06gTYPSDUrXSIedWNMB+bkoef9TkoZhN5L8REqZEGwpcpzD1Mxh1KO1ESalFDuKdkmOwRA9YRoJ3kuCa5LjP0VPSo6cPdpmUKlUIziSk/uGrEpUrDBgNFYK+qzB+0BwjuwTBCUFaMFTW+gff4V8FGlvyutibY3W0oMkx8i88BQgUtgTpVRZqFQJ+7rWUqgs1lxUJidHSgNhuiKOl+SwJ2ePIqJUlERiP4JphAWck8NiIDlJSG26I/Ii48PI+de+iOsfcHRiMGaNIhLSQA6xCNqzlD3mhKkb5vmNrmpZBXwsG5REyuJ+0FajsrC2IWWMtZIY23SY9ohqcUS9OqM7ukN7dIdufYt2fZt2dYO6XdFaS6dFCCs4Q86qVEas3whJvp30zbIBU4qHj7d8+fUvEfW2jL16qiZQd4ppdGID1x3RVlR1TVdpXl43OP8a5+fbwoaCLleIkBKWzJAyLle8+NwH+d1/8k/zyvf8Xur2JimfkKPh9/2J/4Yb91/mS7/2G7z62U+DfYyxlqUeaOojLrZwdOeDtGf3mGIi5zPSvZfpbr7AmCq6m7e5/9EXWNUVm85xcvdlnrt/yo215dY68txpZm2lGXmMmhc7xcrKyOj8ac2vfi2wU2/QTC3nfoHualrtabRF1RnrDMFfoeuRVj0HObGiJXoPOpAacFkRfJINiTYYZahsRWMMPga61HFURwbr6NOVhCkGh0LhB0d2AaMqqlpjLUwxSopuXZNzpqKh1gvarqZbL+Xz2uBjZl/toXSueefYE0lVy6pboHQDfk8cB4awI1Q1zbhkHLdsVhvOTs+4cXSTtnuOtuqAQD8FkhlRtLSVLhkvYBMMXq4/c4v3s6xHVsj+kq8XaM/s+DWjcoDO+ZmjdgbcXwdIvh1wAv9/AFBiFFObnuf3KV3v/Ms/h0h5ctGXiFYkpfDMfUpsfmETUoyoPF8YSnkfAnBSzHKfAkjEKzaPeeRCnXK8fg6zvmRmMmaB7QGYFLFpihACygeJsA+O6KNc4LUtIxWFKqJWKLN9MiiDNSKyUjnhC7uTY4AYDqFwEfDImCVqjZpDxcjSW6Mhq4QmU2V1mI+jxB6doKBqI44KpYpe5QDtRPyrJdtDm4qsMkpZ0ZXkRNYC2LLP2KoGa4kp41OmHntsZ8geTC3FfbVVstPWS6IyJO0IwRHcDlWtMU3Dtvdcbvd0eOoqSfCcLpa6JI3Mu82liNOOTsla9Bu+iHgzwo7YRtI9l0cnMpZJisoo0Fai2ptOklVDEkdOEUZiZZRCKWJX2mK0xtqajMJPnjgNeD/gg0PAXITgJRYbAQIoXUYFJUAt6dK7VNiTIDbhlMJ1L1OOpOjJSRim7CMhyHEqjEwSQWiSFmuiPE6YerlQO0ccB/CO7B1pGomT5M4EL1b2fQ4sFjWVRNqVOHspK9SqQpcRx1yOSS6V9LOWKZVD1ugD4Su8A8QUCHmSfJPQE6cN3l1gmVAxyGNqj8ugCaQszjVylDbhnOR5R5hiwtY1w+ac7ZMvs1iMKHOMUpkUAsF3pHoiuEhKHvxEcoO47azCtDVGN9JtEnMpQqwkMbeMj1VS4ugwBtO08m/dobs11fKU7ugW7foO7eo27fIGdXdC1R7RNB21hioXRXCWDYbsUUTToQuVfl3MJl9TXLOU1+zJ19Pm1/P9RavRfqC/uoQ6sVidoG1FKvlJXdfgnZURrK1obE1qIqenJ5yf78vvGslKLhIZ2GuwWfHiK6/w/X/+/87v+sT3sWzPUItTrKrpvefM3eOD3/uH+f4/9X/hl/+XX+Ln/of/Fj+8xm6o8eoG9dkCtTxjs4HJNSjWtDdeoj26S9Ytyxs3aFZLdleJ7cawSiNfvZioXjF87J5haRSPLjL7MfOx90yc1S06G85fj/zslxJ7fU5OPW/1C9qb97i4yrQ3NEcNvH4BOQamEGlXGpUatJONjR7kHBn8wKgCOYvtsNUtUY2EtADTovBIj7pBe4/xk0QTjB6VFHG3x8TMctHR2or2qOJyE3Ap0tVrKgzKObR3LLuWk/aYbrlEWcswObRXOAaGsEV5jzLCQrTVCovlapI6j8wWbw11TLjLDcO4J9eG1ektosmEoHG7zKCvsFPFru04WS5YLmS8aHWmbgzBy3H29ZMYAbplA1tYFJ7BMHANUg7fpq5ZljIwevcxOoPwbwOjfGcDlFzGNLlo7GbxK1kCvQqLohOQxA2T5hj6w7imXFZTQuWSW1JYkZjmUQ3ATLEXbUqc73etK4kH1qSMkeawtfKcDr08eTZlzeJYVS7tHp9GUhjAD6iY0Gh8TKAiKI3OmQpx3ziKFgWD1bLQS/O8xqeMC05ATnElWRDLbpZZZFIRTUQrW6ySlnouvdNIU/AsCI7CVsUMSRm0kp1FJhMypX1ZwJkka1aSI4I6yLyV0mWOr/AxgIYQA6aqwEBAsxl6FiFS1S1G1ehmIY+ldow+gJJ4+zEEVLNEEcgus0uBt94ZeO5kQXtUkWxNUg1J16A03jvS/uIAHrCVhKFNjuQSlhpVrbHLm1SLM0y3kB6ikLBVQBtL1XQ0C9nxRBfBGqq6QeuO4DW50ehagZIMDN20KNvIyM1Ypjgx9ZEQHBrpbkpZwFdVNSUuJJHJ1FUtuRTlfnnOo5mbq6OArug9OUQBHCHio8f7kTiOMioKxbaeyjKkDcFNTMMWN26Y9hvysCGOl0y7p0z7DdM0yc+dhG1Jpqa6+Tx33vs+qukxWUfilIoA2MgfXaGNlZLGoqbJWfJ7tDcoa1BGF+G1QREhT4RkSWHCbzdkvyczCWuiLCm5QyR3CiOZEXKNUg6TMz46Ya5I+PGCOGl8NJj1kv7yET7sqDrxKKQkI0uDQccaZQOTk3Nbo9C2xWJRpiZaEeGqrERMrjUQ8eOEsgpywGhF0zTYeoEyNaZZUC/O6Fa36VZ3aFZ3qRZn2O6EqjujbTtKpx4o6TzKai5PQ/KMvp5Dv96HfFOK/DoeIUCSrhmlZLyYVSJGAa9W1aQpENIEVExDINUV3mXqytI2DT4rvF1ycuKx+h3Z9QMhKrKFFIQ9unP/Jr//D/8hPvTBj9JZSQk2GprG0nUNq3ZNro+IuuIP/9Hv5wu/9K/56msPSM0Zjgp/7nHRk7qK41vPYZqObnkbc+Mm91enPH+vwywVdnXMe28HvvLZiVVVc//MUuuATZZhAy/cU7zQ1KiQeOdrI//oHz9i/QeXpKt3OJ8MZy+vePy5HUe3l4xTpleZzRBZLSU+YVXfxk0bprTBhZ6gAiFO9GSUabFVRVSR3o+0IbNMMHkZRe+3A/vdY/b9U3LwdNR0KuL8lsntsIuOxfGas9M7mE7hMah+olouabXGbHd49xBFTVNZ1osVSjWoOLI3PSk5FBPdomPRWFbNGZ1dENyEzTDljFYVN9sTmm5N7wauhoHx8pLheMNF07CxA4PL9H5E2UjdwunJGc/fus3ZuqWjxthEYxQqylg5pWvwoJDzIs2AeG5K1pCfKQJ8VhI1Z20dii1TLknkHKJV5k35t3r7jgYoKYnVVEAG7wIDkroayUk6CWYQMYOM2X0ztw/P4WopCUhJpWQvl1paYWeKY4gy9knlwl10KymH0jsm4OjZ4kDZCs3jj2e+Lj5kQvSk7Eg+FZupJLLmQpVrZTDGlmCoTCx0mvQGBUKQIOoZ9caY5eKVZKExXLt/jFYiFlPXjI5RmspoGi2R50VJI/qVkPDZ4RFlvxjRZj2BgJMZdCmlS5iZEvp8PkBniK5kjCSCFIFlwXvqSgK7XFT000jlPYusMQsFtSIRMUbKtrbThDVWdCVKMboe5wZcveDREHGPdyxXA7aqpQskG2xOmJQwZs+wvSArw7C/YOr3otVRmrZb0ixXUuZmW1SlaRcVNAqcp6pqqnbF4uRMorEvIpkkItUYUBq0OcPUwiYYW6O0MDhaWapqRWgDeQI/9TgnLJs2HqXFISQ5AeJgSggzEqOX3X4SZi4lyQrxXnqHUswE70Wz5B1uGAmjI8SENCxEoh/JUVxhYeyZ9peMu0vG3RXj9pJhv2Xod0zjWEZwkCqN0g314pjj594vpl/rQVmZW5sKZWoRD2uLVubdothZiF7CxuS4MYcxZ04R/ICbtsS8R1nJ4VCqw7Y1aazIky5nzAQ5kNKAQstoKXmyjugawjTipkh1dIQLG9z2ATbv5QyJwmCqLMxTCJ7gI2QjtHlty+7OCq2vmjKSMmW0KiBd24zK5gBQMDVZt6h6jV2cUB3doj6+Q3Mkbp1udUK7WNN0HdbOjGMmlXGngPd5mMIhAfv6nPnGreahXXym2nNEMmBKs3iORJ3ZDZ5p2AvYNKKXC5PBVo24x4xGt3J8UjfEyVOhqWyNthY/eRSKUPZcxiiev3uTD3/PR7n/3vsoPxCGHaSM8wlSTcoK3da87303cRcT//wf/1te++LXGE1Dc3SL3eNzkjaYs2N0exd74wXa2zdQi9vktoOuZuoD4e2BWx/quPd8xc2T+zx/K1ElRxwrpqXnQy8ZXl5nlIb9VeB//JfnXBy9w11zg1enJebGDU7skv/1C2/xsZOW889tWH3iFIxhVUGeHBUTQYOPsBsmfJJANNXWWG2xuiJncduM0bOdeqYcmKaBq80lu9052+0GE+BofURqKy7jDo/HNksWx6esV7cgjxzXexkn1zW1qqmUJ+1Et2VqQ1YRFwcGt2W3e8o0bNHZsF6ccrJcUuWK4Ho2l29y/vQcTKRbP8eie56j4wX17hw3jgz7PY8eP2I7DqisCS7iXU+TA93a0Dx3j0sFKt/BdZpV1bCowNpMDBBcCcAsrHhmDts8HG7P3K5HPs8epoprzcrc7SWX5mfGQf/laFBk7n4NBsoLUYABB+Awa0jiwTpLCWMToPFMdH0BKLkwAtcJsc/YmZ8BNDzzR5fcBrlLPux2BORwuL+MpkS3kqM4YkJwJDypBCZFLEkJvWdQYmNEoXM6CHdTzgJpkbC0ObRurhZTqaS7aoneVlFBSqJTMRajFTF4YXFiKiMeGZdZrcGIuDMgO3QwB31vSpI2KQAsltGEFv1KyUC5ZopgZoniDAgPtKIihEjI7vpkqCSEbBq21CpRWfk5OiRMY+nqmj5ncgilQ8ZQdy1RGzZTYnQj7TuX3MqWbp3QBqy1NO0a5yLx8hKtFeP+KX7oZdevK3I2+JBp0HLhtZpq0RErhW0lUr9aLFkeHVGHQPIRN+4Yhw0kz9RLm3DdLanbhVDBWrqKvEMirk2LqWVEaLOIX52PpDxQVRWmqgTUZCevV/Ck6MjJk0PABwEsOcr/8wxmgozy4jgx7XdSXBYzKasCXEaiH3DTgO93uP6SaX/F1G8Z9lt220uGfl+0ROXdURplNNouGXY77nRrquQks8VYsq2JypYSQCs5EKgDyFKK4tqiMEHm0PRLYYZUFLaxajuMNRLwpjWohMua4D0qRbTVJcxwkgZoHD5IFq9VnYScNQ5baS4fP2DcPERnR5jP4xCIfpDxWEwyH0eDriV7uYxRFQaTbXG1qfJvFPePrmXUmaLsDM0C0x5hulPq9W0Wp/dYnNyiXZ3RLE9oV2uatqWqKuysqS3Qfk7affZ2cOm9e5V75s+7vzY754gCvqKyaAwqR9746kOePH6DuqnIwTOECWwtbJJXTGFAV4YcAv1uFPIz9jy9fMLgJkLKZUxrSDmxOul43wde4PkX7kGOXF08ISdN3WaoZYTrUoVya9b3jlneqnj9C7/JxdNLFi++hKpuYqtIVCNRW268/F6Wp8/hVCcbhG2AI8Xrb1/w+i+c86kbd/nAS4rTRSqiX0vdJe7fVtysFVolLh9Y/sW/GXnDbrnzypKnwxHHz62hbXjnqYO2Yt83LM4CYcqo6Kl9wqQLYMMiZ3Kl0I3CO01nZFMSo2dSCV015LoiKs3Oj6Q4st9t2fcbghvQVrGoW7puAaEmJIeziuWNY1Y3FlR1Zto7cs5MOGrboO0SrTLH9QndsmWxWJLI7Meei90FF7sLRrensUvaZklTLcguMo09w7TDhS1aTSi7RKtArZdEFWi4wnnH9mrDfhhILqDdiEoD5ugMWx+TdiN+39PrDdOwIa5PMKsOU1ksGbISVj7Nmig5JmWkO7Mf7z4G55HjN1qHv+7j8v0ZriUY38LtOxqgzEDi0F5c7LHqWdbj2bFOySWZbcAqyQhIlI3XGhKZSIhI9MC05Hz4ow4R9WWsMTMlcwLsM3TWrH+ZRbi57H6Dl92uNLNmYhRPfSSJo6boInQJBzLCUwOilZEGYUUu4s2oElkZ2SHmKBklgDW22IPn3hyZZRulsdrg9BxVLwdbTBlJpOW6oyeLgEAnyeWIhbEqrzC2xHuLCLa4pVQmJy9NyWU3nbLoLmaApbM+tP6K+DihdCZqg+lqhtFhQ4WeBnTM+KLDME1DXS4ipqoxk+hXpsmxqFucMnzxrcdc9hP37pyy7GqqpiZRkasOqwN4SZ0lOHSzxDRLyBXBJ6bRsTjSNIs1WEutLav1iqpt0VXDfhPRaFYnJ0TfUl0ZaSEe90z9hqbrWB7dwqDp1kt0ZcQVRREgZ4s2Le2yISdpU84pMkwTJgRsXRVnCBKiFidSnEhexjchOogy8klK430BzN4z7fcMuyviNBFCAJBRlp8IzuHdgOs3+H7D2G8Ythv6/Y791ZZpnMjzKZIzWUeqqsa5kdxf4K622GUZ+eUsWpAoeq2sMtoUS6UWbY5cb+exZyzAXYKw5LAqTKCuqZoFCvDjTnQyBFLwZCJohdby/onGZyRMA5kgIlu7kN33+RP2jx8wXryOGy8L2O/l+flAjE50OVnARwYBJVmjlIEk7c8hy0hPlxTOIk0j6wqltQSrGSvHTXtCs7xBd3SH7vg2zfKUqj2iXa7ouiVVZag0VIAuxYQhI63Toio5QI9r4eE322E+q01B9CFZjhGnEylXKBI1Us558eQxma1E24892miaSsYxddfgt8LqhRzw+w1NVfP08YZXv/qIcRKhbVYZdKSpNB/4wPPcfOkmi7ahv9zgaRl8YrWaqNtMP2R8svTDOZ//DcVnf+HLfOaXPk1370UWL34MvepwriG++Sa71ybaGxXdjSXjZc/+Cw/Y3nqE4v3ce/8t/sD927zyHsNxrdE9XF4lzlbwe1+Q+PY6ZT73W47/5//jc7iPjXzgxUi/vcniPTdYnyne+GrPV768IWwGlieWOmSGfWLR1LB7G4bPYdTA0nYcqZpV7Yg6UKlIJJErw2VuGKwlNSswlhSDAGZrpRsqB6pa0VUt0GB9zbFdYZZ3aNqOzqwgO3q/49I7Rt2gck0wWhjJdsmyqbDaMriB0Tku9nt2IeAwNFajtKcfN0Tn6b2jXt7i9vIWwXkaA8Fd0G8tkwv4dM2UGpWFGgoOg6ddH7Os77DMC1SvSH7LNj9lf3aOUi9hjk5orUariFWa4Oe1vBDeWdZ6Yb5zARvXx+g3s7l/A1x51yf+i2FQ4mEkM+/IgIMVlyJGTWWFyWTJJimiV2FWIqqIXme2RYSV5fvS/FjzCCihs1D7Ql0LhU3KhzdBFmIJbwshFhHj/Fxl4fV+JDq5aOQUIIrdMRlNMoY4J3cZVcCD7LYDwpzMwyIBEjO1LpHGKchzM6Y+dIaEcN39o1JEp1R2qiXtU2npYSk6gZwCqrAdPkXCLLgtwO5wvCqJvJYhtYhvxeGjyoVOF0q+0IWFeVIH1C1ULUU0rFAYbUUnUmt2/R5iRFU1Jie8l+LF9foYFwKTT5L8SisMTojkSjpvHj495/zigqNFx8npmlvPwc1GGozdODD6RGMbTLtGNUck05GNJeaI854OQ1aGxrbU7YLl2ansFPuJCs3idIlWK2zVMvVb3Lhl7K8Y9lcEH/AuEdNtqrbFBUk4tcoyJkeMGtu2KKUxdQYV8dOED45p8sLIFeCWoif6ieRHgp9K7HsqbIUhJ0WO6VAQmJNiHAemcU+KQdw+To43Nw24YUeYesZ+R7/dst/tcKMXwJshpFz0KgpKd4/bPmavDLFtCFHjnT8A7OCm0oXEM6OdMtLJCM1btmRZzUB+3kBoafG11bWeK/QC0oOX55KzOAqSBtWhbUVOlhwmcqwh1yhrSbHHXb6B276Bd+d4tyelCQmQE72ZrA3FpqDEnSbOKbHDSscTck6kop9SHNw66ErGQKbGNCtMe4Rtj7D1EmOkXNEYjVFGxLNGYbQ85jznT0pcPHa2FcNBTyisYoaDIPYbd5sHZpZEcD2Pr3pC1VBbg9aGq9fP+ez/9kvsdu+AnYijl6etDCEmzCqjdWJZNww2srt4m0EFHj/ZsNsF0KIRyrniaF3zgQ/e5YMfegmzaGUMSaJbHJE54smTnpRfI2bLZgtf+/I7vP6Vt9g+fky+17F6z4c5e997sGmBqe+S3/8Bkl6zuvcCKdbs33hIf/6A6TVHehy5f/9FfuD7V5x2gYsrzWabOVsrPvFy4sRYfFL86i/s+Ac/9Vku29/ge+58F727zaI95otfeEhqbhIjxO0jQhWYJtET1kcWPSbM9IRFepuOC5amJqsFJzkTdCLrBpcC0QHpVBrR7SnZNmQtadANFqU6aBYQXBF9WjAKFRSdsZhsyQ528ZKr8YJJK6pFS1SenXuMaY5wumZpGyIG5xOT8wwhEI1FtUt8zmzGLWkcIQasaqgbyVhK3lCbieT3nI8P2eeeMTuikYbluja0iyNsPoY8YoJG5S07v5EQysqwTxOBQLu8QdWtULpiYTQNECL0KeKZi6XmAMEy9nnGbXawID+DQA7/U9fXw/kLIkH4L4RBSdFhjGJObp0TWvM8TgFhDJJkR8z/n5mPOWCN2VmDAJqYi222tBYfxLDPalsKm6J5dsQk/6Yk1k7v3YGSj8mXx4yiBXAT0Tmil6IylaQxOBlDqqWsrxDjpRNDYbQpFBmAJs1dQSmJ+C5r0a1k0ZxYZaTem6JnKK9NyqkAssNlYtalS6iaml1MIvz1KRByACXMCOq61Eypkhia58U9lYh9fZhliolJjk41q76LU0UbCeQyRkvnSs7gE5UyYuM0Nbu+p+sypqnI3qMDhP0OXTdUxpRRFSSnmNKI8hPGKqKCIU64naN3Iy6CmzLd6oqUMk2taOul1N0vzlicHLM4WuGGiV2/px7WLPUKr6SNtlusALE4WqNQWjpr6tUxVbckumOq7Yr+6jHTOGCmLdPYMbkR5yZyylhjiSkWIGfKBVqSHivTotyEH/fEMBVtiTjV4jQR/UiKAnBDlPFeLhdc0aB4Qpb0U2X2aCOjoOA9rt/jhg3jIH08YRrp93v22x3j6MjxeqGZpZoqKrybUEoycKqVkfReaglJ9E7s0n4kRo+lna/n5W95pFkIOv//WRebNQ3G1Cg0icAhg0irkltjCL4nhgGVHRktCb16WZxtlqgjqY9MVxdM+0f023OyG1B+JIUJlCYlQ8qqSL4UOhdwF+UcmxdfpcvGoLzP8+hSGcjKiO5G1SjbgGlIqsbnYrXPM4co60+MQdJllexAU9FcWS1j0Pk2v14lVPw/s9p9nSMCWWNef/0Jv/rzv0m7NNjFCSlFPv0ffpPP/Na/w7RbWbOSxk0TwSWqpmOhQbuJ7flT1HGD9RNXbmLfB3wRNt84W3D3/gn3n7/Jc/duoyuLCgqvE01t6JYrUq45f/SURw+vuNyMPL3Y8fTRhu3lnpAttr1Pe3QXbddY09B2BnX2PLc//CLr45arNwaMf5nVpz4CF1tu3bnF936k5eYaxsmyu0o8fyfxPfcqllb0O//hn5/z3/3Mlwhnb/D8/fs4dcb69k3GceRLv/U2H/rkGc/dq/iN1w3v/fh7afCsu46uSbhhgPxUWOnwmCZOaCugUjrPLD4FnAsEe4+Yj0kqk7SMHq3W2MpQJ0NjK9SUmMKE04lBO4bY40jUdY2yjiFm1OKY426F0pah75nihl2YqF2g0hMqe3o3MLqxNMnL6F3FTEiDbGCU1DB0XckUqivCpBndyJBG+uSomoquWWLqmmWzYL28iVaGKWwZdyNvPX6NwT/l3sJx/+wD5PoGISUuhwmzvcTmE5Z1w0IHqCQ1OcVMLNrBhIBpVSQMEgtwzYR8vXD7GnsXMe28eS81M9/q7TsaoMyBZQJQ5knLrBPJgvSKEJaYSLMuBWEI5r6eZ6PnKRduRT6EsM1i2hn0qJmyLpd3+eHzbE1CtHzomfwoC0OU7Ir58WQ05WVMk/MhTI6cJbfDZ6hsWdTkQh8VGJWpsixuSoueJMRM1garrkcuSeVDDL2wEwIEsAmU5H8I7xMLzT0volF+7yAjpKwKG4W0H5eiTWYgpgBbHCoxJaIPkqWiJYTKIF1JOuUS4y07P81MA87sjT2AR1uATlXVIvLUmmAgDXta1VIZS06e5BM5TmjTULUtAcN+nJABVUJTYYzEkCsSPnqePH3M04sLrDJUpuLevdukmwldL+lyhbUN2Ss2F1ecnJ1Q34NcVfigJbOlqghjxCRDrGAcpRSwqoQBqOoWVbdkbchXT7BFT+LGgd3VE8I4oG1DuzqiLmBHmWKZTbrMEQxK1ygViXEUZ1f0kgtTRkERU0TSRpi5qcf1O9GiJE2MBlOt0ElapXXlSDkzjT1jvyH6kWk/st/1Yn+O5cJdWMBZhSK0hQZGck6MQaN0JfqjKKOnmJz830+kuiPXMlKUxUmTiWSNmGRTRuuIjCtAYSVDxkoGSZgGOZflyMG0C7EhD1vyICPD68whyFFeK01m2A7sNw/w/WP85EhZNgQ5qgLINWmeo6PIyiCBeiUIUZnSQ6WxWqGUKem4IlSPEryCjgImc8yoENDBY8JEcD3JDaTQCmvlHW4yaGoB4mWWL8JB6cKaNViHAb0Q6eW1C8+sdEpqD9T1xSFmzaYPvPraA87PP0+93dGtTxl6R9APoN6K6DfK5kUHzegGQo7Eccv0zhNUY1HNiik5GD2bncclha0Nv+/7X+HezVuEaNFaEUZPINCoiunqktc++zmuBsvDRzv6IdBPey43Dh8XmOM7LE9uoBen7J9u2Lz2kGq9Iuk7rF+6zXp5k5NVR/P+zPMfNDx3o+LOUnPrxHDjJOKdxo+ZD79H8b4bmSUywv3Mfwr805/9PNVLX+O5515hsqc8mZYsVh2/8fOf57nvfj8vvlJx+WDP8x+6R3vWkS8jd+/DsJ+43J6zqAwu3sCGjml6ShN6cS4mjxtG0pSwtqEzS1zeQ9rgYsbJ9o1FtByh6ahJRPqs2I892QdGr3AExnpLUCtoF9TW0tVHVApqanaTJqSRoAf2KYGP7NyOiZG6zcI+B4MNCWJLlxoq1ZJTwkwi7s7aMsXIZDOTz+imY706ZlmvaKyhqVvapsOh2U5bnu53jE+f4PwjzOM1pjnCHt/EUHG1Dyi1p1OK4+qUIyyVgSOj0RF6BV5l1LOUfdGrHK7DAIXVU2UTOudTpJyf2ZzkZ77hW7t9RwMU2Z1fMyeHiN6ZDUkzYyIjDwEhmdlirMr9ZKSRD2OcOVF2ZluuW4vlX51DEXqmw5szj5MykRgdITq8H5n8gHezME/obl3ui9aYWsYSIvyTBD8Fh+j6OC9a2gBzfoII/LS2ojmJkaRL2VxZ8CIw5USdJLuELE6drEu+aVIQ9CEDJWSZvwqGy2UnLIu2QhwaOTphcZSAmJRL5kzZlWatZNygyqxcaQyiW7EqynOGQ9CbdJukspsUqj25ESrD6HpiilLXXtwg+/1AXdWsFgu01gzTRBpHWpXpVkdkpeh3O7Qp4W/DQFNL9P8w9NRtizKeEBz4zMXVE1bdkpPTW9y8eZd22VB1Qs2H6X3cf/m9VB34fpKZaxSrpc+JPARUXV6HkKhrycpo6o64uEmKFUYlMDVU0to7jpcSlBYHFjmS0pGwHdqQY8m+iTLC8W4g+UFAXxS2LTkvIwJj0bqSRNngpBhwtyt5NIYQAsGPuHHCjT3Tfs80jngfhNUbRoZ+ZJo83mVpm1XSqhzL4axK4KGax6cEJu8l3y1ncgokP4+eHMl7SOmwz1daFBZzRLZSCdJ1a3bOGq2K5y1lYg7lMTLGVmRlQVWlDycR3UD2AZ9GYpJCwhg1XbMgJBiGp0zTU5Kf5GeQSTqCzqhkBXDMmwilyVmKNVU5b7SuyLpiFs/mUsSZk+aaF6E4AoNYeksKbVAQjMU1DVVdYawureEJTQBbobXBWGlAFjYRior4mZG8OONmxulZs4Mp9mzKuZxS4PHjLROJk7t3iGOk6wLTxQU3Wrh5+w5TjrSLmmF3Rbi6Kq7EyN5PhNpg2obd0z1uyASvCClw62bLB166zfH6hozUDAw+EKaEz5mt2xDPB672l6TmDma15MmDSy4ebKGtWL50j6q7gR8jutUMm8DT3/4cNsN7/9j/jVc+8V4WR0saW9E2maPK8MIJ3FtJmGHYgjaZD9xJ3F8kTLJEFbnYwm89foK9/ZRbz71EWJ9hzU1ObjU8/eolG2f5r3/XCds3Bt5+Gvm9Hz/l0TnoG9BYwzaIIycvlgz+Bj6+D7ylS4/okkNhCKomm4Sxmo6RkK/w41NSpUi6I0ZFlSrqpKh8hOggR6wy6HqJbToa7dlXFmVbjNUklVG5RkWoK00TMzpXaN2gdYtSExpHbaFpVsTakwZHPYxYF2hCwoYKpyLJ1PQq4EhEAi45puxZmBVdvWTZLqgsAiiDw6WMcxOeitie0hx1YE7YOY/aX1K5FUvjCOaYna3Y1RM3WsUig85GDk89M3/qWlag9AGrfFMyRKkyjfg6LYr6un+/hdt3NkBJURaQGWAgrErZih5EqZkZQFyDENFDlF1Levbz16OffAA/106e64C1+edcg6LZXkwu4OcAdgQczQV+sQS3PZuyaYx5ZtqnMSmDFV+QysVZk7WUiykRvxpjcYV+VLoI/aJ0xkiJoKBZ/UzqH0p0DaggTcbSjEbGiKWQhNEVtdZY80zZnwyUZHEMqczyEYZCITMfZcqqmud3ALIsqyapUjooB3osF4scs5TAaSOz7yx5Lt5PgETuW10xRkfT1LgU6MeBtmnRKlM3ltDvyTljugX1oivPL1A3HVqLSNRW0rSbU0Zpi64zznuu+kuutpc8evQWd24ecePWCaujFRePLG+//gLPd4Z2fYtIZBhG0BCJ1IUR8n7Ce0eIDU1qRG9jG2yzJAbP6CEmhaoaVNVCHJimAd1vySgpZLOVCNH8SAwTzvW4aU9wPconQhrxvic7JwwGZUxXQtv85HFuIqZEiBHvHNGN+LFn7Le47QY39Djv8S4w9o5pDHif8YHyvmcKMQGUwDAteqsEJJUY+onJRda5EvYyepKfCNNIco7DA4h1SXb8UV1vGFS5wM8W9apccFNgZmy0UlhjSbqRCqpsUKZF2yXJZlS2VJUFEuPoyboSnZTbkMOIQpKIvXfEpAt7I6M05lZpZQT8qJq5RlMcPJYYE7G0pMvJDTLTNMVOX7KRyMSkCWQUnklFqlpTV5qqkvK5ZDLJZKLOoCtUNmUDYg6z+EPEOMLQXK8p5XQ9LOZySZBBsOL88VO++uqroEa69RFPL98gDA9w+wuCg3vP3+DickfWluqoEbZJ1YzDnhgzubU4JSAqJ49LidV6yQsvn/K+l5+Tc71qyMEJcJgmJge7ULP1hmQXHN84wYWWp+fnjGMSgeWksCYxvXVOPr3J8+//AMf1gn6vufc9L3L7+TVVqjlbw82FxhrDaZ2YXEbrzJE1fOx24LgSUfEUM1990/Nrn33KV778KnSaafES6FPe81JHrhSv94GPf//LrHLm117tObnf0bSw6hTLZcX5Y48PCmXBLs9wU8U2KBwN69jg85aaCeoRUzsqnaVzSJ+zSxUm1VRaOsJiDLhgUS5inaMq65OuK4xNYDzKNLiYpPsrOVTyUvAZRD9nK4M2FVXVUJtKXH7RC+M7eSa/o8qBKgT05AjjQCbhF4mqkWPR5RrFSMqOGEecHxhNRUxyjMQpCvMz9qQ8Ua0N66NbnB3fpFUW73uMNqzciq5OxHFis91zGSs6a7BAW/RSyiqGmPHp3Z1R+V26qXczKnn++nxTh7/ejbx/h9t3NkCJgajVbDsAYI6rpyw9c0bJLOwUsHDt5rmOpb8GILPmZAYsHD43p8Q+gwuf0Z+UDzkIi7L0O1yH1FzrVZ6lvVJ5lw2qiOwMOUdiEU3PrgpQUgGitTgmrEGFQEyhiE61ZGUoLQLdLEJdoziI/2aNTFQZQ0JpI5kSqPKzZFentcVqjSIRUNLAq0oqaWGilGLOtyyaQxHbytjtmtJTShfaL8mFywhdmgpzo1JJsFJy4sbyPlrb4LzHWou2NS4kKqsYvCNnWK1WcrGwmTQONEpD2zIRqLBgJQNzmhza1hij8dNU7JmCnLKWf4e4581HPZfbLTdOj1kfD8QQ8buRV37PJ1H3vNw3yNgikFDx2v00OS9x4KU5VBuNDzAOI24YMMlStydgWmEMSqaJxgNISZgfiUUEG9yIdyOESEpOygcLoxf9BKqSMcK4Z+h7vBdmaBoGwjgQJwFCburFXTQOuHFk6ifGwTONER/Al1NBuoIOhy6zaFkgq0x6JucZp1iOB8nukTqGsTx3KSrMdq41mMF7CS7UM4Cd2QsJCBRLf+A64VmjCIVv09iqIrUrPAqo5IKgwYed2PN3E35/ybTfkfxAUrWIWfWqjIxmnGHLKMeS0MQs1uiEkfh6pcklS+gwJp43HqlQ1zmV51qcTCSS8gQVcbXBNZamteS6IQdLjpaUKjQias55Zk1KSds8cppdRde6XK45dQXZkFWSokkfefWLX+PRw6+wXLaMY4Bg6LeXaAYW6xOaak3Oiq9+5S2MssQpErOmWa0l6NEIY2EqQyjANpmKrlE4WloFbrtlSIFh8Fyew/kmEReG5uYtdHXKo21FUh0nL3+I/dPH9O+c4y6cFDDevE1z5x7r+3dZHK2Yxsiiakl7WZ+WJ/DCWSY5GJ2CSfOBlwP3lpm24LSQE19+R/Hf/7PP8cbDr+CP1yxefB9qcYv7dww1mTfeNJw9f8x7biW+9pbivR9asb/MvP5AsWoAl5kmxeS2LJaGphPtUp8Ce2vRaQX5gi6N1HlPYzfoPBA8+JCYkgRiBmDMmd47dtNA5yLrkOhMRWVKbo5KoCwxOAlC9COjm0gBwrhlGvaouqJaH1Gf1lRNwypDYwX4GKXIyjGOHsyIVU4al90eUsDqiM4tdWWhrpnqBZOaSCnSD3tiylRKE3Mgm4qUNSFM6BxoG8vJ8og77RE2DOz2V9Rx4EyNtHqPt8dc9QabLLZuOTUtVYaFAW0VWmf2UV6TmGdA/W6goZ5hTr5BMvXstTH/FwJQngUXhzHLHCufgdleXADJIcmV/IxW5TqbhJlBEbk9Kpe4shQOWpeD82ReQubZcdEEzu3Eh6/Nwrlc4uCTkGVaC8Ut1wBheZSSHYWyptz3ugwx5FRyULS4BLQRcSWyAyZKjH1WilAOkhRE7Bpn1XUZdcdMCc5S6GL7lARQsTHPkdo5VzLHToYcDTkNgDg1TCN09Rwch1Iy60Z2rcQkqbXly/NbMr9yB314SqKAV5I5ga1RKeAnh1WWtqqJWdG1S3wUDYbWGZcim37ParlEp0TQgXHcUk+ObrXEGU2cxAVimlaec1HiQ8A5T0pa+li0JcUstfC7gaurHYvunDe+9hZf+fzr/NdRc3TyB6h0i9U1OnsGL30mXbfA2goQe7WLAeUzIQa0MVijGYtGQymF7VZYI+MGdEVOYuuTi33Au0EEsuW4TjmIxiNEcUtlEc3m7IlhZNrv8JM0X7txx7jb4IeBOO0lCt873LRnGvaMfc84TDgX8TELOKG4S/KsL7qWt856BxnzKULUuAl8VFRRfsfgJ4If8W7Au4E6LjDUh+M/P8NGyOVWy8eKg/NMBMETKTkZnUaNLQF7GYUuSa1RWRq7xI+OcepxzpH8CGHLtH0bP27wYQDbyHKgmqLLKqAai8SiGhlnHpqCi6W2uPTUvMgiJZyA1DPkEjyVAjm7g9MvaUlwjlNNnBZEtyQFR45BNghlrVFlfp+UnINa6cPGKhYgaOafUd6JA0jMGpQEzT19/JC3v/YqyT+iHzqYYL97TMqRVim0Nkym4ej+y7xUn/L53/g0ye0xNZzdPiMTxKEUoVqvMF2LSgpFYNju8fuJaeiZRrjwFVdTx8WFY9jvsXFiNBkWK7K9ycnzZ6yPKvznGzavRzp1xMn9eyxv3URFxe7VS9zbj+knmPr3cO9Oy0deUdy5qWm6yDAmjmvF/ZcytxaaOmQe7A30mbefZH7tlz/PVx78Ovr2Ldp7L/PC+97DUmX0ZPjC5x/x+Mrz+/7IC0Qfaduaj55Y/u1XHnL60l3aFi6feq6uBmzjuXW0oLYRnTRxcUxq1lhu4uMFOQwixNYDKUcmC31YMKhjRn3MFAy7EiVgfGCVMy5nutzSaoUzio3JXObM1XSF2z3B9xMpakyG2D9m3FyS2xqdR5qu5njVkfVx0VEZrLbkukbVjlw5YpVIVlhTnWStVlnYzGgVC93hFXjnSCES1I5sLAkPucboCqsjKmnWOnOmEquwJW7fJF+8iqoV5qSC6ZiYXmZSiQsNTVZgLUfKCpMOUpSoQVmFC8K2zuf09fX42Y17OYKfFc/O68A3Gwv9Z27f0QDl2XHKDCAOatl8DU5md85sMxTgkikcsoxjZnfP4d8CTvIcZz+rcK+Zmblo79CijFxQpNBNNAVizZVxjlHzG6aKDFAoYhnjcJ3AacrYZtbBpNIyrKQJgqjQMWOstFPGKEFUOStCCPhYdClB9C6aQ/VHWbjVgQUhJ3Qu1jENKmtImpgUTicUQXbXJc/CKI2yks+iD6xUAAWppN7mKG4flcGiMOU5JKXIWh+Et0rNB60AHLQuzcjS5RPcQN0uBLFHiYNXGvrdjkXbMgWHf3rJ8fERtTW4cWKMEbuLVG2LqTRxCjRtU2h/T0JjTYM1EnBmrAhNI5mmMhhVEePELkzsneNiu+N/+ul/zLCd+O4/8Pu4cf+E2hpQFltrcoSQ5TXSSooNc0o47+WYKAJq5zw+BKqmoWlMYSwiSk0iusxi4w5BwFkKjnjoZEqkqGUslkrYnZ9w+w3jfifx9s4TpongHdO4Zeq3+FFYlDAO+HFkHAamyeFjIpSX/llwkpI6XESL5IZURhFoydcYfZQem5jJPhDcQBh3hGmP92MRgs9E8OxUEYCTKI4YpH0xayWMQOkSUjpJTL4SO7J0CVH6dizWWKgTyjh8mIpuZYfbPmB38QA37klqFntXZCqx1/tcPi96EqUQprE42wSQPZMaXdg/rTL2GisUy345H6OX90wlTFTkJOd6jAHvA9EXfZZSKGUxyggol9kOEUl00WVDWRKORFTOrNuZlzl5Li4kLp5e8Olf+RXeefPXUDaim5a43bDbPcbUYBZLqDpstcK2JyxePOOdt9/i4nFP11psaSv3MVKbRiolbEeeIs4nfLTs+w0Xg6HPxwyuRnVrVvcbzOUFjx/22PUpt++/QnvSYVZLlF3y3MfWrO/dJtsVynZcvbklXjlZn9fH3H3/8/yB//MrfPj9Nc8v5Th68BBarbh5F+qUeXgFb7/hGSbPrh+4eviQty6/TL77Aurme7n33F1evpf43KdHqDW/8r/8At/9Jz/CUQPnjzXt2vPmbzzknUcP+fjxXRZR8XBbEWzixlFFV2kSjspWHBlDTpo6Z1w8IcaebehxaUcTK3xlGbH0SbN3iWHYs99foIKjDgYH7JJjnz11VPjcsPWezRTwLpN2nni1pbErKe4bO+ywJ2QNK0MIisknej2RszDCAUNS0BuNrxWq1bShow7HhCzTAq8ULkWG6PHZkINFh4mcJrResOrW6ErJIFAZ6UXze9rpId32EXGf2T15nc2Tr+GayHKvqYYTTKWplvfJTeCpGpliZG0bFlWLTaow35pKcWD70mz34/o4hWcmOBlmFcp1kOrXAZnf4fadDVCKOyfmZ4SyRftxABVFF5Ke+fr8+ZmBUbMI9iCKLWwK1/qR61suF2NQeaYFZtakUPAx4IOTHf8hg+UayKjDHFojeQMF3sy7Va3RaZbLzk9bCgCV0agYUFHsthlJoxXKWA6IFBNJhAUiUlXXbZXXQifQWXaRORfPjZLdm4iPZ9twvKadrcHEJIK/mdKMszUUoSgpMW/FraNyEUJqGWU961PQBZwoSh7L/NyMxVY1cRpJwVGiVZFWZyMOn5yxdcc07tntdqy6DltXhJzJ3pP2Ed22NHVNsrWIfEMmuFGyZWLG2oqmrfElOI+UUZXB6FrelyT29YfvvMo//+/+W955/DY/+H/9QY7O1jTdAq0svd+TnFyIbVORfCQ6z+BHUs5SHYAiJC3dQrrBhVImGT0KsS+KONlLn07wRO/IUezxOYuLKOVETCVp2I30/Q7vHYA0HJfxW8wK7z3j2DMOe3w/4MaB4AIhJPxcJZUhRshJtD6ocpym0litlZwf5R0LKdKPnsll2iBpyNELAApuIIRJRi4pQbZolUFLjLwIp0utexlRGl2Ob6HSUCoXMbiMXUQTKmDQ6BpjIGSHMomqarDaMLJnvzlnv70kRAkvS6W5OqYgQDFGktIoPW8wSndWDHJuFc8ZGSl8EyhFVvK6ZCLaUGLQKPobYVpUzCXjKJVzJkjyb05y3Cozy7LIuTCHCZJBAtvKaxspo9z5jpT3nZnNCozTnld/63N85fO/iTE7pt7hLh6J3ih5sloy5QVVtaSpxfI9hcBzL76M0YnYX+L2PSp6TFVhu1bcGdHjJkfvDbtdzdfeqdnrIxZ3n6fyGt8rxmbBdHRCpRWnL71Mu7T4Jxv6xwPNHc2dF+7y/IdfJEXN069t6ZWlutty+8U7PHf/mLs3G37XSxWtjQwDfPYz8GjnOTsyvPpG5H2nmrN1ZLu9xMcdF4+e8tVH57zhGhbPv0L0htNji+vB1RWPvvQmYzXx8ivvwYbA1VXi5bXmf/q1xyyeW5CTorIGU3m0RkIpcaikqU1Fp0v9R8wM0TKmiqBbBl/R5ySt6dZiPCi3I4Q92Xs627KwDXny7JMj5kjtg0Qg5IzKHpXAqqaEaE7Y3NBVFWMtgz6bNcTI4HagJ1wQgFLrhhgS+2mL81fY6DlSmbq2OKOYVGbMCm8SQ9qxC+B8Ik5XWBVZqCWLdkXdNPicmLwci2ocSMMDXP+YHse42ULfY+tEdi1MPdY/pUo9wSmeuoEnduCk7eimETXColty1i1QRJSRcNDs5XqotGQIMZsjDiOgcuFj3oj+H8yg/ORP/iQ/+ZM/yWuvvQbARz/6Uf76X//r/NAP/RAA4zjyV/7KX+Gf/JN/wjRN/OAP/iB//+//fe7cuXN4jNdff50f+ZEf4d/9u3/HarXih3/4h/mJn/gJaW79dm9ZmIWcQ3kd0kFjoZ4JV3tXDH7JLTkwLnNHTxnr5JxE3FdcP8/6tuesFFVAiSi0c6Gsy31TLrsojwuh0PJSqobSJal2FpTK4+gCHIqcV8CDyrKwRrkQzEVMUV2DsJSDAJYMMeeiOZHFk0QZpUgbrzZanERBFtb5YqStZeWVAAEAAElEQVQKDX/o/CGTjVycY5Qdn9UaoxW6YAtVyhJzipC8nJhaFWamsCi6xN0n+bwAF7lQpcJ6mblvSGcBlEo0LPJ7ilYllTl5jIHoIyoauloCzrKGumkY+j0hBhpb0bWtjIxiIow9pjN0XUXICq8AY/Aq47LsiFPIWCqqjNjQ0RjdUplMzhGlEqHKbHev85lf+Vlu3W55z4ffz/r0lONbd2mWN4lRyv+q0BKCZ9qLYyZnmIwlW4tThlor6rZGYQg+olIg+Z5+lLwKaYz2BB8KayKikJxBZWHKgo94N0nhnxMBY4oJ51wJ45MdDlne7+Ac0zQRnCcWajYd3DQidI45H9aPXKzGRumD2YSZHYqJfnD0g6edAp2PhBKj76deslYWe6pmQa0tSYNREm8vAlgJEqPE3Qu+LyNVpYpGxIK2GNMUZkf6Y2zVyLm9d0z9huA2BHfJsH3CxaN32G0uUKoI0FUFypGyxSfpI0LVYKJInUpcvcQPFGdf1uSkJAcoJ0kplqx35lKHOfk4pWuBfdLxOh05puLqmkG75KpklUrXlsYqEfXHcp5EJAMpIe4Lkw+qLlDimgopE4aeq/PXee1zv0kIl6gK+nGi31/Jz1OGRWfRdoXOC6YpkZUnZkO7OObGjbtswsjm/BxrPVWzJhuPShY3tVyMDY8vHTssw/o9VPoWXp2wT5o+TOTRkH2mOlnT3rrD5nzH6z/3G+hxz83f80kWt+9JeWAydGctN1+uuH16zL3TivfcSCwbiyLT7zWf+UzPZ3/lEc2dhsdPIvfWMN1astns8O6SfrvnyeXEVh3R3Tjj7s0bvPWZc47PFNVU0drAkze3fNcf/T5Oj1te/fLI5S4xesejB69z48YHefg2dLcS66rCjQF0xMU9la5A1RhlabRGmaKB8wYfA6OqiFaE652tqIxFR0/oNTEbFnrNUdWwc084312g7IKqu4EOhuPWQBq5cAM0hryscTlgtMeaipq2aPcy0U30uy1Bd/hipFB5R3Aj/W5L8o46K7RV2CYyaJiUwhvpTNj1ke3U410gDjsaq1hkATvKWMbo2A973DSipj2nuiZmCG6DbuFseZNl5WmqgMYQvaLvHWPYcpU0cSFaSBcc465neTQQOaExDY2pqG2iQjNmREdYnJjlwsxhxpOvnTzPyLq+5du3hQru37/P3/k7f4f3v//95Jz5R//oH/En/sSf4Nd//df56Ec/yl/+y3+Zf/kv/yU//dM/zfHxMX/xL/5F/tSf+lP8/M//PCC7vD/2x/4Yd+/e5T/+x//I22+/zZ/7c3+Oqqr423/7b387T0UeL8sYZN51pJJEqeb0yTznpMw7knQICmPu4dEFuJTR0MF9kxP5GQprBjcK8YRrOFxo5fUWPUlMEV86U0KQoDchuPPhzcoq44mYBCpl0UakLE77GYHmWABAlJ2oEko4xyThQSnhc0Qbc+Ak5uZhVahjYTDydWmf1Osw61Dm3ysjJXU6l3I0BAjFLL+VUQqrFXWWC02aE3JLS7IuApecs8TtZ2lULcQA4TAAm+nsMl7SMvvPKpNzQOsGZeSiELwrgXmBSmlcAlsrrDZ45yXwTEdUgqZbELyjH0ZyCLTLBbrSEBJuv8UksN2CqoKsaqIr3UXBM/iJru2o244UxZPhgsdisLZBa0NmT71quNg95V/8s/+B5n++wa2b7+H/9APfy4c/+SGqdkkYHMHD6BLDfocbR1pbY9uGZOW5SIYLtIuFWNsz+GTZjxG/f4q1RoC6yjgf8d5jUpAdfobovCTJjj3TfoObBlTOOOfp9z05Ofw0MAx73NAz7gf2ux43TnIhThBKz0ZIxbVTxjtaF9p23vQk0VXpAlxSUvgMVzvHduNYLANuCLjOMQ09zbjDDVdM+yV1s8QYi7EGjBVQcli8yogHdQBHIF1IxghI0aYSZ1OSGHpbV1grYDf5hNs9xY9P8MNDzr/2Jg++8mXII9ZaYs5oXYGxJQjPkHOF6WpMcyRgPzpIgTD5In7PHIBgcarlgyZKxq7EkldjrZzrKot0crZPRyetzNOEc/Kn8RMpBlSumfeUKAqIorBFHBjIYjkiGo/OhpRqpui4On/ExVuv8duf/gwP3v4tsh2I28R+e0lWUSoNTI1tanRVkwrAy1njhoHt00f47Tm+v0Bnh8o1mTUbf8xTd4vt2HDeT1y+fYHOlnx0in3hFu3yBayree644fLhQH85cnTvFsfPrbGLltsfey/948cYW8Nu5OqtI5brllv3KmoMLxwb7t3IBAtffd0RY+adjeILv/RVto/f5uXnz3j+7g3ee2vNmR7ZXD7kyeUFrz5RjNWai33gd33vPcZ9S/exU3ZBs14DyVDfWPHx99/mP316z7CbuHuv48Hbjub0lLPTE56+/Ri9OWKVNMrsyalGp4iLntFApTsq1VLpmkoldNqhK02tlxhtsFbR5gpDQ6sMJkRafwlTJIyX+OEKay3JXqE0WP8SJndUWWINXGVJRzdQOhNyJZUVaSIOO4zb03nNYvLUdqKPib1LRJ8wWWGSISuLrzJ9pcFmdsnjlcEaS1c3dLlicIlg9ti2xViFS57L/gI9bhn9yDDs8WGiqRRH7XNEtSDoE0xrqNoTTLrExSck3RL8Cf3TxJV6gDMNZ81tQJOCQiWDGyYemy1dGziqW05Ui9WJttWM7pnTiLJBKhuuojg/4BUO+q5v7fZtAZQ//sf/+Ls+/vEf/3F+8id/kl/8xV/k/v37/IN/8A/4qZ/6Kf7QH/pDAPzDf/gP+fCHP8wv/uIv8slPfpKf+Zmf4bd/+7f5N//m33Dnzh2+53u+h7/1t/4Wf/Wv/lX+xt/4G9R1/U1/7jRNTNN0+Hiz2ZTf9ZmL/sx05JJz8sy459pe/MznkiQTUmjZ67C0CGUeLbukGdwccKC4WcrHQr/K9+XSjxLnMsCEIMtS6pXTnGmiJd8kZcwB3ogmRRXB61xzrZXGlMGIQWGUnAApJlnPVFnk526WNDM287OFmDJGlTFW+bxCwILRAiTmBVQXkZ3Kqoy+JJ/FZFHMQBCdTU7ML4/OFHq+5LgoUFrsxJKMXN6jmdLPBqUz18mdZWaGMEBGWYxtiMGhyMQYqWyDtTU5JLkYINHs0+RYLVfYxhK1YXITYb9jvVqijSZ6z9BvMH7EtC2rpiVYMA6GfiLmVPQHieADdSWC2ZDLjjgnmnqBaiqyAVTPftgwfPUdfuZ/fJuvvfU2z790n/W6xceeYT+ggrQPG2XRTYuyNUobmrZl129ol8eYkpNQW4WtLN7WDG6CyQHyO+YcCTEwpwPnKD1ObhoZ+j1u2BOdxzknrEpwTNOecbdhvNrQb7dMgyvHxbyISCfQAYiI/OiQMjxHc8TiPkvz3C0Jm7MfA7vecdR7+qZnsWpwU880XFF3K9ywZOqXaFtRqw5jDLN9NqWEUkmSMpVCH7JGZmA8s0WQkoiYlWnkHNAGHwLjuCd40dZcPDnnt3/1t9ldvcnyyFJVjTjErIRZKQwZ6U45ObmFXZyx3+2Z9hvC5Ikxkb0T+7CSUY9C4u+VFsl4CqV6QYltOKeIUVIXofComEFJIFz0DdE3hKljGi6xu0pASedouoWMVOZVJCGBivO5WDZTTmrbsCrinOe3Pv0qr/7Gr/PO259muHqHlAe0cbjdVRFGNph6zeroFl13B2OOwIjVOvpE7EemzYbkMkGtiU1Hqk4ZuruMq9tM8ZirMbBTA361JO0n0u6UBe/l+NYNWCy5eWPFyd3Aw4cXUqBpLU17wu2PfjfZeqanFcMjh30OXvjIipfvKIaLimWnuLya+OIvPuKXf/ZLnHzkjNO7xxi948admqO64oV14s7Jnu0bD/jKQ8dXnlrO+4Tb7zm59xytWlNVird/84rPbD3P/8FTjs9qvu8P3+e5Rc2nnz5ku9mzvvU82IZXPv5dLFcVeXt57TjUmqaBWi/YTlt8mkjakk0teVEp0QdPJNPWHYuqpdYZmypSyGTVsayOmdqeq+kJfhrxMUlWTI6YkLHthI8OlxK6qui6FabuqK2lIROmkWqxJmzOibs3WU9vcEMr2tzS0/LEGc63CrojjlenpDyxcw6fFDE7phREBK0rWlPL2KebxDqtFI02aJUI0ZGiI+aEtqAjkDWjWrK1K1RcQ1ZUecmxOkWpY1IwhN2KnRvZqBG17FhOLZPrUKqDbBndyLR3TCETO6niOGo6Fo3C6Mw4pTK6lvPnYCZRs07zMMAXwP8t3v53a1BijPz0T/80+/2eT33qU/zar/0a3nv+yB/5I4f7fOhDH+LFF1/kF37hF/jkJz/JL/zCL/Bd3/Vd7xr5/OAP/iA/8iM/wmc/+1k+/vGPf9Of9RM/8RP8zb/5N7/h8zllsubayTNz0ulZcDLrS6Ls4Q4NxdcsC6XDR1wT8Rk2ZgYoiWvBTwkOU0LNykuuDgAplXTbVOCk0nIRlrHOdQaLolwMUEXrkLFKdDAJYS+yklHQ4c0teSk5zmCrfH9OpUiPg8hQrLTpcLHNWS5yqQh1NaIzMEZ6clRxFVldAo3IxIjEHZNJWhZiRUJncejM4/KStyWLu5ash5yVOByyvF4KJCTuGfCs5i4gtPQHlVbknEFrW1JL5TU1MaKSJaZAChM5JapmSbAVznkqY8HWaGPw48BuP1BVNXVTkWLGuZ4mRVSI2HZBow3RVGArjKmYSlAeSmON5GN4L/ohb6VYUUZvGlNbcqU4f/qYX/4P/4GmPWF5vKRqa5R3rBeRbmmLhduyqDuMrahXRyxOzlisj0ScWDUsFkusMYxTJDpx8eToMCodgGM8YGdHGKVDZ+h7wjjQ7za4cURrxTTuGfZbXL9j2m0Yx4FQAgLL1E8O899xAzMf3wWe5yKUzeA9bHYTN6bENHrGwVF1YqtsRukjmoYNpm7QRguroRQzHXmwyx+AsirHeRHQFnAto8CAzpLXEjxM/UgIVyQ84zjw5c+9xhd/+3Os1wOZhnaxwjYNJsu4ToIGQeGYfKCtWtpFQ04VOTek9JTkEyk5sirjYuQ9M8pitJXXLs7uNgHVEFFxQuWprLmJHDUp7EmuJkwNfl8zqUQae1x7xPrkBkad4o3BWKl5OFCfZX1CZWkw9xmfRl7/yhW//HM/z8WDT5PUA7Q3TH5L8BvcBKZbsLx5m5Obd2mbG6Abef45k/2A70dCGAimJi1XhOY5dqNiO3VgzmiaY6bBMaRIXN7i+M7LwljpSHf3DLte45NmdBmWC3Q1cv6ltwnLBaldgF9w8kJDWmjqes3Z/TX3blQcLzP7q8hvfTHw5pcf8Or/+9+yf/QbpOX3cnLzo9x4seL+jY6jhSYOG955I/K5Vx0Pbcdlv+XpV865+/GP8j3f9x5sNlw+eMyr/+sv8fH/5pNsdjd484HnY9/d8s5OYTVM2yteuvci+41m+XxFN2aGvkZlQ/ADaqHI2aAVWNuUEWADWuHSwCYObP0epQ1dbWl0Q5M1IUrGCMnL2FlrdjETsHTdkrZpRHQcPD6M7EKgN4pq0bA6WlA3a2pb0ZEZppY9iin0hCHSxkcc0dPpyGJaQzwldDdR65qjtmNMln2S+IKoMgFFDpFRO6yZMKqi6hYsO8vCVqx0TfKe0Q0kVGGEIxcXTxncjo339MmSR0v2iYXJeM5o0proHM5nwmJP7BpUTIwucDnsWbSZ01UDqsWnSD9lXI6MfkKpExbVitrKmZFywoVn1pdy3cppPu/LRlb9jgvQ4fZtA5TPfOYzfOpTn2IcR1arFf/sn/0zPvKRj/DpT3+auq45OTl51/3v3LnDO++8A8A777zzLnAyf33+2n/u9mM/9mP86I/+6OHjzWbDCy+8INqTKFqBw9Vy7tU5gAsBFloB89y5ZJ7MxYCa+XvKWAXZ0RwknzKXkQUkz7ZhBJCIKkUYLUogVbEua6VQ2kg9PWVrWp6RLNjyBs5gJJLxOUICnzwHiqK8oVkLqNBaY5I4T2QPWoZPWcYlWmlJTs8SkV+GYGg760yE5ZAOH9nhSj6ELsApH34fSrBaQGGzESeSzhhdWp+TMNP58ByunxHl+0EixFFGPpsClvn1kddOaghiGXGVEZCphL2h2MRVwtSWGEW/4F2krmqUFmo/pxKdXze44BmHkS4n2rpG6s88cfCYaUI3LV1lwRiC0uQos/+UNbZp0FqT+oHkPRZLq2t5DZPoZvY+YpoOtayJdWYXNDpIcuMbbz/FDD1ta+iOWhatpbIK23R03THHN26zPL2JalrqRYfRmjw5Urno5eQwStO2DfqgzYqEscftN7hhxziOuH5gv93ixh6VI+O4x/Vbwjjhp6GA3XdbiFFlrDfTsfOfZ4HjAfxes7Pz1xNwuZ242kpKb70dUI3DthPTfk/dbKmqBdpWaGuobCN6KEVhTNT1+ZmVhKgBKAEGkpkiJZxWB2La46OV0cm4R+eRpCybqy1f+sxrbDebsunIxGhoQkZZ8choU2EM4HvO336ANkd0R7doj+9gFjeZdqcMT99g2o5iVwYBNYaDFko0OR7ImOxJQREImDyiTWDONsnJkcNIcD2mt0zGoInkdkARCFOD8y3Z11g0VTnPrFbkFMoZhmiQBs/Dx0949fWHxGaLWa9w22NQj8UePgQmXXHzzovcuHMfWy/RdoGuO1I2+FHGbk8uA84cM57cZu8NQ2yYmoqrx3umt/aEzz1mu3+Ci4n1Sx/g3vtepO1WjJuICzVPX99w/rhncXPJCx96gaNlw4Nt5FG/5+77FrQrTXd0g7NbHcfrllo53nx14K2uZbPZ8+VffZ3NG19gtE+5/Yn385731Lz3Vs/ZomNVeeK442tvXvI4LJgW99hutpy/9g73vvvjfPgT72dymu4k8uDXv8TxbcXRrRX/4f/1Zb704Kuc3f2vuHm24M0vfJ4qVrzxRcOHPqGYXs9sB0ldnXYDGS+sbIrsxqcE3VLrJZqWlMFHz96P7JzHmExtBqqs8VnCzJLb4wcRr5umgqYlGy9VJNYSQsZpxc57Rh1pVqccH93guG2wdUulGiyJ1jRon0ljT5OeY50SrXlEV+9pVEfILVE3pBqqtKOfJrzrcT7jXcBNHmIkB0caRyrTQdewXJ5wo+5YYPFDL2N4K2WBo/dsrvZM4Qq/vaJDU40TqEyYHEMN2WtiyKhupLIdybYkn/CDY7ATTVfRtgtqvaSfPFu3w7vEZgIVn2BU4rhdo1ASf5F1Ed7Pi80sjb3em/4f6uL54Ac/yKc//Wmurq74p//0n/LDP/zD/NzP/dy3+zDf1q1pGpqm+YbP5xSYDb4UG/H14gcwi1jLgltErqj5PqUXJM0FgNeCWlHrF1Es+RpcZNlZKuZE2cJ0IFeBQ/cPHFwLGoXNojc5gMeCp+L8eaRRWXJLItFL+0NWuihfSgNzoc9ioS9NYQAqIyFOujhicqFoTAFTWUM2IvLTsx0YVZ5PuXDwDNtCYVqULiBF4ZVGgkETScsoTc0ahSx9JYlnAJHSpYNE+key0sVuLOBIHSK/ZU6UU8RI7Wq5bwF7MRCjJDIqbdCmIeMJwZNRVK1FGUv0ngpDyBpddWgTZeQTIstFh60sqSjb/eTLSEOjTE2nKmLTEpWV3pZIET5GnM4o02Ia6dpRVDTe0jQd9ugm9eqYtjNgDFlXbI6fsHv7IZt+y67P1FOm0lAZTd3sudw/5KR3NIsF1jakrAjTAGmiqxPWiOi4XSyxbUutNTm5Yiu+IrkRH8WlM7kRN+7xY49zI3EciG6S555nM9u1bfUgUptF9dc4vhz36losW+7/ruDHBMMYefR4Q2UUqraYbqRpG6zdUdVbTN2BrbFVS1st0Y0u/U+FKSl2X5QRlgJJQVbKyGhnzh9SGSmSVCQjhcc5VFjTME6Z7aUjJcWwz8X2OxBCxlRenGA2YEzEqIybAj4obr/YcOul91Gt1oxXe86JTLsnhLAtYFiTiITsi4g3k5MX0KRKxIBKZBWLE86isox8Ywpo7/DTSFXt8CYLBZ+WhCQ2c11yVqwWEO5iOPT05BwZxp7zB+/wtbf2OD2xPLtN1S7ZfXlCqz2m3rG9yJzcvcmNW89h7AqtGjKWaC1DsDwdHLtdZDu1+GZNqlZshp5+cLLx0YbNbuTqS18lXHxZfpepYfrAd1MtO/b9iM+BzZffYfP51xhfepnVndu0reH03pJh8iyfu8mdGycsVx2rKnLxtSuenm+ZXObG/RV+u0HFS+6+1LF+//t54f1H3D5pef7Ys336iCdPA29cRi6HhmnRYXaP0dstz3/ie3j5w++nrqCqYPeOYto23Hr+BV7/jw94+Npv8crv/93cXXd88befMr39NW5+7FOQImfW8nqWaMnt1VOWy2PGmKl1xPgBHycm46ljTaYjek0MhqlPTH0CG8h5y2hGamVIU0A5h4kaVUL+TK2YcsUuRqbUo0mEnPF6wWLZ0C0WHLVrTtpaAiaVgRAxypDWmZgjoaogLMjqFKW+gm4MTQ3HLuLUhil6kpOm7pxq3OiZtjusSdgY6Ps9LkfWd+9zcnRC1y2pQ4JJEU1E1ZbKQogKaw1GGWyMdD5wNJblNigqfYWZMjZBd3aEdYqdyWzYo7uO3HRUWXHcrOjUkg5HZyyj8uyd43w74PI5N9cjp80xRtUYq65TxssWX0Y919e8bx2e/O8AKHVd8773vQ+AT3ziE/zKr/wKf+/v/T3+zJ/5MzjnuLy8fBeL8vDhQ+7evQvA3bt3+eVf/uV3Pd7Dhw8PX/t2b6nEvqsCSnKawUcJRqJ0iRzC23J5geYAJHVgPa5fveutpSyi5QUvQEcWkmLDLDmq0kQsjMFcCKhKKqWMQsRVVM0AZhbW6pI/Uvp5dNGr+CxGR4EXmjB/pGQcg5ISwZhS+Q001ohzw5TRTSjJlUoppBdNH640amZZlCJHj8karWwJS+NwVVJl4UxZxlloRciamExBxYX6TpqoNDFrfBbxsFYcgtEOoyxScUggTcAYyKaARkVKEZ0iGEn4VEmATcgJbS0pBHEcp0xV1ShEMOyDE91MGUs1thZLtjbYpiP6id1uT9c0tE1FyooUAtFJk3RWFlV1KCv5KLMTLOeMNhWMmZBHrF1jmxtU61OO2hplKrRaY+oVtm7Z7Rxt23D0wk3qGy/RP3iEe3rBFBxmtSItjxitpV1pXJWJXjqBFqs13dEtxn7DdvOI2D+lbQy6aggm4vzI1G9I/RUxDgRfup6GHjcOTP0eP/US7z5NZWRIId+u9SbvAieFyUgHsKKuzyH5shwLRYvyLKhJKK42jq7e0Swa2uWOtm2pqoGq3aDblqxrjO2omiVYi1UZre0155flWMcoyLaMeChUXImfTxGdIYUkLcLVCqLBjA5UI+3UzkmYXQooCxhFlRLWiqA8mIgxGaUG9k8j28Xz3H35Q5zeuc2uvuDqQU1wiRCEuZEunITWInYXQB9lTJQctmi2spYAOZ3lGFZY0QTmgI4T3tdo16B8pMqJkJKAxpTKulG2BFmTlejVwjTyzpsPeP1LbzBEL/1Yux27p+ekYUtyA8PmgslB1CfQPk9aneEmw9Pznv5pYJo8T97u2Y8DWXdUx8eES8eDz7zG07efUN+4w+nHPsKN958QvWb/esJPG3J3ho+GPMHqqCXqCGc147qlXXUsmhY1TkznPVYbmk6R0p533txROcPXfv3L+HHg5gtLwpOK7ZPI/Rcabt4446QJ3Dyz1Gli2m958OaW16cjxuYO7ZllfPKA7dvvcOcT38d+tGQCx6uKda357c9v2V/u4dYx4/k5J9/zMX7P73sfXa352i+9hr53l+O77+H2Dc120HR14NIHNttz7t+7i+sTy1pxvFxSp44rt8ONeza6otYVrh+YLp4wDD3RLAjHLb2R9O0mG2qlaSojDq7c0tXHuLQnZMOURH9nakWtSt5WKrEOWGmU12JVNyjqqmG1WrNVihAqfFozhWN0fB1lL/FuZMzHOCzBQFAy+g77S9z526TisnTDOU7tWd9oSel5chZjAqbB1Ct0VRFzcSjmDq0qUprQMVHHjA1BaiFyxvmJbDX1ZKg2HVVUtFqTdlv2ZKauZVxPVHVFV1tWiyOigqd7x3naiFMobOnXkbPVKet6gaW0e89OjLK+X/MGz+54/r/f/n/OQUkpMU0Tn/jEJ6iqip/92Z/lT//pPw3AF77wBV5//XU+9alPAfCpT32KH//xH+fRo0fcvn0bgH/9r/81R0dHfOQjH/m2f/ZczX79MuTD+IYswtL0zPjnOjn2GnAkZheJfH8iFlqqFOllYSBmNJjncUv5ow6gZ04YoThV5jFSPjg2Dlx7nv3iZfVXoIwkw6INJgNWoxMHV49cSTRZqSJk1WJ+LKJWnSuU8QfWQRJrJTofI9oVlLAcOWcJXiv8mwYqbSQ+X54oEYXPiaSTCBhiJAYZQ8XyvFSZ7SggZomDjszjtdLFomYOqljAcyAmoXSSLvHhFLbFanFhQGmYle9t6oZQxnM5SkttQIS05CwBWcFjqwqAmERPE0LAVhpbt7ixZ9f3+FDRNA3WGlKYCKUqgBTRTurXte3QVUXVduiqQQWJok8hETzooGn0kl1vUFOkXXjysibuE8N+z6q7w8nJCePTgD5quHF2RHtyjG6WaN1wdqulsR6/27J7dInbZs4WS5a3bxJXJ2zf+CKT32HqBVp37Nwlu70jb0aMyficCcOIu9oThpHJOcbRoYIjJ9k5pcJOpXyA34dbkSofSJSoniFTrrVsB2r2my0nU8ycbxzr7chy2bOvr7C2QtsGU+9RusPYDVW7wtgG1S5kxJPnBhoNWcKktNJFTCfHnqB6I3kmWXJ4jGnItiLajKlbRudwk+hGBqeJGuyQsHWUnxEzGI0yDq0dxlSgKsZ+z7Sf2Fxu6c837C7PGYcrVPKis8ojOWTpxtIWMOQkhY1aB6ikTDJlLRFByQCVFMJlEZfHrAgJbBEnBy8C7JSEkZvzU7Iulu8Yyb7nra+8xRd+/dP001PRTagF/fYxl+98jRS2ku46RNBnhPXLuNP30KxvsL30POQxV5cbpvNLrh4+wtYtq7s3sDduMu0n8uld4kZjzp5j/dw9VmcdSS1QJzfRKnJ07z6L0zXDTvrN6nXF7Y/dY3X3DsujFbfvLZi2muPVmv5ywD/c8dqXLthOkRc+vOD0xiUXT3p2m0RjYdkl7p4dcf+sYlVlXLji4aM9bz5VXMW7qKNT6gqGx6/x9Df/N/ZBU+v/iuGJZxvhpAVLwKuG9/3R381+UTF99mvo+iY31oa3v+x4560H3P/EB0hZMabIblNTmRqdHac3nmPKYFeW26c160VLOy2oQs0Tf8mTzSU6W+LmguHJA5w/xza3aarnyVVgCgGvNHVtmLSFJO93oxuW1rN3PYGINYYqgw5RTAUqM0wNTWVYhApVHDmyWS6i707C3C6DYTIr6mHN6F/labjC16dQncn6nAbSfkPoLxm3b7OoLFV7m/XxGSNHGFqGzYYr31HrRDaRWi/ILrELA7txYBp60n5LmHp2KWOSpkuJKnmaoNEqoRrR3OkxsDaOql7w1G+5GDbUNnPaLslHlsWq5daioUoGHTQ+OFJyeB+56j22HejahrbOGJUZJ0OOJXjxsAKpQ7rst3L7tgDKj/3Yj/FDP/RDvPjii2y3W37qp36Kf//v/z3/6l/9K46Pj/nzf/7P86M/+qOcnZ1xdHTEX/pLf4lPfepTfPKTnwTgB37gB/jIRz7Cn/2zf5a/+3f/Lu+88w5/7a/9Nf7CX/gL33SE8zvdJAskzRtCYQDiPM7hmS1jyUc4aFNSCVm71ozkQ/R9FrJFRQEDM7iZV+yZ/i7L/uHvYv2NOV5nLGRpaSVnbBnXqGfcNHlGmqloRyiVNJGD6FZYiIzP0iaqCwqNQvHIUq+1HPwabGGKTJqfnbAvViHsDFqKrAowEJGswhYrsYCtAoQSB/rZpIxOc/xOJkVxDOmsyFZ+j0CS79MaPYf2HHbqc96EKqOthE/y3CIKrWuMtrjgIQdyUhhtiCGLlbooRU1xCkWE3YhuJIbZLhrKaEeAm1xktIAdU5EzDC4y+YGuthijpZclRGIWMZqKGRUjOtVgGmrTkNuGaTfip4kmZdIYGNKIH6CpamzX4PUOkqddLDg7abDdkphuo63l+Map+J98om1a6nWNrgzN0Q2CvuD8jYf0Dw1Nb7H6BN29l6wueOdpwjYBq5fUZw25WfH/Ie8/mm3bzvNM8Blu2uW2PeZa4F6AIkGQogxVLKYyMyJTEYqMalSE2iW19Tf0B9RiU81qVCejokrBSqmUSiNHCTQiRZAgYa47bp9tlp9m2GqMufa5YEaqwCYiFwIXF3uvvcxcc83xje973+cdDmsODzeMuz2x70neMdqAtT47SlJ8JJOeTudT90O+O705NTLE16qXxx3Oo4CVnypU8p2yBV1ISe8i293ArDFIlc+bGEGaXGinpBC6Rqpicu2ozO2JiqBzESkn14yUmT+CyIj7EG3+HkeFNIakFEmAKQv8LnL/Zs9+e0uMAwkYvCDsAjZFZrOKQvss0i0MUkCQgBwRaUBKy3H7lvsvv2R79xVh3AMudwiJFCrnHAkyvC9GjyBgikzTzZsEhUgSlwTE/D4SOu9mH8eiERsiwjuM9xjnEc6jfABGFBnu5fuBt198xu/+q3/L9uFLqhnIsYW0Zzjsid4xbHuOo2LgA8TqY8bZR2y6CnfwPGwGgqwwRSTIkXp+iV4+RT99n9RWtHPDpWiRT3csr65ZPDvHH3rGHWhTs3q+ol0u6d7s6MYKOwpUkVjNNVVhgJqSkuVlgf71j/j8z77CHdZsbz/n8sNznlw0bMc5xXsLZleSZaWZ6yNX7YhwPUcnWK97Xt3Ci85gLgoutGbzx7/L+rPvc7t+w+Lbv8n15RNuNiPCapQE1ysWzxTnZ4o0SOTxKeVcEwfBZ5/1XHzyK5w/f87lpUZLwT4m7H7P8TDQzs6wsefivOa8LqmVQReCbsgjY1Kk223Zv3xDHA+UbUFjFMr1+MHSb9c4UVLMGlRpUAgWsmDhBTMn6AaJCwGpoZaK0iticIwEYtmzNZqgSxoNXgpC6BldwAkPMhKUZhcle6Gp1Dm97FirGbJ4ihYzRByZG4mqE6FeMigNzlJezrl8+jHRK4bxyPHlT7h3/4myvaSdXdMUGpKncz2Hw4bhcCSoCKVlf7RYBxdCs6IkFQWmUajFLBfDSLQIRCvpbMf9Zp/p092R6/c/4OmTDyirZ8yFJMn83aqoUNYx2IH77ZrLtmLRtMQRok0Mp4uGyDlyj0r9n/H2lypQ3r59y9//+3+f169fs1wu+ZVf+RX+2T/7Z/ydv/N3APjH//gfI6Xk7/29v/dToLbTTSnFP/2n/5R/+A//Ib/xG79B27b8g3/wD/hH/+gf/eVe9XQ7CVUT6TEp+LQoZsKSn5T573D3pDBpSiYQG1/P84mTvmS6kIs0Hc9pWU7p8YKdW1XvRvmnXWmMEx/kdNWPuY3u5USAkIoop6ybU5ciQrZMTLaJaMH66UHlCWiSCa0xW7TkZINW5C45EkSM6GneJx4p4xnwrabFKSRF5sMkcpR81kdkDHeaoFR5MYiT6FgnMLkGy7TbmFvWMWZjZnhs2eXHEwK0UpM9U06HIReJGe+e29yOiIwT0IqIl1MYY8jOjaKogNzAMaYkBoskgkrZZaE0NuWsJEHuuhB9FmgKgYsREfMxd4ksxNSa4B39OGAm7oguFAaRoVgpEpLFBw/Okpwl6TIDvGxHGA74KCkSGC3xcaA/BMZuwN5b1Afv040DCoEpa7QpiRaSi7h+ICqLsg1WquzsqSuuProk+rz4hhQ4iESQBaMfoI8UbkASKc0cUYLQe4QsEIUnJEvwjuj86XR7nPfm8c3UIntsoaTHMU0uX9PjeXwqfqd7PepPhBCPALepSQkkbEw8bDuaSiKUmBqEAaGn708QCF1kN1LyIBOlnOXCZBLwykSG/PH1jQX5HBFq4pHkgsH7QLQjm5s7fvC7f8Zx/4AJmWichMSFSOwtIKiqAlNATP7RERU4slnfcPf6S1KluPvih+zuXyDCkJ93Gp/a4HKBnTJJOCWPkgnvs8U/F/w58DLEhAge6XORJaeYikBmzaQQkSk74XxKOB8YbSAFAyKPGe9fveZP/8Mfc/fyxyTWWFvmcZMo6EOgN3P6ZsaxKkira6iW3D549m6DSwYwNLOCshakleSoF/jFirItELogWofUJaunV9TzFQKBO3iOLx6w+y21bgnjiN0llp8sWBUzwmBJNw/sDlvc6siuguK9cybVMcr2nD0r+fCbNRdzgS0D5/Oa84uRswpUUoz9wP3DiJczbm3LvWxQiwKjGx5e/YSHL35CuHqP1Qff5eO/+bf44NkZwfZUWvNmk0gucbSRZ3WgMQWr8wXXHwWGjUU3JdcfvU81Dzy5EmxvHX6E1HsG17Htdnz0/gWLqkDakW6IjOnAftzT26wXcsMD0hxZlQvm8yvKusLHkX2/Y7j/CV1qaeI1xXxGKTRKQO0kuk8srMQHSVKCti6opSZGz6gU+2jYj5Zj8NjgiEqDTMgpxqMxFa0x7AfB9jBw9I5DajlKgwmJRg6AR0lB2bYsn37A2O+wDy+y5su0FCKxefEF67uvGKoR4xxDt2Oct1TtGcGC23u8Dyzm52iu2Ls3DP1rjqKiKRrErMAszhnahj55gvUIPGNYc4iWYewZX+85rh+43zyw3j4Q7IGnZ09JssamgFEZ/zB0iePYMZx1pLLASENZRMaYKbOCr3dSvt7P/c/f/lIFyj/5J//kP/v7qqr4rd/6LX7rt37rf/c+H330Eb/927/9l3na//3b1zokJ81AihmZ/RgaOF31JiMUj23kx4LlNP6ZHlOcHA+nC+Z0lU654yGmBfVdO+VrF9eYA/1ETBASWupcsMRASAknIwg5OVmyayhMS8W0l3zUzcgJlOVdJMm8AEhBXnAFxJTJriJG1NeEvTJBysEjiFPhQd4FhpSZKSdeSox5/BTVqbORxbCPC8UkdBJCIlV8fF8yhilfRzwudkrwWMxJITBK50DDSfsSUu5MEN59dNNhQ03am0hCqZyGbLRGa411NjtzpCJFRZiKP6kyHyUG9ygABabsGkUkt+KJKbuelML6QFGY3M0JkdGDixGjJKVWKCNQYRIri4BzHp8iOiZEUsTxgO02iOCJ9oASC6yLjHc32N0DwSmaeU3aXxLGxOjhSEdZFOgk2L9dM272bCqFaluay2uKpqZqauZPClKAw0NHGBT9Q2JWtFgFu7sjwQ40jaZoG0JxRWpA+SNC3uNtJGKwLpC8R6aYXVEy5yulkJNrM1xMvPsWTEXHSbj9GID5tX9CHvs81qDTZFJOo6NDF3h915N5Jnm0muuRvDjnyY3N7Jrk82dWR5AGXTAhUk7fv/xdCJOT7gRxw1tsN/Lw5p5Xn7/kX//L/4kffO/fkcIRG6eHkBFEJAyAt0QHdWtIhUCIiJRZL/Xw5nP870LUnrDfItI0uoFpZBkn3ZnPIvxpxBTVJB4WAhU9JIUII6ckTKVU1oTFBFEgfCJpgQkS7cH7SHCWYEcGwInMp/HO8cWLO16v7wlFxejP6ccS7wV9nwjVnKQrXK0ItFRlg+8H/AC+FJSrElLBsRdYnztJo2moqoZum9jdfMF435GUZP7sCcEMdEFT1ILl05a1NBQXT5jNC/yi5urDM85WS4iO42cj659sGNxrbn4UWL/pGLc7xttXzC8VbQuV3eH3kafvedqiZ6YlIljuD5btLrE9lojzC1wtWJUNgor9yzvW3/t9qvef8/F/93/ByBmrizn0FuMTz55kQKUPmhQk56VAGM/sSvP8UvK9f96RVMHMgAmCQgTKylCKwJvQ0nX3XF7NuVi2FFh6d8++T4yh5xA9qmooosYOJcXFkmX9HrWaU0nodwNBBJryNb0dca4DaxBERucITlPYhIkROe0ptUqUlUZXBaUUWVTbOY7GYWvQRlOXcyqhSMmihUGJAi0lzm6464/0siCZgjStCIUxmSQrLLE2mHaGGwxOB/rQEY4PPBy/wBtBs3qPVGg8gihmzKun2GHPPryhbhV10aDTHGoLw5bRw9YEZouSdrnAFiVDGhk4ZJYLVUYzHDuS2yOs5ihGXrs9pczfl6Y+J0pJFBqUxoWO/XDgzYOmlgUzM2cM2YwhJn3b6faXmPD8nGfx8K7bcSo4UvLT4jrhg2Oa9CCn+5w6KD+dTvz1/zwewBOtapqZy5Qv8H4ayfzUdpOTEv9d2oycdrBC5Od1UU88kXyVjymzD7TIALYT8VVJRZTxMRMnF1gSIcXE4hAYIXDkhUKm+LjsZNNLwgdyZsIUXR5FwuPxIqcfh8etasTFwGgtMmqSAhEsXgj8tPtLIruNisn5Iycuei4BMzvFp5S7GzKDnLRUGKWQSmaHdswFYkxTRyVmUS+IiRUjIMSp3S+yZVhkS3WaBFZaG2xKEwRN4L173OH7kFAqH4/gRoTMkCwpc+ZRoStizCnSWpkc0CjyCMh7R/AWjMzdIglGaqyOBAKOkRBF1rpsJKY4knwEY4iyhpSIvsPMl3i1Z3O8Ix4rhNfgEw5IWtLtO/xxz3h3QCnNcH/P/Olz1JMLXAFCS7zz1G2DMhKkp7ae6M8Z3RyXoGxKivk1trpiuHuFCwnZGuaXGu88/nAg2iPgkBNYzI9jBrkFm4u5qc16KkxytyQ9dkxOexwxdQhimsjEIuvNZVYq5/8vNJudRQRPCmUeh6SEtw7vHJFACCPeTvEPg6VdOqQqqev55AJ757w72cx9OBXQA3134PbzG37/f/4ef/j7v8v3f/+PUP4lQo0EIfPnzomzInA2Eu1AcI6qrZBKopTAqEC0d2yHHi8cZVlijMGJmMd95F7eSXMiUkBOjjIRBIiEEbmLmYIH56YLcC5OTrlGpyys6CCJCMIi5AGSxlkPKFyscdGwPxq+uoODfp9OzTOiXEQOQ0dSAuQ5SreUhaXShjg6opwhrhcUyxkxCva7ntELkhE87AeCK/DS0W/XvPmdP2H/5pbzX/iE2ZMn2GNg9IaLb664+LVPqW+heT5nsZKIWBJdwvU984UhXZ1z99WO/eev6dSG5oMHrp7MqUtYNJF5CZXac1ZptIYwRHZa8eauZ3+s0Msz0lKzXQdS1Dz/xWuqecHmd/4I7v+Y5hd/gaZZcv20Rg6Sm3Xg4cWO/v0GrwR/8G/u+MavznChxttE7BIPtx6nJcZAUVuuzmv2fUQWgdTDZ6+3DOOR+eyaushJ2S/3N6SkKGY1pqrRlYLYsKyXiGCzq6V3HI9rvNeYxRWr6ldx6xccQ2SwER8HjPU0QVF4QxEUIvic62U0kYQTEEOkDJFLoymrkoPRaF3SqoKKEm0qZMphlqgFLkQGbxlDIrgBjaI0FVVKSGenkXeBbt+n0jUsZ7hiwfHQweWSypQ07XPAMXiLrBvicGQ4PjCMdhphv8HIDW3dspAfse7ueagT5eqMUEuMUZzra7ai5rZ7A7ZDjAeUO1A3JdfXTzG6QYqaMjXoWFEkQwywj54kFUI3uHDkz3/0gpdffM77T59wNn9GpeYYbaZrfkZrxFMU8s9w+7kuUBKnRN5JqJrS10Si024mTV0ATpC03P8+dRDe7SfzIzLtDDPIbBLTiviOr0LK7eJ4SkZO72b2KY8I/CTM1TIRJHgBzmViaQzTvN0HjFIo8gVWTIuAQKCVAZMIIY9EwuQXlVJnrUrK6cgOclhVSsjkgNypCEz2ZT/tiWUW5OXwtbyrlqe8Fh+x0RJJaDTJi4x8n4qRzOPMF+koAkKSrcAxTcXSlA8kBAI1AeIkUSiCmPJNyN2lnHXC5IbKYzcpdNbQTEVePt6aJCU+eIQA6wNKZBibMg3J7onOgSgRuiClkRQzC0Od3mOKBO/RTYUyFZG86ym0wYpADDmLJ4lEUhrnE8F6ZAoUMl/spVZoJVAh62VcdDmc0o/4AIoKUySQJbGokEIRdnt68QpZNiAqUsrzNlUU1K1iFJIxaXyQRDdQhCO9rwlbj5YiFw8mUrUzykrjxgNRSOJmizZZiGetwjRP6OeSceeoYkW5aFBC4IojaRgxIhFkQOMw4xrdbRi7PXbsED7ChLyPImsqTt8heWoiTB7jk0YlTp1FmabzickcJzwIweYYcXFgCOSQPtuTUi6Gx8FirSMmh49jLnbLBYv5kOPlZeYFZdLyxMxRMNqeYb3hi89e8Cff+32++v7vgb+hat9y2FtkkqjptTzOtaYCy4aEHzwuDpSFwiiN13ICFW4otGZMgSRKlNL4ScvmT52+FBHkoDmpNDHmLJqEpBAatCQpQxAGJWSOEAgS6RJKeIyIhOTx0TKS6N2Bw7aDCNYrOjHnEBr2g2Sz3XHsEy7MibGH4QHRH1DlnGJhaC/nVFVJv+3onUU1M8KsZb0d2d3s2O3XaC2pL55SLGcUUuNjTsetnp+jz+dcfecbnH16QeoUcTMSnGc2v2JROJxM+NceqR3D4DhuIjexh3Ik2A1e9pjVOfOzmusnDbW4oJI7mlpQ6wuSdDy8HbjZBra2wh0CxfUctVzit55qqQnlnMV7S9TDBv/wlrFoefj+77H74o72+bf44L/625RSsLqqCURefP8WXUqaheb2Hg5vLD96FWhWDY5IUSiencPgPQ8PgbLUHIZAMS84M0sqk3K6Nx1WVVSzOW2zoC0rKpWx8hQFPo7s9nt2wwPb7QtM3VJpg9ZnlDHQ92uitThv2eEo0ZRSYaJCBZ/L4hhJGpxwuXOXIoiKwleUPtKNDhePzAiUVlDqAmMSRIMRBY0o6aVhVB5CQiSNcImj83Qh0ocOUYMpL9A1pMJQPn+fp3GRYZgUGJcw+x2+23Hn1yThmF3M6W1gd7inqTtW7RKTLuhdIJWaupgzq2aYtqZIBuHg0B3o+geII2eXZ5xfP+fJ6hqCxEmohcE4RaUVxJL+sOUY9gQXKAbHcL9j43YU3sPVyMXqGsU5pmgyk+tk/PgZbz/3BUo6FRVfJ1WexK+TRzJrVELWm5w6J6ffTfePU5EipJygtF9rcafTRTA/a2ZFiFPr5qfuJ8gdjjzbF2gls7VYxKyDII9cTt0QLbMQN7gscpQoYvDvdAGIjMQWp8fNr0BLhVYJlRImBYTMwtU0LSJqai1lbcm0wExzQCnElJ+jiBK8tTjns5iUyfkxkT2VVMipu6MkxCmcRfyFYyZj7qDk9x2yLiVOtueYeQ8+fq2TNT0PU7GVb6dHnITPKeLDu51xjA6Uzp0dH9HVxF8JWWMgyR2sTKPNLSSpDEobRApYqRFlg9JxgsDlxTQ6iyk0IoykYHHeQ3SUmS6GVIJCKkw88S5yBk5yliACqIoYE248MB731Mc1qpxhqgXVfIWqG4RSCKVQSqPLEiE0sizxITDsO/p9NwUkSYqqolkorBs5rA8cXn7JsNuxvDjHasNxjMyv5pSLS4bdgdjD4CTOKbwtciHaGITKehr0GULtUfIOlV7jwoYkYtZ+eKbvQT7fvDsdx3efNRO/J01Fig+TeFqcxOP5U+v6xNu3I8EFzs8SUazxUuYuVHAT48QhKJgvLujtGbKeUySVXTYyZQw5Ht9ZvvrqFd/7/3yPP/pf/g1v3vwZy7lDqUAaHTrljcJpLJVlNu9yfuKk6Qo+ZqGeJouI5XSBdAFjIyGBLiOFVPl7yAljL4CCKCQyqXztGCEJhTAGLUuQmiQ0EYmKEmwkOY+yGjpPYMywrsbi3MjYWQ5bz+gkoamhWZLKJTFIojPgLTKB343E3UBsK9JMkmzN0WqO+0TUDUpXHF6P3H35hv1nP2H/+seU1Zwnf+1v8PxvXVBXM7ZvR5Squf7Fb1HMasqLc4q6YNhvCA87rJ8hLxWlUYjxgL/ZcH/sMcuCcXtk+2KNNCNlEVmetzz9xozL68BVs6MKR0wJpqrxruTFW8vNumBUBaGQqLmmrJco0/L0r13x7Lpg6BTHAR6chuvnyMMl9uEP6G/+iM3LX+ab/+1vUjYlzz4suL+BoWj4zV8v8FLw5edHvvidn/Dsr77P8yW8WhR0HlbPJP/u37wlxZLV0zkgWClDamcYEXFuQM4UbTNHasW8KJmZKgtXRWKMiWMc6JLnPgR2KBoCIXaZyqsSha6pyNEc0kv8aNiHgEyJMgaU1khjOArYhwHnA40A/IiMghAEdhwZnOOgJPN6ybJekKylE5K9jfhoid5ircdZi0sHBuuwLjGMewyWVaUZiUglIewpZyuW1afUKXI4bHOytRrpj/fUSjFrnuRoCfVAUVxSGUjKc/B7KAKFqUjCIZwkdZCqrMdTQuJCT6trnly9x9nZOW1d4caAFoI0DmzWbzCNogo1x1cHtjyAEawSNM0coxY0sUa/juj9PeaJoL4uiVphHaD9z7zG/1wXKKfbqWOSRzhfn3WJrLGIIYvO0olTchK8xp/S63ydcCm+9hiPBcpfvN9f+JlQcsrOyTAqMW3ncraHehdiOO1Q5VQspMl54UPWdqSJm3AS/SohEUqilXxkWsSTGDj5iXP2DhwnkSh5YpHkSUqSAqFkFpeebJ1S5TySMDE5YpqitDNL5eSumLaRxHRK40n4U7E1dWxOFm9imLAzgagkfupsuZhzdrKtVEyQ3FzMnMQoMeUU0UctEZBiQGsDEUK0KFWilEGmrHlQSk/26Gz5i1MRlMc7Eil17pYFqJoFRT3DpETwYcp7CbhxIFiLYqL6GoVNEesckkAj9GOiMyJ3rXAe6yI+DCRZopXJI5Fhg3V70DVDMSP5awq7giJD3nLSdCAqjTIKKRyp27JfP1AXAVPXbA9ndPuacThy/OzPGR5eYRpDezajaBaUbUE1MwRv6FdPOIwFw2GqILSkWRQsZxIhLE6LnJOxP4J6Bb6F8JroD4jocoCiSnifGSDGKJjGZHpyomXw0qnndRoJ5c8/ks+Zkyz8cMxaC+sC6EwvTsHzLrFYEmNBNb9mdvEUMwuUpUEJBSLhhGCwjrd3D/wv/69/w7/4f/zf8YevSMrT7XNRHKPNnZ4kiDKPBXNFPgnOESQ5pcaKnPVjXU4plwKkknidiNKhhkkIWxRoqSGJXJRMDjAlc2GZv1iKJEuSbIipIo0GTw7GTCInILtY4tA4VRLViihbQrAM/QGfPElpqvacOraooJg1hqKosV2J6x0xVoSFxJtLZLtALa4YVcv6ZsdhM1C2iWo4sH614Xh3A5VHVmDdQNcnvDeoqqJqNU0n0XNDtSwhag6vjhze3LL5asPiwkFdkFSDZsSYNdubPfNqiWoC8yvJYbumXmiurlo+eQar2lEky+g6XChY7+Fu2/PqYcCrBe1qSXId680eHz2FLvnmd2uezwSdkLzGM/twyfFv/Q1ufviHFGlFrOfMP/02XWpok+C9s8hikbh+b8liAfc3ie//iz9BNAOq+Qb7MbCcFXx67Xnxww1v74588M0Vznm2m0S4ec2Tbz5BiRFtBMIosr0g4sOIQCNjhZFgo8P7PHZolpfIekYtBaUU9MMGkQ7MZcmsbNGlwftEJ0e26cAYoNGJqjQkHel8z9YfGZG0hSFxoIyRKixJscCt73g73HFx8Zy0DAgj2YfAvg+MbmQIDusGhv2Woe9QOmKEwUQQvqKqlyxrgVYaHzp2fiQqhaSkLgKh36FQOZjSGKg0Ikgac0kpK6SQ9OMDveyJosKHwHbzgB23SAmLp+/jZYP3hoSEMBCCo9QlpZ6hlUemBu92jOs1d0fHML7i7X5HaC1n12ecL8648gbtIlhB7D3Hmx12Z6m0pJo9RWvBMI18fpbbz3eBkrfhj7vyXKCcRJ7i8SIqBZDeCXVOPz/pHL5epZzSh4Ep3OyE5s6/z42Tv1AIMe3KxETuUwovfY6hjgIfA4408SbymEOKhJri53OrPCGnVneY1N9SZrGUmjoMj88rFUFAUFkjYELCACdZsM8SyfzeMv4EdEbNg0Ypg5aZ6upiyK1qH5EpYB6HXpKkVLZe5noLmUQuTki5gJogeCKGycEgEJPY9mQhzRoETzgFJaY8cFMxTnA6JhxdLlpCSER5goud1DyCojDZSiskZVESk8VGh0DQ1DOG7pDZL0IipM6gJHVCpxuUKajqGc57QgxIqVDGkESkalqcG8EOHPdbnB1RJOLEXOkFSBHRUmBMLogKLRBCY70npIhI0647esbRolKLEoHj2nPcvMWUc8rZkkh2CylTgwYXPP3o2L66wRaBqw8+AFNlzUi3ZTw84ILHVAuirjjuA0J2DMUSXc0oLwtCsUSMgSQTSUrKVmEqUNGitEakguIs4rr38eVz0t0rTNoT7ZoYBxAyW6u1pJk3CDzBjUi/J9oR1x1J3hKmdO6kIpNmlKne+pq8VjI6wd1tIMaOFEuWZ5okNUHmxd95hSjmzM6eULYLmqJCyzIX5j6w3w/8/r/7T/yH3/7npO5LisIx+JGARKpcgKcUETJCmjRK+Zs+Felp0oacIIEelyLqRDWeOp1algilwWdujC8AJSliTRJ6GjU1qHKGLmpirAlIjknBqHFRYX3ERQWyxYkCFwSoOWp2gWwKooj4vSXYBm00zeqMi+fPQCuiTSRdoOYNxUwSDgkpR5hdEMeIKkqoKvphgGjo12uO9ztkv+XhixuaZ2fMPv0QOZ/TbRNivmLsEm4MyCIga4F3Ab/tcNsjjCNdP7J4vqCa1yjhON7dMAw77NpSLSoWbU3bNqTFDXRzVmWgPYd5nXVfB+u5P3oGP2dvNet9x+gqzp5coZXg5k9/wHD/EqdLymGG/fVPeP1gaCpPYwTDKHjywRl/Xl2x/I2/h+00F7/ya0gPpfGouuBDmfjce5RQvP7qSPG04PKX/yrPP8zBosUssL4T/Nvvfc6Hv/oxzmXeiO++pCg1pamQGoTOUMNC507ukBwH3+exZpT0wWNj1v8ZHdCmpEkVxkVU3KPCQBE7ZjqhEXSiYBADe+noDewk6MKS/B7bj9hoMc2SYDRK1gg5o6RBSUksSzbOoGSFjAXCK+pkubU7bASkQVmH9hZZKi4Xz5BdoOvXpCJStIraVKhUkILCxQesvWUvGiKRKD0x7nGhI1iDN5HC1JS6xSuHRCPKM8oyj7WcDWzXD7x89TmJDR+YX6dcfoiVI0IWHI733N1/wcXqiracQyqRJlHElsPtgR+8/D1k5TEX16SyZlY8oWsqYqoou4gm0AvPcFwz7h8ow47n3xxoZ08e42R+ltvPdYESJ47GTwWRnfgmj8TGyLusnUkr8U6sPxUXPOpJ8ih7YokI8VOjnvwckzCXdyOd04giPBYx+e98nKBj5IVTvXsyRJwQ+yeVb8rOBpTKLgY9CUi/5u45dV8SgSAiNkVCyFbjE5Y8dziAaaeYpjZKEJkCC7kgEERSiBAcKrqss4FJI5Jtm3lKlfmaceKp+BjxIWSsN3njKk7F1cQaEQiMkCitc7y9z2LTrGnJlucpNxYxOULkZOlOPpD0hEJnck5Mu++iqEnC4HyXIXCJvPOfAg+zfTo7fnTZIkh0xy3t8pqyWeKDp+8PpJQoihKFwaWAkiCUJtU1OgX8HqJ305wjd38gEAT4qaNTlBWFUSidizWizyM24QnRIUKcsnn2GZtftMRhTpIFSWi0acB2pHYJSmGMpR8Sb2+2mKXMdm5vqWYt5WzO7OkV3guO6zVSRKJQtCuJaQqWJRgfsUEweI80mtBU6FJTCIHrHEl7qtZAVVBdLmDscf3IOFhEcKd5ItQaUsAEj1CW5AbC5h7GAzrmIMMUDuAHRAyor8HHINtoY8hdhbsHh08bBi84k4ZRGbzY46Mm6JZy+RVFe0lVLpC6IAk4DJEXrzb8+//vv+Xh5s9Q2mYBtJCElDt+mSWUAylP2VMkmTuDWkxivFPJkoXnUSmSMPlNaoWpCtqqQhQlREUMmqAKUlmiZEOIkiA0mAXl7JJitsIWDePosP1IGCLORmwUU1FYI3SB63MhVBQFKVb4IRGtQuoKXRfo9gyaBXZ0DEeHthLKLE4f7cDQH+m2AylJWCh8CoxHyegcMVm6ux1Eh7p+Qnl2hg4CrKacLalWc8IY2L7c4cYBHwVF2dDtB4bbNSkMVJcrls8WqKpk99WW/c1bYuzQRvDet55wfbmgEAIjKuQwIx6O4CL3dwc6q9jsDSNXyPmSVFSoec2ivODsgyv2r28I2zsqeUuQV1RXLYcdbF4lPv6mxg2eV297kkpcfPdvUV1VrOo5n37nnE+ewXorefEQedomVq3izdvEIDWf/LVPKUx29zEquiPsN5Kr73zMR9fn3NwnrI/0g2DZZrH4ICyNHNDCY2KJ1CUCQe9GhuiISeKixydJ0h4jEgWSykeK2GP8Brn9gtC/JZUeWTRUXFKzxJUl3mgG79hFl5H4Y49MA9W8xBRnSF3nzrjuMXLB8uoa1yqS7fDxgZm5ogggugNJapTRqKqmDp5SSc7KC5Lfs/NfsPMjpdHMTU0hJRrN1eoJXejYdzuiKlBGY6o5ZdNBUSLLhqQMThr6ICkLTVuVeJvHpypqfCoJqkGpkSA0zjsiDlXXDIOhH3rW2zeIEawdQWuMr1lv73E68WR5xX4XOfgN5mpHPZuzNBVVqbNWp/HMnz+ntg3JRbYv76nOA8yqn3mN/7kuUIiRSRY7FSBT0BjkBTclSHnH/JjTc9LSnaoMst3yVGTExxydk50hPXY9TkC207X8UVr7tSRj7/MCjpBIkyt3PTUCTi1y731uJU9Qt/x6E+R+A1EKlNaoKFBCoNIJGCeyhTREkppC/BI4JGZiqwQRCRkukbsE8kSQzQVTwqPi1G3xPjstvHt8M2GqwFIMk6g4M1GIERcmfcrk7lFSoKVEy4x9T1M3SBKmxGNBSpI89AqPImaVyHbslIukBMQJiS+ZSKhycv9MR3q0I4XJ2o3gA8PYoYsaLbJmR0o5EUA1UhlkWeHHjkRgtphD1bJb31OU6nH0lrU+ebwhIXMHZEE0RT6uKT7ariWSFCPORUKw+ASlKlBaUqg83gtKZnt5iEgsxH12cwSIcsR2ByIGdInvS9IwR6kITU2xKBExIjTEYUvykoAjFiX1vCYpSeh22N0dShqKWY2sNUIM+GFg2OyIwmOWl1TlGdoYQiERLuSkaC9JsQB5BkYS/QG9VLACFQNFWaC0yqBBa3HDiCkTRiZ8fQeuQ8tAcAPhcMB1O2QcMTqRXM84HEj2iNIOEdwkjlbsj5F0awnGMpOezvYcjoltr9mPC1w6Q6qWCxRoyXo38sMfveGrL7aIpkYV75NCwAWBdIKkAlLoPLcUIl+YS41IESWBFHBuxDmXc4iEwVQLynaBkDUp5XGpKjVWaCgqVLMg6pqEybtHpbBjwnuNqFqq2ZJqOUcoiRVH+mGPjyNJCVJVoJRG1Q2ogjgeCINFlQZpSpKRFPMZq/M5RV3ihKYLGm8jDoeLLp8vAXabNQ8/vGH95R2yLJl/6zlmsYCDIGlH2QqCLWiurmnfv8TvO+6+/yXdlxuufvmSZlkSg+f+xQO712+Yn80Rz88Y+sj27i3zuQJa3CBzd2G9xoiO+UpzfrHg6bM58zLBuKOQCU/Neghs1pb7e0+PwpzPuf7mRxR1RbQQ9DMWT64oC7j5469QhaLvI1pKzj+84MmFwp1Ftp3l7ieBl3/0Z1C2fPhffZvj7cBf+7WWbz4v6B7g7RA4HgJ//AeB7/6qYRgEF5clogyko+P3/tcDzz88A+XYbixP3ltxPHhCNASXMFUDRPqhg1IwCI9yHUZqjNKUyRBEz2HssmBTRJwHLQsaARUW6e7R/R3sPqd7+EOGzZfQGIqza1TR0ygF5XuMvsDHHuJAjJ5GKrSoUFREFEJXWNthScyrhlYtqOdXbO5f0NuOspDUxnDW1rzd7rBBkKJGVyuMigzuyDh26NmKIo2kEOnGLYPuePb+Jzx9/gl+f+Qnhz9nEweQBbKa0SRPUOCSJkSNjh7RHfCjwMklej8w3n5G1BHRXlAtL5GpBrFAJIPWgSASqnmCs7e8vX/Buntge39DWUlKU1HMalbnz/FI9v2BqD3jfk2/PONBFiAMlAWz1Zzr8xnOXWK3R6Id2a8PaGV/5iX+57pAyXKRSEyeR/1JEu94DOKUSfJuvDOR5d85cKb/5hrjtHOPU9HBoxg26/dPz3tqIYuJy5HpbiFmIShKU0iFkpmbEiZbbqU0IXrGmCFXPoXcBfI5lj7j63OmjMIgReahnPgjuYjwebFKQIwZi48kUoMW+DSQRM7BSVLilZmyPrLbQgmFJqInIFkIPkPcyF2f6XARpMjt9Ec7tURJ94guFmT2SakMumhJ00w3hJEw6RmCyHjvEPMYJAEKmcc8MWZb8ZRihM8dFiElSkQ0AhdPoYW5yBz7SFkqTKEZXKIQEaVLBueypkdJkJneW0aPFApdXyD0jHFwpGCRavpMpSD4QPIOEQPBB0RhEOTE0BQddVkxjhoVbbaEy5gJuCkiR4cTLo/gpEYbianN5ITKFbD3+TzKEzxLCC5b8rzFxY6EI+4Ssm9JMVHUDcJoZKHRc0MUBd6C8B5hB4bjEdfvszNJHnGxJe4Th9t7xpsf0cSe8r33UN/8lBTOUYOmD4ntticdAqYKaK1wh8h4lBStQTc1qlJUy4KqzPED4xgQ9weCDXgp0dWKWOxQSiJ0oDrzDIcjUkSUDiTXI4477HGNijm/JklA5m5HFIktNd4uEc4j9gmzjSwPGx78V6ztOR98Iqjqgru7ga82ktm3/jpqc4lKFoxGVS0xaJztiDiQDbIoKes8wksDeYzqA3J/QI9DRu6oEr08o7hYkExBtJEwBMYIzguqtqQ+W+QFpRtwXYfvDzibEKqmnF2RVMOhE8DA4eWB7os3qLKgfH5NO5ujVIUoFEWVGUh7G3FOUpYlTVtTVjWqMdgIdhSEkLVPiYg/uCzojZLNl3sefvKa4bCGCnjtqPbnoCqUEhxvO1Inab55xsXzCx5+HPGbDt2AWTWUUTD2O453X2J/8kN2ixmBj6jbBpksgoo6DpiwY9Yn5PmB1XnL6sywWhqE33HcJqLdsxWB7hDY7ySbQ8VWwurqKavnM8TYcegFs2cf8t6HNWdVxZ//p5cMr14hjEQfV8j6gmbWEj0Mo+Tl9zd8+R9+iGgeWDz9JVInCMeEEoZx6/md33dcvl/wk688Tz4qcSHSR+htYiZHqrOS5x/WdMpyqQWfv3mL6s4Jc8/zD67YDR5tAnKxQrSSVdPROUs0NZaeWhQEJdBJM1OS0XmiLrHxgEyKStTo6BD+Lbr/PvH4GbF/g/U9tVbo1EHoEbJHxp5DGBi8ZwyBWtdoWWCMotQaksUpjWpqdNmQ6tzla3sN8ow76VFVQrkZC6558Htcd4esVwxWEPsjfbIUYklbXiHDni4daRcXzOZPuVg+YS5qQqlZzM7Y7N/QyRGMQ8YanwRpHInuyH7sKftbijKgF++jGJmZRKoNpVZ8uXlDf7yhmJc0+lNkWdCmgkFI4jDQHyUPtw/03RuM0jxZfIuiWbHtd7y8v0XNW6rqkug1+80RlSpCJfBKcb6oaXSJGHvKWhO2HX60vOrcz7zG/1wXKBAmUeSUbwHTuGcqOuLUs5jw6/GEtOdUZHzNjPOoMzktyNMoaPrZX3RG/W/EuPHR04KRGimnvb8MGZ+eshYmnQR4KVNO80wkIcXJmWPy+0kRFbP4VUyUWybNTE5ozl2VR4iZmhwmgpx0TKJQaiomJEaZjLVHowiIZJEy5QWb3DlJIXdWwjSmkdPryULJPO/Pi8/kmjoJaSdRrULktGOtSCkfbx/DYydCCJFHVGmytgoe1ZXZNJTb5Tw+l+QEwStUgVSCEHuS0NT1EkKOu89wN4eQGq1rfPTE6PHeU+kyB2OFiB8OWNtlka0xSKXxzuUUZDPlZZDfm9YaYyqkAus6oh3x3j4WeSJFQoTRhawnChmeVxRFFmLqLDjV2hNCXjhFzBobIRxGJKLdMW5GlGkQQRAOBabaU81btKwomwZvPcdhRAlNCrkzqMosgO22D1Mx2eONw9sHRO/gQXHc9KhyCXWFTiPeDaQgsCahapgvFkSpqNqaplaElDgeRkTKnSKRQNQNeqbAFPR7SRgSpgJmkmomUKjpu+cp7RFnj6SUMFqjCoXUEq2zLie4kUREFRWqaHHBsCtbxkPD9oc7PjsW1Ms5zkXG9pKrv/GrHG4/ZNgOqEozv5oRhcAewXmH99maphgz62iKVhiHgbAcUEpjyhZT1+jaoGVF8IL9bkeUHXhH3ZbU84ayrole4Lst2/WG3esdhVAsnrToShG1Q4VEHHvGbmT0gWIuqeYLitUSXRmUBuGO6GJAtyNBRmQlqWYVEcFh2zPsI8FBOdNIGTncHBnWHc25QVQlSUHzC09Rx5Jw/0D/8oa4SswWFzCTFI3GUeMGw3h3pHuxxY6J+UWLioHubpvHx1KQqsBh95LyXiPK56yeF6yWJVdnklnZUWiHmEFVBUolUMfI7jjy6vUe1weGVOGjprOeYGrqsiB1G27/9CV+pzj7xi/z3rcrjCr54ouB1//xNfvDNucXPfk2sn7C7mGku1CoKhIZ6e5/wlwtUNpw+8e3OFnwp38eeGgsqo7c3Y6I5Bjf9vzxv7zh/JcumM9qfv///SO++998k1I2RBSHt6+ozY5Pf/EDvDbsd4njZgPCM+rIZWkwsqcQA8uyBa2QUWC0QEaFMTMqLXAkrOsYUsfeDmjbY3qPEA1pccVSV5TWUlcZBueYgZhx8IJNb+n7gTFFkvH4oqQxNVJld2UloWrKDIi0HS4d0Rh6fcQR6MSRqBNR9pASmhrnRgKBQ+8I23sasybOL4ha0ZYXXF0+Z1ktCbHjfniLlDNoZsxY0jubE7vjkL1oMW8UlTao1Xuctw3n9ZyQoJJPKeeC8TiykTdQ3KHrgKx6VNlS6gUGsG6JHe+p2kB1/px2vsLUC0bV4G3AKkeaHEhpP+DSBpQixpFkDKSKUKyoW42mJpgSvMMe3v7MK/zPdYGSUjx5ZaaaJD7On6fBTx5XnIQj8FP24L8gL+FdODSPi/KkhHi8xUl3ku9yirDP3ZswjYeMUuhHHUp4R3p9dEVMr3NyNeThTnp0zMiTIyadsm9OWpnpcYREiww38xOa1aeAn3b3cJq9S5TIKhYERKE4eUVz4m2+b2DKA5xqM6lyyKBGZ2cD2e6bkpqKukgKmbniQwA3gMyAq8yhy0LSEPzET5kyeoTM4YAiu5B09nzm0Y8EIRUeMY3qsr7lEdce4oSLzunG0YPRebSki8A4OBAaqTSSlMdoMUB07Ndvcd4zdlu87VFSo0yBUBqpNdponLOT0+vknlI5DVnl0UOM5E7WhEA/RSKcGm3B+zzeswGhJUormmZGUWpijDhrEULiw8QPOTmepteaQoSokcpigkX1GhlLClEzxpF+CChZULQzTF0SB8twHEl4YrDoEGgbQ1sLkuvY7m9RFbTXiqbRjFbQby3j3mGqgmKuMFVFUWt0qbHdyNhb3HEkhkhT16zOZpRnBW7wiLLBHTxSR0STj1lRmNySDJHoPWaKItBGYaqSsi7QWuDHkeN6j+0tctZQXy2QKqe9htGy3dzho2ceBLosMZVBqGuia/D+iCwlxWJOUVc4m+iOI8NhoN+NHB4SGoeqBd4GursR5zzzZwtWTy5pVkuSkjgbGe57xKBwR4lSFUrMkbIl6oIgA2LmUWcL9OaAqirU2QxpFGlweBdRChbvXWNmNbLQzGZtDqWMPePRsn/xivH1K0LXE8qGePDMrkdEWRCsx3eQlKFeLEgExtAzhD3uQVOeL5k9n3FWLdndtuwOCexAeTXHzCsoa86eCZyT2BHuX2zp1zukEWhdICJEP6KNYvH0nFJ/SH/7OSZsWNRPWD1fsmoqFgWIeMSUWaPn7ci6G7FDYjN6Xt/2+Jioqop60aDaBqMMfrNj/fKHyDAyf/ZdyidLqkazKBQvthZVCgoVcbKivf4WVb3k+CYgP4lczxIP50sW3/4uZ98446PvPkc6wc2Xlm88k7hQcqkFf/g7G9avX/NWSOyw49P3nvPmTzY8+bVnvPzKovyOYrViv3E8//QD9puOoDVvf7ijGx+whUGdzyl1gbUdbTlnYRboAoRQVKqcOK0akSTeWzQlYey5O3TgHCsxR1e/gKm/gZo5jHPEeMSmIy4WeHuGtXnjKxB46ziOI64NlHVFWdQsmiVt1VA1LUVRkcbAdtiz8y5j4NsrnBBYZ+mFxysDqYCDJ3V76O7obl8yVANefgtdzBFO089aCm3oYwdaoQtBmGtm9TVFZzlEgZESFwb6mDi6HiEixaylPrvEDpFj/4roj2i9gqhoFs+oV09ZPXtGKQyJhpigcxIxeEylQJxTlBWz5ZK1tQxxYFa2VKlhbR9wa4UbPCkNrGaapjQ0oqQIAukOmFmNmhn6hSGkEhP/DzPiSRDl5NSAlE679Nw+PQkr/qJ752uP8L+xC8M7fUkuDB7LkcfAO/U1dO+pOMldgfTuSR7Fr/l3ucvwDskPTBqRDEbLMsws+HVTzPypoaOEJKm8sz2JdrVUaC1RMvyUDVoJhZCCQmmM1HnMdHovIhJiIkVH8hlWlvNn8v8+CoBDQssMp1NThyfD03UWxCJA6axLiZ7gp6IthsxZUXISAk88Eyb3hMjIflQWnyJASJNf3SQgPmW+ZK5NLuIkQPKkVOTOjghoJVGymCxaFVJ6lJY5dVaox0LV2p44HPHe4V2fracp4kdLQlKYEj+Rat0IpIgxhlM8gDEagsTIAmlEZnS4cTre4Z2ehSwkjjaigkHYCGlAaoWceCLGaIwBHwUhZZlwEjqLl70HaUjCc+z30OcujBQzfBQI8ggwhR53BIoKoiWMHeN6j/I7xnPFzs4QObgXoUfssEY6hfcjo+uJQWF0BVikUMgYGY4jw+6IHzpwR5IdoZzT6BmVafBGM7qE0QIhBUYbilJjzBQgkRIp1aQocM6TjKRctJhSQQokLE5KfBwpQgmuQkoYdzt2n39Fd/eW+dk14duB+uk1RVvhEgQFqtFZy6EqMCVCghE1QQ304QCjIsaeGDo2r245vlqTUAjV0J4JykpR1gVJDHgfcCNEr2gWFbGMJBMJ0RGDo6gU59cXtKsWoSTGFHTrA/c/fIkfItefPqF60mLmUBiN1p6x8/SvD+xffcXDj/8jfvMZKQ1EM+fw8gOa848x509pzlc0ixmikchKkBxUs5p0WLP78hX0lywuv01hWoQf8WXL6sMrlh9e0TJjcwzMF4JxPNJ/uWPz9oARgfqsJSlDEhpTacoyMS8rfHlGaA+YMHJ9nrg8SywrRX84MliP9wrnJTd3B2zKOh0XQZrAqiq4uv4YV9YUuiB1ex5+8n30+IAsL9Htc5qrJ7SzgmWdeO+54n59jY6/QusCi08/pr+XUElkrRAm8f7Hc3z5qzx7Irm6FPj9iAktUgbOZ5GXbyCFA0++PWd0LRQf8Gf/akd15tGDJqSeV3/4J1z94od4mVjMV3T7ksPLO27f/gAXLPMnT2iaEq163NBhzAIlBPOYhdEhBcZwzB0LofB4kIJKlvTiSB8GQpJ4PaeWFUEMeDWSxByZPMkH+sGTxkAtDBhB5x3BZVfgrKy5nC1YmIayrJjXFVVdc9SOYwpInV11MglEAJkCUThMjLjuJcNhQ9w5/H5kpivaq6fM5884HG84HG55U/R0pWK2vEaXNUHly4DwCSk7iA7dzBA+sC+PvI1vGO0RhePgOroh4MWeejZQtmf4cY839yRdI/UMFTTCe/x4wIeRajWjFWdsb3+MLjzz5jnbXjDYO2YzTSELhDPZQRki1axA2cCZl5yFwFxHypSY91AXCt0W3CaL/dk1sj/fBUqWrcafrjxEmgLtvhbY91hqfM3N83j/UwHz7mcn22KOhH/3XGKClYmvFSecRhf5ofDB44LPRUz0jwJcrUyGXKUTOjxf6I1MOUMhicmKm8MN49Rd4KTVnZD7cXIGKZFQKltdY0pEqfLox2TNilEaoxSCqagRKu/08bgYswMCTRTgCRmxFk+hgRlH7O2AiD6zLKbjGslFiEZNBNIsJiXkUZQ8jbti5pr4lB6PvogTxTYHtOSO02QHzZ9DxEqwIRBCQJ8EvnGy8aaYmRrJI4UmJY+3EaMUZVGSkn8sTIN3SMFUmDjEdJ7ESQCcP6/ciVFSkVLMvahp3CekRCqJSwln3WM69akYTEJkPQ1kfQpTN2zSIgkU3dBDyjlASktiyFZlVEGhT94sMFLhTUnCEGNgHGPOshQOGSxJFUilCSLrZrwsUO0CUQn82OHHI6SR7bFkO4yYdqBcNBB73KFj6AaiT5iypJrNSDWIBqQM+INnv3lg/2ZNsEdqY6mUQ8YbfB2pZh+h6zl779kfOkxRIGrwnafrLeMxF31VWyKLClWWGKkI1pOsI5HHZfOzmrEO+NFx/2pNPI709/f065fQ73J3R7dclIYiLVGASAIXC2IvMMdIEhbnNF3nQCYWl3MurhZ4u2dzI0lv18zeXyDrimoxYxSK0FlK5+g3G7rNEYujvS64eNYQpeCwPtBvOlw3IgtDNVvQXpyDltjtgePLt/SvblBtw9GNpE2iv9lhyoJiZXB9YH+7xfYHRCFzlqcdSMEzCkGMGuMNqp4xu6zQhcGPFmcTqIiWibQfQe2Q3chQCNx6ixpG6mLBclbjB48e92w+txx2W46bA9oligUYWVAW8Ox5ZDZThMMR4XqKuSdVc6pqQdUq4jiwj4LdoafbObo+cDg6LJrm/AyzuCQMHWInKOZXzD/+lOZpy9AH/ux/+neMfY9Qc1KsidpwsayYlZGgFItZQbtqufrGt9nsoV2V6Crw/nODjiM//kHERc3108TzC8F85gim5G7nGUdNSpJj71i+f0VtYD/Cy3/1exRPGs4X3+APf/tf8u3/5r9g9ukv4bs9i+dP2Rzn1LPE5z/6ks1uT6kfaC9/hXTsGMqBPP73eJ2zZbRoCKHn2PfEGGlNhRaCedFQy5pSVqzDa24fXnPoO2Z6Tu1cxtmnnLBtDxa722OEZDVvUVLRyQ4rE6aSlKWhMiV10dJWDYuqoS40BEFddgSX9Y0IqExBpTUUhvvkiUHhR6DfI0bL8vIDnj/7a4Qh0O0GGlMhTUtQCVVYKlMjZY0yoMpIKRX4kTQ6msJQUJGOHc4HajWjMjX2qiJdXSJFoqjmHOojhYvs9q8Yb++IqkI3DtnW1O0csxC01MzOzihnYPsK63v8GDiKA3EQuE3P6O/BaUaT6HTL3lYsyprZqqCiRh4HooKL6gyjC7xpfuYV/ue6QIkxW0RPRNgY8xKcHnfu+T6nfI90atHzNfja4wLK1353egbx6PZJKSednhgL75KTTxkm+d9DCjkjhkQMIY89hMZrSDKD4yB3QEplKBQ4Ms49ZNsBj4UXWdsRp1eTZNaYIEQGr4ks4sidJJWHWiE+FmHxUY8jIGW7sE8Cl4dI+f4Cgsx258eOzdTBiCHikkdECVoTVKaHKpmBb0FEYhKolAgikJIgkDJrZCLACikziRaZBb0+EiZAXoIJICceIXY+RYLIjiOCz/qaRKaAiiyG9tZD9BQVJDSD7zA6Q7ZIBh9c7kR5j49+6oZEhJKPxaicPvsY/U+N3HL+TEBKzThAop86SzKPj5KEME0KIZ9T5DiAU6coTuC9lHIB45wjBEnwAqk0uohoMgQuF3slhSyJQpJMxBNIUmchLwIZAjFYgh+J40iUBhN2iGON9R1EjzaG6CzRbvNnqCR+LIneMxyPJCFRcg5OEo8KFy1RgOs929tXjDdvUfJIrAcEHraCpBzt05LEwHg3srvraVczomoQCfr9ge5+Sxgcpigoly3zizOCzV21FCJKG9p5BcIz3Pfs73YkJxBK44oCc3FJHCuskzgE0Y6EoSMmhXOJ3c6RvAflKMYS10e6wVK2FXphEEX+DN0hIkTJ7MNzqvMZddUiVYnzgcPdnvVXbxhub0F69NMr1kYhtWH3es/u5R2u6yiWLc1VwvqORMJu9hyP08+fntPMK+zDmvs//VNkCsw+eoJZXFNdLmifLiiu5hzeXEF3xNuRqAymvqRezNCtIorIsOsIXY+SinplaD94gkKh0khlLOFoYbiF4YHxRnAfI34YGbZ7+n2PlJK6NZwvGqyCOFqaMrCQPTNhQeyIqaeoNLFpQUj6Q+AwOAbv6PuRYUwMQZB0SbtYomdLAoZo51z9wje4+uQJH723om0lX/zwAb+x6HKBOn+GihXoKl8DnURVeRygpKEtZ7QLwdwI3ohIdxj40//+36Pf/4T5k3OcrVk1CeEM2wNoL1jfWZbnmt2rt9y9PfLsl56ii4LVd59x/v4ztHfI5oz1znP1yTUPPziy297DouXuxx1ivmKxqJnX77No5szljoZAXdU0usVIiCpg3YBzlhDA6IZaVhSEnFWjEo3QUFseuOVw2FOlQGEFpRfIkBi9xXV75LGnbRu0KQCHTYJQzxBF1scMSFpTZkejSESZaI1moefIaLNxQIHwCrxGV3PmF884RolRLQ93D+x2P0ZdK666Tzhs3tAd36JXl5SyZaFLVkXFrM4bGmUUbVUS60ByA69fv8COUFiYe4EeJE0hKH1Jquc4GRkZiBU04pzZ4lvstgdu337G8vo9LmYfoqoZPjlMU1BVSxaXDaU0fPnqltE6XH9kvdvTP2yJbk21qJFDyeHuFa9SQKWB+uJ9ruKSWtVEEYkmUgTHXJcU4v8goDaRUhbIxck+TMiz/KntIYUAKQkhvNORJGBKTU2TGJbElLsTH10+IqNUmcCU+U9PeojTQ52EtmR/rE4RLSbmx8Q2iTE7P3xwCC0nUavM7hc9FT3kVnuSeUxgkkaQxzyn8YEQ2bLsyLt7IU4ciAzoDtERUszOlJQBaCGeipgpnVVM7qU4RQFMolWNzD2USeOik8AIhdIi30cpUHoK2QsoKSliBrLZlDUsgozGj2QHUEpTl0IICqFQApIPqKkDxMRXCRPLhZRTbN3kyCpEtr+KJElKE+X0eFKijcYOlugdVV2wP4wQPVIVmUYrMsgrTlRbow1J5Mj7JEDGhJj0HyeuuxCSJDLtVopJImIjanJWZZR+7soJyInRp+5Zyh0VIVSerRCRCpSYxNsiEYInTu6lgCSEEik0QgS8tBgjkDIgYz6/gkokqTCCLC5VCkyDUzmdFxHxdodINnNwnCOEQGBDjB1ID6qZMqlAGwNeYDcjQa4RRmeAXj8Q7AMy3FDGntpGKpPFhIwH+vUeW2i6wwGpFYExuy8KhS4D5TzQhY4oE7qsialnPAw4ByoIdKFJwhLHge3nb+m3e+bXS+rLBtG2yLTEHjv6+x3Rj7j+iDTZChx6jxw8CInbe4btgcN9j/eJelnhdwYZpvwr3zFbFJiyQqHzCLAMBHdk2N6y//JHuK/+jIBnXH9MGP8KxeUSn0a83UM8QIr4PrJdO+zdOuvH2hnlkxXt8yXlssLuspOpv32N0LAwF6yerSjbmmq2pL64wtsRYR3JR6LQKKkppED7gdAdCK/fYoqKxcWHNE+WrAz43Y50PGAf7lC7ByoVODy8od/dEbsjSSXqWcPsbMbyqmY2M/jgicdEowQNe4wThDjS+0B/lITkcU4x2kA3RAaXmapVu6SdG2TTkAaFPVaYesUH373iF/7KObNGUqXE69uBr364JiaDrD9kdv0h/XZADhoJNA243vL5jxw3LxzlWWBeGY6Dp24Vr//glldvd/zG321pVcmbrSd6Qy8S3//+gatzTUyaqD1v3+759FdX/Pm//T4f/a1fhsGwebCURvPR3/4u6aBoReLLz36fq1/7Vcb1ka9e/IhP/+a3efjzHxLkwLwSPGsTZ3pkYQRN5XDCcIiWvevZ2wERwYiElNOoPVm0rkAlisLQtEuCi4gBYpDo0aLtmD/Tbo0MHuMVetCUwnHdFIjFirGpGEPP290dDuhTg5MrVlFmUreQFNogYknve46+Z8QQlELoEl1LRCVRZy0inOPbllu3Ybff8Pb+BwgfeP78v+a6+AZn1SXzsiUm0IVh2ZTIFNHxA3a7PffdT5hZyWyIFC5S73qk6FBRsSoVVijWVnK/veFw+wLfj4RCUleSwSQKHdBCk6Jmfdwiq45UXzL4QHc8ov3IMG7p9y+YnbXMZh+CbDCqJHnBi5vXLM4WPJk9Q84MC1PTVDOCr/EqEU6R9j/D7ee6QCGd5t95Jc+AsXdpxTFOAsxTlsZJ4Drh5U8Z8u/kIrl7IafOSeCdfgXyInTSrbzLj5kW4wRKaxpdYZIiyTyyGYce6zwuOXQ0GFVglKLQGiXBeou1I9FFMBpU3o1rdG4vxpj1J1nyi3p8Mfl9EMmAsCmnQSuJc45xHDglAwuZCZs5wVhOi6nklF906hSJqQMZiKgoKZRBT24XZQxjtFnvc0qNPnWsHkdh0/EUMndayByXAoHMbab82cSpfyNPf5fR/nFyHymR+SoiTmSYJEgh8y+UMsQUsngrweh8hqwJBSLrPaL3jCFlONZJ/xIy10UISRCRpIssOo5+0izlz1DK3EFLU2ERY26XxJjw/hSQKPJnkiZZ9SQAlsqA1JNOBoIfEDKzOqK3uWDyHmJCFjlsLgHWJ2wYp8DIzMARKoJSEx1XI3WZnUeFzs8ZPFFLEIYUAsGOJELWF407xuBJIo/hhJRIafDHgjBmq7MsK4JLhHGkLCyl7pFpxFmwusaULTsv2L18iytHbEi5+7XdcVAluijzuM2NVCZStJGizs8/dlkDpo0kRcMwBiDAQqG1QTYCUkA5g5ISFzXBwrE7gr6j3PUkoxAhYPuAKgwxGtzg6fcD0YNzgu2dIwyRat4wv5pTL5dYmzje7OnYoNuSkEaGbk2/eYntXqLqkjRusNs1lAl8wKiAw+KHI8N4wN2uYbdDVAWmUOg4J+093g+kGFGLGXJYEVVJUDnTiAhaF8xXFwg8wjnCYPHOMu72iN0GGQv0eIThFq1a5DCDnSL1luP9jv1mjQtHPJZo5GRZHTALT3u1op03zJsKnXrmyWehbWVJQuCjIQ6K45iDLYeHDcMxEOQcMT8nNLlQUhiKdkl0kkotWHx4RhIl73/ylG99s6UtA92geHEn+OyrgcPRo6+fURhFuVrRb99SXFzQrjS1gZu9QTSRb/7Nlk8/NHzv3x+RTc3f+I5E/NIT2k//O37hY40OktmlY17B/brji//+/8n4d/8ui1nJ/X/o+fDTK2Tn8EfB3e2Rqw+eUM0kWimClbzqdyzUgfHuj0jtf8nbz9a07z9nc7fjyx//K77xN3+TVVlyxlecjffUbNDDEl38CmNa0nWWnR8pZEEhE33w6JTR8SnkDqeioVVndPQc2YOB6KBMgeSgZoFZGeRiziglpEDZLlD1BYLAZvOSTXxgtEeO3Yy79RecLy5oihl7ZwlKUekFg3PsxyMpJOIwEv2RS1XxdPWEY9Xw8Mmn+KQp9QxkzSigj/sME7QdwnnqKl+XEQLjsqPusprznQ+/zSujiC8eaOSWAQVB4TY36GQpzSVusBztC/a7V4TKUl037A4RP/Skw4iUK5KQeCHo/UghEklY9sc9hdpxeXWNbr7N4fID1q9es7l5hSkcq6tvwP0V6+NXvPmw5GHxCWUlkGj2x5G6CdRFidn/BUvsf+b2c12gxBjyxeFUnEx6CzmNNMRJpDpRTHOpMY17Jp/PiYB5Gm/kLsDJbvoXnzG9++fXRbIIQCKEQck8Y0xSIGTEKwchp+CenDpaG7SSOdbdWewwkmLCKIlWWdQqfASXdRcyQZR5fIIQeXQEk94h4UNEiEShsxgsxZwjQ4pona1uLrgskBW5gMh5Q+mdRUmJLMyduB0uBqQPmKLEKINAZe1IzIVcSjmQLSYm+3YedaSvCYgzz2VKRE6JU/xACnmcokXKY5DJphynosbIjHbLdrkwaXYm2/Ekfs3jPUMAlK6QUiNUkd1GCKTWKFMhlSb5gI09UgmkmrKACCQ35q5QsiSZu2dxOo8eU2cEQJ5Dh3AS+04FrlDvNEpTuCKIHAhoMrguEVFaoYwkeke0nhAt3iaELkAWCGlwPjurJCB9RKoAMru1pGYaT2kQ+aIkpUIWWbSapsU+uKxZCS4Qw5CFymSIHEphg8cNA0prdKyIUeT7SkkQCRsioypxsQFXkXYe7XqsH3FDRxx7ICHbBUXZZOqvcwiR8LMGd9yT0PgAQqsMa5MFerFA1yWmzvBA1+/oHrYoWVAty6y/GgdCDPS7NbE/YF3E7jcQI/XlOWK5RESDjH3eUHQe2/e40VGaSwo5I6mA647sXr7FH44ooyjOa4LdUTYGsTqDSiNLSbe9xfojUki67Z7oelJv0YWmnrfEZYloCmSAw9u37G5uMYXOzJG2Rr33AaYoqBqNP+yw2y12sDlCIlrC2JOGkWB7hu0DIo7EZU1VF4hSMMbA/n7P/iCwQ8fu/jVhPGAaxeysppnVFEoSrEVrRT1rqOsSESy+6zgcIWiFFxIfU3a8iUSXDCIadpsjwQaKpaZYLBGqRYmSdrnILjBXs7hc8uGnK8pSUdWGQgrW95pXG8urzwPHwwFZmUxCXbaMNtJ88wmX713QKDj0sN8FjneWy6eKi1nkw/dqPnvleHUjeHhjWF2CqQNtTLy4FfzBF5HP/sffw5aWs29UiK2lfVaj65q7V29ZffQei1nB9mbLk2dPeHFrkTv4xe9e8eX/8M9pv/OrnJ2XPNz2zC8W7H7yQ6rLS84uvkUbX2Lufw/kHrk4YrjEiwsimcg7xJExZJH73kd0EtRlTSUrBjuw2a65Xz+w3q8ZoqWXAsyCWTVQ4alMS3l1iStbuuOGjVsjhcTEiv44stvcUtSaWdOyqEqG0GMjzERJKY+s7YHOjoBBC0mwHdIOtM7ThoKmKrDNJRs/su3WxOSxZyuq+a+wthuSsji7Zxh2dMpkQKZM9NZjx4FqVvF0dUWZvsW6+zF+c6TVF5SyIA0eP4qssbF7jvWIPGsp66eYMSHWn7GIljruqUOBjZqoK0xZoqoKSoFelMyWFyzOV1xef5Otep+bH/0PjGrApRp38znq+BWz54pWB4Yg2TrLJox4l3heLxFFgzSP2+z/v7ef6wKFSczK5PjIm/GvFSKCRwR8tuye/CynP3/85dRNkY8LU5pYI/mOp/t8rZvyFzgouZMSsdHjgiVL4nPAWnjsLsip45PHPjG6CRsfYNJyqDBpaWLEp8lJQ279KyCpjIsLIuB8zLHqMVBJiZbZ/hnJ9l8BGFWgtZmKmZGQwtQpOhUSp4Jt6h5kcQaRxBg8ynuS1hBTtsgGmYPzdHbfCDcSwziJSPNuPY9BHsu8/Bl87difyLT53yfovZgcIijMZEf2pwDEmBDa5JFdDGhyOnQIDqFKiqIGWRJkAQKk8hQxO2SC0KhaUjZh6hqFvHh0m6x70RpRFLnoCCMpOLRMGaoWp93xo6Dp3dmTLe6nL1oixQycEzJNeUiglJ4KuDRlFGUVsmQKKnR2KlBKktA5mE4qklQ5riDmsZdMDpkSOubiRwiFl2pi5DgEPkcOGI00Bao8QQsTyfkcPxw9wXUZUZ8AsoBXREHwBSSJCyHj2rsAyqL9A4f1fU7t9RHfHTI9tl/h2yWJbLOMPtKvdbaRG0GqDDIZ6KCYLZnxBGkrvB1wfYc9HHBjwBQVQrfookJrhxFAPDLuLfs3b7Hru3xOx4/wRiDVDCkTMTnGbp8DEJHEccDu887SHvYM21uOb28Q3tHsV+i2QtQNhf4IVWqcSwyHHtkdc5RDyOdpITVNO6e+niNLRUyB7uVb+s0NIlhcMBRNSXl2SblYQpFw3Z7+5hVh7Ik+UGpNGAdcvyMmj5CB2B3QRqDVnLI4p2xn9EnQ2Q2aEWkC9dxRLDR1A7O5pp0V+JgIvp42AwLnLASLt45htERTEZIh2JSfpyoQVUsMgVHOMWcVLK8J1TWr80tmq5bqfMZ8VhI8LNqaxarKYMHkGbzg4ALbux4XR473G0xbs3x/yVVV8MXnWxbPrkmpxNpANyZuXnr2w0jVrPjiteawHaA7sN7Pka2mrQXdAV7dBF7faKp2oH6yoPnF/5IiSva9ZbFc0v/wK8Yvv4TrOfef9QwWdv2Mjy8bvhqO4BJv/IKP/k9/nVLWqEVkVpXc+hsuPvkOy0rShD/Cr/+MhzTgXcWZbAjiFY4KIVqU1PSDY9/vCIcdMkaaZoYJhuPultu3X7AfN3hlUGZGlIZSV6iiRBU1YrbALxbso+dV6Lndr1G2o+ptZiyNd1w++YTnlx9xZmZ0bkQ3iqt6hbUzWttxf1izjz2zqmZW1tQHg/aCOHjk4DJhG80i1kQcVhv2y5KZnrMf9hjVEpKnHzbIVJKiYuh2jG7Lk8UVdX1G8C3r1RndxZFqgHHoGPYb1t0DqXDMPzrnvfMVdrtlsB069qzqhqvzJ8zOVizqFftu5O2wp6grFvMLZvUZMRmO21f4QmKSIHpNuViSTECqFvd2jWnWfPc3/2tW599mOAZ0LZBtQxwsW+fok+UQDj/zEv/zXaAgkESINq8cMsdinwqMd50OkV0cxJPzl3eEWKaN8qkIyY97wuYDpzT50z3e6VlOt5RIIRBDoHM9wzhgUlZqZy1ETtNFBKyz2X2iJq2LlGhjEAmMkOgksCGSYp7UBZHHOuaUyTMt5Mg8snEx4GPIOg+lMaZAepdHJY+vNE0dE5nhc6cyTLxzJEmZgWuIRPIBpEBoxZA8buynROFACA6JISg5dTccpzRpQS4sVJ6j5SMuwIspp0hM+g4pmGJlQUnipI2JaXrNacpSikzZQAnnsmBWKZMTihFobTDVEucSLih00aKLkugz3l1XDWXZEGIezZRlRQiOfnePP46AJOkWVdRIKbDjHpMcIjnieESSC5Q4sVEyev9rfB3iBMKbXFExF3laapy3EBVaFxAjdrR4NyBEzMwXTueMzQFxssSL3PU5FSH5kwvZCWVPLA41Wbk1RkC0HYQunySyQKoy80kKTURBqYjOE23EiAKpAiIFSNnlJKRAeEsKoEUWXcaxAwmDA6ESqqiIUSF1IoYDYz/gGRGmzt+V2ONcR7IuZwy5OQKJ8YroE8dtJN57hn1HChFdaVSR2SP2GLHHA64bMaUhacGw27N7+AI5HEimZuyXVP4CLxVucLhwxPZ7krcUbUNg5LDegdIcNve40INxhNCxfdNj2jm0BUXZUDQ1wgZcf0SkLoO12jpvb4IiGYFUFSoK3HrD8Oae6I+YGiDQd8fciTORNATs2y3D5g4XjggFrixycYtHFtmKqcpEPSuYzwyNiUgxUmuD0D1VHWlnhjSvkAkKHShNtvBHofBC4YNkdAk7dIShxw4WHyWj69GVoC4qqvmc6uKCqplzPIwEs6QoZzQXz2hXV5w/q6gWhv1Gcv8yMrrAeCY49g6j4P0Lg/SCooyopmZ81WGHxPnHZ6w+Lml8olovKAvNe+9Hnj41dCP88cstzVxSVwX7B7BS8PwXV7SV4sX3O96uBVVRgTEsVz2HdeDsg494+8MHvvevf4enf/099n/wuxy//79y7B54+n/9v/H+dz7kqx/csigkTQHvPV+iQ2D2/jdpq0uKwjOTDuss5vwp15ff4EptMZs7xv1AUg7fVvn8CG+YScOFeQ/UFXcucfSOQ7cj+ZHeDSQnGbev2NzfEGOR6cBe4GTPod6h6oZkVsiywLsD2+OG3bBjSAm8ZfA7xGhZza55evacRWWohMQHS3cY2ThHY5bMU8nROpyJLOo558qg/BY55ITo2+1btps9dVWzXJ1jTE3QgnnbMG+ecj9sCWFg6JgcgQcEgbKcMVtcMZ8tKLShVJFRGu5EZH//FXE8cowj5ULy7fc+5PLZhxxMzXnxhu2XPyDZSFHMMbphWV5Sz1e4sGcWHKv5kqtqQW1mFPOS8eNvs+9ueOjecnQ9H//SNzm6iofbLWEW+eA7v8STD36FKM5oKsOiMbTlObtkuR/33PZbdve3P/MK//NdoHiXZ/HjMS+OZUNQctJSBFLwECwpTTh1FELk7Nzcjod3e+KJuzFpFiAHtj1aiqffnrJ8ToVK1rtk3L31Dmcn6JZSSKUpk8SpwBAdIVhiUngPTkm0zJoJpQtkShip0BH8VEAIATKRuR5SEdW7jkTmgwjMBA5LkVwIxQRSILWaxl4WHwP+5KyZ0LEn0WxOF84doSjyiCYPf6ZiKCWS94+iU5nISnSbHyMmnxdMmfOKlPyaQyglXMhi1Ey/TZjJBZSknCBuAp8iNmbqbJy6O2Iq0E6wXUmmscaowRh0MUeVc2LKQDilC0y1wHuB9T0iCAoqtM7kSl2USKVww4BZ1kjd5MyY3KJBywSiIvqOYA9EESgKlR1GbiR49zUbM5w6UJIstD0VugkyW6GocMFPRVnKeHZCNoKFKdDx8fyxExfGEH1mwUiZv5pJ5QRX0pQs7T0heLQ2RGkQFCiTSKGfuiM+i6OtRKqC/OI8gogwElPUKBEIbsyvZxo7SpG5JtYGnO1BWKIqkEJhdLajhwQ+6Hwswg7wkyDZIcRI0j5/J5zK1MhGENURdzww7veE/Ug5m6EX54hCE2xg2I3YrsN1HbouMHWNHx1aKsSsRpg6hzT2B2I/YjcdNu4JQ4/wkWgcdlDY4UjsLH7oiGFASEcqIfkB1w/oUBLNChtjFiMWDsYBIzQx5iC60Ce6cCQOPcJIfH/EugOq1qjaoNxICAOuu0UUnigVo70HdaQwHlMKCu0I1iGNoJzlokgbRTFvqcsSEQN9t6EKAlM01CZSiIiNDh/zGG+Mihhy0vXoE5iaiKTvRw67gFeaol0ga0NT1eiqIlYNqlxBNWd5VnJmKjA1y7M5q1WFTZLXP7njze9/TtIV7UdPiELTuYrCwHJmOITI7X3k7Q/3JAo++dsfIYPi7vuW7qqgrCNv/uiGy7P38G4k9pJeRa6fNFhneXIJH1wK1r1k1+Xv/i/8estqDrc3I35IvPyDHyHPW6gt5acN8dULuj/9F7jqHlHMsA+we2NZvf8NUjTc3o8Uc816vefiyZz9doPyisjAYnGFd++j7EBb3OD7HzNfJGSxpF3UaCOp5MhFfU+tP8CEimATtmipFxfI4FHSkEg4/TFPZ5eI4QZ7vGU4Oo4+4WTJri3o4j3pmK8LITmCljTtPBeqLmBEwao5o4gNbm85GkPvBA/dkZv9HZeLJWfmjLoxeCMJOmGlphxaZJVI+sjxsOfm7oe0Zy2zRUOpWygLVFPTlxoRDJ3rOfR7hLUUUiGQNPPERWM4jIbwINi+PXLz1Rs2+3tu4y2xKSiqJaZtuL9eIZYl5+UZz6Ri3G3oxQ3D+gWbhzuqWjAqjwiKs2bBzDSIkDDKs6wLnp89506U3Lt7zOWR7/yV75DG/zMvXnzGFz/+AWZRcdhZLs80dSwZtoHFk5GLeUu3hSHtp9DOn+32812g9HsCA8EeUbLC6CqHzEVH8gMpdETfkcJILk5KhCxB5FAwlDmpTxDxxEmJnLJ2EdndAXkhyanIk+ZFTAi3+DgUwidHnBgoWpk8BkkZICZ8IoaTJibzUJKMKCWn6PqsX0hyopgagQ4Te0QKQg5snZgmk5pVCLQUSJGD9whhCsAjd1IQeaETuQWciPnPZBavxtP7FZOuYjqsgeyOkj7leaFIhJgmMaki+ITEIaRAq3I6OicKa3g3/kr570LKnQadMgNlkmpkS3LIKHwfYy4AT/Te9G4RlwmSSAgUplxQLa8ws3NGJ+iPA6YUGXhGgSw0pY9Zme7iRNFVKFFhqgZZz+gfHhCtRhs4bjYYBFJ5QCO0ymMkAeiEMgZkReKA8D1xwuufCtSYEjLbrDKgDknwAa01pcmamHx83522uTCcCtzp5zHlDpGQaXIRBbwPCBkQQiFVgVB11qIgcpYTUJgKZWqIBSJakBCjRU7wsRhzJzAJAVMEQy6M1TTCyvqWqlQUhcpdFRxCSCoSUiuUgUAgBIhJZQtwTHjfEyP46FHB545TGlFR5eFXgPEw4P1A7DtiyH6vaAuSHfHWE4Yxj7FEQsaIihmGZyqJNk1Of06eYbdh7Ef8wwFPT4pj/r7GA647ZFvnscvZShJ0XSB8wAhLihZ/SDgOVPEcVRvi0JEO+9zJK+sMIQyJ6ANjd4+uSlBQzgVSJVS0OUW7CigTMdrmDchKIUWLlDlYMWuAoJk11MsFpq6QQhOVQhHBZ+aQIlOdnVPEIHCuxEZFYcClhHcdw25H0A3ldUXZ1AzrNVFKFtfXzK/fx3cOtz8QYoFQK1K5pJwtWF5fYSqNLAvmtSLEyIv/+Iof/+vvEe5eU330DRp/hpGB0jiqsgAVSUESgsRcNVxeGd6/UPz4+3e8+LMtf/XDj/Hes3+75+7B8rEz7B40z75zxbMLaE3CVPm7IEZYzuHXf6NBCM/dFwN/+M+/4IP/4q9w9sk1LghGL1idzdn863+KlB1xHdHXKw6vPyPNz6mXgnS55O0XG777G9cchzlqf+DLP/0B1fIZ1fUCYmI5m3OlDriuJwwBMw8UNaTkGIYRY+YIoShMm+mmoqfVJeX8GUXKeMy+GwlmhkKhxWcE+zmb8JbYF6zVDGYzrE6YMlFXK+qY2NkHLJHZ8hK0pF/fM457bm6+RCNYnZ+DLJGyQumELmc0zYzKLDCuYzMeeSDS1IZ6JtHLlovL95BSYYxGy5qYAskYrC7pcDgjCWVBNx5wdg9JIGWkEo59CBSbO4yA/c09XXfPxcX/j7w/ibltS89ywWeUs1r1X+59dnHqY5+obWwTXDDORAYZri8NpGwgYbcAWbSgY1kyiELGiBa0DA0aSOBGQoLyiiSvwVxj0mk7HDdwOOqIc/apdvnXq57VKLIx5t4RTiBvRKZoWLla599nrTVXMdcc3/i+933ekuLgLa6bjs47QmaoS8s+D8yznhNXYu+9TtPfYrt7mWa7BKNpty3N+QqvPVGeUt2eIK3B15GRkYjZlGAVMhqyokDpI2JX0yzfZdev6ONjOqc4aI/ZiWvykaca5SxKCyFja777suMPdIES1g+RQ3KqLCyikAjXE/wW75bg1wTXgU+ahTTrz5EyR6gRQo2SVCWI1GnxXRJmxqQrEVoPttG0g4TkSvX/Ff1JEAn4pYwEFxL1M3ic71McfRgYJYNINQ0Kkk7leRHUM2TpKAFBJjKpEHTP4XMAchA+ComUkucZRCKmAsI7XhRJRmXoIYNISjcQTdOOWYjnvI7h+FK8SGMWkiFxOCAZ4GYxRd4jk5WYENCoAYU/5P/EbzuchFBI3w+22pj0DoO7Jzx3QxEHS3YYwFwQoiCkL2UoAhL8StsZOpsxv/0qupyz2vc0RKLNkobHBbRP3RRX76D36HxOYSfs6z3by0smJyfEqsB1Co1Ex4ByHlNUyOKAPLQIv6dF0C17QlvjRxIfAGUT9bdXKemZiCB9rwKVtCU6uXeC6+g7j1IWHwc4nZQvRl3i26cPQqqkjwoDqyUKhDEoZVPeT7NNozTfps9dqiS0jskNFD10whAxaGNRGmJfE3wN0ZGahRIRPTG2OB8h6BfcIElEiZDGTV0gBjckA0ui8CjtyW1MrjT/7bypro/UOLreE6THqJ4kklbEuIWuJaLofSC4Di0CJleIsCPuBD4K+q5BhYDJUmRBSiAXCBXJtUU4R3BN+hz8PoUmijU6OqJILJy4WSPaG5TNGPIIknjZW5TrkaFD0hI1RNVifI9qDLFrCH5PjArhO1RegAVCR9i1eJFhy5yiUIjQIXCUVUQohbYSm/VI2aG0xOgCGSXRO3ybNiDlaIQtC1Aa10PoA0EpnFOgR/TKoMwER0FsU9fMB2hReN+xv9nhNx1mnFNEDX1AiJx8PGFyfJ98OmNT3yAyxfilQ8antxktRpS5xZqKznmyQlN3PY8fbPjwC1+ifvifUyr1LmNzcUh9vmf80pzD12+x3EF0PdVYMpoUtBHe+VbDs3c3ZFPBnTuK5XLK7T824fXv18xKQ1P1nBjNYgJzDY+eOurOMJ95ohJ8+E6kjprz3/2QOqyYHhu2j3Nq1/Papw7YP3nMZXcNwlG9+kOQH+B2hs3qjCxTrNsJ9lbJdSNQFrqbG1weiZmhVBbfO+hr2vpDNn2N7j2bVUBvV7S6JD96mVAtKMMJQUxxXuJ8j3M1lgIlNF3b0V08otucU9lIltfIQuBKyXJ1Q7P6KspYprdeZTQtmZYHlI0n7h4RS8vJyV3Qkscisj47o1l9hFURpRTGlMR6N0RLlBipqaSlbyIXy0v6sUQZgZkVFCZjqjWyymj3DY6I91sgpw2OJjSgFGU1RSnFVgV8B33fsVxtWV9eUWaRlw6PuDWVmPkCnU/YOIXcLLnuG/IiJ8unRHLqXqKMpKzmZG5CJo5pxA11XLNfNjz4wufZxse8+Ud+GJsBrWK76THjDj0eM9IV/Urw6MGO84vf5Z1vfZ2++QjnGrZxxba+5u1X3yabL/CtJ4w9i5FhzoRmtf+u1/g/0AVKdGti2yFiSTSOul0R5JYYtsSwTtqUQccQI0QxdFNkhxIGQpU82W4L/Qbhm+fPnMiprkDqCUJX6aI3FBXP8fcC0gVVKAQ+zf90RuvTrrDrIn3fEXxKeFWIlHY8iGeNGoSRImW5JFGdxMvn8lIIMolFU9hekhqkjJ30WBkDQXlin+irkYgPLtmKh05FIKadf4wpX0ab5DYgppBAhtwgRArAkSG5iLxDSlBSgwBl8rRQRYfrPM+zn1+UW8+pudoihQZSFlHKOYyJWBsFKohvFythEAILUELgpMT5iEzKWqLO0PmM0eI+h3dfQ9gR548v6VvBaDynl4J+v8PViZrY7Xa4ukfYDK0rvK5QuaJzGyg0psoo/QEmNrT7HUJ4VFUix1P8Zk3oI0KNkeMIXZ3m2DaJa0NwWNOB7wkhaYmC88n55DwxOqQcqLJe4l0zdLzAWIOWJW3TEEJEKU1EpjwgKROMLQ5tMqEweUme5YRuSrvfpCRmbQkkyq+RyXHkXYskJMgbEIMiBoXwZtB/e4wSKSxSJDv18yJDiGG04Xqi7xFC4HwaxXkvcCIACiX7lC81WPUjAhkDEpc+PxESBl+lbluC36XPIdMgctA2uXr6bo+OYLVK3Q3vEcoTpSMiUTGitYJQg99jY8SIDKQlWggqJaHGqIguEn2LNgGlOogRM4wOo+qIJqbRmdRILdNnF2oEDcY6oiFpYYQiKoc1EUVHsC1IR1GG5D4LPdYITFakDY0KSJ26U8ZYED4JzMnotQYEUY9ofE7fQXAu6YqkwikIQiBUSR9zRLD0vqOpdzjnqSZHSfdkR6jFFFuWhN7iYk42PUVPJszv36GscrqdQowM+f0jJgdzCmtBQ9OngWJ33fHw6+9z/vl32Dz+At5fgNzS715mvG1pW8nolTvs94Env/2AfD7lzc8uyBSEruf8yZKgMz7xh4+ZqEh1kjEZBU4q0MpxMhfI2lNl8Oi854v/6xn6ZMEf++MVlxew2e55/IUv0S3f4+BH/jh55ml9z637ObmVfPDhFfXmgruf/bPc+5Ef5eF/esDT/TtI4Vg9PqM6WHC9MTz+6Iof+eQBDy/PmB7dZjI9RnaBnpr6+l2ce8TW7whB0HmDzMY4/UMcjD+DHoEzhwg/Zuca1nXL9W7Jqr9kYSfEBlbXH1JffY5QWOKoRIkWHwQWTdx9i105YeTvInaawgmMmHB6/EnUKGNWHeCEYzk7wMucZplx1a3xFx/RNw37ek0xmdB0l9SzKYv8iO3ase622JHCmxxvclxhiZnB57C8OEd0oLRCy0hoPZ3v6EyknMw4qE6otWFzXXNz8Zj64iNM0XE4fZWXKsuIJ4j+KaF35NHiy1sU+gRvDFoKXN1wIzy+U1BviOxw9Y7NrqaazpiUBXEuUR2ofsf517/CE77F5NaCg+l99vuMy2dnXH3whH274abe0OpnUPToWNGuO7psS1fXqBNL3QgmricbKQqlWZjxd73G/4EuUDqTIVxA+EAMG3yzxbNBCPdC4AqDgyRGhJeDFqJHiA6hkkUyxo4YtuBrXrhbBAjRp0VEZgip0xhmGFfAc1PP8Nwipdym1ORI53pkiENxAloZxPMMnOfDlEHwGoeFnBCSaHQ4vhxGL89Tj2McRI0iOWn00Il5LjJ1LrEvHEPeTO9ScQY4MTh1htGUlgqlBIqEnHeDJVUhUEERhnGQ9Cn3RluDMQYnIm0IeJEWSIJPY5DBqeO9H6isg+5HyiHbaMghCjG9TVLNJ31IIYVDl0EydFyERpsxo+ltJqf3md9+jRbDxfkV+12D0ZoeT3QaIXKkNchMYUZHSCkw4ynSTlNGSSjwCNZnT9HnHd4FWm2QWc749BZBW8J2Q24ttSuwIpLNFvQiwG6DcC0+9PTtHiMchAbvEnK/jzugTe/Qx6QVQRBkwCidFvvgiT5ibU7wkb7vkTKxW4Q2MADbUuFmEFESfFIXB5K12PuG4JvEpJECJxLMDC+G0Ykj9B435C8plQrqECO+d4ROgtBDFy0kYXOE58GI0T9P99aDANvTB4l3kXbvMDIk7E5MY7PnziwlBUoMAZd4hExdhjBkLWktUUYjrST0gVZGlHLoTOKjwDWR4FuUDEkArZvh99cgTJc6PNqBSgWcSCdxGk/KJE5WOrFmlJAokUTpPnqEet51TFEDRJHQBPhBlyawmUMqAdGjoyNTkTDRCGXIrKFve3xUaKMQWpMSDxS+Vzhv6LwBkSXmTp7hTbL3O1JXqxMCFwR0acTqo0TbMp2zwRB8xPUCxIhqPKKc5QgExXRBVBFdjFF6TJ5nRJWRTcfMj2cYa5nct3SdInSS/bpBWEm3b7Flwb7rufjGBZcPPmR38R6xP0fSQjmnOL3H+LX7TMsRk6MRJkbONJy8VjEuBMbBfKbxnzjG5JFbR5G273n0nuL+XUWWQ+gVOxcolOfpGbz/zZ5aKl59c8Szy45tY7j5ygOu3/tfmL31Q/zAHz5l9+Aat61p64qbfUdVjuh+6H/k4I/8CKtnO8TpHFG+yejwGNELHj7esW09916Z8v4757jRHaQ6ptu2aCXZLi8Juwds6xsWoylq8qN0co3XivLgNbp8wjZO8FQQatbNnqbr6boO32zRzlOKgsl4QeHnEHdcdy2dU0RfciU1PUe4NmP1+AOu9l/iopTcfvUPcevOq6g2sNk/pRtXjMcztDGs8oLQ7lmtL1ntlgSpqbuO+uqK3rXc5DvWwaGqklIXRAy16EGnlPI+K+gzRSf2qGyMUBlts2bZrXEmkJuckS+wO9hdPGa8/F1Oyj2uKMnrS7ZPzonifYy/wGjNuKrQ44KD0V28nRKF4uZ6Se03LNuGsa2Y5ie07BBymwTgizGf/mN/El9foqxBx5zd/prp4SGbreLxzVOWN2e04Ro181hdEPsprk48phBrtuvI1dUF0+mUcTXj2dWOTgqOxrDs+u96jf8DXaB4rcHmyKZHtntE45GhR5iYWt0qCVsH+wUv/CuiI7AZbLWDvTQ831mmsU1yOMS0E4yp7Z3EEwpeCCW/4zkZhKYDcMw7jwqpIaG1AZJWRMkkKI0iDlk16eIYgkP4wYwrho3fQJ1NuT5xuPCS3otMEDYvhi6I5Nt742En64gDNyTdn+fLiA846ZOIUqSuUAwJwCZiwABepmJMA1ZErIxoHHrQXzilwYMPHhUtQmqkhj6kZFuEx8tEq1UqLSx9cMmOOziaUvFF0qYg03gjQFQWVSyYHb/O4tbr5LMj+qhZ3mzZr3tE04PsaftAiBnZdIEpR2n8YVPejDYFTZO6HVpoROZYP31Is/wmkQtQh2SH308+O6btoVtuUFZjRlPUqKJtdyjv8L1Pi50tsVlJZsD3NaFt8evzJMSOLp0TwiBVhhAB7ztcSGOPLLcoOXyfyqSizPsUBihVGqvFOOhSPNH1+LYleAYgXBJAR++QrksaKykx2QhtK4Q0Qy8rEEWPUYFCRBSSzknqPuCiR4RBXyRI57FIGVAMGh8pZOo2iJjUyUbgRepI9KS3GNCo4FFqcGEJUKkHhwg+jSCFfyEWFlKiZUTHQI9HS4/SAqMlMniwAdf2EFskGoNB4OnrHqJLWaAKpAhoTCr2okcpkCoSeo/0CWCnMoWWEryn7zrAE2IqfKwtEmAvhm8Lrp0AWrQKRBfpu44gNCJXGJ3RR0uHJhDovICQpXNMmdTRtBalMyIShyRGi3ciXaSdT+JlDfWmpWuTZiUKQyHAFiBtsndX05xsVGKLgqbd4jcNWRTEaNFqzOhkRlkWoAqycYnKLd5pilFOvNxx860l8WSGG3X0daT0mt1qg6trqtMJ+4sc307QeoRRd5m9/CZ3P3WXzBrMULDK8X1mM8FXv7Dn6KWCl+4qjo8FUQR2e8nyRrDuIl7Ddh9YbpJge5QZ1leONsBLP3BMUQsubgwqE5ijMfbxW9z6xA9STQy//Z8eMvv4EZMDSZ5LzsKIg4//EDdnligz5P0xB/Upylh0bHjvN77J3U/dQZUFFw/fJZudst1c0WYCTYvtzlhePENMcvLDW+Tzl9Ax0PqGm3rDlX9EOZ4yHs0RTuE6TyZyKlnSq0gM0Pg9IjREe8Q+jFjLklZPiVGydit2/TXd5Ybmo2vamyesFhGT5WTGcPPwa/Rqy+Gnf5STw48xshKbW7yrcDrQh4YuSjJbklUjVH6AyWeMZE0jOrbtHh00wQqMCtgYGPcOWSs2XWQbGxrlqYWjdalrfbP7AC8fMzWGw3FLka3RzSVPH9+w736HXh/waLNjX5/x0qtz7r1+DxuvsN1DMtVQjE9ZzcbcdIF+HrB6jKkVMVf0vWJfP2G8MNx7+XW6+hYubDGqxD0reXLWcd0+pjUSOSuYHL+OiB0227PaJaeQD1uQgm294+LmCcX5jGBGxGXLcT/lUs351lceftdr/B/oAqV3uzSqUC6F1XVDhyBt5kDFtC4Peob4vPOhYhLPij45XmJiK6RrdQShkohWjxCiGFJmXziQf1+a8fP5USTQeZfESNGnmX4UaK0hphDB4IexiJRJjCkSch0/OH+eO2oYFo3nG0Aph3TjMIhOPUr1WKmTbViBj6moUlKhtUIGhRMdwaeCQg7CyPCcr+IdUaSiKb02h4wpvVgTECotXlpGMuHR0YPveC4glkLhpUgJoa59oWNRxoCS+JigY1qm/BoXAk6EgeA7oPYDCCXSOChKQpTEfMR0fofJrVeZ3LqPtBPq2lN3HUFmmHLCbn1Du9uksdrBlHJ6hCrH1HWNX6+pt3uMLehFGkdZqekjqFun+MLTXBTYsiI7PUIWFro1dlRgywlOF2ibRmHbZ09ozs+QOpAd3CY/OGVcGtrNM3brD+mbJaGvh7Z/hS6m6Dyjb7b4kGBqJstQ1iBDk0BtYcDqkz5zM3ShUggiRNmnv0VECg8xQytF1DldqPGhRtGBC/Q+AhaZFUibkxcZRvdo0SJdR9919EHghznn8/Pq2+W1JDJEAyBTseLT7yXxGCQSmdK0hzJcS4FQJjmwGM7JGNKIKOoXNrdARPhUDPc9w/khkTrFAXQt9P3z1yIILgULxpjCLnvfI6JPx44+5RCRXFchehQao56D6xQiJsCf0YIoZeoaDfqgEHNaZ9IoVkS0EAThaLxHqBztDM719CHB/nI9IaiCBomwKdTReZe0SF4hhU1jLpGhtAUnaOsedjW+24HvCCFSVBOybEY+m6B7h2vbYQzrUGJEVi2w0yl2ZLFW0LcN4tmWzbOPuN6sEN6SH91CxleRh6eU05zQOrog6PYN+1XL9TeesN50jO4cEcY52VizudxRbxz5yRxWClkekqsCMy3I5y8xmZ8wnRoyAVIZuj5wshDUu4jJFSen6dpzcS2oa0mQEik8b7+i6DaCvfO0XmCV4movaCzcvVfhDXTrlnqjmY4CL332VeL8iMWdiq6G6adfR2eaD363481PG179dEUxLfna76zZtoG8thzdKjBIrp72TF4/5uTWlDJA8cbrXDeRyoJbtxT9hvN3/p+EUrKYV4RSsJRr8mDZ+JaLzRrXt+jtiulsy3E2p4yW3DmKpkX1SQ+43a3Z7jt8P8OXtwjjMYiK0NfIVlBff53m8SMUHdPZCYuDjzGWR7hrh+WEan7McTXlpNCEYsQ8zghOUKsZpR9zdXkJwWII7PoNpqgYmYxQBzbLFpcvOZrNGNmChYgo0bBTGaXLyBuHzOdcbzu2q4fkM4kuAqKqODi5z8zN6S4/pHl6zlTX7M6f8OHVB3z0zKPHlvK1T3Nk/yi20/jVV8lHNVZ9goV5hTw7IB/dZ9c0fOlL3+L9D77GvddvUdgCrSVaZNROJh1ZzHFtx7PH32CtL5kd3aLQBcZqiAWT2ZwsWK6Noe9arleXxLhns6v56MkTLuqa0sw4f3/E1dka9u9812v8H+gChdglLYMNaccnIYb4opgQMVltBRGpkgAzfidhtu+HlODBGSPSHF3JAqVGBD1KLXeVLkjPRz8Q+U5QG0MHwoc03oh8WzQqQjqed8+JqMktpIUceBjJrfIcr/9tA3NyDLkhxM7HOLy3JL71vgc1BPdpley8IlmVM50RCfSeIYAwFS4CmYoo5+lD8roabdFCpqIppBwcRXzhsklvOQy774ADPM/HEgIvZUrvjRKjMmym0+v2Dj8IlNWwIZci5fTImE68hISXYAxBZKh8yuTW68wP7pPPTmgC7K+3dPuAKifkkxFmfIidzel2WySGrJggsgrvFNJ3tH2L36ygC5jJDDmaIDODlgozu83k5CXak5bJfEp+54jt0xVhuaLIShYvv8wey/7hE1hHgsqIkwVZ1zI9OIVqysXjB7RX7+K350CLVAXGzsimJ9jJjBAdarMi5B06tyip6buatvXgPSBfjF+8DwTfp7wf54aidEh69oPV20oIEqEs2qaOQeiHQtFk2HICuiKIFH6npCQGQScVoSgQNpCpNjm8CCnbKIKPPcTE6wgudU+EEIk2jCAqjUMioyCEhPVOURHqhUgbpUEP8QJDonXC/0dEdIjg8DHSBYFHopTGKoODoYtGeg3RJfosgiBSEF1v26T/UBops4HKCzKkgMqIStyX3NKTTjDfZYlAHMBjU7NT65QEHQRisPV7ABmRsxQhAALZNyjbIZQGOyVkOW7I5gq9w3U9veuTc8KIVNgMxXoMga5z6boiNNoOMQ26RM+OKUZjmm3L7maDcJ7p4SHV6Qn5ZMJoMYa2Zfn+E84evMP20bv0/RVRdKnr2J5D1xHeNsQo8esM10maZovNSpiWzO8fUS0KFpMKZQRLHxEixymI5zXV9DbZQUa2mCGKCfnxnCq34OHxk5QRNp96yrHg/tsWq2HfJuH/4QEs157RRGLygLKRx48dX/l/fEBx74STW2Pam5bXP55xtVc8c4LFqaI0ge1N5M5xxWwi6DeRZtPjXeD0YxXbTnDr3oTt2YZN3TEaKezUc3DiWD61tNS8+uYxhbKwa8iV4WCi2Zwv0c0ZZ+/8J5rNQ+688WPM5qeYbJLor32NDx2StCEMTaBbb2irgkw44n5D3G9wfU8Qkm63Y7/vcUR0lYM2Sa+lQJcz8uPbgMMoT5ktYN9w+cF7+NMd1eSAafUGJ/YuMzkmlgqNoGsd1x66S8vZ+hlMCqw/YbnfIYsthT1Ax4zm6pxtpZgUBqVH5MGgTEFTWMy6pLt8iFo1sNkwkmecvPIDTO+/DlqSSYPqaqryPk6/h8xu2HQ5520kHhpmp/eRxWvc7KYUwpLtKh4+/gbmcsVL3yepDo8g15h2RoYkbt/Hd4rDW58mhpIPvvE+17sLsnGO0ofs256+r2m3VzR9ILdHuGJDvsgwdspoNob8VZ6dXaCcR7gcX0u2/YZu33PefchkUhCjIbf/fzLiySVJ+a8GZ4SKCP8dAlbxfI+XpjNh0I+kYMAXNcnwHwahTCJ7qhFRjdLfQkB8LlkdCoo48FKEHKy3qax4jmUXQiF06hQElSy9IkY0qYAQAlRwQ1ckORq01hD8EHY3OIhipA+pq+HxA7c0FVyJOuvQStEDRorBfQRWpza9EoFkihVoaZLuoEt6Ex8Gua+QWBFQMY1lnmtfYsLf0gdoPFiRjtxJiVcaIxRCaHog+CRGVkoPWHyQMdBGh3c9Hj1Ym+MLDU0aKSkiBqlnFJNbTI5fpTy6jZIZy03Pft3SbhwITWE12WjMqCgJ8RbOOYwxIBT11uH3ntH8gOruCfuzp2w/usSTUR3epjg6JLQ9ftdgqozRkcaYEjsugRy337O/vKH3GePZBI4CjfTksaCYnUBXwzhB3pp1YnYIGbFqjlq8xGR+l9HJCX1w1NeXCJ8TjEDnmth2SLEmNjXSezKbIYTDx9ThiDEilSAag3fJqi2lSkVhjETfE0WGVHYopn0qUiPY6gg7OQCVp3Gb27Lvk9VWK4nMMwISLFiVXF9hWMCJgRB7gm/xXZcCFAdptpAyxSUJR/CDMSad8ShhksxGCrSxCKUGJ1IY4hySiDf2TXIOCUk0Jo2htCBqgxIC5PBbiSYV24MIHZsTtcXEwXIuFVIpEHJozgS0zhFGIZVAYYg+bQa652RAGZGaBG40lhe2/ijAkcZCSmFVCmLwIdL1MXV6lMSJHq0sWlk619O0PbJNInStVQIr2gytNUErlC5Ryib0uMmSINdDWY0ZH80IxiCLKZPjO9iRwU4LdD5GywTxu356xqMvvcv+4mv4/gwhGhwBGQXRtSyfFoTxAcXiAFl4dk9XQOTwzdtIRvQkMfPl0z3EiMo15aHGB0ltNdXtQ04+doLrLS4oDo8KKhu5vPJc3cDRLcly7XE+kmUKW0maXYsPESktd44VIneEoPBB8Oy9azwteQbnX3nC1dc+4uD2p8jzgkIKrp5uqecFu7qnuW4ZHVfsusDu4RXlyzPGo5LQRS6uAtdnG+69MuH3/u3/xg//nz6DdDnjBbhywsHY4reBR+c3FIsRrt7jaYm7x+w3H5AfHDMqSqrxiFBk4CHPMpSbUkjLlTijDxGcwLV7mpCIyChF13TU+x3dZk/XreikJ7MGVZbocYEwhnIukOoT+KOX0XVH8+RDHj74HVSu2W7fpBxFVutvkFU/hsz/KEeZorKCjQGvQU1GHLx0CzGzeF8g1lvq/QXrmNOsG7bPHuFyuNCeOZapOMACrtNsmi3L1WNMljMujynHr2LKETpoaq/wSiCLiqy6T80xq7hGns45uj2nFQsO84KwrVnuPk8tYaSvadae0gpcHOHEGLev6aTl9bffJMQ/QqNvWK5qLi8uee/D9xFsMRcdJ6MZsW2pmhXdasv1+19jfO8W8zsvc2jeIkZBLUEVM7bjLW5T0u56rj78JlnuGN+9w/j4Fcx8jgqB4P87uXh+6Zd+iV/6pV/igw8+AOBjH/sYf+Nv/A1+4id+AoAf+7Ef49d//dd/32P+8l/+y/yjf/SPXvz90Ucf8TM/8zP82q/9GqPRiJ/+6Z/mF3/xF9MC/T3eBEnkGYEoB9Lnc2HcsFgnJ0MqSkQchJkCXIQgQSmLFDlC5giVE7EIkSf+QugGjsR3dEvkIFwdLvTP+x2EIbgQQEik1sMoJPFUZIwvtBwiPE87Fmlnhxx2pGqAsEkkKs3Lg8OIlGcjYqAbHDfeB1BJM6JjKjYcaVwlSLwRJSXRDRwNIemCTxqR6CAmJ1By4gyiYhGRQg1MivS+Og+xT6htbAZKooTB6gwtDW1w1MGn5FQ3QNvEc05I6sQkSmxKLo4xoKIENN4WFJNblIuXGR/cJZvO6IJic9NR9wPsrtQErwGDChplM2SMRKWwQiMLiSwy6CRFUeAyTTG/Q3m0JgbPeDFGFgZcILYB10d6B3XtCF2NKQtGL91D5WOqyRynoO12iOiRrWNyOmHvFyzfe4ahZn7vLerdnH59RSZK5m+8xfSle2RFwfbqgn4TiVlNOR0hlGTnrpFWoMoO2hQO6Ae9hUISuj5FGAx6qKRHCUPIcupyxSyNzbTIcUGiRpMkdC6mIDShS8FnfdvgXY0g4qIZePt66MAJlDJopehcnwoPcqS0COPApYJahfDCsv7ciZV+TmboRGb4ZCVLpNooiS5pagCkSvxi5wAvkVYjhSH4FGLpY4caupZCSeQAoJMi2eF9CMgY8Bi0TMGIMaqUuxQSl6Yc55ArfB/p+kDsIq0btE01uNiAazE2Rw/uY9c7lDHpPAyeTAjoA863EDxd16QiiLSpcC4io0ZFAzJAJlEujTq8q5ECUOUgkLWY0YTJbEI1KkBomhacD7S1Q+wV5cmM8dGYLK/A5EQHoe+pdw2ri/PUKeEGYosL+2QBj4qgc4TNQBmkVvTbltXViun4ECMKdKUwTrG66rh6tsc3nmJRMD6dI/uWICO2mnJ0a4RSOUURGBee2EeMity9rRB5ZLdS9E5Qb1qePOiYVLBpI0bllAvB+kpSKM+Hjxw+tkxnU5QyPPm9rzO9m5FXBUbDwdzQ9DCbgjCG44Uc9B8tzqpkhVaC8S3FN76+5Gq14VO3JbO7U16+U3G9gttzOPuqZW8Erm3oVUZft5yeloSLKx48/ipCa6wsaaipNJgYKcSUea6xIbKPiq7Zcllf49tIsw+0XYfvW+p9z/nlY9bbh0AgH83IjKLbPEWoSFWMwShsNUJnhsZa2qsbai3oM40cadT4AJVLrq43fO1bv8e+GOGL1ziMh7RRIq1lfPuYg8NTtOi5uFqz2jqubq6pL96nvnpK3S8pzYzVxVMeRYXQNeJyw7ZbE+eCo+INRsKgo2UdPTfnW25230AUYw7mC1ypkcUp3d0fR84+xWEvCesdew9jK1Fn32L98D+h3DPi4YxxOWdSefr+BtE1rDcdysB8ccTJnc/wzfe/xEfn32LbOZrJDrXakt98Edvs8c2eRSigFhyWilt6SdU8YNYKjDnkaqeJ41OuNhX+4QW+vmYyc4RcE+jA71DdnKo0wPS7XuO/p6rgzp07/L2/9/d44403iDHyT//pP+XP/tk/y+/+7u/ysY99DIC/+Bf/In/7b//tF48py/LFf3vv+TN/5s9wenrKb/7mb/L06VN+6qd+CmMMf/fv/t3v5aUASdg3gEcToE3EwfEShiHJcD8AIRMmQWi0ylHSEqVFygxJGuOkeTY8j+EOoafvXVL+xySeVSqJ5KQcSLQxJi1JakAPF9U0ColD4aFiEouK6FAhiQBiBGQkypgWT6lRyibQCgm41seAICBNhlEKP4SzvaCQCtKcPoCISTEAyVEktSS4ZH9lIOn6F32gIeVYDJEAQuJiEhcqGZAyoqRAa0nnA50HokKrNHM3SidtCenaLUWi33auxwePkSppYWSFNEk304ceMIkJosfY8ohqfovR0V2yagEqY7Nt2F0t6VvIZgfosiJIhcxLtJzgY06710QfadtAvdvSb/YoqxmfHkGeY3uDznOqlyu897htoLvYkllJNi1pQ0B1kUpWtLsG3yn6OmBHFaOTBfvoaL72hM03HqCaGwr9WQ7fvoOWY9jdkC0EanNMe3lFpnOKw5eR1RwnIr2qIZ9RFBXVbIRzkb6XdFGhM1LqqQz4Zodv1oiwReg9XsTBRZP4Iww8GaVEWjSVTJyVqJEigQQhpT67ek/XOTJlAbBlmTob0hDkkGbsW4J3tH2HaDpCU9P3PUobbF7gtUFYO9ilO6RPItRIQAz24ZQiLXAxnXhKpWiEED2h74euDDAEPkalcSESgkSo1OkU3hGDA6VQSiXXjZJIpZILre0TM6F3RFsl5o73xOCRWhOjwgaYzSxGCJb7hr5zyWkmYhLUAhpFiKP0mToPQQ7arFQg6qgwxqJknrg0qCH3UWGyMVZXRGUQtiTPS3Sc0u/WNDfndLsVEY9RGagMkU1hnIq9PmT0WGLQ+N6zPrtif37DaDZjcucAayyhjTT7huBa6lXN6vyG+vKMdvMhvkloBC8SyiDIDFEeMD59hYM7d2lbqJcN1WJGLEfsg2AkIrutYLlsKA8yRtWIxUGCzJ09cZy+PGM0nzKuMp6+t2brOp6ogvEs5+4dQwyBXS+wRU8eMmolyCrDeKrhHCKeixtB08LDK8d+u+a9//h7nHz6E8xKxRt/9gdQseKb3+g4OVJMRy4Ral3kdBGZFooPPtpyeQ7aCKpxYDQ19EtH1xTMp3c4finnYz+84L0HPbfvS5594OjqLevHAlEZjNbcXkgOesfvff23yHJJGyepay0SiI6bx8RtoBqdIKqSpna0257N1ZqtW3O2u0CGFqvG7JdXnD19QMxyDm6/wa0730+Vj3n27Mss2xWxa0GXmDwnWgUyEmQkDy9zOJmSWctseos+QmZztmHHNx48YOlqbi3uU5VjrE2ZYtJALiboWNNcXlI3H6auusq4f/Jp9CZw/d5TLp68y7l5F1/lzO6+woEaY1ZbqBOZOPQt3b7jcr2D2ZLO75hPJpR2xPzOm0h3i4vrGvQ5RdughGR8/Cpq902254/ZXJwhTxwn2THaPaNvLlhupkjRcnXtuNlu2EsDhyNGOqMSt7DrFVZdEFe/yVSsaf0OXWYQCrhsCLseIX6XVpY0zZSr9z7N9VNNVi7JDjOwn6Lb7qHd06wu8T4wL16icqPveo3/ngqUn/zJn/x9f//CL/wCv/RLv8Rv//ZvvyhQyrLk9PT0v/r4f/fv/h1f+9rX+NVf/VVOTk749Kc/zd/5O3+Hn/3Zn+Vv/s2/ibX2e3k5YExaHYVOs2MCwiebHwOZFSQxSJwTqYWLJs8nWD1KQr/nOStuAGopOUj8Qsr1EYlvEUIa64Qok2140GDE51JBJTBGo0RO9IHO97S9f5G+K0n6GJ+0pMOISSBFROtBmyiej4MCITh8SAF3Ugi00EQlkX33Qj37vCwKRFwcwvV8jwsOLXKiSPoQEFgpUEIjRM+LBOfokCJHyoKgFCG2EHtUTE4PqQZrKaQixic9SiAxTXz0w/MzCHDjoHkZbNfq+dAghSESLTqbM5rfZnT0EqPpXVQxwvuQ0kAvt3SbDl2MULZCMEKbnGw+RVtNv3c0ux0GjTKKxkCzWuPbFpFZxHRBFiSmkGSjknrXs6lXhN7gY6C+rFFKMzlZUB1N6Noa7wLjvsdoTXGQUwLtJ9/iunC4qxvE5ABdjagOoIs19cWKduOoJsfkiwXSlMQ2oq2hnB1hlMVtb1KYG5JiOif0HX1dg9aoLMNWjr7b4usb+v2SrlknFkxKy8O7OHT/AkIlGN/z0Y+Wgq5vwfWEPiCMwfWBcrZA2Zweh9eawmZIbei6jq7piW0L3uH6HaHfD0GLhohD5mMwcsh4EoS+pe1rYkjjHp3lZMpiTZ5GRgK00Ynf412qS4RAhCFDKgSQEmXyNH41KT/I6sHOqy1KGp4jdb2QOCcJWqVjCoUQhjhgyFEeocXg9OpptlsQErdvEC5xhkaZohhPsVWFLkt2PuPypkvZP0oiho2FII0vo/eIbERZjTC5BSlp20DEUBYFqrJkRY4xGfVux7ppkb2j22+JtLgQaYVFlz1ZVKBydnaKiznkEuEa+t2a2NeI4og4BFKGvmezbOn3Hf1+T329ZH91Seg2eL9PFZbKEXKMKI7Jjl4lP3yJIC2tk5jxjOmkIhqNKSSuS7/HLBOJSGs15TzDxo6r4Bkt5oxPFOuzHe987gkmD3gnGd2dMZrdQhDoNWTOstzWxCg4OtVcryPNvqUb5zStRtJxc11z9vmvUixy5vcPEUIxOz6gXvYcFjCZCDYrQdh5bs7WbLRh/vIYrCWbdmTnHjpNYeC3P/8Ae/uY6OB6XSBDYuPEOhAKhVGK1XrF3aMjjq1htN7y6Mv/K2O/RZqMHTVxnJHPjxNCYLlk//gbbMtDJot7BJ3T7Ja0N+c0mxVStOTlnDy3uNgQfYftLWyuCOtLMjPlqLrN9voD9qsLMnGELXK0ySnsBCsnWFnRTBfIrmHV7wkiIvstvQd33tF1NavjDSe37jEdLbDSMrYeFwQ3+0vauOLO6X1G+ohmuaT76BGX2ws29XXKf7Ils3unxH7DdYSuMrhMY/qS7T5js7tmv9rg9x2TYFle1Phyyen3vUVeHhBdTRMCzWZD7fY4f0Jx7/9INTuE7UdE29OEAuMnrC5q3nu45PryDFkYjk5PKY/AFqcoVRBCxIwO2V8sqfy3mBUV+82GttlQ768hOLTJaVYdm23k6Srytff+L9z94c9w8OaP88H5jqv1E3AeGQM0AhWWSDPGNA3f7e3/aw2K955/8S/+Bbvdjs9+9rMv/v2f//N/zj/7Z/+M09NTfvInf5K//tf/+osuym/91m/xiU98gpOTkxf3/1N/6k/xMz/zM3z1q1/lM5/5zH/1WG3b0rbti7/X6zUAMnspoboZAuSiR6h2WCAVIaT2Ste27OodXZdoqsIYjDCEmFIocem5lc7RdoQ0GVFYJGB0GpfEMPgYIpiYXDVisH8KmS6e0eQgeqJMBE8XfOoqkOzCIiq8DEiGZNuh22EUQxZLHOBrmlb6NAOOkdb1iJiCA5+z0cXQYk9sr3S8GJMNOQy7XK0twTqEUChtk5hVkGykCKRQya0hJVpmeCEIvaALbXo+IZA64n3itIjQE4JPwl2VFtP0+g1SQu/61LXwCV4moqf3ATBIVZJXU0YH95gc3yGfHKD0mN5Lus7RNBDIUGONKUaIPCerJi8WHOcjXbOhO7/CBcgODyjGI7h/QnOVLlrWKrzocG0gipzoBOV8RHV3QZCe7dmKuNoj2x25GVNUVRr1+ArXdnRXHVJHyklB8cm30UqDETR1zeb9c7qrJboEMx6THx2TT+YoKejbFt/1VIdjjFWs2gacJqsKhPSozRZlapTJyMoKUxpGJuDqJe3NM1bnT4jtEkKNd23S8tgM/7w96ANCBIIEjEF5T981+K6htApUJPoOIWxymLmepnfoLE+jRq0JbZe6b84lxo2APvS43RrjBLqKqcjvW1y9oW83CMAYQwyO3gliJlA2J6qkd5JCJhdLBBdbhAhpLCqHEacwA13YD06lVE471yW7MwZVFAhjESamCxnDKEprpC6GtGuHCB2+6fD1lr7r0ZkmSIXrQHVLKqGwe01RTZkeHLCREzoTCC6B0VRmMFqmz2C/p9vtUFqTTyZUJ0cUo5Ku7tltWozO0blCOEe93LC5PGf39DH1xROiuybEZuiOWhov6OWYaurIdeL6yODp+sC+0Tg95ejwAFMUtL2kdwLQdPsGV3f4bocInuAFPhgEmhAqVH5CefQaxckrSFURhaGsKtCCtgMdItfvXbC72lJOp0RdUC5Kjo9Lms6zvHasthFRRkwbaF1PV9+ACFRHC6ojQx8iZ+8tuXr/msPTGVscpSnYZgWutxSVZ7OONNsOKbf0zZpYSWYvv4ytMowyPPv6CqUDi5cmrLYRbSPjaeTpZUObwVFwlKXFCEt87TaxCDSbhqdPbzi+NWVXKy5WkSIK8ILNlSHkgd51VJOKO/OC3XnNR7/1H9iff4nZnVO26y3BblHTW6iiwqGgPEXNajoZcMMY3DlPZI/UjtPF2xwe30YKTy4LQiu4PPsW6/efUnfnhNhSZIdURYmIW8RW4kcjTDFC2Zxcg1AdXnjqmGjicRiL9rEn0NI0nnyzoR837MQOZ3u0N3i3I2jJ0cEJlc+QjWBbX/P46htk8/uYacX2yQf46ydMbo3JhUPKLRsK2qzE+Zqb9oqr1Tmb9RllVdA+fcby8Yd85J8yKX+S+2/+KPOgOdsGsvEU53NW/QV+covi4JAqrMl9T6fh0UXBVz74Fg/Pr+jDjuO7c+6Vx5T5IaJQtNJQh0AQnmw6RwRFVgoKXdH3ll0z4cnjK3Yrw9V7G4TQyMwzzfYcTZYczBWb9oi9a9jtn4BzRNcTfMf+UmA34ruuM77nAuXLX/4yn/3sZ2mahtFoxL/+1/+at99+G4A//+f/PPfv3+f27dt86Utf4md/9mf55je/yb/6V/8KgGfPnv2+4gR48fezZ8/+m8f8xV/8Rf7W3/pb/8W/y+wIKUHGpLFQDJCwoTshoifS4buOfVfT1h3aFtjg0knV7Wj3S0TTIGXEm4IYUusco5HCorVBqcGY+W1RC8MsiOdWnCRcTSnCIQ7ZIkoM8fCpVS+EJorUnZEvDMXpy/ID3AwpiT7gfUi2RiLKewQSazS9kgkRK0Sih0pJkEl0KAaSKzHiu9S90SYHqXAh0LcdhIDSAhGSFTlEh8chVXLyRKloB5x7OoYgyiSs1QS8SDwWNYTIZVpjdIYH6lbQtm2yFDtPiAopR9hsTpbPKCcHVMe30eUMYk7XetrO03aRthdk1QhpDIox0k4wsynZaIzQOW5Vs73eUL//AXG3Y3T7Dicf+wTTV1+HN/L09WSe+vqazdfP0cZQ3TtheucWi+MxptIsp2MuvvWE5dmOYtpij0a0mxa3c+xCz/bZCrnpaZ1gfjph/PIUH3fsN4Hi7gGj+0eMphavNP2+SwWEkbSdh7plFA3ZaILOl1jpyedT9s2OPliUnqOLnGAkUVvyKkPkOVoK9nWDdzu6bkvwgzNLJUdO61JKkxSCgbYCQuGFwBqL8z1d26WuQLQoLQl9n0YXIuJFDjbHWEPoDOwk0lmC64f8I5E6fm2Hjw2ib4j1jtg19Mrjg8aEiBU5ykYCHtdHYu+RSqJtgpc1rSN0HUJ6TGYwtkDqjNh1NKsbuvUN9BugS3ZjkZHnU4Q2ZFmJ1MkCr42hKCvsuMRj6FqHb/e4XUuz29HVa0Jn6KYarzVylDNtMvIykE8t2Iyza8cah4sSbSLSZJTjEcTI6tkF24slflcjs45gJ2QHkhAS4Uf4hm27Q6x69mdXbJ6e0++uYX/FvjvDt0ukdBAFWpaoPKdlh120tJsd+7M95cEYPSkojw4xec7o4Bgji7QRyD2VkLTLjrprCaFls15CzFF2ghTJ5dT2AU1kXI7pd5LNvmd6qLAjxfqyY3u94uwb3yRuJUevvYG5rTg+kowrz/njnvMnDcWhZb/d4L6ZURxqRmPJ9t0PUFqRHR5y9mDH2ZefsX96hZgl2/HTR0vU+BWMban3EeEc11//Ghdf/Aqnf+wH+Mz/9MMcHxSEHh69t2P98CHHf+g2I9Pw4Yee1z5WIXOowxHPPv+AD+OS7/sfXmZ32RKwfOJVw7feXXLwA28zrgTbq5bNGahJJC8k622D8IJMWtptzZNnDfIbX+Hht36NWS7ZfBTpTEN+OKYsZ4NbxyFLyeLuxymkQrqOzfIpnZJk83tMjjyz8pTCZAivmOQ929kxu26PDj1xdMDeRmbHU14r7qI6z/nl19ivzsknE7SJ6LzEyUjY1cTCEY2ga9Y4pSntmEJFbA+j2iIefUA9KpG3XmZX6DQi3wp2Vw3n2y9ydPI69+58HKszbmjoNhldd04nLzk4XPDy6SuIbeSrq4f0s4zNrufarwiiwwaNO9+yKxSj0W1UMWV5fsHp4Tnbp1u2D36Te5/5AYqDlyhVxtP1UxajU3TfI9kT2xv218/YtOc07RpTSBRjqGuqIlLpBXVUXMY9nd2xNJZdeBW3+iZ5WHIwn7G/3vKt9wOrJpJlO37wrQmTseL2vUOO7rxO7yN3JgVanfKor9nsBAemYrHZYy5q9uv/jh2Ut956iy9+8YusViv+5b/8l/z0T/80v/7rv87bb7/NX/pLf+nF/T7xiU9w69Yt/sSf+BM8ePCA11577Xs91Ivbz/3cz/HX/tpfe/H3er3m7t27iKheCPlS4JgcMnNisu2iicFjtKGsCozKyM2EIqvSDrJvaJsa2fcYlWLj07hIohj4J0oTiAPkaRC0Ps8bHhw+qZMAOjga3+G8RyqDlYqgA50LuABBmhcaExFbCIKIIYoUEhhjRPg0MkliUoHWBqv14NxI1k6t01iqj5YQNT0dTgikEhih6Z2jGwopgSSKQN/XuK7HSE2W5Xjv6NqGjkjGwIhQEqcUvVd4l/Bbfij6cqModGq7B0BLiVWa3GSJTvoiIFBizQhVjhBqjM7nZKND8tGcrJwgjCFEjQ+arpe0XhKkQpfjBHQjgBPQdCl/RCYUvBkZJqen2LomNFuKo9sURyfM798iqwx9dOxWDbvzDX3T0e87qiAx4ww7KtCZZnxocX1k82xJUIYQHO1uR3u2IptrYmmIY8U4r7BVRtvsOXuwgabh1tt3Gb+0wMuGm3efsL5ZkRmNPa6gCXTbHbuVRbqKzXmN9T3VrQX9JhB7hcosFGNkbvASeqfJ8Mzmx3jXcrE5R3pJbixe5DgpMTrDvGDuRHBdcn55h4oeQY+UBZGOSE233w4px5roQbqUsFtog9AZMstobYbbN8T1NSp2mHKE0iUBCG2bRoZK05GOI9FgNE4mAbcOgdgHgu8IWhJElopiH+jqOlmVe4GPPVmlEdER+h19syT6PcR+6AJ2hCDpTYXDEIKBPpCPFcXYEGRG8IHQOepVw/byGn/9DK1aXFmwlwYznTIqM44OM+ZjhS0LnqxaHnzzI/Y7h7YWWS6oTk9BZbhNzfrxinq5AZEAfs5L9uua/WVDt+1o/Zp23RPa3WCTT8m1YVwg2jnJttYijULkB2RHr2GnJ4xOTimLjKvdnthC1UWiluSTCqk1vu2QOl2VmuWG7eWGum4JjUK6MXGesqaCyDF6i/vGu3TXLeIti54q2pXj8mrLYnQAAVabBlvNOfiBl7CTBVZlZFlG6BVt2COCI+wizeUac+cQ13najUcejIhS49dbNqZGHRimi2NUJxNu/2KVWDrSUGWBd/+3r/Hkt/41RjbU9ScRUWAVXK8jfWwxxZj5rEj8mKljvw+YIIg7z353xWR+n/6yYf1sxff/8AkPvrnlnY8kp6eG869fQFVx/egpB28usEgWR4Znj1qads/kdEL4xtf56Nf+z2i5Z1M7bNPDWFGNbjGbLShRbN0G5z1bEWkaR7tfs63XqNIymt1GuY59s8E3GwiBtq5RWjKZzdi3DWU2Y2bmFHLMzI5puwZcRR16TGaYlwWLckIvp6j1kkr3GHnAppmwky3VdMpcTPHP3qdbfYRuLyj7EmfBj++xuVhR11epw3X3B5mMxohaoOyIQwkXy/ex+Z5yOqdf7lg/XaGdpZACW5Rktw15FlmKx5yfnfPkd3+ds6nhlTc/w9uv/hjCb7i4eMx0csooWG7e+SrTz8xZTBb0vYOuRTU3zMw1nVwij0Yc6TG6uoGuYyIVzXJNYydIp1nVETu3OGHop0fU9Se5eajpHn2OqV7S9Y7Fcc64bZguxhwcjxiPFfOsJGzfQ10/xeSn5OYN1OEtPkDhNyt2VxvkvqXvVt/12v89FyjWWl5//XUAfvAHf5DPf/7z/MN/+A/5x//4H/8X9/2RH/kRAN59911ee+01Tk9P+Z3f+Z3fd5+zszOA/6ZuBSDL0o/vv7yleUaUST8SQ3g+AUlCwwBCKIwumE40sQClkg2wd1tcWxM6Bz6NR4L00HX0siEG0FlI9M+h6BkA26n3EZ/bjoe04yEtNsYEp1IipO7OYBmNIVmbXRxykYNOzBRJ4ilIEihtCAH02g3I93RUQrI5OtKMP0Ka7yEGIm0YMOAyOSpecFrCkNnSIULKOdFq6JzEnjjsjuWQ7Bx8THZp5JDTE3kOZsu1RZk8WTZ7lwSIoidmFu8ioTcoWWGrQ8z4CFMeko8X5JNFyjFB0rWOvo84qQk6OTyMKUAOGPM+4npH8BHfBrpVTTW1yLKkOJ5h7ZvkVpFNKvL5AqM1KmhC0NhMMX/lNvm4gOCZvnTM9GSKHjDoRgXGi5JypDFSsG+27J4+Y/m19zl87SXmH3+T8nhKpGe/6qmvWnIriVmJUgYjPKtnN3zw2/+Z/YffojA50+//JHXwbN57gNiMsAd3aHYtxayi30Xc1g9nSIYtx4lVYgRROoIwlJMjZidHKFNy/s0v4+tLtEyBjlEZJG7QaqQuXvAe37dp4ewlCIux2eAu6YkqYmxGytKL+K5P4xSpB5S8Be0R2hBdyozSmUFFgQFQqT7snSP0kRgUUmpsloGRuL7Dt3t822Eyg9aTJBZVBltVKJk0HsH1NDtPdE0SaiMRJJ1YFIlhEp+TaIcohU55egld55FNT9AKh6D3jhAbdNZRZYKsymiERWYLzMGMvvA8W12zeXTB5fUVF2dLXN+h7Yji6DXywymuy6jXWzofyA8PsaVFjcZMDid433F5tkT6SKYd/WaNkIJyMUMpSd+3+LbG9zX9ZAsxIm1BVCXjl25TjA/IZ1Py0nKQz0BIus2e/U2gyByh27NuHFllsVpz86ylFwJtJMudQMxvYw4qdDGnmJZ0uw39jWR8/y5kOX7j2a1qju6X4GB7vkL1GntwgJlM8LVgcn+K8J6zZxu80Og8cP61x1QzTVElx1P1fadMjl6nve6I65Zn33jK0cdv094EhHXEokCN9vRdi9YlWu4JEo5/8AfIDl8lf+mUB7/xlP6HjyEYNu+dUS8d0t4i9pKDGew7wX7fM31Jcdx8Ei0Uj556zKwAJ3hypTG24/pqw83llsNFyXw6IreRrgfalsuLJeVBybTdc/W1XycrPZopy5srlK2x2YiDw0NO8zlWFUQd8G7HrtlR1w2h7skwFLYiH00QSlDv1uzXy5Rybh15sWCqoXn/yzS9YyMjNIFtXrHZ3aSsnMWtNNIXGQaLNjknh68jQk0fI/n2hpyOajRmEUv6xYLRSDIVLTfnH7H6SLM3Hb3fMy8DcyMoxgeEvGLrthSnBUf5Gxwdv0a92nFz/pQP3/syy7plfnBKeTRnXBjmo0Pk+BbPyinsIk+/8gWuH32Z0dQR/tDHGMtD9EhzfDzn8uAeH7z/21zPv0hx8DH8s2tc+5BCPIHDiDm4Ty7vMMsD85N76HVLe31G7D3bzRK3D3QisDBH+FBCsGwuc+rNiL15hYvlu3zqFUcRC9rVjslIYJQFWZDLHCc9gTVte45w73C8+FOs6iPOrm6olUPQ4EX331zr/99v/z9zUEIIv08f8p23L37xiwDcunULgM9+9rP8wi/8Aufn5xwfHwPw7//9v2cymbwYE31Px4YUTz9kvERBAjVFz4vsGiRaFyhZEFUcRJ8dwfcQXEJmSwkEwpDLI0KNDOCCRGOHfkwqhEJ0SWwavmNn++L1JDR4MhJ5QogJVx7hOTk1hEhPYjJEocBHvPQYKVGDJTeNh3SyIxNfhABGn6y6IfoEdtED/SwkoIsPnhgcyierrxwSi0NwiJDCCa02Q4EiyfOUBSJFclk439N3e3yq7JADHCux1kFEjTUWGXqarsfFiBYWEXOi1OjCIPUEO71FMT2lWByQTWZIW+KDoN/3NH1D34bkzrEFNi8xRYXQenB0CDrn6bYt7bpPi0PYU4mCicrpix5tJcYa3L7ner1GCIutSsrDivmrC8RrLyGcQ5n0Pvs6sN01tLttWrgG/cVmvaZbb1DCYYzk+DRHljlP373hyX9+iLKa6fcdUy2mNKs9Nw8vOfvqu1x9+deh+Qq9Kok2kt97E7mYsF7umJSOyekpcpxxebmju9qjyjztlGOGKcYEmXJiQgw4ZXjpzj1O7r3JF+cv8fTLXyDUz+j7JhWgQ16TQKBkCtUTwr0YhzgiQmhsloLihNJoadMozgt83dDUPTpTmGmyJ3cuoGWOsRInDMGlEaLvHdEFlM6xxRxv8iQg1xmu9+jYI5zD1zV9VxO7BHezY4OuSjQZwnl80yKlwgdP2/YpL8fm0EtiTNA1dI6wBd5B27SYUYYYFfgo6RqHzjyqyFBZIMsK1HiBspLpqEgdsVihZwfI8Yxn+w2XTztWH17jm3NE3KHpiV6C61A+JHuxlTC26HFFORpj5nOKMqfrPdPbhrBv6Zcrutij0HgVKcocvwLnBHaxoLptkFLRNR7Xesrxgk5YwrqnUJbMarwINMNmqW9r1ucKPUniVXykiwGZFfR9DzKnurVAVzlCaIyRtDGjevUt5i/fRU1HdNoxzkaISQ4mUZrbdUtlRvg9TI8q8lyyuay5PtsTg6e9XhGv18y//w3KsaHZR+68eptCwbNtQzfZ0zcdUgZufeIoWfqdYF0ZNhcOdcfTu4o7P/wWvfwYYg8Cx8P1E5bPxjhR02GYffoI4Q119BzONY8/d8HoZMK4tOhmBVbSrSJmUXC1D5THkY/e2fOpT0+pppL5YkJuA6K35Hnk/Yc7jl49YFRvePLv/6/09SP0OMOvOowCEQI6K6nKEbkLiartVdIFdg1xu8F2gQObMw8aFTUUI7blmKvxgqZdYzvPos+43AaaNoDc8ejZu8irp5hyjiwldr7AWsvedVw3a+p+h2rS8Sd5hRJQaUGILdqAqCWFOkbUS1btDU2zJ+w+R1ldoG2GvD6jvb5Cr+4R7/1RsuxtwjhLfCuXE8KeppF0FCxFj4sdx0Rc3zDLTjiscuaFRUTDbnvDh+9Puf3G6xzef41iO6XbL+kbyeT4HifiKdJdsn/2BdpNS7ffEQvPJL/NdPom1twB0yJ6h60CW21p6iVSBXQVmVaHGF9w+YGnfvd9Ls8+x+TWmHuHP4G7eJ+9/gK71Qp0QDZXxIdPyCc5i5fv4as3WI5eZ7VfMreWML6FqgL68JBVaHF+i/juJzzfW4Hycz/3c/zET/wE9+7dY7PZ8Mu//Mv8x//4H/mVX/kVHjx4wC//8i/zp//0n+bg4IAvfelL/NW/+lf50R/9UT75yU8C8Cf/5J/k7bff5i/8hb/A3//7f59nz57x8z//8/yVv/JX/hsdkv+9Fy8QIeIFSe8Rvp09I4RIXRWeFwjJ7RJjunAYm8FoSrBlKj9ClwR9QqXod6XRwqRU3ReYquSWCfHbmhRB4pyE4Gi9o3VhAKYFfPw2GyUVLeGFOFYpgRlC1YL3RJnuk5olqSMSB1GsQqKJECPaJVBciElUmCuNMIrOdbR9T+8CIgyocpFGJs8zgvTgWAIw0mJyS4zQ9Y6+G8i3SLTSSG0GLxMEAiGknXsMSRuRFVMiBcJMiHaGsRXKlEhTYfIZ5egAO5ojbUkfFV0faDvJvo24xqGtJh9PKCczRGbxEbTVmFFJaRTdZs9Wr8FH8klFEIJu7ajXDX29xXeC0o4wswOKxZTpQcl4JBiNITM5Mqb02OVml/gBH15TP7vE7TcoFQb3iiWfj8knFnW8IHjNbrnnvS9/k4vf/G0WB8dM7/wxqnt3kbpgt3ZsmyX4SwI1LhZ4Fzm6f5eX/vAPUV9cUxUlZlSx3zW028foakRxZGivPdIUFLMFTecQIqKo2bctm43hMz/yCtWtO/yaG7F853P060cYXMpMIg7faSS4QPAtaEVUYJSmbR1eSxSG4ALogFepOFU+0HV7+tojQkDaPAVNZhkiM3gHzXqPlDGRX71DZRnG5kilUzctpEInmIjRBlGUWCPpm4Z6t0OZinxSgLY4GnpfI31MMDRT4ZD4AFJlyc2mDTorUaZIAL1tixYNRtpEK3Y9vW5RmSGTHplLYn5AWR4xLUrGizHrNmfTCKQ0CFWgi6Rx6v2OrmtBaEx+CLqidYG4d4QuZXY1zZa43VF5MOM5djZhclCyDSu2zQbpIn63o9UCUTvqxmGrCaPRFGUsHkG9vSbsW+rrGpEHosxY6Rxb5kgB2aiAsCPUO5Z1YG5HOAROCMDiXY8pD5i9NEVNcxSSdrOmvuow2pLfnaZRKoGDe1NM0Ng8o5hK2ntzyA3T6RQ1Kjm4M8b6yHUb2D56hsgVKkTErKLXkvV7W9woQ4mGqyc1m7pmelgyfe2UyXzKfJxTh4jVgYt3PPmkYjo2FPPI9YXj7KYhV2lzpX3N+uENp588xmQHvPxGyfKsJR8prj7quLquufPJY56+f8X68TOO77xCOVfsrgLvvbOlWlS88toJVkZGB/nQ6Za0fSAznmA7Xh45fuN//p/pll9icXBCd3ONdJ5SjhCyQ+Ujmjbw8PwxjUpxCE6C2Ucme0m223KgPYvegs+gnDNZjDH5DasOrLPIyzXr/Q1kFT7T9K3A9y15vOFw/AZqtMAGyEKPCQ6toZc9q2bLNjZkssBbyUE2Ja8jTz/4Ksv3H6D27zKfNByeZtw+PmK7ueH86gy3ucR1ke1yhdlpwh1DnL+MKAJ72bAqVuwXKxQlQinGRcnElljXQ7fHmoyJzLh7dB/5P/wYdjGlnBoCIx6/94jHF1/k6uMX3D16nU+9/BPU2ws+ePx1VCnwcsROS9bxNro5wjmdYISFQRaGIr6E3VdoUprJ5qxmubmhdhecvJHTHv5xkA3ZyDKe/yG2N/fYhXfZ1+cc85BF+xF5vUTcrAhyx1U14zp7lX1h2SwN++4caaeIvKa1NXT/nToo5+fn/NRP/RRPnz5lOp3yyU9+kl/5lV/hx3/8x3n48CG/+qu/yj/4B/+A3W7H3bt3+XN/7s/x8z//8y8er5Ti3/ybf8PP/MzP8NnPfpaqqvjpn/7p38dN+V5uLgYUCjXkfyQwSLLzwndwUGLE+R7n+mHkoxAyJystFEOnJbqhmEj4aiUApQkDAvx5YfOdVNlUJDy3hEIILsHVhEoJwCoVK84/7+ikwkYKgVYKqw3Re/oYhvtrYghp9h4FUQi0kBghMIMlM8SQfpCAEgo9oPMTgS4SZJ9eQ0xCXB8Shj/EFB7onEd0PZBepw+B3rf0vgcJyuoEYdOWEAO9d7S+IwTwQdG7DHRJ1COwC2R5gB7N0eUYaQoCGu8lvSgJLkP1OWFYeGRekOvJMO6KUObE3CC0RoRIFBqtCnSWtEVGF4NjQ6KMoEbQ3ETaj66g8/jDlrLIGOkxyiiiV7QbCNpjrEKbgFECbSUh9HS7LW63QoiOQKQSU4qTCd5l9BvH5Uc31K5l+/gBsXuH3hsS+N9hM0OflcSoUXKBKS1mfIfJK59g8dIp2UHO1b4ktwY7yYnBsLh7xO66wIcdMUI5mpFVY4JxeOeQSPoaLpeO7Tby6Y+/zvam4bf6HeLcEtsdkn2y0jY7XNvStTUipO9KREd0DVpJrFX0XY/3HTSemFusseAC3gjoJL72SBFwXYdzHaOqwBpD6A2u2RD6Ld71ECtMPkIpi3d7YnBImcYzQQQMkiCSSFWbDGUUPrrB2SaGjqQgajW4y2wiSHbtYN9XSJWhTJ5Ir10AqREIpFZ4BEEq+q5DBjd8/pLZqKSsKqbHRzQ3in6/ByfIbEE1n+N2G/q+hi4HZdHjU/R0jspyaCPN1RJ3fUFoa+ThMXW0dDcd8ygwkxI6cJ3DtT2i2UEj2TceZUuKyqKykoBKRVsb2N3sicFS3c6ZHM6w0wrRC4SPqMywvL6hfvoYm4+pRmOim1BUGeOTGb7xbPc9eaXR84LMKsSlpnm8pjydMJqP2dUOdoKYC5p6SdAFk9Gc+Z0Z45MJ1hSIEkrtEL2kW69pzq6ZvnGHYmoJq57d2tP2Edk5bj64ZHF3wq1XJyyvG6bjjO3ZDm1LxseaDz93weZ8SX5ccHO24coLju+U7HrIPKyuzpFGc/jxCW5Z05x7locFH33hKW/98AEqC8zuzdicdzx695r8eMzp7Qrj4Kpy+BvFyUxQTgTbxuM9FErS3rRcOzioJEIe8ru/8Z95+MF/5OU7t/Fti+nTGDwoQTA5NVBfPaZdRvJyzJGZkktJ2QWKziPriIw9ITYo2aC2NUVRIWPF3FY0NnA12sPpmLG9w3pb4+KaTFvGxYKxzjHGUGUVi6zkpJozKac0ved995irzSWbcMO4nKF2gv3DJ+zf/w+U4X1O7xUczSvykaLdFTy9eMS2XhBbWF49oX+2JooVpb3GBMPtV97g+P4tTt0plzcXvPfBQ/p6Q4Wm9BVFb3H7PWthuXpyzXK3Zjq9zZ37b9FxSbPd8XR7zS7P6Z1n3HtOmoydvUN7qvE8Q3PBsm745sMPyDc1RXXAeDLCa8E2tMTaE28k2vVs60vsOKIOxhzO79M2I2bhMY4NxwcTCltyXeS0XtDUlnOX0+lT5mZNBIx6ieAqRIycdTXebei0I1hNbDrEZoXbXH7Xa/z3VKD8k3/yT/6b/+/u3bv/BUX2v3a7f/8+//bf/tvv5bD/n2+RAS+f9KeBOKBdU7ZNDAFEQAiHcw0EiZVjlMqIz1EpeAQmISefp+qSios4LFEiekSUKKESCSQmnUBqc6SnUYI0qiGNK3zs0dLjxGBLG/ggQj6nuKqUlAsYZRIGPab5v3Nd2oWSwgl1TCh9CYN7SGFN0pN47wc9CgmSFb/9OC++Xaz5GFOx1McBLy6JQtB6l4IBhUbbnDy3KKFxzuPjQMPVCm8P6dUCkS0wowPMdIEZT8nLGVqnnAXXR5o20AoFLqJlj7AWnVfkRZZCEhMaKyHeY+og0TqED+AcOipUltHLAuk9vWug88goKMZjxMEBvq0x0znVQYnMYLnesm0kWV4SZYuSNdNKU4wNOs8oDxe4tkG4ElPolA7cO7pM0dUN9QfP2F2c0eEJ51cJsDc7RWlNsw40u5Y2SPLDl5m88X8gmwTK6QGzV+/SRnjy+Xc4/9xXGE2POPjUG0wObzE6HuM7jxKafr8DnQTCSIEtFDhNaAW9EFxeBn44N/ypH/8458s1H329pL3+gNgvadY3tPs9zqVQTEjpwLGtQfZIZeh7kRxg0dHvt7g64IVGSUMwluAcIThUJpFE6t0OLQSUFp1nBL+l3W0JvkeIiDUWUY5SFk/rCV1H39SYIkdJSe86okhocTOcg1EInOtAJuIrWiFCYg2F3hFjTcCnMVHfI+jRmYVRQdSamBmMGOBsrqfb9sPmQKN72JwtcWMoF44ugMotUQS8lwRpiaogG52gwgHKZOi8wJY5Vmi8i3gFQkV83xDxeAF931Fv19g8TyL4bOgUdjtiK1HWooQEFXB9j7ACoSW2HGNGHn0wpjo9YHo4xo5ybi5agu9oHj5k9eUvsFt+g6w4IOYVsztHjGYjFieGpmkRW43Ckk8LTBEIYY5TJeXMMJqXjHvYL3fE0OG94Gq5Z3xUMTou0WXaPBhd4J3ketmwWbaIeYWeFNhZxSh2qHmG8Y7ds5aDN4+5/+qI86+foaTk+nyVTAaloeszVC4p74xYfrAmHliK4wVdK8i05mv/9nPMPnbK9/3pj7NfRfaq4/jTJc22g3ZFyKb0TcmkEOyXW+Z3Tpkf54zHEVVH9sGQ2cDVdeDDByvuvTXjYJY2Vw2SCnBtwJ2d883f+GdId8Z+XeG1pXZ7srZORUqpaRQ0yyXSwkzmjDvHyEeKuqHtelzdcdP3bOs9o2bHPAZGbdIAibygr3Ky6SnhVcXD6n3qxx8AkklhOZ6+zDjT5FnBweiYiR0xNiWFLFEmMskrzq+u2N3sWF0/4KnbsMgs904cs2yMzXQSlscRsnoDOVrQ9FeIbMGz9ROu2prb8ghRa9zNmuxuz2E5YSwL5npMDIazm4/Ytg1yf4nRxxjtBkyBJPoblCqZjmZslx0fPL3hnC2vTg65U+dwsaOuzxjPprwij8lKwdMaZN/yrL/g/OIJervhkNtENcVd7bh+/0Pa7QPu37/H0cFdRgcLVr3gst2RlQ2378xpneZ0MudAH3A88miR0/d7NmvB2SanUUfs1QJbz7je7an1FTErKKsxSmbofYfceirlmXziTd77vd/8rpb3P9BZPMQEahfPSa5xAIMNhUW6T5rvRCFQRhJ6CNEld8uQHpwST+XQgBkKnDDoW4bxUFSpTTL0LoD4ojBKlsMUtx6Mo+8alM+JUabHvggkfG5PThyJ3juc71EhoqJCR512nCakxFVPyq1RMhUyUuGlQ3iwMhmVg/B0Q0JxClEbwGpSgJYQSC4bZYnB09PjPASXRkhCphGVUgZlc4S0BK8JURCcJYYKlVfIbIStDrGjlP+SjybYagy2JKJwUeOjxEkJuRxYK5EQDSoqbGYpJgV2XKJNlsLdvKde73A3Df3GJXx76CEq1MgQRIsSiraONNsaEz2T2QH5ZEFoe7q2oQ+adrnHKEerGtxixmieIyJslg1NI+mloMg15rV7ZEqQTTNk9Gx3e3arNfsmso43ZFFQHmRMvu9t6vVdJndfZjQvMEUkihyTW+6P36K5f0Bma9pdzf7qjJv3HvH4i/8Z9+zz+Oo+xcGU7GhC+3BLfbNhcnrM4pVDMiSyzAitR+JwgM1HSOvYusDldcNnPzHmx/7oJ/i/1Wu2tDQ17C+34AtMOQbX4vYtUoHrdkRiKsr6SJQGoseFDhFdihaQBmPmeK2JURIwZIUhSEkbI4qA0snBlaRMAqLDdbthvJnye1y/QQSHowVlQSUQXFN3tPUVUmeYqkhRCFrj+57QdWhrUhClSHyTRDfuaP0lXgpiP8ZmI0RWIAxIY/F1R7OtAY2tLGqU4xCs2z3N+pptLxGLA4zO6DYNfe/w2x1WG9yoQsbEb+l3NX4J8XhCNJ6qGlO3DpNNKI6PyY+OkICNnma3xoskiBfBIUKLkmVK/Q49u4ePQd+gpwfkozHlwQyqMSrXGASu91gPplRcPGpYPXjC7vpDpI7EYoKTAaQDZXG6J1jFdJ4RtWI804ReIE8Ns9MRbt1SZoLRLOfRusPVHdVRQTWxOBFpoqCIoKXC1xsaWeB85PDNI7K3jlnedGzOWvIyINYd68sNo5dmvPbxBctHS86f3DB5+QTpHCoL1E8v8W6GNRlit8OWMH/5kNGooOl6Ns/WFCeGw/vHPP6Vr7DTlns//AkmueHDyyVtaOl2JkVIvP+Im4un3Pnjn6CKNd/4zY6P/eFDQguTXPPBgzM+ev8Z9z8+RXnB1arj7mnGAsHDhysuvvi/0G/fRUvPqrlEiRy7rdn5mtFojq5OqX1HsJqFWXC4DRThEuNLfJO6JuvNBR+tHjA6ucXJ/giuPRMzQ25rvFlS3D7iZDanLvdcZwecnChW+RlFEFgjkdZQakUZFDQd589umOYOU2bsli2bJ09ZXzwhGsHh0WHqnu07buqv4y+3tPWa+W3NrXuOl189ZLbUtE3A1ad05yvcFlzVkWvL9nzD3iwZzS2FzXnjzh1mk5zHl2esNys2Nx9w6ApeHb/C8eKEsoNnT695tllydr1iU6+ZGkERBWrrac+ecXWwQ2WaWVHQhIJuK+ldg50e8YGv2fiOzfk166eP2H/4DnHcow/mPF2u2Gw9o+2amjExg9NXpxzk87QZFjWuVlQi52N3X2dkc56dv8OH73+Lq/WWs82H5MUNdR2xeY+xIyQHxLqgffoRk8mO2vS8fOcl/vdbGen2B7tAGcIAn2Pt43M+yRAG+IJXIlJ+jDCKKOPQrn6uLOHFc3wn3iQRSoZnHkY/LxIGB9vxc31JKmwkRmo6IXB+CGILDO30kAqgAVHug08pfISUeSITQTdER/TJoSOFQgiPjxEfI1oOTp/BNhxCJDgHHYPLgUEkO7yXIfxN65StE03K/QFwXqRORowIqdA6J6IIQeMw9E4ipUXnc/JigcoXqHxEORqhyzmqmKRiRll8VHivU4teWZRRaCETjyMG+tpBG5ElGG3IVELkM9A9VRbARjw9WkqCUemTbyEGge9a/HaLW0dsoSnnhvG4oGsEXd2nz885ms0WITx2UpHnFcJG2nXP7mxLt22xk5Ly3hEHswmjXCF14GpjELFHdjOKPzJmVOWIkWGyrHFNyozp9p5spJjfseR5YHUx5WpTE7qG5YeXPP7cF8nzltg9pucap49wRcu+bXn4+a9QGsP89pyoBO0SMmnQ1iBjxr5uoQ+J0SEkH14EXruOfOz+jG++coevnC1xqxv6KLGzZAfey+dCaYfvIjImiJnoVXJlaUNWzSE6fN8QgB6BKUfYrMAoget7clMAmigFXoSUDKwrCDUxQtPsod5jywkKgRcCIVMGtYsCm2VIpWnrPaHtULoG3w0FcipsnHOIIsfkGd4MRTEeQnK2NKGl296gdIkwBVl9QDk7HGzoLtmaMcgu0HSRro3EpiZfrxlnGU60bG7W6VfVdcS+xkgFRmOtoVmt6Ls9xbhEFSVd75EmZ3I6Z3LrBC81onVsLpfkI0FWVTRFScwy2pue9maFmY8RWUb0Al/vqPcRectS3jqgLAX1quPy8Qp97ZgfS4RyaZRVlahbr2FMxuKV1zn6/o8zOj5EZZJYS9qNpA8d1aGiaTTNJlCWksJErl3PfqeorEP4FldHfOvIs4goCtplg8w1wTvWlx3t+WNEMeLkrTk4A6FG+pqwkbTtHns6Y340Zfk4cnVdE6Jn88F76KKgdx1aKbRoufnwKe16i/SSBxvJ2390jAyKpm5pl47Vw4baSFRuWF/tyfIxpobR7BCpNTQ7Hv/ebzD/xNu8fj/n3d95xmUPV61jYjVnbc/qZomZaILwPPnGGbs8Z3JgWT3esP7Sf2D15Dfw2pKPxnht2K+XqK6n1JJoFUrvcL1iVk44LAuqtUc3Eh/3SK2RjBDymsXJHW69+oepCMRmzW57joklqtCIXmOExapAOeqJcgxC0NVX1DFQmBJRHBBzTXO54Vtf/b/T+8jx3bfYO0/mew5fOqUtNcXilKAXtOKEOPkU+T1NXD/ChXNiAwfFE0rZ0e626PtT+nbDw6tvQZWxqUuubs64Wp7z8r3XOZqcUFUjMjPn9ECjVcXN8hlrH7hZbml3He9+8JTL+prLZoM3AiMlXXDcCMEkQrlZM8bRLxbUYcpqucK2mryD68yQFwV+eUa9eUylGqo3KnxZcr2Chw+fIOM75NczYIIuDXX3iFfvv8Ubp6+QqQN61kR7TWZnvKxvMy1nRDfmvQ+/St14mnrLrDAspgfs28hmeYO2gfIo47XbP0QwP4R09Xe9xP/BLlAQiCheFA1BDB2ROHRBnnc4hvsq+bybwQsE/XfAWZ83Tl4UKUI8L1Ge6zyed2iGjkgcXsN3Pj4IXIz4roMQ6fsO78IQ9/5cBRtwJBCTlikXRGpFEA7vk7XzeRcoxIiPMkXEI4gyjWWQ6T7Be7xz+JACBIUYxicw6FxselMy4kOPj5Heg3dAFEiVI/QoFUnSpE6KHqNMhSwmqHKOLWaYfITOMqLKwZR4oem7iHcChOH/Rd6fNVmapdl52LOnbzyzzzFHZmVWZg3dqGqgQYBoSOAgIyUzarqQUf9A/0dmupF0xQuapCuJpAiSENggugF0o7urusYcIzJGn8/8TXvSxT5ZDZrxoq4kK+Mx8wiPcPcI9+PHz36/9a71LGkyZJaj8gyTZQks5j0hDPjGEbwiOokfEuMFEZDKYERGPTOMplMQUJaGgMd2Abd0DM0ACPJxRl5pitEUMoNUHiUUStrEqymBoIh43HKLKXOG3cD2fk3YOIbGUZ7OKTJJnR0K6kIgbByjrGLxyRHjWrLvBcX0AJDbNGzfbom3O0wZaXto7huWX2/obr9h/e6v8NsvkItnjBYfQxxQ4oQqq5MilpdIE9kuV4RO4RtFu2tReUk1Mugo6WxiN3QBLjee69XA9x8bjqclbdOzubwjdIHRYkHMNTlZMqNul4QA0XcMPqJkAJNR1hOyvECKSN/tsc6jipq8nlIahd8v6foWVUwRmYH00MDkNXl9hBMbRLTEmAothdKYvEKaIpGIlSb61A+llEQOiiACznaEGMiqKpGYkWgpIMLQtgQ7EN3hUSwFQgkkgRj2eDsgXMfgA9JLzHhOFAFsT7fsQBcoUxOcxKqcIhj8bkCoQBg8zjri0NPvG/KiQAuDt6S+nEzibZdghZ0lBgk6I2qNEBpfSNxsihhn5HVFmRny2wX2bo3KMyYPLsgnc/ZX77G7K4Q5wUtP1IE6L/A97Pct3XqH1IqyTmu1+uQCnde4oJk8/4DF0wcILfDbHr9Mn2sxUoiuYvnyOpmUp1M6LWmWHjMK9CPFeK4IbUu78bSD5sl8Qt9vWN13NEvP9v2S/dWKsx99j/0msLtc0V6+x3YDuh5x/OkJk9MZm9XAYANjI7m8estw/xmjk3P2V3c0oymbxVOy8QnV8xPCEMgqgwyRm/c7ll9eU1yccPThnPmDijcvNlgizT4mxWwO3ZDKH8cffcr5732KbwObvePowRk3n+8ws4phNyAlfPjDh1z99YrLr17w6A8/odkMuNc/Z/er/weD7anyjFpoVrs1Q3dPDBqbaSa1RMsGnETnD8jHZ2TKw24NdkAHg5IZ2dFzzkeSMi9hiCAGmt0dIm7J5BjfXpGFMSdHTynGE15efU3fKZyZsOs2lGLNSX5BWUzYdC33r264aX5OlzvOTz7l9OgDdq7FtfcsX3yNLV/ipmMeP/2Ui9Ej7O73Wd5+ybZ7jXY35KpDG0N1OuZJXDAK3+U+O+fydsm+W9G9+pK12/Po0VMWdo4xGqkMx5MxpdTc3V/y9ZdfcX+7Yrldo3JDGy15MUOKiA2aTQbf9FvmdIiuY3NX47qafXsLoaffwptXf0b2+JiqHnP2vQvG8zMIY9qmQWxfcHP/a5CrQzp0Q+gUTbdkv2kYuoanFx/yYHaEDDXrwbG1G3rhKOsjqvqcICKdu2V2POH06AntPlI0S7yJbJeK9eY9f+vHfw+/+f9hzPj/n7cQDlHY38wKh7r4b9c74m+MsvLwpQaR8MRROLwdkEKQafObtEtiiSSpN8TUZPxvck/+JlT8LQflQG4NPhWAdS39YIkHo61AIGOiugoUSul0tREjwvs0yescaQzOdww+9dYksy0EkRQUn+QT4gGYJURSIIxJh23X21TEJgRKG7RML1IIgvcoNFmWJfOh0/ioQZXIfEzUNcrUKJOlO40sXVGbEdloRlZOiNqAqAhBYBvwMTWi4iCaSJllmDInG9eU9QghJS44bOewTSA3mrwoQSmcj4TBojVkWYGSAV0qiipjVBgQ0LYeUbSodU4uIyHvCX1asAkfkFpTjgI+OlzvKLKMrKzQStO3PZubNdEEqosJdtRiN5b2cksznVBqzTBENpcD29cN86OKUZUTXGR91dEOPUUtaYeIKgJq5PnmL65oVyumR4FsbOi9YHjdkwXHZHLG7Pe/R/PhH7Jf9VRPnjJ/8AClC0Ic2L3f4FvP+NkR3X6P37XsrYMiYzTNKcqcm8sN7bLnq+qEj05POTs/4+LhI+zqDrc4oRrnDKEDJYidQ7aBoCzOenyw1HUB2hCDxdqDMXzwv/E7Re9woQfXkStB1AKVa4RI5FmiQWYVmdLEoUOEVNGgTEXAIIuCIk/Gadd1KKPT4ZSXiftDAK3RdYXQOdFHZC7Ae7q2xQeZjLHKJAzAtz+fw/agGEacGxj6BlGVuCCJnU2G9kwckAKK6AO2tzR29+22FBEcg2vxsUtdQaokKtB1gW8jQ2fJCgF5Ukya21ui68kXC4rJlPF0zqgS5GVG1AXNg4f0g2B8MmH68ILdu0s2X3yO218x+u4x+bzGBE1oHVFGpicTfBCYUUY1ynHXPSGvkIsMpUrGR0cURYYRcPvqjuXlDrRmejRmv7rj9qsVDz46Y/Hc0C8FXafR48B2awkrj/eW6fmM3W3LZ//4X9NdvSJurmF+xtEn3yE/eszswYjlq1v6ZcPu7obJ81MmF3OyOuPVn33D8bNTjs8y3vzxN3SXPyXymrvXv8YPHbE5YVLPiUcL8AXRSs4eHac24Nf3CN2hOnj/i9dIH9l+8Rnlowc0jy94/OkJd28iLsAw5Hz0Rz+kuWz48toxOz3j+t0tTbfk+Pvf5aI2LJ4sGMkRf/UX/w0PfviYXEB+f8ndr/5vvFqtcW1grD0y7lD7AawnyEh++oCHz3+PYXPJ7f0NTXPDspkTzZxsNqLoI2G1pRKW8WyCERG72uONwsyPCbLH73s6HRC7FtPvqY/GnMyfUsWC9fW/xFqFUBVF+YA8ZvS3a67XX1M8OOXTi/+Yk5NT2r1jdfOK+7Zlu1qC6Hnw/R9w/uBDpuMj3NCzvl0S/BRnDGb8GJ9Z2vtbbOappnuknNDf7MnbAdqIEYrKZGQ6XVBmUWBdahhfbrZc3t5SaTg+m1FOM+5Wt9RBkauAkwpT5mAqOgJN2+LCiG0zIOQK1Wa8ubxiu7nnsfTk/Zb5Rx+iHjznVgTW7Z5YHhT05SXlaMPTk0dEdcr9est2v+H23XtsHNgPPfHJx1zUJ9RFxV1juetu2bGhWAims1O6fQKZIjyzUUGVHbMd9pipxvkdcX/JtHryW5/xv9MDineBqL5N2Yi0P4ekdHwb7DkscmKirSUqrBIgNN4dTJoyT0j64Aj+0FyMQOD/Zs1z+D0FbyUJPHWocD0YPZu+oe1arA/JF6MSslwQ8CJ14mQmQyqJ9y4pLTFi3QBDwAWHC+EguWYpThpSCWBSgOKhByV1s5RKU+R5ApX5iLMW7wNBHlqXhWJwaWDKswl5PgddIfMKk08Q+QiVj1DFFJmVICTeWdzQEgYQooRY4WJJpMAFBSGh7iMKU2QoJLLIGB/PyKdjyDUq12htKFRFiJKh82ghKXKFlxHpAkFLXIioXFFmOURLccD561JSjCP1JKffj+g7Swgd/W5g2PTpCqNUOJchtyBbQW5M6nwqNa6qyCYDQkXKWU3XtNy8uuTq7SWqLhFaMSBY3nRgcrJpRdcOrN62fPEXb6gmgulJzub1HhW2xBPD5u3Pufmzv2Rz/Iizv/93mJ8/4O7LB7jRiurhMy4+/R6ICZvdnnoyYT4v0TqyfPkWW1eMn5ygaoH90tLubsinGX4jCXLCpu2xq47OBX7SdXz0bI7OaibnTzg1mmZ5g9uvUX5LmQs8HYgWqTqEtPgu0vcdDC3SGHRWYF2AEAjOM3QtRT2lDR5snzqYQocfUl1CXhjyPE89TjbDRoHvJUqn9WiMAYlEKYXwEZkVSK3Sk6jUmLxA+B6iR3mL0ol10rf9wZibI3OQ3kHwaTXpU1JHqNSeKbMCXU3Jx1N0btA2EHWJLjKiMgSSuXzUSdywpw2J21NkEmcb9qslwjv6RhO6BfnsAlNURJdhbaQoc0wmadotbrlhf/2WYnrC4vkzKMY0aoSqDXklmBwdQcypZhVCQL9p08XA+IRsfowwJcMuMOwtsUp8mZGShBgpqhxOJLGrwFhEVlIf16hM/mbdm48ygtKEvaRbC/LjOWo6QQ4ZXd9hsIS7gZhX7JpIeTQj+BLfXLF59wZVDwwxo5jO0ScPyfKSzZsrXBNQtSOPUx58cEFZ1rz6i9eAoNs37F5uuP78X+Lcl6hDv5aXJeXJJ2STU47Pz9ktB/yux9PRuwKTKdTxGdlijJ4VmMFz9Rf/LVbPmU4Uu5st119e8ekfPePysx2bZcvbzz7n5O98ilCBclKDjmRt5LKzVHXG3es3FOeSk/MzJjS8+sf/F95dfUMfDKJ9TTELGDWlNbAdItVRzSc/+DHPLn6fd9941rsl201DH75iWY/RKOpesdjtOB1PmOSn5FERwgo/lqiLOUFV2PUNdtOzvduyyt4zLzT65ILJdMLF8Zz9+jO6/RZ3VXB9vyTLK/KHz3l4cUpmCuReYbdvuL99z9vbK5xdcjSuMI1DDJrKa7r7NZ//5D+nXDzl8Xc/YXz2Ad4FtuGaqzdfs5VTdGGIpWN0vMA4w6PTUz588py6mOCdRyqF9Iqlj7TSUs8nPBlPmOsRq23HSE7IMxjCwE5EyMdIoZClwHpN2/R0m54Xb36OlBLrt5yc1ajylHvXsV4PxGKPqzJKWbHPLNWTYz759/4+I+2YVMcEXxHdHdu+TUiMwXH75gV/td/RffQJx6NzlNTEUFCNC84XT5lKg+sSOgHXIzoopSMzgcdPzri5bPnm6yvKyvzWZ/zv9IDiXEp2CKngEOFNJV4pysu3LBAhiEH8ZsxAKEJUqXxPSqLMCCoSpUXIQ/tiCIc+nwOhlgQvi6nqBy3TUEQ80GWlIIiADy6FgWKi3Eop0UJjTFqfcGgYdt4yRJ/alEMy4wogUxKTpd4ePwxIn3p6ht+UFabGYC0lOSIlbMJAcDZ1+ITI4B0hCBQaqUaYKsfkR5DPEeWUvJ6hywm6qNFFjTQVSE1wAdv1WLtlGBqEl4nFkBuKaoIpq0N9fcBFcYhsG0xRkI9GlHWFLAyolPwRRiClpsgyEIGslORGEQP01mMbT9c7hj75bmJwSKVZFIbRSBAqRz8p2Pc565XCdRFsgw8Npp4gtaQNkV5CNs2pTkcIGXFOUZQT6jKt9fZNRtP37F7csP36LdNFTqwLxmWOPxOMHy/I64zObhlub/H3LaEfs141SL9HK4Gw13j5ktXtPZPVM+r5E2ZnT9juHNXxBXV9xDAYChzufmBvA/s+srocKKcTZg/mNE2XgGdlhRWO5vIGtns4HhH6ju1myys8X37znNFMg1CUizmjk4r9/Q3b+5xhFQgby9A6qnLKEGBAY21HiJZCi7TSCElJlNFhhz1dHCjqGWQ5XdMh7Aap+lTUF0eMFjWjIqfveoSIRKWJJsX2tVAJ147EuuR9MgKGvk9VEkSGrsF2O4Zmgy5nFNU0XSAonSixQ08/tMlLpTU6y/FDThQKbRRmMkWPJiihYXCEvsUHRYwRPS7QyuD7Frfb40IkaoWK0NzfMTRromvwrmFAUqDQ41OEzskWY0LbpHqArsVuV2S5ImYFssqwzqKahl5qhMopDiJiMSrJjcT3HdKUTL/zCcooZD4jND3MM0azAktarw1dz27lGE8LTCbwomZ0pIjBYF3ADp7YC4RR2H2HahucTPH9+iQnryQ3L5Ys399TloLeCooTwfSoIhtptpsOWU8ZffIhpiwIRjGeHjM/n3DzzR3dfUdxPMJUI+bPZxSLjNd//oZiUSFOx/j9wPrnn8H6c5wYIKQIfV6eYOScbt+zebdm8tFjRictkDHsBySR4BWi62GXkU9h/od/wPjxObc/eYEqRpz+wUM6qykf1IS9I//oIWoyI9ewfN8hMjg702ydpG8DkydHVA//NtVIcf8v/jPe3PyCkNeM91/hZYsWOZo1RbZgnGU8/OGP+PTjP2BsFqz3j6g317RDj8ez3uyxw4YiBDBzCqMZVZq8OqXbOjaZY5FlBKXYdo6XX/0VV9u3VPfHPNl9yHe/+3c4Pf2ER5NPua9WXF3f8fbNn2AePOHJD37Moipp9pHN6h6/b2g3S9a3S3b3b5Aqcnt7xz979X/m36r/91xc/C8opnPmR094efmnTI9HVPmcbFIyr0940X2Fz1cU5VOqxQmyLtHynI8XZ5yXC94vV2y85eT0BGUko1IizBn0NSOlUa3ALpeormM2WhB0xUxIlh7WzqNizu5+T7df4oRAT9Y8HZ9z7mf0zvG1b7mSFnv9jmx7j8xzyvkp1XTC+PwMU/4B1bBDDR7RQaYbSlNQVpLTyQky5DR3N3yp4P6kxegRg9/jomZwATkqOKpmTG1gt79Hjjz75S1nZ6fcbxQvf/0OF1/w4OHmtz7jf6cHFO89IAg+HmTitNMRUnyb/gUC6rAWiSI1+IYgCUGk1I0wRFkgFBAdQoU0dISAxBKCJQib3paQZYkyeaC7HnqMkUiMNr9RbSIp/hycTU/yJkcZjXUD/dBivQOhkFIiURQqRxIhBrTQBAFWGqRMf+eDTxHqKAghEJAHj4rHWkdnHf5gxBWyJKgRXi1QskSZEaY6wYyOUOMZ5XSBKWswGegyFcYFj+891heHIUojkOT5iHw8ppzNKOoaNzii8yjnCB50XlGMKnShiFoQlUZpg5LhQLOVieiqQBlNVRggQmMhd3gnGKwnCIUPJnFUgk+wK5Puy6EXBLenWe/o9j1aScSyQ1caRyKOyiyZh4usJNOCeiQ5m4IUlqbOaPyc22nO/vIt9nZEbs6pJxlCjzk9rpEVZLMSMXLs3t8SapWanDtY3qzxPuBERNkr1i9eMHpwwfj0CLsakFmBQLO733L95RvczlJXAsY5utZMH0wRdUZ7fUOwLfXJHFVrdJYRhh4pO1AOsyhYDRs++/kX/N7vP6HODddXgemiYnF+wtAOrF59w/b2jv72NWZxhsgroh0QQaG8wllHbjx1kdMPkWAylG0TF6JrQRfkWVoFeSxZNUGOpwwecqFSlDPLcIfYflIBdSIfx4DSEkhryhgDWEeINvm0TJZKL13LQIUq6wSX6zvseo3r74hSYYoZIhuhsyLplN4jhIEgaNb3uPWK4PYgBLqcM1KaepHTOEGoDOOyYrDpZw+toMzwtsWvNyitUKMxps7JsuSFUVLRrLeI3Qq3XZFPF5STE7zO8ds9TbdCLzfEpsdcHFEZMNEgpSPmhnIyQxcgSoPfRUZVgckFWipkqSEW+GVSsHovMFVGFiVDB7bryEqNlQNFoSlzw/t3VwyrJfVkghqdcTQfpQN0vWX5sy/xnzzk5JNnWBsZusDQbGl2LVWVoUcTtKopjjVFUbG7btn9+mviOOf04jGTkxG7dx1XP7lElYbJ+RHrt3fs92uab36KszuCNgQzRQSBHF3Qb++oj47og2W43xGHgKBDTguY1pD3KaVkoJ6WPHn6mPs2cajam684ujmjfBwwdYEYFUzPF7x9t2czeIrzKZqB9aWnqSWjzCBDy0qWNJ//lJc/+ed09TGT9p7OXRHEFKVHmIljHiPHxxd89/f+EWeLh2zaliIvqcoFxlgiina/oR88LYKrKhIrgSgF+7jlLmwpioKZyRCd5ertC9529xRPv4PPMt5u9ux/8sc8PVkivMQo+PC7P+b167/G1hN6b3nf3tL6gUEMbPs7dvtbtvtrXHSoKBlcIDQr3O0t/XpLsTjm4x//uxRXI3p3w33zJbPyOaXRHJ/U4HZo6ZgeHbNtRhT9BrG64f79a+6ajv74hLqvyMsxXglGkxnH2ZSyz9iyo/Vf0IWvyIsFKhvRkhPulvTXG9r7d7z6y/+KYu559OM/ZDR9xmY0Y2gdduO5umt539xjbYfcbKnPcurdEcOmZvzso9RNdOVQeLZdSycAKdguN2zyDaezCwpxguojrtvRyR4hBO1ux85vqUcPGFdzChspTYNvBLFqyVTBzevXGP0lJ8eRaV381mf87/SAYu2A9yGRSqRMT6jIQy9O+pMQChdiijpKRZAahU79PRqkNASZJeOeDIc0T6rJi8FCDAmMFXpitAjh4Nu0TYxpcJEkVoGz/8YK6LA+Ch4RBVZEkBHrAp1NA4aQIGKAgy8lBkeMCZcvCCitUT4S7UAM3w5fHi2SCdYNnl55IEcZgdQ5UhbookaNjonFgpiPUdWUYnFOPlmg6zG6rNGmIKIJIaG7IYL25MoTZEHMaiSK0WJCfbqgWMwoCoXtLb53iWsRJMrkKA3aaLTOQGoQEik1SkGQEREFxigyo8kNSCUZnGa9dXRdwqCPR5oyV9S1Js8iWgqMEgwi0rUNwz24/YAfGgIpKRU3Oc2uRwB2l9OtO0QwFOOc04cjpllGVSsyJRlXOePTMVeffcHdr15wXs8YX8wwOieTCmsjShfk1Yzd7hWZF0w+eMB+17B909Baia5PCP17+tUddtUwOn9Mc6zY3zr26z33l7dsru+Zn8yQ0/zAmRnY3d2hJCxfvKN/9ZazJxPEdIztNHeffYboOszZMdPjKU3TcPvNLdcfXZAvSuxryTdfrSmkZb9rCUKjTUYvBI1tqasZul4wDHfEvKbZL4FAXhVgHHawSCVQ0hzcVBJjDMGlAV94TyGTcbnrG6y1+GFAC4nIks9EEHH7HdH5ZNIOIISmGI9wgyUMPUVR4oIlekemDBKDICXIBh/A7Qm+wXsJZBhVEpVEa4OUGq01wQ8Mtk3QRIaE3lclNgQsgogmyhqRVYwnBtcPaKPx/Yhmt0aOKkxRYqoa31ia9hadF4yrET2BzXVPWY4o5nPycoRtLcNyDQicl/S7Pbu7DDPSeJmTFzotckWDyAw6L7HDHq8t/Sri9pbRVGHjin1jGc2n9M4huwzhIqv7BojYScTFKcgMZ5foGDn7/oeoicLKiuq0IisFphSEszHTZyfMHtRsb/bsVxbZD8TVGlGdU6ucdtiDm7J9t2H18hI9mXD04SNMfUS36fnyv/lT8A0f/jv/gK4N9Nsu8XImM/pthc4ystFTdssbii4izx5y8cFH+EHS2sjpxydk0lKOJ0yqAZ07dG7omsD2zZK9F4wnJW054vg7U9b0jIaOLDiGLiJqxawa484itXQs7zyNHvBWEFXGu2uHv/mCn/+T/yNyrNBBolmjPAx0OPMBR+NzsuyKk4+/y+L4Kcthx9JtcVowO07m4xANzf6eYD1SZaybNbKf0G/fIYeO+XjGw5OP0aWhs5bObMhOT6iOPsD3S+xK8c2v/iVf13/Cd//+f8hHz75Ppi6wTeSb21+wsz3VaEKZj5C09JlHyCXFuKaqNOvVDU5GsvEZX3/2OZn/xzz7zu/x8MPv8vvf+0fICLv9nt7t6AfBBx/8mPr111xtbzHBUL6/RX79E+6aX+B1h744pR6+B80eoz/CIymqglqdkhUatZB8+uO/j/UfE3zGbu25f33LNz/9JZd3P6c4X1AeHzM6NZw/fEKRSwapWO0tV/aWTmwY7J7l61fkZsUPPvwPOHv0CVUMmEJjzJiX+ope7Fl219xvtlgHve15d31J2w6czI6Y2AmsBnZijxlXTCYVl1drVtsVRyPBuDyj3U358pef8fh5pMyO+fDDx5xeGKQR2EH8D5zm/8O33+kBZRhsUhhEKiCTJPOolJIoI5CGktRlkiiXIkq8SCuIKCVRZUSV4aVIvBCRSvukFIjogYiIgeh7YuzxrgfXIkXC1qf3SWVokR0gUwkgf+MDid5hfYdBJoVGJI+KlgoVJbkQaCFwIaa4cIKwJE9M8EgFuUrsFGKR5PeoUFkNukbrjCpXIMtkdi3GmHqGzqfoakJRTymnx5jRGFUUKJP2+i5oCCoNcwKUCYhSoKoSXfVE58lGFcV4yng6Iy8VfTswtBbfWbyNqWOn83gHtdAUmUEZDv4FhfOBrvcon1IdMpfp61dJ8RIikucwnRomE0VuQjrahMDaSNvBZuPY3HQEN6C1IDhw3hGCRPSe3fUVu5cdxajCBpjUI7L2ASacMJrm5EpgW0teaZSx3L38mvrhU06eH6cOk11kZx1ZnnP6wVPids/kYs7xB08Y9R7cwLC9oyxnuKlFmAzrFMcXMwadI1cdIg9UJ2N8M2P+aMzk4hSpc5b3Ky7/+i3t9Wt2y/cMV29Y3V6g7jqa+0ua1R1FKSlyTzPssN2ey3vD/NUds7MjsgE26y3DxDA6OsEHz2Z2yfmiolmtEUoSc43oO5zfIzgMrruBcqRAW1wHQqT6BqnzFD0+2Kfc0NE3W0SMidqrJMPQIzJDVc9RRUG/W9Gub3G7LULnqHKElhGtDVpJQpYTicQhoQKlUaDB4ZOHSoAoa4xOa09UTjaqUrvyvidiQUqk0RSTOaoe4/wY2/TkxYy8rrGDpdvssL0FIlLPCEKj8kSezcIErUqCFEQyml2D957q6IgYM1CeaAzV/Iz6+WOiUvT3e4QKKGMQ9RhdjYlG4YcEc3MhIxqJyjOKeoTWAV/VRKEZrCWKgZu3XSqinEwR0qCsJ2IZZMSJjkwYjLSYOGBbwWo9kC9OkJMJ/WpLv10ym05QZaA6m/OoGmHawN1nt+i6JlMCNTNEP2XXdRTS4FXArwZCVJz+4AJZFQgpkdLSNhucGqimJcU0zGz/MQAAy6lJREFUp2sb1DSH3YBvD8WkIqe8+Bh98SFxZ4k+Y9t4iBnlWYUMgdW9Y1QP3P3kC1wXkUdT8rJg+faS7/5PP+H+myVmNuLR7z1kswwEIndtILcDw9sNejrli//6C578/kOWVw1mNubRkznLmzW3P/sTvv6n/1fyeU/ujhnFPVFEMpPTtgNBV6jshKwClz/j3fo9RWGoJjmL0RPk6RH93rFeb7jTX7FnwHmHUhlSA6pKq3Xv2FxfwvExs9Gck5OPuXvxUzZv39LdvqV58xlDXPHB7/8RDz/6W+Qx493Xf8716j1ycYYwoFUqGqU05NOcuj3GN0tqMacNezosMZ9zvdmx+st/yt1ww+hijs4k0kmk0Nhec3f9aybVMbbZYtwG9+pzdr/+5/SbX1FUHlEW1OsNY9lSi7fk9YhMfYSXpNJYFXCDJoqc3D9le/2Oz//6Z9xtvsEVPTH3tFdXxN4zPjridHHCyewxuJ5X4T2iMNzGwPreUuYVxbhlMp9xbFKFQ5YXSCM4+fGPUTLy9uKSP/+rf8GbtzeEOGFwA9erazABLyK1syipcXHL5OiUeVlSq4B2GXd3a27e3DHEGzpfMuzXRGkoR6cIpYjyty/j+Z0eULzzcEi6IJMqIWWK9EahEEIl5URJZAQpwgFElQ5PKTQIg4sKGSRRKiSSIFOPSCStkIQAhUvMDN/jhz5V0cfUXyKiBWEppKZ2OU3b4oNPfTzBksBughgVIkYKU6Q0j0gqizY5UmWIKIghElD4SFqziIKsyDE6I4FQFM5LbFSYcoLMa6LKKHSJ0mXqw8kqVF6i8hqdV2TVCFVNkFmJUEXy3ziZhjppUCb1+UiVIsy+d+SVQ0aByTKyMkdEgfcKSI5vayFYD1Inf4ATdE3ElJFirNFGJTXKgfPxMIwk23H0Au/Sx8tDAkSKgBaHjwkC2wWGGBgGCD6iK4EocqIvEFETVCQIGEaSrousP3/F/u0OMSoQ1Sm3wuIjlEcz5uM6GYeRlNMxUWpCVJRSoURg33u8FVxcKGb1BaOjCUTB7LgCHJvrE+xPe3zToPIxpj7B6DHjeorKZ+z6a9xyi45gQkv3KjAupoyfjwlyzu7pgLQtk6Jnu2sIymIbgZlOmP+tjwjbPe3yhmhl4nOUOf3djnA8Y/pgzFYOVDJSLnKyRcnoNEdur3n9yy9oL1/h7y8h9ukxLDQqMwxRksuCsjJY1ae2aRwx9MmPFdOAPXQNuhqnJw4Vca7BNltcIyiqiqysECYHrQihQ1mLLAuEG2i3G2zbIpTAlBVa53iZ6MVCklalDkQwZPkCVU4Zmh3BB2zXkWuNNhLrPb5vCS5D6YwsHyHFDF27Q+oHXNshVSQzmhiTKViKg3JX5cRCE/cNbr1BSo/AEwZHaAa83+DCQMxyRFEjXaqaoCoZVATniX2HyDKqyQhrHXbosTZgyjLRio3CCU01yVEKhOrwXY/rDfVJQVlq+u0d7XJgL3PKiwfkPhJih5QF1ju0MYyP5gymZ73aQ5fWvXfv7onDEQFNJQVvfvYlttuTnRQok1PUY2wrUCPH8qahOj5DLjRy7/ER7v/8S44en+OEon13R5UdUR5NaLYOt26JOtBcvaa9+SXe35JrCV1LNpkzqAG33ZEJhVWaPM8pC4M5Urz9asd20zN0DfOzOSr3tHdv2K+eEjLFg0+OWX+zJviK/Cwj3r1neXOLeXbM6v6KxdMJO2fp8j0nkyP6Ycv7P/tjvviv/08MxYqMBWG9pakr6uKUkN2SRYvBs169wpkx9zct02LP2fw5Z+MZYzEQNrfsh/fEYcksB1sXtEPPqB4zUuMUcBhF1uuG2xf/hKPzB/zwe/8RWRgR7re47JK8zDAfPWB+/m/zwfMfM89P0EHSto5ODRTlCdw7LFvMfEHUUI5PEtl6fcXu6pJ6NMLGPb1bM2RHyVumS25u35E3NffL91RnOUezDzFXAttcMxGS3Jbc7b9BmbcUc48snxJsztWL1/S7FmMke/GO7PFDFvohlTTsOsfXd7fcfPU1u/Ul5xenzB7XzOtPubvvuby6xHX3zI7GmGIg9D2VKKlOZhyfnSF9x8tXS/48/hO+CY5xpenvW9a+w/qMxUhjcsWoyFmMKo4+GGNCwf9n9Y95171FuoJeOJwe6IxH+YZ4sydWEjUSnOQ1R3nB5df3tNtbqlpw+vAirRNVBhQYCQiHlvK3PuN/pweU6FMELeAhJP9FlClhE4VPQ4gSiABRSKISSDxRqANgLblHxEE+DhgQKjUeS40QB5y9iITDISpjQBaWYAe8G0jQNhKYTY1RfkZRdsToCH7Au57gLMIHHBKCQ+cRYwoiB+2lrAhZjpOWwQaQBiHTDr0QBiEzBBpEKvHLTEGQBlPURJ0jdIHOC4wpUNogVIaUBqkyopQIk4EpCcLgg8AfSLJCKHSuUCbH6BxtJEEGYsGBIZMUIKkU0hxUKJG6VpSRB5YJ6Mygvu0CIuCsZOg9IjiiBG+Te2dQkUaG1Pa68zQrS+wDWSFxPUQnDushgfWezsHgBMELTJ2jkGSFIcszTK7JcsN636KqQL+8pPvyHUa3iMUJVkr2mx5R9jS5RJWKKh9THj3DHGvmj8+ZzjVkgbkF30mOqoieKuZHBfttxPnAfjcguoGwd4RBoKdn1E8/Yv78CdWoINOC5p1g/eKGIfbcf/2auG6RAuK0ZnffoVY9Zg7FYop/+hSpDYP01OWYydERu2rJ9ftbROghpMKuXmj2TYPdtchtgx4VDPuIqQpMPePdV18Trt/RXX2DCi2D21HkY8pyhNaCoe3wTlPkNUrsCd7hgoToCTLFrK23hChAiuSH6Qfc0CAZiD6yv36NDw6vcrJqhu/TYzmGwDB0tENLFAM6Svpmhyg1Qih870D26Fyg8hwXI9F7pMkRZiCGhq5do01SEbvmHru2eJlRTo/JJ3N0VLioUnN3sESVY6Y1woN1nnbfYLdrjBTk4wk2WOx6Q7/fEOuafDTFC40zit5b7HqHyUr6IZlijRW4fYdt94T1jv1uIDs7RxiDKSaoWmNjIFxtsPuOUJXIasLRsSIvcorFmM06MM4KjFSsX17T3txj247s/JTjo2OyQ2Rfooi+p9tmlOMR/X5A2oCoxhQqx97dc7Peoc5OyABKBbFh89lPUb2AH/yQdj2g8pJ8PMVvXnH3skfVC8rHx/hMEMawW21omp7iYkJ2PMbKnOXdDaNK0L69QuYCH6b09TnNEDnJK/LvXKDyKTGfEJcNZSG4eGDYLgPvfvqWpt0RfUd1lBPvV7juBikER9OK9auGTkbOjh2rl7dc/uxf8eCP/iGGnMV0xPiDKa/e3DPNJmyu3tNfvuPNn/4nDO4tlZjhN3t2ak9FZCdG5MVTQnjB7vYVflHS7r7DEL9mej5By0jmGvJ4jbZ/Cd1nTETL+TxjOj7GDWdkpiZkDrIeXZ6yE4723ZKvfvoXxLVm13VMnzzmwcX3EPOMUmRs317z5uf/CrdfkeWn3A9bRKHZfvGS5vJLzj79lOknf5tqOmXd7Yn5lJOnP+Y6/wtE66iFIGxfEX2LLhfs+sC75R19Y9lubvjO+ClyuOWBWDDJBLaJXPkr5KO/y2JWcmcv2XcXvPzlW7756c84eThwu52wV3/KD//dD+nciF7A7u2O9y+/5n73DeLM8eT59zljwXLXsNkvGdWP2Yctiyd/wOOHZwjr2a9WtE3Ool4wWUz5wUdHjETF/yf8Y9a7W1598Q1X8ZY6H/H4g6eMFgVH/QMMj9BS8uGHT6my/w3/7M//C37983/Nyekck5VEqahkwbK75uxMIbdbhm7gdudwg6AcK5QeIUyGVmOCSsW9IJHKoLP/kXBQYgyHVM3BriokMSa1IqkNkRCTtyRKDZiktpBK/qIAFUGF5FVJncEaKSVB6cRYUSmi/K0CwMHIKvMB4R349O/44Immx+QDyg0QPbZrcUNPjAPCe4I/cDalPAxACiM1IsvxOu27M6HI8hFZXqV0kpR4qYkoBIpMFai8QGiD0iZ5PmSCpGmjEcRDisggRPpalDZIYRJfxYMMafAQUiOVRmU5MsswhSbLJELLVDAYEmtGa0Wea0IIOJ38B0ZrlI7Ig2kyyxKnxbnIMARcb/E24KVEIpEClAStJF5GfIgoFRE5IANdP9A0mvFIJOS5VAxDYLMZaPYW33mQhtGoYjRS5EWqpteyRD44Jf7o91gWOWzvmT69YPH8IXleM6oqqrFB5wK/mOM/zhnVBQ8ejShzjzSSMHJce8l6I6hzqEuQueP9tWBzEzD5hNkH36ebnbN49pyjTz5mfHGOLAqy2GMmJcsvHOU0Ul5MuV3fsXx3z6z3+Lzj8ps3mG8Uspa4bU/3dkU9HVE9fcgQBNVMsfjhjxJ7pHVMj88wD8/wPrK+u2T7xRd04wIvM9Rpzf7Nz3n/L/6fxO4dQgWslETfE2KOiIp+N2CHDiMjbegQBIRMXB8ZQ4LnOYcQgjwvk9pnLW7fYpsWIQNZXYEq8cNAEA4C5OWEod0zOEumNEVeEbxGKkkgS3eckkjviXbA+T1xtyU4h1KKWEzJ6ir93FqL8yluPwwD+B5lUqu4iw4xWGxjQUbq2YKgdVq/ZgJDpN8saW9eYZXE2mOMzrD7DbookNUIWY4wpcLkqb3Zl2OUzpB1jgqeu199Q7tN3iCGgBkfkZUFwUG7aglSgQxsXrzC7nZkJ8eYsmMbWuzomHJkqCY1ShhWV2tiLZF9xuzBCfligmr3BKkpZyO6psE1CjPaMpoa8nFFXinirmXrHCKHIANn08D9EqJ3xN5RLM4QZQljQ+gSY6a7uqR5/VfI6QnnH/9DRmWBP1GUdc3d1zcMb2+pPrggbiKRPYtPj3GrQPb8U7gv0D4wevYRSmZsnWNenSIiuHVLMZ2gq4z12vP1P/uC0DbMz48JmaLbBoQyLL77A9avrrkTEQzoMOf963u6y1fo5x8yrioq6SlG42Smt5b99Rv2n/2E2xd/TrN+gRGesNvSeJugfkOLDxWj4hwTHmPEiqgyAoJxdJTNPUW7pKBAxlvEsIVBMa/n5LOCwY5plxFn3+OQFNnfpZVHrO5/wbC9Z7Vd8u7mNUcXjzg6PafMCjKrsPs9n//qX9GqHrtaIKqe4rxiEha8ffnH7G9ecKMcZxePmaoJr//6X7MTnsmzjzn/zt9he3uFzheoa82+ucOLjmxWMDs9JgsVpnOsXm0Y+c+4ePiI2WjODs+DJtCWc9Z1g2nh7nLC5u7X3G4sQ2hBfsHZBw0vf/H/4qo9RVFxe/Wa4w+mzJ4/4uTxA2QOS9dyFyw3dy/YXd6wv37JrVrz/Ph/jWvG/OoXv+Lnf/anHH1/zPf+4Mc8++C7nD98wN/e/yP++V/8UzZ1S3/1jvu//nP89B/y+yf/Hu9ffM7Lz74iN4rf/7c/5sNn5wT+l8zNMa/WX1PqGWdzxVjXjLMPiEHSbiPSBKJWFOWIGDVBpeZu4Ya0OZACLU1St0T4rc/43+kBJdFdw9/QY2MaHhIBNjE7ooiHQSYSo0QEhTAJvyaEgijBHNqLgwKlQSqEzEDpQ/NqWn9IlYYUKRJPRXD4d0NERo+KAeM90fvkO+lbvLeI4AnO411Mdg+tkkqi04CglUrDiNCgNXlRkZkCtEJqk1YSB6tLpkz6eKUSkM3kCKERKpluvQ/Y3hO8hCgPEDsDMrEpUjdQil/rLEcVGSo3aKMSpj7XaKkR4vAV+mQ6zoxEiIj1Eh8GhphooEWRoTOV/AXR0/SRrrcEGw+fg0AaUJlCZQKpPC4kzH9epySELiFEz26XIHVEhdCRYfA0+55u19OtW9BgjCQvCnIFvYUYIpNpjf7Bc+bnC7qrO6r5hONnR4zLCnrIc01ewjg3zI9L8kwwHSXSTbRJKfIC3l85ZCeYHUuEUYQ+UBjJ40+fMj8f028t85M55bREZYaiEKy2ilJJZqcLqtOamdHk1XkaCINFtoq8GDF/OCFOcpav7rG8w6mMfm/RdY0wY+aPJhR1xmBbqmpKPikRXjH/8AF+6Nnfb7DdDvvmks3Xvya21+hRRbAdvtukOKjSROvTakULgoz0ziKJ5HkGEfphwDtPFDIB1YQiegsKpBYIbSAmHlBel6gsp+17IFIUNUpKemtTXYT3KclV5JhijIoC3w042zF0G3y/RfjkGREqg+Ap6lkyU6sMZSpsGDCjOUYF3BAgpmK/NPR4XD9QhoFMpXizsxCGHcPuPcFeEp3BNxn54pzi5BhVVwgMuAAuJDUxNwQB5ahmILDbrEEI8nFFkBrbO8bnJ6hiRFJfHUpF4tBjtzeEGMkzCG7AdhapWpwbUHtBbFva2y3ZeEJXVujJGHxk//o95dkCl2Xs3txidCCTc3avHE3nyWQkeEu/usPfvKe3UPADQj6ht5azH34Hm+W0Ly7ZfL2kmM+ZPzzlZnkDZUX14ccsPviY0A1MC8/Ny2uG5Ybu9gpxOmHxwRnRDvg7j5CG+eMHxIcLcAZTlrQ3N9QXaa0RgyWfj9CFJDjHu1+suX15Sf29c5A1WQEPHk/YLMFwwurmnkc//JDRogIX2d0G2ovvsNkp2puGfSEpVAe94/6Xv+bql/8lcf+SYd8gNIQhst/dIXODEpLBOwYb6fNX1EowO4aYjZmojLl/z3SzQ7/b0ZcaH1bcX37FzU4w+fDvcbT4FLp77vf/BBHWNL1huHvBbbdhef0avzBMT/+AStUM3Y67V+/Y5ltMXeNtjy9KxGKOVTlGa6rZCbmq+L1/+3/O/vEzNrs7qpizevUlN1//Be12A37F4oPfY3H6gGZUMB5X7JbvyReKT54/Y1aM+fqnr3n51S95nGVcPH6GJ2CLGrXIEVtBphTj/BX51iOGNU/OVvS9pKomfPA0Z3F8zK+++iXX7/+UfP6c4x/+iKNHzygnEz4+/4ixzGljxMQ17/slUd/w5A9/xGhREPPIbrPj9Wef8fbNf4f+0T/knYN4+5Yu9ByfnPJ08YBfXn7B8fPv4fceUxuqozGTxYLd/Q151uP7DpFZMjKOJo8pphofBybZjKYV2KCRKlLNVDK5x4CU+eH8jQhU8lMGAUGgTDqng3e/9Rn/uz2gyMMLcDh5Ew0WDmRYSGrKgc4aFIIko+MFUaQitGSs9QTpUYdBIZrULSOUTk/aShG1TObOQ1Lo22hzijdHeh+RPhwOWcijA3yCstnUlyMkyRCoDVppzKFcTUoFh2HImAKTG6RJpW5CqASPCwntn4YZmYYbkyfsPYEQAt4FlInYweP6ZLKNKHw4pGuMBCHwIRK1TL0wQqCUJjMGozRGi1QgJ8D7pBqZTJBpSRASY3KavcYO7hBFluRGEL3CBYfA4pw/sFgESkXyUlPVSUXxnUAKj9EKkMQo8R56KzFGoLo0WDbbwG410KwGXB8weaDb7bgJezYhgsupFzVnj0ZcLAr6o5r1+Rl1plgcKbJSYhuHJpJlJMUGTSQQRaAdNHbwdC7StgOrd5budodtS46ejahHgqKoODkTiCcPAIWpAkMnabeCUoIfl+Tn53zyYMHkvMAbxfvvPmO93eHtwGA9Jx/MmZ6PKM8XFGXJm12LMAZtxowfLhKuvW8YGxCzE5QuqeocaQLF6THRtjSfS8TNErvcUZ88Av33cMuX9P2S8vgE3+3I6jEhSmKXSLCSdOUy2JZMZEhtkPRJ2Qg2wdKcIPQQnCXThljUBNvj2z0ua4lS4Z2lyjN0VIBPoD6pESajLAqEBOct7W5LHHqECAS7JdgdEpeixKGn2YBAYaoJxmQIndD9zmi6bk+IHcImmFtUgqwuiFbjlELhGLqB7vaG0G/p+zvA4kmwNzmaMprOcV3L9vU7YtvDeITDkXcVLkR0XdKtNvS39+RlAWVFLAoK7zFZxXC/xzcWsygQQ2T76gapJBRjQjlDZxndcgu9R44rNi9eI/Y7kJLy5AHTBw/SBYSU+OmEYjbCDZ5mucEUAVHPGdqBrrlle3+PX35D37wlqozy5EOyowJV50R7RlnPYNexfH+N0Z5yNqbfDuTTBZn6PuPZI2LrcE5TnFVM6oz9EInPHxBCz0h77u9a3OCRZYFxmvLRlLZNBavtrsXHe7bvbxg/+4ByPOfsIgMtcJVEHc04fvSMaB3TiwzRt7hBIbRBL2b0yy37657zj6c8+OCE5a1jMm9wS83P/9WfUUiPu7nk/S//c3R8h+0DyijIcmK/TfiGYUB5QdAS4Vo6Zxgf1+TFB4zUEaPuMyp1ibgr2PWfoyYn2CbyJ3/5Ck5/wI9+9Huo0+ewvkfefUZ/q/jVrz9nJSLu9EP00YSsnqGLGuEFm+vXtFe/pt/dMppccPTo91DTKfvlLbcDnIweMjMzys6TuWOmD/8R56s3vL9/yYMHn/Dx8z/gp//8P2P3y58zmVU8/tE/YD9M6eY7zrtzHh3PKOWE1XvP519+xmp3SXF8ynWWMcWRq444qWn0AhElQv0QEbcc8RV/+EdPeL49YnljuHr1NTe7SzJdcvG4ZltYwlhxt3PUbsP19I7R+RNO64Kj8QT5b/0DKDzTqmScP2aSS5qdJz+vqN6Pufv8JWr6AWr0KSWK2XHPd7/zPV6tviQYy8nHZ1Tjc/KsZFJPOD05ZrtMIYj1KvL+1VtQV9SyYLuXNLuAj4K8NGhj0pnJtxiPdJ4qKRPS49DMFWNM1RgyJfd+29vv9IDyraIBBxR9DBAODcIxJJrsQUFBeAhD6rEJ6e9DEAgvCELg7QCkw1tITXQep0JimER58HSopF6gkUolcJsAqdXfmED9AeNNgrqFGA+vJzS+1AKpxN8MJDpNn0Ik3oRWOv1uBFJp4oGyEoOEmBzdMoKO3xJy0xpKkMr/MBGMJ8gBpMOHQEQeBhqZFBKj07CkUtpCyOQR8FaCSWwWrRRKSISOSBEwGeQmEiUURlLmgv1e4Fwi1wmRJHghBHmmGHQyKRoKlDBkypAZgdGCGAK+E6lDBUUUEe8jQlu0ztEabPw2Jp5h8h5pJLn2KBfYXq65ubpFe8PR84ccnWRMTwrMJGcyBuECk1JQVGCNxjZptWRMIASPD5HWSq6voN0JirEihoCSkJeCupA8PFLEGNguAxMPizOwHhyCdR8xVWRURHRU+Lyg8jWzqcdLmGaGmyHj9Wfv2dxc4+/u2d7OKHY5k0px9uyc7d0dbrtD9EcUmcIFWN3s2C/XlErTnI6YPBmhgqa9EixmBeb0e9xcHlNOJVH+Ade/+EtWl98wmo0Yrq+IsmcYelzr0BK0lgz4VOrXDUThU8JNSAICLRNiXnkHmcFriYwFvnMIkRN9QCNQMeCHFjc4hqFNAMKsIsoy2citBd8jvSUQiD4ggkaqKnUhS5lURBIaQFoHztN0GzKpyPOSzGTgBCnU7IntAFFTljUiavptQ7/bMexvwXbIGEEUaFkzHi0SSDCvCV3AKjC1Js8NwUtklVHNxiiThlM1KRB5ju0D7t0VeQz0T2tsrRHvr3G7nGIxow8WXY8Yn56hZuMEhru5S+j5SUE5KdizpypyispgpKB9d4N0UDw8JuYleQ7HP3pKVpeMplP6xmLflDR7hS8NQp1RzB9Rnn/A9lYy1oH6eEJjA7sXrxEh4KXB+4B3PSJGNusd/at31GdH1EdH1DJnWO5o3l9ha8G0PuHdr18gSUMYOFRJIs9qiLnh2ekP+dn//Z8i21vk04dkSlDoHFNF1AcL4nFN1XvMPOPubYPvLMN2TbEoMBZe/eVXnPzge6w+X/Kr3Y5P/8FzhhvJz/67/xbufo2LS95/9c+IRpPV52g70LZrCkrk0ROE/RVd29CHDdJU6ExTTkZk4yO8KFA0hN4hRgrpItG1DNsdry8DV7bk7HTBZHyO2hW8+2rFq1+uuXv/muvdnnjSUh6dYIv0vArQl4bs8WPM/IzVy8+4vfwVarLAoxnanrqqELZHbRtuP/sFP/9X/wX143N+/KP/iPn0nKKecPqdH/Bk/xnb9T31fEo1qShtgZuWTOyU7nLLz1/9BNcqOrsnAO/aJX+9fkt89IDnpsS1A7euQQ6CYWeo1KcUosG1S9pbic9PyT+Y8mCSIYNjN0y4XCvcDazDG64ZcDiWQ8NHjx9zmi84efAdHraW1ctfcf32Da2qyMqSs2ePmZz9b3n1+U/Yf/GXLDPHxezHGHXM0++f8m+Zf58vrr5EP3hKs7xl2G3J62P6BjbrNbt9S99s6O0G5ysCkaIoiUKmixmR6NKHg5YDB+M3w4mQEnXo4xKH81FIkoL6W95+pwcUIb9NwnxLkeU3hXy/6c6JaciI8WB2jQ4VDghvb4mHNU/0Ci8lwiuCUymKjEJEhZAR6TnUxiuiVAfTapoIhUorFo1Aq4SElVIQokjlf98aXKVE64NtRCqE0mA0SiWYlFLpRWuDUDEB6A7ymLPJE5LJBGj79kERDhh8j0AqiTIgTQSp6GmJzh/upzRUmTxD599yXw5ViEIjpcbbSLsfCD7HZwqjQamknCghUDIlk4RJ7c7Oa2Ib6DqPs4eBMCryMicET7Nv8R20W48UkXEpEDqkWLM2uNhCtIig0lpMRYJUmFyiiGSFZHJcocsU+9Yy4JoG0wb2zR1GaYSc03Qdd3vNuJRkSpJnUJn04JZKMoRI1wScAST0HrYddC6xaUoDWaUopGHYzxiZwFEWGY8E+1Igg2BagEeyayPBpDqBsREca9hlgbu94NVSUxYR5yyd06wu96xfXWKyntFRTrBbpJox+fCEu7sb2i9fY2bnnDwb04Qt73/1BaEH9fEpt1cdJs/gKKBqiWsh5ALjFKodE03L8Sc/Ijs+ZfnFFwz7gXysCP0AtoNCMkSPqSrszhOGgYDHf9sFpTVRGILU6LJAGA1KE3wgqAQyxA40mw2d7cA5lDDJ72UHRADpU6u2luC9A62RxhB9JGpzGE4ERudAROYKJQtEEAztFru9wYeeIZ9QLs7T4zKCMoYoDH7oCb4lWo/WGabIGPoxKh+TGYVzPVJkiHKM1hIZ0mpVuZgUzmKMqifkeUae5zgfUgH6EFI5YG5oLt9AtIxdROtIXwqyowozrSj6GjYNYd0Ce9pmixYRmWn6fQPtQCYU3X5HdPf0XhD6gbwokZWhuV8jB5g+vKC5HxCrDaJSFHmFPrtgn1cI71k8PMNlOe31HewT9bQc1ezb7aGLaEpRzentjuG+Zfrogpgv2Lzeg6/gqcaHAfXkQTJU6wx9NGfz8opRVVPP5uTzEt9pRnWJNRa12aLswPTv/BBtFbvPXrJ/9F0elorRWEMDb76+oqhzdq9fs//65+QfPOX8oz9ga1ccPz1D5Z432xYxNrz//IZv/upn1NkdxWLg9tV7inqCzdNKW7WW/v5rxscfMD16DnZguHtBVIpsNCPPSqrJnC4IjNgxhJLSnOJDg0fQdj3L21tebGvqj/+QYvSUq8//jHe3Pe+++ZfY5icsporjC0MjO5zZss4f0ttACBaTV2R6RKw8ZrOF22+QJkOTE/w7ur1Cr09QesdxdcZ3Hn/CUOwZTXNuvrrm81cv+PjHf8S/87/6P/Dq9U9Y555CKaSHMATWdxvu1rdgevphi5I9wXf0LvJ+t2TaviMbThG+ZNWsWO17VN+iVw3Z+5L7fcb40TEff/fvMYQ5/d2a+807Nr94y1c/+2ecfu8PsJTshiVvtWLVDLQu8MGjwEiPODo6Zd0ObNY/48u/+q85eXbB97//t1mcfMz86Dm3u28YzwzVEAnbPXpU8OzRc4YguemWVIvI/fJrZKjYbR1N0xDxOOeJokdog9GJKJ1qJxQhpLRr8n6K35y/aUBJYQehEnbj21uyRPyPxYPyraciQDpovy0LPIBgYvoliRjJHCsOSksq1nPEYIleEDhEjb0iHA5vcXiiDl4jvAQp05BCAB9+I2dJ0qpCiPw3Ta3p/Ujk18NaRpsMbQRKi4PcpVAHBUUZdfC3CLQ2aUsUIs56ootIkQYWcVBR0twiIGoUJJS+lol1GwPaaKQS9O1AdAn1H0JIRt0DulzKSHAB7yIxeJT8dv3jcV6lCDcCISPKC7SXGC3QIpF2Y0w+Djukw1BpmZSWTCJVgdaaTrrErhDqsIJL9gAbIAqNtT3WHXwnUeBcouVqJYjREvFILajKjPHE0PWSmM1o11PCsqVrOtbv1oResBtXjCrJ0QyiCmltNEj2W0+7sygjkSZj30c2TTLonpwIjqcpSdQfKXZ7hd4HTkvB4ijQzwW2A5MnFkHfBHIRKcaGZMPwXN9KPvvMcXouGE0gao3pHdNFjnhQkZmM7PiC+uIBQ1ayGzxS56hRzuxpxexpwf1fdqxevOLswYxs8hEhlPhRJNMD25fvUWHLvlAJXtdvyUwJPqKEJhtPUeEIYou2BS7PiZoEW5MZZqwZ9jvww+HnxR8qIEBKjUVhHAjnwPsE2LMegkit3N6htUHJHB9EWhvGgJGRwQ1YFzBljc4ykMmknuiwIWXklDmAEx3ReoahxdkGFS0ydrhBMrR7ijJLmEOlcTbgho52fYc0BaPFKUobclkitcJMR0glMSLDZDVS5/iQqi5kWZFlmizPsIOj6wfa1Y6iLJKvKs/JywonJbIuCH3AuwHfOsK+ocsKGDYI6+mcQ2aBugg0t2vCeo+uSvxsgl+t08BNZBj2ZOMjyidn1HWFlBGjNEMOZpJREhk2O7qd5eT0jCHW6OmYfrejODphux9o19eIU4PrBoZ9g1I5ox8+xi179q9e0lz+HDl46t//h+QXJ8RB0LuI3AVkPWeUVaiLQMgMsyInM2PWN/fUUoGTOOfxE8G0zLhfCsY/eE45PaF7fUuPQgVNkcHq1nH5xT1CG27+9b9g/dU/g9Gci+/8O3gnWW1btNY4dCIRd7dcf/5r5OWf4YfXvLm64377jmI+JRNjbD9gHci8Tn6lqmJ0/IRoNNE5ZJljs4iqR8QgE/BPgBovUNkOa9+zu5O823uW03OOynPCneCrV3/MRL7gwVFALVK6UI9TKWRTN0ijWeqIlDkGhUERjKE4qjl6es75o0fstx3ZukxAyfUWt/4Vo/EFP3j2h/i5ZzQ6Zl1csv76r7l/VvHhD/53TE/+fS67O6o89V4NQ4lxliqLEC7Y9g0v/M/Z+y1eGnRVkukCGsdGbtivHffvr3FXS969/SXfOZtw9vTv8Oz5Y8rJY16tBm6lQ/XnvPnmZ+TjLA07vSPsV9y3e6JzvLYd1jY8evgBSkkWJ2Pc7hnLX/+UqjIMjaI3kXoy4eTox9QjQxAFN+9a2vk9mZnhVh2SDcfzE/zOcHW7QimHMhnWW3QpERRAThTxN8p7UkMOF8oiMcR+k/BUCiVlqn+J8W/I6t4nJdDb3/qM/50eUOJvfgHEtyCzf6NvOH6rpASiSqsRkMQQEcKnAzCmVQziwOdQKekipASX1h9CJu53PIDFvr3XknwY8dGDB6FSl4yU3/paDq8T/6Z9OFPo7G/ex2iDztKAkrKpKdqsDllxZdIKJfqYjLZeoGKKwIaQUkqRNBTpzKQETowEH0AphMpwrcP3LvFcREQR0IchzB96hwbnybKMKsvI87TmQSbGjAvQDaAUKJmMvsYosjzdx30HIYpEf5URpUBrna6elcAPCZnuXcD7JPuJSML8S/DWgxe46NgvGzQFpsyxg2DY7vD7lkBFPp9QzsYUdUGJYf1uCUrRdYHwfsvuumMzqfFDASeCvFbsd47ddo9r9mS5wu4kbWdAlUwWOUfzwKJ25KVCA10RKUaS81lkPElk4k3jAI2NkUmpCC6SGY9QgmUbuNtFrt/doMKUo4sRRsORUWwenbO6vKG7v6MezVk8n9M1gfbzDZN6inm+4MHDOSaD5csdtCu2K8XUFowfThhaQb+85m71NXmWQxghCkMIA5kQNK8v6W7fELormru3qDAgjUYWOVlV4LY7lI/oMiOGAh0rrO3om92BCWTQWqOzgiyXSQmwPTh3eHynAVSENNRELITUkCyVSe3ReYmPEZUVSCFxNhzWlpFgB2zXJRaIknjnccOAH/rEvclHxEGS51U68FyfSgmjJ2idPF5KkpUFHsjyjOz0OFUpjCqMMigbYeDgG1OU58dk0xK7b9JTgQz0TYuUCl+NGY8rMqkIQrC7uiWzkqAqopFk4xmxVMR9TxOhLHMKNyHLSvrWUjw4Q8w7XOeYn5ywR9H0O2LToaY1oSioFwsmpwt22z3TsmTX7Vld3aC2EjXSTOY1TW/JdMH0uOSrn73Av2/Iniw4+t4j/M6j6AidY3x8RNxLbDvQ3d2BKQhlxiAyMudQWQHSUo0VnYfu7YbZgynbt2vskzOGWlKrE6QSTOaGYYAoLU4VzB9O2DYPkXLM6JMpP/h0ylgLrq8t233H8acFL/+rv2D9+r+l+t4nFOffYTRdsLzdsTiZs246kANFaFn++hfY6z+hvfmcF29eoaoCR4cfStzQ4P0OJQR1dYIyJbGzRNdgZEFjb6hmE86ef4hQAjvsibZH11PE9JR6+iOk/wlb+RZVPybe3fLq5l9x8vwHPP/0f8LT8im6+zUxroiMMUc/wuUf0PcVxmkmxYCznmHY03hLPVvw8OMPKZ88ovQz3vYvqWenqNhRdB2h0+y6SyYPHjCSj8isYPrB7zOjo9Ij/GZNyEtOyyMmdUmMgdZnVGbG0N/QNgOVE/TPIvcBGr/nwfmCkSh5+fqaPlruXrzn8voL6nnGyfcvEKMTmjLjOhqOWo2ILV7suI535N+rmfi/xdurO7bNntC0SBuxK0M0ku0buNMZ9fiY01mJfnLK/pMfsrn6Ge3NHzOaX3D64DvMxjN8P+X9569ZXX7Go79dcn7xI3xzw7ho2d0uCU6B2pPL8uCPnGByjTSK6BVReJxNlSvfWivUAYSazrP0d//m6yIezlJARIkk4OT/SDwoMYbEPhG/mdH+e28P4uBNIaYiPSFQwpHMEgl/T5TJtyJkSp048RvKbNqipMbXRKFNCk0gMVU4GAAPtYRIka5MZdTImNZA6fMDqVNHjVSpBO43/pMsQc2UPigvB/VHk4YHjUjE2wgqJmx8dAFtA855rIvYkHwu3nuUEiit064ZgYgaEQe0TOZXnUtM8S2YTVPkhsG6Q+xXo0wanEKMhzswrZfEtxwYJJmJEDxKisMwAiDJMonRPplRlUBnGp8pbGuwXmIjuM5hfWRok+kxywR5lhDsaWARNF0gWMvQDvSbHfbmDuyYthLUsxGFUGQPTpleHKFCxAdNv+mw6z1ts2O1UghZkO0C7a7HrvbQb5E+IIXG2CxFvEOOAnJjGBlJriNTCeMRjKpAKQSVADMSWCJ9CAwust5pbu4d5TiVv0Xd44eBdn1Pu84RtSb2keBB5BMG34KC3d3Auxctb766pT4+oigy5rWmiz1DHIgRitMHZLWgax3CDyyv3hNXayw9R88e0/QGXWQIORBVj48t/eqS/dVnFPWEsj5iVFUMwhFx9NsdtnGpOTqrES5936JI3ziRFdhoEU6AlvgsGdtC53FCHwbmlPRx1hJdD6agqkpkViTbk5CEGAiDxbY7YhLi6HYrwqEgMAKKlCSKMaZYfF4wYJAqR6ssFcC1Lc6uyfIjTJREU2NMiR0CjgFVTzEmRziZVp/NQHCOQCDLFFbAMASKomJoO+zdErvdYqZTwnrHoA3bfqCoR8RJSein+OsNYW+RhcSvO0TXUz89xuuUThPB06+21KdniOkR5WnG0HmGLqKsRI3GqCwnrvc0t2tqlbP96g1MJ6hJzbDpkCFQZqf0O+gvb2jznPykxswM/XrJ8E3D7Ok5qy8uMYsxMitRIrF35KxGbiuK44fs39xjgqMoJGVREjMI12te/enP0VnO3vUsv3iLMZKz75wwZDlK5tgIbe+ojaHIBLtrR7seODlzhBApc827qwG/Hxj2nvFcc//rf0H2+GO+8x/+x4xKw+2rPWePS65fdeRjReYdr/7kj7n76/8UKSx33RI59thhIMsKcq3o+hVNswafuD+qHRi6JdG2WNuhKvjwyYd89+IPWbs1K79i267ofWQIYCczKvs/w4Wf8Obtr7m5/BIxqSjjPVv5HW7l32Vy9HtgBKaoGNQRq8axE1vI9syqEeiS+/UdvR1Q0TEpHzGd1Cyv3xCmhifxAWboqWRDGFqKCvJSk/mekcoQquJ4/hGbQnHb98zGY+ajaQoXeMHm7Rua+4ZBGaIR5HlFMT5hevyAWg2M1WPef7Hki1c/QxlNdjTl/McfcPHgEYvqiGKwbJYrXDcQm1suvGRhHrB5NmV4/IjtrkPXP+fVi69YugGUo84ME22YRoFcryCTPLz4hGfTE47LEa/ePuPly89Y3t/gb3/N3h9RXBvudi95+MMFJnvA21ffYJQh7gElcfQoJYnR4/yQlH+tyTKFKRSSDHKw1qa1jeDgnxS/CY18a634FogqSH1x8XBGCZlSsL/t7Xd6QElE2OSjCIf55GDVSVdPB2Mq4pDoiZ4gkhEPIRA+AI6o0h0ahAAn8YdUjkAe1hxJIQiQkMykidDDAd6WkN5JiEn19JGQEPkhJukhpF4eefCURJHIslGkQUF/u/Y5SGbEtI7y1uNjMqCiBBmCoAJepzVTcm56xEF5keLQSSRS/01wAel0apXNdfJ3ZOn/VFIl0FpUicobBUqJQwjJH9ZbAm8DwTmizfC1ZDyKaAGliMlPM1Z4H0DGQ6rpkKwSAaUE3oCUASUlQx/Y7lr264F23TKqFdOjHJkrpKkxWUy4dRfocQzB0m0b2vsVxlnEBxfU8wlFbTguc4oitUqvN4bdtqJrUrJos3fEVQ/7e/zunlw6ojZUIyi0YMBTIshloDKSqQFjksk48xCVJEiPV4IMifcCayXrnePFu8DtRvLkAyjL1NicjSqihKurgW7bIJygfFYyvThh7wVtF7n+qytu363RdcnoZM54nDOZKGKryMoMzIhiNqW3ktFUoeuMF395x3B3hZkZ7q5vESJDjQzNHUQH5aRGuGOG1ZR8VIKKtPs10idQoIsDylu0SANTxJBlJYMdEAiqsmC3W9LuLVmWoaJMsMLDY1EYiQiCYD1DTHUDIir6rkHlOegc6xzCelzXY4ceHxxKCELfEv2W4WCijuyRMku4/CLDVFVqSO4GhAsYpYi+o1tuGMwmxbXrMaouUuJoCMi+wYY+MU2ykn6zYlhdYzJDKwLDEMhmp5jTM7q2wSuFno+RCLrVCoRkCCBNRlWN4GSOkzlWaJyGYrFg2Nyhuh1BFWxfvUIWGpGPCLZFS4/Wkc5JsnqEkYZmsyZ2PZtdixiPuDNrQp3Tq0glJb5pMCJQ6EgvJMVizuA9oDh69gGbF1/TXl5iZzmzjx4SfGB/uSQOkZPvfYrtFPqxwVSKYdtjmyGlq4xie7tBuIHsYk5ZlXTv7+nuvmZoT6nLp8zmiqFPiIS6hv02kiN4+76lzj0ejZlIlLDUZeT6sqfZb8mnp4y++2MmHzxj9bJBnpbko4q791u8cqi+54v/8j/l/sV/gw4t+8FhiNAahtgzOjnj6OQRN7dv6LodbhhomiXeBbohYnXH/OI7PJx+l4+yh4x2e8pxycn8iG/Wt7xev+Buu8R98YJ+fcP1zUvWzZpYF0BkeXUN+jOGBx5dSLTMyPOA146d6xlNcj44fU6djYlaUeuSq80t1llWzZpAy25omesxEyxTXaGNYSlbqvGE0XhKWVa4deSLmy/4tVsR9ZxHbkodVDJpy4SuuF/e8tN/+p+zam/5+I/+Ec+e/20spC6ryzvefv1TGm8Z2DJaHFPM5uisYjqe8t3qlGzl2RqNtwPq5p48BOqiZiYVlFOa6TGTT8cYM+WzL39C391SZTUjkWNCoBSSUVTIfmA2qhk9fMSiGJObMy7vvoDYUZUVM2M4fjLD7QU3n71C9gNVWUCuyS4yiqxK5lZhUuknEucGRA+QY1RK62itD2+Ph/WOIiZPQjqLQxIOvp1DxIH2HkJMx7X67Y/43+0BBfjWEJsORPE3a53Ib+6gcBg20tt8oscKSSBJ2VGA8IJvW4yJAaEiVkCMOTKEg7KRvCA+CggBmUVAE0VEquQZEaT4bxSKKH36BkZBlAdPSULYpu+RlATvk4H3MPT8JrpsDFpEvPRYlwakb1knoFJCKERCEdODxfvf7AC/nWiVOqg4Il0lmUxjsjSEKPltS20yECfjr0BrQV0IAppucLSDw3aWoRuw1uFDhhQZs4mk0JGyTINZP4B14A9+l8FGnE2rgX3f44ZIJjL60DHYhmB7htWaweboRUVZFQkUZyJGQpSKPK/o25Jwl7F68Zo3v1hj947zTz7k9FnNoo7kRURpRZUp2lqzbw12gK4PtH3E9RE/NJiixzBipEuKOiMoTVbBRCsqKag0lEoiTUB48AicEmxxWKdYryM3W8HbnWQvJaYOOCFwHkolOHu2IATP3g1s1gNH04KTU00mJ1ir6FzL8v1rhu2K8cPvUh3XKQWkLASHkSWzj79P+eEZRVkyHef0ssVknr0ekAj2718hthvquiSMjzBjg90u0xNNntGsb1EmB2vT90pIolIgcxARHzlwfTIyqQlCEp2nMCXt4PB9j5CCuqqSiugt/dARhlTVp/ICpXN0SNJujIEg/G/SW94PCBEpy5Kh7QnBomJSGaU2eO9x0ae1TZGox0UV6a2l6zvG9Yg4meN3acj3SlJORpi6xO06EIFh2BJaQVFOEVExdBu63XuGaBO+vpiQVw9xMuCLjGoyRtk9m7ev08pTF8jOY99t2S5HqNkx+WiGb/YYF9H1iDBYuuAwdSCWSVHC9Wjb0i/vsJNjRs+eIY+m3P3VX9FvlowePyWvS3RmyPOc84+eEPqB/dUGd3PNcnNPEBnVo4fIqmSURfrG4ZSDytDHQHm2oN9Itl9/Q3E8Y3R+islq8JYuOoTVTJ48od82uN2Aa26xux06L+G2YTgWZOdzTs7/LuOLJ7QxIFvJ0CkyHRgf5QzB8f7lmm9++guqWcbp7IzFoqJQkbc3kmEfyGdTRsc5n/x7/4DeCtp7h28C/eaadeip2p7P/t//Cav7P6EeZUQ7wrfvCaHF6Jyy1Jw+fEhVHtO2Df1+S+Ms1nnksGO/v6c8PmFajviwuiBzGdiW3Izw4phm+zX9ztJ3S26aLykmU6rHz3GbG5qbK/ywYdhv6TcbrtVbBhmZHM3J+wJnAlVVMi0XHNVHlKpEOEnQkaHs6HxLZzvWvmFwkWAGilGG3SoWowm5C4yPRlSLU67eX/Ny2PPOvuO+25HdbLmanpLl1wi14KyaA5L5w495/gf3vH7/33FyMcUPsLrewF1P015z/nBO7EYMrSY6RXvbonxEnWjUYJnvPaOgiSaj1R7bbpCDx9uOPAjyuiAeHeGyH7PZtbx+13O/X2OyKcdlSq7VgF/ese0U8/MpR7pikRvOvvsR+80W43poBYPTRLdF2IbVL/8xLlfUTx8Qjv4D5PgEKTIgYsS3ikfaUAD46NNFyyGl8xvfZyT5Gw9DSzp+0+YihAMk0nt8eqogfCsc/Ba33+kB5Vs56fAH4DCM/Pe+/kPMN6ZCvxQ7Tl4OcVBScAIlIhFHjC7h8ENiZSTAWyRKgY8eS0AGEAejID4H4QkqIDMQ9mDU9Q6pDEpqYghIZRBZShylVUwyGkUfsDaZSBUkV3SI6JgafZWRyXdIUliCTA+K4JNqFEkKQvT6v2cOTgZdidERkym8B6UkWguMSW3IERhsJHhx8MNIjAGtIyhJQNPsHH0/YFuLJkIBwSfuilTJ8GtUINMxiTkO+kHQbgObnaXrHe2uxTqPkYoQLdZ2DNsWt2vpbWDoHLPCMJoKxhkIFUFBVRqGfk672iGvC5qbOy5/7QiqQk+eczTJGMuIDFDpSFZDrlMj6zhCM6rYlRJ3H8n7O3IRqbRkPipQhUZmMCoEhY5I6UBJlEr3j4/QOcl6C9/cwft7Ty8lRS559sjjg6e3mu1WkgnJw0cCHzOabU6ZFZydaOYlyImm9xOWVwOb9T3dzZbTjxSPzyRn48SkePGqQ88XfPi9h5SzKcOy4fJ2T7A7spCTLS7wmyXV8YjigSDslvioEOIUX02Roce5QBwsuhgT8pKh2yGdRziL9YGYaRQmSa8HqqP1nt1+TVXVZFrTNSt8cDjbo7MKOR5jeo3b77D79sC8qZCZRpmcoR0wIV2dW9dhhwZBQOQVWZkhpaPb9gn8FhwBmUzhKoNDUq7pW/zQkdUjqGoyPcFMjqDvCbIGDHbviS55okQAo1KxYMw1xfkpKhdEo6jHY/ousFnt4PqOvDT0aESRY+oFIUI2n2PXDd1uy3g2oZhNQBaoqHEOVOWopmPu37zB3t8yKmfEUUl1PKddbVjfrFmMLxhVJatX79HzI+bf/5B+1yFuGsppxvRsRpFpbq/u2G/WyPmIIB0eSdsMGO0oqjqVne72DO8vqU4fUx89IMod1QcPyaZz+sYRrzYIZdl//ZLs8XO6GCnnE4adQ4xzRmfnNF1EHTlmD0/pbnfkozF+uefL17csZjPuX75HK3j0dz+k62sCgUf/4PvIwSCUxYeB9Srj+svP8bnh+dk54zzQ/n/J+7NY69L8rBP8vdOa9nzmb445IjMiZw+ZmBmDq8sNXcJ0d0kILJoryyALc2FZ4oLZiBu4wEgIobpq5GqaFiXMmICNsZ2JMyOncGbG/MU3n/mcPa7hnfriXeeLTEGV0qAqZNWSQl+cfc7ZZ++1197v8z7/Z6AkMx2X757z3tERt18cMZlf8vo//vs07i1kNaDVGcE1hGjJqzGqqBjNhuTVGCkFZTmiKEY436JCRwwF1WDE/tYOrw5vEuo53UCR51usL+a8c/hN7q/fRk32KGa3KHca8tkuudLI6PGuwZ5F2Fi6+Rmr+oTJtefQ5iZFuY3JPQejHe6MD9A2YjdzTo8eMrcLDp55gRg75vWGRd3h3QWiGDE/7zg9fB1956Ps3LhGORzytQ/u8rUH32Jy84BnX/td3PRnHB/f4+LJ19H6owRRcrb2ZEqQFUN2X/h+iuEd3GnL3Xtv4NzbvPSx57m++8foVgUf3P1NDo/uc3R8ykn9Pvm8ohSOfHoHzJjZqGJQDpGZY9G2LI5XvHXvLjeeGfPs5GPsmtuoLcvmhU8gjeNi9ZDLcElYpkgKugGtK7h399f4WP4ZOjeiXawpkRR1QfARHyRBg5lNGfEa9cM3iOYQL8+wF99mPN0nVlOkKJLI9YrNh6fiVylT/MPVyCYtN5ErMajvCQLR/xtjhAAxil5imYwf3+vx2xqgXB1XTEmM8UPN7NWwJ4L4EM8Re092SqANpIhWkawlEsDjXUDo1FTsQkCLgJMBosUTyQKImJgWvEPIDGVSEK3FI6NHxoCKgShTJ40KPlkiY0aI9PHvKu1EQyrUi8In+6ZM9uFoRIqH1wIpQSmP1knx4j04f4VeIfYq6gRM4tNzkEVB0YsChIgIEVEizWB8TEFsUiQhsFIpVC30rqgIKKMxeYH3MoWL5TlZrjHap3ZiRKLuECiVWpoRAtMIggzUm5rNyQbvHTZPzFNoHK4FmVeEQUEnNEYJBjoyKiPaRKwPBCcpBwXVcEw+3iXUc+zilO7ylNDdxrlEGQoVUCEQvSCTAp0nwe5sqFiUA9aVwl9mZMaRFTlVOaQcpubTagiDgUBpUq1AhCgT8l9ZeHSp+PIbnuMLzfTA8ezNpFWRUqOj4LINVLlgf8sRg+JUCkYjw6CSLOYBj2c4VYjjnHZliV1kNNLsjCSVhrM2Ug0015/bppxoMiVpg2M1bygLgb1+g1Y5losVYV0j0Kw3Ci83aLvEG0u9OCOs5mgFZBlGGppuSRSAUugoyPssnOgdhAYbAlFI0J56Q9KYeI+Inrbd4JHMZrtkWU6LILhAVAaZZcSokutNqyRT6lrsZkVoGnSmCD65lHQ5RXsH3vV9TiZF7MdI164ptGFQTVk1SRsUrCeuG1SmkdUALUuC6whtg9KpWXgzP0O6xEhmxmDICFnayZpqSheXBH+BvXxEd7oAM2B442X0aA8jTGIevWN45zpGaFaPHzA5uMnoxgyJoDu7oFuc4u0au5wz2NmlePYmRhjsSpBPGrLC0DYNtguUkx0yWUIQmL0RUuR0tUOKmtB0+BAYTHcx4xnDnT2iyiGuqRcd9cayPj7DZCN2n79FNhuyvbPDaNPhFyseHt0HuUEYw+iVl5HDguxkhYySfL8k35pCF5HH52y/cAu76WjqmsFOwXA6Zf3Nhxx+8T/SdQtu//Dv5vTRisEko9ypGFUDVuctw62Sy8WK5dqhRiV5BgMJy6Oa9cry/q/+Ok+evM0Ln/td1A/u8q3P/0N0dkqZTQkxEr1Li/RoF4SiLHKqbIDtUuZUcnFJqtEUU+Q09YLSlHz2Iz/ETiy4vDjHdZaTB4esjIWh5eDgJVw1I4pIvijxR0sGkz0GWy/ineXhW+8i3YYiK5G5Iq4WrE8fY6sNg8mQRVbQNh3eRgbaUG3tkKsttie7QOTaODJfL3j4BJ588D6TvGLnB14l64a8c/cR8/OKx3T48Q6r+29w85nb3Lj2Ituzm6ybC85W5xwePeKoGCHajnztOHvyhPXiiOlexYuvvcQr119maMbEjefh2Zyd6S2Cb3Fty/nZYy5WT3hv7VjuHHJ583k+XT3HUI+otmYEpXn48Ou8c/yrlPsvM74/Ztw4pvmEjw632H3xUzze3OHJYkHbXjLc0mRFhslyytWI1fkj3n0HHh6/mdKD45AgI3muyUSW8kmGI/Y++d9TFg5RWPJ8QD6ukLJC6PxDYeuV2PVKMC9leg+JKwAS+onFh9qTq5+9shN7H55qQdPxf5KyQLgCJ6FnEvrskw+5hB4A9nqSKD48Ud4TogQpEEiCABEFEAgipkA0QmIaRA8eoiPGJF6VwpNEsnkS6AYBNvRuh0RhRGKiwFUSG8YI0oMMBi8kViSrsdSJGYkx9EDhCkiptKuXAqlSd426YoRERMl+dCV7K/XTC+Dq/5MmJI1zQIhIiMmubF0genr7cUK5yWYMGFJwmZDkhU7UnEqPR2iFzlIbrNEBKaF1EhdICD0mt1BeCKoiYy1b2lVDu+ow45KiSu3JqozoQpEPSkZbFVUhGWSeLJNkCrQUNF3S0eRZRj6eoPVNanmEszUyNCiZ4UMCmz4InJMI4Sm0wkhQOqBFJBcZjdmiEKBKBYVC5oLhEAYDyHMBaIK90hkJfIy0LrBygVUXaDaS0MGmdchoyDOH1oHBUDApFdsTaJ2ndYLcwabxPHwcGUwVw7GgMClTptqfMtybIGXHxkPXGXa3cryA5tIRTWB1scKezgmmZXF8TlmUbEYl7dkh3eklQWl0lqOnAlNIzP4Wy8113OUpcb3Bi0D0LSYvCD4kx1SUid6KEGKLkhq0SgJp5xBSUg3GhGApdUYbFJv5IlUhmAozkqgs1d/FxmFtiy7zlPmjRLLvJ5MwIXTgDUIqisEWtu0QEYqyZHF5jHeb1IVlNbmpKLOMKJNV3zaOuO4wWxIXPfXqjLDZYExBUOA2C4woUaMxcbXGhcQIRQHCRbJyCFt7dCLiuynCKag9bTMn39pK3T+rGiPhZP6IsDhGbVZkz3+S0e6E2rVsjk7IBgWN9Jzf+zaDEJjdep5yawyDkpgbsJbRzSnRStrlhnI2xiPpOke0kbZuEUpRDkuaTcdoZ4LWgtWTU5TsYLpLMSkJzFCiZLQ1ItOKsLJ08xrf1NjDIxZaMdq/xXh7n+F2xaV/wvnbH7BvbjK8sYNVlksfceua7We3MBNFV0vm7z7Arc8Z3NzHH1ooh0wPxoxGBaXRyFJSr1o2jaUajrg8PKEaVWzdHvLBV94hCMX5/bdY+Mdc/6FPcfn1X+PRN/4pampAGuzlAlUVBNex2czJs5w8q4gx0rWWuLpA6yERGM5mzHYPQFScH7/Fy8+8zEee+wGODg+Znz1mcXGCrkr2nn+Vndk1juwpjUzjj4dv/DLz995i59oBtz/9f2GvuMaD9SX1+gyCQhrFIBuSDW+x6U5AQucCUUQOZnusbYGPnqLKWK1qKqOpTIbNZsjLB8TmnN1nn2Fx95Kv3v02b735JewgY7h7g1wMUc2GldvgsZRZxqC6SXeyYb46QRae+19/nbA5ZvCRV8he2ifbnVJt76OzMZmueHzyiLe//svsP3OH2WSHxdmCLGZs2ob5+SOCb8mi46YNHOgCk02ZjUZ89LVPomYdudKszhcI6yhHe4yriqoakeUZPgw5Vw37uxOmZof3v/Ie6/UF7XKXy8sFW1NDoEJKhxBF0oUIkbSCJsee1Nj1CfmNKfn1Ga4bIDOFCmntS2qEJBsIISbNotAILYhRptBL3yUgolKWlQiRpzTBVRhqX8CbAjLoIwe+t+O3PUABeh3Fh6wBSWOaRiF9kit9ZofqHTEhRq6UHwlU9NknQhBwSTcSIAZF9DEJLKJHRIEXKc8hRpdAgkzWZPAQU5ZDDBHpfUpYlYqgPFJ4pPKoLPUTiCjppCXKVOAntEIJQVQOofvAuWCQQqIkRCn7YDrR611S7IREJhalnwkmUJIACQmDoWViT0DQWQjIJPJViVmJMabn22t6lVY4FwgaYiUTQ2MBL/AWmiblu0QNtvN0rcTZflSUpcdhMqhGhmo7x/uIzgoGO0OyUqFzQ5ZBoTTjSmNUYi7w4FXy1SsfyYVkMhvRXpvSNJpyuEtuKqQxWCdoG4F3CudAqojRCmOgLNITDyogvWBEgYwiFbOVoAagi4BQjoih6wIbRxIbe0mI4CLoCq4/rxntwKDSKBk4fBxQAvavaYaVwCjAZTStp+0kqyY1V9sQiS4y0J7BUDHcvcG15yfcfLlARTi6gK6DvJJUQ8XyYsGj906pj09YPzpiM/+ATKdrrNQlXbGFnFTIjUPmEmlrBqOcjVWo4ZjGnSNcg1YGYcDFDkJA99etCCK5sXxASYELEJ0j0IIsCbogYoiqIMsLQrvGBcloNGGyvYcn0m1qFu0JQnhCU6esBCVBJwATokXjIHaEIDFG4aXChw5rW5RSOJc+tDJd4jYeqTMoizTfLpPQO3YRJzp8X0IVbEuwgZjlUAzwuWG1nKOioppOiVmGFZIsgDc5arZFFrcRIqNdN7jOkrmWYjBC3tSsjx7D8hDvj7i4LNmrn8FuDKoYE7IxqswpVKQ+foRfrmkWDcoopNHoTcP88Rmza7tkVU6jI4sHdxHrDeWNm9hLgZhOsJs1WVkhpxmm1KgYaLVnZ/eAbDSkGmqODx3dYcfDb77PsJygr22hTEa5t8301Zcoq4LyYBcVBbID0dTURw85HuZIWTG8ucXWcztUsxxfQ1wrVt+6R9eeMvvYC0Rh2P2+jzKsSsxAMBkpgvR0C0t9dEk0I0Y3wLUnzN87o35fcrlacuuTz3J6JjjYe4mH/+bXmJ/8EkEvGHcVzguq7TFBGtrTDapzNJ1Di4KN3ZCrwOayQ5olW1u32D94AZlVNC3s3vkIo90XeOfJOXff/QZnzQl7s2tU2xOiHrOoN3TRkBUZWTVh5/ptutU92sISB47dvWfYvnHAw289ZHV0j6g6ylHOeO8WogjU6zVCSeabS3S9STHseYbbSKaDMYPJDltmSmvXdPaUbWt48k9/lfcff5vqxm227gy4uDikOTzHTwe8/Ds+y97BDmJd44SlUBPO755y9+6/Zu/2q3Sqw4oN+nJBVkxY5poHVUurVnjhmd3Y5jl7A1FodNjmcrVke72HOw+EJtB0DYsnD7h/UZOj2JvdZrozZro75qX4fVyePObcPmJx+hARPaq4iXMZeTGhKGr2ywkDMeObv/w2b//Lf0x2cI87f/j/xejGTZQ0gCOaEiM0MpJKcBXkGC4WR9Tv/lNEM2Y+v8n0zn9PfOZFRCwRQaW1M4IXHiI44QHbZygluUIIIa2LIoWfSqmBxJiEcCWv+JA4iFeGlu/x+G0OUOLT//qpRY/R0hchcdw9WEkha6E/QVL2gtrQK3eihhD6iHyFiykZNogWpwLBKWR/34Lw1PXjbe9aiY4YMkTwyBBAeXxnQfXhVdIhdY7UAU0gPs1WSSLT6CJKBzIT0s5AaIICLwIuCEyUeB9oXWJ5YoygEogSMnFGogcXKQE29iOddDqSuCkxS1L0bhsCsejzTnxanLVKEehaxmS1joFMK2Ku6BBE4fvEzIivIz4I2hbqusV1EqUk46lAa/BBoTPFaHdIkIaiHLK/P2Q8kRRlWthjiBgVKIs0erIuZbsEEWicBB8ZDAom+3uYTU62VVANNbNZjpSC2kG9iazngrKI7Oz4VBcgI8558CrRkcpTZIoiFxQlZL0Vv+4Ul2s4v5R0FkwuMFkazbggKQS8cOCpZxCi5HIlWdSethbIIlLkwBB0GzifS9563xEs7BxoRtuQa0/dajJRMHn+Bs++OuHmWOBC4PwiYgrJZu2ZX1ievHdMbNes50csj9/EuwtWF8cE11BOJ1TXbtEcfoDyLdlwi+BrbGtZ3XtA7C7InKeQENoa5QNBp2sF+vFlkCnZOIhUGKgTsBeZRplUgeCcxbUbpLUpfl4qfNOgUJgiJ1QVhZ9hbQvNBrva4L2nGg0wk1liKQW4rqNra3xU5GVFLiqEBhcDRmbkOsctlwSpkdWQ0Hqca3FNgzIZTjr0IKOUU7wsMGVGF5KjoNq5hshKSt/Qzuesjx+RTaYI29HUDbZuiMHTCMns+i3M/gTnOqLXNK0niwIz3SaGWxR1hZrcQJQD2iYxk3svPMNyuaHcv0l17UWIEuctrqspTYYzOWpcsbw4wpwBtiOuDokIdPk8VkukbWguV7RnC/LpkLMnJ1Tjba69/Czj3QGuEXTnSwZknD58A39xSj2cUcbXGO1tETaSg5duIkTG+rhmsVwiNw26KNj9oU/TPVxw/v4hooPtl3egzOjmNSI2DJ7f4uZLLzMpMw6/uaJ5smCxnDO4PWT4TE69thwfLpLWLL/EbUaIXDF7ZQdROPYG19kcXmA/uMu3vv4vqDdvkg+3kFqz8Q06nyAZIPAUgxHLegGuJtolHglrgTceHRqidcwvLmndIVmMCCX5zSePuLw8gbKgGGc8lmdcrC2F7LCZRo0n5I1FxjV7e59mZ+dlsqpAy0A1nPCx3/3/QGdw9N67RDIGownOt3RdgRIrQiHIT+FmMaXMDCIbcVkKXJXjQs3J+RoeLzBnHjMv2XQn6FGGqCIfe/GP0JaBKB3T7THXR3eoH665e3aP5dkcrSOLeUMMCr23zfPPjDl6fcHjL/8zLqY77Hzi02xNfx9LY9iqArNZQV79QdbLBav1iv2Dm2gtGB895OjxMRdnh5z7hm9xiTv+gC6vkG0gLwds70+QMtDZlmYFDx6+j2/Puf3qc2w2MJCeEMc8em/J6fHXyXmDajDFDIYYPQChQUSMNIi+XiVchap1DUZc4gtNmedot8CffoPymZvofAuJfGqHjcIT+goX710KO7wiBXqB7Ic6T9HrVCKprPZKTgFEBTEkB9T3ePy2Bigx0iuM+zmZFMgQe6QmelopJdrF2Cfd9eDlqqMhfXL3aDBe2XX7Tp0IkFJNk/zY4YNFe4hWpBdHCJwAFUPqtOnncgSXwqOCA5mKB30E0Y+QgldEL4lO4VsHNhK1RjhBNAIdLTKCLARERZrCfIhGQxREn7JafEglfFesiRA9JpJXY6sEhiQg+mmUlGmkowXkWoABiceoJMaNvWe7z44jM4bgG4IX2DY97qZ1bDYdm9pTb1psE1FSYG1BNc4RUqFERllJJAPKUrK/J5mOHaWRaK1wMdK0IlH1PlUJWRdAR6SKZHmkaSXDKmNQTdFOMhhLtiYaozxdFHQusNloBBrXRWwbESEBjs6FflQW8DKQl4phCZlOWptNIzg8hffuOhqnGG0LsoGkaySZjOxsw3gsKQ2s14JTF2iawPwi0DWKYuC59WyGygRdiFxe1EituJkrhlrQOsnJZcBaOLg+4+CaYTyARR0pC8k6WjYryWq+Id+qcIsWWQ4ZPLvH8l7N9Po1Gm0ZlhPW6zmufojQ0CwDZZXBZU2uBNakPB+jJHXdoFSGKUps02GExAVPjG1KBVZppOlJbimJRIlIUy+4asAW2rPqWqqsJJicTRSodoMPNhW8KYmPgqoa4n2H9wFtQBqNtw4pJFoIhI/4riWq1G5ajqY0mw02gJMJ6BupyLIc7w3alOmzLXq8s0jnMEi6eU02qQiFRAuJbzsEgcHuFtanFONucUa7XCQ7fjkkM0Ns65BtC3WD3t4DpWhdQxEHVC9/AqEEg3IXLyRutUEZgZ2v8csNtVIMswKZZXQuorIcM6zIswKT5eAH1IsVOg6IuaBd1fjGMbxW4bWmyZI7xbcrOhupMgnRkoXAar3gwRe+gbdntA+/gZnM8CLHnZ/STXfIphle5Phzh18tmWyPaEYVRmtk7PAFiMyzaGua9y6Y3cqJdUO5PWI2LTFK8+SNe8yPzihNiQ6C8GTJvc0aGQPBrmFrwP7BlHZZUw0Uy8Mz7OaCNgre+fK/YPXwK4SsRbqKtl6RFRVd9Fgr8IUlHw5BQjWc0tUBR0y7dtEQavCt4YzHCCMwoqC1Fp85pPDoyjC58TyNX+KWLafLE0R7ymC8w6TKkF3B3a9+nm6xZDibcfPlH2L71jWmOwW727+T6XCfN2+9zmJ1l0F1jfniAqEzxKhCTaZMZMFYaqa6oMoyxtMZl6HjpG6og8U1S9aixpSB7vZ1unVFE8548ugb3Hrxs9y6/RK2rXn/197n7luvUw8XWNmwM93BbTSb40eI1T0+8sL/wHatufbsjLzIsVs7NHbF2moWXcnMeHRm6KTh1DlQhmK0R7UKeHmJVxGbZxwLQb064vKsgHFJyC64ffMaY7WFLhXHj3LePLvHRz96i2rnGg/vnrBqG7o2EppLpvvbiOkuUjhUrxUTMUepFKyIVEgCmVIIqXGFoRjk+PEEVZSUZUZoatTiFDm8QQz0Lk9HjLp395BcjrLPPQoOehPJlYsnPgUsV1ON8FSnEmMvqo3/pxLJJmrpuzQnPbCIfU7KFYgRffVx+mnxHdpj8eF9cWWD8ghEms8/zQZJrgt5VfyHIErRT+tAqZDYlD44Lso+C8WHNJ2XClAIPDFYvNdgZQJVMkP5iIsfCl9DiCnyWdLTdRKpUlhajOB68gd1NcLpAYpMPE8Kj+PDuBiSytrHHuDExKgoEqOkZHLx9P1OxCjIjKTpIsFFJBmtdXStRYqAC55N3dAsPO2qwzUeIaHJU9BRUYDMBcZoBpWkyALTAUxKidEKpcB6SdtGmg04H8hySZEJsgCFEuhhCsmrNwJpNCZ6ikFkWCbnlfCKYSkI40CWRUIM1A3YTmNDOh9FAabQGJk0M5IEZjsH56vIvaPAB08cIUamQmOsx3eKQgnIA0UmQEfaDupa0XaBurOsG8c4GEYriTRwdOpZnK6YbedIX5DnkdYJXAQbIrOJZHsQiU6yaiR1E/E20sQNwTeUesPpas10rDk9dkgpcdUQTo6oRjl2METu3sI2LVIJ4sU5l+eHGC2x3RLZXdKJBjpHXkmcb5DBY7vUHC1jIHhPQCZ2TooUMCYkXegIEYwsUEITSKF/QUmCVHTB09kaX6/RUlBtbbHJBMLkaFnRLBZoleKv23pNtElEHqLAdi3EFeVogikqsmqU3mO2S+NKKcAosqpI79EQiW5DfXJM5zoGO3sYFzB5jpWB1cUJWhfowYAsz1BC0/iAc5e49SFBNMRmRLn7Mk4NUd6zWl0yG6bgtPbohEwNGewekG+NsbVn/eQezeMjghCYrS3QCuEcm80Sh6QaDPG65fSte+x+9CN0TkIH+e4NsizDnZ0hLt6iO77PZrpNkAX53hgpprjzNdlI4AysLuaMR1PapsO2S+zFPVq5JjfXsLKiONgG5ckygcgMYuTJdcnF4ycMdvaoJhrlS/Qdgy4kndX4ZsXydI42Eney5uQbR8xuj3GZYbC7xfLBE9TylM1QMhk/i+sim/WKeO8RH/yT38TFDV2zYbl+n+HuhFwqNvP36FRLaCwxKpTosO2a6DIIDT5sCAqyzKDzgsgMb1t8sFgbqeslOgi6bkOVabJshhmN2Dt4nuX8MfpgyjPf9wmEDzz5+q9wuMrI8xlGBHIrGZRjyAXry2Pq1SO2XrjDa8//PuoPWr76hf8PNUeo2W2q6y8zPz+l3lwy1hWDEKjkMeWtGaLQTLfG6MGE1pWc1DVFKdnZuUW9tc3D8YCLw1MQgmGY4OUdTh/f5ckv/QKHu6+yuVTcf/gGcdJw6wd/D9s3PkK7OMEffsDHP/Gj3Dy4jb3s0KOCH/z0/8DJB2vuPngPsd4Qb444z5fIKBjFguNVw+OLBYvFKSIo5rbBGkW2vUWpRvi5Y71Y8mhwzNDeYi0USuwzkQo9LjHtPrc++SkYbHG5liBTkWZRKrrWUY4Ny3efJeMDissT8t3rUGYgQwrTFCVCerwISGEwsqU7+BjLJ/fwzYZuZFkdneGfvM3s4HkIVVp/MCnvRSVZQgykxUmQtJtXIlmuBLW9NOFpF953rNS9Jfm3cvxXAZS/8Tf+Bj/7sz/LT/3UT/G3//bfBqBpGv78n//z/MIv/AJt2/IjP/Ij/N2/+3fZ399/+nv379/nJ37iJ/ilX/olhsMhP/7jP87P/dzPofVv/eFcZaBcmZ5iD06umomj6GMtU/HIU7EsQiBCEtf2aqCUKBs9V7IVQi/q6QQyRqQW6ChwvXtFidRiHEKyNkcV0UIhpPouJ02yATuCtBA1sX8BQ/RI4UhqGNtTZ30HShB4a/unIQgBjJNkeRKRqqunGAOKmNgQlYSYV0FpMUS8CB8ilAjeJzuw9eBiAkBX+THpFAmUCCDSeXIOvI10bdKtIFJIj+uFyaEHaCGk9mVjJEoZjJIMSoXWiTWSSlAoGBWCQa4wWcRHR2MFLkgaC5sFGBXpRoHhMOWTDE2kGDvOgiBESVUoTB7IFEgU3gvMAEoj0DoJib3VuF7oNSglZdEH6onkftrY5Mpa1ZrzlaT2kWKWkRWCqhIMhoIyFylxNQqOF4IgPatVsh6XQ4WTEjOSHGxlCOk4u1Qcn3TU8zWu9lTVkBvPKIKEvalEWElUmk1jEXHD6XLAvLNszRzro5bTo0uO3n2f6ajj9OExm9NjfJxTyB3sUPHwnTdQmaSscgINdn7KwjmKgaJZXyLsgmAkUCJjuqai90gBDp/AeoiEmPqI0Cb1LBHT9aLSmIeYQvycAx0iJtdpBOkDmclxAvK8QqDJMonMM/ymJmYFRspEAaeaZHznMCZDh0CzWuAajdQ5Ii8xStIs1+QmQ3uHXc2hqlDa4L1j9eQxoq1Rg4KoIkVW0W4asB7pIWLZHB+yahxmNiXf2kcUFV1RoYMkOgidZzSaoKsCOR4THdSLJXlV4oRkfvYYeXKfzYP7tPUjsvEWkRmD8XPo7RGrozMoM/JiiBoOyOsWc1BgVIZdrmkeP2Fwcx9mu7T330RwQTx4lbbxiNU5tpLIIPAtLJcX3Nl9mWp/DycCSpao8ZTmLGN07TVkvs1o8hxmskU2mpFtl1QDwUZUafwwt3igWUHr16iiRM8EutZ0GUgtkU6wOV9Q3qzwxjEqDI2ITG5mYPdQTc3x61/j8v0vs1o/QGIx9hB0waLdUEynFHJC0IJgYnIa5oroBa5O5zzaFLoYg6Rrlyg5QyqFyktAEewKu1pB52lVxIzS67VaPmC88yqonNwUXL/xUX7wld/DNCv5j87gH3wdNdxlPT+hUXNG5Q32nv3dzOcL8u0xanKTw7uHvPFv/t88ePsrVLMpd65PmT33fcjBY0o2TGt4bnrAbLrL7dkWo2rEqvOcLZ/wjbtfRx/s8vHv/13cmd5gbRraLcdF07A5PqY9mzPJSvR6xrcfnnH43j8B36FHA8r8NvXJkstyzXR6nWsfu87m3Qve/fw7WH6TZz/9Is1Fw9f+7b/gwTu/gd6K7H3qh5h93+eQ+5pzW7MMa8wgoruKi4sjauEZlFPikw1rd4gOK6aDkvFgSicXPO4M+elDngsTbNvysG550mqOnizY39lmNN4G4ZJGazzBzVuG+8+Bn2O7d8jjlFK+wvrJWQo3zALF1jZSj/HBk+mcrLpJVo8RozV+3eEu53SXewQrEFrhowLVIqLv+9xiX04rn+pQrg7RryEfMikx/dzTaYbqQ0xjr1P53o7/YoDypS99ib/39/4eH//4x7/r9j/35/4c/+yf/TP+0T/6R0wmE/7Mn/kz/NE/+kf5tV/7NSCVq/3oj/4oBwcH/Pqv/zpPnjzhT/7JP4kxhr/+1//6b+1BJHEJ8CEHAmk9hn6M8/REiqeLbko7E98R0Su+g47q7/MpixBTSioCok9hNdol4EOXoFAPknxMFDdRoZ56iZLoT9AX7PmQRLe91Tg9zgAi9QOBSxSZleDBAlJokjsiJRfKImkoMhUTQBEfduRIcYXHevYopkDd4AUhCLyLtF7gQ8qDkUom8Wy8eo6yB13pa9mzUzEmM5I2kixPjh2EwmQSTQeySyOaTGEGBXmpKEtBpnpdiwrkWpDlEaMFRqTz1TnFagUnx5b5qaWUht0bilHpyDJFriEzihgjdRMoTLJcxyjwSIIHpT3DXJHnEqUFbSeS7EJIhgNBnicDi+2gtmnsYnJoWoEHptuR0XZ6blpGjFTJei2gruHJaeDi0IIxVNsBryztKrA9y9gaw3wZWa/BTBRbz+0T2ogeaZaNp6oUs2FkXGreeRJ4fKIoBgXnC4cJHadPLnjy7VNWl8eouOLk/glucQm5I3OS9ZN3yEIL0iIFNBfn2M0xdHOoBjS1xfmWWBpMrGidQ2iPVorWtdimRYkPVfhRqSRUkr0QWUVE9BAlvmsIziLznFxl1G2HuPTEXm+lhSBICYMxznnWiznlsKBeXBJdRxAlUudUg2F6P/qKSKTdLNBK9wnHfaKyTHUOoamxOKTWtLYjHwyxbQfOIaoCjKE+XxKMQ5uMoEAWOd56bB0wowoRobs8oxwPGVYv4TpLbEGWWwid4dYeSYlyG4TK6YocJQL2/Jj68FtEN0+bDrXL4Ppt8vGY7nxBOF+w89GXGO/doF7WxGJAXC1ZXayI8xU+g04GwuP36dYXTJ5/ger6sywfnqDyLHUEFYkZGiqHmQwoq4L15YKLNx7C5TESR5ZNUYMZ5d6EwWyPfJThlg7vG4rxkPWTFQ/eeY/9WzdoCocSHlVIVvcbVJajmo6wVSTnFxEjCtS6Y/7uBywW52Aaune/ycXhGwgWaAMF5+hcEfICbUp0qCFEWldTlnuMxgfU7oimmadrwhQQLMF78jJPrr1mTRMydJETsEiREqltvULKjr1nXmH/1mss79/j9OhduqZmvjxFK4lbPeL8nW/hhvuYLmf3+jPs33gFIzpWZ8dcnK9pKph85FP42vHk5AgrC6599PsxO4r82g4vfuYPUntJriR2OOZG6HhWjdjZ2iWf7PDB2TGXYo5SOYPdGUEuUe6MEPbocFgpKGzO+TtHrB9+g+lz+xSzHZ77wY9z+PZvkk+38fMl9dEDHpwekt97k1uf+r34rets1k843nyN5uIIsT2nOLgN+yPyZoiY5VjTopoT8jhjZ7pFoKRzLYvykrMyMF+d8sGTu+zc9Ny5830Ms4rxcIdOKEwxwp6ueHT8mOFNxeWyYRnnGOnozk5YrU7oaklWVQx3rhGyKWrgOfjU96HkxxHVGFkMabsMXUVEuUBmDh86wtkDQruEQUGeFxQvTCmLJUq3LExD9+Qu9ujb5ONn8LJCV2OEygBPiDY5dOLV2IYPs07gu75OQMWleAJ8ihnogYnru76+l+O/CKCsViv++B//4/z9v//3+at/9a8+vX0+n/MP/sE/4B/+w3/I7//9vx+A/+l/+p/4yEc+whe/+EU++9nP8q//9b/mW9/6Fv/m3/wb9vf3+eQnP8lf+St/hZ/5mZ/hL/7Fv0iWZd/z4xA99wAfuniivKKZ1FNwctUTcDXWgQ8X8KthSAgxaUiSF4Z+ue7BCwQfErsSXC8wTaLU+DRxT/VCWQfBEqVIfTzRAQohA4FUB+9ti9CaEHJkT3AgUg21CD4pVoPAi5iyIWIyF/soCTE5SZIQVmCURsskik2NkkkLcwVSQlQEC42NOBuxHSlBMQq0kGgt0f1IiJR2jzRp3BOiQ8hIVkhcr2XRJjFJoR9DZbkkNzlZnsTIRisGlWZURarSkxlBLiQiQqZJluAI3kUaq+g6WM8di6OaxcmaVigyM2U2M8ihIMsiykR0DvlaIULAk4CuDxHrFVpBVQjKImCySKsltktAqMgiUkYskcZHrFOIGGmtomkhCs90DGUpyWTAesf5pWK+EkgD63Xggw8sZ986ptzRXM8nzJeWk3uXCKYENWG5lkgrGG8r9I0KEyTTnYBt+jwbNEG0HB+2HG8s15+rWKw3PPngnJO3vkX36ASxpcBuaBYnxPacEJaIzRrXLfFhRVivce05OtfEziPLAVlhWNYrqvGYaB3dZo3F4jtLrjVt21JoAzGmjBOp+sLKAqMlCo9tN3TeE0OW7OxhjYxrsmyI2dpNmo62ReeGLkREB26ZUY4GaN+yOV9jBiXBKaLQCJOlFnDrMELRNRuCF8hsACojKwuCyXBNi9AQcLh2g7eQT7bRWY4QGj9qk74hq5A6JxsMk1soxFQTAZjBgKZtceuWuNlQmgypMsp8gJkNaYMA4fFZ6tiJ3QofNdl0C6U8qwtPLAYIX6CqkrzYZTbdoQmRuK7x0SGdR7YWpRSr+RpjDPmkws1GRN+Q5wMwE0aDbcrRjOgKsmIMuaTUJeQ5XQf7H7vN5PoYOku9sKybBZ2tya89i5nuYmvFYGvGeDfDNQGXabLrA7qjmvO379F+8Drn7QOyW59mPBvSNS3F1hhTGeSmRlUVi+GKomsQzYrH3/wa977wP2NDA8JRmhYlarLQEG3AxIC0ETXYQmcTRJFBplGxYyA9Mcto85K4XqdNSpYhfEYXLgkYtNI429HFc4IYg5YUClpvIYfRwW0+/un/G9VgyP1lw+Xx+zTz98lzz61XfieikfyH//CPGd54mfHNa+xc+wjXtva4NbtOPT/n4aN7vKfforMLzlcPac7mqEqy8+z384lXP8X2/jatMmwWjxntXcNuD7mxdYvZxrI6X/HVw0POZc3+bItBZZgcPE9mMqLM8F1kfuy498Vvc/T2V4jdJdMbM175vX+Ena19Th+d8vq5pxpOYBBZXj9F1pp33vgVPJHNa7+DvZs3eP65/yf15hhlJMc0lK+9xPOv3kCMBgzMmNlIcaPM0UtBEQL5eMJyoHhu5zbrzZqboy2MkWRmm9VqiVUZzWrN8VtvcvzWfcL0kiL/veRignSSsLJoDLZdE1aPsfMl8yeGTF0nxAq3abF1TcgMeligt3fYff45Qtgjbpo08iWgi2uIUiAHQ6Yv7iCrEzJ1zpa4y+Vb77L4yj+nmkxo3JRi6+OY/VdQW0OE0Qgvn2pIRC9+Df0m+AqcPE0zh6T963NQUpNxoLP197zG/xcBlJ/8yZ/kR3/0R/nhH/7h7wIor7/+OtZafviHf/jpba+88gq3b9/mC1/4Ap/97Gf5whe+wMc+9rHvGvn8yI/8CD/xEz/BN7/5TT71qU/9J3+vbVvatn369WKxAHgKPHofD8T4FHgku/AVWBGoK9AhErcBH57EGFLyXUAQpEJEiUi90knrQSrpUzGACNjOoY146qTBOCQ2sRtBI30qvUOlEZO4smZFi3f9LtIZhG1RMgltuWJyfEKXIV45dCDS4UJEO0MxaFGdwWhFkaWCQmUEuYxPK66v2KEQSWJEH7BdyhVpGqjrVN6kpaTIInkBSsfk3OmL30SUyJjGPYUGWUnqNqFkKSTaJJCho0QJgdIKJaDMBUXhqYrI0AiKTCDwTy9i76CTicnq2oAPEaES+zEZRVQIhNjRdhkhBpSMZFJikJgiMTc++BRS14pUyodElJApQW4ixkRalbL3vJd0raf2SUxstMcFQWeTqE8bKDPFVgk6RuZdpO7g/fc8MXjMWKJLQXEzIwjPyWbO4nRJfXhGO4ks6wEhSgZTzyw3SBcR/bnUmQIRmDeRw0OP3TRUA2g6x/mjxxx99dtsTh6iR4Gw6bCnD1k9+BaZn+PcgrZdw9P+m4jRmuhyXAwoL/HLQBYjYb3Bdg3gEa5D9zkuSmc4EQneoaXCx0ipJbloEV2Ncy2d7ei8QOsMbSrQhqIsU5bFeol3li4EsiApByNs1DT1itBYpNDo2JEpgSxn0KVQpno9x60vEkOXlRiT40XK6vF1h1876nbTl0rmiCIj04KiHBGVIThLMZwxqgpcuwLbomuBi10S7VlPPt5lPNqC9oh116Cyinp9gesgm1xjeG2QLPuNQNUNlxcnqHaOqy+pmhsMb77M3vMfpZGvIhtHU6+gCeiiRKsMdeMa4lCxOjpDZSNilKi2Qw9GhKxE2pa4aCh3tvAKMjJiU9NdLtB5yWB3TAyK+mKD0JJquwIEzcYTvELlGfnebcgUHZrhwQG2hvrSsXdrDEYzP1ry8Jf+I5ff+hXELKd84Tl0WWG7QCws4XLByTcOGR2M8LZlsj/j5IN3+Nq//yfU528iBhuq8TZDCSJakAHvFFqPCW1NwGK0BAqIGVhHawN11yYwK9PmIIikjwu2QfhI7BpkPkQaQ2xbQrZke/YCpSzptKMb3ED7lvroCWL3NkW+x/b282QTxe7158m9oetsXwGxJGwqBt0BInoCjslkSubHbE4aVkVH2G2pV2tiHXnw+G3WsWalW7JyxnBSQSgZqAItC95envFodcalX1HmBavomRYHbE9n2DayfHLGB1/9FVoX6OaPsdUFelhRXRvR6DWFLjj/5iHH7/0msmzRbsT0xh1KYyjGQzZP3uVJ67CvfJybz79GOXoZGxt0ppnMtvB+BDpSecHM5kwZcfn4i2Tlu4z0M2i5jVc3cU3Bra0XcaLlbLkErcispTIZvhpw42PblNUtfLAsT36T7oNvEdw501c+hcpuUAw63NmK+aMHxM03kmDVC7ws0EPF7s3vpzk75smDt2kvJKa5RxRJI5QJTSxz6mab0SAyfb5gowdQFxixR3N+SH34hK6tEeqXUcMtir3PML7zadQzLxCMSde/Ajwomdba6PvQ0z6xHZmMKroflYeQ3IRKf+9lPL9lgPILv/ALfOUrX+FLX/rSf/K9w8NDsixjOp1+1+37+/scHh4+/ZnvBCdX37/63n/u+Lmf+zn+0l/6S//J7VeBMPFDWuTqG6k/owcqkILXYpT9gt+PhfoRSNJfyN5G/GGVdIgijV768Y+PguhcQopCoCIgHUI5pNIIHXsnkE0gJ6qUNCsEQtgUF9zHveM6QqdxArSQKTpYJpaEGPvCQoEUAdEky5eMAqcVXhmsizgXyYxECZL+RF+JT/rgtnhli4ar/H/nPG3TEoLAaI0SEp1JjBRJeBmhcVcXUAI8OhMIF/Ght2gj0DIidcR7kFpgVLqtKiNVkUYzOk0SntrNfAAfExMlhUwBcALKgWS0VaSYfWVQhSaQyvnaNs27BQEpU1dQ8JKWSFCQZ5HcJPdRpgVGSQgBpQW2jaxbQdtKGifQitTdI5NrCyfBkTQ8IqKFIJKxXAaOH1wgpWMiZpipYmymNEvP/OSMxd1zwKG2M1RW4y8KagyViTgFNgSWhwJN4OCmp95EWgs7NzNssNy/94AHv/pVLh5/g+FI0R6f0Dx6k/rsbXAXNEqn0Z6KKJERRQAlcCIQXUdq4LYsLhcE7ymKkiw3vYjb922jHikVSqbySyFDklnFDucB6/qgPgXCoM0gqfb9BtssCEJhY530K3hs61GZSVH6wiQmS6eeqebkiCCOIMB4+wCZ59TO4LoGCZg8p9AjTDakCZ5mfk6sa1RZogcVne2QUiMzgxEalQ3IipLu/And/BiZR2oCso8AkAGsjETbpEVTpvGjKkY07RK5uqC7nDK8fg0rLWtrGW/PsKGgftDRto5RmWOGQ/yqxm8uyWVOp1qaekOWS3xnUeWAaDLKrRnLpkEaQ7k9xntB03W4ssKKgK2he3yf9aO3GezfZPrqa5hxia092cRguwLZaRbnNe26oZ2fg4PdF18heEs9XxJDZPnwBFNEjlSLMRVHr7/N5uIIxo7R1gtkfkBw0K6W7G5tI7TEbXtWD79KkGse/eq3OHr8Oqbs2LqzTVU+izYD3PIC216ghMIUGh8UUtV4H5CqIkaP6lpiZvDepk1OSHozoTN0SE6wTVjjvQXrUVJRmIoVken4gC1dkKkTzGdeJeS3OT66ywdnb5CffkB7dka3/oD9wWepT86p/SmPTh+S70+RuxO2iz22VMagE/ja0qGZP3mXk/uvM9ufMjGfYLk8Zjk/x1QFQoN1DUY1lNmY3EfG+QBhPfk4p4iam/kNXNvRbNbcm7/HW0dzovOscFQ3M66/9Ap7WznN+x3Xbh/w6kufYTyYUB/Nebx6g+u/93NEC+v3P+Di7B3y6x/jY9/3e1itFtx756tc3DO0NrC9u8/uwS7BCbIcBoMRXnryjUW5BdRLbm5fEmyHiu8wEzWr88C7X/wAZhW3XvwBiqhQ5IRgIQZ2Dm4Q1Q0EBoXl7PwYbz9gOApILhALh28fAGvKqacrDcIq2o0HD8K1iFCyOW3xj74A0eJ8TfCSkCnq4JHnlnJHJRv7acTkOe1KE5UnRoOzIWXICIsI56zf/xWW732R2Sd+iPKZ34OcbiMkuKjwSiCC56pA5cMKmr6r52kareqXp+8UZPxvH78lgPLgwQN+6qd+is9//vMURfFb+dX/quNnf/Zn+emf/umnXy8WC27duvVUGPudR+jFnsmr+OEPfBgWcxVYJvuvuZrlPGVUxFWUypU16qkYKJ18HyPRJbQovEc6T3BJmyCVTruPnt1RKgmORAwI4dN/SGJ06UUNKVI/iXd9/zjT2Mn7pHmJUaJDSgP1mcZlDuczXK+qFsT0oEXs9Rmxb3aOPauU2JK0wKun922M6kWxCQUrRXJehD4+PwZk7NkVI8iAtvlQsa1kchQJFdEyiedKEylN6hUSIeIDRB/pnMCHBFSsCGiVNDpaeMo8Mp0p6qxIYywhsDay2aQFMM8hyyDXKcMl6SYkCih1+p4x8WnQ3tV10FhY1oHVOgmDZ6MUeKez5Epq25QL4h10PuCjZLWJXF46XGwRds38TLClhphhCSLShTHdtQZuOlzrOX1zhfee8bUJ3RS0hPkqcnnmmIwFTTSsnUca2Kw3XDw45uHXv0xz8k3k+Tss79/F1mfU7jKBQZMTfZeYtRBxokUqhZZXYXzpGrZtDcGitaSzawKGEEGJ5KSR4cpBls6HVCkF1jYtwqjUZyMjRvZiSBUhtgiXLMAhGxOMSVH2MX1YuaZDm3CVbgidBWsJ0ePtGoOEpqYa7SIKTyc1yhQIVaRRoxboaBiMJiy7lm49J7iGpq1TCJW8iRoaVFYQY2SxXuGbDbJpksA8QAg+2ZeXC7LRHkHlRBXpVqfIdoDWBu/XtMs1ZtNRjQZINJmZsby4hINIWQyQ4yq52fDMTw8pZAQZaN2GLhiq69cZv3AH4ySmKtiZjVP4IpL1vCYbVEzvjNFScn7/gs3pu7B5n9iNsJsOPQqYPMM2nnyiGB/kLD5YY3KFVYrJi8+S709BG4Y6Y3N0QlGBpKS59LRqTb43w4yewdXXUOWQ1eWCyfaQyY0DJnnG/P47XH7j33F5/6uoskFnGbdeeA6d53jnCDbgnMV6T6QjeE0MXWJx3QapM0LQbObn2PWCGEvyMCFYh5QGaQzS5ISmo+tqIGmHbNcSg8A5z2g6ZDYs0eWcrRdfonz+D3F2dM5IGlpTsbk4xo4L6o3g+PFXKeSQRghCmRO7lsXZGTsH57jRBJeBVS2ygjAb8Jn/7g+yNTtgsV5xeXHB8ckZx/UR+Xib2XQX6S12WTOeTJiWM+xmSddMeW44QXrHm+98jXVcEPKSk8X72KAwoyFZ8RGWPqfcK3h29Bolmq5xDGcztm4MeeUHP81JB3Vs2R7f5P5v/BJBrBlN7qDEkOHghLazzA8fopXj4GDKjeEueS6QOmcTLMPZDNOtOT5/SOdr9nd3KPKKTdOwCRYzq2Aw4PLkglXbILVEK42QGkibqEyCoGJy4zNw+i7G3ce4J8AZqlyiDnYY5tcJ9QdQSxAFDos9OUP4D9i9s0UzkdgTT1x67CbgtCcvDcUwJ9/ZS6nSw472zOPXEKPDlBnLRSB0G1StaENLm0dYLblc/CLju2+y88oPUbz4GWI+QgXXbyKvJBRpQy/6BTiKXqDff4CJ/72i7l9//XWOj4/59Kc//fQ27z2/8iu/wt/5O3+Hf/Wv/hVd13F5efldLMrR0REHBwcAHBwc8Bu/8Rvfdb9HR0dPv/efO/I8J8/z/9XHJcSVXvaqdYcenFwJea40J/Ad6lf6r57qTZ6imT5Z9em/8UOh7YdJ+X17sA9JsKc8QnmcTDX2QgpUkCCSLkUq04t3k0ZEEklb2CTmEDIiZHiaFmuQ2BixLqZdixMo7zDe453DeYUNChsiWUiaEuEjxD6QTSb7sI5ggsCqSCT0Sa9pt60UmCxZi5VM4w4pUhGh7RK4EN/BQiktQYTUG9QBMSCFpDCBskhgJ4li0zwnIp6m04YQ8S6CSMyUFIJcpdGQKQOVFqyNZt2mtU8BtoUNKUY/OImqIpmMaC17oJJe+yxLjizrPEhBGwStlSzW8PgQ1ptAVkZmo4hRnsJofAGrOglnVy24VdLJLNYSpIEixzYNZw8XLM8btp7bJpvljCZDdKZwdsXpt1e0FyfsvrjNdDjE54aLkw2rY0fbOVojuDjSLNYNh28dc/b2tzl+83Xc8W8Q6vex9hKixxhDoTTeW4JI14AIggxBi00zXOeQIkV7Sy17nVQKYYvBp5TVGLFXgTchEGJEKY2Smv7SI8aAtR6ZpeBBpcCIQBAtSnlQFhdzIjneSYgaJUASsW2D1Rtw6XEqJaERDKopDRnKebzriM2K0K2JscPLLO3IjcQHh4oalVcMZjPW81NQKTWW9oL6TIGakNWeIGCwewNfVdQnD1M8vtF4bKqAjy1xs2KwPQIV2NgVsl6CyjGTKZ3fsDo7Ioat1LFUg/ACFQSucww2nigjg1HJZpQRz84we0Ps/BSlBpST5xkog5qO06ZkvqLrOtzCEouCYjZCZxrROMRqSWwWRKPofERZEC39YjBkem1EvQR/XHN5fsng9haTWzsMqyFeCgpj2DoYgnU8/OYJ+UgSbYPMDUHNqCpPbGsGN0fIy1NOv/xl3r14BxGOUfaCYl9TsEODwkgJTYsROU2wiNiglEyRBs5h3SV4jykMUo1YLy6SUy90+DbSrhc0+YCymiKlIi8GbJYrnKtBdCitQWWE4KmqyP5QkFfn6GufoK4+jl+uyYY523rM8aFnIBTddEzMX8AendOFDboYE4TC1YF6OefRg7do1isebR1TDUbs7h2wNRpxfTyjMgMmuyN2qh1mgx22llvce/SAs/PHxFxx4/Yz7E2vMQpDvvzNb/KV3/j/8sJHPoac3mB8Q/Pitdfw2Q2++taYw6N7NI3n8btvMDGBF1/9AfLsGmftnNPj+8izlpe3Psrzsx8kX77J5eUGv2kJXhPqS9p5QzdXXC43mGqEt3M2C0WzuGArFwyKMSjFZb2mdg4GIzL1MpfHkao9o3EZnd3iaJOhxy/SxZZNcMhMJeZYSpRJia+SZAeWQjBWA8T1z2BPN5RigFMtuI7S3yDIHSjO2ZwtyUtJNR3S+kgoL8h1wMQRNneoYIjUxMqgREZQERVbrBSIYMiGDhcsou5wWKbbOS4UrFeRQcgR3oORCOUJl9+mvnuCMEuKZ36YYAxXfTwfSi76zX/sOfzv3ud/z8dvCaD8gT/wB3jjjTe+67Y/9af+FK+88go/8zM/w61btzDG8G//7b/lx37sxwB46623uH//Pp/73OcA+NznPsdf+2t/jePjY/b29gD4/Oc/z3g85qMf/ehv5eE8ZTqgByB9fH16/iks5spiG2NCeFfOnxg/hCVAb4Xqf1vEPuDsCsDIp+VJXN1Hz0II50F46DyIjqwfgdD33sQoUUIhlEFgQPRjDzwxdERviF72UhmDkBIhk305zwxKR2zoH5NIds/UpePoOoU1On0oOoHvxbKaK7txPxoI/dcSrHf4KNCZRhnQJnXWSHXF3Mg+6E09RcMhTcuQRPKMJLZ1aSyWUmgDzsmkzhcC65Mt+4qeMro/w+JK2CwwWqC1T9ogAUZEogtoqYkhja+8izQh4ruAHhhinnQk0qf7kCqgFWSZxHtJ8IHOQW1hvg48Ooy886ZFScPNZxRZDkWRWCYbJMu1wzqwSGQjicLirCJmAlmmojoKx6azTNYdfqBZHW/o1h061wz2SwZ7oCZjvIGLozl3v/gIER3ZYEjMCh7f3fDwq29z+o1f5/zhf0DUd5F+DdriZUy23piYKBcjMkJuMoJwdM5iEHgiQYLHIawnC5oQNZnpc3V6MC5iwEXfh2UJvHc451AqPhV4Q0QonQAtGiECzgWkiKAkIivI8jJptUKgdQ3e1nTOkmVl2uHbGqxFGI3WBlygKEdIo9BRJeZNAFLiokVLi1IZwkpaUlmhQDHcvomMEUdG6zoyVRBiy7qeo7XB5DPqtsFLwWh6C9t6ilzRNWtcvUSajE3bZwypMbqSCGlQTtA+foAdXIK3FFmFq0aoyZDCRDKT91b4jGo6gJdeYv3+g1S2OB0gqxR3v1k6zGpBJzxRapSStNEx3M7JBxW2Te+18mCHLv8kWhmiGeJGCShMt0eUsxwbWpbrQDbR5N2AapQxmVUUed85tbY0F57LB0dga8QyQ4hI1jUYu6HaGtFt1px/6XUevP/rFFPPtBqhjaFVBYhAKxUiCHwIKJ2n90lvCU3VETkydljfUQ5GeFFwuWxBeIJPJZnCO7p6Sb0s8daj8gyTFYjhiE4GmnXEOk9WDiiHAyazMaJYw53fgcv3cN0a7wKz0QxVK5wW7L34URo6lp3kcf4mF6ePaayFYMk12K7h8tFDwuqcInasloJGWhqmzPZfRhlDtI7FvObk8JTjzYb3PniMDRuu7T5DPFty7/w9jPYUt4Z85tYfQecF1fA2uVc0dcPR+ZKAoNQDWn+JVpKL0wtOHj3hpTuvsDOZcHN8ndPNCV89PWSxvsuL16+zs3PG2fYFv/u1/yubkzlf/w+/yPlRIBRrVDFgf/cWW9MxN7a2qPICKQ1GKmZVxeriFG8CQRSocpezdsrKO9pGsmklQQU0BpROLcE6ba6lMCgBUUpSIIVGFzC++SlOjt5ivXiLrBLQdly8/SuYnV0GBxVuXdLNO0wecXWNXwvUTkGIDrl9HZVBbB/QrjdI68jHBltUSLGD3TSY8YrCzFmfR8rdLYwZgm2olKMIAuslzm0Ia4Gt15jskvXxv0RdmyHMD6ZpQ08PpIT2vtUY0Tt60sQhOXz+dwpqG41GvPbaa99122AwYHt7++ntf/pP/2l++qd/mq2tLcbjMX/2z/5ZPve5z/HZz34WgD/0h/4QH/3oR/kTf+JP8Df/5t/k8PCQv/AX/gI/+ZM/+b/JkvznjngFSK6gWowg5FPwIWIq0kvTnp5bEVcKlA9LjRJmUT25InrE14+KwlPFClcpcOKq7Tem1DzvQ7JF4hPOEL27J5KAkVAEqZDKpLIlAgIHSEToEEEigiQ6jVDpDoQBZJpCypAsucSA9yLtgDtoW8NKepBJw6JVSkiV9NqV/rEokZJjpUyMhZCxtxOn8yh7yykhjTo6p3CubzOWPeCRkMlIVoA10DYyfQhKEFJibRr/aBPxeRp1iAhZCBgtUx6KSE4jhSDTAWU8hIyuTefYZLJXhaexlO0S2JNBJHt2TN1K1oKMiTnJMlAioIzECUUXUzN0bSOrTWC5aJlNoMolRie82rjAulYsVzLpbmTAuoB1CmkE6zrgOoHJK3ZuQ3QelyvsomZ+tCCEjq3rU4Y7A4yeoXVBMYKTBxes7j9gcH1ENJrl5TH3vvw6x1/9D8T511HhCSgIwhNxqUg7eoTMcTIQpE7ajuCIXOmQEmw0fZFjDBHrOqSwuC4BlBhBqCQC19r0jnGJMQXO2fSh4BObqK5SqIlIrfCuwwrIRIYLGSbLEmvmA65p0yIn+1yEEHDWEVS6LkVwaGuROktlkFmB0IYgJPl4ixiS08qYjCA0FkduMpwF21qk93Q+IGVGObuNUhF7+ZB2s6QcXgNp6OZH0F3SmgxkgVYDTK6xdYuUGUEVFFmBLzqIgjyv8Hi0AREUbr6mNY6t3W2iNFR7N7G5xi0salpiqpyd8ialGdFuamzXYIqcQT5gsdwQJeSzAcPtGW3jGcxm6FGGbiN2vWFjPVJlXHv140ShUDZg2w7rbGLEKKnyEcY4mmxMtjNmNMmRSuBipF07FpcNynryscYwIK47WC84u/sN4uacR+ePcO0lXtRs3RhQioy6czSdRdLr3jIQQtM6Sx4jIqoUXxBzUCE1TzeOLBugyut0G09Qc0xWQBdRXuGcha6l3SyIIVKYKUbliGpAoQtKM2a+OiEbFZSTHfR4h3jjFqHaIbQdSgSm5ZD9LLJ1MIHhgEl+TtOOefA4UGdD4nSX9fqSzlpc02LyASjJqp1zUq8ZDrcgz1i7Da5u8etjHjze8M7991nZi+RQEZL60Rn37h3z+No3ee4jn+XW7Zvsb+1gwrMsmgXHzTmL+QZrPetmQ8gExbhgLPaJXYPCc3h2j9nOmOvigExLJuU+K3GKcjOerOa8cv0Vrt8s2axbNruR+tDwq+5/YefWx8jynBduPs/OdIvt7S1yZVAiIGzAqIqpGSPbhuXFBYv1BjMYIMQI7zfoTOGFIReRqCSCtNlLm9O0oY0odPR4qUEG5FQx2H2R+t03sQGyIn14N0dPEKsJ7WlDvekYTK6nDrKLmuhPmK882XSLsspQJsMvV9C2MJoCA7STXLwvyYcNeakQmUFW1yn2fyf28hGZgLAMoDfoUYM+yOmoUe2aQnYI0yBoEFRPRzxRkKIJ4pW0IqWrp7iOiOe/YZLs3/pbfwspJT/2Yz/2XUFtV4dSil/8xV/kJ37iJ/jc5z7HYDDgx3/8x/nLf/kv/xf8tTTXeioFjSStBymATBCQsVcY07cMP00o6WHH0zMaEKov60OknpynP5lGOx/ajlPrcCo+cklo6HsaPSabsPEeVUAglaUJpRCuSfO41N7XgwgLQSOiQRIQMjlXlAR0CkKTITE6CTAFXJdAgZQJEEmZLMJFJlBC4LRA9BqUq+JALQNGgVYCpQTehz4nJmkWtEnnzwfobKRpUwx5YUSvLxEYnQChVgIREggQUiKixDpoOxBN6ifKMshNIMpI8J5MS4xJj8XIQK4TnRlCRMWA9oJMCDoZCUSsiTiTzqlSMSnBSToWFyJKBGRUPSOVGAJFEi6r3rxlg0LlBlMJTB6JHtaNZFUHHh16Ts8VkymIPLKqBRcXkSAD81USheYqYHIJE4PbeOymQ2SQy4htV/jliFAYBsNIvdnw+PEp5bYkZo71o7u8+6XPc/b+v0PFI5Rs0SLiRExleCEVeSVFt0UAWgSCgu5qhxGTJVuIZGkP3qeyOp3o+hhSR0aIJNAskiNMyZQ5oLRBKYN3STRLH0woIIW5uQ68RSqVvi+SEDW4gO1aXGdRQiIDSJ3C73y3RqHxKmKKAuEiMaZ4bbLUWipbi8zBmALfpvh3UebIIiNESTYYkk8N9WrNOM9oQk10Ent5QbuaE7XFxxblLoihQylDbBtMlhFyDdESgsQRKYoUGiXVgKg0KivJlCYfbZOZnGgBIfHLjhg966xFGU1elhRSIaKmUJK4t4taLfEWqsEQfCSrPGVREEWkmc9ply3RRUbdlPPTC6wPlFs76FIyGA+pLzfoTKNLiW4cpjS4ukZ0Ai0FBSJ1PQnJ8tEFtm4Zbg8p8kg+LomrQH12xt2v/Hs2995AxjkhE+hKUw1yCIZgHY1tUopCP7IWQmPQRJ/Se62zqZhUKqIQ6KiwUWKzAmTBZrFGmYyqGKGQdLKlUwpCh/QB1zbpulmvUEV6/YNSUJbkzBIjN6hgZ48goLPr9D6VnlFhOKhWbHdvYMpTCB2FXdIYx4kSZDsfYzGdcfT4A7x3iOgYlvvYfEUwlr2961RKsxUd280TTh4+4D/+6jepybl5+wXOHy5pj89Z1w+pxhMQYy5XpwxOJTfVkL1Cc3O0x83ZLu/m73Nae7ozj60dWTllq8rYLcZ0dsHK1xyfnTH/9hOsarn+yc8SY2S4vcPy9JJvPHiXcuOolw02OJ5cLtl/+SOM928xNAO2ZjOmo4rt8YRhnnN6uKaxjqa7wBEhWjbLRdIFdg6tAZ0hez1g+ldzVbRHz+ILBEKBJEVuCGVQBuSLn6Q5f4/N8etsMk2cg60j9dGKTETW6w1WrslMTRcdD956SJRDwr3fZPvZAYPrlqx0hKWjOTxncFByeXjM+mjDbNKAEeiBICsXNI0iHt6lXh5z8SBSTDriVDCa7tAWn6LYfo7BqMJlJcEbhLf4kNbFlHnCh3koMQEWIfsMlD4K/3s5/qsByi//8i9/19dFUfDzP//z/PzP//z/6u/cuXOHf/7P//l/7Z9OAtCrgVYvcA0xEq5EskSI4WluQgy+n6+Ip0KdFEKVHDKRAFH1dJXoF+8+3O3p30k6jf5/EygKnui61F7rJVf9A0bIfmSSLsSoNFEqglKoqPuAttTWKkVKlRXCpDZhmcwaCUNI0lQSIiEJTxtPjDYF5ogU5iZ6XYbq3TGRxHDQMyhKpXTUtLOKH4ph6VkUkZYv565sYwkcKBn630vPWZIEtdInRsch6Fyks4HgQ9q9Ecm1SO6KHkRoLclUJFMpE0WbFNmvkHRdWq6VTPIqE/rbPGmBCYK6jbQ2gRVjBCr0cf/6wxFdQu+9N19EskqRDzUik2ysZ9EEzi7g3fciq3VElgKKQOsVFxtHWzuE8ETRYBHIuiC3DlaCTGrU3oC60cyP50hqRLWN3+roNmsu7h0zrOacfuk9jr/972gvfwMjLSIrQCh88P15VDjpiK5/o6pk6fYhlVeGEFBCoqLA+ZjSeaWkiykNV6qU8xJD6tXRQhJJWSfeWyIeGQMxuhQGGDxSRELf5C1UIo+9T6mOEQVSg9LEkKzCPkQEDcFKirzCA4OyRKFpugYfJCYfk5WG0NYJ5PqI6FpCsNhNwEwmNMLSOktmIStH1MsVyhjKbMx4ZwvyIZm1BBe5VBnagLErmqVFZ5p8eB1va7RRtLbDLBbgI+PJHrEcErMSW2/Q5OTFqHfOSfIspxiMidqgs5LYBpzvkDJg65Zi/zqXpxcEd85gZ0I2HjPY20LUkc28w/kOpRRt02DrmsJIXNewOjojqps47xlOZqhxTj7I8fMFzdkCozTSSIbbE+J6SdcFWiTOBXRuEkNqG6R3jEYZxtWsHx/ywetf4vzum2y6ExxnHNzYxmRTXCeJrsbjCD6J6GXaMSQKXUmMVEQXUuZOiJi8SLjXO3zsUhSBkkgx5mxxho5pDNT4BqVUr5dLGz0ZAsJbYmgJrcZ1YLRBFwPaUOO1RD97k8m1lwltg5KafLADwVLliQHN8xsQ3kVYjVTpOrh9fY/B9JJ3Fjmh/D5Q/56L8zk6y1hzwrUbr3Dn9osMVMXhW2+jmzlvvfx9yL2Xkcuv8fDrv8h9sU23PGJy+xnufOKzMKg4PHvE4vyIWT7m8dlX2Nt+nsl0n+2tCbvXX+P99RH3teKebMB22OBpncbPFXvTGZUY8M63v07j77L3zE2mWwVdMGyqAc4UHMoj1GRA13lGw9uwHBGEoJiOmezusDsecLC9T7syPD66RxdrkBpjkolEZRXa9BtUkUI76cX8Sqm+/uQ7gEnPpMSYNpdaJkNViIJsusP+D/wIi/cvWD14HzGWdI3FW8cFlmJriAkG53JUlRPlhmpbs1wIitLh5xs6pRGjEZvHKzZPDqnPVzSsUQc/QpANA7FC7NwhbEY0bc7J+3Oi3TDZm6KVwi8e8OCNtzHjA579g3+MzL6KwBMI/WdQn+XVC2N9CMR+nZHSoKTG2+Z7XuJ/W3fxxBh6ZqG3Nz2dr3xoc4oEruLvYxTgfWI/BH02SUT1CC+ZX1IWiBRPORauZmdJ65NASxS90BWSINTbRN9rjXcegUNIm3Z/2hJ9ByGD4FLWibIpyE0otPIo2duRY1IdCKm4sgYr+WHei4sR4X0vPpUp0VYJtJEpM8RFvI79cxSo0LclXwEukUoCvYwEn7QewUaiD0mTkiWiTpkUC5/rxKIY3SuySdqadA4UmybQNCnoTuurxxIxOjE6RSbJzBWzFRIDI2Ma8WhBDCL56bVIdm4fkuZHCTrvcV3sxZoQm2SVzYykKgERUEqQ9wm6UqSuodB3JQ0HoK4bRmOBylK+yaqRnKXIC/KBQMqAEposg3Ks8S4Q2xXGOLqgcOsVHZ7MRPLKEIeKzamjnp+mHebAoUTB4skxywdvcH76NVb3v0LX3EcIi5AaJRwqenxMJYZX08KnAYJ9YR/i6jqLqZFZCZTreseURIeks3l6WfaHuLour67TGFOIUv8+kCHpNJQ2KcbeJ5u3lhk2uL5lMn14hBDobEdrLXjItE6CaxGJIV3jSnqkLogisO6WqACZUjREzKAkN0NoO3IbsDIJtIWWgE4MX7umEwHpoFk7inyICY7JaEgcDGlWKzBzjDbIZo3v1tQbmwBH2LBeXJJVIwbjIVlRUuY5QiiyckDUGSrPE0ApBugsw0vY1BZpQSvJeH+IVY6sKulcSPlHTYfKDBtvCVjywrDZrBlUJYNxScDRHlsmz9yi2t5ic7lETypMDqpp6TqHCm36vFEZl6enyf5PsuxH11EfzrGXp5xuVjgdaS9P0esVLlywaU4RpWG2U5JzB+ElflUTgyc66KIjyzOcdcgsI/rY28hVyi3q57gyZkip8S4VuYm+YysiWa3WuDaQDXKMyunchvVmgRF52uk6m/KWhCBsNql/JQsUZsqqa3ClZHz9ZUbb+6RqFk2mhvjVnCzzXNt7jqlbYh9/E+cv6bKGYu/jSLboNisyPWN/Z4fyzkdpVcfbD99kONwjH8P1neeQq8CyOcY+POeXXv+X7Lz5mzzzkT9IHRX5bMbJo7dRWc7x6bcYre4QxB2CD/jLNSf+PmowRnbv8RqB26Vg215jPL7BTTHhZjbh8OKM0+UJ7x+/BZeXZI9ablx/gWc/8wq+eJailOwN9nl/tcBoB1FTDSbE0HeUYZC6QJuWXBuyzJCZEU+e1DSbJboo8MGnhVgbQKRwQehrVngaYgaiB4emDzcT/Y+l70skMQgkihBShxjak2/dZlT8jxQ7v8Hm3S8TL1vEfsZWrqlrx/lbl3gZyIqMQZkzvXkbvVBQPMRbiZu3qS22UdTrFZsmMrw+IUpPYwdI36D9PmKxgHjBaC+S5QozkXSLwGrlGS9bMvWA6D8gZC+jRRo1Ky2g32AR49MNbSDpNEO0yTAiu+95jf9tDlDi1YyGKxDx9HM7Jh1IH8X2dEQTYkhJrf11kz7uk2AiaVfowcnVh/13iml7sNKXDl793dAzOTEI8MnZ4kUAZ1HWIrRBeZfcOEqjgiZGDcKjZSDTEaWTNSsK17t7UrNyL3sh9CBM9o8xetKHkNAoLeiyiNMJKPgQU6FhCiEhRIHzaTee1jfRj35SyurV8qYFaCMwMjXTOg+ZFORaYNTVXFEQgifqPjo9RpwD6fvRjxIUBqoikucx9eP0jYUiploAJRKYUr0OSNGDsNTGjb16va7C5lx6sbxLYr7OXmkoQDkQTmCS9B1BINcwLgUHuwK2QGepyLFroW0Tfbq95xmWknGlKUsYDiJBBVwbWSw7tJTkuULnnnbtaesN+AHt+YLVo0MW9x9jhiVldsL8UcvJ+9/i8pv/P8LibVxYJS3UlZUKhU2qxTRCgV5AHXsGLqKVxIuIUCbZfK8E4EJifXK1RAE++L6tQfbiWPHheyGmTqhkHU+vcQx9NnJSWPfgLSXc2r5yIQRP163pRA3R40MKFizystcXWUJMY8DOBoTUjKopItNY3+GDwroUwCSyDNuHvrXBQ3CoGJDBoYJjkKlk11UN3eYYEQ2t2yZmGUJIfO0ohiPMeEi0ns0lKNdB12J9ZLRzHV2k7I5yWCHKEaqsyPIcIwx2Y+k2HawcYiSII4XWinGV0XhFiAYbDSYqjBEYAm7d0lpLqQ3dpqY7v0BPJxS5SYsOASklw9mMfDwAJMPRmBwJizXrxYL1ySFtc5G6gmSOGQ0IweF8Q312xObkIa65RCqHyRSZkLg8UhRThtmAwXCC14bKQuM7hJS41mIKAwMQNtUMCKOxISBExGjztB9Fa52uI23SZ5dPe1pFEoquFgs26wVSC4TOCP2o0a3XRNkkcXoMeG+RHYjGEjNPpzXnocGPNfneHXQ+ItaBRq8RSmPpMDq53i66JZU7oxPvUYu0sdDhWWT5CncffpX733iPG59+hjs379AAzZbBqAFDM2Tx5IjLi4fsDW9zdu89orOcnt1lbL/JJ/7Qf8f5k1e5+87n8cHQKovKBqwWx6i2ZZhn5IsGubGEMrAozjgLBeL4mK1rt7gxKJlkY7amhqPJBFkMOR9esDj5gMP2lIG8ySjfJYiCpgvMYsHGL8iqnJOlI3njBOvomU0GbGXb0K1QTrFaCS7Oz5NEQAiUKtDG9O7HK2Y6BfUkhkQgZYp6kEKA1H0OVzIxPE0+F2ljAS5VqYg0EkIpCvkCWXaTWD2HW/9TgntEtVWg1g1BW9qmgWDJtjyEOdMbe8QoMWaKqxewWSHHAek941IzKjLc5THVze9nfXSJudiwfv8hRdGQPfsS7fousW2Ja3CLSDGdUNwSPePfuwmjJMR4FSl7tbfuCYLErBMDwYO1/weOeP5bHjH6fk+eTJdXn9cyJpAoYtrzh6cApgcYCJJ1+EMAI3r2JAXS9z/VMy9E2Y8QrhiWlKZ69duphC1lc4S+1I6QRKc+RKT3KdPEOaROfTvgUv5J9EnkKRNFFmXKLJBRQlRPc1hSOaGE6AghEhz9eEfitaYzApspnEsFf6mXJ6XC2iDorMBacC7Q2cSemEKiVAowUyLloWgRETo5e1zvxlGSROEL+ibkvlgwS+VzPiQhqZQBIVMuSZYlrUt/iSL5MMdDRJFcUjGmv2kSkxBCwGSK4COhS6Cq1z0TAin6PwhaH8h8ePq3Qx9yJ0S6v0IrQgFCB6QPIBQuSIJNtGmuYTBQjCvPMA8YI2ltYFRAmees9JDoGoZFhiwCsbbUNnI+P2F9fM7ZvYdI0zCcajaL+5x844vM7/576vpeP3YEokdFjfSCEC1eJCF00jYloOG9f1qZIGIa78SYrkLnezCRjBiEFEGcPhDCVZ9Tyre5OncB+hoGma7JHlf7kJhE1bM2IfiedUxt3R9Kw5N9W8SINAoRNHXbIlQa1UXhCUIwHE8YTQcgDSbTtM2GzeICNh7XlXgyvACpA1IGfGfxUVMMp0idIbREKHCxhRAxOmCVQGY5JmrQkkxoKAzlZBspHK6ucW1A5yNCt8HWKzI1ojQVOEFXX9LWHa7zRCVwPrBslwx1IJic5qxFFyXZKEMZiW866ramLEqCsMjOs5pHMm0YXNsiOEdVGLrNChEdOtfY9Zrl8SPQyb5/uZyzXpywOvyAbnlEYE0ILcRUqKjQZJMhUYKsYDDNKbIJIgjyKPFC4aVM45sYUJ2nkS1C51jXYfJ+R9poVJb1m6X0nr0KPBQotNZEKTCmJNhA8C71M8WIEoLNasHl/JwoLLkyYB0bv8LFSFZUxHaDby0BhdQQY4fzyebqo8fZJaP8GXI5JGyW6ImhHEwhKmq/RgdDJic4kXNS7lNO/xjDfIE8+wrdo/+FwcE7vPbqH4GBYXyz4mA2oK536PQnOT15wsXROfPaYjaaow++SZtteOb3/U72br7Eq5/5/dz9wpfp2pbXfuB/pD1d8+ThQ+ZhiS7OUSpjrDN2lGHbl8yiIWwcD9fvkectZQWT8UdwrmIaa8xwzKqGw5ND1Pg6ja954/6bmGHGjfoO02HLC3ducKOYcdkuGeeGiMI1iv1yzVaRE1aO2Jas6w1N3hBlgUQjpXuq+0qC9CQPUFojVGL6Q4i99iSNdMJ3sP3wnf1wgNCphDVqlvMVzkXKkUGVDmUGzMrfgfnMgMXX/wGh8GTbW2hxA91tyLevE5tThLxAXfth7MUTVHVMMR6R5WschurRXdTiMbrwrMyCfDAgH/0u1vO3EeKQrj4hVhlyMCCaJfkocpDtkz/3++kYp/Gsi3QxuUWfMidPn1PiAXxM12S9WSetW/xvKJL9P/JInEPomRPV00n0gETi+wTYZH0SfXurTBoMfIrC7y+Gp46WqxEKKY8imWuvGnqSKORp+WBfPJiC3xKKJEqc78c/PjlKpA9455OIzSfhhNQeERxEkyi8kASy/RAF6R1B9FkiJMYgRtnPLAOhX6yD7bCtpMkVRSeoM5FeVZVGNVEIOgdNF+ksqSU5pgU/+OTekbrXrqiQEmKlRCEwkqdRLb7f7YcoiU+LA1JLcW5SmmwKoBQonay8RNHrXFKzcBql9WAjCKSKafEjJdRqwPtEOvgQaFuB9ZEoE1WtZSSafinV9PT1lcYlvb4+in501YuE5RVLkBbxtDA7tJQodLImR2g6iEFRFZCPDc2yIbo2CRxVJGpBiB2b5gIzsmgTuHj3W6ze+QrtxdfI/GkqIBNXFZEQoyPEpEPSIaWgXo0RQ/SJ4ZOKQKQLKfAsxit6VCBETDqkXlNDjMkOHJ5uVBAxAeqeGOvtvb1iKl4Vd8WnQE+Fnkn0LqUdi/5+e7Ao+g9WpTTObUDY5HALSZ9ycHCDcrxL23VEF1JDcL1OO34dCcKhYsQ1LSjJeGeHkIM2BTLLCVagTXImBF3TtB2Xxw9QUaHGM4TKyLIBOlNE6zGmIgpNUc1wRUBoQ9f0sDc3WDp851icPCQ2HcV0Cz2ZkssMokIXJVFo0DVucUquIjGXRNvizw5x4yHWJeG2FBEvM8LlEuda6ujZzC9o15f4Zkl7fI+2nqMyiSoKsqrExYaYWcyuJmcbqTQoSS4MIsuQsdfG+fT+F016LzfaI0NI7ySZE4PGCoeMOcpFVBB4KTEmw4TkyPMholSi/I3KQCRxs0Kl96zKcF2DbWqkAJNl1MtL5meP8b5BZRneRzabS3RWJT2MyQlBgqzp7AYTTBJ1VQY1KFKXim1Ynx+Rqcj+tZcgKJqLc+RkyGA6w7eCzm0QXUDpkmJ2g+nO78AqkOf/kkofMtl6jx95+f+OqzWP3z7jP37xi7T+grw64PjhmyzufcBkd0L+4g4fH/9hjr7yJc7P7vHO+a+g9neYXjMs333IF//lP+L0/F1uf+pTvPQDf5iT1RNwHYNiFy0lXRaxFWSyRMgBuJJmY8kOSqblPv//9t485rLjKvv9VdXe+wzv2PM8OLbjIR4+x06cJuGL+GIRQsQkhPJF4SoMAiU4IrmKEAEE4R9wJCQkQMgIEAkSCAv4SAiQgdwMhnBtJ3bsxFM6ju0ebPfc73CmPVTVun+sOqfdiZM4uZK7O+xHavvts3efd586tXetetaznnXmTMW6OUN/foENC13menOcXl0jFIFJs8qm3iJ1XGdTsZmyirheoF4fUQ8GZHmXZg1dB5yQ4XDkBISi6zD0kzhUGU1h+rzOMAYVt5NuVJQREV8D5xgS55SVNo3QNI0GorEhyJC10SnWBpY9e/YjEim9xy1fTm/P/6aJx8kWHL7K6cSCZrQRExzRnqJTLoLsolo9iam6BO9wm+aZ21cSxis0pma5r6WXnSs3Mc+VxLqkWnsKmlX8yNOsH4PyBHFpA2FxP51mFz5AcFMvpm/wQJlW78SQ2KVUcCDCZPTfRIMy3VGohlXLISWqKFYtVk2qyWa2+5wqS6bZITPbPU41Fkp+kHa0KnhNatXkpWLSe0+98wRJgYo6yBrrVMSWfg8RpVx9YlGsI4SA9w0mywi+0YZcmdFAyzpVRoXp4uKQ6JSpyDLEqCOrzQw2F1yuAVcTLLW3ZF7TNybRSHXq5Bu8rl6ZgyYJIWPUNACkbEHaZWfGEg00Ar4BHy1uJjzWMQtpbDObdu7W4FWdShSoa41InNMSaOc0kDFWF86p6V1iLsmxBIkEL4RgCMl4Ls+0aeC087QxQuEcRQa5m3Zy1sDLR5hUUNaGOmoqw6G6ljpA1QS9sTxMyshEoPaWJkLTCMbCwoKFyjFZG2OMp6w8samoRyX1cEIYn6Rcf47yyP3E0dPkbkJldWa5aSqRFIylm1fDFDDREcQza6qVqsEQcMYmhqpJ34EKuEMKMKbz1hkVO4cQU3+pFJCYxByiO2etdFfWSKbzO0m0phR0COm7mP67NKetRG31MEtvKuvi6xJfVzgDlV9jNFzFVyVF3qGwhqqpsXmOyw3WZvjGg0TKckg1GdEt5jWN1TQ05UQruSyAYEOVROEFlQ/YekA1OExd18xv2U5/y06s8QQinU6f3sI8riiom8ByxxAnJbY7B3mPopij8YGqbLBSqxNuXnDmxAnMyWOUa2cJozN0ez0mk4rOXJc876nAtFlnMFynmoyQ0BB8qYLvfsZCfw7nHFmnixOHpZO+TwCHuhUErPd6zztlBAVwTrVrzjkgV5M6Arg0F8g1mEZURR5FI3aru1CTZ/r9ugxjc7BOny1eq/nKeoiEoD10nKWeTDh14hmaeoBxVgOkPKORhlCu42yOuAKT5fhYkhddogT6m5fYsHk3c71FwtgzKlcwhSE3hlwEoSQvDMFZ8qIgC0LwgXI0ROY3YiiIIsxvfAVu7hhzc13qeokjXz7EowcPceixR3nq0P0EVtlx2WsoFwrs/mU2XnUd+3bfQHPoOAef+A9s7Tj01DIH/vcvsXHDDXz5q3/O6VMPE7sZxXyHXhHpLW7g1NopxmGF/dsup2MdVX+JYCOcOcPo0NfYVQ7ZNP9y3PI8IS9ZXO6xZekKFgtHt7fAyuYhAcGEhk5hqasJozAir4U4qpBRgxNDnESMtUQbk94iIxG0IDY1a7X6PYuOSSSq8L9We4AsL8BoOk0ZfIe1WmbsrMWaTDVFeDARQ8Dljm53M/OLm5FYYTJLDB3IasgyKmsZPfIwWbck1IJfHzIZlDiXkeU5mw7czGR9O+XBf2c8KDEd2Po/X4XpdKmOPcP4ubO4bofelqvId76CYDv41TNUz40I1TFMscrw5AmyRcAus7Szg5gGEw0NquWUbygdnhmbWosEMMleQ5/f+Yte4i/pAEU1I8qLzASGIudSOWYqHTwnnJVEYQuqRVEx6jkhrf7XTH+BvhYDkvwmmBb1JDoOSecbq8Ima1JHZb2yaXPiEI3mjr3HZrk2xYsRCZ4YGmLqm6I5yaA716A2+GIyJHrEW4LXXSQu0+6zzpAXGUVhU0rFpEoMbXI4ZSymOhtnVcBqYVaZg1Ftjup0VMw1a6SI4EWDHA1vZFbGKyh7YZxNnaA19RADlGK11XYD3a5lrpcCyHS+dZoW8yHqjWmnnicalHmvAYpPwsZuN9IpTDKNM1g0NeCcnQmCQxCqGlaH6oEynIAPOZ3c0utFvBhCNIwm2lmzKbR54tq69pvJsxzX0WBhqvGpRqs0ZUUIDVVTUq0fYfTkf2LWj+I4jXMVPnrtrwTkaLopoMGSeMiteq3EFNRqq3LBisPiEvOWfGuEJNgWsiQjmmUaRdOXTnM1xHBuxzIj9UTOuRxP2ZxUom3sdN5OK82SuzD6JgFJjSINJjT6O5JLn3Hgm4rJaIDNOmAMjR9jQkVhTWIDhY4VchuRwuFDoB6uEHyFiYGs6KVOpsoCNHVFrAsaX6lDpe+yYetldHpz5M6xNhoRnDC/awu95SXtql2XIMpGNJMRoSkRoG4qpLBkHUvRzfHi6RRQD04xWTmLDYFytMJo/QwSJ9TjdWws8Z2CECOM+vi8IHb7BFQn0yksmXNYs5CYqY4+WyQSmoYmlBAhc1ruHqTGeNVBZU4NB20KSEx6HqlYXTut64KW6/drk9I7BM3nG72fTdA0rm/iTIROlNRtXPVDEr3azyf2K88cVoTBYI26HOliGA2CJ9Y1RaejdgVZ1DScOGzs4xZ7bN+/n+17/wfLvQVWTx6mzNbI8wi2S8/1CNWYvMiYyzcxtLWyCiFQDU7TjQXjyRrH1o6zdct2uhv2IKMf47Ejh3jyqZMcPHgP1ZmjKf1YkW/YzKA5y8LSdfS27SPvzTMKI/ZeezW3/l//N4e+8DnOHn+c5wZH6HMFl73uACfX72WytsqW/bvpzc8xH7pMyFgbnOKJldNs2rqdZ8dnyQWWtywzWZ8wkiFX1kOqZy0TYMvGzcyJsFj0cC6ycb4HRLwXBqsN9TiwUp1BxFA3DYi2oIi5GhAak+GyDJsY0fO0j+nZaZOxp0hqwQGUVUkIgaLTT3NCN3oSo7KnUctzo+gGz9gcp0+MpB20GDNPjBWCx5ouwRTMbd1Mtalh9NwzSG2hrMgKkFjiQkEoj+CWdrN2YkAIJ5GzwuQJT7F3D1lRYTnNqa88w3znQeL2vWy96TVMnn2WyfGv4kfrRGvw45psnCFHTjK//WWYba9CYo41OREdoyljO107JW3unS3UFwwIwSQ7/xeHSzpAmSZ5wOpCngIVSLvCQGJOUqpGTBqolPoRtJPxzPsk1eTKVK9yrnEg4pM7Xqpr1ZmqlUDpj1h9D2MMWIeIJYihjqhmIIANQuaDdn4MHoIj+obgLDZakAYTXVpMRO3yJRCiUSpWXKoAsep1IufoQmfP5S9jFEJa1GIEayKZMylaj0hutVy3SD4q06XOKOuATwFWCnaaJhKiocgsZAYrWg2VuyT6Sc9WbwxeLFWtgtSmiiwEoZer7mDqMhjFph3CVAGhJFXmDC6zGGe1tXkVaWKkv2DoWcjt9JsXvBhMNFjR8a0bw7gyrI0Dw9KwNjD42rA0D92eYHPtfNw0Oh/GlTBY80xGQmcOTJ6abUWndL9UDEdDVlZWCM064fghho9+lsHgIYq8pGOcMkPWURQdrNFFOss1vTipAt5rEIaAlaDBoVGdkjUWi5sFzFEEiaqqCkGrr6w12Ki7b5c5vPd4H2fzMktBX0wpOCFtvDVynjF61qpo18cwY8CsUinqszN9whqTWiVoeXIKeTVFKoEQK0IzofE13jfEGKmqsf7eoFqaYA2u08GT9DJ1hYRA8A25NFRVg4+BoijIrE/26T2wBcO1s5RVjesvUizO0+9vUnO6lRWGK4fxkyEszrOwbTtSlayfXMO6AiHQLXK6UhHXTzNYW6Vpxng/xphAbh2hqRAzRkyD7UQyt4QtCjKXq4midYjLyZ0lN4am8fqdoIuG+AprbXLG9GpG6NQkMYL23EJSVYOZ6Q5MCiZJwbm6+EZiTKWm08GPUFc1zmV0skzTeM4RnaXT6eODJ/qAMxCCp6xqDfwMhEZbIhiX0VSeajJksH6SEEp9ZkUVp0uoGHkh7/Xomg4dl9MUhv6ORbbdcCvbtr2MPOuz6HOoI+Osw/CZmnoyxntLKZAtb8ZmQj/klGdXmNu6i2zOEJuS/rbNFPOLHH7mWR5fn3Di64c59uSXmIxX8b1Ab3OHwdkxxfxWTDdQjVfInnmAuYXXUWxaZMOGHQQT2XnNLfS272RtfJraw4nJabbecBM/fe2fM1h/moX5bcTKMX7mFNRjNs5tZb0aMmwG2M4cxkeGZ45xcjhmxcwj5V6aYUnoe+boMtftMdft4YfaoHRlpeLsyohROSQar99friXYeV6kID89dw3YVDast4x5XnWOwlqLzTK916zFGkc/CcRl+t1jkv+QTHd/yVg0bXinG2QksdwGcR4nTtcDIjaWuI07mLvqjcTx3yMrI7Kdy8iGTcTBM2RjmJx6imzbK3HZPEGOMrcro14/i3+0IlaO0eo6WEOJY14OM3pqSHUso5qsUp5ZI9IhFJZO3rDxZQvYrsM0GaUYRErctOeaTLMTKowlihICBvIiIy8KGu+oqupFr/CXeICSkLxOpuzBlAeB1Dsn6VCAlK6ZCpLS65LKlINSJFMGRkVMqjieVkEQQ0ohGXUBnKaO0g5o6qKniu2kOQiCbyRZs6trqfMe61KO0nmtk7dehVbWE4TEZTCLw6bCUgmJMbI5EiK+bgiFIxYdYtTyYJcicZPiLiGSGzWad6lrsTNC5rRDsLNpDJju2JN+BGaB31SLkol+3iylV7Cpgiox0wLUVaQJhrqx1FaZi1kULUZ3mlNvFZcqjaYTG5N2pJquqRrD/BC6hUdtA0RNw3xG9FGZFxupPExqRxUsVYBGAq6AoudScGJm32MIKUVFJCsa8ixigsVPHL4ukVASfU1VDpBjT1GeeIT1Zx5iOHgS68b4WjVKmRiczRDUzCwzaUcN5FmkbjxV6amTsNlLTN46JJFsmltmqpVJCneVomhpcmJOJGpazs9M+Di3U4thxrTMApNpsCoRE6csmcyCDoOW2LukZ7EGJBktTX0anPXa9dZokGSc0QaFdZPSVBkQCd5jRO+XMmogmRU9vVeKHCM5zgjBlyAeGwOhqsm89oop+l18dOA7VOtrxOFxbN4BDPX6AOoSaxuyzCAnLfXqYTXsy3Oybo+eK5isl5RFhjgNIkys6TqDiLYDsK5LvtBnanyXOU2nNkED5ShR2ZSUgpvZc1uteHGZmg4aYyiKPAULOWI1aLDOEYOfVWVMF6wQAkgysHJOu0an7997P1vcRNB2A5nV9J0IRV932wI4ceC9siZ4HBqYRpmaIWbY6FlbOUVVDqmqod5j0aZnYcAKzGcFed6h15/HZI6FHTvZeuMtbNyyn43zPaQK9KscK1sJvuTpY0dZOXOU/sJGNu3YgdhI1svxRY/ghOWOYXnDLrIozHc2Up4a8fATjxDWap576vNs2rWFXVddw/bN+zl7aIVHvvoP9HfX7L/mf7Gxt5lnn3mE8YmvsTC3gf5i1E7NRJZ6e8ncVXz1ua9D5ji5cpTQ2YxduIpVXzE6u8JabggLuiHMxDJ88hC9Toe6LLnstbewuGme0dopVs8eYsv+y7EuY7nXZSnvUI+Fk8eGrA+H+FgS8dhMG/ZlmZulXWaGlikQsc/zKmHKVFqDNeqeN7snzZTdVANJ9SGKWGf1XomR3GWz561WLabNYtrwTcXrUXxyAFetnTVaHh+iIHlOse06+tedJD77MJX1dO3LWTlygmyppFMLsvZlNuyxZAsbMZtzHGp6OTpVksVIfxgQSmzsM1kbEeqafM7Q2bhI9ELsGRb2byZ7+eu1rUNtyDKQUOimNxmhhqjPmDgtDAmREANZZcnzDoJNUoMXh++DAGXq+Z8WWI04IH2xJlWPTLv96jkx/d9oFah5PvMSE42rO3zVBxjOtYg2qDVZqh7SYFd3UtbM0j3TMElEEB+IeLzLqG3A2Ij1AZMJ1stMOItpcGj5cWQaNJBWDq0SMtFrwBAdhBqCQ4Iu1DFpVmJ6S6WXtQLDitXjKfDR/KfgTHrf6fVGNX/S1EBqNpjrziE40JAlzB7AU3FxSsGTW52qphGi0c7PlTeUtaVbQJ5ZnDcpVWbwKLMjaG3TdFG1JgU/BuoaBmPo9Qymp8Nb1UJTqZFcBFyuTraDMYwmAWMtc/MuVUdBVTqwaqHf7RlVxyPMzUOWaUCxfqomVlDFIWuDAYNjxxgf+jKjZ+6lWXuCGJ8jZMPkKKcK/OABau0kbB3dzGGCUvwmAl7oZJbMJCO7mOYYyZ8mBtXvGAPWEKI6w05HOiaNj1iTFlCmm6pzYrypzgo0d2emTIqkCh6SMFwDmgxlZabzmaRT0QofmeWUYggQlfFJt1SqRIjquZGuIy8KfPDKBFk072wdRd4hWIs3QmhUDBibBkyY3XOVARM9TVWB62iqx6byyhjJbIHtGGKuTJNLfYKiF3ITCCHpgjJlQEylefx0UxKTSaI1FussXgJeAp0sx9lcS3StpkrClCFJ6XQ33Rnb1JwxgnO5ClXFkxUZElTY7KzWyHeKAkSofaOtNlLVhstSUX0KwqOo4Z5Mh1ufPtg806Rb0BYWATDJ+yY2DbHx5Jma/pkpvemsso8ZNGVDWQ5omhIfQ1pgE5MlKhLvFB36/Tny+Yz53Zez4YpXsrR1F5s27eTyrbuoxmuUgxVcBsHXLO/dzcSc0o2UdfimxjQ187t20t2xgx1b9iDrNbI+5OzKkxz62uP4cIbJeMzSngWu+8EfpT82PH7v51kfHiPrlhTBsSnbQr/X4+rLX8fjD97LsUfvZa6AfuHYuriJ5c4co8GYzYMCv2GOuY1dPCOMhUFZs86Ish7SXdyJn6ywNcvoXbWDrGeZnH2O3fu3cv3+a5FJyVefOUy0kW2L25CyZrLmGQ1GrAxOgnO4PMPZIgUhOaBMtaaQpxvRFOglZ2+b2DHrnt+rTZ8xxiT/m5k2TVejEL1u1IzBmOx53/+5NWO6I7Uu6chEg1993RJiJEutShrnsVHodLu4l78Jd9kPMVk5zKlHH0C6Bd3ukNGgpD9aQciYnB3RzeawS4Vq8Uawcc8co/VIGNW4hcDGnfsZHhqQbVjBLhfYSU8rvuZeRhkvp9PkxOCIIeBMTS3K9kj6JMZasjwny1Q32TS1mkhWFYjBNw0vFpd0gKKaCUk/6zdtrJm9Pg1EdCnS3LERc24gme7qpzoWXaCVUUkpICQxITGxM4ZpPsJYNajRs0RzyzCjy03yVgko/R1rB8ZhjLYzdyZgiUQXEOuTyNZrNU+qNDIWjHVkNgVNaoifovOAEY+JITXsC2RBF1+15NcbyQE2E9XHCOqBYJWRsUzFWhrQaK8cFYuqN4qQWwiq31NtSEoJ2MSIxBTEOav5cWvOVd0Epx2KxrWQVzrqPkRyl4Ina2nETG9JHY9UejrXE8o5y/og0DQZw5EjeEOWQ1lbgk+9f6zDeqGsYXUdRmNDry90OoYmCqMyIJKR5UpFFF3DeKzzpdPJyDJh5UzJcH1MNR5QlWc58eRTDJ58EDn1AKZ+lihrON+QBdVjmKApNNw0OabpvyYIJnNYEwmiu4hOUdDpWJyraep0DunfxWQuZ6ZGg8ykTyLPf2TpX6wBLzMbn+RrIufmXQq0Z4GG0XtC309TSCoQN7M3FzPlHLXCzVhlUHKXEzOd20EiRafH/NwSmIxef5naV5TlEB80jSSiohgNgC0Bg80yrG805y7QSANOH/7ee2hA2xRoirJLRpGpeLOeTHDO0+n2sdkSwRhKKQl1oCgczoKPnjzvkOeJrRF1wnU2x8SoKS0zrfEzSdjqyIxWzxlRFis2DeIDZBZxltxaQgi4LJsF/c7mqdIi0womCUSJFEVOEEuWZRTdrqZgxhOKTuecZsoYfGJfRM7pgYIqCMkzvUKJySkWi8kdXiJ5tKpv0Zw0TVR2x/gU7ESP4BlOSmJTkxUZtVeRsrWCEWX7hEh/rsfcXIe5OcfCzmsIi9sYDEf4Yg1rHUdDxlyvz/KGlxHtc4RQc/VrfojdV1zF2toZhisnGfoJhRmzPLfEzk37iEfX+Or/+zmkWqe3Zw9brtqDWbiKatAQV58lN/M8+cV7GfhTLFx7A73xNRy//9945qtfZNueV/LcY49w+MSXWbr+Kg4dO0Q3n8NJxlzeYe3skPs/8iF23fhydr3uzWzecjlkjsNnVom7M5rhkNHqGpt2bqUZd/mBW29lqbeAkYZ5kzGXRaTv2LW0j8MnnmNtMGF9dYwwIdBgsjlcFnE203YNJonEnSAmn1nRn2Mk9d4691pac6xu1jT2mBZdaLm/iJb8R7H6jEv34lQXmG6+9DzQ55+asz2/DHlayRepg7rHaiVjBk1GdAahxtgOvc03sP3VS9RXXU4z+DJLkwlZFsHsY/CsZ/DsKvHEBFmzZBsFu22ZzHYIkzOMjteMRs9RmG2YMEKCozGeZlzTnHiCztaXkWc7iKZR1huHE4OYMAu2zu3ldQ1yeY5xVgMTUcf0F4tLO0BBHxwGZoNB2jGSgouYSDIjqiBOhT/MSoVnS8X0fymfkn56PiODUQGom3ZcmxU1R6bFwOfykrM3RNCmaS4EvJ/a2tcaIOE0N2y0ggfjwXk1LjOaAlI2QWvnxWb4aM5F3kk3pwFVIEYH2FlVjTYJ1IDCZdMATqN85yxEhzOaLkguzMkXRf9+TvOkJc8+NzReUBuOlPYJMeVNdcH0jRC9+qAUhSEmk7iy1vux8UKnA7koOzBLwRlNH2AiRS7Mz+nvzjOH2IgXYVIbslS+jAtEm1E2Qmg0MFkbCo3X39uYSCMQvGMcIp0eWGchRJpaiMET8RiE1dMTVs6cYbR2kvHRx1l//D786qMU9hmkKLBNSII3wKUuOkEgpNdQxqJJYlfrMvKOo8jVI4Fka+1sRawCodHU1PQBlaYu1qUZee65hDHapTbJR1Clw7nAPPUR1GuI2i8Jk7RF1qSy5mkQChaLM1Mq2SQ76qjuyMZioqRS+ILcZhqEWUfR6xNxFEVPWbpqTFP7pLtyRAIxQIaQdZPmKAZiU2IS5WtECNEr42IAo+mRbuHIuwVZkZNnORGP5IEwWccMBMk62LkF8tDgrSVfXKBwHbIITQST+glJbMgwSGiQ3GHFkls1Lws+YHKThlz9eZxVL5ggkW6vPyv7Bq2EIu2MM2NnRloxKkNnURM4DNrMEUtZeayFotMjRfGzhWyqKVCBPrNjFpPocE+G0/5LImlXr5qH3OTUZTnzQ/DekwkggaapKKsSH7WXUq30KblxuhiElIrIuxSdLiF3NMU2VtbWoWlY2LaXZr3keDjJaDKhNz/Hjg3b8RNPnfWw/UWKOYs0nmZSsrQ8z5YrXoE1gfXHD7F69Cjdxcj+/l5ecf1rids3c6oe8vUH72G82KeYd8T+GdzcEhWC9Drk3d0c/urnOXXkICdOPMXGy6/Vzc+kYrj2LM/mjo29giL2ufknf4i55Q00CJPhSRrpYgYDdhQQF7ZwItSwAs8cfJize3ZyxTX/g9zlrKzWHFuLjMuas6fWKOuGkmO4LCcYyLKu9ppyU+bEJUYklfomnck0VWdSesfJTII40wNKuomtNefuxSlpn9JBwrRaS29QI2rLkLh7/UfWpGev41yp7vNT79rPjkb03hMPcULMA1a04Ww0awTpQr0f47eRdSqq4Qn6m7fh+lsJ5gHM+hMEN6DXc4yPjGmG65Te4N0G6rNjNuyb4DpdfOgyXqtwVUHeL7DZEpURsDmZCLX4ZHFgZivp1A9FN64kMbdugM4Zq744XNIBii7KupKatMMkMtM6qOBT1AyNNJEkqLjUuuSvkViRtGU1aZsqMZUfW3dO9JMmGC5Zf1v1OxETsWi1jZkxNqR/YzESVUPQeDxNCkQMYhziInlqnjP1WRFbELAURlMUNstUOGotNrNkOGJ0KqKbeoQ4IZuWKxplTTJrcHba1TgthtMdrmjDPW1KlcYmRXsaBWsKyMwCHaMaAlFNSO2h9kITDU3QgMGK0DSi7IaWv89Kv320lI3ebB0xqdmZIFHFsJqqsGRByHMVy/aNNjnsFJqbrb3qiq0xRCPUIRl+SKD0jpW1SFUFXKYmWI5A9IbJBIKBvNCFvSlVKBxpqKqa4dkhZ58+THX2COWZpykP309z6suMymN0TCDv9xCgiUEfaNYQfUhiX2Yl1N5BZlXg6NJuXpIg1olJGg+LZLqrzdC55/05BkRi+j7S0yicm+rPw+xxNguxzfOYFweEFKVIOmCnbslWg+IoamLnTE6MYfb2mbGYkAL96MkyQ97p4npz4Do6P6PeN6GuMQG8FhumBV0fxNE3xDJRu6HUEleEIjESGo3pDjNa9bspXKZBnHM4Ua+JJtOSZpdb8k6Gcz1G1ZhYVdQEympMEyN50ScrCtSQzpFZpz1Akko8ugwxjizTz+t9jURPMJrecZnDWaPiV+c0zRIluUJDnoTx+h1FdWw1KW2anhMuMZQYrXjKMrUyR4QYPUE8GVpKbg06hyTTrs84XKbsVTDqSxNjSNohkOAJVUX0KTgStHpmsk4zGdIQcHN9rNMyVYwyPiIRioLe/AL9Tp+57iKhmGc8XqcaNMyxk+GZZ+hGmM83U408prAcXT1BrEZkVvtYVd2A2bTIho3LbFvayIaFXTz72MOcXD3Inm27uGLLa/HDU7jVNbYsbmHz1n30bhwwqEr277+KDf/rJ/iv/+efqM6cohxFhmtPcvVrX8/G7Vdiv3g3Z0+eoD+/SLFpE1sWt2HqhkEd6S5kLG6+nm43x0qDl4JxqDjjzxDPrGPKQG9TQbFB2LK1Rz/zrK1PWD1dcXplRBUrxKghoi0yjFEWzMLMME2/y6QZStqrqZvrOVY8BaxGxz6mPaoxOu+1RopZm5QYI9GSmtWS/IVSwJGo0mADRjINUM20m81UvzhNzdrExJNsC4Q8OugYnHEQorYLMSABfGHIaJCmw/Ds11j90sfoZWOy+YAxt9LdspMQ91KWj9GdzwhZjyzfQRMFV61gqpLoK+rDKzS9SFMP8eWQ7nzO/DWvRrq7KWqHFw/ksyyExIgR3dHGoOnHaNFUcowQdCM41eW8WFySAcq0lCnGyFQLMns9+aVpuucchzFlUqaMybSaR2JkxpCkc88xKefnFXVCyvMs6CNImKn41ZNC+6oobW5TlY2a7YgJxNBACESfJztq8MHjC0cMqsTPPeRdj4kNxFxnnuS6I5YcMcqSSLAEU0PwiHQwUiBNjQ0W1xiCM2SZ9qtJPal0BNIMyZ2yK87ouY2JNOXUW4SZ86izmtbInT4smwaqRnUgVaMGcLUK32l8ZFKqoy5oebUPkdoZmgIawHfQKqFMb8iY+tSIz3BO6HShcOp/MhWIGm+wXqgboQowriJ1AN9oBde4gfFEO8VGMZRDwdvIZCJUlYGOYZ1AWUXKSvU+MQSGaxPOHHmGkwcfwj/7MOPTTxDGh2jK05QEgsmQ9aF6koRI0c1xLiPYSCPP29lMZ5chBQEG7xtCaDDEpFtoaHyYGadNd1TWiQZ0aRrG2axLFSTxHKsis2PPT/PAtEXPjF6dXsvzfk7/mdnkSwwEUWYqgnpozO4SrfIxNsO4QnuGIFRlSRUigUhdjtMGQT+/rrrq21JVJd5PP4XXe8FM71lm1TBGlPVpmgbfNFjjaCTig7IEgqFTdHFFDllBr7/AJNSMhwMdED8hpIntY0WIQmYznM1mDIVxQFA9jrFC9B7vKzKbujijfhTe6yQW0XYCLlVsuMRQBROTp4x60IiElNaySQAdlIkC7VvU6UAmhKZBYsTljhAjtdfmjWS6Ww8xpBJ08E1DzBxGjP47rw1Bpw/9pq71+7HCZDKhGq3Q1GPIM0woaLxolZcITSb0du9g8/J2FkeWohZGCGVZUtYDxEIzWSeakg1bd9IJY6q1CY0V6rzPfL/L3HyfvHDM7dpC6SfEiWdw6CiPPXg3w2cOsW95GdcUnB1nrPsz5P0+84OTdKTh2v7LePTkg8TVk+zeeTXXv+p/8sBn/5WFLOeKN/8IvcVrKGzB7n23cPa5/0MzHlKuDzl66DCdvEeMwijUFP15du7YxvbNG6nqFejlzG/YgMzNUZ4+xe69O1nqb2LX0mYGK4EvHX4MHyts7sBlsw2WMflM6Kr3hP4cXErjTPvgqOdBemAm7yum7Iguwqkn7IwBMyQBvLE4o2X0AVHTQkQN+1LL8TC7SROdjwZGMmU6RVer2Z4kidKmAYoLeh+JBZueJdEaCEKNxaCtKvq7dzE4NE95+hDxdIN39zG350bmtr6C5w7uxz51L6Y7hysKfDnEUIIxNKZhdOY00QeKrIvpT1jcuw2/YTd+YKmbFb0pgiNGpcWjnLtOLwEbBG8iJqiuTWIkBBXSVpOxfp7n08TfAkZezFkXGZ566ikuv/zyC30ZLVq0aNGiRYvvAUePHmX37t3f9pxLkkHZuHEjAEeOHGFpaekCX82lg/X1dfbs2cPRo0dZXFy80JdzSaAds+8N7bh992jH7HtDO27fPS7kmIkIg8GAnTt3fsdzL8kAZUrRLS0ttRPye8Di4mI7bt8l2jH73tCO23ePdsy+N7Tj9t3jQo3ZiyUW7Hc+pUWLFi1atGjR4qVFG6C0aNGiRYsWLS46XJIBSqfT4f3vfz+dTudCX8olhXbcvnu0Y/a9oR237x7tmH1vaMftu8elMmaXZBVPixYtWrRo0eL7G5ckg9KiRYsWLVq0+P5GG6C0aNGiRYsWLS46tAFKixYtWrRo0eKiQxugtGjRokWLFi0uOrQBSosWLVq0aNHiosMlGaD86Z/+Kfv376fb7XLrrbfyhS984UJf0gXDf/zHf/BjP/Zj7Ny5E2MMH/nIR847LiL8zu/8Djt27KDX63HbbbfxxBNPnHfO2bNnedvb3sbi4iLLy8v84i/+IsPh8CX8FC8t7rjjDl71qlexsLDA1q1b+cmf/EkOHjx43jllWXL77bezadMm5ufn+emf/mlOnDhx3jlHjhzhzW9+M/1+n61bt/Jrv/ZrqeHc9yfuvPNObrjhhpn75IEDB/j4xz8+O96O2XfGBz7wAYwxvOc975m91o7bN+N3f/d3Zx2Gp3+uvvrq2fF2zF4Yzz77LD/7sz/Lpk2b6PV6XH/99dx///2z45fceiCXGO666y4pikL+6q/+Sh599FH5pV/6JVleXpYTJ05c6Eu7IPjYxz4mv/VbvyX/9E//JIB8+MMfPu/4Bz7wAVlaWpKPfOQj8uUvf1l+/Md/XC677DKZTCazc37kR35EbrzxRrn33nvlP//zP+WKK66Qt771rS/xJ3np8MY3vlE++MEPyiOPPCIPPfSQ/OiP/qjs3btXhsPh7Jx3vOMdsmfPHvn0pz8t999/v7zmNa+RH/iBH5gd997LddddJ7fddps8+OCD8rGPfUw2b94sv/Ebv3EhPtJLgo9+9KPyb//2b/K1r31NDh48KL/5m78peZ7LI488IiLtmH0nfOELX5D9+/fLDTfcIO9+97tnr7fj9s14//vfL694xSvk2LFjsz+nTp2aHW/H7Jtx9uxZ2bdvn/zcz/2c3HffffLUU0/JJz/5Sfn6178+O+dSWw8uuQDl1a9+tdx+++2zv4cQZOfOnXLHHXdcwKu6OPCNAUqMUbZv3y5/8Ad/MHttdXVVOp2O/N3f/Z2IiDz22GMCyBe/+MXZOR//+MfFGCPPPvvsS3btFxInT54UQO6++24R0THK81z+4R/+YXbO448/LoDcc889IqKBobVWjh8/PjvnzjvvlMXFRamq6qX9ABcQGzZskL/8y79sx+w7YDAYyJVXXimf+tSn5PWvf/0sQGnH7YXx/ve/X2688cYXPNaO2Qvj13/91+V1r3vdtzx+Ka4Hl1SKp65rHnjgAW677bbZa9ZabrvtNu65554LeGUXJ55++mmOHz9+3ngtLS1x6623zsbrnnvuYXl5mVtuuWV2zm233Ya1lvvuu+8lv+YLgbW1NeBcl+wHHniApmnOG7err76avXv3njdu119/Pdu2bZud88Y3vpH19XUeffTRl/DqLwxCCNx1112MRiMOHDjQjtl3wO23386b3/zm88YH2rn27fDEE0+wc+dOXvayl/G2t72NI0eOAO2YfSt89KMf5ZZbbuFnfuZn2Lp1KzfddBN/8Rd/MTt+Ka4Hl1SAcvr0aUII5006gG3btnH8+PELdFUXL6Zj8u3G6/jx42zduvW841mWsXHjxv8WYxpj5D3veQ+vfe1rue666wAdk6IoWF5ePu/cbxy3FxrX6bHvVzz88MPMz8/T6XR4xzvewYc//GGuvfbadsy+De666y6+9KUvcccdd3zTsXbcXhi33norH/rQh/jEJz7BnXfeydNPP80P/uAPMhgM2jH7Fnjqqae48847ufLKK/nkJz/JO9/5Tn71V3+Vv/7rvwYuzfUge8l/Y4sWFxFuv/12HnnkET7/+c9f6Eu5JHDVVVfx0EMPsba2xj/+4z/y9re/nbvvvvtCX9ZFi6NHj/Lud7+bT33qU3S73Qt9OZcM3vSmN81+vuGGG7j11lvZt28ff//3f0+v17uAV3bxIsbILbfcwu///u8DcNNNN/HII4/wZ3/2Z7z97W+/wFf3veGSYlA2b96Mc+6b1NonTpxg+/btF+iqLl5Mx+Tbjdf27ds5efLkece995w9e/b7fkzf9a538a//+q989rOfZffu3bPXt2/fTl3XrK6unnf+N47bC43r9Nj3K4qi4IorruDmm2/mjjvu4MYbb+SP/uiP2jH7FnjggQc4efIkr3zlK8myjCzLuPvuu/njP/5jsixj27Zt7bi9CCwvL/Pyl7+cr3/96+1c+xbYsWMH11577XmvXXPNNbPU2KW4HlxSAUpRFNx88818+tOfnr0WY+TTn/40Bw4cuIBXdnHisssuY/v27eeN1/r6Ovfdd99svA4cOMDq6ioPPPDA7JzPfOYzxBi59dZbX/JrfikgIrzrXe/iwx/+MJ/5zGe47LLLzjt+8803k+f5eeN28OBBjhw5ct64Pfzww+fdzJ/61KdYXFz8pofE9zNijFRV1Y7Zt8Ab3vAGHn74YR566KHZn1tuuYW3ve1ts5/bcfvOGA6HPPnkk+zYsaOda98Cr33ta7/JLuFrX/sa+/btAy7R9eAll+X+/8Rdd90lnU5HPvShD8ljjz0mv/zLvyzLy8vnqbX/O2EwGMiDDz4oDz74oADyh3/4h/Lggw/K4cOHRUTLypaXl+Wf//mf5Stf+Yr8xE/8xAuWld10001y3333yec//3m58sorv6/LjN/5znfK0tKSfO5znzuvjHE8Hs/Oecc73iF79+6Vz3zmM3L//ffLgQMH5MCBA7Pj0zLGH/7hH5aHHnpIPvGJT8iWLVu+r8sY3/e+98ndd98tTz/9tHzlK1+R973vfWKMkX//938XkXbMXiyeX8Uj0o7bC+G9732vfO5zn5Onn35a/uu//ktuu+022bx5s5w8eVJE2jF7IXzhC1+QLMvk937v9+SJJ56Qv/3bv5V+vy9/8zd/MzvnUlsPLrkARUTkT/7kT2Tv3r1SFIW8+tWvlnvvvfdCX9IFw2c/+1kBvunP29/+dhHR0rLf/u3flm3btkmn05E3vOENcvDgwfPe48yZM/LWt75V5ufnZXFxUX7+539eBoPBBfg0Lw1eaLwA+eAHPzg7ZzKZyK/8yq/Ihg0bpN/vy0/91E/JsWPHznufQ4cOyZve9Cbp9XqyefNmee973ytN07zEn+alwy/8wi/Ivn37pCgK2bJli7zhDW+YBSci7Zi9WHxjgNKO2zfjLW95i+zYsUOKopBdu3bJW97ylvP8PNoxe2H8y7/8i1x33XXS6XTk6quvlj//8z8/7/ilth4YEZGXnrdp0aJFixYtWrT41rikNCgtWrRo0aJFi/8eaAOUFi1atGjRosVFhzZAadGiRYsWLVpcdGgDlBYtWrRo0aLFRYc2QGnRokWLFi1aXHRoA5QWLVq0aNGixUWHNkBp0aJFixYtWlx0aAOUFi1atGjRosVFhzZAadGiRYsWLVpcdGgDlBYtWrRo0aLFRYc2QGnRokWLFi1aXHT4/wCzSiEC0fXZeQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Original output:\n", + "The image features a blue bowl filled with a delicious mixture of bananas, nuts, and oatmeal. The bowl is placed on a dining table, and a spoon is resting inside the bowl, ready to be used for enjoying the meal.\n", + "\n", + "In addition to the bowl of food, there are a few other items on the table. A bottle can be seen on the left side of the table, while a cup is positioned towards the top right corner. A book is also present on the right side of the table, adding to the cozy atmosphere of the scene.\n", + "\n", + "\n", + "OPERA's output:\n", + "The image features a blue bowl filled with a delicious mixture of bananas, nuts, and oatmeal. The bowl is placed on a dining table, and a spoon is resting inside the bowl, ready to be used. The bananas are scattered throughout the bowl, with some closer to the top and others near the bottom. The nuts and oatmeal complement the bananas, creating a visually appealing and appetizing dish.\n" + ] + } + ], + "source": [ + "img = img_files[0]\n", + "image_path = args.data_path + img\n", + "raw_image = Image.open(image_path)\n", + "plt.imshow(raw_image)\n", + "plt.show()\n", + "raw_image = raw_image.convert(\"RGB\")\n", + "image = vis_processors[\"eval\"](raw_image).unsqueeze(0)\n", + "image = image.to(device)\n", + "\n", + "qu = \"Please describe this image in detail.\"\n", + "template = INSTRUCTION_TEMPLATE[args.model]\n", + "qu = template.replace(\"\", qu)\n", + "\n", + "\n", + "with torch.inference_mode():\n", + " with torch.no_grad():\n", + " out = model.generate(\n", + " {\"image\": norm(image), \"prompt\":qu}, \n", + " use_nucleus_sampling=False, \n", + " num_beams=5,\n", + " max_new_tokens=512,\n", + " )\n", + "print(\"Original output:\")\n", + "print(out[0])\n", + "print(\"\\n\")\n", + "\n", + "with torch.inference_mode():\n", + " with torch.no_grad():\n", + " out1 = model.generate(\n", + " {\"image\": norm(image), \"prompt\":qu}, \n", + " use_nucleus_sampling=False, \n", + " num_beams=5,\n", + " max_new_tokens=512,\n", + " output_attentions=True,\n", + " opera_decoding=True,\n", + " scale_factor=50,\n", + " threshold=15.0,\n", + " num_attn_candidates=5,\n", + " )\n", + "print(\"OPERA's output:\")\n", + "print(out1[0])" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAF6CAYAAAAzo6PkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz914/kWZ7dCX7uvT9t2tzNtYeOyMzISlGZWZVV3dWSTdHUnOGAg52Z5RALrACaD9svy34hwSe+7AJ8IN/2HyDABWZnALLZwxYkW1ZXZYnUGRk6XJs2++kr9uHnlRQNcorYAasK8AMEEO4wN/+5m/nvnnu+55wrnHOOK1zhCle4whWucIUfI8gf9QVc4QpXuMIVrnCFK/yHuCIoV7jCFa5whStc4ccOVwTlCle4whWucIUr/NjhiqBc4QpXuMIVrnCFHztcEZQrXOEKV7jCFa7wY4crgnKFK1zhCle4whV+7HBFUK5whStc4QpXuMKPHa4IyhWucIUrXOEKV/ixwxVBucIVrnCFK1zhCj92uCIoV7jCFa5whStc4ccOP1KC8o//8T/mxo0bRFHEu+++yze/+c0f5eVc4QpXuMIVrnCFHxP8yAjKP/kn/4Rf/dVf5e/9vb/He++9xxtvvMGf/bN/lvPz8x/VJV3hCle4whWucIUfE4gf1WGB7777Ll/5ylf4R//oHwFgreXw8JC//bf/Nn/n7/yd/+TXWms5Pj6m0+kghPgvcblXuMIVrnCFK1zh/08451itVuzt7SHlf1oj8f4LXdO/h6qq+Pa3v82v/dqvffE5KSW/9Eu/xB/8wR/8iceXZUlZll98fHR0xP379/+LXOsVrnCFK1zhClf43xfPnz/n4ODgP/mYHwlBGY/HGGPY3t7+9z6/vb3NJ5988ice/w/+wT/g7//9v/8nPv/X/vTPsrvZJVSGuspAGnyrwDkQEqkkQjhqXSKVpDYaqSLanTbWagqtOZmMCWOPraRPXRqc8khabYp0TW0V9+7eJ+n0yMuc6XjCYjpjtNXH2or16oIwDEkLye71V4jbXR4+/IDV6hxT5XgWPM+nKFPSPCOMNxj2d7lxY4fb924SegmuMnzw/e/jhCGKQwIv4vTomFY7xFY552cnyFaLw5v30Tbi+ZNHCLGm1/PZHG7Tbm+CFWSzU8rVmDQrOV+UBHGHuDfg6OSCzz97Qr83QOsCT9a8/darbA46fPbZR8zSFXlZc+3wJm+89VXyStPzPKTycHgEYYynPHzfx2JZr2eMT8/4o/fe53S2oBtFlBaEChn2euiqZlXlRGFAy1ccP3/GfL7EjwPaPcWf+1M/x9Zwk2y1psgNL05OmK2XGOFRZJqiXCM8zTrNMAjmZUqBYD1PEaEiTiICJ9FVTW4qwBEon7quAfB9D13X6MIQt9top7G6wjiHRKAQhK2YLMvwAw9nLdZZlCcIfB+BIlSSWMCX7tzn7de+RhDHOBRRGLK+eEg2P6MuC5wTtFoBtalptftkpeXs6Jin43POy4JJVuGHAVldEIUB0gnqugJhCQIPTwok4Cmf9bpgnheEYYByjrquMSgk0G+HlOuSrNa0Oi1WaYHnKdpxwus3vsTxoxM+efiIOOly7cYB77z+Ko8++RTrHC+9fItrN64jlI8zhqrWGGsQTpDECVVZk9UFVVHx8LPPKGvN6XiCHyUkfsRiuUBIGI02qasKIQWjrU02NzZRUuF7kij2KcuCosjpdfsIpXAIPOWhTQ0GfBVQ1CVFnmNMje8HKE/x4vn7DLseT18848V4zKDfp+MlrJYlq2JNALz2zldoxQmyMEQdhU5zqsU50tPgx5SmonQVVvv0e32sKWh3hgTBDrWR9Id9jDU8/Pzf4IRHbWqGnQ0qG5H4klZgmJ+eURcFs4sFfmeDsq4JWy2sUHRaMXW5Jl9l3Lpzh25/ROkgKzOU9PG9ALAEQUSRF0jl4fsBZVGgPEUcxzjncMZSViVaVyhPsZpPKNMFy8kFs8kE4QR4AbWU1HnNzsYGRa05nUxRVuOFiqrI8Z1ERRGZhbqqCAMfKRxbm5sMt3YYbu9jEAgHke+hdY3WhjAMCZMEay7vj1KxXK5IWm2ev3jC+OSC4UafKApQyqMuS8CiPEXY7iCFohW1GC9WfOeDj3n4+AhtLNqW3L51kw8+/Jh0VbK5sUFRpGTpCuPACoXveQjhEELyA9HeGIO1FiGavz3rLM6BA7CglId1BiEFQojmuh34vk+/HTAcdJnNVyyWGV7gk7RaWOdYLddY63DW4rBIJdFGIy/Fdmtt830RCGEBibU0j5U0/7cShMQ6h8UhBPhegACMdgghkKEC6VBCUReGsswIfMnu7ibXD3Z5643X2ep1SAKPstb4QYSpaqwtUVIyno5ZLzN8P6QsC5xzZGnK+GJMr9dlZ3cb4Um2t7Z5/PAxnU6X8WLF0ckp3VbIK/df5mI+4//zP/8mk3mOkh51XXFt1OO/++t/if5Wjz/85h/jOcW1awdMplOevTim02lxbXePo+dP2N/ZYGt7m8H2dRarFen6nKfPT/jWx0/4/MkY6QRvvnKDOzd2eO/7H/P8eIyTAuskIJBS4AlHOwgpjQNpybOSxWzJ//n/+NfZ392krnL8MCJpd9Cm4vHDz/h7/8//N51O53+TK/xICMp/Ln7t136NX/3VX/3i4+VyyeHhIVstRQhEKkabHGkF0hMYYwl9D2M0dVnRbrXRaDq9HkmnxcV0TBS26CZDvv/xc+Juh0E7YeNwyP1XX+bzTz7hfL2gE0nmZ485fVpQ6xonFL3ukLJYs14tKIs1qUi5+/JrjEY9Hn72MevZMSiH7/vooqLKMnwvZHcrJgoissWE86clB9t7tPpD5osjtrf6eIGPw9HrjCiLFefHRzx58YIwSfjKl15lc/s6nz5+wSxd02lVzBdzsiLj7t0uB/vXeHj6GE8kXLtzn3CV0mpFfPbxZ3jCcO3mFtPlnKQb8tLdl7h+eJ0PvvddziZTOsMe+4ebdOIeF0en3H/9TTzP0m63MbpiOZ8zm57i+z7tTp9eJ0YXHTqdEC/ZIBISU9cIP2F3f5tnz1/gVEy/3aMsM9aV5drte8Shx97WELvW5EyRwufDDz5kVRdoYXl+eoq2CgJJ3AnIdUWlDcZqhPAJYg8V+DhrKU1Fu9OCEpxpFDkH9DptjNUEgaAzbIGUlLYk8FssV2uq2qIQKCVotxJMXWOloNvqkOUZUvgoqZEI7tx6g7fffBdT5OCHSAe6yFhNZkhTE0uB9CTKd1TWcHRywsWq4mQ5Y16XZEDlNKEMSOIApCDPcqRSKASdTpv1YoEMfJAOJxyeVM0iJRxCSuqqxg8iFmlN6EuGnS6zeQrOUJaa2A94fvSE2ips0MJFETduHHLt+gG/+Tu/w+7hNY7HMz54/yNeufcKN28c0ukkOGdQnocxhro21EXBH3/rOxyfj5kvU9rdDgfDTZ4+eUKn22I0HOD5oLXh9Tdeo9/pkMQxnvSQQuKcoaxLAm+LNM2RnodUPlVd0fJiNBXGVThjaMURUZiQlSkCQ8cFnH36FGkdLddhdpqzNJqNzRbdIKLX6rKTdAiqkvH8Bbpq4ymP3FqQkl63RZC1kPkaAkNZzCjrFWl1yvVrlo3+PoHnmMyf89LLP42nBM9ffI+oleBN5+TzJVYq1rljvtQc3v0SmzsHUNdk8xnHR8+ZZUsmiynlquD99z/m1o2XeOX+K7SHCRqHpyRVbRj0B+i2xjkwxtJpt/jBBHq9XpNnOa1WgmrF+IGPrywnqymRF9COO+R5iRWO9XqJqTRFnnD75VdY1R9TFileGFBVNa3+kJV1pPM1o8Emr732MlKCqTS7ewdUzkN6PoESWKPJ84wkSQiiCJDNworEWsfm5ibGGOIwYW93h063RZIkhGFInq6ba6lh2B9RZDmPHjwgd3B8csruwR6T6ZyLi5Lvvf8pRVFhleRsOsGTEuWFSClwODylLgnDvx3JSykRSDzPRwgJziCkw1eq+b05B8IHwFiHUoBrvm6dVayyc5wQWF9RWUe9ShsiKATI5jVw1oAAT3kgZPMEGIRoSJK1FoTCyebKhAQpBEYKBAqJxVMSnMUYi6c8lK+QUqKUwhqLNQX7Oy1++us/yyv3XmJnewMw1JUmXSzxpAIlWC/mfPjBBwS+wllHVdW8+sbrfO97H/Dk6TM2Nzd49ZX73Lr9EkI56iojSwt+/V/8Nh9//gTnX26oKkc77vDRZy84m5zjpA9Y6irj9Zdu8N/9jf+Kfr+LtYZf/IWfZ6Pf5+ToiNAX3Ll5yORizKOHn/H2m28xGG2StDvkZc2g16YVwnK24OVbhyzXGmrLT73zBqfnx8wWC5ACKbzGWuHA93yksJTWIaWi0oY8K/j5r3+ZN9+8x2I2odXZxGhNyxfkVnPv3l2AH8qe8SMhKJubmyilODs7+/c+f3Z2xs7Ozp94fBiGhGH4Jz5f5WuklBjn0E5hyppVXiKEI44Nrdij3WtTlyUqCCnrmsnJEas0ZdD3MWbOwe4W7U6EEJDnhmePL1hNNVtbt1hXa5SnaIcReV0x3NhgMZuxXM5IooBBd0RdGyI/4OTZE2bjM4a9LlEY4IxhOptROku75SOEx/Oncy7OFzhRsH0wot1OaPU7xN0WVWmIwwBhJZ4A43x6W9u89KVXKdc1T5++4Onjpzx++oSXb43oD7p4SnH+9CEinXPtpbs8eXTMb/z2v0ZLwVffeYVrh0N6/Q2GmyO8MCDwBHWRsRzPGXYHjLb2ePj0MbNZwcnpkp/92Z8nDCM6rS5G1ygnCL2Yg93rOAzaWZSUDIZ9vvH1rzAen1GuF5zNx8zn5+TjnO1EMCss6Srj4bNjamOozYrxRcH7Dx4TUnGw36XQmucXY7QEFSoqo0F4+A6KtEJrSZ7lJFFIXZQ4z5LIRikpdU1RV9SlRuBR1+B5HllRU1c5YRhQmIIajd8K8D1FGPgIZZFIBI4oCqiVIPADcJZ2nFCYHOX5SOlzOj3n08ePCaxko72g2+th0Az3t/BMyfzsDBXFHI8v+PT5U1bGcXQ+oTPoUtUWfJ9Ov42wGuEsUkg8JamtQ+uaxXxNEARUWpMWJVpbQj/EOItxkrwq8FWAwWKdIAl9QPD2G19ld3eL7c099rd3iITi//s//TOevpjgOU2n1SZdpbz9+qu8/KVXWUwvCBH883/5W8TdNns7W7x5/xU6rTZ+6BO1W3hezs//wi8QJh3Wec5yOceamtdfuUMUeFRVTiuKuXb9GkJAscyw1pHXJWVV0+t2KbKKQpQYq3FGo5RG1zWFrmmWKAfG4nuCxfiCk7PnLFdrFhcLWq2Ew1svcX9nh7IuGHaHLCYnLI9PcUHIcr0im86oy5INL0S0Q7bvvEqcJDx99AFleY6HoM4tftjCmRBPOsZnx1zYY3rDbQa923TjPqvsmE4yRFdLinzKdLLg1u1XkKHi+t0eVjj8CJ4eveCT9z9COIF2EkuAPxyysXHAdz59xLysefvtewRxTFZUdNpdyiLn5OSYnZ09PD9ESIE1BmMMYRjR7XYpyxKtDWXh8MMevc1dZvaUEA/VdswWM4IwptXyERg+/PC7eNKnN+iyWCwQzqICn7fvv8rR8xOq1Yr5eEZvMGAw2EIIn3YYUdUVVVnjeR5RFOOAwA+xDkDgEKTpGuccpq7pdbqUYYmQUBYVdaV58fwZSStka+uA46MjlBNcu3aN9x8+ZJVmHJ99wirNkMoD4eGEh9V1Q7ABJ8DoGqkkZVHjeT7KU9R13bwfHFjnKMoS5QV4nkIpgRA0xAKLFB7GXqoe7lK5cA6LQEiveawzDe25dFOKy+dFCpTywIKzorke06g0XBIli8JcKkoA8geOTCERQiDwMM7iKZ/AF1itMc6Ag7bncXh9i69/9TXu37tFu9WiqjWriwlVqfGDkEAFOGqKbMV8ck67FZC0E6ra0pUBjx49xw9bhO0es7Tkd/74PabTJdd2t7l77ybPjo/4gw8/xvfaKA1CGbwoolCaPM8RHvy5X/wpAk8hPZ9X7l7D1CVWSDypyFYLPn7xIbquaSUxp0fH1FXFT339p/CTBBm1yLXDYjg/Omd8PmW6XLOzuYMQDznc22E+m/Dxo8csshLhPDxPYY1BSoezmsoajDTEoSJdZezvbvJf/5U/g5KCMEo4PnrCtYNDalPRbnVJ0/SH5go/EoISBAFvv/02v/mbv8lf/at/FWjegL/5m7/Jr/zKr/zwTyRDlFQ4q9HaUBnQwuH5EqMEQbdHmLSp3ZrZbEplC2wgMPg8eXbMoN+lFXvUeUZV5KxXSybnF7z2+pc5uxgzW1Uc3jjg9t27OAPZYo4vfTxn8KUhSTxqIzl+/pDZfE1qa0b9gE7sIXIwUYzo9tnf2efhkyNkAv0bHX7uZ3+Ku9eu4VlHlmU4mt24dhbfUxzeeoXR/g2CKKAyjvP8jIdPHjObX7C32wZbUxcSL/AJE5/V5BTrBLdvH2J9D7/VYX9nk0B6GFODrVmdn3F+dszRySmFdiTtLoln6A3a7F2/RbvXY3/3kCgIcK5CmxJhLZ7vYQDjJHHUQpcVQlkG3S7PPnmf2eICrTSeD+ezCySGweYOO5tdbh2M2L92naOzI6yATq+Fc4Lvv/8RZ2fnLK3FC0M8B1mu6XUShCzBGIQVDAY98jwlbsWUWpPlFUJAFMZIIQGPvK5odWI8T1EUOcJXeFFIlpdU1qKyClNYpAJnLX4UYI3GYDBY0rLAGoOzDidBOElpSlphgZAaX4REnZDuaANTrnGrMdniBEPNZyfnnC1STvOKWV4S9oeUdXPDrMsS5SCQzQ7RWINzjcQdJ22UECjPQ3g+2uWEnZBqXVFWNZUwSN9DCoU0hk47YdBu89U33uHWwT02+sNmV2cVuqqoqgojLFXtyIuMsgrZGg6o85yD/T3Ozy+4ducGizRnvFrzR9/7gJ/7qZ9mNp7z2R98k7TSXDs44KV7d3jpxnVW6y7T6ZTh5gZFukJXFVjD0aMnKNXI9dpoirJRrlxdsM5SPClotVr4gU+arlFCUBUpF+djqtoyHCR4HajSEzq+ZZwuKZUllJp8OaYMHP1hj8SvyW2NKxaEwYCOUmzeucFqdUE2uWBv/3WiwYgqX9KOeiwXJxTG0usMGAw75EVGEIYY4UjzDN/vMRrt8+jZHyDRVKlmfPGIMOqxudeiYkrS2WY2P0JIS13vsr2zx2C4w+MnT9na2aLVTliv1rw4PiM93GP/9nW8KMBozWBjizAISVdLAimIwgChgmakLBsp3FpLWVYUVUUSxyRJm1WxJux06VjBqjzlYjYn6QwJdUVbArrAVYbQV3TiiNVyjgyaBXd6doHThnQ1Z2vUp93rUQuBKQq8S1IQhWGjEABCSLQxzfhJBdTWMNjcYDadshwvOTl6gef7bI02mU6nJElCq9UmjgMePXvE0fMT7t95meVqRWUtYdRmNi8IgwiDwziDA4TwcE5T6wrnHJ6nMM4ipMRdXkOjWjicE80IxYGUDiscopkSNKrG5eil+QFkQ2qaHwZozJY4gXKy+T1L0LVGIBtyKAQ/4CLyB4SIhse4y693CIQU4NQXy4oQDudcQ4ikQMoAoQRVmdNuxexsb/DynQNef/kWW5sbxFFCXWrOz6ZoU5Mvl1itL0c1Ha4dHnD24hRfKg73D8mM5vjJEcvFmNrBg88f0ukP2djY5LMPP8b3I1aZ4emLCz57+ARUgHYNrbxz4zqdJEDXK7706kuMBttsDofUukA4yaA/oqotgZCsiyXr5ZheOyHPC2bTMcONHp1OF+n5IBSekFSmJtM1/9Nv/Es2ezu0Eo+BEOyMBtzYG6GLOcY2Y8KqqOl2m/GsdTXGaQLl8Qtf/xq3Xt7nX/zL32V/OMLzJZ9/+ghBTaB8fBV9MWrjf8MY++/iRzbi+dVf/VX+5t/8m7zzzjt89atf5R/+w39Imqb8rb/1t37o5zCdNjJJKFZr/MCjrEvaHUfk+xgnybRjY7jH7k5Ccn7G2dFDohCcEOyOtqhsRbGuEHhIX1LpEk8pTk6ekK5zIt+wmh2xuOhTppoXTz9H2JLFckEgoTvoEQSKwBMMN9qINKdaGJ5OZuTpGi0lr79+GxskvPr2W3w5CGh3OiipEEBWZGhjcE7ihT5e6Dd/RMbgCUccRoROknfahMqwtRHgKcW9V+9jsprJ0TNm8yXSeRTpM1bjU1JrGYT7rFaS2dE5VZmzXE2IfEVeZ2hhMMonL3Im0zNGe3tML55RrGI2OzGRL7FOYV3zByyVjxICK0A4gxEQRR7rVUGW54R+gEISd3zo96iKik4QEhrDZPKCp9mYsJuwLnPGy4y0dDw5u+BskWGtRZrmJiVRjcQtNcI5POFQyqfINLWXowKBdg7pFK5yUFQ4LEknJAgUdVHiSRDKJ81y2kkClaEoNHUowGocIGmk5+UqxRiDUhJtLEo1iy5WY61lmWecnL/gnZdephWBXZ3R6/WZLmrC0OciX/LHDx+xrh0ijPGSBC9UpOslnXZCYHx8X5Euc+oSKhxIj9j3Edahi5JulLCqM+ra4FmNNhpdN+MrrTVGa6q0YiOOeP3uq9y/+xau1JRFhVWWxWSOrg03ru3x+PlzJvOc2WzFwfYO/Y0WylcUteXlV15mf2+b6WzB0ek5T54c8dv/5veYzOcMNvsM+n1msynf/+73ybOCokjZ6LcxVUXoheiixjnQlySrriu0syAErXYbKRzDQYvlbEG6XrJenHByMmFZa54dv0A4QafXYmNZc70bs1qsmOUZKg4Yxl1u3rqOdJoPP/o+zprG8yBjjAC3eMbk+TN2bh5grQM/pttvg4BKGzb39nCuYnZxjDY5RQXOWcrcsS7WJJsDVBzz6aPf5+z0EdPpjH6nS7+zTRLlrIsMjwHrak1aZ9Trgs2de/h+m/TknIOtId1uwvl8SZYV3Dzc4ZV7N5BehOd5tNsthPKpypJSlwRxDEjquiGOSgqqWmNpzP6e5+H5IYEfMPD7+FIxn694fnbKZDLnzq1DNkcjsumEqtKURYFzhlW2xllF2wuw+ZKzZ0tyF7G5vc3mzh55WlBpTRw1C0HS6ZCXJeJyYY6TDkGU4LAIKQhkyOcPPmc+mSKl5Mad2wS+x+npKd2NPq12m/HpOQ8fPEaFPr3BkI+ePuLTz54wnmes84raaDZHW5S6Zr1KkUpinMaTAmcBQUMqbEMUrDVIqRqy4UDrGmsdnuchncNpi1USe0lepPTBWuwlNRFC4CsPKSXWGZwDKUUzfrEa55rv44RDW4M1jXIpcM3YzZkviI671PWUBGcadcVah/qBKiMdvlPUOGxdIKuar7zxCn/pz/9puq0E6SyhlNS65vT5MVm2pshyPD8g9DwePX5MWuSM04x/9m++yXy64utvvckrwy2OT57z2ZMjZvMUU2u0tcyWM04vxlTaUZuSh8+fsVz1WK5ypFPkZUEt4da1PV6/fxvfl42HwzjOz8+pjWZ39wBnGz+PrlLm43PacUIcxRRVye1793DWkaYZxgjiJKCyDqymWC9pDwZ8+PARd/d3uXkDvvbKXVaLGbv7W7z02j0ulgX/8nf+gA/ef0gUJURJ3LzvTc3ZZI74DA5H29w82GcxWzBfTtgdjdja3iGMw2bUh/rCL/jD4EdGUP7G3/gbXFxc8Hf/7t/l9PSUN998k1//9V//E8bZ/xTeePNV7t17lWKe8Xu//RvIPMeZCNWKMVXFfDJhZ3fN9f3r1Ms5ngJtLFZIijRFKeh22ggh8DyJ0RFFXrJejsnykjAMCPyA3/+tf4UUDqTGSQ8v7LMuK9ZjWC7OMH6KF3sIC0m8iV5XVFXN9Xv3SIua2uVcu3GDwPNwFoQTmEKDk40pq6qJvRhrHMa6xkDYihC+T50VWFsyGnZZ5xJXrKjSnNe/9DYvwjZ/+Ae/QzvqsvI8TLqmMgWPjk5wCIaDPrHziYSH1Y50ZcmdYF4suXZ4wN5oxHxyymm6xEYhHz/9nH6rxb17r7G3uU+v3Uf4EoVCObBSEfg+0pbEccxwc4PZ6RHaODxnSJRHJwhZzmeMiwonmusv0GSu5GQ+5WJRMk1rpCeIVIiQUFU1ni9RqiEqSiiqskIg8DyfbrdDaXKwBk/5FHlBqxURRj7rLAXlUEISt2KklLSdYrVeYYzB2RLptcnyCiV8Tk6mhFHYGPCsRGuL8nwqrQkIqEVB2A4pXcW3P/g24+PHvHX7kIODXaryDF9YPjh6zkenKQRtkkiiHeRFgcKxs7lFIBTrZUa5qGgHCUhY5iVJq42tKmprCOOY+WKOVo44CqhLixDQ6nYodYkAAt+n143ZHe1z+/ZrKBXix5Lp5JzFxYwsywgin04c8Ff+wp/hX/zrP+L5yTGv3LuO74dkaUq9mBMFHu04odfrU9eGo+Mxz8/PsICZzhBSsdnv0Oq3+d0/+kP8IKAdJfjBh4RegO8rXr7/Mpvbo8YEKiWr9RrP8zBlwdn5Gdl6TZ7X+K02pbXowKPWmm5/QL/VwrFm0JLNbjppc/3gGq0goFjO2OwonAt468uvM56eU2UVs0VGgMdga4O0yvj4xTMi32OzFfOtf/3P8TyBnyjyuuBiMsOUglYckWYZvufhnKDTbRGahM3WDh89/ZRQxOxubOJsiicCnj69wHqCTlyw0e2xsbPLaP9lrC6ptCZKApaLFd/98ANeffOr3Or3mYxPqPKczf4mcdKmLHLqqkQ4g5KN8VQK0YwXgqDxRymFpzyCMCLwAzqtGHDossQajedJ3v3qOxyfnHLtYI8kjHhsoTCOdtRmsZiSa43vRVTWkAQ+yoFnBQd716ilT20tSvioMCZMGn+VkI7AU5cLt0QKgeeHVGXFdDLBWMdguEHcSjBYVosxG/0BnfaAk7MzKm3YubHDdJHyu9/6Hs9OphRFTZLEoCRKehRFRlFWCCEwRjeEQbhLIiIaJeILGQSs1ZekRBEEIcYYpBCoS3tIo1zYRvHRGikEzjWmVucs6tJPIhvxBOds4225lEWEaAiKsCAQXxhynXMoqdDGYazEIRHCp9YOJy1OWqQH2mkUHgIfjSUJ4ae/8javv3KXl1+6S5GvMbVGhSGrIqMuChwGP/JZFxnTyYSjFyck7TbtjR2+8/2PeHZ8TuCHPDk542Q64fjijPPpAmskQvrNqKSu8P0Y3zMIIahdwYvzM0ASSvhT33ibpBXw9pdeosjWhKoFTuCFPtv7+81Yu6ixzlJmGbrK6XS6tJMWk8mEra3ty9cDev0QbR1lXRP4HlVZcX42pixr2nHEnZvXaccep/OG4JgcyklOguH/9N/8ZT56+zm/9bvvcXQ0RYiAsljzre9/RD8Oub0/Ir51QJGnvPPm23i+QmtNUeYIIamqktls9kOv8T9Sk+yv/Mqv/OeNdP4DdJzl9MEjCiN442tfJ13OmZ4dk5U5a1ZsRwnr0zM+Wa6YzWYICSpQ6EYeoNdpk6YVaV7Q63QJVEAcStZ5RhgqPKlI04qk18XZFKl88lygawtK0ht0cX7FJMuo65KNXpcACOOQN956jdVyzcX5Oe9+4xskrTZVkV0axjwCFSC0pNYZDz/7LlmxZu/GXbY2DvCFh7SSyIsJ2oo0Vuwc7NLpb1EWBUEcIoTH9sEev/DLv4xTAc4I+hsb1NpiyhpdpJydPGMxP2d8fsEirTBSsbWzQ1L3uHP9DqYoOXl6wnyREQ0knq+4WEwZf/P3GCYbvPXGVzm8dQPfV0jjkGGMMwZb1thao6sa4QTepTdk5TKiIMCLAlqBR9LtcXx2TF34LIuSshCsC40RjRFNm2ZG7YQlSkKsNRR5hfIVIMjzDM/zqOomTdButTDaUdA4/Ou6xhnI0+LSxGYIgwBdWkwtqGpDECuUd7nTEhAnEcZY6rrCWoGUCmNNY6xNAkDS68TsbQ7w7B6j4Ra39ncJpWY6m/DwxQkPjscsrI9QEkkzOgp9nyTyyVcrKqOYXSzotPtILRDCIEtLoTOSJKDQDhUHWGepTIU2higIydIcpZqbOMYR+B5JGPLay6+RKI86S7kYj/nk0wckgUdarNjb30biiCV8+f4dHjx6yvHJMekixmqHFJYqjul0unTDiI1ejyQJcL7i1o3r3L52SLcVMZvPmcyXSA/i0KffiRluD0nCiFYSY2vN+cWEcp2RlwUWwWqdsliuKWqNkxKlJNV6glIxq8UCIWtaiSL2l2x1AzY7Acs8Y5lWgMbTAolmfj7hxqtvc/riBauTMdIpht0eWlpm6aR5HX0fEQpWqqbnSfIip841SIUWPjJs0jq+Z1ivVySdFlIa6nzKs4e/j6tzqkKwmJ0jkRRxhe+1SJIBOwcvsVoukCJu3lN1jR8E7O5fI4wTOhvbbO/tsV6taLd7DPYPsdqxWK2RgHTN/cQZB4pmtOMFeEFA3G66mozWBJ5H4CmsrjGmbt77VnO4v4fWhv29PZI4bFSMYQ+U5PHDx6yXFYOtEUVdcnBtD6c1VV6w0+vSaSfU1hEGHp7noaSAS0VQKUAKfC8gTiI8pajLijxtFtKyKvFabSpdgaRRkj2Pzx5+xmyxYv/ggLPTE87nKyqrMFYhvGYU40xjJi/LEk95GGua+UkTh0HIH6RgGu+IlJepStcQ8eafABRSgBCNTuIakwxCCSTukmA4pGieQ0mwplFepJAYqzHWIpCNWiIbQgNNC6l1NCNq6/CsxSKxWIQSmEtPi4+HRYCTKNkYYuuqIAzgv/9rf5l333wJ6yw6zVBOkOUF50enZOkaYzWDzSHSQq/d5/RiydOzC+rjC1brNcYKHIqyqvn82XParYT5eoV1Ek951Jc/oxISrcvmZ5HgjMH3Quq64t71Q37hndcYT8948uQRzkKv26Xd6jCZTugOBzgURbFmvU7xhEBKRxhGTBcr2r3BpcpXAOCERHo+nrWkyzlpuuZ8smQ5XzHqdYmC5t6rlKKoC0pd8/yTR0Rhi/kffkThag53NogDn9PzOWUh6fV7CJ2xvzdia2tEq5MgnKAoC5TngZOX5nHXeJZ+SPxEpHj+Y/j8kweUOL70ta8x2tpifjLh4uyci8WEotLEfkTgSaTvURlBni/ZHLbZ2BhQVTnz6YrpLKe0cDZZ40lBN4nptVtYqxsHOx6V1XgCJArrPJIO9MIWqzTlZDFFSM2w02J3uEk51ZyXa1JdcHZ2yiuvf4nt7U08oQjiLr7yyfOUPJ/x9MkjPCzSGfq9AVEQs5xNEGWJNTVemFDXBVm2ZJWWfPP33yOMI7YGCaFwxKGHEQav3cMRUi6meNKhnUFIj9Fokzsvv8LpeMJiMSWMYzrtPliIA4/5dEJ3Y4Nk1GM+PcUTkqDdZb0u2NjeIUxaRH6EEoLaVXhViRVQaQ22psxyjBDESYRvfKwxBH6EExWB71ErTXfYYr7IWcwzlmVBWRm8ICL2Q2aLFU42BMdYi+/5JC2PqjCgJE44EBaUR6B8rNEoFeD7HlmWEkY+UijyIidJYqq6uVlKKdFVTpwECKWpKoMxklbLoyhyQBJ5AVVV4geqmYMbS1rmOEuz40/XXNva4mDQRVFRrFZcjKesCZgbSWYLYpVQlCVBFILVCGER0tKK2zjTGAXrWmNqi5KNH6AqarTVXEynREHAuswZdrsIAWEU4kch1mnCQNLyfbZ6bdLVhEcfZXRaQ1bZio1hSJh43OhuI4zEaMtysWQY+ByMNihyjdU5xmim0xlFWXHvzm3Kh0+YzOc8efKMW7duQZmxnpxRzGC1LoiSDl9+9VV8T1Bma1aTBXWYMzkfs8pK0jSnFceNf0AoKuFh/JDxfMFkPqcoLbqsCKXHfLHi1ZdvsREpdjuSOLKN/8OUGFOwmJ0T9YfM84KdzojjDx/x8NGHCFsTOJ/DV3aRgaNYLZiWJXVtCAQ4UVEvU9Z5gQhDHIZur4VzFs+XWKPx45C0LnAF+FIji4zaVSAkccsnkBGutujcUpBjpUJFCVHSx5gm7mlNEz8dbe1/sUsP/ZC43cZqTV1rkijGaI1UjZ+o1e4glSQMI2rtkKJZZK0x+FKA0+haY43GOUcURo0/yRg8ZdHGMp+v0Fqzvb1Bb9DhdDJjVlq8Vps72/sMuzHZak28u0XS7eKAcp7ieQEocKbGC0IqXYOThHFCnDTx27zIwVgePvoE6QUM+kO49Im02y3q7gazixPmywlB1OF3//A7fO/DT6iNASkx1qI8DyU9nDFI1SRZjNEN4bgc+zlrcVYglEAIiVQCqQQCcZncaRQNYzTGNHFfT6lLX8oP/B91E2H1GmOvs43KIrAY06gwSA+tLcY28WBkkyxpYsTNYmjcpRfFCaxUOClQsklMekKgPIm0CkfjX6mLNb1uxN27B3z9zTfYasecvDjmfLFmerFgPplgnEEqhXVNUkt6EdKTfPbwMd/94FNWWUZZG8xl1FkIQAhsZTHkCOHhKTC1prY1gR+gtWnUdSVxGIRQ1NrgRx6vvf4yxlZsbm/T3digrmuW4ymffPwxuta8sTGiKqrG03Y5tgo8H22h1e7ghwHz5YJ+p0Nd1wipMM6xXC1ZL+c8f3HKw8dPicOQ/d1twjjk7PQCXwqE78iN5vH4AuSMMq8oM40QE6JWRBwqsnTB5LTgz/7C1/j5P/UNpLtMViqBHwQ459C6QkrZpMOK8j+6pv+H+IkmKLfeeIvN7QPSxYp/9k//Z6psTtjtoMIOuzudhr3Xinanx3y2YLUumc400/Ex/X4Lh0LKmCJbUNQl3V4bJyDPUjwliFoRRVHTi0Kq0rJKS7wIQgUmW1BkOYln2exv0g4T0lnGdF4QbfQJQp9f+ou/zPb2DpOjpzz9/FNCT4CwzQKbZswnY3pJh6quWc0zFhcpSigwFdo65lnG9sEBQRBw+9X73PiSz2w+Jl+tiKOETqeHsJqk3SVod1lcHHN29JjZYsLewT7L82MePfyAze1dbl27RdzuUVUFVZaDEQw2NnFOM18uyVcFG5sDnHRsvHLYSL9eiCkLakCFPkrQpBySiNX8jHWWk1Y1ZBlGuCbrLxWhcnSThNwZClniJ5D0QnQmuUgLpBKkdUYQeFhBw9SzjKqoEEKiVIAzFmRjeM6zFV47ASExtiYIfLS2lFWBNdBKEiyGMAzwfI9sXRDGEs931NpRljVSBBSFRcmAwPNIvJDY94i6EYvViro0jUteas5Pz9m4cYuXXnkbl6/Iypz21k1e2bjB7NvfxlYVvhfgeyFCSGqtsbZCVgZfwdli3Pgu2h2mZ3MUAVvb22inWS/neEFAnqess5QwDqmrGuH5xGHMOk0ZtFskgWTYadFXPovpc1bWkWU9fN8nCQWT0xXnJ4rDgzs4Itr9PrPzU4StePHsDKcCknbEi+Nz0qLgeLogSTos1ytKArJCU1SWT588Q2vYHe3QDRKWixXj+YxllnKwt08UR5RpgZY+/e0Oq/mUi4szylpjrGCdFYDEQ7KeXCCVYvtgxJuvjbg2DBh0AmbLJcuZQShJ1O0hMkNR1Tw6Oubujbso3+P50Sck2yGVCSiXmixN8ecF1nPE7RiZVszOp00k2xrCXgcVSqSybG60qPKS1XJGp9sh9CIwNYKAxSJvCIGQhIEjSRTKStJCYFCs5yvcw494/a2faRYHIUlaPhbTBDtMoxIKC54AZyxWG5ACYy1BGCJ8SRhF4ARFnlNWFZPxlOGgMTMb5/B9r9ndC4FUCk82CqC14Achta5ZzcY8/fxjdJkSBgqk4NpWl53RBoEUDIcDuv0+ctujlSRkxRJnBK1Wj0o3qqTwFFEYE1Ylnqfw/AhnQeuKPMt4/7vfpdtvc/feXdK85MEnD9jeGrEyDl1bVquMSVrzr3/rtxjPVijVqJmebIhXUdrLnpfGDOsuY7//dgzDF0qGEE3Pj5Lyi9hwY0xtFI0miaMuEz/NjEcqeem/qpH/NlLTfI0Bc+lZAwHGYazF2B/YXs1lGqdRRzSiSeNIhZSiUU5QWCfwpIczGlOVaN+QxAHXboz4ymv3ef3+y8RRxHvvfYd/+r/8NsusIq0d61XKzcN99ra3MHkBAh49O+bf/OG3SLMMpIf0AhwSbSqsvcxLCbCm8bVUtcZT6tLkLwhVjNUGh8L3A4QEY2uEqzjc2+brP/MV3nzpTpPA1GDLGl1keL7Hwc3rtDsdgiSmqmoiqZitV3ieR101v4sw9Fku5oRRSF5WRH6IsbbxurUS1os5s+WK3e0dNnpdBr0uab5ivc7oJDGDbovx0Qmbg02OTi7Isgzpe4BiMl0yGZ/x5pdu89/+1b/MS3fusMxm4Cx+6GOlD7pqXk+jqWv7BTH9YfETTVAGwx3yTDM+n7JKM/zIY3dvh11bg1RM5yuu3b3GfDwnEW2Eznh+fAFWEMYOZMXO3g43k0OksGhdECrA1FRViZP+DzrfUNYhPYPWJenCkbQVtw67DDt7XEzHHF+cYWWA7CQE0hILTb2c8Hwy4fmzh5TFsuklsAblB1SVpt/fZDFfUNQ1EonVNeu8Imy3qazm5v0vsbWzR6BCoiTBjwLaSch8fIHwQ3r9TWbjC45Ox6Srp1w7POTGS1/hbhQThD7OGeYXz3jx+BM++M7vEYYhW9u7JEmXIEwwTpFELc5OLkirmuXRmHSx5lap2Opt8vnnH3L35bt0un0wisJolFIoP+Tp8xc8O73AC2MiX+DHPt1WjMRias3FMkMLh2xBWpZUOFbZiihQjcficlZsnQOtiKMIJZqZtqk0WEsQe2A0SRDS6iSslilV1Rg2xWXZWRwkGG2ojSOKQtJ1ikMShQnGNUbTIPBBgK88yrJEuJpWL0Z4IfNsTZyEaJ3iK8Xhzohht82X7n2J2WTKxZPPKWTMpujzzfe+ySydIlstlAyoqxJjNEEYsExrTFUTBgGlNo3XqSjobHUQ1jDPz1B+gN9WZHlOFPugG3NfFLVBKPJVgahh0OqgXIZvC6SySAK2hl0CBVlRYquQxWzFSudMi4yd0SH7o2sgPQ53d9je3eV3v/U+J2cX3HvpLnVd88Enn7EqK0Ll4UcR57M5QsJGv8MqX/G7772Hri39foet0Yjr126SrRZUeUFWlKB8JrNTgkDTGnqEWrJKcyIqfKHZ6Dru3rjGVrfDqJcwmY+xxnE2WVM6ixQ+OquZLk+QCLAOKxST+YTl+Qs63T6J12IYQ3unQ60lBTEbhwesplOsXbK5vU+6TsmLFcoo/Lrp1simBd12RLLZYp3nKCyBFMyXKdY0MVJtK+ocovYW1sHG9oDZqmC4f5PR1jaDzR7CkyigKHUj3ElJbRuFBGuJZYizDuULVOChPA9dG5Qnm926cZRFRZyEjLZH4AQWh3RN3FUASgqMNZRVibOOWmvyIqeoClZZit/qUeOx1hXFumBnt0W33Wxi/LgDwqPKVjz97NtMp6cI2eb23TfJCk2eV2zvbvH46VM6nQ7dQR9RO4o85/nzZ5yfndJutRgONnjx4oyPP3vEarlmOsswpmZrtElhLI+eX5CWkiBss7XRod1pka1W7G5vkXTafP7oKct5fpmcacYvzkEQhE3R2uUYR0rRRHidQ1z+rTvXjFrtF96UJpEjGxstTZZGgPBAuKZU8PLIOEdDThxNFNlYg7bN4+3lo6xtknJI2SgqCEA26o1qqho9a/FEzd17+9y+dcCo3+HOrZu04pBQNf0wWVnS7w9Jhts8OX8E1hK1I85nMy4mY+qqwhqLuySdYRCipNd8/x/EmxFfeHOgmX5J2Sg7TjiE8vFU0/WitQXRKNN7W0PeeOUeX3/7LZSnWE6mzWbMWXRZkmUZURQjhKTfH5KXFWVZUOcFvV4frTV1bZo+GWeJwhAhJb7yOHpxhO95JO02i8WYLM/Y2ByxXizwTMHFacp0NubwYJ/BRo/z8YxnJ0vG8wVlVTYbaG0xVckwCfgf/m//I9/4+leQwHK1JvQiqqoE4bBV2bwXLl+FqihwQmD0T4BJ9n8PfOt3f4fKNWYlESvuvXybXhziCx8pBZ0owJQZ0pYU6Zyqyhltb6GkJAkVt16+x3C0zwff+S4bnRaBNVTpEicseVlQ6ozcaOJWyO7ukGtOUAsLtcLYGpygymvCOGZ7xyNJBsyzAp3lTI6OmB+/YNgdMtrZIIj3WY3XPH36gqLKCEJFoZfkeU1dO3zRmJuCOKE2kEQtht1NOnGfKIwRCEIVUkuLxUPXmmw9ZzmfM5mtCKKYrMyYLadEYYRSAVIIKiPobt/BT+acHj9m8unHJKFPrzfEb3cZ9je4dfc22zcOESrg/HyO0TW//hv/nNJU7N66RssatKlZp3N86ZGtV8xnE4IowYs7xJEiCRXS1ZxfjBHKo91KCENF5VlMKggCgdr0KMcTslWO1s1IIwwkVV1TVY7AcygpsVIQeorD0YhuK2IymbEsdWPsKhvjXKvtY5yhqAqMbtoorYWk1Wa9Slmu1ggB7XZMnmVIT1FUFdpafN+ndCV1XpEXBTGGw+0uN3Y2OBy2SKQgm72gFBHDw0O+/dEHfPAHLzivGjWp5cegDcU6JysL+sM+Whuk9ClLjVMSoSRFWWOdwfdBRZKqyhsjdN3sFIV0RF4j79ZlY/xtR22ELhht9Li3v8PF5BRhQlbTnFs3dtjbHTCbL6kvzsi0Ybo853w+oUxTRt0NwiCgyMvmxrbMePDgMcqDjeGA1TpvzJJK0Gn5tOKAl+/e5pNPP6PSm2R5Se1gsUqp6jWakmVekK9X9KOAg2GLdhJRp3P8OGK60tSmRRhAnqbUtcaZjJOzOVZYRJxQ1JZut02iFJNsivACgqhFEsXcuXuHjz58n7jXorSWIq2JfLAsCNot9m7cAhET9LeoVyVGV/i1JUh6rBdLUt0UmwWRoiib9chYi/QFQjam59CLKW2FFzftrsIGzaKnArxIc/v+y3TbfYyucLWjcuAHPkIqdKURl54xp2TTZHq59pmqRJc1Kohx2oE1CANRlFBUGlvnBJ6P9PymB2O+IPBCwqTLuihRTmNlQF42qbUobuHHLZSK8OOCoxfPKbXD8wLW8xVxKyGQkuX4gqOjJ+RlyYtzjXRLouSE5TKj0+8zPrsAC57vM5vNsdqhjcWPQrb3dhDWkBcFHz16wW/81h9clpEJev0Og1Gf4xcnDdk2ln475HDUZ7Ve8bU3XmVz0KUz7PH4808bVQrviwivlOKyFRYaKiGa6L61OAHYhlAY2yzaDclQXygvjcH4kog4EFI1KRthgGZxN7ZxwbqmKKUZnyARUl56zERjg3EChKLRTAzCgvRitCuJVMn1/Q2+9s4bvPnayySBQkgfXWtMVZM7QHmczxb85u/8Pp8/OUZKHyc0VjckylmDFRIZBTh7OcrVoKVDKYnCNUZtmgg1QiBc43erjQVqhDO0W212ttt4UlCXht2dbd547WV2t3cIPY8yz1mnNdKTdOJO09W1zpCeR7c3JEvXLKYTBIpWp8tgq8fZxRlFtmY9W7G1u0uU+I2Z1g9ZLuY8e/KI4WAAThCELXx/zXo55mDvAJ2vmc7n7G5usDnqsS5r/vC9j5ksSmpbIZXElhXDdsBP/+xP8c47bzEcbrCarzCmQvkeurZNKtFXGF2zWMzwPK+JNsvLcbr74c/P+4kmKGmZsXewQbv2uXPny3TjiPHpOct1hhCCKEpod9sEfoTyAgZb20StFs44lsslZ89f8OF3vsv1wz2G/ZDFRFMuU+I4YmtzSFFWrPIMFQRky5Je0KKsLZUw5MscC8xnEza2u+zsbOJJRT6b4awic4LRRotVtmT8KOWlV9/kxr0bRMMdZosZ0lp8ITEO8qomz9Y4Z/GDAC8I8ZUiiBq3/Hw5Z7lcIqWk12kTJT0E4HkGazVJGLDOU549W7O9tYUTspm1Ko9IKBAxqh1w//VdVusJT58+4P3vfR/nSV66e5duFLK3tYMsDbs9hUURJy+xd+02u6N9yiJHKtPMg4UkGmxx/f4bbF67Rr+/ycX5Kc8//hgjPFpb1+jGhs0I8qJkkmd0vRAnHFVdNguck5RFYy6VTuLJpkmy02kxm8/pJgE//84bHA46fP/RAx4UK/LKIqUijn18qcjzjLAVYZyjdgZpBct0TbfbRfnN7FNbQ64LjLCURY2QTa9CYSrCUOKk4frWBm/fuc31vU3IM9bZjFVeEnZGbPY3oS4ZbW4wPztHVU3NtRMaKXxqLahrwXyeImUjqyolCTy/mcsjSBcZyocgkERRiBKSsijJswoVeOAgCBSdtkCJit1BjzJLOdjcIJ/NudEdkWUW2WpzPF4yfXaKimOiwQbBVBMpSyv06fYFWXnOxSyj1Rry0q1d5tMZ4/mEwXDA9rBDXa+p6orQE83HeUZVl2yOBhROsLu9xXg2Z7YYU1Rj9jdCfKOQm20QhvXyAl35KOnTdoq7d+/zYnzG2eKEJEqQLQ8lLaEXIySkeY4TFb4nAEMtKvwkZG9/l0F/hIwS2t0hpuhSlymlW1NXlnEqCXON750hnEe3s0Gr1+f89JTNnQNKU5GvS7QDT0ic9bEmIksXIO1llNZiq8bvUVjHzdt3aHe6fPuP36OoKn7hl15hb7jBoLOJAPI8I/Cbn01rjec1fgWJQqqmk8YKg3GmIThSUOVlc0yCHxB4AbWpMNpSVzXOVtR1gSc9BJKL6QJfGbY2LWVNEynXKXVRIKyh0+tRC4kQlk4rYmOjT693SJFntHtd2r0+nuexXGUEQR8Cyb2Nm4S+QFcFe4cDiqLk9Pycg2vXKKsKtGG0ucPjZ8/Iipxep0PoKdZFQakdveEms9mCjdGQGzev8ft/+E2chtpK3nj1LveujzBVxaePKr734YckYUjtHLNVifWaDVBTpiYasUI2qRl5SUB+UK72g48Rlz4TvqgyuSxNa8Z2TbJGXNZkuEs1plnQjOXSQCovy9kagiNEQwqEkE2hGxYrBJLGlOl5Pn6oqNIVX7qzw1/9i3+G/Z0RylfUlaGuLVWxQGtLVdeUZcmTp0c8fn7M2WSBHzTGeesEWuvGefuDhJFryJOUEpxAOpq0IwIrfKQn0LpC+B66KqnznK3RBtev71IXGX/mF36RrZ0WnnAU67K5d1y2zCadNioKiK1BlwWelNRVRZzECCkxplFNjo+OabU6bG5V2Jnj/OSEMs/ZHG7g+YrlbEW312c+n5OlK/YP97DaEMQ+4LExGNHr9MiznBfjc7qdFod7OxhbM5vOmS3XGDycU1Rpyr2be/z3/81/xfbWJstVymy5AGtxxlLr4oven8V8gZSCwXDji9dZSIUnBFH0J0tX/2P4iSYoVgS4umQQ+SxOzjhdl03cLmgMidKPWSwLZrMl0jn6LZ8ktKS1IxoNaUmHf23IbD7j7NGn1MYS+glS+OSlIUgS7u4e8vDxMwojuRhPmSxX/Mwv/BS6rCm1ZvfadaQHu6NNlHDEvSGdwSbZbMH8+BGVZ3nlrXfZ27vF8xenqKjN0ItQxmK0JqsKui2Pg+s38UOfoqrwvJCLozNOTya443M8JXDWIJTHYp7x4MFDbhweksQe61VGVRkqpxn2++RZxmKxptXtMZmOKbKaoiy4e/cm0u/Q719nNLpJr3+Nf/5b/5xl/oBRr8X3vvcZttCcTM65desWf/Ev/HnmZ894Nj3n7iuvMzs7Y3L6jOH2Lu3ekMp3pDojX40JBPiBx9nKsjPaoitnTM9POZ4sKK0lCpssvi4d0klMXeH7AdKpy4QQlFlFVeR40hAqzd6og10sqIoUP/Co6gpjDN1uQBxFmInBWYmuC5SU+F5AXhSUVU4QSsq8bG5+SoHy8JwkiSOs1vSjiG7iE7R8hoFidxChqwU2LYhUTNIbIKRiNj9nkS55fHLGNMtJkg71ImO2XtFOumRVQdJJCC5NuwgotaG8nLk6a2i1ExCCsrZI4YhDQbebINMSbcGTgC25vr9H5EmksFwb3cCzYPyAwhfMXclsusBIH+tJtK1JyxLhhUShh3Ca5yen5EVKFMSs0gJfRdy7PeCG7ONFPsv5OTduJHhAN4poRxHGtHn+7CEPHp8TRBGDXoKrxrx8u8fOhma1WhGUht5gwCwrqWto9ztUuuJ8MeVsOiGtCwgEQilCpYjjiNCH2WJNUVny2nI0vqDf6uF3O0hpqLIJ4WADTwZs7RzQakUspxM+/t77+FGCbEXURcrk7AzPc+higa49At9DRgq9rPGEJOx0SboJw14XYzTPnjbKkbMl1kDSHzFdl0wmFxx9+3u88vIrXLv7EpujEddu32127b7A1BWdfgtP+kjpYZ2grhqzqTPNuUXWWkxtccIinCVdz3G24mx8itWWqtT0NzYIky4SiQdUVc54uaDV7rIzGtLqDFgs5+TFCq0t0hPIyMP3E4x0SFfioVmvMob9Pn4YMhyOqCvNejbnxXIGUuKChMiLaHViBBZnEso8b5Ityuc733kfIRy3btzkj9//PT5/+Ijd3R2KssTzAgSG44spq+UC5ywXkzHPj59TVz54Hk44buyN2N0Y8P5nj3jy/Ig7t29w89ZNPvrkEcauEBJ8JZv+EudwrhmjWGew9rLk7NJf1hAKvvCg/Ltwl0mayhiUs3hSNc9nm9SOFg05MK7pr7pMMTcZYwnIpuBSOIFF4pxqRnIOlPSRuib2NX/2z73LX/zFn6XMUmyeEriEuqypywps44/49POnfPd777Nc55TakpUl6vLMqKpu+lrAYi5P9bJaY2rTGPkB31dY4VHLJp2krCHE0m4F7N47YGdzxE+9+xW2dzZQQJllLOcLvNinFbcIg4bkChFSlCVJHGPKEikb0pLlmo8/fUi3lbCcnfPqG2+ye3iDR58/YLVakFY563xNRMxod5eizGj0LdOkDY1pyHfgcT4/59mTM5RQeNIRR02N/t7eLi6A6Tjl9HTeHDHgGZQxfPXdt/jrf+2XccawTteNVaHIMbVuNl80r1lVlc1xGiLAOdXYg4TD8wR5nrJaLH7oNf4nmqD0E4VOp6xSqGqHNhD2BqBF0xlgHP2kzeam4vTZYx4cP0aG4Cdt2u0+4/WSqqiYl4KtrWvotODB06eESci1W9cJPZ/1UjA+X2EjD8937F8bQl2QrxfcfeUV+t0hRWXxnIcTirBX0+502ehrgjhme++AbnvIR+9/Sl1rVOADzZyy1hpfeU2ceZmR5zmz2ZzziwlGemyPNokDRRKFaOModc6zpy/4/qefMl4v2d8c0o1jFus1Xhg056vUFVEUslwtOTubgFBsjPpUuuLF8yOydYXRNefTU6KozeTiguPnY/ww4GB3h+uvfJkodvzGr/+vTM7HiCDgzZMLzHzJB88ekdeW3b1NWpFlezBgc9hDFpq2L7k+6jPa6HL26DHzZUEhfOJOTCdOsEbT77XJ05qkhnWaNjKsjFH4lzFHw8s3d3j9zqvsbe/zYp5R1ZZ+GFAUBu00y1VOljXmvDIr8LzmLJSmDVbgrCAvC5yFuq6asyJsE2ms6xylBNqWOKdYr5bEgy7LtKQrBY6IsLsFHhT5lHbkE0Xb+F7C9x8+Z1paut0BKs/QpqTVDQn8Zs6bJAGL1RIvDPCVj5Ihxmo8FZDmBXWlm+h46LGYL4kij2HXZ9COaYcBm4nHRqfTdLQAaMd4mVOlFbaqiXxJRQVCsFpPGiLrB1S5QjuJrkoQCm0kaVVibNr4BaXBOkm346OEJpSSvc02u6MRzirGkwX7Ix/pN2mMdTEkrwvG52P6YUKpBM/HE3RpONjaRIgKKTQqbpIPXdchS3OKXNONuvTbA6pyReS3EEJibYRxNcYK+r0es9mEz44e8uTBC3qDEXu7u7TCEa0Qru8P0Q6G1w7J10tOz59ipIVS0wkGyNpRrKZMz8bowuKcIerFLBZnjGdzitzS7/XItUHjk6cFq6Kiu7HJW7dvcefWTbY2hlhdY53G5RnpyiCRpFo36laZU5c5AGVZMJ1NiaKIdruDk1CVOdPzE/I0BQlRKyRpRygpmR/PCYPmvJvaQV02N2rMBVUWU2Uj2sNdOsN9snXBaj7Gk5Z8OWW9mFIXK7YO7jDa3iLNasrccHF21PQm1WuCyGO4tY2xPlVZ41zFixcnvHh2xOZwwGi0hdYOJzySVszHDx7z3Y8fojyP6WcPqLWhqC1VWTWGViRR1KYoa0rtsTFs8Y2f+RqT8TlfevU2gTP4vuD2wS4/8+7bfP74CePzc6RzyB+QCXs5yrk0v/6gplUK8UUnymUK+5LINA/6d/tJhBAI5aGtw1lQ0gNlG6IjVDO2gUvZpUkGXZ6cc1m65miqosXl92j8KLFv+bl33+Lnv/E2m8MO8+mUbJVSFJpPP/kmz14cUZQVxmmyyjJdpmjt8IIA2+RhiKP4MhXYlO0516SZGo6kUL5/eUyHa0Z9VUEce2yPOty+dY033niV69f2CFBgNLoqWY3PCcKYNM1QVrCeL9Ha0Om0KesSS8HJ0QXL+YrVakm7nTAYbfLPfuu3GY+X3L99gxv7GyStNhrH7v42usjp+UN++8kzNlVNHLXYGG0ynYxJs4yqLHFak8QxQimUcKS24smD57zzxqtsjgaIzQ2SJKbUOVYFfPDJI3RZs7/b4Zd+7hu89uqrmLrx3lR1DaL+Igml66bgUkiBuTzewSqDEJayau7D88WcdL2m1uaHXuN/ognK/vaIMkt58OQZT46PcUqwu7vL1mgPhaAuLLkwlHlKmi0wnuBkPkelKTeSiMHWJn6hcakhqytejE+RgeDWrX3u3D7k4SfP+P6nn/L87AXGh9dv32KYxEymp9w4vE1ZQlEorIp4cX7evFg+TE9PiSKf/s42gd/h4cePePboGVoJ/CggDEOiKKaddFhdRr2iJKEyjvF8Rdhu0Rv2aCcJpqowl+fgrLMcEfq8cv8eSMnDo+fcOrxOvzekMAUn5+f4yqeq1wjVdATURUYRSerYx1MKbSr8OEAGIZ5sc//2EC9wfPndr9GPuvgS/viP/jXH6wWPLqakJXzw4JTAbzEplkSxx0II3vrSNabljPXJhFAkDEY7ZKcTXjz4Fst8SeEs8aBLmRYsjmdYZ5Chw7mKKJBILybLCoLYYzZL0XXFwY0D7h9ssenB04/eZ7ZaUdoaz/cJI0OVaXQt0ZXF9w2eAu9yTGK1wfMuDWlC4QUBURixM+owm42xQlKbpqjIWEcgFYO4j1ICohAlA3r9EdILEcbiGdv4lvScfhAxjGKej88wqqabxKyrZudQuyYiqXVzXofVDofBWdv4GqwkCmI8qsv0EcRhi3YAh5sdPFMTOEsrEEhnyFdz0uWKsqjJjEUGMWmWI5SiqEoqUzfeFixhoAn9AClUEwXHkpYpNQaNIUCSSJ/N3pBOt022WgCSOE5Ilys8Kdjsh+yMehinmZzPMWVFECeE0iNfp1hpGQ66LGcpnx8d00liukmIM44oDPGjFqcXGaWFpCipioKy0kjpgTMc7G1zcn6Cw1BmOetVzWB0HV9JrC15cfwMWy1QAooib0zGJ88Zr0qEUBSVY5alZKFi2O7jSkdeVBgDr776ZZJWm2/93h/iBV3ilsS5GuVHPHp2zu07XV5/4xVwlnS15Oyz97iwBv+yW2e+nOKcBBFhrWC1XKBkMx4yzqFN8297Z59VWvD54wf0ez2qsulJabUjpOehVIDVmuUsxVZLnPQZXbtOf2OfukzRRUpelKTrp1QPPmFra494Y0S+niAuTw332j38Tg8nBFmeMZsvSNcV3W4fZxyeSsjKkpPjKS9enFLrmts3D9G1IYoTOv0BR2dnrPOcdq/LgwcPeXF0wXxdkBYlUjSKhhdGFFah64rrBwfM12usZ9nd2eIv/Py73L2+y/iiSzcJSRcrOmFM+9Zt5rMVZ+dT0qxEyLAZgf07jMTaRtQAmgQPjWyijbmsm5eX7a3ii69xP0jjIDBWXKpXjYlUCIkUzbjkB+RGStkYbFFN8ysOexnnV7LxvQia04Ullrdff5mvv/MqZ8+f8cn3Fzx8+BiH4vRiTF6UDZEVjQqUVQaEj7g8kNCJRoHJsqKJksumZ6XUTVW7EK45mNbK5r1uarr9kJ/7xle4uTtia9Ch1+tiqgq7WHCep/hCkkQJvVafk5MxDz9/SOA5BqMBSdLm6PiM3rBLoUv+6T//X0nXTW9Jr9umNxhwMl4ReQInNTfu3EI7i0Mh8AiihA8/fMDTz57y03/lrxDGCWlRcnp8hLGCIlsjRXMe02A4wleK/e1dAqPYHW1iygKsZbJa0et1WC5mxLHgy2+8xp/7xZ+m1+83HSuqGVE3IQdLuk6xBsIkaYr3bFM22u32MaamKDKkkFRlQeD7JKMRaZr90Gv8TzRBSdOaTnvA8dn3aHU3efWNV+jGEcPOgGy5IlvOESpnq9diZ3gXLWBjZxepJOtlijZN1frkYszRxTkvXd8HpynzBZ9++G0K6zG6sUn7YMjGaIv97hBd12zujVhNM97/7mck8QnPT4+4dm2fRCqcL8iygkGrzcnRBd9+/zNmyxVbu1uESUS/12NDRXz8/ud88vkjvNDj1o1DHj99wWK9Rvked2/foMhzVnGLQbdDq9shXS9YztdUpuba/i79boc022VyMUFiWV1WtxdFSa0tO7u7bO9soUTjYdeVI8/Ty/MxQhbznPWq4pd/8WdoJ4Kw1cbkFWmd886Xv8zi3j1uPD9jvqr4/ucPGWcpo80B2tasdM77jx+iRIY1ljdvv86rL79CbzThyccf0u7usaxzTsdjAuuzuTHCj0PyOqNcTHC1wzhL0m6TFimddsxL9+9xbatHpC3Pjp7hxz6yG1GcaiaLFVo0pxB7SmFrTRL6RJEHSpHOl+wMB6zWK6JWwjrNENQop9nf2CN0BQiPs7MJ1/f2uH14QDeJqeucnc0RkfQJgxZ+uwfGNnK5CwhaA7zM4awg7rTodBMKJyh1gVAKp4umwlyD8jzCIGwOI6ORuLUV6LJC+QZBDp5P0moz7PQJdEVsANOc3VJUjnWRUqRZY0COE4QXUWc57bjdEM98grQevU4Xz48wTmOdIS9zhCfQWCSCRPrEQUK3lbCzMWx2LeslnnMc7O1gK02lLbWUnC8uEAoOdrfpdhPWxZrZakngJxjR7JTn0wu09bl54w46z1gVzY5vsl6h/BW/+Gd+GSsszx9/yGK1YJ0XWCFRnmK2nDYjuqrm+GzC7u4ho8EGAsuDx5+yvTlkPF+wyjKCOMYVOb0gphtGeEGM8nwWfo7nR/Q3RyymE1rtiCSOCZXBVDmFNmTLKbdv7BCFCpdrru9tcf/OIWenzzg/O8cYQyB9TO2IkhbaOrq9PsbBZ58/xQ9igsCnrk0zjjQ1q/WSe/fusb1/jSxL+fI732DYH1DVNUWVU9cZdb5gcTpGOvD8EC/xmUwmlOka30+IWptMVppOb8RgdIizlscfvkfs5nQ3ryFUgDCGIluhdcXx83N6wy7b21vkvZpnz445evECX/l4YQe8iJPJlIOdTVbzFUJIZqsVD54955PPPidK2vhByGQypdXq0N8cUk+XZHmNcpbE97hz+4A3X3+Jt7/8Oo8eP2W0MWJj0OH8+TM+/f7HtDp93nv6EbPpjD/+zodcu3WDujY8ffYCIS9P8K4vT+a+7HpxNGOYZvzyRTk9VnhNAPiSZDSynv2igK1pexV4AqyxGAdSNaVu1pqmg8Y1rbAeTX+H4d/xsVwe8iecwJdNXLmpHbE8fPiQx598RFmUONWciiyUahJDwmGwjWpjJEJ6IARR0JybVZsmied5qlEIdA1IvCBokih1hbUGIX0C2RTQ/blvfJWXbu9SVwWRpxBaEyhFWha0kwSnLU9eHPG7f/C/8PTZMcPhgPsv32RxUvHgwTeJvIjhaIP3PviIRZpRX/pvRFUzffoUYyzvvPUmP/3ul9k7OEAgWa3WzJYrLIa8WjPqJgxGG2R5ytnFGYcH1ymqEiG3MMawTku++Z0PePrsOV9980u8+9arLOZTnHOMpxdsDDeYz1fsbm7wt/+vf4tBb0iVZyzmK4xtDir0PB9ra6SnQEqSuFGZPN9DWsjLkjorAIuvVDOa8y79lkVOcVkY98NAuP9wKPgTgOVySa/X4//1//i/0O3GLNYZ7V6Pfr+Pqy1PHz/m4vSEqs5R0tJqJXhCYW0TpfO9iEePnlNbRxD6+MGlebKqCNsJs/Wc0lSoIObNN95hs79DVVtMUYOnMHVFnpWs0qLZ5ekC35Ms51M2R9vMlhnz+RLhHGfTOc9PzqjrGimaOX2W5YxnM4QfECcxse+xWq5ptVrUuuRwv3Fx11pTFiWHBwdN8VlVE7dCNgY92pFPO46YLRZ89NlDPn/6nJ//2W8wHPb5+JNPyYua7c1N2lFIu9VmNl9xdHJKbTT4Pp8++JyD63v8H/76n2ej1cboEoXDcNnyWlU8e/aIDx89osSw0W8zmy14cjqn3R+QBDDqhAw6PqPeiJ6XkAjJZDEl2ewxX81JiwzfSRwBy7JkuV5xkS45WS6prKAsC5IkohOG7A4GmHJJrR1KNrXlWdGcTj2rmuhmURq00YRK0o9b4DQSyag7YKPXYzqfgt8cZjfstynSFfUlCfCFZGejz+awSywFdamprUE5j7y0dPc2WV2ckC3X5EXGoN/FKYmpLY+PJ5yXJWES44TACYnVsFzP8eOYZZpxdjGmrCp6vSF1ZciyAq01SStCKcP+bo/r10Y4W6EciFLQjzokYdgY6ay7LKSTZEXOdJ1R5RbrJM4aIqlANwV2eIKo1WWeLaldjZBgtWZ7Y5Nut82g3SZSivH4gtrUZGlOr9uh1W5RpBnKSYwRnM3maCHZSFpUdUqWlZTWkNY1SdiksxCW5xcXOBtwZ/cagyjgxfkxS13S6ibEXoDVimyVcn1/hLYOFUSUpgLp8J3DVpq8NJS5pttuUWZLjKkRgcdmFFMjmK7XVCan103wlKIlAkJfMZ81rZtBHOOHIVHQxEBt2ZwL1dsYgC/RtWN8MSEvKpwBJRzWNgfT+Z6HsQ6tARmQFjVRp4fVmmvXDymsoa4dR0enZEXKap6hTc316zvsjLq04iZCujXaZXZ2xvT8FD8M2d7dR9eG5WrJxtYW1eWYww8ClB/jBy2sNeiyZDKZUeUpSSvG+QFJnAAeyklW8ylCCZZpyvnRKb1+h6xImzPD9g+ZTWYcj8+ZTjM+/PAzXnnpDqOtPh9//Bmz+ZIwaXF2MaMoNZVtis/2tjf4K3/pT9FpJ5xeLPhX/+ab3Lt9gz/98++yvTkAW7FerTk9nuCspcjXlFbTSnrUKH7/m3/E2cWEybygLAq4rKdXnmjaW7XB80OUaqr9rQNjvzhQuBmHGBqFSDTR6iblc3no32XEuEnf2cvXqxnPCNUkcxoiwxdNq0p5WBzGNQ2xEtfUHiiJJyW4Jh6OBN8XeM7hOQGexErw0MAPGmrBOEFlwePy+0oF0pEXBe7SGNuOPN556zWiOOS973/IeJo2jbNCNuM7HK3Y56Ub+/zFP/1zOFsxHI1I1ylHj58y6HWQviLPK1aLNYWB73z8CXlZ8pW33mZ3r89v/c7v8uJozP2XXubZi+c8en7CzYN9nBIcH18wGm0wm0xQSH75Z95lb3vIrZfvkaZr0mzRnO+kfLIyRecV12+9xGwywTrdFPjhEGjSMudf/f63+OyTJ7z7zlfY7CQY26Qdy7Lmxs3rtDtdBIJBv4vRzd+M58nGyeIcRVlgdZPqLOqmHC70I4o8Zb1OCaOk6QSi2aDkeXo5AmxSV0pJ6rrmb/3f/x6LxYJut/ufXOt/ohWUsi6xziP2Nb4tWIzPeP97n/DZ44dYpaiQKBVizRIPw1ffeoVlaQmNobt1wPFsRjLs02slLOZLWl2fqNOm8NqsJmN2hrs8e7GkyCJsfdkUCvTigNlsSl5bnAxZr1ZYp9ne3OBisuS9737IfNnMqLUzSGHZ2txkNl1wPpnhhREq8BluDFGewFU1h9f26PW7BD6MBn2cFVR1xYNHT/j44WOS2GdvZ0AkYLqYU1YtCt1IfL3+Bq8mCVsbPWaTMf1ul94gZDGfsF6tWT56yqrIaHc67F3bZ2e0zXqV0W/3CPDI1xnKE4iwGZdUZc7Hn3zAtz/4PqWQdLodXhydEXg+ge+zmC+woYfJ15xNNA/sC27tH7C/sUHUislWKcopAqUwRcnaFsStFlklWE8KjG1OLY3CAHVZdLYsC6KwjfJrWkFAxw/Z2IjIi5JBXbBYLMjXOZvdPhvtFgGOOAjZ2drEs4I4bjHsJcxWSzCWRDtsZbHCsdkb0Ap8qnTJUTrHlZZu6JFraG8dknTbPPv0Q8bTCf3+Jhvbu7TbUWNay2s+eH5CVha8fPOQ+7duE0qLMZIsz3h6fMyiyBn3EoI4RlvLk+NzprLmpZs3uH9rl1KnOCuZXkyoTIUvI5yGWZ2xWq6RwlCa6rLSPWSepjjp0/LaADip0cIQBz5CStYmI3AF/XaEsR672zsEUtEKA4o0xa0z5rpESUfghwRKEQcBomyK9NJVikPge81Nfr5c45wjyxuDrxOC3OXUlUEo2B1tMb5Y8vDxY7Z7PbxA0Wm1GHQ6xHHEk9NTNDVlkV56BhxSairtmM7mdKOI9SJllebkaUIchJR5RRRJpvUanMUTAZXxMZUgEIKMJhGjhI+QAh9w6xXeRocwDlGxoAZm4zHZOmedVRS1Rnh+MwqrG5OhpwSyUAjlY5EEoceN6zfpDDZod9r0o4SyqqmN4+bBDVTkY7DEUQJCc/zsEXEYMxod4KTPRtinPTpoNAOpaElBd+cALwioa0uWpVycndJta0y9wAt8vDgmbrURStDt97EEZKsVulqzWqW8990PqHTFzZsHRK2mSGs0HNEZ9Enzgtl0TrrKmC4WpFXNp0+O+P4nn5MVFcaCXDbNnLV1KM9HYXjt/h0Sr0lNDNsJr9zc42d+6svEPkxPzkirnPOLGR98/xPu3rlNqxMinMejpy84Ph1zfDJlkTZqrLauaeS+TOko6SEDrzkm4rJltjkA0IEM0JcdJ6I5EfCyj+RSXRGXdfaXceMf9KG4y1I1Jxr20VTiiy/aVa0Ul8qIvFSFwRMC32s6Vho9xsPzQcimkE16jlbio41mlRY41KXn5dITQ5MMMlz6bZ0BLgvxWh2quuSrb9zn/t1rHF+cMT7cYbl+RrvVwemaKk+5f+8WP/21NznY2ybwAzzPYzZf8Pu/902EFXzvw8+Yr+Z0ewNOjs/JKo0MAzYHA1azBb//zT/mwWfP6PUGfPb5Y0pd4/sB0+mKypXoqubp42cYJYm8iN/8nd/jf/wf/mscTYVBkrRYzKaMNrbxpEJ1fdI0xQtCdG1Zr6Y4LWh1WuRZzeZgyP7PbBMpwSeffULgK7706n2+9OohQRBQao0nJHVl8QMfLxCUZU2lXdO1Upf4SrJcLpuRjtPkOiMMQ4KqZDY5p9cb0OtvYMwPTM+GLCsJkxCpFOl/hkn2J1pB+W9/+U2G/TaBp4iiFkIFPDk7o93f4Nr123SiHqtlwQeffEy/32VrY8B0PCYMI4TykUGAqWuKNKW/0efa7j5KSPKyIq0qPn/0lE8++YwkSei0Iw73d/CUpNft8+DhYy4mM07Opo0zXgr8oCnDcUazt7eL9ASffv6Ar3/1Te7fewldG07PJnz++AllVbE92kJgqU1FFEdEQYh0FuUsxgmysuL4+IyiLrl+bZe8WLCcrNna3mJnZ5/1KqMVx83x8j7cu3WTxWLBw6dHVFagFCyLnP39Pa6NtlHWkeYlR6cTHj1/wd7ukFv7PUabOyRRzHhywrc+eI/nxyfYSGIAzwVU2rCoSnzA82OE8imLjMSXzaIp1ty6ts/ecBOV19jKcHjrFijBfDwnFyV1lfJ0POfxyYQa0GVTjx3GEbU1eEIQYLi+PeT2/iEdFfBkcsbR9Pyyk8axOdjg5v4+G3EIRpOmOc4154coT6KrDOmaYbjTgiiKMLpoGhPnC6aLNVL4RJ6PH1t2b91n++BlFmfPOX/0MZqauJfQSVp0oxaT+QXHsyNWuWR79yav3r6HznKWyzOW6wUid03UNY5xAoI4bBzyizmlM4z6Q0y+5sV8zDjNqbRDC1BGEsmAThxT5hm1/v+R9ydBmmXpeSb2nHPn+8+Dz0NEeEwZGTlnVlZmTUChAAIESYAjpKakbu7aaMYdZaaFNqC01pY7SWwzGUVRMIkiGyQoAAUWasiqyrlyiMiYffZ/nu48nKPF9UywTVrUorWoZqalmYd7hIdnhLufc7/vfZ8nRRslRSkhKWn6ddrtTgVV8yXhMmQ+W5CnaTVWrnkYUuA7Nlf296j7Po5pMRsPWS4C4jim1W5g22YljLNtFrMltu2TqgrTXSQpvuuzmi+Jo4Jms0leFsyjkOkqIM4LGk2PXs2nW29RFILhZIIwBcFqwcbWBmWRYkpJlhdkeUG7VsNwPNKiRFJSqJLxYk4SJORJDiLjyvYeba9NtApoNGq02j6FSim1IAxTsjQnWCbYDUnNEojcxLIdCpWjZUm/7lKUMF8mDIZz4rjEcD2COMOyHUwLgijAsmy0Nul0ukRRzGoVsrm9wc7eBi+/8ip5ojh5dJ/R+Tk7V68ia43LtkT151NvtKpapOFWnBpVUqZpZT92HGxpEQUhlqkJVysm4wlojV/zkIak3V1DKFisJnjNOpPRCsOxcVyHh588ZDyeYDgmF9M5Dx4d8dd+49fZ6PsspisMqSnznDBVREnGxfACx3X47MFTklKQZCl5FlceGasSEgrDxjR8wuWC3/vr3+bv/K3fYj6fMxgvicOATt1ja2Od84shi+WCd977gMksoNFocPvWDc7PzxhNF6RZfklshiCKq0CjLvFdpwqiX85INFVmRGtdUWCFpFTi0oIOWpV/teoxLrMnl85Arb7kg1TvqTqCjMuX1V9lWKhWO4ZpXFZ5qxyKuMTlC62xLfnV9EaIynuFAEtLWp7Bt7/1CrVGgx//7CPOz8cIKjz/l6uj6uMXl7RbjRAKz7HY7PfZ3t7AMSVSKWq+R39ji7PxiG7bwzLA9Rpsbm7TqNfJooTFbILjmrz7/i9YrhKyLMdxXW7eusV7H/2CH3/wAQiJoQwEGmkb6EwizcuwMAaGFORFRJIWGLaJKC/tvxJMA37nu2/z+3/9e9z7xcccXDlgPJviNhtI06RIoku1gIVpWuRZwnw6RAiDh0cDnj09g3TBm2/c5dGzQ9a6m9y9+zz9tV5FN4+TS8O7cakeqOr3SkGe5kgBh4fPaDXbIKDeqFFqhWlb1aVTK1SpmM8XfPLpZ7henXa9hRQCv1ZjbXMdJJydn/G//mf/h//pT1C+/u3fosgz8jSj1+tj2T4vv9EkyUpOTs95fHzC4eFj3nz7DbrNJmmSs7tzjazMsR2TmueRhgm27WD5FovxlDSMeecn71KYBtK1aff7jEYjvGaNzx4dcnZ8hpCSRrNePdnEWTUaFFWDBF0CBfNwxbWre1zf32MynPGDs5+wtbGF7Zi0ajabBztEQczx6Tm1To3dzR3KVcpwPELZEqkNFrOIJI7Z2e1yfnbE02cDLLfJ2uYOjgS3VePZ8Sn1Zo3NzWqfbVoeNa/OYjDAdW3WGy2mpxfosEr8f3L/CxZxwkuvvMA3vvkadUOxSmJKFTCbnuD4Eu15aFniOg6r5Yq0VEjbJFylqGCBbdlYtoXv17iyucVrd27j2ybL8YCzi2e4jsNwNKTZbNPtbJKLgqOj+5wNppSlRNoCyzOxMCmVAl2NeG/s7PPa87dYX9/g5z9/j/PRnEJaSMtku19nrdXClxKVFQgNhrCxPJNSK+JoRbvmU3dcwnmMt9YmylLyRcjJxTlaS2rrOxR5SqtnV/XMVcD0/vtMJnO0YeJ7Po5lY0iLxSrG8Lv06122hUHTdBmdHDGYjti/ug/LmOFqheXYeHaJ45hVUE8VbDTrDMcTHj99SCQUqVYkWoIlcaTGxaRuuohSUaKQhsU8zJG2wcH+HjVDYBsSU4CrBFGUQlogdEmz20Ag8VyXtV4Hs8iZnZ+zub5Bv9nBkiZH4Yo0jXGdBlpLVK5xbAvTgnqtzdn5kNFwwvVrN9jc3idLEpbzKY2ai+NKar7DIghxLItuvUlZZEynM67s71GqgqRXJ0gClCNQZYlrWVXTLE4QWhHFIWu9LkpDfb2P7BuEUYppVofdZHpGEOSYrgehxnQsJqMpWRghDUGhNB27jWMVWI5DluaUaU6r1WYyTji9GKBMkywXRLkgzTNqvl+F76RGY6G0RaElapmzDBPyXNIuJa3uGsfHp8RhDlaHK69cwfF8XNtlPpuBKNEILgZjtC7wbZM4jlGlIEkypCno9nqMlmN+9KOfIrQgzWI2tzfwHQfTNthe3+HZ8RmPHj/l7u0bBIsBSQzaUUTJhOPzM+xmjUVY8OGnX2CbJofHT1lMPUpp8t6Hv2A8W2I6XnVo6hLLdCnLkm63xWuvvY1lCjY3t9jYWKMo4f/4f/qXnF+c8WvffpHf+PbXiFYLhhcDPv74c95+6+ssFyM+/WyI59bY2N7grW/9Gj97/0Nc1yTIYk5HI4KwxHGdyjWUZQhKpMgxDZPKAFhh7L+ktRZFUWWxEORl1QrSWn35Uy87NtWU9xIUW71diC8Bsnz5wlfwNsSXsZLq9bqqKkspUZfeHnS1bhBKURpV+FYYAilKDNNEF5qtfoPvvv0K7bbH8dkA3zaxXYkqBUVRGYO1KJFSI3SFcSip2jl5URBEhwRBwFq/S7/VQM/n6GhFp+XTEHX6vS38dhuF4uTkGcvpFLTi3v0nvP/RIxqtFju7PQbnYz7/4jEYBr5XoyxBFNX4JisUhlQUqkRLic5LBJq8SAFJmZcUl/6jg91N3nr5Fm+9+So//clPsEyTk4tzEAKZpEDMYHBOr1fxuFZZSpomuI7DyWTGn/zFX6JzwW+8/Sq1Rpu/9XuvUbMrPlWhCoI4RuXVBAmpCaOwslNfhprTNCQKQuRl68qv+bieR17k5GXBYjbHdd0qiG2ZvPrqywhp8Nm9+1jSxHJMlosZSRTR9L1f+oz/lb6gzCYxRaFo1OssFwVpPmU+O+TJ00OmwYr2eher2SCLUyIj5ux8iJAjWu0Opi25PxrQb/eZjmeMFjO2Nrd48ugpnz94SqoFpiUrhkWWsFgFJFGKZToYhiCMUrQwqvGjrkiKri958c5z7GxsMLgYc3x6dsnD0GRpzmwe0Wo16XRbZJng7GJMojQ317eROUzmS+argP7OJukypShzrl7bJYyWzBYJ61vXaPUaOK7NdDYjjnNazQ62Y/L06RFloXBch/F4Sr1Ro96s4Zomqig5H00ISk2jv8a673D9YI/h4IKlEPTWOpRxgCU1ljDodRpcTMfEqcB2a4SzFWRVWLTmeniuQ6ZygnBFmNRRwGK2IFiFxEVJbuQUQURWau7cvc5wMOTR6YRCOqQqQaWqwmKTo8qUfqfN2y+/zo2dfaQqGJwOuXFwg269SZRFBCrHd108yyQNQ9JcVbkS00KqFF1qGqZLzXap12q40ieOSyzD5/HijHa9RzibM3p2xN7VDWazGUZpMM6XmJ7JcDKk1erTkD5OnrG+vkGtV6sEcWlKY32bbLFgugror2/guQ1cv6C35dFs18nTBKFLDCGYTWacL+fEZU6t08TIY+xSU3M9DGnQsCzKOMVSBo5t4vgN4jSh6TSIiwyrKMiTjGWU4hgO82BOo9Xhxs3ruK5BlIR0Oh2QJkkcVnA/yyROYqQGITRXr+xSFAVFUbIKQoQwiJIIx3doKgOjhO31DcJgThytSOIE360q06YBptC0/FZlQE0iHMdme7ePYZaEqxVJmVP3nUrX7vlks4REpQi7wPFM9rprLGYLDk/P6XfWkblFVsC1W9eYzM7JRUyz26Pe2aDe6yKFZrbQ6MRASEWaLRlNExw3Q+cVbbnW2OTBgzFZmtBoNXBci7qUFPMl4WLFaBri2C5RkGHaLpZXubTqvRb9vU3azQ6dVoNef4MyK/F90I6JY0rSVcDP3/0Zp6cnXN3bxfbrxEmJbZvodrUq1bpKMFCU5GHKZBkyX4Vsb25xpbtPkkQEYUqtVnJ6OmI4njELUx4eDVjOZtx7fEIQhaz32lw5OODhk6cMBhMMwyUvSj69/5S8TEnTHK1NDOmwvdFHAefDKWGSsdGu8ft//TdY69ap1+s8OzxlfnHOtevX+Uf/8G8xGl1w++YBljSqdVOc8vKLdxkMB0xmE7qdNu1Ok7prkwQXbHRbvPLyC+R5Rt3z+eFPf0GW5qBVVa0tChzDQgNxlGCYBqZpUSiNNCqiq1aakqK6hFCNT7SqQrPGl80dxVeXlr8a1//VJUVQ0V8v9TRfvR+oqsrGl1MT/Z/9UqErrIKu7LjVnUdTZiU12+CNl2+wvdlksVgxn81Z73WwPJ979x5RCqMyfX81SZFVv0gaWJaFKAu2N7q8cOcG8/mYrAjZ3Nmk3WzRbLWot3toBPPllChcIYHNjV2COCYzjwm1Zj6e8fjsnDzLMA0LxzEQQuI4Pomuat4CKFWBEiZlQfX/rEpKZSKFBSrjheeuYlsWHdeBPOXh/fs4lsvGxjpBuMAybQxZ5T267R5SC+IwIM8r8utiteTx40d85+3XuXvnOW5c2UcXiiyLiVWJaVvkZVkhMET1wMElnj9J4suGYgECojiiUCW2U/15B0GANA2EEDSbTUyzYqlIITHM6mJ/59b1r/7+kywlyWOKVfZLn/G/0heUJ4+O2NnbYxUkpEnMxWCIdg3W9vpsyy1c28WzXU6fHfPnj37KPF5h2Cbd/gaqVFzd26XXd/no3n1WYciHn35OkubEeUGS5hjaQAjF9s4G7Vad6WxOnBSoomAym5PmlV1XldU3s3azza2rV7k4POPo0RGzMCVKYyxb4bo2F9MRZ6MJAK5tk+YJ27sbnJ8MGAlwGw2ceoPpeE6hwW/X0AJ6rXVaz68jbIfNnQ5lHKHTHMdTxElGvAjpbvaYzRYoQ7C20affa1MUKbPFBGGVdLsempTN9R3yIuXk8HPGZ4KrV/ZI1YrZ+BQpNUmZs4iWpFlRBePQqEyQCVCGxHBtpCmo4+CbAqPI+OKL9zGVJo0TGo0G1w9uoouCIC0wPBcpTVLDQAlAKlSSUySaze1Ndre3ef7Wc9zcu4bOcwaDQ6QWLMZj0mBFUqbYjkXDsZlORwRRgGN7bLTXsZVGSoUUNnEQky0TVnHJeByQpJru9g5vfONbWMBPf/gDrl7dpt1r8cEHJ8yKmExqTMvFNGAeLtGrMeE8ZG9wwduvvECZp2AYWGmBNCXtfhfXMtClxml4iDglj+YIJMvZgjytvBq+3eP63ja2XRDEKxZRzGQVk8QJOolJopQszqEo2ez3afg+ZR6QJiFn4QpNie34DGZjvGaNZqeFY0s2N9Z4+miJynOk0KRhhO97CMMkXASVsl0VKK3w/BplXlIWgkIppHRxDZ8sLMiSkkIl1Boeli3RpYVSgvPBlDxLqdUdbLtChVcoC81iMafZ7eDUfAZnFyymC7qtNuPRmNl4hV1z8Fo2UbFiMgnII4Xn91iEmtF4zmtvvonluWySs9WogRQIGaFnK4I4oWH7JKbN05MTNje3uXb3Lvc/e4/FKKZdb3L1xh2uvuiQlTm+5zEbTwiWS65cv810PEY6Fobt0Gj28PwG0qiIsLZlIgVIFB++/z6nh8+4e/d5mq0mWhiE4YooXHHzpefZvXmV04ePSBYTHj85o9lqk272QCgMQ9DqtzClZDaes7W/w1vtOmkcEy0DslIxDRLuP3wPUwqeu3OHg4MbfP8vf8TZYEhSSDzXIh2OeXwyIL2siiutMTAohUMpLXLbwDUN3njxOb7+xgtkpeZnHz3g7OiI156/yXavTRKv+PTxY7Z29nAtj2S55Mb+Flc3e2gtiPOcB4+f8Pn9RzSbdYpS0e72GM8CsiTn7nO3KIoCXZZ8+uEnZGVBXBSgE9CKsiwvfTrVw1eeq69WB1lRVbBNCUKalYVXawypv2rrAJe+narSrxFVzbm6WVTT5q9WOAC6qvv/ZzeYiihbXRxKXSKU/gorL4RAmDalrq5FcRRVdFRD89LzN/j1b7zKetdDq4LRpGqo1OseG5tbrPXX+PE7H5CLikRbllXQ1fVsoKTICnxT8NKdm3iWotFtUvNcmu0221cO8PwGcbAgXM6pNdrUGw3SNOHw8BClNK+9/BLTxZLP7z3DtrzLDJVGf1lTzjNKFIYpodQoJEpXRnKhC8q88siVOuH1F27z8kvXOTm54PTpIVf2Nul0OxiYpEkMuvJ4CS04PbmgLDVX9vaYz2bU6h55UbDWX+f3fueAZqOOUgWlyqtWU1niNOuIy9CwbVmVruGSY+N7HkJr4jghiiI0mjhJqdfrGKZBksZAxXDxPQ+EIsgL0IJGo179HQHWpTlZGCauaeH4NeLol68Z/0pnUP7Rf/UPMWyb2WyC5zrU6z7r3R5hHJMkCU8ePeHx0yOiUmE6PrZtsNZpMJ0sWCwjHN+lLHMoNHdu3yYrckqtOD87J89zrl7fp9nwKfMMxzJJsoL5MmA8mrO6DDKWSlbpZCmwbWg3XOIwIsgUudQcHOzwrddf494nn7BchUwmq8rHoBWu7XD75gGNmsdsPMbzfVzXpddt4XoOUZwTrlYYUjCZT7HqNX7tm9+hDBaINCRVObMoYTCZ0mv6eF4N16uR5TkPHz9gFSxZJgmrMMR1XUxDEiURluvgOQ6+b2Camvl4XjV3KDFslzxXlFjkhSYMAtCQZgV118NzTFSR49sOjgF7uxtstluEccTW3h6dZoemX6sCXF4by/P47//1H/HJ6CkYuvIWtdrsbWxxcPMlbh3cRZYlukx59uwe0/NnFfMlDpiHIf76Ggfb1wiXS+arGUqCbXvs9zchWBEPLygwSNMcW0Je5gwWEbX+Ouu9HmVecHpyRCpLvJrPs+Eph/MJSWbgei7+5X671pAYWpClgq1Ol6ZdstnpUrMbjMdjOjUHZVvUfAddaOIkwnfaSMtCSlguppRC0Ox0iZOUPAgoihjhWcRJzCJdUViSMlW4no/UFqaQyKKgzFNcx8GxXDzHo5AFlmNSNx1EarBYjTAkNJptCqWIVyvKQpGVOfVmvcrcZIr5ZIZp2iRZDlJ+VaOcrQIc22K920aXkslshmGaNGo+NcdECM0qzPH8Jq7vUJQxjlsFLIMgwHZsvHqd8XyBX29SJpo8qpouaQHSsNnsd5nMRpyMzzBsk16zSxRF5KXEkU3qjkMSjNha65HFGXmZAQWm1khpkEqHTw9PSUt47cWvcfXaPuP5OUfPzvHdGs/duYNTd/DdGqJQpGlOmGUIy0EgyeMEaVScjCiJq6lWqXA8l3qzznx8ThSmdFprFGVBEM7RpSbNUxqmW9VHHQu/7jMcjFgGM2zbxDFt0riC4plmi3c/eJcXX76L69icPD2hLBSz5ZyT8YQHh2cIJNsbfVzPYrEKWAQxYVwgC6Nqlrg2SVqws9tle+8Kg+EZnmWwmkUcHw0wpOb6wS5/+3e/RxouqNfrYDoEQUAex5WJu15julwynczwXJeN9U0uzkacHD2m32/R29rl3qMjjs8GTOZTgsUKk8oI3Go3MKRkGqyq3EOhsVyXXApEngOCslTkRbWKybMcy7Sqi8TlOgcpLycAJmVZcVWr/EdFey20qh5GispYjBAV7v5SESBkpQTk8hBDaTAqzL24nEZftpQxpEB/SaL9KmcCJRV12bPglZfusL+7weZam+tXtsjCFZSC8WTGYDLG9XxUobEtgzArOBvP+fFP36/swEpx68o6m1sbZEXBcDBme3OdN197EaTC0YJ2vYnfaqIuRYJpHENZEq9CJpMJg9EYt95BGBYff/IJDw+PyJSsygCCysyMvMxp6Mu8iah0CbpECANTSlp1l5prkxcFb772Ag2/wdHpIR9/8pAXbt7if/4Hf4PTs2ekq5R4NmdvbwNtOoyDhJ/87Oe88PyLHD97yot3b7O+2aPXX8Oy3UtuiUYrSZrFlLrANF0kJVJIijyr4IVlSRCFeK6HYZgURUEcJ5hmJXGdTqa02x0azRp5UTAejbEsF9/3iOOQJM1wHJc8z3EdC9u2q9WVkjx7dkwURVzd30Mi+G//t/+7/+lnUN754AOKrKTV7pAVCVd2NlmO5yRlQZoWzFYZQVn16hsNF8uEXr+FYRgoBEleIE2LrEh5cnRInqUYUmK7Dts7m/TbHWaLOQDdTp+moFJaT6Z02zUWq5SSkmbb49r+Hpv9HqcX5xyG52il8GsWv/lrb3Ow1kEFRyhjjXufDzk6HhBlKRpBlMZARr1TJy8UJdV+N1wsCaOIQmtq/T6btRpFljMeDWmaEEUBk1XA46NjUpFRij7JxQkCQSE0w+mMHM0yjBCXaXtZlmR5SWGULOM5TiRxTUmWlGS5oNCaeqv6ggRYLAKEqvbCDc+v2B6ZwpQWUV5Qb7Xx7Abrm7sEwYK64+BaglUwp+bXCVcz5HLO1Zu7eGsuyhT02y121rbQhaTh+BTREvKE5WLA9OIJCEW92aBTq9FvpCyLArWKCIdTDDLSLMVpOqi4ZHByhlqFWL5DlaEzCHPobe9zfjrk4nzEnRfv8vI3vs3jw6f8yU9+gKzbCMOlLFKytMQyLUxRMpsFGKaFRvLg+IQwDrEtk5oQhHHJ/maTfrNFp9VBWmAIA9tS1JttwukYshK70SILNaZyqPc7jGZniCLHEQ6O1JWZuW7gGiY6LqhZDnatUtg3W+1qvKzBdxsV5A1Y5ks810EViiLNq3qlUaH/G43qsMmTFMt22NrZIY0T3KIgV+B4Dlma4TgecZQSh6oipebV29I8od5oUOQK16pWl2m6xDNNGrUWKstRriROE6xpiggUZ2cnTGcBhuPj+RboghLJ+ekpNdem4XRodTt0ul1OT2d88unndNoZvsg42GpQqoJ5Aa3uLsvpiCKJyLKYWsfn1dffJMs1q9mcL75Y4Tge+1eu0Wj3EJaHKA2CZUocxxRFTl4USJlUI+o0YxWFlGmOX/fBgIbvUSCwnTrdzjpCzLBqHtFyxSpK6bTqCKM6rJ3CJRqnjMZjrlzZpm46hGHMMksYzeY0Gg3CdMrp+ZjF8n2Ozk6ZLBYoBYVWlwemiWUaHJ6e4PkO/f4a2WSJUpCRoTEwhUm34/EPfufX2d+/wnQ6ISurX390fMK7731Mv+0RLqeUCqZnIwxgFQSsVitajRrdbpt6s0ng1Pj80RP+/KcfcH4+oWZLfvPX32YyW3Lv/iNG0wWg8Hy/ErUJwSItMUWJZXmAohA5WZ5XBmAqurUWsqoJK12h9UV12OpSVz6rkiogKyRleZkpoaoCV64qQSkqR434knciqjbOl0/WQgpUqTCkgTSNy5WRrH5MpQEplK4mC4ZF5cMp0WXCer/N9evXUEXCt954kRdu3SANI4QpiVchrtdkHi0wTMFuu4Nbq2PUapw8OyScjnntuZvcurLNfBUwnkx5/voV+ms94igiyTJ63T6+X0crhWlaFRWVyuJLmVcXYq2w6nXsvIAg5c9+9DOWQYRjWzx/+w6zVcCTZycI8eUUQaJMhSo05ZfFJl1w+8ZVFILB2Qm/9Z03uHNjjzgKOToZ8B/+/C/ItcnZYMpLBzmzwQVZphgNJ6zGIza210myjJ+++yGbWzscnx4xGg3Z2/stOu0WmBCGK5I4Il4FrGYz1rc2WCyWGNqg2e9RZgXSlogyJ5iMScoMVVTiPykM0jjCqNVBlxhosjjmyXDEMojI0pyN9R5RsKx8Q6VithhhmQZZalLzfHIs7j15xv0HD7h1bY9VvMQwrV/6jP+VvqC8ePsGWZIzW0XMRzMG4xFHYcIqjfBdH0OY3LpxFccyaDQa7OxtMbw4w5I2jXqbi9GANMtY5gWrMKTRaNButajVfFbLOc+ePkWjOTg44OJigOtYTCdj7ty+Tr3h8eTJEY5b58aNa8RhiCpSdje6NH2X84sJrW6LpuFwcXjE+GxOlFdZjVIJtPBodJrcvHUdU5fUPZs0S1ktI/I8o9QSw3Tw3ardM59VAaO82GSVxnz+xT3OlgtyrcDUzJ8tMYS4dC041ZO9FhiXDIKyVAjTRJWaIIiwbQudabrtNqmZMV2EFFmOzhXz6RLHtVAoMAVZUXmAhNBoXVJSYns2pUpRRoHv2Wz098iyiLOzQ2aLJZbrsZgtaDebZGmCawiu7O5hGiZZFJFkBcPxBbtbW6ThgiRZonXCZL7Cj2J0kmOZ1eF4uphSJgVBkhErQVm6ROMlZpaytblFYZkUCoaDMV6nj1Fr4vYKfMtkmWW8++d/xvl4RC4MdFpiXFpXsywFqal5DmGkkCLFECWddpsgE2il+LVvvE2/7pMV1QEjbRMhFEWqqHd66DQnDQNqvoUuM3I0kcrJggRTSVZh1YwRRoFjG4SDkNBxKFVO5inWvRbrzS3CJEDninajhSElpTJJkgTHdKnY4SU5lSKhVGC5JkJW6xu33iBLcxbLBWEQ4vlepbrPFFJr1ntd4lqGcenJKFSJaZoYpsY2Bb7lkBs5OSWtWpsiS8mSiDI1uBgsGc7nNFybOE0wHJ+tqzfY3rtKkccMh6ecnJ2z1uujs4iabeJoE0O7dPs9ru1vEC0WeL5DYfs0tq+w3dlElYJpo8N4McXLC/q9ddpr62ihCTdWoO1LJb2gzHLOzga49RqgiKKIxXxOs9XC9xtVSPNy+onULJZTfN9hspywubdPEgdkYY7KNMF8iud6bG1sYklNsIo4Oj3l4/tHnJ5MePHuAfMorKqbG5vMlgmf3n9UMYxsibRcnj09ZG9vi+/85q8hpUEY5nz6+T2Oz45pNWscXN3l9ZdfotNq859+/DMuxjNqtRr72+vc2N+i5po4lsXp4TM6nR6+LQmjFXevbXNtp49rGmRpwb1HR7z74aes9dZo+DZZmpLlmkeHpwzGYwplcOu5m/SUSRzBer/O2tYG3//+jxhP5ximgWFYVcD0srXCpV1YaV3l4zQIKSlKVeVJtEZ/hae/NPAqdXkhEZSX/VylFQiN4lLiJyBTJUpoDG1gaVAiB8PEkDZCaL6ElEgEhjTQBkhLogVYpca0bGzLIE8DvJZNrdlgvgqZzZeIUtLwHF64dZu/9r1vsr3epyhKsizj448/4fzsHMeW2KbNyckFG9vrNGoenXabQgjyNGF7d5Mbt66TZglra91L6JyJ1BZ5niEwcNyqulsqRZkl1ceNII3zKgsDFFnCZDLl6OSU0XhOpmBtvU8pxqzCiE8+/YSd3R0afhW2l4ZdKcG0JDcBU6CKHEdavHp7F79eJ33hKtvrG5wcXhAEK+4/O2G+iCiVJs8y6q0W4/mK+1885vzkiBdfvMt7nz3m6eEJRZby2t1bxInk9/7G96jXm6R5RraKGA+HeI5Do9HAazSrxk0UVxVxlaOkJi9KVJ4iHYeG2wTD5PDpEdsbm2R5xvLiFK/eZB5rkvmcwcUJG2s9DEPT7bWwTIPRdE4axxiAbVnYrk1a5Ph1h+tXttjs17l94zpalQyn01/6jP+VXvH8t//oH2JKm59/8BGZUPzWb/46j794wpUb19BK4xgWz46OiJcr8jKn3mqSRFH1NJlkWI7JahVwPhijtaDRahNHIY5dicnard5XIijDoOI1mAZ112ZzvUOj0aLeaHF0dEy4isEyuHZ9n/2tHYbnI06GQxzLYHR+QhDlXIxnSNNkY2ODZ8+OEabEMgW7632++fXXWS3nLJYhrXYPVWagIFclg8mEMIpoNhq4vkkWTJhHK47ms8rdIjRCGViWzXyxuNzvSxxpkxU5hVJ4joNjWkRhRIECIbHQrHeapHFCoSVRniMtkyAMsB0DyzaR+jIYVxQIldD065iGJClSbl2/xs2rV9npbbCaT/n8i09YBAsszyctNFJVnhwErPU6NGwfRxq49Tp2zePk5IhOvUa8WmIZlQHTsl1cYTOZTnFcm0IoLsIFaZ7RaW2xsXaFr732Oh+8+zMMoOHVSIUgTUrCZQCipNVysEyf+Sri0ekhvzh5hGx4qBKMQlV6eEOSFjmqVLimDVlBq+6zf22dfsfDNw2ubu7StFt0mjWOj55i2w5S2hhSk6URyzAiXuaosqBWc1GlgTIc/HoTx3MxLJdcCyxXkgRLBAaWW0MaNkW2JI9HBKspKteEYYIU0G01cG0Lw6raSckyJ4xDSlXQ67VxPZc0r1DTUlZOliCommhJmJDmBa7n0u80iZZL8rxASZtSC7qdBr7v8+zZM9I8Y2drE1UUzOdL0iRlEcY4jkcUrfBrNpudDkfnI1aFouF5CANMaeGZJrZXwzAEXs3HaXaIw5jxxTGdtkeWluxdu46SigdffEEwT9jdvkaj0yVKSharmIvJkJOLU3Qp2ei0ObiyQ5pntDsdykLjezZplqCLgjCMyLTg+rVbnF+cEUUh29s7aATT6YzFYkleZJRogvmMrc0+vW6LTr1JWkr+w3/4AdNlRFokGEbBeq+HZdgVuDAvMXyT0TIhWCZcv7rFdLogiiNM00QBluPRancI5itM12Fzs8Pf/I2vU0ZLFA7HpxP6/TWaHZ/N7Q0swyRPEkzDQEubKE6wDIFtGqRZ+tW6dTZbMBiOyLKswsJnGcvJgsFwyMnFiFUOYZ5TlBmiKFFlRSiueCFUdWejasJ9+URumoL5IkDIyvllmia2ZV3mSqoGhipVVda4vJgUl7mSsqzaLQjx1QUFQAmJ/ko/DP+DdOvlC19i66WQlGWOaRpYhkeSJeR5AqJASoFnWSBMLMu5pM+WGIbA0CZlHmOLjBdu7/EHf/D7+LUaUaa4GAxxHJdOq0W7UaeII1AFo9GYRRjz4cefYAiD7a0NVsGKRRiz2etSb/hcv36dml8HBYZxGeI0LrspumqcpHlKnqWgFY7r4rj+pdOnpChK4iRFF4rxaMRkMmZjc50ky1muYo7OLvj4F59w9doV/EaDh48O2d7YpNdt8em9T7kYThHSwZJVVlEagqzIqLsm3/3mN3jtxasE8YrD43Pe/flnHB4PQCiSUlEqE3RBFEV87xtv0u81uDg746UX7zAaz3nvw3v0em22uz5ff+N19q/u49Z8ShRxnLCYznEdB7/ZRGqDMs/J8oQkjVCqOtdMYWBZDrmqDOuNepMwXnD07BDPcYjimJ0rB7z74Wf86Q9+iu+5/Dd/8HustWv4vs8yjKuLapFxfn5Ou9khLXIazTp+o85yFaGVwrVsHNOgUIqz0YT/zf/+v4Ca8SxY4dkenu/wa9/6Or/1G9+hY/vYNZ/hYMDw7IzTkzNso/okNGyH3toGD794iBCSWq1Ju93BthzSvCDNcuxGjW6nhW1bZBkcnxzRajVotRoYRvXFXvPrWKYNSjEcDDg9v2CxiKg1myhxxHw8ZTqacjad4rgelmXR39olo7pMOLag3rJptntc2duh7toVaVFrHM9lFYUUaVLV6wyJ0CXdjo9tC7QOsOwMmWtc16myI1FGURSksqAsNEpCoTKSMkMYRjUJ0QptpNQ9hzQvSfMCpEEQVmsTLSV5oZAabCSWFsiiUtenWUpRlHQ6bbJCobWgVe/y5stvsd1fY3h6yP1797Bsi15vjdFsxipKcGyTuu1hXia6w2BFSUk51EgkbddnGccEixDL9pguE0wRoFKF49eQShLnOVkO3fU9Xn3lW1zZvMbZ04fUHI8wTpmH0Nnq0egKgjCoJIDLgsn8KZMk5GQ6wrRNHENSlpCWVZ3QABzbxlAaX5q8+NyL3L66j+8ZJOmcmmehy5KkCFjOC8CoDJ5CYlDtcosox7Tb9Lf2KNE0e32KvCQOE7qdDqvViCxYYll9+uvXycuYQhXIAuajKclqRqfTpjCg13NI04RwuboM/sXUG3VKXdJf28YwDYTKKPMCy6yRLkPCJCRMMrRhsYoiVmFAzaujgoRBkqC1ptCCOM+q6vQ8BkoarRZ11+bJ0xG2ZeE1m5imZqfvYpiwCOYkUczxZIVZb9D2fJJVTpakdJsecRoxXo7Js5Tt3V263hppZmIYLY7PB2AUnL57joGm5jW5fuMapu3yzocfcXoxptFocO3ggFe3X0NnCYYhaa31MAyTbquF1IJVHBCeB/T6HTZ3tjg/H/HzDz/iyvYmmxubfHH/AbP5AiEEjm3TbNR48e7znB4+peabtOouxyen/McfvsvFLCJIi8rMiubx2YpCl1iGgSFMetLmW2++zngyYjCcMJ2HVW6irMiXrYaLqSvHUhQEnDxe8WCtx5uvvsSz4Yw///FP6Hdr3NjfguwF6rUus+mEPM+YzKY0Wy163Q7tVhOtNfefHHJ8dI4SGrfmcnYx5PR4wPnZiMwQeF6VAdBfSvGErPIPl0HTIq+aErZZTUeklOR51QzJ8spoDGCaVsV2oQKiaaUuOSICtCAvVMUjkRJdlJVwD4HSFehMU8n7kKKq4n6ZYL0U8onLSYyQlY9GCIkqC0zLRqscz8h467UbvPba85SiqvBurW3w4Nkhnz14jBQGvu2SRhGdjse1K/vsbW2y1WtXZFghcD2DjVs3yUtFHMUUSeW30srCdpps1Trs/s4eaZYxmUw5uH6DetPHlhLLsiqnUl6isopsbFgmKIO8KDCkgcghCUOarQb1WhXuDIKQKIo5uRgxGAw5PT3HMCWWYfD887c4G054cnjKfBGQpBnXD65z7doek9GAb3/tFZZhzjs/+zn1Rh0TmzKHlASkptfw+V/9g/+KrbUORZGyXK0IViEXFwOivKymvEJWAWqqibhCsFxFmAZ0+z1MUzKfjvj1b76GYZY0azWu3riOFoo8Kzl8eohtmzSaPqZlEMynlKpkOh5jWwZJlLFcBtRci1q7xXi8wDZhOF6QFoqXnrvG9nqXMMlItcmf/MXPef+ze4Q5OL7D/+s//iValWxurnP45Cl3bx/w0t0D1vp9kiSh221TazZZBSGTyZz5bMr22jqWaTFdLJgtl7/0Gf8rfUGZDBf0WpKdzR2SZcS7P3iHH/34ZwjbpNNqkcQppmkiTAPPbqCRjMdTDMuk5tVIk4wwKCq63WxOq9XGtk2iOCJJJNPZklarQafTwjSq/ajnuFiOiWlKguWCNC/ZXF+nXs+J45yLwQTLssC2sB2H9X4fS0jKPCOMlxhSoKSH49TYWFuj3aizud4lWUVcnM94dnqCtA2u7m2z2Vmn7rms9xr0ug2yZEWchDx4MiCKYkR+iVtWBnGcYF2GkqQpcaRFkVfBJ9M0sE2BJQW+71KsQizTwBAGcZqBYZCrEmQVZHM8h7xMKS9T58KQSFeQqAhVFmSl4Gp/k2g1YZxFxOGMXq/J6fkpuS7pd9tsbvRJwggpBIswIEIjLzM8nu1iSpPlZEmoBFFUMAsXKMsiyRKKrGR7p0uLOlr67G5dYffqPrt7NzFNB9dvMp8/IYgSDBdqeclaf5PZ/FM6az2W0Zx5GXKxGKG1xjNsDC0vGRmXT6FFdUmxJLx88xpvvvgcpoD5/IxSptjeBlYG2SpkEsyw/Cae61OqmCJTOF6P9kYfvA71egdLaJZRgCVN8njBew/exzRNdvZugE55cu9nxMsZjmNhOxae62A2XdKyQGmBCqYUpSYvMsJSE4UR83mA1pLpdIllWdQck7xUJLkCwwbpkEsLIST1TpNas8T2a0BJHAQoBLbr45o2tmWTxgkg6Pb7rIKYfnuLNI5Js5IgXlGjOrzc5j5WTbMKYpTO6ayv0b+5wZMnTwhWU7xGHaumaTkmva0NhGGTr0IavTWaGzsswyrLVaQJ08kFxemI7fUm3/nWa3iNNep+myxcMTh7gmzV6PR2KDEp8owsiijzlCiIsXwHLeDk8UMKJTnY36FE8ODJM1ZJSiYEWitcxyZMMz7/4gGnTx7w1psvoVEkSnEymhIVDrbp0PYFr798l8lqwYf3HqKlS5EX5GVGkUX02nWuXdlne++UX3z6mCyXCKrDIkoWXLu+y2oVc3Z8yhdPjtne2SVKE65eucKLz99ib7PDw0fPuP/gpziuw8HBFRyvyXi2ZDiodvO2X+Nn73+E7dQRBswWc+arkDgpKS0X3xb0ul20hvligSor3UFRZlV+QwoMU1zK+kq0KtBaVgZgNKWu8iQVO6TCyKu/oqJdtlbEJVitcr0orS5NvdV/ZUnVPKEKqIpLKaDSX06TzSrkqeVl60eTFwlSKjzHZLPf5TtvvcLXXr7BZqeJY7koDGaLBaLM2H3jRV6+sU8UVoK6q3v7uL5d4eVVpW1QSpHmBUolJHFCWUKW54xHF9imYDJf8eln9+i0WrSadfb3dtjZWmM0GKEMQWEZWJfslGgVIg0D33ew7arWXavXQFVZENMwmE6nRGGM4zjMFysuhiM+/eIxcZpTZCUaRbBa0ur1+fizzzk7G1Or1bBsm+XyhPFkRlkUzBb3mCwXWLaFkpr1zTb7e/ukSYaQim9+/TXWO3Wmk3OyQuHYHnma06w3Mc0hmrLK8WhNcXmBVNLkfDii29yj02yQRgmvv3yHVqdBkZfcuPk8eamYz6YVk8g38FwXwzTIlWYwWfL+ex/iWDZ379zh6PScXCmu1T2SJKHdaNPb7jBJHxKcjhiMpgjL4MnxOT957xOmqxTDspFSgygpBEyXc3Ak3/zW62x0mtWZJ8B2bIqyYHAxIElTpISDa/vMJhMuBit6/R67zY1f+oz/lb6g3Ht6hGNfIKXkznO3WC6WTJOMzV6XRreLuQoIi4Jur0sUJiRJCmjarSZFUTCfz4mihDhJkFKQZxl5kdFutwmjiK2tDbrdNr5X3fKzLMUyDPy6jZQFjZpNA4MoyVjOAkaTJW7Do91qQ5ZhmSbNZo3lcsVqldHv9JCyIIkVqBLLULRqBkky48bN2yzmAfNoiVe32FlrsL3R4fjZMZ1um26zTXt3lyxeMhgeMVjk5HFFFsVyKv+BqsJlQgi0FLimQUGJEGVVubZs4iSm1FCUZYWuhgpnrRW+4yK1osyrp1oU+EaVxi5Vxk6rgWGZCFOCTrl//2Pajk+cx4RpSpil2J6LkpL5clGlxxXEUUqQJFVNTdrs9TcZTMZk0kRZDpPpinZnjRs3bzEcXuDX61y7cR3XNJiPxtiOS72+hmvXEUXO8GLIbBExDiNMp2DvxgG6VNRdG0MndJoGF9MIbUBSajzHwTYEiip7UeZVxVKjuXJ1j1vX9llNz6jVPFSa0+v0mD0bsBwt8Vsd7HYX13eRMqKINMcXA0rDYjvXNLom0rH4/N4nrG/vEGYls9WMvZsv0m5vEq5GBMsRa9t7TLw2qkjAKDB9D6kESabwanVMBV69DZdrODcKUaokL0qktLFtG6lLdFGis5K642Db1euzPMP3K84KWqHLDMeuM54tEWaDdrtDHMdgGniOz2yeM11ElGXB4dEzpOlg2iVd3ycMChbJkCgM8F23mjQNl3RaIzA06zvb1KTJfL4ivcx2uHWfVr2D7Vs8O7rg008fMFkuWAUJllS8+eptrGmG6aYYhEyDmDSec//eR6xv76JwiKIcQ/4Vw6HRqGN7NVrNHmE75o///Z+Ta4ciL7BtmzirAFFoTau5IooCkJq3XrlDr9/hwaMvqLe3+f2/+7d598N7nJ9esL1Z5ztvP0et0YY/0tx7NqDX6/C9734NYWjmFzN8IXnpyjVeunkbw7FRZY6hBbVaE8qS2WrJ4PoO88WKf/Gv/zW27XNtfx9DK0Dx4ksvkCuTnc11LEMxGIx4/OyYx4fnIAWqzNFak+VDJAa24yCwME2JKQVSaYaDC4TQKFUgDasKWOYFlmVUoDQqWrIqq5YWCCzTACXQpYFpCrQqKEuBumy+aHWJnxeisgDrEq2rNc9XRFX15c6mmrBUG55qfVNeslEs2wIERZ6TF1U7ZHOzT7fp8+23XufKVp+1doNuq05elKRZSVEkpFlOWWoMw+XibEQUrGg2W+BILiYjiuOcKKkotoeHzxiPhmxtblD3a+xf2WcZrrBdh1q9iWnZbNc7tHubLIOIne0NXMdgNV+wtrmF47lVBkODbZmsrferXJ6UJEnlTTOQhPGSNI4xvRpamgRxwpNnxyRZTllCrjVPj08JVnHFGpGSv/jhz5ktFmxtbSOFZDgcUqqSyXyF1NBueXzrrZdZaze5dXCTeqOG6ZqopJreZWlAEgU4Xp1kHvH+h5+wtbFBGGQUReUnMg2bJK0uVSVVeHk0mrD77a9x42CXNIpotWtkWcaV/VtoDVE0w7csXM+l0aizDCIWq4Sf/PRdPvj0IaNlgO/X+PmnX/D1l+/w0t1bxGHBo0dP0YVNczjgwy+eIkrJzv4en33+mA8++YI4LzBtC1FqVCnQueLqWodfe+02rmdTcx1a9ToakKas1j6roGq2Cslap81quaAsNRubW9R8F9f9LyQkazkdpFlimjlK5WSFSa/dokxzPv/8IXmeU5YlZVYiTIFtWzQvQ3VPnx0xGE4wTZO8KGk1PIQpiKKYYjKi02nQ73XwbQfbsrHrJoPRBaYJTcvmwRdPmM5nYBe89tpNjIsEQ1bV4SQuiYOYyWTCcrlCKZjPQuI0JUlj0jzl5p0dSj1jNpcV0+HiFFvbvHp9i1qtxLUkooy5cmULyzJZzWcE8zlmscQVJpYokBSV64AU2wTXc1EIGq0WpxcXlKKo1humhSU0SRxQlBZKg2Nq6r7FdB5WPXWtaDZter7D0dkJNbfygLiugW2XtJttdjpNJALTMFFasxKKcbYiy0KiQkNWomRCvlKMB1NKZdEwTJSqViS9dg9XWAyXMYFy2VzfZB4v+f2/95sYwMX5jBfuXMdxPHZ3tkiWEeNyhC5LNnavocuSLFgxmS1JsbC9BnXPYzWZEAxP2NisI4zqm2GUhVVguLDIoxy7YaHyFJUV5IVGCejXLJ6/tka7JshtG2FITGkzOp6RCIva1Vv01jaRqmBy8QXRcsoiLehfvUmtuU7dq5GGMdPlgnpvm8Ko4XUctlrrxKuEwXCK32mx3tuFoqQQAY7ncX5+xkVQ0ltbo9X3iIIF0iqZx4pSF0jRJClNkiyk31/DNKvReRwsMF2fnbU2JgZxFOA4DlIaZHHKcDAgWS1BVx6NTrcLsmRwdkS92ULokslsSBTnjGdzFosAyza4erCLqeHBF/fQjonhOdjKw7sko0ZJwmwV0Wm2OD06ryZyhqQsEsI0Ji5KZvOAMi+5GE2o9ds8GVzg+i5ZEhMWig2ngTQaXJxPCaMlrVaN3Wsvcnx4yrPHn3D99gHzKEaYJv1Oj6IsyNOEp/e/oNvvsL23xZ/++HMoFUWpwFSUWmKZkvPJjHarzu//7jfo+y3uf3HCtVsvYrke3iREvHSb4oVbkCwp4pIgnfBb33iNv/N3tvAMk5PDI9794GNcv0Z/fQ1UgSU0jkoYjRYIw2QymVYrgyRjq9HgYH+H2SLl0/uPaSwCHj075dmzIywpOD4+5enDGuejCfMgJIozCkVFDNUa27QotaIsSizLwratywC6Jv5ylAFoXWJZ1UOE1mU1uZAS06jgZ2UuqhCn1MRpTp6XVYW3NFC6YpiAqC7jGhDWX/V1+c+w9EiK6rZSgUykqGrCyMt/AaHQlORZimlKmg2ft964y7def4Hru5sICVJVEsAkywhXAUmRUnc8VGlS6OoC9vlnn5KGMXv7+8wXKxqtNs16i6UIGFyccnh8Qqu9xs2XXqFW87CkRDgOLdsiTWKC5Yp6o4VhG9W0Zn0X33VRGlr7LZarJWmZ45gONcdAGQZRWRKulgSzJRKJaQnKQqF0huvV8WyXOC44P70AUzKLE370w58zns0rbLxlVfAyVZLEBabrMxyN0GWGZbooTIqyxDLg7a+9ynPXt8iTGKPMyZchg6dDak0P07DQhs3Hn3/BxfmA3c0Nnr/9HInK2XP2mQYRx8en1OoSv+YzW0QIVVKvm8yDmH/7Zz/kb5Zv88rLt0izhM2dq2A6rKIVhmFTFJrD41M+/uQ+P//wHpMgIUozhG1iC7i2s0675uN6TX7+wUN+8fhxpYEIokq6KAVX9/b4i599VIE/dZUhlAJKqmp3y7N444UDTN8ljVMc06EoFJ7r4DZbnF2MmU8ntOo1TEtydHTMRr+Pbaf4fgWVW8bpL33G/0pfUPpNk1u3n6MsU0bDKXEQMZktEbJik7ieizAlYXIp08pXhLWUKAoZjsY0mrUKJhTm1Go+SE2/22Zrc512s064WpJGASeTGcJ0sByX6Srl6eGnl2FU+F/87d/gt7/zG7zz/Z/xf/+TH3B+esrFxRBQSKmo53UEJlEaE0QBm5sdnr9zA9fIyfOIKDxiNptxsHeXm2sbrMYzhvM59WvX6LUb6EJR5hmL5QCpS6IoYrWa03Iddu5s4HguvuUQhCtqlktRKOZJRNZpYto2YRjRqNXpNhuossC2PVRpsAxCoiSi07BptBoURUy/V2O332F/3WO5yji6iOl26rQaPq5pQVFZPvM0YxWnrERRhXDTFC0s6oaFazucD6bMJzm6yNjd26HdbjFfxRi2zTJOaK41ubu5Q6/dJdUpG602o4sLdJqRRWBhMRvPuPfJZyRK0Wx3qDsm08EFq9mUMIov9+OKMFlxeJrS9iQqGSNlTqQLBAZClSyjEMO1KRPIEoXruGgV0nA8bu5s0XQdjEJha4ss07i9bTZu70FRMDg7IlgMicOIwdkU12/z0mtvYrsehuliOTayIYnDiFItyNKMIk1YrZYEcUKz0SKfZzw9eYwQOdPplExT+Zq0ges4FHFUXZwso0rWFxnDyZhWq4VlSAajIftbG3x+7x6rOMPxarSbS2quy3g4xLYtLEPiOQ4GNlg+tmOSRCGD8YJavclgtOLwdIyQmsUyIM1hsQoIwpCDq/scP3hCplJeeuEFdAHHF0MO4yV5lGB7FkqXIDSF8hDSICsL0jSn3+1zfDLliwfPKJXJPIrIVUqn7fGNV15ge61/Wf9WFFnFTUiymFrDRZgGdb9GM2rx8OSE1b0Sx/CwDZOhOSLNS+o1i4bvMxhP2Frf5O6tiE8fH2IKnzBYUndtvv61F3jlpRt4rstgeMq///Mf8K1vvoXj+SwmM549OqKw7Mq66nkMRxPKIsOvN3DmU7RlolBsbW9iWw6dWp3x2YDzyQRtCubLBL/hYfsOOlzSrtXQQBiE3L51jcF4wulwzKOjI0wBnuuQ5yV5Oaqw66WqLNW2iaEUSilMw8AQ1bpFXcK6hK7aupYlvwowlkpSqAovbxomWkuk/jJPor9q46hCVy4ao5pu5GV16dAIhKwYI/rL9g2SUhmXe5vqwqSURmGgLj8GocFQEsuS2J6FKQWthsedWwe8fOcmvZZHq1bDcVxsITGKgjBNsU0bjcY0HYQQmGYFFLMcgWFBvgrpdloUrQaNToN8WpKkMfpy3fzi3Rd445XXGY3nWKZNGIREceVRmo5H9LpttFIoNWet32Njc4swjkjiBCElURwTLleYWqKcApXbmIYgiyPyIqdQCVK4zMYLGnWfVqvBvc+f8v7Hv2ASJYxHU7qtBqPZnKSUYDaQUnHjxlUmkwmzRQBCoIqimmsYFkmpKbVBUebU/Rp1y8YWguFigSFSJJp2r4ltOkRxxv179zk+PcdAsLG2yRcPHzGeTDENk/n5EX/ju69z87kDaraFrDUZjxe0600en5zxf/mX/w8+++Ix2zt9rl3bA1UQLAZYjo1l2Awuzvjv/ujf8dkXZ7iOj+VK3LqJLC0cy8BxXM7GI77/zs9IshLPqz6X9aU90RAGw8mEOE0o9ZcZJglSUOgcVZR0Ww3a9RoZimUSURY5RQlxVjBcPOSjT+7jmQ4v3LlFp+nRrLnUHAPHa1IIg5PJin/7p//plz7jf6UvKLcPdtjo1Dm7CJhPZ9ieTxDFFEWJZRpowLEt0jwny3I8z2MZBEhgY2Md1/erbxKdGp1Wi263i+t6dFotjo+OefxkQJamxHlGkl0yM6TAq7loafHtX3uON197g4vjIZtbXf7u736bL54ec3RxyqtvvMydmwdIJciSgnC15Oz8jDRfYlkxRqHItYVbr/Ptl97ASCSPPn9IYUvaO1tcv36DbDJgPrlgsViSphmOaeFIxU6nS1AqclXi6BIVhRhKs1ytaLU7NE2BaUvyLKdXa6IpMaVJEGk21ze4emUX0zQJlysefPELoniJ7fnUbQszy3ARSNPA39zEth2QlbSr5vhoYWAKj7xcEoZL0qhA6BZhvKTZqxHNc5KlYHf7Gjub6+x22zx+esjW3nXyokCsQny/huPXsFyHPMpIo5A0SQjiFY7fISsVpudj+XWWywXSslhNx4yHAz795BPGsxVJXoBh0GrVsSWkcchqsWQ4ndHotdjb3AMxZJmmWL4gSUNUXpCWKf12k7VWhxtX9uh3OmSFhdNcp+Y1UGXJs4dPWM6XLJcLTNNme71JfX2XzY2r/MWf/ZDdK9vs7m3ieB5lUUnTHF9SszyCechyNmceBWS6YL3bQTqatbU1HN9mMlvh2i5BmPHw4WPqNZ9wtcC0bBqNGkG4wrZs8iImDEPuPXzM4dYm9754xPFgjpAmttQVoA1wHIua56MVqLIkSjJA0Wv6dDtNiuKU4WROp9slVyWW5fL5g4fM5kuarQbi+IS9zTW6jToffPAeH3z6ENOuYZkGjmdi2T4Cg2YjZ7kKsU2DjVYTEDw5PObTLx5xOpqjTQvH8bl5fZ/1jsd0MWM2nTCdzVFCYts2vXabfrdBqXOKLCMOIqQS/Oav/zWOTs/4o3//J1zd26ffbbLd7WHYkpPhmOUiopQTSjSmqmSAhim4des6a806LSmwixLZanL97/1NHNsiCxOWixm37txgESQ4jkPd8xhfnDMchhiOwkDjGAar2YI4iFiVAXmWM54uq/q26ZCWBfu9NkUeMZll5I5DGGmyUuG2Wuzv7fDFg2fYpkWe5whpIo0CW0KpSjBsLNuoUCFliXHplqnCpQaYVaZDlcXloS7R2iDNcxSiusxIWWHjFRRKXVZ8q++BpeIySGuCMCiVury8VLAzoasWndbqchLDVzh6qNZEGjClpLzMaYki5q99+y1ef+UOwpF4pkW7UcNxTMSlEE6IKnxvuHbVyjGtryiyQkAwnTEejWi6LqVYUBqS9374Dq+8+jI7O1vkeQFlifiy3ZTmhEHO+eKM4XDCzs4ehdIMR2OmswllnrG21qdWd6jXfIosYTwckCuF47gopXA8G1NqtEoJw4gHD4ZstOp02i0OT8/45OEhF2djWq0Gz90+4OLinDTW2LUGs/GSVJqcz5ZoYaNNizLNuLLZ5bW714mTHe4/Pubhw2eYpkOJpihysjIjTwNevnOD737nLa5truGakh+++wHj8ynf+vrbLIOcxWxAv12j4WgOrm7z2f3H/OVPf8bRYEgZZ7xw64D/5h/+ffrrLZZJwtMHT/n8nfcZnF3w9Zde4uW7z2H813+L9370U3y3jmG6DAenNBtNXMfn333/B/zFOx8wmcxxPBfHdZFGReNVqiKjP3p2RJxElBh4tRqWVbXUsrxi38RZRqEqn5E0TJSqHgJzVZJkBfISMncxGKNkpScI0gQhDfKs4GQwZB4liKbDJw8fYluaV249B8Kmt7HGJ5/f56fvf8Z4lvzSZ/yv9AWl6fnoosASVV4iyXKKoqDm+xXcShVoVVL3fcy2iSpVlfhvNpkvFkRxjGNbaF3gOTZxnHB8ekYYxIzHExAGvu+RqmpFZFiVDDAvUl66u8PvfPvr5LOA5WSGtDR3D66iVUC3V7DVsVmvNYhmCWm8YKPf4dbVXR4//JDx8JhcKGzPZMNtoYYzDs+GFLZka2uNNafG8LNHTIanCFMwCQKyLONgd4c0WWJYkul8xjzOabpNFkHAYDrllefvIBXUDZvRZMz6/lVefOFlVBEzGk/48ON7nA1OWIanvPDcXURekIUheZIzDZZs7Xgk84AwWlWBPseh4ZhVxbQoycuCSRiSlzkn0zFFFmM7PrZrs721i2MYJEHJ7etX2NrZwrUFNw9uUAiXXEtkHDEbHzFhgWl7jMZL1noNsiwjSTP6m2vsrW9zfHzKbDInjjPiOOX48IT/MB7QbLaYLgLiQqGQuHYVyDI9E1HaLFOLvRvPsdaukRUhjqlw7RJVJFzf3OHa7gG7mzus9zZQefWk6vaaRIuQz3/xgOs3rtLq1kjyjKdnE54dntDpd1i7sodcLTk6fkr/So/OepckzQiDBaZVw3Z8LMfm9PSUd37yPoWGuy/e5eDaNeLVko32OufH55yMh0RpjmlYPDs+5+R8gOs5OI7JbDjm+eeeY2dnA89ziKKQPM/o9drMwpjxKqakmgwmWU5cLCmKCtP9ZV1UiIoC2mk12FjvkRQljmOze3WfRRBwfHpGECQsVhFlNbBHmpIwTfDqFoW06K1vozAIohWjsyGGNGg16+xu36TmuyRxwedPjxCmwWSyoLe2yde+/esc3LjBZDji4b3POT25IAwiLLOqKdqugxYJUVagBTRch7kOqdfrhKXi4bNPWFvr8td+53uYJXTqPt2GT5SEtNpNhKjG6KXO2NzZYnA+xXYskihhtgo5Hs3JgpjN7TXy5QrXlpjapb97tWqTWSZ1z0NrTZBkLIKEK9fX0Ybgww8/ZTyeESQFmYbpKqS31qYuLUyp6bX2mEym5IVGSJMozVgtV+zuXSNLCpazVWU9tiwMyybPUxQay5CYVlXv5jJkahgV/OzLy4EhDKQBGoVpyWpdqyqbrzTkZQakmrQIWQEcS1W5UtDV28vL9yUNA6WqDU0FXdOX4r6K4lrBGtUlEyVHCEGe5xjSQJWKVRBXH4su2ew4vHirz5V1GyVsXLcBKFRZYtkWhQQtDaQQhEnlVbEtG9s0kdJgOhwRBgn1dp+LsyN67QarJOTNb3+bzY110iRGmBbN9TWENJDCoMhylNYkWcr6eo9SZxiey9pmj+fv3sK2TKIwYDmbEkdLLMtAa11lUkwLXebEixhpShJdklLw5OSUxbyOcTbkP/zlT0gShTQMZnHKyWjGaDRiY72P51g0vBpZnNHqr3ExmVIWJY5pVF+LYUCuFKsgwHZ94jRHFQVlkbLRa/G97/w2b9y9RRxMESLnL370EQ8fndBoNPl//+gnhGHM73z3bdLFmFvXdvjz9+/z6PiCLIppdhuEacTZaMDDp09otl9GFBYb+3uEScpv/vXfxvNdRJzxxgsv4ipJGMzI4zqe5WC7Lu98+Bn//j/+hDTToG2UgEIqHNOqOFgCMCQKgWV6oGKKVCGNatUHFQsHIaraeVl85UzK8+rvxbRtLAm5gEcnF3h+vZq8adja3MASKePxmGbNYWejzcZ6j1IVjGYLBtM56cNnfPr5A7JUUWT/hbh4Ts+H+HUfx7YxTYvJKqDmeXQ7LdIkpFb3EAh8v06pSoRdja2WyyXz2QItBd1Om97OFhfnY84uBiRFhkbQ7PRo1nymsylZliNNiyJLsU3BnTs7/C//4G/ilJLJxTnBYkmWp5wdHvLBL+4Tq4LZJKTt+7TrbdabO2RRxMNfvINKA66t7zOZDnFsoChZKQNaLmuNGkmQ8u/f+RGpFhxc20FkOa7v0O40COKA5TwmNg1ct0vXtvEaXbxWTqs9Z6fTJ5hOOJ0useobRLHm3Z/+lIP9bV6+e5drV7f5wQ9/wPnJBSKTGEpRCEHpNJhNM44+ecjVjT7b22uUWUKtXsN0anzx5BDHtlglilUcMI9yeut9ru/vcnDteUzLwpSSIlfMJ1NwLcqioO13MQrNL977mK29qyidowRoYfLsySF116PTqrNcBExGMxKhmI2mDAYjVnFGXioM22Z7fZ0kTxk8eYLt1pBm9WmrlKbIBU69gSoTtNS8/MINpFjy8MmIeqPG13b2OLh6h46/wdnpkDw2KFIYnh3RX1vn4b1HDAcDXMvgfDzgxz99RG9ti95mn866x63rG7hSsMhtao5Lq9thOpshZYkA+hstFsuIyfmYyWSCX3P45PEzBtMZn378Kb1uh4vTAeeTOU7N4ea1XaQUXAzPidKEWbDk1q2bvPXt20xHE9794ENeeuE2/V4fKSRhmjFZLhGGhTCK6gAzJKUAYRlIAb7vURYFvX6fOFxBmeJ6VYvr5PSC04sx0/kKEJiWRV5Wh1ocZhSZIktSFkuLOClJ4xRFNX2zanWKLMN2XYIoJUpStIL96wcUecH6xhbXD66TRDFGHEAWsrXVJ88jgjhhOJuws7WBZViMx2PqG2sgTY4HVUVZSHDcBq1WE2lodvw6vukwmpwTmRpDCHrtDpPJjGC+pN9r0HUhtAWz+YwgSNle71V+GEty/8kxrmOxt9GAwqAl1kijEkMosixFSpPVKsJ0fY5Pz6nbFtp2OFktGYxmbK9vsdfsonNNmCTUGw6f3v8MaRusb+6SZQmmNnEaTR48esxgOKaUZiXPzHNarRbTyQQpNJbjVgAzrdHqywxIRU0ViGpyq8rLdU61romypMKYyQqprhTVYVOWmEJVkxZdtU60kFWGROqvQq7iPwu3ftn4EVSXlTLPERLyPL28L1kY0kfonNdeucnbb7/MxdmQZr3Btf1Nrmy0MJGUpUVZZKiywLJMykJftoMKDNPBsC2SJCYJY8I45t33PuKnP30XJQRIg42axe//9nfZXO/heE1OL8YE8znbOzt4vkdRlsyGE7IkwfZrXN0/IA5WLJYLPN+jv7VJoQpAsQqXFKpgY71Ht9PDcR1AMBwMmc9mzKZT1vprDMczFnHGJ/cfE1/C7WbzFd/77tfprff4t//9n4G0MZ0G8yQnzKqfo7KcdtPn4OY+x4fnNC2Dg4MrJEmKUgXXd9ZxxADf7+PaFi/cucPLL93FsSXT4QW+5/PZJ5/z7nsfY9VaLOKY8XSIbZp8/OHHvP3ma/zlu1/wx9//MYZhcXWjx3/9B79NlGm8ZpuDg2sE0yk6K6g7Db792jdYpSme28AwFaZt8Pbb3+Ti+IhgNsV2XD774hn/3f/t35IkOZYhyKTENA08aSAvAZ3W5eUjSXLSNCVXGqVySKtVYlFWRGEpBSiFwiDPq0uENExs28VxTGqOgV/3WWUFH937BMu2adZ90lJT77RoNNuYSrHbbdNwHLTpo1ughc33f/JzZqsA13LxPPeXPuN/pS8oizBkmcZs9PsYholjOzi2SZZldDtdhKwaJMtVgOu4QOUWUVpRKEWt3mAZJhwdXzCdzJGGRFoSIWE8HnN6liI0uK6HbUo63RovPH+Dv/t738XKM4o0xax1sJDUdI5E8aJSLJOYvf09tneuYUgbiUkmNWPbw5AWNoKW4yFMk1UiSDBo1BuIUnA6HEHbp+G6FKZBsQq4srGJ71rM5gsSYWI5bRzLx63VCIMETI9+q0daLikdFzxNnBX49Yz1zTaFyPjk3geMx0OiIMQUJtFyhqkF49mCaQK+32F/b5eWrXFtF8vzuXpwHcdrsnX7VerNJhvrfU6fPkKZNjv9Dh+990PicI4pm0zGEza3NzEtmyjJ0UowvBjx6Ue/4MHREYMwJ0sDXL+OX3MwXYHhWSRFjuuZIEzCeIlAI00Tv+HgeD6W61J3XTyrydr6BuPJlDJKadZqZFlKrWFhS83aep1WZ40Hxx/Sqm/h1rYQ4QU6Nykj+KN/+/8kB27cuomgxLFKdBHz7vsf8/mDR/zu3/geYRRwMprz4HTE66/eZGetgVUUFGVMmGY8Oz5j8fM5lu1z5fouvV4fLW0aLZNep83BlT22t/q8+sYLSNPjiy+e8h///C+J8py33nyD9VaDtW6dZrPGyy/fYbaKeHZ4guv55GVKf73H9Wv71FwLrQqiMGQ8CzEB15SsSoVpmbQbPl7dA6156fk77G5tkEQhnuuiteSTTz4hClY0Gg3qjTq3212WywgtNEkaIwwDlGat12W1mhPmKdPTkMFwSloWtBp1LGlwZW+Dl1+4TbvhUqQZSZyihWZ3cwMETGdzpApJshVC19no+PTqBj3vCreubCBdDxBMJnO2tnoYQuF5DmFgoVXJzZvXaDcbBLMQqTSOMEjzGNuE+XLJ0dMz6o0aBZrlMobHOaswRUiLet1hZ2uNrfUWnVaDR08OKUuB5zXA9Hnw8DHPN3zazR6r1YogCJlMpgRxQpLlnF5c8PztG1i2x9b6FmGYU6iCZq9FWaSM0hXD2YK1nW2u7m2h8oJ3P/6EJCuo1T3ajQbbuzsklYYW0zBZ66/z3gdzijKnpEK3y0t6aqlKCq0pSlXlF/SXF5Rq4lFtbSxyQCiBISpisTYEhmHBJeUVKuK6vuSKIKrfWwoDpXQVoKWigxZlQVkU2LaJbRs4jsXe2iZKCbI4oduqc31/k9/6jW/Sbjqo55/DkFCWBUUBUZZRFFXF3bBtssvpTxbFBKug8nm1mgjDIIwDPvj0M/7Nn36fve0tfvO73+Gjjz6j7hgUrsf7nz/kyf1Dnnv+BtcOrpHkOSI1CIKAwXiIX6vzwx/9mPlsydZaj5vXr9DsNBG6rEKwwMb6Jvry8zMMY7SWHB0eEscxXq2GdFyeXoz5wTvvYUiD527fYBHHDEYz9na3uXlln9PhmO3NHbQhGAzn5HlFws2BmmVza3eb3nobEa+4feM6P/rp+8RpwZWtNdo1i9/93jforq3j2i5FHJMupxxenNLr97n35JA/+9G7pFoxGg8xi4K/93vfo9Fz+df/6s/52f/5/4rbqPE/+we/z/VrV+i32/QbNSzPRVo2eZJWF00bxuMzhkrT6XQxQwO30SCMA4LlkuVsRlEoHp0c8ac/+jlCF7zw/D6L1YpSWUzGM4RS5GX5JVO/ao5lBXmZX0Ieq2msEIIKdiNQl/XmJMswTVllWy6REIaEqxt9bl/d5Qc//gmOXwdDkJUFk/GEpyfHSMtgf2udrbUOpRTce3rMYhlRFJW9fnN9jVarzWg6/qXP+P/RLyh/+Id/yD/7Z//sf/C627dvc//+fQCSJOGf/tN/yr/6V/+KNE357d/+bf75P//nbGz88t3oL/8J4phlFBBGAVJaSMtAGJJOt4fKC7I0ZTQak1/ue5MkxbbsS3OlYLEIiIKQsszJREkShVgC/JrH7sE+vXaLa7s7dFoNGjWXTrNBw3eRseBieIphQLd7QKPRwLY0QpfYXhPTNXE9B9/tUZJVWOmVptbZxALy4ZSnR2POVhN2t67QWeuzmg4ZjBdMk4J+p0a3U+e5uy+xnE7oyAzyHMtq0FzbIk4KTi9GzFfPaLW79HobhMs5niNx/SZ7Xh3LNTkdH/Pg8YRFGBCsElarnLVej/VWm5pnUkRLHNvm7tUDtvrrdFsu0/EFSZ6zsbPDm9/8DsEswnN80jzD0AbP33mFcLXk/OQRSVCS6BjDMjk8O+XG9R3CWcJgvkRoQbxYMpnO6KxtUO+0cJw1hBYIqkbRMquMuIfzJYPZglarxtZmF8tagumTXq7sNIooqjI4utA4poXSOds7LTa2OngmHF88ZbqYcbD9HIZRR7kaa5rw+b1DxmNNZ2uDxWrGKlqwmEs22w6z+RRlwEuvvVI1hETO7/7+b9GoeSSzMUGYslAdVJiSZQk3bh3gN7uMhsuq6tfs8fD+Q5rNGpvra5yePKPdbjEYDtk72KD+xkt017qsr2/Trbd45yc/4saNm5hSUJQl3e4Gtw5ukMQxhmOT5wrXNEmDJXlRYtp1GmtbdNstRtMpJ2cXbKy12e41SZIEw7Dwaw2iIKZAEC6WNFotajUXw1DcuXWTza0tsiwnjiszs9KKJIkp8hzHMoniENv3kcLg/Y8/Qxg2hhAIVeC7FSSwWCyJihzbNllOJiR1h42tLcyyoN7widZc5qMRuqy+Ge6ut6nVG3i1BkpY+PUGx6enzOYjBLCz1WKj36PZrHNxPubk6ATLcSvfTZgwGi6ZzlfUG00a/R6f3LtX5UIKzfWrezhWFQw2pSQMQrQqKQpBlpUkWcwv7p0RBRmPHx/x4vN1pNIUZUmSZaRFwS8+vYdhWOzvbrGzvcNktuDGtSvUPId2w2EZlDRqFn69hSFMTs4HHD47YnNzu2IF6bKiLFsgS8mbr79KmWUslxFX97YYTJcMZgHoSkBpVLsdTCkvDb8KoaumjJZVSLEsFUJKLFXVgLUQaKOafkghULIKMVbuGwMtBIb55covI89D+KqVI/Bcm93tLrdvXuHurWusdTo0a42KjyEyyqLAlBaKStCXLVJKQyA0SCCME4LVAqlL+mub6FKRpillWVbrKNfCdlxkqZlPxyyXS/rdDm+/+RpX9/cROicOx7zx0ltkSqGEQavXY3t7n9OTIZ5lcHVnk3SxYGt9g972Ns1+nyzJcC2LRs2vfFFJhmE7yLIEQyM8l/uPnhLOF1y7cZWkTKjV61DCdLbk3U/vcXQ+4FtvvsFzBweYpmQ0W/Dg0RP++E++T6pK3vz6m1DmqCLj6GIMyqTXbaKSgKLM2Vxbp1Gv8c67H/HwyTOuXr2C61pcv36N3Z0dlDAYHJ8iyxy/XqfT7hEEKT997yPiVBGkkKQZ33juCn3P5OnROdPFlDffeJG/8bu/w9bWBlEY06hXZOhqQlQB7/xmC60VVzobzBZzLGkwvLjAlILh8AKhBfcfPGEwDXh6McG3LJ6/c4XdvU0msxUam9NWk9F8zmA8wzQsHMfEtUzW+12Ojk6JDcgKVU3olEIrdSmArDJOQkps28I1XKSQSKlZq9d4bn8NlUeYtkPNc5FS02o0uLq3zzIO0Krgyu4Oy9mCKM8pSsXJxYg0q4LgushZLUPS/Jdv8fyPjrr/wz/8Q/7oj/6IP/uzP/vqdaZp0u/3AfjH//gf88d//Mf8i3/xL2i1WvyTf/JPkFLy4x//+Jf+Pb5E3b/w3B1M1+HmtWpPPJqt8DwPISSmtMiynNl8TpSlFUhGcek5ycnzHK2rFHyaJ1iuxasvvMCLz91mc3MNYQgsYWFQhema7TqNRoMoCBFliuNUqvbBxYi19Q4bG1vYlkWRFzi+gcZAKIOaXycIl0SDx+hsSZLm5Is5ywwGuabZ67G1tsXs7JjxfI5hN8h1yXwxwDVddtb62MmSIoeZ8FlmDqXSzBczbMdkrb9GHOUkaUSaRriOpNOq8eTwKQ+ePkIIC1Vqdq7ewnNb+Lag3QCRJGRpQSoKXn/jNXQpOXp6zOuvvMLx8UP8Toc7t19iOJrR7HSQeU4UzBGGZHw+xGs6lLnJn37/R/zs44c0W01uH2zx4YefUjoujZpH3bFodzo02t2KWSEEtmlRpAmokjKvHD/T5RwhBdf2d2m4BvNFhOXUibPscv8u8OsOPoogyoi1oOZbbG9uEqzmHOxdwfdqeK7B00efUav5TBYZ3//h+9x/ckqjUafVcLm6s42Qmm6nyesv3OYXn36GMj1KXVD3be4+/zzWJYyvKHOePjtlvozo7mwiRUbTr1F32ty794BHT77gW998myiMaLVbdLodgmCJ67pkhcK2bGbjIa12i8PDE77/gx/z9be+zisvPk+aJMRRgl+ro4qSZTBHA5btoYqCwekJk9mC0rDYXOtR8zzysmQ8nVFkEeutGsI0sCyXkop8qZSi1WjQbDYo84LpdIpX8zFth1IrsiwnCZPL8JtitVoShSF5luP7HtIQeH4D23Ur10a3welwRlqWHGxt8enjxxgIWn6Nr7/xBuiSk5NTknjF7eu7XAzGXAynrK2vUxQZSRxTlArPb9BudUiTlFLlWLZBr9NmMZvQbDR5ejpiHqaMZ1NqnodhSCazOZ1Og2atxka/S5YnNJtNsrJgGWnuffGQJM6o1Wq02y2KPGO5XCIE3H3hJt/89q/zwYef8LOfv8PpyTlFprh7+xa6VDx6+oQoy2i1u9y4sk270WAxm1EqhRKa69cPMCjQSlMoRRImhGlGkmRsb20QRAlpXgJgKMX+zia6SAmCEG3YfPbwMcsk4+HROUUhMAyzajKVVRPqy4CqgSBNEoRlopSs8iVaoZEgKqBgxToB0EhDgCpRRQGAEtX3JdezuHXjOnefv4UhKr7SYrHg1bt3ONjdxjIlRZZSFDlBEDCZTtna3sPzXQqlKHQl/DOlQZanxMuANI5ZhgEAaZwgREUzbbW7bKxv4DguDx494+jkkJdefB7LMCiKHMOycP161dpKU0aDEa12G6010/kM03H4i//0Qx4/esq1/T1eeeE2N27cYOvKFdI4IwgCDNPAch1KpSp6clZiOhbhasVqvkCbkmAZ4jsWWZ6TpBmuY1VIdcPibDDm4aOnNGoetgnT6ZQ4KwjijLdfe4nr16+yChYkq5D2xha/+PRzDm7c5vTkkG6ryZtff5PP79/n08/vYxmCt77+dRzbZHJxxsHVfSzLIS5ynj0+ZDaZc3p2QVkUPDk6IkUTJyVFlvHNN+/ye7/9GwgUi2BBv79Fu9UhCjOWUYztWPg1B890UFQXaJUX5FmG49gsFguePn1KGKzwbJtXX32N6WLBv/l3/5FoFXH3hVtMlzPWWh3Wez2OTk+YzJccHp+QZCmm4zFfVh6gTs2g5jkV6r7QdNY3ibKUX3z28FJvUOXxCgUajWNUa0ZDWpi2hSsFf/Pbr3PnYJvj8ZhnpwMcJM1WnRIDpQTj1YqtnR3ufX6fwfk5t29fp1Z3KTE5Ph9zeHxOFEQIQ5AXJafHT34p1P3/Xy4o/+bf/Bs++uij/6+3LRYL1tbW+Jf/8l/y9//+3wfg/v373Llzh3feeYe33nrr/+f7TNOUNP2rW9dyuWRvb4/vvPU1uv01WjUfz3c5Orvg8PSCPCuwTQel/z/c/VmsbVt634f9xhizn3P1a/fdae455zZVt1pWsVhV7MSSTUpMbNMwIiMKkhgJoAe9CIIBPQnKCx/1xCCPBPJiyAgSxLICWqZpdlVksYrV3Pbc0ze7XXu1s+/GyMPc90qCIKPsyBaYBVzce/c5e62195pzjG983////wmWmw1SWTR1gb6ZBQsMQeDi+TYnx0c8uH+Xe3fuMuwPyNIUKQVNVXf6FdfGtizSNAEhqYsK14PdvS2EcWiaDNsGzw0oy25ujelsfEoJTGl49eEPaOM56brk1fWGpE2pLNg7vsu9+28x6I9J1tdYSJZJiYoizp4/6YixeUadbqA3pmhshNtHWZIkXXLr8IAiTXn18qyD6OmaremQ0HdZrVc8fvECy9JICa4/It2UhK5i1LeospSsMPQnQ24d7FDXmigakccbsFo+/7UvkV3H2MojHI3QVc1ffO9PyJuay4s5u/sTlouEP/neD1hVCqUkZZkR9IYcnRziuxaB7+G7Lr4XkmVdMFhZVLR1xf72FkVdc3F1yf7RIVVZsjWekK035GXFdHuHdZLQ3lgut7emqKZhsUlB5Oz1LNarjETYBLbL93/8HtP9Kb/61bewavgn//QP+fj1DDvoIaRB6ppBGGApwZ27J/SCCExNFFpsb004PDrBUj5KCpTV3ZhJnLKcL9jd2SLPU4yGF6/O8aOIk1t76KpCik4YKKRCSEGapWhtGI/GbDYbpBSkecr1/IrpZKvLvlAKgWJ2PafIC3o39N1WdxH3q+UCZduEgzG0NY6y6PX6hIM+p69esbq+Zv/wgCiK2Gw26LYh2awJAw/lWPR6A4o8Z7XckBcl/eGQumqpbubKrushlWK9XpOmCZPxoPszoSjLkipPmPR93nt0ymR3m/3hgKt1xibJ+OCjj/BtlyjsguEsZXjz1gGNhriq8QMPW3UU1H6/R3844np2DaYT3B0fH7O4nqEwCKH46cePcYOIIIrQdd0lwwY+ngW21R0yAs/BVhKlJFerNVULRdV2PCnbJk3jrvhVFoe7I/7G3/yb/PF3/4zZYkFRan700/e4PJ1R5AW+77N/sIvr2VhKcPrqDBCUZd4RzCcjDiYT+v0+lu8xv75mOBrQNjWRJVknBUUrOL28oh957E6GFHlJmpcs1imXswW11gjpcHpxiVY2tu10cfRVxacGYCm7rkmXMG/fpLQaGiFQUjPsdQaAwXBAVRYIYTMZ9PFcxdHRIa5j0e8F3D7YY39nG991aOri5vprOuJ1VePYDsZ0IyYD2LaDK20sq7tWr2bXmBbyOMEPA4q6YrleEfT6nJ9doquGe/fusk42bDYrbNvuPtPFhuEgZHs6It7E5FnB7s4uRZ7TGs2rl6/xHY/xzhaPH37MvXt3MY5gk5S89/6HHO7v8bWvfgnXdWmFYD1f33S3PQydaDMvCuLFkqzIydOEKAwRlo1EEWcJ77/3iNcvT7n39m1+/P5HnJ/PONrf4+DwiJcvn3H79hGj4YD5fInjBhxvDxn2IxbrNRiL63XCcrnk3t0T5vMrvv3tb1NUBfP1BsvxCRTddScFnufQ1i1l3fK9v/wRH334MY7j8+zVGUVW4vsBtTFEjuJv/0f/Pt/65lepG0NZlVRVRlaUXVaJtgiiAVmaoJsS3XSfexiGKKm4vLxAAEq0ZFmKshyMUDx+9oLr5YoPP37KF95+E1dU5Nma3Z19ZvMVp5czbDegaBo828J3bM4vLymbks/duUXUi1itY7JKo5XNk+fPWSU1ZVXSakNV1SAV8sYCb0kL6QiUtJhYkt/81a/T6Jrz5Zrr6yWH0ynbO9vkbcsyyXl5ek5Z1mBabh8fsjUdUpQFynH5yYePePl6Rt3eFGK65fTlk393LJ5Hjx6xv7+P53l84xvf4Ld/+7c5Pj7mhz/8IXVd82u/9muf/d0333yT4+Pj/8EC5bd/+7f/tbERgGM5vHr1mjMpcT2Hi9mCCgupDXkRU5QlZV3huxZ7+9u4rkddtWxPJ3zunXucHO0xHY0pkpRHDx+R9gd4vT6j8RTbaoEGx7Ips6IDzSnJ1dU1cTIj7FmM+ns0jUvbGLI2p9eP8N0IXXYZE7LX56MPfsD7P/yIy1XBuqjRoqWxbRarBb8yuYOlPE5PX+EKCyUVvdGQ109fEPoDwskuq8tzKm1htIdUkropmS9W9CKPpspQ0uA4FlWpQSmyrCCNE1bLFUrbBI6gNAVCF7z54JjP3X/AT3/wF0RbIbcGY+K4wBAQr2c4lk1aprxxfI82LZFosnTDZrXmyUef8Mff/wG96bhzCZia9WrD7TsHeP0RwmgWm5xGOvi2wlaCXhRSFjVlWVFXVQc1U1YH3bNsmrLk+OQWYRCwLBckcUqSFrieR1nXBEGA1oayqnCdjp68HVQM7BpMyqKNKasJ0cinbBuUclldpzx9/oLKkgSRT1V14kCpYFPmFHnBKi3QpuWNk23++i//fAdcKyqCyENKh7puqIsUz7ZYXJ3z+JOH3L51xJ9+77tox+FX/tqvsVmvKfOU1XJD02h2dnbpD/pYlsCyPIzWBLbF+fkp8+US6djMLq/wHAfPcViuNjx7+RrLtlgnAYvVmijq3XRBhgRRSJYXJGmCJRVxErMrDZOtCcPRgCgI0brDGNRtg5IS3wtYblZkaYlru5ydXZLlJUULi+USEPSiCCsvCQMPKSWjwQBlWiwhSIsCIS1Gw20uLk4paoOybcqqRBc1ySZha28f07bs7m0zv16wWsf86Uef4FgdEO1gf5dh30NaAa1WpHGG4/jUjSZep/zgpx+SJEk3MqhKirpmoCxKraHVuJairmucnkfRaBZpTr1KMLpl2O+hm4airCjLmlZrfNdh3I8wsmOM7E63yVdr4vkVgepCGPe3dpkOt5GWYjjqg6l4/eoF83VBYzms1zFf/vzbfO2rn6MuM+K85dnFjGW8wdaCq6trHty5TaOhrGps2+NoZwfHsXEsi1g3vPfxU+brGNf3GA4H9KKILI8Joj6vzi4RwkYodeOWoLN0Nl3aZlWWuI6FbktkVfCdv/aL3D7apUg2DIY9tGlw7ZDRoIfr2tiOg+f5uJaFZSuaKmOVxTfcLYsGRVNU2Mqiqjono24NddVynV5RVim24/DDH/6E5WrDgwf3kdIwUVMefvII2/XQizVCWFxeX/N8dsXFxTlf+NxbRIFH1HZdgjK1eBWf8ejZMw6OTricP+bZk2c0Tc3Ls1fcf+MuD9Ac3TohGgxpmobR3pi37j1A0MkjTNMBDXf3dzs6cVnR1jWO7eIIi+l0m7KuurTWxYLz190BdFVk/MF3/4xf/OY3yTQ8v1hytHfEg7ff4MOPHzKaTNjd3uPZk8d4fsDFxSXf//Mf0osCWiFQlsMmy5gOB5wcH3D/3ps3WSCCvekEpGJ+NSOtG0bDPlXdIIVCSI3v+vzCz/0cRyeH/Jf/7L/l44+fsVqv+cqXP8d/8Bt/jb1RwNVsjmXbFFmGUi6eN8SIDtqapikfffgRO6MtKjo0wdnlNRLBy5cvsJTE9yQP7t9jtliyWGd88vyM09Nz7hztc+dkn+X1JbtbU6q6QSjJweFeV6i8es2kP2R0tEvfV0ymByhhODt9TVzUJEXLKinJqhKtO9xBXTdoQzfaBVphoaTEALrSHBxO0KpmGacIZRONJlTS4WK2pDfqoWyJQeM6itBx2Rn16fcH/PTjS+K05PJyQVHVFC04totliX9tL/83Pf6tFyhf//rX+d3f/V0ePHjA+fk5/+gf/SO+/e1v8/7773NxcYHjOAyHw3/le3Z2dri4uPg3Puc/+Af/gL/39/7eZ///aQdluSnICk1Z5fQHNmUjWW4W+K7NqB9y740T9va2eevebQ4O9qmqls06hralSNd4uuX8xUvq1sJ2Q/b2j0AY6ixFcMMVqFvKuiYpKjbJnNP5jDdv79E0iuevzphMtkmTGKUgL1tskbKaPcbzBXvuA1bLK7bu7CPXNfYm5ee+/C6WEVzNrnjwuc91IWDPXiH8gJP7b/L88XPiJObkjUOaCi6WOVvjMQrAMmwur3EsyXQ6xnUcqqIijCKScoMxcDWbE/o+juMhhMK2bSzTp2hyAtelTFMaAwdb+wD404gXr88YRDZFkTAYjRkMemTzBelyxcsXpxjP58PTZ+zc2eWtew9I44TN8ozB0KWqNbaoGQwjHNtnEZdM+r3uwi9qBv0+ruNiBn2KqqNICyDOcmzXZTQYEa9WmNaQljkNhsCxSLMuCVZIget5pOs5Y88w6jkYY1NZPg/2B/w//9kfkxUpO8NtPnzvKQ8fPsWURbdQ14K2hlo35NTkdYVtu3z9597l/lsH7G+NuXd0i3S1ZrWe8/v/3e8R+CPu3L1LNLS5mi1ZXl/zernAiWyObx8ReRGuMVRlg227ABRFztMnjzg+PsK2LYS0aKqGi/PXjIYjDvcPeX1x3v1MrkuuFOdXV6w2Mbfv3GG1XuL6EX7Yo6xb0jTl8mpGW9dMJhMc28PzXEzdUNUVcZKgRDciqOsKy3HYpAVFtexGlmXO1ewFy9UK23Gpzi9pjcHxPSzPpcwLilXFZrWiLqsOmuc65GVBFEaY0YhVWYNQYATzzZpnL84pmobxeIgfRpRZwuHODk+ykkVZIYxieb3oFkwMFoKtrTHDfo+mbZjN5qziBCMUmu7E1otCpv0hZdGhEoKoR4UhXi8wZoDvR+imw81btqQVLZfzFet1B/MbjQY0WuPYFo6rGIQOjiv5f/3Tf0pS1AhL8KOffMz29i6/9qvf5vz0OWEY0jQBuqp5czJmMBgh25pJz2M8irDsbV6+OGUrOiZvDY8fPiYa9Hh6ekoU+URRj6uLK8qipKwqgiAkr0qObh3y+eEQx7Lohz6h45Dev43X63O1WPHeh494eXpOVXYW35O9bVzHZrWc8+a9++ztbiOFJvRsDna3iNdrWtNia4MfBHihT7/fja81iqLqCn8lwXM6EW1VdogKXXX24aqGtoFNnKCUwHUt0mKDbkqULYl6EaPhmL2dHaqmYL2JufvgAY2Bs7NLFosF9x+8wfHRIW3bFToYw9nlNf/Vf/sHeMriq1/9Eod375HXDX/8F3/B7PKaL33hXX75r3+Hvd0ph9Mplm2RpDmu7eN4Dqv1in5vgBv4JPEGXZVEOui6DXWD5TjEWXcPeLZFGITMlgt+9NP3ePLxJ9x/4z44im/9wle588YhP3zvfRQKz7WoyhSl4Ppqxk+Sgl6vx48++IRcQ5q1rMoMqWAYVHzrG1/h3QdvEa/mXF5e4DoWCLAdl3WS8vTxcx7ce4OgN8LzHPI8JY03fOmd+0wGQ/4f/9V/zesXr3GE5MtfeMB/+h//e/iuQ6kFjhBcXs4oiprpcEhoedieR5x0gnstFWlTgoJ//nv/HCMEtrLwHJuDvR2m/WEXXXB+wX/3x3/GIq5AC+4fHpCuV3iuRZysKetOX7larLi+vODte7fohT7LxTXTyQTHcknTmHAwIjUpy/k1RWvIKk2Z5xig0QZ5A4o0xmDxaSKxZOA5fOkL97GdlvGoR9MIPnj0hNerDV948BaD0GMVz3FsSZy1LBbXnXRCvODDJy/Jiw6p4jg2XuCglINum5+5nvi3XqD8+q//+mf//e677/L1r3+dk5MT/sk/+Sf4vv8/6Tld18V13X/t6y/OT4l6IcNhj7zY0O+5fP6dL/PO/bvsbG/RH47wPB/RFLRVS5MW2Ehq3bC7s0fge2Sp4fGL51wu5/RGQ/peQLLZEPYiamUos5xNvKFoavYPjzi5fZsqWbOONUla8/Tl+wxHAdvbe5Slg+tIGN5G+RKtPb71nd8ky5bMZxuyrCJLVpSbDa5omZ2+ZHmxRCMYbu8hbJ+9o7vcnW7z/OFTnjx8n9P5DK1POJqOiZOUOI6JhiN0q6gLQ5aWXF7OmMcZaVmCgCDqY9vg+A7rTYoQHkIGvHpxztmzMyzXJokTyrJlk2TkRcz21hEvnj/nm7fusTg7w3Mt5uslP332MftHJ9zf38ca9LHQeI5AOIraklSuoW0Mo0HIIu5O+63R1C2EQYBlWXw6RXQsm1p0i2crDJPRkLYu6EUhxhjSqsSSDpalkMbQH/bxPKcTdHoOlu8QWy7heJvD6Zi2rNmavs882TDanrJdJlhhyKuX58SrJUZIKi3wXJvbx8ddWzyK+IWvfY5bBzu0TUNRlNS6pdcfsH14BMqmMBWhdplu7WLbIYPZFZ7nEgUBw0E3LvHDkNVigW87RFs+RVHy/NlLirxgOBzSH/YYbe9gOw5ZU9GPIpq65uL6Gtd1UJbD3v4+tu10Lg0Jp6cvWS7X7O8fEAYBg2GX5JjlBVlRMjQ9HFuRJjm6mTEcDRBCcn5xQVaWXK02pGlKGPW4vNFVNGXB8fEh/UGPVRyTrDedtXO5oqob0rwkzXIsx8axJNfLNR9+8oQ4z7l9ctLRgl2fvKwxjkUQBLjSYm9vi8U66U7FfohQDnKisF2Hl89eUJYFWVtzuZyTbDbs7x9wcOuk6wrFCbbj0LQ1ZWUjlfosQ0MpwXS8BcDZ1TVxkjIc9BgMxkSOy+7nPs+P33sf23EJfI9B6BH4Hkp11tqPHz3i6ctzesNtfFvya7/yTd584w2SNCH0Ax4/ekpZNpzcuoNvW2yur5lfXdDsjdHFhBZFnBWsVmvysuL+3Vu0RoMZcLA9ZrWJYWvKch3zuZNjpuMeuqqIwh55WeG4DlVdkqY5ji3Zng754jsP+JVv/zybOKWp225kHC/YrJeEoY8wkkG/h+c5KNcjSxOkpXD9gMAPsVyFaFuqvKXXC2i1YBOvsaXB7Q+pGkldlYCg0VC30OQ5V1eXDAZDlKUIA69jOxUVoRsRr2L2d6cM+yOU7SJKSW0kftjj2fOXtFXNN776FfqjiCor0U1Lv9+jaVvuvznhzgefcHp2xouzcz568ggp4fbxHv+H/+3/hltHhyTx+rOCqduxWoLRgDDsfTZKzPOCLIsRuqWyM8Je1PGY8oyPHn7Cj3/6PicH2/zCz/08eZYzHAz5pW//IkeHh1RNw/nFBd/90+/x3sdPMcLh4uqaZ8+e02gQQtHva8xsTtMaXNfm3a894OnLc+J4zW/++neYjHp8+MEHnJ+/5pu/8E2iqEfVVDiOx0F/iDGKOE3RZxecnZ+RrZe8dfcI3zK8Ojvjz3/yMU2jORr3+M/+0/8YTENbGxbLBevZjJ3DI5zA4vT8gv0DQTLLOJ8tyKuWvMjwPYt4mfCtb3+b+XKJa9nc2t9FVwWeZzO7vGQ8GnJ4csz8g8do3TKfzxkPPNomox8GGKM5Pz3FGM3e9pCjrTFlU5F4NkXdMLtc4gUOpSmZLdfMVwlpUdJikHRFibghXncYBYklQSMYeYpfeneXgVVR45DVFboV3L11zGK+YBCFVGWF6/gEbk0arzne2+HoeI95nJN8/AxLWYSu5OhwhyCKePH8Bf1+xMOfce//n91mPBwOuX//Po8fP+Y73/kOVVWxWq3+lS7K5eUlu7u7/6Of+xvf+Co72xMc28K2FL7rIpUg8nxM3VDEKcvZNbYC3wtuxEA1ruvgBwFpXnK9XvHk6WPe/NzbGG149vw5QRTRZDlNHOPaDsPRmDzLSdcxWZFjCYFRFq/Pz1lvNjj+AcvlijQrOhZPXSG0JhQl+7shq8UFSa6pakGer8myNUJKoqZlmZUMt6bsTPfpRX0GR2OuXl5BC9F4yJ0owHNs1nlGW9RYnoflON1JO08p85zFMmZTFhipcBybsqkom5Yo8DBGExcxYRhQ1IbVYs5Xv/wuUja8fHZOVsPh9oDlfMXdu/epq5LFcsXRySEAd09OuPPgTV4+fsH6eo13sEegwK89dAOnmwSMJk4K8qrC8nyKVncU2JskyMlkRFWWRGHI/vYO680aIxVZloIRVGWJkJLpZMyoHyKFoC5rLEvR6gZcpxu9NC3bO7u0uuHJB+9RpiVK2Ty49za3DveJT/aI4w1bkcve9lfpDUIev3jJ8fEJX/rC51BGk8YZQlrURdMtnhi0MCgUX/78l6h1S1uX6KqkqVu8IOL42EOprtAq25bWNFy/fkVZ1ozGI4IwYDS1Ub7PxcUVcZ4jbRvSnK2tSZfUaduMJ1OMkugW8jzHQhCvl1jSMN0aMe5HHYW7qrrRT5oRBC5FVeO6HnGRcfH0nCdPXrC7s8W9N+6AgU3c8ZSiKGQ6HqG1oSor4ryjT5/PZ8yWcwLP6/YK3TndkixltlohZMP9O3cQGASKoqhJ0ozxZMwg7BEvFwxHQ7KmIYgGtHnGah0jpcW3vvnzvD59zfliSbZOcVQXbjgZj9nd3sFzLdrRlCRLWC5WXFzMUBIELf1+RBS4naC26eyktmWRrJcoW9EbhGhpQEGap8SbFe5ygaMk0mh0XWNLn8BzKYqScNCjRpJXLxlbku3hAKqK73/v+9QtbO/tsH9wgJCG0LOo8prr2QyEIi0azPWqi51Xin6vz95+xGa1Ikljbt++he97rOMYJQUHO9scbG+RrOed/qoqyfKMrMhwXZ+2MSRxgmtbGAF+FOEpQWMMriNRUcQgCgHwPI+yLLuwtKyis3xCkZcM+kP6YYTtWDR1w+XVNR8/fIgwmvv37rKJ1yhLkaYprucT9Xs3QFDBq4trwv6IcX/A9/78h/zgR+9RFhWBZfGtX/gqD96+g23Z2I5PvlpSx5p4vWYQBOyOt1BCEi+XZEXX1UguZ3zy8CFv3LvHf/Kbf4Pr+ZzReIg2Lb7n4DsOVVmyujqnqkoMktY2uLZNvx+hbEGaJDx5/Ji93T1AkGwSVqslt+/e4vx6zuMnL7meLzg8PORL734F34OkKPnJ+x/yJ9/7c375m7/Ix4+fMr9eoI0hHAxvtBeaZVoghYOwLZq6REjN7dvHN8aGmpO9EZ88eoJtebz/0WNW80tu3z7mm7/4S6RxzAcffoTrOmxtbVM11/zoJx8i6PhCgevyzr1beLYhzzJ+74++zzou2BoO+PIX36aqKrK2oSxKpltTxpNdwv6ALM+Q0qKo6s790ouo1ynD3gDRStwg4qfvfUheVMSbNbOTA0ahz727J7S1oSoqTo4OeH0+5/zsCpQginyaCgLPp95sOD7YxbK64j50PJLrBEta5HlK3RRYWrFexTw7vaIsa4zqmDii7ULcpCWxZac9ERgsWzDwLd45mPDm0QRldSnDeVl3wlkp8D2X1WZN1OsRbxKqPOdoa8ywHxH5Pt/94Y+xleRoe8jh1oTbJwckyYbd/psMe33+4E+/9zPt8f+zFyhJkvDkyRP+9t/+23zlK1/Btm1+//d/n9/6rd8C4OHDh7x8+ZJvfOMb/6OfO/R8XGkz6vcZD3vk8YZGKMajbZqqZr1a43kOdV1jKU1W5F2bvcxwZMsqznG8gF//X/1NbKWYXV51FOAwoCiLTigkZQegyks83yMMQ7I0ZbVaEvZCjo8PcJViuVhyvVh1szzbIggjGluQvVwQr1YoZSNtDy0dDm7dR0mH2WLD0e1DvvLVr3F1dkWeFhTpBZcXZ6zWC/IsZzwe49o2WZayTnPqpqI1a9I0J0tz1uuY+XJJUhZI6TCe9PHqGmkslO1R1huMFCR5jtCG0c4Ox7eOSOZzdranpHVL4PkoUeM5Fn/yh3/MaDJmMOiTpSn9MGQ+m1EZwxtv3Eb5LoFVENdXXFwsMVoR9Po4wRDbBRyfPC/oBwGh7zMdj7oxjWXhWF2+hzSGtjZIx8ZIye50jNItnlK0ZUGc5SjbpW4kTdOQFyUNhuloRB6vOH35iqgX0UpBL+pxPZ/z4Xvv8c692/R8mzdOjun5Hnv7U/Z2tgm8PuQVi+WKTZpzeOsEz/U7rofRKKVoi4JMN2RZieXYN0R6QWg7lCU4nk+aJvi2S1o0aKEIIveGbVOjNZjWcO/2baqq5Nmz5yjLIs8LqjIHLUjSjMv5HMvxEUZz9/Yxvu+TZBlFniEN7G1NUbbNar0hMy3j0YjCLbu8R6EZjobcuauoqoqHj5/hOi66abFsxXZ/SBi4N9ZAi9OLcy4uL1mtExzbJQhcAs+l3xt0+glnQOD5bE8HKKFZLtekZU1eFSgLyjwjiS2yImO9mZNkJVWa4tmCwXDCdDJlMb/qhK22i2s5lGWBpSRVVfLBRx/SNDXDfg+EYblOyNKaWycHTLfGDKJeF5bW7xFnGevVnDDw2dqeUBQlmyRm1I86QKXVhaqlWYa0JE1V0QtclIT1atNpjSzFZhPT64WEgYVjCWw3pNKay4sZyWbJeNzHcWykUJRZwf7uNo6tkKamLivG23tEngNKoWwbaVom4yFKSFablDDogZG4rkuSbLC9gCgMaFuNb6Cs645ArSyiXp80zemFPZSGqqqQSlIWGUkaY1sWgd9dC4HnoxvNeDIBJC9evMD1PYyA04tLkuU1vcGIrf09vjj4SjfuywtW8xXb2xOm40kXtGUMg7AHUvKLv/hN4k3MBx99xCpJsaMhH774CEcp6u/+kPcffsKto0N6vs/+yTH9/gipDGfxGes4pXydM+gFrFZrWmOYTLfY2t0jSVPs+RU9zybfXDPd2iGKeiSbDUWeYUlJEPXQsnMhNY2mbRvqpuXlqzOWqyVIyWK+5sWLVxwc7TPfZPw3//wP+Pjhc6q6pW1qtG4IfQfHDynKhqJS/NH3f0xTVejW0O9HDPRNVDs3hFwBdV3xxbce8M2vv8vDR59w9vqUzz94k7PzFW1riCKXs7PXfPPnv8LXvv5l/vs/+nMeffKIN+/dw2sFrz74hOcvXtJWLZOtPrpuoG5YrhaIQcjHT1/xwcNnKNPyW//hb3D/zhHJJkFLm/2Dba6urojjHHU55/r6msl4gC0llW6RtsuL00fopmMy/fmPfkxda7I0Q1mKqjU0Rcrjl6cEbogXOeR1SdO0KGVTaYM0Lf1ewGKxRJclftjDD3yEUrx69YqyrBBKMhn2GQ/6rIuWhw8fUdSd6BWhOvSBrRBCo9saYRoiz+bevWPePBnT92wix6GRNkklyFtIkhRXSmxLoYRGCI3tKHzbpg0irpKYj16dcr2JqdKc//CXv83xnQk0htVqTWhbKFdg8bOPeP6tu3j+/t//+/zmb/4mJycnnJ2d8Q//4T/kxz/+MR9++CFbW1v8nb/zd/hn/+yf8bu/+7v0+33+7t/9uwB897vf/Zlf41Ob8T/4z/8+gWPjORa+o6iLDOUP2N3d5+LigiSOb0KHGjw/IMkK8iLl1vEe436fqoXGSOaLJWkaE7gd5KosSzSgEB2qHEMUhLRNTVHklE1L2bQURYktYToZEqcx2lhdtkqZ4wYuk8kECwfTlqimJK8yfFsRBiG5FrhuwOHhAZvVhjQrONjbp60bzs7PqduSrMyxlIMSkixJOT07QwsQSqJsB3SXo3A5uyLNKsKwTxg4eLZEKYvAdZitFjSNoSxaJrsj/v1f/RY9CU8+fsw6XWNZsFoUBAObe7f3+eiHD/GGEdNRD8+zukLAKPLaMNndxRINJFckZ+c8X+RcrUv2jg+JiwYjPVA2pm0Z9EJC36WuK6q6wbYchIGqLPA8l7rVOJaFbUkc26IoMvIspSjazrlzc+rwfB+0QTowHY24vrygLAp2dve5uF7QtC0guXf/Plfnr/no448I+0O2R0P6kU+jNYP+kEG/x4sXz+kNBgyGA3q9Pjs72xRlwWa1wkGwTFZYjksQRB33pKy4ujglHA46TopSzK6uefLkGbuH+1i2xLZd0rTgk4+fYFkW/WGXbByGXScIwHFdrudLzi9mZEX1mTV2azKiqRuCICCKQpbLJUJIpltbGAxJvGG5jukHHd0ZunHPbHlNUdQIqbi8uMS2bQaDAUVZIIXGshyevzxlPl+S5nm3oXoBRhju3jpGyZYwCLm4uMayFKGrCEOPi8srLDdgZ2+fuml48eI5vm3j+h5IyfV8zmQ4xFMWl/M5yrE5Oj7ClopXr2ecnZ0zGPSpG03dVISRz97+NuvlijjeYDs2ju2zvzVm0A8ospxJv4/leDx69rQrFJuaJI4ZjUdYtoXv+ziWy3yxYZPl1E1LFDhMhz1sZciSjKKoGI0nvHH/DV69fs16nTAe9ej5Nq7jEScpvu8S9SKCsEeSptRtg23bbDYJRZ5zuDPBdhxaFLPLGb4fsEliNpsNvusyGAyoqpooinAcG2MMrutiWVaXrGq6QLa60UipyJIYjQYh2BqPEcqi0QbHdSiyFCkkrutQlCXX8yWnpxcoadHvu5yfXXD/jTeoq4J1vKZuGwZBj/29febzObZtE0Y+m82KvYMDmromuaFYD8cTXDdEG0Ne5Lw6O6ds4E+//0OMsDm7XHF6cYGrDMaUHO7t8Kvf/jaff/dzKASPnz7n8eNH6LJgMh7Tn4zxHcX+3h7crI2O7dA0NecXp4xGE4ajLf7kj77LeDTkK1/+PDckPYxpkdLicrbg+fOXJHHCOolxPY+rq2tm8w2XVzPqusZ2bPKyWys04FgWjm2BlmRliRCqs14LgVCSTynNWhssx0VZDuiao71thGmY9Hv0AkU4HOG4IWcvT/nuj3/KaBTxN/76r3B7v2OxffToCT/96Cmr+ZwoDFksFpRlzXg65Ve+8TWul1ekac7F6QWODYeHB/zxd39Eow3/wV//Zb76818irwuuX80Ioz62a5FlBaHncXV9SRBGXM26sW5S5PzBH36Xl6eXN+4tiWVZKNl12YQUKCloypK6bfEcH6UMWR4jpIPv+Yi65jtff4u+12WWTEZjmkZTVQWtMaw36Q36okJZiqg/5LsfvuT9pxe4Esb9ANdRCGG4mFWMIpuT/THDyObWwTbbox7JMqYxGuW5tMZgtECYDsNAa6jbklp0HcIgHHC1TvmL9x6zSlKUpZgMQr717pv83IMjzq4vkU7AJikRQmBLgbIU/5f/6//9342L5/Xr1/ytv/W3mM/nbG1t8a1vfYs/+7M/Y2urmyv/43/8j5FS8lu/9Vv/SlDb/5RHlSX4stcFkQlwbMV89oo4zRBC0OiWrCgAQXy9YL5cMBz1yPOSq3JBknaxv7P5NY6tGB8dkeUZbdPieR55mlHrlqgXdVRQrZFo6qxgvlrTorl7+4S93R3u+Sdcr2OePz/t5sm+Q1WVpEWOVIrDgx32LH0TwgW+61G2gs0mJ4lzCt2w3sRslmuWcQxoaqNxHEVd1ZxfXrKKNzTCIQgD+r5L6DpcX1/RFAVKdt0J3UqU5xN6Ls6nkfBG4voWb9w6wKpz3vv4CeezJYgWKVq0lhxPtxkOBnhB2N3swqJRitH2DskmR/oS3WosW2GrgJcbzVWm0UFA1UiioIfnR2gkURhgTE2RpVRFjm47sFQQ+PSCAVIJ6rpCNy1VXjK/SkFK8qqkagxZnmFbFtPpiMB1aKuai9kV/cDDcmwsz+Xiek5dGbQUpPGG0/NTNsslThiys73DZDpiPrsiTVOMkGRFgXQ7kWhVlsR6Tdk0pElMslxTlAWe77OzPWF2eYHAZblcoanJ5nNCP6Af9bFtj72DY6q67mbsVs3VbM7u0T4fPvyEx2cvmI62sKRNWzdskpg0K0iygqKsGI37lG2L77l8+PgZ5+eXtK1hOBgipGC12VCVFdvbE/q9kPFwwPbWhEePn/L40Qv6oxF+L6DXi0AIwn6P9XrDq4cPGU8m6Kbl5ctzsqJC65aDw310o9ls1oyHE/K8wZiSF68vWK427OxPsL0hdVYQ9Adsb21zeTHj2fMX2F5IuDVguU46+ncYEgV9pG6YTia4oQ8CNmmKsi3WccxitUYIiZKGw/23UcLQ74UcbE2xbEGyjjmc9Ak8G6IIx1FczZe4liLq9SnKLvNEGtCmpcwyZpsZry/mXC43tE3NeBChTw5xLIlUgv5oSNHUfPzwEW3TEPouvdCnF3rdfNwP0Lok2aw4O72iqCv2DvaQQna6oijAtuyOEizMzaIpmI4njIcjPNe5YdgIhDD0er1u/alr6rojO0spqNqaNM1vuq7rLrekbjBVTdjrU1Q1e3t7WEioNVkZIx2LyWTEy9PXuJ5HnCckacKL5y8IfBcpBTvTHSwv5P/9e7/H8eERh4dHxNcrsnRNFPWRUhAEAX4YobVgFeecvj4j6oe0KH703sf86KcfUzUN4GIEHBzs8Ivf+DJ3b99iNBwTbxLmywV/+qffY397h6+++y5a16gg6Jg7SdwV0oFH02qM0Uyme1zNlvzJn/2Ifq/P9v4+j56+6NYR1yP0HU7n5/zX//wPePr0FfffuIfnubw8fUlaVMyXG1ZJgREG8gZlKRptUJZC2haNMZRNhUHj2JK2bZHK7kCIQqABKbvPRDc5W9MB77x1GxtN4LmcHO3x04eP+csf/SW/+AtfJxgFXF9dkW1iXjUtZV1ydjljGDi8cfg5fN+jbVouZzMGwwnPnr1gGa/IyprT00uC0GMW16Rlw7Dn0Q8jiqREK0leZBRNxcNHz6jzijByOTjYpWoNdStYLjb84Ic/5OJ6ibA9NA3CtlHK6vYVKToAYd12XSdjkZQ1Ao2QLqbVyKpC6a5juH97C43BcbpRuWtJUA5ZVtxIGAZd57zUPH9xRqAEv/yFexztjinzFKEsruOMaS+gHwXkRYEtFHUBcd3i+T6zqwW9sMdkOmK9XmNbFnlZYLk2cbzBsizWm5SX59cssxzHsvnKG7f52ru38ZyGxWZFvz+hFApKg2zB9RzSPP6Z9/h/6wXKf/Ff/Bf/g3/ueR6/8zu/w+/8zu/8//xaZVFQuz5Z3lVnm1mMH/Up6gYhDI7jQFmiteHweJ+Dg23iOO7YCpZLXbWcX12ys7fF9mRMkeeYumbY65GkGbPraxo0ZVMxnzV4toPj2DRljTCG7d0djOyIoEVaoJqC7WHEJikwZTc6KbI1cZozj3xC2bIzHYNQ/PgnDzGez2LRpQUaKSjLijzNyMsS3WqUJSmLkjxNEUrh+AGeVDiuRV2VnM6XXM8XLDdxB0VzFVHg4To2R/u7OLZDmlYgLQYDB6utmL16zXy54XIT47sOQRDQG9js7WyRJTlJVTEZjygaQygc/GhEWctOZFzkNHYPLQJGd9/ka35EmWfQaDabmPnVBUJaKKbEyZp+P2J7e4c0ybAsG902nJ6eY6kuEdN2nC4gyBgc28KVglHgUdURAsjyjHizpqoqJtMJtmUzGo64urrmcnaN44esNmuOdnfYGg+p8oyJY7M9GaAkjIcjemHYJaZmOZbr0O8HrGYL/uJ7PyQXknu3b7M1jCjrlM18zpPHT7heJ8zna27fPmYy6pEmGePxgOUy5ux8xnw+Z3tnm8D38aTkzq0TWiOJd/dZLHxenp0xu15+ZqnWGGzHI/QCfD9ktUp4ePmEsmnRpoO2nV4taHWD53l4js/V9Yqo16NuKl68fk2ZldhBwLPX56R5SpHneL7HaDgCJHFacnX9jKpuMVpQ1l1cdZzE0DYI1TCbX1BXBoxme3ubX/rW55GyAW3QxuCHAUkckxQpThhQFiWrzZLxaMx4PCKJN8TJiiYvGIyG+I6DZVngusxmKxzPBak64Wzk4VoCG4PWmiBwqeuc8SAEU1OVNWXRYtsK3bb0oog4TdnEMQLoByHSkli2RRiFRP0KfzxhEAXURUbTGgLf6zYv38NUFfu7hzx78gTbtuj1IiSQFwVSKIyBLKuo6hrPDTBadAcR10VJSVlV3WjPSOq66SLHRddBXa5WXcAagoODgy6uoK6RFphGk5cNV5dXrOM1ZVVxfOuYrMhxbbsTqA76nSuiaTg9P6OtS6qiJAwDhs4QS8DXvvAOeZ53RHIvwrE9Pnn8CYv1ipPG8PTpDwmCHtFgzPd+8FNev3rN0c4WjnS7SHttyMuaJ89fkBU1r1+dsb23w+nlFcu4RAuro9RiMd0Z8J1f/QXePN5DGMP7P/1LetGQaDrFCwIsS5JkG46P9miw8DwfrVsQ+kbw2sWmJ3FJnVd84XNvE0U+m/UCaSTz2TWrVcz+wR5PXp1yOVthuSHzVcJq9YI4S9FI8rzC0MWudw+DlIBpb/hFhrqu8RwH00Lb6M6l1IIRBmEkwhjkTaeb1vDqxWvKPOPN+/f5wz/5C56fXpHkJY8ev2AwGGALmzzL6UUBvcEAd7Fivlhi6paiyLl77x6r9YbHT19QFA1V27BYbrCkZLGcA5LJYMDR/jZB6FPkOWlRkOclvUlIbzDEnjhEkU9tWh49fs6Pf/ohSV5gMAjZif61MVgCJAahJNoYdNtlFZnGgOy6HCBpmi6oz2iDZyn2d6b0ox5Cgrl5Dtd1mS9X9MOQMPTQAkosvv8XPyYuWt452eL2Xh/X1gSWS4PFYBggdYtrW6RpNybOmwKJYr1YYXTnZEWC7VlUTY2wRYelQIKUXKYrzmdzpLCxLMNk6JGlMVWlcISi1SXzzYaiLBn3B3hKkLX6Z97j/0qzeBrdnaClZRMnCVfLBQPdFSbTyZT1TbCQ4zhEfkCRZei6RVk2aZphjGHYDxn0o24uvF6xv3eA0Z1NrdINrufhuR5GddyCJCuZx2t6ozFpmtDzPcqq4Wq5ocxTXM/DSEFdtyTLhCTLWayWVG3FqBfieT77ezs0bUu+jnECB1wXhaKqDKgOTV+UJVVdE96IeZfrmLJpCF0LaSmaVlO1LVlZkZYVW9MJX//5L+G7NukmYX9vwtXlNXGcg+0glMJoRWvZ1FIwHI8Z9ftsVgukMdAIzk9neL0+dWtYxRknbzxgtS7JS4OSFuGoj+P1MEGLs1py+foKpVuqtqAxNYdH22RpRdvUbE23bgLMHNabK1zHptUNttNh2R3Ph6Yl8D3qpsYLg26zkQKpa2zbRdcVaZIy3dpmd2eLVy9fk8QpcZIhpMJ2bPpR1ImI59f0ogilOoJnnSUslxum0zGOLcB1qZqap5885pNPntBqibBs3vvwfbanQ7bGI1brmB+99wnrokUoSfPiFeeXDuPRBMur+el7P+Tias7O9g69YZ/ZcsFms8axbYq8xnE8As9jMp6QZAWNFhR1jWV3i41uKyzlcbS7y8HOBC0U63iD61pEfoiyFQcHB8TrmGEv5HB/Sp4XPHnyjEJrgtDlwfgWcZIxX6zQWtPv9zk/v6AsSjzPJ8tXdHbBln4vZGdrSD/w2d6a0mrN9WJFnpUM+j1oMnRrSNKMJM9xfQff9xgO+jS6Sz2NwoBe5JPFCa6t2CQJTVUz3dti2A+piopNmnHr+JD1Jub8cobjOhzs7XC4t8V6vSYcDEB3GRCB6+NYgiSJWW0SyqIkiPoIZSEQRL7PaDQizfJuATaGIAi4cyugqFuEaRnvH+E5DlEY4HkeaZZ1m/t6jWUr9ve3kTdWZt00SMvCsmx2D/ZvwholnusjJeRFRtlqXD9EWFZHWpVdKJzneVhSURYdHl5J2XXkDDSt4ez8gqqtqStN3bQcHh2xsz1BCJhJQVVVWFLR5AXCssnihF4UEQYRqeXQGw7xgpAsS1AI8qwbx733/gcYobh99xb333mb5XLFk1cv+KVf/CXef/iI7/3FjylbwScvz/iz9z/q3DlNlzHUthrL7kZQqxfnCOkgHQ+jTec26ln8xrd/Hte0zF6dEg76XF/PCMOQu3dOEL/yLZoyY3drhO/a5HnXibNtm6IokFKSFxUX5zNaDXXdkMZwfTXHsi2kkBgMaV3zz//kz/mzH/yYVncBcZfXM+q6RQgQysaILj8D0yKkpKkbBN37100X74BR1LVGINCtoKrqDh2jJAKB0FCZCozm4uKK66tr+oMhZ3/yfVarBdgB2gj+/Ic/BQT72xPeeusBdVPw6sljpLT53Nufp6gKlLJ4+OgJz1+ec3h8wvsffUTdNEghqfOUv/ZLX+Xu7dt4tgsSmqZkE9ckRcnO7gGXiwWXsys8z+f0quW9Dz5iudwglURZDsKSNyNpgRIS2pb2JgumaRqqVnfaN7pDr1TQmm6ErZuG0hiORwMGfkegVkJidEkQerTAYDCiKHIEDU1jePT6kmencw5HQ77zlTfxbUNelTStQEqwurdCVRd4tsBXNnGak6Yxvu8QRX1Gwx5N1UDeUlZ5B7lsQCnBenGNEoadacTm2SUIl8cvXiP1Hvt7E9ImYTOfozCMBj10mxOnXRjjz/r4t65B+V/i8akG5f/8f/zfkyQJtrBwfZfesE8vCCiLirwoaNuWfhjgODah51HkBUVRdroGKcizGIOhKDs2RS8MCf2Q9WpNkpdox6IsbhJoW43vh9R1Q9aUTCcTsiRBGZgv5ghlsVpmaKFpqbGVYn9rj6JImexMwAiKsmR7HDIaRvzwRx+CcRhtjwmCkIEfsk5iNmlKW9RoKbAdmzLPmM9XPH/xiqws2dndIQyiTiXfNmxvjxlPJ4Suy53bB1ycX5AlCceHOxRZxYePXpO2nRf9i28+oG1KLq+vaVuN59gIXbGzNWEUeJydndPb2kEpB8v1cC0L72bTyjcJi+UCYSRB5CF0hbAdGgymrhhPJgip2MQ5aVrSNk2HmkdgTLdRbDZrEDAcDABwfQ/HdmibBlpDnuesswQpFHWZd6FJe7uEUY+PP37E9XLJ3uFhl/uSpB3+XSlGw4iz16/50fsfcXJym52tMYHbzfzXmzWWJbBtF6Vs2rrlydMXDLcG7E4nVEZjOwFPP3zCTx49pm4Etu10yHHTpW+6jiIKPXZ3tuj3B4yGA9J4yXyxYntnlw8+esT5xZxGa6KeR+T55HlN3egODqfAcyy+8sW3uXtrF4XAmM7WZ7sWnmWhlE1dV8RxgmM5OJYkz9akRYtSLq0RVHXG2eUlWV7jeF6nh3C7YDlLWaR5xny+ZrnqGEsnxwcEjmLYC0k2MU1TI22FkTZSSWg111dL6rZmurPDcNAnXnYz+OUmYbHJ6EUBk/EQgeDs9AxlK964dxvPVSitaYuKzSZnvLfLTz54yDrJGY1HTPsePU+RpBlZWqKkYDzs0wtDqjKnLAtao/B7EXXbUBQFvTDCVpJ4s6Y2HaW5KHJc28FxHIQQ+L5HFLr4bmfB3qw3GKPIy4pNnHCwv4fnW7RViyUVgoYgCKnaLtXTdRVN0+I7AUZKLNsB2QVWaW1QUlJVXdZMnmfEm5TBoM/O1pSqyAn8gKY1nJ5fUVQ10rJotcG0DZbVyS/QGqFbJtMxKEkQhF0BJgRKKIxuKJINdaO5mi+JehHDYR/Hscjrlp/85H2UbUPb0I9CTg6POL/a8Or8lEcvX/Ho1SXa2Ki2Rbc1RiqktLr7SGiE0SjLwgiFkDbK6oqr0HHY2Yr4zi9/g/VyQeQGzK6vuHv/LrptuJ4tuXN8iMLgei5101KXNUlZkcQJg0GfNM3QQvHq9BIjukJ+vUo5O5sxXyzwPBfLVlzN58RVTVFopJGARihDqzvKckdUBqNbHFui27Yb4SARQiBlF/2vTccH6rSAXQdHKXXTqft0o9MIqbGEBCzqtsWxFcIYaqMwgCNbWkA1XdbMFz//JrffuMvzl6+4ePmKqNejxZBmBVUD603CYr2m0Q0W8I0vvcO3fu5tmjLHIDg9v2Iy3KEVBq/f54OfvM96syEcRLy6uOLjRy/x/D6WkmjTYFsWtmMjhGK5WKFEpzf5tAOv/yUYpJQCowWGBoGNkILIg1G/xzsHQ969s4sfhPR7EUk8J85rkrTCUhaDQQ/HluC4/NM/+AHvPb3gN772Dt/6/CGrvCCtW+bzBZZwGPR8hG1RVBVosC2L+XqOa/v0gwDX7UjVVdnS3hQ1TdPS2hJNQ+Q4tI0hLUsyo/nRw1PyZc7dvQnTocfB3j7X8QYPsBSoIKCoNWVR8n/7L/8//+6SZP+XegSWxdbeHnndkUinwz7DsE+cJDfR2ArPthFG01ZdeqiyFGmeUlUFQRBQFRVlWuAEAeuk5OnzM84uLuiPx3iuixCGIPBRjk1a5uRZgbIk8/mc9WqD7/sUdYOpKlpdYDkOnh3guC7LeM1o2MexPa7nK+q6YWlJyrqlqg22q6jrhqqs2LRwcX6J5boUZYkUkqosmE57jPoRg14PO7A42NvlL//yfYRjM53usL01RmCwHZs0rmmNTXoDLnvx4oxNXmCEYGdrjOMqaiSj8ZC2bXEcm35/xKgXQp1zfL9PVrZsjYZYrk9RFmTphqooSDYJju/jKNXhu2WnlhfGAIqz02uMkNStpijKLtsEg2MrLGmRpRXBjdLcD3yk1mRpSt4mrOMNZVURxymL9YYvfumLKEviW5K2LqgzcFybu3eOCcOQIs3x0BjHom00Tx49QVqKN99+C9cLKMq6i98uy2684LnkVKw2Gzwv5Ohon14vpGpK4k3Cy9cPefH6gqIRYCBwHTzlk6Ubon7IgzduUxUFhztbHGwNWK7mROMBRztb1LrlrXu3GPaGzK6XjKd9er0AI6Ef9tBlRa8fMR6GbA1C2izj9eWc2kg8x0PYgshxsTybqiiwLRshNHGaY0mPts3QaJqmwrYUk36fKAQpOqFgk5edeM02jHshwyhk2ffZ39ki8GxEozs4nTAUVYloFIgKpSyyPMePXA7HuziOz8XFOeaGfbS1NcbxOoH2aNCnMS0HcpdBFLI3HQKG1XqFsSAceGTJgsCzWG1q1osZkbPFZDBhr9+/KaAUEmjqkmgwwC59kjRB66Y7hW1PqOoa3RqmOzu4UuD6Hk3bnd7zvMAYg9QamoZStyhho4TLKlmRZhW9XkQ/cDi/uCJNC3r9CGEalFIkaYp/A0W0VYeFkHQC16Y1rJdL8iyn0Q1S2J8JaQeDHuNBH89WpOuKdVHheB7QdlwRrdFNg24qbDfAaHBdH9eGyXSCshXrOCVbren3etihgzaGvjOkrGqypmI4GDLo9SiKAhvN5x7coyhvnFumG8ltsg2PnnVCxMhzaY3FcBAxGg55fXrBYh2jXAdjWpqqRQmLu7f2ufvGHYLApcxzpG4Y9XzS5QpTw4cvX7FZzYh6PZZZzuunr0ALZlcXHB2dkOQFP37/fUb9IaPJhJ98/JQkjvE8j8UqZnd3SqsbkiRnFa+Rtk2hNVevr6iqrniQAKJFA2i6bq3uNCwIiTGmO9FrUEJ9trYbc1NoCQttDGAQHYuyo/AajdDd2iOVRNBlnzRN121py/pmhNwihcAPItI4oTEKLJ+L6xXzzY95+fqcfi+iSfLu9+/6zJcrlqsYumdFWlDWLX/4Jz9kEAWMBn1s3+eTV6+5OL9AWg67WwPu3jrk8elr4qzBCwfQdppFaTRtW6MaSV2WWMLQihYjHUyraeoKo1t6vRDX83A9hyjwuLyaE6c1noTf+MWvcff2AQ9//GOEdKjqmtOzU6bTMX1Lo1TB1taE9z9+RJ6U3L13woNbu9w53uOt/SlZ04IWRJ6LtTWmKJubwk1hlEQ5Elspgu1dqqrsAgBtmyIruvG8aFFSMBpF3UHnZizXNpp+6NIYTfQ5l5dnc9ZxzntPzynwmPQdLNtCSMlHz88Bi52e8zPv8X+lC5TIteiHLltujzTLIE/I24amqOnZLnVdo3WO4yhaugrbCE2Zl2ijiTcJaZqzSWLi12fUbXsjwnSwLUlZZUghGI36VEVOEXcWOt/phGZ3bx9T1zVXTcloOAQDWnSsk87KKNBtS7yOybICBAyGfR7cPcZ3bJKsRtNlGOQi717XsbEcC0tIyiLlwb07vHz2iuEg4OTuCaJq2N8aY5SFuYGK1VWNZdsICaN+hKtaBoMBw0lJf6ro93tEYUDoOeRaY9vOTUtwiO95OJYir6suxMmySJcLhLTQEkxbY9kWvdBDqq4d23FVDKt1yWi6RZbH/PS99xiMRozHE3Z2dmmqCke3uJak1Q2+bRE6fhcQZKAua64vZhRNQ1oVDCZjBo7L9u4eQ98iWacslzlB0KMomk5EVjU8O3/K1fWCFkmcZFzNN0wnQ3Z2xvR6nSamyFJ6UY9is0Eqheu7SGC92RC4LnVV31g+FUJIPD/grbffIisKrmfX3Drax/Nc2qbk5PiQrVG/45VkCXm6JvQ8hPKgaRAGJlGAf+hx9+SQokoxumEw7PH2/Tts5gvysqSpCtZXnRtBSIt0k9K2BhcH7XmUeUVTN6BhsVrjOC7JZk6rNUZ0dFrLdogCh76yyNMM3w/Iq5r1OuV6MWd3dwff9xgFHj3XxhYKlKDUml4Y4XshRnSCPMe2CaKApm5YrWPWqwVh4OHanV2zblvWukFZNkW6IQgD4jKlNx3SVjVxlnWZCoDGdG15Y+j3Au4cH7E1jIg8C9d1aZoWS3V6gbZtAEmurG7xsRTKtqibpru3Ah/btokcie/7WI5DmuW4lqQqSmxlgdA4jkMc58RphrRcLFvguR6ua3N8tEeWF93v0xiUZRFFEa7jIqXs4HNJQqm7ADzH9ZhOxqztLibAsz0GvbBz9WhNr9dDKYUbRVjK6go4OQWlWG9SkmRDMBx85sjQdZelkxc1lgZH2XgDB9u2KMsS23NQRhMGAXvbNlprqrKEtsGW0EpBpXVHCJ5ModHc2Ztw9/DXQNlcLWNen14wHg0Ie33it9/gvQ8/4YOPPwEpmW5vQVvy5Tdvc//WIdPdCYVpmV8vWM8X3caTlxzuTxH7IyaDPpPxlPsnh1xczjibLZgnFYvlkvHWkN5gwHsff8zsekEQeAxDn/3dXa6uZ9SNYTZfULea45Nb5HnBYrGiVc0NiK4Dsoqb0YUQneOp87cZlAR0+5nexxhzE+zYdVEMIG7WOaM7vUn3ncBNka51dxUKuq6EkgJLOYzHUy6vr9Ftp7MohEXTdB3jg4NtHNcm6ncF3uV8Sdu2FMWcsm7RN6MqR1hobXjv4VMc2bI96PHOO2/z7OFjbOkwHg3IspK8KHiWlPzog6doFGiDwtA23WEOo6mqlqrJb35+n7YEozPu3Drknft32d/dJgw6TIZpWlZVxunZJaQldw/3mJ2eYRrNfLFAWYbJDadJG4FvSXSRs7u1TRIkmLamSdccHx9S1SW27RAGPmVdEXoetgLXccG02AKE0ARhn3wvsQABAABJREFUiFKKNJGEQdh1/CQ0upsFWcqmqDqxf68/IFnHuJbNaDSkagsUAvd4i4+fnaLbiMuLBdNgh/FWRNxWrLOEndE2jv+vh67+mx5/pQsUZTSmqVklCY1ukcLQNjeK+jKnKmv8KEI6HnlSkmYFp2dnnW243+sAhFJQNTVKCIxtUbU149EIRwq0Y2FbVreZCdXFtrsu3HRQjOnawpPphCAIaNv2s39XVSeEMkZTNRXaaBy3W/yLomDQ6xFvrsjKAj/w6Q36CCOoyxLXtbubmx5VXtLvBYSB350qo4hez0M5NpZt0/N7XF/NCVyLQc/HkZLSld04aXuK6wZs1mvi1YpYG4o8x3Kc7iYoG5amwfc9PN/D921EU1NoTVuleK6NMA1VmtDWLcFg0I3ONFzNllzO5vSWa24d7vHFd99FmwZtOhqI7VrMr65x+30UhrwoMbpAKokRguvlEjdy8YxLWDpURQeWMk3Jk8dXLBcrsBxGYzg/fY1R4FsOBkM4GDGPU9ZpxWASMZz0ULbBUhrHsZmM9yjSgkEUYrkOSZKSJTG+F5LmJePREOjgcpHvYe9M0UJguRPeeeMYhcGSgu2tCXVVMj8/A6VwXaf7/E3HtrleLMmLEmFZrFcpq82a23eO2RqM8RrF8vya6/mMgzu36Q+H/Okf/BG2bVHVNb4fEIQKP7BwLMPlYkUUBFzOZrw6PSXwA0bDIUoIhsM+nmvju51IO89yRsEY1/VYrGPqosDfmVLXBYs0ph91IuN4s+mAdMDlYsXl1YLxcMje3hTXssk2CW3T4iqLXOdYlg20FFlBmmUMoi7jY3s6JYpCtkcRthBgWQgrom3DDgnhWBjTZTmE4R670y4+vm0qaqM7UF7dUJUlSimUZaMsw3DYp9Eay1I0bfOvWnZvipk6qzBNi5IdkNJxLZq665C1WhMEDhrZxdSjb7g2Ho5lYysw2pCnWadFcx3miwW67USFpjU3r9sVLO6ngmZbUrcGTEMY+lRNhTQWoedB23Z08jTBcT0GvsPAHaGkom4aWqNppCYc9UFoqqJkPl9T1wWTcR/X69K0jTCsNnNevTxFKYVjW0hjMLrBIEAqkizj/PIDXNfl5PCINI1Zbja8OD1ne28PW4IsY9ym4K9/812+880vkBYVQRCxXq0IXYcyXZFc1VStRtWGvhsgXQdlO9SrDfOrFekmYb2OuVyvWcc5i0XHl3IsgRCKp88veX12fiNY7rGzf8yT5y+Yz1coJbBsi63hAEXLcj4jDDzqJoWbcY3WnbZC35CcxY393tyMa8S/JDLoRjmfPuS/KFoQCNHpTj79XnPTWZFSfOZitJVCm5airJjNOxinZUlms2uksLBtyen5KS9ePkVISdsK8rrEsjoN1KfvSQpxM+JtqVtD27b4vs/x7VtdR7OsWSzW+LcOEUIwGE/40XsPaY0CKW/0U01njdYSYXxaU2NaAcJBtyWBL/j1b/0yd28fI2l49PAhcrLFcrnGsyKMp9nr9amdivc+eYJsSkahS68Xsj0d4LmKMsux7e7AXFYt/dBnGCk822HnC++SFxlSKeqmIs6STkdk2aSlxrEKbKUJfZfAC9DGkGUJlmWTFzlGG2zbYtSPqJr6xmLuUjYJ81cX6LbFArSEILDpeV4H1qTl1dkM3YAtFaFycTyLL97dJ/Iimp9dgvJXu0Cp6gqrsmiRXW6JJWkRN9a/DMf1yWvD449f8vTpM4oixfMcbt+5TVkVVE3FYNDHdbcJXJ9Gtxgl0E1LW1QIIZGqm08L2d0YrW7QlcGxbRzHZrFc0uqGIPA7q2KrkQh8z8O27c5N5Hr4SUprWpq6oR8NKZOKwPPwwk4Ua0zTVaCuwrEU83hNqxsuioLDvW3yLCXbbMhbwa39XYQlUZZFVWl6oYenuo5L1dQoo6mLgv5oQlWkmCrBsjrabjTp39gFA9qqpGkbiqYlTWJyWnzbuok973IMWm1ohY10HJ486Wa1Ua+H49rcvn2AFwTYQuM6krxoiHyXKluR5xVKQVblrJYrbEsRBQFCQtM0jPvRZyf5uqrIyopNkvHkk9dcLlYYYbh395gkXqCcLpDNsx1Wqw1Pnz7i8nrB7ZNbHO1NOzeNazPo91itNiwu55i2IQx8VnGM73vY/QFXsxWPnj5jvL3FydEReRozHvXpRSGO45AmcTc6m4xxbYWuKtqiwgsipKWQAjCaNI7Jkg2tbuimXS3b44i7J3sICVpnKLfP7PoKgO3pBNdW7G9PWGUdXbitShwp8YygTFMsC+q6YDjsYbu3aOqGPM/53JtvIAXoVpNnOcmmG19axmGZduybfuRTVCVB4OG5Y8q86sIFixLLsjm9vOTsqstpKJuMLIvxbMGw3+uYLVWDUn12dnaoywLdthjRzccXV9dcnL7E81102+LZDtLpnB2h6+Ioi7LIqKuSSeRy585RF5jYdp2fLC86kWFdIoTEwqAF+L6PtBQmrfFdl6YGx3FI0g6453l+xwWRFkgJrenayrLLwQhCn6ausT/V4NgSNMTrNaVbEgQBRjs4no1SNUpJ6qam0S2WZWO53VhNVhVZmnVWYiEQAmoNwnLAQFVqqrLi+fPnKCUZDHp4ThewVjcts8tL1usNk8kY13ZomgohoKgLMqOZLzf8N7//Xb72ta/Q73uUixQhbFbxktV6w872LpaSOI5FcGOBR0jiLCcvS6Y7W2w2MXHaiZN7UY+T445ubVsW0oBnC9qy6N77ZoXtwG7fI45TtGezSVIWVwt6gxHrNOMnHz/h6fMXNEZT1BrLcXCUAC0YDAe4gQ1lwTqOWX64wkir0wAZTZmm/OhHP2a5SUGpLpQtcNgkG16fn6GkS150HWrL+hfbixCdlqS5EUiKm9+17For6LbLjPl07EPnJMYYgZTWv1LUcNNhufnSjWi5xbMtBoOIOEloWsiK6rPOHgK06D57raFqBW3VXVOWZfFZ6aMUQms0uuv00l1vum6wjUWS5Lx88YokWRMMx5wvZgSWw/LiJeNQEq8tstrQGIHBoW7qDsOgE6RqGET9jrc0jbh3sMt0ErK5PqVpO4fS5fUcIx28yJCXirPX5xRxzOHeiJ7bZeycX17SG4Q3XSRF2B+Q3PDgkiLH910WmxIlSgQaU9dYrk3dduPV5SZlk9WMQoXvuyAlTWtojca2bFokVV2RJhlKKpK86bLB2voGSKmojcB2Xeaza2zPJU4kx4d7FEXJIOqjDn3iOMMJXWZpzDrP0a1N3Xap0D/r4690gZIkKVVVcXk9ZzAcMBhEpHF2A5mTtJuKx0/fY5PkDIYRbxydMJ0M8V2f9XrDqB9gWxZt22LZ4AkLYUArsMNOvVy1HThJWhZad/kVUgpms2uUgv3tMf1en34vorOEaaRSYAwCQ9PUtFIzDGyMsBlEAUXSbXC+a90IvyospfA8Hyno2piRT23gk0+eUSQxbz24jecFJHFBWSUoLairkvU6QWuNMA7zxZxBGOI6LqORj+MqZNGyO4io0VRlg6SFMud6vWaxilkmKbZt4diGrekI3+t1qaZa3zijYhoj2JluY4SkqCr0eo3rSAa9EEtJmqK6YS5Y6LahKQsUBt/1McAwCFE3mpXzyxlZUSIQBG5nw0zyHKSiLttOpOVajIcjss2G+WKFsD1OT2ekNxHeg0Gfra0peR6zWknats96YyjKkrPTM6rWEPmdTmA87OE5NqvNhp3tIftHv8DF1YxXr57zhXc/17lZ2oa6LBhFAb0oRJpuXtslmHaLo20r6rLEtJrA92naht4gIE8z0IY8S6EyFHXDdLrFMPJYVwV+EGIpwavnT0lWKya7+2xNRjx/8gRHSeLVmqKpCHohjrKRUrG6jpGWxd7WhDLPUALqumYTp0ipmGxt0TQlRZ6gDZ0LyvcJQw9ajeMrykozGPfxg4Cjw22yrEt4beqKKOiu+6osub6eEefdmKOIHTzHQtiSqumSSgeBxSAY4Ph+d4r0OreVZUmk6BJdldEdO2bYpykzlNDEeUZrJIHvIQD7xjJs2xaWbWEwSCGxQp8s7eB/zk0Rq+xuwzCyO33naUpd1vi+T3/Qo60bkk2CZXfC0LqsWCxy4jihqUsOjw6Zn10wu+rya8bTIUHg4XsugeuitcHUNcZz8HwPWwmEMVhWZ/fXQmE5FhLI0owPP/iAzXrD3v4u69WSDZqqqtAIzi6u6IUejqtoHJe6KvFcF8fqkeUNL1+d8eabd7h355B0vaTMCzw/xPcctia30FpTlyW+46KkRkpYLhe4fsDe9oQ8z7H7Aa4rsVRnly+yFbYyROMxvhfQ1BZVnZFuYrYmE2yl0XWG0hVX12ten8+YXcy6gj1ZUWkLvx+ws7XNchVTNxpbVwhXcrA3IUttGt3y4pVmvalQVjeCQ8AmyzG6JQxdXFtyuLvF7s6Uq6sZFoarVU57M57R+l8UI8DNmsjN2KbTd3QiehBSIqREI0DoTnpD1wGDLsTsUz+HkF0xKhXd6AeBpAsS8xybYGvK89eXCClvIHgGbTrQoW4bWmxabZDWjZXXdIVP11FpMRharWm1wtwIdrtugkMSp6AM29sjfMtmd9pjbzSkNwr5ve/9hKQsKOuGyHfYGgTsbE1xbAfH9+hZ8MbhPoO+T5En5HFOnq1Ikgw/7BEnCVnVsnd4jK4r2qrGUHB4MmTq+9CUDAcREzXEtm3quqbIMhCdEHcVp7TS4XJT8vTJSwahze3DQzzf5vp6jaVsXCRaCJZJgq4b/GiLpCxp65TADxgEPeq64cXpS4IgxHVtlJFIy8EI0UUJVAlB4GEpRXh0QN/zEWiKVlNULXlcsl4mWK7fjWcjm8urBRhFdPuQwPrZmXx/pV08/9l/9BtorfF8j34vxHcVeV5SVm13SkkSVnFM2AsY9EMCz6apK2zpoHUn8hFoHM+hMS0ShWd17WrvhmNjhCIMe7hud4K0lKCpStK0g1sZDGVRIqSgbejyPWznhvMCbdvg+z7KttG6oS66k46yulZ3U9afCeK6oKhOBOYKyTqv+f0/+B7vfv4BX3j3HpenFzx6fcHBzoTJsIfUkrJqMNLw4vQS6bsc7O0SqM7SW+UpZdFZlIumZWtnG89xOH39mjRNWSc516uU7fGY28e76Lbhpx98xNtvvcXh9gQhDLWGFkMv9CmrijSOcWyH6XiMLkuyJCErMoqypG4q6romjEKUsrowtlZ3OSi2wgjFxaIrjLzQ60YoWYZpNG3bLX6lhjt7Y7LVNUY6CCdAS4s0ScnahqJuGPci9rfGeL4i3aTEaTfX3duZdMTmpqY1Asd2GQ8H2FbXtbm4nmO05nBvjxYYT6Z4jkOZ5+RpRpZnGN0y6Pcoy4rFYsU6TtgaDegPep3QNCtZrlesk5jhcMiw36dt9Y0uwuN6vgTTEoUefuAS9fvsnhyzvLomni0Z7ezR1iWb9ZKqqSmSFC8K8WyPzWpD3bQsVmv8wKdtNePJCF0XGKCoGqTsIqyV7Bb5oqhI04ymbhgO+0jduaFsz8bzPITpkmyzvMByPYqqJAyjm0AxxWA8AtOlIkvd0lRlFxmfZvR9H6E7C23VtvSHXWqlEALPsz9Laa6rimSTkqQ5lmOxNR6BtLAspxtZ6E6Q3WpNWTXUdY17k9psjGa1WFIUJcYYbt25TZplVGXFZDqlrArKohPqSSVp25qyrMnTnMFwQFlWVLXmcrbAsl2qsmaxXtLomn4U3MTJe+xsTTC6IU9SIj9AKZtgZ4qtLPI4Rtc1jtOJD70w6Gyfdc1ms6apG1zHoa2a7po23T3tuD7KsruiX+vO0VDknM+u2CQVz15cEAY+X/3SfUSVIYWFEwQUdUE/7KOUhWvZeJ6FMS1ZmmCU99lYpK1q6qIrLGthkMgbllLb3V9VjW3ZWLZESkNddnbjoqxomprX55d8/OKSRVbjOS5vv3GCNCWrqiXLK8oi5/TiGj8IuLM/6ezdqxWhIzk52iHNu/wUIeDsas4yTtnf22F/a4BvGXRV4tk2SknysmVZwH///fe4XuddrAFdZsqnYxqgQ0KIfyn7pItQBVqMkDebbTfiE0agkJ9pWDqhbDcCEqZz9WjTHSCFASlajvd2KMuSs9kSIbu13GAwooPgibZ7A0bJTigtuhBJTPecTduC7ELgPu2iCK2xLDg53KNJE7785h22Bw6393cIHEG+yimlZNkYTi+uCHyfN24f0TQ1Z5czXrw8oym6UMjtvV3itKaucn7+i29gDDx/8YKDg2MG4ynz5ZqiLFmuZnjKRsuGuGhZni75yrt38SKfVZyR5yXSGHa2Jnh+Z3suypLL2RVJDot1xmg64MXTU7709h1auq76raNdLudzrjcVofIYjjxWqxlhEHFyeMxifs1stWI63cZzPfI85+LiguGgz97eHo+fPaWua3a2t1F0WWSj0YRFVvD0/IqLywW3Dw4p64x1subB8QmtqEkWG4JwxKNXr1klmu//5Ac/k4vnr3SB8n/6T/7X9CKf7Z0JSRyjjKFpOlFV3TQsNglBGOE53UIo6FqVRV1jhCDwbtrWnktdFZ2d0e6i2nXbIiyFQCKtbh5ZFiW60l0VabrXaNvuZKGk7P6x7U6uJbtodCUkwrQoJVFWR/HsZs5OF1ZVVbRt07FEhKTIS1ZxzNXliovzhNkmZXI45Oe//CZunWMch+3xkCLJWKcFVdvQNgVJnhMEIU3TsolzhHRZLmNeX12DktR1wZ1bh7x97zar6wt2t7bxw4g0K8jzvMub8Fyaprppg2oc22E47GPbik2yZnm9BikZDUdYSpDECVVZ4Lg2daXJ8pp1lpOWHQo+9B0mkwG+60HbdJ+BUjSAFBbnr18jkNieR17W5FlGLwzp+RbStGijMVISRhF52aBsC9/36IUBummI4zWbOGUwGODaDr1ewCbekKQpQdCJIi3L4no+xw18Rv0hYeCD0QjZnbzqWpNsYgSCRtcMBwPSJMEYQ15WZFnOzs4WgeuAbkjTmLo12G5AlqWdi8mYjm3jOhRFB01UsusQbW1t4XkeF6eX+EFA2dSkSULo+URRSF6mZHmObiSX8wVh1Odgb4dWN7QalBEUZYbGsNkklGVNrx+wvTVFSkmRp5i2xba6zbVuapq6ugnX6oqYuu4+027sKPE8n+VyTd12wrcsiUmLFK0bojBitL3NJi/o+wFC1CzncxzLJwj7KFuyWm5Yrde4joMtu6A16Vj4YYChs/aXWUVTa4SEStedEydNMdpgKQtL2YRRxPVy3glL204oWTcNVVVhOw5BL+wAZnWN0RrbD7F9lyLLKW/CGR3fp2wa5qsNL89mnJ5fo4HRoM8gcHFtxfV8SVuX3L1zwr07J/TDAEXX9SmrhrxpOo5M1eAIC9vrnGfQHRqKMsdxXYqyoaxKtG6JwgDHtrp73GiUVGhgtlx1GIyq0yyM+j2qdHOTCNp1fALPRUvRwShdRdtUXddX2Pi+gyUE3Fz7VWNI4wy/5xGFIWV6k/mSZuR1w8tX51iWh3Q8LucrTi+uKSrTpawqCKMeCkNgad59+y5KGuIK0qxBa4ntSKajiLbIyNOEusy4e/sWw8ghS9IuoI1u1D0Y9JASdKNvsmEEVdOSNJpX53OWSc17nzynQdHpR7g5cH3apfi0eyK76HqjUVLerLUdXFR82lG5EdX+C4FK90WtTdfVMBJj9L8YEZlO59LFsTdgC4xR0MqbgqPGRt2MRbqn7cLnbiZGN0JbLaDV3frUNVe6bo4v4avv7PP5Wzu8desI13c5m10gEfSCkLIsu0gBy+PjZ2c8u1gyW26wLMn+9hbTUYgbSMqy5dHHr3j3nbfoR4Y2z+mNRjx6ecajl9d4rk/PtuhFFpFrYdoKoWwa2ZGu/+j773G9SRgP+4wDj3fv3SZyFatVF+zY6ArbsalaQdLA7//hH/NrP/cVgp5NmhZMphPKMmd2PmM8HjKZ9DG6xbJ6nM4WXFzP2BqETLcngGa5XCGVS43ivY8fsTWZcu/WEdLUCAxpUbNKCt5/+oz25nOPPJeeo7i1u41jCbAkWdNwdrXmYr4mzgqef/LJ//8XKP/53/nfEfhBtzi0BoUA1YnctAGkQhuDogMtaQ1VWXXuAFuh67prpbUNDQ2YTohF23YjCd2ghE1V1wgFlpTQgrEsBNDqbs5qWx3pVhlodXsj+quArolZ17Bcx0hLdu4eDGVRYEtFXdfUusD1XQwu61XJhx89Y55k5A2kZcZk5PILX3qLu7vbGN3QNiV1qylvWpWuJQkCRdu2bDYp5+czlOOhEVi2YtCLUEpiS4FEE3gOeZ5TNQ111XbzfsC6CadarToB4mQ67dgQTYNUkqqsEBg81yUvKq5mK7KiJY4LrlZLVsma/YN9fNdmMOgz6PlEoU+WZpy9OqXfG5BXdWf9dVx025CWGUiBH4X0ej36gYcrOw5OrQ1F1VA3DVEY4nmd7dtTFlXVda2QijTLGQ2HCAFxHGPZNp7rdouhkp0zxRg2cUxZ1RgERmuiKKRpGoo8xfc9wshH1y11XdOLIoqyBCHwHBvXtrFukn21MSRpjkZSNw2+21GCW92JpKuyoKm6k68X+hRVA0bhKJtGNwgp0KYjhwrRLdCfhjmVN9qUpqqoqhajVJfmCOR5QV1XuG5XbEgpcR27A4nZnctHG3OTGQJpmoAxlHmBAJSSSHlj01SKstad1XW5BCUYDEcIafP64pJFnLDV9+lHUXc/3GhHXC/oRju6S/vEaKRyaG5Ei77n4diSMi9oW3PTKZTYjo1pO7CbNgbbc/F9lyzNKPMSS1l4novWLa7bEZx910EJgVTdz+7YLtgOuq3QVfc5vDyd8fTlBVrYPHt9RiMF4+EQT2pO9qbYCkCyWqdMd7a5c+sYRQVtidCapgXl+5jmJiwsrwhdAUgWy5iq1Z0+xZJYTpdJoXVL07ZI5eD6AbQNm/WKttVoRJcx5Hk3eRYVirYT4N7sjkWWYhqN7/lIJXA954ZfZDDUXfZIltGKrkOaJBnjaEicJJRNQa1bgl6ftm25XKyYLWPOLxcgbIIwQEqwpWAQBhwdbLE/6WOqAse2aVtDUlSsswLbtun7Dp4rsRwFWmArCF2PNFkRhgOEkBglmC9W2JbfdUSzmEGvh7IcTi9nnF4vuVzEXK1yNmWXjmwJc2Mi6GCcWpsbYSufiYDlDecMbvQmcDOu6UZCEtG5zszNIEeAbm+2K9kdOj/txGitu8h8bVBGdIWLFGi6jBFhukLF0HUApVCfITgMXZpylxasqeu6GxpZMB31qOuKg60hf+0rD9iJLBzlk6Q5KEOjNVq5fPD4lFmccrVcMY8LDDaB42IpgRANu/0+0nKoqoR37h6xuz1ivlqSZgajFA9fvObZ6TVKSUahy+HulIHvYtqGvGp5fn7N9TqlaTS9Xsho1CffrHj73i3Gg4CqKimblob/L3n/FmvblqVngV9rvY8512VfziXinBMnr4GdgI2QLYzkQqIeECkZUUIF9kOlyg+WbZHCUpYEtmWESlhlcGEKqUpFSiWhEiqZB3iFR0sIpEKirJTtwlbZThfpdNjOyIg4cW777L3XZc4xemv18Lc+5goDcqSgjMJekSfPPmuvNeeYY/Te+t/+9re/OV++vueTTzTc8zf9Q9/kt//Mj3N9e4UdrliB737/u3Rr/PSPfUwyOMVGthse0/DDAueHMtNTF+rti5e8PZ14eDxzc3XN4sb58Z6lNdY10QmbvP/yPQ594fMvPuPhdEdkcHU4shwa6zbAOt4ar9+85v/2p37x73+A8n/41/4Vbq6u6EsXKDivPD7cA9BaU5vguqr17KBe7G0TTd6aYSkDNgH8lGnYOhjbxtKdx1jZTqMWhYaEPd7f87BthfyDQ7VltqYaaMSAHBwOjYfHM59/8SV/89e+y+evvuLjH/sx3nvvJYsb5GCcz3JeNNVev3z1hrs3j3zy6Rd8+aiA+VM//g1+yzc/5vHuKz7//Ave//AjfuzDr9OQCdjNsxvGEN338PCI24J55/jslm9/59f5+tfeZfFq4dsGI4bs5bcNb53EqFIxD/cPXF1dgS9ssXI8Lti24RVEIgdX17f87e98wl/5lb/Nt7//ik8/f8vZGh999D7/xD/+m/nJD97haEECz59d10GpjHfpR+4eT9w/PjLWwe3NFVsMjlcLJLz74iXtaoHtzBeffc79o0o6t8+es7QD23bCM7haumZBXB25Oh64vr3l+uoa1Zp16HvC519+yftfex9PON3f05ZONOfu7QNujXdfPOf0eA/l2Hj/+i29dZ4/u6U1V4tvJm/ffMX1zS3Ho1rXW+9cHQ9YFygE43BUSXBdN8bjI7Gu3N7eYssCfSHDNWzydI+bAqvhrNvg0Bd675y3jZEqidzdPfL4cGZZmg47k6+PeZIxRD2jFsAtkucv32VEgh8xjNPDG64OvQK483heefP2ju38yItnt1hz7h5PjISvv/OckXKUPR5vOG+Dz1+95t2XCw9v73l2dU1vxpevX2l0fA08fPH8GY/3j+SWPJ5Wvrp7y+3zG955+YLH6vY6Hm/EYh4PfPXFF5we73nnvXfIJjv+RiMHPD48MsbKu+++xNx4eHO/A3oiMHfSVRplBJx1vVtfuBtnltZ59eUrPvnsM95/+S63xwPWg8dtJaJxc3XF19+Vt9F61ns1h23AMLjtGrA2Hs+cw/nW3/4Of+Wv/Q0GnW0Lnt3esuSJf+RnvslP/vhHLF2i3kCO1nd3D5zOKw+nR87nM7elJ3vvnWc8f3bL+XyWi2prAnWIgf3+p59xdX3Nl6/fcry6ofUD6zZ4fffA3eMDn33+JS+ev+CwLLy9e8PLly/YxpmHt3e88+KFnKtx2iKG5bAkN1fG8bBw//DI/Zu3dLT2DjdH6I3XXz5we3XLs9trnj0Xy/Tw9o5+dcvi8ObNW549v+V733/Nr/7NX+P6CHePJ/rVMz797AuuDge+/u67vHp45Je/9Tf58KMf52/92vf47MvXnLbEl06QsqFXO0vRFGBo7ADNpSuxi/DVqm0YBDi86I0cmoY8imWDOYMHyJpNaCbtXzO22BgPG1sG4cnNcuDmsPCYJyKc9RwQwbqdGLHR7cChH1i3jeOzIx98/AHrNvjHfupD/uF/9Gd48/aen/6Jn+Cjr7/L9/7W3+TNJ9/l2JJ1nLk/rfzlX/0uf+4v/y043hKxqZt0yH/FSuhtbpy3jevF+NrtkQ8+/BqB8/mXb3j15g2v708MP/Duy2d8+PUXrI8bX/vae1hLHreNfrym9QOtxoIsxwVi4713nvNTP/ExmyVnM6wfGZHc3d2DqVOulx7I2oH0Xp5Kvgurl8MVV8fnHA7XGtq63rFuKxbBsS+0rjEJp9OJ9bzqrEM2+MsiLcpYH1m3IYNLpPU5ryserllR19e4NUYMHh7e8m//6//23/8A5d/9Y/87rpbGaX3k7v6OsQ1OpxMjZM0+zWYOfSEMrq6O3D8+0pbOy3deShyHyf8Ew3DO68bjWLk/3UEG23kQm+HeePHsltubK5a+yAlzPak3v8lg6PH+geZo2ucI3t49shxvePN4Yo3g6uaah/u3vLi9ptng+fNnXN0+41f+v7/KV1+94etfe4+Hu684XnWOt884XN1w9/or3n6lBXw3jL/17U/48Q++zm/7x/5RjksJTZtq1hFJhjKRx/UMbhyb2B4HmjlrDDDj/v6eL798xYhgOR45nVaOy8L777/Pmzdfcfv8GbFtbOcztze3jIQvv/ic//df+ev8yrc/435L2s2B3/wzP8WH7zzjneORA0l3iFiVxbbGzfU1NFkzn08rYck5BunGVTm2jrJtZiQjvQ5W4zvf+5Sb5y8UiNRCo1bC6v453lwzzieWw5UMn0LtqI+PJ65cPgYjgzev3/DO8xcMNPb7k08+51d//dfZcvDxB+/zwTvv8fLZc96e7nnvvfe4ub7idDph7txc32gQF8YIHSrbuaZaPz7y7vtfw1tjG3rvZ8+fY0fnvJ05nU74cuB4dcNYg88//Yzr48KxNXpKTP32/o5+WFgfS1xZ82Uynfu3D9y9fatp3McrvBnXNwIrbx9WHh5PPHvxkqvra7748hU3z57z3kffwCL5/t/+G9hY2SLwqyve3D9we3XDy9tbPv3edzmvK1+9fkMYfPDRB/TWyEhO5/JjAd5/+ZxG8Mu//NdIFn7ip3+a9fzAer5nGxs//dPfFKtmC+sIHu5PKp9RLOK28ng+8//8f/0Sv/m3/BZ+6hsf4nHm/Xff57PPvuL22Qv8ynj15VfkOnj+/IYXL5/z/c8+ZTHjvfffE3A7rzw8PHK8PfD+i3f4tV//Lv/1L/15Hh8f+V//r34X1wfj4e7M6/sz3/7+9/j6+1/nqneuDgdNSK5M+8vPPuXYGs+eX9OOC3GGV2/v+fXvf0quA18WPvneJ/yNT77icQseVoE/DMY4cWgHPFZ+6qP3+ebHH/Ly9shYV/7a3/our+/OvPPiGaeHN/z0T3zMO+/ccnt1zbsvX/Lw+MDD/QN9KZfT4xXH62u++73v8ebufnfCdXPcgqvb27Krp8pynTf3rzkunau+8Pj2LV97/z3cG7fXRx7u77Au189jb9wcrkgbLLc3/KW//Nc4nzd++qd+gmUZuCdv7840DpzPybd+7buc1+CrL9/yj3zzA9597wXXz17yyRef8Ut/4a9wf974+Gsv+Uf/4Z/h7Z0GCuIL20g+/eI1n3/xmufP3+G8bnz1+ivpPUbgJW4daHyHLQtpEHEBLfPoma29vcS4JamVFgdNgL56dsuLF8/BoC+yfiCpsmGw9ANfffWauzdv+ejlO/ymb7zHsSXtuGAk7764Jbzxl/7KfwvLLc/f+Ro377zg+Xsv+d6nn/CtX/0W3/zmN/k9/5vfTXYJz9e7e9nxp3RdN1fXvPfyJedXr/ji+58QiOH89NVr7s6D5y/f4f7tPfdvH3jxzkseTg+8+uoL7t68YWlXXB8ONOC9997js08/56uvvsKvjPfe/zoffP0jRrnq/tg3vs6buxXPgcVG684agXUBnvV8ZllkNXE4HNjWEyNgC2gpC/40w5oxMrB0ujeVzNNVbkSv7a2J2Svw4C7wpwTIcWuYN0ZKa9lbJ1CbvJdWqqWreNYbmyWxDVpWGc3Eoo1IAgG10+mRf/9P/Lt//wOUP/YHf45nN7e8fvNWfdtAW5yv3t5zPp34+MMPeHZ7g3vj8fFMpkzUHk6PHA5H3KEZUiq78/bhgbePD7y6/4rB4P0X7xPnlXGGd955T34748zD/R0311c46kwZUXMwtpVI47RuPJzOvHr9wJdfveHV/ZlXb+4AY1kWnt8eeHF7zfPrhZuj8fWvvc9PfOND7t+8Ymxn3nvvPa6un/G4rjw83nNzc8393YnPv7jjs1ev6YfOs+fXLM049oXb4zXnkWrtc9WvxwjuHx4Eu0wtdP2wcPdwTyS4N968ecvj+czd/T1f/+BDPvrgA57d3PDm9Rccrw589foNn3/+is9e3/HJ5694/vwZ3/ixj3jnnXcY64mXN7ccl4XvfOc7fPnFV5zPG7/pH/7NvHh+TY+V9fRI7wfpZELCt8PVgRcv36GlZm8MkhEScj7cP5AZHJfGeT0TreGt0a1hI7g/naTvMMdi0+DGs4SB53VwWjWy4P7unpfv3PLRRx+wRfC4njlvG4ZzfX0l3U86t9cHWmx4wnK8wZvz8PBQWYBhLvYit63YFJVxlmUhInn24l18ueK0bbx+84YPPviA589v8X5gORz48ssv2CK4vr6hWeN0egCHLz/9FK9D86u717x4+QJnYGGsZwkcH+8f8XCu332H29vnPH/+nG9/+29zOp24ffaCV69es43Bxx9/zIuXL3h4eOB0OnH94l3evn7D59/9Dp5BkPzj/8Q/was3r3nz+jU/9eM/xl/+S38J743leKT3I8vVUTNnTidO64ntvPL199/DtwfOj/d8+zvf5S//tV/l5ct3+Id+6sd453jkk08/U8a8btw/nnj7+MjV1S2ffvJ9Xtze8FM/9TGPD6/4+ONv8NEHH6jcdVx49dUrRjT+m7/4V2n9yE/8+DfYzhrQeXV15MtXr7i+ec7Nsyvuv3rF69dvSF9oh8Z7z5/xjQ/f5ZNPP+dv/fr3wBrf/e73efX5l/jVgdvnz/jg3Xf5sY8+4Ob6yFjPxBh88tnn/Nf/zf+Hr948cnu84fnzG9btxFdv79gyePHslp/+8CNuXz7nq7dviA0+/fwV948rD+czt7c3vPvOS16/uWc9n8nYWNcT27ri5tyfV37TN7/JT374Hl97ccVv/Ud+msf7t7x9PPHqzQncVQYeanN+//2v88X3P8Wa0w9HHk4bn3z6GZnJ+89uuHl+y7qu3Fxf83B/h/fO9bNnvHj2nBgqLwXBFsHzZ8859M6XX37G8bjQ3TUk9O1btXm+eMFaHSrd4fb6is8+/YJXd/d853uf8dXrt7x4/2u061ueP7/i+Ytb/ubf+Nu8+vJLGkeW5ciH7z/DzidsO/ONDz7k1773Ca/u7/jizSMZDq2pZPf8htvbGz78xgecY1NS5Av96orr57dYb6znM83lWjrOGuR69/aOFy+ec31zw5u3b7m7u2OMwe3NNQeSZ89uOVxd4b2pzHrSPY06BHNICHt/f88Xn73iJ7/+AV+7DuLuNd6v+OLtA28e7mnWOd5e8+L99zlvA9qBbB1vwCY9zNX1wldfvcbMWa6OHPxIWrCNDdtkStjcuD5e8eLFO4r15xPr+cTxeEU/HlhjY1s1w4jWOG0rbRswBMpun8kh+XwuDSOQgez+11Xla0lraL2JGQ0rB+SNZekaILgsbBGS6Wwr3eCAyq/DjIfTunu6kOAtsb4oeW8acGu2kDX4Ly3BkwyDkAYo3Yma5L3UGIWMoXwx5PSbaYTl3mklkTf01ohxBlPhDl/YEh4e7vn3/61/5+9/gPKv/f7/LQ68ev0Vy+FAAtfHA/ePJ/py4OZ4wFJGO2/u73n+/BnbFmyRjBEceqMZ9JsDd+cHdSucT9xcLyUcuqpBekmGy/a37K27W2lPgsfzmW0MLDREbFjj7enMX/1v/zrvff3r/PhH6pDxJuR/dVAnxovbKxnudMfGyljVrrssBwJjW0M02fUVoy2aKxGa0Ppw/5rrpbOtG9saxHLk6urAOD+Q28rp8cynn37G6Xzip3/qJ8u90FlXDdtax+DhfOLd99/j+vaW29tbyOTt6ze8fftGLA/B6bTy+v6RdnXN1955yeP9HTaG7P/7wjkGd68feTjdcfPsyDc++Bo3Vzd88cUr7h7k1PmsDN68xqTfPLuFlAC0L53WF5bDkTdv3nB1PKAwALQF80ZsQW4b3/r1X+fuvPHs2TN+4hsf8Pj2NZ988SXnMNqysI3By5fP+eKzL7h9dsXX3nmX58+eM3rn5Easwe31lXQhb+/p5xOc1Jb+nU+/4IOPPpJw73DgdN742tc/5HC85tgaY1u5ujry1es3HK+uFTRy4+39HQ/r4MU773BeT6wn/dO9EwzOY+NwXFiatEqH62vuT2fa4cjD4z2quifenWO74vF05uGse+WRXB0a7ke5/4YEpLe3L1g3AZnmzunxkWZGjJXD4Za2dD7/8nOWQxe9jGrux4Pu7cPpRABXN7ccr440C957+R7f+f73SFPn2TifFVwGLFfXnGIQ25m2Da6OB169ecuXr+55/72vsZ5XXn31iuOzI9///qcs1nnv5XOujs718cCzm1u2baW3hTG0X+4e7iWC3CR07G4y8aPx8cc/yct3XvDXf+WX+fVvf5fbZ+/w4z/+YxAntvOZfjzwyaef8+3vfo8tjJcv3+PZ8xt8rFwZSiO70RLWx41vffs7/I3vfEJa4+jy91nHmWNbuL4+8tM//hE/9vIF7Wrh7vGB8F7lhsZnX3zBs9vnXF9dcX6859Wr19w9PPKd736f12/uiIDrq8b/8n/xOziyMU4PfPzxN3h995aHxzNXVze88/773L1+DePM4+Mjdw+PjHXj5fvvcoqkX93yuJ7Zxsa7z5+zjQ3vxtiCVZP25HtyOHIewTBobdGQylPNCjuv0nTEAILnL15wf1rZynxsrCrVRg7NIPLOcjiwxaoOKXNoXetqGK3DVbuiYbw53/P27RsBeTdsDBirgE/Z0/fDQjscOPSFbV0ZOTi0hWe3L/C28Ob+jnWs8l4q4NiKeY4RkleWc+x5PTM2fQ5Hpc2daXWjVYtyGoxtMNbLQd+6yv0JjHXDSlyLU1OPdRDnVjqi3qVVi4RiK6x3yEbrHegYg7E+knRp8mLFcRbv0rk0MS6ZEp3rPat1ud4Lc8INS4N1MMaKH7rao22OrkgiwFtnt/Y3I3EBpmaMsZHbhlnHeiPES+i5G2CNaAeoUqLFAFOZtLVkC2NpV5ArY3tQN6sthDfCIZpJpL2ueHnWBOqmIgaWWWBEldbWDowAXM8qo6J3k1brkEnEWaMJrMrNj4/8X/7tfwAYlF/4hX8FJ3m8e8u6PnJzI5fP6WFxfTywNuPw7nt87eU7bKeVTz/7kq9ef8WzZzfq3T4/YIfG3eMDS6HNw+GKdRu062uOhyP5uLLdn7AMzmPlvJ4Y6+DxdOL5197jg298g9PjA9//G9/mcHtDv73h8byCNbUttk5uZ/qxc3O84sXz5xyurjg0Zxkr6/mR9eFRhkBAto4t11zfPuM0VEd99/2vcTze0sx4c7rn4eGO891brKaXjiYNTnfnGx99yN3dW37t138dAl4+e8758a68A5x05+70yO3LF9zeSih6OFyDGa++egWRvHhxS2xnzg8PrCeNrLfNeLudIIIXN89oV0eWZ89YHx443Wl43+G4cLi+4nRasXbEvHFze8PDWZ1Ch8MBb85h6diAu4cTA5PBVazyQmiONU00jQjSNWfj6vqac5UfbEjsu24ner/itMm/IGJlXTcONZztNDbCjLSmrpYMWgYKPXIrDXOW4xW3xxtGBjjcPz5gqQFa29u3DHOGOcerhWNbeH59w93dax7Gmexd624Ez549x/rCl198CZH4cWFLiUUtQqxSUzDKnPT2gjUF6qS8IJBV9tIa28jS8Cl7cxOw20aSOVh6p4UrK1pXBhIIjpFVnxfjtJ5OXL98QQSsjwJm11c3NHR9j+cHhtQDVP7GoUtbY1aC2OycU0ZWx945mDFOZw7HA+cMzmZc9SuuvHF3uuMcG9uqw+j58YoYg9N20pDJhL4l1o1sDdI4+sLVsnD38FYMWcpwy5sCdKyDvizg8qiIsbKYCXiT3FxrhlTVZcSEHY8MTG2b64kxzoQPuktfYuEcrLFuKyOD58+vwZwt4O7xLI+OBB+aaXS1dCxS4Hlxzo/3GkHvjfP5xPHmmtPjSSB8KW+g8yOUv8bpPLi+fQaHhfW8ydzPErNgc+foMmsMd86bsfQbrh1O5wdO27k0a9KuHZpjSPNADdvTaWxseSJJWkAbOiyHBdkONAMP0fGLN1qTEHVLVzeGDQiNtRhqkyHGRqwnPDdiVXv5adug7iMpLZZ8TM7YWFiOVyw31/gi0JexEqczp4cTd/d3bOOEe5DR6Its3m0oMaMtuKU6IKurJ9OxfsAXjalYugCBN5NDaSIAY9L5FXUA1jBWHchl+WAjWAJGUxdQAqTcUTNCfi5NEyC38yMZAtPRGkajpdF6F5PhYimWCGI7C/SohxkiSe9qdTbDxgolOo/xSA4wX7DDEZYroOExULNz2fzjkEHbzpCDoJHW8eb03GR01w/gjWFNU5KrGaBvG5YDmnO2BhjNEo9V4MI0bHJaXWArHoMWQZozrIN3dUsBYR1Xexbm6sbyseKpK14tiWLtLQeernvKSpbL7//13/pTf/8DlH/t//jv8PLlS+7fviWqpm+csdZZt8AM+kFTPa+OC+vpxMPjxs3tDW2BrfQq21BbcIyVHBvtsIB3zDTNdrGmAFYeEfhRRj4J4ToMenOWGGypPvqGwUgO/UDibLniNZPBcE7nsxTpIR1Md5Pqv8kcbE0pxDGhZkYyNnkhRLc6IBqk2BCLgWO4OdYa5yGzut4bjJXrg2aEbBHVgtjEDI0zYU60RmZqPkNfYB0sphbSbM55DG5ur3n3eM3r+7d8ef9W01+tAWVuYGrxjky8yT/BSmg627C7mxB/Bnf392zLgWzK7m+7BJinbb2o+U3eMI7qmN4aYxssS5dQedUmy6SGQTqOZpl4a7vQzpssqDXCfdAy8ShhXhlE9b7oXMskziu9NQ6tcR+PNBcbMcYqF0xvHJpxdz4xzOk4S1sYYy2BX2kDzRQoMpWZjAJdpmwvI+mHhckaJXIuHtsm0wjXfVWGpU6cyOTonTABOzIxP9C7guTjKkFhA7qJSYhUkBtNorWWybauZGsKJuY0KFGiDq2tBwwk5m4KeFaSaWumrGgMeUuUcGCzBqaadLrew1Ntqt46w0y6hDSBpzgBIQBsHUx7sXkjh0R3W1KZrvYLDtsq9oiEZTmQMZRdFsW8tKahbGcNU8y+KAhHMHKrer7OYXPV6zM2dY6M6buBJuA2V8ePGyNTlHrqHgxHzz7hUB4dYaauhdTU6obs2MmouTFJWooJiTlzJisL7tIP1GjksalUEnYoEzMX2M4gLTig7sXI1POYmg+WEqYO2IYyd+DxfGI8PuKuLHgSDOZq/870YgejuswabkHvC9vYOG9nBmBtodHovcTi20p3rfVBw+2AntjKiDNjCxgqUYzcNAEax72z9IV2PJQBW9BSnXvejkTXelPXTdBMLE5ksiVkVwdJlmC20QqkISBQBm1J0suEJa2xtWSkyqqZjruMB1W2gByD9L3HCExGctsYNZ3ZWGssg2dwqK68jIHFWl1Ezqjn3kewVdkk1rP8W1oHVwxtvjBcruhg9HHPWE9ixaxhJkCUGUQzAYam7tFcH2jorDBSMTt1z6zJfwqDDWdFiZtF0GsmUlqSsWqwpnY3lk60TvSFDciKmVpRXp1WU2cUDEs0eXlB6pXQLKIcbKEmjcagDWO9P/F//pN//O//acap1crojbCuIU1pBM5YdFNGJhbB6Y10J8OMt6dB2yDTiSHxjkdljd41EpxGj9TIcQvuY9OiOwduD2TvQqlr0sx4JHlMtbVmDroZOYKTJ6ST2kYYQacxqIOrDp4w9fUvZmyjNqh1QBkFkRxojNzoqCPp9kpMz8jEF4GV7p3eDmz3b2k0Yk2Mxts3ZwXfAOvGtgF0TQvtxqjNeT4lvp6JSB62B3plKklwf5fcffkV3hrNm+qVI+W82rvKSDWfwZqzDdG2WyRpul9b0YQ319fc9gOnbXAO43QOHu7e0JpzPB7UaXRed8fJMbJ8EAJzGSpNLY2lZnx079WVZfiy6I6PhBGM84DeyG0tJfxBB12EEkUztnPNQekdW65YIzmdtR0jAnzFhu53tiQORyKulTWEshRvaNozxtiyJrFqO2/rRjeIdIGgYmXHowKRe2PkIK3R/EBSWpia3kq1aZJwihWWjoXq8KsZ65Y0c8IWsjXpfkJtDpnqLmMMYhsXSjg04G6MgVQ64CQjVmJzvb7VGrAytYqAemnSaDUjieqYC4OszKpbB+TOOtAcJgNyOwvEe8PD9uxrmILgGhoqqUNMh1Qm+CKB5XJ10HNPOF4fS4DdGAG9dQljLZDaL8EX1hDwWRnqohpB9qTFoJ0HrWa/4DUDxtQOnu5ae2lKSFCW3mzgsQk0YJw2HS8DMD8ymjOywngGbroWy8RTQzQpbVZ61j6DLWGMZIlOS5WkrMmegBwFpFwxisRCCUBFEnJTu+w24UJ1cm0Jdrhi6VeY5SVhmiCF8n2qA2egz9xaaRTGSs+h52Y6yjaqbd0bgfZh8yRzZU0Tc7AsZDcI45DSR8iUzQgG4YGdKI8cUymllbNsCBysA2nRcrCeTlCxM1J8n4cOP/czg5VMrVnLKC84Z61yyaiWZrcGbuUcHQXM9LxHDBgaBtq84SYHViIZLdgwwg6YLWI6Qu3zLAuE4lRqIavZoimRNXPMjzRtHcKdkVZ7gyr3GGZXWIHxNp3JM2iZBFGOt0p2PDda70RKZJ0ZRMBmuqfRTHHeoOF0EwgcOVSiMyfbgbSFgRKPxBne2axJCCuYLCCd2uNmSv5aNlpCEvR4oEVRWQY9nSMyvRshtnq19Yc+43+kAcrDGsTbOx2GlSX2tsDe366A1xzStVZoelARqolZd9GXqQyCFLU3rAx+yuPkcOgwNOI7tk099G5YAAgMYV1lFNeGGLGypZVqHbBQtsPceFqMIyQUdYzuMoprrkFdj+dHogyNMpNoB2VhG8SdBLrmnW1NcGfdYBv3eOusZHm3BNaP2tBbtUKb0Q+N1TSszc9Dn8thxALNsMOBLTaaJbc3tyxhvOkq8R/TWTMYPSEWzlne0wNy2xRgCom7mbohQEGqO3fnc7XF6joJCerwxnouWjSdLIYp3YmxKRiWst4scVOZg0D3lGJxThvtcICib0l1dpklsZ5Y40y6aPJ0PcMcAgcEbGhNqA7dNFvGtaZaazitykENC8PtyNgGzsJS42PutlUUaKBpvW1hjWC4WiJjCJAaQ9R3KoNmZsSgbH5OcfXL/TB31kjaSJEs5twsB66OndMYnLZg3VQr78cFG8F4OFUbpGOu4Dymk6eh9aHhQsqohsB2ZJlemTLGXom5qHMvejyhGKtmXexieU8MDFsOuzmWDmrAoPmBNc5gRaeXOrBFg1w1sr58YxLgUdT/MNXlu8H69lEBsy3KcqteHjhluUtYY3PNXolsalNF9y4arF06CBsDrFqBcwIKSjOlDHhLY0Mlr2WfHaPj3RDbtSXSHnjlpKmAboZY29Z1eA+B7A3lnR4QHmRu1TJvymQTSNd+IstDRGyoGBOgYEuRPywIsGbqMJdo1cQCZzEFBQQNxxbwVCyyEjZmqPNmhKYFSzxu5S/VFA/TgF6VJSurhcB9oRXzEVHJRgY9tkoqXAegG73s5C2MAeASX+qGbSyl6RgAi4SdWS3LAiFJLFbPTQlr0sgKvcONsKG21yr/eas1jWG1JqM5UeNPspgzIyFCJnCeLDi91sEgsNwgzsS6Yn4kCbLWWvMmUznrGkiL2KzpohzrWmBG/GRvYnJGJEt3MrZigQbb6V6dPQWajKPWXCa2rRjSpFjF9vSFSKenNpsBGWcsNa+tt0bESgTSAJmY3jVUfrLwWt/6HFGMoDaE7XvVAowoz5qQHg5nc1fpciQtO7SFzTqjn37oM/5HGqBYdAjduGnvk+tgaVqE6wjEbhVyHiEauRB/jmRkMioTn8zJuq1k0+940bPbpr58iyRbF6UYAiJZmf0Wyv4cp0Vi4QqA28DmoVQ077ymdcgZcQ4avD/pmrwfMIwzB3ozvDe2bTBGLU4XG5JjIzcNSoxN1PnNUb4VY9XgsVgW1vMqlOaNm+tbPv7wa3zy3W8T3bg5HPiZn/kmb9+85de+/+vc13RnzzKvCni8P7EeDjCc4Y2HbRU4Oxy0sSdwaE6wyPYfaUKWOaV2TfnMmJx5cdGLrXUik+FGDz2PrLY5r/JOZMOyKeBN4OCN7rCeHiVGS/bsy+v+n2OT86S50pPDFXm8ZlTgcxMFn5lEd2IYY9T6QuAnvbEFdXj3IiWMkeoaG1HAJvWsx1kuuKOU8WaGtS52oNZVFJuWqXKOV8aOq0Sg92+McrzFnZhrMpW1KrB60dvJ+vjIuNs4bYPRO2aNMynFv4EvC+vZRO1TB5M7kYNATMmoQr77gur3JnO3SZtXH7v0PhLfNpyRm7LBMFg37HglENScsZ7xUEkls0uz02/UOlneIGGhZLMevtmgk3RfdJ9NplGtQCIpQ7SwkMDcXCC/LTLkcgHoVoJDjZFIIqfPKXjXKIfE9yTCPDmc36pcXOuSEdIrxQq24P2oMgGNwaLXJTDEdLkJ+Ek30JWSNB1yhtEWcFZ1R5QP0zA906TTcZrbntVHQHdwl3+KZ9HwiMGIOiwUW2IvA6U11lTrfqTYmebBVQogiOlUxNoCfKsuDWQNb6jddLFgyyQw0haVLVNMhHmo5GHsbGGy0LxQ7HjEtrPKE8sV53ZgCXnZpCuuHV1sszpJGlt6MYCDJWR5T4l/tzRp1FIjYj1RWcKGSuQl3LVItvVOWgtTh8ytufZ9W6QnoQPOyY90d6wZ52KOWl8YKU8TAcIUo7mtbOXZ0ttRWgxLtjpH2jjhseFDk+y36m5py1Hi2ulJlclYV7xdFWhO7eltEDaIGNr/I/Emk8OMA5iAQPcmAGa9vF+CLJ2PgKBLcxcDW9+SfqD1I2nGCCVmfbTSlyXJEMORwdKulFBGlG4JTgWW3YJe6y8n8MlBTwgXSzpsQGywBd2v2Cw5da1TI2j8A8KgZCvxIF4BVjTcqRZzTnHbOQhL0ZJq+hacCdF8nkGGsaWESW6tkGIr1BkqwRiy5fZRG8MJQoGwO8sGWxpW2aaxiY4t1mYjWfpBzPqeeaheJ4dEPT5MpRnRpRJ0nc5bMRKXw0lzJoLeXDXAJrvo07ZxOm0sTaWZATILS2Ucd6eNX/32dzEauW2cHk780pe/LKdGSrzYrei8IKIW+/meFiZVdpdPAydRyarthijw3ohNDMfSnaU3zEQ5Qitvia6R5EPsSejUY2TS24EKRxKapYKg1cE4SwC4sZ0Gnnr9CTLXVFAa6xlM00ozrTYQAmpPqGGvP58rk6S1MjgbRMh4qPej6r2heveaQy125yC3QbYoQCPjLl+ObKU3OliTpqS5gm1mlXQ6GUFbuoAMVhtcQWZOBMH0/TXAWlPQqemzoznhSW7JCB2+W+9kE/NjlR0mG2M7a7Wl9E5CGrHPR5lOmkkdGJXlWVNJSgWAJLsM78KcMaSVUuanHC6tsVpjC5O40RetNVTXH+jQsXTWpRG5KbNsLsYrNPNqHQKzI1LC4ixYt62YCUSbGaMpWHvpVnJstNalqSnRsZgN2FUFGfQxKgt3ujVi28R2uLOlE7kQrYMHgwC7ZkvXAcd8XkvZrwdZAEIiS5WQVf5ZVQ4VSy5mJ40Nx3uZaLmuNC1Y6/fNGr0FSyYNATHPrT5HlaF9kQi8eJOw3eVCcTFh029rJpIQcGXVG82VhGSI/bIqv2y0msyuGOttYUx7+S3pmVicWdw1GqQlwwqgWEdqHtc8reOBcOOM0wYCl76yNcMtWcZQGSarrIYyb3cxjN4WCMctua5SgmUBOybITlTRE7vYWhXAQrN6luUarGk9tdJRpRdLu4kJMWn7pJOfRnLOmkin1I/kUky5ORuKv1nsGO6c0b0hBpmJZ9Adrf1YC+iJvYzDpvjeWjEWBTtNZZZzAaEo9lw8m3RloIQ4EENIimXcQiuhtpJExdfPGENrQJK7g+LJJgBiVXadYwXOZmJRao9mms4Xg55BD2lcopLzEeWMbX4R0dLxjGIKq8QfOhfXyab/EF8/0gBFgrJFQCLVrqn6cSsqWYvQOJSw0XTAoCxQ2adoqkTjrgkdgcrUlF26Qa/gJp1FzXEJw7uU5jE2BV10AIVZHeI6cDLnokLdHdZ0EGCq21eJSh+hyNRZCx9RLLwWWM4+j2jkcGktEnI4UYIoa130mgQWRBhDenz9U8GHEELGO4RU382kCcHrZ9NEFeNsZeST7nJqLJ5pukBmyhwtzegGkFL4N11bNAhTltk8yRIiG0uJGmANE82Mqx0wR4kuWx3ZqU6tMxCBN92vMQZpS20Wo7VFBkZbQmW4VK1X7IWyNnMNNvPSMGXCyKB5sHSDbBhDWaxJU/O4Gbv4rqtenihWkDULxQUIz7nhntVloWCgcg46dLOCRyu2JAtEFEhJqIxWB1uQeIhJyPp380a2455RSyuSNCvxZer77qYa8cid+scPFeOsumM0xmHBiNRhUfSUqPdQzV5Hba33VBAmElqHHCw04nwqFrLvGoWs9eo5pXT1LEqsaykhdHonvJMWjBi0MIZ3/HAr8ORZh7Pv817wmbmi9YgEhnhobhJWxlRZ+iaBm9U71mRidbJrxYT0As6DtGQzw6KVgLZgT247IzUFullaE8kHVzEsXiHL5RExgaObhMigTqYJoLMhwG8m7UhsGEeMqyrvKMOeOiDfNR3SXAT6PVU9te7CBw/AY7uiZbJwoGfBl5ZEJEuWbMeCaDDoetRVMjd3moUEzKYSTWIXABmjmJTyZKpnHSjpi3FmnYZgKdZxozF80TO0qRGRyH2zWQ5f8NhoJoZI+iO1zaY3kqPclkmMTSxtv8Fc7FYWKM5SWeleaclEltcIRlSZmXRGo7RbSbdUBTusXk0sqWO0mTwp8Ai4dMWVddsYrUooKZOzbQchAspzJ1HsSmSWiWhCMXeusMA5CgyhNaL1WQxpmhxiM/byoHljYyHbXJ9i7AGyLdp3lxQfR4n0cD1zSzFIKiiWfk6PTSydGxGdgco7ZGqAph2ImGXKuk4b5cnyDwiDQlGXkXUoE3g0io0GQmvNSscwdEB718EH6nSZNV0xMNpIQybc4FrwbkOP0VAATdW3t6KfVT+vctJcAJiQ42RKrEpDlrsmQ/3kUvJP6i8zSxvhmkNRwkNMAid3VAaxTnYjvEBCdAx9/qzsWKMqxKQ4A/NpwWx67QyJPstLFw8xSdbrenSYyqDsqijgeZhlBVpU+koqU9WIc0rtTmV8Qvt6Jp6q3fZW2R29Av8A79XaWQe0KdhFdS9QFDVpxNIJl42/7oLDGIw0rC3MdoyIoeyNZFgNbyx9wFZgtbUmIVoTCHNvNIwRZzEeJG6dXqWdrU6drMNfD7Rq4KUXIOe9MLxngVz2ssD0dGjppSiwHeiaJ5nLXu7t6OAA58DMNltl69VBUeUs14fGTd08zIM/JthVlidwITo3ATwLSAwyXKxGym8i0TqP2l1m6jax6kIhEIVeIA8LzI/UqhB7pERTwc9mCKZ4GxeoCxgmbZVVkITBWCT73LK0L66EoVn93pzBkpvCqZfPRoYC+NxfJgAddlXvr4NU2aTmmVT9VO24TbEkSkhvhcOGPg74E7DmVNlY4upuyo4zkVYFTSSe1DglVrUZ0kKCWe1a/dwocE5ls8qyDztrYi5G2KqzJybTaECt24bm0WjQXtKsSsXDMJNHRljyiJ7NQLBmza744oBt6JXVcTVGHbaLF1eX0GJ/7zDtcf3ZGdmIdjUXD7OBVPdw1J6eoEo+J48YW8XG3gzPYKY0Em4aa1YgpeKFdznWAj0Va9KN4TUmoVabJDEqmeW+Fjf9Y01lurx0t8WIKt1pnS3Fshbns7PzZqVvJNlyK43PgPCd3aA0h/Ub6JHr8zeyRrIY3iQNUOI3hdS2O4ZXtlPMhfRSkTPmUR1p265/ylRSo+R87KzJCL1/FPhR2Sz3o7T0urp39ZzMNq3X3B+pSntxxpvRunPaoj4j1ZCo8/aH/fqRBihpHfODqPZ6AD4DgTVlL6BgtjMTokD10EdlurOVy6WPy2JKmOhPKFFCsF5WwCGxWYwqtbhsaWtxyFJYf3ZXFieJl5Bv61qeziCComRLc2GhDMm1kpu3Qr+q8TvSX7gdcBd6JbbyUqjMMEEugQpapISdABnKDIfVZ2yzXg6q/1+Akmpkyj631EyUilY6tE36nzAdvuZGzyRzA0T7635M4EJlzEPaHxNbYVOsWsHJqgJB1zyZbdugaHx1NxXNHZsOgEUlk0iwWCvwS/2eCZ1gaTrUlwrgEgLqeScDt7VAyDzAdXhHU1YidklGV6ctsCot4QIjibQ4ylebWA+n2IFQGMuFZALqISo72VvK51E1/39Yr/WwQW7KUMzZYi0NjwJ5Ygou874V/TVSB16fZSNbpJcBPDcF1zrEohghYYskQyMizI3lqL0zUmHcjf0ZqQhmYgmy6HErcTJqQXYK2OSlJTlNjIG4xcpgJ6C1VuUwfRYrN8vwvmvOVC9Z98QBKw+X6pTBRtH1shzQMy6QV9qMWgnABJmthIhD9Xar+FBgP1HXzlqUOqmQC2DV3SSg1LVNogCifhS14cOas1uitCuldVj67ESU7mEyEFk3e4QO+8RUcgmvv5dQVJ+/9vJ+T+tTukRdI4wtNzaDtix7Jm80VoPhGv/mBXhGGGFqXc7plOMIZFTsHTsAUjnCh0oEzU06ZbJKHIMyNYGUDRqZnGfbOUBKEySGj4rDE/gYVEkBn2BtMgmqVVpIP5W1/keBejHXT5imnEzW3HfqeMw9frcdOG7pBZybbPxd6zsqEmU2hcoqv4CVgLdXMlJlTQWcivbUnrO567SSMjFbdsZxPsdKf1VmrXU0S1FUkjTXytxTAgZeImB1kmn9D84p8b1X7I1RjHAhZm31YsCy1i9gmQUOa+dM0WxGAaBZFtTayeoWyvRivfihv36kAUpwQD56QFYbsE+E2HTomksYW0Eri+KPCGCQxWBQ7IeEbFuVMRppS1H/QIGQiI0RK7mF6OMsN8ImgpEpYqvM0mojUB0TSjJV+8zU+zBbOWODXHFTP/mkZxNpY9ZFQCFDTAIlzFWZJ8UuWOhwxqBalbV4tAGpDggZ7WQd+irvEBM4qCQGiOakRqMnPxAEIxT41dEx2ZKin5nZzgz+Aj+2ZzyVheeQcj0N7KpKcyFg5Aom1gr0pO2H/zYkotxy4K1L/4OM6yLX0jPM40dAKEoUyY7iBULNGiMaow6dy5EVRDRggJV5Ux6rWFRATjUyZjs5NgoURpX2Zp4+mII7BUXlqQaMvl9OZZa6x50zmJ61vi92ZrVbqPff9TTVVimDKur56RkLvG+qX+eQBsrzyf3XupVo1DDvJEsd/FbCQJX2zNRxZJUxSpApV2WJmuuwqLC7U+L66cpIqXvoYJoEPgOxGYQvTPOs6a2j0yAqVOv1dfhd2h9VJhKwzjoI3KMCbjETKabEEbiNbIxsjBD9L5WAAMSYeyckMJ0aAa+s1yzxXOXxUN00EUhHkq4Opsi5Nerwq+4atNYiezGzyXmPblXmtak2ydp/WW6dtmfpaerIgdj3pzJksWZZ2qJCy1ojKFHYos6XzJJmCRhsNrvwTJl2pphqGsEGvuqZzeSs9vTUYSUw0ogQE6FEv2F2VFehSSkzmYGseK1laGzppQVMMU1s+2cG39fEfB5J7gmTuMhNwNRNXUgYvQ73ebBalaYHQ6AvKFDsxSDr/s/Sc9ZZYl1i691CwFz3xaTVEJjVWdJ8MNjI7Oxss+kZWBbINNufeC2Q2vNzzdY+FeovUGSX67OEkXUdF3bCK7nwmSjk7A4VuFpmDC4AT9d+9QKDtTyre+fClEyGLXPqnVIl7PS9NE8665pSzWSVpwv8jYpPP8zXjzRASe8SGrJCrMQY4EeSBWjKKqgMqigsqyyrcjUtVa8s2irA9Sv5mYQOhKS6TthIq2nIvpQtscZ2Z4nfbB7SOyX3NCOuL4MnuSrT1Edsj8o/Vtmx7eUr/Z3tuknRf8qaGy2r3DBKcFg99zrAAi+aT6I9vb4EUKPqkIZ6AjRQrIB+3bOqXZb4t2A6OpyUkcyDktqA+mxtf42cwAiYm8W8YSZ9i7e2U+/N5HCpj9zq2cHuDGngLuFgpBY+KBAdWud4aDyc1GUSlYW7lwYpqd+p64rK8Gd27HWoVTYdWeT1ZH9SHV1RmVf8QMAwjCr16WTdg47VgW3IblxAOEroSRELRVNnqrxhHRunPQOjjLAilLnOz6AblBIIVjU5c9Rn28SGmLLVluNSZ05JOg+5FsipbApN5nYf1TIqe/HJoCRRgVIHTxZITS+/l5ALqYAGZDSojNCh3kN8YgcxkNX9UgQ6zhkPDY7zFMgJYxdE73Ec6vAtYTyzkyN3EKwDWgxeDrFVatsfpdeAydLM180qVUVQ69yqOlBaK4rxVFzWkbjlfCKkP8nsmfS2XjyhWk4FCAKJNWdpxiuJqb5srYnQ8x05gdjM7rUntjpkzJwcekYlU2VKn0t8AzQxUjrv6iADbKWPhoWzGvJ/wXbmc+49Sk8yCujMfT1ZxHkPaE3at1nOsyBSPkQdHeRhSXaVzYyByuxZiUQZWFbyNUrjoaJpZfmobbvglMpZNvRaOdCwOwEYtb5PlqEaKDAiWyWjEwxVqSykEXL0vroXG1OVQYEhM5V5crJqJREWY1EdLfS9DOw5tVgTTlySqLAJYC/lFbJ0ZFV+2cs1NmNYvdJea2H/itB9tmJJR1SZKCZArmeomnB19E3AXDB51+4ozoxK5mNfwwKA8+yL0WrZWq2r6i6bcXrnFP/uXz/SAKXZFNelnA19EWNgBR4q8utQmGKtKOSrZ7LVos8cFRB9MnRlHrUCIbEp7P4Ds5QTQ0PfcMhxrrLMXFp2OaAT2VEjUV1rRfehAD22s6hRi0KwVhmHdCXpG5GDzhFreWlLBaSoE6uSFbXFHKg0YHameeJ0MmFNJ8e2Z55TjgWigZ2ZGcycT8PJWiv6D2SUFmKJsKVaAevAmNS1Nx1kgaIguv9OHV6F5C1T2MPA8rECyCZXxTSaLWLFvCkzDieH/ttpLC5Uno48QB4HlrLB9gqqI6JYgAoKKebISqfAZJf2DEvZjVrQVZ+X8ZhYkqDo/Dq8VGexytw70/+FOoqzSmHVG7UfoMH8XQE6PQVt6GAUs1DBLQGWH2ir12wMCeyU0ZwJG/WzTkPjHyKSUwbnEhKKz7FdGyB2K6p81yvTCZgVvah9YzqIcGW4kZRfSDBZk9bU3q/bWlDcKBOolLswpmtWa1Ytj8k2xn7IWxYAnIzdXnqdx1Gdu6X32eny1P3V/pvOvlUOwWVi5uXEuYNR6mAHCQSlQVCGLqWBBNVW01kncBt7uVAoQXtmsqcUCzXfSQmvfFa8AP2o6+s51+LlukGdSqOyE0GTtaDoJYbMO+I2Qfd0mZXYNpOJxtSVlV7mdAj8h8pnWQeRShISqV7u46SCJKBmp4V0eGaVT4xixSxhz5iTbipnTejmNYJCTGuUgyt6NnW4lrmSDsKhWOpGddoZkaOAqXOmhNRptGj0qRtyrXUqadOa1Jo16/r9mGVbf8JslA+JqRxvFajEhmhVCKBQiSl7OUrJRoEgRgmgZ1psBXI0L0jA3XZt06ikotLAYoYK5DEPe8qZuJLROpYyZplfsdfsUKtpgpk6N2wojlRQVEKnBGX/jAVOduuDFECZ7GRBropJoWpD61VihWXJWgKTdZLB4Q/79SMNUCIk7cQXyFC3iK2Vwc+Dox5uUzafOXYHxYgSUnqjERL3VIYYI6ptTvSIuoG6uPhWVfcKOgOp12W45UzqkKxMSjEYn4ZKNp085yKu7g4vehpR362i2ZRSyfhKplYxJmAqdbzpmjC1482Nh+UliDMKqNXhkJVxkXIkNKqOXfqZqpkmrdJELwda21F8hAKamU8M8gP0LcxENqq7Rt+Lqgnrz5WFN5dfxhRIUlmrZWW3eg4UG1OfiOkoaubKPMoPYUTsm9XqOtLkfNtUiyithQ6TOvLZtUOoVNNi2VtUPVeUSfUyAatDuBg6OU6OutfFnlCC2QkYAfMK1GlylPXGLIaEpUpmOavICv5qG+60VGCj7lswwYlhHIBDsTcz64z9IDaelANNpdCTyT5QwEDj0zFIF7smkmmXxkpPElbzNkyBLkYBT2XyM5fW9atUMjVdgggC8n2YwJ+JZRKTmXjImVT+JZXNVcfGVlnfNBijykRP9wrM7E5sQ1LMVY2Pj6LOpXlR6WIKcjcvqFplopnVyhOj4opliX4dz1a6AKufHUoajGIOqlEnh1xL6zW1XqTVSCuhqamraWoWdq+bVInaTQyB6HqxTkqwSjVZolRmcpHsa9rqiaQly846IkBkRrKy1mew9Lq/0uFkZe8zY9Yznve42K/S702AlVbKuqmpSzCmUWaxM7Rq09YOFBOmEoGlcYrpWtNJd5p1tfET7BRaW/ScUyJ2rYkhx+ydyVaDQUatnbl2KcdhLmB5VyXt4HPTRjPdEyXGZSfvs2yj2x2W1dkykzWJ+6HKIgXc1JJb2kiq3Xe6yiU7KCqeToCqkg6BRsXx2cpOxacd3s8E3Sphzckct9obSTeNFMnZlFfrVRhG51jJ3wVSJt3oui/OJgDhxjr51JREggK0OYqhn7IHEq/Y9cN8+d/9R37w67/6r/4r/oV/4V/g448/xsz4z/6z/+wH/j4z+eN//I/zjW98g+vra372Z3+WX/mVX/mBn/niiy/4vb/39/LixQveeecd/uAf/IO8ffv2N3opugfVVuxe/9SsAXdlN77Tj7EHCIsz5LkC64aNc4kpGkEH67gfoB0wP2As0nQ4DFbWEBIdIwtxOs2P9HaN+0G21NbqvQUG7IlBTyV3dahrUFMrZiJmZkIAZzLfktwB93Q7cWX3HLhjsUeu+8pVP9P9kcyzNAcmk+vmG+ZnMrUIwxZWnG2GcGvgC+ZHWrui+ZHmV7hdCdjQSn2PFqstuui6L2EG3kjv4BJeas5KXFo+iy7VHqksIeowKKq2oY4C70Wdm5f9fNLCWKypVRZ0gAR4DmKcGOMR4kyEWK7Isbd8zhbObjIGapzpnOj5SM9Hlnygx1sW7riyBxZ7xOyE8wDc1z1/wPKM8QB5wkzGTebyvIjYVAKZm9X1npaVfSKb9qkFkb6ogkh4+QfUAZpW2VAjUh0S5NiDR6SGoU0hK5mVGVOHRVQInFlhDRurjCsrUOmrWm9rb3gdHtJayRmXNHI1PBrOgtsRswOWC5PentcsELAQ1hkcGNE5j8Y6Omt01uwlltOBHtXaa+mVWbl0GHkgOZB+xYr2otmR5tdgV9UBImG82RFzTaKRfmEBeu1Hq8/W9/2vjG8Cb8frswjQ9T2hmZ1b0/Qd609q8NL/TPdVz8oOKZBoExh18CPmR4LOiE6w1D+9BPkCbyMnDxJYDpJVWbVvqPtiw1jVfZebrOaLRVKGXNb3VU5wz2JnFUe2KrFkqPNDB1WxTLaheWPBFkZUaVxMiNhDqci0nryStcxSxrWF1hZ6O9LaQQxWlEAcPdPBkbAbIp/p39YwE9ttZZfvzWl2BL+CdoP5leJNW/B2jfk1adcYV8AR8yvwa6xpXcCC+7KL4i1ny8EE4S6H2qF29RHBiKnXaWzRS3+ktaScSH46imWloQgY2ViHM7Iz6Jw3r38a52Fs0ThtC2ssbNE4h/OwOY/RWKMTuTAozVPu/VVyE58dkqic56lnIV8YvZ+8aBq7pqO6RBUbnAgncyHpbNkYFU9UEhbT3SyrJdirbL/UnpKLdQslHJHSz5CbkjpWeltZ7ETnhOUjwSPBGTVFBJEb1TguHjZUah+hczJqL/6wX79hBuXu7o7f9tt+G3/gD/wBfvfv/t3/nb//9/69f49f/MVf5D/6j/4jvvnNb/Jv/pv/Jr/rd/0u/upf/atcXanF7Pf+3t/Ld7/7Xf7z//w/Z11Xfv/v//38/M//PP/Jf/Kf/IauRe6shV5Rq26E7w9ZmT51KGhmjroBCpel7Rmt0I5EWbHXfZc9Q4mq8TZTC7JNwZkZEUMugdawPUgJgNiexehNrICUlT5G5mmV3dSFRGXaWdfRTCwLFurAKZpwDAWQOadGbyO2Iyz0fYAqj8hRlf2g8rJhjiEPhJFJ7wvzlpmLH9pK4T/FTVnMhFeA9WIokuluKK2Pm+h8NyQgKwAiR8KVqY8hEh+j7JuT9O1yv2IDC1r2veRkZiylBxtFFc+FP3Y78PqsiNlSAKfKR5O50j3bRIOovdMmiwKZor9HCowZ8ii4bOxixLKcRHPSvpP8LFX7LAH4BLTFLFTgE+M2LmsmlX1OwKbrEecwyitCObuo+KnOh8rCSMiNqeew6hrKVCv2rAxaBkSwzO6X8MqOprh8Zsylk2J2VWgf9Mo206Y40Ktdct5GvZHM/2JnoexJJsgy6n0KrIQOXm+91n0drFGeO1W2SRdwm3Xy+b8pxt6FolD3eQpTVU6JmXwzi25iUzac7sWcZDnn2ByOVh09tV6eyrFif6pGc6+MOMncNFAzL2VmYO+Cihxa11U6tjFbQq2ea4F7U5u617kr/xnby9bbqLVjDcoufpt7iBkbVLbIlJjaLS/fRy3oIly81on2W7iKSl5jFlprZc8QOsQLdGudFCNrFYvmNdWFZ6w7i6Z28Npt0wHXJ4sgVmWW1vvOCM1sXOBb5fupAhPj0N1qnlHF8VqHbn1/Tjt7NPfik6+c+6N0d2PeQ6sEweTYCqYZShklUE/GiNkLcemq6jPkzrJJ1nNQucNKfxSzTEbu04jnGAmrkqOlrotiZfYzrq6RnGoRvRbF3mVC99IyETUexn+ARRdzVWU3po6w7liUgLl69nSG3gCj5jFKQ6h1sO9AdKZWs0TFru2Hxyf8j5pmbGb8p//pf8q/+C/+i3qwmXz88cf8kT/yR/ijf/SPAvDVV1/x4Ycf8qf/9J/m537u5/jlX/5lfutv/a38uT/35/gn/8l/EoA/82f+DP/8P//P8+1vf5uPP/747/q+c5rxz/+f/kP68brqr1kzO9Slo2D/hNDKy4Och9xUPcfs5XZDBjyrAlr2EljNOnfRgt52qnDG4dY00C53UMTe/jXLLJOR1OEX6iop4NRmfZRi0epzaKVve5aUEcrAUCknM0rMNoBGMw1RM9vwZiy98/h4ugSe/QCRfkfaq1aBtz7jfv8KFGUW9X4jdN9kg58JIyqgc9kUc0FJDhUQEu7SKhON+QaXe5RR9Xhf90ORCs6K1QvmZTY3P0QmkYv+rP5ydPC1YiYM0zizHUiQkxUyWrg8VNxpwWWDPQEF7L+tZz+NjcR6qPvo8mBLSF33a0eCtRh3Tc/UA1RQ1wE6tUdjp/UJp7ue0wyIMoqiwJbAic128QICZIqxq+cwn4vNJ1It8M3U8VkFBQEElyfLPojN7PIKu+ZJcGm+vgJWkk3XUwpHJnMxEEB1alx9CDjtB4MpkNWtKbB7ecaTdk6oTpbY9Z4705HFEs0DqBD/3PJTRBlIdzYqXngGHkNMQbE7PjuvDCRG1fTnuW5yCguxKv3MS41ac6YOoFyZnhjTnC3dNIguL2LYmZxk3be51vR/xdD5oO+gx+qAygKe8/7U2n0iYJ/ibB124jGN2GOZ3ltaI3n2zLJxtW7nJsbG2bV7rUodY7dkn2DQLmu69o+WTGky6lq1RgtgzOed7MCIyAL0dc8mmoQdwFZUL2b6sre1j9SHtVWpSb5PWd2agT1Zbxp0OPf51H3MvTr25ZS1h8u9SAd0Zk1BplazVUwS6wR1JlutvNR61VoVmG555tK8MJ9dXU1OkKOvtu85wem5VuZ3KHYkY3ZGSfjdc5ceIcBpDAvaTOZD2q5ezSLDBYQa0kkN1F6tn9X9ay5tZJQgezKAvscdlXFHrZkkyoPJOT0+8P/43//Rv/fTjL/1rW/xve99j5/92Z/dv/fy5Ut+5+/8nfzZP/tn+bmf+zn+7J/9s7zzzjs7OAH42Z/9WdydX/qlX+Jf+pf+pf/O655OJ06ny4Ch169f158KzU9xYUp8OYWPl9rXPJC1cLwCxmwH00IoJT3G3jZcxWMxAkAZQ1GMxW6IRdKaS6gZo0xvTBOSc5ocUddUVUVrFVwlPFPMi3pd1fhS5i1Fz5dIr4DMRMclPST2qbFWLWyaVTFNe3IHJ2KaSGp+juZRaE7RPBpWBZzqApnajIhS3Q9lftq5EgpPoWF6tUuXR4A+q2HIqXZmEGFRh2DNQWnOiKBxVLBNBQiVUUsvM+9dXaWEa20HgQIIM4jq+c7PbKXmV2t1kOkVowo0YSSyMM+cAKVWmeUunBaAnXoLSkMw9pQ89u/rfTErg68ZfEqASGWpGFa0Q+aFgYICIWO7XAPzQC5Wpz5rxqz5V8mIhmcns2rXBWB2LS4zxJXgeY5g3xmkCRCqY6Ay7tnRuDmsqTEEbmiarsmyPWqw2Qyl+uQ/CPh2J0ygmfwjMssgbqcYZno7UYsXmBtVXmEXied+2F1+33KCuE3rgJkatGJmKGZQ355GWWqR7kyvlLq4OlCrZTenQFPahoZdzL4KOMqXqfw45jooGIkHFmX6aMWKRC2R/fnM/19dJUEJrat13aoMHGLFNMbjciCqQUA6qCkoniDXa+/YXNS7xiVqjQsE6RmOCZmZYsqB9HkZhnPcNV8zwckCCbIFUIkzK94atY/NLofxDj7qWTDblQWk5jykqSXb5wTN7rZ8woGk2BPsSYIxy6I2wdqT5KH0cfMyZncNM47aZEOznrdWbi/WazJplxlVc2q1Si4z9DsSls8BjbnvsfYEjMNsKxag11XN+14Y5PJVMX3CQSrJNJf53DRdS4u9g5FiuUZePFdEnGg9u88BGQKRkwlZSieTxSoZK5mnOnudmcjOga1unVGFZy9grdecyfQP9/U/KUD53ve+B8CHH374A9//8MMP97/73ve+xwcffPCDF9E777333v4zf+fXn/pTf4o/8Sf+xH/P32hWimE1W2RmIQrGMSnLiKLQtx0B1w9DapCXsuamut8EK7NWPLuFagM7yiY2QrMoEh7Wrd5H2UQgNfZiTmu+d6t4uxz20klMk69apHPhK+dRhoY8ELLqlK3QLJk1klvBZxsb6XDwhbElp3PgHntwmsE7QqIvebh4UcPObDfOaOWMmyQSFEroeWZOws1tXnOp2vfDgqJcC1kHmhrsjYxyf7TByFWbpZxDQUJYdVlpw7WnpkmFzKeTrTZWZSzUfaDtIMWr1W+6ZuwmQhlFoaSebx0uItM0XNGfdPYQUt+33UVuepc4h6YxB+vYxMLVeASrw84s9y6++lZdcmX7OQ+vFCCdAKXua2KkdyZsvHyVQJNJ3vt+/23qKXK29GUFhaxsPiEqg0vNWSqySY04Hjvga9XKHLWnzKb8cH6eS4FN82VKyCuBlcBrHdDzaqdmg6LE4bHOjQr0cx2NSylKfjPzo4/qfmnFqPEDZlZaf3qdUYeG5gFpT1sBpbJrpPrtMetabemMmuGVNU8l96TgyXOt8ticXTNqfcmBWD/rO9CuQ7oOH/fOxpgNHcwODlyDJwWaZmuowGNj2Z/dnNyeGZrUPp93u/ii7MoW1WqZtPJeLCxjN+nitAenoDf0g7ou6n7YhA3FKJdAV4TZxXcninHTXyieWZWIprbCvNZFzE4QI3MtNqIVuFIcSXd1A/mFyYXpgSJAPH1lfAeBCCjljEuVkBRwsIIMSgYVg1UO0swnqzVv+M6ujHqfjPn817kLiJyjO2oPphrqpz391CoFGiqo26u7K4O7sTMws2RK3ZmY3Tw2WcAJIOdynOXYqHJQgRIXWFIr/YwNWXlc0IplHRE7qJ77r2WJ/CkROdApMVydhyHDEzFdtefT5zmiOxOZ+7kMcujOp2Dyh/j6keji+Tf+jX+DP/yH//D+369fv+YnfuInyFjJcVKm2PTAK+RrEZQeYAYRq4KPDmVVn8lRZ6ztN3aG/eHrXvcrQ3wyktYkgI1U/zeuBdwmCLBJeVYte2TRlCl6t6gzPUTYl169ps7e+WjEymQFdGsm4RLV5eMVILakN7VFr2MtIWfKATe9mCAqa9r2tk79z+UDEoPWG7GtAjFmRTEKoLSy+3draBx6yIdmaFLytEGCyuKylealDpKWel1GCZrLa2ZmvWHVZaOD3Os0G5kYZyhaU/d2ljIU/ORUOGdQZJlD2c6MZWUAwgN6v822i8U0mkMSWWJWgAp8oyhlKy2Pl6bgfDrRy4ba3Xezp6n1mdm5PC+qvosxfRTCTGAhZdcuR85TMTAq8cRcE4waACZwS7EAP4BbdOPrfiiAyucBSJPTKQWQAsw7bqrvR87SzKhMG0aemHb0SgWzwJp8JD20f9KNzWViNw/cWQ7YgVMmeGmSKkDPEfNTt+Cl8xHQqFZ6BPKmD4t74BEqMQ49T+2XGvBZ92OyFV4HV9qTQWp1SPVasxszqVHnyMaZboZ3Q9qMrLNWLz6Ft5OdSJvZqjRCtm37YUKKnlEZWeJNtchf4lSr6xwx6FNBMBkrZin6vvZJ8W4T3ZTWKOi1jFXeFZNRAJ+pm5kRpcBwWvkD6XAeo1CJec0lgpawFBgatZdJTR0PdHh6LXZ5tKjs2VgKoQ0yzpCljcixO5Z6NTjonupeRg7WodJKm52XKA7MQZ1gpeNTGUGdZqFp1t71d8VGeA2x3LvBEGjMIWAtYWeX3i4vpX+35DJ1vhiWyaRX+309Dhl0xmAtQ75G6aYqsdVz73VflzqXHM+nAGVCAQGArRLPyRbrKspFtmJg2ffVntZr4sU0kjuTa1UWxlKD+2Jy2x1vy85cyp02GdZp0yW74sepSvqtGe4QG1guLGbVPhz7zwJaPxW3bDKcxYD39ncGrf/hr/9JAcpHH30EwCeffMI3vvGN/fuffPIJv/23//b9Z77//e//wO9t28YXX3yx//7f+XU8Hjkej/+d70eupC17EN2Nh2J6GcSlPS7l1ppPapvT52DWn0XV1WFnjda0+NVCaRVsBGQ6eq+RQXpZNpu6KtydXiq+mfkqiCpszToedVjBjB1qh5aHSzEHOHiv+ncJqWpnZAmnPKn0N8EkKjUM2URe6pairysQK0XU5yl6zn2K9BBgySxXWTm3zrN8bNueXTGsqG0FwV5QboQmuBpGjqC7dA05Kp82mSHtnGWtWXXJKPsJzXMv7UMr5gGMpQ6doXtU/hCSYjmJZrhICz2zQWV7VsPNDONQArScJcFiX+ahSig7WUyZtR6/GKUg8H7FlhTtWQ/IZxFH2WKjSh8FVCRgtv1wE1uzsjMMXBXzF2QLqfnLr6HVgMesktOwDiZ9RMYgUDmw1YErPVGrzEhmhcrG6tBG2c6ovSDxcQdSGZYB5REB5RybE7CYbL8LIVgBEwHTS+1/lgtyeu/UGZgFspLGWoeuV+u8yCq5iUqEXvenae7WyAJ9US3NcnLTXnBT1puxH+KaJDtBzKzQZgm1lfHqJxtb/c42s82sEhuQYWw7eNQB1M3LSHDugyIO5v3b10PQaz/ELFvU15g/j+MWBeJrzRFg6x4npLXTvyPZxYtTlKt1O/18ir7bWYMJUnRPaK3Ei/V3LWihNvxI9WJsSYlpk/30qT1i9Xqa9FzMQKpWNXaWKup/BtYhW8UeHZTBWs9KztOKzypfr2O9sHG0Ij2sPmcBCFP5uPlTVkFxL2E3UpxM0nTFptzDKcdXd4GrdRu1Z2oMw9QOFcM825N1LkxLfiWquksaTUKUJjK4AG8TQ9+90T1gbAVL5HG71VnTcA1AtYuiz8zYQgnhnFk0080s0Xyvsvo212Ix8Fa6Mi+aNF1snxIu3beZAExWXwmdDjm1wZcWy/QOZ2dP/LQymxK0AoZU44enSpLmBwHSqgL8sF//kwKUb37zm3z00Uf8F//Ff7EDktevX/NLv/RL/KE/9IcA+Kf+qX+KV69e8Rf+wl/gd/yO3wHAf/lf/pdEBL/zd/7O3+A7drULTpt4pKDvGMRgizLI8latZ8DM3Ewb2EAgp5B2jqol5qgNp8AREUQMvF20AxQ4yLKSzTKgGZloIl6xMjmwBmOaAdIliq0CYlTxWP4tUfvnCRE2C40kUrVWNme5n+8OFUXnfykTkLhtuwQvZrkmL4vJLsyRPDUqc7ESoNW9lUZjhttqZbW6vnrzqFKYOcxq7/z5CY7gklnvegv3Cml1iublA0VosFnVTuqWKEiJkUrdbryyqHrvp1l8veYkGHXJydQYRF58UKZLpeUsF8xgnwWSKqvNOiS5sG5qEKpsvzJPbXoFsEsiOyFpGaRlvSFVJpzXG5drUUmisiifVH0Rw3W/Zmtx8RYCMGVAl1ZahtIJwUWAODNTKkjNks98elPLoreZ5ZcsxqlyPBN9j82yEHXYxM4MTkfL2fZsxRbMZxvoUGne616Uv06WNxGDXsPj2I3lqqBRLsCE2EzwOphKRVCCzvleY1COr8VOQunTZgC9rB/JwarIUZ8z0thGFGgzAevSpgzLvUtqdo2JyRKwiDmkNCfbNiH/UoB57OyBVTup1m9wmeEzM/6q8+ti55Onwc4cTF2XVVY+kkrYJksBbhL1Olll5ErIRt2PskqIOqCjxmo8WTp40f3Gov2egxzrXvbVw/R9iKlK7L26Ap/6fcyOLdvXcU4WygQhrdZKRJYeqtiOnPFlxurZ8VLAjNyZBgHlxhaaL7Pb68/YN+OjCWDs+yPbziqqBCfWzxIWaxqUaOqmJDXHSVstGbmVWsD2+zeVLlVgo3vbyz7yFtHnGzGVKzALOlmJ1pbbzhxGMbP6zNWuPNjXlUoxErle9ElztzvbEPPTa69HCfUjIej1HFLlxhLb7t1nTP+TUa+n+WlqPQ/WOdr7h/j6DQOUt2/f8tf/+l/f//tb3/oWf/Ev/kXee+89fvInf5J/9V/9V/mTf/JP8jM/8zN7m/HHH3+8d/r8lt/yW/jn/rl/jn/5X/6X+Q/+g/+AdV35hV/4BX7u537uh+rg+YGL98O++OZ4+gTGkN+EkUw32RhRG6woLr8cqCOG9BGe2B7EnLFWX3g9QPcC3AmamjHNdJpu5dRKzGzCdCAONCl31OFD1KwWK0Pq2XFiO1LYN0jkyrSfTzauffoQTKSqEsaAmqlzqZdnaBw5dtiFbFMUPCk53QUv8FAQpWa3iEGJPcgH7BmECJishTu7CCYlWuXKAh00gcKoQDOHFtZxxzy18wfAjn5Wf6wtPDladtVDaUcmAMm9rfkHZVh5KVXkjOE6SPYss/IAuU0V2KiDERam1yVQXR7zEMnL5q4fsApw+xtmMk3XcgcAUzymzVwNk6S1AmtZk0iNyxTFAoCm6aMzKGjcge6RqGId3jvIqYtzkOkws8vA8FbPngt4U/2+RG31fJTJUrV/BcX5Oa0OHepwkaRoaoMSqusskSndpdw2FRFz0Qs7uENEdXNNwDbXHcVEFfhV6ch3ip6Z0c31gM0zm9lRw7x+97Lr1kEhDUqwmV0A/1yf9f5zzp2DjPqqvWguU33+3F1iJyCfWrOy1bjc/9rnc2BlxFaZemLTS8n03N21cyw12r5ZlZhNfkE5HahNz2AbUXe2xM6uGDZZ0tiBokDZFG+qLOZMo7p+OEDCiLEffLFv2LJWyNKIMMHBULnFGtbLCJOZONj+DOZNm23Nk8WGy4GX8SQLs9nVtlSC5fswR7OgTzuA0ERpI9k7d9L2NS2gPUueSbeajWylB0KspNU5YVwGho6n18e8/gIOLu3iVhvBJ/NMFPNa89cqK+gpc8PJlaRJIbWVFmm3vag1opJ57u3HSbHqBh0NgZ0x2QrUmV38a7QWdd3RL0lURO7CcmvG4jK/c0ICZReY2wbY0jm0A4xNIxb6glZcJe4VmwbG6L2Y/ioZNjj0/z8yKH/+z/95/pl/5p/Z/3tqQ37f7/t9/Ok//af5Y3/sj3F3d8fP//zP8+rVK/7pf/qf5s/8mT+ze6AA/Mf/8X/ML/zCL/DP/rP/LO7O7/k9v4df/MVf/I1eClNwE3tGIQQR1Jj0ElY6yZhCNlZ6V4eKarALU+55oc60MVsbuHUiBtMHJauW+nQAlyWq31HK9xQNJkRtdOtYGB66prRqqXQqO39CT1Kht+yS1XEjrxXLhfNUlrtXBjTV2UVrzgzeDGuBp9fGtL3FEwQeJKjTYbx/dBotK3iAgiTaon1mS8H+2cw6uOzTS2ajD5aXg8/rMM4KppGXwpbq0FT7IEyPdD3XS3Y/Igv0VEC32bF0AQhJlkdDHZeW1Qa5o746c7w6eqrMYbP+XdqFuYFLw5RFMc8BX1Abv2bPTHAwWap9KJ3poNdZOZ10W7Eh9dwr0Gu2Us1lKfMzp0BtZVDTp8UqE75kXTalDuy+JztEq2vMS/Cf/Mo+aXovBcwMKCdEhLmv0rBoomzrlFYtXayYMwF1ZXttDti87FUdALo+K1Zmrs2cR7ZVB8oc9smsu+v5tR00qj2/MEnpfPKCb+fhqyejjA/2jFjgZez3xQucUF0Ol3txEd2qG1cMTZ0T+iyzNDifSGWOFyY+mW61k92brboCchA2duHnfqAa1c5Kvf7UIdSeoHiEuu9iZ6I8NOp6srw06r5ZJK0ON2knSrflfYejgyTGWesqk00TNPd/JCylQOfleUw/F4Ef20X9WZo3d8dS5WIRbDNBGPTmOxts9b5F47Kj7KI0hRmmFm4mqEGMlRjFulGsq18AqbyCZrNBMmeveSUQVBlnxGV9zZwpGHRQ6aUYaipuaYZP7cRMYlvrqE7FiRxIfF8I1ip2z/3xpEQ446ONAm9WJXhTB6WcZ7NKzWMvXSkalNeVW8UMMcuWW50TBdjdpHGsWVQKDzNZGcXSi61q9Yz2OUgd8A0Prctp62/p5ZNVKZJ3msGh4v5sMmmWxG+gi+d/lA/K/1xf0wflD/27/3eubm6Y4QFkTmQRhcKrRl0bNSuqqCOksv7QzbVWnRtlez5pwznTwFt19Ozzbtq+MPROgy23qr8nWR4B6sApoOSt0HOrDNhUV53HQYGLLDdSzNXKV5kUJFuuVa24lHfAsHE5IBQsqM03j6gn2peiQidFPAOpVfvxXmOtYxTT/bOI0u9M6lCAIabdMlmBv+KKRU2OvRxAVM3eKEW77XJCprFdHfeXz2iw67ouH1k/H7G/X+4/oN9VjB8VmIqBqeDi8/WJqi8bUvvX4TuPm8p45+Te+RZ7aWx+Ky+Z1/w8s3VWz2OenPUzFZTwrAyqXnd/Ub3wsChr7NyHc3kFolm2zOnIWet3np5ZgGWWODQcsg57v7wj06htrqX6kGOHMsqACjYW0Ik9s49k9/GZs3IKue1BWITS3C+VtdXAyJ3ap8Bs3YNZgpS/kbLsOaaC0gNEIRKbVHTd90vXTO2L2GpteyUasR+kFQ2Yzl1jguRaY5OFYCTZ9HMNDVxk76KzEnlP6DV7BUsoOMsewFQszK/pDjxBhc9EoGYLYdX9ltWVRUjbEgOf97RKnuxA7cmaK53EBKJeh+s89+e6DHdm16DHBUC7V7lmBxTz9UufUqWcyajJjbWYyJQ+TEmK17psezuqNsLsYCugvndkXjoE554aZQznxQjtJcFWCzrESGRM9qxdWKxZZq61pEiWLPogu1klFf/cvDpzbG+1nm3+Wc9tFAs0r1Blu2IbSfb22iob7xO3a2+Ee5UjYR2jGgIMf2IdkJQtQwEBfXat6RjFtLnvWqFZrp4+P5bS1eS+33U39s4kgOnAPEv4pYPSsEZjS3UuZllXa44VVZicsdCg2HwlfkmXmottrh+Dx4d7/sN//Rf+3vug/L3+inXj/HiSY2I5YM6hgXOCpVp8B7mtVRev1tYmwdQ+2K4Ct6HMOI0ak25T9l+teE2Zh9eGH/J9sBl+y6U2rRflWrVoRKuu2wlrvQKpY+HViXIR2Zm3CnaQprr7YK1DMisYzwP3ElzcKBFTof6hcddzMJ31i7mT5aDHmdkHq6m6ba9XW2VIMaJo1EZblgpI7G67gTa3ORIq1gGzhu7LdFiNlIR1djrtc02etn/uvfows7UsB1GmS2/O2qvqy70Om2nSJQ2KM02w1Co66c0KEhVKqCwqCqFN0GL16iTVKlqurgWYJhjynBqQSZfDBDEzuMyTYB4O8xCOmQbXc28xAVVBDZ91XZ5oQS4slE6X+ZqCdQKVCizqaKmW5cnGWQXT+fv1pTLJBRBMzYzHZAfmMzB1fATVzh8F+LXgLDW3JVIA35tfKHrTYL7IEpkymakn67XueUaoO0oXp0QhlFBsk+HYNQ0XsBhRAtVppFgge9dz+aTktUamK/ClzGAaUMiF0byY5CWVNGI7M6NnPkcF/AA83UFxErlBFF1OCayZAuli3rIE0BzqkNbPZSUMYbEnEBGJVfkvZrl6ejTNslthljp7S4Oieynpx6gDM/cM3nKpNTxLi3Mm0Fr7MnfGVqEoavZVwdqpt7GpWYA55mECjHkHqK47df1UFLOCQJWNaMepjKZ9o8NQQyRnF1j93kxUkJu4ki9qzRbgHpcEqrnXz24M7NI2O5M0U1krMp+A47rQqTmsspYSsNJn2Hz9KmplkDF2JvySbWmN5Kh5Y1SJvsqGubT9vSkwSEaN/5qMYFSloIEFI3TGtFZDWqd3TDHrI4KRuhZv0qBsY1RMkfYGbxodUpKJdRPAtO47kwxHhgXWk0Mu2kPVdq6EP3ft0sgjUS7oc27HDz/L+EccoLAstL5wMDmCnrkYWLXCrdqHXYGko1k5VllibozpWeBWfgpUFKKEnlHBThmCG2rHqwNxHm4TJFhTeUOlHQXHsE6OxthS4MSqT70ytcEMpgJFOg+fCIlmIEmN4Y4hytB8ZkZJ3w/FyyHYm2kic8JWDqxVRNDnKspTpZ+Bj7WU516ZGLQmx0CrdtdtJ9z0M+7VpjlCmbAZ2awCwKFYBNGTHuVfUJ1GM8OeJZioadLyjOFC98+NX0GyUUEphwbrkftrddNogJHJVp0izlJZv+8Hz6hDd5ZcMgJrWZnEhR1a03ct7dQDbLt+x6t5Kul1iMmErmzGKxu6gCKBy4jcs9hIZUXV54DXZ50XamaMprJOK4A6ypyPtrBVYHZGgY+DPotXiaNYKpURjF5TYee4BM/cM+fp8ukRu5P2NicPG1rXozKu0p2IjWzKPHO6/NolW5xAc5wIkxBRoNwx74ysPWuw2/27s1qVrCLL5h4wDQfdB0BKqVrMYe4i2VGeGkvR+QKPMyxq70Zl0thWXSjGnFTsZhBb/W5TSbi8KrI680aBLCUWEtCTAhut2NZtbKQ1iZS9FlFIK2CZEKsYSAUgYiTump5rg73TKkL71asLyJ6Um6d3kMUEBJVUVFY9xkruQBYdWkPlDA0fPcgVNMGavJxm/BsVW4bNEFfsRqiEp2nlYweq+xqm9HxmxWSXcBOBVXN5dmiAq++/szGgJjBbzCx8MmGz3d6YuH/O/Ck5E2SVjjOgqWMzI7AtCnQ6br3u6yiRrwD/ZKi1zDRba1raT38V7W9dF83x2NSO3hbOIYG/pwTG8hMJvOs0Oheg6w5juwAbdeLFnpwsXnuryvqtG9umGWAa6KpkactdtcY2lOxG6ZZqgxZgqPKnBaMlTmfb9N7NoPWFdcT+fJOEdsAz1VtUerkNxUYlknK1jaHEeQBxnqUj56lBKta4WY5EBucop9kfvsLzow1QRpw5l7HPVMMzDw1gHggSfBkyVDrPNvZSvtuejFrRziBjtL0/HIRCrdpDvQxwUt8XgnU8RmUauxpFyHWWXUD6gdCBNj1GRIXW5zD0/dkxwTwKqTSjstI6ALI+4zxUn5Z9Zosd2KXMMu+NNcil9DO6V6OEXLPkNGutobSGYVMzYvt9cbRYZ5Y0Jiqc6X9lQq2uS9noQewDeflc9bw8E7WsKer8wOTYZKdyo7IKdRWwb3hsGnTNUkG12danyh0O2X5Nag00HZxzk1b5xMuUzUqItxsakUwztSJj6rXmBGF2pkIfJevwQ0AoBrjRTDNQ3MdMusulUg9KA+qSXfzJnInKHjAAjZLHiToI56yo4lx07+YCsULfdchlCR0nW2CuWRxe170zdqG2UfO234vJTE2vF9Xj5x2ue1Alzl6gIJhZe+xPI0ko88IqYunAKfdPy4v4T3uq6viU/8mTg0oeOmWpP59X/Z1VeSgn7Z6qx0/dwwhNPHam7UAjt2q5pMq0+3qrEREGaaMy9SiztQJQFV+mSFP5zGSP5qGj7Nu6HKzZW2MB13RjrDMNt+b9EoCvDi1molRwoOJeVfj2/THLJxM8FNwSsxkyhsMmQK92/jkvaA9BVdqYs6RKs9NaVit/sUapw7t8/mitQzkx914+LGbsJpZejsZZYn6SdYhtaZNlLsCrTnINbPXq4pyt1ptB815eTjUHSdQde0disW7T8C9jY3bmta4OskRgY+QUh3u1hBeDgkFMDaTt1zxS2kX3xhbOtEfIEKPd2qJkb8irCvR3nsHIMo6LM0mwnYMxhioBkbUorJLTHVKJxLC+d89Nf7QtA9qixS9KR/YZGOvY6M1Z+jyrtG5GqnI5KsFuePneKHYowVGM31M1V7lsC12rmzO2AS04bWd6U1fryPifr8347/lXiQmD8ishMDvvx6u6H7Txpj5BmdcMojok04QUm4OVit6s0WIqTKwye6sAP0sMWUEt98A6mYXaykwEYNaq/KLpo1F8dBGCCl5WNLdR6N32oAO7ATQxgdD0fAC1S8KT6y1NhM32RnZaOahZJMYegKY9dzIHc8EUDc6ygNXBnTsKEmXYSsgXs9PFqtOi6tOmH2XunKSCEtT94XKQ7gRg7gI0rLxemCxXXsoUI8r7wnaWiQk8n+6D+Ujq8HSmfiF36pgsK+p6f2PKNPU70yXT615IMQ9TLKggWkIzq+eQ9bn3W1YTnmed3Cu3zNh/TM8NZscCmVxmAAXTz4Z0urf9mJ9rfYdj2ZgT9Xaqd96Omr+gNSxRoe+gT0zC0xIDAbPlft7DS2dNiaKxWjPs7FfGnC6EhgsWuJ69XFEhbs/gai2IWRpIvxH74zMWpvdFesd8IWMKr7VejRQbkSp77hb4GTr8qxOqeQkVn6zn3jpZkHuWS+QqavXnAn1TCD7bklOiRffZsimgbVbiULc6WnX7wkvMPUsyNSxPJdJi4zDCvDqhdhSvQ3Wu0tD7eHmH6Bwae+yw8pKZSVrBl0qici87mSXNF2K2qJTL6Iikt7a7Cc+48HTMxwSqwmNRwt5DsTyVzGSwVXfljJukXLY1FX6wG2hWImKWuE/gQlk91GdUzUpC2AIcs1Op1VRj0liWzrZBW8qKorQvgZe5WzGyOISAzRYh5ns9Q6w0b/jhwCyDeNPPjRpD0Vy/OzLFOJsmJ29DN8XS2Ya8fGJUWRvthQlQe++s53MRy6kyf90/b30HpHN2mYbWZgl6tWbcFA+8wMuWIUDtMvtsrYwecxTwc9Z1pTfn0OV3NGqB7q8Tsiag2HIMxrYWgXqpOqhk6DuDv+uJ0rlaytsrgt4P9MN+qP1dv36kAYqTHPKJaMmM5FAbKUjb6rCagET/XLwrFCLbnNI7LgE2w6DEYWTucw3MfafIbEaE6gbxyRrU93SNqBfeSuNSjEvE3Ba2ZyDSiqic1Op8HUxVRG3siJrKrNeXhkYLGat8OmLXbtgU8GG7zgZ3WptgZytKVixIhIacTQW7ApDYJ7dZR50BZqra2VNXZeu5218naHzALFmk2CG8WiCtoEBWAA+BgD2wU4c1sw77BPSQoourdKTLyP199686ZJOZ7TjKvNE1J5d2vDkQZG8dnnNFLu85Lbpr1BIKkOxD4CyjqPs6yFNrdcdIc4mEAJ8wWuklCnQLEUT5KOj6hfHs8nkSGNV26Umjo2bZvq8pvBd1QgG+eQjavs6t2ponxZsxSwC6BfbkPqZBzrlNT0DoHKzmFZhme6So5GmOp4PQeHLeThakAKEZs3MXNw3x2w9j0zj71juOgBnZigkT49V81txjFxoaMCp5CHPSFmWueWmknoJaAZzJrtQGdi/9mZP7aId2YRGrxbeQlxjVCuppExSxr/eddamSRA656DLLMzQsk94WXUm3/fq0DsVk5gjCSmjscxL7YIzJ5hixqT15Mp86ZOximFg+MoY0CrONvKXMv9znqIDGGIOIpBeb4xOgkWRq+voIuVB7ldRUYnd1dVUciqH72/uyX5O0UzXXhUtsmt4xs1S0M6hj1XOY2sNKtqb76lhXWuv6PK08OIoJS5vbvNG7sZ1XMjaZSWaQXkz5sshUDWeLYFtXsSvmnLbtsi+3gGZ072QY520VA7l3SuoezKnLU0zv3rAhwDiirtNKBxVJhmLyGJvKuq2X/usCBkgv3coMekkOdeFMYXKMqDUp402ak81pqWvoJXD3vugs21bFgVH6zAk6yttErtYdMuUf0xq26L6MKU6uDsfI4H6clMSZs64nzo/3/LBfP9IAhXjEou15QDTba5oUoGBmmyD0t//Z9jbLMSPHfjBN347ZATIJv8rhemfW7OfwPokQx6WmHDOJvox5z8q+eHJpuhYJkaKoQ8tgsNaamx1GM5PreyDac/2im3vXwSQBr3JgYmMXONrssTeI2U+B6pNV4gJ20eM0AMoqB+iEZy9tFaGwZ0S7SOzJvYWLcExRJnYxncFeb9WbtgIuF/OiukDkvRA7czIBEPVU3CYEmED0aQukHn5U9u4ERDDt0RMqw616Ok5QAyPrJaYx0Wx6S+QIOR10MfYSzQQ3s3y2t4LPm5vTtK+CcQ6wObBv3jU9s8jZg1XaFDReTCMW2s4clkqhwJf4HWb2GtVJlqJtW1IllAlI1gp2s1BYC3iHZPVVh789XTtPaCqb/38H7/uHvgAs2FmqUWl3VunjgkULLNmC2bKX8CTiy/LiGAX2tyoLan1rcjbMktVWVP6c8mu4JgrbXN+jZjEpgO7dXBToD4lT1TadOoS4aM9yB86IlZqlJS5Aftq455PlOMG2mfQp5nXfzMUcJbXPc2dJZyyTfkZlmae+LntnTfnCAPihczEqK9FnCfuLytmfsDfjsBwuYttaR5MxtVLCbzmKnfSi9TeyLPenyd/sXzPTQRZD4DHquUmnY1W+EAtutc9wCVLdO4tN5ir2NRDFfpvJfsBd93hkMlbpekYlXhMoMjVsu+7uskeXvlDe4FB6MJUIxSLFjP7uOqSn1sK0sgvj7c+rdxl/jrExtpXm1XmDM7tCR3XJqIwqhqEvi0DgVgMxqy3ZzOg+9wEc28KhwXkMRoEQb64yCoNtW6uUlwW8gimCV2lpMqVe4U5lnVxX1B0obc7wKlcTeEh8233ZdZzrNmhRe2U+n0gB7bl2a5Zbdy9QswsWfqivH2mAouFUdeAXvb07GzJZDK/NpgPNKyjP4wwuinQdCOrl1oOadO4sCahcsrrQu97FLn/eTyh2OKPXV1Y7TzsxOArOMwOdbb8Nk3iQQrvpGrBV/47yDWHUAjB25fkYNfk0B4YOVC/twsy+c27OEqIOKmOYcMgbbgeh8J0R0sHnFD3/pFygMoW+1+0yNO3p+aTSVez3fPrOyJehstd6hnO2xs6EVJY6T4Gc6A+9ZxQDMw8LUq+Su2p+FsZ0+NgOMymqX5soszKbyqqnEzYIYBpxCerzs4/LtU8KWiWYWnc7SGYPZlgTOKkhcIkOwIv501PgYrSGsikSs2mBrhp3c7VrpslBVz5AXuBEOiebz4gSY3PRREEdDLOFcGcE6g5Vm+f+eQtotCflzZiDLguQWk7Nja6fnABSwzMNdiHwRtCiQE5S61XPN6v8GSU4rPN8Qi+meNFS1vDSAExDuEpKav/GPOCzptAWQjQTU2lzym3UlNfaML2y/qws/qkzsc/1g+3rEfcnayAKnBTo2fMk25/tBGnzoN5BVnXkZTE2EVGt1pPdgxEbYQJOk2WcerpWVLw+cj2/vQQioNom45I5SdEdIIwYexksyX0Glf5rI1kLLEzxdbFfGOzzzvIJQA3MVj1fa1WqubCkMmzzPWlZY2UK0MlL91LWc5+lXPe26z7EZlaSp5er7pG2D1p9osjbY4bKfnrgWQxyIo1L97bvvbQCFZnEVolDEzNVhc/952JEWYlIy9iKXdZtETPUbFxAfpWqLAeHVknkGByPB8amOC+fUQHSq8W5OTROY+PuPJnLJIaaD1QWA0bQWiMqzrs7Bz+Ud0rjnEPaF++110fF3Y1mDfdF3a56gmy5MSJ1TWnF9vRdj9LM6IelztGgN1lcJs5h6Sxtgezc+4kf9utHGqB4CeMyQ2ULm1qTqkXXSRlF217cKyt4UvV/szqkis6nRKs1QXO6OLrXJq6HHQVpXZ7SUFkpEdXFInCQttb2rcFYczN77Ag5ahKskhVpYBY1wGnhe1QqrxHX3jXXYdKGU5arTp3KrmUMru1jg0Alr7TQ9F+zvXyxhIs2HxA+PVIABjk2bURfKvDVwboHRn1899kBkZBS6ofpwG9ASzFFg6pZExdlTSTeEhtDWW/1Rlqb1uNWh59AGibUPk2msIa5Rq1lDNXeudSm80mAm3fMvV+0KJl1zmhWSK/DbaQ8CJTZe7EI9Xq7NmDW4JuAx0QsU2dSIE9rY05p1kEVQ8K41g0GbEPKfSqAcT6XU+y02W5kSrO0VUCazsUCwvKqcbL8gAokuEZANDRPJqvLbMHImrcTVZoCU0Zns7NqrqdZ76/Da4KSmOCrDKVS62vONCmpdTEdlcWX7kuQWUJh3fGGc8R8FEjP0sfA4pPJ1BqULkb3Jq3q50QJNW1nF0hUdsuospVgjNxnnUzZErgXs8TUa2jtJ0azBUqLMQHzLNXV6pSOpNiEzSbboWev7hEB4RhRG0bdMLFJuxVWXRymtevTCBAB/DAjxlbdLIHb/Kxt/7nmFybCW2XrOYdfusrYYTKGi1A27J3zdgZz1gy1oG5T3xHF8Al4G+0CfsyLFF2ZOhfSZMNQ1+p20U9tqVJKy2C4kdnLAVd7b8tNmb/XVOMGix/2e3xexQwsbSlAB9MYUHPTUMLRnHUNel+KLcoyIaukVkr+y9porT6bc4qN3hf1BxksXaXE0+ykylHroRKPEEuXA7ob3YGmtTjB47qeiVQHZjOtvS285hxtQBeTsp5oSyO90bqS5QhK05McmsCWmXH/uGION12C28OygBun0wPeDxxaY6zB0jrnUc7DXiW+SmbTl0tp3+c4l6TZosGaOTg2nSfWj1jrbGNlG1lyLgluzY0xkuYH5niU25trlmZym910zw7LgmVwjOv/4UP97/j6kQYoYQqcNhkPdyKuSkgkGtTazLx9zyRmIqNaWWWLSXXPzMORQpWtDvcZDGc21GuqcXkRmOb+eGUag9J3mAlYEJO5BgSqckzmJZiD6lpNAPVUlR2DMS2r3fAAs45GpFeAN2dzULY+bfc7EXNQXOVtVQjPYnIgi+FNcIGgLUf5bpSAM+sgccg4PaGbrRgJI6IDzrqqTXh2CzRjZ4H0vkagIVxR7E48iRWNOmRKgONuxFY6Gr+4uOrtU23jOWHmzEZmFqfW5slkZYEEq0xL4SaqPVasQUzSI0WNJlkZ9qIWZS7tqZPinTd3isN24YZuIbvldGaxVRuzC8/TmPIcS9ccKWvFTlQwLTHrNFrKoiO8fkcv4HQ35jTS3ZWXaXBWdH1KidFSbZMjy2vDKTHcdI4Ep7FtczTCrEfroJxt3NNnpO00vKM5UwGujEx7wSqo6/lEUylLWpbU9S+i5a2uJcIYdVhZZeRRQZEyj5qH8lzkZvNmat9YGQVSYHhOs54mi7sgW9w3W64YW32WYoxcEGrkIIZKL2IZxVwpY69nbAJY4dVGnfNg6JPQ0R5umgQeQ22Xo4D9BIRh6naIVf4j3jsLvTQDVV5gusNWIhFZ7eXTwK7C16T6EbOjjaaSizXD22AQLIvTc9TrGtEoViJpyyIAGMWQlW2D2koTS30eZmmrfq/7pTvKW61rT5ptcp6mlw5LG6KVbgJ0L2Tt75zOj7rWWosjR2lPtAcyAkZwaI3lsNAd4gDHw0Fr3l1DANvC4+MjfijmI3MXylp5r/jS8dZZmtq+b66PjBFwXjl0Uzl0PWMMej8CrbRds9vKGWOw9EZfulxlDwewis5e1g3WOK+D07ZiNHpvWDm44g0fg9474UjQOocHxoBIej/o81u1fCPB8XLs+84IXxnmHLtExtsYrFvQWse98+KQLE3dRncPD4zaa4fjgfuTWLKrpdOA8xas64pbcrUsde/meRYsPoAzEcHBO8/7Nd07d0P7c0SwBvTlilOe/3tO8//+rx9tgIKVPqLqu9V9M+nXiE0haDInOw1dh1mxKS1nprZAToX8IOlqZ9tV+ezBi3q/UTVraVFagSYdir33yppFd2rM/XT6pJgNAZg5H0UTLetQrQMuio51UvXCkFjpYsW9ik2prF0MRagOmlJ7e178QBKQaF1ZSJv08aZR6dpwpc2YteT6HxMQpMSBynREmra8HM5RtVvRzZVD76LEmp9Rrr2t+35dHgqQVlSnFwgwn0Bwpq2TwldG3/wJW1IBeicymM+Lyr8voCH3biJXCaS0Qz7bE6vcpGdSbE+9T7M5y6VeH/Z1NrsoZhCcgl+r9aHrqZrtBMp7d5ZYg2ZB70+DuD6TdFRbUbONKWzI2EpbY1Vvt11PhLlKcSHdg3vTENsUQDCS1pvAcpV22qHv1zm7zNSxUPeOS6nUCLWZ1o2eojhqCovlVqxAhc8AN83pyEQCRj9oAHeJM435fKfGKDHrTNG7F4sx6jWeTskFlVlkDiVQo1Kj9uvc0xLtbqX7EChVR5JYub3w6tXquq8bvVdzCW7dvfRU0hWojDWrB7lnr5EaYirTQ2cdg/DiVtdR3Xj1ekzWD2I8MocqRpUJbE80DDNd75ZNLjkGSwl6d7fdvZajPSjjuyjuQMZdo2LVMkFYGmaDrcTbNs0JzTUSY+j1mhcTMiZAlC9P80WeIfP5VRzoUdOUW9Lp+3V5qlypUJKYBUvXPJ9EM6imFT1V+pP+QmBmG4NIxb3Hh0dirHv3UuOkckcF8KV3lmWhNzifVsYIDtfXPDycGClt43r/oH2FmCHp4ILDskg7k14icIgodsbFYI2zdDlqYSmWbxhjbBiD5pqhNFJJqECaYtswZ6zBnK9mFf/NykpgMp3FyEUM2PZTiq1M2cySQ5VvtwjasrAW+7SdYFvvKH6u/JUCfxSAcnNOI7g+HuiLGHntjMSaErotQm62A9KVyJ4z+OzNG60VvySCp7s38ox5eOSH/fqRBijzgJ5lElGJ90XSgnst5GTP9rx699Ngo0oF88BAGZ4PEyMye91/oJ6qn9Rb5/7PPPgqGivwhrbF7C+3arFVJrp/CgEVhLL1XoMBbLEJMFiBoOpAmWUqlQ50eDllOFZiuxm09griPDCpIJ1Ui2OxSkpHxN7Mz1O1RH1WI7wOwipxlB8mU9grxmPQ+kJb5Eg4uDhieoksJ9U/XSe9WucyJHgcA6yVZqRVGSuKBfH5LGuzmjMn8grL6Lp9F3JODYRA1E6aW32OasURO7bIhZFqRa06OYWx5oE42071e1kU9Hzd2XExtRwXFoVaX1NA6ZVWCbNseMvqpJigaIAPsWb6FPLRKb+ErGyfOihUC1btWAxiXTNKp3U4qNaee3kNjKoJ133MAjRj1LtOTcwExlm4ulbTrO9PfCqvlNqTFRy9Ft+cgfKk8FPvp/LiFI16BX2r9Q1iRKWZKf2LGWkaG7EzhbXP5hpJ0wGJV9nm6TVFKjFIEH9XpRI3SB34e9uwt10YOy3QZUEi/wrH9oJsZOigBGjKQMc22Nh0f0m285npK7GYDrY5V4WyLZit9WqlX/bnY4YE+ZZ7CXWWNFVmCsw0kDSn7szV+aRYmbBoHTfvNXxxVCk7yLFBnnXY5or7YS+BuPdaKlEdUWKyx4zDDk39PzRzWusFGGeiMAXy4j01cNSh5d5O7dbYSsu2Ehqct86yepV6bZpB6lpk+KcOJmLqagpI1p7csrqluobAriTreVUbtattfUvHliPDnT6CQ1N3i2Vdt1/BcqwdLGC5bitjW+m90RzWbdtLkZGwtIWwZWcSMoJezKijhGBq+4DycpERWqu942yMsQKNvlxByB9l+p1YxZaRAkOkZs83U/nLAB9J5so4V3v0klwfDirZ4Bpqa/JFiQhyJN2CFpuMPEMxQ63Rs0xvHHvDl4IurjUSc15VaW8iBqs3sAP3/6AYte1UFk/cM9pFvJkFDgDRjVbZ337Ii/VI86pHM49TlMXknsFAHTwJza+hMundA8CKZbDJ5MwSiDMnFyuy+M5I1BXrzC1dmxPVlnqUwQ4ls8yLqdlu9mhl7DZPhqxsxmbgdyxWiSBtDw977dzcIepgabYvcm+lwq7Tec5HeZo5WoGgzMpgfVHffbXhreuosfFW2bfAVSvgtlPyAGVmRPhu0DZKmT5KX9Qz1C0Q7Neyxib9SR0M6vopIe2ks+NS0iNj103kfLA2D0HI4Yyh93WzXTycoWc5TCUGCcusQE+9Vl4AyWT0LGYHh0paGTWArK4lSqQmgKiuMU1L9RqUO3Q97lhRybv5VySZm9i6un5PDW6E2LVJ62T1p9DQ7NIenSqBJGfmsLOYa6dYK6PE16kuj0yJJrWOdD+9Ot+oIKtMN9gduoA5kHFC+dpRKsNU94un2kHJaSOueVYZCsTpsIWYCK8jztwr2Ffn10SUqS6sZpfR9NteEq2rcFPpNzs/YGBWnWXTzyQnK1Os0Tx4QCLPgZiIMbKAUCvWAIih7884Uq8VOchW5Zq1gNWhM0ZNLZ4CegDzYmOKvQOYgs06CCh2B4KllaYuDrpXXfc0tpPKat4w22rvjmIUNlVWS2PhbcH7whZOZMeaU67ndG+XXKxKueYGTcMktRalUxtj2q+L+R1jrf0hU8b5bHKUNUKLS4eMGecSD+cY+KhEzy5dPRTTtG1iAciplNLScxrns1qOxU4I0MwxDJDEtpUgORllXkaqfHV/fiQiWWo0SlR51ND+b240h750eqMErRvnsdMZskGoA32usYjgFJq8fnVcOF4dWNfB+XRmWTqH0gNFiZZXNno3MpLH0x1LV1l3Hdu+55jXNHVSWDFOo7qaFLde3B4ZY7Bm8ripLH/pFvWKGV0l/4C39xtpwVIamxxlWd+0Drax0ULdT+sWYBuRW5UwFzC9b3hjjZX7beWH/fqRBihYx/xYGcClW8WwmtdQ4qgCDfGU758YuICK2OFtz0xGPDG1ok16pejWi0WyTWFoFpMxF02ZDkVcTJPkcTC7XubqFZy06hCKsqRndhYwSy0KrEFZPmexM7NmX/TbZEvcG2md2SE8l7BXuy572UrzHabx0WKNyPZk3mQJ/RTu6/WLyECfYyLprFo7AYuLDqUOkZz3O59mUqGs1QSMqJ/L2V5X/2QGlk63hbRym7XSMiRFefOkO6mCQYkNpem4wNicGdaTVkMJRKlRA/p5N+jGk6GGBSLnjJkCOTGDcv1MxBTV6nXC1WVQWkAdLNXKN9vUo17PlyMWXVRyKsgFBSo8KseXENDyUE8opYfgskbxGR8LtJWQ2KsjZKB2dJX/JKTWoa+su7WFiFXrpg4LAywERpTF647skhfEpGzl8ro0Ex08GcgUqFEpbeafpR8Kx/1Qp7i4iG6GNDbKVsOMg80WUXUBiS2TKdssO11cmNUqqiYR8ZRuIlSg7MKtypmFMhPw0pQOxErtU89tlhkF7jNTtuWtMtdIWj4B9dNjpGmRaSbYhlnQe/FXoaTKloVt01Rfq1iBsTMJO6Cu9ep0AaCug0XlPoWNNtelJWPS/zndWr1chxeMKmuZhOZpi2BfImbKnJFlWhcFQHcJml1cSxKy0EtOpstmO3j9+Ka2W5WDjTU2DhE0c9ZJkjFdmM/IkK8ky6UD0o9U7MrAZ6ODWSVRXECHSfDsTZofsuwUS18os06VYCRGlYfH0pL1LC+ag6llmCax7bqWgeehM6Ks2/Mijo4Imi2YH7ClY0hovle+XMmkzg9nORxgPNJikI8nLIzOILcTp60GTFovVvdAJHRPloPiTG+N6+MV5q30Ps42zoxtrRJPNY5E0HoTqGmNpXfWdeV8lt1/7712/lY6I+N4WBgx8EPn+uYZ63rmtG0MnGGJNbUORwS+qQHCmpFNrecRTjQ4lQ5snAWIrXXW7R8QDQre9swhQ0HTcmbFhRlKvBSofjoN2+bMAFmmV0ttjp3O1sIvVgR2xsVcc20cwzPZcpChnn0RA/ozriymF2MyN/fFEVRRfZZpbBftJRlzxoy+RCpMbwYvfYYzp5dZCyx7ff4KSAGuUcZ6j4CLTTsFALpaydgABY/ZyejzjdPV+kxQlVj2Onjlk14CzZkhttbYTeGqtDJpBns6OTcKkFXHihmMDU1mLiEkPtuOZzarA9vNShdSXfWlUp0/V6G8OmvmfS/SpFXhZxoiMcHmvMYKvMWI2ZiMWO6aDrVJlnNiBciJYGyyTOWZASiw1uEwYgAL02RKz0I1exEPWp9uR+kO0HVK0yOaeGOoyyJ0T1oZVAW7ck2sW9WS944bd7W2OvvBTf2eLnvqWeqaSsyJTcM/3VfN95huF1QbqmiO6YWhAWZrzZXpai2ezyFVNpnCS29OVAdQN7AI1jGdiX0vr0nEXtmzQW4qTcj7a2qWdoqRNM2+IvVZ06szaxNr4FVSybjsyygGsRaU2pfr+adJ+huxiSErC3aZwsm/wnyWQrIOwNpUaI0ZwbqqvKJ2fcO2oXs69Byi/FcCLoxKAcDJFJk5TldyUTErfbCZdElGlj5GildLiXcLciAebKt1vbDGSvMC85GQjaVMwKyp1LXVbB+Vn8o7xu0izM4aGpe1hlsrhrnjfiDRgDsaLG7cLAvH0o1Yc87bxhaQ0Wm+0HqwnlclJt5oNUSyeZcnSUgTIoajmMjUBPClOdfX15y2lbf3D/TlphgHr6GlkDk4j5WkgTXOFVPSgscMbDTmNHTrXclJllbEXCz7trGYM8w57/sX3IINtfv31na/rdYVV7Y4lWGc9GzDnGwL27aRBFdLl/QsBt3F8i2mCcOZxTxGsp4eeax46y733NYkHnZzAejYeNxWWgwez2eWVrofb7gtqMU/WRbneFjolnSOxIA3pxNrjIrxpc8i2VK2B9fHA61mfGXWkNgsc7gm3ZAvR51r7sR6Odv+bl8/2gAFbZrZCiwDTG3OmUFVWNiz27mxdUjPUo9qZG4qqURlfLNNMapV1ExdJhkwpL7lcFho6ZzOA2OpjeqT/7z03wvlQM36ISfFyJ69zZbnrDx5n6eSQYZKRda6DpgUtSr3xKa5DpkF2Io2iYRhVRfmougva/B5KEGyFFUuuroYjFkCyVGtu/OQFyviNj/D5XNYgQgmq4KJxq/PP11HrQZxjSyxH0aO5FD1Yb0eTKMr/VubKKcuxhKosd9eIryK1RLl1YGdVonTZVUkVmxOXt6/LP+x6R6j59hKaxCmACBQEPt1ChzUQZdDoNiNTJWoZL0txqRN0FuHJll21a3p9xJouocbWVNHp55mU4uwNzIUUNNGHTNatw2wGOVP4wWK0Z4ozUKSsI2i+6fiqO5NkWUxVuH/0mGIkJrAp0qXJTD2prJehDpLlOFP76DqaDGnt65ss/57jGTpxtJcdfuUT8nV0rFIRpz0s9UammOQrbGNus5qo27eoBdLNzQ5GBPICrZy54XWfV9LUawTlK1675W8SM/QCqRk5C6YnocvPl1WVbuPEjgqKZIeTMxNQAlvrQbyNZMl/tKvioXxyvzr/s57s2lW0zQqG6FDZitmZfFembP2jWJKlB49Oa9rPY/SbFRNSsPftiqfbYozLrTaMmDb6OYsi1gCHfrqDIkYxLZJa9GaWN/quJqzj47LgW7Jtp1KgNroy4HzOTidz7TWWNxYlqOG6mVy0xuDTeLN0hxdXV9rYsRi9NYZQwZk11dHYiSnWDnHoAGH3gkztbOmwIv3xnkM1oczmcnSjuSAw5z34+rWaSS3RzVbGAJII2R+2Ltabr1cg3vTXjmtq2bVbMGxN5arW3DjHOBrxRuC1hVfIlIJNLqfvVjXVpYFmslDdcmoSSFIHk4nPRfvbLFy6GoZ3uoZW8jg7fr2mptlUUv8+cwHX3/J6fHEOpI39w+YD07jjIXx8vaGZ9dXXF91/uYnX/C4riSK/ec48XA+c940+XlpRxY/4mZcaQ4MacnDaSXijOXK4p3jcSkh/8IYG613MgbL4YrAef32LbGtLDURefvh8cmPNkDJyPLIYO9z18GhkgCgOn3OrLL4SZv0bVZLng6c1qZ76Gzlu2TNcxaNh5waBoYtVPlBHRcCL1lZMViehEzd1SqcYhsoDwhQndGKQp8DCGfXi8BMXMCSK2iYqbYc48SWAw/ViKf8URlujdQuZfnGSVoUrKaryu9DP62WutMm4GMEzaYY7gQJ3boQ/uUoYx7Ri9JgXXuh+2QKl7eimCkeRs+nWdHzqPdeR+vCGBVkM57ci8bZ1B47tUZRpZNGmSLZpOiL4qWSQC6tixd2ugBFGZRRzBOjioT1eaxcbQXohCdiTprOi39LhOYROfLSmE6fhjaY5jsNLJyxl0om82Slfvd6tnWl4tmJWQZCh/Hs7phsEtYK/CXexeq1THx5UvLJ4lbGhrdGY7IBVhjJLjT5/vqzHAW9Rr9PTcrUzcx7FyHdkpH7bJmqamD7TA/R4T1dy9onUxVsq6yznYEZnE9naUuqnVFuo11dE5ePr2eWdS2RTCO9yfRMzcmhsvgxpLdoTd0bI1JdY/H/I+/PY3Vb87tO7PNMa6132tOZ7rm3blXdGuxyGdsY47YZ2sHYjcsmTcBO0o6QwiBBFMX8ESIhgSJ1LJBQBIoEKAK1OkJWBFE6iYhC0pggaJsAxthuTzXfulV3PPdMe3yHNTzDL3/8nrXPdZiqotBpi21d1x32efe737XW8/ye7ygVMtOhz+Wk96bxGFefh/o5Sd2opW7+IlkThZlJVFEuvyI6xjbMQVZz0mwwgTy3aBtukRkByKU6fQq26HOsolCLqToCEIxEfNZ7k6JoYEqZkiftVrEe8aHOajW51ZqKKitqJVbFzKUoFWRxaP1uZpqSXrtaUpdjxHlH4zVFVHK1+hodiO2clloKUYRSrfnDYSDlHmsDxjpSyRxyVtrCKjrgjAotsxTGnMBY+jToIDzpz3PW0baGFCPeBlrbKOVZM1diKWT0cOasY0gJjNIsM6LpvK1WcSEbTRBu632ectSBzznCLX03YZxSgSUnJjOvewXjHN4H1at5x2GYOEwRZ70Ka1EpQBJBM3CU1g1WaH3A0jDFTDSC71q153ZOG+gNIL5mlChS470nOJiGqPecV4F/SkLjtEMpFWGYBt558ohhiuSs9Jb1VdNlYTvsOAw7rCR2QwLnkZwYYyFKVOdg8aQCh9wDkyYsUtdqlK6ytuCM/rzd+aB7m7MVtdTofqSvg3wCMzElIRXPNH39Ktnf1AMKJerij4oYYUZ2Z294/XdFNyrl/nlxYpH5JDwLL/X7pNJE2jsgddOtp6m6CZqcsKkwlUkFnfMmYiyzcc+Y6tnHY632OeS6lM02UOv8/C4/oC2p3DiCxq+LLp7iashXFTZZdXUIVbRnNPlS3QaVa7ZUsaoOJAalJBC0y6MUnKMOM0W1ESVX9bUOUq5SDBDrKVrfWclzU5BCiVlEBa/o7ybi66o7/4aGuSmW+p71FG7BeEq1kOofmVEntUOGefg0BkT5d1vFmprNMYsuZjFaHS7rKXl2+swc+a1UeUaDRMVdVIcHSNUq1LTPUk/IqIZBELVZIreOAXUP1P4Z4TcgZLPF2nlXA9TQoa5SMiZN2AqLz2JSMLeWSotaS2WGiOq1pr6Wr/e3Qu62ih2VTrO2BmrNC0gdtoyzL6BY0EwZmUdcmAUHM8WmSN5Mb70IEps7iFxV7Nc/RM7pdgO2M8LCB1w2xlQ6aNa+6O9gvSNGzZJws2C53lOzgNbPaFNFNIrUBvL51E9tvjZmdmETfE3vFT0hWjLBaUJzFn1WZ2qkZD0tullXJC8i4m5t3cAc/FfqvVSkVMFnViqpmBcCXMmK+ABz4rXacxXdM66imKWoE8aYWntvcCRdP4w+axp8mJjEEqsapGk7rGnwKJqchYpswFz6piBrqM65emBxVg9YRROynVNtkzH6uQZvsEHTTUU0BiH4oHSJNZrXUeT2vrXW4NBQs+VygfOecco1vkDXwsM46VpcjQCmKG14tAz1IPCC2hGBlPVnBldps6LXzvvaNYMOgEmEkqJmoiiEUe8J1eCYGnvgK9LuXD0AJL2HvddBPThPLlocOVUHka55uj/EqWigZSy0QQMfl02DNQYPBGsxtiELxCxImUD0eseY8E5wtfMh50npK2OhKCJqDMSYwFrGOBJcQPKEoMJmEXUNlVSQ0VT6TfChYcyCcR3Wo3RRUk2YMZZpVPt98Eb1IKKDvHcBqRRerAOINwVnEtl6Ip44C5MrXVWywfmFUtk1MkLqGqSuN1uXkPQimsM65N+bJFlbcFbFj7fGNVNP1ylVbBvq8Z0X1dovAqY0hRZ0Q6sboEEHA/ItJAx6ShfR6Oyz5YqlwNPddVWvo3xrmXUcFhs8bRUkpZgVJTB1nUUjiEt5Aa2L2BcailkoyizyVcrAGUORqH9WFFqfN1Jm6sKaF5kN802TXT3hVztqqaFdpj64UnMjSIjTh6ag9IZBKDGBqR0PhmqtrCdYo8p2/V1ETy5mzsGYqSKd+Gd5hL5d3fi1mVNPHDJfB+S20VRXMkGcIVVRqaYIG5x5cZ3mzbHMCvP6QKlupt4JRkV3Vm5lu8w9JnVMVZi+9iNJiXpCodpAK2JWJGNob9054JTKcDOBRL1+Kla2RgOcrKT62cvttXfWgw3ctqrOY1qlqsi6adq5p8g4FecZq7RdpbtKzrciZFPRpw9anKE6GOwHkkqNVUQga7XCrdYCwPIb6DWZ30dF/Garoa+JpcgLfM0aq51V8wAmpnLh6tZYLxYYgSlFFsuO3W5PFaswpaJwuhSmKerC7mobbS5s1muGQw/zNakX9oWzRq9snulEWz/H+vuD2l9tMZiiTiHVevgXQ+hMk94OIzMVWClHVH9kja01hfN9ZbFVT+SNqwJzav6LjvOSXqCm1tTDAVKphTnun9v8jYI+j7O7iOq4yFnpCKluuNminotG483CaRF9n84pkmKtIiAu6OcU04R1DiuZEDpFfFOsFIRnSKPeS8ziXj3Rz5ZqqeiQs4YYI23TkHNiHHptC46ZMSaapqUL6oix1jPESM4TTWhomhUx61A3TKP241iHd1kpJlGKLJdECOgAYjsgU0xi0XU4Y5hS1oHAmlsxZuvUMWiqcD/lMndbEnPCiSEY0MJNgxfwYvDWsDvsbw+6Br3X1fVp8E6DFa0RYq5UntHh1jcNueSaolrFpKBoF4YpJx2asujGj6FxnqZpOIwDs9ZIs3MMqSTVvciMTFvGMVXqstJExpOyQVPQDVLLFl3WNUNDS3XYVyu002oHo06tLNV9ZZKqErPcCpGzzTWWQdcZi6YSxyKISQi5DjSaAqwFrhlrG4qobCHVz+jFHf5v//pNPaDkbIgxKxdsNRGvZNV4+A+ERKacuA1Fq3HyutDX/63jjS7o9gVdUKqS+pYaMirqJLPdX9MXqel77na6nr/PWojTWMurnOYhVIK/iL7K7KSxM4VU/yoVQucDGpHbKGkjqisRwfvKfWdFMeb+GR1rHHPnz3yyFQGTNeFSKs/qfB1icqnDR7XVmowmcwZFYhqwdkFB6gJoqlCsEjdFEMdv+KxuBYu51IXMVGBEN/DipHbNJKxEgtGFS0SRHVu/Fyk4MyJZkbKCqVO7kGn06s2Qed0INFdCEQuH0WtToX9JGUh6mqo6JhUBq0NAUyYNc4dSLkk/i7qQqKTIacS1mfVJ1OtWKrqj18a7oEONDxUGD/UBrdcOPcmUUsUiuoboe6rWYOeMnqzKbAFHrZG3uRj68+dEyVuECmEuVsOoFkgq4iIoijB32mgy6IsSNRWDvqArC4LxijbMp9IyC77roknV7RQVoaijJatQWYzgJXF3tSBNI0ZUI3G0WVHE8NKH7vPkySMmUZ0VKBTvvMNazRHxRp/ZnCbwVHq3/mwBw0xdiT4n9b9LnbactRVlUZSTWTxc6QkVzHKr1Zq7eHINWrGieRSlIqFi54j0qnER/dQxBlxdWkURDItqYPRyqKYgpUjKmVAU2SEXTNAhTB+has8sucr8PUUMYyyqA/EtplIVt1otlGKys6DV6D3jjD5XMWrPjbeGlFLVwUAcJqypa1VSMbslk6O+boqTrn9Z0aKcR0CRhihZ77OiAXvkiJfCnft3SVOkH3oWbaCUTDpYxE90rcO4KqJOEQmBYHWjXTWao2HDPEQbxmnSx8PMlGCgjxMYdajc7PfV1qoDvms8qQ5wxQV9fkyBKqjONYFW075fEMNNUPRo2o46DDUt3gdSjhqaKIacp6oaqA3UqF4slZohkwv9NOm9KoIYLdlrnNLuKZXK7elzZ2v5bPCqJaTmrjhq5MStJg5KDeLMxWBMpz9bpL5GHbBLXcdMizENzmS0bmUAahaYCbpnGGqIZ8Y73Tc9LRmI1lbNkw62WcD6OszVe24+IFgrlDzQeq/ISgha22EyrlasWAslC1n+PbEZ+9AQQsNtxDeF4D1IwkidUI3BuxcnQZUjqChM5jVVqGhLhYcLFapXasBUCHa2pzYYsJ5oCxgPqQ4ORk+XuWj4z6LxjEMkCbfQ18z7U9+GFXO7IYNuTILUMim5hThVJ6A2PBWYFuVIERweDaXLpLoxY61Gixd9GEy1ORbqjWuV882pUlZ4LSPMmVBJqllurycwqb0kgFjdROYTptcNhbrxzcOPmTMagFthZZEqjK1x3pLVtXH7h9MH3FYFUxuGrVWUp+Qaee+UDwVUN1NdJNpurxa7IgbEVnRGaQpTkRXq75Nm26gxFKndFPaF1sY6SxRfqQS9j5TREazJt0iHwd12QSnNIlDyC4uyWFKaC+EqzUEdtoqBMukQWj8jqG+zqA5lhvtLSrqH+korSPV+VSsp1r+wd1qlr2ahnrWu8jh1uZtzaD7gUtGTD1Ww6aoV94WzqGCQlDS5t9I3ZnaqicE4zT3Q9mk0zbj+c2ss909POT1a0w8Dz87PcdbQDxONXfLy/bs8ub4m9wUxuSJwpd6fGtVtbaAfesTVoap+UKY+zFJRTmQe3DxGZrq3CkpFn7MkqQ7RgjNeXWoWGhMQ0SZaUx/UXL0vtibCmqJUmmbElHmurDdkRYoqxG2spUgiTSpIFLFK91RkJ5dUnSGOmNSFN3empFJPnBXQccbimoq+5lKRXoBCSvq7q5ZOowdELDkViqkJwxVpjLXx1opSL85bhJZhpjqCqUJbFeTO94qiUnWAq3Symgp0kLIIuYbcXW33pJzJOVHIdO1CNSYxw6QN2t46yMK4v6mUXQ0oc3M2ktRQQv2ZGI3UwyraIgISo2qkqCi5MZRDX/N1oJdJs2BSxIvFhYaCEIs2lWnFhVI3U0mK9llDcA1gGSvVkqt2whttUd5OGshnjMO6pq5/9Z6j9iIZW63eKnKWYbwVvjvjGUvWdaWo+FaMJVtNxJUc8UZfU0tGhcZbyLm2amv4mzOGPCWsz7e5V1owq8L7XOMKnFU6LRel6q2xOJndeqKocc7kWlZrjfZfBddgjGOcKgJSFF327sUaVpLDiaPEQhFLyROCkIyrh9NMqa5b+QbGjt/UAwozCjJba40lVm97qBBtPUOpvMfW8KQqpBWdROp8oqiJmZEN8fP58fbkrf0ys4A14n1gGCJnx0fEODFlIcWEs65eYE3WC8EjUyQ4xzi7P9KccTFvdjoM2dsHU+OQlftudUfC1gFLN3snejpPgOQ5aAnEeYq12JxvEQjFNvSTkDKhJ0qFuwt1YKubTUZpGqWcClZq2BtApSyKzA9CwkRTIepKdSAYVJxcAHWb+IpQzRkPapG0TrltBLxTnY6ZQ/XMCwg5mYQ1VdRXM2aUK0aDg+p1q8kqaHdOvdbGKgqBUjPiAdtCMVhbhcjWYFLNJyk6pKg4oGL+6MCUswrkRJQQKkVUuKlecH3NArO7qYgeyKXGThsr1WWj6ZEaFT4LGGcdkqJZMw0gppAEnFGYu5DJSYOpvSh9kq0mdjqjQm9rqwW6KAWH0eFD75yKfMz/f3YYFHWbeDtTBtRhZtbB6AKj6E9F3MS9oFmqELAIev8aNI9HFDMaxfLZd97hZLWgwTKlyEdfeojInidPz5lI7HKGYnGlkL2lc55UMqtuzW4ayaJ2z5wjxsCi67SMLesAJlTa1FZ4vCJZuXwg2UcK3hftgynq0HHW4km0CL1kejIL4xhLrBScJRYhmaiW7+zIpr5m0QXYIJXio1JeBmiqcD5W2tAhBIrVGg3qtaGgCCjaYD3Tjnow4QMFmy/oP/X66QZgjK3lgPU1qR1AhYr8cuv0oiRFk+o/K3Rfqui43C5PM3qc6nCbS9FnuQ5/ada2uGp31/Y75qTYlHSIsM4iWRjGEUHXUG8b1TtUzYWv620p+jyoW6jq7LDMwYPGaLIsErFGDw63FJZBywetJdV/b6zRjA5jMN5SMlijdKo4begNFTWc4xiMtXiXq74RnAuk2ikjktU9ZCyh7geanKoDcqkBkVI1WNQhqlhHqoLquUwlSqopr565aDNLIU/VQ2ib22dNitQ6DxWnUjLFaaiiFatC8Ip5GlGRttRDoKGaSDBVztAgVpN4fcnMoYdZMsa3aApwqetXPcxIonN6cM1Vg1dvNr3P6jpimSkowbqglQEFTA2RnLVWX+/Xb+oBpRjd0EB5zSIFGxboKXX+EK0qziucLhjVYJhSN29NsDQf+MykDgKzc0dm9KRGCTtrWC8sJ8slUxMZ0p4SC8YE7t45Zn91Q4kwxIgnQZqwCHE8kE2tcc8TUoxasiS/EGFOWds4janTc01VrC6MWrlVN+4PDFQVCZppgVK0LE9pG8ucmDm332oeSa09V4XZB5CEWQcBUKowU/nZXLuE5lC02u2JMbWRdz5LFlVza+Olw1lfofKC8x5qsFYugrGBuavDBhWxClNdECxkr1P3LLDQN6ondGNuF7FZPW7q9acKumZ9gqFgXT3dl0lP1sYqXSSCdcpZv8ilNYAW6M222JkumMdenaNmtKfeP6KBR9Z65lIyta5o4ZytNIS1Dt84tZCLXtlZfDqfwpHaJF05XQBjlHp0Tk+funhpRkPMqeqkqrCVoghDpS+pFkZ9NOpvaSa9t4ye9EtUQeKyW7Pfa1NtsF4/zzKBLep6kJooW0WzikrJraUf0SRL5yzr1ZKLi0tsYxjjyEsvPUSysO46MmC95Xy3haIIgLOO4ApFtM/lqPUcxp6CIyV1lIgI+32PMeCd11O0MXg/i8Vr5qdVesvUzV5mi79BF+MCdxn4wQ8tOA2Fx0+u+a9Sx1PpcAUmyXTG4CQzFIvL2ipbXKXlQGnTSp2KUMvwlP6iDk5ZMtY4nA16kCiqF5GqqSoZmir6jCkC6iBswhygVu97qcm15UUmirNz0jCkFFU4bRxt25KkaCKrUV2XBtfrSqfommbdaLutro+lqLNKFx+lQoqkDyB8+tzMej/vVIM192BJyRibK+k3a6H0MKSx8yAmUBDVJpgaAomKiguGMemhU5EfpeZzFanqM5ewuFuhsRZyJvI0kbLgnIa96eFMg+vmoUTXzkIwdZasIt8ihpwK1mpkvzrIFQXVYdvgTdCfKZqDZUTRJOMaphpIp/kymVmob1GU1xgVFSTR4NBQC2Nv87dKZi5FdbYeHCrdKdTTTlEU2Eqq62tQyiVHjFOtjRFLoWa4SHVnCpRbLQu1SV2dcwZd94vRQ7wR1Snp8Kr7Q3COOZcpFSHliVIFx14jvIhZ85nEaqO0SKzXr95LUm6dmF/P12/qAWV++BH9wDC62M+9PFmU97K1jtyaCjHVuGxED8rOvghwU4RBIblbdwaz8E4XeJHMPgYOz69wBXpUgDbGPZ1PnB23PLvYqrjSCilNhFJPFr5ai314kanBnNxqwLf6niUzZ6WowyFqM6qpVl2rDyp1WpX6OXjrMTV/Q8/a1NexL2iSKnTi9oQ7n6frCcvUQ1hdX40Naju2Dl95FaURFNI34up8UyFX1F4pzLYBy22/TB2uMC9cERozIaQYsVbRMGOrG8B4zcF4AaBzOwRRal+Mq/SZcqRkQWRSGYD19fRT319W19BtZPyLS3yrSQFdMPStW3IadDyz/kWS6wc2Olst02aeEq1uTypsVT3LfMoTCbcuIA1lc0o/1d9XREip6KZacxJehPu5GrpV3TDVRmuCwrbWGJxzFON0cJc5al8juVWfAFTXx63LDR1wQCqqKOoYkFGpJNHCSSThrPbOSN1Y9c9W50ldUF09WSrVrvfXdOh5cHQMprDpOtpiCW1g2N7w+ttv8uGPvIZNQpnUemmMpRXPcbvkZtqxnYZ6Q+Zbt45zjm7ZMk1TXdvnQL8XwlZFVFTEpzk0NdNDBLEQJCLFcX8BD4aJJ69/lXd/+RdZH73Kzbf8VrJdgKhwfPCWFoPYSEkCaMuvzuXqlJvpKDMjlkY0OtzMgV86mCwbHYCHsVpu6wZuMYrC2KZeD+2XkayDKlZ1EMH62oStqFsq6PBbdWFYiKYgeSTFhLWGLgRyymokmGkkdIDQNu/Zo6gn4ZJfbEYueD0kza4vcUTRUz+UujE15Pn0jGheXkmqscLpNavDo1q7dd1t2k7zM0x1g6Rq87aBWTtUl2e8a/T6lYiRgq8oSpLMvIJbY2hCPRhUtIiSCWYeTGdqTtHH4r32Q2KqtsSQc+TWzVmH2VzR3FwKpMRteGTJ5DTpgcQ11bSgQ41UFNVVgNWKHnrVy/iCXlIXmFOUWXS/yVXAjdQ1U6BUk4en1AbkQkwTxjiKBCRBY201AUSCM0xZqcJgXXUt6dGrsY6ewJTVdRjsrMVTBE8/KgNOtShTXYYa61XEXofH+R6xKHqfMLdDGNYwmxRyTpiSqlvs6/v6TT2gGL17wPhbCCtJbdUVKmryIh68iBZwzZYxqYFOqUSlCWQuZqLe7L4KCuvJ1unpLOGI2SLhiMYa1kYIreOVsyWfun+fL7/1Do/DSJGGUAyr5YLUq4BoP0Ya4wm+ZcISraj7Zy5+qtCgcsNwq22pEzUV9ZlJm4plY03Q/IQst4vMLPZTuDiB0WkZF9RqCLcnYKXLZo5aW4pl3oQr5F9mrtJaQlBFfK5/FlD+Hx1Q5v4eXb+knr5Kne41gtxYh5vTEkVqY2a14go6mNUhCvNiw8HOkfXp9oQ2h2rNWui5u0ZPeq5yX/NJ5cUJusx0H0DxdaMw3JYjYcG1CjgYp/B+0WHL1iHidvW83RCpw1u5HUTU5u3qabTaHa2+viL7U31/BuMVvSo1B0e7fzSQLuesomoSzjiyCEksllBhZqkQsn3hMJIXeoVSBb/WvNCKzIu2fg4qEnfOEae+inpf6G70TXotLKufn548U9UQ6CATxfACiYRVt+Bj9++yWS0VBcyFsGjZXQuf+Mir9EOPDw6fPd5YmO20JXPSdYxZhaJQkSlUEC/OIfVn67Bkap+NuX1ub0sLkRpyCNYUmmKYjOo0TM5MxvHuzcg/fvcKf+T40Me+CY4CF1NPygIJsjVULgGbo9J16KZPTSPV+9Myp5yKuR1XbjeaYboNHFDKYkYP6hAzI2m6RhmC70g5q2uiDpb6Iyu9UsqtoPTWpi5SrcGCZB3eBUUcXc2tibE658r8qtWSC3WoRQcn+cD6UA80YmztS0bvi5pFo2JtHUxD6CpyqgdCcqn3dnUIGh12TRVd24oGZdHv887d2qNN3eysMVivyPhMN+lBoFSxsz7HeabdjD6zOakGyPrm9mCrK4SuuzIjrVKfIVsPgMyx/bMDTmkXfd1qyvD63AhR11n95HSVrodKg2b6mHld8nPasGGW9qj5YKaBBV/3tjRrw1wttMwJZwTXNNWNahHRigwqWlyPtnrutRq9oYuR9vv0KZFMpXqkojfW4Kn6vRqgmIuWXM40dJJaBGnqfW4g1RywnHOl6dTI4NGhE5NxLoONmPTvSZuxoKdea93tDeQtVTQ3O18qRGXrRlx0EchVTGrQiT6E9tZKKaLpnyYEFSBlvaBSDIlZla0Iy9LBw5Xj6uaK0vdsL/Xk0TQNh21P10BLZNFl+n7P0ggNnsPVJauzO+yLoaSkHTmlWjiLTp5Z1MVgKkdtrCMXhdV0Op9VJUDUqXQWPxlT9RboAzRbQ3Ux0TyDGbUxVQxr0BN6nBeEOvkKGu/tK12EQEz5NvPD2Io81dFIodYqtBW9PvOkrVCLu3WL5KQ/RzMXyq3kQ63S/pYGKtZ94KGf69n1mirVM1uEpS4Lc/S66lEMdZatQMy8sSr9U0+9Lzga5sFArFR4sqaImoqeFCgmVumJ+QAio8JUbp1YFYpiHnQFqaWHKlidqbU6AIjaTQVFQyyO0AZFW9CYfGfg6GhBI47tfmRfi9aM0cwKoeiGhFHBr8ite2fedOYTu16Gqd4vlcufoeUshMaQx0mtlYAUQ6bcfn5KPVSnGLnqUmZICkqZCNby4PSYe8crtrst1gc2mxXvPX1MKobjRcfJcsN0eYWJIyELL58ds+0nTldLphK50y156/2emKvgrugpu2SNZ/feEbMOBBYdAGfhed3FFGHFVgpRRwKXFwxu4qoUdiXx5tPnDJsTYoY7b7zOj/7IZxDvcW7g2cUN/2SbeT8HHfptqjZ9vYerF1A3u6KZOtY0deGfE2NrfxZq0xVRoajU9crUDWZGzZS+skyxkIpBnBZu5hllQPGwmDUUUl+jvt78PFhFRoek4khJ4+0AYpkF1fVz+UDo2kwj62c4xwpU3d886NfKAkULHbYkjK36JZTK1c3S4oNRh1Klh2dqFET1cEWR2Sj1W4TbzwioB5t8q6CanxcKt3RaqELMGGOlLwRTYwjUUjsnzlaHplW9iyJRegjxrgqXzYy+62qSJWMk39YOIFrToSoDgwv+di2ayyVNPXRIHZgwBuu93gdKInG7NPIig0nRMlOHMx1gSpHbjKqchWnS9vc21AObyWQLL2o49Ptc3SdLepERhNGsJHLEW0h18Qu2wZnaql4UIVfRdYZaTpolkYu5TTgQcTViQ4ei4HX/ySVTyDVbRg+7RTylhH/9pv7/8fWbekCxzlc4LkEt2cspapkcOt3n4lV0Ka4in/pBBqdDhjUedarMD55SDBlBUlauFL155sVXyGynkRMvrAOcHd8jxMy7T97n+fNzxFg2JvDqacf1/pLWtpgsDHmHNYZusWS5aJnSJa0xXB8GFstjaFqGWEhGYT8bLNm8CMVK2apaXGEQvXkp4AyhNibn6ngB3f+oThZjmrpP6k1Tn3mMmQcTVaxnqYmkVk82KUc9sTs35/uDMTjfoNkbmtUgOVWx5Kz/UVpK/76epq2FKvS8Tditp2moC6bMgrUq2Kvv35YJc7tYxYrQZKIoNJqrGFQH0noKrBttKbHSN/rQzBUCmo1AFctakAj15EbdwjTGu6PkTDaqYtdUzIreST1hUu2/GBqvC1RMKop0XjccRaoMzji1gBa9l5xV/UkuKqKzt3UFeo+uV2v2h+EW+iUndpdXfPj+Q0oqHLZXrNctOe5RK2qtdq/DolJFFVJGUBW9u21YdRLU1m19Hcaqxsnqadh6XcCzaFS7iN4XqgeUutnooFYqpI1rFEUSx72TM0yEw64nFxgKmD4Sp8zp3Tt0PvD8/JLU9zTO4qTw6Q+/wtXVNc9vdrzz5D2+/ZOf5BMPHvLVp0+JpaiWomnphwMgjNOgp1vrKn3ha/YIiuAZi6n0jtTOpVSFq80wsrnvsO2Sy13PdbL41vKVNx/xT/7eP+ThKxvyvmf82pt84u59PvVbPsXT7Nmz4UISvRhKdbrcogy6BysaZbLSgFJtpyL4uaerbtYOdFq3gblGYY5cn2Ikm5Zch0trbHXdKL0QvEWcfq8YHewVMUvMVRvOOVKekKL3QeMdqbp0rPP4YJmmSiOkOhzZSoUxdy+p/beIwQZb0d4yA6gEZ/S+TqWiYGrDBW38jeOo9Fy1JctMC0ghk/T7jW7eanooxKR9ScYptZIq0m1soFBpLae5LL4+/waDb5qaaqyDi7O13FBQmld0086SMc7XjXsm52oOjtXOoXmtRErt7tL/SzlpkmzwjGMhTrl23Khd2ltH1wQcBitQ6tNnUIFxKkI25lbILWLU9mz1u4rIbTyC9Q5xQNaKCqzDhxbJickUHBmRET2TzK4yW59JS8zV0WcMMeug6uu9GkXzw4xJjOM1gYJ1LVPxmkHDrF1RejfNpotbbU0V2Behcbaum4XGOYqkymjkekgUDP+eBLWVNJGjCgFt9ajjuqq+1pODqyd4rGXIE5lqrcvKkboSScaTrW6QZl54jUJiRat+K5WQwRU8I7/tow+5efQuFyWxOxy42B3AWiaTMBhWy45DHOhjYT/u9MYJC/WCu8A0TnzLxz7OeNgxSObZs0sOKWFNSzANIq6WSlUUACgksnhmy7CRelqVQjG+ipsiOekJ3VmPuIaMJm8Ct0+bqdRYqDawJBlXMtkYbKbaTQWPJZjAJIaURxVJVThCbHXTWIAKzVc41BqNrteckKwZXHNXUcVbShzIzuJrNk0qkaDnX9KU1DpdhzFTDELNLBBNqiylpwXWqyNudjuWyzWNbdmPmUlqiioF3xXSVDBS4dCSCSZiYk/bdfS5ULIiLkVxaTSbtXLxkjEmfYCXB3B1YEU1IWYeVAopTXTe0zSKgo25qJCtlnblJHTdErWF51vEJYRGIVIDUjtwjDFcXV8DaG9NHbTun91j0VhIsDlZcXa25uJ8JOVCn0Z6PKMkMEVbUo3XlM1SsFbdYbcx6g5K1aVYhPpgUKIjJV2shdoiDRTxLLsF7aJlt9vV/UnvU6mQuLWWrm2Z+oE+wxAKUSydDxAMYgtnJye8fHLEMAzsu4acI0c+4K2QD1c4B6lk7h+dIcVxs7vhaLHifLfHmsKu34MUuqahn6DrFpRxomscU8p6Ip7fk83YW5cZzK6q4mHTNjx0LU+25xxk4vt/13/A5z7/Oaa84xde/yzuC5Glc0i35jvvFn7oI/fZdEsO2wNPS+DN3vL2buRKEpRAsZZDSWQLo7FYWoKMMxuNJHUZllthd90gnMeVAtW1IgXEegyBUp1etihiqjEBGePgMI61/E5IxuJLIeAwxmNdqWiO1PXAq63dGNXBGVedcSOY/IGTvFNbKHr9cxVf25rAqoWTHud8LdMErME3nQ4ctWAzS9b+oSLqZkQRH1dXtIoX0BSHWEeqtvrgDblEnAt6a4nSGN7p6mEqauPEa5xCTkxRdUYppyrw1dtSa0BqZ1tWHZ/3tiIgSp9nKVijvUtFDBGHLw49FSjKkWKpyd+V4jUOmwslTbdIqJRZi6IVAYdxUPdhXXdV81cxIGsoNdtGL2rCOKX8kYTJQvBgJEHuuXUKklVnGOuAWyLF6KHTSUA7wPTglnLCGS14NGLw+iYR8Uy1bNbbFitBUVFrKSWSitGDEjWLx9eSyTwXRSZSimq/t74i5BYh4W3Cm6JCZVQoLaUgVlHd1v17gqBIzuraqAmuVgwmCxSlLbSroGC83qmCJoI6UzAVgjUYGgfFNnqasF71Eg5Mngh5BGpQF4LNhcbB9facSUaCsdxcPMP4gskaLmYNjOOeXArLRaBtNlxcXUKOSi05y2LZ8rV33iLGiWbRMgwHDRtjBBM0bCmNLELHNInyoS7Rug37MdZsDnW/YBJijPZ31NOH8077f3JWpxAKV4omcGGNIZJJMuH0GcTg1AJWYVhdPiw59dBo349NlQvw1TVF1mAnETB1s5UKPxcwJYMXDRPKOlCVqr9IMdLgyLaQirAsMDFgTKOdGM7p4iqRbEMdKgu2TDS+QIlghaUMZHpePjlD+pGOiae7A5I9rvVscNzkSfNXoBZvQbBCHvYEa0nG0thATEJOpi7QWg5J1jA+GyxS25jnIDVtLFaLoy8DNh1wFNa+obWKmkzOMGaH0HL33l2aMnB2tOTm0PO1J+dMAg9ON1CEQ3+gnyaEQuMa7h4vSLkQ40TbeNqmpfMty65lGHpO750iJVFK5O7JCSmO7PsRG1q2h8gYJ2LKZHEUHG3waLWg3v2SNbjK5cSybbhzdsr1zQ7XdmxctYEXyzRN5JxogmE/CbvDlqkMtUfeI37Oy9H5RlLGuMzCWfLQ83QsPHr6lI88uM/D0xOePXtCtwg8v0ycX1ywnxLrRUMqSl8+3iU+8srLXG8nHt455e1nF5wf9tzfHPHg9JhHl9e1pDGzXi5IZcs0jVhxSAIxOhynilqVlIGIpdH1wRQ8YKeRX/in/4yfPz9n2F9y7Cw/8v13WPUf4Z9+9rN0d1/C37mPf/kBtjnhwSsLVsenjMWQ7qw4mzJ3zzLfFe7QZ7i63DOlwu56IFjPl/qBN9joaVQcpSK94zwIiqITBh2mije3p2l1uqHlauVF3LpayKu2zjq6riMXIVqwxdBgqmDW6oBjVKcD2iSsgvaMEXVi2VIwaPT8nPqJCer8cB6HVcRUMlISztVcFFEERBOf5+wXRWTc3GjrNahfNz9zS80pmuhuBc+91fdmnZ7S9X00SJqq08lX9LgKU2V2nZXbCP45NNGHVtc+FCEuqZCd2vTFZKUoc9SsDsk1RdapD9vpgIkDKRHvM42Z+PD9e+x7z9N94vqg9/28eQenWikFrGuZq7WYoPddTAlvOoJXFJ/qnAGDzMgwcws0SMzg9HPKtZ02BEWislhysQSvB2qVADocqsFxtU8qZm6Rc9VoJUqOEPT65OJVb2kqcu0cxgR1SaE6FARSmfQ6FkuWSYctoy3tzihiLFKYigCeRddALqq1MZ5MwNiMcVp7UbJjrCj51/P1DQ8o//gf/2P+0l/6S/zSL/0S77//Pn/n7/wd/uAf/IO3//2P/tE/yk/91E/9hj/zQz/0Q/z0T//07T9fXFzwp/7Un+Lv/t2/i7WWH/uxH+Ov/JW/wnq9/sbejA+03YLgHSUeKOMOjKNxniSFtm3p1ku240QuiYXNND4RxwSuxZDxJpHyVMNvAkgmM+mDbgveHJDSs17rKU43ycQ47VguFxy3Hf3NjsM40jitrVYnxqB8txX6MXPn7hmX15c4MRz6HeOoqZ0la0xy0+jE70Sn6EW3oHUrgjGkMLIbBu49eAXiwOvvPcP4BdBx1C2RcWIyPaloYm7rdKotVuu/U9INKRn1vDchaBwzpkLSSSFpUf7+to/FuQrVqap9tJaFdXg8fZoQJwQqolFPDRhDTEk1GEbLsXJMGG/pjbB0gWYcGYYdr33yVV71S96/eM7F5RV3zs4IYcXucODy5kJP+M4zTlHD8Yo24i6XnnHsyQhOtPk1G/jae29xttgwTRM+jpjFkuMQcGkAD9thxFHobFWsG8h5xCeDSYl79044DJFihFYMWMPx8RGh3XCz2xKl0KfM9jAqzJlVVKoJwoWlF+6etJhpYtl6Chr81BjHqfFYF3BywBJJg0CeWAXYBMfGRyiFxcKwrQjgydGS+6dLMI6bmxuOjjZYY+j3I61pODo5ppTEMEZOzs6QnHj09CnHRyuury4JpRCahoNJ6iQpmhGUbzNMpJ4QtTJg3XpevbPkyBW2uwPBGrxpWLaO5fExtuIsX3v8mE9/68d57/3nPLneMpSRHHVWUbuopvyqASGzH3vECK/cPeOVB2fE7ZZh2LHtM+8/HXDBkVPh5Pgew1R4cv6cZXC8//g9+mng43cf8uj8GmLhzmZJWK94cn3DovE0oePp1ZUKyKWQKxKRs9bcG+coRl0UOUacMzq8SKHtOs5//ZfZkPmOz/w+Pv+lL/MLP/tP+V/+b/46v+W1b+Lot30vvPQqWTqSEcR7vra95rceEt3mmON7RwzXE+PUg/fsnj/j+vIp7737DvvrG45DQ3O155s++p18bt0yOUPIDnGFUEXsUkXnoJRQqm6dxqst39QuH2csxgpt2xKnESPC0WbNs6trrLO01WGXSkJkxCAU48ky10Vo8FysKbHOFZCMNwbn9PrHpImnotYSnPUY11DyCFYFoTmPepCpxK2UQpl7ZCTpQI+v7h6hlKgHKBRVSUVwVZOmllVFRSyzFTshEjXTx6rQW5NxXU3AHvEukWukO6hYU6pgvJSEdUk39BqUJ6Kia8mD5hzVwcI5UaTZdcQMpkY+eAYCE85MOCOUHHn2VGMhNqsjxj6qWNpkHIVl05KTpuIOWXWOUtRx5XDVuaQJqpIy1jqcC4jUUj2qLTmrgcM6Q8SD8aprKZlpFkHXobygot9SiqKEVnUeWUTvgYpsSIEioYqIB2Ke0LLZpTrDKuWkupUatGe1RqQIZNsAGScDjnQrMlcnlNL51isCnIphGARoEWnq8Taqjk8yWQwxQz9MX/8W/41NBLDf7/mO7/gO/vgf/+P86I/+6L/yez7zmc/wN//m37z957Ztf8N//8N/+A/z/vvv8w/+wT8gxsgf+2N/jD/5J/8kf/tv/+1v6L04MpIG+jFCPrBqCp/48Cu89+67RBHydEMwCxY5gnF86PQOcZi4KsJ23GPNBCSscTSuh5LrydVxvDqi329xoWDzghDrDbkQSrRQYH/Ycb3fY0Q43hxhkmE37hFnWfhAigqLOgPHixVLH3j67Cnr5YYYEzFN3DnesFysWC6XHLZ7nl9dUgzsr6+ZfIOYjLPQtgtSP/L0yWOWjQUfMRJpZQCfcVEvuiSdXG3oMM7TJyGLagN8aHAu0O+usBZ8sKQ44h2sQ1BXhIGm6ygJQtfpiTjq4rYKHY+354wUXlosOe4anj99QgmCsy2WQH8YeeX0jOubLaUU5TmlUIpjGQIvbZaUkOgPcHj/q3wtFw6HgbDseH5+zdI2FBGakpAktK4jeFE9iwu88sp9zs+fEInY4Fi1gTH23D9aM/QDOFhu1hyv11z0PZ/+po+zffaYR+fPmUKitQ5bM2BSKWyWS1rvWK/WPHn6jMkUikvk6Yp7p0esfaYMW45swTUNlzc7Vh2qCTEOSYU2NEhJtC4gfYLWcz3sOdvc42Sx1lOvL7dW9ZwCvulojaFbrFUgnAYWbcuhP7BedITQUEphGgacb+ialsvzC0IT2KyOWC9aHj97QsqJRbfg6bNnrBZLlqsNSSKrTUuTIJbMRCJOidWio0SFh1NOunA0jkZDW+iHgXfee6TWxTzx4N6rjDEyjBNPz5+xP+xYdC1GEm+/8zW61YZ7Ry3XNzcUDwVPjGB8Q8oO6wJFAk0T9ERdMm989Qt0Rlisl5w/u1DxtXiCNTx59g5ds+RoFVh0hWncsliuCc6y6RrWH3qFdeMZdzteO97w0t1TLrY7doca+JVH2mBIaeB4uaE/RIXUS6Jxhvv3H/Lkck/GEsyC50/O+X/+9H8F+wu+8KUvMyTD8cNX+OLrn2N7d+I/+si3sJsmnCu0JITAziyZuo7lYomNI88fvcvbj97XNGUxDDcHrF3yzs1T/l9vfRFbIi9tr/nO3/57+EJs6IPgcw33m8UNIrezYlC+gjxplHwbOlIRYpmgCDGNOihaw8VVT2M9VsZKgbZYpyozU91pzi6UJjYe73yl4aq+ZI6Cz/rDi1XKxweLsQVkxJiMWEesicuuUWTF2tkFppksBdWulVSIMX3Awlz7awRyLjQ+YK1mtVBzanJKGFEqx1mq9gVUB5Mptb8KLCITKU8Y0VDCLBakuhKrhqqkRElZnYYVfUo5qRmgUt1FM/t1zCoHjZSoQntbBesJxzQVjFmyT6IUzsW15rcUgw+eXCYO46TDhdPPZk6UznnSoLRZfW8UxSQXBc/qeOCsx/qAEjBavGhJeK96FimxDg+q9SAbxDU40+JcoRjV9OQy161ocaR3Db5oxUIukJMn517lD6bgbIZ6GIpZ7eyWQusLjoQ3nlIWjFHRFKk2aP2cHMar9m+Kc8eOXm9rFX1Waq5BO1BaxFicdwQOX/ce/w0PKD/8wz/MD//wD/8bv6dtW1566aV/5X/7whe+wE//9E/zC7/wC/z23/7bAfhrf+2v8SM/8iP85b/8l3n55Ze/7vdybA+UnDC+wTYNhoHHj96jawJpGuh8oAwDiyZgAgzDnpvLPbnxlDToB4zBm0JnLL519OOEZGE8HFQMmAqrrmW9XLC7uaFEQ9c0mooook4W73DOs2gaTOMY0sg0DhgRVqs1q27FsN/inOXsaM2iWzCME8M0sOw6ttsrLrdXyJTwVnUvzdGaKU1oYJHG2su0w7QBazIB6ELDcrUhdB2n65NqN0xcXJ5jg2dISRNu48QQEynvsdnysdc+xKPHT0jAzox87OGHeWV9xK7f8ezyOQ/unXG8POJmv2e9WvLS2RnvvvMOyUExB5abNR44Xq9ozcCzmwuEgRJHFt7Sb58Tapy8Ee0XKRh8HLg5v8G2LcvNgvx8y9B6XNMQMpjgKc4QR2G9OSWniZwngoEhC9Yk3nnrK7XhFqwVvAQma9gedizbBXdfeQUXC6umJX/tLT73pc/xyVce4iw0zmhQW4bloiONEylO2G7N+dUFJmfECHcfvIQcEru+Z7/bM5XZoVRYth1HqyVeIrmeaiyJtmlrXkSHd56jsw1daBhH7b9YLo5o2oWiZmliGvTft4slWWAvBWdbgi81TRjOTk8wVsV3KSWOjzb0w4D3jn484Dxs9zum2LPZHJEks2g6IHC4udFBZBwwSYPGJI6cbY6w1nN1c0WWXOsGNNOmqQNs0xo6GrbX10jNY7g5bBHn6A3gvSKB+4PaHFtPjhPWTLRe4+YxFkfLmBKLxtE2gjMDJfccnZ7y1uP3iM6yapccrY9YLxc8fvwIHwyUwuFwReMCq2aBpIQpE751fP6NL+Ot59Of+hT37pxweXPOveMVj66uMNbSNa0GnY0DjVcdTxBLQ6ZEofWeqRTOL2/4wpe/QDHCt37Hd3J895i//3f/Hzx/+g4pHsAWiJmF1YZhTEORTNcFVnfPcMsTpusrzp9fcnO156VXX+HXf/WzfOlzX2I3jdxIpAmWxjseP3nC7v/6f+bO9/0gvPQq0SmyJGIqTfEBt4eeYW9zhVKeVKgoou9DNECtaxuy6O/58GTNmIU3r3o6G/DiyMbh8CBOqRyUDs0ZiliMeHVmadIgGMGbBmdCdaCkmrnjlbcrghFb06oLUauSlRoxAIoAOmexIaC7U4asCcZzYJlIIkZFVwTVKVgLmRFTMuu2pWk6Lm56sgkEdHDJximCbQLYFlsmHbREKQ1rPSVLFcQr0icyaibKIoB4+n4AUcdXE3yNas+MkypjJKu0dIwj2aLFj0UFvtY5pTNcqAGbBkpWPYvTAS6Vogm2pTrGquhXnQIRYwON0WwXO2sCTYeph9B5O04l1uC1kVwyViLOqVYmZkMSd9v7VCRrlkoNu1RbtdHyzzISVMilXUpSRcIGRAYKkRJnu7tKAJxplOaxESGSJeLDgpKbmo5exdliIVusKVjXVK0ULyzaRjTaP2sPj6Fmc+WJPN183Xv8vxMNys/8zM9w//59Tk9P+b2/9/fyF/7CX+DOnTsA/NzP/RwnJye3wwnAD/7gD2Kt5ed//uf5Q3/oD/1LrzeOI+P4Qvl7c6O/4L3jBak6J2LKtyl54zhig2O9WdAWw/X1FTkLezlgG8NmHfjEw5f56jvvkRunyZ4pqo0zqYAzTj0uCK7AbrenH3qcGF4+exlqH4qGi/Vq17WGy+0VqWQVQtYbZTwc6PueKldHRNjHQbMajOXq+pqYI5PVrpJSlfUmgS2+5htoUFN/0I6fmDMRi6SEHUdijIRiSDHStQ37/Q6xhu3Q38LIGQ2NKhSePnukJwUxtMbx7PklV48vmDQMm3J+yfvvPwNrWK1XPDs/5/r6WjNLMgzbA8E7zqfMdjcSi8aP42rRYck4Dw6vLZxWN7QkGb/oiMPA1WGP9+riubs5AckMecKKAxOJcU/O8UUgHAZEEytFVEuTTeFmOBCCZ9G2eG8Zri45WWxYegs2I1Pkzffe0WbZKZGsQszb/Z65n+n65kb5dKuL0fPH77KQUAvAEptujbGWfhzoe21aTVkHcYOGlBXjWa2WjMPIYrlAClxfX9GPI2d37rJsVzRNi3GGaTI0Tcs4juQUIdfCSyLrVceuP7BcLLC20IaAKZCmkf4wEONImgxxHEglYZ0uRFfXFxxtjjndHKmj1mhd+/HRCW6/Y9W1uvGPEzSolsAYgrFI4wnOce/OHXY3Wy6utxRnVVRatFm4dZbQLrQ+furpllrzMIx9Tch0eG/19ExiERwiPV3jcDZjc8QmQ3Ad2z7y0p0H3Llzylfe/Bofe+llrndbUskcrxZ0BJz33Nzc0A83fOlrN1jTYGhYH6+5e+dlYj/SNA2OxHHwDIuW/ZTYJ623N6nw6dde5dn5JYLlyAeuUiGEBpcjbrnk4Ue/ieHxBb/rd/xWnjx9ShPWjMMFTjz3LRwfLkmnd7iOGUtiNI7nzy74v/wXX6Sfeh4uF2xWHa+//hXGKfJrv/prXO125M4RlgGXMyZlWnGUxZK9D1rch3ZpaZCdZcqphhNCEN24vNewP13XtHcs5UwTGnWIFeEwjkQbeH8YMaUQvCJ51iq9KtJjCarVMhFrgorgTUSMdl5ZpyNRMYKRhCmhOnej2kKLo4jajtVpVIcno5kbpSRKThQZaUiIsZSimT0aRAlUlxp1ELZOqYoU422AmNpWLfvR0Ccoosmy2kU0jzMquFQRnYZbavZSwaSx6jiqfsfU7A9jiNN4++eNVXtvTKjduNTfwdQcn6SWaFdTpsVDNBkngi0a1mZco/tOjgSrvTxJTHVkzZbxmgVTYyzmoT2L3ktaLRErypCIAjnr5o/NiFkoaGQM4JFcNISzZnFZK0hOBFPjB3KqzsdqVSciJWrOCQFvBzCiFQZoHpOgibhKGtXYiJL188k6lGv+zYjWcaj2xGDwttG1L48gEyb1agQxDpFALYzGlEK2+ntmqWWk5dYX9W/9+v/5gPKZz3yGH/3RH+W1117jjTfe4M/9uT/HD//wD/NzP/dzOOd4/Pgx9+/f/41vwnvOzs54/Pjxv/I1/+Jf/Iv85E/+5L/07w+DnvBhYrlouXvykEeP3iF7DT/aX2/JVlNGq/SYOSzJG8MqOHYlgtHJ0ImhMZapKJwvNW21oC4UMYW33n+b1vvauVOzFrJwnS715q0ffqIgtqa+Ym5DvpCiLaZlVmQrpClTVrtY8OopTxlxgrdqA1s3S7rFgpwS+8NeLWglsTtssdZy0+/VVnmtkKIkPbGkmFT4Wu1yAgypVBGe4IrQj3t6Z/nQ3Qfsnz1n2QSGAvs0UfoDwTr2UjhxgRIz4xQ5bK9pu46YRsByGCZaF8hWa7hLgrlwMY8TTdvRrVcM1RbqG10IG5Rq2l7vdIBrVUDc9wec8xSjvn9bwwfF2hpsBa7o9UrjRJ8z3nu219cMyx1vvjswZLUX50mzAcTq6aEUDXhKFXkN1a6uWgUNrQqLFpMzjelIZIIxnB4dcXN9DaUQmsDJ0Ql9P2GNY7Ho2Pc7fNA6gRgHFss1pyd3WK+OMEB/2GOs4+7ZKSUn9ghXwwEXHCeLjYq+Y+LVBw+4urkGiVw+vmS5XrBZNjx+dsFhGGialinqgnB0dMT19Q1Tilxtr/C+YRwGhjgipnC9u8YYVynPkTa0nJycsmg6DsNAKpk2OIZ+z+XVc4pYPvrKR8n7gfPhmpPNhqOu4/HlOf0USUlYho79bkCcIQRL2wUOg5bLOTSLxTiwRjhZdwTrefzsGSU4UpkY+5FFaBgfDThge3NF1zR84uUPE0f9bzfjRLtacnFzxcn6mIVzeIncPzlmd/0MFiu++s47HKrbaxNgEwIX44htPJ88u8sYex5dXdK2Kz7y0Vc4MsKvvPEm4FkGS9o9Z/vsTb7vd/9P+E//V3+RaerJbsXxwpJ/9Zd577/+OT7xP/2fs/3op3DjnrvHd/lH/+hnee8Lr5PwsH/OD37fb+Pu6YbP/dIv4s9Oae+cYihM/YFUEklGuiZgX/sIPLhPnzI+T8S6LjgXNM6/WaolV4QxDQzDRIultAFfDKerFfthYIixivAnMHqSnqKGHwZXEKcleELRAQS1twYDtkQNuEMF7BRUg2ZrbLqhojcWKzUoTGzdrKyG0Vk9JHhRi2+p65whIIQaA6A6tpzq32etSxCk2lcNvoj22bQNw5QxPpAEsrFY0TXRSAJnsPgqyNcAQUOrKcqlUEjaf2MMpWiEBNZRrFLstkwqEq2IlBNDFG1BNkbXa2ukajU8xi30z4vq9qS6qgRFS52xtdepEBy6L6BuGimqzrFOEBN16DRSQzQjpig1lUsiyovyRhF9DWpfmDG1zdjNaAdgQt3gfd1DNDuLenBTCW1SG3TNcDGu5q+UiAO8LfggxCyk4rFObsXSvo41uQqYg9V8qwIUIziBIknF12hdAEINGFUmIWd1TRpGypwvZSymdJXm0igFsc2/ZYr4wGzwdX/n1/n14z/+47d//23f9m18+7d/Ox//+Mf5mZ/5GX7gB37g/6vX/LN/9s/yp//0n77955ubG1599VXSFLHHGspjReh3O715JCuXa0XLA+vNyez7zon3nz9hKonQzCVrOpuHRu2yoW0Z+0MNRJKqXla1sxiws2XOeQ3UMgYPBO+1xrwk5T0V/0SSeuSPj44YDj03/aGG+mjK54N797g4v6CkOvjkouVfVmHGKBkTJ/rDnvV6QymZcZooRfDeM6akp5Wi0eMYR9NoIFqpFjo9EKvTaMqJrluwOV6x3+0ZU+Rme83ieE3KhXunZ3x0ueBXv/DrNZjLEONBHyYxmOAolSJAMh9+8AAmdRNdb7d0XUfbtYzDgb7f642bE7a8aEFFVD1/dXONMYb1esW+PxCnsfKvoM62gg+B4B1jmtTR4NT2lot2+8xBVGLhathp0qHzxFwf3gqla+u13AbFIcKUElo86AhBLXAxRSwGbw1HiyMMhtPjE467FWOKNYyqcHp6CqJZPCfHJ4xjZNGu2aw3bNYbxsOBbtFiMOxLYrnsGIYDi65T54Y1HK3XTDFqdoL37A8HmhCYhpHHl49YTkvGOJFyJviGnBNTmhRhksQwjYCjbQLjNHAY9zinNsFgNBNF0I0rOMP55TneB0pJ3L97l5urS06PT3DB8/zyisOw43RzxOhUM/Pe03P6OGJ8wHvYysjHPv4RZIjs9jc8uXwGvmXVNByvj9gfdvTTAN5xeXmBAZq2oWQheM9queTi6pIp61D7/OI5x+sjdTu0DdexZz8MOO/onGXVeMa+J1vH5uiYsum4vrygXBXEWVbLNUfOsJt6XN9z1K1Zrhz99sDH7qw4TJnPvfU2USw2dAS01K2ZIt/9qW+m5MLnvvAFcs5872d+mN/x+38/w9deJ/+Lf8pwcgTeI+GY508u+Oobb9H4RrNsFiv+7z/7L/j+H/x9fOozP06/OUL3vkLMI8E4FS7miUkMY4XExWmurDOGpmmYYwS0nqOwaVtGb2ioTjqBw3anFRnW4LzTuoQoiE3klLHG44sjuAbrDVMcSFiSdZSoZk9vHLbUtl8jFFedJ8VhCVW3AsYk1TzURmkPaCmkhWLIaQL6qkswYNV265jFlU6rMQzEpC26krUYL2VFpY1V1CYWzUoyacdcWjf36hjQaAPTAr4KMwcgayI43OpgQNc8o0d1SKMyK9bDLVKAbvDWkEjkMun7KBlrW7z1VPMKprRIHinM1mvN/yk5ahy/KWSj11BpD5jrO7KxzGkExkRymfBibmkua1sVkRtd33XrNljnKehnJJI0yr8iFlhBQ+gzVooOkGYOrSuqsxFBqhPTG8GaiBFF+ymmxgGo48pZzV4pWDTjWylGlelooFsRzWHXHBkdiILXA1wS9HnyrdqmpdzWpkDdK6k57lapM/XNO1700P/bv/6d24w/9rGPcffuXb7yla/wAz/wA7z00ks8ffr0N3xPSomLi4t/rW6lbdt/SWgLELrAdn/QWORx4Kpoil3rA8OkAqWE0LraoVLTWaUUoojmMZR8G2c/i8dy0RAp59SeHHxQtbK1t4VcuSIlTdNRolZ0G2tIldPzLugAY0wN2LIEZ/nYR17jvUfvsRuHekoQmsaTponj9Zr90JNz5nizYrffM6WIN04bXdvA4aDiXC2S09ed4lRvCFt9nurrpyic2rigTh5jaBq16/qoC0NJkXXbcmez4cn5Mw7DXh+eoqF3iUIJlsY2jGOvfnfRIq04RQLKQ19dXGANdMsFmExMPcP2UMV3MJbINOaqHXEYERXXFQ0DE4TtXhcp0AHBoAPh0WrNNCXiNDHHcOdaDRC8p3OeoR8w3pLINUlXhaDqlNLyL7Ud1muIoW0avNXPNoSawFK7LoIPLFodLLS8zjJOE6lkvHdMaWI6HDgcBpaLlTYxD1PNDoDjo2OON0dMXVdFgYnDYU+cRqy1DEOP944PvfIKfd/Tb3e0bYcLnvPzc5DCYtHiu0A/DeSSSUlTLF3wSpu5OZ9CT3dN06r40EAT2roYGh1ahgETArH+bs462tCwu9mx6FYsuobzi3OMCP1woAkOQ+G1V1/j7XeFtj9A69nt96zF4w4jd09OePewo7Ue4x33T05ofaDEUWFzhNB2DOOg91+BlAujtTW23HHnzl1eOrtHv98TS6afBqy3NPXgsFks8AZs1+K8Y7u9Zp8i3hs+9KEP8bVH7xK84Xi5ZEojr969S2cD7z1+n5gLx90GSsQ6yy4VxlhwriUYwxd/7Vf4n/0P/gBf/NKXuLm6Yr0+5s5Lr9CGwO6VD9H8D/8wAy1unHBtw6/8i19kf7kjtRpyl4aRxdnLrD79bdy4wLjdYWrZoYjGsWdTSF51Hb5o55LLUpsXCtM0zECqSkFcIE1KEydTO3owOC+srSenqOLqVcf1rmcfoQ0dpSTazjH0O3zRpNQpFnISVr4h5cJeIq33qqkgY9KkPSsoeihp0vh5NFhOn3XRTcYJVgq5WHTbKHVzdCCBInWYUvhDh3bAtUtytmAyySiNTs0RSVKQlLjt960HCHUWanaVZ6n2V6H2PXkoGrBY0BZ0RSGM0ivon9X0VKfUikw4RgyFnC0lW7AWZzX7yBhbqaEdJk9YG5DUAhaK1UGirh2WWp1h68ETqdbcilyj7iKZL6jMpYE6hGQqw2Ed1mlgIlLFqklb5v0sQJ7/kqKNzFIwtqakC2QUpVCdkVqYC1oAKHWN8ybcXqu6ANbMmoLkFp2+9DpLFUKrrliTv9TWPb0YmOrBzhmn4mdTSKmGP5oa/ljqvVx1OKXKHeaWepu+vtkB/hsYUN59913Oz895+PAhAL/jd/wOrq6u+KVf+iW+67u+C4B/9I/+EaUUvud7vucbeu2X792n70cOhwM4GHLEtQ3H6w3jk6f4eoJ+cO8BOSWeXZ5jrcHWBwF0gNDJviaMGvWF5xJBVABlDaSYKFY5tCwv2mTXywX7my1zz4J1mkNisDTW3eYD2OAZ+p7Pff5zSguZCq+im+3QD/g5DtvpA+udpVssKVNmkqw6EF9PQKI15j4Eff16Z83R1EKFLhHGNNYOCRiHAec8wVmaJjDlxMMHD7l7fMqrLz/kc1/+PMMUeef5Y94qBdt4gjhevvOQ19/6KotOqa9SVLRXUmS+yUdJDFstJusPvcZOY/DtiwWmGKMhWail0ntddMNcZGZ10tfiywKxMI4j69VKOymmVIPTFBkax4EHDz/E3TPHo8ePtdU1Z7IovTPbOLXAzOKtZ7HsWC5a8hTVtrxaczgcSDlpoVnbsVouWa/W5JS4vtnWTcKzXCwYp4Gubdntd5QCOXuGQTURpqilcxp7Bu85HA56vUrCh0Df9zRNoAkrnLNcXlwyTRNd26jGp56qS4kcdjta22n7qi/QoGhRgdXqmGE4MI5jvRcDzlqarsNPnrZZYI1juewwDt559B6xZMYxcXzvjEUN1Drs90jJHPY9wTcUY5li5MnzZ0hOnF8+Y3X3DmOZuNss+dSrHyUPiQ9/5FVe//KXOF1vuP/gAY+ePVO3jrXkONE4y6EfOLqrQ8tuOJBECF3LYrFASuakXfPJVz/K8+fP2e339FHv0+P1CYnMmCayZLZ9z0v37uONZb/rGaPSG0/efx9j4PT0BBlHTCycnW4oufCJ1z7OkydPGYaRzaJlkxMPTpe88/gCB3QSsP2eb/0tn+Kv/m//M4z3NCcbtuOef/KP/wmf/vbvwObCvjyH4Lh6vOP1//qXsQ6Gfg9GyAV+63d+J/dfesh+ijjX1jC+iOonMotS8CYSy5zvMWHSRK42zLnawTmvIVhZLcSnzYJXHjzgy4/epgktZ50nGGi7hqPlktAE8p1jvvz4CTf7PXePVowSuZGoSFVJvHZyxsOzu7x09x5X22t208QX33qT6zSwcA4nQlPh+lQmsvEaxlcMJWu/Fxi8iZXkKHX4V8QSazWXQwJGGkB/d83dKLdOIYrXDrOcAEfx+oyaoutvrqJLa5XSNvXAjUAuBsycwVqIueDwlFINskazrESqgNNrN4zL6lTJZULyntt+HBuQrAWeVnSQFCKSlJ5sHDgm2iYSJWCK1eFLTK00yBVJmcvyBIzWT8zvw9j8gaFJPxtFbs2Lg0U9oGldctZAM5ProDAiNmtLdLVkpxwRB61pMaIIoKmVLgVFY6x1eAIl6xo7kTV/yoAxGlxIbSwG1fA5I/hqZsgCBouRFlNztXSvMyC6NmUsXplIzKypsRpul9EcHGN1nbUVQdQBrRoKrNHw06/z6xseUHa7HV/5yldu//lrX/sav/Irv8LZ2RlnZ2f85E/+JD/2Yz/GSy+9xBtvvMGf+TN/hk984hP80A/9EADf8i3fwmc+8xn+xJ/4E/yNv/E3iDHyEz/xE/z4j//4N+TgAXjn3Xe4c+cOn/7Wb+G9R++xP3/CoS/0h74q7w1d23FxcakFfFYjkVNU2gbUllUqZ2oLLyZ4XjS/WGuqs0I3WFcLrKwx3FxfYTAslh0A2/2eUgRXKv9b0ZbYq/9+KOk2Zlk1WYXNasXd0ztcXVyQozDlyNV2RAROlmt2cagw44sBxDkVY80NpnPvRm1aqPym5pmouDWrwMlbCnpjx2lArOPx0yf0uy3T0NN4TzHCar3i3p37vPPeu+QsvPvuu4RWT2IiQtsETs9OOX9+TkoRlwurbsGdoxMePXnEq6+8yuHqhnt37/HOo3cppdCFluWyY7vbIga6rlMu1VpytWTnLIS20TRchLZt8M5rO+44apuzVEi1IizvPH6X1XKN9Y5h7LFeoe44xQoD1+Gi6Xjl5Ze5vr5mu7tWQetiiQ+OkhNHRxsMlhgjMY48f/ZMhc7jwL2zu6y7Vq2/KTNF5eK1+TzhveGw37JarIhx5HDYkqaJaYp0Xcc0jYzTyFhRoJxOiClx2O/ZbDacX10gYmlCYLFYaniaFdq2Y4wjN7trpNozc86UXFivFoRg2O72OGPp2o7GNyyaDoPDe0cXGrb9jtPjE4Yp0tv+tkyv34+sliu8d4zTwDhNLJyKNGOaoHXIWLi5ucGK4/HllvPhLU5s4Evvv8l+6jEFmvNAEzzX1zcYYLlYEvPEar1iHLT3ZdG0FAMWjymFb/r4x3nzq1/j/MmTWdKn5WRjpDOe01ce8u6j9/Bt4Gp3w/vPnlDGxPLoiI89fMDhZksaeta+xYiwP2w52ixZLRq2+xvy1HN2tKQPhTgJQ3FInPjmh2csF8f8s5/95/zHP/yDtJs1v/Krn2W5WLBYLfi+3/VdPLm84PXP/Tz3X/04JydHmJj5pZ/9J8huy2TybbZPe3TEd3/3t/NbHpxyEwfOtzccN0uWm7s8u7xmdxgYJCLSE6xFkuBCIZuJ4PRw0rimJobqYH68Vn7+E698CCeGZ35i0TpCHLj34B77/sDz7RO8FFbLDXd84ls/+Rr77YHHV5esj45oPWy6lo9/+KMsgg6HLSPH6wb38h2e70cub26ITijOEUuqEeTaLTO33RozC+stKRuKqChcE2C1V0WM1yFLRqVPXIOVhrm7yhjNgiolE3yLzQetGjAaDpmLDjKN1WdL+5NqEzgqDsZ4SlINhFQEwFuruTsfWK+N0bh1ZwMikZwOKvzFU0pbk3EdOMFbtTRnURRIrIeSSKIFiiYJmFTXGqU6EZUK2GqzVTltRZrqeuSc6g5LjmAs1rUY5zTFt65FpWRMniBHsIpipGyg2PrZF0xWmkwEYg1Bk4Lava0WPN7SSzVUs4jKWLxX1CsVRyyCrwnBuj80WGkraqL7ytxZleeQvhqVrxuOxdhWXTsOSp7IKKVjqKmyRsimgFiCc7W8EIwpBKrTte6xKQ2kqf+69/hveED5xV/8Rb7/+7//9p9nbcgf+SN/hL/+1/86v/Zrv8ZP/dRPcXV1xcsvv8zv+32/jz//5//8b6Bo/tbf+lv8xE/8BD/wAz9wG9T2V//qX/1G3wpDmnh2c8XF536VBsuyWXAYDkrlVHRCSlaIzmiITY5q4dJpr6g1t/ah2DqU5JyVW0VP+TFOFRbTzplcAm2jIiwQUsmMuwlyuYUDKYW27ZR+qXrY0KgCX5LSBKUUbAgM48izZ8/IMYKr1j+nLZPXl9e4JiApqQjXqo7GfgAdyFnf/4zIzG27krWfpsxNyehJXjUb4Kxl2Tb0hwOXu0jKidA2OOM561bE/kDXeZoQWLVLbvYHTk9OuLg453q348mjJ6hmXEOx+jhpCqoxDP1ABp5eXxCNPjmplnZp75G+b4MOhWLA+aBirElRmDn6fZpGHty5izewWCx5fnVFaFqGYeRk0XG5vaGUwp2jYy7OE8Xpewres1osGacJHwKtD2yvr9ntb5hypHhhyCPjTdSFdK85DkerDSa0qiWq17MgXO+2tG3LIUXWR2tAuL6+JjtoGn+bW5BS4vr6hjund7DWsN/v8I1lnPZcXl2CQCkT3qtmZPf4htVmjRU9SZesKZyXl5fshy390NcgvReFZs7A/qBBT22z4P69l1gtNwSrFsqUE2kaOX/+RIPYmsCmOqgomd1+iwUWi4Znz57Rx5GjoyO8VRRks1oyDolD2XPn6IhYT7aHfc92GvFW2DQNJSuUHppAY3T4LyXhQuBmt2WKmdYHNosVbdNw9+wu0zTy3nvvMeTIfhqQ6pA6Pj0hN5Gnl5dMBY42a6ZpJE0jsRR88AzTyM07b3Pn9JR2ofTR48ePWLUtgmE39NqU7ALFWLIPrBcrivfs91vivufp1WN+/p//HP/j/9GP8va776k93HtOjo6I/Tn3jiyvfO+3EMeMbwu//tl3eOtXf11pjljIVsjWcf/4Dh+6c8xh/5yFb/juj36Yrg187dG73F1Z2mJoV6d07g5Hq46b3RVXl5dMbsViudCsDudYtq1SiONA13YEH3jv/XewIpytllhjWCyWWAuHgzrovHUYU7i7WbHbPudqv+VktaRpWg7Dgf1+yxe+8kW64DlarhShlMLCOz5+74zxzhFPrq55dn2DGE8UmGr6rLbUOnJFBzSV11eJm6LDhgVYzewwFkJjMZJBRooVcio4sXiTMTYRuo7DoSeYBEmrIaK4W7o11qwq65vbTVOMYLJgiZr94jTFOYsFNGRMZtEIoDkpmakGUwabcHJAazmWJBOoBh/IkRRz3YRT7QOrxgbjgK7SyVKbn6kupEqYGFcDywqQKcUo5ZR1bXPW19DCGiCX97e0izUQyASrLb9ZHMlYxHSqJ2EW2KBUTy7V4WBJTvWEHqVJ59/HZXWEZaMaTFUg1F4vjfQGjLokEWCgYSSLI4oliwMXMALFVNeWGJwVRbDKhIma9oto51PKYGqvF1VzYkRdnADFgtSKhNssGBG8zV/3Hv8NDyi/5/f8nttT/L/q6+///b//b32Ns7OzbziU7V/3ZY1h0bQ0TvsAlm3L08vzWwWyQbsfsK6G8eiHaNHp2TqrGhGMlnchOGdqc7D8BnQCU3nNMneyqDXVo2iNbTT9sW0a2qAwmXEa8+y8Y5gmLd2jIjW1y8UYPbG6eprx3t1Wcq+Pj3j1lVcYDj3vPX5EzImYEymrUHTse9oQcEY1Ejaoyly7ILQM3WjEIAaL854029tM1XpU4TBW/zdYT3TCze4G6yzLbsHF8+dKV6UFUxy5c3wEBa63O3y7Ypw0pfH85pwshafPzzEYtF5aUSgnmYubq1thsCkKGUvRAaVdeLwYtrtJIWYsi7bF2Y5luyAPat9bbJbcPb7P2fqYpUQ++8brnN5/wIcffogvT59jOx2Ikoh5ZBhVj+GsZUwDh2nHMI0Y67VgEH2gu7AgThNd0/Hs+TMWq4U6BkSRnt1+j3cB7/WvmKL2ejhPCIGuW2KKp230BDxNA5fXz1ktVwzTwO7yBu8dp6dnbLdbnHN0ixaNsQ5KJ8W6uJTM84snXG0vmeIBsY6T7oz97oqzO3e0vsFmbq6vMdbxyU9+gjub+1xcXrNcr1gvl7z37ttcXp0zxgkfPHHccnx8hHWF/X7Lcrkii/D84oJtvyPmjB8Cm4UOWqUUpjwyDAesNSw3K5ZNhyuZm0Mk5sQiLIhWr6EPgWmKBK+nxev9jpShadXF0zSqf7nZ7Tjs9hgsy80Rl/2OZbtU4WTMfNNrH+Pxo/e5urlmXC3ohwNd2+JiBmt56e493n/yHsOwY+EaXn35Fa6ubmhDoO8HrXZwnmHo6YeeB3fvYrDqfgHOL69Yrk751Ld8mvOrLV977xnXNwM5J9bHG0ITGFPCSOL4+Jin753zz/7e3+N4s+Ti5oauaYkpcthfc+dsTbdo2fc3rMTw5OlTkmQSiZISJ+slh6knJmFfeo5XLYytIprF4BcLnHWcnZ1xeXmOo8F7x3q9xHuLFGi6huvtFi9C7gfOVguaJqheowhjHiulZpjywMq2PDg5o1hD3+/JJZNj5tAPhCZAzrgghFQ4WQYad0TMhnFKDLkwlsx+nLQZGk/Bq1tEsi4YxmrmBhqCtvCFgNIo1hva0BBjJoXCom0had1B2wYejxP9pKd0MfXE7gJigzal43Rdq4iItWDLRE5K8TinQndtDtR12VlFF4zApkksG+Fqu2dME5J6nFPLdiKT0h6L0rQxTRhTcEaTa7NtQSziTBX6mrrpVpTHoEcx0X2iUCmaomJSXLjVfAmWmJVSVg2bRXLQdgBAYlT03Ak2iwaYudpOLw7tQgLIteKg5s3Uvp+5Q0vmwWFOxzUGYzziwosyi6KCW7KmjOcsGKsoTRKDWIfxLSqF1s9UywBQFKwWVorkSrPZGvug+TO4ikoVtatbkzEkpESc6GeWjA5+lFqaWOLXvb//5u7iEWG5WNK1LdfX11W/oXHoxjvVhFi9SElq46IxlFq3Tr3hXY2ILm6+yKo5URLoBXxnrXJqXdPV0rdq5/Lav2CtoetWKmBKiWEclcOzFlM9rSWl25Zd7QTRwLFSFAb1MzJSleHDOPDWm2+yWa/56Ic/whfe+DKLdkFoGrbbHR955VU23ZKbm2uenT8jJ4Vo0zjShFa5zpTIRs1yLlKRFyhWmNCm06ZptG8lJoTMRXW/LFzLcrHE3fc8uPuAZ8+f8tqHPkKME5vliuA9j5895fll5pUPfYyLiwukFNabFY8ePyZLYZoSkjWuuanuJ4NqaJhPKBaGfofD4LzltY99gqvLSyRmGh/oU+al+/c5WrR87dE7LJqOdx+/QzCFfhjY9D2f//yvM5aBoYyayhkcuQwcDj3G1hItKgqFIYQWY4QctbuocZ4mNJycnLBYtoq8WMc0RpxXS7kUYb1ccX59jjWGrlOkJcaJ4GtYkbXE1LPbj3jvyBWFOzt9QNt0BOfp+57ryytKEfpehdEnJ6c0PvD8+VMur87Z9Vu6rkGs4aWHD3n3zR0XlxcY61i2CyAwThNf+NIXefn+lo+8/BrjNPKVd79EiiPDqHbjUBoOhz2XF+ccH5+yWa/Y7/es12v2+z1taHAuMwwD25stbWi5f+8eh8OWtmloFh3jNHLYKTrZjwNijSJXotbPYRhJkmmcJ/gGPyEAAQAASURBVFjHarGkW3Q8fPCQq8tLfS8p8uDBS3Rty3a349n1JcvVgnF3YLVYsr254fXXv4JzjsM4qCvHG1ahJViHCYHh0FOKameO72oi8zj0nB5tOGy3WGfpFgtSzhwdbXj89AmN9/imw3vPenMEGK6vLnnjizd86lu/E+cCgx1pW4fLI9ZAaxvefuNNzt+/5Pu/93v5lm/7Lfzn/7uf4tnTc1LJ/Ae/+3t4+MpdbB5pvGezXrFqOvCW/XigP+xZNBpTnlJERHj6+JI7Z2e0reZoXF1ds9kcs9tuGfuB0Hic0+dgtVix2+0ZDwlJEbqgDrc4YkejLcLWI6KdQs43Gqi3veFgdizWC6TqYJ5vrxFnScMeUsbutzRWLbEn6w39NNFYOHGBwzhw1jRgPZe7HX3OjEUFj6aaDTqnwklHYdUEbE4MOZMxtAQ6H9jFA0O/xZtCjoIJHhMSy3bBlAxTNnQmVFrHILGnGMFbh2TtKyqpFj0areeQWqAYi2CYaLxanY3tVVc4Dpzdvccw9AgjLqirSFDEsXVJo+tTbb42FmMSYhtK1FoNk2tIWhmrS8fRNC1SMjFBs1jSUWiahl2f6UsGJ5gU8Qh5yoh3ehA1Wq8gGcTqYcQYQ64FtC6prqSI5qeAmjgMhVoKXAdCdV05q86dManOyJqq4YkjwRu8GTRmX5S7Mjao/tYYDC14j2lUm2PFU4rR4D5UtqA6RsHP8gZDLZWl0jSmFoeiKDCqdTQUrNEcMim3bnlyTDgb6NoVMSWmPOCMgPl3GHX/36avEALjOOC9JzSNLgS1W6QJgYlqnfIWK0KMUS23VvUkUONRqkc7lTyzjZUSEWZrsl543eyD14VHRVt6sgNDTIUUVXhZinae+KCCsuPNsbK3KXGz2946hoQXPKylNl2a6iq63crh6vqa7eFA2zQYo1P8qw8fUqbMqx99yNeGg06wThXm3mp42e5wUKGvd4xj4uz0lPvHp7zz9lscn57w7OKi0lr1s7La/xBTVIolqXtm0S04W5+yMJ7dfscX3n6L9WbD8XpDjiP375yxbBY8/OS38vrrn+fm4hnLRaCrC62zjqP1mmEYePjSfZ49e6K6C6P0iSk6NOGUknrzrTc425zxzd/8aVrfchh2PH70Hinu2A0HTlPk/p0jnjx+l+wjT3bPKCkhqWB8SwiW/rAFo6iLulv0ZOLE1+s1QT159ENPcp40ZY43G25ubsil0DYtZCFbYYqTDnsls+gWHA57dvsdUgp937NerFkul1A00nu9XrPd7pimyLJbaAdSUWqx61qmOHB9fc0wjbjRspg6Spm4uH5O2wVss2Y/DMQh8vkvfpam6ofi2HO6OeG1j34Tjx+9x5Pz93n3yVtslisWfsmrr7zCYdixfesN9oc9r330PndOTnj2/Kk60VLEO6uhXlWLFbzHAzFOJImcXz6DUuinyGHs+ZZPfQs355canmY9U0kUI6yPN+SY2W13lYbKfOrT34YRePb0GduLS8b+AN6SU+Lx4/dZth3OO443GxZNYDIe6zzdasnzi3PdPJxRFGJxzL2TU7z1vP3oPZK1WGs5Wp8hWP3c12ukZF5++BLOeb729jtKOXUtOMOQJ9rsubk58PjxMz708qt0XQdNyz/7+X/Of+8/+QP8nf/T/4Gj1QLftmxK4eL957TJ8V2f/g6Ojo74e//gv+T3/8H/mP2u582vvsH3f//vZoo7Li+fszk5pqSJ5dFGab6S8IvCer3WHhUjHG9WnB0fsVoueX7+HDGG9WrJZrlgt9/RdJ5D32M9jP3AfncDWE5OT7C2UaE7heAt/TjVVl0NGxtzwRdLaFpEMt4HckxYb+lCQFygjxOlRrtnKaRkMCUz3lxTcqLtWgKWs82CXd9jHRyvTxmGEdc07Pcjl/sB4xz3ukC7CFzeXHG0WnAYLDk5JBb93UPLggbnGnIZKGnk/Po5WYQmRLpcOGo7usWam6Gw7XVI0RW3VIFtdXpJLXfNk6JjNqAlgwFSpHWWXJJ2vQDvvHtOFCH4rq7Rit4qGl4D41TtWn+mx3nH6eqI3W7Hxz/yKk8unrEfEyFllk3ANJau6dTOb2Cz6Lg+9NzkHUfdimGI4DxTiioELYUcM7FkXKPUWJCJVFuNA0Fbpa3TULYaTw+WYKnuvEnrAkTDL21thVc3mMZeOKMdNwQNsHOlGjzQQ3PCIjZgbVBbshhy1qwYcZoW3HhFfnT4m0CSCoPRzirrAlQ6seQaQiqCqfXMJWcdvIqW0jrv1exgoIiW9caiRooinlxD6b7er9/UA8o4DFjnub6+ftGWaZSuGYZBUwKNIRpTE1lVdVyqPVcnZeUUS01cnV9HB4M6NVpf7V5KzQxRE0BdTSpUXlZFWqo81wsSGj3hFClsD1vIhUXTsuhaDlOvFIzR96x/rzeKFXOLvFhnNWBM0EWqUk77/Q7vPXGMfO6LX2AY9zRdyyQZ4xweW5MntSiqW3akphCMYxhHfAjVAQK5JCiFLnSM/VD5YMhY2rbjsN9zfn7O+eUFrXHcOTsltA33Htxnf3XNYewpY8+UM8/Pn+AaRYzaNpDixJ3TU/rDgaHveenhS+QYGYex8swAthaW6Q3tqiV7f7jhc1/8LF3omMY91gdKH4ll5NBfM1zsGKbEol2wOdowDnuub65x1iFF7cXGaWqkMVYt5UDbLDk6Ouby+gJNq9L8m7btaG3Qcq8Rck7s94ll2+FdoN8eCE67ZUrRgXaaRlaLBaXoSaQUIU4Tbdvw5Oljum5BypEyqiPm6vqafug5PT3hZntDLon1ek3bOQ79lpwT/binDIlMItf4aiEyRKnDa+HZ+VOWizX3T0443DznetxTTGZzvOHQ73n9rTfY9luSiTw7f6JIUBlZhhVg2GzWxBg59Aes99V9VvBOofVcEou2gyJ0yyWX58/5Pd/7H7Lfbnn7yXv8+hc/zyEO7Ha7aps0dfiC11//Cm0IrNcbpRFLJk9RDw1xoN/v8CHgQwAa2rZhnNSq3zQNd++ccX55peFSYtgsVuRcWDYqRFdXlHL9PrSkOPDk+VO8DzShoRjh+PQEEeHy8gIX1JZ6eXHJL/3CL/LKH3iF7/u+/5DdYSAH+Nl/+A85Wm04Xq7wGfp94up8z3tvPebnd7/Md/22b+ebX/sYX3znHYxYTo7WvPnGV/jUpz/J+nhVLeATzhnGoacLnsXiSJG91ZJDf8AITOPIzc01MWe6JrBYrMg5slh2XGwH9lOPD452sVCN2xTJObFYtJR9ZEyJ5XJJFzpEDLvdjpP1McOUGMdI5zuyySQKjfPamWMMTRs42RyrEwRhd9gpOpIiZehpvGOk0PkIg7rzFk1DTiP3jpbc7K54ebPgzskRj68uiXHE2Y6UE08vzjXbxagarU97rvsbjLG8cvcOhylzyAnjPF3Rk3YkU+LAbhzwfsnKOUZrSTFTUuGVhy9xfXnOlAacg2A1JZtQIwHMbInNWKYaqw6puuXEQsra3WOsJRd11CTxWOPJKeFdgxFoXMGUgRIPrIPh5uoZrRNGm2gXDY1rcG1AUmTReoZxZD9ExqnnOABmIEpPyk41N15dlc4VNuslw9Ar0pEjZ4uOmBPXu2vEN6pRkYy1WgwoRSUGJYN3FmMKRjJFFZN4Mdqfg2aSNN4SvGPoI00biLHnaL0hxcQ0jbiwgOB5vjuorME4pYyMaEq0QCkjmjandJVG8EsdZiMpaxu1ajZrXUEtxEVmKq5BnGIpqeatFAwmBCyFkqRSXdrHM8X/Pwa1/Tf55byCUVqtrboQ5zWIJ8ZI8NoQnGPUTUU0CMsYPZ2RUejQCsY6xmmkTi91iqeGe1U1i6nUSI6slktSPVErpKXDjOpUbG0iVedMlqwV8CmTc8I7T4qRUoTQNJV/pIpd9ZTsLCTJqrxOKi61dnbfFayH6+0lxjpinjTlr548Uk46+c68bc6Muz1np/c49D3nh532Dg0HQLMFUiq88vJDLi8vOb+8IPigwmYD1huME677c2w2XO0vGKbI61/5MgHNGhhTZDfog1BKwThPmzP9Yc+D+/cxFG5utrz99pu39FgIAdsESgZnBGcNJiYVj44a1ma8cHHzFOsdq6aFaLCSee/RO5jgaFyDLbBsF/T7G7XLxRHrl6xXRxpa5tHsF9/QhYbNeo1zRpGORgVeKUa208jk9Xf2wdMPPa88fAVn4Mn5UxbLBf1h5PL6Eiis66K/H3ra0KogdjiQo0bApzyRJXJ8fMJut+Pd958y5ZHN+ogoE/thR4wj+/6Gp/WktOiWYBSt0evcsukWbA/XON/W7JqMX1vef/wWF2K1jbtkfuXXfpk7p+9SKPTjgWwKYoXr/fXtPRSjhno1TUPKiTFOmFvNkg7QiNThVT8jnGEaBr785S8yjRPFahJpSQXj68nXGr75tU+yu7nhMAwU63h6fo4Ai+USlxOpJKY4VWRqyRgj0/UVy7ajIPRXO5omcLjZYlPhaLFi2S4ZDhMimZOjY27229pTUmhCA84y9YXV5pjDcODi5prTkzNyVo3OerXBNeosePvtN7m6uuLRo/f55k9+kuOjNX/vv/y/sX/0Nv+d7/udhFWj0eF+xTgIX379a9y/f5evvvUW3/1t387v/R2/kyfPz3l28ZxDv+ONN77CZ37oM1gHh8OOtgs0QbM4ppLZbrcsFguWiyVtE7i6Gog5k0rmzskDphi5uLokGeGm3xEpXO32BD8SvCMlrSNIWQvzYhGuhgFjLItugWuC6gREeHj/PsfrI55dXBAWHSUn3nv3HbxTvcSq6wjGEhpHCJ7T5ZpTo83jl7sth5wZc4KU8caxG0aa4IkpkYrl7tkx77/7NQ5pxBnHbl/LJr2wCC05a9bGkDLOGeLYc3lzgRhDPCgakIzBJKc2V9FnbBx7cIFgPCFY7Xu6vsZRaIPD2sLU96RSdK2w6pyRrO3IxhlS0foLTME57cfRMDVT64A0myYbELGYWvbXecPdOxuGQdN8h/2Bfq/UdeNb+jiw9A0La1kfbdhNey53N+oKy8JYwE0aqW/KhPeO4AqdKUhMHHmPtT1ZMou245Mv3+PRk6ecvXKPm37k6tDj6nZeSqxhaap7y5O6MK3VoU5yIRdDIeEdYA1jLEwRHYzHAWct1jrGww3Hmw05TViEB4vCtodd9lCpQMkJQ1ZhsutUEyMTxZTq5AGq6BXURl3QOAOjQpKaH9NoZ5OxlJI0TDJYDQ5VNQ7YpKYNSYBGXHy9X0b+TYrX/5Z+3dzccHx8zJ/7X/+ntF1XveeW9Ua5dVsj6M9Oz1gtFuSY1DZ6eaHaFCl888c/iRfLl17/EqatJWMF4qQFTap6fmHrNZXqKaWw6VaM40iqA0ihCmiLim5nODHVdmBrVRVtUSuoBqFFPvnaJ/jqG28wlqTuHbRavRR13cwWZSuKoFiVUCNZ0SA1uDusGDS7GqToe3QzjSWaF9KGQM5F0QVqr4XT7qEmaMFazlETcb1qV443G3KcuLq51HAwhLZdgMAUFakJTcvHPvxRPvfZz5JL4WijsPbusCeWSMkJKXoyFrL690UHw1QSzgW8axgOB53srdOFx1pWyxXWwnZ3gzMBrCfnSRGuZIAIOTGJ5gB4b5GYEbGE0FLIjGnAV9FySaowv03UNRrn7JzXxueSWbRLcl1kl4sVm9UaI5mvvv0mi/URq+WKm6tLrWq3npQnbIE7Z3fZ3qhSf7lccnS84fLqOUPfI8A4av5JTInNZnOroyhVFOv8bGXUYLgYJ6zTLIpXH7zE4/P3SMVzenLExeU5y+UxwTqOjo54fn5BGkd1SpVUQ6EgtAsd2ItoeGE/sF5tqkgwKj0lhbZTQXAuhRBaDsPAFCPeex6c3eHy5poUIyaWW+j2eL3hejooXGwV4/nIvYdM08T5zRVt22Ix3GxvOD46ARGl0dBStRDUMdBaz8MHD2nblmfnzxmHgdVyxdHmhBQj1npSzkzjAAjdcsFh2FOiUgm7cWKzXLNetFxfX+G8ipadU0ViipqbE9PAL/6LX+WXf+nzfOLj38x3ftd3Yq3jfuf4P/4X/3t+7fU3+QP/yX+frl2yaBb8+q98js4EwjLw/OaSm+dXfOmLX8I3gd/5fb+Tb/+OT/PhV15ms1xijOC85h+VXGjajqvtFmMNi8UCgGXTMsWJm8OWflLaTgw0i463H72r2UfW4p0m/+YP/M7OWpKRar5Vt4SkSaMUot5PH//QRzldnbCbJpKxXJxfsFktmFLkc1/5EqcnJ1ovUDLb3Q0imePVklW34GK3YxsVIUAMY4ykoidmLzV7DYtvVfOEKC3aBkfXeJat5nwY5zj0E6FpsRSubq6xznPv7AFjHHn/8qkGfRnNLy05k8SRCZSkPTdYRVGLeKJYGhP5+KsvYUvi/WeXHLLWmKhGzxJF0RFLwUnUhN0C3qhGIptZYFowtVAwOEUANP7/QEGtuj4EXeOcZ9UtaboGmx0X1zekFBklUpwiRTkLKUm1DRfNcanopndWaaSSFWXHUHIhRbXch+WaIeYXadpGjQyzaUIKCJo0XUqhSKpaRX2tlHKtbzGKsORIV4MVhzjRhQZnhCZ4Fl3DiW8R75noON9mtn0klYmYR6QEMK2K/21CZCDX+4yKOCvKb4CiAX6SNS+n7k+F6jyVQq4oKlaj/+f82tkBZV1g7Hv+sz/3v+D6+pqjo6N/417/mxpBmSu9tf8EsIau69SmaWG/v2G/vabrFhx2W6yFqCUxPHv2lDROGtc+aVx0TQdTnYqrcexFqo5BBa1SdDGySZ0xznuQ2jGARg4DGmDjjDoiUmbRNMSUsdYwZXUUXF5esl5vyPsbfTirBXeme3KNdJdKQ4CpF9neiqSoKYVqKytUqxJFclX6K6o05sqPzihM0o2l6zr6flBdi5sDj2C5WnJ1eY4PTiH/rCmQcbcFYLPaYI0jp8z+Zsvp6Qnr1TH37t7hs5/7VZaLDuyC/aFnmibGqcfV4RCqXdEq15pqSSHG4kIg54k2dAz9RIo6CDar2ucgik6tFkvabsN+GFhaDYK6vDqnOHUFxTIPmk7juXMhpVHRLmNrMrYKqWPljkGY0qgCxKh6opI1G8IFR0wju61m6BzGHmuC6tqt4frminGcaJqW/bCjn/akNKrwOFdbeaUPt9vr21p05zQ4ru93YAy+Rtk7p2JiKcK7j95DagHc8+fP9XOLBbGFx8+fa+ZAHV5zSbVhWUsGg2sIbUMXOrztuXN2yvNnz1hvVqQStRMpJ66215jgsf2eKYMxQiwTzy6VHjPes1wvuNnd6PDXWMbDpMK6rH1az54/U1Gtd+qqGXpOj485OT7m8uqaRbegGMt+0ETicei5/+AOKWcWzmOsZblcalqogPdBw96OjtVdZw0nx3fw3nNzc4WxjpOTU5bNgmF7w9nRCe2iY5wiMWq2R6ji775PbI5O+a7v/m66ZsEXPv95jlZHjC/f57f/Rz/Cvvl5XG452ZwwThPDMPL+0/f44f/uDyFvvcH180u+53d9Dyenx5ydnuBEWLSBxbLBWct+vyelzOnpKYfDgfViwXK1YhhGBNj3PVfXl1hvmUZFkbCO7W5PaGpSNYbVaqWUkIPuaM04jroeVV3D/5u8Pw3WLc3uOrHfM+y93/GMd868OVdWVlaVZkEVEgIJIRFIQSMB4Y4AJKKxm5BL6gYRbhkaHJZpJES3uz/YoukIRxD9wYIwtgRGCLCmUlGTSlNJVVlVmVk53/me8R338Az+sNbe51ZD26V2QLvgBIXy3nuG9+x37/Ws9V//wXuPdYaQRZFXVAUhd7x1+y1W0zNcNcaXI+r1ksJGCl/w+PUbxJyYjsc0iwXj2ZzlesHpZsOibuQAiomuS5JLlYQMGXMkO4sh0ubEpm0oYuI9Tz3FnYf38dayP5mDibShwznLuBRL+MO9febjMSenZ6wXZ6ScmHkxh5vsHHDn+IiREev/g9kE6wo27Zbz1YJkDaYsOW9kCl8tV1TGsDOdUaTM8WKpKhoZEmwGlwKlE8da5w2zqsJ7Tx0Tq21LAhwJ7xKYQOnFeK3wmh9kMyHWlL6kdIaSiKkl3qEYW5om0zYBgqpAjaF0UBayZlxtG6JxpGgonOdgPiPkxNG52AqYlLCjESlmVl0rikpjiEnQc5MEtDBDIGKNQYYuQJSZRnhDB/s7nK9r6i6IEtVWtFFWNM6NCeK4RpsCXdMQy8hkNCLELbPC09QbnHdMqynrbUPKongKPfXBBHFeNxmQzB2bDSkhKdBqt5GVy2PUwt5kdDDWfCE5ijDZkY2Y9mMs7n/OLJ5/mx8pBEY7c7bNlpQT7aLFZSvQb4amkxTLTaddvxNNeo6Jh8fHAlEiK7guRWUtS3ctan/te6xXeEo4IcutTMpWXV2Fi4JM+EGYzCDpl86JQqcsK4oSSRrOiWDg9oO7zKYzUe8ZIRHGHKThwWCsHTwxxMxMUIsQVY0UE96rHXYSUzZjhTuRo0xexhhibNXmP5Fa4ccYA7GNmtUjrPmAkqWaDW23JZnEtm113y8EyMJ7SJHNtuceON6625Jyy8ninLfe+SKYRNjC3r4gDlcuX+Lhg3uDfX1SWXGOEn0ur1HQjdg2pBh57MZjLM4XLFcLNvWWdb0lJSENl0XJql5Td5bJWLwyzhenGCvITNfKuqsqR3RdoPQldVvLukwnATFkC8PvlXNmVE7BGgpvMTEzVjXIarsUJYETgmmIEsBYFRXj8YTjk4dssxSQpt1i1NQv6+rRub7IJGIIWJUblmXB/t4+m+2KGDPOW8bjCU1TDwZnWS29nXGkmBmPp3SxVXl4YlRNRHaOwqd+Mqw2rRd33rbZYCaWTdNyYOHg0iH1tsFQYPB8zfPv4da9u9w5OSOlQDkq6GppmJq25eDgEqvlmpOzU5x3rNZLVuslOWe6lJlOpkwnE5xzhKZlOppK+rfzjEYTVss1223NdDJjb77HqNzSdTXXDy7TdR1n5wtOF0u6tmY2mbIzm5BSZj7foeuCKGKqEZApi4InbjzBUTVmXbfSvISWg2tX6JqWru1wyeK8yHGdqvlWyw1PP/00Z2crfvVjv87pySkvvOddzGZPs1w0PPfUUzz3zNP4kajjbj7xJF/91V/L3uEhz1m4fukaV65d4uVXv8D+wQ7Xrl2TKIqmYW9vhy6KU/BiuWBb11JvrKEoS07Oz8QtOjRMqgmZpJlSwn3amU3YbjaUZUlst3grz/t8PCaUIjM+PDwk5ERT16QuiHOot4QgNv4hR+rYMfFjjk8f0MWadZtoFh0Hly6xWCwIzZbD+ZjtpsP5EcE7jrcrsVmImfGkpOsCk6rkypVL3L9zh8lkjEmJh5stbQpA4O13XmcTO4wvWDdbykJcYrMxxC5hsSxWa2KI7O/ucP3yFWLoGI1HkrM1nnH76AGmKAg5c75eMS9GzOdTKl/w2JUb3Hv4kEsWHpyecbZaSmIwqPzV4rOh8IamUydlYwg5C18wahho24hBHAkNL5IcGzImiYpxm2TlOUmZq7MdTsg0XSJ2W1lXNyJV8CYzq0SmK/VTyPxtkHgGMU5L5BiZTgqu7c5JBhanRzz3zLMk4OU33sS6Ah8DxEywWuPV+iQJgISzeRD8ksQGwmQJ4/M5kbpG/GR8og1CXrW+JCLxJNY5mpyx2VI4z/G2k2YvCcLRAdaXlHaNyQFr1ArDoTb56oJroEdNyE5MFoEYs87hVo1NRWYsw61QKPqBAhMhBqpqxKreEmJBDF9+Fs9X9IrnR//L/wPTvRnLzVIgJozAe86Tc6ZV1Q7WEBMUrsBkXcsY4XyU1kssOEIMnE4m5JzZNDVVId+nKAoxb1OGubV9QFRWS2PhsMjDY5gUI55/9l18/vOfw5BoNW8mRrlJjJNEXmv7uMqE9wWXLl3i/oMHpNTJjaCGZtZaDQQzqpR4hOSb+9cA6OvBGCbjCZvNhmyBLCqZQkP1JC0IlV1b7ZolKEoURWoXH4XEax8hJY5KMU/rQ/ckeK8SJ8mcgUTXRfb3rlLXa7wvGFUTzs9PZR3iLSmrGd7wmlVIhVr2Y/G2ZHe+h0G8WqI1rJZLvHPEIAFY3nty6jTPB11piVKhKkbMZ7us1xuMs7QhCCdEoWtrJAhQrPbFNcDYAoOj8iWP3XiMGAO3796hiZKFMxlPKJxnuVpIQytPsO5XRa6N7uJR/obIjlW+5xzWWpp2q7CwoWulYSlKL1JOpPHJURCwaDu8HYHxhNBx9epV2ibQdjVNI+GNEhgpGSDj8Q7eWWLsWNVruhA52DtkMpbAwZwz09GU6XhG0wSuX7/K44dXcA4++du/ydlqwaVLVzi+fYeN6ajKip3ZDvW2Zts2FFXJ+WJBURR4Y9id7pBCZD6f03SBpm2wRtQ1MSUO9y9hgP39ffb397l75z7OW7q2gZjYdhsyjmQMRSGpLDEkqnJKWZYslwsuHR6wWi1IKXJwsE+zqfGupCwndF3HuBKPibrZst3UOO+5efMJ7t69zaiasF13uMLy9jvvUPgRvhjz6suv8dSTV7h0MKMoKnavXOPhvbvMx3t0qaEoxty6fY/xpCLEyGc/83nIDdbB+9/3XmazKWUpq7gYo/BqRqWsNoOQW62BS3t7tCly/+hYlCM5s1gtJRRwPKX0jvPluSgBjWVcjclkQmg5mO9ijcMXBeu2ZbHdsFwuKYF3PfMMx+dnnJwek0hcu3SV3EVW25rRZMzOeELT1dw5fsh4NCbGyKwac33/Mg/PTlnXNdu2Y90KQjOuSry1lN7T1TW785muZROb9YbzThJqaRv8qCIlyza2hK6mUGUVGK0NYrjWhY4cO4psGJclKUuAqi9HtFlC92KWVGOnxmMOw7yY8MTjT3C+WbPeLjk5P2PVbgnWSlMdVMpqEtZKym/TBUniRWzurRXk2zqDiUlSyiWCR31JRBJf+oJl2FLmxFc/+S7eTltu37rNzInVu6C2CbT5EY+UqMipxVoxvQwhUocOnCOFQJETMYp7LilTjis2bav275L43mJwqFElWaJAFGGubKlE1CSb/KwGnS5Td20vP5VhJGoekBHIIiYLthjoAqLQkcbMWks0VtSnMYLzompNstYOKtKQCAFUrSPNjvJqVVaMrnVk+OpruTV94pAi+NlA13HzsWucbdecrVvW28B/+1d+5N/9FY+3ji60YlUe+rAmcfabTWd4X8ge1FscjmeffIpXX3kFPyqJOXPz6g1W5wu2qWVbb7lx4yZ3bt8SGWlZiDIhCrFVuAI9L0XWNE7N4TKQo7ifChISuXfvvj6MYsITQgdZrNtDSqBue3I4C/v83r17GLXot8ZCMmLqlDPGAaidvXqmZF09kVF4zw5KiroWxICQdF0EuetIJlPaQqYD9VxJuoKIUa5hCO0QmJcUOpyOJ3hXYKwkhi5WS5pGgt263LIzm5BjR9d1lKUlhAZD5vLlS2xWWyH/ZsnmMNZpQ3kxjciv7UVyZy2BLEGFIbBeLTDOc7Czy/PPPsunf/vT4oo5qViuO1LOjKsJ6/VaJw9D0wXWRw8hQ1lWsoLLYNVUT0jFQoBOuk/NqcHgKLAcnzyk7WrasJFGJBtShrYTcm9o0sBPkvfdEWMWPpBRN99HGlhIgnxFpGE0AJHRWEzRUoxYl3G+JMROYGESMQJZkmCdLbl39wFFaSmrgqgcnlFZEUKDd049TRyL7UqNkzI5BkLXsF2dY11Bvd4wujbixrVr3L/7gKKNfP6tV1h2DU3YcvLmQiy8vcfFwGazomnEnK3RAMlY1xzs7HHl0mViCCxXK5q2Yb3dcOnwCrP5HDKsliussbRty1tvvEldbylHBdeuXme1WNPGFu8rirKk6yTeIYaOzmwpCktVlYJIYJnPZzw4esh2vWFnPmevAF862liTWoOzBVcu70t45fkaX004XS3p6sDJOycYDJvlKZcuW/7Qt3+AerXlnbu3uXnzKd5+9U1STKxWLYWDS5cqLl/a5+TshNF4ShsaDvZmQmZUmXjT1sSUqLcNRVkI8hrFR6gNLbPphJffeBWso2lbWdulzHw2Z7Xe0DQtKTmuXLvK2ekZhS3EYIxM3dQcpURbdzz+2GN0MVAC1/b3mE4nnJyf0NY11w4uUZYSplqYgv3DxJu33qFtG+pmS+ksTVuLD1SMTH3FbGdKMakIJ8fsuJK2qdmfTVlsN0ymE6r5TLx7QkcXOzoruWA5RGY7O8xncwye882S1caSY2Iym2KcY7lcyLOQLds6DF5T205I1845crfFaM1xycgz6FRqmzJhu6C7+zaL9ZptV3P58JCwEP+ougsEKxS0jGTZpKwupkl4GdmBjv+CeGTJ+zHZkELExoQlURWlPNsxUZP4+MsvAUbyxlpJlRd02xFIkoyu5m3OyMojxQ6scAcr7wghUVgxKyxLQ4qQTWZVN1orIjkHMtKkZK0Fzlm816A940i5k4ybJHEoMQnP0ucsNhBRf36XqRwUPpMJkC2FL2i7LSZlDmZTymLG/ZMzuiReK+SMM5nsC2k6ksFQ0HUZTAm2UxuOvjkRQ0sZHTXbjIRDTONSCmL+pqiS6Qf+nDHWYyvHW3duYYtC8oJy/eWf8b/rruD/jz660OJjOSAZ/c4ua05AU6+ByHw6ITQt9+69QzABY70uyETOVRhD4wynJw/Z3ZmzWi3JFrrY6aEfxUxMvgSDpShKtbq3Sua7SOksxp6TxSnBaEes6cBySMuh5qyEDRpjhLEfE96XbLdbvC+YTeacnp2QOjF5epT3PFgHZ9lNijeANi85Mx6N2W63iqZAaAPXLl2jXi/Z5la+Ro2iASkQUfucGLEqr05BjO7KqhoQlxg6qmrEdDTj0sFlprMZp6dn7EyntM2W1WbNuj6jaVaA5e7dOxR66OacxUTPWqyDruvIMdP1hDxfCLyoGUIPjo7wSkrLIXK6OuU3fuc3xO/GGurlGVElbMvFBkkwVhdEmxTdMeQg6xKj1904SSltQ0erjaK1MsVZ55hO55AzZ8ulNreIUZuSjc/PFlIIcx818IgED1EQOP33QuXc1hpZDel9Z6RPUtRH0CvIhK7F2lKzo6RYleWYshix3a6xLhNCJyseK41QFzr6KPj1Zs2olOTfrm0pi4J6u2W73RLoqIzncG+f559+inbb8uKzz7BYLZju7+FC5OzoIVVVcV6fi0eNgXVdi3+MGsxZ73DOcH52xl3jqKpKguCMrK2Wq3OuX73Odr0VCXFdMyoK9q/MeefuLZqm5uTkmLIYc/LglJ2dfa49dY3VaknTNvixZzIr2WxqqnLEzs4ud+/eZbutuXbtBifHsmo6Xaw5enjG0fGSKwd7PP/807hixOdeeoXX33iHiDgjz2czrl7epywsm23D3XtHbOvIdtvw6mu3+L//9C8wr0r2Dw/5hg98NZuzBfW2FQn4zoz5bEzhDcbC1StXmYzHpBwpyxLnPfv7B3Rtw4Oj+2y3axKJEAPHpzXBGIrCM60q3eXDdDylLMacnp9x5+ER69AwKUsK7zhanop9QIy0aYvznlfefIMuBZw37M13WK8WvPDcu2jblvVyw/7OPuenZ4xnI1abNYXz+NLTbgLeGqIBh8RjvHP6EL+0XDm4hE8ZVxSMqoKz5TkhZe4/uM/B3j7b9QrrHdWoYm++S2paltsVdddwye8Dhsmoom22mFJu5uVqSUqJyjpuXrrEYjrlZLlgudnKiF06cpBFjXPqmGoFoaiclxU0ogg73yxpUgQ8JyfnOGOY+BJTSLrwtm7wxYi6bjQCxFI6Q1R/HpNhMprQhUgTIp2x+AyC0Uj5P6+30lg4x9iPaFwnOc0x0JqMywgJHPFqSlms9jNm4K8ZK+9pT9x1WfluTtboBkNATNNQhKRwRki5JtN2VtCNnIbPFwO2KBXaGLIXzlEIkRjEGNE7R7aCujQRJMdH6qohC7CRJGsuu8TIiz9LGxLZWiEGDzYbkcJJDlAmy0Ovw74xkI28JqvqKOg9WBIQdBNktSHRVGuEyyhok6WsZuQs19RpA/PlfHxFNyhtDhCEeOmskLMCIiVebpbKgpYUYGOgCWKoE9sGbxyv33pTp1y5AdsuURat7vKCciPkYfLeyYGaNTrKGCU+imrDe09bb8jApl5jrMM6Q1SpoFMb+aRNgdVHxRcli9W5hMI1QlYNbct5d0ZUXgyoLbSamZmLTgnvCqaTHTbbFTlFWUd1gel4grWW8+2K2cEe3/5N38rHP/wL3K8bGif8FaI41oJ26X3woJVmBJMoy5G4ADaNPJjGYJy4sJIN58dLJsWYP/B7v4VPf/qTbDdrspHvZ4SiLhyf2Ar5Mwr503lH6QtcadnUjXTdxlCUI1JKbBuZOFLOEvCYAim0JOcwXgL9Er29kVXlQxCjOiPdf6GBihhpDnNKhCxSSqtJyySZXlBllMVycn4qydJKGk4IgdCEwGa9EDdFXemIW7G5WDEqCpX0/zrnMaYFxIk4P4KcZS2Yo/GU0DUkhMDdhYR3BSkLWa1p1tT1GoOQwa0Hkz2YSIyJLkScj5LubgKbpiXmQJDxiCceu8mt27fVeKlkOp7y0kufYXm+4L3veT/GFtTrNQ+O72t6dYEvx6TQ0HUdzjgKX4ryxlieefIp7ty+zXg0xjvHYrUkBEmmDkrybtuOpq6pqko8SM5OSPMDptWUbc6sTpd84aXf4Nd//Te5fesOTz/1BI8//hh1W/PYY4+zd3WXr/marydGeZ53dubU9Ybtek3Onn/ysx/hox/5FJtNog2e0dTzTd/0jbz26ivcevs2IVouXb7KydERhTdMJiXvfd+7uXL5Cr/5G79D3XRMJwWrc5GBXr+yw9FywYOjO9y8cYOyKjm8tMu1K5dZbzY8/+wzhNhy/epVysKzWa3Z39+XKAFnOV+csKk3hBQwVrg7ioOzbSSIcTaZMp9OWa3PabvAeDrGrz2L1YraO9bWgzODtXrKmVFZMbIlLZHT1YLj8zN2ihHbuuaNt9/m+WfexcHhIdPJjOl4zIOXj3jyyZu88dYbJDJ1COqO7QgEJuMRoW547Z23CTFyOJmzP5+zd3XOWdNwfn7O/eMjRqOS7XpN0ZXYZNk2G+ok/LhqOuHe/fvizVEU+Krkzv27eOexCS5fO2A6mtB1gSevXef0/JxtaDldLfH6WpLN5JCITpDC0o+p23pQh2RUvouhiYktsNpu5IDzhsLB9Uv7TEYTmhh4eHrEdrvmYGeXGDP1dkvhIiPv6VYNRFGiiADCYjPYJENJBNapwaVMLi2dA7LwWlDFX85ZCMRav3uzNzHvVBTWQukdphVSsTNWFU9gcifCHmto2xacx2GpRqV4NqWkmyTxV0okWVMB1lip00aGmRg6nAsykFtRMyVjcUYczVNwSrDvWNWBdbMm54hJHVXhCFl9SlKS/zai67RGRtacHVaFGTkL6TURdd1jsNlqAxN1DSXDGUbsHCxGM9dQ+oQ0MzkGjM+434WT7Fc0B+VHfuyvUFYjrOY/O+dkh2Zl6k5qzpZ7pRMAQrCyBraxHSItjRpNWcyg8JA8nP7NM4OSR0C+3KOIevCIsiTmxHojipVBXqM8mGyk+DjryCFq2BTI7SjfV/Ibsn5/q4F1DueEbZ5zq42XhGlJz+0wum8lyYNRVSO6rtWu31LiSW1D44NEYWdDR6YsStq2UcO5xHgyIYVA16kaxIoqRhpr8WkpfMF0vMtktMN8ssMzTz3F8YP7vPLKpzmr10QSs/kBOSVWm8Vw7QBSlEbNkHT9UhKC5AAVZYlXklXddnTKDRHpnpO1mCqTxKaaYWfbXzVE6INNKBQp01KPXAnhDLw2WKHr5Cv1vsn6PbO6MlbjEe22xZaF+OQM6xm0wzDD/5V1rSIpvVqpV2LlJC6PuteWxjhjTCE5GCYTYoexjtlkj65tyQRirAWmtk44LiBNlbdiqJc1OJIg8ulsJLvGeZEKuxKL53DvgKocs9lseeqJmxwd3WP/YJ+XPv8FmtTSxJZxNaaNLZUryTZhkiEmw/7uAZNqwuJ8wd58h8lowtHpCZcODzg7P6UoRdZbFBW+rKjrllFZUBUFR8cPOT0/4/HrNxiXM+rNls9/9nf48C/9Cm+8/jYxGmazOXs7M/b3d3h4dMSt27f51j/y7XzXH/tuxuMxi+UZ43HFYzdu8NYbd/jb/9Xf5bXX7lIUE7K1zPb3qEZTzk+PSaHhve9+jgcPbvPgwUNyciKnx1BWFS++571s24b7d+8Rty17ezMwntk4c3D5gBeef4EHd9/m93zj1+O84crlyywWS65dvcp6s+LatStYoO0a5jszVust9x7eZduK700XAoeHl9g2DSFGjk6PaEMnK5hCMnTEWyIzn+6xWK04X68wRpKrc1YVhzEURcGkkByq+6enOO8pC8em3tK0NWCorCeHxLvf9S4eu3qdX/vsb7HcrsWLJAasdezMd1iu11S+YMeV7O7ss+1a7h4fUTc1zhouHx4yGY1ZrJY4K5Lbpq7Zbrd0bUfnoQ4dNkoytTEwLkp29va49+C+hOyFwKX5HhmI1rLdbmR9tL8P3nHrwT1K58lJ+CJFEKKqSZGQkfV2j0ZYIf+XGC5fv8Hrt+4QReOO84bSG2yM7E0kumDb1WQTdcVgaaPw+Lx1xGSpu0iXM95IlQ05kYzkCTmEaJxMoDSyRiH3BonybMecLpKUjSh5ZBUjjuEkkRYbkymso04BpcGQLficMTgxXsyJCCK5th0i/jTibNu7i3diK2GRQVGGYjVMA3JElVZhQIodlpCCBg/KurwwThoYMkmJ/AaE0+gcEVn/x5jx1pOHBlGGPJMlH0gUO3oO5n4QY8iaM4iXlSEqRyWrBYHDpotU+ZATbVfz3/zI3/h3n4NirRQfQ1JeQVL7kqATvHIvspCxSIbpeCRsfzJZJBJY7DD5ZsX/urajp3fIzXERHFiVFV1oBmJnShGj8klA7YOh7sQamZyxyQqEqSoiY6S7zGpxbzLKLRHSoyFReE/hKjG4amtRE4memGyE4Fk4kTlLHowmgOZOLfglnAkSm9xinCFHUdFEI0ZwOzvSyMgNZohNw3S8Q5NrMYDTIieNgKO0lsLK1AeeylteffPzfPG1V2hDg/WeFA2LxbkemIowANBnPIjXShc6mi5QGE/bBFIMRNtKiJ+9+FyBKmUHmmF4iJO+p/37ZnSiEcWydPQGyDFriBeaJSEkRLmOeWheQupTNy2TyYzKV0JszWu6EIZciqTkZRT2RPfS1lld28o+vV8BkXUy0cm4Z79bhHsUcqM8HJEotu2Gpm4FwdF7PecoQV/Z8Pi1G5ws79N2AeeEhOed+MqknGRN4lTGHWpShqPjhoP9K+zu7PC5lz8rDpe+4JmnnodxyYOj+zx8eI/COvGaQdZgOEvoWpLxPH7tGibBuuvYxJaz5UIkswiq6JuOmzcvMyk6Tk6OiJWEBO7v7lP6ipPFEbfeeIvPvfQ5mm1HWUrUvPeGZrtifPWA+XTCbDbnF/75L7DebPlj3/NHmO3OmY6m/KN/9PP8k5/9Re7eXTKeqPTYj9iut7SbDYWNjMYjXv3C5/nar38XzgSOHta4whJITEaeV176NF/zjV9PqKf4vYJZ6Xnj7j0wu+TTBb/0sX9JXC8FlZhOuHXrLi++53lcYZjOJhRlKfezl+a3KBzYjHEZr+mxm23N2UrWIZFMWYkUOYQgqiJkZlluljjrmI8ndEk4bpNiNEjGLVIjkoOOQNsFVrUgVVEn82ghF4Yvvv0Gr73xGq3N2MLTNq0QjmNks9kwdpI0baoJ0SY29Yb9nR3WdUHd1JycnXLCGdnCyBWMgVFZUfiC4/VCJMEJbGGHMMbNZsum62QjYA3JWe4vTwFoug7jLIV13D85po0RCq/KOTnIo5MCm41Vg0pBdC2SZeZLMVC7e/c2pTN0QExCGC18RaTjZLul6VoxQyu8rEWSSGNz1q/JEazU4JwTkSCDqK5l+gHFZXkGrb6WFHrrBx1uMtK0Zw16NZLxljLYnJXICp02LyFHeTazvaD/mzwgvxE5r4yqPntHXJSk2gWpeU4bleTUsbxf8Ssy7I2suY0xmOjwVs9ChISbc0dnLCEZcrLEDMl4ucNykN/dSVaZ+Gn195fBW8gx0WEkKiCrAZ7mqNmcxKHbJh3CZOWVo6ync0wYnPL9IBlLiv+erHjEWj4Ph0aKQmYkAmjQ1PBmGqLNgwdDjgphIUQe0W7L9BuUe2H0xpTDUCRuxhjmRcV2K82I03wUYxJWyavz2Y4oTaK40RrM0Jz0kpWs+9YYJBEXLqBEVziwjq5LjMsx+7N9lssFk8mE9XLFzt4uq9WKut0Ss6yQRBXT+7VI5kxWtU0/effdccwi6c3AerUepg5AknI1ECpn6ILQVfv49ZQCeVvTpcxsPufuwzusNiswGT8qaJsO70vNuUg4VCqth78EJWYhy+qfvS+li9fGpC/QZGkye2Jw1nVc738j6MgFAJi0eTNoU0Mefpf+90/KyE89LNn/G1JckqJmIXRYDG2b6JKsOrJOKl6LTcjo95FbLkdNj879Ko6hoRx+TsqDP44zlrbVRlfXUiG2UjA8GjLnKEuvk1LCmYKimNDW4EwpxOasRShFrCuxRnkxsQMyhXdkY1lvzlmvl9RdQ7KZt2+/Q+ELtlkkzpIP5enaADHivSGR2XYtpSs5Oj9lPp1y695dLl+/SuUcm82KtonMplNKX5Jz5N69uxSl7PpjhuvXHsPi2Jnv8frnXuPNL76JyZZpVbFpay4fHjCpSlarFYvFku22pionfOxjn+DF9z7LN3zgm/np/8f/i1/+5V9n0wTK0ZSYLc5lYmyJoVU58YbsSqrS8+u/+tv4suD6jZscnZ5SLxY4n7De8Gv/8qP4+ZQqd3zxdMGzLzxN3YJLiWa1YlxVnJyf8Ylf/SRds6VpNjz++HUODw8oy5JSfUuWywVNU7M6X1BUBb4oOV8t6eqt2PiHYT6Rda2FNvbqvUzMhrZrqEYTNquaEBObzZbxuGQ2nrC3t8/D42NsFs+J3b1dVus16/V6yB/zagx4cnrKeDTGpsjeeMbNJ65xuH/Ab/7Ob7ENDaYwlJUn0nHn/h3IhquXr1Kv1lzfP6BrW042awKJ9WYjGV7GkqzFjTxVKUjO2ekptpT7dzqbi1ori1JkZ2eH8/MFhwf7pJh4eHw0oKApJWLTypRtxXMpSRcxXA+r6wZvHZODOaeLcyqjRmhaK7CStrvYLNUGoiQjjUwbVHCAl0PcWkyUZiMn8fLIyQzGmoK4GjySkYVJgpREESWI6s4M5mNOkfIuZjJOGpJktTmR8yHp8y/abfm9uqxnTUqiIMp9LbO47NSVVYYqb0WJmpMgPYlMSNKoxpghJpyuWPTlC8KSRZXjXTGgLAYj3DTjSAZJmQ4JnAdrKaKo0rwXXy1RqWZSFhPBnOUMdVbdbjHD36fUV+D+mltCFlJwmXU1hqhlLz4n05uHfrkfX9ENikzkKuXUG99k6RLljTPaPGhqML0c1BN0us1JJK/GXciqvOrTTe6na5Xl6k1xfn4mkL6xdNLySjFP0tisN6JccKqSkYFaeCgyKVtSkv1q5QttlhLTnV3m8zm3bt1hujujmo546rEnSTHwQBnljTOQgpBHtYvuYpDpPcmiyKBdrGBL8hqGM1/XIxisyXSdKHYeXU08PH4g6IO5aM6sFffETjsXi+P05IxxWVAUXmFOMddyzsqkkKQwFK7AekdKgZgkJTrFSKmmejm32EKagpgc2UhaqMuSNOyVzZ6zPkBaMKySbYX5rkiKEoV7ObGMKGZoXlICb3uTpH5V1O+Arbr1CoTfdQ3GWnIOSmrVhnjAg1QiqH2nWiToFNd/LkPjOHxlzoLShSCmcCSs6x/2jPP9PQk5RdogE45BVm5v33pDSIYOSFGmGpWqJzVVyARFoCxdMEQTKIvIzmyOrT0JMf5q65bRdETb1phODAKvX7pBExpWm6WYBXqJrN+0Dd1Zy+7OlDt3bjHyJXuzObZw6hSYuXv3Fjt7OyyW55w+OGG+s8t0Pub86IR7R8d8/F/+Cu96/llee/WLNN2GP/QH/yCL5Yo333iT7XbLYrVh3TSUlaXeNHz8I5/i9Bx++h/9PLOdq/jRCJ/lfmi7hpQbSZqtO1544Sm++Zs/wJtv3OZjH/04q9U5d8Nb2HEl67Mm4ccFN59/mjfeepNVE7n6+ONsV1tsVfCt3/ptPPn0TX7+Fz7Oz/2zf86TTzzG933f9+EsPPnkTSUnt2ybDVVVslgtGI1GTGczMJnFeoWvSrq65uzkGJNhf2+P5ODo7JSy8nhjMSGQrEjBy3FJG2ohUFsZJDa1SLofnp/ivWPCmMo6FscnpJTZGYncPYZAxrBcrPFFwbaV9OzzszOazZZXb73F+fpcUJ+cmYwqtivhyR3u7tEs11w9PMSUHrO7Q32UWdVbbGWou4ZtU2O9J687CHBpd4/9w0PuPLiLsYY2dGJxn4QnFFpR1C1OFxTGMBuN6WIkp8zefMpyuWLbBXJM6v2hfD4LxmcKI9yQ+XRGOR7R1rVYHSSZyKUUF8QIMQtybmySMD1r6WIvdxbvjvwIei61Ugwas54c6KCWcDo4Sv2TR1f4avaR7BmjjUg2VqXBQpgdHGHVwdxmK+tehXBNTvI/IzxCA1pX5Of0Ly3nKPVDzwmvIYcp9vYJgsxa6+Rrdc1vncVaw6WDSxweHPLGm28Lh8VBCpHoMiUwLQv2dvY5W6zZ1vVgfSE+WHImZCPZcA5Zf4lRJZisKyzkfLWmf+ZldV1oU9SmyFYOW2yCjKNDybpkHE4QrS/z4yu6QUkhS4BUaHDe4WwWMpAWcknJBciYmKmsI5lM6sLgfWK0cZBp2zCZTFitJKG2h9N6romc8ZrHkzMxCykzJ7kRnN6gvQtoVKKU0YyEqEqH3nckx0xVVWw3GwBWmzWb7Yai8qQQWHUrzpcL3nnnLdrYqgFYZHu2HSYK8XlhQHv6j6w3gbHCOBerYWW6mP43YeBPDDc8DN4paBOArh9KYwb0SX6soSzGeri3Q5q0yGSlDIxGE7q20zRh+euyrNhuO5p1ByRyYaQI6GRDgq7tBp+Y/qBNfQMmJ7OuwrLCufI+9yiRfaRhAV3FDBdHf2196OUS6Pqm5y1l5fSQxDa7R12s1fWhwRvHBWddIw+k9+iHi2GC7v+i/7mxk3tB0C15XzNZC354ZELqTaGC7HtTFNll6Dg6ORIXZX0vUxavFWcNddddNJk5ETMY62WNhWNcjHju+Wex2fDa26+zyYnxfJfd+T6j0Yjjs2NSDiy2W0h5cLIky722v7NDbANlUbDtGiEbusByvcKVmnS7u8vJ+Smf+NQneOzyFbarFa998Q2O7p+y2dY8+9yzLFdL3nrnFifnC07PzmhDpIuJtN3gjeNTn/w0jTngA9/8BwkxsVzX1Jst5+crQoqyjjISBvjZz77MF199TYygTKQsPIvzU/aLQy4f7lFay8Ojhxzfu005HrO3u8dme87ifMvz73mKj/zKL2E+7tnWmW/71j/A1371+7h27TJd2zKdCZG5d1rOORJCRwiOclxxdHKE847NdjvkSB0cHHB6esqmqbGFE3db7yh8gbeSXN4FqSGTyYj1aku2UBSVPC9WptBNvcVbUQ5K094xH40oxmOaGFgulthkwDtR2hnD2XYl90zhaaM4ZXdZQuKqSjw5YgyYUDLxIq0PXRBjM+cVtV2x3tZEMifrJWfLBaXzeOuJOdJ2HfPZXIn2meViQYiRSCOrZWvI1hJJ1MsOm62SOoEch6YhpYRpE8mDDYn1ZsX54lziPwwUTsNaExgHIVuaDkKyJATFzikrKTljyTjyBekzCQ9PgHU7PJeGiNOakUCQE4wgIkYyY9KAxAK6AhJPERlYIxep9Cn3+fMG6yxdDOScKb0nJqvHiCr+kryCbKJ4oajRGZpc3Kv7LBbZphhK68guk7KusJwgsjkJUnFyfsrRyYmW3iyqRCNrbRsjo5EHOqypGVVR3gMv9b2u1d0YGfKd8eoro/4qBrEeMKKylMNBGhiXIwZJSxZ3bUOKhmSsou9maK6yQV20v7yPr+wGJcPgXpdFBpmz+Df4oqKutwrbi6Vx4T1N0wxdtCh19IHR5mKxWCkRVtRWPY8BNEEzG5LKO6135BiFtWwLOVjIhBxk8jSiiHHWDWhH3zVnJVctNytpJrLc8N4VklHRRXI0vHbrdZHk6o7a0X8PoCcy9a83D+caQyNiUBls0gMmDVk+Vg/dnmQ1zBY6KYC4HIqcVSFYVa/4opC9aIrKfwl6gOsEoLwTqw1ZsnJypxwJQXbNQR/C1AZ86Sl9ORidpS7jCil8IQZkiaKPeIr6WgVXvdicqVQuC8gpyi5tUPR6xBTFU8D05FIGfxuj0sD+mvZdv9Jg5Prqo5ZBH+g03I/9faL/T9C84V5VozaVIsfQy86j/k5ybbyTdYw47vYrLvk5hXc0TeDhw2Ock6kxhKg7fZnIhTAuXyf3bNRmWF57CC0xJ85Xa77wyhc42D2kawJVOWI222E8ntC2Lav1UpxY2TKfTJlNpiyWK6pRyXa9oRhVuNLQhZbzxTmFFaXNtqlpj49YbNYkbySQMsMrr7/BP//pn6XZdJy2ZzRdx9nRGacPj7h/dIx1BV1IoohIEq1gjOyt2wBNmzg/PwFrmU8d42qHphNlTw6RzWpBU1ti19B2GoLpROK7Oj3DV5bxfExKHYeHh3Qxcu/Omzz1wruxxnNp74DxzoSjOw9pN+e8/8X38N4XX2A+m9E2suI7PjpmNC7x3rDZdhibxXTPCNm7KCWVOcaaYlxyvDyny4Kq5i4RUmRLg/WO3clEhpuMooye3fkE4yoO9w94cP8u56vlUGs6xIMHY/DWsWpqgrpSF9YyGo1Ztlv2d8TcrWlqZkXJpms5Wy+JIbKta0rn2S4WFGXJlUuXOD05I4UZDstyuSB7OTQ7JZk6K+m2JiSqqpIJOXUUVkIRt3UD2pz7QtSOMcnhlaP8zskacowSSol4HoGinKZfKRuwDuOFHGxRfxR0yLKyxrQuURpP6Q1NSMQkvlMGQ5da5cNYjM2K4qKDhiMkKwNPlqdYiJt5WL8ba+nbl0eNypzyO0hid2CQ9Q8q8wUjvI4s50jWOimqwCyrdhUyGOXA9aZnPskwJHQco3SADMYO5mymr3MpqUFbUtTYau03wldLiVFVUZQF58tzQWeNqBdzNixXa87Wa3ltxuBUQIGut62V2ibNXaRAzO2k3vX2HVkRJaTGKIWhz+LxqaEyTqTRQExGtw863BsGtPjL+fiKblCyal9CiBTekaJoursusa07/awkU3wnia+9AEfIO0YXImqwpjLbfmXQT+792sCqpXKnq4EY5cGoRhMm1YSz84fCezEW553qxKFrW1kJ6eqtVYt5a8XCuIfWYkp4Y0i9WsPKpJ2SsM9zQjjSCYT+hCIGymkxQrjtq17SB7RHgPp1GKDqoGFBOEz88j1VHmdFRktPCtOHWMhcHV1qyU0ipjAocbw6noJYHXdtO6xnelFwzAFfKqqRjTLtE2VREOkk6bbuiEHIrd55ktFOvD/8FY2xuZ9EFBXK0JvADU1I7rsYLT/6+2b9vXpETHhHMhVYo5kSoLEDUiiCNqSKvXBxCfVO6mFcRW/6tZ9VJK30FU0byOqqiarNwOJdKWTfLIFp3vvBITbnTNsI1BtigyDfdpCEGyOvuQsb4ZwkdGUgFaYqStbrlVzn8Qi8YR02rO9umU/n1G3D+e3bXL/2GHfu3aEOK0zOlJMZzhVs1htGoxHeeeaXZxK86QRxLKdjmm3NcrWijUEKqjcs10ssjmoyYjqdUk1G5NQxH08Ze8PEw+37p6yXG4wrIPUOw/qepkhMgbv3bjPbOWQ82qHr1lg66FrqZY0beXzhKKtd9nYf47VXXma1FKO7EDLz+Yj3vfgix6slb772OtPJjGAS49JxlmB/dok4q7lz+xbX7Q2+6Zs+wGqx5qvf/16mo4pLB/vUbcvxyQmT0YjxZESIDavVlmxkpWmNodnWnJ2e06VEJLM8XzCqSnbKMcFLRs9qtWI6m5JS5M1bb4vJ3mgEOVB4x6gqKZGAxkaDFS/t7VMBdUw8OD5ivrvD2eJciKEhMJ9N2RtPMYXnwe0TfDZc2j1kMttlPBoxShFbVqxX5zSxZTQqidFhQuSxg0NG2XKyXrIJLfOdOefrhaSIO8l72plOWa7XtCRa1RsWRowxwbJtJbxT0CAonMMCO5Mdtss1ZeHUVzQOfApSxngv92uUgcGZTNd0tEbCJEEOZOutosF60CEr2spCUULIgeTB2wpfzXlwckrKiLeSptQblcqWToLthIOXlJ+RMFTioq2J8L7/fVIcUBmpJ4qWJMQVG/EvElTUXgyAxonEH6m9joRBEUhRZYCxhKhqHvJAARAnVkcIWX2IZCWEFUKuTZKzRe7VjCJDlmRhSLEjxSyp2trgYDMuW5yVmJQUEzZD9AaTBSUyFvF9yZkUDSapz4kRrqLskwX1885ivFWndjmocgpC1rWQ6M8shzVJPVSEFxdjIKR/T4zadicz6qZlf/+QRGaxWogUK4pkVHgijqaRwK62a8UJ0OhUgHIFTB4646gM46xeIT0H03iH806MtHyJJWOiGHA1jUjxsjPDVGu1u7VYypGnbmrIsuqRNMpEG+RVTAtZ6WRnxIArQxuDQHPZDOuF3lhNuuUo0LZOyb6QZNvzk1NZNVg7rELIEaPXRCzs0H/T3jijDYjT7lq646TTN2h5UDi23/l6LJ02W9PZnNVmrd4bKhfE0LUCYUpDIfbfIE2Q1RVHzpILtOlqsks4jQPIOV504FbQEQmmSso36rt5M0wkdiAK9ymjfUcjBGCBGc2gLioLT4E0Uo+mREeVaxdZDNZIFu8qCgtdEJJpryuyWXgn/TpFogHioE7IKRFIkIzC6P26R6ehvmvMvccAw9el6If3weKoRmMMYiII8lqM02KEoVCnX6NW0yEFnPcEI40kJlM3G6piRMxw5dJVvHfUJwu8c5wtTki54fGrTzCdTDg5OcUbx6YTWWtRFSyWS0GiYuKoPWXkC65duUrlRmzu36VuaqzNlL4iJqg3DR2RybhifzZlPi4pJyPefWkXV9ccn5wynk1Yr7YKFV/ESBhXsD25z713XqEaT6DdsImWpqtZb9fs7F4m2gKI3FvdwxUl1WRGs1ljc+DqlQPe9fy7GN2+xeL+A5549nl+61Mf54N//D/g4JWXWR/fY7Qz4z/8M3+arm54/Y03eO8Lz+FsZjab0MWWNrR477n+2OOs12tigoPD69x7+ICz5YqcAi50nK3P6Jxj7CpmRUnlCgnU29/jZHnOtKyYuRIzqXj8WmReTdjf2cVXJfeOjnh4dkJjl3zu5c9is+Hq/h6n57L2AjCFo95s5f3vOrxzrGtZb58+OGUyqqhDy6u33xDHTleKb0jpaVJLSoFmccLjl69zvl7zqy99hhgSZVkI4daXjF0lWWbW0qWOw/kOxI7FpiPHyM50xma1YTqb0XUNbczDYSQS0oTHcnRyJohkVvTEWfCWyqg6RuX23kmGTsZj1C2yQ+quzZKLkw26rlDuh+0kK80IByTnRBu2hNRSesO2cwQMQVOOjex8ha9BoCLhnDQFAYunEcv6ZBmPdzhfLoWQnguIajtAxtvenwZS9sKloV8tSZnp8VSDoKMRRJGY5H+imBFOSmEslVOOiZFrZRC+X+kE2cn63TIGr+TTKIxdrBHYpsuZrs0I/hPYdLWqQsG5AkykQ0zinLcDpQEC1nupFlEajxyjvA4nVy4N/luGwovy0FlxBJ6OHZtaQg1DsHQp6JpHup2YhJdorcGkQOUc+5evcefe3S/7jP+KblBWmzVlVVGWFcvFEqeHHrYPMdKVQNTbJqtSRlciIk8VaEyUI6rkyP1KxA7wVEpJkI+cBeozABLghpEDI5uo+2npfMlyA2eMPgBZ9uNZIbOU2J3PuXH5Cl945fO4UhjYkiQpUF/IfVuihj1O/2wzZHHxc144N5PRiKVV/48M1iRiyMwmM3ZmU05OjpjN55ycHItrqz7cFz/hYi1FlrUA6G41QUydJDlbwEhSqlzfSDVybOpElkcSY8RDIyvcUXpPUXrNKYmEEIXoqeuIHuXqYtLmgCFkLyfd1RuDc4acrfCPECj3IiNCoNt+suglyNLhZ53MVTKuaAmaN+SMIfQIjV6OmGRyy1ls+nd35qzXazJOWf/qy6LVyQwFU90mh+kDnPFKjJOG0tqeRC2uo7LiQ8hl1g7NVVQlTq94iimIQiwrwqIKsJgT0lvpPa/rSWs0HyUlsaw26vYYxWV0tTwjJUvXRcqilOsUJcvo9GRB29SMxxVVNRJJY2k4Xa7kAIuB2WxOFyOfee0VLl8+ZDwumTCi7jq2XY2Xm4WzpqRjyhMHO1zZmRNDx9gnnn3skLeOH5BLT6pKjOuITcDlLG6oIZHCls3pQ1y3gyGw3TTC02rX1EvL+97/VXzms5+RQ9t79nd3WRrYrhe8/tpbvPHqm+zsz7l86YCDSzs888wzHEx3+cN/4X/FCMv9Bw94/pmn2JnN+Jbf93u5fe8uRVkSuoj1WYncSZqTGCnLEXVdM5vNKEfiI9Rs1ozMlJG37FZTcgzs7OzQhI5Ns2XdbEkkjpdntClS2IIuRCbTCWkT2J1NuXv6QIdrsTlYrtZMxmOKNrJYnHP10mXOlgsuzfc4367YtA0mwPGxKMGarsO5gtlspvc7pJBou1ZIwnrf375/D2Md42pE6hraRgJBN8sV1oh/yu7+Puv1mqZrmU9mTKoJYGhCgNGYAsPIV6xypk0S/5B1FTudTHDe46zh6PSEpPegjxBNwvXcsCwS7LZpyDnQb5mdkYyZnNR8MCsng56rkXrce+AOCnKaKb0Bk6jbhM2FHLomkgnQeQnV9AZyxCVDaQ3GJFKUDKmmOaXwWrcHQi5aj73EWRhtDlQOnJPUcwO4nrNoDNZVWkMyuEQTZaVdBKlrvReMdSU5Kjpr1djN6NeZvvlRFDtFrFh3iUVFYclKVYg5E6PB2UpquU3Dqm6oH0FrAP3qPqiyEhVQGIxDrOt1AeQs6lBr6bqkq/nmYvtgoSx6lZQqigxaFx1V2b/HmbPzY2T58+V9fEU3KKFLHB7u0DQ1dbPFkOliohxVsq/Vk6Z39ezXNkKAlBVJ1KnaKSs7ITdnb6Yk95umFevBlVNUsqF+z5TAiuo8D5CX8howtDEK5K5QIDA0OG3d8eabb2NtSYqyP43KbhdgUFETIwdfDKLuELJ6/4JE/nv/nrDro+4/nTUUfsR7X3wfpMDi/Ezks8ZoZojAl6avDLqmIKMFTtckQvAgI1b0wo/oaGIn5NUQaJqzQarcE09TShzsHxBDYLVckbM8hJgeSpQDPieVtKY8IE9C6tWGwjkKehm2nrxDE6HkMvrGSnIi6IkiulXuUR+5joL6kBMpxIuQrZgJKeELjzEJZ62sBbPFes9yvSbHRFGMyLEdVn9CJNNCqvemwTCwZY3IMiU3qwWTL9Ad+uKha42cCEHfc10/ZS6USDFK7gWIuVLuYdn+c3L/s6WBs1p8ZKVlJAhSeTjXLl+iVdlujoFRNeb45ISbjz3Bwc4eNhd044rVZsHlS9dZb9aS3NxumEx3oBVugonSuB+dnDAZjSWA0xhmoxE5RPYuP8YtO6f63G2+endCYQPdtuHZxx/jrdt3mJYl984W7Mx3cLFj05yLIaD1pNTSdA2baksqpNEsjMdFmdrXyxWn56ds6i0hQJFL3vPM04wqyyc+8SlizBReiuvv+T2/hz/w7d/G4viM+WSXx29eJTZb3v++F8jGStJrzjz5xE1MhsJ7NnVDSonQNGQj17P0Bc55NosNXWy4dukq95qOsiipQ8PDsyPe/cxz3Lh2nbfeepuTsxO8M3RdQ0gdO/M5YRtZdBu+eOst3nXtcZb1hia1svc3CeMNddhibOZg74BJWRFzpM6R1eKEkC4GKGsto6oi20zbtrIuy5n5dKYZSZ2uOyUENDvJpb20s4+Zw9l6yXmzpff1qJtAfXIkjfDynMs7e8zKEZumVs5UZHe+R9u2LNstkCkKcXsGyDHQpUi2Fu8cbU6yZjHIRJ4vGum6lTWByYmgk6Pt5OC0haHsUZMsDUHvWUQWPocgl5opluSZnZaOUSmkY1LGuoQrLM4FlPFFYbwMmimLvwdxQNRtlmcrEElJeWQJOlXiFC7irAQSWqsGj1lS7L31co2MxK7UTae1RYYu7x2TwlOU4psVQkUTo2ZuOZyRs6bIdmjY6H9/5Yv069ugOUQ5e0ErjAVTDC7eafDuUnVj7PPalOgdC/m9pXSIZYE6tBij3AAjP9+GTDRR5cXyd67fb8coJG2DDpzyumUQlLMCI7VL9Bf/njQo08mY8/NT6QCdOqsmS900QlZS5ORiTYHyNfJFY5E0vTcp6oE8yFaF7V/CMTBGVEFG3WhQLoezeqAqL8JeHKJKYyWmiDf95R72HDRdq4hKPyH3bn3o/dF7klw4qMqX9oocS45KUlM+gnNWCWiGJtR86tc+qWF0BmpZH8iBlYb1R9aGbDD8EV2tri20WaGUtUPKA4pgjHAmnBOEaPi+GMZlRYqJ9WqtqIBm48gboaZ1kV7e7LwcsNJAZXIySkKLeN8TYB+ZXB7575QiMaCZEsrqVzTFWkFejJWiHoOuhPRwN4oqkB05QhcTrixIBmxW6bGuhYw1xNgpKteTcBPJStPotJNNXcTg1IAqsW1qyFHRNOUo6RrqYseTdL3Ty6W1ITMqO8YJwqfvgTFSlIwScr7EB4ZH73mrSx9Fy6ylTYFts6WpG5KxzCYz1pu1eGkYz/3793n85jMsNydsmy2r9RoMLNZL8KIMqapKD+XAqPSisjk5Y39nj6mteOWlV7hz9wHf8x8+y/bNt1ncuc878SGHY3jPu57hcGfGrVuRb3zvu3ntnfs8ODljG1psjjx17XGihddv3SFZy+L8FFJkVFaMdya85/0v8olf/VWS93z+5deITU3pCprVKbfffpPv+d7v4VO/9ptkb4jWs7t/maK6zNlpy8HVG6R6y+98+tN8zTd8FTUte6NdJsWYxiQWC4kzmE5neqCVzCZTThfneFeAMYzHY8b1iNN7R9ztEuV4wthlJnZMG1o+99JL3L93n/PVClt5YmhkGMCyWiy5sn+F9uSYVez4tS9+lrIsmZSVkJhNIqusvQk1Z8tT1ttO+B9W0LnCl2zWW6IxeGNwoxFgqGMidg378x0O5jt47zArQ71tSDEymUxZblZUkzHL7ZocswxEKTOZTgkhSG5T2yqiUPP2nVvg3UDYHRcld07vY40nGAjA+XIp/ibGsl1vZMjzcu+NjCPYJCm8RlYH8khJrXHWQcxk4/rzmJQyoUs409dw6M0MrfLcUurR33TBFQyyejRF4vBgTEqRk7MFhZ8QswwVHjOsTaORBUq/lgVxdLV4cggacyIu3l0Q8UMKWVHkTLbq3SS0PdrQqteRJXRbRV9l6C2zWFds25Y6SGBh4TY4azi4coXlckNdNwORvk8S7odFTBpWLCEFnPUDJ87pKsa5TFIL+tyrJoxIgft5NmlemTXuAp0x/SAuRm79OWT7aw+4nCjchQcLuV9/aR1FVkPeqA1A7IixVd6g1XOpV3h+eR9f0Q2KAUbViDYIx4R8ccCSBY1weniRUdthORhDCOrUeDH1y2Etm7weWhTkQJ1MjawFcqcSWMQELeYknA/0MNczp3/TTRZb4/4Y6n1ZkvxhgClTinq4IDiOOhMOZF4ja56csnAz9KGVQ0x8SgYvEIwQohQdsM7Tp/aaJNP90KDrz5Qb6SKRdyAr6hXCCj8lKQ9EpLzqd5Lj8J2sEffGGA2bVUBWpl5u0CxBejEK1yMrYpE1cE+auawcGXlgQsqShWP616kwKAaj6JUdrq9OaFZ5DDlJkVblgHxftGgoiCl0fsbjMdPxTMMALft7e8ynE+7dv8u2rcXDRScHkzMx9VwJS28Ml5MGglnHdLyDMY5NvUYWQT3xtvcFkBh0TJ/mDKQLyWHf8IojrbtQrTl38a5og52zoibGqprLDNeDLOQ17yFoAKZznqOzh1jjaZNkOi0WZ5TVmMl4Cibx2puvCpekquhiK3yIFKCJjKdTjLWsmw1F6XG2ItYdicDnPv8aJ3cf4jHs7e3yj//h/42337hNs11j9kpu7u7z5hdf51Yc82uvfR5XVlzdOySEltOHG0ajMYtmyflyRQydTJ07O+KT04HNLbfe+AJszzicX2K1OqOYjRmNR2DAF/Dp3/4tbty8JgdaSmy2C/7pv/jH/D9/pqaa7PF1X/VVfM1Xv0BVTIBM3baQLW5c4rBMp1PKUYXdbui6jmokoYXL5Yq6roVQer5gvd4wm8354q23ONjdw+TIeFLy+I2bVKMxeTTm9oPblF48m5yXw2Q2HjO6cYPXbr2NKwpiSpLarE1nzCIrDznQNpH3PvciL7/xRbrYCu8qJJ678ThHy3Pa0HG+WJAB6x3WOdqu5f7D+6zqDd57Rt5jraNe13hguVmxMgaTjCSVWwfqOTQqS8ZlJRb3ITLZmbHcrmliwOZMbILQZU1H8o6MKtIQrd10OqUsCzbNRl2qpbGiKod0dHIekFzr5DUTMzHJkjgmHQaH81DwbVHoJPFG0sEp9V4iWl9zEil22wr65Z2n3nZkLKUTu3iTI4moWUCybu4HS6O7VuPECDFqBhtkzVWTCi2u3UbyZ5IbiPRySPihumIs0Rixwc2GNgPJUxpA0dyT06Vw30wkmXBxVujq6qJ+icJy5CEiaDhJDDElUV2+NhtBWQRxT0NPMHhGAZjeLPNCPg2yfh7W46ogxFyoM3vkNxtBn3pKhHCOpJFy3lNRYZIEpsYggbshFhoh8+V9fEU3KCFFXPbCRzCQcy+70s6RLBrj1EvZ8qCweLQJSX1ogqpNNMt3QFvQZkI+TYi3zomKJ4N+ntycw7FgrEy42WhSpTYiil70LrNZxf0xRg3HQouUvj4eefBAzIKAPt84qY07yOsRAhQgj7N+pde1h+5HUYKwTtqDZE2/szGPHI5f8rPTcD1MRhoMdNVgLqb3jAT83bj2GIvzJev1lsuXL7PZbFltloQgbHoy5IiYVPVIjTE4Y9WuOevhbSFZBqv43DdJCl+mi+YlqRFS/576ohge1JgiJkctapmszakQ6xPZdTT1VlxeXUHsIvfu3GPT1DIp6fUZVjO9IkybCaMktowlZstmsxWvDvV8MP1aUOXNvTdAv9ISdZZe717fN6Ah8r29l/fSadGKWR78GLSxUf6V+NUgqyrvGY8m5JSoYy1E3Chhl8552nZL026ZzMa0rSArbbPW98XhoudsdUYXWyXVwWp1DsngkmV5smSz2nJ0dMZTTz3NB77hg1y5+QRmMud823G+XFMWsGw2mAdHPH5+i8tvv85v/c7LXDq4xDPXb7A+O6UbFWz2djhdtSTj6CKM5ruU013aEHn86af52q/7Wi5fvYKdlNTRYMwOb7z1OilGttbTOY9Zr/mdT3+a57/+92OtpTm+x3S+QwDGTc16vYT9OT/30U/y6U//Fv/pf/IXmB3uMJ1N2dZryJpR1bWMJ2PO7p4rrI6obvpDyBimkzmH+we8dfceVw6uMB2PuHd6n9PzU65UE9pNLUnCWdR9KYqB1dlqKbJQ51m3DdmIlFgk/1JTpLkuGVczzpby+drXYzBCXHbC9cKLeibkRO7SYBtgnDyR1w4uYY1jXdfcOXuItw6LoRqVrDYbgjVMkgNnhfvRthS+IOfEpuvAerwxNEGs7Us83gknxcl+QPhy1hC2G3zjhBzvxMXUGoMLwp8wtkf9dHWNoI+FEyv8WnbdmIiGtcq6OgMmZkjqORUj1vWp8BfDYSST+iZDVxzeSnBrZwQFtUquNzqEhU6faSMHgxgdmgv0NCqanRliBvpaKV5R0MtwQ1DlSt/05Ix0QoJ6ln0dISjKbulCkPWJLUTlpA7h/Tk1+DSRKGym9I7xZMrJ6QKMgxS4fHjAYrFhta21ZIiBaI/Cp5gYT0Z0bYu3nja2hE6uhzO9OjSLYjIb4QDq9bEWIb6YqEIKq5b7FyRiQddFTZpNJw64RvPkUiBq3etXgV/Ox1d0g9K1rZI6L9Y21uqNh9IHDGplL4hE33XbnluhD4vRm06QGAPWkQnat+iEnjKRTIFOqaq0sEat7BWC7HEHSYGUYkISZz9jsu6y+3WA2ga7RySwRuyWh+ZEG3GLIZqLBOI+KC/ljMuGopCsBNk+5S+RkFmTpaHI4rkBqHLnEYSmb9iMHvjmolum/z3614PAeFVV4mzSdY+sLFKMpJC4ffc2oYuUxYiT4zMJ2xtUTiiMbTTjAjCyIw/WEpNmkeg1sYNSRxu8lLRoiZ2/4QINQ/etKYndu/cKk0YZyZLyXHJCC5kcDPW2pXaC+PRmbMJbEW6TMQZnClKSh3SQeOk7FXujJ6t5F53KI40XZZnz+MITuhaT1adF12IR+XOPuPXhjcZZCi3ApB45sthSFD85JyazkpASi2VNxtKFVqMZEk6VXpvtWt5rXd85X7C7t0PXtTgDxA7vxhhvaZotMWUmoz0xG3TK7K/mpNRxcnwO65abV67zrmffRfHefc6aTJ0cn/3sS/zUz/4ym8WC7XpL1wS6rqXanRLLKeOR5/ved4P3XrvMWy+9jisnvO+5J9nEQ0ZvvIG/77kzaXn7ZMU2dly+dIPCjzi9fYdXv/gqqw72n3sX1c4ey/MFD199ldW928SwhdApdJ9xJvHxlz9JjgaTHLa0+jA5/MFlrvwH38Pzv//bufuZT/Gf/bW/zk/8F3+DZr1kuTxntjtns1lQdxGsY2c+Z7lckILw20ajMVjD048/zWq9wTnD2Hi6tmURAi45rl29xmw6ZzrZYXI65ejsiBBbjMkUZcl2W5MMbLuOoizJMWoydh4a8ZSkIag3pzw8O9HDHQovGWP3VmdifRATZemZVCM26zW7u/vcengP76SZ3N/bZTIaM53NOXnrDcbjEgdMyhHOFpgMIQoK3NQ1kURjAq5tMUGGBpwlJHEcjTmzMVFM3wpH4YVn4mOm8AUxC9eqBay4iSn/Qt25VbUi3DaZhEInxpfOObzVFQOCPCRd+VhFL/oBA2sIOeDx4r2idcw6QRliTMTe3QAofElAnFOTEVRX6GtpcP0W01ZHSEgUVVbVpzXEUFMajf3IRqT+1mFjpjDgvcF6S+k8SS3tHdLEVTmJskh2/mpBIYn2MTR4Z+S9sHJ9kne61tdGM8qALUi9ITaRul0O3LXkHO88eCCDlTY2ws+VBqWnBoQAxhZCxqeC2A4WCxIICH08R1QuiwFJgx62DI5sHZGMjVlSm/vBTWt31nocgwjMBaQOem5/+Q3KV3Sa8f/2f/+fUVSVpkz2aEd/3ErTAEhbrNOodHzSv/ZNTVJgoSeLfqk1uQTrAdgkNsDe9LJfFD63w9foEkKREEPf9VgDxmY5nJ3Cf1mRHdn16G93wZvJ+pr7d+hLX6P8RY8cWF1rJEUIhBylmSwGJLpbVwfJ6kqhh0jsgHzID9K1BRdNk/jDpMHOufcYGbg5fXOSel8PuQqiDIG6rrG2f09kYZt0ErWPoAQZmTRNNlh6QzY7vLpkepMlhVP7a4HKfFMffSCTVdM1OO91P+uH19Z/Xb8ik3AtlTR6kar3qy9HVp8aeRi994QQ6MMAZT2od0tSlrxOjRJYKdekd+jtE0WFLyP8nWHSGhCarJOhIB3q202phUtuGifEPRvpQgdJEoyzZor01yAlUUCVvtDpVYLBnLXMpmPq7Zb5zpzFckkC6qbFWsvefETXwGg842y15Oj+MTZYXnjhvdx89jnOlzWf/K3PcX6+5Od+9meYOejWG3ZmM3whhL/1dsNiuWa7PKcqMttt5N03rvDX/5d/mtX9d3jttTsstxueePoxVufHHK0avni+5hO//Rqnmw3JekLTMhmPRXYZWnCS82NHnrptqJwX/oKi0cWo0ush/hoJGR6IGZ+lToQQ8FXBn/mP/2Pq9YpuecaH/tf/EU7V912XaLrEeDKnrCppnEPEO9n7V6NK/EKMBD7evXeHbBwnZ6dst2usg9FozHpTc746pw0tZVXQNQ2j0YgutNRtowaMkclkoh4wUVcWBrIQo1POtGRKrCDCzpCtpTCyXrbqojouSg5395hOJrz94B4ZWDdbpsUIgpBWN11NURi8EwsDWXN7jPM4X9FuNlRFSc4SOjmdTak3W7qUpME5PaeoSpbbrRpHgnM97w76FOKUM12IciAaM3CznElDjZTth5H1TobD/QPWmzWrzQaMJQchm2ZrhFBvxAOFJCslYx9BhI1VDpw04NaKz0hIgtb2yIegBBaJyhOiq8oFJIpE0QYxShOeSIyJFkM0HkLGOw0fTRFvssqCgWzIrhDCvKoRM+CiyJmDVi7hPgpPxVjPfGdCCC1NLWnYGGmM6Dl2Wi/lhSWcQ0nxYBFCcAodhTd0XSTqMBe11lmnLsYZRfGCrL58HpCsnBJWjS37SBeGupZ6O7fBsTxbNfgkq03MBS9TT9r+OwiyZPr6Bm3T8F/99b/1736a8YWKQj5S6lmt5mKaJg8HuVINMMoNTYoSeHXJy9oc9F4dvZNnTwrq+42eGDQczuha5UsaJF2k9J4XGNnr4egTlPTtle89NCjCkehNcy4aF33tMDRU5H6dc/GrXnxv4YcMZmxaDHLWAEPzaEvSd2gCySUlVznrhptXrqEV0zSbhgOaLBJXIXvKSgX9c8ax0R20YBTCs/HOkrJFmPPa3fdEUdOL2y6uRd8opizNYn9VTL5o3voMnd7BVpCprCmd0v3HEBU5u3Ar0HcJay5g4dCBcyXOObquHcjTRm+gmJJ6jyATTXpElm714c2PXHsU7jVG4WpHUXgpsubR1aBCpknsrJ1zjMpKm7mkkKC89k6bMq/+ENY5gpIUcw4QOim2IVFVIwziAFyWFWL8ZqnKihgCVVlxdHJMh+yqvS/wxnPn/jm7u4cUfo9UTJlc2adtAp97/SEf/eRLfPiXfoHTs4fs78wpQ8CUJTuzMdlEmrahaSXnqRp5PDuE3DEtEl+4f4eP/tZLfN2Ny4ytpcNwfnJMk1qWMfLyO3c5qWuScxhrme3tYHIixUTOntGVq+xdv8HNx25wdvcdNosTju8/pF43IndtW7p2i0Pud+sEmYvGwqjC4rh58yZ37t7i//rf/V/47u/549x/eMzHPvZJvv1bfx/rbU3TBUKE8/NTZrMdiqKgcJ6yqihy4uz8jFE1Yr4zx+LZ2z1guVpyuL/PwlvefPt1xuMx1hdK8C4YlSMmvgIkDmIy1liNbFhvNkIyVYsALMPQkAAitCTKQp4JmwyXLl1i2W5pthua0BHrjZhndS1uPBrWnatmKzL6Tt2vk3hshCReQDm0WF9A2xLbQFGVGOtxREJomc8ndCHhCwc5EkND6Qytyun7ydoYyZcaDqSkkSMJpNfQuqyoicC5fWXIHB0f0xtiQgZnhkTvyIXE2Nl+t9rPnlmbi4vVtCBpWq+jDFZOm1NrrK5xItFmSF6aQvmR6jEViFkQceehyEnQHyxdFwQNzwq2ByuICRETmkEVKMnMdqjRvh9CrCEiA88oR9J6TeWF++OnM7bbjRj+RVnfWgT9wQBREbiuo25axuM5k3JE2zZkB229QGIEEqWXodWXlq0RtLhpJQKjKAtB83tTSW3E6Cu1ueByYqwgTsZozY1fMmipPFXPCPquZDh3hNUgDaag+nzZH1/RDUofO20wQ2dMRo3NtFO3/VzeQ/q9cysMvEIlWUF/cPfNSaYnI+qw3sMYF2jGI+sFgR4vPrk/nmz/QOlNm7M2GSL+0cPJDkBPJtEOMmWd8vVffNJP0i7KDE1Mz2j/HyAx+rO1FxsmHWlw7HCI9rbJvQdHipBD1Ac+Df9mrUxWkjnktMG4QKhiiKomkSbDul7iK2iA1SbN2QF06H/Lizc2f+l/6JVDOnlFkHoUx7mLh0EP2GE1Zc3wADo1metbkv49yfmRFtHKKmZnZ4eyLDk9PZWpwiSBkI3MEUm5ODElXP+g6o4YvY5OeTzeWMqqpKwK8RFxXtKrs+TbhK6l6wTy9N5RWEtVFDg7GhqirIUEKwUvxoBJUmCz93RKri6sTlAxUXiPs56iKMUN2KQBOeiVWNZkYmpFrmhluqyKitAk3rl1i2eeeZHSOj76L3+VX//kZ0iLc4zLtKYhbSPrbU3hRDVnbcHUe/Z2Z0CWtG8Nk8spMh6VBEa09RprPR//wmf51j/wZznrlrgTOD5fUI9mvHr/Nm8fnYvtuB5oTdNgnRrs2YJwvuLh4mWWt9/BW8f6bE1OjsNrj3P50j67o5LR2LJeC2+jGFVcv3SZ3/jN3+LNO3d47Jmn+bqv/Woev3+T6zeu8PM/97N827d/J2+8/YBbd05IuaYajZnNdqibQE6RHCzz/R0hcWa1OiezOD8HoCgKrl6+QsyR0ahguT7DWDGHPFssKKuK7XYlbrze4zpBAg52dilGFYHMg+OHCqvL49sjYVGcwcgGWvVUdzgeHh/TmoBHa5yzdCaK31AKJFX3ST0TdV9OGVcW5BjxhUR/WG90dRix3rBYr6hDJKdI4Sx2uVWkWdaa/cHprHgFpSRTd85Sb5zzMmDZrE2QoIwxRlK2WJuHQaJfr+dHCqzVxnKYrRQdNoaLlYG18nlJ0JMeLchkMGmwFDBJLBhkhZ8ENSaRs/i7puipjKCePSCjNEGs84ROuG49iTa6gPMwnlTU2608j6ocstbiraMajbh84wpvv/mOrGusQwKBc19p5NDPiU2CzbZVVZPFmUZ/d0VKoqwso/JtQs60GzFNdESa+pz16lg7A13jRMn1IoB1Gd8sdc0s95U1TnibzqvVwwXyBYjXF+gGW8+WLPdigoG3YzD0sX8G1OhSzkQpvwbvovqtiKRbDDb/DYUF/viP/zg//dM/zRe+8AXG4zG/7/f9Pn7iJ36Cd7/73cPn1HXNX/7Lf5l/8A/+AU3T8J3f+Z38nb/zd7h69erwOW+//TY/8AM/wC//8i8zm834/u//fn78x38c7393/VLWfV5/IMkBajCxl9H0iZaAwv85I7Iwvbl70mevHhm4KarYSfTAiD5IipLIPaY5B8iDIagF9M2GNDu9/DjrQWPoM2N6ZY58u/7m1d9JnxJntFVXBEF2hfJJg7RLO3bTw51coEvGKAqUL1ZfcDHA9I3FkBOkOQlyWcxAwDUD30L8IQakBbkObdsOK4legWMUhjTOk0T4I3vfQbNvhsmrn4QwCMiqXXjf6qV+j9mv7az8Thd2z1LaBL2QyasLreyP+8/TXzVldA+ukmR6tErWddeuXufW7Xfw3ov9dZTpQyYo+Uj6X2lgtmZt+MAqo95pto9cS6cFWa5bU9d0XYu1RjJMnMd7j82yRpKAQLHaDilpE5MpCmmSyrKSqSlKFpLcj5I9Y4zBF5aqHAlhz1nZv4eI8xbU+rtuNiQjpHASTFzFyf1Ttouab/rGb+LTv/ZpfuZn/zn1uqXOHU2Sgnxlvo+bFhRJvCscltJlmnrFvXtbrly9wnve+x4ODvdo2prb77zFrdt3Obt/Qh0CmILXX7/N26/d4dJ8l7ePlrx12vArr36B43Ur0lnv+jsI67yidGBsRwiBajZnu1oSU6AYjdmbHrCzv8f+3pznrh3w/f/R/4Knn36Kro40Xce9+3e4e+cPs6kDH/nor/Gxj/0q73r3c2xXa77/+/8cH/vIh9nf+Sp+49Of5vd/8+9lOpkSQmR3vkNVjQR+7zpCDFTjEYeHhywWC+q6pixLuq6jKApGZcn9ppb7wFlyEznY2xVzKx00utjSbLc8/fTTNE3D6++8RUQO+aEpVXg/Rhl6jHc4bU46MoFAjkJeLPT9w2RZ8VpxdbXe45Lc2z3PyxpD17QXSEOU5yt0LaPKU6rR27YJHC/PaaMQQQX1VLGANYQ2iGkjkLNRVaMoB3OvJkRUdMYqsmkssZP6aZMduGP9BE9fB9TjJSbhkIiqD1Ea9avkyPBseStfPwxjeqBmK4ZvJnu2TUMypUAkgO1XwdZgctCmqJcO6MCVGqzxpOwkI8oEsIJu07S4lHFenrXDvT1CkJVSTJHj+w/JRDqTKXKvrMw4IwjWkMGFEIsykqnUpiDNiXGqthSfpqbr6PljPacRY4i5wxaWmCT40ADO6wCOHZBssqzFLGLEZ4whJG1Yray0xdwx43rrg4FPKf9/70Ejqx7522ggG+HaZIxGyMh7E2MixIxzBm9LqedBeUlf5sfvqiP4lV/5FT70oQ/xjd/4jYQQ+Kt/9a/yHd/xHXzuc59jOp0C8Jf+0l/in/7Tf8o//If/kN3dXX7wB3+Q7/3e7+VjH/sYIH4O3/Vd38W1a9f4+Mc/zt27d/m+7/s+iqLgx37sx343L0ftfEX3jXI5IklREjnA+vUAqKrFAMjqwua+sQB0qu65JVZZDiiMJ+ezdESphyWzSHJNls1Kn3xssYps9PtWRTN0CjQXXcnQMvSPVqZ/gNHvJYmWgqtE+mA/kSDnCyVQ7lGaiwe3z6TpEYqULvgi/e/S91t9E2V0f+R65Km/25DeoJexpRywRkIDQ0yMRqOhKYIe1LD6MBTSNCByZO2nFM2A4UWA3vjarj1idNaLgntGe0Y8DLw12hT0DZRm98SExZOSwRVe4FyiGjPZYX1mhyZFphZrLa+98Ro5J4qyUGVXj7v0F1ZRGVfI3+vvnJAARJt78lvEOUPoOtrQYa2hKktcUQqZzo9Amf9t29K27SO7fIt1ltRKMYspURQXUetYy2g8lUThUUUTWsklSbJOK4tKIh6Ujd+GFoOl3jYUhXhm+GJM3WzAebpNzcP793nx3e/lA3/sA9y5e48Pf/Rj3D86gtKyN5lwUFxmuT5nuV1wcLDHzqUx5biiGo+5fPkKzz77LM89+xzvf9/7KAvL6eKE1WbJarvibLHg7OEJd27d4eTohNwlPvL6Gzx+sMOnPv8qv/naWzRlSdaDOFrlXyQp5M6I0ioaOXSbzZbCGMbjKZP5HrNqzHRScbg35w/+/g/w3ve+yOnpgnrdMBpXvPCer+L6jae5d/c2wSRW8ZzP/PoXuPnkEzz+zE3eu/463nz9da4cXuKj//KTfMvv/2Z2ducURUlKkel0wsnJiTQjsaMsZQW4v79PInJ+dk4ILcbA+dkpy9WSyXjMeDTl7OyM8WTMtt4O3JXJlQln52fcPzqiSxFX9LlX9sIAK8szYK1ybvpZRWtWimIYmVLGKM/KWieS/EJVbwlpja2uJhG0xFojPBwvvCxrvGSweEOIHV1XUxVWFDEJCgPJWroUicFgKdXk0inHSvyVrDa8AUPPn8jDM2TASlPbCxkMWZ6B7MkKYVgdjrJxYkQGEB8NyOvzdHQoiciwkbKKFCR8L6VM14lfyKis6FpDl1Tym4UPY3PUA1PqgQyh8gwZo95BKjJw/WGQE10bidbTtLKQvvvgTMjLOZNSh3dSZ8WvOyr4qtfeWyrraUKHHVBq8WfKVKLEcoYuBbzxyg/xsqqOYnkxnc1puoacI13dCCLs+riAXjwR1LhTHNZ7Z17v0LrVqYdLLzGWpkbKqJxVfZNpVbLQI9T9yj0ZPS+H+VWHXS3fCWnIQkIN4XLPQviyPv5/Isk+fPiQK1eu8Cu/8it8y7d8C+fn51y+fJmf+qmf4k/+yT8JwBe+8AXe85738IlPfIIPfOAD/LN/9s/47u/+bu7cuTOgKn/37/5dfuRHfoSHDx9SluX/15/bk2R/5D//3+BHI3VbNf1vpAezHCpDYJJ2eMPFyeDVqCbqPJyRRsNh8AZSlO+RQA9BdEpJ9ImQVklb/SHfL+F6858euhMETnfK2gxYIwdypnczlIdDEoa1mVCUoyfHRt0bG522jLZYOTLsVuVTe+Jwb2LEBVoyXCczqEgGkjFaHPpGTdckQ29n9OfoonygnGaG3bM0KmaYolISro1TannPgRHk+gJJGtYtuX8QtPnCaDxB1ilLf+ss+RhWr1VUuNc5PzzIGZjv7rPZbmT/Sg8dgS8KeS97+TIJa6XhytpMWQcueQacrEepjKAig/RLUTdnLZPxhHq7GQiqMXRYpLlL2ug4aykKryOpcEcEAbkIrbROiru1oopIKVOVJZPJmLZpBSGyojIYjyeE0LCpN2QSzgph1hgr/JscwWR89nI/GKOroJJ7dx/Sbrb8qT/2vTxx4wn+3n//3/Mz/+SfcHS0JFtDV2+JMTCaTrj52A2uPHGdvZ05u7s77OzvsLO7wxOPP8mTjz/NfDrnwf37WAv3Ht7m6PyhxBOEyNXDfZ64/hiPXX+cyWTGF19/nZ//xQ/zkV/5GK+/dYez5YamC8J18AUmQexaUuhIXYPHEIyY3+Eso8mYUTmlLHYYz8bsHcx44Ykb/Pk//b184we+lvPzFS999iXefOc1RuMR9XbL8ckpXQqs25rXX32bz3z2c8wmu3zD1/1ePv3S59k/PORr3vMcL774Ajcfv0FVVmzrmvFoTBcC681aSK5dYDqbk3OmCx2bjSSnr9cruq7h+OyEoix57PoN4VnEyGq7Zl0v6aLwt1JKbNot265jXdcDwVrUKk5XwUrszIgEGJTcKYd8kzpQ8nq/nnZkMZ+MaYjB6IL6Y2jdcUNjYocVyqiwtF3Q+ia+T+rVSm81n42l6/QZRSW9CFvMC4wpSphsZEUVL9xMpfkOhCSKyt6QLIMMZNZ+KceEJGR5K7vwPAwCmm3eex8NNgN9Tb1oCCDLs6W1rkuGkP0wdICQzG2S1ZI1mUyrogZZAwmPsLc4cEM96jSwU8EfPWEi3hkJRDX6OxvEr8lots3g6CwDYcqyNny0Aehro7dixNf1a5McJVU6dDJUIYiVNVaCBdPQ9mlNTDr09cPrxbAVs2QCOeVeZ+Wa0NdcIKVH+YE6QisiZ/XsZDijVC2qZ4FIyC/y3NB7r6kb/psf/bdAkj3X/evBwQEAv/Ebv0HXdXz7t3/78DkvvPACTzzxxNCgfOITn+D973//l6x8vvM7v5Mf+IEf4KWXXuJrv/Zr/5Wf0zQNTdMMf14sFoDA6+mCyKAHvUbV5wuVhqAnA74wTPqxh+nzRcc3rGUS9EYXtr+RjayQes24HFQZ3AUhsj+kLwhGDDfHoyslqw8NOiFi+ihqr/yGXuXS/9Z6U3jXgy/6t6hktTcGUrpl33DozeVs34T0kmw7vJb+mqCTVQ5SJCLpAu2RK3WBShkzNFrG9GqeR4jJjyBTj5qGGesQG2WV5PaPdZYbu/eCScPP6bEleT+0HdOHQUlbKLE0wXQ2JUYh8hkrSddnZyeyorH9ewRlJRNw3WzFbC8lsJ5O+RnOWeW3qBrGoBmI/QMqjU7/83OWHA5Dpt5sBGI2Akvv7s+IXaBrG4yFyWg8pEm3odPp0xFTkMwhZOdNhqKU97XwjqYRTsdms8UqSdc6S2EL2qYVc7wku+q+KQ2hw3o3NKdCNAxEMpPxjOXxOZPk+HPf9+f53Esv8xM/9l/zOy99Dl+WAhXnxJMvPMuL73sPj9+8zmw+w5WlFnODLzxVOeaJ6zcpvGOxPMc7w9npMbnrmJcj3vWu53jsyg125zu0Xcebb7/D2+98mvtHJ9jRjD/0Xd/F5c9+ng//8sdw25YUAp2qvUbVBDezss5KmSJlbDnCuxHeVpjRCDcZ48dj7GjOvU3Dx37js0znMz7z8mf45K/9GtevXOZgfwfnDXuHu4QUmcaO6zducHj1Eq+9/CavvPYFUmw4OT3i9OwyTdOyXm8IIRBCx3q9ohqPabuWyWQMJvPw4QOKsiTGMJBDc07s7e+DdyzXSzb1lhtXH+Pk6JjReMrZasmDkxPGpeRYjedTFttjmWCz3NM9GNg7m47KSl5HEp+RnndljKHy5dBky72tSpEo6wTJEdLVsKrJAgafZWWIcgZCjKzaiOhPrZj/6eHZH8hO19+FN4QIIURCBqOuyKZv/rMsSi4ai2GMAvoVutYQlQcLSNzbpPf1VMJOJfVbVhHOWiVM93XADDWilx/3ifRofQggxHj9MYWNSkRPQ02Un8lQ5wXxlVVLNlqPkiVllTRrqbN9HUh61hhHCoBxA/oktUquZy+MkLWxut/mLz2bhKwrdg85w2Qy43S1HBqynCIxdIJYWVE9yjSnP2xQAKF8kYH+ol/f5/3IO9KFjPMekwOeOIgC+jV/1uEZrdhZRQ/GSsOUjcFkNwzXxjKsoC5kHFJLIv+WfFBSSvzFv/gX+aZv+ibe9773AXDv3j3KsmRvb+9LPvfq1avcu3dv+JxHm5P+3/t/+9d9/PiP/zg/+qM/+q/8vTVOoPSBF/JIU9B3zTDk2fTeHv1/Z3SCV9RE/r2H7LM2LNqEoG2OUWnesCpR6WvfZIoKkJ6B37+krA0N6DSU1QHUKPxGIicD2pE6o1Bnr8+nT7Q19NwMacUM4LVr7RsOJaj2bPWcMKa3Se8D8PQa9k66PapjLdmLosn1N7W+lqxEV6lZVjU2PfLSf5/8JWiM9Ej9n/NwmOf+GvQdfU9gzWCy+n70iEnfjmVUMXDBMjdGg/sQv5LteksMkWyVFNjDlPaiCBhnabuW1AjRV7gZjph05eN1ClAIORmlIKs3jSBnjt679sKDp1ctXKBc3jlSJzLf6WSCIeOdFylnSpRFSQiBpmtJMQgiUoiUVb65FRWBps1utzX9i3NeTJBCFpKeuONqPKU2cyKFtXhXYIAuRXxZMCkKju4dsTOa8Y3f8s38xI/9H/m5f/GLjCZTJpMJbb1l53DKd/zRP8wzzz9FttC1nXAD2sDB4RWevPk01jpRJTmPSZmRd7hyyu60oqqeIqTAZlPzhZdf4+GDI27fvS/rKpUCO2t4eO8hr33h84zLkugrkeH7Yjg4uq5jUu5S+BHeG7AGOxphiwnOV4ymEwrnpXmvPL/zyuu8+urn6WzLwZUDlvWGxe0zss00bUcbO0LoaJqGyXTO489e4/Y79zBN4Pq1G4q2tdy7f4+nn3qSsipZrtfELKu4bV2zWq0A8fZIKXB2doJzlq7r2DZrpjtzJnnE/bu3RTKKoW5blssl3hfUKeCs4+GtO+Av7p0Ye3REnpe93T0WizX08H7qVw1pqGPOGjFE64njmIHIiCp5RM7rcdaRrCWGcGG82PcVOHLPV9MVcs9TQZ8DEdxlNQh0QrgEWUOaTGGdTPypJ/9JSeoR5S4aMH5YyVpjhue5R1GTGho6Y+msEZSil87GTGHk32LOF/VGsaMBcoYL5MBk5WSkYQjNxpKSw2SHNZE+Y0j0NQUxOwidDI30vEF5rUkvvzWCmNgB9bpAuKBHRgSNiPRNk9R9aRQE/c067Mnr0gYvR4k1SInF4pTCOW1EI00d8K6QnxJlZZ5yv+ruOXFG38t+sLZDKKlVNaftkXEvie2uPwezcn1IulGQXzhlReiReihRasoncQb6cFh9xyOZ3lHX6EEynFdf5sf/5AblQx/6EJ/97Gf56Ec/+j/1W3zZH3/lr/wVfviHf3j482Kx4ObNm/QHbT/RQz9xP4IiSC8/rA96iEoUpT3ZR5sOHvleZrisek5eKGFi7u3OAWOUIJQ1wEt/ik4eKeu0oOS3AWPIwlAZAKC+W81OehR7kbsDGacETIF9TY/pPIJe9HHbgib0DdgA1enOd7gKGd11P7LaMT3ZWGzxcxLjpRCkxetDoYXR7sRwx2gj0NeFLDe/rHb6qc4OeMpwQQeCrVxT1/+qFxdDGfoM8DKPvMcC2YpU0lk5JORb9z4BDMx6NX2RomxVpmmdTkryM0MCkjRmPf+j96dJ2ijJRKg3XE/7MSIhFlLrRVG2VvxSYhAlBLrK8s7Rti1VUcoE5KBtanIU1KpSZCd0nRwoRuSLTSN75vF4RNPUhNiR1fOmKAv1jrFCrtOmVPxT7MU9Yg2F8VRlyZ13bvP4lRt86zd/G3/hB/9TPv+5V7hy7TpNW7OpVzz/7mf41j/6bRTjkuPVOd45ZqMZu7M9bLJMqymlLaiqirrecL48l0C9FEgpslwtWCxXrLYbfFFS+ILZZMZzTz/JdDxmOhmTc6AoMr/9mZf54uEVRuUeXTZigmUKQhYJuwE1sfIUfoQpDLYQ8nPhK2xR4Jxl7CJTG/BFErOq7GjXDZtUc76STCHnZC1XFEpCdAZflTz+1GM8ZUpiZ4mNwOfWOV57/TVm8xkpZ0ajEVVVsVqtBhXbtq6JqSPmjhhFRn92vmK5XdHbsKfc0bUd6+2a2WzE+XrBtmmHRNoc1S7dyiAhhm3ynJ2dn0MWfwrn7TA8OWsGlRpADok+EqGP4bDOUrqSpqmVB6JTbYqCCOqKNqsSz5EGD40+0gEd2tAmoF9BoLVDH42h1obBP6iPGBHExOKw2iD06wtBVKU42hRFuWWVW5cgZzGG6+uKOhVp3b2oFxcIhNRQGVdyX2kExZHRQFfFsk4VFVCiS9KciT+KH8pTSqVwT2xWZYswcwvNDJPQXqlX2UYyYrTXN2NWz40BgXb9a+l/9wyxdznX08FkidQwcuBbMtZdxKBYlyGJWV9KcRhIZFUnXiQ2I02ZTOrCRTFWuCdZipc1EKNmzulaimyIODWRiyLqUITJmnTR/BhUbmx76YIenG6oc9JsKiLHxfsjCN+/IZJs//GDP/iD/OzP/iwf+chHePzxx4e/v3btGm3bcnZ29iUoyv3797l27drwOZ/61Ke+5Pvdv39/+Ld/3UdVVVRV9a/8vfryDDDfAG8OUzwonCJf0BMw9SE3qOxWD9dM3+1o993r1vX79Id7r+GQbJ4L1MYaP8jbQIqO/mCxO9eH+6LLtKqZ78mlMgXI83ixX7UIUpRiwrkLyG4oGP0DrxOIcByk4x7mF91jJ7EdG8im0F8eTRO2hjaBcx5jDW0nyiPnvXTqMRGCUWRYXQ3jhVKpR3KyBlb1v//wUjBa3y6IquSeN5QfuT5ZOTZSQAV5yUoul39ImMHuPaUoe/UQRJKIH9ZoQqRGXBaTbG7JGe8ck9GIthWFhtXvbY1cd+h9G8zQeMiEpJwXlaxHXdcIPJvEpj8lUgiURYE1EpTlvScpg74LHdE6rIfRuKIoC1HjkIkh4JzHuwJrLW3Q+PKcJQ0ZMccyttRDR643SEDmgOZZVBIqf9G0Lfu7l/jMp3+b9zzzbj7wDR/kx37sv+Tll19nZ2eXh8f3eeb5p/jGb/4ObjxxnUSmjR3OOLzxTPyEa/tXmU6mdK00I/WmZbNeYXR9MioLptMJpZdC74oC71VibWXKNEpIbpuaN774Gi9/5nNMignV4T7JOJKx1NGwDgG8I3QSTGicJ1tDVXimLvPd3/bNPDx+wKe/8Cq2HBHaFT43FKWhaRrmM3HKnc5nnC2PCVFch6VxzIyqirYNrJZiRz+fFBSF53B3lxA7NluZWJf3VsKNy710Xt7/ZltT1zVF5WlDO3gBtaGDFFiuJSQz3LuNc5blZkXbtXIAYXFFQUpe64SujS2CHJm++TAkhJOUdWhKKSpXxer4JRL1FGTF1J8GbSMS8qqsJIPJO6lBSZrwhJG1EQZjPd50uL7rNoJkpJi5UKDqsxTlmXTqLyNTuR2Grt7uIfek/CyHcU5JBjutvjmhxF5pUvqBxlqLiBelrth+JjCao5b1+6hNQ18bTBaOYSYPK6m+OFtUeGCBnrTqIOVEMCWpF04Ahl4Vl8kD+8xAVt6IiUL4N56c+vdFyK5WeYtuOFZ0QH3k9Og5OQnEvC0n1GtP1ibI65L+JRGtUTdpuS9CiqTYKRp+8bznzLAq7N/DrOdUVKSl5xQaA6gDuM0Ga0UpF0zEI0q/pKu6pOeGoT/D1OrfZsihnyf7I224/1JO0lBxcb7K+/RvaMWTc+aHfuiH+Jmf+Rk+/OEP8/TTT3/Jv3/91389RVHwi7/4i/yJP/EnAHj55Zd5++23+eAHPwjABz/4Qf7m3/ybPHjwgCtXrgDw8z//8+zs7PDiiy/+bl4OODsYZmVFPXrCbJ/xkPsdoRERViKTnaXPmDY80r9gZAXbS5RzlH8fvEPkrhsMtlTq2v8Mq0UlWi0wJg9NiTVemwKZpgUF6dcalqw/IyFmX2nQUEshETjTkGI/9Qg0KA9Uxnrx1ugf8qjTf9+w9PtJZwsVx2Sy8l+EIS5+ATnJNY0xaTy3YzydyqQYLghPoet0PRLoVUr6aEkD1Nvl969BLuSXkH4vVkF9ybqY2KRJk8faoUUgq8xXG7KkSazeSxMRuoxzpa78+s4+C0s9JiEeqry7l/21XSO7aKtISN9oaQPShW54rU5ffx+bYKxAosL5uPg6k6WgVEWB904D78SCvigKpvM5dV0TY6BtWzAZ7wt5nUBoA4X1tKFTciS6nksUZUlpMiFmuiATTdQdvbWe/f1DVusVq80SZyzWG3XXdRzuXuajH/4oLz73HsbFjD/5p/4Mq23DeFSRTMef+jN/nK/6+vfTdC2b7YYCS1EW2ASp7Ti8OuPy3g67O3PG4xHz+ZRRUcnBU1RgxWdF7q0kaJa5cNIV7oFMjCFkvK949l3v4y/+J0/wS7/8Ee6fHHO2rjlebpjlkh3jqUXHKO9j4ciuoMQzKxLkmj/6LV9H5SJvPzgCM8eaMTm0jC9fYe9gh229pam3TCYTNs1WDt2QKIwTZUjI7E53ccYyHk/Z2dljVJRgMnXTSFDhZEJVVaSc2NmZ4b1ntVqJtNM7FssFXezkXrWeECJ1U4MVSefp+ZnIXY0gPi56ujYQsxyE3ltClGckKiISggxZ3puBxBiicBpkMIniaaGEUp8zhfd45+hiJIbAbDLh8cdv8uorX6T0hRClraVwpXyPIPNvNsMSVQcf1LRQa1zSmA4yAZUAR0MwYl7Wr7CiIpKy8dWGvh8qLiqD1kOtjynhjTj9dkEt7nPG2143EvDCrkeiKDP2kYqBuVDz6ONO7xybrAwcOt6BZszQm2VmIFsqA52iR1GJw8kIatCrpqBHW5M2JdJoywGchQeSjSLciagihMGdQZsU98iZI7lphTQCMQ1yamc9pTOktsNXlSghozRKOM3FQbyNDLLm7suowQ1Gcf3PN3pWpBh1NaVBrCThyTgn8vCs/Ca5A+Se0Jomlh3K10l9/c6QW/rcJ3TVJWGMWhNjywWPsD+L/w01KB/60If4qZ/6Kf7xP/7HzOfzgTOyu7vLeDxmd3eXP//n/zw//MM/zMHBATs7O/zQD/0QH/zgB/nABz4AwHd8x3fw4osv8mf/7J/lb//tv829e/f4a3/tr/GhD33oX4uS/H/8MEa7N/PIm3LBhZBPueCKkDPZ9pyS/pF8pKHpayEi7ZVcn6S3p704QJGOV+giMmkba0XOp02SsNH10VBYL4MabimSQz9NyE3Tcwh6bolAfkoABRmbcYNDZP+gCm9GCUo9kUrZ8PK9jewH9Wel1DdUqpOPSac22WuWZUXXdZATISfOF8vBWKnfc2PEEEh6OqNNQxquqCAjZvi9rZqMPfLmyeumR3H6JlA+UkqDQuYiA+JiZ402YMaUxKDyQqdW+sZKYTWQghRyYxWtyo88XEaNpnIGK4dmTya8MKdz6rGi98/QUJmB0NhPzhlVRwAxy3TabGum4xGiLiroQiQu13RdoO0kmbYsC8hqxR0jIabhIa4mI1Jo6dpOUZaONsYBtk0pDtc3pzisWopCJiCi/g7J8pF/8Us88+yzPPHEE/zXf/v/RNN2+EnJk+96gj/0h7+Vw6t7rFcLHJa5q5hNZ4yrEVcuXeL65atcuXyZyWRCURSKgCWBqJ2XCS1mSr3ukmWVabsW44XIKyKuQIySMFtOxuA980uH/NnnHifnSL1peev1W3z+5bd45Z3bnNeJs9WWNluSL2RP7ksKkziva+6cPuDK4YSyuCJciBCYz+esNkuOz+5zcnpMiIHNZstkPBFpvJItJStFvCBs6ehCS9Nu1XxuizGWaTmlLAr1ioicLxY6tFi2m81gTNZp8x5akbWWRUkXA4UrSET2dvaIKbJebUhBgvFy7ECVeOOqYtO2OIXU+6kpxaxGV1KVnBMZsjGOPkwTIKdI1wVCjOpUXBC6jju3bmlzIfL7mDKd+l/kbC5qiMgAFQmxKre9GMrk/pT0baPk1xQlhE/QH0mzFZQlKRpwIUjoEd/ERbSIcPnkfyElrJU6m5XAmvTaiC+SNLheD92Q0mDZYPtrgKhiJMfKajOXBN3AgPFSdvS5zTq82CSRCNYZlds6iIJkyYpY63ZOOJcheyUsR+UbovxBed/MwIORWi8eK0GuE4acOpKx0ij0Ya+KuqLSelnXWoKaOGZtEoQE7HRdrdc7ykCW+9NISqtc+5SFwGoEJZPvL9fWWbkeMSecd7Kyyv0a2wxD17AWMwrD9/eF6cnMomTCSC1yxg33llVopechZuXtfLkfvyuZ8XDQ/w8+/t7f+3v8uT/354ALo7a///f//pcYtT26vnnrrbf4gR/4AT784Q8znU75/u//fv7W3/pbX7ZR25DF8zf+d5RFJTe/dVjnh4k3Zyn8MarLnzEq+5R1AMYoKG4UfpZck2zAZmk2Qs4qZxO/E2lw5Mbtr0fOekhbSwFyKKIyZJzu6uSNda5/YFUmB3poP0LYpW+o+sTM4X6RxsZYUojY3JOVkjhBJgm6QlGVRw3obDbCdLMScmWsJek6YTwak1KmbpvhdcgDl1SpIj9XQKULhZIw8LVIPHJAQ48wOtXeK3teH1TIFzc+Fyz6NLDg5XNSX9RMz5dBYe0siaZYAjKBOKM0E+38oxaHPNQIq9eib51kpMtIIyEzmRtyQnIKw5pQnq8+cTgPv1+PXqWUKPqpQyXuRnkv1li8tYyqitQF5rMZTV1TFZ7tdksbgjywelha3Q0Xhaeua5z3RJOITUfhvRaxiLPSq8p9Je+5/K5SLXMM2rxLQ1jZTHW+obIjLj/zAj/yn/8oD06WTCeWP/jH/gjvfe/zxNDRNTU70znXr1zlxvXr3Lx+g9l0RlGWOOtxTtaPQ5MnP0yviVzsRzlWwzW0lp6ZkMmDqZfRtUC/cpXJDnG7jYnTxYLles1bt+7xxu0TvnjrAYttw7jyjIrIrEq0m1POjo954YX3MhpPsViqsmC1XnC+PuO3f+fTVONSX7SmQfdBkhldP3mq8QhjxADPG8/e3g7TyYzKjRhXI5yXhjvFyLbZELO4pPqioG0aQkgUvsBaWTNsthvJYslRnD1Vym4QBNb5grqrCUka0oQD77FZVGSy45DaIYaQWheGQ18CN611g5ljSlEOG+yApEDGF15XluiKxBCDoFvCsTAI58CAptTEKAhY/7zKQYbeVxdDnzEXAaz9sNXbElgY8tBM/7zoM3NBfJfrEkFkuRliVCt4K/hx30xaeThxQFDeRh9EL3VX+YXZkikkzI4Ob5TwbzWg1fYraXGZyrlfLwmqLc63CZcsIXVEPaDJBmcSOVu6nAS9NYYCIcxmbSB6xNggw7Bz0vDFpGgHsiKyOGKWoSuRLwY8raXis6WHvP5+xhgK5xW51vJsvTQtMdLmqOrG/kE0xOxUrq5uuQaiEeSrX4kJWpXl75PyGa0414rVm4hHetl0zj37Re63whgiAYxlXIxou0aeY30NyTiCnqHtdsv/+b/4NyAz/nJ6mdFoxE/+5E/ykz/5k/+jn/Pkk0/ycz/3c7+bH/0/8mHBlVhb0IRIjoaqmGLItOH/Td7/vdq2bXe96KfUWltrvfcxxpxz/cjaeyd7mxNyPAeC8Sjn5gaRGwQhgkHw4TwJ+qYoW0EFCYqCP9CAf4UPGrgvihcfRH1Q8epFECRoLrmaw0lM9l577/VjzjnG6L23Vmst5T6UUluf2x8nK+fCgcXtZGetOdcY/UfrrdZayrd8f2w0FYzsQViTb7B9XTEyKWeftQXa0cjeTQeuYSKo5jjInHOSkiJpeIKOa5L3+SfiHI2UE8MMbDDGHeaO2WNsyu51oByPRz+QRALK7zt3YtxQhkEXTJw17g6IXjR4pt5061ZwouFOtAq0xLrzed579ZLXb95wvV5Yt0rvnTLNLMuBt09PzKWgVr17yWmX40m5eS30mGMDbEHKTfnG+fB7JbNnbxDo0K0hw2HTuDbj3rIBB46iLflnidfr1mME54vdN5Men133xePUkQF9jHGe/55hMbsOEymGX0HsdmmoILiRCIlCVWKT27/DG2I1zx6kruMDJr9Ol8sVM+Nkxt3pRI5O9cVUdsl8V++8S0n0Vrm/v6M1pW9n3n/vFc9PzzTVKLZd4ZKzq3hyurk8TpKoQJEZTYKkyv+wzPyPH36F41e/zt//v/8/+OEPXzK9OvIz/8sf4O50orTO1z74Af67H/5hfsvXv8HxcAw+n7FM064wwSxQQt/gtfc46GNT3gGyFOutxHeQIql5qMjYR4/7V2SOfljvaO9sbWVKysMh89//0IccpsT1+TO+1R7dPts2fvVXfgXTlfv7e379u7/G69ePnA4ncsp8/vmn3N3fOSlWPJDRlTuVHGgWOEKBeDLtYTmCubz+8fxMmRZe3r9imQ+M4mszRzIEZcqF5/OFbHCcFvI0UVV5fn7ivG6QhN4qp+PCqxcveX5+ohT3p3l+fmbrPa5RZsqeApsnHz1J8hyiwZsZl3bkZNngrwWim0ZBiB/4zQwVQWTCaUuC0JGsiEwsc3lnxOqD1BYFmCMRvtf5eRTj5BS5WcElcfXOQEjkVsTH2/JbcrQNhNeGq3LSIL4zkGLb3XQ1eVaUo5i232M+2whuRLyAE0Ql7jrZ89U0PD5kv1auNCKUM2nsA0HENdwUTi1RRElyQ869ePD1YCmFaoedQ+MyZnb418L3ybdHozVFZIlrrdFYShQSkesWKPGQTpvF2aOuMLIoWksuiCZvooIfo7pRkuPuBR9LpWjuggceCMeNwBrYy36SDRFIBif6BmdyfE43bjOaV3Z7LTCCVlU8ZNWaca7XfRKxv9K+Kd4a7y/y+FJn8ZBmJM90i3TO0ZFh5DIzwgN77+i2+YXX4XiIy65iMTXrAY/5Bqzyzk33ziBRxMimLgcLmGsoUjolzJQCKpTbYkrhU2Lmr7871sYhe0OnvHDZGWCEG4CNBtnnpC02eM9VGESugAIhNPuOHAyIOJfMdV359scf+8dKwyo+2Ox14+5wQLXun9vRRyEXl0BihG31DUWZl8UranUIuKT0fUZT7xa2PRb1kAh3kkvwxnXuztUf10RHXlBKWEQXjP/mKJHu18kRJkfAdl+a4McMNvqNrOub3W38p/u1kDDws0ByhnfLIIiNrjLHOCjn7NwXdc7OIIiaKcs8U0KenUU4HQ9cr1cv6CTxcH/Ptm1eNCehBU9lXVeu28pUMtf16mhP80KSlKiW2WpnyTPLPNHrGl10IpdMRnmVjP9xueMb08Tj+kx9/QkfyBP/t//5t/LwW3+cH/iBH+Tr3/gaX/nKD/DqxUsPR7xuUJVAjalbBaoru8a9EvyigfallL1LTLKPPPa2G/Z14OqBcZA5uVhNd7v+Wjdq3bhczzw/b3zy+pFf+bVv82vf+nU+/t53WGvlt/7Ij/C1H/wav/Kr/ytTEUo5IpJ4+/iWbav0Wh3VaJX180/9e1dx/gWJkj0PSYJnUPLENC1kKaQ8M80L2/pIzjOv3zzS187L+5fM88SlrZzu7pjv7tDW3OPm4SWShNo6l3Xler34QCFMx0opoMK2VnKauF43ztcLBL/HEVu/NlN2MnoSpbVhyphuRVysU0nhpWEaNbXvRaXMCEZr1e/tEAyU7Aov38Ei2Vctcl7iuExCzs5BUAOV8ELBQmc80C6NLW94JIFIJu9eJD0OukCO3wH093smGoaxp+KDNkeABsqa/HDKFDcbEy8RPSE4koaHWvBWDfkICKWJe264q21yN9VxPWLkK4EGNCoqhRYiPO2ZTHKUOsV+ZM6hEFMy/h20aAaGOFksCi95J3xUE0J+hxJnpEDhexBRMcJfCzAfaRkbXT2QMYkX99kqvSpVUoyy2QvIro5mJAZS/Q4SLn5dxvRmiAR0jF1M456VGLP5/qyEUV40my6HFojx4BCnKMpm5tk/0eOZeEEl1mPEFUWYvPPVf4HHl7pAsYDnjscTh3nCeuN59bwMU6LyvFXRu7GYOkxpg+1htwueooiAd/kWwn7EKlhwO0bBsG/FEqoJceOtIU/1GyVQhgH9EdwAjPP5gpnGCCq8B3xaGdxpY0xbNDCe/fD39Rw+KTG+MNmFXH6QN0R8w5OcYtz8nxGEe3MWd0Cug+C6y3e7Rn0en+OdIkG7IxY5NmWfT78jp4txwyC2AnG94/PYINIJkr1oE18HiKgXcXjXRhrhgF4IdYtgrHHwAUMhNMjE/nqBAMaIayduCbgxnzGSV0d3v8cS9M2/4F1oFOED6qd460rKk5MiFbIUssDd8cBcMstUWNcrx+OB1pwY21V5fH7icJijAJw4Xy9MpVC31TkKCyzzzPP5zDxN3E0Tl6sbFt6dDqzXjnblunoB0ZvLkU9J+Z0ffYWvTt5pXfKMpCPXlvjx/+UP8dvf+5C7Dz7k4f6BQqZ2D3+sNUyXYp7tG1/c9tb37z1F4GHK+YauxL22845szKfZYXn/HpRaK2awbRvaK3XrPJ6vvHn7yKeffc63vv1tvvPZZ7x5fMsnn32X6/WR1laadX71Vzvzknh4uGf6rkto5zmTrXCYhPv7+/CMSWx1ZasbI+05pRRScH9fuUzRcWdevHzP32ASZjvxfKluTPZQOJwOBN2Gzz79HDNz34j0/eToy7oiwf84TL5DSXJUdVs3bwjM0ZFSBA0jQc9sKr6pd4fMLZlPz9R9TjotXKsjbkJi30oCMswdJeRdtpPRs5vy+r2qid400M/MNM2uaOoekZCcsOT7o/gh3tVIKZom84DMUeB3C8DERjMRmqJR7A+kYjQTZgwuCdzWqFonS2Fww5zT1VyGa4mR6TXQ7ltTKFiSvajx5xR2I0gZqfAKhG2DCT1k+EkJOXBCkiGpM6yoUqBkwiB8A8lRltaN7LN/H+14i+V7RsyOb5jXOBxGmTZ0V0I36OaIlFjwYN45ZwTzHTfOq06OJzMkD65llHy7f8pAfX2f8iU4Rmrxc0EsUL01j2bQNDJ1QsG6j15TCg8WG0vk9n3EJ+29xqhJ/HvDeUI7ZSG+otEoftHHl7pAqbWhaWPryjbPvLw7UduZrbYwo2H3KzBLQc662St7NzDArpFx41uzDeg0DvweB6gLd3S/EWRAaklAhZIm1HrI+yavTt3RxqF9iddNfnM7+hG5D32oHTJoqCGI20AD/oTATwFT3Ohtb7H85toNOiw+Y5h6qaK9U0J91FWZSnbYs4wu90aGHQmXZh7O5SOuMI7rNxmxu9g6WmFxjVOgM2OeOiCekVI7XDdzGvPSGJ8AQ4JYBJ+5axD4ojvT5J81WWCZRLHzTqGJjZThNLRS4/+CRKc7uuJokneiMipNhtvizcQvRqhYdEyKsUwzvVWu10vcZ3Dpm3Oa6pW7ZeEpDvfn8/NOTFZx07RJPQjQVs+1oEOvnbz4pr/VTjdf7H1byXmiqdLWC6LdYemuzHliksIPv3/H//DhB9x1Qa2z/MAH5Fcfcbx7RTkckCmjqVM0UW2jyIJNiyM8rbGuW9yPiZxcNi/JD/icU/hs3IrTnTQs/zmH6valC164b3X1jbA1tq3x5s1bPvn8Mz7+znf5znc/4ZPPPuXp+Znn8xOfP3+Hdb3QtjOCkvNMKUcu24Wn8yOn0x1dlTIVVI1ShFIKn79+zYc/8CHLcgC7qeh6755HZM47MYCupGly1E+co/bm6SkImAly4rO3b2m9c3//gofTHfnhBZf1ynVdfWSZhLpttN49uVdgSZNb61+vThIWtypHE2vrsabYIXTw87abeIidxNgj1n1o7fywzkbqQ8kigYw6wthVETWP8IiOWDG2Gs8ZY99Syn74jM7HpfNObmR0u+aqk7CG2/+MeOHa4nDM0dC4zDcKXIndUd+5R0IdyWiw4r7xLiHR1VO6Xbbm40Adv+ZdXgBzto9pwp1jbzY7jh6nkGa7yrUDDbUcQoiB/LDf6w5RDo6FQeR2DQ+hbqCasJSxVBhmsq709AI8Jw/P06EQEm+wxmEuZERcben7420spernScKdb03cXYtA0UgpmCsK2inIrpSzcSZwU0JaFHOJQIts8IFuP6djfQRmY2ZI9+/CcSj1PThGaTlFATWavVjj8zzzP/3W38av/Nq3ePPmNVh3/h2jUEvvnGWjoPxijy91geJqjeKs9KrkteGhS+pSYpxA1LtGcZCDuKajrw6o10c8JfAQ1aEf9z/3IEQhxiSJ0m+cBD+QPUtlbIQ2bsDWnVgUB63/fCiD1BnNbgPtXAXtTp0dpCQbh2hs+DJQnihAJE1RVAziqcsDzUDFSVcZ//XeDQkHM+3eySCZy7Uyz8VlbiMDJj679nHDu8LILZYbfRxEeGHWosPIyWXMiFusj6KkR0EWQMeN4xFckTHC8s+Ok7OCyZ/wmWhm6PXDsju+ux3mZfjOJG7GCbr7zCA+BiSKk6Ey0DE7M0hZbsXIXlxFp2ZOEvQ/eYG3LDOtNw7zwunhAXDvk+tW47BKXNaVYdiVBOaSvZCJg+h6ufDBe+/z+evPmQ6LW1iXiZQK2/VK83AMau/cnU6slyuCsLXEyxcvogPsHFPmGx99hQ9evMBMuNzd88GHHzInoSehmtLkTFkzcsioTRSZOEtmjr2mlJl5XnxMlhz1klGljfVCFCY6sKlb8QdgWvc1NtCS67rRu7uwvn7zlm99+2N+/de/xa99/G3ePl/CeO7K8/lzLusj1+szSStWZspy5HA6cbfcOwKgnV/8f/+iK8hMqW1lnhbe/4EPePX++0hJfPLppxwPR3oXpjSBGId5dh5CuJTWWhFwA7rTPVNOfPD+e5SS+Pz5Sm2VtVa6uK/JJ6/f8HC848MP3uewHDgdM+t25fp8xoDLdeVwPGAYT+dHWpvQ1lCE83UNFFTCIFD46kcfYaa8efMa0/AjkfCJyYnW2Y3LDLei7xqHbg5FXHBTUjQNMbtxgz5c6tqqoubp0JY0CJtBVzVQrYxcsWaRbispOEjvrK2xL5hRVZ14GQWGC+KcYzYAqjiWHEVO45DSaARu71cljBAtCJVDMmsx9o2fTToORXun0HHEZLjlxy0KsZ+YJW428O6LokHu1GiCEqBFUc00nUn4mMyk4y8aDWMWRrwFYTOgkkAmlyebkpuPdlIOvotJjDlAbESa8E6jY4i1KLSEYXxmCNb9dQ1upnVhvmaWyFHgehGq7Kj8eI39z7eQSG/FY9WOohLiDAqivbDvh8TzW4y3EvIO10lib/dAxv/wH/9XzltDJe/8Hg8hJJCd2PwtxkRf8PGlLlBqD/OdKCDevHnriyA7azmlFImjD7x5/ZqukXocEJbg4wnByYXgxjke2x0LBwB3AKUbJWVu0YIwrFAtZR83JLh5nWjMVuOb15GR4hkvbpTkM0zB9feDT9HNAmT0lNJYs2TbxWShRiJeK4ody4EQeXvWxTcXU4PqPAh3TMXP8lTQZq4MCdKu30hRnVt8nvhrZ/wnYOLueCRZ5fl68Y032P+qPowcKgNfNAOdcmUDuMxOu3rXIT5ekZSjqAqPQnOuQLaOBSqTJRQDMhZVjrc7lCG+ayZx2a+JB7qp6h45Djh6pYaOz6QJpAcsPNwZoQFoGBalxFQKx5I5TIn5eOI4L16stM7levFNurmsUMLwyoBUchCFk0eQGyx3d5wvTyzLzLxMvLmeMYVL61TNe5zAlDKlTFxsJSdPa748nTkdFt5/7z1++Ovf4NXDA2Wa9pwhM3fJFMvkXBwRKZkkCZm8M5xF2MMnZbgSx6bkLSKwN4Q7YXr30hnQbyCFrW5sW+VyufL4fObN20d+/ePv8vrNWx6fH/neJ5/yfH7mfH5kaxeu2xN1vVDbFdWKZMEypOWOuSwclxPH5Y6H+5eoKm/eXhyhUXfWPR0mDseF7brx5tNPefXee0g5cLkqKolchKXgMnyU83ZlmWemlKg9ZNJinB7uUOt89N77fPTKRxnndaXFPx2tmTlfLlwvV+9OS+H04o7nxzPLtHjgXM4spxe+v0zurNplYauNLBYGivC9Tz+P7jZ7am3KHFJBpFMToQo6kqTRa2eSsqO31SzC4wJeb46KTsUP99odcdQ4VpISSb+O2CQ8nE6CvC/hi1EsfKICdbKByo5MH69ovEgSo6cNUyGZmziWZExjmCfKXArP69X31eHBARSqF86WqIEeZPED3/dEx0UcLPFGoUdDso9V9jV6GxP7uJ6IpohRS4xhYQYUC6WYKTTi+TZ18uuOtI+CO4ohwt7BQiYr7keTJAQSqYSra0Nko6i7GPv7N0iKJsMxIy9Q+yi49OZbMl5S4nAfZnkpziyCU5jyxNZdMZMIDlMQijuCdHWLDJzDl0RiNOeqwqHAmbI/b+v+PTvSEmh982KydkV0WPLffKjGrmBxVj1f1xuHcxQ4OCumEo2oAWqM9Pcv8vhSFyhihUSm9RrujgYSM9oczrIqPD+fnRS2F+B+sCXxbgUdecZBBm0O+wluuJWT5xjMh4W6bURVxIBBJSV3jww3wgHhgSMXSN5Jstp9HhqrJ3T7YfpzG0bQDK/+ZX9KYgKwnxY6SnEJxREw2FiG7N2Hdzkxs+YGK5u14N+MULD4TRnhctH8WHM+j7nywRNOG6rNeS0lVDDmBku1xuJVZTkc2LaV+4cHns9neleXc5uPBLr6ustp1HpOSBveB0PG3TSTUydJpewdXkx/hy9MEkjuNOmFTILwahkbgEPO4eUgya1lzMl9IcTaSY5VYTDnkyR3cETJuSElFDrXSt028sU3q+v1Cnkaw0E3nDL2zJ+S3Wxs3SoJoZ43v7/qlY6Hdl0vV4iNVJxAgKpxuVzR1nn/vVf8yNd/Cx+8/z4PD/ecjgemMsf8N0EomEa45ZhFSxTsKbxKZN+Uxljm1tlIdEEMeFq8oxYIpM+/OzXler3y+PaRz9888d1PPuWTTz7lzaNb3a/blfP5zPnyxPPlLefrI+t6ZqsXjOpFSRSrXngIJSWW6cgHrz7gxd0LTsc7Xr3/Pp99/jnn64ZkOB5nplJ48+Zznh6fuL+/R1tnW69MywPNhCsTl945P5+Zc6MUYT4ckTQjCY65BA9j4c3rR+Zp4jAvfpAXJ2fOkyumLpczdbsipXCcF7oKT4+PTOUVtTdIQuuVQ1luY8u47qYtiNSOqja9SXITwjwtcQAMDlfBtLJuG1MoWhSlkEG9OO3mHB+nQnh2U61ukY8I1kPJp0bEFwViojTzYmEYfLlHUOCX0UF38/0yiaM1jsJZFNhu8kWYyfXkxNGMus8UbnLmtUol2cQyTy6pboYGydMDNWXfc4YT9VDGCRbp82MUUXYED+o7iEIgAATKMwRCg8iJj09VfMyCxf4mXsK1tFDMZf4q1cdTFugDriIc3b8XOb7Hqo5iYqycBdOZJpVhVOkHPiF8sEBNbEc5SFMc+LHeAvkQbY4cW3eDyCn72RP7KsJtXGwjSoB90x6GnbLrkCKORGUfdRXH9ZzjZMIYeXcZSFHygk6UOowBJTH4NhqjL7GB+8RrENlD5gVeTjkkXDfU5os+vtQFSk7miz/+6eeQQ6Beabts7tpvIx23FU7hK5KCnOSdY0pCbz18GqAEe7o1J5FttjlaoSkKEJeZ1t78OcN51dUfEqMeV+Q07Yi666rzJcYiyIw8DTdACilhKmGDDINs5p/A/6dxwDthU/ZFI3KD2wlUTWwIZW2HGsVGocQ7EJz/zqiEtbkldEoOhZuUYP4bUxJ6vY6ryta2W8dC1AU5s3UlF9ftlzLRtDqsKnHzZie6SlT0DEldvHf/F6OkHlp/V7CkkumimDnPx0u37jbcKZNKis3MN2WL94kI07xA8nHfPM+sl7MvnOjw+jDGsxjbWcVyxjSceNWoW+IS1y9LqAzMJZwWNiQkJUuJ69G9i0E4v3kkhc2+kx593HZdaygwfGPNye/f3VK8K//z//Q7+cn/y0+ES21hfG1eUBC/e1sju5rJ3iGtvvMz3i2/W5y+wy2Je3iQKFtzSfp1XXl6fuazz17z3U8+4bvf/YRPPv2M8+VCbY1NN7ptnM9veH56zfP5rTcNScPrwbOOsInj/JJcXEkzzzNzLrz36gWUhQ9evsfD8Y6pTHzrO9/ms08/4/n5EQRePLzg8e0bVJUf/NoPcjgc+Na3fo3nyxNf/aED83SCMtGbQitYfXYD0TyRy4nDtHA9X2jXlevlwlwmPvzwA1IpjPC3JMK2bhyXI++9eOkjkpSptXI+n3nx4gWmxsPDPbVuqOYoloXD4UBX49ouqHbKvCDZUcK5JObJYxlaayFe87C9VIzrdaN2T6Fu6gdCx0AbRbzgLSKeg9Qal3Uj4/kswx+lFEfoIDFlR808mRks+ShpdMIy1DHS9maI4LYJSjZDm2FkJBWyGSlydpoYPUVhFKhGFyFryGhl5tpThND5HlXNkdUdhGaYtyVus2qNQns0WTFStEGUdZREzV26vXbwjv22FxKVg4JojFYinmQg3WJM2t0I0BIlVaZUvbBXSKbO/bDiVypcb3sKDohjNWhIk72+yzSdooBRt4XAkQn3ZMqoelHgonY/L1KgDhmoknZhgCXIk0ciDD+uoALFZxyou19LYu/atwF1NG0koPcePmCpkNTfm5OVJdC0sNC3QJkFjBgrARZoEOYeW773xHknN3KtiYTlf+w98d2ldzeo3+DxpS5QSlbu72Y3GruuIffz3jUH/OUjsIjhjg7bQ49S8CoMcsa67qzjgVY0rcB+AtBrjYtfnMwGaFJHEVKmhE/I8PVwfxSvJ1UryfQdpYgvKu9Fb6xqCNkct47WJG6+gF51KG1ijLOjHzLAgh4GcS6LGzf0SNn0Pw/40g9WG12KyH7j+2bt46r2Du9DVNn6FZcZCCrOO/EMjUxt3cm7BlXVrU16o26NLbJy8iikxkJDsN5i1lqchAcgBRJMAReS0zscFR8NMdw1geRmC46UpDH62i+lm02pL5Zala1eEWCeCim5bX7uynV1lYbiyFwfVtMG9JAwRgdag7xbcqE29ySwcKjV1txXRDLz7DLiEt/Xtm2OoOEz6zFSzCQO88J5vTClaRctfPDeB/zk//UnuZuXm6Q61BB7AWJOYNbu9+pQhTHu67hJ5J1N3OhxnXxMU2v1VN5z5XK98PbxkafzM49Pz7x9fOL16ze8fXzk+fmR2je6NVqr1O3KVi88nZ9YtwtmG6XgxUjygjrlicTMPB0pZYqcrYMHCuYcsLP7ilh31ddnj59TW+P58kyZMvM8u/KjuGLmO9/9LtM8owjr2vj4Wx8zHe5Zji9J80yaCmV68GRpfI9o6wp0ulXuDws/9NUfcpVV3fCQNkHKxEblul35/M1rv04ha3rx4gXHw9GhdzplOfr3OSe22vj4s889Qwn//L136rY6STcntr4Fx8SbimrqvIXmCefz4mOX1rzInCxRzMgZmlQsZSrKFIVqb52Rpdu1YrWGyyusfYvOV5hLibHfyPUymlZM1RUlBG9k/x9YFiRLNDU3j5GRwWB4sq2Pct2CrGNsa4d0gJSorVPE8QEv/o2yDwoGSjwQ5hR7cKj64sATiTFT7N8WoykHCyQ2SH/9G/r3Dh9l5JANFCOCCEU6KXmmkHbzEL3iIxPxxRnmjUFvC0Qlh/cIZpgGjKIrboNfEDzxPOFckyww8n0EInDWP2se233MUIZbLynRe6NfNm+oGQWdOTrPrTkxCAJwEKqHl9M+LvJEnaEAaja4luOM9CdJMiGph9eKo1tqE6sYTSD37mi/CJq4edLY4LpY7DFu358QR36SE4hHnMMXeXypCxRV5fx8JpWCpUxr3ommkMSlcFccHelOJEOCrCV715/Eb+RpKrQoRMKbCkjUIJDmaBWGEmcYliV/Q98/Kol/85sxe+UcsOuANnV34mR/b26w9i7D3/Yu+Xba2viPjupIR9SRiRRlT4jeAt69vS+LEQsDFHynIBJhV7+YKLQ2bF5QnFfhnUN3BZCXBYi4qVvOOch+xdUmVZHixYeIMJccMsm4MsPhUsC6kPPsKbYBIQ6SmyHxORol1BMSwVw7A90/we56KGO+K8m7jEBI6lad65KctNi1UZvD01MPObMPTMk5oVVcYRBd04DCE25OtMyHOHwah4P7hXRLMTYyLpeLS1+n6fu7DHPpt4ns18PUxzxmcFxOoI2ttlBNwP/zX/2/kO6H8/FwoGTnlxyWmWmaWJZDdEoahbCr3WrdaH2j1h6IoPMseut+YIf8+Xy+cD6fua4r11rZ6tXzbLYrrTda67R6ofWV1q7UtrLVM61vaG/7uvRuPjJRuo/T5mlino4s84nT4Y5lmmlaUTXuliN3xxMgTMUDB1trXHvlV771n3jz5q13kdo5n8+3+9/gdHekhLppOt5T8kxrxvXyRD/DlN2S3aXgE1OMcSRl5uUU92zicDixmtK3zjxNHkUwEEc860iSMU0TvRuX8zU4G8o8T9TWWC8NcqGnDOVdMr0xldk9SbQ58TKFa665zbpitCaIhhw/JNwlzd704HECKj7aZttoUbyqEhJwPwy8IJW9QG84p6xKI+GyWouuR6PyHqTXveCNPad1vDGwQH4loWnxoyhGKD2eYUqJjLG2jka67XEprGujtSCcOoRMThZ7qJ+MSYaXTkY1DCKHf0uK/CsZstVQvvShtAkr9nFQDlMy+/5i6zYMir8TqJLJ6o2DiieDd+s0hgWCoxiei+hHsOg4C+Ia4+RVl1tXEPWx9S67n7zo0O7FYcK/z71kSlHcaTTOuu9tSVJwJS1sIJz3YuT4vONYiDGR5eA7ejk4xukjxFHf4WD60eBFk7t9+3ds5qSDmA37fmqBDsXZlUZDPJai+PhyhCF2HbO2OPO8i8Xki5cdX+oCxdRv5LoqpMw0HdDoBjMWtuBehNR3uugBx1uXUHI0cvZQrl437u9OrOsadsLBV0mDje23tqRMJ2yRBwmSQDViNjcsj4c8rpkTWQmJsb+dtNu8iwTgZ1E6xCaRA+zwVwlbdSN4FvJO4WL7jTScAfcxDgN6ww/9eG7XPY9ZbZQ+TTHcO0V7xHyH+sBwgyLyRMU78W6dZfK5ftfmpkDWmCRTMYbLbk6Cbf7f1UDMQ/LUlKYEqhXytxxDqeiOStpAh0FVxl0UjRQseIPduCqlFO6QUb8FqS5DHEaEb4vzlRxpC/ShNkopHIvzbebDAVsSj5ezL9quiHjeDtlLwW49lBDDNRLoyunuxPV8AXHrc1kTUy5udZ4zqkqZJnfg1U4qBTGhb5UUY5DRaasq33v9OZ9+9ilTSpwOC3f3d7z+/DXnyxkNFKPVa4w73T01lynUa3gOkPL9qApgvTGssFtrrkQT9zbobUV1o9ULta3uHmvbresaCoHYJCXyTLrFipBCSoVcEilN5DTzcHrBh+9/yP3diePxDkG5Xi88Pz8xzwdevnjg7dMjv/Jr/4nrtnG5Xtm2jdKcxzXNUwT1uQS6haPtcrxH00KtRpp85j8B0hpJFLNKyZPfz1LcnFG9W/3eZ2/ZNuW9lydO9wdaqxwOi7+GZO4PJ65b43m70s0Rt/vT3S0UsG6QMiqddVu5bMp0WCgioN0DHbsiXViKc9KquoTcVWneiRZRclEfW8Tz0aEmIaXZbeDV0L4xicvXs9yCJr1GFFScKyEpoyQPG0WZRMj4uI7kBYZ1/J6OhszUD9pMcgm3ZC8EQpnWLTPwGtF3DNtSqFe0czo+sF6N2huX7UIymCwjxQvtAoh1LLKyFE+7duJorFtiPIBg6oROs9upaGqUoXqJMbHvtcGxCig8RRngY/Ucvi1Kkub7nArKAmki0UjWGaaO3rBBSdldVDFuxoPexKRsYQEhiBTojmD49+ASZ5IG+df5IoNsPHQRw6GVaMoMQXKm9eAJ4lEQlnwcePNSaSScfC3RiPlIrMe04Baq4hLfsccKExbKNuJ5wpBOmhdANvlYKRlJOmKdbMOwT7CUGD64yaLICj4LUcz4aCuKLRnijJ0t8xs+vtQFSg9UYs4eonXt3hk6eSxmk0PexU2902IOppEGSTDKvctZ6JppTSAtN5Z7FDgaxKfBJ0C8c2i4wgYJxQzO98hqrlLBi5C4bX1TwKHkEVSogeTk7Au0qxO1hvOi4ot60KlcG+9PHmgtY547EJThK6KBShBLZIT/ieFwnQlY940u3FmFRMkzhtHpLm+WIFVFUZWTH6TWG3WtTNlDrmqrLltdZtbe3eUzJQ9Ra9WRrnxg0+7dl3gHAo7EjA4u6EQ0yzHSAKzTqxOjGzAR8uBYNN4xBAomBcQ7yynld4ieJXhCQY4OFZGS2dSYpPuY5qIsy4m5FJcOJ+cdpT7uKqGvGjNl7x5yEdKcefnyfXr/FDXlmBbmkqnXC7W5v4MgHKYFUWO9bt6BxLht1sqLfKRZovWK4oTbMs+0rfK4NdrzM3mZmRBqvSKyYVa5Xi5cLmdPao77oNfuSqbW3HUy5OjWGqY1CkUv3N3lMNRw7pbn3ZbsJU34r4yZvwZE7XLYZTq4E2eamI9HHh7e4/7+PV4+3HN/OJElMR1mOnB+fuLp89e8fvOGb/yW38KH773Pd7/3PR6vZ0ourNe39FZpdcPMfU+8wHDDQZIwHZyYWlsnFTgc73AuhqF1ZZoz5AWmA0wJrY2+KSpGmTMNg1757OmRT15/xpQMKSXu4cJpOXCYj6QE93f3KMbleuHzj19zWGZq7xzmAykVntZGJvHe6UhFnUDbfZxSUmLOrnhpvbMpbG1swUbXSnara5fDtrbvM6UIoolkEe9QJqA4x8YGKqBMyX+2a/g+9c05KAZVoafkRURZSKnQ6q3A73EopzRB73Txbv2xV0oulCB0qrr3h0v1kzcOTenhx7IgaK80Ol0yvbo7bi7mvA4xmhqdTJK8c368QXJUWcZB6m1KcATj/jNcPZSEnMbYKZDnNOTQLr/PgwhrsQ9ykyMYM0mn4EoYWZwjqHEAiwhF4jwxSEmBhtjN+Mz3Em8M3a7COSZeaFg0tMmRDxu5NrGeDFR9z8tpDHiNbEZNCd19YW4Hv4sdihcsNGaAUFD6uvTmPIs3njD5wMs0ijU/W7ZAbQbiL+KorWYBm2OsXEM6L1zXisY69+nTQETY9wPfGm5IfbIehVbs64E+Ndu+8Bn/pS5QrlvlUCbSNPsB3lZGyuqYg428FISQj/nNlLPrtV2FlmndDXEU4XJdfVuPYkdGlSg+JPSCJVjSIrGYXDaMBlM7DqAusrOcHeqLRTcknRD2zUSGj88sic5/wGXgnZaEydqAJ/dZkBMMvDhJgpknV1oQqAyC2+IFhGB+81vHUIjZqKlQmIAKEvkYgFCwDNO0eKfQ/bP32qCvLDFiaNsal8a7t+taaeZ8FvauyAuctW9RaDnLPInEeGTAywPt8ryMoSaaUg4Uyg/VhhedJpPPPCX56+Oy8MHWB2Uu7iQpOXO8u+fpcmat3QunuqEm3J1OPL19JMnshVE2LpsXCTkJJblvTO1136g6Rpmm+P4BE777ne84L6V3NEmkF3tnlCVxnGfuDgvX5ydYFlo3tDohLgs8vr1CKRiFHuTi67rSWyNLRtvqoxSMdXvm6ek1vV3ZtjXItoB1WvPAzNjZHWYO2LZbI5fk378TdBymDvjKs44cHlYNmDc67RRdm2sjnPiZiythDsuB4/GOrsJpOXKYZlrvfO/zz9DaqOvKm9evefneK+5OJ16+fMXz5cLnj/8bd8uBJcO2PbvLalk43d0Dwnq9sl5XcnEzr5cvHhi+Rsdp5lo7mjvTNGPamQ6zf4ZasXqlteHIWTgcDqh1Uoc8JZapkBd3ND1fry6xLMbWOwVloZDJ7tvSnCz5XH0E+vj20b/3nNEinHVjTsIhgZSyQ+VV3Q+md6XFwZfNOR5WJh9PCozMIidVOiw+JLM6DLosjLNCJp4C8q/ViY2Kj2uH5L0gnneUxUdFrY/ZUHBMvBGBFkVnhlTCb2PEczi6iVn4nbiyJ8+JMiXaemGzjmzeOWfxERvWfK+JaI8knn/U1DBLZOlxrxEFV5ifaaDBODk/JX9ejTXOQOrisE1mrsiR5iMfP67j3s+U8GJpojSDljI51DUa62OMdGBy1FsNtYSSyUxAY9iraAuvqeTW+F1bFFW3GI2BMI6CxmQQSz24cXCHxnniyJRrJRmEVPLOd5IUJG46KVBjJQzQJO2fJdg+VCOiW7xpFjEmgd5LrF8CZPEmC/OCDYS6j/gt0Pp3LCoGy1PwkaHXQPt5NVD6UVSO0NbBf/sijy91gUKMRWqobNTMO7k4vG+W7AGRpaDw9JFD4WOEIckyC4bzGHnYQCaGZMswa8EtHSOUqBgtRicMfsfNADnFfeZyvpBiSWKk85b8/URXs1sg3d4R+HZD3wlJMfKJgstRoZEa60QxL4Ic5oyndm5CdFxTEUpeWK9Xci6YKqfTkSxKXTNVBSnFIU5VVJRuSu3qxm+hWDCMtVZsmmmSuX94wfb0RJdCysaS/TYrOfsmMy9My4nL2qLL9+C1hI8+aq0OF+vwTPHuDp38sI5rp9ERDfY+4pHyvun6Zj2spmprMAk5zfTuttLPz48s88T9YeZy3Wh+M7CuZ46nha1WJBtVDVKOYtHlvjkXpulIqxWJTTiVIGfHJV+WGHttSikzJWfWQAaSJM5nRzmmkv3adGWac3RwRlpml3uq9x9GYmubF3HqRlKuzNjc1n29oBqE1br5BtgbqJPBa29YrJUhMd8Rtz5C/Bxmz7kAk6+D7MVekhTmXU4ClpRCXQDH5Ri8DrftV6C2xt1y4v2Xr2i188nb19zd3fHq4X0e37wmmfEDP/ARmuBbv/Ytrq0yHRauzxe0PtHbxjQXynxgng9YF+ay+GcT/2zbunJ3d+K9Fw8sh3u+88kzlnOsL9BUgifRdvxQ5oUuE9WaIxqq1NYRacyT83c8UNTlu8aGXpQ6HZnUmKaZWTLLcvT3UDu5BJ9EnRh42S4YicPxwNY6l9pBCjWQqSknZsmQjTo6X4WmbeeAleLS2947vYUnRnKFBbGvDM6Y92BC707oljyyU/r+czmQFEN2me+QnKvGeNQg2chSisRmMaytCE7wNXM1UU8ZCffVpg1bnTuRwvV5FseWVQP9Td7YWfN8liLia9nYCzPkhgC7s/QWikk3sjSN5g6iAFFGCyZjDzfzJo2MMcVIA4QJ56J1kOy+Tzp4G0QK+jhaHB0f+8cYlJt5YdytkeM7oittoObJQ/ZcReMHdUIglUAjfRRmcc3Vbki6P7+/hxyJy47s+zGfJFLs/SjALO13tb+67aPt0OXEZyi7F5bHtwSHLgfKZnEuGjFO8rMjhYt3jntsjNCDW+xNyjiPAukaimzifLpl1sV/x912v+jjS12gzKUw5+KQpQjHeY6I56gwwwPCIpNnXKB3pVBIICMiO9EoDeTF8TsQn0kOXkDr3closPM9cvb53lBsDpdZZzgHsTbQEF9ILUYR4dbJIE4Si+Wm3BlOjxYHxG4lbw6H9u4GQJqS80FTwrruC348BqzoVbyPM2qHeXGyZds23rx+dMkcMyQntKZkLCGr7uE4SxR8pt0h0548nbUU3lwqJpOPP1pF20Ypnt+y1ca1NqZq1KbkyU3Wamscpplaq+en5OE26VklycklvqHonuPp1yI7TNxbRbRSBF/y0fV54ODMUrygsOSFa90q23WlpzUoPELOjlQ1Xal1cxOqmGtrbyidFw/3pFy88MkN7UZtnVqNvBypvWLWqPVKKQXJhXVdseLjSMH87+XEtV45P1/QZhwXL2K8Is1+uCTorfl9VyuIG8XN0uj1Qu8VtY11fY5Ope8pwxLjMdXIRgq5vReyGvyF5NdDYoa985GSQ8chk3cieCaL0KofVHnyBXBYXHGTyIhk8jSRSuHF/Ss+/OBD1uuVTS/c373gw1fv8e1f+09c1ws/8NFHLHPh29/+DtWU+Xjg/ZcvefPmNTlP3N07YfHV+x9wfr7w+vUj61o53d+z1cpxPjDNhefzGVPlxUsv0Ht3q4BhVieSWO4eEDPWzVGslKF1v39yzljKrAatG0tKLIcDWRtrfaabstZKzjPJjOvlwnXd2HrDsqvaiOdJudCtUeYTp2X2+6kbhYqqMOU4LAj+hRipuNeSH9hxgJlRu6JtNE89oPsUR49/Z2aeAD0UHWPvSbhCRBAkW3CH/NjKFuTwKGqsdWiuRJvKxJ6VIs53qeKF/UBkkvgayd38s2dDSoYO11CloZW5OFLiU6ihcgkCqHhHnn1jIsgv3lzJ2K2MhjtIl5Sd99ahBbqQRYMbKG6rnhwpGLLg4SviBUiY0IkggbzSO5kOzIFGj8/tIgDrEgoD2dGIUcxgOXyA2N+zkRHxkbjzAhlJHDTrSHKb+64tEN20I5myK1scJWEwCPYG00c2CR+zY154BPMmWrUW55jzhFI8t1czgbDsvNdAixhIiITlRqbJUPekvRkWsd3BfG/KBzJFGhwGv27RACeR29+PCRAeHfJFH1/qAmV0DuPRmgdyEUTWPvgGw2ckDmwn8nmXqOoEx5zdF0Ois3CFCmBBskrBbtYIxYtF5ZuBG75JdL4EmWuwpOOFA9gZaMaQ6Mnu+zEWiEVHpXFvOokuBav/5oToxXbxfLCUd9Ii6u8rJ8MiB+jdh8PBE+umLo1Ownq5OL9iKmBHDCfrTdkzgboJvbrhUApVAgGFFmY/UPEOXKtjG7V6OGFOhWU5cL5cKPPEvBQvopp3V2Msdlmv3oHlIR/0DcgMpuQdUypOksxpIueJt4/PKC5lPpTCkhIffvAeb9++4TgvPJ6fOa9uH1+yQPfFpq0FYTazdkWyd32DoKZd3MNEM0j1cYe4EZ1qdemfGss8MR9nmhrP56vD0Umw7qqRrpCSw+K1N1gmTy/eKqflwJxnMoLOjrx0bRiCpOGtAvPshVvvTkCsrbL1s9uU94qay7N7q9RWHd2IcVlrrte22EhHvTplNzpLyUP/dNwn5kW9pIxkyOXIvNyT84FE5sX9A72tlOzF3GevP2Uk4d4dT7x8+R7zslBV0W6cz2cn04krYD759HNevfc+rVeez488Pb7m5cMLXn3wHlU7z28f2S5nDsvCMs3Bvck8vHjBdW1oXnjeGofjHSVlLpcnprJQ5pnalLuHB7YOKTt98jBNXlSbk2HnycWttVcmccVMd2u+uA5GVUdFeqBE/lnddnzdrqhkHl689FFNFBn72hPhLi8k4Px4ptuGTc49MYOubniWJaFh6Jarp4erOMKog8gM7umTXGKsvTmqF/vPyLgZFgEpGhRPJm9AdPjcCI3CLUm9N/Pr0h3RcKJ+x6QjqpgW5jy5O6mANi+E9lDVOHhSMpJWtDtm0a2wqo+ksqgbFdLiQHQrAjPQ7mMYvyfDk8oHyPTkvBIVVzBhyRG8JIEwOtk920gaBlElJwMaXQeh1iWxKQlFGibZPU90wsNP434Xvm+/NoVkQte8FzijjoKxjzuqEIeRb+HB2YqWlMAjwsxtODX7E5nmfYTd9ycOfhXqXeQeEOh7aovogzSQTwvu4yi+NGTWvq2SUEg9CpsUDbMXzYYGR092iwlUXRavGsVc9ogFJJRDgLlwYgSuWqD3LkaI9x6f1VIUOFHYiJMev/Djy12gxHcn4nLP3pyx7Gdn+EMAcFO6ONHUf1+SBLehY9yIX1PxbtmfO27A6Dr2IhuGsaDfhhrSXvNuwb/A4VeiO+xFoCYmt2LkVrSMh3iBgUS3G2cHAkHsHV3GGFMNNEhikzseDkzJyXxm/jwi7sfgI60WBLPMunkEQCcg3lSx7F4luaofxgjdNRGkMvtNnry4ang3SshwSwqCsBDZRMLT0xMkYWstqvM4fdVC0eKoVJJMHYdDvOecM5rViXvqMtBER/szjOZCfQy0ifHt733K1ow3F+cPmCSkm3MXiHFMjo4kNm7PZonuVlz2OYrBQWRLKdPNHT5BqJroXXi+VDfhiobBOUaOJqQkoTLxe7NXsFCQpN5ZspByYp4nRGGrcTfYiDrw4rXkzJwzSxF6W3l6eiKlwuOjy3/XbQXtUXB3Z+aHe2MKv5acIaXZu85UWOaFeT54NIHeDtkkmVwmHl58wOHuBZIWLpeVh/sTOQv1mrhezpQ08YM/+A0fE3QNrpfwfLmSYrSyritbc+5BnieOpzvqegHtvP/yFcthpm2NT7/3KefrGUV5/+Ge8+XMdu2cTvfUrVEOR+7fe59FZ/I0+fOuF0pfaPXCulZIM2mrpDIzZ99sM0Yuicu2RbSBYml4VOD8sBQDVB18Ai8K5nlGtQcCm7isF5fOK7x5fqLkiRIIXkl+gFYUa41cijsKa6JZQ3sj6y3aIkV0g3tEEAea34PO7/CGpDdlDSJryRNOLnd0TbpScXVIyZki2QsIMpYkRtteyFg0QJIlCmgl11vgJzm522r3BVVk2mH9hI+OLGIOenj2lDShodxLdSPnzJw9V6i7RfOOXCcZh1MDmald6JRwjfZBTcZND513qYEY5DjceyCAiUyOTTyQ1CEpTl44ZQPJNcYjCcNHjk2FLErWjucpFC8f1HkdHnrTQ10jmK0IIeeNPctrQotKxSNQBspt3oFi6N4ojwIyYWEvwb7jK5FtI+LoMOzfWbKEWCYF98RE/f2pF3wpUGLnncQzeoqqFwoxjlYjJMdRVJkTd0UJMUSEV8a3YEP+nG6Nc85xT+4HX5xcpkSOwjsIU9xnQQV20nHEFgTqbzqEK7/x48tdoKRhJZ1omx8kOfuF7+FYaSHx9bGN7Am5Dl01DKVkaNrJuVCK+1go3g0lc1KaTMWRlO7Ogkl8cVuMh260zFiIQc4dM73hhpjEoTRXmJhLvUzC88i7XtOREOrkMPMYIJSGaAdxqWRO7qOBL1m3DY/qvK0dTYkyRQei7ujaTcL4LeTDUQDIIKa5YSIXdeVMaq6J78kP3C7edZllMgXJxpSMkoeZm8PqGWNP0YR9Y00lGDUanKDoBEV8LNVwqHkENZp2Ot2daaPwRN3tFVl8Pu4NjhdMZtCUZoXaEiYn/5xmJFFE+p4rMuXJDyA1Ui4O/bYWB/o7C6s40ubr0ln/3Xy+v/aGSHIlQvL3JmpOxLPmI5LkeShzHvlJhXlemEoCCzJycwPBqWSqKSnkyHWt7t8h0NsFKcacjPv7E713hHu27YpYZ107EonawpgXC7mUvTMsecI0kUvh5csXXM5nUOF4umOeD+ScmabZpcHTC1pXXty94uHYuK4XDGU53aGp0FpHN3j/1T29bvTWuJwvlGnmWusuvTze3aG1Imni07cr2ZQfev9DTtPMd7/3n3j95jPmaeLhxYlX73/A9bryfPGxzbZdeXFc+Pa3PyY9fMAyJ66Pb1ivz6g1Com7V688S0oWUjnSxUefc85ORtUoGnJGcgkpeHLTPhHmOUj24DLykJ+rdpZlpm5Gq51mG7nMLLnsKMJhymiauFT3gUlJYpTUw0RwIrWwiB+jNBNkFnJXkEQFknUOAdM3i0O+q/svlUwus6uvCAUdEqOqzDFlVJ1w2rSTUxypweeQPEUTpX5/WqXXaOZKZhwvsxkpTZhkqjryUITIr3JfE0NoPRqoJMy42me+f8nbtTLREG0ulw9Sb0rOeRGFuUSMhXrRqrhAIeeFhrqiKol34eKHuEXtMMbjiYa72g636BjjxPGYBRcCWHBIQnrbu0CZfISdAFFfjzFClrGf4+ZoRo+CRuh5olt28jAWDthDBRj7j8W5EiOPMebx/ckDHPNAFgKRwbypsWhqHK1xeHwgKYaRU9lJqMO7Zvct0fCCSeyohqPe7r8lEW3gCIYff6kI3eZRZwGh4hIhBYpiYsFXk50QaxD8vuHOHu2xGCI53DUtrBFcmryLPnQUSV/8jP9SFygWh2oaM7NkiDoRzGWRQpLZD8ycseQySOvBPBaXuQ3Y8nC4c3j0ekbSBPEcZHEnURHEciAFLapSr5JzzGX9cYMDWw+CVRrzSA1dvezyOiVIangS5hg3edaCZ8lMUwGB43xHbZ3LdaVMORj9RKXrv9cCZlSDdbhXlom11rhu7uXhbrYdCfkcYqhkWs+QEynNSDk4RK4wR7c0kJutenc6jORKmRyJCR+OVJxfkskELT4UrG5LP0Lqhs2+mc+6Lar9kdias3LANwMN2WUPQ6dECkdE2TtPEZhsyNyiGzWXDfdgwKtB7fF+ApY0a4wMJSAIhF5UuGzPi7y1NS+60kzJA7H0zmAgaB6HEDCwNr9Pp0O4UhtQ0WZMpQCe0ptS8qKkCtdrp7drZHi4o2tOxiqN0yycn5/Z1jOttTj4EoflCMsxvEwaYFGAdabijP15OXK6e6DVzvW6kvLE/f0rDocT2uH+/iXTdGCeFropmkCtcbk+U2uFLqzXZ5BEKYW70xFtFWtK63C6f0WaC7JdGTRB7Z2ehev2yKuHF0zlxOvLlf/0yeeky5X33v8hlmmma+dXf+XXuV4vvHj5gpcvXnA4LPzi/+c/kJY79OmRs75G2pWShdPpFcLM0/OV5bRwOhxDQeFraosN3SIwcu2dkguyuL/DsSxMc4nr4A7IaoZunVIy96cj05z3ddXbvOfgGEqn87w+I5bJqXBYDhG4aVy3DclCqxtNjSIT4UboyG0NyB0JRYjAO0WyZaE1Y17uQN1sr+RMKr4OUuxPpo1eY5SXC2WaWIofID0OFxOh1o62xpSj+86jUQiEI/lrO/fJ9mvYzaBd/Gd8p9sDAaVuziGT7MqyNg51L9itu+2+qHfbpbj6zcz9m3LyRmXOiY2VYUMvgbikrBT1wLtuCaSgkl2NaD1kujEKl+SoHa7OIT6BqhdQKQlpKt50RCNj6p97mGV2dZTFofmMsCAjoiRQlsl8/+g6iiJvVDTQWJAB7vg/k6O1vk93hv+WSTSz77jRitnO2XCkT+MegdrbzlUceNvOFYp7fg/x/L6/BaTso12LvbKZ22xgQ/odfDRJIKOg8dHm7cCNEjFGOWNDl3CjMQ3JhDgKY/ieNnzAINDl9M5z/gaPL3WBMkox/958yyjTgqmTMyUUK6708JsDs70OJ872nB3mv56fSSLMU0aSuDzULAiC4c0RF9yQnWwr6n4Bw3NyFCdjLCPJMdwk6rr6qCodUShkc98Ai8PE6AHyOEFVYEdAtvVKb8okRuptl8iZu/0gwEQOCWxyUqbcZqU5p+DX+PVw2393Pu06Y0wIRkExrT7LFWNZEvShxBH3UOjO3yF5le5SwtDKi/NovBb0ShocFUpjxmbDit4rdu9cbyZs/s05gaxaDZVIoGbmRMM+IFKcWp6Td6GOaA15YBp3ihNgHUS9ZVdIpEeHw64nMxv78k+E3TbMy4xNhXWrEdQm0NsOcWJ4YRZz4V41jMoyrXsOSwmX2pQKtXp0vSCeyzIlkjUOk7HcLZi5+ds8LxymArpS17NzX6Z7ujZyTtQaeVHbhqm70CZJbNvVC9zgV3Q13r5+E3C0hM385J344chyOJBycV7PVumSaKosywPYhcPpyAevEk/nM12VrSoXVWqHrRmHlKirKz7Euvty5IkyTdyXRE5GfX6Lts79y3vyoVB7Y316w/PzM3d3d/zIj/x3nC8rl/MT3/n0M44v3metne3pNYfDgXm6DwdgpdqF+e4Fkg9UBeubf3OpMM0zRgf1gnqa2DveqbgDr4bSdhARnQPl/11M6Vt4V5SJSczRTDHWVmk6pK6NrVeuV0clci5OsG7e/VvyPWBOyef4Ye7oWSwwJ42xcudt99GGNWOSibY2ehKmFIcyDpNvm3OVsoCYME3eHLTeWJvvGym7P8ZanV80TYkUEQxijmDOsZ5NIEtD+xYEez8atEOX4vyv8NEw2wgyFxXna2ztQlJXaGiMNkoqXpxH8bWFBUChxCHpPIlqYIHQokMhFgm6Ggh4cr8d8XlKNKaCDpksN7uG3XQyzO6IUkJHJEVy9KN1b06yEO6+EvEWGSFj5mnNkhyBUhEPHFQfdQ2SmOehsfMPC8HZAd8DLcw2R2Ex2OtJwlMmion4F0EcDQ5yKxbE5P28G6YVoaKJMycTSJV4On0yvFAN7GmMji1sKmTnHcQ+ZzgHU2RgJX49h3UCFsXXGFLFvit249aojXQhT2+Pac5OjI0R0xd9fKkLlKEz310HTeh94zAvkKHV6tyIOG5s/51xgVKQ0pwsOgoYwK2MRcglo6ZMAbNbGOf0LkyTZ8DQO21bw/o4YDbHszxRF7zAEFc/eCXjVuR1rV5tY3ETDiUF7LNV8Y211wY4SZUg7Jo5QZHs8LQ3Y0oqww/Gb6KqBiVj1oPo2aMASJjNcdMWJBVK3sgjZ6e4TE/ozgOBGMEopfjoaQpNvOAokqc/RzE4ugnxOarFShxpxw6tchuZeUxxoFPeBQlgacHEDfJMJYoS59s438h9OqpqmE35BnJDMN24T0RJWSEVUO96trohOUVYl3eokhJlKi7xtOadcVcu5zMa3YbEZoU6GXi4rWRJmDaOyxLeFcI8Z0ca+gYyMc8nttZCAqmkpEyHGRHo68Y8BXqEkKfMDBSBdWu8vH+g98L1+szjc2VdV8Al1jIVfvCjDzmeTlzPZx6fXnPdLqzrNYo5N3ubpoX7u5eIFEoqzPNMmadQT3Wen59J5UiSdzhC88Tr9cpiPi6ovTlPJxdaV6YlIbpxSimQIajaqNYxzcxM5FSYjsa0XTGrXHWlbWcw5Ye+/gPM84Hr2nj99g1123y8VRbuJmGikUsmT4mubrg1He9I8wNTKayXt/S2sSz3dE20nvAQ2eCe7BuyjxB678HncE+QYfE+zROHZeJUZlDlulVSd8VZ605wPeTM5bJSmyvo5pKZsnGYZ7oIz5IClm+k5IWpoB7W18GyRW4YzKa0a8VSIqkX1BKj2eOcmJLzViwOLxXPi3ESpK/7sWamHKOQlGJf9AZL1eit7fJwP1xlbxDA+WI5+b6HuGQ6Z5frSvx813CVLoD52kjNA1g7mS4lZP85eBDO20vJE4yTmat6okAx8EIqHKFJHaU5F8yA7OM3L/hdyVTEPafUfGwyeHoMYYLIvuZFCoMYDJUkrtRCRiPpDUtO+7ACbARb+sSi5LQ3XoTx2hDduFImaNax1yeRnajuTzr2cQmwexz3Y9wxKLXCcL0e4bXWY1IgslMI/KlkFxdIArrud7Zb6UsoeMzVndEwC25+CdBugH9s0uOPsqtAbxzHceba/is2pEYxexoOvlnCKkFHQSX776T9u/lijy91gWJafUyBeOcqXrFdLisJmErhdJhpqvRWAT/chmeKxMGapxmzTs6TL+IYWRwmJ/ptdaOt1W+AnDhMM2JC3SrN1K2rcwnXR++OHQaLA13jFlSXDvodlfcbb2yYkDxAF5eBalTqo9IVS0jqqDYPVYscim6dSsGSox+YMaWQJGtDpHGY3DbZnVaD0ErBo7dz8Gk6Iv66TXVfKFi8ZaJWNyizd6W1Oomw2eAEFao6k9+yq1EskkLHpuSlUMC/AsUHqWAdldEZ+qL1GfPopEKmnWKGK4awBXLlUlFLGdXFZXYMRMWl4siGDHhWG0J21CInv3dic1MNrlH375zJibuHeUFxrk1BqOYeI0jyTk0SKU9u2Z2EwzJjZtRtw3pzXk7OPNy94M3bs8upp8wyT1wvlacwYXs4zcxhRCY9+A+9Uc2L2MfHR67rWwCmcmCefMmfz2da3VgOhW298Pnnr6ldqTVxOr3P4TCjKsyHo9ueRKcrIR/crlcez488Pr3hq1/9Ksd5JmdF65UyZTbNIIUpZ7a6cTgs0FfuT5Pfh5J4vpw5pJmSC5aE5/WCtU7JypQmVhMu10q7XEgmTLnxQ1/7BjkXDyV8uvC9Tz7hfLkyzbPf29fKtl35+lc/4vXzhWttpDyRy4xJ5un8jNQNrHJ6eEDyxBTr8e3jmWmaOC4La6sImakUH9XQ6Ovqr9Ocv7WUCW3CtW/kg/D+q3teTQ+cz8+8fq7kcvAclW1jzsb9Yea9uwNisCJcmlG3lSUL2hvzlFjyTOvK83q+jTqqFzopC1s3cpm51NULoTK7R8ucWJKS+4raxFYbJCcwOyIqe3QD5ihLluJ8C5Re1QnQJOcdTMWNxgIVHuPL4fMh04HWW4wbceIoOMU0xj6ScyjrnLuVVUmtcygTVysU83GCpeQHYQqbBzO0+thxeImMg0tVES1YDqFB8mwkJcWYd4wmiEJMdnR6HPC3tlOw7hlYbvwWIX+SUM20GDGNWlUkfrsZqh6FkEty9FjwjS8Iwn4NbiqZ6Gfw8fU47Q23mI/GEqcH3IL5AnXDo1Ucgcn+DQxNsuJIm/rfJWH3LIouMBARu/H3ZPhvyX7WjObIdJixjYY+kP+9pNm3Akyc95oHtzLOEQYJ2KJIsYGxRNlkozC0uN/yDaH/vrJsFJtf7PGlLlAKfvgCoeEOpCCyR3pt2HYl5eJJmnHIJQa73aEoT4HSPbHWrdthu169bMhupOUkU2VOQt3crjfnHGZOkUw6rr1Bs9uycYM2dTQiZs+uZCdO/0STsRATUCKgLjTm+O8lc8jUM3JKPLc/r8upvXty0mUYhwn7+GgURwP069bAPHVTNFCP5JCskEjqXQfJ8zfcRbVBoA5LKpSp0JBdAWLqr+0jkLRDXK4vCO8ScdBPpIVkLsVowRCV/XOZJfeXkdsWgJkX7SJIOgQvxsl37jbpCyoZ8XexSOK7ETLzcmCZZ+pW6ZFe3CQ51yf7JoOBmL/nXDJdjatWSnbFmIxAn3eXoTWHjnvj8dnTb3PKTAJbb6RSuHz+GaVM5GJYW2n9yqHMKIl8PDGlTm9eTOUk5AKlZFpbveDMnePxzmf2gUqUInzw/le4Xp/4+Dvf4b0X7/GVr3yVPHlA3tPjW15/+j3UhLo5AbRrZSqFaV54+9mVnNwJ9r//kd/K/cMDlzfPJClssjhXgMQ8J87bxrRzcxLb1Uc612ZYLrw+P1NK3vlFL09H3HBPSU3I5qTkNM189P57fqB2JSf3i1kmL+zc6wNOc4LTTO+wzA+cjgfO5wvaGpTGnIUlJSTdQ7lja8o0ecf9cHekpNjmJEcB+g6lMgr2lBJTThyXmaY+ytzqxq9//F0Ox6OPwkpG+0ZOLi0XXLZMgufLxutzZTU4HSbuFyFboYmwbRutdzc5S4W1O6dJraPNv8PLtZJSKHR6YwJHbzBS8mT1qSx0ErU6jyJl5yYAvjd1Rat/txSPeMji3bTFCnHKmgUq6uOL0SJ1VSQXUnZFGVEQu0u2y/9FYGsbyaqjqCQ0FH9T7hB8EdOKinixI07cJnuD11Vww7WwKzDcgFKzy17HQyRCDv3YFZw7MaYraZDitceRzz5+cIxlSJLT/ny23wcpXFiVK7hPExNVYNXmJnHa8NytKDbEP1uWoa6MfS2QLRvIlSoWGWaSko9ewtpieA1ZbyH1Hdweha5hfJZAb4qh2xYaxcv+WW4aUAsUya+SS+LVoWkkkLJEGpPwqIPeKXIsBM2hNBr+HRp8q4E8xknEwFDc1j/txdtY82lcr0CHEuwGfCrTf3GW/7ceX+oCJQkUMZ+7OduROSo6CcxOVVFdGRHZgxvilzgyOM3JVjmkcdp7+H0Un82WHGMI4bpuUK9hEORz4yQO+eVYAHt+iQS0KGnP/ym5BDAWLAnrVBsukYmRROrdFfitm7zrMKLAyeSk8dpOyirSoESREjdCHvdNyEwl+6YYNDSw4eAYxjqxGUqGHrdvjnmpkX2UtEPJroDpvdLDQMz9Wiw8B8aoamwocSgEsx/J++1uMRft6iFeTmwNznjykC+RkNupb649Ni1rM2YTWZSSPArcGx/P1YAUhDTievvrXZ7PrOuK4MWs5JkkoZIKoqzEZiddd3SlBIENubn/Dva84unA3Xzj93DtxLR4gVK6+4uAS53Fym00hr9u1+b22cnlVBIEPAhGfjKm+UDrSskzWSZyLqxto/fKB+9/DW1+EL99esv58kTrDe2d0+GeV6/ej2vpnX5tG9PxjruH93lx/zLSijtvPruw2cahnOh5QZLwdH5izuIOpxIjLTPePj1yOCycTjPreuH44oSEnXkmsW5uhKcmtOuVYxKmh3soM28vZ9BGX6+cn85cr6ujmyWzLAcuz2e2beVwOJCTcb5c0O0ZD5o8Uq+ulKrJnMdRK6gbVmVxgmKWFfCxp480oW4blU6eZtZWOQSqkiQx5cYyF+5P9zw+nqkK14u72oo0L+yym6tpVd5cLhjC3TxxHxw2tLmkWHBkMrsbrGkip4VcBIusHevGnIujfSZMs/tQBFPN14h40CPiac/dPNkYjGaGWiUZzNkdUjU5apBw9M/HNe7826xHt207IRYTsvhYJoCPnf/RwImwcU65I2vGqBEw6DbvEnLtLiDmhFQLtZRWD2ZEh6DBX9Pz0TKwhbL4hhj7DhBk0uDNWKjTfG/3fZPuqpzs2lsXSxBP4WYNUeza7gMSWb1IShy8VnIUUA00gv/ywfdf8z3SzBFmiUgB7Kb6GddRxIstyXkvrHyr1XHoRHEzxb5XA3MYqsXR6PghnwZPz0mMYY6pgYaEieSuOExB2PeTTccYKxB93ZGXGIH34LNYHKbqiMfwyYHvH5fp4M7gJqbJlG7hsWKFFtwgCd6Mf//51lzGyMtS+8Jn/Je6QDHr7qOBQ4qeEDwISzU6eQAL1vWYGca9Msx1JLnVO0RFr8GujrAuDbKSTByWgln1DlqcfOhOiZFWKTkWagTHmTFecMrOuxhIjd/TDmUGlR/UPQGSeEomBBs+Oexa4hNBwHHmN8UgPUoQnNxJMgK91A85C07LzrROYTI39gMJNQwSbqzEhQpODLrHBXhoVI5hlHdlKboEDdLwBGHaNqDNcah3kOpLJVCjLBKwafS26v4FRsFMWJORTEgxLpuGD0K5ApG/M5yLBoSYUnSNrlGW8BRIYWxHillpBknKIuLGXYOIZxbGUF6YJbyz3pVT8e+B1Pq0h8SUCfJwISVDu9LEJeeH4uOjwVgxdWfMPM1BdO1MU2GE9qkakgu9u238HA6ohFri8fGNI3xTJufE8+Mjp8OBeZl5WV6wXu45n585HA5s1ThfL0xl9qycly/DJ0eR7v4QrV0dYUzCoSzMKVN74/myUqYZwB2D0+1av/fipRuCaSMtM/M8s9WKts61Va7rFUO4f/iAh9M96ErXzla7FwZNaWXi7uEBy5m352ceHl752HXKjl4lRx3vX9yhtXG+XKltoxxmN5Urha0bYpW5CMnU11J1E8VSMltrfo8GQdRYsOSH/ZacLPncO7PMpBVOpfD+6UAH1t641O4oy5zprZKLuy3f3Xs3fb5u1Np5e24+BpxnpsieyXlCVVl7JdH3rr4kR8kGqqtqu1dRKTNKpmlHIoUZjN43Bo9L1Ju0oRSsYarl0paO4uiv4vLbMvxEJENEbGj3+9CCnDAOfpfd+j4zcslycsVZV3xtSvIiP1CEQW8fRnIWpMhBOndXZy8QJI19pWNkdlv0WE+DgO7+Or5/JAuVkVmk+pZw1XZJNvHcznVwN2lJ73hi7Sh6FAJKNEX+uRQh5eIjjEA4kNv+NYAEi/fgvIvIUBPfJ7rFyCxGHhKoOagnh4tHKYxGzeW8DsU4xwiXdEdq8YhdseY8Ks8s82DcnLITUONMM9Xd2000OJDj88dYEHFfG9m9Gwjky1FO4R3OisT3wEiz133/85NCnDyM8wBH1IzZMBMcBed4yI5kf5HHl7tA6U7sGjeDJw2HDXsc2OOGyrtmfhyCY/buVaAkds5HCeMl7RtzSZjVcFHckJRRbZTkMza0I6ZMOXknHiWwB2J5oZQCfUGdGJsDDehjnILFSMKdcf2gDu5EKCG8o2kUm/ymQve5n+HQqkZFP7gaAzr0pJobgoQYmUrSAQqG5TJDwhj8j70riEIiJMZmEYwI8I4J3EBCsoyugxupKgqKgaT47Nuii3L40v+bw6+5JLI5bNnVKBLfaWSR+HXyrB6JDjBeKYy3/HlT9kXTVZA8k3G5uYUxmZvD4RLk6gdza0pWKCI0XAnksk6/R5JJqLlGMKFRsjueurTduxrBC8PesxMsLfHZk3eA8+QzaDFPE051A4zl4C6kvriVHiOzaZq5e7jn/Oa1kxDNQJT7+ztydqLvw+mB9168omvjer1Q68ZUDhxmo65OGD8ejyTx+/vp6REROM4zQma7us+JFEd1ina6Xqm1cVgOzAe3tF/rxUMju/oh1hrXswdGihS21cPU5lIoklhmHwO+fXxCS2EqDkHfPTywPj1jotS28vnjE+frhcu2sp2/xcPLl7y4e0FvyrVVzudKSY2yHDjc3QeBcvKRR1fm5Knm7hS8skwTzjRRrueVpIllmmm18o2vf4PaE9/9/DNyFElSMue1ckmJQudSr7w8LZSc+Oj9V+4RYsq2rug8c6kbrx9fU6uxHBw1Os7Ce6cFwDlf6qm9m0Xy9nLww8+cfNm2ytYVSZlmQqZxLJnjtLA1V0dJnjFRTx5O7IiCmvm4FUculuMxpKM+sk4KqZQIgFPEElttqCRaa2h1PwyRBBmsdSynKKicNK4om7o/z5DRz7kgOYLl4hAycyR7b3FCMi/Cjn6gRpc4JEkMkq52G1p9hmjBfyZM2ob030KWG8qrnCMI0gyRAuKRDgz01UZIq58JWVxujg3UNvYAk2iyAvXuN4XMCDDVHj8rjiQM23xixCSMjJloFEmRp+aE8hyOrZainQuPJPfejSIo+XUrItTm/klqPr4mms4UaE5O/Tb6sQKhNJLBCIgGWTSKTwHLbmkwECzJeRd9pJwigiGor3Ij7ork4AkNV3L/2WGk6WdQoCYEX8UJniSLcxKLse34fr/Y48tdoJQjlqe9OvcZoF9Ii/nmIFIFFnFDT8ScBGa2g+w5x+FuRq2bH+7moxQPunJPhxwwv1fogfbFzNEPyEyZCjknLLlFtcE+EjAbnhcujR5hTG7gxs52z2H5bur/TSQMlyKBWM2JwTeA0N0g/fO6ln0U/qPe9ffwDjl37wii5DALdOiGbtAHAVb2hTugTUeCYiOwG0qFOaS4j0EGg8TwkUvMmsfrI7KTdX06p6hte6WeYoMbksimFnC08yNcau4Fi0VHM/xI1Ca3+k64HbdlJHsBIeL5Ptp9K/N7QdEkkf4cqBteNCqC5URJmUn9eyWlKEjA1IuaJScWSVy6cemdbp1DztwdSqAuypSFKc0OPZvzg65bD8MtSKlQzFVeaOf16zcRUJagwTQX6rai2rk/3XNYDmyt8vz8RGvV3VCXAzlPtNaZ5xlLzkExVe7vX7IcF0wTa61srdFbJ2viMM9gHcmZltwnptVKb421bmy1UlKh5ISURCoTVX0n1OAgWXZSdNsq8yCHirCZF4jXxyeeHt+irdLqxnpdOS0nljJzmAs2LZxVqDFaSEk5zCc2hUtrLMcD1kcshXjgX0503fxwTEB3x9Ull5jJK4fTwuevv+f8tN7RNjGXmWIH7pYD23pmmjJTzlxrJWvh+eNPOR4mHu7uyJJJphxS4SuvXrnxW84+LpsK1s2zcWSmopy3jQ3vTaVGIxJ28lN4W3Qgl4kc6+F569Q4KBHfc0p2TkcJpENESNPiBolNXVEUqGkRz6LROFDS5BwVonHKuFPpYCKkJDH+0TDdigYIKNHskFyi27rvqzm7JFjD3Xr0ySI+VjHz3BnTgcvGmIQg2QY64DYP0cTIkKFG523uWTNGDZ675oinRQMQNBZvyN5p0Pw88CKjN0eOdCAC8T/BG5RR9O9nQnAGTYiGzVGkgEnJKUZYgy9gYxQ99uQbkEt2S/6xz6kJQ944fj02Wy+wsLCvj2Jz7KliQzATVzOhKuR5ZiqZ9epOx84fGVEqMB98JL4GwpRxmfs4Gx24CjKtQOqVtJNuAbo7z+YMMSEw8fNM1Py6hkACGzLo2O4DbBYhmrq4IF/w8aUuUDTNnvERh7LgUlY3PIq/E7nJkEchYwooXVwZkwjraPCKN8pZ9SbVi5PsRlfTtLikrnfKNLtfyrY5JEr30CeDrZrbP4ujCl6geGcgaRQZMW4x3YusIety0lR0DyPPwEaRNbTzYYZuFk6FAwT2LgGM7jnbYfgV3WUw4VNgeBLQ5AhWs72AuV2zgXRIQO19hJgBpLhZERAvsPaMChtlm///sSAsNopRSDpvx+v31uO5xs1s0Ip/niLelSX11GnNNtZifN9ODmyC8yS6I1tZklPHUouNVeg9xfv0+W7rytTAsqC7KVKUYXFw+Oc3qjXPzokiccgNVRIZ6N2os1/3Ax3JYThXnLSorZPIJDWg01PFmlGSq48OJaS9UhjmXt2Ubp4jA/66p9MpnI/9/W21kqcJxc0JCW5MKp5Vgwg5FR8bpETrAgpr614USWZKmUmNa+1IEebkRZV0ZVk8w8fU6HUjGw43W7h7Bo+hGWy10WsjZ5eviw5hovuziBp3ywGWCdMDp+Md1+vq4XTTgpRM6kq9PlPrhpry+ryRjyf3O2pudkdwYubFVSiS3IDxWtfooIV5mmmtusLDjGsEfj68fMnheOLp7SPX9ZHeM3fz7AXKNHG9XjkeT6SDFyVtrTtknkv2rKmsNO1u2987m7o5m0WR9GrxHKJuRlOhWyTOiKNPKcMkiabVzcdMqFZoOZFQCpEerDEWMeLw726bL25S1qKAR5UuYVefZCd0+3gANx7Di3ji4Evi7qkSaG1CfQSkRpFMTq5+G14i3Qxpjo6kKJhGeF7Gfw5uBYOfqcZkER8hxkh2N1UkFQhCrHcxg+xq+1jZ9xdBFVKOfTOKDJda+7E9fDkGx8XC7G1Xmkja1/HwKxIZypXYm247H4NEKmPmEaihk/RT/I564xP39676iebQ4rMNIYMxtpR39/+9IiBpxUYsehR7MKz9BaxA+MmsrZG0xROmGFHFZ8+ZpivNNJKoLcQQQQTwDtMrCXzk7+fqqOHC3TwD0aTf5M7q0Qnh/q1RvI0Ebsm4qEKJaxnf9/+/FCgp+bwwpeRprXiwlwih33ezNQ/0Gl0wUZUGIRTzjsHcnmeMLzRuWuueQplCZWGWuQw/khq3TCRHGj1IecNfZcPVQTWyX7zDxxwtGEjDKCu8APFNoxu7OVFrW1T6M7vkWAiCpcsMt1jQZoN344vND2yHFG3Y4he36u7tljzpC9fhxiwujfMu5jaXTrF6BwFyhPpV7exjxr1Q8eIvh9V7j8LPCWYuTfbvMMZJ6t6DmMPow3zPH0oiPodrg5DJP1+K64Y4OjIIcV29e1oW7+Za606glDDuC5ltSuJhcWYc5gkx8QRnfMRTtYeVtMRG6e8nB2fhusPNzr8huQTZxLi0yiLCUfD7L01ca3PzpmpMWSm5kVNHNTIGjJ0I5744zftrNUgFNaOIE1Vr3TBziW/JhfPlEu9OQZVaK0MV5nkavolMJXE6nVhrda+HvjGVxJwK1hT6Rg1jQMV9NkqZUDMeLytgLHniMB0wrdFRZS/cVbHsM+6cM0txL5lt8+7ezJ1Y7+bC9el55wdZIHdb3VDgXFdsdQfPZc7c3b/gzdMzfWvU9cpkiuqV47IgycPxtvVtdMGFaT7Q+xXV1Quq2jx9pwhNlWlZuD/ccTgcOB0PHEhc15WOOoKzLBzmhfLwEiCM9nrk8yhqna111lbJGdb17Ad48Dk8FRjUGiUtbuTWG5Y8F8Z69ziOvRs2ugjZPL3aJCE59rgg47feIILcppTdHkEtfDci/yV5oKgprFvH1sY8FUoWapg6SnG7fb+ZYwgSFa7EWAD1w4csGE74zbEGWng6Cbbzvgwf7U7jPrOwSRh7gvdJiLVALsyTh83vGzd6DCQZf53s8sHbc4TRW8opUFNHYLqGKIJASAfzMA53GeN26Xs8iuqw1RycPz9234ENGC3kGOMO8ug+urF9y4tD2/cUsb4bO6oOTk40XCHW8D3cBjeV0QMRRZQmVxMKYC32uFKcbzQ8T6L4ScN6Pk1MRbBWvfVNiW4NM9/vnPPmqHaJ72nPx4m5snAjzmpwVPx9+pVyYq2fj30AQV2xHEKR5KTYFHEI2t9pVrMbfOb8xcuO9Bv/yO3xcz/3c/zET/wEDw8PfPTRR/zBP/gH+aVf+qXv+5nf83t+zw1mi//98T/+x7/vZ371V3+Vn/mZn+F0OvHRRx/x5/7cn6O1L87s3d+8bnEoh52XOAmrxeK8rJWqN3TBYjNw854J00LTwtYTW0+sPbNZQfHchdbNiZSqrHVlaxvX7cIknSl1EtXVIxJFSV68+kwTlmZkuqMc7pmO95T5SJpm8nJHKndIPmAyY7mEt0ByjxJxrwmmA01mVBak3JHKCyzd0/KJmk9UObBxYGOh2ozkA1IO4Q/hyg5LJYzNNMhrvrH2baWtVxix33EYJlMsEkv30Q9eNEkuEJ4LKhZwnW80ecyBuRnTpVQo0wJlpiJsllkpXFPmKhMtL1QS165cO1Q/hkE6KflBNvKLfO/R8GW4QaNO9BK0EQsw7Xr+SbLbZPcVZSUVY15mz5kxcafNVEEaObk6J5u6GsLPMe9ei/icfg8T8zyNpRROk3DMxiwd6ZVijck6RsXo7uKLkgocSoK6UetKa2eQjTwlcl4o+cBsjYMoc3Kip6S9Idpn01hca3yE0M19dTRlzpdKmma28f0hoUxz7kzv7vwpYUy21crWKlttNMnUBufnla5Gk0wrhSZQ6fSSuZrydtvQeUFL4dIbz3Wji3BV58rkMu8qMqc4e5E35YkyzeQygeGcKvMMrPu7Ay9fPCDAPBU+eO8V2ZTcNopZOBYL1+crp2n2guIwsRSYpLFeHrk8P9K7G+Md5pmH45EkwmE5Ms/3qBZa9bj4pMaxFLbzM28eP+GTz77Dr3/r1/j0zWuquqrnaVv5/Hzm4zdv+O7TE997fuKT84VLu7L2ja1v1N5pvZNMsJY4zg+UvHA83bMcFsriuWCo8Hi98twiHNAqs16Zs3Iowlxc9VOKE2U7RlkmDkvmkJQ5+GMiXlQe5oVlWRwdNJynkAYBXtG6Qu1Ya5QszKVEDEeMkp1u4hLb3qE3XBevYY4WB7K4JBm9dftdu4dqmroqLYFkRwChkWiYbnT1+9+RGc+YStZJ6uOdFGoQH9c0N07s6qMC9X9aVw9sHZSabmDdFZm6Okl7jEbpmHlUR8rhuWQpGj3z70r9/u/qCO3gzUTJ4fudzy2i7ROyBY8vCjuD3fF6INtoJ6n5/5p7wkj38R1dAzfIjI0pvUOoHQKO/SEg2QsqykyzjEcmebinj2S84fJCTv26hx3yGMN69MQGbUV6dauDXVXp0Q1bq472pFAZxXit0533EvtwEg/R1b5ibfO9SX1EPFRQlj0XKZVgPBp+VuDoklsqeCPlEut3PvNv8PhNISj/7J/9M775zW/yEz/xE7TW+At/4S/w0z/90/ziL/4id3d3+8/90T/6R/mrf/Wv7n8+nU77v/fe+Zmf+Rm++tWv8i//5b/k29/+Nn/kj/wRpmnib/yNv/GbeTuIdpIp1ZqPBkXQ7KdqThOI0Hr16jbgqtHqO9yXQ1E6CK0+PkkYBTAVX3TWKAM9IJANG6OjKboiA81Y95531H6ruTlcyTPGDEFac8v7hkgn2eoxHSnH7wmIq4o6BnkEpRe6NUZmhukteaQP5MRGodadMEjzqjx5lk9S764JuFLj0HJkwqFWjebK8CLAhiRwFGKAp65G+qv475lZJPpmLBfSdKT1TtPmSal4N2gmdCwqf5/3eJZWdX5O8Ew87CrhgXrl1iVacE5i07DiyaST4LJnDKyRshMPLar5hLKUycMHGwzptksHG1V9UbnBE544rMCe1RP/buZweElMMbP2KMFECSQNMWYJARjuHdGa34uSy46quvGboVow8U3IuTUxwDMQcwVILrf572WrZIElZ3qH86ak08S1b9ydDtTtQpmPYAkpXrRszdi0s2QvrgRx6fnmROAuGoRKqKswlcig6S2UEEruSlNhXSOhOVqcIubfsSVk8/t7SZ05+Xd02TbUjLkkztczyzJj08Lb6xWxlefLlVevXrG1jcPdQq2Oiphm5sNC18bz02MAgxKR8EI63CPTwrwsaBcy0PrFC9jq0Q5ldmKqjyyE3hplnjgd7yh5ivDLjolwfj47epTFVUJXRUTp9Q0vTzP9zhFWj0ZwIrBF5hPa3YI+eG0lZcoslKKs2tAYCWoKtA1fhym7nD+Luh28EQhF9TgEjaJy8/tHk/N4hrojmdsAlFzIKdC+4BEQqIpFg6ZqmOgudx9CAQtztpFTZcm5MtmMqk5WdZWet/u9+3pwYmUiYl2cpSUgHUfLfLd1L5ZRlHTnh/mYwK9DjvseETT5Hti7x2cMlNUR04Li4YgaRVcRHCXQQLQlEIa4jmOMTIx3RoaNAxAWh2Y0cUOhYtxMLS0QkOys1PFcg+wp2pl4d2SEW9VLXHsbyOtwC7ewvnf0IkfzuI9bJIG24KEE/8v8mnqckwaqQ+zS4xyIHTENxY2jXmI+Wm3mqiMZSAej8PLCIUNcO4nLnffXSPF+LRUnA0cH23Xs66Fm1FCKiuf6aHbFWI9rlXMaFitf6PGbKlD+4T/8h9/357/1t/4WH330Ef/m3/wbfuqnfmr/+9PpxFe/+tX/6nP8o3/0j/jFX/xF/sk/+Sd85Stf4Xf8jt/BX/trf42f/dmf5S//5b/syaL/2WNd17Dz9sfbt28BqCZMZog4u310iL5w/MAfeRQDzEsoxLjDtIaOvEWmRZC4xE2LEgXtTm9LeWKQj+t2QdJELgc/63Vz4ppkh7oUP1At+agk+43eaqMkYykZs+rVafBSes/hnxF6fb0ilJh1C26Z7V2gr57q0KJkUpqCwwFlOZCTUOsGSSip0utG8hhnl9COWWQUZW4K559bZEaTq56mXDhm94JprYE5IiFmNIM8L14Va40Z+E3BZGqcz14kYNnTZi26PBGmeWbKB+Z55rJWztcrpOIOnK1hyYuR2lsw4AvTMrEsM6011m3DElhxK+zefTCnuP26Wo/APHfrFBOqKl03/9wBS/uYSil5obXRGQhSHMkSgW1rlBweA+ZQqahxvV6izsuu7JHwXFFw0pxD582aFwrMjOyMruqGdN6GImmia4qDz5OqJzE2ou2VxKXG6ClnpnnhmDNLmahm2AHW85NLYlujpAlLULtR0uSIRfHU6tY6ry8rUxYOZWI+FmrrVHOFmgR883Z1uasjNn5Q5CCNz4vb4NcggJsax5QoObGasm0VmSaPZ9AgmufsAXjlDtnHQW7idv8wc906tWW6nTA6x1PGIl7hMDk5tl2uLMcDkicnxYrzeLbLBUkH5uJ7QE7ZuQfaOByPIMK2rqSpUEomiXDZKskq98cjp9OJVhv5/uiJ5vHchlFKpiTh/u6e2hombpDm6gwnKl7WlZxn+rYhkkgapnDSUXF+0yhikyTcSn2ggW0/NA/ZGwSMKISgxjh0CjTXVJmnHGOxBtk5Il7cJ0oS1LwRMjHn0ZkXCW4WF4XKGO/iasLhe4IFHyOImmnyvWOYTPo4IqD/8QxxX7vLqpGTksLkTNVo+AGbNRrBFAiCWaBAjqoMSfMwLBvkSov3iQTBUySEC+NzxOubWxwMRaJzPnw/64bv+RJFgAnJfMQb83WcJzFIyF54qfXbeNve4d7ZrSDpGuPy7GmM3TsfL2SiIMEGP2/wHH0g7cGFyo0PGA0Wsu8jo5Ee4zKyN1EaYxqJ7yreuOfvxHVL8d/ExqjGURpf23Jr3G2MyImmNkWz6wo3V+m8IzQxAtFNUSKpo0riKh/2Rtd24vDYeb/o4/8nDsqbN28AeP/997/v7//O3/k7/O2//bf56le/yh/4A3+Av/SX/tKOovyrf/Wv+PEf/3G+8pWv7D//+37f7+NP/Ik/wb//9/+e3/k7f+d/8To/93M/x1/5K3/lv/j7VE5UUsSce6R96hdG1HdHIEhlw/bI94Fh9iMxp2xOkMyZlIrbpEsGUXKYIlmaMHOr5CXdYwmaKlKctW/dTX5EfPaXkocWmm7kZJwOB6aHifUa8HBztCEPdUwOGRcdMWFaIkK9DfJUJABbiS7fFRQpquVZKwlYZnfhbCTvVtJMnmY0vBVSThgR4pRcUn29VuZpJhVhW82RIykgE9fqHB4lQ++UVDgsnhhd+/AYzGytR0YNHAwe7k8c5iPTvHhsfNtY15W2XZiPR8p84Ho5c7lcHcQuznSdlgOrrWzb6jDoFDN7NbQJW9t8ATCjBhrEUuvevc3lzmenaboRfc0JpiaZcHW/dQ7CbvxWUmFINGm+uat4mNuwjh4k4dZ9QxmkVt8zhI7SUgGyy3ARpjz7pjk6MzEOpbhPTsDgmc6c3c+hm1/Ti2UPbRSw7I6jJpmqsF2FSzI2feI4z9zPCzkbvV7pzR1iz9eNS+tMqVDM4fgtkKt5OpAEHi8bTTa2rTIl4cXx6Ju8GXMyUhmKBAu3TWHTjPTOcZ5pGlJRjGICqp723JW3F890sl59sxJPQH66Xn29pkLuylbdh2TdHNVUVbQcWdVN18Q6tm7k+SVlPjFNC7UbU/ZNsbfKTMXahWk60LqrjYpksgjtfEGyk3TrWtnUk4F7KSQyb9dKOZwoS6FXJzRPy4zWxrzMjB15XVdIwvPzs/NYysxm6mZvujFJp0wFSYl1XTk3o6of5OBjxCRCa5UWURdZeIfvBUZ1ilyO0Yp5wey8pHA4zULtGyV58T3YXYaRIhS1FO+Uh5Pxnu2i5pJqc2KuH/iBiuS0K1riPPbDUIK70IcZmJJM0WFymIJzh8cFpCQ7ouKHqP8eSWgxJhUJVRMJ9+DwIi0ld2q1QLJJaUc2XMIPwxBOY2342Rp8HhNEB8qbb3RMdaQUbj7ajAbNQqknviemuCaqbmcwx3c1EucxAu1JAcP42nebB/YiS8O+QgJxG9YQwB41EHbbpOJnTo8RaY/DXqKg8JGbhfstPkaTtCsMJV7z+8QNATyRw4dXvGgyC8NIPx5j9/KCDonbXRwc1XdUXqYaP2P7nudFVUHGmCzuF2+y437s46z1sZr8nyEzVlX+9J/+0/zu3/27+W2/7bftf/+H/tAf4od/+If5wR/8QX7hF36Bn/3Zn+WXfumX+Lt/9+8C8PHHH39fcQLsf/7444//q6/15//8n+fP/tk/u//57du3fOMb3+C9lx9yF54DZUocDyem7NbSW2uQ3CJaq3eFqkZt1RnogwikNcyp3E6896h2U3aPAeskCiYTOc0sx7J7ECTwDlyhdyfh3bgDzl5eDhNTxG1fa2PtHvRVdUJydjfI1BAqhUwyt5TX2t2ISYytRTfS3a5e6ZC9kPCZcWYqXqys8VlzmjHcR8HMeRrOQ/OF6UF4K00bWfwz1LWj5mGEtW1srZJzIeUc46KJTGPta2w8ToQ0cxLhlDPWNz768CXX50c+/fSqEViiAAEAAElEQVRzUpqp6puRmlKy8Pz2kdYembITZuc5YepppOfnt4AwTw6d55SDXyScjgdMlfPlEhtuckVCc5klIqzq9vjEzFYCGibpDsFKbKouRVaKeDdRMY+0Fw0HR09rtogckJBD+sovdHMC7SQBj5q7AU9xWHgTFZI7G4ZR3mcOuD3HBtxkQnGURwOVEcls5nb5PdCpw5TIJWPZ+5a7fHBr9NxZsvhok4S1Tiozcw4Vx+TXtJhfZ9VKksRcEmt1yfKUQjUh7sB6Xya/lxlkRD915jRDchXcMBnMqnSrlGScSuJuXuiSASe6TmWmqY9Bjimxrm4IxzQ5ebgpNSnSVk8kLpWUFqRPTKnQ+opxpbdGJSHTEZtmtq2y3N37d0Si5Uy3q2cYtYppI5cFic8yLc756NvmrtPlwNo6nz1XMhuzGLI64nR/OiHVAwpF8OylbpxOdzTtXK/NUzJQDmUii1GmRM7OKREFa0a1ztrdMVrKRGtXkBxu1YGgAGQ3FRwcwvB29u7YXAKr2tHqJG2Je9lNsfa73Q/i7gGU0QTTu9HGQREIgQbuMFRJGo3dQAkkuU9Ga+6zRNwXQyl0a/DcGC1bWCmok1WHWjALDp+ANz+euhcZPwm1eiuG/I6K54wRdzTc7xYiEqiCj7l8JKF244rEb/DuvwrRzFioV8ScODtEDoGga6hTsiTQGGUOUrFpIJ4J0VvBsY/BY40kvBgUu43TXEU5lEcWDWMO/xj2MWrKmYm+r/lBS0gpk8M0ciAmTqB3JeINRQpF6Jjkp8ELlJgCuNwqp3HN1MftKYqwlMLoUMMhOEEf2XC+p40mTwPtCeepsMPArwUhrEgecKkplD7l/wQE5Zvf/Cb/7t/9O/7Fv/gX3/f3f+yP/bH933/8x3+cr33ta/ze3/t7+eVf/mV+9Ed/9P/Qay2LE8P+88eL+yMv7h6Yl9lTh1Vp3efHs0xIFkpvlEW4OyyISBADq0PvTdlq5bpObPVKbcGXiGp9yr55znmBPGEW3Y8ZrdZAGSz8RiRY+d4Nweg63DWy9U5HQ5JaXH46zxymxLzM3B0nTsuMKTydr7x5+4Z5mViWxT0VULqu1MuVrVaXfCG07l4etTau7RrMdwto1Z1fAYhiIokrg7CO9ivalCkfmMRvqLV3rMi+GSRacEONgkPdLTgJKQuiGxsenrhMhdY7bz9/S2uV47xwPBx5+3xlWo48n8++WWrluASqQ6O2Sk6JOYdsbnXycxIDrW5UxQJmlJTcvbd3yjyxlBNZMtfLlet2dW5LpGmC3vxwBkeHQDHMZdZ5jPRI7lYqzrFIGJJcRp5RML/WZKOUiVYtNir1Io5QOmUfH7hzsYIkOm7+lvDNWsPwLktGU0bbFrybEgWCOQlRlFU7S3GvETFFdPXDdzowmXFfZqr4a597o1UllyWUDbN7kCxHWm+0axhpmUcVGE4qnJu7dS5TItFpqh5MSLD9SbuCQYFNEtoaM4ZpcqIuiqiy1ZX745Ee/CbPmIFzC/fTpkitFFJ4ajSKCrmF/XrKpLygrbPVJ0SVphvTfMDkQJsKXRJJO+v58xhnNlxMPaMyk+fMYT4gU8G2ixP8tsY8H3wz3xp9O3M8ToByOLr7bSkL6/mMdC/SpuSBjzlGK4j69yjuJXE8LKg6r66UEt2tJyNv20YLOF8xLDtRV5tiaYrO1Q+mXGaGyLNbQ6xF4GRh7QpSQJsH2aXh1+FdMVJJhN29Qwh+/+HjYLVbKKGZB1322N9ySi5mM1fBaNN9BGk69jVfb36Ihv8FcWjFmMcrAm+UdiF5Ykesh7O0k9hzyHV7qHJitJwcQdVIGt5VNfF5CARIBgJBJMkzgBNhmITYrv6LtR9jK3d0hTEKUVxUkTFXOIojG2rvqBttvG9v7twcTaL58Nf3Ua7vEYKP4B0NC3mORi5PQB0pap0kBr3v9ASsO82guo1EWLjtvBDfO3X/DDK8VQjkfsznEIaTLpiHyg5ODC7qMFO63jxLrLd9XITpHnDbLYoK8VF0SgPps30EON6jv7zFO7D9HIJ3R17mldMXfPwfKlD+5J/8k/yDf/AP+Of//J/z9a9//X/3Z3/yJ38SgP/4H/8jP/qjP8pXv/pV/vW//tff9zPf+c53AP6bvJX/1uNbn1de941UVg5T5sVx4ZgTx9MxuBuFnBKHeeI4HxCBpo3W3fyq9yhQaqW2yuV6Zd2czKjRObTWua5QtTLPCyXNvHzxiqkkWruQc6FWeP36zHV7IucoT7qRZSaLIaK8uDtx9+LIYZo4hM+C0jGZ6U24PK989umZN49v+fzNW3StNN1IObHMB06nI/NcuDvdczxlylyotXE+X2m1u7ImuzKi987D/YPr4Zvbpw91Uwt4rTXlxcP7fP2rX+HhcOKz7/2am1fVlXWdAmqFTEXMLb5XVZREKXOYcoH2lZQaKResepjdqqDJCcOXx7dYylyvz0whd5xKouSFrVXvQrVzvD9xmu/cIl3OqFYySioT8+GOspwQg7pe+eC993g8nzlfVx4fn5kjvRachIUang/aY3MSd/ONDUpzomn3Iy1HwSAlpJeCJaFTogAdpkZAUrJoGEflcPgNf4sOkKE7IpLCICqZUlIiJyXjttSaiktBjRhjFe+6pIdqw1UGzRJ3k6HmttYpZTQXpBRm9aLgqa3REQoaBXNHkDLTqiNvl/NKngvHw4GC7LL33iqFzvHgElGGCZiN0WPmEv4jiqOCW2+IVo5LYVkypolUOyUJSY4kOjkpT+cNscQhefrxtTlJV1MiLZmqLXw1jJITpXVyxgv5Vmlb99l9TrTuB2oXoV3OQX6GKSe0V+bJ0cXDYUbKEZKynd/y5tOPWebE6f6BnArWlbqt3iVrw9rMi6Px8lCYUmOaFuy9V7RWmaaQu0+BjPngn6l4N5kRltm5W22Es/XgWxhs4hyQnJ2AadodLekbOYrWNGD16DUVaD27+kcEUhSHIvRVWC8RipmT72Hd3Yvz7GnJTna3OGQ6TfwQlCB2I8KUE9M4LCCUcz7yaCl8PCztNg1+Ut5s33uMrAQJnyb/HdXmY4xIQDZ1vkpKiRy+Od6QeOyBWCaRIlOL4GGMz53dRwPeabAkRg8xRxA3ROyxLgzBslBSQnogn+NHbYwjwAnsjjg4KlQcARgvg9c5HkQYjSbDoUTQUTZoFJcReDZIyP5KMfgO6bPt7zHQMvVnHMTTjBOCDZdWy0g1Du+ZMeaTUD8lGfRW57v46MkRlCiJfJ9Rx8iKjGANueFL1hA88NIVk7IjH4P7YilsGGQUgeHi/Q7pOIl6ULy9c/0G4gXu5YL5mhEfh6d3ka3f4PGbKlDMjD/1p/4Uf+/v/T3+6T/9p/zIj/zIb/g7//bf/lsAvva1rwHwu37X7+Kv//W/zne/+10++ugjAP7xP/7HvHjxgh/7sR/7zbwdhCt9M+q1s2E8fg4JV4FMIW1yWqbPTd0W2mhhj5/y5Emzk5u1TdPEPE8cTnCYZo5lAhzartXn6rW6n8HT80oXaLo5UXbqPCx3vplld5HNOVOmxJwTda08n6+cU2Nrr5Hk72OtHoue08wyz2gqHO4fkFeFpOYeKCmRpgmzxLc+fstyd2A+TEF6m7lfMl29AFNztcfp7o7jvJDwLvb5eoVuXJ/PbK1REpxX4T/86ndZL8/QK3M2pCxkjqgaz7WTpsw0ZzzSqiFhuW2W2CwzLQ/knJkn91aZp4XzZXXL8C5ARyLT8nK9gm6knDFZOR3vub97j69//etkFGsbW1XO1zOXdWXzfYDnTSntSs6FbVU+f/wM0kQ3726rdkw6L1+8YFuvbK1iMoG9o3SSwaD3PbSIy7qdp6QOz2tH1Vn3TqrrNKvkcPsVlI7L5cQa0ruTlonYewvORC6oSbhcOsJQStlVHD52cn+A9dpdgpfYJY4exOdFznN1aSPinVtJEi6lwpQmijjPtgyYnsTWOq2G6V4yDktxi/R2geQHlKjzX3IoisBIU3FCYPbx2dYa85zpTakKyzJzVD9wau3UKrTW9p+dkodiGkqaZkrOMDuXKolStzO9gcjEugEykTShqZPyRMoTS3fzs5aVTTKPz89kmeirk6JLmf3gA6Yp05qwdTCr5H7h8vTo95wYL9//EPJMy15o1u3KMh1JbWMuR169eo/3Xj64gqZ4/lFOcDwsnJ/PzPPCeq1s1Y2uujYnji9HX2tbZThqrs24hFLKzJhzZhHFbCMkG2RJPspqDcrMVY0pFSbpjPTmqRQPmyvJjfl0c77O5AZv3rU3l7CXORxiO9tWmWehLAmkkcwlHyJTkNd9vIr2UOpFoBwuvdZqtzGGhCeSuNO1dc98cc6M3Y6XSXY3VSk5OCfCkHaZGq2aR0vgJmBlRxjEDRnNfTy6rTFm8dGYm6nZbko3+GCDy4I5ipXNaHgBnfO0j1h8HDXGqzs5IkJQg8sZCJCPq3EUyQJ1HqOKQG/EfLy2y64t/EosxtdOctk5HWLm43sZjZy5JHtUS+brogep1FWWKa6nYjE638nL4dorOfYwcWWXxocpycUZRdyK3/luTprualRTtHWWsIpoyaMBskUhbOoy8BSE3+kd36fWIz7ECx7tRirFCfXqHP4RcjAutf8j7hRxgraYYTmxhrbrizx+UwXKN7/5TX7+53+ev//3/z4PDw87Z+Tly5ccj0d++Zd/mZ//+Z/n9//+388HH3zAL/zCL/Bn/syf4ad+6qf47b/9twPw0z/90/zYj/0Yf/gP/2H+5t/8m3z88cf8xb/4F/nmN7/5Xx3j/O89Xh0XHl480CJQap5nUsLh1eZdZ+tBesSr4jygZVWvWrVRm3NJWlv3yvA5Z6biI5EWKAS4WqT1ynXbAtp2kyqSUEYlufmm0sVo6mmPbev03r372dZYfMqUIqXWOkld0mjF9ed5SiRpaHJjstY6dw8TJo1tvXI4LqzXDS05FowTOM9r49PXF0TDVhnjOAsvHo68/wMvuV43zpcr2+ajhmW6Iy2QQjkzCS6LlsJlWym5+DhkcYnY1iralPvDwRMtu1I3xWjMUwor8I08TZh6XkNrjWmaWJY7LDqWsdF9/N3vsq1XhzvL4mQ6S1y3RgskcU6d1I3eNnqk8yKTS+qS4yWP5wumjZFJpFrG/oIxyKcWi8g30g4MLpnJzZHVCb9pPxCS9QAqh5qhOLcBh0CdNe/FhRjhq+ZmSIV4XYnEa3OqoSucUlxzR2Ms1FRq7KZKpn5/jjj0JBrFqe9WJsLaKnMJnpK5yVqSxLpWVq0hQS2UDCpbIDiFa/MRwP+XvD+L2a1N7zqx3z2u9UzvtMdvrnJVuQbbYJpGgj4NkkVAQhAftNQIk5xEVlBLCCWkOwhaagXcQkofBXMUhJQgJOekDxBSkhZ00+BIwdhpu3B5KFd94573ft/3mdZa95SD61rPu6uDlCLpSF1mS8WH69v1Ds+znvu+rv/YGtQp45zqLVJibHOCqCOVyu56p261CZCOpBAjFEEao5VN0DmhHL2TS6BWKTnrFj3jcSB4TZgExAGFDJMANlJtT/MVg2fhzwDJ72k2EFyg5JE0HWXRSAkfxLVWrSN0C1yMGB+wrsP6jlRksAhxxLVCTaO4BU1lf9jrMyIX2DSIzVg4evlc9cslMUaiXZJKYSoN62Vbdzo4ViOW2OiM0pUaCJYtNkM1VgW1ltiJDmKqRfwPTWhjbMUU0ZXUJO9ttGBIGOOk4sBYwEn4lWnyfT0s1kG+X8m4iqwETjA7cexYWhE6LNhyGqJLUwsrCGVgxQWVqoSayUPrTkPCnGg66xzmMjidceXiRIaS4MUuK5SJul9sh7FCfzs9j2vNp8vQmDtdhGh1q154RqyZ+swUHQhmtabiOKIN1GFT/q7QRaVIW7hVXY0gQU4pnXbSh4kD0ypNq+eUhn8aK+is/hSne0j6ek6zjAwZiHDWzO4VpVXmZx5kCJ0lAjh1AdaGzGBWwxoNOHGfNiMuIqvf0yJBkk5dk1bPf6PBdRZd0Izo5EozFNP08ya/c0V0mNZaEeVSdbjRdF7NO0Fpfue92OQlI0FpLzEXNKBZ1QShVOTMOukzQ5k1Rj/cH9Nmlc8P85eN+df+93/37/5d/sJf+At8+umn/Lk/9+f4jd/4Dfb7PR988AF/5s/8Gf7qX/2rnJ2dnf7+xx9/zM///M/zT/7JP2G1WvFzP/dz/MIv/ALe/3Dz0u3tLefn5/zSf/FPsT5QaxGLaGuUXIkxEIKj7wPL1YpGZRhHuhBppXA4HtkfjxyPR0qTdlZjYZgmpXQmKYxzdzyrc/OLLrkQAvtK2VPoO4l51gRGr1y0MdJbMQ5HQggsFpGuEzqi6yLeOhYh0jC8ubnl9fW1oAxGYH35wENuVT3sBm8cXexwzhO7Hu88wQWmPMmlDYTYsV6sWC1WrNcd7z5+wGbd0QexLedUORwPDMcjKTfGVNkdjnz88cdMOWOCx1svSJD3pDSxiJEYPeOU2B0HjqmQc8JbizczqCmXv3WB5gKdd0QvB3XOSUSy3kuGRWnk3EipMqi9l5wwTaBi0VAEmlrirLVSlobkHGAdVSsKBF0oopPxQWiZJpuAoMEzSKstrfo1UZqlKozqkSwPb82pf0P411muKMOrRHRbqFW6V2g65BTdWuSQtVaGiugcXvnXWqtuRu6U4piyHJ7zZ7mWSk5gbSAboT1qhS56WsmYVqlGc2SQM9rbxrLzRI3IT6XoQWhPEDC1YV3Bqo5hGBvGBiDjQ8QaS5omvLcEL++R90pzNUPKGWMbrkk7cG1VkJMQyLnq50MutpyLuj5Ek+GsxQVxglHuGr1ry5gqh+I4iUtGPmONVAQlqKWAgylnanZUM+FcwyFlhGPaER1Q9e+rANqpK8J6R02i66Blap7kkmtJ7LfOYZyj7zqCs+TcWCwW9F1HmhKx6/DeEWwkaReRDY4uRGrJ5GnCxyAojCJYx+Mg+jC5oxlKpjrJlmmlUIpR+2ql93L3jrkxO1XafBmjidRAI+hzA8qwSMaP5grN+SGu6L83Qg0Ebe2Wi6Vhqww8tcr/TpYycUHWuX9JFLUykKrwX36IpsJ8Q0OoMm+E5hAaUi9dyonakAA4/W2aUkStzoHemjs0J7uKXqtZeU+c03I5RY+k70XFuQaNEoD5J2x1RnE0YVe1JK02Kk61dTJUzQ7I+ayVAUML9BoyoMwzITIsSVeOoGHz16+1kpsMXPPmZUAFuZoN1eSCF6GsnB3z+d7aXdqqwZyQLLH2q+ajKDVV5evOuVQF6QUySglhreZzaUptEWrRVnnGkib8uobcndbSNNivOck5MjZoEWS70/w47f1xXk86TfQuTQIYrXz9qvk3s0sKhN40esZCYxqP/O//+v+Sm5ubH5gL/nV//o0GlP+h/JkHlP/yn/wLLi4vTxzhNI0cxoFcKjmpfmSYuN3umfRiGA9HfIxSsBQjplWm8SDWxCo8oNXAtGE8qPMn451UqxeNSPbWYWrj6uqCcRw4HI7cvzrj4dUVLSfyOHE8Hnn4+B0uz8+k0VVbXIXbtJSaT0VbtcEwjkyTIgSam5Kz6GWss+AsHkcMgb7vRXQ5C1+txGHH6FksFzgj3GazkHOhpCICNBpjmQjWcNxv+Y1vf5vD8cA0HZltcKVIoJXxPcU5ih4uU0lEGySR0xtccHRdBCSZcLlaslqsePLFc0LsGVIm6yYq4rKqF6fRPhpRj8+1At5aaGqrVfuqcY6UBOkyVZh658XtYmyUw9OIfZqmAkAn75/Y7pADs80CwAYIUlRKU2GYllyptc/qgWCN5tKcgrXkoG3GkbEEJ7Hkp69bC95JjHjT38vNMKlut1aHKGOsploWhZYRrZDmkFg9iK2TospaxJHRebHVpwwgP0eZD1ftSXGKZBgkw8NUdWhgJbVU6U5v5fdzXcfxMIh1fV6XUBttmhTp0WRoZ2kFxmmSg9tahmEUx1rwBGdUfyPvmzfgvCHXLOiKnS9UQTp7IxB2zWJzntLIbhjwiw2pIFtfrTqEVhyeVEbJRymic4q9w6rjq1lLFyNpHEnDiHdOtQkOS6XkEeec+h88s6i963v6LhBolAYhqA7LOUqpmsprWHad/Pw5IxmbQo2UXARyb4ZhSjTrxPJvMpksh7Zu5ylXHAXrnG7bhtQMqVpsqXgP1hRFw5pezE2CHOXxFci9aXVGBRd6UpMBI2p3V7Oif9GJmKpIgq1ZUQJpDm9G8y2yfFYkNt6ctBgzjWNn3Yr2cGHNKeDNyIrNbKltRoo4GhJcaYymqTZ1RhoDeKErnaUlIZGtmxNytWDrvyNIFfpJl4oZy2jy+Rb0T56nUuZSwRlCbYgdVvtgZupIrcNV81O8nzUZ84dKh54mtFObUR3k7zsduoqeYUaHkZMriLtlhTZnxKDfo2KL/hzqhDI6fc65KnLPz7+nHiRIE/b8OsNdkWtt6ixt80JWJNC0CoVVrFR5BCylGbJpdM5LgjhzRP8sxBYqtRQxd0h0flWEV+pjvDpApd141uro/9ukTmZuwW5NMnyG4cAv/ic/3IDyI93FI9SBPJhJdRF9WEJoiOmjUTeNR/fvycWFXEpPX7zgixcvMT5IlbuGwNV6Rz3Is+EFKmvSXBmCY9H1XK4jq+VSILZpZLE55ytf/Xe4OjvDKTxXaiWVLHNma1TNhhDaqZKKBK0JTCYf/mXsWMZO0juxJ8V9S5lpnBjGgWwtXd+BcTgvPG0l45onqNhyv9+f/PTGSm6C0Y3ftEIeB77/+ad8+umnjMcDzolrpbYJpzkAWENOIyZZRQ+0wZeKcx3jlCnZcBgm8B7rLZTE/YsVHfcYx4lMx+4wcHu7pbZG6ASGTgVKEarNGENOUlI2TLpSnSBkC6ckXOVZc2M6Tlgf9HD0auPT/g5nSVWjmvWjXWs9bcoC3YJrosHIVS4LvMc0e9L3Wyw0mfwdkh3TNPo6p4noHK1UosK+cxiRQyBy9PKxCtuaBs51VLKgTBqaFb2X3bFUETWbDkmtLfo6dJLkirx/43GO5hd+3Vs51A1VSgBLpah1OgZJ362m4L2ctFU3YBeC2g4bZWqn5OVUKjEESs4MxXJMDVukLr7WSjWZtXdE5fdbhWUQF0xTtFEGrUqMnpJEcO5wWGex1pBTlSTQ5hl1IHC+F2jedgS7xnirAYjuVGopm6YMxblmfOekY8fJQFaMvEfHbDF+iVuvZMB0ViPaCzYsRLNU1SXRivYMweFwJBro+540CQ1WXCPEDh8sUEi1Eq1T4aegQFOp4C25SqBdXAagYdqkF7w+H9aKpdc4xmY1HFIuX1MhOkuxgdwkhlwSQecUznZ6xtXRigzMFZwlVfl7zjkJI7OCJNzJSkQoPj+bcjYohdOavJH+DrExRrdxg7RQ19OdJwZCAQCwPuhgIj4qEcpaqhEkbx5cWm0SZ2ADFq8iU01frY3oo27tkpUzx9Ab605ha0Y38qqD0Gx9NxhdIMUgMDd+NzMHt8mLMCOlkgIuWpS5QM9Zpwmnot2qNdOMU5TFn6hW5mHCAhoGKUyTDCqtacszQseK5tfRihNqq+XTcGSw4Oc0a5izTmjQrDtViDRd8miGguRdVdXdYDnRO/qOy/coglI5DXksc/5MFS1I0eeeKiiLjHsz5SRLXtU3eW6yL60I7TRnxTShm0Wua0/v05z8O0ct3KX4yjn9b02bcYxBUxOlqVFE4KIRnjnNXIT+SbkqDC0XpA09U9UukyYfCoPkjlgjAsVlF1n0HeebJZdnZ1yer+n7XjotnLS2llLo+x5v5QNZSiMl0ehLFHhTznOuLxchXBcj6Iez6aTbkMTW8XgkTZmxFKaSaVlgsvlCyuOBNhmy86cHu+sbNqADhkQ82yYacSqMeSCnxIsXL/nk48847o9SBtYC4zhgSITZRdFE+V8r0sFTIUSHQ0R7hUK1ArGb3KhpIiwiK7/hd7/zHd5c34JxOuxZUfRbCZcqcqpxfn6OpM0OmrUgm6gFPTAMTaPvMYg9s6m4TdugMQ7TMlWiNjAu4GInNQKmAkLFobkHvoreQ5TtnIrfmgY/tSqBbaVWnJHysrmhWmzsjbNFz6oXQfM4TBzHQfpvatN0S8GDS6nkWslNngVUI2WMpygdZ6oKWanYOlKNo2g2/myNbi0Toid2UVA+IwWMnZcskeAszrUT8ufNvOnJVijxFQqLl3YSAuYiY1jO8jMKPy5w9VgrJWfytNd8CsMi9LJVecNQBNVpmixaaialhHdBnvVS8c4zjYqWMWt5Gikl0EGwYnAmgIdUCykLpJ29uoN8J43MpegdKt1XtQnCNCf/urjEOKH0vHWny6SZKkVrxWqYmDq2qqA4tY2qLZPhYRE86z6w6HpqA+fDSWMmfLqEtlUt/vTe0lnDIsmlU20gFWkVzrVQqiYIt8gwJYoxzK22Ba+UIHoZ6FLkpOWaJq3pDQNewq7GcaC1dPqMo9oHawwhKPLrLLkK5G/0PRWBpaQse2s1l2jOUGmKFAYlKgveR/n7KhSv2eolajX0rZFbplSpW2hqr20ivxY6r0rFh5kHWfkkQWukPEJOgmQVcduNVZBMo6GGYmiQLBfTAKtONd3qjC4QFnNCKZvR5UAHNymR5YQ4NSMmCaO5R1UzTax3p7LZ+azCRPnvKhgrKBs0rBeqI+U7erCdEKFZNCvviVFrdylNlyXVfdRKrVJN0KpERsyFpN451XfMmTYG4xGdpRPEsDQRK8/olsEIBTQ7nqqkx7ZSJLTOe4qXQcaBoIJNOneCsRJdb4zYm4OH7CWgsSas0eW6JcAQnOgw7ZxEW+ciU6fOJzSI7Y6yPglDjJHh2P1bMqCMY6ZZiTbHyKEzQ8lF4dG74UBeqFQK61VP13tpTx1G2TaMlJU9fvSQzXKJNbBadCz6XgLIkIcha8323NTZnASUOedFaZ4kbRVTT5udAbyH4ziJMn9SCrI24TmbRCDnXJhyJmehdkSUBVHFul1QtMDeRTqDWETTNJHTBE2ETF2Ipy6JXIukh/aO9z94jw8+eA9TIeXMYb9jmgZevHjK5599RikJtMvCOuFLqzHk3CjNC2eNithMApdZrZb0Xcezp0847PcqLkQGIIWMU4FmA5Lp0Li93cmh3uTyX/YLxmmic45xGDTTRi9x5cVFca8HVkrUdqBqMJl3jpYSOWkIVhfBemz0UlhnjQyhBsm8mRrDUcL8Zg7XGYE4g3GknIkxsIgrQMK9Hj+8z5c+ep+z5ZKmZXGtQUqZlApjmmQwyYXjMDFOiWlM7IcDb27fkA47vAsse9EDOWSw3qyWLLqOrl/Iha66pFIKb9685vmr17zZ7sA7XOykAK1Wur6X97eI/TvlgnFVKgVE6gFGMmOqkVwNkjThtlZpqYhOiAzNY6zQXM55UonUfomE5UEfAzlPJ0FfKYIQekVipmGEXJhKka2wNg0+1Bh3HfKagXGcGEvFxYAxVTQ9xqAmO5x10tacMy5I1UKpUkhYJ7GIhi7igjh5oKlTxVNbpuSiW78MpA1zF2poDX3wlCTo5ty4bIHoA9U4ifjHY4psw97p0N9EkzNNSQasJoNyKaJL80E1FLUyJBGiNoRWqVZcbq1khe1VY4bkImFhKgmTM9EGGaSstEn7qgJqb6nN40M4UR+pSQ5SzU0sz00Sk4P3dF5CJaec5PvYBcOUwVtckO9hMXh1mjSj2p8KwXeCuOo1Y6xewIg2wTqHDVJE2VT/RZXBtGjZJUaul1nLKhd4k2eSinWRqC6kGCDXdkI3KkIHNgoxaMQ/Sl9oL5d3ch6WUk/fR4LD0GqSqmeYXIieu3Rp3yqosLnWilVqx7iq+hsxBIgzzyhyIvEMEiOVCVFcQ61VkupXvI2nISQXuZucncXCgoQ47/FBdTlNBnrnNCOplRPCKloVVIMnwZVdt6SWTMlJBhCMOtDEcVVKofNBhnOLoIBFwyiR97fahg9BKkVKoTqDb5ZslMr2gt4764GM77wgyjqAeSP5RZ0N1DSp7kieb9GCVrAe4+V72mZoBfkdrIHw/ycXz//Q/rx+85plWstwQFMtR54ZO4WaZSucpsTt7ZYpJy4uLjhbLVkulpxtzohBH2ZvJO4eDYeL4RTSNDuDUpYByOq0G2NUSqhCzZKPUhIgYqRSGsNwYLffkZJQEtY5oWMQ+mEYJo6HA2NKQg3lrHZK2cgnIzTHwRqwnuN4wBoYxiPrxZrVYkHwnhiD5oBUhmGQy04twKGLgjh5ORDSlCjHgW65putX9KtzNhePePr0CS9fvMJYGFOSQ9Y6cgHV5wsu3YTXX6/PGIaR169eYH0Q3UoD6+WDYapctGJh1d4jG2hZNiFvDIyjJMi2SnKomLHhmyScrhY9h90eY6TATYSYcjGBCOoks8RpmaJYtGuFGBdcXZxxtl5SsuTG7LdHFrGjX0auLtYsY6Tvl6SSeH19w7Nnz7BkTIJSDwSbaSXyxae3XJytWPVLOq+XhD4HXWwsa6TrOknddSIUnUWDxsjrF6xwxih0XxU2p83Oo8Y4jbOGjsf37vFjHyaudztevXnDqzfXHMaBfckMmRMaMefqlFEOKIdTy2DVfivV+SCbTlJRawiCluXSZDi18t6aZvFGchioqjtoDu8swUk3R/ZeB1FP80GySbJQTMKjS46NVc60lEwInt5EbJagPVf0IjeW1hlJgDaGCUNqMth620t2jjWUJYIctEYrMnyL+FDr43EEH3Xj1wCrKtZ/nJcEWOegiYU618bQJB+kIEtDsKKfcWhdWk6UVLDOE4IjTSqsBazzVCsps/ujLDvOSiaHHNZ6qTMLK2eHhiVTmZxqsSp0PjDlxi7JIhO7TjZ2K0hTa4bgOyTZV6D5RYx47xjHEeMs0QWhJKpY2lsrhNCdkl3tjLqKmErOM0V2nZdLtpYquiKg6yO12tN2LP026Aataakm4J2h2aoorz5vWgho2lwZaPCIMyzEwIyFOB9lwJSPirzuPor+IydNwLUqaJ0dM46KPQ2HXewUmShKc9xpVTBykc/lfifaTUPP5vvC6PeIwSnKIveMXLyTCOJrxRipNxGupeLMHfJbitCZznYSqqe2ZzmLFV09ZagICuls004n+btCK4kwfi5BlBdDSmlnnZ1Ta3dtgh5Z4zHqS1RVDMZ6wpxQa8BG0ZGkIufknJJs6lzkZ8llAv26UElT0swWGa6qsgFCM1pSqjgrbdIoKucdpCwFnEZ1NDUnGhVXph/6jv+RHlCePn8BL15pHLvwp1m7J3ISCPHq6or1es1yueSddx5Jn4h3yump3rsmvHMs+54YA3NQTc6FqUzc9ScYQvAE708PXVbEY7fbcdCMkcV6yTSNTMPAcXektUwpmiSinnKQyXi53NB1EWvnJNbMYTcwtUGEn8jDdzyMTFOCVhgndfqUzJc/+hJ+LfkrKWVyOUmqRB1vxHZWp8w4JqAxFSlwc8B0HHjz5ppXr6/ZHg5MpRDONtAqCx+ouXF9vZXNELmTnZU8g1Ia12/2+OCJvfwMY5LcFgnXsuqqkY1T7IVJXCR10tREaV3tVaAKUl1eNQyrNTgWWPZnCMRo6boF+/2OELxEUgdpON2cXfD02XPyNODdUvQBt0cObaDuLMPxwOX5Fe9sPF1n8Q58PWByxuQGeaIernnncsXusOWw30EVEWtJR6y1fPc3fxXSgXfe+4Blv1QHi1jaBS2QpmRT5KKK1hGjJ+VMFz197xmOWTU84qhpTUoFS5FBet4IQUrpci0s+0C4f8nV2VpCBafEmAq3+5Hbw0GCBIOn6YUnyIH2gbS5Z8OdEjEFAZADwDUpopOMLcmuEPClYr00l5TWlGaUgTCnomJeg60SjDXmLOiH3H0UI3kgeUqa46M0gTP4qjZGJ4Vy4yTi4NzmIkXZuEot4i49/UcH7FGojuA8RQP5hD5RurRq0FcRWLvmiWId1gfymDAlU4oRCtNIumKhUGpirLJ5UnQZsY5mLGOBCeHuS5MKhDSOGGTDbEbQujRO+hmsqoV660+T17bmhg0WW8A2DdOaCr41iaXA4lulTSIaH9qg1M6dE6zVSsueVEUj4ZTKwRQdHCo1JXAWI55dRSJFxFw0mn/WYLSWlCrULrFmoDpxjRUNG2tNLmTrQV93g9KvTtOWmwzhTfUt8j3lvGjNStSCVlMYZ1UEXVQE2oghMKZMw4geKknp6EnboDqIptoPNIis1EYIERSFQPOMmj4T8vLLAO2cxBOUKq9bnbmIUjDW4lyQmaDJEONDR6syNIjeVc5Z5z0gdm1JztUQwFkwXMtJuNuyoDB+vuRrRjKsVVSvJg25zCdJfp1jFKrcbw2EXq1FP5NCWWGk3dvZqN8ziB4MoSOFGRPEvrR6+ixhnZ5Dch/mUvFOzrRTYePsdqoVrzETzlrqXNrDHCInrjyQs0xo0XB6raoaFf4NgmR/tAeUJ89esl6fkdKEsY31aim8cBd49OgdLq+ueOfRY7k4x5GSNJGzSYultIrqAmsMwzBwPB5P4UAiunQy1OiHLFh7ErblnLm9veXly5fcXl9jg2M3Jqbnzzjstkz7W6KXD38pE9Y1ak2qywCsI3YdX/vKV9kfj0wpMU4jzogGoBbZsA9jYtGf8eDdh7SUePHyJYfDgc3mnK5bMI4Z66UbwjqBd62b21Ql3t9Mk3wQa2acRg6HA0++eMrz5y/JuYkgLASGaWLZL8VVZAoYQzIi+PQEDOK4kI5zedjzIPYz5xwXmzXjJOJAay3L5YLDbWacBvkglkqbBuGmW6VKcpds6gg95Z2jGbHJuiDJmvtRCuBaq2z3O2lzTQWTJnxOUlyYJr725Y8opfDki88Yx4Gui6TdkdAHbCmcLQ3H3cjLp59RaaxW53SLNbeffsr9B/e4/+CetAVfN/K4JaWJXDzONFquTPuJ3/z2r/Cb3/k2Vxf3eP/DD7HGs1yuxAXjHDEGzs43dNFxOB549eoVu92eIU2sL89YxCWbzTmLTnp/Fn1kGBvjmOj7jjQVaiuS7eE66pSAgjWVzhtWiyXpxWs++fxjfBcILdMZqKmQGnSx43a3x/nAIkbqlOg7sePXnDHNsVAaxtZKTYO0UxvLg4cPac2wOxzZHo9CGapjzTrJG5km2VBDiKLfseCCFAl6F2i5MpTCUMS2PSXdMo1nf5hE46MaFtcEThandT0hH7OWpLYqDiSlGxwF18BFoReMMWpdd6eBT8d6TJMsmqzW7FwEpQpeHVVWNkxrhQrxLlCap3cO70TDIfEChpQaUzNMo/T8LPqOro843+MQ+r/SyCVTswpPQRKLq/SbNN3wGw2WctG3LMNpNeKicNWRjWgVIp6Sm+QgtXD6eiJmNPg+qlVYm6FLUyec0U6pghXfJ7UVRRAqxgXJYHKWnETbVkqBKnZRa4WabS1TW8aaQE6ZQgJk80/TiFU5gVw/4gqS8TfI0FHvECwwWtgorh+vekljGniDQVrKLaKdiMGr1giMBsLlUrB+7gWThd1aKxbrIsL2NKnRwUiwmSxqTvUzXkwFNSnCIGe8NHJbSQ9W1cSURYPmnMb3K5rtZh2RIhQpa4EegoY7sWAB5ZSN4r1SjKBYWjlVZIBTa3Q7DUS1NoKT9zuVcvq8CPWuWSeaV0RF9Svy2kvKcjlRcpLMPOG9xwcv/4Oi2hYdRAyNVJPQT9boc+QwNKyPtCZUrXei04xBhzdjBYmxOiRZcMZjkMRy5yzOxJM2RnRvgO9/6Dv+R9pm/L/5T/82Z5sN5+cbLi7OWa1W9H1kvV7LB9RaplEU6U0dFc7KRiiiQAm/mV8AZyX/QbQKRpTmTSC1UqsqtueJUcvqEHusNYbv/M7v8uvf+S2MdQRTCYxYl3X7sDhXBYeoSM6B5hO0VhkHqWk31tL1vfDxRg782C0Iccm9+494+PC+UANIUFZRkS21vBV2JLoUY8BZcF7sYK9ev+bXf+M3GIaBjIO4FL1B1oxA5WeXyzWbzZL97paXz57JwGMs3hYVIlqoopa3IeCc4zjIZeadI6VJDjyaXHBOMj+C91Aqq+UKGwJpytx/+FD6TayREkDbGPZ7xnECK9RUqYlyHLG2sVx0PH7nMc+fPmFUGLrUyuN33uNLP/YV+n6hTa6V7/3e70ny77AnOMuTZy8YxwkXHBcXK5yiMa1WXr16yf2H7/Ho0WNKqQRnePPqGZ999n2ch1ItDa9wtgRBpdrwMdKqYbM556MPP+Le1T1CtLx4+YxXL19yc3PDNE08uP+AxWJJq43d/kgMPcvlirPzNY8ePmS1lvdC0Jiqz6BufqqCr7kwjWJDT+OBf/rf/FfiErOOUsDbjmotrouy6YUoSIciHDZIr8owjNLM20Rg6EzBOMOiW5y2qNBFgo+crVY4a1gsFvJ7PHiIxXKz23K7G7jeHbg5HBhyYSxiXx3HEeejoBNNqgNySeIEQC2MDVpRLYPSJcFJeV5tlYJTS7qVEjr9LDoV+ValjKyXwDdrDMyJvQq70xqpGRm+rGSC1CpDssQ5KDGs4uwYPJWKz0eh6gwEL7HrXbcQisppMWTNOGcpJTEUCcGaLyDRpsB8g7Qm1F1TFCjnrIF9YjFm9puZSmleLyrNeW0GCYGUTT7rRS3WY0PDk6ogXNHJBZp0EBNbZ6HrOrz3opHKmTxlbfSFrusx3omgsxStH6hkbU62BkpqxBgpTYSaohPyUleQk5yxOJwPkg5rLF0MYBrTNGiWiAcjicZUwfBmdEOom6rUuWVOTq2z4NIYRQjmhmGhQ4pmX3VdR1bq3TlPLZWu7zSzpKntFqTFVz7bpUrFxkyTZBV+qv9GWppROojGNCW9cGXgyVk0jsGpHXrWj2giEs3q76e0kz4PRnNNUHdRyujgqM4YHZHkjhCkx1oYhkFeOyM0jHUq5m1CAxlrlN5C82jk56yK4MwyBNG2CEqTq1D2wSlSWWQwFvRXMqaK/h1jG2TNtnFBn+U7Qb+x2mFUJAfKOLW0G43mMPKcO+/Y7rf87f/of/7732b8U9/6Oh999AF9p9oLhK8rCtPRYKHptJXCfILIm+SpUmEE1ZwCcYw6cwAJqTGzclxgrDnAq+l/pxMBADcv3sA04XsPeQRTGHMh9gEDTKO4DIxpBC//u5QliyPEqA+aZbFYc3b5kPv37vPgwQO6vsdYETsOx0Hgwlrx3rHb7zgej1gfJN7fWun6yInheODm9pbnr15jQ+TNzY6xBUy/0BIsw5SKWpLFs75eLOhDwdUj+XDNwiai0XCwaok+sOx7hsOB2jJ5Ghlz1kvUMmU5ELzXoKJSxKJp5bBOeTpt0TTounaCSaP3HPZ7puFALoXF5pwHDy4o08S9j1Y8e/GEYTzy6vVTlusl55dX5JS53e64/+ARIUZub9/w+vVLdtdv2O5ucV42i+PhyP0Hj2gInx68YXu7pZWRnEZaTbx88gkvnz7hwbvv8vjRY7b7AWs68pRoxoMNNALDVAkhcn6+4cMvfYTzkplBKbx4+ZQ5bvujD3+M5WIlqJAKdLsoUe1V7cCzaK7WSkqDHGzeSACWd5ytFhjdVEqRTfw4DCzDGd/45h/EGkvse8Zp5OXL53z22ceUUQZFX3uGw14InWYxcUELAVcqrmXW6w1dCFy/eQ3AcXeDN471WgbU3e01b168whjDu+9+wLvvvs/m7B7ewYNH96BJqNZxGLndbrm93bE7DmyHgwiEc2U3jRjnCV50XommPU5NHxkBrsdpkp4hHSw61/CtkauISV3l5AiZ7eOtGdokn3UbPHinBWgiLpXD1xFagSaHpAmR6kWXIDsizHUI1UjYWAkL9lkGApdFubsdj4IuGIkTp1Wsg9rUNaiaEOeduqWcOoYECZTzvSjcLTHvzRm50FTwSgWtBJZBUW2xwTiNpVfNEk7i4JsMNc5HaZtN2rwd4ulca80wjAlfqtpRPV0nQ1pwFmMyaRqIMZJykqHAOLHMW0XZfCM3oWxzUUtxqyfxprNykQL0ndchRy4q7w0+eFqbKR5zCnBD0YjSKqYWHS5nSkiwAhfuouWd038PuK5TM0RW6r07RU6UIjSLDL934k2M1DIUHXyD146iKgOjaUKbNxWX11YxKkC1RnJMcqnUOtF1PdM0MdWKC9phpDooEINBq3PpoDm9Pm0eTvQpFhTKnaLrm6IoRa35FBFh910PTlF/oyGUyGBQSsWokyqlLK+jDlzilJKMHqEipaxRnnl5rZK6d6ym2hZFb0FecxqkNMozVirRCaVYs+SrSA5Xk98lBqFUWyNGSbaOTpNmW6KUici/JRqU9959SBfkBZcQKAlD67ogeQM6cc9JiTNCcJcSqv0RTWumjTmFEUlmStGHU/+3Vu2KKuKsOijU2nAhcO98yRefj5AGubytpesXWBs4HCcMvWxwrbAbEikPtGboup6HDx9x7/4DHtx7wHqzBtcIik44Z5mSlBhGZ+iWC9I08fz5Uz7++Pc4HnaYsGJzfkmuhcPhKLX0x4GmvH5lYkqS7tnaRBmFSrLGsOwjm82S1XLBfrujHA/cvN6Tx0GiwcXpK6K0PDINe0BmkooiU3OegJvFqwbUEpmnIxiD847ghIPN2th53N+e3FFgKbmxOT/narMGYzjcvOGwu+XVs4mGbI99n3HGsdtu2R8n3n33PR48uOJw2PPbv/1bsrE1gT29FxHz2aNzUbSrjfv1bisheEgqZfAOZ8QF9vzpE9IwMY2Zzfk99kdxq/TLHmss/WJF0HTRnCshWLoQWJ2tiVEcVN4FsfeVdhp4m6kc03gK2IsxYrUhdA6dqlWtuIi6vybZIHOV4MFSK9NU2KWJ1fmVCgMzUxo5HG64OF9xPOzIac9w3NFphHeIHTnvVd9i6K0lFMPxMOHahKmWGHsury5JKfHq5VOFyOW9+eST3+XNzTXn5/fIrfD+Bx9yeX6leS6Gy/MVF5uV6CsqTCmRU2bKEkgGTRKcDzJ8zg9QM/J5cl66pUoW6P1sswYM+8ORlOSAlWwhoRVqyTTgcBzY7g9SJFgNhDn0LuO8FWGeLH/grCBo1tJaVv1DkUO8SXdKM4gI1nLKiRDdR5KgqtrwIWKaIDxlFno3GaCyus+ssQKlA9VIzUJtor2oikC0mqRs00SN/pcNVF6apgJ/5LIwFh9k0y25kKeR6Dy2QYiSZGp0Ow40EWM7ME2QB9FmSzJo1XLDWc/hjWEcBqyTbqvSpFpAtBEz6iSljk6fVenFEWTYB6/IlqHkqunD6NkoiI4xVaoZrCWLXIGcxQFSmzzbXjUjs02+1CJN1Q2c81qGauisJVOk46dpwrRDg+fMKbDN2TlnpWCM0N+tqkZJnyeAehDKedZTWBrGiBbMxIhxkbnYsaRJhj4SGIN1RgYta0524lYz0yDxCSlL2nRJO6UQK3G5uOumEVMalazIWdMyyTkcr2kOCdRcyMhg6LTeZM6Ryfo8Oy/nCSorCD7IcGVkwIxRXHdeKSDTRKPYjJw98vkdyLWc4jJs8MQWaK3QmhYytoaJSsVWtLNNdMMWS2r1Bz4boo2S2ItFt/qh7/gf6QFl1mk0HSoKE8Mc4qMaiDl/YYZErbFUW08Uzaxcdm8NMDPrZeaMY+4gZrk47nhlrIRADYeJ4hr9ZklumVYjrcA0OcZxT3BSNTemCYznbHPF/QcPeP+997j34D79QpEejQWvJZOmid0wsj8c2e128mF2gZvrLa/evOH65lqSOq2ljYnt8bV8WFqTpMuUTla7WgVS9UZ+hwfvXxGD4/Wrl6S0Y39zw/WLdLLHgQoFEe2A7AFF451nwETixGtrJ51OrYU0Tcz2t1oK1gass6duk2YszWlAkG5TqrFisem5urrkxYsXjMOAQQ5GawVl2KwuWa5W3NxsMdbx7/67f4TNesX29oYXz5+z7Dw3t9eklEjTxOEgEPB+f4NTyi92EirmfIcP/qTWT/MHtRg+e/Icg6VfLPjyV7/Co8fvMk2J8Tiw2+3IJdP3HVdXVxo9LXC9c0HsoYoeWQvBWkq+c1A4HXRRV5RoYtvpGWta9y6onnLgTS4Zayx+0bFaesaU2O8ObLcDh+2e4Ba4uGC320vwmXLxznpKhVRHvNYPTOPAfn8Qp1N/yeXVPbCW7XbP4bDDO8c0iaA5eNkQr18/582rZ7TW+Ph3f4vN5pJ33/+IDz78SDQpnVdoWTa4OS5dLJCNe5fn+lz9oJthtlW6E22BIinolo0W4k1URSLEXgw+yiY9Hg6C4my3LJZLsQOPR25vbzEGgrfs9gcKlt1UwS3JUyYlCZfz6uSjNXCF1greTvr6WWx0goYANEmjJVihovDSG1Uk+r82QxoHrDZip5rJKdN1vQwmFKgW53qCMwzDxDAd5NJyUV+DJvqSlOWCCY5Jbbjdckm3XKg+yGK9w9ammg99fZ0ltwJFtAIFQY2NkcygUgo1ZQKSBltKohqp1FgulthmScNE3y8wXtxxlCa6LwO1TDIpat/UNCkaXWBMg1jMU5HQQAKmNYZpwISIMdDSSJkkEsDGXtyJh1Gothj0OQ1kPKbKRZhrpppGzoOi21apJXGTlSrCWhnuOLVLG2PFbVXE+VUVWRLnT4OzHutEOA5WEepMKDI9GCPPv3eBzkeMFWSvGQNt7vpp5CkRdDlxzpJzwnVOUCYjiHJp8hqVJrRkKQVTzF04XW1UHY7zNDEmEY/7oGcoRoc6wQilQkLRGOtUjyPoYK7ioOpMkuGsFco4aCCio7YR7wLWSlGuMRbjHN5eqqheDvpSiiKe6iAyXpCoKknhkqKcSaN8fpwuHaZWip4B0zRgnQ73p3qC/89/fqQHlMuLC9brDSBw8Wwjuzvo5f9+W2YzDyGSe6FgcW3Ut6TFxpjTRfF2/1AtRftu5MMh9LCh855X16/5f/633yaViRDVgkgj+MDZpmd/OHBxcY8PP/wSjx495vzikuCc2oyPvHr+nMNxz3634/Xr17y52XI4HkkpiZjQiwtCwt4tPi5wYX2y1tVWqPkok2otSOy6hZJxVkSe0YO0EQ8ctpl9g9329q0LUQYM5+xdVLO+jpoCIBSJkQ/dPAx5a1n0C1qrHIfEar1WjYN2iziBi1NKYrks7dQnIt1Aovz3UYKepmFiOI50UXI+KhXrI52PLM/v8fzFC5brNV//xtfpQuDNmy2/8zu/xfbmhpxHvDc4r7ZJ7CkynCa9LKJvgNAtaS4w5omzzRk5FVwIbDZn9H3H2dk5xkDKE9/73seMQ+bhvfv0XU/oPN7A6xfPGYeBnCdKlnAuqTIAWsJaw8X5BV/76jdYr1aE6PHOqxhRhmM5DKwK2sThU+sMV2caKuDU+O5xHLi5fs1uv2ccRU9iHZxtVhyHPYvFinEcJT/Jih0TKtEFbeW2+HBBM47VYsXFxSU5Z25ublguVmzWG6iFKY8IPbZXMV2lX3S0Ih1KfddxcXaGMYY42/Kd2kGr9u3oMwD63830Dqh40alOyap2Y860cJIFhEVk/5L7s7u5IeXCMAyUIn1QOWWOw4FhHKhNIgIuLy8YDgeGwxZaIblIcIFV7DgPjiFlxt5wqFIv0fKAM0I1YgveNKI1rFdLlquNhHlhmYsqcy0cp0xOFaYJVyX9dY5qjxiMhakWOmclm6LOKaIVYwvkQGoN58HGTjKOatXgwowP7rRp+84RYjw5xtIcdEYlHSecUVeUEYu7cbJJ11yhGaYkacTWGAzizmrBaJr2BKajp2kcvtLgfWCyYo1vDnJS4SNgq6VUJPDRCBKVs6a4Oid0nfeMxwPDNNGFoANUFQdVOiC5RoLweNtYLhbUNEFJYDJT2lOznNXNBwpitzamIzgj+VE02dBNozbxKTvVwKRSZIOnST5Sk2fMOgiK+gCkMZ9yVVoTNBykVbuqFVkQAEEHJezMK10jaG21EFzA0KR6w3rpnqqyQMcosQRJh/JxmqQnyknWyXA8Yqx0XOWSMFWym7q+024yORMMBponhnmYmJEbddBoeq9psFx4RUQ0ot46ceAhaGOrQTVPRiJhdAkybcC5JueomyMcxJHXO6HwMI1ooxhGVGtYmz5bpoj2rDlJMVeNDlZiN7bb3Q99x/9IDyizq8OoINR7d+LdjEb/zqFt89Byh4Tc/TltdG91XwDyxnF3kRiNt05pZMxVxWQNR+P29hbyxLKTvA+nX3OaRvAdX/3GH+CjL32Z5WKBs5bX19e8evGCly9e8PrNa73k0gniNVYgyS5KMFPOQps46ymarVDTKBkuNBHiNrW+OUvsAofDjkUfWS4W0t1QM9vtNcfjnsPeYAhKVyn3P28L80zWGjRJoDTW4GwvA4kLWvinsdMNDvvdKUp+miZSEnqntYozTkKLvKPmLBx7FcqnX4hYNISO1XpDXK3oXODs6qFc+E2U8Zv1mpvrLT5Evn55n9V6hTGNaSqUZvHdmuYHScEEmlUVQmunrJFcKsZ5nI2s1gt8XBC7BVfRs1oviT6y0EwZuWALOU/UVNmslmyWlT5KgFSMVnQrb54yDlI8aa1hvz8QvIQqlTLirOXzT7/L2WbD8stfFT1AaHqRV6LWE9SWVdRn8D6QUpLCvVzE1uc0H2Qa2W23vHj+Sp0UKsqjEBcdV8sr+sWC3f5AjD0xdqesgxmFOByO1CoXTk6Fp0+/UFTHMI4VYuCw21LrRIyR5WrDMIx4bzke9yxXZ7z/0bu8996HIjJWNFIyKe4EnPOfGUlRjajaON1Jb8IPoJzyLJZcWPRLrDMcDgOvX75kGAamaSKEXulPS98Hgg30/btiiTZGaIosCOR2d0sjs+p7SsqMKeN8ZKF6nikteH39mv3uQEqjagEqq/WKB1eXOOfIFXa7I/vtgfV6KWifsexuduz2o+jHjGVKCvsbsFW2VY/kdpxt1mxWS3LJpFoY60TLk5Qn2kLK0EpHNrL9S06SZSySdNyolJIo0wRGBOelVbpmlB5qEEVwLJHkBW8cIarDqUGeEjknCpUpTdQqWzY0dSRZpikLFZPTCcmZRqEKYvRSGWAgLpaUWukWC0l5tsi2XEX/VIxUGMTFEqOUU82ZWhO+83TrK4y12qkl7p5WpcHdGBHHhhDA1ROCEMJC8np0yJOUZCOElepMDFUCz2qW+AkjCJGLolGxpkk8gdHzrVaMkQ4t543m/RSJRMjSYu60zRhUQ0KgGUczVYYBo+imtVjElrvbHmlVwv9KLWzTTrVm+jN70UjWVnDes/QLjsORhiVEibV3zDEY8tkIXgo9NVGemjND1VJABCWSuowqjkOpccMj8HRKRZBCxNoedcBtTXRdDWk6nlplKg3SnCsmJaMSVGO1gLDiTcU3qcloBGl8r3soByqWZnsZwqw/LdYFx353/KHv+B/pAWUYR8LxeDoQjVU4Vqmd+T9vDyeideDugOT/HXkBVSY7Ky3Cb80z8yae50CpacJjcL47xec3LGMSrvnRO+/xUz/501hjOe6PXL9+xWeffJ8nn38mDwdOdRtyWHgrYWph0ZNTkksjFZyPvPPOu7Rp4vX1NalIvwwNak6U6aCQvsKPGWKweA8vXz3DqiDK2IabYWS1xVlr6bqe/X7P2WZDrROHnWxGGElf7Bc9w6jdItwNh3KxzMZOQbJKEYGn0Gg905TFzlktq/UZV/euuLq64uLiEqwcPl3fYYzhOEh+jAs9z1+84PWba8Y0UfGnuoBF7Hj48D4hOoINHI5HpgJhsdFOJklVDKqL6WJk0fecn52zPtuw3pwRQkdT8Zck3kLvPevNipYz2+2W7bDj5s1rjocDh2HLxfmSdDCcn59zvc8SdpeOHPbXihY5Ol+wRjhvbKNRyLYxTXumMlGqIQAkiCFSS4Im2TQlz105jbn5tLaGDx0VxBLaDF2/JOXE508+5/HjdxDRraBZu3JkGAeM8Wy3E85LWNzL10L/USs5j1gam/WSPI3i5HCWzWbDlCZiCBwHMZU3LD70vHv1EBDb+PL8khAjIS6YfQtVrZpGh9I7mlTE5V7dDjNCIkOZlLPNAkL5r6XvY7WKfPHkKS9fvuTp8+cMhyP3793n8bvvEIK0h+c8CtrXPMMouqu+X8oGXxLOW/b7PbfXb/jmN77O4w/e5831Nc9fvWQ47qAUXr58yXEYMM5Lfossh+xeD+TDVvQKJrBcbSSMrGX62LPb77lY9zy6f8UwFXb7A7ZmhnGQs6M1zheBs82C9dl9Yr+gtszt7sAnT16Q7ZrOZVy5weYBnyCnI7ZoE3eD6gRVLDTSYCmK+HofcNURraeVRFU0Mg8TaTiw8J7L83PONyvee+chl5cXSnlNlDSRUuaYC9vDxJvbHW9ubzmMIylb0pgxTTKKsDAXsUq0gmUYjyqKVNdIlc++s45iJDZgHOVMLg0tzxRhdKsFSxLqwQUNJgSrMe21GkUIJLfFavRBqhIO17Kg10URX6+UadGlR4T/gmBIdP0odKsuG4ISW6YyqZBUU3i1jHOcBIHzPuCMF8fOSZuid4I1qiMqIiguiuBYI4hXg+NxTy2ZzWopWipjeLXtxImjw7drohcxTeIBrLcE6+V7O8dUGqlInL6kAEs54N0HRV8nbXXGQKlJ2uiNIHZVHUUdok+q3lDKIKgPSKqwcqzZ2BNCUxFq0+PojMW2TM17sT+HhdZcVIKXTJNSC4mCKaI5cSFS7YKUPY5EKgI7mWgxzlCmHz5J9kfaZvzf/N9/nc3mTN5oAOX1rFIU85+mh2Ep0vcBnIaYmcYwIIjJW69GpZ3+/fx15J/ohiyw5vFw5IvPnvLJ509p1hI7T993nJ9vuP/wAU+++IKXL15x3I+Mw4FFgOALUHTCFMHkw4cPCSHQdz3jcOTm5prDYQ9GOclcJPPEGf19pBm365fYZtipa8U7CZQ7Ho+kSTYeKVRMuv0JhJtzIvggOREGai3E2EnbLo5hmETFbSxJp2YzvwAgoierHRMqUJNgK7lYawXvOx4+eofN2QWr9ZrLyyvtlSmkNHI8HpnGkXGaSNN00s3c3t4Chqt793j29BkjArHO/Tm77RHrPNGJe+ni4kLyR9YrDJKsulwu6LqOzWYtwj2FxlPOjOMg1QCIxmKaJo6HLcfDkZubN8Tg2e5ugCZ5JE3EbjVn5ZIrrQkldjweFGqV13EOvjJa+FfxTNXw4Uc/xvvvf4nNxSXed8QYJXMlhB9A7or2R83PrVhQ7QlsqCVzOGxF8NoghE44ZCu0iNBmiTdv3rA77DX2vTEdRy1kk5qD25sbKk1ajZ3h7GzD69evTxomp8Re0O3zm9/8FpeX90SXEuJbqaT19JmCt+nUH1wWZqdc1KwbENvxvDTI3xFR+D//Z/+Uf/Wbv4kxkmZqjVxQcdEBjpoLpUx4H/j6N36Kq6sHWOcpOXMcBqVGG8Mw8MWTJ7y62RJij6NRh530QHuxxsaul/dWrbVg8T7S9QtCDHSLJYtuxZQrh8OWcRgI3nP/3hXGSGFoSpI0WmpjTJLeuliuGFNlPxV2hz273TXPnj1nGkZiHTFlT0s7aimCiioVhgk0s6CwIOEJ/QoTvVj1Y6SkxGF30AXDsug6Wi6s+si3vvEVHj64J4LakpFkUbU+Iw4kozoyay2di+RSOU4jb7YyrOwOR653O8YKQzVY7whWNBXWSjlizoXghbZBIXwXPIvgmY5HucSURrdNiuaKUYFnE11VaZLw663UKMgzJO6nVivWCX0hd2jGlCwpr0GKOqueQ0VdhK1KuSAGKJOUQ2rrL0Z+Hu8kaXhuiRd6Suztpkl/EE6tsRoGl0qR5OWqtuMkr4P3UZw2tdKcaO6iFzpdgsLl+culkrK8v60UghUHaS6ZRfRyoVcddFoVu7fwSkqHyv/WGaENVQrJHMdfm2TOFE2ubm3OAAoqfh0pWYT+1KqxGJbkeyiVNE6UlFWX5/HOsOgD3kLJSRgBhOrCOkLosV7ozlKr2JKB5hxZLffVGIqV96PliqmVlhOmwXDY87/9X/3Pfiib8Y/0gPJf/bNfY70+Z7ff8+b6WgqVQkdwFmsb6+VKivy8O5WYAdqqau8cO2+hLfKQaP6EuXP1zCiLMUYaY3Mm6TYyjBPHwyB2OgPHceB4GAg+8ubmhtc3W4ZRPzAKdrVWsC3jNDDIOcNHH310OjzGYeDzzz+WuOQm9I40ZYZTMJS14teXwvDZX9+4vLzidnvLOMhB4bzX8i15sk99FF5SPqv+XiF2klarLpNa1JVvGsZoiZn+aXMypVGvv9JaVUOZQow8ePiIew8fcX52TgN22x0pJd68ecXxuJfo+f1OttTK6Xd3TjZx6zxf+tKP0Wrjk49/V7stArWJrdBaT+gXnJ2dc7bZsFotuTw7Z71aErt4cl21WqklMU0jz18853a3ZTweOR738vvXwvF4FB1JnWvbNbCqVVrRVunaCMZTaqKZpk2uMtiBRq6rnPg09Dah6lKVNErvei6u7vG1b3yLzdmFUDAaDDbn6oA5dfqUkk+dSFLUplCycScRmwROzSVklZTSKbNHBNJvoYJGXA9C9Rw47A8MUwIDh/2ecZoIOkCIGcARu0gIkb5fsFj0OCeDIs2cXByz5dNZKUW01ulhyWlAlnj4NjM6ksJc0f6Udvr5a2u8ePaU7/z2d6gl0WoWeulwfGuhMEDVgL/Ag4fv8JWvflVqIlSs7XWgFLFhIuVG7KJso5pFYqxe/CHig/zOrTaBqJthTBNpGqm50Ew+FdzFII60YTgQfWRzdk4FfOjJuXG73XM4TtzuZdFwTCwibF+/5ObVc8i3Ogw5UglMLVCdozWHCQsKAVzAukDXL4SmWq5UnK/op5FAw+l44MH5Be+99w5X9y+pwOFwoKm49G30yloJ+RLNxVt6PO+leBXREhyGgdfXW168vuHN/sCgydjGWmzsZDs3WifSmorYyyljpOqC6K3HYqRcsDUwXovsJBpdECuD02K9VkWHBaKlqCXrAC9px855UpXIiKbUjp1F5/MgYhymZs2xsuQK1kWMEQPCbBqQ1wdwQQL5VGTcNPvDNjmTKgas0F+GJknRzuGd3h2tkUsSVCHIkDJnkuQii1qpA0UD9IJu08bO53AQNwyNXPT7Vkk21oQqFfBKUNvsFpqHTjnWq/4tLX80jtwaBYO30vyekzzH1ngxQMSIZdasSBYOFkhZSpYNVCPurIrXpavRmjSDGyNOq5omaZpvjty0tUd7jnITPVkzkqobQmAaBv76f/gXfv/noBz2I89ffs73PvmCm8PhFKnbBcMH7z0ghKh9B03fRLGD0WTq9koJwdyPIYf9bFUDCWFrTWFFZB+ueY7zLeSSsN5wdrlmf3PD8xfPefHqFblU+sWa4ZCw0dEvHMH1KlqTrBDJK8kUMljD09vEcRiopRHyhAtr+VA1EZrW2kQF3yq0REFU7c5Zai4icDWeZb/gxYuXEthDEfGnlQMghiBagZy1cVWEdV2/oOsXpLyXcrk0icAUVEcig0qZIXpj6WIHFWIXGceBYRyIIfDgwSPeff9DCWSzht1uy4vnz9hubzns90DV9F+IIWC8oAhTSqQp4YMEiI3TEUPh6t49WvmAly+fM41HLi6vWCyWjKmwXp/x3nvvYayn63rZ4m07ZTqknKkls7255l99+9fZHfanTdtZQXwks8ECTj5kVS58qlio5S400ArjW9tdHgfmZlQZTDQ7w6h74BRT3ZQCahyHLbef3nC7veGbP/GTdN2C1WpN1y0AhHeHk30dIwe4teJSEOW/lJDNTh9r7QmFsNae7OnzhX+qRtchJsbAcrng7Gyjotkqw1kpmnosmiO5lHUIZY7iH8ll4vb2FgtMU2KaBkpOdN1C7MeXVzD3xdS7C2Ycp5Od31kr2Sc6cMwBdSCD1HpzBjSG40EzRhzWBsZhkPeDiveR1arnbHPOarNhv98TQpASO936BGHY0KWE9QFnJVr/bdgf5HekGRnog1h8h3GkD4bNcsU0HqnNk8bMdjjw/MkLDts3HHZbcmn063NyMXTLDV3s+epXfox3Hp5zfrTE+prgO+7dv8frVeDdx/eYDnuePnvKq9dvwILvF+Ti6M6uyDaSJwle7LpIqY3j/ohtjf3tDcZK10nnHThPKZVXz49sb19hYuSP/OE/wqP7D9ntt4zDqDZjsdOnIhYSY+TynLVHaZz0Yy0UUvSBdx7c590HD5hK5Xa34+bmluevX/Nmt5OhUjhleRbrBCWTcz0NDk2LB52zUkXSZuv07IA0dM6zWEh3T21W0kadLGWtFmK/QdT0RjLmMXRePgPNyOKQq8HbiPWKOqjbyfpehMHarj0LsnMFY7WZmkopMGmujG0VZw0YceIZmmouHMaBd0bNSw6sUEk0Q9T+IRDNldPhr4teWpgJSMN7U3RHRg9qJu22YmF3UIzBV1meszViiMDpkloAQXC9l4GGhrTW14YxsiA7Z7E4Uq3SzNMmoYC8VdG5pZXGVPa0mmQQIWCyBBqakhk1HxLr5bWyFVOl4ThPO2qVRbYatDaiUG0kYTXt12NdALw0xGMw3jLVRvo3cPH8SCMof+//9I94fbsnY/Bdz5QkCOa99x5y73zD+XJJpxHspRR5s06Qs7yR8wAyb5l1jqZ+S+QnHQaaJqsT/meffcZnn39BqYWLiwuur285HI6nyPe57ru1RtADxVqjUebTKcQn9Aswju1hIsSlJro6ShopdcJbTRisGZqUozkLpkw4U9hslhw0K8KHwGK5pmSBqIdhYC62rxpmkpJGy5dyyk2Y4fBaG+v1GhcXrBeRVguhW7Jan7NYLunU2rlYLgHZimdxqFVuNoTAar1hKhnfCi+efsGv/tqvAEVV8yIEnUWTJx2Lla/trMF7x5QyXb/kp//QH8bYwLjdMww3PHnyCcM4MCXDg0fv8RM/+QdwTtw/taKDnAi/0jSSU+Lzzz7ms88+PVEQIhitzAnDKHLm5nj1U5CYCO6E+9VNphZFlAxGhxVmTbUy9rUB2vHSNAnWOE+IHcF5DsdBLnyFZc/OL/jGt/4g7733niZHWrVzN9XyzBofThqr+TCc/z7M9krRWXnVFh2Px9PzPH/UZzRjRlus8ThvCcHz7NkT/tW/+jYP7l1x7/KScRp5c/2G7X7PNCUOxyM5i4XbIrk3Xdfx7jvv8f6HX2K5WsvloJ+z2SnRFJULmvwqCGTShGbdbK1Qkyll/uW//Bd88fmnLPoOWmW5XImIOkb9nQ2r1Zr1+oyu6wkxnhJcRZRbxW5pLSH2Qu02VKMkQ9Bs7/bBE72jjxFnDcfhQEoT+8MeY2AYjhz3R3a7Pdc3r3j16ik5Tyy7pQg/jWV1dsHZaiN0YC38wZ/+g/ze977L088/Ztl5KSa9us92f+DTTz5luTwnxp5cYBgLQ6pgLcX1HKeCdYHgrSasaoNuzpL6S8GZTGiFsAwM40hUQWs1ElXw0Ydf5se/+S02mzOmVIRClXhq0VDUeooGED1Wo1TJ+Kj6WShZ7Mdo9oV1IgAdponX1294dX3D4XiglCoVI9GzXvQEH8SRYuOpVLWi/ThVAuimlNgNR6ZxAio5VVIuorfRxU8GG6NIjZy/RuljShaNGdCQ4bXVAqbSBU/V2N7W7jJzSlMBLzAVEc1XPTeD93ga3sgnPSkF5oy09wqK2Sh5kOdGg0Gt9Tqg1ZMNvbUiWT01KaoKBhEvW9OwVdCHisHmHbbI7159wFpPKYhAPQRyEcdN8AFLZkyaC4S4uhwVU0ainxObC17FtFnDHb3xDM0yNE8IgWgNZTxiXGTuVqo1U0vCVnGPO+84TiOpFPpuoY5KOectQGnyfZyjtkxzMDaDbY5Oz/KpFlouJCOf/zxNhBhIZeSv/y/+p7//EZTvfPw5i+WSi/MNi85TXaVbXNLGkTx4FpcX9J20XJqkSYHzBYSIDodWpYzstGFqzkmr0sbZTuHDSgEZTHNcXT7AEHAzIpEMi+WZFAwmdRdZeeOb8yT93rvtBFUeVG8b6XAk5Ua/3OC9lMotFoHJNkJYilMhSl5CK5Ncgq3gTGUaxflzvu44u7jHYrXCdz0xCBoSnNfWSgutcjgclMYo3Nxc03U9h8OeYX8AA4teckE2mw0xdoR+QeyWdFEcEKVmHWosXRcZx5F+oU2Z1tH1UhPgjGXdR14+e8Kv/uq/0I1E1PTWGb3UzQmpam1uwIDFYsEwDDIsrTZMQ+I47Ehp4M2rl9TqeO+9H+Pq/jusz+/RsKSsA8NMh9dGyYnjYcfNm5d88v3v4oNEx88i5xk0xdxpi2rNJ2rEGC3zqogWo8rAaVrVTbCKAE9zd5weUjEESoXmoopVreh8aiMnWK82DGNT27jBLiyr5YYYe6R2fRYX29PlPj97c9vqbIEHtKBwpiXb6X8LKCoh24q0u97lLeQsv2cIXqkfcaddXV7y7/2xPwoNPv7+9/j1X/81ShnxzkomRqkEoOuFOiy18ujxY97/4CO8D0zTJKp9fU9zuXu/nROtj/w88l4kLfWcbdUvX77kN37jN7AWPvzgA4wx3Lu65Pz84jSAzMVv1nli10koI/PvLtOitRJIpW+30k5GMnA0Vj14fZ2KWPKdqwzjwLMXIs6tpbJerXj+7CXTlBkOrwmd0GbBbZiMI64WBGPZrFbsb5+wjJ7jceDlF5/w5fffJbTE97/7W7haeTmMvL7dUVLh+evX2lMSMTbQqCxXK2za40yl5ko+jtKhgp5dVSUf3oGx5GqYtkeMqWRdqJz3OOv59JOP+eTjT3j0+B3e++AjLi4uOVuvSaXQor72U2YaJwnkMg7nhBKpFcmKauhQGam1kMZRXntreXh1yeP7907UbvBeEWlBe+ehwmCUchCtxOmz1ppoMppkk1gVBk+5MIwDu8OB/eHAfhgZxkFStMeBKSf6EMCKdbiCLChKsVgnacI1jdQsuTlC+6iAG9FyBBzBG6qtBJ8wZSBQca1gvMc3CUc0zdCMIyWjhYUV2xKmGA2uFHcKTYpC0QbnSsXq2dBUCSROPRX0Git6RRsgelxn6HG0VJmiwdARc8aZjPGCaDtr6bsFMTS9B2S5S6VyPEqXTgNSkbJK7xxd8HI+GYfLlVIGbJU+KmsKrjZMyaQ2UJ2HuBS6jka/6olNMlWokrKbW8YA1npJQS+id/EYnIVSRvZlouRRkBrTMant2Y6JsVV24+GHvuN/pAeUn/7W11ifbYjBs+wCXQg4F7BeKILTakvDaXNooepBjrYqKr/vpa+hKFw/C5Z+QMGth38thbPNisfvPJRJNWfylz+glkQuhd3uwHGcGEdRrE8qXKxNqIeSkuSnhEiIkRgiIQpv2XUeZyG4Dh8lIjz6QBc90RtSvYt3BkPXdRzHCY+nX/SnxNGZT/VN81NaJvgNhsKTJ59T0sDz29ccD0fBMwzsd/UkshwSZDw/+Qd+io/eexdTC7kU8ijbyG6/1wIphw9RBbYObx3WNr77O7/Nb33nt2g2UI0o8o3SFPOgN9ujZ81LqY3dbsS6wKPH7/HwwWOGQWvBw4oPPpIMkq7vRFsyCy+rePZrKQzDjuvXL3n15po3b94wDAd9baVzojHnRahF2kiyb9AgJxDkxDRpfJUtXIbUoqgXKhYutUhirKIFU86kUskp0Ww6XcK5ZsSM7kg18/i9d9mcXWKMNGM/fPjo5GKy1p20Ug1OtMxJLFfnQ0+RGRW8ybARTnRPSgnvvdiAWz1dypKee/c8y/eUz0FTLYGznuACP/6Nb2Ks4emTT9jvbhmPR2iVUg2r9VoT2R3rzQXbw4hhPKFTt9utWlLlM7Narbg4P3+rlZbTFj9NE7SG/oNvfetb9F0n+hYvUl0Zrgu0Khk7xhAihNhkeJ8FxLqxppTnj67qYWYNl6U1q6JIefb22z1jmliv1/LaZdEs9J3HWHj4+D6LRc93vr1ju90SwpLV8oyuDxwP18RQCeyITqii0C2ZKgwZ/PKMqXmeXW9ZLjf4bkG/jKyR3qWktFmrlWE7Yqp0TjmE3nn0+B7OwNOnXzBNSWgBE/G2I+WJ4B0hdsQQGIYjYFguF/Ia0djvbvj+936b1WrNxdUVSZ0bH374IQ/vXZByZZwyuUoYYC7S8zUL5y0yEHrvJctDzwpJOUV1aFoI2AQVzLrIzOGQRZ81zCyXqKeFgtawWIpRSss6Ylxxtl4zp3nnIr05x2HgOA4Mw8CQCodxkHiGUpimRG5JIqBqpqPRd0FC6mwgVfnUWO1Qss7JAI/YimsRhNraRksahUBDcmUdpRpq1WTvKsnCuSl60yR3KXrJGTHWYWpVm7BVy60uPaXhjVK/Ksg2c86UaWCSaBSNpdkIrRG8pz+LBO8UfSyYOjEe95RSiKuVOKHU5WhUS5RKYZqU3qcoMqs5RWggpLHgI80uiHGB950gQkbuLYmLkC63UqWTJzhxk9UGwzQyDntKHiRELkZsd47rDAEJRe1Uc2OXjTEl6S/6If/8SFM8/7d/8i9Zn52JNcyJU8FphXitkuxZlftHhXUiKpJfeX7D7EnZPqMl+jdVzMfdP0TM12a7mVy2MyLjzJwTMK/yWjtdLSlriZKp2OB0A7Yktak5a/FO3Q0qYPNBBIe1QNcFfLSkITMOI1NWeDwX5YOlCG4uiZJGY6GGpARMLrTvfve7/Pp/+2v4GKkqypz7MYTXlNKo+/fe4b2PPuLs/IySk6ASTbMONJdBtibZlpbLJaWI3fLTzz7li88+U5pCBr6SE9ZA3/cy3YdAyYlSM4t+Qb9YsFws6Pslse8xxhJDJ39fLxdrzGkYcFY8+mlKNBpv3rzh8y8+Y7/fqSsnUTWrJmofE1VgZuG3ta3aGkqWrUAGFrnMW80n3Y7GeOgBZqFJom6tFR8jOWtUt7srems67Don6EouDRcWnJ3f46d/+t8hxP7kWJHGbG2rzTPiIT9faXN9gDyVp5FbfxahUgS5mvUpUlB2V6zWaSy/6E3KW4OJ0CpCC2m3h5HtvNWKsSK4o1XG44FxPJLGkTEVapXo+u1+x8uXrzkexTnzzjvSIh5j5OzsTIekThqq3zpqGpwGqpubm5MeZP69vfP0XU9rcDjuNQNFhJqx71guF/T94kT5gDmhn29XWrwtgM8qbG+tsd9t+ezjT3jn3fdYrteUWnj+/CnjOFCrJVjHvXv3uLo8o5TEzfaG7c0ty+WGvl/gLOTpwNMvPsWaSTJrmuP88iEu9kw5szseqDlT0shxGPEh8vLla9I4CDWkSV/eGSwZq91g3hlW63MevPs+znuefPYJh92eNIrzpCCUocHhQ8cwSZij90H6fmohdpGqyc92vlAQLQalseh7Hjy4z6PH7/D+Bx8SYi/DSZMzZRwmOfOqpMuCCkZr00wkdehgNF7dnt5fIURR/RSnwd7M57F+nND3R6ZLBHWZCyIVVZsxRGMMkzr85vTl2cyQUuF4HLjZ3XA4HhmmxLC/JR33EtbW9ZJ4WhO2JjEe6EAv3z7iY6caFUVUjaFYL2GBpmGtBsUBAen6yXM5YENEv62Kndo6LI3eSQhaaVJXUI3qY7IUMjoPlYTLMsgUL/q30IwOQBXTPN5GQUGCkcgBg8Tjq0bMOllCo7ZLWQvNGolByAmH0DHNOikI1NdwTHusAWcDpRhca3gK1UUaSqUZLbRF0FdaIniDj+LurK0x5kLNDVdGEeO2SssZ0wqTalVskzO8IVlR//l/+h///nfx/OP/+l9yfnZBU+VybZWsOgFnrTherKNmsZMWvZhkS34L2qfeKaLh9O9Nu/PAS324RnK7uw+jtU7ac62onZup2CY/T84SlSwWOgndAkRl7ix5SqoxudPECAwftG/BaAOr1Kz74LBNxIUGEfbOlxTBatV6lUjqJva4WjPjODIMiU8//5xPPv1MUAfrtOTOKYpiVBBp+ODD93jv0bsSt18nXIjK8crlN4zjD4g505h4+eoVL1+/4jBMNAwxdnReeNuLsw2Xl5ecrzfUUk5dHbO7w7w1zI0pM6lA13mhTZw1Mnw5SzNNYNdSSVMmjSNPnj3j6YsXQhvNtMjc7IkckNYYorPUlgUxqHNqIjo8WUqbAVmld5iRBiugrabsGmTDlehxBK1S15EMqHIwWb1kU8qELvLjX/sW77//gQgEjVUU7Aet7MDpwjXGnGocNI3iLkyQWb9zNzxbI+I9Z502uKobjTt0paqtvbWmqcjoa1/0GZhFjDJYiahR9TiqfSm1kZN0h1jE3r7b3rDabNicnYsrwas4mDsb/0zpSRurw3vP7e0th+NRUpo1+4Umg9oczJY0kNA6SwzuNPiAoDApJ1qVsjQfZdjzJ51NOw2qYxpPrbfb21tqlb6VEBzf/953ubl+SYye8/MV773zPpcXV3zxxTMev/MezgtCWTLc7m45HHfUknj29CV5KlxcXQp6VYXutIrUHQ57Dvs9u92eXJuUuSlVOKUBYwrBifA+WHEfdn3Hux98RHMdv/vd35XndhopSSL2jQ9kY0WbpZ83Y/ypTDKEgHWRKYkmrBTpdrKq73LMwWLiFvtDf/gPc//BI4ZxYrlYsFotiKGXz9ckCblZhdlyWYkwH2OZO6SYu4AstNIQJkieF0FNxHmSi1iCS80naq5ViEbOBPtWErH6Jt8aqgWhkriIiao0pzUiyKxKexgkFgFQC/jI8XBgKlVEoTUxpszNdqtIE2TjmaQZAGNkoWh5xNuqjhaNdC/y+fYhUnQgmRu3TS2ChhhwBlxrMnK6iGsqFNaluJaRNO0hIe4e6xlrpWicPalSQhWtDdCMIbeKK+BCJFkvur2GaEdawQGmJCrlNBgZA65mqvFU4zEuaG9rJTZI6UhrEBZnFAxTFnrd+0htotspzYFxIqhuhZZHsSU3CYhrBmzwBK+9R00dRq0QfCfvu1jcKM0wjgP/2f/653//Dyj/13/8K2w2G70MFDZuAqMJrK1bp1EesIrT5e5Xlg/XLKqcg9pO28C8ZZ5cPWrpNLLRzlC1tfqGqJYF5MMInEJtZj4856xuIRQ5ka23NkE4rHfqHFGrapVpGz0YalUbmRP4Wygm0cxEL6FqaUoMaeJ2u2O/2zGOE9e3B252R8w8HEiNEJvFEmsgOsdytaRfLlgvpUF33sCj93I5nVYfhS5rYxwnxlEEeEWncxk85K867+lilG0FST+UQrVKUE44l0bKmZwSu90e7yyL5ZLYd6cSv4YcThZwZh5IG1Oa9LUxHI5Hdvs9UxpJYyLXSt9Lkiq1kqeBcTjgnFHxnmUcRnIpbM7O6RYrVsseauXZsy949eo1oYt4I5tHbZUQO+3eKAwpSydpk76gKRfQOOlSGs6IwPXBgwf8+Ne/Kum3SFaPt/Nu+FYZpR7MMyrSUOTPyDAiYmBIuUihYJV/FoTPtmRKzuz2B3bbLYfDnsuLC955/IhaEpv1isVqIw4FWUFlMKBq2a/FWKXcrMc56Q8CGUSnYaC0Qi0zny9/ZtFt02d1/r/nz0jw7jTU57ecM63J+344iFiyNT2IswjVD8c9x8OOw2GHm1ERtaZeXF7igzgnvPOE4KQDJXi8i6ev30rFYihGvtf+eGB7u5XkYyrOeW5u3vDy+eesFoFlF/ExcNyKDXgqhcX6irOrh6w3l+x2e54++eIkch+GoxayBWzsROyIAT0jqJXlsiN4T/COcThigc16wTAcORz24vQwhf3tDTVLtst+f8A6xzRJgu/m7OJUOmmt5TjI4nAcJqWsHbWKvT8pwnXqIhO/rBTumbmQT7KCHj56zMXVPV69fsOzJ5+KSN1a3nvnPb76tR/n4uKe2E/1fT3FC6j8Xh9OQeHeSpaeKdyZWsRoSqtu+NJKLHZwa4QamnvTrHUnd5FV1GbWNFVFBwWklvyept8PHWKskUEoTdoAriBNpZ3ObO+9Nvkm/Rml5PHVmzdcb7divc+TUOYNUjGq1WlgxJpbSqEaS1MqmFwk76NlQpTE72at6IKaoXNW4g5qJlrwbZIaAeMp+h+Ml7O3VaXYGpSJNA2k1rDeU7JorErTlFyKCF/TKMi8llOWJgNz5+2p7bgqEgwGE0SUOxxHodG9w1qxyhvjRJqALP5ymheClbbuXIu0fxexXs8R+zOK6zU/qyFuI6H0ZKA9jEf+s//oL/7+F8lWDIcpScy7VY6Mu4hz4C1QXD9Lb+EkM18t/05rvUFpobdg8HmLNVJCaE7/Xr5GSkWRlvnD2yjKy9ZUTkLMWhXF0eHH6AYqFe0CmaLcXs135YQCjYk7JKeqwU7ydeeKbJp0kMjlmcUhUirNeGwM4Cu+s7ggCYqrZeDqbMV6vcaYRh+jDjwq7G2FEDwhaHcMTTUAwknnJq3Jh/2B2mC5XLLoOqZpkkHjZs/r2y3NOPq+B+aodaFklqueq81aLXxBtj4cD+5fSjR/8Fq7blRbZOQwaPKhbVWoqK4khex3lDxSy0B0DewEeeRwcw2InTsncQZ473jw8BG7w4FU4f0Pv8zr19d0bkFYnGMNLIcM8YzQBcb9xG630yA5J4FaJkCbKM6QmySuoghXbaJ1WkbPN776Fd57/OC0UeHENZVUZwJ3gtgZXWhKSxogRBG5LZYLvvjiCb/5W79No7E9ysCV08RUCklpx5aSxlYLRfPkxVN++/e+g21wtt7Q9StCiNy7/4DNek3XdXSdUGneOqRZNqnIb3YqGC199JQqW76ZB1Z4C95vJ+SgqUsK7ylmXg6qtjtnvUDlay/6ni5GQf1yJucsCbJPn2Kc4fr6Wja3kglWaL5hOOJ9YLPZsFj0PHt6Td8veffd95iKiFnm9tqkLjzvDGU4cP3yCw77Ha02Yoi0lrh/uQEK4ziw3d6yXJ/zlR//JuuzC2iWFy9eyLNnRFg8HBNHTbGOcc1xnCj7Qezyx6O2hjdSzexvhRLp+8Ci7zAGcgk8ePgQax2GyjgOvHp5TRejhOd5KZv0ztDFyHZ7y9l6I+jPzS04QfXOzzaUUtntjroESEZLqZK+6oMjlyKBi7IyyIBKw7iO2hzf/le/w3a3wzeJgo/B8+Lla7rF5xyGhFPbeikiqvVBLP0xiC4lhiCItZXsGGOkX0ahSmqVs2Oso+TKJGmeN62qELzhvSBP8rxpaBoavOmV2uUudfgUbGYVBZd5W2h0oMNRYkfKSVGzehp0SimMSmla7S5yttLHSN93vPP4sZzTOVNbZcqF45AYp0QtsgTkkhjTSMPQKox5oBZDGgWpS7VIMWCztNxoZMhSbbEIPbY2PIGhZKHQTMW4RmsTEtMfxLVEpaRBtH3GyfdIk7TCO0vV2oWMofpetGrqxDLGYVolIY3jaUpMpcgQ1CwmV3IZCT7K8FIsrRTyMJwC21oTTYxzRoTM0ySoifPE0LEMndwZpumwJNEAWek45yX0rlVxkwpyO/7Qd/yP9IByvTvSZYnaLimpAO9uo5PNWi70ObJ51o3Mqac0CUmbdRshBDCV4MNbQ84cHiabR1Ob3HE4MI0TYxYB6TgKb3vSA+inZsyJYZxOGQBZY+Kr6giWiwXr5ZK+64jeEZxA1PJzvtUNBCpUE4eCVdumWJtFdDcNkwhdc2K53LBcSt/Karlgu9/jVXGfppFpGHkzTazWS7oY5UMMJ1oL6ylYkg4dxmjgndI8r69vyLkQQwA34tKkm5MhG8/Z5eUpJM8aqXRfxIAPkW7RsewCiy5qfgl4L8LXcUzc7HYM00gIkel4ZLi9ZjckhlJFbFuyICiTWCFdq1AT3hScgajhYYJ8GKUv5PfKqfLJ589ItfHe+x9g44LVuWG723N9fctuv8M60clsugW2Kzw6f8yyXzIdJ25vt6RScGS61ZLDVBlypkwJapMU4csNyz4Se3i9fc1wHNU5IqnBm81G8iZC1Lh2eVbRrXPWRVV16Rz2lV/7tV/ls88/l4HWepr1EuZlRZxscsbHXjQK1p+GnlYz3hoyjjwmtq+v+ez5CxVVSineo4eP+PrXvsrV1TmbzRkNSyvqBCr1rrZd0Y23gwtPdCcySN89rZBTIqXphEbCSQJ2youQJUC24xi0f+rBfYLzfPbkC6ZhEh3AnAyaMyFG7t27x+3tLa9eveT2dsdXvvI1pmnCOXdKHLZWahqctXz28ff45JPvsdu+pusCXVyIoPRYOQ6DDM7rSz766BGP3/+AbC1ffP6E7/3O79DSxDvvv8+zp0/JZWK9XmFNhzWex48vud3e8vr1a2gTrR5YLHo26zN2uwPDMGAMHPcDx/0NjcrN9UvevHmJd571ZkPOE1NJBLPk9vo1nbMEJ3TXME4Y67i+ucFZJ822Xgo7b95cS12EF5fSOI469GiUXW1y6bSK84HFYkkaxYb+/vsfYoxjuTiwXp+x7jvOz864ulTHlDGMqcI06nkENMtxN7B9s8UGR9d3QgstF3QhCDrSJAQtZUEnxPYe6brI2cWGnCZtMpelLnhL8J0UI1qjRYiiefDeU5tQ6SlnhuMk5Y4zCpc1m8nc9T/NBgJawwZHDFZ7vRTBq7JENKVoJXlcKM05gDyXTM1B4g58Zd33GrEiZ0orheNx4pPnr9geJ6Cj7wLnZx20RB870QvVyjSOHI9b0iSft9QyGMdkDC4sT4YGUM2es+RpEuQXg4s9VOm8wTk2qzUmJ3EdIjRLrqisQbF708h5pDMNbyIxeGp12iVkadXQnBPUUgd4VZqQNDRTQkVFv1dLEfeoN4TYi4NJqd5SKhlhA7ousFhfSjgokJsIkUoR/VcphWTjD33H/0hTPH/3H/xf6PsFNog7A6NCH/Woz1Xbs2pZsEeZxgF5gK3whWbOG2lq4TJQchWBqOpbkvLXWd+YnIu+UZVxSuRm1T0woys6MSpqMtNEM8wJkjcQY6TkxHLRS3vqcoF3juglBVJ+G6NuhKLwv9GLX77Q/LPNNtL5j1irRa09c7t5msRinZLEHztLKyqeqo1UC8Y6ikK3J9eFFi9OKVFaZRwT4ziRp0moL29P0f193+GVHlrEQKex7sZIQBNUSpYk3nESEW8uidvtlt32QG2Sl+CcxbRGtE14VAT2lVdAuKpck65QRQRipYI2LjeleWqtDGnSJEQJp0OFd9TCYtFztlmz6BeqAdJhpmZqhfV6g2lNk1Sd2i+tRujL+z5NI4fjjlevrhmOE4fDllwSYEm1SQIwkkb65S9/mW988+uymeaMMiuEGE6CwlbFVZVL4XA48P/4F/9Ck37BtCxV98ZjvZdNTT8DQmdqPkuTjZgiavxSMl5yuHUAKqrTSHgLzhk2mzMePXqXL3/5Szx4+EC+TKm0ClOtJ3RgHlJOVEJrJ5Hh7BJyzp2g+Ts79zzgtFM2irVWDrAqLqgyJaaUefr8BU+fPSN4h5csNUIUuvDVKykQjDFweXWfx4/fpes6olI/xsih+dkn3+Ozzz5jGAYWix5MYbOR2oWvf/1bfPrJp+x2ex6/8y4XF/d5s9/x3e/8Ji+ffc6wv8EHR7fo2e2OzFk3aZrAeqyVXqv333+ffrlkt93r72kUTZx4+eo1XeyIXc/xeFS9z139RmuV9WbF5eWFZJYMByiZWiamaRS0SWnJlOR5fPzOuwzHieMw0C97drsdMUTGaaLveqY0YY1THRVKHWvQWVzw/ocfcn5xyWK5xHtJ03VmTiNWx1oVzYTkm8nPSi2n88A50TrN52Vw7oSoeC/avGGUOguDRMMbY9jvtxIIZz3f//h7vHnzkuVqzXK5ZLVas1yuCT7QdT1d57m5lvNeMpwEpZHnTob6eeGUM9aLxu4tBPxtI0Mp8ntJ0zb6u96lRsvvZU9DTq2S7poVTZkbusdxIFf43udP+a3vfYwPkZYlZ8Z6j7Ge1WpJ9IbNomcROvrO01A3ZJYOLqGsZEAY0102kNSKmB84z0sRdCpPA7Ym0VABRQeUpB95Zw0lTch107B5UppcISYszka61YVS1op6IZRXSkn1f1Kl4lTvhYFaqqTRakJ5pqgdW56ZGbmvbU5fF3mCdU5RPBj2e/7j//DP//6nePZjxvaGhffSYFlE1TxWUcPXWpk0vTLlwjBN0CyzAMR5KTHrYtB8FBEV1iqOjC7IReWdTO/SVir8YC2N1iw5VxWjwlSSPABN3C5BtQ8YcMad4sOFDc20IiE5NMnFGFNhvLnl9c0tslk41suFiKpqI/jI+WaJD2IDbYg6vJWiuhJ76sKZ7akFBNKtlVKzDhiZoqiPde4uP8SKCJVaOR4H0ZRolL0cUNKoagx0sSOsAn0X2e1HhilJsaLTwEcNI2oNjA0MaeTm1U6CqaYjUCgpkzM0G8AI9UKFfiWx4Vkjrb3l9EGuWYVoTZ2AJMlX8Y6GZ6pVquadXooYDrpx5QZUUa1D0w9gBGMZcmV/fcAg2SXei0j33tU9yjSyffZa4OJa9DBrLILlD/zkT51g/67zeG9o1eDuC5WGqXJRZUmBjV1guVyyXC7Z7fcyYDapb3fesduKdVAgXcswDry5vub73/+Y3VE2S8mWCMLp1izPk/NkK0mpFgNOeT8KuYx0zlGTUHd5mv+d2ugNeN/onKGR8bbwxeff4+Xr5zx+9z1+7Me+wqJbCEqDuouKoGKNuxZwiepX4S/yGavMTiBOQ8vbYllQPUNpJ5Fn7Hps19OrS+ry4pKGbGFjmrjd3vLqxQsalo++9GOcn58TYyfQdoUpJWKUbX6aRqwzPH7nEcNRCs+Og4Rt/cRP/hT37j1itb4i5cz19Q0ff/o5v/Pbv8k4HFj2HTFe4pAaAGcdOSVBRzYXGONAhcfHYcJ50a+EEOm7hfRMDSNn51es12tag+vrG3XVyCW43x+4ub2ltsYwGS4vH2AN7PY7Xr14jvEe28SV0wDfg3eBIVWKcZxd3qOWyqN3Lghe+rcWiwW5FLoYibFnGieMNdze3rDb7zg7X/Lo4T265RLvZXHIRajXGLzqMzKH/Z7t9prtYSsWX81RWvRR8oKagWZ0iJI05lmkDRXr7CkhuO97uiiLwpvrN2J7vrjCOU/fL3jyxe+pLkVygZaLNfcfPMSHyHK5Ypomul5e0zkIsOjXHceRUYX7M4Ik5gV/Cjysp4Fd7o5ZLC4twbODc34u5dkVWZhWSpgmduwiFzIxcHv9hqeffZ9VTYIeW0NuDVcNVMv+1S15ec4wJMivON+suXd5yTIuMVGGzqbZTLkUsupgcinsjnu217ciRnUWnCWlRvSGe/cfQdO4BqcNyoiQd0bODCLGFe1gVT2cGCFKu0uXrmrokB6fuVxXlvXaiuZHQTOSkVOKiIWdMaQiqcpUh6tG0Oo0YShaitJOLlnvpRzSW0+//rfEZvyf/x/+C6wPcvE0c+r6eNtlE3VCTJoN4Zw/0SwxelqDaRLnSFHhVd/F02EMTbobStUuCUtrhZILXehE/KXTuXcCDbYmk+aslm7mrZ/Ha4cDMm0b4wSFaFY6fvRn6LwkD84f8CpfimCsbCjBcf/qnHce3ReuMMmDLReBbEOtVT1A80k7UlvDRbEjmqax7No1MybZzpm1AFVEwVlV9M5J2mgthaoX7jQlXlzv2Y9qizOw7hyPLs/ZLCJdFziOE4dh5GZ3ZDckpkl6MqTMy5GKtIOGGLB6ydaGOCKMZDEUbemsraj7Iku7a56lEEWtwboFGsA03CxXruI+mQeyUovQT8bSrKNhT826wQWMwpK1CSSctL3aW0srmd57vvGVj7j34B4pT/L6GHtKLkbFYsM4clTqT8AjGUatc6RUmIaJ4Tjw5vaW65trhinR9b1C4I1xEotqF7uTk8YacF2QbpkY5QLz6FAnG/KYi8b8V5oOdcZIRH8tGQ3opCmtQsnYlrFG+m1iXHBx9YD9OHEcJ772Y1/lD/zkT6nGa+5NaTr4FkUJBV15e3P9gT9ttnLfbbzzPy0GF7xeGlCMaADGYSCNWfqtxondbs9+v6PvOs42K0KM+n1Eq+FjoJXCMByxpnF7e8OTJ59pZL7YbJ0PfO2rX+NrP/41truR7f7Iy5ev2O9vKSkRnCwDooHQyP4inVnGGmLoqbWdEqNzqUqxWIrmbKSUCCGwXCwYp5HD4cDxeFCtW6UUw3K5AizjmIRSMwaKJlBbQx8jIHbNhscHpyL/yjhIHkhr5kRTeOdOA4a1DqsUiWhCCtM0Mo4DfRfwsZNnPgau31zTWuXm9prddidhjjkxDgdqTVjNyHFWSLzg5QyU/cHoInAnfPbawzRb2DGaTFsKzaIDjAcTCLGX9OnlklIy9+9L5sxnn3/KMBy5OL/k/v0HOOu5vLo6oU5pygzjkcPhwHa7JefEwwcPubq6R4z9DwQeAqcQxKaDMtxlDBnukqznXCTrBAUvVbrXsi4nNAfO8fH3v8/v/NZvk2vFxUjLE6ZUFaMKDb0+O+PBo0dcXF1yHOYh3mHxNNtotkJ2p8/AjLiXUhha4+bNNbc3W6x3HHOmGYerhbP1UnQjTpfHnGXIt1bvFmERvA+gpaw1yzASOsnX8t6zWvQnS7+kZM+Ln6Kd6t6rSvnkNAm9XytpStRSdEHPgrDqMmIRfUwIgr6YCtiGcVYa3MeJf/9n/0f//bt4fvEXf5Ff/MVf5Pvf/z4AP/ETP8Ff+2t/jT/xJ/4EAMMw8Jf/8l/mH/yDf8A4jvzMz/wMf/tv/20ePXp0+hqffPIJP//zP88//sf/mPV6zc/93M/xN//m3zzZBn+YP/OA8p/87/6PLDZn4AJNWywNTcvhJM+CWlkELxHQiFrcGi9uhVa10TfiGwzTgOsD6+WSpQ8M+z3DVOWF7eXiFAP6yNwmbDAMM91TpPlR0JgiG3RrgNoPfRAbXsosnCXEwPnFOY/vXbHdHfn+s5eMzVGa9isoJSU513eWUd8kZGrME6tFx/kicO/ygvV6zWLRa3eJPux6oJk54XAOKEAU2FI2KJd30URY60SM6trM67Y7e7W6F2TIU9jUGKY0MY3CD+92O1rTzIUGXfD0iwWh79gdB1yQOnChDRohBpw3GNsYh8yLV284DIlm3YkW80bal63RA0ALqMQWm3U4VS2SCtfKKQtHjAxouFtWu/fsZqjtTk/hrYWa8bax6IIkY5pA7Hu89VArXed5+OiBZFAMgwYjVbFiGkPOE9vbW56/fMnN7V4haaG3mg5dIQYePnzAo/tXtJp5szvw2efP6RdLYif5C/I7VRl8uo5hmDBOKsvdTB9iGIdRxHG10pALbkxyoMkALVbqNj8LtckG1iRnYtYdGQw+BpyzrNcrSiuMx5FFv8BQWS06vvzR+zx6+L4iFneHKsxbqdXnRRE8dZ60UnUAsSe6cxbWopvrfFDPVuD5sM5ZnisZ1GWILClTSuI4Dkyp4I3FNES/4C3Pnn7B9fUrWkvEIIe1U5rTWitUmbO05mjN8ujRY0oeRf/jow7u8n467xUViaSc2O/3xL6n7/pTzxBG0NTb3S3jcc9+u+V4PHA4HBiGA9ZYpnEUYbs6+7pOtEjrzTmr5Zr12TlxsSK4gMVqLhFMOTFOE7c3W9WvwfF45PzinJozt7c3bNZrrPe44AkxnFrRrTHstzuOhz0piQA4j4nbW7nUa0uy8XqYxtmKbPWzIc+EXO72tNgBGHuH/p76lZz0mc1t6waYaxrQY8e4mYZ3WOepNpKbI/rAoutEI9PUjpwT05RYLhe01jg7O+ODDz/SZ0KowFwK3lrNK5EAwRClKXyOQiilCB1RZbien9m78E05pmc5wJzabKk0O9P7hd3tnhcvXvDs5UtevHhJGo8iZPbudKas+45xyqzWax4+fkeWzlo5Pzsj6kIbY8B5pzlLinOWqv+UpvApTezHzG9857vkUum8F7rGO6Gf1dKc5+HQiWvIOnlmaBJMuVosWXWW4A15GkmTiIOxItaHdmqD7oI4zVyQDiPvA855fJTAQvEBaaHrKcNJ7rG3nadvnwdUMFZblqsk/RwOO/4n/+N/779/iuf999/nF37hF/ja175Ga42/9/f+Hn/6T/9pfvVXf5Wf+Imf4C/9pb/EP/yH/5Bf+qVf4vz8nL/4F/8if/bP/ln+2T/7Z6cH5U/+yT/J48eP+ef//J/z5MkT/vyf//OEEPgbf+Nv/Jv8KAAsOk8wFWsK3ik/1pxyetLeu+gD0TvGSWzAJhqB/yt4G7B9OGklSltSmvi4Tasslj02ZMacqTWRc6JUyBVmy2/TQ9hq9DTWi/0KB07yO6iFzlr6Rc9q2bOIns47hUOlpfaYRpLmuOA9c2ScZJ1Aq5VgOwKVoBqMvnU007gdB8YnTzA0zi/OxXJpRMA2p846J1PzYrHSDb0xHEdSSoxJKIgpCcxbjDzcQTcwQRpUAT//znVOYnV0wbHqN5iNHL61NnJKDHkklUzNlWFM3F7fsjuK+KuLkTRlDocDIUbRtAEGD1XaZUvOtFxp1tKEPqfUcnIFiQbZYnBE58XyZiV5kQapFsaUsVV+rqzZKN5bCZlS3tn5KCI/FWz2seP8fCPOEgPeOk16vTu0U8kCeZfCzZsbbm63smU3qVDIOTOmgve9HIhG3F8XZxsePbrPZrOWkLEmos8pJDoD037LsCu44Fit1sTg8M5Tpok8HiWsikZrEoA0pYS1Xgoea5Eo+jk63nvJQwENShIrqjEGayIh6KFnvQgUTaM1eda316+ZUiGEyEEgSh1WXvPg/nsndGQ+kO6sw/Wt//8sMjcawe6k+VgviPkimAedWTcjOoE5bK4BDueF42+lMgxCa5rWiEpfGlvoe8+j8/sEb7l+9TmG6ZTHktIkSCtoHL9ckNModOf+5oZhGoDGxcUFaZxIOZ+QoHv37jGNI69evRLKIU+EENThBsMoG/Y4DJLu6Z0M1Oq+sMbS90v9fGjyX4Ob6z1vXt/Ikx896+War/741zm7uCQbyzROfPH557x68Vw6gqZJxZ2Vp9qlk1LmCzktcD5g9GeiNe3TkWXJB4d3lvPzJY0MpuKtxyD24y7KuNpaVUuwvodGULIGInaexeYnI5pTPZPYtlOWEEqj7kXnjNAZrWCrJNYaCl2AEAwpj2xHh0Uom+dPvwBrMFUzrZzh6t49NpuNLADzs+Olads0sEGyo3IzuNoUjZZuoVYLLiuqCj/w7Mq99FZQp+aoOCdakjRNfP7FF3z++ec8e/ac8TiQ0ggUOq/0R0p0TuQA1jYur87o+wXDsMcYrYTImbHK6xOCw/BW+KKBauaFCk0WhpX3fO3Dd/jup1+I4Hg66Ovq5KxrVSh5a+Tz0RzFWiat60jGsX11I2GJ0bFaLlRTkwnBs1x0otGLnYRmlswwZep0ra+HPKMhdnLmZfk8db4jhKjOO3GcxS7KMpTvhkBQyYuR50EA/sZx2P/Qd/z/zxTP1dUVf+tv/S1+9md/lgcPHvD3//7f52d/9mcB+M53vsM3v/lNfvmXf5k/+kf/KP/oH/0j/tSf+lN88cUXJ1Tl7/ydv8Nf+St/hRcvXkiF+w/xZ0ZQ/v7/+b/k7OKCRhN4V9NT5zwO+WAKmpKy8NvNatdOrZDF/phbZk7TrCkzjYntsKe0irFeSryqCKQEogtMaVIK4o5OMVZyCCYVOs0b+exfl24LKQzsooi5YvCsY6SkzDiKAHdMiaJuoTl/gNOW3wiKoGQkpyLnhG8iJi0lndJEl4sFsfPaXCulalY311KkoKvNIq0i21FGBE4iypVujVkd7hRKnx1NIpRydKeNC8BqIZtu9AoVppIYc5JkVGtoWWoAbrZ7nr+65nY/SJ6AIjaSIilQZfSe6PT7ntTuDetE3OeDJwZPGidqqfRdj7eV0jIFTaFFf94gHHNwnkUfT+Ix5xzeCh9fdFgLWkVgXFV+t+GalYOzQdZ8G6M/j1G4u+hmMqUkA1ptSjFlukVg0S1p+jWgktPINEpuTZVsP/pFx3K5Ent1lQE1pcTLly84Dkcsjv3+SFJKZbFYaiaQxJsPwyDapFM3iqNbLDmFtM3pnsYw5iz6ilEOXgt0IWj6qwwRpSbuXV3yUz/xE9y7dyVoVSm60f8gkvLfDZ1zmmtRirhw6lsb1h1qIu3TqFjdKrU4p9/mLPx/o9LFSN+J60NeHHOiA4fDjnE48PTZE5wL7IeB25sbjTK/u5wqDWrRJUOHLCOf334h9uvYS+z3q1evOBz2ROtYr5angswQHNdvrmUJMJLdsz8eRNioZ0NKSTZ4pZZBvkcpdwF4FtFtxeixxvHo3ffoV2sOx4FhODIcjtQ80ncdx8OcqjuowFoq7EUYPYfwSRFeURH//Duv12v6vuewHxinI9aIrZi3kCxdvZhDACWs8q3YBqO5I9zpie7QkreFqnfCequ6tLmmQYIQE9HBspNLfmwBkfiJxm9zdk6aGrv9lgf3H3Lv3n1evXrN1378x9lsNhwOg8S0O102jNPBveHkh8G7oM9ZvbMnK3ozaxR1VNFBGZLaY9+uY5gXuKr3ycuXz3j27AuGw4GTqIUmpYMhsF5vWK83koodO7xSutJRxZ2IVzVbIuURV+mUMzTVxVjHlKR5fjwc2O/2HIeB3W7P4SAOUomfd1gXWKyW4u4OUpyZkgynLRdMTUzHHUJmNywVY6MOoLBYrrBdx8vX1yyDZ7XqWa8XLBaR5WJJ8Ip4Aa3IMNya9AAF74mdPNMp55OdO8Yo4aJapTGL44+HA//BD0nx/H8tki2l8Eu/9Evs93v+2B/7Y/zKr/wKKSX++B//46e/841vfIMPP/zwNKD88i//Mj/1Uz/1A5TPz/zMz/DzP//zfPvb3+YP/aE/9K/9XrMIav5ze3sLgLGO3eHI7X4nb3CulCwwlHyoKi56YuwotJM9Tay64nhZLxYsTRT4uTYoMthsDwfebAfGSXi3mioxdJyfn0PLDJMMLti5bE245GEYqUg/janSHeKaIR0mgb2NYThI+2NpkDFED0uNAxfIzLI09RR/7o1njsWqSOPmZqHtkk44Zq+c6dxKO9uUa4WqwTq5VPI4ncKW5uZmSdeVj6prBkqW5MzglUd0ylPW/xd5/xJr25bmdWK/8ZqPtfbe53HvjbgRST7ITBI7VIWtylJB+CE3LLCQLLmRDVqQkmkhRCdbTgnJAgnhwiphJLfdsnEHmQ4NpzASyD3opIXLVFJZZBKRcd/nsR9rrTnneLnx/+baJzCISLlTQa2rq4h79j57rzXnmGN83//7P+xQ1YHUqqzqMxE3JB0AdEJypiBoIkniiDUy9QPnk3KKcrVN8/ZG1Xc398idWOsc8zyTorhApT/zAWqtV7v/0iPbKjVDa4VaMku+2JxbY6AtV2iKl1/zQvDapAL7jFWEXu8dr+7u+O6nn/LRRzICa7VRVl3XaG69w5g4nc+sRcVvyZucQIdkKhEFSN7GW1KIynxpHWfwq2uNbcusWe81Bo8/vOLuk08YYqQXjUg06thY1g18YpwO3NzesSxKNM1GCh+HifOy8P7de5ZthTjgpohDX6u1UvLG5bIAjukws5Vqjr0isF0uF/3u2rmx1ODz+UxvjXlK/MJ3f5Zf/sVfEKHS0q/3Qr/3nbH/nFf1oVFba3I3btaZ74XRXhT33i0xWgVNc41dcbdVoWzrulwL5mVdOS0Xgvfc3B4JPrLmzrqsRB9J8wt+9hfuuCwrL1rl4082yiY/DGWeONZVCpl5Grl7cUeKURbp60orzSSphcuy8Qt/9JcIIdJrZVtl533/8J4f/OAHpOgJPpl/jGIbPvr4I9588w7ozPPMOE0cb285zAdiSELXTPFRS+fp6YnT0yMheIpz/OAPvqRsf0Arap5y2ZjHgdevX/Pqo0/44ovPaE0cpz1iQmZoln6NNUJ3d7JBd148jbpRsvhUGjdW+YhYMdJ2AjjImddQzda5Gk/u3lHaBlQM9KaxdojR/EZMabaPd+oH0l8zL3Q+sfZGWYWmeFfprpNzo1bP9uaBuxe3fOvTP8I0TPzBjz7n/v6B87bxJ//kf0YaRzPBFDem10aKcndVgvizkWDvu2rHlEjaVq9FtRIqjJcSRBrvveKdiLaS+2qtbtvGz/7sz/FzP//zrOvK09OjEI9eZfmwe8FYQzRPs4JB3V6M7zTWfi0OypYNQXnmcZ0fV7YqrlnLGVzj+OqOl+EVg41KS5G1xbZmG/Gi1PFcCGlgzZlSGpc101oizaPG8r3TKLiS8V0WAp9+97vENHB3+4J3b95zOp95eHwUCb9XxjQwThMfffyJyGteidHjOLL1wuOmvWVHRAGW86YRueWL7YXZ6fT0bz3n/22vP3SB8s//+T/n+9//PsuycHNzw9//+3+f733ve/z2b/82wzDw8uXLH/v+b3/723zxxRcAfPHFFz9WnOxf37/273r9zb/5N/lrf+2v/f/8+ddffSmL3XGwuSu0sJFCYF1XYhwpVJblTHPRsiM6+enCsgnyfZjOxOiIPjCkdJUpTscbvn2c2Xl+vcsXw7lObOoaLpeFh6czaymkNPLxYWKIt9bZK00yePlvbKVQq2C8Yqqiy7LaotToISCY3TeRrUou9FapbhX5yHuKa0x3NwyHCdfl+NkRMc32XmqubEu2eT/szoR6mAN4QfF7yjCoIPAhXN+zrKz3TrdRc6HtSIHzpGGwEdCz7E9dbrk69kIgl2oEUXETmhFVo3c2n+2k6QjG9q6tU7eVbV347LMvOa2FtfRrR1dLvqIePgQGV5nHwaDHSA/yP6mtsbWKlJGSxcXk6GGi4Mi9UVHgmes7nF148+6B09OZt29f8emnn/Li5QsOE+TWWJZMc4Hf/6/+FT/47Ec056m54J0+exoi82HWhl0q0zxyc5g5zCOjway3hwHfMj/67HMezpl37y8suZFd5zgnjuPAx68/Yogj0zRQW+eyFZ4ui7owJ8LwUrSGStnE/M/PKorWNZNuDQqe1qqSR5uH1sjvHxnSwM14Q/CeIQSml6+5vT0yDNpkU4qEOMhEbUocpskUXI6yPDcLu3rnmhfkdptrbCTXriOJPU6io/WXr6RsHTIxRpNgFlzwPDw+8YM/+APe37+TyZ539OYpVZs5NIPLNQYdhiSjre9+F3qnbIVSNiGnQVEGras4uawru6fHl++faLVyenoi58zkAee4bCs+eN5+9SU3N0cOhzuOxwO3tzfc3N0xH2548+YbtuWiSIYQmOaJ5gIvXn/MNA0cpoHpcKTj2NaN87pqfwhR7zvAR/MnfPytb6mD7o1eOl9//gU1F3n+2OG4Fvjd3/sRKQaOLz+m1sa6XMxWXnPrZcnEKK8jKwkYxgHvX7BtG+v5xJafFIdg4wK50CrR+EqA3p24nbuOaoyBb0WLEMPSK7tbd7GAylrtmXf9emDtWVreW0PUvXl4SHECoGSRgPey6l+2xjdvf6Qxs3f46Hn37j3/+J/8P4l+4NWr19y9uOP2OPPqxUtcL4wx4uPI7nO1q82uXCjjOBll4moU9+HnTTGBcd5qyza6ECodgrdmqjONM73DF599zttvvuaP/fE/jh/TlbAcdvPQ1vBxt7aQ2gYs9yg3U+8UzsvC7/7uf60wxNMZ33VPWpzJLhHCQERKK+e6RvnRMc8jL1+9IsTEq9cv8FGeVhga3WsW4l+a3GXNeXwKQY3XIAfyrWzcjEduXh2FEBfjgW0auTrAj1LjNOM3Pm6bVKFmwLjzWSRW2E1Kg50/ihxxf4iZzR+6QPnjf/yP89u//dvc39/z9/7e3+PXf/3X+Sf/5J/8YX/MH+r1m7/5m/zGb/zG9b8fHh742Z/9WUp+IPTAIU68Hu44PT3ho6OXQgqBFy9uKD3y9unCkhdZ/taFFDMvj0cyIz2MRB9YThfev39k6w+AJ+LlfzBFUghKeB06MTkIQUnEITKmyGlZCCmRa+XNaeV0uee8LngfWPNGRwFsYOm7TmSyZl2lC41E4zgM3B0nPvnkjptxugYg+g88WmqBOKooocvYRzXHLg1r4BK9R3OYlQ+KR5Dirr6QVb0IomV/eFslV0kgu+tX8qggVC24brB8bN08GSq17PbmFnwXEoe7Ow5jYrmsvHl/z2Vb2XK52rQLQZBL42pkN+eg9G5wfLewKnF0Bsvl8cMoZY9T9+F8ontPQQ+Ic96QCm2+vVdcNNi7VXDqtpohZa43gg/MY+LF3Q2fvH7FR5ar4oMOw3PNXJaV83nl8eGBN2/eMo0DQ/IEP0GT/fxOxPbI4n9bM19f1mv+k6MyJUdy2jwynnhz5EUcic7R68JxGpjHQeu7Fh4eFr5+9zlfv39PsQ5QwWTidXin0L0pRWUUmYqE4KkdxuSIY8AdD/TuOR5nXr+442aeLSztmbTXmzZLEGQenbnBetjKinOB3BrJeBkfjnSazc93zstz7tUzpB1MLn9VRNnv3w9SwfOONIz87u//gB9+9plQog4+SPra6XTnSePAPA3MQ8LhyXkVybB7/uCzL7VBFhmSbbbRbtvGZZEqqrTGYKNKnBOnxXkjvcoyb5yPKqRq5+3bd3z99VtxlKaRly9fcnd3y3e/+10peszkK2cVP51K657zWnlaHugd1m2jt8bd3R29iUwdgmee09UaIPTG2jPpMHH/9VvlUMWoZqt28IncOtvTqmvqB+bDjawSamU5nfDOsVwuLMsjtQEh8vLFS17c3vG+VoZB5ojrsnE+nXGu20jaGpIPDhB5ctgIW3dbED6A86Q4GA8mf2BLvxehHefada3U/ryneHYDSm/PsSfEQerKNPAzf+Rn+cGPPscDPa8UL0VmiAPbpbC5Rm5v+L0f/D7RdT55/Zpf/dX/Icfja3war2Ma7yutmV17e7a47+2ZYxOjfHPErevUvscxWMfXlV1Wi62h9aJib9u4f/+eSuXl65e8e/eWNBzwwfPy5Qt6lMeWEoy1Tq/J4mb50EoVmrltvHn7lsvpTC2FaVC+kiIwMlOvuLBzORac92wLbN2xPDzx/pt3kKIJQOQ5ske06H8B1xmHxN3NgeAd6/mJ5VQ5P9kkAId32suUiVZx1jgMMTCOA5d1uY5bt2WjZAVPHqaBw82tFLDB6TmOXiZ6RGMhK3ai5PITn/1/6AJlGAZ++Zd/GYBf/dVf5Z/9s3/G3/k7f4c/9+f+HNu28f79+x9DUb788ks+/fRTAD799FP+6T/9pz/287788svr1/5dr92O+998lfEV4/HApRZ++GbBE6gLtCap4pvLO3r31NxYqiSoEaV91nahp8Q0HzhMMze3M4ebO2JMpJCYppmUbFNslq1jY5Fnr4fONE0M40AuhbQ5SiwwD4xD4nJZBLHuzHFnHYnJ2Hx01O6oTcFbl1x5evfIF+8fGfEcjyPf+uQVr26Pkj4OiXEM9tv1as3M/N3uQGoW5B6a77ge8D1cjYlkS9xMTeCUH2FFylYLW63yTulaqKrUI8MwMMfAEHSYD6b26L1zOp94eLjHm6nPi7sbcl55t1xYcyV3x9uHRy5rttGB/hyTnDYL5nNO7PRoLoS+FVyrpNChdnJZcQ5SmqB7Mo3WPflyUZigSe5ikE9HqQ2XEmsp9KqNwjsIg+P17Q0fv34p5nqSKZTvSrx9eDwrCGwrPJ1OPK0XStaGloLjeBhkfBZUeC610LwUOur0NFpyzRPtZogk2AhdUvRStB6Ps1AKnyJ3d99hGieWbeO//uHnPD2d9P2l8Oru1u56k+eP82xZBVlpjWVZqVvh9jjgPFwuK2uprABNxV7pleHxkadlw7nIVhq1dA5z4vXLIz/33U+J3kiFQQVv2EOVDATfM5CUt/hs1LbnB7XaaU6bPG33WFAibqmKhNjvtQ9S3njvcFFFUe+BL7/4kh/+8Af03kku0FxgzReGYeQwjgxpJqaBNCgv5HzJXAosizb35I2AHgIhJbZaSdFx9/IF6bxwOKggT0Nk2yRhHodBxPhJjcf5dOHx6cS2iUjuGPCmaT8vK+vXX/PDH33G7c0dLg3kWmUxUAutmtkjYj867+U0va1M48BHi4i5aYh8+um3mI83OrQsyyU4z3Y88PDunoYjFyh1YT7MfOvb36YZH2lZzwTnePX6Nc4FvvjyC0vcdQyHO5yRqLuID3QXONzckcZIa46tn6jLRgyesnRCx05Uy1e5coXEHdmFARiqgoNSszxUunkIN/vsXiX5HtjYjeviXTAugnhPuVamaeZwnCnNk+Y7hvnApcLdq1cMvKKUjfPlxO3dHe/eviVFx+F4J6dpMyN7/+4t//D//lv88i//Cv+9//hPME3TBxwp94E527PBIGAjWiGCcTcMLOIN5Vx4/3DPD3/0GefzhWXJLMtCCJDzSoqeaZy4PR75zne+I9QC41Y1Ty3GifH9usepGVQxVHIhowJ8a1V7iPPaR70CR3srDCmQtw1nPyMAygNUUVE70Dx+K9SO7vPxBheSyOHrZhxJTy4rr1/e0mrh4f4JFweyeXrJEwWhYt4UO8Zl6s3jXZXr7yhn2lfHIx9/5xUff/wRN7dHe75VbDrzinp2ZVGQbq2N09Pjv/Os/zdf/38btbXWWNeVX/3VXyWlxD/6R/+IX/u1XwPgd37nd/jBD37A97//fQC+//3v8zf+xt/gq6++4lvf+hYA//Af/kPu7u743ve+94f+3a5skKXCGQ839FYpFCM4abaWomV8GHHMmY141wmtEUstMgBqzaA8mOcDr17e8fr1R1cCGHCFsgUVVlNPyFnWDZXjcRKLWlovI+EKLsu1G7mwcHl6YllWliwSU0wj4zhwc3PLi5d3TAHrhh2uKdNjWzd80uf1fndkFdtd82LBqHvwm2aN1aTGXKHXaH4xvTtqz2y98s3DI9/cPym3xIiXIWrGW3LGe8eUIodpYI6eeYpEJ9RlW5reX91YtpXj4UZLMgjdeDpdwNQM948PQKW27Ro14A0laaUxhGBeJ43oAzF5HPLviGGwRNGG2eviqnIpkn2dIVFLZvBQTemS4kgLDe87hyEyp4HpcMOQDkzzRG+FVgpbEyO++46rnSEFXt4euZmTOqY1sy4LjarxWAisuVIN3QopkYIn+sBWC2GQxXYyx83DPKEgAN2DGCQfFhKlPKYvvvyK5bLqw+GYp0QaFD7YsdRh52yMlKGry0kxcZxmXNd46+7uzoi9jRg0iprGmQ4sW2arhWWrlKrsjC8++5w3X3zN//R/9J+xbov8eOjy8ekfBM9ZgYJzdEP2cCKpUoshMPuBJJ8db4TAISVJnpv4ErVZ0jCd8/nM/f0Dp9MT7+7fQ1L2B63w8nhLCLes20oLkadtoZxOtFbZSsYhPtgwjtx99JGFQC76+d3kqGtlOS/XDr9a4nmxEaTk6fD08MA0JVJMvHp5S4wvFDJ4WmQrYCikd57DnQ7f0+liXkge3CBVRmmk5ImDHJ+7d7y8Een5ySIG/OC5f3rk/vGBEKPyrOaJYda4+Fvf/RTvPOtl5eHhiYfHM5fLha+++prem/gRznM5f8W6bfig3KstZ3mzBEij5OCPpzPj4ch0c8vbd0/cPzzq8PAjEh9aFEjdCH4iwDNnR1vZDiaYXXrDd3ctVJu6nx8bmSiXCVOKuSs5+ng40ppcqIchyUH6/kInUfqJ8HRhnm/47nc/ZZoi27Zx2ORu6t2A81JwjYPH90xrjpd3L/mP/uPv8eLFHa0jo8ne7M0KwUtJe/e61h/by/cIEmVEPe/zzjs++eRjXr1+xbJsfPPmDe/fP9B7Y0qJaR6ppYi0fTga8dZiTFzdYSTZyotydJXP7xEID/f3CjjdVlotTMOIcw2YyaVq1FUrzTtT53U8wQQIEjMEj/2dSuuV4BPr6T03t3dar1MSgbVWhsMdl+oZhonXn75m3TYzoGs2FiukqvH/PEYO88DNcWaaZ+Zp4mY+KiZiHOl0XHBsy6qcrH2M5Z+vqQ/hmoKOE8qep/QTn/F/qALlN3/zN/mzf/bP8nM/93M8Pj7yd//u3+Uf/+N/zG/91m/x4sUL/uJf/Iv8xm/8Bq9fv+bu7o6/8lf+Ct///vf5U3/qTwHwZ/7Mn+F73/sef/7P/3n+1t/6W3zxxRf81b/6V/nLf/kv/1sRkn/faxoix+NIRwFKrZkxWTdjoO5EQKrywygly2jMRiyC3PTgtdo4HA6Mo+DW25tbYggmHX3WzOthrFcXwmikPkcEAnVbaZesDc9m2d4HpnHgaBbq0Qf8tz4xBYLJsuzhlfPh7iswm8zYkj0t/ExwOFe2dOsqQmqRc+yWK6d1ZSuFaItOhCm5S94cJvksOI+Pgp4vT4/0baMVwfzdg8uC98aUmIaRm1npwkNSvkvu0An00XM5nblsje4SXz2s0BXOhlx+rDr3jCmBg8FLliZlqcmxMSdF6/gduo8xeHl3mALLuwje6XOXwjCMCsqzDcFo4wwpGpS+h49VnI8s24X35wshPdB7ZxolRQ9xFDLkHfOoz5rSyMjMmDMpXWg4tqpux/VGSImyZaEB3ptZWruiZs7bbL41stOhPw4D05S0KRZJtVWIVe6OMy+P05XIKDWQ/EtKqTYis4Cx7gzdUOaIChLNpwtSYBTjqvQmj5A0yIabvHIY1KUdx5kxveajl3dsWSiV916BYs7TqZYrBSDDMu+fkZArGfJ6lj2resS3EJqRa+Pp9CQHysdHvHOMo4jI5/OFvKkQfv36JcvlLNO0MVLKyumcWbaN6hOtObuGM2OfhCJafELJG73rWpSmteTjIFTDBZyr1FogePCew3ygWvFfWxNikTUiubgLPjgL9Ru4rJsUdq3SvWfJWeqJuyPdDBoNaFVBOI2EIJfObLD4clYmV+ie7fzIm6+UZ+VQ5+mHIJWFdxzmiZcvXnJ6fCIM4halIfDdn/mUIcnnwzvYLLTOe3+N1ViXleW8cVkXYlL+VeuR7gam2yNLKTgcQ0wi/rJRAReTqaUCLdjo98pBMdbslbPVDMIHn7Tec5NKD69w06vNgXXT43QkpsTplMEFOkEIWk9W0HpaWzk9Lnz2o5XXH31KTEpa7/bP6elM3zaeHt/hfeNX/tgv83M//4s0N/B4XtXAGFr9YxwpUyON03D9Wu9dwgBDCXdFHqDkbjPkiyFwmL7Lz373O9e1vZqN/9P5wo8++xx8MJK19v9mRo8aSe9cP5immbsXL3n37g2tNrb1ImTYwvn0rU8M0UZLHaJTcUJvNERm9qhPU+Ej1GsepDzM20Zbn4gxMQ8jrz/5iGk+EMwPKKUoTyiT9j+dzjLMxUk+Hz3zNDLPg4QKDmWadWectov8n3qXT0qXAWEz/iStGWFY7tXQiSHR6ISf3Ej2D1egfPXVV/yFv/AX+Pzzz3nx4gV/4k/8CX7rt36LP/2n/zQAf/tv/2289/zar/3ajxm17a8QAv/gH/wD/tJf+kt8//vf53g88uu//uv89b/+1/8wb+P6ejifWIFh3ElRjWYs5SEmhghDiKQhMoSI9zDOI+Ok1F8JBcyUxzpEHwTHA+IqtHYtTHbilfdBIwMJ2+htz9bwjMOEJxjBqkoFlKu58C0iZnpFcMtMrGhu35V7oAPSCIdFM9wQkTdL63SnEVMzYzUQi57sqBXuTye+fveOc85UHM68P2pXpxNjYHo8k0LgMI9Xn5hvf/ox33XBDsBG3hU+qLCY0oBz4m2slwWAijP32o53jduDUo/bMKm7845tXXT9sE3O7SoBRK7qmEX/ei0Ceze/0o64FM0236p5cg+Ckr0PpCGpU64q9rwXt6HVzGSqguDEy8klsG1CBbxz+CakYrts1BBI/oKbZvwwSJXkgsWjeqYhcbw9cPPihsenEw+PT6ybZOcpBEPiGnhLknXQnTxJ0iBFl2viu6ynM+++/pqOYz4eaTiGNDBPI61V5nFUl1kruRYGNEsXFwqy1/VLMdLMbbZVKZNK0whz3TZK6yIJt0bvjtIuuG6hX64zpoHoPd/5mT/G65cvJb80iw7nNJZQRpAcRHcuSTXHYttyr1wT558TwZ2Tl0QIkv5/8803/PZv/7+ovXM8HkU+PsxWUMDDwz3v3r2jdvkXxSDTKHXgjtcvXzOOE1uD+/sHLpeLDoOuUV5uVuy66xuzWXywdViu6djibiit1XtB8SlFhiiEDhT4GFznxd0RFxxUjYTSONDp5FJJfTAlCVzOza6z5PGtZC5n5VY5r0yVksVLwWse77rjMM7ijiyL/m43V1EcwzDx/v6R+/t7xmliWS6kaSLFyNP5LKNDJyVfa+1qThZ8oPuB4SZx8/qlcdcqT5eV948nlrWwLCvBOQ5H+fx8+zvf4e3jifNyBieJqtQ2jtyqISk6wNOge0PvWqPborXiEwJQrJTwDheSPf8iSF42OK+L+GEuUIrMBUfXrBAQEnyYD7gQ+eLzH/CLv/hHuT3esObMNM1c1o0fffY5f+Q7n/Irf+wXOUwz29ppPl+lw9pDn2Xs8r7xZkKp599gZ5y372vPuWnYOvZ2fcc0XNGP/Wfe3txQW+e8rvzoR5/xu//q9zg9XkiWH+Y9OJpQTlevSOK3P/6YvC4Ejz3zs+gDJldvVc96zpnQO75L+h32Z8yI8vbTmaaZMM3yuZpmfHAcjwdevHhxpSo4H65ZaCo42zUMtLbC7fxCP692fIROVQ3vhL47L1sMHAwuGt+oqVFsKpCCRYxAZ0yJdVnAdba1mv2FCvW37979xGf8T7XV/X/+f/y/cDje0BH3YkgD4xj56OOPuD0cpYqx/cqbx4b8FgQxt1qpRVruffGFGGld8dLRC4rqjqtT6TOK8ezLIUqdsdOrjYO8IxuhVEawKme2vBlhNFvHb/r3WhWSVmxWiZf8FJHXmv2Mvne1RkQLIeB7J16zV/RyLhjvYA9uEvO+Fn32MalT60akGlLicDzSmyXQfujm2RrBOYr3knte1RO7wRFSjxQpWrqhIq17Myzb6LvMMAR6bXgLWRRx1f6Sd3QPtex+Du35/nm5pyoQUKM5uvxtcDqsU4wMQyA6B7sU1nVIAz0kchMD3/UNV7M5h3bSMInwlyLjOBKjNvrcNKJLToVX8FyJlZrLNuWtmHcCaJTX2p5LLCh6Mo+eFD3Jc3VN9jGQ0iBC2qZuNV6VBRrj+JSsK+mUvHE8Hrm7uxUylLO66pTIWQVlcBYcaYRgnBRkzThYwxiZhpEhjWY0Joi9lKJC1xmfzTn5NtDZaffB7MtlLui5pmhfZ/3mq9Of045D8JRc+PLLL0x1JIJcbeJ2PT4tbFs2zohGXuM0kKwwLK1xONzI6h9HK4Vp1CitowC6RqWVfiWN7wnKMlUs9FZYVlO1oYJ+y5vUL1b01Vq42AiomOPvzeEATtA/aH+p5gxau9Qgy7YB/upH01rT82jx86U3udw6FeR9d681Xxg615gA7xxDgBADy7YqaqIjImp/Hkf4ECh1E4HUHquW7bmoldKNqGojruCDOTDDOA5869uvjGzd2bZMzoUUB96fTzRE9E0+4IzEL4TYi8tU29VlVhnxGuMJwVQ8gWuV6Mzn5xo7YqibM1lwr7aGgsU3ZFrOeKeGaKtVz2GMzNPIze0daZqYDkfOy8rD/T23h4lf+LmfweGJfrA9xpBoK1B+3DH22a14D/zUNVNRvHNUtH+6q2dQrdW8U55dc5+NBoVydOc5nc988/XXPLy/h66/Q9f6yXmjlso8TVwWjelkpLkxjbOyuZ6e8N6zLivTzQ3eQ80rzYjNMUY5MofAze0dW5as/Xi85fbu7tpY79dUCH/UdWmmWJS5NFvJ0MXhAo3qARVWBPC7+qmYi3OlIbv6moW+3d3d6pnondPlwuc/+hGlZB4fH1nXlfv37/GWh1XyJim6Dyzrxn/xX/zv/8MPC6Q2DsPAd77zqZxAh0gMz66au9/HHoLnHYzG2C6l0nwj+A6W0VNrNbt3jYlyLddFuC9M1/ZCwNGriGH7bB7nLDem0rC5rBUz3XOt0GMaCGmUGqMWkcOItJagahPKrdHqpnEOjuoAl5S10LH8mo73DS+dIXTwGDrgjAjYu6zzo6d1R0sOn6IhCJAr1O44XQrv3n+ph7BbPoVz19mxNBoyoErR00q+zp1dCPQl60D14pCIcOZsg4rUPSG52PgDyav58IHv4Ksjouvcert2aXGe+e63Pmb0WLcm4m8zz5Zk0GZvVWTXlsm1cd4a9+eVp/OiXJ0qW/TaK86PQj+qfveyVR6enuwQM8WB13UKUSjbYBvmPE4c58ThOENXR3I+X7h/kB35lBK5ZKIpq3KtlFao5grrQ8KXBpcTwcE4Tfqsrenet0YIiVYb8zwxJoXQATQ8Paooc11uM0OycDBTi+1Yxg5aBS9O0q5Qocscbd0WKgoT63SCC3bPC1lLCGc+EPRO2VRkRCPPKqpdCip6t3BNoSbeO7Ys7sZH3/ou2AZfquTzecu8/kj8Ked14JcsxdS2VS5lY2vw5f3XFi1RuJtnXr+44fYwK3yuK/QzDTuEnvBu0rjE7cGK3tbfrmLT++7OeBZNxUQ3HkIumS1rrKXPIxeQLRe2tVxVb611lvVCK4XW1UlvRqaOzrFl8w9xMo4cBkVu1O4oTSaEMiTciz1Hq0EGgMkzeX8llTospG0YrKOdwEn+qvTdjmsd7zuR3WjsgwPXRixxiDyezsyjPENuX9zoOtTKAcebd++M7KzxgfdeBX8XItIJ+yCEPYdH7rWBy7bigmIBWu/XCWTvsqN3oLyhncxv/IxSG81H+dmU1ZoA6LWwNM95eWSrSny+v38gl8bD/YWvyxtac3znO9/m7m6WKsrsIooZ/HlToShA8EMr9m4hh01IkaFu1wBLG7XDB+nGhrTr3j8X4bSK853bw8TdH/05oRJFImofvDh9JqUuRQT5X1yUjD2kEWe8HTUaqw70klmWC8E5xmkEFM+QUpIDtJN/0c5zkTpK79P5Toi70aaagZB0PgzjoAgWn2i5Ch3E0aOydt68+4rL6cLDwwNPT49Kbd5WNTxNa37H0z755FuEEHj79i1PTye2vEqdZeaVMiyUdUa0MVEpFcG0P9nrp7pA+d6v/CIvX71WRypSBpViNASbyTtoruvilqaZWNPD1Xsnt6oZeZcl8754JYlz7Iz1umUu28ZpXVhWWSgvqw7BbgoGJc3uowx1+K5LGuajJJa9yWjNh6AOo5mdt1NOjHOe4Duhy9EzBCOvNc0e16pquFt3oPyLhu+SpCmoSU9bLbsWHgWOVY2FSl7Jxm7fsrTxzgivwXc5kPZuUesyl3M+MnSNssrW7FAJMmFyIhqHXgnIITbXTOs6nEsvykFhUz6Ml+W6CirbWJFCINsh3Zqi3Q/TxKsXt3z6ySfc3RyVj7HLHFEU/M7hUVDdQK+dy2nl/nTm/ilz2QrdYTkTER8DpTXlEAVtlA6IXehD8B6f/HWDkh+fJZ+mgWFIxCAOTM6Ynb8eutu7W1zTuAUwkmljKVmcoDiIXOg1+hmNWEuwrte4OlgXTO8yJrOxmsdrfJmiZN1+3zyBAM2pSHT2d71Xy9SQ3bjccK1w8ZI/Nvu9tagn7kDrkdoKD0+P2tR3hNHWmBMzT2MVL9J5CCqnW+2SG8ZAbYXLurGs76+26wYwkstGr+JxzYfJuEoi8V4qlBbYcqUZGTO4gbV5vn5ceLgUAo8iG0cHweGC13trMIbAMETrcOP1uew2gvAdCBq37jwvH73SfdPAOD03Js3GpOPkKMdnOTJOmz9mWHd6unC6XOiI/5TNgbSWzPnpzOWyULaKw5OsWJJk21DYakiDE7sgOMCUQbWugKe0THfi0TkfcFGIXjD+ie8dWjWaiCzRY9AodN02Lltnq5XTcsb7wJv3Z3XHTZyReEU8hDaZvRK0TjCPHaEHnWi8FwfEcWIzUmp3jmpIZ+sVw2qv/wRnOUwehXVacdgcxKD4Dt+FbjQgpMCyVs7nN/SyEUJnHgIMnlYWnk4nGsrjKTUTg2IiDvMs1Z531kTYeMZZE3lF+prt886ItWYK6fcgS7329O7rmNAiJUConLMMM+89fvBXrsqOsLfWjcwt5V7v7XoOgUm9QyIMnhgnpvFgBnc6Tw7Hg6GvznxOuhkf6j3FaHtOl31EXjZFnIRA7ULB85bNNTvCYeRyfuT+3Vu++vpLPv/RDzk/PVgT3sy7xPxPnMeTONzcMhxGzsuFN19/znlZrvSIaYzPje3OS/PRGkPjNXq3UwR/otdPdYFyuLlhnBQtXu1COpM27iYzIWgcIEhSG3z3YvHXLlKtbza6Me+P1nVoDs6x1o2cO8vTmX/9Bz/i8bJQPEyHI1vWaKZ7IxbZQtk2OftRVxxN8knXrePpeFcZppHclCMTnMfvuSkOqApF2w+GuncjXnkuu8Z/B24AnMtK7nUiK+HU7fReNZKxEVXtO2Khhd/dTnyrjCkwDyNTGklJo6NSKttmviVoo97WBUe/ztVddEJUthXXMngF1HlMBucqPchQK9dKs4KiVxU61Cr1yxCZholpnhjSzCcff8y3PvmIFAOlasPYN9MdGqcVSVp9VJyA8xQKh5tbHpfCVi8QNKrJazWS10760xTE7+mrMYKTHDd02UHTNKutRXyZlTOLd+rynGM+KlNnipFAN6tuxHcIzvxpHLOD6jRq3LZ8lX1f8sqWnXxerItSQeGfEZ+UCOyeOFIJpbSntT7zKva10IwA6XezJPGwMUG69b7u+hw59MzEwey+S7ViH6bpQAjiVJWt2IYtw6qtVE7LhZKzVDoxcjwc2JaVvEh1sW0L27YpJTomWehHFVeXxdFtnZ9PZ41RgzZg57gW6FKLdHppPK0rfVWRTu/ikTj7FB1SEBFb+VAT4zjgfTVkCZFjeycAvii8LEYkr3Vcg+7aDnk7dZi1icC9XuMLpF7ccrbfbwcg5k/jPXc3t6Qgomyp2VKf5QNUS2eaDqxb4Zu3b9i2wrptjMEzTDPrtrFcTkzzRC4O2kBvhvx2ecG0KrPB7gNbEcKUfICq7j+OkWjdee0NgtfBJAyNaR7JQQR35VIFUlL8xum0aCxcd3I0bJbaLZ6cJwyD3k8pPD49CqkLXgVI9eYear/fii8M0avNGWFSo/TmHQTIVmA45LI9Oq/9zEMIiZ4GIFN6Jjn45qsvef/+HXGa+fanf4R/+bu/x3rJ+Fb59JMX/E/+x98nxMi6bipMjFcXYiAQrl4k1ZA9mbtJVp2SrBS8IedepJLr4fshHwX4oCARB2YPxhzcQGtV9gCoSd3Rnf0p7EZQ3eslC9aQqRy7dNtGbFfb/Od7A97CW/tVMNJMLpyCbCKmUXlWl7Xy9u1bvv7yMz7/gx+wLGcj6UZC1eitNhVmzpsTdO989K1PGKYD/83v/zcaB3eYh1HoJMGaK2Mq9Z2SsJoLsX02O6N/0tdPdYFStsqy5itXwjBEdTxuz4ywXJgr5L1bDNtmbQTOgFeXaMoY5aiILNqrDuZv/8y3ucsb28ng39lfA852P4/aO2MMcl2tI85D2Qp4/dwYHL1lIAiqQ8xo57h2asE5nFPnFaJnNIjZmWx0724wYhfOMTg96B0pOEoVOtQd+DDQnaeYjE6cDs1gS1bK7e3NkTFpHr/1jVwar1+84JO712bBH4hOwVxD8MzjwNt37/id3/kdvn56kqstjo8//lj2z6URnMh0XWcC0XtiGklDYhgGDkd50IyjCKIxmrV+COJ5tCYOAZ0h7LJpk1xnzURLaayl8ebhLQ+nC5d1o+SsPKQOYZiIUTLflBIywFfHqnEYNpbb8BTjcXhcFULiOlQj+kUn86TeK5uZ2j0s94wp8sd/6Rd4cZjwrlMarFtmK9lY+lnmdOYW6X0wKag2g2mIHKLM0sq2WUIp5jdi/inOMQxCb9zete7yPYt430dVHyYDf5iXUvcRj43Vdk6Glaq0/Jx501qXS23ZoXJ1Xd4JrfAhMobAOE4aM5jNd/CecRhFDgUOhwPBElh7rz+2qcZBo6C9u90zoV7c3nBeJX/MtV7HR8EQlioNtHEXVFw5Bz5Ibp2CN2jfE0MSvWl3TbZnVaOXDwznPFL+9Irr/tod79cQe97kkClEwNvoY90yrXZyLdcsl3kYGMdEbbIQiMPMuuVrmOCaV7a8MQ6JV7d3fPL6luM0EQxpFQIhmfDX7x/415+/Zy0brUEMkeC1T8TuDTl0xGHQ4RiVSF6swdEoWMVszkIzu4P7xzPedYbpYA2dIyR/DUkMMTIfJoYEy3rhMM/cHo9Xa/3LtnE6ZcZ5ZPY3nC9nQ2I7oPwhu+Sk5Lk5HohOYoBSK5dt4Xw502jUsisr0XPnHHjPuaxEL45NcEKVXG+0OLI1DFGpvLp7wQ9/9DlPS2WcZg4RasucTg9K6E6zVrkJH7ZtYw//3F/7M4GVDbu5G17RHcAH42kt4v2gds5dCc5aT8+HsEYt8YrGNBpX27vefuw5dfacKwZC3LBm1wXjd7lQCC7r93oR7H3QT66lMs+z1q4ZB96/f8f5fOLNN1/z9PgoJd2WmYPuy2hN/E52v5TKENO1uelE0jjz5v6RW+cYp4OKWufM88fjLZ7COXD7c4MxD5oz52fjT9ZnH5p/3+unukB5XE5kLxi2Ghy1O6XW1ozljsYm3ebyXuRTIeCqppvB0tqw+7VTbVUjDZwWVvCeabohvUrElChNs/tt21iXhYfLifOy4WIi187SZMnth2ScEG+HvNlKd+hk63DlK7E/0IFAGv31MAlgaIq6lN0USLcdTr3gA+RcZADXOvjIIQ0yYqoyBnKoicxrZlVbTe/w7v6R3uUx4p0OlK/fnPHhSx0+IXAYlF304nhgSomtZF5957sc1lXSaQeOyre+8zP4OFhI1vMsV5bVmgdHpyKk7S62DtYs9Ql2oHb04TS9y9cZ6LJlttZ5eDpx//hEaXBeN5assMDo5DPiEeQfu5AQb1bLft9guiFNDjMMM14CthG5ZNLhgmsd1+Xq6QyZCNEzpZEYPI+XMyEY6x8nbk3XAxstG2nujTko9r3GqANgGkkp4qnshljlA/fU5k0O7oTEhCh5rNvHN9cSQ5/BWZeo8Y4FdBlXqO9NbHuWhzbrasXKV4aJRk6Ow2DR7jj51OxwdjckxavA7mPE4ci9c95kLd+CNtuNRt+acUH0tImYKB5C3jQy2fkyrUu+GUyaP9oBIjdlZ7Jzs2ZHqdutFFyMGkXS8d2Z0RT2fh3ORqXd5vWC1uve1EPdO2KP78/WAvu/e7Kyc44hJYaUOM6z9p3ayLmwFhUnJW/0XMSJi9DQaCRGxzQmcu4kIiV6QkrIwQJ8kqQzxHAtHi+58PC0UrKyZlxMzxJOq/S6t5yZZs1YUDfdzWjPW3eLc4jvLYQoDuHqBRKiyOuVrjGorjqXdeV0EUn/dLnw9TdPV0VMN/5J75kYIsMQORxH7u/vhSL2flXLtNp5//BALdqbaynMsyTiInVWhhAY0gCtMR1mLutKrZZSrrfNmjd8K1Aa3kc+ev0J8zTSCUzDyOuXiihYO1A9v/ODzzjOM69eveL25qBnouz3VyjGftD7LuNFsSy4Fq+lClGvhoiwnyneRlzmDu7QZ96L7b0Sb82sFlq78qBoIkY/F0Vci6X99+6qLGwM1D7g5X3Im3H28PeutPAQAtTK5198zn/5X/6/2ZazNbaNFORnNQ+S6+ey0jDH19bYV9WybdAhhkQcRg63d6yXE2+++pLLZTVUVU7NzThV3tm+xzPVoRWZ5HXnjXbhNOb/CV8/1QXKv/zd32M83uC9OjEd5PWq25bDpUmrajUoSiSe2oodIJpzeu/Zto1aG7lkxkEW+JqZJWKUWdeyLDSXGcaRw/GWIeprKXoykaf1Qqdd04xdKwSf7HBtrBQKVUF1TdyQVotunDdSWgjPyF2Xr4Bc/TzOdXpRN+y6CKTeIQJb2VTRFsHf8zwQQzQZamNI+gy5dOsGzR2ygk+JzkB0jtCzzZ2lmun7phIdwzxCCqyt6BDykZtRvAoHVpB0cElkv6oDtHV1mK6rs+YDBv/uYeK9v/JfWm3yclhXKRO80KJlzZwvC838AXot4Dq3c+Q4CD6MzkBsO9Q9gjt3BK22LBOpLsLi7o5ZvXgFgjSfO6N5nMSid5babFWd8zqkp2kmtk5ZMzElKV2C1k0zNATbsI/Hgx2SVhh4s4X3CW8unGOXPBe4jmbUjbjr2urOaw3Y/Jfezf5f6jK/V562vncr+uSDAa5d4wz0DNCbIRLiDbUqlGh3LS2WbyTLenF4LmdJfc/LwmWT/8hmycj7JptrIbpdvaTnKQTPkOR7lPOi1Og04L1QPuegLhdKq1cFmvNy1UzjRIrJcrMGnAtqALyUMykEKxDVWDicxoquGSdMh4Pzz5HwVzOvrqaF9EyK31+aq/f9kbRiBpILkALzOBoquyMrz3C/7oGzPBM7nNAYUM8hpKiiMzd9X84adUTEp0lBclzxaJzItrWZ8kqFm7OGiyZUpTkp5NxezNgozPtEd1oPW27XIs0H+95dWefAx2hEbxVzwY8MbRAfo5g1fJFSqDd4fLhQq7PRuvEu9Ciq8Pbekn2hN4XV+R7wNtrMVZyfp3dvcTi2rXAYR6ZhoPXGOA2M0XOYolSKrcM4cPPyjpu7I+B4d//Em4czW+78wRf3TPGRr796z7c+/Zi7uxtq2cUPel97rpDu7Qdohp0LzssYTQe4fZguL6S9uNgXxrWwua4fd22E93UE+9m0o4da3/jdd1WNiHfhGsh5jQVosOeqGYhzRa16h60WQMqc27uXfOe7P8v9mzdczidKudhzaQnkaJ8p20qIGv31KiWVVD+B6DpDgOXxPY/39/jgGVO80iZKa0LlXbRGslzl1L3LdmFfd6VbuGp/fq7+fa+fapnx//n/9v8gzQdtoKWRt8zJEieDpfuuS7YqGKtyLbOlVyNnFcq2Mk0jd7e3vLy9pdfGumVO2eR/KeK843CYSeYVsceaOxzBdc5PJ55y4d37e+KQrgekc45Wzem1VggRH8F3FQadRi3ySkjDoIOzFFxMIr+i7qM2McIbXjN/B0OS9fwQAmstdHZoulBzsRh21FpfD2gnfxQ7lPYOvLSG89HIVAbN1WpjEDHhXRxorbOtK87D7e0tYpo0pnHk1d2tXXdHzc262G5Ilrg/wR5GBYPtPYY+I9gGYd2/u747SRp14GgU9ubrb3h4eKA1+TJMY9KhYAfxVoqQIFDqci3Gb9Dh6vZZsts3b4+LE95jxYizDj1A66QYVbzYRh1jvDrEyichMU4D3kdiCjoIi5CK5uxzXQ+WboeCPk8ppjD5ALnTfRM61q9IzzNzpHlPL0IN13XFG2pUe2O5LOarYaqZogLYx8g8jIxJ6p9aJZNdW7e1Jq7NHuLXmr+O3FpDwZzDwGnZeDqdkC14Yc2SxrdSrihOKcZLGUeTdKrMcnYtYgp4YAoeHyK57OGWnXW9GFqBfQ0rfjuubLiueXlvncPtLXEclXbuVQRG77k53hCGiKtV1uDRK5E1JR1MXom6zknN5KwYLUVdqjfU6t/12q/thwfadc2aSqF2cc46nUqlUa0w6qxbZ10zp/MqsrmDYRo5JDMZ9J4xKgTRh0jJjdPpxNPpzFY2mSk2eZiUUjkvl2duSlfHittHDnb4OUs370V7ifF4nJeEuDYdIB4j6gZPbk2kyW4nqT2xMcj5OcaB1gt1y7afNLoPIEyQgA5z1zGSrfh40TmSIdOS74oou23yZ4nRMw0DPsFyehIn8DBTSsW3TmmFlx99zOtPPmXNcrAe0sDhcOSLr77mq2/eMU0zQ/IWYTBxXjaGFHlxc8vhMFqqPURTwGmvsJwejxmaJYKNeJ0Vkzs6oC3+eY20/mww2f+Nr+2Jz0K+NSqMPqjh/DeLF2tKQghXJHlfb/YfH3y/7Zv7e+o8S6Gdcrpch9PTI//yd/4FT4/32huAQDY3aq5KMe/UEDf2UZ37Mf+X2jvj8Ubml86xLKvWfXc02nWvcnxgPuoVKLv/jC1v/O2//b/7D19m/C//1WcM01FzavNxcB1K2ehNnZgcJDGFQbNnTIew2N3a0MpaeF/u6S7w+tVHDGOnrepixnHA41nWzOlsFsqm6Y9ORlAMgVfTwMevbtlK5ctv3pM7ZJM6BzDfCU8MIuAu68paFiKNMQ3ASnSR6W6mOG22ymRAm9my4L26zRg9Q/RK9m2FMQY5hCJ+AJhZUdnYZV2lVGp3uBBtJpiMdFqYBw9OZDaPZsc9igirazDii4qLNqVr8UXv+JiYDweNz5Ji6eOULKgKdRbm3UJ77thq23MpUBGDVCj7YVdLpmQVnJgMc09bfvnqJS9f3NmDIi5CdzsbXyTFEIL4PWCclm5duTqIWgrrZRFpsVacN7MhCsHFK5kzBRnopTERB0l9nev4/lzc7JPlhqSogOIO/J7u26FK5aBk1X1k4ZTC3BvNGYPINRvVVIufF99mK4WcC5dlkclfVz5T7J0hBLrDgvGMBF7lzDqMA855cs5c1gu12mimC4nz3jFPMynKcRSkQgrJxkK1UXKVImdbKKMnhKN56gwi53lPx1G25Tra2uW4tTVc84zDIM6PQeOlZOU91aZIey+XZRDxPQxJXKm8NxOVYES/0kQeT7YphpQYggz6zpczl/WdXcNO7Z5lW423o8RerEAdh8g8zwwmpQ7eq9i1oi1FQ2qMoO7c7n+kTbcYStBQ1pAT7MCWM5e8qgBci6nm4PG88nheya4RfDR1m0y6WqtK946JeUgcxkiK4oUchoFxGBjvbkjVwj+7UI9xUmBftwJD9wrWUjmfz1dfo23LVDprrcbB2H2iNBJ2HhXdzrPljZo1CvOdq9IpxiBPCwsHrNtJ3X6Uf0btUso1zBPGgfeJ3SdqYFfGVKhFPLO9oy9VEnUP0Td6vYBL8vq4vSMdbrmYjLtXodj3jxd8DLSe+Prdhfr2QmmN+ealFDxGJn9cVmp1rHkjpI2n9SKL9t4twV5NToyBGOzZ943uGrEXjXYNbQk2XvkQxdhR0R012ksToTRK0VazUA25c9exuA/P47rgd/TG0basJsaQGO+1/3kvkzwbpOi+Y95LbbfJ0Fm32ahmPh75H/wn/yk5y6fk//Mv/gVP777G+1Fk2CTUXqhUE+rndqRPhWnvDR8Dl0tjGCaGYeSyPoEP1H1E6u17AXrBOXkIBStacQ6X/zvCQTlXR1HmnLqG1ki+EQaIQd2sM3+H2tRJNCO80kS+ixHwNjIhcH5cOD99iQsB7xp3L265nRKXx0fuHx54ylWBXNG8PbCZX1Baq3Ii5HnhCAxX6aXeaC36d3MarwzDcO36wbO1xnY+k2u3BbxptuwVIuV0YuCqma8hGEIL8nJFdjRy9tDztTJvHXJpdDbo7oPZf6XagyTZazB9vGbhKSVuDjcMV0Z+MQZ+MLKtfCa2pbJeOj5Icj0YItQxtGKHJJFh+j5CwXV8lBtm6Nroe+1cnk4KuqqZoraXNE3M0+HKByA823vTje/ey3X8RXeWYNooNV+dGKMZux3vXggd0eUnei+XTFBxuH9BPco1p2j3vpGSSOMPbVi7r0ZjMyj5SkrFOCKoa03BczMfoXW2shOzC8t6oW6bvEJqY91WfPDkXMm5UnKF5si+45KHXHAVanQ0M6OTsrLYnD2RvCe6Ru4iQ1arl1zQhuz2oK9hZF0vUAtDT3ifGZOcIUM64uJM8p3oK/EQacDpslB60+EUBygbJYunMM+DFSKNWi808+lh5wfFxBACIQUz/nJMhwO1VNbS5ADbC9HZxXMRP41ChGztUys+KHncEfFRY51eVAw3B4dJbr8aVXUb63TWnDlfNkDOnzF6ufECrqt4PB4OHI4HxdyjxkHmdHL6rU1jt2Vdr2nQWy7XrtfHSAqe4DqDh3mIjPtoYT/JYgIGW7/yzXk6F0PdOs5drqPFnUcl0qRm+ruDq+udlALJeeYh8vGrO8Yh2shBTcLD0xNP5xOtdpbTRbk1rgNR6Enw0AOEwcZDFhxpkvaRAVwjhUHNhx3Oza6DQ8Z3hzSbR0ylNOgetpZxrSkYxEkp41ugekeaPSlEbo4z8zxye3OQdNd5LuvGw+OJvG7X/SjGwGVd2EphLZXcjePRlCPWauO8KcYgeI+zpjVFz+3dDTUXtqXI4bdUzuVi0mM1VA6NJaeUOMwTx8PEOKiI2YsAQPtOtyK1FJP+yjEmpaCzxDsUtbCrfrwhC8rBeSaJS126bdnmTyKWxxAYBjWU27ZxmGeGlIQk7o9BUxHYjG8ITW7TdM6rTPpSTNy+uOPnf/GP8jv/ArZlwQf3rIJFfC2R6p89inrN9OBxzRE9bLlTcbQwU7qnWrMlRHJlSJ5KIPrjdRTXu5y+c/vJdcY/1QXKPASmcZ+/ebwbEcGpmUlTYN1kbvRiSNxME73LD+MwjQpDmma2rbAUqT/SkK6LvleHi57TtvK0nDhvC1uvTMPByJKSM7bWOJ1XTkWyueBFYCy5SGYaAiGaXTgmc3WW7ImntH1uj40p1FXSzHPBeB3eIFbvHb43KNVkrIFhipohW2cnd0SoNeJDZJhGixXf5+n6N8YoYlX01j2OVwLerv4ouRhMbciMKS92SV7OgvaVdFvx8nlnrdmO9d0rYGd2qzjrGMqjfdeKmHodAdze3WKGHrTmTOpbaS2zVQVRDQ4LgDQukfnJhJRwbtDYolZS8ng/CdZuu2xW+SOnaiZyLYiMawGLzkeCD8yDzJGc2VDvUGU2r4BqWSp7GvLFLPzlzdLNQdGbqZX4AdELnfn9/hXTOFLtfToao+UfuarNYBpHatmIozNXR3lmdOcoNPoUyaVSMUlgAxPpXu+jd7rOvlnistc4aOexDE4ZPrkVhbBVkR932W3pnYen9zSeIJ+J3pGGUfwvH5nTpIJ7iry4+cjGiw2HNttanscgO8eqmUS/N3mjnNeV3h2rWdh7OkOQkRldPh0pGhK3fy7vaC2TW+H+MQtq7vva0vp2XWOuFHeTsUqIgTFFuUi3Tm8qDFrTYYDfR42O0+XE4+UMeJPRWgJ3txTwBs5FnO9WCJpCyTk6FhpHY8uFMUYCzUiFIg1uW9Zz28CnIKJh6Bay1milUKr4dCIyW0TGlZu2iZNjmSg4GMfEy1d3zNOIQ+OVFDXSuLu70f5U5F69ritbzeTLxrIuhuyK47VkKQ5bzfTmrny91hsbF/Xwvl/viThzAedhOT8yhETdVrkYB8/x7o55mml0Lnkjl0wrhQOJ4zTw7Y9fkWvmkjtfnytsJw7HA8fjDR99/C3Ktl6VSeC4uTlyXle+/OYdySUuq1AiSbrNcDLI6dV17Xlv3z6wXC7c3dxwczzafepWeBhyWQvLpbAuG9ualdVUCsfjUePJXVnpvRUogNPQdneo3cc4uxOKt/Ge3Iiz8Uv6dS2XllnWC5fzha/ePCo7LSZSjEL+jNMVLA9tHCe2olyu1j3LZZE6sBRllMXA3fFIKRY3Ylls3/3Op7y4ecV/9L2Bd+/e8/VX37CshVpRseZFir4SeE3ZGLyQbQxla16uoULJlFQcw4APR3KupOGOWoWu9V7E22ldMSI/4eunmoPyv/nf/h8UVe81p5dj7GAbS2cYRj761ie8/uRjjvMo2AwZQS2byJetig0u6+tKXhbu378TnF4KzXnG+cAQtRhyqxyHSAijfAjyE60VclGceev1OgPuhhCE4K5eJMr+eCah0RoNZDU/jQzBs22LHbbPmzfOE9LINI2MaWAeBuO1NIZhxAf/bFiHMy2/rsu+8e6+GTuxawciO/JJ6O05k8IZV2LP5KE/uyHuIVG452JHe1O/Hoi1Fp7bQ8xDwMnjpUMwyLTWeu0AgnXzvTbN3v1uBmbKot7oTR3rZunQWvRCp7KplLYsnxF1Id3MmgJE+2x4llVmdSEltqJNP6UJfKR3FZXrttFdk5qmKx8keiF1uVRGJ3OzbcsmdZUSpnrHxTJmdqQleKkRWtXv3Du0XR3mnLJhggffK6HrgB1ipZfCED3TEGi9kYZkkQvNYH5PLo28rFQqODPC81IagMG2uyKoSsYqb4xAdFE8Abd3jpICuhCMsJeoWyENxiuISd4RJssHjc8yxrOpGjHEQU69JWekWFSiqneOeZ5kBV+yomm0ywnZqUIoGthI0GBrFN6ZUnxWunSl+nYHectXfpj8Jop4VPvSs/d19bMAcHpWQtCm2XbSXzQumOuGvnUR/uxACVGy9VIrNavB6L1SS2Yn53qTXkeMjO0CrWyMEUrz8lAJidY62bJVnE+AKY2qDpnDOOG8PFR81xhmHqQeCykyjSM388yQogwmUfG65iLlnjUarTfjmRheG/wVDWDfY5wjOOS2XJVhs9aNYmR1jH8l0rKale5kVthrMzFCpzl3HV/tKMtOGH04PXFZVzVNIeqe+oG72wPH48xlufDmvawKJq+9ouPIdUfCTYpM5zgOvLi74fZ4FLLVGu8fn3h4OIkc3bjyHzQo1Xh2HOU6DlKfCZUUGvryVoaQT09PtNb49ief8PLlC9vj6pV/0ozLtme57e7JMmlUUe2s+OmdD8Y7+ru1FtZlvSIwj48nLpeVcZp58eKAs3BUZ2aLWymcLxv39w8Et7syd5oRlFOQMSFe4atlXdgui0JPzXU610qrmT/2S79MuhFHLwbZHrQOedtYnpbrvd+2TCnZ3G3NTbYL8S5N3kTi0OmskuFuAKdk7dHGZikl5nkipUDOK//rv/C//A+fg/Lpdz7l7vaWw+FA3O1/Q8I7JcbO84EtF57OJ7746i3v7h95PD1ZNkLWAw70nGlUom8EMsE3UmtEJnJ1tAUW37TJdMdjPhO8Sd/qqvl0SBbeFj7ImGlEHxiDYxySJeSK3FeuFaqIk845JVE6xxKgmWV5LVmHR4iM44HD4Xgld+0PBejgLbXbfLdfSVa9d8to0MTy2QkSU+M7HJ7Bp+tm3VGR5UPHV4cdFYSmbkBk8m7kqWYb/3MWyU4epOth0N9W0VJygQ4+mBNnEYyNkyOmDwGqOm+64MrN7LxplZq36+y3G/fEe5WepazEKzEQfDOnXZAnxGaAjElDRp/otXPwlm1UHnTlfMT1wE2Memjzk6R4T4vGRE6mUSSZ7B0mb87AjWamL5MP19BH74MFQhqnwEdKKYpXaPLR6WVR8TlE6+Y1/mtlY4hHc7b0MlFz4j/lvBKdZ1k2oXQp4KvudNsPHWEzV3Mn17tNNzzOJN+1ZkrdtEaCAgilqFJ33LZFieAXM5CrWe/H7fLk/FyIuUCIkW3NLOfdqBBSTOz24ZctMx8PTNPMIXqilxlXA0ptPD6e+OHbe+XbdOz+OppzbE0wcbBDYTAS7zR45mmQS3CRUDzEQBhFEmy90oxY2zRbhKr1EYZgttzNuB0OH1VcOw85K0qiG+F4J//hAsVDQYXqsq7ivu1j19worlOcY91UmI6DvHhu54g7juRcaEDOGIGy4IJnng9M03i1mY/mk+OdMydjU/rZiNR1p04addnVxpsO43gh4msPXsqtLnfqx8cT27qyrguX4ojeyb22VYZxEmE4OEYj7euAXfV7u9QaGI/CdahZzULwnRZMqRcjedvYVmW64BzH45HghBbFNOIdym95eqSUzDQmDimYwKpbMeRIcaBW5WKFIBOy6EX83bKywO7mxCHdXgsz572F4mEO0iLZ5mx71SYbAbq4V711bl/e8eLFC5zDIgnqj/FK5BNj8RK70aPf7Sv6B0VM1z02bogKJGcJ04lpFqrbeme+u7FAVKMCVAk/1m2hdxQBUTaGGBliFIrRZOoJdo9NuRqDJ93MZiL4bGWR5pGYguJKmu7ZWtXUOGAaD8zTbOeD/JwuFxWn3mkEvhddtVYoZiEQg/K0vNfznqLOKdfxfoC+W2ZUnk4/+Rn/U12g/NIv/SLjfKTUcg1Iqx2qFxnq7WVhvWyczmeWTUmKuehwCr0TamEYEz3NmmnbDYhBXUL32HxQR/4eB+/8rLlzLvgg+RteM/8QBHkn4Hg48u2PP+H25sg8DATXr0gDePPYcOxhbNKR76FVGARorhzGp2m12BinXdEOI9UQLNsjxXR9mDrPKATOmTlblcU/sA9b3M7Ybk323W0HeBq1V3LZyEasUzKlTKdarxTLtCiGOvkgjw/5IHjR0rFxkosyxMoXFU8f+Dl4vwdbifKVQhBBNUquG1yimEpoSIOphHYvECkIZF5mjHHbNGQ+JsMjcY0MVcIg19bkO8MogyWHkVmtm4/QTK4eupAf3ZVOq1m+JBjUaVyGMKp4ajsaFLiy3b1H8Qu1MDhHzhrP5NyVALqHlD1dcM2xlUdb4xZ0CYQud9K+ryczQvPeEX0kjRMxehv7OXAN7yXxds4L3q/ZyHirWNxOJoK5aN2FqrXRegECuToKCnEUj0Sf9fbmyDzN8tZZTuwfuNTCtl5MGaDgs94kX358eMc8H/juR6/57//Kr1DNyO6yLvSycTyMnJaMC7LPpjfGlJiafvc4jtwcjwzDoNycUlnWjZrP5JIJKTDEhNsWDkkBkjEpITZnoXsBz5B0uAg9MijPKf25tU7Phi52vQcRlzeFfTYIQRvx8Wbi1d2B6MWtSSERk2y+cfLP2XlZvavA2knYV3m130dZz/kwmpx0erUmpKlbzdYYOBuNdm/FSBd3Ksak8a8dKKUJUfz6zVu+fHd/RVa6+cVEHzhEOM4TuZjlQtd+uq2VmmX65rrcbLv3lLqxB3rGGMwwTMTPXhu9SybrsgpYOdBO14Tr3e3YGSrZO7RzJ0XJW11v+DjivZC8aBLylCwIdR+RdBT0aCq+FKKaqF7Nqr8yTt68bqKZ/XnKYFYPczcOR2UYJX93dIaUjLTrnouBZmPdJhJ4qxtXwqrDChGtnXw1/sTcWWUQ12102HojF319D5/0zjHNM2lSMRrngXRQFs/B9qodiWkNon+OYxAdrspduCtINaVELiqWc2nkJyn+fHesJdKKxrjFOJnBSe4eU1KA5uVCzto/k/NEYxC63bPLiroQA2FIxCFxPIwcDhMfDQMxJNElBCfTa6X8IWY2P9UFymdfvIX4JNhqv+mtk4tcGpflLILkthKCv25MMUbm4w3zKAviYl3V7spacZSsvIkQAlupQjlSEp+jFXxyuCGSt0Kpjq0uBKA0oSndOc7LhR989rk2sHlmHkblQ3hvcJkhGB9whsSmFylT8kxvBkyZ3kWG22fPVw1+1/HcOzgfKcJAAZ67vS430Jy7TKG8/8DPEBEDd/Mu7wx+XNjyxtPpkW/efsOQZOxUt0x0OpzLupKsgLBnlN2aeT+Q1TVAL1VjAAIhjsTo2XMbYkwiljnryoKIyDEmghe/Zt9sZVdu0tuGeYFYmdK7gtdM8hnoSr5tzyOsZ5Mjs5DeIXBDomQjLni/0/AdcpN9f8AKtg6u6md6yxZxzl0LkeBNYWX3ERuVdNctuA1ApmuNJsmldctqTJSpE6iWbVS4XFbKurEuF7aWNeYqSlseY6LZ/Lzkch0vLevKahb1+0E7RAWqTcPAPE+44y3OwziM0Bo5r9S6EdNB4xREON62je48w3QQudHtqcaS8Ja28vT0yNPpwuN5Ze0ieteS8Q0+unnBcn4iN6GRrJWnRZlJddsorZJN4fTRceT07h3VBV69uON4lMlWcp5pGsWB2Da200UKvu44OBiPCeejZvW+ExivBanrlXEeCTcHoXgObIBO61CyiIoxdiQ/F+GyukYuhWUt4B3HmyMfDYMk2+NI9EphTnF3JlX3G/Z1ZZJ+jzJyfJzs/mDkyIrzem5ad+J69Gd5ad+LwejwTZw331VoRksq7s6edZPH4nY+mg6efYT68Uevef3RS6iNxa55K5JiF+NVzO7A2zdvefvukTQeOM6B5D3VKadqnIJlg03PaeNWuFQ6PoqQvJ7O2px64zAdWJaF0ive2ai71asJpLNiXoXoQItRzdV6YRwGcIHs1Diu26pCn90QzAiaHSGZxtORzYA3ia9TrljTIe59ZHCd5qBFjYlHn+itMg4T0zRLit2lEuxon9kJ3vIx6uxBk3QTB8QkZC8GZkPBtf8aAbaJVoDtwc5p7Xa4jqUvl4WH+02gB0I8cxeSV1vXtbDCR7Leire1GnZCnxMZv9STxjhNZp3N9hhKodieswd+OuObuA7UFUxynNJwtcDw3VC2gBROQXYLpTSWBueHQn230etbhvA5P/OtV7x6deRwGCRfboiA/RO+fqo5KP/Xv/9PuLm7o9XCeVl59+6ep/XMuq2qSq3DAZFfHd7mg+oqi8k36RaXjirdhsnuXCHgLPNC3AnvvML4OiKAlawH0knzv/t4SDNvpEU9RYwx8fM/+wtyPrTDotV25XLsrp9yHAxmeQ+7BTHO0bwgfO8cYa89bObcQTPCKki/YT4chsrsLPFS25U5vltz1y4+QG8NaqMbMuKdeB/TOOGdpyD77XEYrsBiDCOVyjBEAp7kIy50nA9EP+B8pAcnyqZzClc0Iy2Qv0c3EmSrIm7KCr6TS+VyuXDZihEa21XFkIJC8WpXjkZwXnbTQUjRy9sjH7+4YRyDzYqjNi66taY8Q9U2NulGMm2gTX//XgsDVOCV1xjNlEl7F7yT7ezkwbduKdQeV60oid54M81M0sKVx+FQwm239eA61Iik0k0bcvCSg+YuzUstzYihFsaFnFSvozxU9O6HYDB7b4cdpk5mXDpouhXMCrLs5pPjr54azebpOoCdwbbYiMa5TjSkTwoTfc7S2pWv4m306Ixo7RCxuPEs0yy1kjdrJryUHjtf52po5ZxZvnsr1qE0WeIXCyQEb8aLpqjp4pHsnAE1Bs44JvU6smylsdTKadvYclHMgBP/RYfwbo4G3nUiimKYZpnIxZAYh1G2AvF5BKD19ixB3cv54CXxd44retfsQNuLzT30cfdm6ewcCFOzdXft4nvfoxL0/0urPJxOnC+LVEZ67KiGkAXncN1M11ozLxn3PLaoFWrnvFzYauNSNoKTSV23Z2IvrunPxn8aK+0dvlkWeCFXtTa2tomvUDshmE9I61cEiK77LdRvj2ZQsbnvW9MouWuMg+2jXvuC8Y7onWvon434Si1a04agOivMcHsMhIW/+kA2ue5e4GHjQucdQ0zXP+umUmlWnLarQWWza2Ij+V0NZR1Vo7IreJ735MLTsnFeN7byjOz1puDMbDwobE3rsmvv8V3OxvsZVLtUbHLZUGG7ezLVXJ4PVeescDKE10Ju99GU9KIqyIJ55NTezUpLe3mI8v/q1pzVLO5Kr43ROT5+ecsv/9LPAYVf+1/9z/7D56B88/COS808nZ4oOUNzFCNS4aTkwBgZvYtnsFpnogVpPinYbNU7ehXMFn2k92TELxErg/MMIdGDOspGl2EWntY9jiaoMwTmaWKMsuWWl8JkzqmRbEZrYC6iRQvDnkR1Ro7rYdCcOjrc/rAaWQtnHAsdOL1D7tk2n6w01ayutJrHwmYytmI8kRgjt0eNoKLf7at3Brr+OwX5dHTfjaNgYwMrnLrr18PcdU8pImFum1J4L3ljLRs1Z0nwrPgSVy9IVoyhMzaD1fhBG3DwHupCb51pmDhOEzfzkSGK59FsHiVfiQDBTOG87kXYxxJoLg/awHBmAN2ElLRuRDMPwR7wto+P7BDoXt4T/oNDXpwU6wQ9UtjQr/4GznG16261UYoIlHuY2jANeL8XTeqGQTLFijcjNpmYXXIxON8ym9g3D5U4uTmW0ti2xYpS/d55GhmcZMHruunaO22gbkejMPTHBWVT7dM5uDq0quARIb00oR1OroRU36g1s8cSdBq9Oehtp0qwh3FSMcWRIQWYiZXAAnBZyirnyJtZk9MJVau9G/qx85a8FXTXe2YHY62NbV2vMe+1qAgJLliHrPtfisL8eq/0qiu6Rx4AXJoM9wzqUIOTNZcfBsmIZdUeLRgx/FiK7jXTZ0cUg5qTzt7BygelVceek+VwxDjoMzmphvQmrFjb4QsjgrNPqIx1rj0kEkJkGhudwLoWM2Wr+NBUYDlwXZJX55KhBSo+gg8UW7eHYSCWTMxZY9harw7e0ft9Ui3Se2u2ZUnZV8x8UKZsWIM3SDHoIaPU5dEO/JQGnBdys22bRi82/o0x0IrS3l2Qgylul8pacrcVf7VXelPxNqDE32EYnlEWr8P2uvD67iEkuXixIjUXNXB5y9coinEc6d7ZvtWIrjObV1K3ZnbnZGCFYAjP+T+9d1yzPde+33nHFCLzGFnrxP1p4f50Yc3W0JgSaY9p8HuBwrNBW7DF0J2MMVNzey/I7iBbSlGkg6F8KaVrodY6JD+YF4wM/dT0d4YhMk8Ta85clpXdJgIHtTRxDu1ZCR5eHwZevXjBR6/uuLmZOB4nTqf7n/iM/6kuUL786j3jtFK7ZFUxDmKPxwHvunUXJuvK2uSKVdK1VnXSrWphpIFWN/l/NCSr81g2xnMV2dqFAY/zJktzns2cUvcbOqWBaRyZkkLxxmG8Ss9EMvPW4QhadT1cu5+9W1Ujr86OZjNOW2Q6DzQ+Kbmx5g1nKafFCMA5r4Ju7ZD0QdX75EUCFUTvGMaR4+FgoxYdIC5EKx606E9N3JK8Fi7rg2a4rXNZL2x1I3VJVHuv2lDWlWW9kGsmhAEXJ/CeKTpoG5clE1xSdd8cuIgLgboUfFPy7RBlQOdaxfdOqGcVgaVwc/OKFy8/Aqe8ZO+5KgzUgDoS7uqIuMtpa83qGrq3kVi7ppv23rlsy7UYcMZlab2ztecOsRgiVntjNEt30Ngtb4WYBgbLH3q8nIg4YiuE0Fks7h4cPg1sOTMOAy9f3AlGjQMhenot3B5nBtf5+pu3vHn7ltobwzQT08hWCsMkQl2Kem/ny5ltWYUkGRdpmibmaZJh23usmBGZ8rysLMuKC47kxfeJPtC7Iw6jDqgudUrJmRQiL1+84OZ4ZB6Tkl9LvXZ+3pAMjSVl9tYQeU5SRXGAem9XpMSGGtZx1iu5utvXc83iDmEk2VZxMem/ulrD2hTo6bpSX/fsl2BZRzGIMDgPiXka6FUGfbVWsmXX0Dq9B1Mf7eGiWNG2Fzr1yj/oTU6nzrKUbm5ulGAcg40bPewk1q5AS+fUte6KGdd23wvrYvXN9OZYtkXkXW9mg84Togrd3U7I2aHsnBOqhBVCTfwZcKQUOS0X/uCzL7hsK6X068hXluSdiIVmdvHcrmMEdkmsYiauxQeiae3hizWrkA6oWNyL57QfpIaM7QTO7j5Ac6lQ5Q+SSybWSvJJ+WZtw4XAVhvjOGr01zUO9t3h0mDpxKJX726l6uZlNIYX+dn7YJlfDpy8m2LU+6vFrr8zqXAA56McaF1nnHRwgxXmztNrZ1vWqwXDsq08LA9camNdM3BW6nAM8k85Hrg9zlw5dzZudcFGJdU8ZHYPFjq9yrMqDSM3REp9glqJUWKBUqvGLs5Ri7hnzkU1Bq0RQrRrX7V2UCzHlcbQI2VxZixn8nrvJB4ZRjydmiVwqIgE7ryn9sppkfmfd5EYA70VBu+Y08A43JDGyM1h5u7uRtEEKV3XJy7QGX/iM/6nesTzm//5/4n5cMQP4mw0uzHReVKUP4A6K33dh8BqFz0GT3SdmiUlrqYz97TnvBWa0m+DINjdA2NKwRZGlp113VNzE9/+9rcZ08gO34qUqb/rrMrfL/hOmiol20MrR9xcZDUuW351fTt5VqMIZ52uZcOEIGb3MJAmZYJMw8iQkuVe7H4R3SD1SjGl0VKUuluK4PFsktlsevor96ALYSitqbvpssGX6mAk56qY9N3HJQSk4UjgIvjG2AuhFRkquWTy7iL4OuwJvdjMvFsonMzGAlIy5KLrqA5TM9/DOJuJlOX6AEMazU694aI2q9CicVc0TnKGQHmvcVmg8v7hnh99/iUZaFYoWp7alaCm4tIRLHcimI5V/JdB1yFGWm8MweNalZ22BbetebuqC7xzIl5uG84FjfZiYBwivlZ5eQSNqGqpIqyVRgsi4UZbm71VBh9xNLONDzbmbETnySULrUNzfFW6ZmjlGgG9l1IqaynEQVL2GKWOc17ptjj5KcSYqN2ZXFzXfoyi0PWu3Bpv4wxnJKu9SL9uOc/jcsDzHMqnZ2HNG09PT2zrRc9pr3RE1PQW3BhionTBy86eBxGiDZWRAYV5H4lU60M0zVAzt2EjpNu6Cx+8LyEse3R9VJgd4jrsHaf7cARgY6PWRCqlmSU+H3BKmp6RGOP1ukTjYnyY7VJrNS+Una+wo6ofoq3PaEEzXxa5Z3dcUOH6xZdfkrdNn68DfjROTLsWdtE56b0MdXJg6dQy39Lal8Q9+EDOm9ClIGuDXWafu1SD3q7bvg/u0n2cM2m1QhW1thQM6YAxJI2PY7AQTxWUuTUralV/rHm7jnuDU+HCPk63HVaZa7pevXdChCEprqO1yvF44HCY8V3Ky3olBgn52bOPdsJQbXsEhfuAjG8eIYaitGYHsTU92lcVI6IcJfvZ9gh4mhVZuv6bJYqvWf5K6yoSbgjeJPO6jrkosb3kQkqRu5sjMTicfV7vICZxhbpDdhRXVaFQuy1v5FzIWaGJ8sCS6MCZ/1QwVVOpjUJlj8TYx393d3e8uLslDY4xiItYgVxM5borQN1uDOpZLwv/i//5f/of/ognxk7rG60IQpcUNdOcJ2eHd41hGkkGv+dS2FrFdc0Ic8vQCuM40pCTaa+FeT5I6+8CoWu2XbsIQ5gpE84xTBNpmHAuENNACp62VbYm2WffOxz3AcHTrM7XZeHp9MRyORkfQbinQ/PMigyjYowc7iT9CiERncfFoCjz/R+D4XIxY7QOuVbOa2ZbV86XC7lu5l0igm7wQnuKzUh7Uyck2bOIUsE5QneMaaTUjaVsRijslCylgveGxMyT/EBCpFDZqklXegcnN9DSdWC07qBveK95eKuVVnbps/wg6J61b4JE6WxIYhu8jO1qVQFzyYXz6STuSBDq1Epl7J7kIIZOHCP4SIoTKQ74YbS4gAQtXDkNuRVO60IPdrigA9wX5QoF75kG3fsKcooM/ipdDXGgdXmFtLZYMJ9MweQN0a1zheM0iB9QKi46kp/wvRM9Quz6hd42Njers8/lSvidk1AQ5d9VenC4GBjw5uKr61wbZgxYSUmmdiGYY693ttk0Spf0tDSNAgfvSb2znE/knK/8pt18Lm9CInckMETPPE0cDhPeogFev7zjk1cvSSaprh/yUKwj7a0bUvM8AokxGe+gceNmXr64gd7I26oixYrC6xjCe1NLoA3c7c69krdKXSnsqNvs3rtGDM9ZTzgIeAiS2uOTeANWOl2Li5bZTxbvTM5vB2zvGoP0bAF9hrxo3PTMSXvOW3FWRNphilkA7GMzg0t2JLPvU2BDJbpJU5upeVrVuLgZgtqb+Fvee+bplillWtmopXLZMt2SvUPcYw+woh9l74D2STrJO9kDRMgNSoceR4L5hjRTxGlC0shVmWF0xYjgLN6hNpEhalUAohMnKpjEO8aID7BuF3q2z9371esnuUBMSQWaCECkKEO8FCODF8fQmRFkMQ5Pa53NPnPvltzsINfO03k1fmE37lW/jn5S1z3rxkPB1ktzjdyL3ZdmBZo35E37sdvXTddoZzeg3C6bRjVwjT+otclpF8/WyrUJ8ihkM0V5JLlqE74QSMkzjIndVr86R6niU+n9gG9Nz33QWuqt2HNgxW/Q706jTPuWbWH3ygrRQhKd5ab5AE2IVSkFHxqhB968e8c3b96Y4MI8cZoI05MFgsb9/XvHPA6UvP7kZ/xP/J3/LXx1PMMw4Zw69imNDKkTw0CMI+M8GtdDlWMpmcPxzuZ3hZoXcJ2tIjKnFRO9gYuR5AJ7Gq4LjmEQOTSZE6d38Tq33/kh2CH/DG9aoFi35NimkUSaDxzHGdwntgF2I1Rhs2htprkWKtBMhtp6oa5ZNuWtm5ohK0Z7UqpwyYWtVE7rSiuSBMuaOvDy7iXTMF+h724qhug9yaLsRcC0hdwUcrZtC19/ec/9+URznRAdvSm4La8N2Gi9ypsjBAYfwZmbppPSY3DO0JhMdI1WNpJXnLhzYtkTJE0DEWklbWzUIEmm6xD8pBRTHGOU9C0FeVd0YJ4nxmmSC2OQqVf3kkIG9BDX7oSqGPEu58zTw0Yu6hBCF+lWrHbdD1l+a0TWjXuizrWq8Ksi3NXmoJnRlfPUEOguErrHt8IhJQ7TgXVZWMoFHIweDvMEbWOcBrblQsbRizrVVtTp5q1QXaX6yM3hho4n2wbeasWTcH7SOMB1nK8EB84FupMfSy1Z91094pVs7O3nxJSE5HijzTrPsqzgAjsBdud+1CYZdW8V352hYpXL44l3OG7ubkkxMQ1GKMQ6zI75aqib3cmxQhFlzGfANA69p2HU7H0PUdslpjPyEupuL7Z1BJQmF9qOAj19Bx/99ffrwPd7w21PL8+KGHfdaAwYSdc/2M3lvI2BMBQCk932vivobFe4zkhstAOGJGrtV1P1NUMArqaJhkQU8zZprUJVzlIthdIr61bYspE7gdozrmYCjSGN5lDczerdkT4ockrZpb4yEuzeGy9BRUXZFGboQhB6iaPkTAWZKtoIJ4bA4GT8JiRN+5frKgbjPNq4KtKckxNqMv8Z5+jNDngLzxO1QTwK76QeCc5TgWXNUqu0DqVqvyqZ5q6/VchGsJEbIn723tm2Qs4L2cYkPgYiTgpPL4VUcBqH91YYhnjlPwlFkRhiL+62bbP3q/vcbIxzHb+hojLZ6G+3ifCG4OO6OYVbOGBz1OqM5xWv6693JxVOs1E1nl3+WWrVPtGbcVR0JkXn8CVDkRlbyatk5V4iA9cKyTtNFaquB87iY5DvkIrXSvJ6FnfeldZoY4iD1rxzEBy5mWdQEbey+k55Uu7UljdrDD4g5/57Xj/VBcqYItMQKE0SzrU5nnLFFXA54xfZKAsF19iiZcVRv7q74ZCUfRFMwhpTElISpX0/RAV0pSjI0Tls1uqunb8eKr0fdYKNVu0Ntm7doLG5nTpyehAE3JR/skvWosmvivMQKrVp4eblzDfv3kBIbNUZydYRgHFI3ByO3E0DeM9WMsE7buaR443mnmEnvMVAx1NLY2kGnVZB58vlAl0jr3GaSXHC03n/7nOW80nvOXjCkOi5cFovzEmHVaaT0oBvgndj9OTa6aWylKKuqBa2EIjDSCdwe3NHSureTueLOns8zg/cHCZe3N1wGAeNOjClgakG3F7Vu6BxXlBxs7XKmgstWxifjVC8ExG3ddhMIdVK4fH9e57OZ9YqhdD784VqMfdDumGrhRg83q2C30MUGdtBco3ASCudECYpR7ynbCtDSjQn3snshGjk7cwwjrgkp9BlWWm9EoNB3iVzWlZicJzvTwwpQTwwmLV6NOLbOE4aWxA4Xy5CJpzj9LRSGyzbmdbUHbmmTnUIwYpuWXmv62bxBoHePKUrUNL1jgsDtV0otTF4GKaBYRg4HmaDqyG4TjIfl+BgCCPHFy/Nz6KSt6xu2DnK+URPkeyjoe/GPzE0Ibokw6vgmZJSe5vxCjCehkYiGqU21wwZ0DNYqyDxljNb2ag1a7bflUzc6TivIDo1H/KpoHVclB9HydvVB0gKvkqnUEohhglcYI9c2NGgviu/qKRgZO0mmfA+DpO/iRqIsmVCUMlVciZ3qVW8EwqnAEkhwDtXrZaiItFUhOSV0jeiwSnNJ4IFS45O3jelAe0ZxXHrhTAk6J40zBCDEtnNh8k7CMNAiCOjQ1JcycjYvZOErpjqyva61mysYyOH4AMxGsLrmkwevcwB93C73U22WNOWi2KqSzF7AxuN7GQyZwhvxOuAt4P/hfNqEt1e/AFOSqdcdlWitX0doot4F2iustsMNMu5Kma1X+2/Oyac6O7a1Gl8rP29NKlkWt19R/o1eFGJwGbo1xulFUrJ5tTaaU7js7KtQjJ0aoBDY1mEFi1b5jAG5uMdaToIyaZTozfCrsY73XmeThdciCoCfWecRpH8d06ONbG5NnqQw3JA18s1R/LgQiXRWLqcd4OP1wKlGjfJRxHKUwySb3uhe7tJIbkxugBulIt0gks5M8Qjw6BQ2DFOOgvzT37G/1QXKLl1LtsmYmDJ0tfnVZ2IqXK808JqTsFJaR65vf2Im+MNyUeT2mHSxo18WShexNJHmmB0IA1KtB1iZB4m8Tv2CpNn8tPuqAmYmY3+f7IZ895R7dLK/T0CRg7UfN1Vz1YzzZRBH796Re0qtNI42saxSxMbuXlZDxOIKXDJmd4K61YUBmbGbL2158207ZkWelseJS5XGilqXHT78iXTzYFtXWhdoV3OOebDDY5Gdx22TKm7OVqQa2YYiD4wTRFojIcDrRTW2ghxYO2Bcboh+MBxOLJuheQcY4RO5f7xgWUbrlB0xdGaDphu5kS9O1oXPibYVvwIWqd5yYaTg9m6tVcvXuBqo2xC08Y04A7gLxce79/QCPiUZOPcmzqG3qAM+ObwFYY0ibfidNhMwdNzZvSd0jLHw0xrFR8TpRSGIYnhHwO5Fjw6jNp6tgRdKNvFimQVwfO4k5YNMXD72qg8nh4Fn9d8HRtQKreDkJRDitClItGs2A5SK4JD8Nwehms32Z0s+2OKV85K940WnyWJ8mV4d12/zUd6q6TgePXqBdOQuJT1OZ03juTe2d1qtab71UTLXeX3nUq+cir25+l5dKn33tQZADKY2qPrAZFwBQKCr5zPF9bzxYZPHbc7c5pluAsRn0YhLLvza88s50fTQ3UCDecb1EpzowUran9pbR9tyc67tUJ2WfN5Q+V2SWtME90PJIPq87ZQs3hxoxuEivVKCwa54MAPgB2MTnyANI4M0x3Jw3l5ouUN75Op4cQXEffeyZDOYwWUZL1uHIleeVJ4pZ17p+cyhB0BUvEKdri5TkCIiMNUaE5oTm7QLWWd/c9yZtkuVih43OZpPdOs095yFunSFCFbzlc12I6gtiIOnrPiJ8RAuUpmoQeR3oNzHM3ef5wm6J1tW56LIB+IcWDbVnLZRIoNiYqjtsJ6Odn11mgmos9Sukz4di8b/LB/m8jrZlDYeRYqWA1nDWOTyVwacG4gxcDsOsGKgm78uFrk+l1aJ9EtaiFwnGelRddC3S5ctsxaNnpQo3C8OdjEQEj0ugk9a61wOi/k0hRvUMs1tJAuzk5thZw3cY+c2RLYmbO7z1ZDUGtZNRLykRgH8SbXYmR2m4J6L2O3INRwLZl1FO8xeFPZ9Ua//4Ytn3BxZGECH6jb0098xv9UFygvDkfmww21ZaKXC+wUXwKwyz9bs87JifSoULjK/eMjpSg2OpirYUiJeSdbOs0Ao928mHYSmwP/nDPRbf4I/BhJs8uEQMRJq67lz+AN0pTUd8tZJmmtXf+stU7bMucsM659xt3x9NDh6SLL8rJR1gveNY0VgmD0mjcVLr1Rnb/6IQxDwoVdSi12dhqMy+J0NNQmJvqyrEYAjQzDgduXd8xBXem6bqzbxvn8RHdwGGZV5EEpyM5BCqNQESOKBe8h6YGMaZDBT0o25/fIiySwrmcen55YN20s1Zwza5dc0huU2LGAPyN3ht2BtlW6OV166zyCEyl6rUEZRqYk6Q7iNPLR8QDAv/7sC4ZpJF8uKgDRzNUDNTeGUQjWIodnvI/QquSSvRL7Qju9Fw+qVuIw0PxIjInSVZzQNqLzDPPAkOTZkNLz6MB5qdB2qPpSlORbSyHhWE326MPIkrNk8LlRcmbp4paoS9f4RfwRHQJDSiLrmhHf7vZKCFfSqfKAGwGpp1oMpGEUB8apHC/dgRtoDeqa+Xp9Q+sas0mybDlUPjCMIzFGpmkiRVOHtSb/IO/Y2G3rZdalZ7awx8b/mCTTYPM4DNeDcStZag4cmYBLE8lr1NlaI7uNWhZaPuHrAtmxXBbicAAkQw0xMt68ZnfkDTsptnd68wQbJToL7YSAczJtxEF0Def79Z45h8IgjdNQi7kJu2s7Q09yB6U9H5R7Z9rZkYtnkmZpgumHm1s7JPfRlcZLQiqcEMykZ951L9K64AgrVjU0c273VuFadO2RFvLLgTEG4+LIFr23QuuOb75+w+dfv+F0ulgRtWdqOctvEm8Fi4pQ4+SIwTN68YxqM38aW/kuii+FjWKt9hFi21WU9N7oRXLrcznzdDrp7/eK75Vk43iNZGQtEJPWVe+OWqS8dMZDDIqApraVjmTDcxIfI8aII18LbFBIqeuN3ORF0pBBmdaE+FxnB71HqpONQC8btELvRQ1Ua3bvAmttjIZYORdsT9xjH5x5cznqemb0MI8D3XmWbVORGQemYWQcNf6WNNuzWRxICvYeuprvZTnr+S0yi5MvXid4Sct9l5vxfAjXcezh5sA0TTw9PVJbZ8mZyyK03dUVX9TIjD6KcL2coawaqSfRLNrxFVtu9KeVEAPZOE4/yeunukB5dXNknA+kYWCaEimE3ZrDmPy7NXWmlN0PYWXdzsTordLdKUvdRgz+ary1J846mzfGEIhOpmygm7tvor0LRt7n1texdjN7dS9ux2VZuawbl+XElq3rwlQ+qINtHbpPInzahu+6NO191M+kdropb2IM+CBvlZovMg2i6lBeMmmY5dK5yU12XRQv34HlYizrIH8A1zuv724JcWQYB0T8Fp/iUuQBUGrDBc90nOWz4T3rqgNsy5tJ0C7XjjMEjVS8d4QU6ZcLHnj7Rh11ionNxgLzPPPi7s6If4JHd1t/8NRcWLaFnDO4IA5KjPTSyHnDY1we2/yDzX6dS5S8km4Okuk1Wb1flozrnTEFjoeRUnXdLotm77VrI52GAdeKHkgaYwg4r3vre+QwTYQCZS1Mx6MUFaUSg9yGd9TAR4cPnq1X1k0bW1+KDoCuQ/myvJeiwHtOD2eRP6tGAzvMHLynOEH9Q9Bj3FNAjbQKn1Y1D3bB4+NICRFfPWWr1ArLsgBOnIYuT4tWKq6uRF95NXjW3vHjbLBtZBgHJjR2OBwOpDSQ88I8JcY0UHMhb6t1ZeDKivNa16Fr1QXn8WZyVbZV9u1tV45IPbGTyffxKcbJwO8uqyZHNl7EEAbFKKQJ555lwfhbI9NqVOF7xbdCoLHldvUICiGpSE4RVyX5BPE60x7C6eyA9xqNda8xgJcg6Pp3dlJuBZrrxElI4O7ApKynZqZ50LolEzsViipU1fQ420uckbGVtKzP4nq3Zd7o1RQ4rbOt4pDFYHsEInX33knJMw0q5pelUB2cThfWZSV6ZRut68J6OfPy5sh3PvlYI2ca56d7oncMbBx85eb1kRCSmcppvNWsoKz1Obcoun3MLVWiN4K27N/VknsXock4sji9/+ADIYgrs7VC6CKJe4ROx5TodFp1HKcDc5KcPSVPSjMl552mIakxkkvnsgqRuYYIdvK2STVYG2McxTNrhd1jpnU1AXldhPKEgA+JMSqDKzrjxHSHjxkXCnhPcAPUSQ2VcTc8akJyEzK3FRWIdCGe8nXyJtyoMM10k6MHV4mpEZN8iHq+cF6qlJiNq1R/GAbb172h0J7DOFBr1Qi6Q3H9SlRvrYMTsuqNHLzmjfunBx4uF9bLBZfFZZzSoLE5neg6vXbx04LI8n/yP/mTdB/5r37wQ765v1DwDHPExxPL5ax8uZ/w9VNdoMQhEgZvI4GLZRlIKbHPp0EPeOsFj2MMjuPtZOiHcmWcsxl3qebjMBK9weRu79ANMWmVvisBu1ko28YZkjYy9US7oZQ21sfzma+/ecPj6WQzbrm3gszSei3XuaQLAb89EbykdUIJPL53aEk5Gl4S2Uxj60GwqLn/4RwhjNSSmaaBhuVYeKl/7m4/sqAtfYxhGK5x3s47LsvC+VJ4+/COrZzN68KzXYsN6fFr0QOcvILloEm40wJ+GOyBs0A2ofjmDxDtgfBkkxt2NId9eswMaSClyO3NDbfHg3KMfGPbxC9xVoRcVotCzxu5dAVoBYmf5/nIYb5hCJ5xHDgcZkqu9FypW5YTpB8YxlGmUs7xrY86T09PhBhZp+mK/jhvychdxnygROpWDKmj4mPn/lRpHOB9xtWiQ9edBbf7RMFT6PSmmHqazOOEcgda3qwLdPiUiGnkEAPDPMtdcxhoHsIQ2T1NqhFWS5ZCg96uxe5uf12KoPb18p5cG+N8o+K7GzLnNqZkIYGDfChqXnm4bMr1WM94L6Lf8vjEYxDx2Z0WkWSBaYp4HEOKhsYJBnc+EMKZXr+2tGatQXzkeLzh9jgLvfRSa7VW5ZhJuhbnAJh0ls7VkMs7ycxbbVfeA+iwi0jKuq0rn/3wB3z99j0uJeMXKTG7x5FpGriZJsK2McSAKxvdK63V+UAtG2VZhAB6cytFqg7vHZ1y9QXyTkZgIMQyOI9vjr4t+Ij5lRjJOOgw8eZZ0prsAxQc6jGjnqt5YckXJUFXWJ1M57anJ+4fHsjNsruyCvPczTkY7YPRRTZk6x6dA6KaiVJYisi1c0qQTzaicQxD5HI+8XB/z8O64kNgHPTsT9OB4XDD09M9sBDTSEfOqyk4qXxC4uYwMQZIzpOiqd26l1FkKbLaz3KV7VvRPhiTmgeT58ZmcmMvlDR4d63ayj6+8bpetWpPadUrXRkp3bzTuKy23UBxMg6UGq/RBabR6fmuG7XrvYQ40KquJb3ibm+lYskqinNRE5y3TcpLV21UGehOKqZKJ4ROc5Fc1Qy1UsBk2jVDSIlGp25ClCra4/aCmKo0c8V+eqpTAw5WxCXHcRhJMZkVxT59EyeyO6/sIMv6cR5crXiz6G95ew4h7VJpNcC3ThzkGXY3eIgJF4M8ulonDIkUlYs2jxOHw8Af+fQTfvbnf4Zv7h84HAdu1gvrulFKI9y8JBxeEJ7e/+Rn/E/8nf8tfC3roiC4oq5droH7jdvt042sFSJrqbSyae5spklxGIlVcO18vCOl0ZwgRfgK+91GP8v1HRIFw1FRFyoCbQdL4BTUru5REfGffvIxH796xbosrMtZeUGlyHyna0PeqhRJDY/vBR8jLRe5krZqxmRSlvjm8K3RW2BrHRdV2TbUwcgXQzNCZbBEpiEyJmeHl/7cV/Epsvmx5JJtTltJIeIHea0Eq/Lx2kzzZmFzznJumsHzOFovRmoVEa2sFxUy3dFKtIMrmHfDcyZRJNDNH+Hp/QPL/SOHeWKYR2PyO8YxcnM48OLOK+04Z93nLh5DcYpod6ZO0jMuQp5zMN0oZ2Mrlcsqs7JaRK68e3FHyRuffPyaeZ5YLhdCLay1s2Tdn47k6L1Hnk4nyzGCeZBngIsD43Bg8CpV0zBx3iqlihhZmjxmnAtMKeK9igrsYBnnI80FTsvGVjfW7vANqkkiK7rebOY1EKQO+Ph4w8vDgflu5MWLW1KKSu7eNnp3bLmy5I3TRanMsw9s2wbds24X8pq1kXYRSf0ecNkqfdvM16JRCXQfcFHS+Nozy6oCezUUEu/lL9TNNtw13X/XbIAU8fFewZLBMw7J4uKFWDjkESRESGOgFCKDufgqvdy8SLynmZdPzQVavRY7OWdK3vj4biYEOWj2XqjOsW4L5+3M5b4Qu0ZpGnw6cOI0CZbspJBozlAS49coGNSIuM6RnLr7ZjbvFVN0OUcIGHE2iSORAnbyam9pTXbtQZ9/HkYU6rhd0dhaGnktnOvK5fJIfToZ+iJJaIoaYUearg2DijjkSdSDv0rTXSuMyTHjFSdAg3Gmo6A4eUB1HJUXgwXslUqvjceHJ7ZSGa1py2sht0qvVdLhEIzD4NnMI2SYJkAhj8MwEHzk7u6OEBMhDtAre9hfzhvny4XT+aREbSekyvUuh2caxTt6s2wXHAud87bhvOdwuKXVQquZWjZZ+He7p90ykmqTLwuO6lDwq4MhRalQ+iKehSkkW8tmjjZRu+5zwpuG9wAA8+ZJREFU7wVvI/7S1ZL2ulJrEermg4QOYTCPHeguSJ1jpoUpivcEHRdEGO7OsZWNnCXLd7Y+uo8QjX9YVqaYSEE2GGOKON+ffXScCrjgwLVCcJHq5AuTgGkwHlK3SAoGUwo5Wl3t3IsU71gb5E1KO98g2L7eqdTeOS1n1ssT5/cbLw+ed+9f8Aeff87v/d6/ZLtkgp8gzjjfbV/+78iIZz1d6KMSQ3tvDCHiUxCJDpSEGgO9y757nMC7iseMr3oGm8+WXRNfLuxZBSGZrh5DW5oq/xTlGpq3TAiJYJ4avW6s22qOg4I6p2liCANTCtzdHjjMI3We6e2W0hrLIqO2Zl3F1mzDaabesMhyFVQAUu84gOCujHswrw6Tkgoy3GfKzhQ8+vvX7I4uw7JqYYtpVPz74D13L19dSXFKa5YO/+HxxDdv38kPoQHeyHUdXGvygugKDEsWZDaEwLe//YqbeWLwgXXbeDidWNbFPBR0vY7zkThEoh84zDeyj0+eYRoZkpj48h0wwqMLhAlm9NCW2jk/XRicPA5yLvKJaFnk31oNem6sW+HhdGZZNxGcm8h5W2ky/vJvia5zOyV5S3TP0qCbAmj0gdb180MIxOI4HCbojuaF4jzlFUcnrBtrUaR53U7UdQE8Ww28R5RLb8YPHYc7ZXqIQue6EeycOq/Qu7VHTVCxg1o2fubTT/m5n/kZUzpAyYV1q8bmS4QUSLGSpsTNzUwpmeVyobajkT01Wlm3M6enR3rvzIc7GbCNieQ8LZerhfnpdDbTw0Yr4Ktn8I1SVlpVGnbrndADpZq01kHrleIiW/WEMNKc+BlLa3jnWUuV6sx1OwyEKB3nER8ct8eJl3cviM5zupx5d39PXjfuXrzio48/ZrxNyDdlY9tWVu9wfSOvC7FD8PLGxHnupsH4OTJu69ZhD71o9OM9xInW09WwL6BD1GENUPN4J+Qq9073kUwysqzJ0vtKXs+4zVAgG1f5rkgF76r5A0W616gkxqTCbTry4tXH9JhwMWpPuzhKv1B90GEZPLEXQ0yaPZMyCPSu0cqKb4We0biwbYTQoVaSj4QwqFAInVwbvjVGM+mbh4RjoHvbdbxTo4d8SWQVr7IuxqQxlXNEy2vxwfhFO/vGO5PwYs9s4XQ+8f7pSY3bmi38seFqp/uGj0nj+K7RVPQeF705Jnl6bSQvAUBtjbYsRm71lCp00RsHB+SPYhCMts40SL5cGueSRbyPkeCajToq3kVqcyyXQnOBEAeNdb2z8cvG5XxWweR2f5uKIxBzBVYIUeNLnuX2Us14jeZyV1Apun7DmFiWRehG7wqj9DKh9GMiOhmLji4yjiOlFiGbKLqBVtVsOPFQxjiKC1lWBYtu5qFSM91Qn9LQOLJ7at9o3VNKxvfGYH41zkvZ01qnVeNbOUeukd//0Xu+Of0rns4rtFtSlOVFL432sIicv15+4jP+/0vev4Xstrb5XeDv3o0xnud533fOtda3t6pSdpUEq6igeCDVBxIQlRjFA/tIMNUgKoUNjUJTFEQbBS1RGuJRxT4TNDQo5kRagoLmRLv1wHQkDUrSalVM1bdZm/lunmeMcW+uPvhf45mrNOl8hYTur/PC+r4155rz3YzNfV/3df3/v/9PdoHS3ojzhZgjCS0irXW3eRl9VxKsmWeiRIkIowuYat0Yo8q3HyUq3GpjmmYCCkPSrFKzxZQ1u6uOR55Kpt/0MozRsZDu4pPkrp7n1yvvn97z7W//NO8fZva1MiIMS8zBeDhd7roVrxt8Vn3MkQ6ugh6mUSJ0bU6Hk0cwLuMABd2jrU2z9D6kGlcjyPkGDJp93LBra9zWndfrmxRrpgp/mec73GvOor5+65ufAoHbtqkrYANsyHKaL0p4nWYez2eeHh4oJdKHujMPDw/MZcK61OYEcRUkpM3E6JvrdaOO5gv9ULcowjxNPFxO7HXnet34y//D9/n8ix9x21duo2NJGSvJIsE0Jx2mCHcFAerqpmQwGpcS+fann7LdBtd1p+XB0yef6oSYYHt95WXbCSRmEtE6gQ3qTgg7pRRnpEB7i+xVozZrVaOX1qldY7xOgSQUfguN01wkWByGxenelsUgF3WrRtY4iRBIcaYkjSX7yHIQRLFavvjiA68vq2yWppMKSQC2g9cRxiCHzHbb2etKKYk8ibyaouB1rW08Pn7qGU4riUgaEMtMPM/6dYicnz4RjDBKGFtiZArCXtcmKGAfpnciwrCdjFhCdahr1ltliubaLudE4A6BAdPpRC4T0eId9ETU2LXWykMIfO8PqGtlHhBYd3XfSlyYTxcu5lH0vdP2lfV6pe6Vre7c9tXb3q6FwJkvY1c1Ygo8a9bEmugOuDO1+EGU6piP19WwKLcWoboNMzDFRAqPbnsfECvUV5Kh7h2BNM+8e/qUx9MDcZpEqgWIkY6K4qNL1LaVaIM8qeVOMPLQ99JH0BhlX0l1I6TI5K15AQknBmdSiuIgGZT5RJhmUj5RyqSn0LjbZcfoEAaj+ogiCVa4m6nz4ee8D69f8fr6wYuBxAgq0uZloRSJxSXK1Hg6JfFpco68vzwoVTskQhi0ujHqxr4PXq8rW630gD9fjbFDTJPG+SHSu3Qn9MqoG73b1zRB2RXK3nFJR8ZMd76MQdcorHvxKM1OuNvbA4MjsLGPAaOx7dBzYZoWYp559/AJ+1a53q5uRVe3XVlGHVogpHK3JItdrXlKRNDBGCXKTlFgudMykfPJu/UavS3zLLJr7cSUCSGwtUqvRnDb+bDAnAV53E3skrZDSgsjZG6bDhd7a8R0otZB2xoB2YjNBlOZsBCYT2ceTicuy6Lr6R1SzfWl44pJLrGcI8uy8P7TzPe++1P0urLWjdpNoMc+uP2NyuL5zd/8TX7zN3+T//6//+8B+MVf/EX+hX/hX+CP/JE/AsAf/sN/mD/7Z//s7/k7//Q//U/zJ//kn7z/+rd+67f41V/9Vf6T/+Q/4eHhgV/5lV/hN37jN+7Y59/PR+uFfdf8e15mzIy39eZhgao2QxCAykBBgt3ANIaIcQGb2Kqpsk2FQWQfyiyQVU+fI1hk39R+S10Fydv1Jhuz60eGOQWVSI+FETKhTPzg88/55jfe8/7xTM6ew2Au5nSA0yFwO9T11r3lGcw5GElulBCElz7EgwahGzUok6QN4eiVTCxMfmvqKG21sm6bsxl28ORgvUjqOE1TITh0DXPP/xBEaO8RaiW3oRfWoGDsTfY1UmJvHSLEufD+3QPvHx8Y1umj3DM+1n0Xf8FPegI+RVJOlJKZskcJjM5t23lbV1rbeXt9Y6uV6wan04myZH7mZ77Fp+9PPD+/qBVJZKuNOUMIxnVrtOGRAbXe3UvBoosrA3V9Zbs90247MQVef3RlWODxm9/kVuUAIUSiRQKdko2Ym4Srt42cMjkHSi5QIq1nLJyJuRCikPDDhp8mjWyRkDK7w/hyFJ/AMBf/Sl9SW2dqVVHre2VrnZqMKQQCooWSFBkw1o19e8FCohq06kRLU+ru7oTJnlXg5BixkXl7aRiRGDtbWoFxP+GEUQnA8xCB9nR54On9e/Ik4Z11Uzcyuh4jdNnOCazrxvW2sm2dkCPzaSGFwrjdGBi5OEE2FIYVai7qmJmxu8p/uzXiKpv5Yd/XYcTHlkdhL4ub+CF2iFgFNVTBrm5bnjOX5UENdRvSGzTHC3jEg0YzgTLJ2SBUkQslh7mbbvjJ0zx88AAySgPWmnK+Ss7kEpin6JEAnlrjxRgmEf/wjmCMBcsTu9vpW9VYoQ+tMR+jMLTe9Fbp683pyq6fyxPJAmleSA/prokb7pBSD0GguDE09u0d6tuVELe7fmnYsR4lSvSgy9ZdsxTpzuUJRM8SAxuVh5IZfZBTppvpEHR7o15f/aA3GCHRQ5KtP2WJuoOos7lklmXi6fHC49MDJRZqrdLFvb2wr1foDvuy7Z5+jiUSJ0JWLpAlt9gmaSa6GXU01y9FrKsTHWPgHAaWoI/9zruKQUZ16RKlT+l911oZAtYD+zpYUSe5m+53ydljCwJlFll53SohzvQm4bw6TLggtbvlWq453RhjpI/H1NF87QiBfdtZb6v0e7usv+fzxYXBkcvlgfPlLC1j0NoaDtHOIQweCqfsdXU4nXJ/Dl2VIlSMlKMItVV6uh6kKYtJrrzTPJFT1DgrpPs4VaBRuc5KOTPbwl4b274rB2v78ff631dV8FM/9VP8q//qv8rf9rf9bZgZ/9a/9W/xj/wj/wj/1X/1X/GLv/iLAPyT/+Q/yb/0L/1L979zPp/v/95754/+0T/Kd77zHf6z/+w/43d+53f4Y3/sj1FK4V/5V/6V38+3AkAomvOte2PdOzFnthZh5HsBYEE+fJDyvncJYmOMVAuMbqSo6jT65q+xB04d1cmsOwGwjc4S7S6sNIbao0BMhRwTUy5czg+kSYF4y/nMJ0/vqKtsobVJx1C7MMytCU+99yaokyO7t1aJSfbQ0zSTQ3T8faHbYPeEXPpg3Rpvt1WjhKgsl2UpHKjzfavsTQFvNowpZXpWIFSOxU8GSiEOfZBjklDQcB0LzOGjbQ8LcuCUDOGBeZo4zbNSnE8SoRnwsq33rIwjOZoYqAZ7b04wHMqgGDI65hQoWT7755c3breNvSn9FWv0vuka9EEsUaCrvepkhe5V2xOpFGrvNBcxBq2pZBvEkkjLib03Xnqi5yfGsunFHUYj8t/97pdCXp8+U8sZfY4edeqF6qr9GYuJHShpIoVBD2oFjyG3TN03J1TqJBuzQQwsOYqA2yrBYC7RgV+DERwP7otGWYrGkmOQgk5OIRWMyPmiAnYMUY8thLt4MpKYMnjcL9Gyt6EDl+WBvVYX5KkwMj95xnnR1zIA47ptvH7/+1p4gqjD0zJzPp85n88SWqKNLYWZh6UQx00Og7edmD+mGte9Yga7XWHArh2O7BbfW5MmqSTltKScJQ5sGiNq7KXvtaTEMk1Mk7RkGjU4ydM7jB/tu55cEyIxLMRolOmkU61bmYevBQJvJfAMoO6j8yOQ8AiVDBg2JMoUrU5dpYDovcFn9XLzud7AXVsMJQqn4Mh5nEiLBKEz5qOL2QuEwd53Wq+MIg5LCNIxqEGowvuIvojBCH7YOHKy0tBoNwalu4eodTLipNrD3hwCxEJFLiEJ2zMtJMI0E2PGTJ3R5HPeaZook4qOertJpxGUzQSCdAXrzJMTmPvmm38gTjM5GNvzjS9eP3AtE+8+ea+iZS7M5T2Bd4ze6E0jFevqgrRh1K7n1EInmWIjGI1gXvwY9KyRvln0dX0olHA0Woxy5GBMGFOW31piU8PSoWsUy6RkFcS7KSS0D4OmTTqnxLpt7M272AQYuGHA9YnH5g/ElChJeVbLNPPw9OSgP4EPU1Yw6UdujN6X3kWYTq7pS9kL66HnYeuD01SwMLxA07qrTKhC67DWnVo3EgP6TjGN0VvXBEIW86H/HgOGvk4uM7lMzFNhKhO5FNm4A0Aghu6iZCW2T4s68TH9+BqU/8VhgZ9++in/+r/+r/NP/BP/BH/4D/9h/o6/4+/gT/yJP/FX/bP/4X/4H/IP/UP/EH/lr/wVvv3tbwPwJ//kn+TXfu3X+OEPf3i3Rv31Po6wwP/Tb/5fmJcZGD6KGYSwMOVJmN8UmGahioOL1CBKyGkGI3sglk4VUv3vqrj7kXI73LqF2q2ts203tUt93h991DItC4+Xh7v2ImWhnDk2ecyD5fS5Arjo9mOi5BGIlXKmulsHdFLrVYvgtm5sdaecZi4PZ22V9UjmPQwAEpu1rbHvO92CTmOYWxYlaAsxesx95LyceDifuZTjYVchNzm3RKwHwdGUieFzXx9x4ad0gk4uyR1Qd6YDfp3NXBiLqvneP0KbLDBaJSDi6LpubHsVvptI7zu1rQTUem0h3E/zZkEZRjG64FKOrjHU1Rq9YWOF3pjnE3148FbfdV96IzAUSiipgG9aiRgGOQ6dpJs6ThYKIRfRJTGIpo3Pwj1ALmSN/YYZMRe93CF7eKQK1QM+lVMgWYe2U7JEj3EMLGsj7E2zcxGytRnew8BseFU9s1XpmWIusn52u1M5CZ5fK4uN3plRJZQbYl6EoLTuvav7GDFZFWOUlseah8G5cC6qrTtNE8uy8HB54JNP3rNME9a9KN87w3YIOMHT+P73v+B57+z7Rg+DHGGORkzG2RdiAGvigHQCIXRyENfGkooK2ckTucxM84l5PoTuSYmvMUsE7QRQEQ+hewcm53xPvD5os+qGBALJbc1qZZu3G4f/3L13Rt0lvjeTPqFMngwNMLBRPVNHnKTuSPFBI0dt5gfGPsXsBWjQs4PRtlUHB5MzpPUjz0XvsULtZDkPQeLdO6cJZ0C5Xiyl7O+1AkbnFBl1dwaTNirrEj+L2RFYWxOJmI96iXDXlsipZwFaMwLZ9Qz+DvTuI2L9/D14ERQC1jtTyszzwnLKPD48svgYYfhCFpPD14IiD/C7cpw2Rq8Et8sO8A21U7eVyIDR2as6LYGkrs44Yis0ymi9U3KhZGk5zITnbzZc4B2dJO3k3JC82yBnEuBr25C8ZPjLHx3PsG2EceSxecaZs17cSEkuiXme77q/vYk623vXAafubJvWqdNy8jgG39OCvpcjkE+kXDkP+1Ce0tYqWxs8v656ns2IaWdU6dpS7xQ6OR65cFrKO9Le6O7rUJ6SCpbRhxtQojrMuVDm7EWK1p19iKUlNtPGvu+8vb3x6//7/+3f2LDA3jv/7r/77/L29sYv//Iv33//3/l3/h3+7X/73+Y73/kO//A//A/zz//z//y9i/Kf/+f/Ob/0S790L04A/oF/4B/gV3/1V/kLf+Ev8Hf+nX/nX/VrbdvGtn0MGHp+fgbgtRlvNRBj8YsAIRuZThpqP+ZN+RO5GaydmAKlCM1MgN0TRw+XwPlRKbjKfVGbcDiEaJjDuayrLe9Me3VXdPo5FOoSgOmG5hjuVXK4n44cHZ10OlYr1uPio3gUogHaPe77Ljgbg9fXZ97WG2F0dXlahCaqYB9SqJ/LRCgTMTwoayXKrqxQNs1TBfHUaTA77yHNxduBHv/tGpZedT2aDeymNFHMfDEyllyY5+lenGG4Dsa8K2Dc1pVt2/XCVfFYYoyUXJinWXwDH/1EtMFcTKvVcKjV8NCvPoAeMdPPPUz47LZeqfuqUKr2Rt93QbCSSLkxZ/r+LDdDLkwUnWjd3levKyRxb0ZrlCygnPk9AbUvR1ERtUyLwE1jkKJydrSReHAbkFLxkCzlaMQYpMlIRY4qKmEMUjCmOck50wahnMghsDcXZbtdUpu1KJTA3TK518bAgW1O4VWY9/C1c7s/7+LU+DNatKHhGHDonFL6qI/yjbT15iGIgdEFHdSc03i73ni97fzl3/mhUPk58e7dAwG4nC/M8yRXUauUlHj3bmHZVl7eAtdro7fA5sXdGnZSkW08MCDImhubsQ+j9qTnMGjDKKGx18bL6/V+TWKEEALT6czjw4VP378nlYlj6y5+isUgDSHY7yj74e9S02YGGjmOoSIVjLZ3jVLrDWurhKEWqFtiM7uPSenDYYvqJPQu4BmmyIkxfOPLykhxBakjDIzQK5WOdZ8IB1fsWmbE+a5DyH5Quu038YM098Iz2r2IGbRuWNRp/nJeeHx4kHtqGKd3k28u+vmDucPoyF0KkcnXiWtt/PDzL1lfboQYmeeFskwM01gkOyY+hOgFgUIoS0nE7Ju1RwKkNBNMFt6BUulDlO06J1F7pdX3pGQftKUy6ee0QSaQRhd7ZDnfdTxmnRC8MDky0XwdjgF9L+4G6v5+E+x+ADt4KUfnwjylW3pYL5SatDDDC4sQAjTxRx6WMzHpRRKXRJ87Jrkaj8Tg7TjfpUyZVDTEqHGXgiTdHTY+Hia6ubuKA+9mmDVCMOYl0XuAkGhvle31DSndGkZjXque+QBpnhiWue4VkqCN29bZhwqPMaTDiikTm0IppzyxTEWFG51uykmy65Wj3djjoDdJGnKOcu3FH78n8vsuUP7r//q/5pd/+ZdZ15WHhwf+9J/+0/zCL/wCAP/YP/aP8Qf+wB/ge9/7Hn/+z/95fu3Xfo3/5r/5b/j3//1/H4Df/d3f/T3FCXD/9e/+7u/+Nb/mb/zGb/Av/ov/4v/s9z88v1FO405qleU1YKORXP2vik/V7TAUZheVuUEsPD1c+APf+yY5ZUavvL5d2XtnWGCr7WgIeABfpY7OlCLLNPH0cOaTx0eJarXesK47xva1StwZGE0PT8rJRzU+PkIwMEK4e9jbLoDWETBovTmUR0j3KRcuT088vn8nZXoAG2qxBm/L3MPUiB48eCDCx32WfQ/icku2ZvdedPghIMXkYs+mogOgH9kRoryGGJjKrMyKrGKqecFwbADWZQGPNFJojGQ8lEmnDu8vtbrytil8y0b3ojT4JpS98j+0MZUQIrVLz1LKjIUsomaeyGXhacokNvZ1hQHbvhPSYLutBGRD7gNy8pC2dJbAtKjorDYoy4Wxr4QsTZHlE0agp0i0zpwy+65nap6KEPT1Vafh0ci2YzTiELMj+z8paowVQ3DCcGCaTuoIuGNMP99gdBeTzpm6OiU4ZuouzYAgYwodC0M5Ih6ajqFi9Di1dgKF5BqDTimePBvUpRtdULkYJ/au01eMOr0OH492TPlWfm/320pgOFJbz/JpkrPq+fmNuu/8cHzhmVCDYcqY+eTdO37h5/+gnt/e2PeN55dnXj58YCDr5lYlpBZTBILtDBOKvhzutgDZN48RdW+OBPHRG+32xo+uLzx/+Mq7oZ1lnu6FsAjRCv6sjmSXH7dDyFiQjgjEjggR519shBBYppkyqZN5pPceScPm4vXRlMvSh4IadT39QBXFlelmVJvgGBUF/Wxp0nhh7Oo4jKENSfc90YZGp+ZrQQgz4+jwtiqReZLg03rjNAXvyG3U15Uvnr/kAE2ez2eW09lLssHptPD4+CRoY5RDMEaxWc6j8/6Td/SmBHGQSysAU5qYl4nTaSbl7EGQEk73JvebIgqSrkXQ6Hn2UdGw4Z1CLTkWInE6QJyBEp135d2Uo0Nd8kJJGpdV1/Ds1UQcRp3MbdPzmgLsfg/N5O7JflCap0kdx5zuxosUE2USd+cOAjTUxfKfpzbpVGYfj5pVegvUJiZR8BlnH51YCoXB5u+6XgTdm5ZVKEYn2HbQzxlxG3KTfRgt1Baco+N749F5V4RF5LN37/nkUQiF2lbG2Bm7Z5alzEAH6tYFD13XnXJJrjkJlClDa77HRG7bpsNgH9xeVx1+wtHRHITRvcWj6xZCVOe5dfr6NxDU9gf/4B/kz/25P8eHDx/49/69f49f+ZVf4c/+2T/LL/zCL/BP/VP/1P3P/dIv/RLf/e53+Xv/3r+Xv/SX/hI/93M/9/v9UvePX//1X+ef++f+ufuvn5+f+emf/mkuaZDaCgebwgIhLBiDPvZ729tCY0rN4WsnWjNe15XLJ0/81De/yVi/4nc//5ybi/r2HjAyKRgWNcs/To3zaSGkM1vv/I9vX3BrxmkS+K0PeL3eeHl94UBlw2DOUm5vdWeZZz795D3vnh494RJqde1JlVBvniamWSFtCg6zO3o4DrAqjoP5CeNAdB/KcaVlSqsygjFCp1ZlMQSQPmWa3QoqJbZ0xcZ8molovNRGl44hmlJO3e4WvNU/hqyHIUqEZ6MxDgFtiN4ZkT2458Lr6ytv141m4o8MH+sc2UDbvvN2vTottCuYMURpAkaDpOtlvd1dUpCprav4iBASok4CD9/9Lp+8/xbbttL7YN53vvjqS/Y8YxF2a5SEB4U1MrrO23Zz0bPbTsuj9CAMQt+xumMB9v2q5F+3mrdtl42SrhOZF43FIwgsJjoSusUUyV1t5daD7H171eLvDhiNUDTuSiEylZlwOoN1tutN4uVyovl447ZdVfQYjDBoICtmNNpeobnF0tuxwa/hMDEgxL1opFjUJQxasHC3UD5aw7Ho90wb8lxUINV1pY/G5eHivMDI6fIAIbDebpSUeDifpXnxvsT/8Ft/kWWZeff0jhQTn336nofLCWuD216pvXOrG70qwbbtLo6NyQvXQImJZSnkrHC+WnfaONrUwd0j8LxqY7TeeNsac8z3ERnBnXcY2Y6RifgZFgsWErNt5OitfQxrKsZexkazKNcKGhuWvJAwYhLavI6KhOCTOggjUGJg3a7u6vBQtyC9VPEOXm87NnQKDlK7kmIhTY6przpJq2Nn0nOMpi7ZGJxi5Lxoww5e3AxrLLmwPFw4nU6cloWc5cJYlhMpZXdgyXHTTGvMQSk9dHn3DskcvCuFRj/B/z3IDdMPxo+XzDmL89R7c6fNAGeaWDN1ywhepOEjqsG+yXm2rRuvr6/cbqtPUkRrJjgwMGrEs97e2Pfquo3IlPw6hkSky64couaYQNur6MXgY9NM0yxHzsO7WLVJB9OHx3moIDjSvW0MQdPax86u0qK7AjiT1payLPSQySVRa2dfK8Eyo3XSaaJkcX9OTsytdVCH8borAuXQL4WgEUvJkjPsjjcIaHxZciIfTr6U/L5G8jxzjAWjd/qVsuwAUrJ33I+Rmw6OIUYeR73Td1NycGQIVL/XMQgUKUeh09lTIpjx/OGrH3vv/30XKNM08fM///MA/F1/19/Ff/lf/pf8G//Gv8G/+W/+m/+zP/t3/91/NwB/8S/+RX7u536O73znO/wX/8V/8Xv+zPe//30AvvOd7/w1v+Y8z8zz/D/7/cf3n/KNb3zm9tYkkNMkq9ORMdCaRHc5KbCtTAtta3z5+ZfklHh9e+EH3/8drq/P5Ckw58J5KSynE9YDb7XSS2Fezso2aDo9nk4Lp9NJC3Pdub7dqK2TSuHT9+8pxUFvSZXpVivn0di3la8+fGCrG5fTmakUgsE0TzxcLmqHmgRYKaklPDvyNaWCSzpc+Is/kDp9aoSkVu562/jw4YUvn9+4rTvbtsknb1CyHsZM5/HhgdNpZl5mpjIzLyehrbvmsMOBQja0cNzZdDH6jP1oPWoz6KOz7iq4CIK+Re/AvL28OEhPVkgJXas76NSmjcnHBs7OiFEaiDoiyzKRY+D2pgq8tqZTI7LS5tTVlmbQLfLDL7+gD0HubuuqVmSO2G534Sm90/dGzB85ADEvsm8Mo1vkul2ZJi0WwwYlSUyXYmZKhRAyfRfauqrtREhZXRA06kpBtN8UuosGA3XfqHsTRNCDD/e2U4dBEJo7xoXu9s4YuhKSTxPL0hg9Qshc98667xBnttYJBvveyHmSkj/CeX5kpN3n+XpuDMhZwjz1vQYBid1iTOSAdyAVvqb0aRjuOJnnWQVm0qio1p1tXwVOM9cFBEGx0mfvkUzHyDFzOp1l+c/q5KSYndfzMU/qertx23beWeDl9U2MjDJLUL45bygllrmwNxibNvMQi7pLo4lKW1dGiIRcBEPLMzlNyiyJ6pZZbcS+YXXnmg73XnDLsMLm9vmRkALZoJRAWMa96J9ypq6NrVe1zMOm/KIsTUZKhWCyYcfVhbHpcE4k2bTL4ETitu9u5tBIwoLGzDkgzcUIcmAMI00n2cADnJaZ8+nE09MT58uZUgpzksU2uFsmEpmW4l01uflac7E+g61JYHWsI3ZAAX2tUSZSBIsg1ImKKz5CwtqQYCWiDtuRoZRiVOie69ByKYQYaE5AxjtwtQ9urXPbKl+9bLw+vwgB3yrLPGt0Z00m3aE0b9yirtBRNK5/epR+pzW6GTtJHTEELaymjX0KEDDm5eQZWvozuW+kKNfhGG8KtQ5uVQ5Gj13BekAYibqjz5czY3+jBGnuoq8XPcqxtVumW+K2BmgN4ybXrhlj3MA64xnW1rhczvz8L/0i3/3Ot/nw4Sv+4v/w2/zoiy/YXRcyVJNKF5giyzL7Ac7XmPWqgtUBhHvtnkzdXcTvBVXJfn/9oJ8m5vnko7pMLJmomYQTyYsOKu4KCknxJ1OS3uQIVZQY2enqfs/PDw9/zb3+f/rxv5iDMsb4PfqQr3/8uT/35wD47ne/C8Av//Iv8y//y/8yP/jBD/jWt74FwH/0H/1HPD093cdEv5+Pv/yDz/n87cbjw4lvvH8S6nzjLiady+F2qViVyO7lthJSpJQs0FYb8PAN3r//5l1tPQi8okA6SxcGkVuLXHep1UuEMIx6W5n0hjLNmTgXah9c60q9veomuZhoypn37x757N0jMcI0FRKB4pV1H5XbeqUNY29Cup/miU8+eaL2phN47Qjlb/cWowrbQTAhtGurbPuu02frKrjeLRwx81MpzHOWVqYkn5trg8e02Mx+YmN4SlFQSGFILvwznfjWJsHT69Z5fnlVi7AN529ImadsFSNlpaweWh0LXeGNWS+axYB1aF0R3zEVn/OqBT7Fzvb2JS0mljIzBo7TF40x4O3i4HHvZSZYYLsJvPfydmVvKzlBNBUNguBBmjN1DLqDp8bopISScIGQFlFEQyKUieGnj2WahPkKgAvzrtcr19tOjJ0yQUyB2o3RIppWyC0Bm1xi1hlWGUmLYoyRVE5yZPTOkowwZbfzFQm6rZPGzLQUzAaXWS1YCwEsEkjsQ+4oFR3iNthQlyCm4B05iUvn+azTZAyUUiilOBywaNNxt8roLuR2HgcoBXzbK+sqVgVRtNbWu1rP3v1JvuGLHNwYX/1IlNOo0MiSsy+qHs4YgnJ9WqPuziExlLwcYPHwTsy4bVdG1+l1dChlIhNl+4+JeBaIbK/7fX5fqxOEzRHwS2JOhZIuGol6u/zgCpkZtTeNXdtgrbLZ133HkmETfOuTT3m9vfLV2yv7+sppXjCrDDrWdoH1op674kmx8zy706STQ2JYIE1FaoKAhIc531k2KUUeLxcu54Xl6HxM0n5lH9eOgwNlLvY35JDrlRQC27Wq++JunRBlg7YGOc8a5eEjXwtY/MiDOt5/gutAzC25Znf4mjdQDuUo/iBAgOZj4TYG3//8S7Z943pdiUFd19Ya27ax96Gic2xKdk6ZiLFtmzthIlurHGA6QsJSYuydhJyAKQyFGUYkGt4PKKRn2gjoytZnUtB4L0bjdnXs/tDhZ5jMG+u6yTwQPa6AyAhQUhQUshvDKn2/EtE9OAozI1AHpLLQcQdp1KHDTDqNHCKFCGHQU2daTry2xv/t//EXKP/P/1Y6mtpVbFrHQqSkQm2d6O9ma7v0aweB15qvv4naBmleGL0rTiOqS1uSqOW9Ku6hEcEabX1jpMRIiVAF/yzTRJ4mNQBCgpgIqTAcvhcOEJ931JIEW1rzMfa9cr1ef+w9/vdVoPz6r/86f+SP/BF+5md+hpeXF/7Un/pT/Kf/6X/Kn/kzf4a/9Jf+En/qT/0p/sF/8B/ks88+48//+T/PP/vP/rP8PX/P38Mf+kN/CIC//+//+/mFX/gF/vF//B/nX/vX/jV+93d/lz/+x/84/8w/88/8VTskf72PkgopZNa3jb/y9kO1qLOj7X18EqNyYvZaqQRCWjQ726/ErPZvMOMyCYdeq1p8pWSudZUezSQ4Cwl2jNu28qWLtCQgU1BhH3oo1D4PfhINTAVOc2a/vfKyKQp+mmTtvVweePfwQG/w/PLC2/UmWmmUIyU8J0rRhlpKocSPYt10pJbirIPWSTFyngulN4lQDcWmh6jR0aSNX+Ci6MJODx+LEuU1PJJ7HKTBznrb+HLTRrTvlb1WFV9jMIJyjEpKlGyE2Pzl8IfT24Nj6PsOZt5V9blrCEqfNTCrzDExFeWe9CZ0uYXI+0++yTIVttvG1roKuWGYucbiCCIzo9/evM05GE0bjk7pglnFnOnRIGT2bcNCJHUVkwrwGIBm0sT53rm6lImHhwtpnshlYq/VNx4VZJd915hh3wDhy9faGSi8z1ojhsFUEtOUfeNTJwDD27QSfqaUKMukLpIv9ikFWVVdtJeywFp7FSflut54fX2GmLVQOxRr77JaDrM77+U8L5xOC8v5wQXUCsUMiOtwzwbxFv9BR45AiIIWEtRBfHt7Y99urudQblR1DZcldS/KnFl8HKqsFfw9dTdRKDqxR2lIllPhFGDKRadLvOCJ0ZOGdeJrw8FpfprLuVByAgZbVfpzb5Vtk927tcoYibobFQdp3R9UFdcixep9DujkH9g4oI2ioXZSNspp4v3TO0ow3l8W3j0shJCUEptUdEpYf5Tcnj4cNPrVyKDDiGx984Iw3Uc38dC1oNelxsAX1xt2vcGwO3U0ZzmOIJBzJh85YSFwOgkBMEZnjI+CX/PZdG/V31Edej7CxLgXM8E3ncPV+BGrHu46Domu77+tn0Wvnw4cJgfXj778kv/ut39bz3qMpKCC9t4SIFCIjKhzuwwHUVbiPtxGpzVrVKNbIyS9JDbUJRi9S2DLYJ4yze/bYbTZa6ANg9CJJi1jNMOIbGtTx9Xvt4VAyAuHiFy0cnWa6t6B4rRuWbkPN2bOhUZgbUYzCHskjAZURliJyG0Ixt4rdV+JoZItMLhiKUNZWFuAlAgjMpdMpBGIxCysQbVN99L0flgbGA0pAzSmLSlpBIPE/bF1rbtB48kRJnoXhkE/k8IWbewQI1PJ7NdALDOn5YHkB8XRu78Lhcn3cT07fm89Iy2E4OLto4L963/8vgqUH/zgB/yxP/bH+J3f+R3evXvHH/pDf4g/82f+DH/f3/f38du//dv8x//xf8yf+BN/gre3N376p3+af/Qf/Uf543/8j9//fkqJ/+A/+A/41V/9VX75l3+Zy+XCr/zKr/websrv58PQc9qHADPNoK0NWiX2hqL0qi8y+ht5zvwt3/kuxDMfXjfaqHzvb/km3373wOvLG89vohdijVzN3TSy546uxN58vpDMmHPi3ePC6+uX1H5j5EdCnnT6JLBMhWWaOU2Z0Ru364aNisWobAMgzTNxWwlETpdHj5IPpGkmh6z22jHWwdj8BNhbZ687b9dVxVc19nUTICgXzDp5KixTosTA/PCO0+XkJyGkEfDFQcnBXR2kLjFw60OgraZQvpfrm7obQ2OYXJK0DmbE0ZT/0YccKaYFtgWJ80ZrxKHukwLlJlqXqG85nzBDow5TZPiRfmo5MM9iVLyuV173yrpX4lC0+rIUzUgZ7NWDsOiYdWoKECP5KICcTxPotNq4rjvXqkLq8XwW/KqJj1KmzGi7t/gHJQw2Fxve6pXt9kKZldw7LBLTREhFBNsoemvtel5YjZAKJBU8IQwFbuXMtco6Pk0TbZcYdPROmSZdv14JVcp/QnSwXZZrqUdGDLy+vPHy/AW32xvkTPeE7D4E8kop0INOoFOMxCCqLSOw75BzZ05GmiJ5nshRRVMbjdb0bK37ppGdjsMKTAyHsFpdjzwFETVTVPxDyhzAuX3fBfzDuK47IWrzLtOkxF2DNE10pwlLBBrYPDbhw22VVTo41TNqk8kl+/hTwk0wRjTq6FxX8SVkKS3EUpjSzHxRN2RrVc9jcL6H/xNTYOu6bsJoOBAvRCxMHOnlAdFrcxCdtRLEJqk7tu804LUPjYRV5YODwgidNDZ66/dNPpWF3g3rEoYfWUDNUIDgmI49mWVamHOmlEkFUEqEV7t3PaZJY7rJi80DJXC9bg7vs4+LaND/HB2QcB81uI16dHcgfWRX3B0t4J3Z6ByUw5Z/R4PdCa5EBUVKC6O4iwzsdVXXue/EoNFfKZmHhwvLPJOHOjSbB/OVLNr0XlV8bm2XroRAzpEyzax7EwG4NvrotL2z9Y1qnWkSs2hYoNdBH5F9yEHX6848TxBdNFpXQd+Ggl1r7yQScezIBOlcI4w2NrZ9Py6ormXKECulTLy/LAqpBFKciQH26qj9EHh7W+mjMJ0vhDCw+gZdusloA9tXSlnowai3GwTDYtYaESKKEcTXt+7FZmfURgbpn4rG+CFFco48Xs4sy9lpzx7PAISxaeRt3AnNw7T+0Id7HVXktlZpdSOFxPl8IZXsBo0D0xHvBewxWh5ff/7+Oh//izko/9/4ODgo/4ff+D9TyqKCwFX7ZZrVEt53YmzU7aZZqFdwc8kSiC2LKtZhlDyRTJarUSaaZh3MKKvDgqKnrVVlZ0ywzAu5qPUeuxFtEJYLKSVO88zD+aRKeYj5MUZwa5xOgrVJaDW8GOi+2YcYWJZZm5HPjP3cohtcmwqSvdKGZnrT6cRpylxOJ0rJEjxlWZ3Vku9OqtXnkMREq12OqlG1+Hd3+aiT8PzyysvbjW2rtDHY2w0FmIlSq3Un0JPgQPGwAd7FcBOlFKZ8ZFMMUk602iVeywp7OxbH3sTKCMPY95WQE91n9BFxbVKMnCZl89jo1GYQTYWfI81jDJSg8c62vulrHp79oM5bWR44vXvPu6f3LHlWARCMcbiiTN/Pvjf6UABYH02W67q7e0o5MxJIRs9Ikptl9EYp5vqbztp2ks9o+xjsdVCmmWWaVRSESFJaHfNUvO2eCCP4dXYAmPobdBTrcH3+iuvLB1IYhJRdRyNMdYmCk4U0UeYTU/GgtgP6pDtPFenknlVkyK4dbLDtO9u+uziy6jl0krLcOJESjf169S7JosyqPggh66RNo+83BsHF3dJymQVayI4ICAKG9Y0cBqkLurc3dc9i9DyWIDecHBRynAl65YBF19gcPIjWuhbSKpDfMQfHO3yCXAUXvh6dA40V4+gUd1q37poe8A2+kxBXJ8fCiJNGRUQVLWVmd12ENW0SBx2ZAEvM5Cxd2RiZERMhRyI7U9bBphRZiImJaI0yFdmL/SWOOd2fCRUJ4V44Dkk6iDH486iRj94DtMHZuLv9TBkbYB/5T33Y/RkJProJ8XgGuf9eDB+LE+W42J0hVGtl3XXA2baNHCXAn6aiEL62a6RH4fn1jdYGZZauaClZXJOgaIMQAvOUOc8TgcS2N758+cAw4+FyZimF1irXbdemPZRJE7A7u2NblRX19O6R5Xyh9sHz20awjjW56bq5MHjoJ00RBlob6YpDkSMvqkiNAvNZ63eHaEwa9++9MU8zViuxJOaT3I7rbZMlN2h/kM8hO7JCotoQFNZ4LygtwGikofeuWaCZKNTK5YrkMpjSzPl05uGihOGQBNWMMRNiFnwuHiDHo9j0jCl/HmIqcDw/IXiny3wHk6tP4lwlcsuPMo76jKPlHIaPd1zzBoHb7cr/5o/+r//GclD+f+Hj8TSznC5qU42ORSOnwTwH+jSR0kJ8eiDFQG+7A4rCfS4aQ+acNe/dqm6CdT3M3Tq7w85yjMTRsVE1m9wHra800wsQ/WSQliaxaZJgd1iABCkqiC55sF8MMHKit8zIM7dtlVUwBFKOnJczMSSyBAccXrsQVbCgAwmgZ7ZjWDfXA+wSdzqVdW+itB6bDMipMk0KI4tfq2wl3vzIvkjzzLsyUbtgb3WcqN72DwYpmI+CmrshBOz65P0TxVvzye2bavt6MmcTWK1aZ+tiT9BlfX5bbxLzotl4DslfJC2cbRivW8O2g4QgAYqNrFGbW2rb6HCaWC7vebgoE+gyzToNRinKE8eJRu38LkSknFtdP08oiSVcGEN6i9YaIVf27cbYTdknQdZZA137VjE6KZ0YQ6fkORUXiWo0cJ4TKQND8QNbXZlzIZWZdZuxlIlRacfKoPmIoc4hE3JwC+iFYN/1PKD4cSO5P+Z2PxG33qmt8Xp9Y/eNuw/Fq0cb9C5tyTCjjU5Eic/XvZLypFCx0Zlz8DgC6Eljsul0woganw6N3k5zZt92SDCfToSQ2GtX3ktpJBqtXjEmLE1CaadAIdDLBDGy4NZFNI7s/cAEdJ8GBO82NXddBV2HaKRgCluMmbREZub75wohCooHnkw9HLgoIF8gUBw8JxdYEy3WApFEKmeW88ycpecp00yMsm9/HNGIpyTmEC4Y5T52CQd87H6yHF5YBTewRN/81aWqNogp36FpdI0bQgL6EDfH771ufiAEbWAhA10Cf7We/fO73vUAnUUvVuXE0Nix44cW6/fxjqYxDlwbypSxYPfxiwU5XMwLxagTCLfbyhid9W2Qc9b7BAJXhggMRu28bVfG5NERw9BWFWlt8Pa2EswQRk8123Z9Zjsw/YT7dTzceLXLQ5SXGeuJdWts9Y3jdJ5iJC+ZboelfVC9a5hy0kY5ErEEcm5+kTu5lDv/KJ7EdMEPXdmMue0SzY5CSPp5ex9czicuj2eoIlebj9qVYQW1S1Bba6d3wRkTwW2/iZISl1y0ji0ThMRUCjEOJTIjicN13/2WrJI16PhNM+WbadQnltaxoYx7QSo3DjYI7jJL6XAASkMVY3YLuhgnZVoIOauDaoppgeP/uSdT/7gfP9EFys//1PdYzifqVkkOCTvmsHttOj3tipt/u77ydnuVyyImwrQQ0sR13VT1o0Wmt0bdoFB4yIGnb3zK+/dPLHOE0eldgXk5u8WO4CcZGFGzNv0C0kmAusOyiP9v8IVz9KGAL7yg6HI0hCDtgJlezuErWxuylun8xn0UEv3EaFkofJy90BmUPMhxx0aU+MwtzXuVDbt1odM13/YRQtDDNvw03pxtkUe4FznTpNHTMk+c/TS07pXrrRLjG1NKBLsCxrrLL08I7LvcRLlMjBDZm5+ChwTAYQx1puYL622VpTGKFZOSbKS975QshkoIkLO8+jFBd0hUCCpYLEC1zOevGz/sV2rtjCBR2HkuLnCe5fYK2lDkJDDRXq2T8uS6H9dpJGM6P7LkxDxPArk5t8GGg7Dgjp4HaS5ilA5l9Mrb9ZmvPv/i42w+Dvoe6BTWEakhsY/BHBeddoFUhKgPQV2kpWSeTguXpTDnJBbF8SyYhI1qvaslm7In36bIeRyiRxVXKmRm9lqd1zG4bkovvkyF2o0QFXZIiBIV90opmdvW2bc3RpW9MjhRd12vTDkpjdXdVBa0REYioUPomb3vkCrWZZm9jcHu3T/B97QR5lwIJFrdJOwLR8eki3gb5J4iJZoJ6JaCNhdl4Bh912glp0RFkQ9TzsylcJonHh4vwoWbslWiu2B0yrT7ibKaCjNt4gcgS4LbGOTaiM5ikobDcEmJBL/B3UOuexpdzz9OoY7xuIfSwDRk641rFYQvmMIaCdAg+qIvpJJsn5FB3br/+ehFhUn06vd/IC3PsdlLVu2Bc6EfJwvnqID1wbpXvvrwFdvLC9Z2Gv2g4lGiAgANOUHOlydSLjycL1xOJ9FdOcaD8W5ZNjzhGCCIUdL2jdau7LVRe6VboPcgy24wmvNDRnPNHENaEjNPdA/SlSStka3u+gFtKLNozmx7ZzJxO3p1Z4uLwrM/xzJTNGcWNRkLEMwujE7wkeQIiR7ljCnF700f3FYFeJK1jo3a9P1FmTV6HxoHO714IIdfSdHpynp3c0gwdMybLzoQ5JjYtx2zndf1A3V/U3hnKmJ7mdHj4p01rWfregPPQsqHuytEp85CC9B9XU4EAQ2HQGxGJ8cu2rffJ8dGur16URfVAtlNBGmaSXn2MXjitv5Nkmb82z/4PilnPv3sU2xrcLvxcFnk5S8TIQ2W85laK+enR74FPL+98Xy90obmanOaGG2njkZoVybgp3/6u3z3W9/ictLptbaqebEJEb7uijX3mpPQg1tiu7f/j9m77LDBgus+JFgsOeuBSyC2RidZIp9mlmURInyoel5r4/Xt5i3mrBNajPKpu6DEm4oQHQY9zMFog0ZjLoGSZ/plxgy2bfVFsdFG9bRkGKgw0YqXMIvKCAlSqdcxpHGZshaVMeit+fr9cV69rTeuvdFb47quEJI6KSaKZkqBbd1JefJWJiyl0OtGMc1dHx8fWL75Ka0dxMhI3SV4PGbRpUycZn/piax743rbaE0R389vN3cOXemeaxSdEUOIXLfqts0PWrSWM8Uts+temeeZy2nhentlq50+IjF7RyjC5KeVh9OZ07wIsV+0MGCCa0VTkRByZ+DC0JE5TxOnd98gxcj19coPvvjAHhpdHm6KwWWaGU3JtSmCNXUHRoiM/ZU3M6Z37/j08TtMJbnoV3RKPRuKEwh4VAMa+5nbno4Oiysq6KNRhi/2vfPYm9uHG9tWWWvjw8srY1RsNF2r3ugDLucz0fU/OcuSGCO05uyQDmZNzojWwRp1W5UTwyC1wJxmmsF1dKJJQDoljWTxwWG0nTSZXEnmNuYAY38lYVgoxLJwmi9KMz4vTEmd0N47OT9opEZgWhaPo1DWj/mIyEYmoGKvmkZNwwJhRIIidb1Q39FVdU0OR5aPOn7OR8QcutbrUHqtmRKs7WNg6AjGiJG5maQ7vluHGAgpMOHA3gAjaoRD97FeNxfCa7MYoUHQfQ0WXRTbPo6+3JacNRiABDlEtt68YysA3uhy3GheFLzogVNJlE++xf70wO3thbfnl49WXgvEblCruh9Jz3QPiPNk5pubgJoHkXs/GDIxah1I0oLl/YjMGMxhEFJj2MreAgl1mQcito6kYqUkOdIMwdzaumNtZwoVGxUMWflPF0oqGiP2yjIlxvUGoxPDYOyNeblQSVietal3dbGUxj2wmO/3XTdb3bLadP1AOIZOlg4pmuMjNDrqDfZtJ1jDukZTaT4zLw/qOox+Fz63oUyk1jqv7Y1UgrQwvZPiRIpnpnli225Ui+wVMY2IVBOqIYRAOX+mjqjziLZtl27NtWCRRgidQWS3yG5aG2JUcTzIpCljUa6sFCGOTh47Nja2ty81DuqFPUyEOjFMZGQw1nX9sff4n+gCZX+9UeaZrz7/XFXo1rhezpwvFwUXzROn5eTzCL177x4f+OzT98rKGIMPL6+stXM6TVwezpznmcBgv77x9uI0SPUpCKaWKWm4TSs4yjmRijaFGCYnJKrVLhV5BPNZHEZwUE5KWS26FO/iu94b1/VGr9oY+jjcMR9zHA67r06YcjG04VyQYS7sUthTSrOL8dT8NINlFrK8mQKggj4ZbRi3bed6W+/6CvNW6fB8juCnw32XzTSFSLOq03hILsI1YoIpRGdxqIs0pUhIypiZZ83YS5mZXKdymormuSndLYxb6w7sqrw6vTDFyLruhG3lBx9g2/X7gDQerarFHNXFwDf4qczknLBeNbZqculs3SjlRLNEqxIKG5GtDdrLG3MczEko8tY3zeybxKgPp2/wOImHM2rlbZOwtPfBw8Pl7k7LzqiZY6Zb9zTfwWiV0W5c8s5Sd0YK2DQzpYk0jDVlgnWmGFz0ihJXY2FazsQy8fmHD7Ja4ot+yszT7B0fXMgqp9QxXoCjs+ci0Qgpz0pUHUaJULJGbbbAba5cP/8RIUeIj8TRsFFJEYoZVm+0mKhd9x1zh1lcqLUxR2lGksc2mKFuSyji2aFgRbPOkqKIrBh7faNXcWoEhOqUMjPPF8gLPWZGSOp2mNNFTUTcYStt29kRnTPETIuFFsQVul5X1xYp0Xh4UR+aNEdmg5DUtZlPDyynmVIWSpbgMeWIGijeXQDfFJUCfnTUVme6KJRNRcCcJw5o2el8Zp5nIpFnGq0emT8qZnpvtLqpyEZdDAwH7XUCneQaslgmpvPj1zQpURoIk3NQB5EgiBwRXIMWvUunYpW7EFg3K2Cjak3zcWjMkYf5HY/n99g3dVDpznvqfafVRu3G1o3W1B02C6x9KEk4uN7huM6SWNG6UQiEMdjXjWGyEgcbKlSQyDLGLG1IX8EqwwTHq7HQXJQ5TLqzPE8wQ/W8pxwiY92EOQgR3Hl4a50RE/J1QcqrrlV0Z50zmmS/93FdlL2/66IQcpHer3csHgcD6B7i2FsjB0ERW1PnYSoFG4FUVAD11hhUoRr8ANGqu6uQyDmPBNtguAA6pgamIjRPsq+v207tQ/wcG7rnBqFW+raTp8w0zTDN7LVz3ZQ2vIeoDnTOlBjIaRAsEzmRkNAexwWkPIuyHSNLycxZUDk4wKFDFOXrG227KUzxr4El+at9/EQXKOd3j0xT4VZXSEY5JVoMvO2VsVXG243avlBVmhPzNJFiYCmyBU8pYgFSMvZtpdfKWuRAUDvPTzhojKB8nk7swgMnb40dC4lhWI73Td1RNfS++0v1tcreEDujdXct4PC14LN0nXZy1mz2um2MoGba7fmV19dnrtcrYxi3ulNN4xhlTerBHtb1Avo8GgukUnyMJDvlCDJWPi0LMcDL66sWRZR8GbJOMGQTs2WAjUQunieTE0vjDnM68i9CwjfKiYFi3S+nhVMpnJeJqUz3wLEck0YkIbOPQWuVdd34wQ9/xO9+8SXdC8FaD/GlyXo8BpaLC/Wg1x2sk/rup7FADB7klwo3Fz5/+vSA+kVQu3HdOq+3Ddtv6gzkqFb70BzYRvQspsY0L8ocKZkSYFlmQrwTMygxEMnU4NZWE9djuI1YQWOdkCK1VRKR0+mR8+XkEDuIKKp+75XZmpT0o7ONHRuVsVeuO/QPL0pJ9bm0BNmNqcw8PDxwWk7kqXy03H+tqC5RPAe1mjWCG47cj4ftN2p0ZXRi3+ivXzL1Bqlo04hS6fdDyIsRaaTesREoqej0Z00bqA0wgd1SmumxMlJgMo0cugcSdjPNsIElFk7vz8zziZiKd0wUWNf6II7B7e2N1/XKaDs5IDAWw+fdSUwIFy/KJqpO0wgJR4sRrWvzazvK/nGBZFAcwr7uOkXmClx1aowBUtHYwkwuOL3CRAIlKfE5RGmzTp5JZmMwBZ2YFOTW+OrllXXfeV7bx8DQoEItmlKQFa7Xidawuuqd8TTs3hp932GDevu+OknTmfP5wrZF1psAYCElQpzV7eoKNzQX/ZblLABXkGuMoIRzYpD+qDcP3OxOHhVMcLi1PJlE9ykXYi6cp8BisuDKTt9pTZbm3nZCkFbBTEGD+2hK9+1iNlmMDCu0thFjZkSPMgkRLLkOJRKjiKh7l4A/xE7ous7xKEIMrEe2eMQQCAEhJ6IybyxC8E5aG51gg1orU9T3z4Hz3xUgejwjSrRW02u0j7lt621lv92Yy8SImb15dpYNgnXKFJmXRYyh1uht9fDARJmnuxPOzEgH1dkL+b3K2htcUGR2aAwzpcE0n3l8es/L6yvP1132b+uccmRZFJJrZVJ3cHQIg6ko4M/MSAl35nm31QXpioTQAeRSxJHa9o26V172xqtb8WNE1mOTQyr2zhwhnU5kj0P5cT5+oguU569emJcT26hczifmuTj5LnC9bp6uGdVhqKK4tibKHmbMU+E0TXzj6T0PlwuPD2fKNOmUYRJ79UPhjvz12mU+MgAO8FhKieKVux3tPv/vMWZabWw+8jmEi1//kFBJXZPX65WR4GE5kVAA0w+/+sCtdrBAjJBsMGpVzkXzZrPPr1X1G4wk5H/vxDxLiNuNTlK7kYAlFWx9GHW/YQy650HkFGm1stXKlBNjSgxTKJ1EpZ3eBaA6osBrV9ZJDoWny0Iw2ZRx8mxMwr1XtDgEZ5xgygkh6JSWY+bd4yPXbefD7XZX81sKGAfldlDwhkCAVBIh6ee37UYI3VvdSvq0Hljr4Ldfnjmdz3z67j1lCrxLnU8uJ5SPUmltp3ZBx3JSK5mo7lmKkdPpwrI46yInv/860anyNOc9SENhvTuELHpibmaEwXzOMFA3j6RTlZJuYASB3OLwDBw5CHyqp0LFgVk5yXoZvfCU5sG1J+F4wuwuHDwquhGkytdpPHmH8HC0eNp0iEBkPr3jZ372D7JvN+p6Y/Qds3bvdGEO18vyZIwx2Jra4XttMAJ5WmT7TRPVwBiksdOtU+bM5XyixEJG7AdcC6FYBS2OUxSQjRTZ98polXNO9KczRCgxu8Avyt5trrvAQWtBIwszY113btebYhJCwPogh+KdHK80UJZXytLR0Kp0SUEL7yCxjYk8n5jmkyPKnTXkz7Kw7dIAAMRQJEwGdS9rI4fEw3zm06mz1cbuWVBjKAKjt425JPq26gE4zqkV+i7NRV6eIBUanm8zGoOZZTkzL0+8vT3z8vqM9Z15Cq43w0/8G229MgYO3nJGiHffckokug4ALprdj0NQKsRU6H1w2290H7m01gghYSFjyce5Q1osnZcSNSg767wsnKeTTAibRkCVQaw7EYEED8H2bavq+MVIjpM6ml2xFfl0pvVBSR/JqMPD/spsZO86ijHTicMETXMYZvW8mSxpj3SM7SBXV9dhaFSbs5FTIOfgdOOq3J/eWffKaRLVtW9XhsE8n5mWi7NDqkIjrzunhwfm85kpvddB5HZja431+spt3SSExu3qRFIpPDxe+Pa3vs3Tw5kpZQimsRWF27pxvb7wMGUePvuE1/POtlcu5wdSiszzxNaaM1HwTn8kDWlx6n5j3zbW+kYfEYtJnaJhWBqs65s6lb0pnkNiN4xMLhMJHeZm31ciIqXPJZPmhfVvlg7KplAOYjnztg1e3lbfBKN3I7TI5ihia06ZeT5psdo3vvnuPX/rz/40y6xqWqFQnjeDkUpmdgvz8Y+5vgPMmQ+eZzL6Xd3eh0A4hyofaVwpbreVG8Gx0eAVqv6llML7p3cctiwz43TK/Oz5ovYfLobzkdFojdp2ttp5W2UJrZ7IetgEc0j0XdjmURvZF2lpEzK9wVuAiBafKc9sjpG3mCCLSRFvKgiXKdO7fubs12j0ITFjEtPBzFh3sSbK6UwPgS9eXvjBF1+4RkPhWsHt0DY0m05Rqcr62XQPPzlP3Gqgj0oumWAS0IVgkE9SvLutFTNiLqTpQvLRU86F1G68yzCdz+Tl5LbVmalMrguSoTvlfMc0ExLNnKviIVpbbext8HbdnZwrLUQP4nzQFQHfRnerLoJpJXUvFE4WIRY60du7EtmF0CkpsExn18rAeV6YS9LiO6W74DHFmQN0d8Srh/SR6hlcZKKiBI4N7RBeHrkqATDvJOaY753AERQy2YdcHHV0gaKmhTAtLu5Ul2i0DYaSm0Pd6G0HIiNktr76GELbfR+Dhp8UxyCcFoyJ28jc1sg8JaYYeZcnzg+newEVg4CDxEjxUWmeC4ygdwmovdF8ZClCaoBubtNUhkowowe9ReUyU04P4q/kSElJxUvz7mGUWNKGWzCjOjO1V21cBiXPyokKgWutjFrV3WsKvcQgDIH8YoJUJsp0kuMiyXlx/lShn4Y0BjrkaIQbiLR95/r2yrptjPm9rKl1pxRxTj7/4gtaq+S6kfNg69Jz/K0/9T3mZdH4ewzK/Mgn04XX12c+fPkle71yG4NUTuR8cm2W/MnmTqzk4tIjXTjEyBQDS9Q7M2yQiWy1S9cyn8mI3cIc7oVlJ2G5aIzmRePapV9g27jWldGqxPVBVvQDhZ+J9HUn5IT5AfJSCj/9ve+yzNM9VX2YeSRAIniw6RFolxwDYCFiMdyJsMFP+9IQ6Tox1O07usL4c+uT0Y/jtChZsXnHr7YuYJwLm5OPKXsbGiEexX/X2xhi1KFWzVXnzUiT1Vqn1aGMttaJQQJX1SiRWIpDFQPbkBOoW2f0DQuB5XLiZb2ybxsRoRpeX7/UnhC8izQ6JSRiEkk7BJMoJiRSUOJxCk4yNrA4YFRS9PehBNJ8FrsLtxm7yaKjztBcColM753nvlG3xvWt/dh7/E90gWIhYyYxZ8kZohGzuh+X+cK7x0eWaeI8T5RykGX1AiS3cEYC+9Y4XNqjqy04z7NGOr6Yd1/Qzcwf6ujW03r/fSnzj66L5rncpbQfP2KMrtKHj4p2PTgfQ7n0EPfhVshhlCmT7ONcE4CpsIyJd6Y05GEm224InuS507tOBfu20UZzS5kW31KUNpq8+7JvK92MswExKP/ExymtBqXGjsE8FQWiJbU3e5dWpo2h1MphvO0bBFnoevfETwIKotP8VcwAFY85QIhGi5FpmuTUyImSC+dzJiQXAockyaR1Gh+Lx+FpnCEF4gjiJUS9+KRESJkwxt2uZ8hRca2NUE3ZHmxqWW6y4+2t87YPbpuCye6uqijBIH2QQ6KZrlMMsprmnBndQ7liZK3qjcQQoa3k3CRCqzs2TA6mAK9Dp/WArPOg53EqifMyc5qLd/4Ep7qcL+SoZyNGxJWRjI22b2odD3xz9ffmeF6PAgVthlUDI/2cGFutDJOuYN021vVGb522r75gu2W+7sxF2p6pJOdGDM8AkcutmaRgfSjpOgWNMNJdeL7Sw0YtE3POrPsb8UNRMF4sGt3gHCEz6XychqpEYmG4GbjbQbqj1qtsskEdsGCyWBKkw8Btta2r0A8h3LH8xIGlQA8yf+RgDssLTNk7RwSwGWtVFvfeCDEx8uk+TstZjjelMEvDgMcq1FrZdl1nDE7nCyke2Q3GCAPmxBQfyZcHWbRxEkXQ81s9LgOToLKtjZgKH9ZO7oLs9cPOC8Q0ky9PbK+vYuUY2NgZeSJFuTnEHtKk5zTJKdl7p95WaojU6CPULHeUAhcDJeutTi7CPVxbhMFYNzxaXpqIgBD/MZBCo4VGOsbPo9LaSk8zDLn7bFNn8nQ6Ey3w+Y++5Jvf+AZlyhpbm4rzbYhpAvo6vQ96kOvRJORTNEKUy8qcMaUxiNbnoWVKOr//yT91QFcaqLhIgqa428tH3EEaouDrvTmSv/l4LKVEKoWG+FFghCb9mJyZ+c5R6kOkYevtYxTA64v+jq9/IySqDdouQF3wOBSAaXKQYZDQXDqbSM/+nnSNC5MZBR22LAR6hdvtlas9YymQs3RSNlTohw5j7HCTKBuTs8eCMXqAkBlHIRgzjcDeB7e3v0lcPHNMzDkQM1wuCw+ns/M9tJjnIp2IOASy00XXAYTgWRvjKAy4K7H7MAlFvS0Ox4LuAtCokwG+4RjmiPRjrANfH/FgHzHhx/+bf+2PWR+HD13/l7NHVA+3WwZfiPHWrLk+xkwQOgJzDF6MlPupwji7CPLQH8gWmTwZ2A95jG53mNno2lgOeNsxgwxuZQxBbpXAAWca/m1HWQJro+6V63pj33den1/cox85nxfB5ebCMheRWL1oPAo/ySrkzpGDZKfVyofnF15vK90CU0rkJOvtvu1qU+bE9XYj50kLNYlcikK7TCm1Y7+Cky+7DXUKvHfUh+t/TFyZbtBN46QYdVoU/yUQeqN59k+z4YtR+Hh/w1Ch5D9PSo6eBwZVegBPfrIgezEhYEGkXtrOFIdIogPWXdTNL7541f0reuZyUDE3HPBk6N78/M/+NJ+9f6IotJq617u19DgNivqrAhIvjlvrrHXn7XbjdrsqqwZj27e7VTof/ZAo0F4Yw23phVtTYvDAWTJdOG0zdafOy5mnhxMPlzNzKcRk7NtHWCFBh3iijxCtcgSd4fbZnJzBkIJrw5Sz1WujbV5UDbF7QjDavrPuldZ1j/rQNZc2J3NYXlNOlJKZg9K0932nje6kzUwJDnALsMyzAkWPTks4UVKg5HQXZmvsJZ5LjCJpp6COTBuNQNKm3zrV7cbX65XX9UaYJi6nMw9z4f1yYXpMXG8rX76+8rbu7E3F+K0OXq43cowkjPMysZxmH1fstF55e3vDxnDBPg6nLJwe34ugHBDngk5vnSkWL6aU22QM5tmDa2YdGDJy1sWUuO0qglOMpGi0Xolz5lIuLNNEs6aCtStsdHSN3EfXs7ffdl72m9ZQL17GMOEF0pUSEzlGcsl89o1P+d53vkspxQtsIeeJsO8bmJxLKX40JkyTaMx7rT4O1thNcEARUg/2TApaj4Yv5Io/cZuwBW7rSrvdeLve+NGPfsS23VhOEzkpckJclOaFvq+KIRBG1Tprbl8P+veUzpSSuJxmFeLTQsqyvjMUDhpTpgVoJtZMTJk8umIbqj+fCZpFWhW/Jmdlxh3rs4q8XRk+ADH6PRMQlBwYsbHbjrVAswwGJSZsBGqYfK3sPlYWwr7gz3uvQjiMgwMk6cM0pOtTDllhIRL624+9x/9EFyiXS6DMmREjb+vO8+uNJcm+FQP0oYqztU5KE9/51rf5xvtPmOaJZZmcWaKX0/wUXkq5b8xHGxy+VljYX61ocQwAdm8DHt0Q0EMS7gvix88zDhFXDAQ8qdiLIMGJVGmP3u9URoAxmjs0oiyJrhhY66aRgQ1Op0Vtz6ZY8WY6bZVcSDl4Jyjcq/NS3FpIwFL2kUun+ansnnIZAiCng4Fj/XXq6m0Tetp1OtNp4vHpwne+8021ykFdpiY+xbAueyXqSk1Z2HIz06x5XaWNaeIbLKcTy+WB621TizEMWRdjIMeIdRMQLQRiF1q/ro0aTep6R/GnCGJnGL02uinTAtMGM5oKwiknqe9NSvlgdv85Qohkk/W7rZvGU2GQy0xOhXbvGnVGa8iJGpTFw/AO3CAFzc6xjZgL2WCsK9FP9caie+5ONILEqW3TnL9HqG3cBdVTXhit8Vu/9ZdJ4ad5uGg0qPGlu3Z84QxHcUpwWFfXfH1s0FdK6Iy6i8oMPC2zf65BRu3nOnTfxImIPC1nbcyzJ4AHidNjhmkWyTZHCawD4GBVbrcbexd/JYxAIDPo+lm7hIdmAiiCupO31xc+f3uWrbKreKDvtL5BzhDkwIkhkMrkXVB8fBbp+8rwIoVm1FunxsBryg740ibdEfq/j3EP14QrMX4lHQFitUzzwqfv3vHdzz7h3VIYrYtw7/EUIXQt7L7AH+tLDJEpR0wKX/7yD7/kZXvW+z+MSymcHzXYyrlQ22Bbd+Zp5nEpPJ6eCGasnpVlpuT23nW/YzBi0ck+ATFqbUs5E7NO+SNojWpuGz/Wq6Nbs2S5HocNIioCxyo9jQVxdmoX2TmHyPbSeY6v7K0y5wit8XC58MmnnzDPEykEidHRgc96YLTOtq6+9ioYcKsqirUmbHz54ZUvvvxvNZIsKpYu5zPv3j2p+xGiE4n7fbROh2haLw+HFQzPCAp6D+6Fiw6O3Y61T1qk3se9IxGiDsTn+Xus25Xb7ZXWPMojdkJWJ7l22JsKthJUXCQiY90pyR2P/Y19bWxfVabpxLe+8z3m+aRIB39Ox30vKCrSe6bkwuPlSSJuJCsY1mltovWdfVPBwPgYPZCSj6rA974AY/UVIdKbOFvB5E4Tz0iRJMpcNOjVJQqBsVc5nKZCmU48Xp7cZSYdnxmMETEqxYyQZi/c/yYBtb28XDkNT7FElWkfldEGl2Xmk4d3nE4nzqcLp/OZZZbwDqTA76Min7qPVuAjUQ/um8gdmPS1ogOOYuXjr0NQu5PAXcdg9hGKdOgVjhHP0QJ20pq/HB5uR7zPOLu3IGNSuugYg26iXSpkTAVK74PX/UpKiet1U0ER9X1000KZ80bOgZICaUS5VACoKCVZpxyCYsXvDiMkdjIbd9qo5uQqdPTzSxWBh1/1NrjuG3t7uUOlck4ctMrhuT8DdT9KFHgoINHVtq+8Xlf22iQQDvo+WtMJEJMlWIFenRyTs2aKRn+tCptuA6s3H81kSprIUam7IzR6E7Cu2yCNdMf1mztbUknk5Fbz0XWycXNUIpAyPoqaBLlD7eEWtCFYkv13ADajlzqI62K907dN44sqAbGCDKOPN47uRtOC5bqIEgOt7uQciaErHqEkUhgsDye+/a1vMi/SitClL7H4sUD5+phHdlN12UpKnJeFd+/eYd3Y9pXb7ca6b/7n9eyEEMhZgYn6HoIiI1KRUwnuDrgAhCRmSTPlSBFcj5ETAeP0eKGYIiHq3iBUFSkdYjcaotsmC+ybLLfX7aoxFNrwdTo0puXETiHGM9aUk9I2MUPAZ+VjQJxpIShJlkzOM+u+07cuKqpfreBZRiGqlY5D4kDjvRiMc1H37eXzLzmZ8Z3/1c8SJq0pA3VHpDtT16y3Y80I7niQJmBJxs9991vctsrz9cat7uyt8vnL5pqIFWkSI6TGtko7kKOem/PTE3P28SPmiP96HwlNOTEdNRZG8k16q5VbMx7yzL7X+9hPWjqjeucjFneYoLFLCIHFw1kP/V8gYlG6htEa0VTYTMuJl9c3vvjqWWslLh4OAs+VnJmnQp5mSik8vHvHp0HvYzAFAsYI1mVhbl2fPwRgvSlCwseZgeB0U43kepD7yy8LmIl+i9YsdbThAFEeRfwhsP66dkt6dWXQXG83Xl9Xxtilk/IMpUEk5AmLmUFhG87JscGSJ1rtpBwIqTPPM2FMxLJIw2Hxjp5QBlckuwhZ39+i78lt8elr+kg4c1jd+xi02rC205uiHrqJqtt6Z7OGvACZXqF30xiMokHVaFiInKaFUyp6xxZJAkqZyLkI5+FOn4j2J8AF+GiU6ZojHL1xfXn+/7yxf+3jJ7pAeZgzj6eJPM3M88yyzJQ8scwzJbnyvBS3dhnbtt437AMzHeAOGju4EAKK9fu/f/3D7OsOno/dlRBMQqOoBWeEo+WpG+ROxPvHAcDaMSweEkIp5gNK8R2Hdew+UtLLmT10qlaHDu27b9yVEAPPL8+kMoEpQ2hdb3pQRyOFzjwHvvXZpzxcHlmm832WHoYcE8rdkcp7P+LuaxNNNYnfEsag9sbRZAU8N8bJl03hVTnLvdG7Ti71utJaZa8rxMDp/MA0zbofNqhDJ46xDa7bzut1xUxpuFMO9CrUOUOjhBw0E4gEcjwu48CsYU3ERMsToVdGXYnTjETvkZLVAcpF2RuhRywMhkPAdC/9ResqRq1VsKY0HJtp1cV7DKx2msEUPFwtRcxPSjm7+yRmStJivJUoYGA/oaZycP2QNtPuM3B6B8/0eHx45PHhifmcFLYXMzlmt1RLY5VSoSOibfNE10PwN4bEvF/vDg6PFuggkYgdwlh3EKXMdBJ8LQQtnil5Dkw8Om/GbTTlkVj2slpzd2vK9vnq7ZXWfURqRpknlpQpSbTOrTVaR63iKI2IDUU3SOeaGB6w1npl3W5qfwMhapybEtTRsKSE3D6q/m5K7E0x88OE3p5CpDNIU2GOkxKlIxQv0PUim2PIPRUr+GDOR2NTUE7UVAJT6Fzen/j2Nz+jWtc19w0vRhW5GmkeR/aP68vhNhkjcD5HzqeZ9+8urPvG7Xbj+e2VbavsrWu8M5LTmSOycZvs2XkiRx10iAdiQOPtYHA6LcxZI4BTKXz69MTlcmLvnd3HY4bWv7frjZfXV758fuHl7ebdwUyyiVolxpQNenCeZk6nMxYCX3z1JSFUZotcpkzMs+i8wzilnb6I0NurhMYNGOuNur7RQnC7vQ5gCUWJhFQIZSEViS9BkSQpBtdfpXsX9RjZW+BusT/MCjkljzTQGm3eIRousjXvOplLAo73po8hpyXQa/eEe0EEy+OZYSesNa1LfShrrRokYyKSitABo3eydWLWe5DCzJJmpvPMPJ8xMrUOCN3fMS9ij26/rxMWIYXsGhfu8gKlbKsgOLqAsnwcYEBxdWqtWNsZuwCGa9N7EhnY0ME4pMw0n8lzoWQPasyTujV+h669M64b9XZj32/UtiuOIUSaF3XWpA9Mk6zZX33+5V9/c/ePn+gC5W//g387T0+Pd30A4HNqPraRjorY1CY7uhnm839Qgil+yvGVUFUfEliG8NFSrM/l+g47TkSKAzckehvjI5joSMI8hKaHiHVdV1JMnv6IYGVFJwiNiop/nxLj1dHpiDp7vd344quv6BZY5hmjE8dgbFeWEmG4gDBE6IOXW2fkEyUNprAyrp3fev6c3SLvP/kWabqoi9Aate6EqBBD5bVIxFi3KzGhxa/vpCCaoloEap+WaabMM9Ny5vHpE0qamKZCiGKOiDyqQkwhiZ3rurLuG1vd9DIalDmzj0bYN8Z2hZSYLLOvVRyMYZzmE6FCSIIBxSQKRx8B613o95hQZ0inAjwXZa8KuuvBaKaQr6XM5KzMHAsFC1qkZVE3BWwBzJkQZn0dn5WD8kiis3WqGSMLo08VT8FsHEoKcprYXiu9VnJvxN7c8SVnWCmFaU48Xh40JjtduJzOLMuizlEQY2eM4RZtkJhW34vIumBdi+ved7oNSiwqsrrGfmbSxijvpFFbYx9i6UQCk0Og1r15HIPrbKK5rdSYokudYxb0KwRetjdq3dn3jbU2BolaRY+0mFk7ECKtP4sXYuh01Su5r+S4M4VCBUbKjJhpx3upp4cYIyUkrHXHqzdarexdQLwUDPexA5Fgjdk7RIFBrxuzTUwlQu6cZuP68oFvhEQrJ21u8LViwovToY3xNE1cHt5xPp90EErprnsYw9hu6+/hzxzsFWnS/Fn6PV1ZdaFCikRfoxKRkgrnaeGzdw/OAersVZlVo/rI1JoTkY/nZ/ai1TUDZiyT1hazQTJ1kVIpTPOkrhZDhQTqAOcceXp6x7fDYLTOVx9eeLm+cb2utLZrXDwXUplo3XjZjLXLEv3hi2cu54lvfuebPDycqW3QugIfre+03ljXm2ccqTscUqZczvdDXDq6zFTGvjmcrlHrjWHR10jDutKmcy6EkCnTJNdJ8pGyBR8nBtKAdmz6Lqw28NgCYKiQ7L1pT4iR3kURT1HY/JQS5uLa0Sfy5R0xR3Ipwlf4njIcHOl+z2N273osY68be90IQdq8kgtlEgBOIy2IWQfc7msMrrkBdcbx8VMI6Nd3SrA6SGOMe3SH1gpjb8rmmU8ZGyfqvhHMOHcJi4d1oDEsEFKmDo3hbw0+rI3a34hBeq/uEQMKVFVXXwfRGzEkzg+P7Ka4mZiGt/Gji9N/vI+f6DTjP/1//b9zvpw9u0KIctm3gvMoPHwrxvsJgvhREKutUjcWH6OoFnHw1MdnwDUj5om/3MWj4qAIamSjebXui46LUIMdanG7Fx25OLgrHlC3AOjfLUDtm1veUNAfsG4rX3z/d3i9vnC5nJlSgl5JQQVFiDqJypqpa9BCZh0TeyjQO1McSpa1wzZZlIhpYrn0XilBc8IxtKEEk02yhyRLad/JIRKLRmoWxe0oQaCkHiMWlMJKTCynsyBOIfD4eOF0OvlpN91dDkf0fHTx6rZeef7wgQ/PL2xuH+Vr4WOjN4n+jgwTG+SYBD/LckrUkYhlJvZGHI2WUa5QbeQ0u36oEcaNfHRH1OskzQv54Yl5OnOZCzkrNRuM2quEu55LknKhdYWLWVeAmPY0c2FsoJRJ1OCgIEkL6BSUoaTIFCeWZeZ0dvdHLhJXmvgc/RgRHbbbqHsWoiLfY5IY9zgBNhv3QLWQNa6zrue29k7tjbVWat15e7vy/PJMq1URDPGwSHa/vpCSiu2I0S3TTF8zjMF5mekWubWNre4Eg7kIPlW7YY5x3raVaXmgx0lArN6YxhULBUIkM6C+UTLs/jLKDqnxqVkgO05fO9m4J5mP7sVfzozgbjoLnpGkubner+R6scNmH0ghq6NSAsMq1Ct7azqpm0S187Iwz0+8e/8pl4dHQl7UBSC69iH8njXqGMUBfpI1B7C5BRzuQvcxPo4R7h0Vwn2zVsJuu3d8c0niPWlnlz3YyZ66LD6KAIHc4tcPZseQGxfpIy0YRhwa96m75vEHNqij6jBlMKoC/972jefXV27rDv6squB10ccw5aPliafLidOUFHkQJ6cJe4Bl1WHtervRHIyor++4hxDI6BxECKRpYl4usliHYzoeSCkzTN97ax9trNHXC71vzsfx+5OSTvTFO57ZO4Mi5urAmYMKRo7b6/eU6Angpk6xG/6/5pTT2t/cQBCPs68pG+j+uJieid6lbWxD+0byPSakg601vIByerm7Lo9nzBhfmwDgY8B0F632IaT9MJ1nPnz1FXXdCFkal3YcUNvG9frK6M1T6LvW8bTQze6C32j1HgBpIdHCpBgQx1eADj+tNj3vUYf2YZltfeX/+Gv/u///TzOe58xyEsY5+s0/UoEt4sJOF7Lis/d+OFG+ridRJfF7Ra6RA9AWMF/w1M2w+0s07gAuRbZPpCMN2HUYwf/7Uc0O8LdKC8XeBJtqvuG9vFy5bjtliuz7Tq+VbVtFXBydMCohRdZWdSLvA0anh0LbBwGNS47YeWtgKVN7Q8jqTCgner0Ru2FhCE7nVyKlTCQD5vPU6Ohl6EEq9Skn2l413umNHjQZ6CEz4k6miiDYN3qDeSm8f/qM8+WB+TQrXPGwbQ8VhvM83QvJFBJTfuJyOvPZp5/y9vbCh+//j+xtMPLCVgfdleK1dnXix2A1I5UZS4nY9QK17Yq1Z2x/I4czebqQShJhNuqUYOMkJ0qeiEp7Y28VWxvb9sz67CGRSdqlMp0JoWjz713MBIOSYD4p9j1GSKUwTzOneVGabwz3TcaCLySoLzCCisqGCtptq4ygxG1pa4qK66749YNtEbwLFFKkduPmHSkxETopqLs4XK8z2pBNcRNozUzk3FPKjKD7HhnQdkXFlxkjcL1VOE5zo3I6T5xOJwICWKmlPQjVU7Xfmk6z04W1VUKE5eGRGBK0Cq1hvTFPmW0MQt8Zo2JlZkPjgMwgRyMe/IcAwZrgYEEbQhj6bwVj9F1ZWEmk3GyJ0Y1hjRJlMz9e+RgN6s6IE8FD1W7rRqTx7vwpD2UizzMlzaQyMy0LzOqWBO+MBgLZtWvHocfbWTrADAk17/oFUwdVNaZ34HyNEkdJmzYxOmNHY+bWmzg0ftjRSFgt/Ox29+4d4ugblzq8Q6To+6hHugxt4NJ12DG66FX27xjvh7qOsTfpv1KAVDfCfoOxkQqchrQ3pMnHXkHfoxfg0XbYXrjtib6ceXz6FLMm+Y8fTKZcOC0L75+eNNodnW1ffWw9BBwcErQHqTuVUg0avxHUoe7mRdXX1nbzPQAfWx0TNz4WKDEeXJRAH4m+N3UVo6z/PYx7HlIE0tDy3fZKdO1VCOoMBwyL5k6l4d+fmwyG620wxoj3fecIn4xJRUZJh5FiEK3AvZwN2lPiUIETPWnai/Ph3dLaO1tTJ0vjaBgRtm3ndpOba/TO9XolNx0ue0iYPzdGF+V7vnjRNHDmOEvUgauH5l1Mu7tD+5CGL0SwXrUv1E4KGg1jxvD1bdjfJByUfatMc3OgkUBOhnvyj/bFsQD4yeVwzcDHh/VQp6sdqPaYhcjRmYtucTOfVQYvPPyRvC8GHRUGda8In6xFSPY3JdquW5VVdhi3tSo3re+MeiOneBdCziV42x+CdXpt/n12dRJI7JvGS4yCNWU3SEFu0AYFo7WNEboH5S30kaWrCBlSZt8F3oHggVAHCVShZa2t9wtlaWIdgxSqZ2gojlvt6wRFtsR97yw+J84x8PryJR+ev2RZHpjmE2VZOJ9OCtbL2Z1AXScrHyPEKJJqzoXPPv0mn3z2CWbxHq7V6kbdblzfEut2o0fNhNc+aNdK2F4okxa/lAohzfTY6f0FtsredvI80Uygr2kqWMlstxtLDmTXkAQzSp5Jk2O5SQJYxUHDLXqO6s+5MJeJVBZ6cFT3iLy93KhfvaqL1zvEwbBKwliSOioUdaqGQ/5aawKPtUbOhWU5c356Yko6laYSCUVpsPu2sa2V1+vK84cP1H2/f+8R6VraqFhoBAvkECgBYq/UfYUp00Im5RPzPPvIInA6X8ASdQR+63d/yNYAElOQLfj17UpKhVQK58czUymM0Vlvr2yvX5HDIJedOX+EGjIGjZ1adzmLwoyFRMHIQRj1QVFyc6/SJTnlk5idOcHdfXG062ua6OWig4OzUTD85Om2etxaPtSFsnRhLoUpJaZgfPLNb/LJJ0/E5Umo85hIfr81gmr+tcHygdOHSHbLdv89XQ9CcDCZ/lKI6jj5eu1/1nkiMXjBGe+Ez5SS483VGYouMD7YKTA84+nI9coEa6SoEL0cizojQe+SAZ3ONMsVE9z+PUYg9cBcd9p2o7VN9NpeGb0zBbXviZHRPqYPx5hJOdHHRknl3s2yJrBbmhZCmYl5IaWJkmZCGl9zCDlSHm3Sqbj4NibmyWMBki5oCkcXGm2KqFCMDsoEH67YR0MDXwOt3V2UiKOkXd+77UnsHqU6p7uAuHknoJv5uFTC/o7ReyXSaOuNPpoKpK5xY8haJwLqakoPItdizOomttaIQQRYjYr7/fsOQbGMeToRgoB4uWS6RWyv1H3j7XpldXv+bdvZtg1XkGABQhfX5N3lQozSJ6YUVGz0ymKNOQc6SuDuNpy1Uomx0UaCdJLepFXmACEZ1Q6+jK5tzBmrcoISJz3HXRoivZv9fhDtIzimIPLjfvxEFyit7uzbdl8M1rE7NhwOD3q4LxjHTFlwKHzeG5LmeqUUusF1vXGtG9aNPLrnefiD77O8iFgpzSKvt42X68p620ijKmeiN2+3qnBqw2eafsqZTw+cz49EGlNs5GykOYHJHRJCIDrsa6+VMKlFF2KmjeyZD5U0BExrvdOiMZ8WLVZZj0AKRsmf3jUa+9YZPXhVL/bCXKSm3+pO6JUwIqRCyoXemzsCzBHQG91kLSxlEr3VAuUkBfd6a+RS6CmimK3sJ7dKjIN9a7y9fkksE8vpRJknLbbbRsqJ0/nEw+nC4+lEToEyKWW2E7A4iYVUAnPOnPMDMah4iDaobZflrndeXj9wffmKD89fct1v7CMyOGMWmeYZW+TsSUEUXMbG2+sX5M5d/GbHy9grpUtTkVMmTxdKWSAN6pjIsxT1ow/WurFdN4wXnydLy5RMz2EumREi9bbBkFPkKwa7ddeHCK1NlC6pNeVX1Gh8eLnRPv8Ki4l8oLoJ1Laz7yt3AF40cinUtoNFeqtMs7o9pzgJZkZneJLs5d0j8+k903xiIJgT3gmI0RjNmGPm4XwirgpmSymLbxJhrTuhFl5fXykxiMocOjF2bDS629xT99N1TKT5zDe/9T11EcZOawOrO+urRgohJdqIjB4F10uCUNkwyvwkTc8Y9/1nDGkceovYyIyhbC2ss8xO3AyRy3Jink/My8RpmZnTQlkKZZZQt4/g9nCxJmx055UEGIGe/Np0sG7eadT71GO/n3WP78mVAzql+++nJFHtQOGPB4hRm7TWo4+b9wCH571u3RH7xjIra+kYkxzC+sNGHoJr3brGN+Kf+ObnI2V1b9QpziUTJhiXB+YAOSCiqD+3yXUIlrwz4QV0CIezT8650STsDFp8yHnBiPesmtYqpMWvxHGtPo4kzbtNKStbRyOS5oVVuA/Hjo44QOhyGUZHP+iLa3hPPEJdfdzmX3J4kTqsY33QXndq20g5sm+7TAnW5US6SQA6ukJZK4OQRU7NY5Bdk5RKEUF7Pikl2mTR76Oz3zWJg9vbCyEYyzTJJVnfMJMjaTqdSHkWxTgkBhq1pr5RtzcVYCETU2GaF6YycVomHi8zfVzctHCkWA9RCQwsGKckiOE0TUw5U/JEKHoeetc6WkomuWZLGjsX2Zo6bkdWXEDPwAGPAxUgtTsvqW7ggMetVhiCu7VumCV183/Mj5/oAmVvjbhtDGBrjb01nzWH+6wwBuknkrfj9EIdIxu3WznE6u31mX1b5UAYnSkBMTlEqXu7eTicDWIuDN8ohMJ23HNRBySlid4rxDPpsJVitO2Vt7pSUtKJMQbSVIDM3nxRShmrA7NIGCLlljJxSpkU5NzY6o21bpQlky1QpvnO6Rh9EEpmG0EZKzGS32VlMWSxGA5Vt43Bvis6/vn5hS+fb9yujTYGXh5ojnlUySnJhYORYmbriZI650vhW998J3V+gx9++cJ12+UoQqr5MU3yd6w7YRM4SdqeyvXtxufhc5YYmFJkRCjTwjQtxKw4gvPpJOGt+aQzXCVOc72ODqsTPHzKu/MTl+dnBoPuRfvosgBOUacazVoWvvHunTQLZLoXeQkJ8TJG6zdihGm5KMEzBEIoGkdNzs7xub9m20jwGBBnB40I99a5rRtt72zrztt6I7TmtNabtEDFGJaoDd4YpOCbWA5Uq8Rd6a6gk0wwFZo5Am2FdqOkopN9TgTrWIoMy1SEtt5qIFmihsTb2w2u291a2ZuPh0rR9971PpQ4SMGIQbPnEiNLztRhhGSUFIhIDD7nGWwmTydOl5N3Qozb9Y1oxldffsFIShd+mGZOj4+U83vCGDQkoJYVVRbLg64adUGJSdqKew7U0L0S50F8oBglGI3R9Qqe41NbExDPAvto7NfmGg11YyLS9oT0dTEy9/EcpviMmAQ3C94J6V1jn+BaKvMi5XAFWjjwA94JMCPdhbPGiDpNpxQV3GidaJ3edkpbqfuVbVRqvtDTCfMRbArBKbfuUkmeHYUMYK13msPgmhmYRhsMCauDj6oziWlKYgGNBkkBpDlmUhBkLqAaIJ8jmKB5wVtZ0UdPw1C3xccyw7VQI6mgaa1LC+Uk4BDd1m8awWs9qnctigVpsuRYk9Nq+Pp+uC1jELsqcMDWjlGJ9D0hyAIMSFwb1A1prbJ++X2u1zet6algpq7o6JV5maWrsUG2TuqdsXbiPGM50olY0pph+07YbtRWRSkP+m8jeqo48P7hBEPvU5wSPczUukGvtLebZATDyDmTJ+9gdEVJDAcGRst0u3F7buLvTDPzvGjcdS/YAtXHurWJ1dNaYyqTtD2mwpKgcFZpKAcpB3Kc+ewb3+V0ecd0OkHUephzIBF9XXOhcpTWBSJdczePmpBzx7qceYPq74Hx4cMXP/Ye/xNdoNxuGxYye2/cto3bvmINxmikFO/tUaJIsjEY2/WNvq/UXWFy3YxpPjFNi06bCdq6Uk4nxlhUlPsppUyTFN0lf+SHdLtD4a4dohklGbXu4lmEQLIV66ILlml2MZGpWg+ak95uG6lMTA7paRapVQrrp8uFd+8+4/3Te+kGXPCY28Lrj37IVx9e2Hd3dGQXTFbxByxAyJk2nAprcMoZTMVUJ5KmSV2bIO1D24aErykoLKodyacd+k7oiqEv08QR/BUCvNzemF9WTlNhmgrfen/mw5eVL1++Ip5O6AlOcugw6HXICZCzC91mujXqMMezB7a6EW+VvQ0lw5usfyVnd8nspBIdaGeUGFGUaVMreF6gzEQKpzI7c6Xw8HBimSc+eXziPE2MvrM19d2SC/6OE3AIEt/a1zRIwVX9h+rg4OhsrbJeV96uG7dtZ3cn0DBl1+D2cgnzo2y3IZCqNACxROptBQopTnSDlIecKrEzo0U7Rv1eNAS5mzMWM3s7sdWKmfQi0SLRJFa2kKEO2rrrHYkDdp2Ux9DzEINGDVMpLHl45MCZgDGV7NCviakUjs1oDG9T2xFm6XRg10SELE7RicDTu0/BpOnp/biexuqWeetDG29U9y2SoCNoVjDS0MKYRiDlJCq0j10IppGABa+GB2vfwTbMhtK+Q3I7tmyaMTqc3GTTDlEaKAkl9U5YcqVQUuBfRCf2GJXqDXI4qdA2t3kO2bajEYYiD8ahUDyeKw7OxtEV8NFzV5GVnL68zAuXhwfqfuV2u/J2ayLjosykMAZTNMoh8Pc09uR8pX3fqLvghh2jjuxaicEyTRQzpSOjcMxgisIwi8zTxMPjA3GeXEugLb8NCXL3umKHJd1clGr6/vdeZX0OgcW/J/Pn64CxRQfEDQ4rt4S9Kc1aul3wbxydj51RpXkbvtGGEAglU1zcrQ5U9FGUEbzw61vVyNvUJQBpP6aHJyzN1NroFvxzAJzoKbEa9Kh7F4ORUhCXx4uBsW+KzzAjR8PaztYVgjrYIRilay2fHh44ny+0VuVcjOrA5RwJwzk9ozLZTrspxZkYGFEd8T426rYxDA+5jGz9xr5lIsoumqYJgidQm5Gtg+kZieONgAmJ3xvzfKLEwN460KnXlW6R7799wMLMfHnH0yff4NNPPqOcT+7aPDor6rBi1bU+x/zzWDujCtVkNBNnpfbOy7r/2Hv8T3SBkqdMKZk8Fy6X0z2Iats2tv3G8/MzMUe27YYFOC8LeU5QFvLDTK03pmlirTuDwewizWW+cJovXHslp0TvgdYGtQZSEjMgoDZuTlnsgXnhkhQ+ZbUyyok2BpYzaVSSDQiiLQ5gnmeY1SAOrrJuI/B63bT5l8K7p/eclplvffYZ52UWrtwKuSRG7JSSufzMz7DXyuc/fOaHn3/OF199SS6ipfa6EYdC7iwKojUYvDUJCUM+QcjYuhOTaKA5z5BQE9ppurlM5FMmTk+YQW9qx3ZvgedgTPNMmheuW4O48GHdsdG4vHtPI/LhWZbSfQTCNBMGPJ7PGjU1tXGDacMlJ7WT3dEUUhFcaojSKNBX0nguZva2egNY3vuSCyVmRq3sLyuERkiJNbyp+LHAX6YzeuPnfvZn+Lmf/RkXcdkdgudNdwJiuZh1FbzhiFY3RnK1ehDtN9qg3a786Ac/4OV6lR3SBYM6JUpjU6KKxdYbORw5UhFqIodImjI5Fz27fVCSSURab8yOS8/LhVSKW4ONl9rY6iBRmPKJEQYtNFocNFPyaLSdHAO97iruQmR0jQnnaWKaMk+PjzxcHjidT1AK+HPe60cgnjePOXKp8kdLghcrvxdsWJuKtFqrdwsGKWulCwMIgclbE5Yktuyos0gwR3zrRL6NSq/abC0ok8fGgDTTayda47ScZPt02FVyPZNC2qQNyyUxikR/I6gTeHQBppK1hlw3LCaPh5DIPkRtpPeRTBQ5NfjYWNRnCQjHQB1QL/5ziHeBfHMRSnLRag9elIfEGF2CUS/eNE5KDJtJc+KSO+euBX8fmwthRZittWFNm2HSpVVOkbZUTlk2Wh8yEeqO2Y5ZpQSg6/3I5yc55iJc943bh2f6GEx5EsNpSOgcalURlgvNnIuC0n3NdJBIKbGVTLOPrqvghOFpmmXfnXQqx7hzdo4Rg7QckRg80I50zx3Tx8FucUS+OUAzCB0xhqn4GJ293dj3TTyalASODAvhfCaNjvUN21eadzNDWdQ1ZpJlOHZWJA8gdNq205sxfO0fvZENYFeR0yvYYD498ckn3yCXSRt5qzQiod9I5UTfNxkmhmIiXrtME7kEgiXXpa0sS5bI2SJzzhhyKDEayynfdS3qijTqvpIGpKwoh9bErrIcySNL3JsWOQhPF3XgCizTwjydmC8PxHnxaYAcR183/sYQ7qPW6OO1bofbtfF6e+bLH3yfvt6odacTudW/SQqU/9fv/I+czo+qeIO3eLddp7Yo1Pq+r5RJVd3oO3Mp7LthOfH09J5tW1nKmbo3YuiUUiArIv5UdJLa+mBaikR9tgudHAZtVXDW/KRFZx9KtYzziaB6ljY6U76QvVMyuRMmuLiyExm1ccmZMTqXKoT1w/mBaZ58gerc3q5MU4bsosGcHDveCBiffOOB08MMfyXydnOL8rKoM2GDfV8lrLTEvDxQ+6D6TCTF5O26SG0bIUXZgIO30XNiG4O0NVFQW1PL05XcNgrXNydcpsDry9X5L8bnZlwuZ56+9U36unKJkdetY1WU0jEqISXm5UIMiTF2tXVHkwOlw6ibXCw+XjBXhA9PAR6WBUcjsNVOo3ANg2SZPBQJ3vuOJeG9H+YTD4/vuDw+8Nmnn9E2Hw2aBGbWpAO4uy/26uKu5DRHbRztmCYyiCETE7x7/w0++fQz9n3j+eWV1+uN221l9zaudYnhtGpow+ttFZRszpqVj0YaG3GtnKYLJU2U08J8+jZEAcduo0tsvQed2IdRYmEDxtgo/Y2F5jkek6ygDGIMfOP9N5jKRAyJZV6YitDZ6hapbf72tlK5Yt7JguNnxU+kXytCfLQRnejsFZzbCuUyC2baAIOKwNFcPBe1icvUaQycXLoFKp3r+sa+3lhylhPHKuaCcUuROmQ/Hzj6v2982FZSzswW1TpHQLAeC8HTqks0CgfnZCi52QWtvXdIRaLc7l2knDzjSSNehsSeht07RlOZSDndc0rUkZKAFY6QT2MEo3WJOCVEHb7FBh9TdlqrDFxQahLtGyosRA+FnI2CikxonDMaE/Wg7k04ulmBFIpYTF3i+TEgpZlUJnU1wiANrVHqSCwSNRJpAc7TSV0h64zWGS1huZIus75GycRcNELANOb1EZeuY/PRszpnKUkXtFdFJMQhEnRKQuq35s9X9i1qHEYHz5E6dDT9o1MyesbJABXSo7nLUh2yYUaeZk65MHyM1NYbe38lxiw8vYH9v9n711jbtrSsH/21a+9jzDnXWvtSuy5QJajEErkIQaG8xA9WxCNqjOgHg4qGeA6kVBCPh6BG1KBF9IOcE6U0Gi9ftBISIURAQogRLyWXQv0DKmLgWPyhdtWuvfda8zJG771d3vPhaWOsKkGo4hwoNme2ZO+qPedYc43ZR++tve/zPhfviPMF00k9VQ74OBy1e2PuGk9Hr72TOQznYSeScvB0CxBnnMuKWfCOlzdox22MjBqeNPxIKvnSsRu/U20bVHGz1rUOjxVPrRutFZwr4NRMt17Z1iOYUZYVo5GzTB6DT+S8x6dEzhnvIz40yb+nmTxlQlL+T5r3hKg9IXiTrUSVMZ2aujJqa3e+R3SLuSEbHyM1588S6a1IVed6J3aNpV1UmvNHu17TBcqrH7phuxpysSApVKvalHGqGMtaiNGNXIxGTpV5njGLfOjJQppm6PDMo51GPq1ztxwpMSngqDssDrXHYMh336h1xVImppnb0tmWAi0Qo9GtYOaIwXNc7jBrw8RJEFh3bvirBFpX5xAdpJy4urrgYt4TXWc53BGSbJ+Dl0Q5ehtKn4Bz0u73Il8L3zv7GFnbgWU54oKMiU7M9T4k2KVXQk6EMMlQyOysGHB43Ih8V+Bgl5qiFEl4axlIi36uVRPhMg41Ao3kG1dXF0zTjtu7I37OhDmyf3TF4fqW/UVglzUm8DiW9ThIxY3EJc4pZ6fVAn04056LUHBKFGEtG91FghvJxyHC+D1TdFxc7JhyxhRLqiC3IHOpODZmHKPzGr4LQ/YnXtE4bH14CimfYH8z4snd1+lQaQPa9K2TQuS5h8/wzOUDIU1ViZ/NdFjD0+iDEMJwsnTaJELklINychCWUuzEZSiwrjQKRzZCArYFWuNhcNoQoicGKYrS7grvku4/73RYl0qPRmnaQERwfJqy7ZyXS2rUPOScG6MjcnAoYMwzkKHgYPa70fl2jUOGEBcfFGbZ6gkSdhxr57BW1q3JR2YQBrsPI+JByoqFQEqTOrtJsuIUHLkJmSlDat1bpm8Nq53VVegboZUx8Slklwm948pCHXwWEAJho1NPTuOYTiN78G2B3tnWoIIEkU9TSsOsSmT4dfAHnI9CFEMEL6TjdFifCmHGyC8OpV/rjdaN2DasF0kx3cgOwo17IpFCJsQLwuUDmndSZ9VKXQ+0ooMqxoT5KKJxF2pxcXnFvLsip4mUBtlXxBrJ3Kuszx2KJCjNzpya7IX+OOelAsoTrp+KgpNdgwjOakzgyd0TXnzpJQiO4CNzyswpq0Btndo6m5O/SoyRPDp03214l2g/oRQYxM8T+iSVJYMIXM8cHvq4B72IyOIliTRsDiwoRbrZhnk5m/o00V0bIY5ysbYha+4UMpXkEJfjcFRA6UBUbSjtcOK1+TiDc6zLhgsBX9exv4sTZC7QkHJJ8aSdNo5gs8a2HGWCyMjNaULE3OJpdTtL0Z0PxDThQyLlPVcPnyWljBv8QJwjp4k8jDOJSRlsbqBUJ97kkGDXXqQsGz40zhKYEp0dED4MMTFOI8mTJYc7bU/67AcB9pRl9+yjF3j08DlKXYUyd8fNk8cf9Rn/mi5QILJsDR+MEB0pRZnVrfLWYHPEMFOayLG4ynFtYha7wlYKKTd2+z3P7y6ZnOOV6zuuj5XD3UKzriyHoPhvGV9VmjVS8FIfrBXDk6YL6nIkxX72OvEh8eY3fxKHZaFslXU5iow0PFack019r02M/ep55dVrpXjuPT4k7q4fc3t7JATdfB6oZaVbZUqBRw8v2e0mdvPMM7sdr3vhdSyHjevra97/4vu5u7mWe2M5DkMmj7nE0sClxAvPP8czzz1HbZ3H19cc7u6w2vExcnG158HlBfucyc6TkoqoVvvwXRARsddB2HQ6RHfzfvxuhYspc3c8cvPqE3pw+JiY5hnnHcfWCSGR91dcTJ6rqz0xqKNXFHuHpmq9OX0GWCe6BJycIDV28NZFnHORXk/8hjGy4eRDIU+JPpJAw0h3ZZBYTwWXJKFPg9ya03iO0TGDiH1ET+tNXdTIUkkxDuMioXYyZwM/EKXejW1b6K3j06SCxgd8rXSkxgonQUL3hHRShAg6NxfopXPEWGqDLpHrbnpICI6UnJRKMROGNTltkOJGweVHsez8UJWMVOITj8YNwpzrNuy5h8vyINx4Thu/CpqYw1OvDbPzxufcaUQkZMR6h+J0gAz0JSwF6wtWhtR/PNlGY/JyMdZBKJJs2cTBab5TTvJXIPcKvVDMM3tjskarB7a2EKMj42ktQFEnXHvBW1QRMJqGZiLhFqfxjXUjWJMU25kCJJPUVm1boGdySHCytLfhUN0dbjtqJGAocHIQC2Wu5gcRWyMh52E/70aaeD6bGJrzlFKhmorp4Gk4jhXujkdqL7iyaLQAlKrx4y4loS6YJodl4+b6hmVt7C49oYn0Gp38Pbo3ijm2LbBtC7V31m2j1YqrhZgzfhx+ORrRLaSQtcdF3UspeoVGIiL4bp554dEzQlu6lB6uVeooPmwQyt3g76yrjcL4qdQ2eCHYSnZ357TxWje2bWNbFpah4jyFVXorBDsim90hiTYlwOv296MoVXJ7zpNSn6vGhMQJI1BLBQLTsOj3IfDg0UPoG4y9QcRkiS/WIpVK9B6SOGrOS+WVfKCZ1KUhBhXorVC3lTSL3FpKIU7j+WmNUo7D/0q2D96ZuCwpSFruHXlOtA7b8Y7D4UCzwbUMUlWluBsGdht2Enc4hwVPzInEjpwzIYpMnuNE8JEm8bHQ08GtMaB/2Cj3/O+zp4kbz/rTCA1GYaegT3mtVDPckJB/dCf8a3hth4WLkOlFxNVyrJRaFMVNo1vBxai0V0SqYzwEtTZSnOhjF5lSwFd10etxoRWx7re66SGuBauLEmv9zNJkmJazZoK9dWXEWMOHwLyTI+hP/tQH9OAND4ycgm6yE5HwwSW7OWFdUeeHw5Hrlz7AIWd2845mxnLc2PqCTImyGO+9UrYb3veTL5Ny5NGzz5JjJKfAfo7MF4lf+5m/hv0sy/zkE600Dne33N5c0w3yPHP18FIPyNr5xBeeU/fgBcFq7tmoQ8JrUdyImNEowgepgpzs1U9kNgUiBsJDz+te9zx1q9wtB7blyEuvPualD71CM0/zgWYwjZwSKV2UGHux2/MJr3+By90ORyN6QcJmsA0JJA7qcFhctsJNqWzNiDjmKeK8Nuvs/UCxHDEMzwqng9MPUq0gXhFO++jOcCKPKilUo4eOsmLWVUZmhu6lWooUDUA5p/IKOTgpQU7Gat5BipEYgrxgpok07US+LJ3NZMJXauPmeAqXW6EXzJrUBeZ4eHVJ2l0o4t0MOniyTL6WBdaNlCfiyDqKg0z81GtBG0kbBwajoDt5+0Q4G/4Bgsn7cKl1wzfTOWJt4jS54WrpR2E4xia1yTFUKeHjsHIiIkbX2e8Tu9nTqhDP1jqHqrCzEDzZw7Y8oRwP0FcZt3nFS4SYyXHCB9haIVgi5x0+JUJ+HTnN+O5UALaqz9bZIBonZEYOtQgbCT4ws2nc4ozWHW53gXNGzjtaFcfhYn8xSIEi8/Y+DOQQytZ7o3aj+QjDH+mUooupiDlJQg3ZG/gQKOtxqCJOHB4leScXRqCllG8peLJ1ZdwgpUjOSffppgYmRYWXul6Z58w8RXIQs6rVytYblcZaNo5rpSyFlHX4hdYIvYo8W4+sMbMR8aZmr4Yk/kGrWGvsc8B3hQzmaae7vqlgzyERkzg+hpFTIvoTWVYHYenKh6m1jRG9VIMpTbSqdNxatM8633G2kYInlgKmyAU5pxZm74RAWcHhFeAZgDhUWE7+L2YV7+Ru3bcOSNp7bIU0OWiO0AspeboXotaquDrL8cBdKczzXurJEAlUeikDxdgTpgt8SPIV8jp/3LC8j17P4eQdIU4qvHqlFxmcWZfLsw1J9Loeub25xuqGucBxXThuR3Gd2qa9xE9CAs1jpbLaq+CkBrN+ahyUJSVzwsA2HJfn+YKrB8+ym3bs5kjMoiEEL5dlBrn55HZ84pd9hO8MnCXyJ95Vxw2qQJSarOs8+WjXa9rq/v/6f/9/Ml9ooxgFpqpuhx5Mh2bazp1tjU/kx+AjwYdzONzF5HjdC89yefmAbeu8+PIrXN8cNfXsYqLTGmVdyUnYV7fOfj+z3808uLziYprPXfbNzR3HdSOmiRw9l7vMg6sL5l3GR1nKtVJZ1pVlObBtqsBbdyKAioU7EAC5BbRurHWRa6AZKQQRLUOAOP6MaX7ozIghUMtCWY/kFGnWMDyf+OZfwfWTW+5uHyPfICOnmRde93rmaUeKNtxv4bgWqglfOBQo20oKnhTDuBaaY4bBW+ldvhe4AQMi46k2xiy1VO4ORx4/fsKTddG4qwnGdt5TneF9pGyFnBO7/czrXvccr7vYM2e52FqXL8txOXJ7e8e6yIvmei0sReTXWlZabaScubzYyeeirEJ8zJGSkBxQEm4evgTyojgFigmG97Ww1crW2kheDWPE0yQpHU69Pvhhlx1xSJ2jYMSisUjveEMhhQ5JZZ3RalGn4CKlO8r4rGuVsZoQJalMUtJm18cIyqGIALynD76CQ51at06rDTdGFu5EBJYGV3bhQPLDCnygAAP8wVWv5ygIUeDkruxkQseAgMVV6PReWFZlrbSqpOZRN1Gbw9GwvgnJ8RPmTwiYlCMxGjlEPCpcNzOqObwZYUQwRJOpVKM/dUE2DwQRN2FA4RVXpdAxV5WpFSdcyEQfBhISqNst23IzDkXJoluwMYv3MEIuHUZtK6DRrR8GW/6U+2NyDF23Ojw2xPMgJGyML3WN2jk08mQceYLNcSIIB82QBueqSWbq06gTvYzV4kTtcvn0veHYhofSuBc64hw4yarxGZ8umOZLmb6F8FSVVxu2VjYE0TdjoDeKtOgusRJxMTLZRqCydg9JvkutNoI1el1xXY2AQ9RVvLp+eUgZFjO+N1pZRxZZBpcg+g+TMQdaa3gXqPVU9IF3AwXxjhg9IWhsKesIIWNtKBe98/rcnElx2RuhQ0yTcspMn6k1GfJp+jk4IGUleMdmIoZbM7YqFJOT++84cyTJ16gOOtt2xLrsEfCy0A/BU5r4eacxdfCB4BP7B88zX1wRYhTHxomjIXfyMeoKgi6daZx+svMvRUaLvVa29cByvNU4uQwTzeCZpnmgoJo/T3nWPdQ6ORqM57o7+SulPOHTbkRtyCAPOKOn4qDYR3BQRtcv9VsQqixFWDzzoIJ3Z4rD3eGO3/d/+U2//K3u54sr0u4CR6cP5ARnhEHSE+lRRCs3OiIHY94ocqIfF/tYjQ+9+oRXXn6i4L8YmE55b4OfYB7yfqb3DUYF7HPkDZ/weq72e1xH8eal8NyzV+ODiSPwqXLYFh4vR0rVvM4HHSLRR6XpBofP6oZjVKdSauWwHNRdbEqgrLXIPM0aZp3FBUoHMd0ltz2lIAenw7DfHcTKD5GbH30frRSwQgrgrRLiHWttuJC5vLigN2NdFp7c3pJ3O0ozSoVWNqIzKT+mPJxahQSEKKj/hA6pwyoMB2yln6bEM48yuynxqGwstfLK4xuOS4VitMBQhiTK0ijLLce7jZsHM888fMiDiwumNDJ8cuZq77mY91xdVV5XFUJWaqUsG8uysZTGeruwYjgvI6lSq65lt6H9jwpd7Jrv+hhlaJQj85TJXkqbPE1KS0SHeVCZQDeYLdF7obcNlkarlWptFHdh2OqH8SCDq4W+VfyU8JikyH4gT+tKaI19TPS8GzAvgz8ilUVrK04/mY6jbIaRMC+yYHJ9qApUgOM8Acc8lDnNGu6kRmv9nPx64k3gPTFmFeIeYohCP7qIiqtp1NVb5e6w0JY7rB1Zt415mgnOUbbGRmC1cVj2Qnbb+X1tZcDIPmPIwHCaZvGIWqFtG9u6kecd++mC7IEO1Qe6A5o61uNWKNWxFam1eks4Nry14QQriNmZEeuRUFYF21GhrWSv3/9w3EjzBXG+pLdBHh/+PzFF/HD2NPOYCyNTxQ/0SGGYYZJJ4/F4x3p3pG2VffZg8qzwKQ+PEPn2OIcyvOjDp8lhRcXGKYNJduNKOA8h6r0F8dYAmbvh6b2KNxLSUOx5zGRl3p1yq47XT8AFrBeid4pjSBMx7UnJ88w009vGcT3SWibgqAGmTSMz1wu4TraAq51eB5kdR/SOFKOeA4MwCnLXVKU6M1jv6G0jdKHd1SnGobvhL9obIcrqP4QITV4tdQgDtlYHWtFptRPSTIhyMA4p0zpClcwT/In4rft0tY5tlTTtiHGH0UlT4BRrooIf5r2OD99H9EA3BVoyrPjOZO86rAOEeMgR+BSR4gbK7EYyfaGZnJJtyM2dCxwPd5SBuriYCDETQiZ6O3u8wBi7jhGkGzlnCma9GkhGp3XFprRasRNB3VQo9toJeAUQJhUO4XSGOTXF3nt8TAM5Hp4+Y0SmUfRTK0J5DQ3CbBhfHYR6FxCa3hU5g9kgxQtDK+WjZ8m+pguUlAMpdIK3EVzXcU5+Iyc7+BOaQF9xdaPXVXOxVgfJVD4Lx7KSeEZS0NZZ75pmx86TA8pK8YEQMtVlZSF4T2ue//n/flEz/ray38288Y1vkKurH+TT0tha47AVXnl8zbKNjSeoQ9hNiV43PQzOSVveBxQ8TBucE1SWomeXA2wH1vWO/eUjdo+eJ3uvCnZ0y6VuLOtKqQWZ6Ow1+w8OKwUfA1sJ5OhHHkenN08vGz/1+FrVu8nmeOuVaZ65zBnyLPQgpuEQGQh4+qbDy+KQ+vpA9GEUaX74PRhl23jplVd49fbAYSmElCm1i12/n/FOD3oKgZx1nWOMODPW9cDL2x27nNnvd+zmCZsCdVOAow+Bi90lMURykrTO+8hWNjlGlsK6HjkeD9RShB5E2aqfOr7WkYV0F7fJ+w592H4Pg6XaNH7wIY5uSH++lg1M96PY9ioh8E5KlbLSa+XQixCD4JhqwlonpomwS/gYcShWYUUchbpKlaVE33EonlBDBrrXZSZnzgRd04U8eMkpfUyQZtLFJXmecT7ikvgnDSEYdVslHR0HTjF1g3WrtFV21mkU26s58SNM3iK0RsSzHyZ2x+NCTBOTDwTrtL6ynydCjzjbyNmzbh7vL7Ck0VHOM6V17soi9NEFPJHJi3N0s654Q6HJ5mhb5XB3YKHh/QRhwsVAmCKeiWhjZDfm5NFH8ZqcnIoz2+jM1aRcPj8x5YmKSM7WGmGoSDoyzxPhkfOouHc9y6Ws3D15hbatKCyvqiALjrZWSqnE+WIgFA7vurKuTGGG3nXqVqHekXOgbI1aIeadjCLtlhwCpWxStNUNG2Kj9XhgylkH00AOtr5g5kl+wsVpEEyFuoaRkLyfM/NuT5p2VORk7cxhXDI9kHvvtm1cX9+x9oXuRSyPPhBcY13u6M0T0wQh4lxg60KN+8kl1xz0QKtdCHcOtIGStlpJSJl37FEEbN/A6zP2zuGTHLrx0MqC7w3KUenHKdHZVCSYcby5He7UQ5YeIjH4MR5tZB9oBGq5w+KspG40nnNhYn/5kDzPahBHujyncejwV/GDc+Ld4Gx1FU9lJDxLuVIIDpa7Gx4/foW+bQSEiMacCUHj3ZA81RbatpHThE8dfMNnw+12em79Ke9HBz7+RId7OmLR+HjI3uMk1JMREIoNHpwXzUBgo/iVDG+bgbzjTtMFP4YNdp46nHxPQhjF3PjWKaCQDi4MrxoNdpQI7+ogHstJ25mUix/tek0XKO14i6+BOmZwHY+rK6ZyT2zrtuHqgncbwTWi1UHcl3MGceJNv+JX8sY3vpEUI//zx36cl15+mew8ZYRRuWqKM/cRIzFfXvHg6iH73YUc9kJgznl4O8gu+3hYqUVMZmgc1yPb1vDNyKa5r/XAnGbaKtlkwMnBdHJIR39ieOtmiCHS6iYCnE9c7K/oOHqpuIu9IE4QN2baEWaFTZWqzgqDPCWmdEnwiRQzrYlP4ccYzONQ+Ky6n5MKIE8iXBqwlSI2em203vBIMRViJKSg/+8Drovdr6RkHbZxSjzzzLM89+xzbLWwbivHZWXbCmUdIzU6izXumhQDMWZ878xz5plnnyFGz5OXH/OTjx/z5LiQ8sQzzzziuWef5WI/4zHB8F5ZHQ/8fjhnqmDc7XfkGDkFPiqgrFDGYbyuhbvjkbvDkeNyoJkOrBg12qnWcV4RA9L7P03cjWkSF6D3Ya8tZVE1qRxSzOpcGYoBxHkxYFkrbdkoYy7cq8Ozcgo2c6f72gcdgF5OnjEE5jkRg2c3TcNx05OyzPSadwOeDiqUy8LxeGR79YBthcN2R68LwVVlBTmPhYR3O4U+jnl/3u2pPbAcbjWGJMrIzws6r07qoynv2E9G7xu13pKbvHJavWOtnpgCy9IwvycEsOUWmX2tQojKSmrKipnyjG9QNykrmnV8n3A+kKMjXe25GIe8o9LYBrcDpiQlTSdrLFg2oQpp5NdYxodMd1IsHFzn1WWF7mnlqDiJMcpxzpGTxsfWC71uMu0aXCYpQDT+ZJjpdYdiIwZ83lonhnF4tDbCGysxqYvdz3uhFiGzv5xxUUqNECeqVeacdMiliRAS3gWlouOIIWlM5B0jaB1r65CVyYE0BIXiORcwF5AB4SaCfggoQ1B//nhYuV0OvPzqy0wG5kfG0VD4lJQIeYfzwx+IBn0jRyfZPo4YJ7amIL/eNe5d22i48OO56PgGLglV80GjaqsbVjelnOdIcHv8fDHI3FAQZ6y3SuyV5Eb2WY10wYGs1Vhpg+zpuRvj0BSNXm51j+TMxW7PvH+IzxMuBBHdu0L9bMw2Gn3QBmSt4D6sQGljfNVaw3WhmmVZsFp4cHHB7rnnyTvlkIWg1N8Twf+USmzWhXj7ROudNnxkznyxUaB004f74QWKP49K1cDI0deNkf/glzmPjdPeAWmUEfIFUjGo1dl6P6uarLfzOKvTqc0Nc0btb6Womdtag9aRC7ty7VrrWNPIqfSuUNF15e7m+qM+4/+/KlC+7uu+jq/+6q/my7/8y/n6r/96AJZl4c/+2T/Lu9/9btZ15fM///P5hm/4Bl7/+tef/9z73vc+vuzLvox/9a/+FZeXl3zxF38x73znO4nxY3s7ZRPRNYYw5rieSiOGRluewFLIecJcfJrcOdwQ8YFnn3+ey0fPcNgaL770Em96/Qt0ZxyPd2PWmfADKr168Dzz7pKHj57ndW94RkZriDApP5KNrXWl4Jo+0It9FuRZC1f7iXUgI7VW1i6NubU2Yq63QaKUiVf26qZjjEzpaRCX703hd4OTICKfQR/px60Nrw4pKU5ZCq5Xei0cruEuBAVReRVEvUsWFkaR4qLUQh6hGIHA4W4lxG04i0b8GC9Yh1o6ZW0cDwcVLCEwz7P8JlJSZT5syWOMxAtP65VoMzE6LvczKYZRUCTS8KroJoWF0lc9rRdBq61webXj6sGOt4xDyPv41JTLu4FuOFpvchk+rueH2cdrcZI+bJbaeqd1qaocSom9vNxzcbnDBRGTTx4Utck1s9VtkDX8UGso2ZjB95CsWHSCMgybluXI3bKc0Rg/ggb9SKmecuYyeXKe8GnCuUeDfCrZ91lqbNpcGN49Oe0wixSgGLhqsK2UemAtlW1kHlkT3Gy9EKySHUQ74r0I33KtzJAu2Ko+ZedmNg/HKj7KtNtB73gLZB+xrqRU12Gplcf+hkrC+0y2mTl00jQO87bie2UfPSAkiQApTdQilJL9BW090H2g0li2W8ARTFbbbTvQ3Al+12iFNNFdxOia9fskDoAfM/EAacDYDgYHw+F6A1MS61Yqk/PgKz0YIU9CZ9F7d248g34+S4UVhDaKDvpAMNv4jDr4p7wezAkRDKfGYxAngzKiIMrWPyaRO08zIBy4NHhNGlu33ke4qN6XPHmMPiLurAMx491wvEaqmW46eKBjbeW43HJYNu62prRwkymfp1PKAt4wF4h1xVrROIYMBnXbRJw2pILBY80xT3sSKM8suqGwcwQDb0VO3TGMbBehnFY61h3OyyeG1pWrNieZqXn5PjUF1cix2zpGI7kOdWVOYZC8NVqIUQ1aChcixIcTUdcRkwj/F5cX+HypM8IrANKZDd6HeBPyVTlJ60/uxyN0Eo3QNQJMA4kdX4/hHHvgup3z1HqXo6obptfVmsjz5rC+qoIYxPqThNs5r/vH8WFWCFIf2iDxM8bNVu1pLtO5xJJdg3MjpuVckIxbjCEMGKT447ZR2ka1zrJt4jH1hrU2eG06p1pv9FrwNiYXvdF61VjVufE5q7GoRRYgydaP+oz/eRco3/d938ff+3t/j8/4jM/4iK//mT/zZ/jWb/1WvvEbv5GHDx/yJ//kn+T3//7fz7/7d/8O0EH4BV/wBbzhDW/g3//7f8/73/9+/ugf/aOklPjrf/2vf0zv4dFzz1MNDoc7GU2FwBT3JAq73SXeCluBrUV89pR6oLWNGDVyeGVLWIk8evCQnBLv+z9f5vYIr3/Tr+Li8hIfsrqVFMiD3NrN8fi44JYjOaVzvkP1HddlS00YszfnWFul9sZhXShFjrLWCmurdGe4OvgKa+Hy4oIpT6S408EX1elFH0fqr8ipISpf5GyaxclA65TueaqwFdhXqjIn0rDb9klBgK4XddJbGVfUk6eMc22YTkWsd3ERhj+G90HjFO9ppRCiZK6nvBKQqqX3BjrSgQFNal8kuEAa/Jt04XHjZ8ZBFKvnzkQyyQbDk0EGWSCrbnNgDbat0GwFNN4QIQtiyIAfKIf4YN0qoSdS1ES5n12DZF2fh+2+aj9xJDpFMk/0mcaohzzGHTgvstxAUkD8lLJtlFpYBzoEHU/jMngePbxS8dVNY5MYaRjVwW7eM4cEFkZCs1QbjmFiZU1juxbBVRxShjHciI0TORliDOyChxTQKx2+ikS6tYqNjB/sOXFV6kZrK6UaZV3otlItENJOjvimDJote/L4+TEGyuHIPmXMT+y8sTVFRYaoDyhYp3aNKHf7mRQ0n7+5u5OE1gfuDhrDhZiwENiqZvI2nFW9KSU8xw2zo/hj3oN5NudpZcaYCIhI7kjENDHvd4Q04WNS+KNXDlW3TrUmzofJ4NHqSo6OtYILEWLCpSS+VYrkQeI85ZpIpOXovWC9DgK17iUdJDoQVCgzCgvxDwJVaFpKY74fxgG9qaga4+Uw8oi6M+omd1IbY7u75cjWNozIy6/esJWF2mRb4Ey/ZxzOt71plDInT/cynEve0crKUhqFTKYyAFTqVkghKD/JYPYJR6CaRoJxWymliIwbI42Aj5nWjONRjqhtjJIN2bRbNy6j54XnXxBx1suI0ZxXttGQ5ZbROGjUq4JvHMXapWKQ47QbLswmjyO8pMhYGBYCOmw7IyeonYIZ/bAkUOEf+2kPEJoJo8BzUXuendxT3dmSYJQrTwuFc1GDIkZ6hybuRR3ou+od5d545+i143xlCF8G0qF3aGOP9QORA4YnkgqXum2jYRlFchu2AH0QsZt4N0bXKHdkKYU43scYz3TTsyCC9kACSdze3lCWO3zfsLLiWiNEoY3WT/EEI4jS9WGVUbG6Ce2PiYZn26rCQr0nTpOQYfsFVvHc3t7y2Z/92XzDN3wDX/u1X8uv//W/nq//+q/nyZMnvO51r+Of/tN/yh/4A38AgP/23/4bv/bX/lre85738Hmf93l8+7d/O7/7d/9ufuqnfuqMqvzdv/t3+aqv+ipeeukl5Qj8HOuk4vlTX/3/Ytpf6QP3T82jUpaHx0nya2bUtQ3Yruph9YHdbiZG1CWYZnghKsfAesO8sjWCS9SBcNSimOwQByubQMoJ59V93K0LrepmTkOiZd1ETqLQD49x5Yj3jssHz7K7eIYQxGafd3vNC70jBeUvOBefBooNdjp6y5qd+kB3CqMSAgOnyt85sbCbdW32TXyFE7HJn5xi/fADGfwVG8ZSrW3nQ/f0MIwnSOqMk/nUgPXq+MdGEmbrCp3zPlB7k8umUzHTGTPNAZUqw8NGErSKGz/yO06R6rILZ/xdcpG1wR+IIZNiAuvyTfAMObb8Q/ogp6kfGiTF8Xu4UUzWMUs7fc+bw5sH38U5Msa9xtPrPD6L02dkZsMGW98NIYqj4mSepg3GyWAKN+4pqXy880PhYUTv5KfhRUZT9yQptveOyohrr+IB1SY+hTr6AcdaG7+v4FfXhindGEG0snG8uUbZQmHYY3eai3QSg1o+7LEhJH2O3QVZ77dOypFIZVk7xybPirJWOpmOJybhmsFFHJXl+ApzmigtkXc71lbxXdyo2mWI1qtR8XifdKA7G8VYJ/uZRCXYitWm16V5OKh2fK94GjnNLFujtJVaGyHvCNOsRsYMqkaeFiNbk9dJsEZ20ELC8m7YdHk9Nx722fHg8oKriz3Rc3ZbdiZEw3tGYW6C4/vwk7CnyOgZdXF+jF116AhSd8Sc6DaeSS9klg49eLw3atnoXT4oT66fQN3wLtJcUjq7gynqIJDlh0YcKUXoR8r6hClMZx6dWBnqsA9bZ6sbu3kmOa+O2QVabHQyW1XR5Psm0qgzUk5s26rAVXPMOTJNcpRNMeug6rJgCN6T5wkXEjZGsHHEBjTfT2DTudsPBEm3BwfEIR8jBTEi0rkJwaA3mnPjWW5SrQhzotlpT1RBKmbYKFDcyZdK4wzlA0gp5ahD2cap1mG0NUMd5NSgeH8mkQYY96v2it4Z4y2dPcYgrvYRWKtd6mxD0KsGL24gNLVVtloGJ/GpiV2eJ6ZJJp7Wx17snKwSYJwH2n976xy2I9d312zrOpyYK9Nw+MUFzMO2Nal8QkTmloNo7kyJ7FEWBr0JNYlJHKrawEU18rUsuK7EZ11tOWO3WnAh0btjrY2/8v/4v/3CqXje8Y538AVf8AW8/e1v52u/9mvPX3/ve99LKYW3v/3t56+99a1v5S1vecu5QHnPe97Dp3/6p3/EyOfzP//z+bIv+zJ++Id/mM/6rM/6aX/fuq6s61NY6PpaM6xohm2LKuohm/TO0baV2w/esZUiKelpJjeqXOc0Az4uOniDA4J8Fbwz0kj49CES8oTFcTiGwD5FAo6tF9kbmyyGQR4cYkdL8bGbIjJt1AeZg+fBJ3wC+91uHJoKslJFHTglMTs3uCTdhrlaO0OLITw9CGOMJ0/AoZrRBiUm+YfZEZt4ID4OwlMbVbDVs+LnZGd+Ili5EPBxGEt1o/uoomBwNmqrHNdCaZ113Xjy5JrDukmONx7YZhX1f9oMlA6rjjqYDrc6Hqw4SLkhJrBC3RYVP8Z4gISK6LoxeBt6zzEmFUJDwrdVkUOh8/DqkucfPSLamBkPHoONLrisG57G4ycvs3TN00OXT0DB6WANkjTGsemmIHtnHwPW2lC2cB7BnAyoTpuvdQjJk6KKDoUjDgLc6PSM4YI8FGZ9oFUK1NZnoW7Knf+pfaUhjkQpRURtfXojZVYHZ0iR3qqK05OlPY3mEunRrKTh2mjHBecUgnZcV5xXVkrcaxy2blKQTVPm9ijlyPFmHdd0HATVxPkYTsoy0HJSytTKlK6G4sXo20J2EUZhkr2HGGmuEUYBLkFRx1lVAKY3enDU1kjeE33iaMrLCiHgkzg6dx3qrM6wbY2tdfpqtLsNb5KFhpiJztGJuP2VxnfDFdf6CQrX5XbWOR47h+OrvPSqSORTSux3O+bkmXMkR6moHI4cMifH2T7iDc7EQnTQ2lCJ2Bj3SXAsqMrME7riMroVbNV833Uj9Mqur1w8mOlV91LvyCAQz1oa0cs1lTBGvK0TXSRPDwmuEob5nuSu8lV6MAW2kAbSo1yjKRq+d5y7VkaWm4GNYJJiG41HDzLT9ICYdvi404HttaepqFdirrmTPYAk+cE0dgZlnPkREQBygY0haGA1CoTempoPVQEyVYQxVpOb72nU0frgeLixZ4xOxJyNZkX7Y+1Cvhsdb+3cKIDCZlOUMMEj4rg/oWRO3z8VpKVpDO3xbNuiAx64ub3TSGSINZr1IeYYv6c7NYcaIVNXUpAjizmvAtkFphDx6JqvrXBY5VBuTQ1Pw9H8RDflQzmCfHhGsqL1DYuNQCL6jIUVuhov57VP5CTbfayJo1IX8Wpixnyg1+FJ6CBMWehLc+ACpUFzjU4684S8G1EuzrAUsOopW2FdDv/74uJ/WR9zgfLud7+bH/iBH+D7vu/7ftr3XnzxRXLOPHr06CO+/vrXv54XX3zx/JoPL05O3z9972da73znO/krf+Wv/LSvm/eYF8GtVx06PmjeHGMmznnM6jVHxTshKLUI9ixNxNcRJ568ZqS+FTwVZ4HSCpbqOU/jweWeHBTVntLMbtopvM5gKZXbw4HDUrk+blybcTHvuNhl5imx282kmJW4fJolwvCFkJSQUSC01s8P2Gn2GfwpqO6kTxyzRu9lC4867hNpCzd+tv6PCp+BaJzGMadxkB+JzylGWm+UpjFAb8qsOCyCjkutrNvGzeHAsmo01Jrk0Jr5imfjUGgfaDMOThkezkEVnR8rcmANVqSA8Ynuy/Bw8VJsuDE3NRUhJ06A6yKrFTPWRTBkdOB8YN49IAfN7HNMItl6x1brUBMNAyyfySMVeWeNuJaxMYOPiephWzYVSF1S9mVbObbOlDMxKCgvxUiMmf2U1cV6R/QyY5PCJzztqkDzZCezqI5Qj0An7ObxuSMVTZO7bGmNOuLnT+ZWSyn6XQYnpbXGcjxiPoxuzkZgXBgIS8MnEZlz8LSysK5HjSAMSg8UU+5Srxu9FZFA11UyVS/kIZXM4XjEp0zpjW6e4DopB2ZUsKXQ8XicK1gZvkFslFaZ52nIJ8UJqLXQ7UipG87NYDtiUIpzDCMErvvhXLqSrLHWjeih15WcYGed7pOehe4YrjoqyHwgh0RxhrlInkbwY9noVilrwwiEriK590KwDe8rEbk5axzX8MShXBNB/Mlx4+ZuA6sEjBRFhg4jk+Zizjzz4JLdNGsE1Idyh07OOz1/vYt4O5CVcxUzykjZzRjd/DmN3LmnBbj3anQ+3JtiPPHDidUGwVJycqwhiSxDBGBn3yhNn7xiHbo4NgLvstSSDrDB0wieEPKYSIi4WWtXJEhp2NpYyoFujW27YV1uAblA115p5SgvlBiZLx7g8zPn/csHuURvRXhFG8WEd551U1PRceBVbDDktDlJIRNCGg1bl7ldHblAw/q+1YW6rfR62neEogTzyqQZyJ2lIMVe9IoVwOFGmKKNhq2VBYbvkus2LAHGqNV5pmnHhomjY2p4Aoa1SuuFiKNVBbL6GCkusZkxOYezU7PSWbYV743TcKTUitVGdMruMTeCXQnEnKm9kVplNodLmUCjNA89YbWhzrnjqEo7B1pdh3HlQOBchuhgTBWwNkZTjlqU6xS8JydxI1sV6ZfRlFVng4eYWcdnFnc7mWt+lOtjKlB+4id+gi//8i/nO7/zO5mHydUvxvrqr/5qvvIrv/L839fX17z5zW/muYd7dleXNDPujgtGoIcoNnjO+ODlYHkiaAZlGvj9pSzPzZ3DqZbSBskyE3xkqxt0KYEoK6Wu+JB45fEtvkmCfHHpmF+3w3rl9ubA4+NBuRe7iYt5x8OLC672O/IURis2QtVGYeKGw57BiGPvMhIbRUWt25nY+eEW0B8uezvluQhONHqtZ9KT3APVUZ/IVkoZrWy1jUTVsTE62RK/+uSaV+4qx61Kt28Mm+1EQsVMCIHWHcFnMFnM553kx8Hr92tFs9ayLPS2KT0zZ+jDZsM5juPQTT7QnWyZpxAE3UZhL7RO2wrr8RpQ/kpwDretBAfzbmbe7Uj7HTE6wjTT04TrsqteS+OnPvCSOAMmItjxuOC8EeNEM4bVdUF5NUpxNjvIxrsV+bsAOchL5A0vvIG3fMIn4ueJZZUhnJkN7s3JNn8A1cMLx0dPypkpzwQP23JgXRdKq9TuWFzgcHdQ/katIjz3Dr1RS6OMDaGb3Cy7FfkzeD+4G5EUgozanGOpjWLGZp15llxyW1ZaO9DKSvQdZ408TWLHlJUcJxEf6STXCbbBupFDpscqJQPQ28a6HeWVEjQKCMPwb1tXXIbkTYnBUVEQvTlC3hPzDlrDWqVs21A1qFhp5lm2owo3i4AMzmo3VoOIsQU7B/75YZgY6HRb5RiKYbXgmxyRfUjgIrHLjErBhE7Kj77QLRKnPUvtVCdeU487/DicW1lJg9u1NJFCfRdhUTyqKmtxL3QreRmc3ZWVm1vjg6+8zG6aeP65Z3h4ecnadNBbVYcdnD9v6vLb8wNJHWNdRk6U62cVGUhJpyBBdfsx+IEOy3hQRa7+3VEDEtH4MqCuN9lQfDgpnFqRV4VrT839hOzILHJzwwzQJ4LBUo5s20ZdiyZVdCyYzMOa0XuQSoVEmh5C79yWSsozF1fP0nvlcDjw6qGQjo9JWZycmJQ7JI5Qxo9wvwb4kJj2WSOQtglhVTAPzjpt8HCs9WFCKXNKfMbvr8gxEn2XCg7T+KHpHvPmWKyxbYtyvpZKtE7bYKmNPqJGXFd8QR2fTwSmPMkX5DyO9TLetCxpsRNnydlJXROZ/ESpIyU8SFHlRapjcUJXwmgghK8ImTK6uEtOzWCKCR8msEaOmdoj9CovnaLnExegRBHJk9A2i+CSHynahs+ShffSmKaEmUQf3dto2Ae615s4kVMeY38j2mgIxnNsfnwsXffH6d7rrdLX40d99n9MBcp73/tePvjBD/LZn/3Z56+11vju7/5u/vbf/tt8x3d8B9u28fjx449AUT7wgQ/whje8AYA3vOENfO/3fu9H/NwPfOAD5+/9TGuaprNq5sNXyeIdLMtKmi5oRW6lwXu245GTQ6MLAe8j67ISvJFaIXkHXQFlvTfZoVfJxEodZlLmKRghyWOBoBFRnvbsp5kYA9e3t3g6037Hpzz3HBf7vRQY0WumSQPzWNXYxI2OB04giMiVNoqQ2tqA+TW2Uaevjru3Pip0ISy1PbUetjFeOHVPJzKVmPvilNQuNOO4rDy+vqGbYz9Pw1HU2KqQEd8cszeZPbV23qi6dcxDH0yyU6Kwd47aVAA1Lw+PEDW+6SkTphlzjuKHSyses0pOXQZSPhAdeNuI5rR5bMMh10N+OHEZ3oiLgdIVjEhXcF1rxmaOJ7Vyd31L367pRSFkec6DzKiwRjMj5Uw3wzljOR4lKW0i+xanwL8pRHxURkfA45ZOnjNv/oQ388Y3vhGH47hsbHevcupXnZMUOAR0IEb5NPgg1K4Ox8m7u2ucg1J13B8L/NSLH+SnHt+xLgvBedpwB/Zu8BjOs2fwHqZ54mJ/RfIiG895Es/Ie47rwrIWXPe43rFWOWyHEUGf5FdBYC0rOV2w2AjbzBt1ePMkItFJDVWbx7tKZsXjaayk5LBZ6jYpXBxQCcFgEvm5VGNrgdoDniByp3muXz1IQWBVh4y7w7V+9ntoVVJcP0LlgvfkbLTayGFm6yveAr5HzByLdxRj+GwIxfAWR3SCZv+0ouRiZ5jrcuL10JlGZ17xyFysO8+yOdZN4WYYSiYegY7OwTTthCCMZqK3otTtbvJhGSROjQsc63LkJ3/ilpdi5NHDh1xdXA3is1GdFCVhJPlqjDEk8AyJfxQnwAc/MqY66aRY6TKUO43/RLjUKEJ+1ZwPFTN18QpoaLTaB9rGKHz8MAJz6q4Nko/41tmqUUsVgnhYOKwLbT3Q6qrRuRtox2hSlHg9TOysKsm7G7jITanc+GHu6IzJhFLUttDLDUtdaNtCaxse7QGncWhvDF7WJMSnSdkXfCDFNGztE72OMMYUmaYLupepnAuRFsTP6bVS1oViY9S2VY3GeyMMhG8rm1REHXY5s2ybAlutyocmKCDVtnUIu/r4rBRHIGt3RRuA0T34ELHmRQb2JvuGzehl1Wj2VBzXkR5vBk4y8MqJeN3prQzX6oBtHWsbd6GBu1AhngItJXHTaqFOM324NrcQBydRSihnQh19MLDG1jecIU5UkyGdPxG3pwnDs5mKX6zjvEbc8WTal4QOWsh4J28Zj9RMPv8CGbX99t/+2/nBH/zBj/jaH//jf5y3vvWtfNVXfRVvfvObSSnxXd/1XXzhF34hAD/yIz/C+973Pt72trcB8La3vY2/9tf+Gh/84Ad54YUXAPjO7/xOHjx4wKd+6qd+LG+HV1+65u5mI6bIfhaaUEaa4iltt7YKZeTymNHawid/8pvZjgdeevH91OUoctvY/TtOG7lPhLzXITMixB9e7nn9s4/Y7eZh/y1lQnRyCBVyL1KscjdGSJKNHISKjLT6KWyNM/H0hJzoaypOJC+VMgV0FPraxsSmn+faMIhR4/232ofHSGGphSc3NyzLOszFTkN1cWWe3B3wmDTqpZBikqW382zrOkZDo5qvm6r3KAi02pihjnRjGxvcNtjkDoeLE9WDb8DW6cHY+kbqlSnCLjqmHLmcJ6awI+ZIlNyGrXVeub3jyfUt16OQKbWx1UIwIUSdgnORGCKTC7gYiTlgLlLOaaxKTa690JZy9qDQdfDgBdl7J77HdjiSo2eeA89eXvHcM8/w8NFDri4v2crGVpVgGnPiXA4OdGbM4IYET5wCsf7Fndlq5fr2wMtPrlm3xuG4Sqo+yL45R8qmDdJ1yXrNJFkMKekgi5GbReZgNgryUz6ODZvp3tTVR+/xBKwrbsBHEVmDExm9WyNSSGxEhURjDMPcIO5IxOG6dEg+SgZbGpiLg5ioELI+VElrrbTuxNinDxKpiYdgQ3lBxGjnDbJven0Kl+IleSGHzQF0uu+s1WFuwhcGQqUDF+eYop6JENxIxvZng0MX4hiN+HMXa2bEUzBaLTIWDIL6fS9s3iBEwflOzqa+A85xKMrNyVm8gLItktTmxMk5g97JzmlcHDz7B5ca++z2KhiQGZj3foThifweohBVP2Tw1rumVm74mziRR0+cBfENGONgjbdOKEtnkOqd6ZCxjvNSjNFPDqBG6Scuh/wr8MoOar2LiFwrh2NhWa5ZD69i6zaItZ2UItl7/fwxehZCLO+j1lYdet5BB+tH5tlp3E6hlkKrBd8rrW2YEw8whkAMl4MEqibDOeS07bxUf97jp90Yi524d5BzZvfwCh/DUAIGIWke3FCKVddZ15XYDVdX1ibEoYIaSufkrhzGQeudIjswaoNmUKsRmmnsPFDt7uRgK3sHNWTWCqCzqW4Nc5XgJ5wLuF7wraqAKBvFK6Q2xD29Gi0KofDOj3tR0u2TZNl8pDTDuZnFTfRuyiiyjm0r3q0ypeue3srwoAFfFuXx1IbrleDHQYJEAb1XHEGoK57oRgZcU1HSh9JSmUtdMQuIbuG9gyo/I3ncZIiZYg0XPRZ+gUY8V1dXfNqnfdpHfO3i4oLnnnvu/PUv+ZIv4Su/8it59tlnefDgAX/qT/0p3va2t/F5n/d5APyO3/E7+NRP/VT+yB/5I/yNv/E3ePHFF/mLf/Ev8o53vONnREl+thX2mbzbSfEQjOyH0LB35inyzIMHXMw7tuVIH5tkq2Kb+5B58OiNhJTIOTHNkeBF7HFuEM8Mlm3hyc1jnn/uWV543fOCvrqn9g0wAklV7IC4ndoRMM4R6wzTmnayOUbz4DM62SVB7QOF0PhmcEjMNOsfypb4v4x7Tkqa0hvHbePmsHBYK6UbWzvlRVSC94qGr2C9Dh6EDjhMrzMz1rWe5+RSnwlG7xgWdmRvPP+6ZwQbogfVmrGu4hiU1og+iHTmHNTKFLWRxwjzHJjTnt2UiFNmTp5ABxfpTUSy4hrVa1N4eHHB1D2vLncsxzuwQBgwkfdBSIFzI8F443D7WEFcYvSQc1ZQGzr8p2niYspS1HRJlwWhS2nls3hCVw+vuHp0xRQD65A435axM6GskN7qIA2ffAi0dGWUv1G7Rl3b1nl8c8crt7eDZyJIdIppFNKO7juYCLnTIHxnX9jtdpjB1pR7sxw21m2RamD4DOTR5XuHNtrtSCkL1r2UAoOz07vcQv2IfYg+YE3W9UcU3RABaxUKeDo1RJoHq3f4ZaWGCT/tqFVKqsVMMuK+4a1TzeNDpmwyaPMxYi4xp1lum1sjzzPRB2gbaXJMDxI3t0d6MxlwEaEVHOrEpbJrJJ9ZhlQhT1GF11rBPFsxnN8EdftAKZL+7vaXOOeZpqT8GafCbCmNZoHePNO4do1GCpnpQuqTYHJT3k8Zcx1T6hxl2chWuJgicXd5ltum3Q6csR+GfXihonjFPFgXefRkq95bY+tK1pU0to97W5yLENLgnmk/OHklucFTceNQVmUpJEDPstRb3eLgLrUR3rgKta1jtGEyHiytUZc7jTwbHNdtcHqMMsj0yW+4dgBL2HRBtE5onW1biUMV6AZSWUuluUZr24jAkFkccYfvVbQRF4l5j59lvx7j6Oh7J4QZUHQJXdEeUj8FLAz5r/OD0CrSespJ9/8gC7sQSV6jVu2sjthPnBZj3kV6TPS2p91es263NIS2tm7QGskFWqsUM5a+wOACuZhF6DYo9FHA+pHdVJ+O6l2T2ifOhN3MyfZB6RUN50ZBOmns34r2T41FK9UPFZ4bY6Oy0c1TN0/IiegC63ZHDBUj4M1jvnNoFd+N/eTYtgVHpgW9R2sO5xtWKtF3YjIFCo4CeOuZOAzjXJQDsziLFZr4T9EAAs48vQU1ZaaMMJxcZOM0Efs2mn/wteO2jakWPtr1/3Mn2b/1t/4W3nu+8Au/8COM2k4rhMC/+Bf/gi/7si/jbW97GxcXF3zxF38xf/Wv/tWP+e+qN69QtiNLq+c5a6+dad7z2BZefvXAxW7imQcXxEGg8sHjYuBNn/AmLnfzU8TDTmOXodDwgtS1IXySCFFVBEV8H6Y/gq23Vkd3MLggdAmsRrHSBrnRj5tMo5dTUJh6SZE3x4y/Norrg8nulGnhRH48FTEKHRM58kMffImb2wMVT/OeftrcvLpvq02ptNYJKWEOWpeEOIw5p+Su2+ham0h0ZZDkBhkvREd1nvd/4EMEn3RADYlbc2MU1To5JOVpeOVspKgCLuckZUP0HHrBHwtrVYy79U2AtOvjAB0bqzem5/a8ue5oppHVVisdo5RKWzqlFxVc1fOmR2/GkHIkTDPTNBGDZ+llWK9LXRFyImeNAsIwgTpuR+5ubrEOP/VTL3LzP/4nhufiYmJKiYvdzDTlM/9HB4rDBU8ciE0tjbUVlnUF85RqHNaN68OCA7I55v0F3TT3t9G5RSdoX9DaRMoiprUaeXyngL2UEj4G9g9m9tUo65HkG6FLBlhK06zcy7Z8P03yhfBJCAIie5/GgjEk6iAZ5iwYtpun+aT8HKvE5DF0wBITIRjRvJDJU1FmRh4GeiFNNJTgu5+CuEh1w/UjBRmqXV7uVMzbyuybXhsmQk6ElFToes+yyJq910IvG61WojfmrFFHaZIseueYUlBnWVYiktT7NNODnsGIcTjcYVGeHJSizs/p8BSkrbFI8Y1jP3JK1Q0uUAtDfaWZ/nNXFzz37EMePLgkxAmcxrcnySiDnC+OBwNRVZcPDPnpiEwYBYcUhaNAG/B/6w0b3CIbxRrILtx8ZQj8xNtpNjhjXmMC6/S+yUVDljFqPFrDIvThheS2hdQL0SprKVh37EOm+4g5Y+6DRNkmupuBhqMSve6pPCWwiHdZBA0r7OY8zMDkb9K9CmV8FDLoFAfRCLiQaU4OtTbEDmVdCVH8NOsjKfvEMy+N3gsnZCG4IPv2xRNSJsdAcm4cmursDdERrCm2olpn3YoUQNtCtIq1RY7kFoh+Ijh3JqAmM7KLtADVgQ9gXWKKXjcZvbksXkcMdO8pONwplNZEWjcqIfZhneChH8TJ64ifFzylbeQAqzM6s0Y4zfABjftaJ+3m0Qd7Li4fsixHCPKoKR3MR7rrtDQTgsIS565YDsIw93Ti3mzmwaVBmBbqtG4OiARXSH6jlEbtXUIEK/J4cY4wZbxPuJjodR1NeqJ0R+sTEY3brI08O4Otuo/6jH9Npxn/6T/7dex2e6EWg/cwTZO+FgL73Y7dfmbOSaoGh8htMTLP+oD7AOBD8GcyqbggcmR0YzOvp065VLbByK+tnVEGkdPiOYApxjASfsf/jlwFxRucxgKnkYCQFEahENxg7xvirJigc5xgRvEqOsu6Cg43KRNaN5ZSeXJ9S68KUgtBvgQpBqxVYvBspSgJNSS2JnKwtS7LfDNZS8eIcwqIc4yZdxUZbimaYjsvu+w5Rlz04u70TjBYe2OXM64LAbKRwBvSJO7BumquGU/R3g5nTh0CFe9gmmY5Baf5qYX+2PQCKiyb82xNVuyhG5NP3N5ds60HuZ5OO9bjkVeePCbEzDMPH7Hbz4RTAdDtnBOS08TJr6BbBQ8hRVK84JROPCY6+jydOx8yJ1dT8X2gtg7Wh2Hbhjmpmvzodk9Oss7LwdWKAv2OW+H2OMyzmv5xZmcCpSGflU6DBsFFCHLmFeTvaZVBfIuYdUI8kfbrcOV1Z0g8xkhMkcv9hQq+Bt0r8Tl7JcAGp1jEhuO4ruLZjKL17rjSu+FtcDvwUv20ImGmg3nKtDoyjEybcApCAx9d7ghZhLxaKmuVJ8y2VJbjMnSNHSsbDiPRMbex20XKtlGLEdwEPlIBlyL7+UJqjhRxHiIOb5Hr44Gb5Si/jVLOKJI5qalyzOQQ2cdKypmQ5BWSJiXApkn3ofOQnCPlia3WMWE4Mb84q+JOFuUnD48Pj6U3njZFp72g965GAo2r5CXbB3Ki5mfgJpi5cdio6KCJs3NSA/WR0l6bcTxuHFfFU6xbodZCKXXEJwhtdjRCqaSUmS8uCCGP/WZjK4ez2sub4XvVdfVJ/BUaIOQZbyPgcKCMXQ7fRpDfiAu0kcTbWhnBh5nmqjxARpK7zM2cTCBbHR4iSkoPASKJ6CCEyvF4gw2kOIaET5NQ4ZAIaUd3nrJtKgRiGI3VsKv3np6G50/vkiEPg7NkyjTD6RyQXLlTTfw7Iegd61UZbd0LaW7jcwwR75VDhEmlaU0p3MrTEofLe/ELuzlyTtSyYW0b5ndqolX8avvpQ7npfdC+xMjcGuPf0z1oGDkNpRWncyWcmyvvDHzgw+36++A4+ZDp3Yihc7mfqVUJ3TFpDxYqJT+f2k++MhpHuTGCO9lAKLuIc4GyLEf+0B98+y//NOO3fOKb+YRPfBMXF/vhQiiyQ8qRE5ParGsGe5rRm5xOzwnFACbvh5MXSB26dRubIxhthKjRGwl5KFh8Ku8LXg8gcNbkSytpo8CoOHsKw/phria3V85EWZxT0WCmGSEaDzFAytbHXLo3ajMOy8JxLYy3rr/SOdKcuXr2EfuLvXKCvB9+C8MuvXdwnTL4Lh434MlGG/b53cbvjWnk1C9ZlhXjMDYbzVgBqlXiFAcxs3E5X3AKntrHwLIcyTEzT5LStoudDvBSxjx63PS98ezFnuceXNK7DLsOa+P29hYGQVRdqB7I6By7nJUxgoMQ2e+eZdcecnt3y4deeYl69xhrR5bbhZdvI3m3502f+Ek8eOZ5fJw4HI76/F1TEeFkNa7YAll1n9xlbbi1NmvDOdSdVUk++bNirJ95RKfI8pGr4eN5zOfDCRLvoyjqyjnqw3OkyZflBP2W0jgsK3eHA6uL+ru8jrHkAtGSjLm83CNPqJ0fm5gLAZ8zKck+POdJks4UmHLCShtGWEKGmpd8v7ZOc47DVmlbZ1k1cowp0mwYvI172qH7it7w0dNK5a6smHMjq0ohhnWrmHd84JX+1MGyiEzsQiDGhsPrs3DgcsLRqePnrM7jcienTmvrWW7qWmG5e0yInpAzDx49R5ouZCPQGw+CJ2A8mGehVTjSPA1OVmCXJ0KQOqx1Y2tSgjnnz0TPXj3mA8d1pY8skzhGOBrHPN0H+onkzqmwGHuO66dad8jFVczdjSDLskpQ2nodxacQOu91iGkvkkZH6ghx7NzYr8waWBtNBniXRvic0UKidM7y9K1JqdO7EdvKsRSmPA0J80pZTo6w4z4mEEKkxYiFCCYCJU0k5ZQmvdIbRMe2FbZVh36jftge1kleHiS2bXp+T8nF3uOaYbbh5Kah+92MtnXWshDmC4rtcPlCjKZYIU+Dg9TBa+ThzIh5phDZMFqEaEKZNzpTR+nWpaiRHY1Xc9BiPo/trTUcjWk8w214L6XsiElcGO9UZMnKgIHEK608joIVLwm4w+F8RvS6UVjgxcFxnVo63UlD1bpJxTNqWusip6fhMO5PAgSv0ZcMAuFkaeDdiScTB8fRDeEAY3zkzqRrMPBRKB5tND5RjRy6507NmsOfncVVVA/FqBt+QuN1J7cnmUh+9JjIa7pA+ZRf8yuZpotRTMjJUfbEbhQJykI5bQp2wkOdww1JoWhlTxnxbmyAsi6WEVrvjbSbBsteTGwldaqTlp+J2Nw658UXARG5OG9Yeh+SC0Ipkr6qq4W1NpZ1wftAaY1lGKEJpuzDHdDwJp+Qsq3aY73n5vYWw424eqM7jysrr768aKPdNtS5qxCy7iTLa426agMSEa8RQxJh2E7uhUbOkTDQpFIaIQ9vkF4BSbo1JlrlZXBY9XcgzotZI6VCb49xw6ujrMu5M6ldm/TVFLFaqb3zlje/Cedgv23MGT7wgVf5if/zJZa1YN5Ik2af3kkyq5pTD4rryrdwQHYVH5pmqcU4tCP/x3/8PwjpgkfPPs8Lb3wTKWXwSAUStAHN8xhF0M+bx+lhBnE9TmGRISh1Wd2yDvBtdB1mXvlFQ/65LMsIaVxZN41v/Mh5cR6cD0xpZjd5ikx+YDZCCrTeORyPrMcx++4bMTh6KRieHBzrtgixMjnZigAqBOr83kMYB6ixNE9dYTfNPHx0wbIcKWXDW8DFzrIduV6OvHpzqzj7kHBen1mzjk+RdAqyRDJaPROemGcYkkuNBvwwTByMXCVSkZLDtcY0adOsrRJDJiYRo0OOKkK67AJK2XAh0EMmuInL4KEcWG9fIUaP8zPmJz708g0xHXnumecI3rG/mHnDc8+ymzKlO5Zt/YjrUUrhuDSO20oIUlS1LmJ4iGk0PBulFRyOOAiRvTs06f1wO4CR4NRPRcNp57LxTDzNc+nWZLbnDU87Z3uZ0ygmtCNmXiF55YSWVTyR1sUVcqObd11IWvCKCQBPiNoBpxRxyfD7SYRh5/S7nFDjXpXkPPyiXF3JXp/3ZmAu0V1gbY5al9FoGVRl5yQ/EZ0OdTkZi/DqkzK1oveyXqcT414NjTlq2qmYi34gJTY4gVGp5o7xzFTqWrk5LmCdVJTZ1NOMpczajJz2Z/WbA6IbDsMuyqfGOZl89hXfCxYT+E6eojh7pQwPkkJA5HQXIiFmgpMabNpN7C72zDmO9F8d/gr0fJqC7EZzjLMRnipi/ngM5VBuHxY4ioMmV9y8C6y1sW1Hro93HA6bRAm4cW10ysSUOOWOQWeXEvOUmGLWCCzl0QRUTsndNlR/MN6Sc6L7DIk7I8PJGZRacOHEXRuQP5wRwNO/xQuKozBRIx6UpqnicjwPtf4CqXh+qa3DccGlJBgYcH3wOuxETrXz0RJcGCPzkYMwbpZmQgyEcnRKqdwdj8PSWxVhrRvzNFObRgHOFFet+aocBVttmq/6QDP9vFrquSBog0gpo612PhxsjCu895SuLAxvjpziSMtVUXBCW06vlQNjI4XItiwQjRiTQvHQwf3ENVzbsFYkWe7gU6LUhgXBkSl4KRkMoVBRUJ1hIytDm+S6jTAoB3jNRK2d5LsrbROHwmenw2fcmFinNyPGPAi9Qo6cVXwSN8CjFM8ePItVNh+4XR0/+j9fwRws28oU4MGzj5gvd/TWONwtLIeN1o4Ep6s4XexI+wtynEalb9S1Qi10q0xZD+zSNi6R/n+3v2DeX5w3QQW5OXyUGkHy16djOc7KKuN04pw8UGqt59f1MQJUwapYd0nGT1Ht+nFpKIFq2wQdA8fjyrIVtlrxY8MsdaOUwrIoffbYmjZNF5mciMYu2ogXcKRpTzeP2QYfZtm9NWU/GcOPxosXQJcd+aOrSy4vZmL0xNBJLnI5RWgR219w3Cpr60jyAy6gsdiQxAaa5tQuqONn8Cg0p1CYY/A4Hwfbvw+uVyXHjpm4UZc5sZUjlIWrnDXKBELa4XsjR2ihY17E79LryIQ6+c8E4rTn2WcvCb3Q6srVlLi8vCSmme4jcfJc7OfBcamU0pT2vZuF2piBZUrZKFvhsK1sqwpKFxw5JVovpGkiZtm6hxOg7p7eGwrttDPEfQpwA41yWmvUWtjWlbLeKeXYeRqSiCYxrijVYdFDE2/G1Ua3DY8b6K+QBjVqRqmLxqJAWa9xrrNU+dLEIHJ2a0PN45xGNMC26l4JXk1Xd4pHSCHhnBoWn714YlUBcCpa1dS0fpRapcuJ1dUKrYlQW+SlUXtlMTVyzjzdyhg9KJvIfKR5j3XPwUyoQwxM08T8ILG/iEJ3LVG2I/QDmpIa5fBB7WdJzqrrujGnCHbNbiiX/ECTaYUQZuTjGwg+kpzDpU7EM+eJ3e6CtNuDH2q2fuLzSFTgTHJi7z3moA7vmlYHkjMOf2fIALI/TT+uzTiZ5PVhMmhmNNdG6B9UjK0bMI3zrZ5dz4MPbNsmbuJoII9s0Ir8WVJmmiYuL/fEGBhPIt4ZjafNyhjYjFGl3qwbz3EOcfDTRqNv7fSqwbNUI2td8RqaVow05MLZQqC7Ubi0XyAVzy+1ZdYFFfchbeLDqsPgh9RL3Wl3gtDrILqWKh5FGRbMy3Fh3Sq1CLlwXtksw4kes8N5btlOGT+g+bCdmOKC9dUTSoLrvBfsPuyunXMDEovyyDAj4TFrBJNFeR+s+hgirleVytZ1II1DjBjpDdnr+4TzgXXVn/HDil1ENOnQy7Yo4tt15jkoFZQxgsgZM4gnm/WuG7DWRowJ12SFr/mpnbkzwZmY3+g6WZVPSrUOxYgpUktRsVB00zqgVc2SGfNo025IqR3XIz3A5gqHdR2GT3DnO9c3R1Jww5WzimHuBNl714GKaxU/8lZiTlxdXGFNke273V6EYOvDpySeixacNpzTAeeGcuJc+Z8e0CF3PI3lTvEE6jpOpEj9uVNOi2StsHXjuIkg0nqnbJXb48LdsrINCbIB67qI0O0crq70VmSDH9TNpRiZ5gnXURwCg7AWJ0JvEDvBS5qpoLQILtB9IJg4NzbUHmF47YQgT5DDcWFZj/QuBOPq8hLo3BylhHPeMzmj901ppT4DQj+iA5rSRapVjXR6JWFEgxzA6ooTp3zM0hEEzeAQpEldmDNS9oowsEoCdZ4csTAahOYlY3Qase2miecefhJpzqSLC3BZyIjp+WOMNJ4c7uSUiZRbzmzI1uu5LZVXi52Jp7hEjiOR12mUGFMiB13bE2IhrgkDatfBf7p3hJzY2C9U6KY8wt9aIc+V6+UBT175ENXAQiaYkdqKc3tqhK11sCqDT4eC6RDvyTsjhNGv9SZ14zgMppg0skk2GJ5I/j3UgYadi28X/PB1qTDs9emdZuvw4zE2K+LMNZnhnXKkfBijbh+gN2zto3MXsizV7EB76OO1Sa9tBdoyCt7BDRqmcT5mttVRDgp6bUQqiRAzjsgcYUqVut7Aeksthd1e9vvKTRvDKacUZhFCPbuY8ebxU1ROkAlRjynDLGm4BxmwqVMhOkfpMsQUQio+WS2bmlPXqGWlbXKxLa3KhbYPOb5zT/OBBrrWDap5zEd9DlYI5kUw9UbzGtd4F1VWmKI0TvdTGIWC4fE5kOOOycOU5KRtAeQ1Pobpo9jovbOWckZR1MjIx0ZqSBVg2mMQFaD34ZcDp/ToEGTXoHnBKeDyhByaRuImvtTaP/qwwNd0gfLqk2t2TYF5J926HhrU9RTJmWR3LLOnOirXUireBbZtHQGFA6nwUdp559UReT1MOpwcdCEH1psgfhT6pUO7M6dJtsYOWh0zyADdq9otoyv2BLZV750QcdaITTkIpUlC24rs5VM8SdY6Gw5syBZ9VnGWwYKxy0ls/zF/9iFiVjFbCV5ZLKU3nJ/k+cEYA6CbzbrUEoYRQuRiikM7ryo/Bs+6bcQpgxfBNOChp1HUNKLJ76MRsQLB/BjBSK6Zw3CGPFnzO09KaSBSnu7B6kYgMsdI3iV2+x3RV8pWGM0h0Ig5crV/wH43kwa34lQ1mtfPhpE0TNdIoA20LcRxH4h7InxzQKzOU00FbXAOP0Ya5tU504ZJHBCnjBvSyN4apXVKhbUraNLqRuuN6+uDUqWRA6yZXl8HaifJcxMk6rqUD60T046YA8FDaUVyzBA5LEqbPdmMdy/4Gq/CpreioWOrbKVhwbHUhV2eic7jowq94Bu9FNq2MO0u8DkyZU8tHZ8c2/aE5ajkWudEtm103FAExLgQrENb5U1xSt0miKjrowy3POqiHbreg/RqI5rd+UzAoI3x0vQAuhu8jwP4iPkL+U5EY6sLvVZiiOQ08/DBs4Q003tnW+64fvwS17cHuvfMux3zdEkMiZADW2+sy0ocHifTlEUix+PSzM4r8NK5SE7xPHprfmRLdTUa5iN2IrRjZ5VeGNC5jNGESIaTx0hw4lbolBl8sEatRqvG4eaGKWbc1lgOB2qtVG90KxhGmmcsiIy8mscPmb25SLdKbEasQoy7r9qnxugnx1Ms4PArCTpObBCczUs557wSap15nJvUJJkondVsKKMyVjdiMKwVKcd8kIuvCzSruIEi1VqHctAGZ8XhiMSYNJI1T+uF4MVt2AaqlvwJJZBTqlUIMQ8rgyhhmTeCZakqY2U3ZR4884KC85qK9piGy6uhZtE6MWf6QI1SzETvySlIDGHiKjqiGjjv2OpC6ZU0Z+hGdul8ONfaCLWKw7IVDoeV492HcCy4bkx+wuHYSjvzbnZJ54xQVQYGCWaR3vX5dh8hB6I7KYCSIlLGHtVPhc26sY0xEiFSLbKVyHWrgDx7Ugxnsr0Ub4FdCKRpEi9lZIoJham0ZlTXCMjbqrthRQESMZiT04Q/jbvTQBbHfd2FCJnrnKD30xhqXZ7m6v1c6zVdoLz4+IZpKRyPm1jGqIO1E6O9m2bz1snTLBc/r5yHMIhPu/0F2+Ar5CBdexwz124rtm1QR+KjU9hUTvE848Q3YhLfpRahCHKhlTKgmxEtyN7ausygTBvOlEfceCt413Cu0vrGlBSYhxkp2pg5g/OeSCQGqKWSogiFrVV6bWJeW6O2VdyZYxcBdXBNwrwbAXbqiHwQ3BfCKcunkDOjG1rxyBaf1lUk2cQ0y+CrlYoVybtbkA13Go6wQiUC3iemKZPnSJ40Sw45EJ1st6GraKxtsMsDyRk+CUUKQfPMDioSGOZjUXwOnKeb/Bx80OZ5Inv1wVqvteJiABNqpG7QqOUUez5GdDbSmjtsW9H83ORp8PiwSKLaK7ucMRwteCaXsdaZ8ikzo8nNuG0UW9m2lVaMxaRemqJ8HXofWUuDLLitRX1NF7JUmzgJDlj8QgDxTJxyQIJPVBeI3sF2h5VbAoUQAsVNNCbStGPa78lxbLLOc+HTiC9o5OiYkuFbw6Ig9N5vpbo6HGjlQKsL87zj2d0DVjGsFP2Ap5WNyELfqhBD58nO4YrM8Jxrw5dioqJRxzSSjnGOaX8hAl3h1C9Ta6HWxuXuARZlOhXx1HUjx0B3UOqB7W4hxcCUMxcPnuXi8iE9TnQCbTsQMPr6hKkf6LXRq+NwmDCbSWmibQvL3WNiaBASS0iyCXDyrgn7C/a7C6ZpT552ZwdoLGuHDiNRunYC6dxJy/F58G+8mpnAiRw8ulyndG1/UvU5R86ZeZoA44XXP4eOoKEQa53D4cDNzS2Hw5Hrmxu2rQ6/CTfQEI9vGY+nR6NmSVytefKcOAz0dEP3mx/FAt3R+5ALtoY/jQIRv+7sTG2dVmUoOLx55WI8SwmSwgQuUgu4FohD9dfwtJAgBrZWKdUoxTHlRIqe23Xl5BHlzWFtE0k7Tlzsd8QpEL1nGk7UF0EJzylnko/ktJNlgHdUP4j9Rawm7zrTNPHq9Q0/8dLLI0CxYk0k2K0Z69bYSmO/y2TvaHWDoFGSM40ve1fQ4XJ3xJnn8uKSabcfY5pODIGcAilFIULdKObZ0kNam1R4ucA8XhdToNVCLY2tF7zPuN5IrrMLJx4IEAOHrUM0XFuF/tl5cK1oAy+S+rN75Tq1dkoz7vR6GAaKgWYbTbZdOGA7iIv5altovRGi55kHzxDTRPMeHyAauGZUr7DXYA5cwKeI2PNPz1CjU8silLbL78u5wddsVah6k5N52TbW9e6jPuNf0wXKzc2BdVMXItZ3xdqwREa29DHvCDHSNTQUSueNZV0I0ROryI/ee+pWz7wLWbhX3Nqw2oREeMMlx3ZU59ScyK69MySWxlrrmZsAyJm0DJmwNZxJ5RKGIqEBIc1sRd/zPmBU0iQlybqsZ1XIbjdhwbOuR7DOHCPHwx3eS/bmnKD+abcne8fkwoAXVWnjIs2G5TAbboxftmMhJzlXMlAkHzNrLTJTioFiHeeGXbQzPLCfZDgVg/Ho2YfkaeLi8oLdbifZWxyjkWbDkvmUsgy4Tu8wzYGdU1I0g13ekcoo+GHVDVhVsbFsqw6pbWPZNlmWm5JZnRMvoPcux1OvDjgMpYzR2Urjdlk5LBtmKpBOMKehLqOWci5w6I3clX3jrXP7eKN7j7vcU/yE9cLtnbxMWtmIPpJCguC42F8RfWZrjVoPJI66X1zEpqgupRpzTrQQcE3GZg7xHwR1T2AIwQhJh3Az9lG9TJxmzBKKxDHmYVyFK7jyIbwbgXK1k3G6b3FysrTI3bIK7Rrwbg6RlC94+OzzLNcvq4Pvytjoxkh7ls+M+Qg+yIdiGL5VNo2iooyetiZ5Z/SZY+1YmggxcSiVWqr4IN3IeYLQybsTwQ656LqA9QdUF8Zz/QDnL/HBsbXO8Xrh1VWFTHCeeZepa6FZxieHlUKpC9tyTUoKK3Rph8+NMIunotDITKsnhYlBdSzbwvFmhZhI046U5F90HKGZtEqwRjBJlk2Mdcnio0ZfKQfmvJNnThB65KII5sbgNpnm/2Ash3ou2E65PCEkHj58yNXVQx48fMjd3R23hzvWrSj7pha5o5aOa51WCj4mSpW3z4mXJ/mnnsmzFNROnDwRSTGlfMdRQLUuYnOOO/aTLApaa+S8Y95l1uXIUhq9B4rII0JrUMPRtk4pG700aJ3QC3HKvOWT38KDh1dsmxRYW5F5mhpDJ08gq2eejO49g+4pS6FHx9oOTClChdt14/r2jm1ZKV1ZY/t5z7ocWQ8HYgwsvZJjptgCIZJ8J2eHbXcyV+yS4J+ReB/wMRK652IWobcebtjWoxSMDg5lOyfM46T+UZKxzAp93FN6ox4PdJpM69wYJYeZ2hW8F5xMLKX8dThb5VfSFN2Q8oRzSSO5dqTXO4Lr5Jjph1dpbcVZVCq0h95XQkr0Fpj8TqNG7yEGmkWqdYJ/pHKzbRxub3HuVqiw80xZe6cPAYuRihR4rUnujRfJ3XlluJ1GcYp9KOKpmJrBNiw6Smms28rhePNRn/Gv6QKltaBgJKebu4MyCRxgguNLFWnQR0QETBpHpBDlZGkoURUpOOJpLNjRfD0Emp08DRqehk/qvHyS/8K6Veom3kqvTTpx68ynHITW8FlkrZgCfooc12UQmHaj0/TyZuniquz2O8CzHBXIVUoRCclBThfM8wS9s9uJbFi2Ri1CMrzXhtQGR8GbMh28N6aU2daFHgyfZwylgNZSabWIEe4l992niTTm7Nl7QhZ0HaJnP89KD3UOFz0uKpTNjQNS6JXmo2WrNCpr2VjqJvVSF6nXO4c1KQasiXD38NEjpikLsXTS7LvssOBwQSFirx7vuL29ZavD4KybEIsqbxGpARxTnmAQYl0IrIteUzlJhEWGNcBco5VCQPyBbp0YImuKBMua6+8u8GNT6a7J2GnI67xLWFWRu1Xxg4Kr+CSlhO9yvuxteNREcL4Ihm9xzHSNtYlMV8qK89NTjws3OBKE8+y5DSl6SEO9ZBrHWWsj8M5jaVJX2ZvQt3WhbE3jKQ+xNeb5gt1ujw+Bsm3cHVaKf0h1433nmXOUPTKiMqtglbocSK7QzDPtH9FqZelCwPCBChTKianDtjaS3+NjB1/o6ECJzp3HpQkkU+6Q8p6yKWmaIZ22LjQtdMNvlcuLS/b7C+K8Z714luNWuTscMaska4Qxdj16R4uOmh9SbNxPVYZglxcz+zkzj8Tsc2yA0zWPNtyh+0IdmVDVQe6G71JjWG+U9UYoWw/MF4+Iz0yklDnb2sPgrPjz3N8NdYQLkoieONm9O3nqEKA29nNmioFpisrFubtj7bCaUWKmtEK0hK1GNx2YGmPqnl6OR3zdnnLmXIAgyb5PQhOddVKU0dqcJy4vL2TR7zrHbWHbCpjjuBaWovGQ7zB7z243McdIMKFOcUojzXx4b0T5AT24ulAGUY4qiMqQTA+eH4BZEHI2uIOuFNrw8ulL5cn1Yw6Ha1Lcc2gB856U4iCTLxrFW8dipMeMbzuKNZFDuxAi143QjTwlggu0ttGbfFqcyfHYHLTWyTHgJu39J44hU+KUrRazxpn0jusi/vZewAo+TWcOnvdAjEOtVjQ+T5FtU+HbupFcwLtMqwWzMXZPnhATnsTlxQsqhILQ/F5kB+GCFERWIq074hTpfdW1KBC68nAiQr5CnmjRYy4BUkP6YUp6qEfauuFdJE6zPKw8tKpRs3mpkJIP8rCqBat1pKFv4ljWAQYMg8iEUa5f+qjP+Nd0gVK3RURSOi0oW6POnpA8bStgnYssJzvQOLhux/P4YFkEcU1THvkyTTfuqYqO4FKgrJolu+Yohw3XV5yvhNiYdjvmOUPy9GKEnKnbRkqJNEUePHzA1dUV67JSWmXdCnfHAz1H+tZorbDdyP5c8fMqUHqS3DXniVYrKUWWciT4REyZu3UjJ212PkQePrcjhkQOWdyYJKVELyqeYkrMOTOlxLYeWZeF28PdIOsG9vtLnNNsMkVB0MEHyZUHKZShURhmlmc4r7U6DOMEIZ9SWHEiRh2OR15+5VWO66bRl/UzqnEKQ9tNEzlO5BRptXA3+EMiWHVaaRyXlY5Y57VV5c2YgyIVhAdiUlBf65LurYcDXTTas7dLTokQvIjSrZ05Qykl+V+UAgatGctSmFLCqnI6tiROy2WexFVhhDByIs02ttuFHD29HTE2VhpTeoRPO7Yo6/doCuNzpoJ53u2Z0jTQq4lunSlFKl0jthDBDai0VMz3k0UPJ8O3Uqq6f68CwiGCdmn6/ZQ0zSByepJPxBBwUXN+3EiSHt2gbUeWbeX2cORQO1sbarfaSEFR8yE4wnRBNWlTDtVhPeI9bF3y7ratZCeDM4CQoDHk1XhS3Ino2RrBRWLw1O1IK8Paf0iKY4x054UIOiNFzye+/vVczjuhS+a4O9zxys0dd0vjsK74EGjNYW4mZnmZ+OZwFrC+EnwhmkGv3Nzd0ncZ/8wzPLi8VBpsE1cKk2dQtMCjlHhwecGyLNzd3XFcHIdNHknyNTKmKZEnzeXX40IOEWtOhWPQqNgx7OGdO3ulCDnh/N/eR6YwUI88kELv2F3sRjddOR6PvPTqDXdLoSDFxVqK7sHSSJ6z8dvl1Y4pXjJPE1dXUq/5GOS1NKzqNe4VipmiuF3bstJ6IaYd7uEVmMM6pKBRo0wq/ZDej6Lf5IorfrA8OzrDh6k1lk0KhNoCnobzkejHiLaJ8HloGt03c1Ll9EjMM9WMy92Oi/U57h6/ymyFXhtt3ei9M8fE5EZikLTDdC8TNQ9npMzh6DFIZVchBI1LqmuEkHmyrhqHZk/vKjgUm8LgqQnxcSHiiiQ+vTXqciTniZg8hI5zG8F0DxdsoCZjTNZUMO3nnQQxKNCx90ImaxTnFF/Se5X1fslcPriiUqEmKXusU+tGxON7oJSVUAvVlHruuok7FtTMtHJg29bzZ5SCxv8blWADLfcO85X1rkBYWLeN0BUeKOl0xaoKKOdka9Dx5CnTt5PgwLFtcmbGYPcxRNq8pguUQMPXI72uCsHzGXygHBu+F+iV9Ub6bZcUK++9nPB8bMpBSYEQxUwnyqlz23SwHmuVv4B1dvsdlxdX7OcX2MV4Vrr4KMZ3mhI5JZIP9NJE0m2Nm8Md73//+ymlstwtMkjDyaHVezav+aMbHIo87SRZXhu4xrYu8ioolSkE6uBttK6uuvUCfeX6djozw60X9jkw+cDDB5dcXV0yz7OQltZwcWa+nLh48AwuyIG3DT8GKRZ0mLdm9LqJnwEjQEww6FaLFFG9s1V16n3AemePB5N9d6SSQ6NzHMoAR5525CxZ9rzbk/KOadrhOyMcjeH3pRGMC3C121NKGb4NSdcJyNPEyb69jpyHPtQq27aOh0cHwVYKS1tpVZ1TGAQ1yW49rQ65YJcEOO12uLLSuqTSx+1ICJ7jdkfwO5wPhLjDefBxgqnjXKQGCFbIo9Ar5jmuKprFCVKwgXllc8RmWD8O9+Aj8xx5eHVBSJlnri6JUYTYeXTe9D5cNhu9V7ZaWVa5HxczStdGnBxczTPeBbKT3C8EpczKn+FkLDjcTukK9mvANOFTZHf1kMeHlePLr0r95Te24ZfQK4SuvJmQBx+jN8wC3u/p3eH9jFlna40QdQ/6YQ3vDbalEoI6uFZWvBUsz1DFh+pOTs9lE2KlgMSA644nNwdKbcQ0k0PAt5Vcj/S+MQWZzHWfMFcpNVAbWEi45IhMRNcwa9QiV+PSGi9+4GUeX9+R88RuSiMvyXDRK3nWGsHgmQdXvO7RFd3k7OyGbf4J/nAnM0M0wgnDiNFM5lsqfAZaAINkOEiadYxkej0bSJ7yd+iOELKUaymR55lnHj2iboXaTC7R3uGDkD4/RqWK8QjKEzqpigYHpNPORO82AlfdIPWXWkkxkoPQhG6GD/5sPKYA1M66ictFGCTgNlSV3WT21xrdKmWrmBviAqB2GzleQx1oMM/y7thKP6uFapWDrQj2ypbaB0/2gdSNOHs4HaqWMKf4DjP5tbQgMYSHkU4tv51us0jYUcKB2hp5zjQ8OU20rWAdmiXwE46K8405JIknnPJ58AmLF/hWiUHcusPS1HyynUNlewzDZVZuwH0IL5KZZNuIfC93eHmXlOr1Z2Kiu8qrNzcctm2gxxspB6yqmfFB3EU1r4lIpFeh6x0hSObBxT3W9Jz4Jh7m1hoxTsOvRuP2YvITa62R0kRyug/MO8rxQJqGitVWrDfmPAt53ha8g61sg6cz0y2ASx/1Gf/aLlCi7KihoVzbQp534poww3CX3O12zLsLSpE2vWybJMi9aa64yZwsJo1HUvS44dQZHMTkyVNkNyf2+5ndfqdsDZNy3ExOn2vvtBiIPhByIsUdu/2e1z//vOZ0XfLmrRSW5aB5ae3c3F5rdOQ8eJOXSJbczKzjex9wrIhgwTt5TaDAuTBGRM0aOQWuLh7x4OqSy3kmDUJpGDBuO8md0fz5ZKN/9sQI8jhpSE10txRuDweO25GtqiiqdZMpl/dAUFpp22RihJNcFDH3vYN1PVLrJtJszjhrHF76IDd1k39ATPi0Y7d/AHFHCJ553pPynjnvNLaK4gnlORFTGhLQNgop5RL1bqScnko6Da78pVj4m1KMa21cNHmMCHVxA7XyHLZCd7Cbd8Q5ctw2jndPROJNUe/FB2JyBMRb6aaZa3CJdRtpoQPadWYcEApinuGroc7NWh3xCg3fuu5Zg9o2nA8cSubu5gg4Xt7tmKZECIEUPDkPI6acBmol91eb9sTe6esB6kqvlZvjkWIdHzO7y4fkKeO6UxHoBfQ7J/8HZzZUQSJvb92xHDfuDo+5vpV7sHwPFOHgokl+SSfFIXHtDucnqtPf0c108HRlS7lttGuRcxSET5E2jPZ83IkU7R0WGg4pStq2EWqhhzGe7Z3YPMdXr1lvAg8fPuC5F57n6tk34t70Jg6HI8fjyodeeYVXrq8BiCFhMWA0el/x5okBUoyk3Sy/BpRP1W1kUJeGmRDVyQ3pd8q0XlhOhhh4bG3EKKWXDviOuYEsoJpldU/J0d2pm1WTM5AUHFb0fe+jxkBxpBcP6wjnxfHoJBUvA/HyQNhFshnTSUXUOnn2snYf44TuJOcG5Ecx0qDFt9XozKdJeTVNBPQwxuI+yHHa0IHavDvnfskVWa7LDNNLG/tXdyLNphyAPTV3DsuBdT3qfsGoB8l0S5UGfQkKLO1D4hpDIEaNFa0XfJI1woaj+kDpItZPTiZwbaQjO5chzbRayE2qyzDM4Fpb6HUlhoJZpG5SlM27C7b1QLLhDeV1OHsfcSljzRFxtHLEjfsquYbZSm2VunZFBuRACyps3Mik6Tj6yWwNqRyNDlmmkLtdZreb8WFETNSNVhqhyhgQulLGwyW0hrM20GT55dBku1HHqJlqNAo+Zllt9C4PK4YDl21CZboDl6RMs85yMlMbZ4QPjjklsCqC+MkSPwYpsYZT7Umgcrst0Do9JDo71tLpi8zhluWXuQ/KycFuOdzQ26SKM0Z89GzbMohfHlrDWqV1uLkTQTE4uWo6g5Q88zQN/wDFwMegYKowTdo0vDqPOox97m7vuL5+8tQvw53GIf783vwwPoohorTgAbH6oMrTTE6FrXN7fc318UDybnQejYDpQTVBy7F3GIQ5FwM5FBT2NrxEaBQ6j555wOufeyTeRVSc/TbmD3ZyMRwQa3BifMv5tNMclGXlg0+ecDyu1FpZ186ybUAnBiPVo8YnbdPDGQOQaHHPsHujIaMl56vmr3SplIYKZ11FEKYFopuZJqknUp6hNqzdiBS6LfS54eZODRpfnOYTJ+dEObA6+uADtHbKk9AGfJLxhbHBOJxMzg53GoegEMbWjRgix9KoBtthodSVZo1o6prXulDXo+yeA2SEnrmhAnJEagdZRDdC24btfKA6FZtucAscgdqLtqih5BmhKmzHW234005weDPK4XYkgo5IgmG9H5MXQtAbKUbwnmpyWr2YMvs5k3eXTAFonfV4x/XtNaU0JV07J9feUuhO3af5rr/HAtV5yrrQR3J1inm4qapTdma4FNhqgVblSWNeKqzgzx4iImDqGTI6AcHPwBhznILwBBG78ZmCpI3V4CIGXvfoIbvdjt1uIgRHDnqGSpPkvNaND726sBU5wt4dVz748hPuDgvTNOFDwwXH5TSxm2Yu54kwFBinfJJTJk4ZChrGRryUjQ++/EElLnewUzimc/Re8VUeRG106OA4lFWZXF2+O9U0outNDqsJZZTIJ88GIVSy4xgiISl0M6WEg6GaAKXgTjRTSGaMiTxNpKR8qDAOQIeIu3IvF6laYIwfkmjJQ9WdGNKG6p7GmfxDnBvNVWPTHFPP1aiYjKdqH8YOwzCx7ECpo3mom8aBvVFqYyl33D25ZZ72vO51z/HJv/r1nEwsa+mDl2N0Iif7MO8crRQ1DseFUhvr4cA2soEMx/VWKSgMdFuPIo76TG0L0boM6oInTQnvBz9tA3LEm6duG70vClH0w9ahe+2D3VFDEp/GKdixdyi+0kceWB+Ggba1gTzouY2uEEdZ4FzWKLA3uBuNbpj02uDobebWItUytW4Mq2AhoH4kQfdOcvII6rWytgLtOMzhFFHgYya5sSdMF2oGx61gkq2Rs0Icj2sfZnkyBR1KBloX2hKsY/WG2hZwck0Oil4CC1RTFIwPM5N3FBJ0x1oHZiUID9dg7e4jzvGfbb0mwwJ/7Md+jF/1q37Vx/tt3K/7db/u1/26X/fr57F+4id+gk/8xE/8WV/zmkRQnn32WQDe97738fDhw4/zu3ntrOvra9785jfzEz/xEz9niuT90rq/Zj+/dX/dPvZ1f81+fuv+un3s6+N5zcyMm5sb3vSmN/2cr31NFignhvvDhw/vb8ifx3rw4MH9dfsY1/01+/mt++v2sa/7a/bzW/fX7WNfH69r9tECC/7nfsn9ul/3637dr/t1v+7XL+66L1Du1/26X/frft2v+/VLbr0mC5Rpmviar/kapo/B8OV+3V+3n8+6v2Y/v3V/3T72dX/Nfn7r/rp97Ou1cs1ekyqe+3W/7tf9ul/363798l6vSQTlft2v+3W/7tf9ul+/vNd9gXK/7tf9ul/3637dr19y675AuV/3637dr/t1v+7XL7l1X6Dcr/t1v+7X/bpf9+uX3LovUO7X/bpf9+t+3a/79UtuvSYLlL/zd/4On/RJn8Q8z3zu534u3/u93/vxfksft/Xd3/3d/J7f83t405vehHOOb/7mb/6I75sZf+kv/SXe+MY3stvtePvb386P/uiPfsRrXnnlFb7oi76IBw8e8OjRI77kS76E29vbX8Tf4hd3vfOd7+Q3/IbfwNXVFS+88AK/7/f9Pn7kR37kI16zLAvveMc7eO6557i8vOQLv/AL+cAHPvARr3nf+97HF3zBF7Df73nhhRf4c3/uz1FHUuwvx/Wud72Lz/iMzzi7T77tbW/j27/928/fv79mP/f6uq/7OpxzfMVXfMX5a/fX7aevv/yX/7JS1z/sn7e+9a3n799fs595/eRP/iR/+A//YZ577jl2ux2f/umfzvd///efv/+aOw/sNbbe/e53W87Z/uE//If2wz/8w/Yn/sSfsEePHtkHPvCBj/db+7isb/u2b7O/8Bf+gv3zf/7PDbBv+qZv+ojvf93XfZ09fPjQvvmbv9n+83/+z/Z7f+/vtU/+5E+24/F4fs3v/J2/0z7zMz/T/sN/+A/2b/7Nv7Ff/at/tf2hP/SHfpF/k1+89fmf//n2j/7RP7If+qEfsv/0n/6T/a7f9bvsLW95i93e3p5f86Vf+qX25je/2b7ru77Lvv/7v98+7/M+z37Tb/pN5+/XWu3TPu3T7O1vf7v9x//4H+3bvu3b7Pnnn7ev/uqv/nj8Sr8o61u+5VvsW7/1W+2///f/bj/yIz9if/7P/3lLKdkP/dAPmdn9Nfu51vd+7/faJ33SJ9lnfMZn2Jd/+Zefv35/3X76+pqv+Rr7db/u19n73//+8z8vvfTS+fv31+ynr1deecV+xa/4FfbH/tgfs+/5nu+xH/uxH7Pv+I7vsP/xP/7H+TWvtfPgNVeg/Mbf+BvtHe94x/m/W2v2pje9yd75znd+HN/VL431vxYovXd7wxveYH/zb/7N89ceP35s0zTZP/tn/8zMzP7Lf/kvBtj3fd/3nV/z7d/+7eacs5/8yZ/8RXvvH8/1wQ9+0AD71//6X5uZrlFKyb7xG7/x/Jr/+l//qwH2nve8x8xUGHrv7cUXXzy/5l3vepc9ePDA1nX9xf0FPo7rmWeesX/wD/7B/TX7OdbNzY19yqd8in3nd36n/bbf9tvOBcr9dfuZ19d8zdfYZ37mZ/6M37u/Zj/z+qqv+ir7Lb/lt/xvv/9aPA9eUyOebdt473vfy9vf/vbz17z3vP3tb+c973nPx/Gd/dJcP/7jP86LL774Edfr4cOHfO7nfu75er3nPe/h0aNHfM7nfM75NW9/+9vx3vM93/M9v+jv+eOxnjx5AjxNyX7ve99LKeUjrttb3/pW3vKWt3zEdfv0T/90Xv/6159f8/mf//lcX1/zwz/8w7+I7/7js1prvPvd7+bu7o63ve1t99fs51jveMc7+IIv+IKPuD5wf6/9bOtHf/RHedOb3sSv/JW/ki/6oi/ife97H3B/zf5361u+5Vv4nM/5HP7gH/yDvPDCC3zWZ30Wf//v//3z91+L58FrqkD50Ic+RGvtI246gNe//vW8+OKLH6d39Ut3na7Jz3a9XnzxRV544YWP+H6MkWefffb/L65p752v+Iqv4Df/5t/Mp33apwG6JjlnHj169BGv/V+v2890XU/f++W6fvAHf5DLy0umaeJLv/RL+aZv+iY+9VM/9f6a/Szr3e9+Nz/wAz/AO9/5zp/2vfvr9jOvz/3cz+Uf/+N/zL/8l/+Sd73rXfz4j/84v/W3/lZubm7ur9n/Zv3Yj/0Y73rXu/iUT/kUvuM7voMv+7Iv40//6T/NP/kn/wR4bZ4H8Rf9b7xf9+uX0HrHO97BD/3QD/Fv/+2//Xi/ldfE+jX/n3buJaSNLQ4D+F+aThopaQoJJlgMgT6siJJGlMFliuCqdBVKF6EupBahi2yycanuBO2mdNMuFEoRRNpFacgLLDSlIcGUQvogahfFQCU2ovTBfHdRHO7UeG+5F5KJ/X4wMMw5hDMfk8yfyTlz4YLk83nZ3t6WxcVFCYfDkk6nGz0s0/r48aPcvn1bYrGYnDhxotHDaRrDw8P6fk9PjwwMDIjX65VHjx6JzWZr4MjMS9M06evrk6mpKRER8fv98vr1a7l7966Ew+EGj+6/aaonKE6nU44dO3Zgtvbm5qa43e4Gjcq89jP5p7zcbreUy2VD+48fP2Rra+vIZzo+Pi5PnjyRZDIpZ86c0Y+73W759u2bVCoVQ/9fc6uV637bUaUoipw9e1YCgYBMT09Lb2+vzM7OMrNDZLNZKZfLcunSJbFYLGKxWCSdTsvc3JxYLBZpa2tjbr/B4XDI+fPn5f3797zWDuHxeKSrq8tw7OLFi/pfY814P2iqAkVRFAkEAhKPx/VjmqZJPB4XVVUbODJz8vl84na7DXl9+fJFMpmMnpeqqlKpVCSbzep9EomEaJomAwMDdR9zPQCQ8fFxWVpakkQiIT6fz9AeCATk+PHjhtyKxaJsbGwYcisUCoYvcywWE7vdfuBH4ijTNE2+fv3KzA4RDAalUChIPp/Xt76+Prl+/bq+z9z+3c7Ojnz48EE8Hg+vtUMMDg4eeF3C27dvxev1ikiT3g/qPi33f3r48CGsVisePHiAN2/eYHR0FA6HwzBb+09SrVaRy+WQy+UgIpiZmUEul8P6+jqAn8vKHA4HlpeXsbq6iitXrtRcVub3+5HJZLCysoJz584d6WXGY2NjOHXqFFKplGEZ4+7urt7n5s2b6OjoQCKRwKtXr6CqKlRV1dv3lzEODQ0hn8/j6dOncLlcR3oZYzQaRTqdRqlUwurqKqLRKFpaWvDs2TMAzOx3/X0VD8DcaolEIkilUiiVSnj+/DkuX74Mp9OJcrkMgJnV8vLlS1gsFkxOTuLdu3dYWFhAa2sr5ufn9T7Ndj9ougIFAO7cuYOOjg4oioL+/n68ePGi0UNqmGQyCRE5sIXDYQA/l5ZNTEygra0NVqsVwWAQxWLR8BmfP3/GtWvXcPLkSdjtdty4cQPVarUBZ1MftfISEdy/f1/vs7e3h1u3buH06dNobW3F1atX8enTJ8PnrK2tYXh4GDabDU6nE5FIBN+/f6/z2dTPyMgIvF4vFEWBy+VCMBjUixOAmf2uXwsU5nZQKBSCx+OBoihob29HKBQyvM+DmdX2+PFjdHd3w2q1orOzE/fu3TO0N9v9oAUA6v/choiIiOhwTTUHhYiIiP4MLFCIiIjIdFigEBERkemwQCEiIiLTYYFCREREpsMChYiIiEyHBQoRERGZDgsUIiIiMh0WKERERGQ6LFCIiIjIdFigEBERken8BYaoGWxdMw6EAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Original output:\n", + "The image captures a man skillfully riding a surfboard on a wave in the ocean. He is wearing a wetsuit and appears to be enjoying the thrill of surfing. The surfboard is positioned in the middle of the scene, with the man skillfully maintaining his balance as he glides through the water.\n", + "\n", + "There are a few other people in the background, but they are not the main focus of the scene. The main focus is on the man riding the wave on his surfboard, showcasing his talent and passion for the sport.\n", + "\n", + "\n", + "OPERA's output:\n", + "The image captures a man skillfully riding a surfboard on a wave in the ocean. He is wearing a wetsuit and appears to be enjoying the thrill of surfing. The surfboard is positioned in the middle of the scene, with the man skillfully balancing on it as he navigates the wave.\n" + ] + } + ], + "source": [ + "img = img_files[1]\n", + "image_path = args.data_path + img\n", + "raw_image = Image.open(image_path)\n", + "plt.imshow(raw_image)\n", + "plt.show()\n", + "raw_image = raw_image.convert(\"RGB\")\n", + "image = vis_processors[\"eval\"](raw_image).unsqueeze(0)\n", + "image = image.to(device)\n", + "\n", + "qu = \"Please describe this image in detail.\"\n", + "template = INSTRUCTION_TEMPLATE[args.model]\n", + "qu = template.replace(\"\", qu)\n", + "\n", + "\n", + "with torch.inference_mode():\n", + " with torch.no_grad():\n", + " out = model.generate(\n", + " {\"image\": norm(image), \"prompt\":qu}, \n", + " use_nucleus_sampling=False, \n", + " num_beams=5,\n", + " max_new_tokens=512,\n", + " )\n", + "print(\"Original output:\")\n", + "print(out[0])\n", + "print(\"\\n\")\n", + "\n", + "with torch.inference_mode():\n", + " with torch.no_grad():\n", + " out1 = model.generate(\n", + " {\"image\": norm(image), \"prompt\":qu}, \n", + " use_nucleus_sampling=False, \n", + " num_beams=5,\n", + " max_new_tokens=512,\n", + " output_attentions=True,\n", + " opera_decoding=True,\n", + " scale_factor=50,\n", + " threshold=15.0,\n", + " num_attn_candidates=5,\n", + " )\n", + "print(\"OPERA's output:\")\n", + "print(out1[0])" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.16" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/OPERA/environment.yml b/OPERA/environment.yml new file mode 100644 index 0000000000000000000000000000000000000000..9c1decc2d8c23bd5622254e73fc2b64c8fb57fad --- /dev/null +++ b/OPERA/environment.yml @@ -0,0 +1,317 @@ +name: opera +channels: + - pytorch + - defaults +dependencies: + - _libgcc_mutex=0.1 + - _openmp_mutex=5.1 + - blas=1.0 + - brotlipy=0.7.0 + - bzip2=1.0.8 + - ca-certificates=2023.01.10 + - certifi=2022.12.7 + - cffi=1.15.1 + - charset-normalizer=2.0.4 + - cryptography=39.0.1 + - cudatoolkit=11.3.1 + - ffmpeg=4.3 + - freetype=2.12.1 + - giflib=5.2.1 + - gmp=6.2.1 + - gnutls=3.6.15 + - idna=3.4 + - intel-openmp=2023.1.0 + - jpeg=9e + - lame=3.100 + - lcms2=2.12 + - ld_impl_linux-64=2.38 + - lerc=3.0 + - libdeflate=1.17 + - libffi=3.4.2 + - libgcc-ng=11.2.0 + - libgomp=11.2.0 + - libiconv=1.16 + - libidn2=2.3.2 + - libpng=1.6.39 + - libstdcxx-ng=11.2.0 + - libtasn1=4.19.0 + - libtiff=4.5.0 + - libunistring=0.9.10 + - libwebp=1.2.4 + - libwebp-base=1.2.4 + - lz4-c=1.9.4 + - mkl=2023.1.0 + - mkl-service=2.4.0 + - mkl_fft=1.3.6 + - mkl_random=1.2.2 + - ncurses=6.4 + - nettle=3.7.3 + - numpy=1.24.3 + - numpy-base=1.24.3 + - openh264=2.1.1 + - openssl=1.1.1t + - pillow=9.4.0 + - pip=23.0.1 + - pycparser=2.21 + - pyopenssl=23.0.0 + - pysocks=1.7.1 + - python=3.9.16 + - pytorch-mutex=1.0 + - readline=8.2 + - requests=2.29.0 + - setuptools=66.0.0 + - sqlite=3.41.2 + - tbb=2021.8.0 + - tk=8.6.12 + - torchaudio=0.12.1 + - typing_extensions=4.5.0 + - urllib3=1.26.15 + - wheel=0.38.4 + - xz=5.4.2 + - zlib=1.2.13 + - zstd=1.5.5 + - pip: + - accelerate==0.19.0 + - aiofiles==23.1.0 + - aiohttp==3.8.4 + - aiosignal==1.3.1 + - altair==4.2.2 + - antlr4-python3-runtime==4.9.3 + - anyio==3.6.2 + - argon2-cffi==21.3.0 + - argon2-cffi-bindings==21.2.0 + - arrow==1.2.3 + - asttokens==2.2.1 + - async-lru==2.0.2 + - async-timeout==4.0.2 + - attrs==23.1.0 + - babel==2.12.1 + - backcall==0.2.0 + - beautifulsoup4==4.12.2 + - bertviz==1.4.0 + - bitsandbytes==0.39.0 + - bleach==6.0.0 + - blinker==1.6.2 + - blis==0.7.9 + - boto3==1.28.63 + - botocore==1.31.63 + - braceexpand==0.1.7 + - cachetools==5.3.0 + - catalogue==2.0.8 + - cfgv==3.3.1 + - click==8.1.3 + - cmake==3.26.3 + - comm==0.1.3 + - confection==0.0.4 + - contexttimer==0.3.3 + - contourpy==1.0.7 + - curated-tokenizers==0.0.8 + - curated-transformers==0.1.1 + - cycler==0.11.0 + - cymem==2.0.7 + - debugpy==1.6.7 + - decorator==5.1.1 + - decord==0.6.0 + - defusedxml==0.7.1 + - distlib==0.3.6 + - distro==1.8.0 + - einops==0.6.1 + - entrypoints==0.4 + - et-xmlfile==1.1.0 + - executing==1.2.0 + - fairscale==0.4.4 + - fastapi==0.95.2 + - fastjsonschema==2.16.3 + - ffmpy==0.3.0 + - filelock==3.12.0 + - fonttools==4.39.4 + - fqdn==1.5.1 + - frozenlist==1.3.3 + - fsspec==2023.5.0 + - ftfy==6.1.1 + - gdown==4.7.1 + - gitdb==4.0.10 + - gitpython==3.1.31 + - gradio==3.31.0 + - gradio-client==0.2.5 + - h11==0.14.0 + - httpcore==0.17.1 + - httpx==0.24.1 + - huggingface-hub==0.14.1 + - identify==2.5.24 + - imageio==2.28.1 + - importlib-metadata==6.6.0 + - importlib-resources==5.12.0 + - iopath==0.1.10 + - ipykernel==6.23.1 + - ipython==8.13.2 + - ipython-genutils==0.2.0 + - ipywidgets==8.0.6 + - isoduration==20.11.0 + - jedi==0.18.2 + - jinja2==3.1.2 + - jmespath==1.0.1 + - joblib==1.2.0 + - json5==0.9.14 + - jsonpointer==2.3 + - jsonschema==4.17.3 + - jupyter==1.0.0 + - jupyter-client==8.2.0 + - jupyter-console==6.6.3 + - jupyter-core==5.3.0 + - jupyter-events==0.6.3 + - jupyter-lsp==2.1.0 + - jupyter-server==2.5.0 + - jupyter-server-terminals==0.4.4 + - jupyterlab==4.0.7 + - jupyterlab-pygments==0.2.2 + - jupyterlab-server==2.22.1 + - jupyterlab-widgets==3.0.7 + - kaggle==1.5.13 + - kiwisolver==1.4.4 + - langcodes==3.3.0 + - lazy-loader==0.2 + - linkify-it-py==2.0.2 + - lit==16.0.5 + - markdown-it-py==2.2.0 + - markupsafe==2.1.2 + - matplotlib==3.7.1 + - matplotlib-inline==0.1.6 + - mdit-py-plugins==0.3.3 + - mdurl==0.1.2 + - mistune==2.0.5 + - mpmath==1.3.0 + - multidict==6.0.4 + - murmurhash==1.0.9 + - nbclassic==1.0.0 + - nbclient==0.7.4 + - nbconvert==7.4.0 + - nbformat==5.8.0 + - nest-asyncio==1.5.6 + - networkx==3.1 + - nltk==3.8.1 + - nodeenv==1.8.0 + - notebook==7.0.6 + - notebook-shim==0.2.3 + - nvidia-cublas-cu11==11.10.3.66 + - nvidia-cuda-cupti-cu11==11.7.101 + - nvidia-cuda-nvrtc-cu11==11.7.99 + - nvidia-cuda-runtime-cu11==11.7.99 + - nvidia-cudnn-cu11==8.5.0.96 + - nvidia-cufft-cu11==10.9.0.58 + - nvidia-curand-cu11==10.2.10.91 + - nvidia-cusolver-cu11==11.4.0.1 + - nvidia-cusparse-cu11==11.7.4.91 + - nvidia-nccl-cu11==2.14.3 + - nvidia-nvtx-cu11==11.7.91 + - omegaconf==2.3.0 + - openai==0.28.1 + - opencv-python==4.7.0.72 + - opencv-python-headless==4.5.5.64 + - opendatasets==0.1.22 + - openpyxl==3.1.2 + - orjson==3.8.12 + - packaging==23.1 + - pandas==2.0.1 + - pandocfilters==1.5.0 + - parso==0.8.3 + - pathy==0.10.1 + - pexpect==4.8.0 + - pickleshare==0.7.5 + - platformdirs==3.5.1 + - plotly==5.14.1 + - portalocker==2.7.0 + - pre-commit==3.3.2 + - preshed==3.0.8 + - prometheus-client==0.16.0 + - prompt-toolkit==3.0.38 + - protobuf==3.20.3 + - psutil==5.9.5 + - ptyprocess==0.7.0 + - pure-eval==0.2.2 + - pyarrow==12.0.0 + - pycocoevalcap==1.2 + - pycocotools==2.0.6 + - pydantic==1.10.7 + - pydeck==0.8.1b0 + - pydub==0.25.1 + - pygments==2.15.1 + - pympler==1.0.1 + - pyparsing==3.0.9 + - pyrsistent==0.19.3 + - python-dateutil==2.8.2 + - python-json-logger==2.0.7 + - python-magic==0.4.27 + - python-multipart==0.0.6 + - python-slugify==8.0.1 + - pytz==2023.3 + - pywavelets==1.4.1 + - pyyaml==6.0 + - pyzmq==25.0.2 + - qtconsole==5.4.3 + - qtpy==2.3.1 + - regex==2023.5.5 + - rfc3339-validator==0.1.4 + - rfc3986-validator==0.1.1 + - rich==13.3.5 + - s3transfer==0.7.0 + - safetensors==0.3.1 + - scikit-image==0.20.0 + - scikit-learn==1.2.2 + - scipy==1.9.1 + - seaborn==0.13.0 + - semantic-version==2.10.0 + - send2trash==1.8.2 + - sentencepiece==0.1.99 + - six==1.16.0 + - sklearn==0.0.post5 + - smart-open==6.3.0 + - smmap==5.0.0 + - sniffio==1.3.0 + - soupsieve==2.4.1 + - spacy==3.7.0.dev0 + - spacy-curated-transformers==0.2.0 + - spacy-legacy==3.0.12 + - spacy-loggers==1.0.4 + - srsly==2.4.6 + - stack-data==0.6.2 + - starlette==0.27.0 + - streamlit==1.22.0 + - sympy==1.12 + - tenacity==8.2.2 + - terminado==0.17.1 + - text-unidecode==1.3 + - thinc==8.1.10 + - threadpoolctl==3.1.0 + - tifffile==2023.4.12 + - timm==0.4.12 + - tinycss2==1.2.1 + - tokenizers==0.13.3 + - toml==0.10.2 + - tomli==2.0.1 + - toolz==0.12.0 + - torch==2.0.1 + - torchvision==0.15.2 + - tornado==6.3.2 + - tqdm==4.65.0 + - traitlets==5.9.0 + - triton==2.0.0 + - typer==0.7.0 + - tzdata==2023.3 + - tzlocal==5.0.1 + - uc-micro-py==1.0.2 + - uri-template==1.2.0 + - uvicorn==0.22.0 + - validators==0.20.0 + - virtualenv==20.23.0 + - wasabi==1.1.1 + - watchdog==3.0.0 + - wcwidth==0.2.6 + - webcolors==1.13 + - webdataset==0.2.48 + - webencodings==0.5.1 + - websocket-client==1.5.1 + - websockets==11.0.3 + - widgetsnbextension==4.0.7 + - yarl==1.9.2 + - zipp==3.15.0 diff --git a/OPERA/eval_configs/instructblip_eval.yaml b/OPERA/eval_configs/instructblip_eval.yaml new file mode 100644 index 0000000000000000000000000000000000000000..8219838a86c2b67a8954a50605617c6fd698db3c --- /dev/null +++ b/OPERA/eval_configs/instructblip_eval.yaml @@ -0,0 +1,23 @@ +model: + arch: blip2_vicuna_instruct + model_type: vicuna7b + max_txt_len: 128 + # end_sym: "###" + # low_resource: True + # prompt_template: '###Human: {} ###Assistant: ' + # ckpt: '/mnt/petrelfs/share_data/huangqidong/lvlm/minigpt4/prerained_minigpt4_7b.pth' + + +datasets: + cc_sbu_align: + vis_processor: + train: + name: "blip2_image_eval" + image_size: 224 + text_processor: + train: + name: "blip_caption" + +run: + task: image_text_pretrain + seed: 42 diff --git a/OPERA/eval_configs/llava-1.5_eval.yaml b/OPERA/eval_configs/llava-1.5_eval.yaml new file mode 100644 index 0000000000000000000000000000000000000000..d69cd7e4fa51724d01dec343ef10a43ff353d719 --- /dev/null +++ b/OPERA/eval_configs/llava-1.5_eval.yaml @@ -0,0 +1,29 @@ +model: + arch: llava-1.5 + model_type: vicuna7b + freeze_vit: True + freeze_backbone: True + tune_mm_mlp_adapter: False + freeze_mm_mlp_adapter: True + max_txt_len: 160 + end_sym: "###" + low_resource: False + # prompt_path: "prompts/alignment.txt" + prompt_template: 'USER: {} ASSISTANT: ' + system_message: "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions." + merged_ckpt: "/mnt/petrelfs/share_data/huangqidong/lvlm/llava-v1.5-7b/" + + +datasets: + cc_sbu_align: + vis_processor: + train: + name: "clip_image_eval" + proc_type: "openai/clip-vit-large-patch14-336" + text_processor: + train: + name: "blip_caption" + +run: + task: image_text_pretrain + seed: 42 diff --git a/OPERA/eval_configs/minigpt4_eval.yaml b/OPERA/eval_configs/minigpt4_eval.yaml new file mode 100644 index 0000000000000000000000000000000000000000..f9e2bfb326e8db42cbd6232ac2d0a5e815d4a051 --- /dev/null +++ b/OPERA/eval_configs/minigpt4_eval.yaml @@ -0,0 +1,23 @@ +model: + arch: mini_gpt4 + model_type: pretrain_vicuna0 + max_txt_len: 160 + end_sym: "###" + low_resource: False + prompt_template: '###Human: {} ###Assistant: ' + ckpt: '/mnt/petrelfs/share_data/huangqidong/lvlm/minigpt4/prerained_minigpt4_7b.pth' + + +datasets: + cc_sbu_align: + vis_processor: + train: + name: "blip2_image_eval" + image_size: 224 + text_processor: + train: + name: "blip_caption" + +run: + task: image_text_pretrain + seed: 42 diff --git a/OPERA/eval_configs/minigpt4_llama2_eval.yaml b/OPERA/eval_configs/minigpt4_llama2_eval.yaml new file mode 100644 index 0000000000000000000000000000000000000000..b982f549e830f7933c403846856d38435a2d2adb --- /dev/null +++ b/OPERA/eval_configs/minigpt4_llama2_eval.yaml @@ -0,0 +1,22 @@ +model: + arch: mini_gpt4 + model_type: pretrain_llama2 + max_txt_len: 160 + end_sym: "" + low_resource: False + prompt_template: '[INST] {} [/INST] ' + ckpt: '/path/to/checkpoint/' + + +datasets: + cc_sbu_align: + vis_processor: + train: + name: "blip2_image_eval" + image_size: 224 + text_processor: + train: + name: "blip_caption" + +run: + task: image_text_pretrain diff --git a/OPERA/eval_configs/shikra_eval.yaml b/OPERA/eval_configs/shikra_eval.yaml new file mode 100644 index 0000000000000000000000000000000000000000..7ad57b047a8219a2f4243b67e598811651f343f2 --- /dev/null +++ b/OPERA/eval_configs/shikra_eval.yaml @@ -0,0 +1,29 @@ +model: + arch: shikra + model_type: vicuna7b + freeze_vit: True + freeze_backbone: True + tune_mm_mlp_adapter: False + freeze_mm_mlp_adapter: True + max_txt_len: 160 + end_sym: "###" + low_resource: False + # prompt_path: "prompts/alignment.txt" + prompt_template: 'USER: {} ASSISTANT: ' + system_message: "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions." + merged_ckpt: '/mnt/petrelfs/share_data/zhaohanqing/merged_shikra_7B/' + + +datasets: + cc_sbu_align: + vis_processor: + train: + name: "clip_image_eval" + proc_type: "openai/clip-vit-large-patch14" + text_processor: + train: + name: "blip_caption" + +run: + task: image_text_pretrain + seed: 42 diff --git a/OPERA/gpt4v_eval.py b/OPERA/gpt4v_eval.py new file mode 100644 index 0000000000000000000000000000000000000000..6db05ab832b1b996f63167deb9f46b27bdca8409 --- /dev/null +++ b/OPERA/gpt4v_eval.py @@ -0,0 +1,306 @@ +import base64 +import requests +from PIL import Image +from io import BytesIO + + + +import argparse +import os +import random + +import numpy as np +import torch +import torch.backends.cudnn as cudnn +from tqdm import tqdm + +from torchvision import transforms +from torchvision.transforms.functional import InterpolationMode +from torchvision.utils import save_image + +from pope_loader import POPEDataSet +from minigpt4.common.dist_utils import get_rank +from minigpt4.models import load_preprocess + +from minigpt4.common.config import Config +from minigpt4.common.dist_utils import get_rank +from minigpt4.common.registry import registry + +# imports modules for registration +from minigpt4.datasets.builders import * +from minigpt4.models import * +from minigpt4.processors import * +from minigpt4.runners import * +from minigpt4.tasks import * + +# from PIL import Image +from torchvision.utils import save_image + +import matplotlib.pyplot as plt +import matplotlib as mpl +import seaborn +import json + + +MODEL_EVAL_CONFIG_PATH = { + "minigpt4": "eval_configs/minigpt4_eval.yaml", + "instructblip": "eval_configs/instructblip_eval.yaml", + "lrv_instruct": "eval_configs/lrv_instruct_eval.yaml", + "shikra": "eval_configs/shikra_eval.yaml", + "llava-1.5": "eval_configs/llava-1.5_eval.yaml", +} + +INSTRUCTION_TEMPLATE = { + "minigpt4": "###Human: ###Assistant:", + "instructblip": "", + "lrv_instruct": "###Human: ###Assistant:", + "shikra": "USER: ASSISTANT:", + "llava-1.5": "USER: ASSISTANT:" +} + + + + +GPT_JUDGE_PROMPT = ''' +You are required to score the performance of two AI assistants in describing a given image. You should pay extra attention to the hallucination, which refers to the part of descriptions that are inconsistent with the image content, such as claiming the existence of something not present in the image or describing incorrectly in terms of the counts, positions, or colors of objects in the image. Please rate the responses of the assistants on a scale of 1 to 10, where a higher score indicates better performance, according to the following criteria: +1: Accuracy: whether the response is accurate with respect to the image content. Responses with fewer hallucinationsshould be given higher scores. +2: Detailedness: whether the response is rich in necessary details. Note that hallucinated descriptions should not countas necessary details. +Please output the scores for each criterion, containing only two values indicating the scores for Assistant 1 and 2, respectively. The two scores are separated by a space. Following the scores, please provide an explanation of your evaluation, avoiding any potential bias and ensuring that the order in which the responses were presented does not affect your judgment. + +[Assistant 1] +{} +[End of Assistant 1] + +[Assistant 2] +{} +[End of Assistant 2] + +Output format: +Accuracy: +Reason: + +Detailedness: +Reason: +''' + + +# OpenAI API Key +API_KEY = "YOUR_API_KEY" + + + +def setup_seeds(config): + seed = config.run_cfg.seed + get_rank() + + random.seed(seed) + np.random.seed(seed) + torch.manual_seed(seed) + + cudnn.benchmark = False + cudnn.deterministic = True + + + + +def call_api(prompt, image_path): + # Function to encode the image + def encode_image(image_path): + with open(image_path, "rb") as image_file: + return base64.b64encode(image_file.read()).decode('utf-8') + + # Getting the base64 string + base64_image = encode_image(image_path) + + headers = { + "Content-Type": "application/json", + "Authorization": f"Bearer {API_KEY}" + } + + payload = { + "model": "gpt-4-vision-preview", + "messages": [ + { + "role": "user", + "content": [ + { + "type": "text", + "text": prompt + }, + { + "type": "image_url", + "image_url": { + "url": f"data:image/jpeg;base64,{base64_image}" + } + } + ] + } + ], + "max_tokens": 300 + } + + response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload) + + print(response.json().keys()) + return response.json() + + +def get_gpt4v_answer(prompt, image_path): + while 1: + try: + res = call_api(prompt, image_path) + if "choices" in res.keys(): + return res["choices"][0]["message"]["content"] + else: + assert False + except Exception as e: + print("retry") + # pass + # return call_api(prompt, image_path) + + +parser = argparse.ArgumentParser(description="POPE-Adv evaluation on LVLMs.") +parser.add_argument("--model", type=str, help="model") +parser.add_argument("--gpu-id", type=int, help="specify the gpu to load the model.") +parser.add_argument( + "--options", + nargs="+", + help="override some settings in the used config, the key-value pair " + "in xxx=yyy format will be merged into config file (deprecate), " + "change to --cfg-options instead.", +) +parser.add_argument("--data_path", type=str, default="COCO_2014/val2014/", help="data path") +parser.add_argument("--batch_size", type=int, help="batch size") +parser.add_argument("--num_workers", type=int, default=2, help="num workers") + +parser.add_argument("--scale_factor", type=float, default=50) +parser.add_argument("--threshold", type=int, default=15) +parser.add_argument("--num_attn_candidates", type=int, default=5) +parser.add_argument("--penalty_weights", type=float, default=1.0) +args = parser.parse_known_args()[0] + + + +os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_id) +args.cfg_path = MODEL_EVAL_CONFIG_PATH[args.model] +cfg = Config(args) +setup_seeds(cfg) +device = torch.device("cuda") if torch.cuda.is_available() else "cpu" + +# ======================================== +# Model Initialization +# ======================================== +print('Initializing Model') + +model_config = cfg.model_cfg +model_config.device_8bit = args.gpu_id +model_cls = registry.get_model_class(model_config.arch) +model = model_cls.from_config(model_config).to(device) +model.eval() +processor_cfg = cfg.get_config().preprocess +processor_cfg.vis_processor.eval.do_normalize = False +vis_processors, txt_processors = load_preprocess(processor_cfg) +print(vis_processors["eval"].transform) +print("Done!") + +mean = (0.48145466, 0.4578275, 0.40821073) +std = (0.26862954, 0.26130258, 0.27577711) +norm = transforms.Normalize(mean, std) + + + + +img_files = os.listdir(args.data_path) +random.shuffle(img_files) + +base_path = "log/gpt4v-eval" +if not os.path.exists(base_path + f"/{args.model}"): + os.mkdir(base_path + f"/{args.model}") + +gpt_answer_records = {} +assistant_answer_records = {} +avg_hal_score_1 = 0 +avg_hal_score_2 = 0 +avg_det_score_1 = 0 +avg_det_score_2 = 0 +num_count = 0 + +for idx in range(50): + img = img_files[idx] + image_path = args.data_path + img + raw_image = Image.open(image_path) + raw_image = raw_image.convert("RGB") + image = vis_processors["eval"](raw_image).unsqueeze(0) + image = image.to(device) + qu = "Please describe this image in detail." + + template = INSTRUCTION_TEMPLATE[args.model] + qu = template.replace("", qu) + assistant_answer_records[str(img)] = {} + + with torch.inference_mode(): + with torch.no_grad(): + out = model.generate( + {"image": norm(image), "prompt":qu}, + use_nucleus_sampling=False, + num_beams=5, + max_new_tokens=512, + ) + model_response_1 = out[0] + assistant_answer_records[str(img)]["assistant_1"] = model_response_1 + print("Beam-5 output:") + print(model_response_1) + + + with torch.inference_mode(): + with torch.no_grad(): + out = model.generate( + {"image": norm(image), "prompt":qu}, + use_nucleus_sampling=False, + num_beams=5, + max_new_tokens=512, + output_attentions=True, + opera_decoding=True, + scale_factor=args.scale_factor, + threshold=args.threshold, + num_attn_candidates=args.num_attn_candidates, + penalty_weights=args.penalty_weights, + ) + model_response_2 = out[0] + assistant_answer_records[str(img)]["assistant_2"] = model_response_2 + print("OPERA output:") + print(model_response_2) + + # gpt-4v eval + prompt = GPT_JUDGE_PROMPT.format(model_response_1, model_response_2) + + gpt_answer = get_gpt4v_answer(prompt, image_path) + print(gpt_answer) + gpt_answer_records[str(img)] = gpt_answer + print(gpt_answer.split("Accuracy: ")[-1].split("\n")[0].split(" ")) + print(len(gpt_answer.split("Accuracy: ")[-1].split("\n")[0].split(" "))) + try: + hal_score_1, hal_score_2 = gpt_answer.split("Accuracy: ")[-1].split("\n")[0].split(" ") + det_score_1, det_score_2 = gpt_answer.split("Detailedness: ")[-1].split("\n")[0].split(" ") + except: + continue + avg_hal_score_1 += int(hal_score_1) + avg_hal_score_2 += int(hal_score_2) + avg_det_score_1 += int(det_score_1) + avg_det_score_2 += int(det_score_2) + num_count += 1 + print("=========================================") + + # dump metric file + with open(os.path.join(base_path + f"/{args.model}", 'answers.json'), "w") as f: + json.dump(assistant_answer_records, f) + + # dump metric file + with open(os.path.join(base_path + f"/{args.model}", 'records.json'), "w") as f: + json.dump(gpt_answer_records, f) + +avg_score = float(avg_hal_score_1) / num_count +avg_score = float(avg_hal_score_2) / num_count +avg_score = float(avg_det_score_1) / num_count +avg_score = float(avg_det_score_2) / num_count +print(f"The avg hal score for Assistant 1 and Assistent 2: {avg_hal_score_1}; {avg_hal_score_2}") +print(f"The avg det score for Assistant 1 and Assistent 2: {avg_det_score_1}; {avg_det_score_2}") \ No newline at end of file diff --git a/OPERA/log/chair_eval_results/instructblip/beam5.jsonl b/OPERA/log/chair_eval_results/instructblip/beam5.jsonl new file mode 100644 index 0000000000000000000000000000000000000000..92fbe0dbe46208c5bf004658772de865f7082910 --- /dev/null +++ b/OPERA/log/chair_eval_results/instructblip/beam5.jsonl @@ -0,0 +1,500 @@ +{"image_id": 415672, "caption": "The image depicts a busy city street with several motorcycles parked on the side of the road. There are at least six motorcycles in total, with some parked closer to the curb and others further away from the sidewalk. In addition to the motorcycles, there are several people walking along the street, some of whom are carrying backpacks or purses. A car is also visible in the scene, parked towards the middle of the street. There are multiple handbags scattered throughout the scene, likely belonging to the pedestrians. Overall, the image captures a bustling urban environment with various modes of transportation and people going about their daily activities."} +{"image_id": 177207, "caption": "In the image, three people are skiing down a snow-covered slope. Two men and one woman are wearing skis and standing next to each other, with one of them holding a ski pole. They appear to be enjoying themselves as they ski down the hill. There are several trees visible in the background, providing a scenic backdrop for the skiers. A handbag can be seen on the left side of the image, possibly belonging to one of the skiers."} +{"image_id": 428254, "caption": "In the image, a male tennis player is engaged in a game of tennis on a clay court. He is wearing a white shirt and blue shorts, and is holding a tennis racket in his right hand as he prepares to hit the ball. There are several tennis balls scattered around the court, some closer to the player and others further away. The scene captures the intensity and focus of the player as he engages in the game."} +{"image_id": 165419, "caption": "The image depicts a shirtless man jumping up in the air to catch a green Frisbee on a sandy beach. He is surrounded by other people, some of whom are further away from the action, while others are closer to the man and the Frisbee. In the background, there is a body of water visible, possibly an ocean or a lake. Overall, the scene captures a fun and active moment on the beach, as the man engages in a game of Frisbee with his friends."} +{"image_id": 282942, "caption": "The image features a woman standing in front of a dining table with a white cake on it. She is holding a knife and appears to be preparing to cut the cake. There are several bowls placed around the table, likely containing various food items. In addition to the bowls, there are two cups on the table, one on the left side and the other on the right side. A chair can be seen in the background, providing seating for the woman as she prepares the cake."} +{"image_id": 518701, "caption": "The image depicts a small bedroom with a bed in the center of the room. The bed is covered with a blanket, and there are two pillows placed near the head of the bed. There are several items scattered around the room, including a chair, a dresser, and a closet. The closet is located on the left side of the room, while the dresser can be found on the right side. In addition to these furnishings, there is a clock mounted on the wall above the bed. The room appears to be well-organized, with everything in its designated place."} +{"image_id": 302206, "caption": "The image depicts a group of people riding horses down a country road, leading a herd of cows behind them. There are two people riding horses, one on the left side and the other on the right side of the road. The cows are spread out along the road, with some closer to the riders and others further away. In total, there are 10 cows visible in the scene. The riders appear to be guiding the cows down the road, possibly for transportation or grazing purposes."} +{"image_id": 418219, "caption": "In the image, a man wearing a red shirt is walking down a sidewalk next to a park bench. He appears to be enjoying the scenery as he strolls along the path. There are several cars parked along the side of the road, some closer to the man and others further away. The park bench can be seen in the background, providing a place for people to rest and enjoy the surroundings. Additionally, there are several trees scattered throughout the scene, adding to the natural ambiance of the area."} +{"image_id": 100438, "caption": "The image features a man sitting at a dining table in a restaurant. He is wearing a suit, tie, and glasses, and appears to be enjoying his meal. The table is set with a white plate, a fork, a knife, and a spoon. There are several chairs around the table, some of which are closer to the man, while others are further away. In addition to the dining utensils, there are two bottles on the table, one on the left side and the other on the right side. A wine glass can also be seen on the table, close to the man's hand. Overall, the scene depicts a relaxed and enjoyable dining experience for the man."} +{"image_id": 409944, "caption": "The image features a poster of a man holding a tennis racket, with his mouth open in a yelling expression. The poster is displayed on a cement wall, and the man's face takes up a significant portion of the image. There are several tattoos visible on the man's body, including one on his left arm, another on his right arm, and a third on his chest. In addition to the man's tattoos, there are several other tattoos scattered throughout the scene. These tattoos can be found on various parts of the body, such as the arms, chest, and legs. Some of the tattoos are more visible than others, but they all add to the overall visual appeal of the image."} +{"image_id": 237618, "caption": "The image depicts two men riding horses along the shore of a large body of water, possibly a lake or river. One horse is on the left side of the image, while the other is on the right side. Both riders are wearing cowboy hats and appear to be enjoying their outdoor adventure. There are several trees visible in the background, adding to the serene atmosphere of the scene."} +{"image_id": 221183, "caption": "The image depicts a yellow and black train traveling down a set of railroad tracks in an industrial area. The train is surrounded by several people, including a man standing on the left side of the scene and another man standing on the right side. There are also several other people scattered throughout the area, some closer to the train and others further away. In addition to the people, there are several vehicles visible in the scene, including a truck on the left side and a car on the right side. A fence can also be seen in the background, adding to the industrial atmosphere of the scene. Overall, the image captures a bustling train station with people and vehicles in the vicinity."} +{"image_id": 418548, "caption": "The image features a man sitting at a desk, holding a box of various donuts. He is wearing a chef's hat and appears to be enjoying the delicious treats. In addition to the donuts in the box, there are several other doughnuts scattered around the desk area. There are two chairs visible in the scene, one on the left side and the other on the right side of the desk. A laptop can also be seen on the desk, likely used by the man for work or leisure activities. Overall, the scene depicts a man indulging in his love for donuts while working or relaxing at his desk."} +{"image_id": 358252, "caption": "The image depicts a small kitchen with a white stove top oven, a sink, and a dishwasher. There are several appliances in the kitchen, including a refrigerator, a microwave, and a dishwasher. In addition to these appliances, there are various utensils scattered throughout the kitchen, such as knives, forks, and spoons. A broom is also present in the room, likely used for cleaning purposes. The kitchen appears to be well-organized and functional, with all the necessary appliances and utensils readily available for use."} +{"image_id": 113397, "caption": "The image features a man sitting in a chair, holding a Nintendo Wii remote in his hand. He appears to be enjoying himself while playing a video game on the Wii console. There are several books scattered around the room, including one on the left side of the image and another on the right side. A bookshelf can also be seen in the background, filled with various books. The room appears to be well-furnished, with a couch and a coffee table visible in the foreground. The man's enthusiasm for the Wii game is evident from his facial expression and the way he is holding the remote."} +{"image_id": 251874, "caption": "The image depicts a group of people enjoying themselves at the beach. A man and a woman are standing in the water, with the woman wearing a black bikini and the man wearing a white shirt. There are several surfboards scattered around the scene, including one close to the couple and another further away from them. In addition to the surfboards, there are several other people in the water, some closer to the couple and others farther away. They appear to be engaging in various activities, such as swimming or playing with the surfboards. Overall, the scene captures a relaxed and enjoyable atmosphere at the beach."} +{"image_id": 223093, "caption": "The image features a tall brick building with a clock on the side of it. The clock is positioned near the top of the building, making it visible from a distance. The building stands out against the cloudy blue sky, adding to its grandeur. There are several trees scattered throughout the scene, providing a natural backdrop for the towering structure. In total, there are six trees visible in the image, three on the left side and three on the right side."} +{"image_id": 57306, "caption": "The image depicts a young woman sitting on a bench, leaning against a wall, and talking on her cell phone. She is wearing a white shirt and appears to be engrossed in her conversation. In the background, there are several other people walking around, some of them carrying bags or purses. The scene takes place at night, with streetlights illuminating the area."} +{"image_id": 409099, "caption": "The image features a dining table set up with a variety of food items, including a delicious-looking angel food cake on a plate. The cake is placed in the center of the table, surrounded by various fruits such as bananas, oranges, and apples. There are also bowls filled with fruit on the table, adding to the abundance of fresh produce available. In addition to the food items, there are two cups placed on the table, one on the left side and the other on the right side. Overall, the scene showcases a well-appointed dining area with a variety of tasty treats and healthy fruits for guests to enjoy."} +{"image_id": 187776, "caption": "The image depicts a group of people gathered in a spacious room, standing around a dining table. The table is covered with a black tablecloth, and there are several chairs placed around it. Some of the people in the room are holding cups, possibly enjoying refreshments or snacks. In addition to the people, there are several bottles scattered throughout the scene. One bottle can be seen on the left side of the room, while another is located on the right side. A third bottle is positioned closer to the center of the room. There are also a few handbags visible in the scene, likely belonging to some of the attendees. Overall, the setting appears to be a casual gathering where people are socializing and enjoying each other's company."} +{"image_id": 398905, "caption": "The image features a man with a beard standing in front of a keyboard and microphone. He is wearing a denim jacket and appears to be performing on stage. There are two microphones in the scene, one on the left side and another on the right side of the keyboard. In addition to the man and the microphones, there are several other objects present in the scene. A guitar can be seen on the left side of the keyboard, while a drum set is located on the right side. There is also a monitor on the left side of the keyboard, and another monitor on the right side of the keyboard. Overall, the scene depicts a musician performing on stage, surrounded by various musical instruments and equipment."} +{"image_id": 146676, "caption": "In the image, a man is standing on a snow-covered slope, wearing a black jacket and snowboarding. He appears to be enjoying himself as he poses for the camera, giving a thumbs up gesture. The snowboarder is positioned towards the left side of the image, and there are several other people visible in the background, likely skiers or snowboarders as well. The snowboarder's snowboard can be seen resting on the ground next to him."} +{"image_id": 163289, "caption": "The image depicts a man standing in front of a bathroom mirror, adjusting his necktie. He is wearing a white shirt and a tie, and appears to be preparing himself for an important event. There are two urinals visible in the background, one on the left side and another on the right side of the room. In addition to the man and the urinals, there are several other objects scattered throughout the scene. These include a bottle on the left side of the room, a cup on the right side of the room, and a hand on the right side of the image."} +{"image_id": 466752, "caption": "The image depicts a young child lying on a bed in a dark room. The child is wearing a white shirt and appears to be resting comfortably on the bed. There are several pillows scattered around the bed, providing a cozy and inviting atmosphere for the child. In addition to the pillows, there is a blanket covering the child's body, adding to the warmth and comfort of the scene."} +{"image_id": 485090, "caption": "In the image, a man is teaching a young boy how to hit a baseball off a tee. The boy is wearing a helmet and holding a bat, while the man is standing next to him, guiding him through the process of hitting the ball. There are several chairs scattered throughout the scene, likely belonging to the spectators watching the lesson. Additionally, there are two benches in the background, one on the left side and another on the right side of the image."} +{"image_id": 470121, "caption": "The image features a dining table with two red plates filled with various types of food. The plates are placed on top of the table and contain a variety of appetizers, such as sushi rolls, cucumbers, olives, and grapes. A bottle of wine is also present on the table, adding to the festive atmosphere. In addition to the plates and bottle, there are two cups placed on the table, one on the left side and the other on the right side. The cups are likely used for drinking during the meal. Overall, the scene showcases a delicious spread of appetizers and drinks, perfect for a relaxing evening with friends or family."} +{"image_id": 523811, "caption": "The image features a small bird perched on top of a wooden post near a building. The bird is sitting on the edge of the post, looking towards the right side of the scene. There are several trees visible in the background, including one on the left side of the image and another on the right side. In addition to the bird, there are two other birds present in the scene, one on the left side and another on the right side of the image."} +{"image_id": 250066, "caption": "The image depicts a toilet placed outside near a dilapidated brick building. The toilet appears to be old and in disrepair, as it is surrounded by overgrown plants and weeds. A ladder is positioned next to the toilet, suggesting that it may have been used to access the roof or other parts of the building. There are several spray paint cans scattered around the scene, possibly indicating that the area has been used for graffiti or other forms of vandalism. In addition to the toilet and ladder, there are several other objects visible in the scene, including a trash can, a chair, and a box. Overall, the image conveys a sense of neglect and abandonment, with the toilet serving as a reminder of the building's past use."} +{"image_id": 99182, "caption": "The image depicts a man sitting on a bed, holding an open book in his hands. He appears to be engrossed in the book, possibly reading it with great interest. The book is placed on the bed next to him, and there are several other books scattered around the room. In addition to the books, there are two cups visible in the scene, one on the left side of the bed and the other on the right side. There is also a bottle located near the man's left hand. The room appears to be dimly lit, with a light source coming from the left side of the image. Overall, the scene conveys a cozy and relaxed atmosphere, with the man enjoying his reading time on the bed."} +{"image_id": 383826, "caption": "In the image, there are two men standing on surfboards in the ocean, enjoying the waves. One of the men is closer to the camera, while the other is further away. Both surfers are riding the waves and seem to be having a great time in the water. A third person can also be seen in the background, possibly watching the surfers from a distance. There are several surfboards visible in the scene, with some closer to the shore and others further out in the water. Overall, it appears to be a relaxing and enjoyable day at the beach for these surfers."} +{"image_id": 246248, "caption": "The image depicts a city street with a stop sign at the intersection. The stop sign is situated in the middle of the road, and there are several other signs nearby, including a speed limit sign on the left side of the road and a no parking sign on the right side of the road. There are cars parked on both sides of the street, with some closer to the stop sign and others further away. In the background, there are mountains visible in the distance, adding to the scenic atmosphere of the street."} +{"image_id": 51685, "caption": "In the image, a small airplane is flying through a clear blue sky. It appears to be an old-fashioned biplane, with two propellers and a red color scheme. The plane is positioned in the middle of the sky, giving it a prominent presence. There are several people visible in the scene, likely enjoying the sight of the airplane as it flies by. One person is located on the left side of the image, while another person can be seen on the right side."} +{"image_id": 52147, "caption": "The image depicts a family of geese in a lush green field. There are two adult geese and several baby geese present in the scene. The adult geese are positioned on either side of the grassy area, while the baby geese are scattered throughout the field. One of the adult geese is closer to the left side of the image, while the other is closer to the right side. The baby geese can be seen at various distances from the adult geese, with some closer to the adults and others further away. Overall, the scene captures a family of geese interacting in their natural habitat."} +{"image_id": 135756, "caption": "In the scene, a young girl is petting a black horse while standing next to a trailer. The horse is wearing a blue halter and appears to be enjoying the attention from the girl. There are several other people in the vicinity, some of whom are also interacting with the horse. A car can be seen parked in the background, possibly belonging to one of the people attending the event. Overall, it appears to be an enjoyable moment for both the girl and the horse."} +{"image_id": 52851, "caption": "The image depicts a group of people hiking in a mountainous area, surrounded by lush green hills and valleys. There are at least three people in the scene, with two of them standing near each other on the left side of the image. One person is closer to the camera, while the other is slightly further away. A third person can be seen on the right side of the image. In addition to the people, there are several backpacks scattered throughout the scene. Two backpacks are visible on the left side of the image, one closer to the camera and the other slightly further away. Another backpack can be seen on the right side of the image, closer to the edge of the frame. These backpacks suggest that the hikers are well-prepared for their outdoor adventure."} +{"image_id": 549789, "caption": "The image depicts a skier performing a high-flying jump in the snowy mountains. The skier is wearing a yellow jacket and can be seen in mid-air as they execute the jump. There are several other people in the scene, some of whom appear to be watching the skier's performance. One person is sitting on the ground near the skier, while others are scattered around the area, possibly enjoying the view or taking part in other winter activities. In the background, there is a snow-covered mountain, adding to the wintery atmosphere of the scene. Overall, the image captures the thrill and excitement of skiing in the snowy mountains."} +{"image_id": 286503, "caption": "In the image, an elephant is standing in a dirt-covered area near a fence. The elephant is eating from a basket hanging above its head, which is likely filled with food. There are several people visible in the scene, some of whom are standing close to the elephant, while others are positioned further away. One person can be seen on the left side of the image, while another person is located on the right side. Additionally, there are two cars parked in the background, one on the left side and another on the right side of the scene."} +{"image_id": 10580, "caption": "The image depicts a group of three giraffes standing in a grassy field surrounded by trees. The giraffes are positioned close to each other, with one giraffe slightly closer to the left side of the frame and the other two equally spaced on the right side. The giraffes appear to be engaging in some sort of social activity, possibly interacting with each other or observing their surroundings. There are several trees visible in the background, providing a lush and natural environment for the giraffes to inhabit."} +{"image_id": 468784, "caption": "The image is a black and white photograph of a newly married couple cutting their wedding cake. The bride and groom are both dressed in formal attire, with the bride wearing a wedding dress and veil, and the groom wearing a tuxedo. They are standing next to each other, holding a large wedding cake in front of them, ready to cut it together. There are several chairs visible in the background, possibly for guests to sit during the wedding celebration."} +{"image_id": 492544, "caption": "The image features a lone giraffe standing in a grassy field surrounded by trees. The giraffe is quite tall, with its neck stretching upwards towards the sky. There are several trees visible in the background, adding to the natural setting of the scene. The giraffe's body is positioned towards the left side of the image, and its head is slightly turned towards the right."} +{"image_id": 162503, "caption": "The image features an owl perched on a tree branch in the middle of a dense forest. The owl is surrounded by tall trees, creating a serene environment for the bird to rest and observe its surroundings. In addition to the owl, there are several other birds scattered throughout the forest, adding to the lively atmosphere."} +{"image_id": 162539, "caption": "The image features a large neon sign for Western Square, which is a gaming and supermarket store. The sign is prominently displayed in the center of the image, standing tall and visible from a distance. There are several smaller signs around the main sign, providing additional information about the store's offerings. These smaller signs are positioned at different heights and distances from the main sign, adding to the overall visual appeal of the scene. In the background, there is a clear blue sky, emphasizing the vibrant colors of the neon sign."} +{"image_id": 186711, "caption": "The image features a man wearing a wetsuit riding a surfboard on a wave in the ocean. He is skillfully balancing himself on the surfboard, likely enjoying the thrill of riding the wave. There are several other surfboards visible in the scene, some closer to the man and others further away. In addition to the surfboards, there are several handbags scattered around the area, possibly belonging to people watching the surfing activity or accompanying the surfers."} +{"image_id": 214421, "caption": "The image depicts a group of people gathered around a dining table in a room. There are two men standing next to the table, one on the left side and the other on the right side. One of the men is wearing a white shirt, while the other is wearing a striped shirt. A woman is also present in the scene, standing towards the right side of the table. She is wearing a black shirt. In addition to the people, there are several electronic devices scattered around the room. Two laptops can be seen on the table, one on the left side and the other on the right side. There are also two cell phones placed on the table, one on the left side and the other on the right side. A potted plant can be spotted in the background, adding a touch of nature to the scene."} +{"image_id": 65798, "caption": "The image depicts a baseball game in progress at a stadium. A large crowd of people is gathered to watch the game, with some seated in the stands and others standing around the field. There are several baseball players on the field, including the pitcher, catcher, first baseman, second baseman, third baseman, shortstop, left fielder, center fielder, and right fielder. They are all actively participating in the game, with the pitcher throwing the ball, the catcher catching it, and the other players positioned around the field. In addition to the players, there are several chairs scattered around the stadium, providing seating for the spectators. Overall, the scene captures the excitement and energy of a lively baseball game."} +{"image_id": 316063, "caption": "The image depicts a bustling city street with a red bus driving down the middle of the road, surrounded by other vehicles and pedestrians. There are several people walking on the sidewalks, some of them carrying bags or backpacks. One person can be seen riding a bicycle, while another person is driving a motorcycle. A few cars are parked on the side of the street, adding to the overall congestion of the area. In the background, there is a building with multiple floors visible. The scene captures the hustle and bustle of a busy urban environment."} +{"image_id": 189427, "caption": "In the image, there is a cardboard cutout of a beaver holding a stop sign in front of a trash can. The cardboard cutout is placed on the sidewalk next to the trash can, making it appear as if the beaver is protesting against littering. The trash can is positioned towards the left side of the image, and there are several other trash cans visible in the background. Additionally, there is a bench located near the cardboard cutout, providing a place for people to sit and observe the scene."} +{"image_id": 244833, "caption": "The image features two motorcycles parked next to each other in a room. One of the motorcycles is yellow, and the other one is green. Both bikes are positioned close to each other, with the yellow bike closer to the left side of the room and the green bike closer to the right side of the room. In the background, there are several chairs arranged in rows, creating a seating area for people to sit and observe the motorcycles. A person can be seen sitting on one of the chairs towards the left side of the room, while another person is standing near the green motorcycle towards the right side of the room."} +{"image_id": 370609, "caption": "The image depicts a group of animals, including a sheep and two lambs, grazing in a fenced-in area. The sheep is nursing one of the lambs, while the other lamb is standing nearby. There are several trees visible in the background, adding to the natural setting of the scene. In addition to the animals, there is a car parked near the fence, likely belonging to the owners of the farm. Overall, the image captures a peaceful moment in the life of these animals on the farm."} +{"image_id": 486232, "caption": "The image features a close-up of a person's hand holding two small apples. The apples are placed in the palm of the person's hand, with one apple on the left side and the other on the right side. The apples appear to be of different colors, with one being green and the other being red. The person's hand is positioned in the center of the image, with the apples resting comfortably in their grasp."} +{"image_id": 18191, "caption": "The image depicts a sidewalk with a yellow fire hydrant placed in the middle of it. The fire hydrant is positioned close to the edge of the sidewalk, and there are several benches lined up along the sidewalk, providing seating options for passersby. There is also a trash can located near the fire hydrant, adding to the overall cleanliness of the area. In the background, there is a fence that separates the sidewalk from a grassy area. Overall, the scene appears to be well-maintained and inviting for pedestrians."} +{"image_id": 84493, "caption": "The image features a delicious-looking pizza sitting on a white plate, placed on a dining table. The pizza is topped with various ingredients such as mushrooms, ham, and cheese, making it a mouth-watering meal. There are four slices of the pizza on the plate, ready to be served or enjoyed by the diners. A checkered tablecloth covers the dining table, adding a charming touch to the scene."} +{"image_id": 380057, "caption": "The image depicts a busy city street filled with people, cars, and traffic lights. A group of protesters can be seen standing on the sidewalk, each holding a picture of a missing person. There are several cars parked along the street, some closer to the protesters and others further away. Traffic lights can be seen at various locations along the street, indicating the flow of traffic. In the background, there is a building with a clock tower, adding to the urban atmosphere of the scene."} +{"image_id": 401613, "caption": "The image features a female tennis player in an orange shirt and blue shorts, actively engaged in playing a game of tennis on a court. She is crouched down, ready to hit the ball with her tennis racket. Her opponent can be seen in the background, also engaged in the game. There are several tennis balls scattered around the court, some closer to the players and others further away. In addition to the tennis balls, there are two sneakers visible in the scene, likely belonging to the players."} +{"image_id": 460684, "caption": "The image depicts a group of three men sitting at a dining table, enjoying some drinks together. They appear to be having a good time, with one man holding a bottle in his hand and the other two sipping from their glasses. There are several bottles scattered around the table, likely containing various types of alcoholic beverages. In addition to the bottles, there are several chairs placed around the table, providing comfortable seating for the group. A backpack can be seen on the left side of the image, possibly belonging to one of the men. Overall, the scene captures a casual and relaxed atmosphere as the men enjoy their drinks and each other's company."} +{"image_id": 208132, "caption": "The image features a woman sitting at a dining table with a plate of food and a bottle of ketchup in front of her. There are several utensils on the table, including forks, knives, and spoons, as well as cups and glasses. The dining table is surrounded by chairs, providing seating for the diners. In addition to the food and drinks, there are various objects scattered around the table, such as a bowl, a book, and a cell phone. The overall scene suggests that the woman is enjoying a meal with friends or family."} +{"image_id": 200703, "caption": "The image features a group of four ducklings swimming in a body of water, likely a pond or lake. The ducklings are spread out across the water, with three of them positioned closer to the left side of the image and one further to the right. They appear to be enjoying their time in the water, possibly exploring their surroundings or searching for food. The scene is peaceful and serene, showcasing the beauty of nature and the innocence of these adorable ducklings."} +{"image_id": 348087, "caption": "The image depicts a city street scene with a large clock tower standing in the middle of the road. The clock tower is surrounded by several cars parked on both sides of the street. There are two people walking down the street, one near the clock tower and the other closer to the left side of the image. In addition to the clock tower, there are several other clocks visible in the scene, including a smaller clock on the right side of the image and another larger clock on the left side of the image. These clocks add to the overall clock-themed atmosphere of the scene. Overall, the image captures a bustling city street with a mix of vehicles, pedestrians, and clocks."} +{"image_id": 8267, "caption": "The image depicts a small bathroom with a white toilet bowl located in the corner of the room. The toilet bowl is positioned close to the wall, and it is surrounded by tiles on the floor and walls. There are two toilet paper rolls placed near the toilet bowl, one on the left side and another on the right side. Additionally, there is a hand towel hanging on the wall above the toilet bowl, providing additional cleanliness and convenience for the user. The bathroom appears to be well-maintained and ready for use."} +{"image_id": 255096, "caption": "The image depicts an airport terminal with a large window overlooking an airplane parked on the tarmac. There are several people visible in the scene, some standing near the window and others walking around the area. A potted plant can be seen in the foreground, adding a touch of greenery to the scene. In the background, there is another airplane parked on the tarmac, indicating that the airport is bustling with activity. Overall, the image captures the atmosphere of a busy airport, with people coming and going and planes arriving and departing."} +{"image_id": 8676, "caption": "The image features a bedroom with a queen-sized bed in the center of the room. The bed is adorned with a quilted blanket, and there is a suitcase placed on top of it. The room also has a balcony with a sliding glass door that leads to the outdoors. There are two chairs placed near the balcony, one on the left side and another on the right side of the room. In addition to the chairs, there are several other objects scattered throughout the room, including a backpack, a cup, and a bottle. The room appears to be well-appointed and inviting, providing a comfortable and relaxing atmosphere for its occupants."} +{"image_id": 101022, "caption": "The image depicts a snow-covered mountain road with a sign indicating the speed limit of 60 kilometers per hour. The sign is situated in the middle of the road, surrounded by snow and trees. There are several trees scattered throughout the scene, some closer to the sign and others further away. In addition to the trees, there are multiple pine trees visible in the background, adding to the wintery atmosphere."} +{"image_id": 247625, "caption": "The image depicts a group of people gathered on a snowy slope, with one person wearing a yellow jacket and another wearing a blue jacket. They are both snowboarders, with the yellow jacketed person standing on a snowboard, while the blue jacketed person is preparing to step onto their own snowboard. There are several other people in the scene as well, some of whom appear to be skiers or snowboarders, while others are simply enjoying the snowy surroundings. In total, there are at least 10 people visible in the scene."} +{"image_id": 46872, "caption": "In the image, there are two men standing on the back of a large flatbed truck. One man is holding a rope, while the other man is standing on the left side of the truck. The truck appears to be loaded with various pipes and tubes, possibly for transportation or installation purposes. There are multiple pipes and tubes visible on the truck bed, some of which are closer to the front of the truck, while others are positioned further back. A car can be seen parked on the right side of the truck, likely belonging to one of the individuals involved in the transportation process. Overall, the scene depicts a group of people working together to transport pipes and tubes using a large flatbed truck."} +{"image_id": 480752, "caption": "The image features a wooden bench placed on top of a grassy hill overlooking a city. The bench is positioned at the edge of the hill, providing a panoramic view of the city and its surroundings. There are several cars visible in the scene, with some parked near the bench and others driving through the city streets. In addition to the cars, there are several trucks scattered throughout the scene, adding to the bustling atmosphere of the city. The bench serves as a perfect spot for enjoying the scenic view and taking in the hustle and bustle of the city below."} +{"image_id": 181383, "caption": "The image depicts a group of people standing on a pier overlooking a body of water, possibly a harbor or a river. There are several boats visible in the water, with some closer to the pier and others further away. A man is holding a large object, possibly a life preserver or a piece of luggage, as he stands on the pier. In addition to the people and boats, there are several handbags scattered throughout the scene. Some of the handbags are placed close to the edge of the pier, while others are positioned further away from the water's edge."} +{"image_id": 486122, "caption": "The image depicts a modern kitchen with a large stainless steel refrigerator placed in the middle of the room. The refrigerator takes up a significant portion of the space, and it is surrounded by various kitchen appliances such as a microwave, a cup, and a bowl. There is also a dishwasher located on the left side of the refrigerator. The kitchen appears to be well-maintained and clean, emphasizing the sleek appearance of the stainless steel refrigerator."} +{"image_id": 386650, "caption": "The image features a wooden bench placed next to a potted plant on a brick patio. There are two potted plants in the scene, one on the left side of the patio and the other on the right side. The potted plant on the left is closer to the bench, while the one on the right is positioned further away. In addition to the potted plants, there are several potted plants scattered around the patio area. Some of these potted plants are located closer to the bench, while others are situated further away. Overall, the scene showcases a charming outdoor setting with a rustic wooden bench and a variety of potted plants."} +{"image_id": 439834, "caption": "The image features two zebras standing in a grassy field surrounded by trees. One of the zebras appears to be an adult, while the other is a baby zebra. The adult zebra is positioned closer to the left side of the image, while the baby zebra is located on the right side. Both zebras are facing towards each other and appear to be interacting with each other. In addition to the two zebras, there are several trees scattered throughout the scene, providing a natural backdrop for the animals."} +{"image_id": 492025, "caption": "The image features a small statue of a child wearing a pink hat and holding a teddy bear. The statue is placed on a pedestal in the middle of a garden, surrounded by various flowers and plants. There are several trees visible in the background, adding to the serene and peaceful atmosphere of the scene."} +{"image_id": 208517, "caption": "The image features a woman standing on a sidewalk with a red suitcase next to her. She is wearing a brown jacket and appears to be waiting for something or someone. There are several other people in the scene, some of whom are walking towards the woman with the suitcase. In addition to the people, there are several handbags scattered around the area. One of the handbags is located closer to the woman with the suitcase, while others are further away from her. A cell phone can also be seen in the scene, likely belonging to one of the people in the area."} +{"image_id": 49733, "caption": "The image features a large, ornate clock hanging from the ceiling of a building. The clock is situated in the middle of the room and is surrounded by several people standing around it. There are at least six people visible in the scene, with some closer to the clock and others further away. The clock appears to be a focal point in the room, drawing attention from the people gathered around it. Additionally, there are two chandeliers hanging from the ceiling, adding to the grandeur of the space."} +{"image_id": 146614, "caption": "The image depicts a spacious living room filled with various furniture and decorations. There is a long couch placed in the center of the room, surrounded by several chairs and ottomans. A coffee table can be seen in front of the couch, providing a place for drinks and other items. In addition to the furniture, there are several potted plants scattered throughout the room, adding a touch of greenery and life to the space. A vase can be seen on the coffee table, further enhancing the room's aesthetic appeal. There are also several bottles placed around the room, possibly containing drinks or other items. Overall, the living room exudes a warm and inviting atmosphere, perfect for relaxation and social gatherings."} +{"image_id": 515424, "caption": "In the image, a snowboarder is performing an impressive trick in the air, high above a tall building. The snowboarder is wearing a black and red jacket, and their snowboard is visible in the air as they perform the maneuver. There are several other people in the scene, some of whom appear to be watching the snowboarder's performance. One person can be seen on the left side of the image, while another person is located on the right side. Additionally, there are two cars in the scene, one on the left side and another on the right side."} +{"image_id": 89071, "caption": "In the image, a person is skiing down a snow-covered slope, wearing a red jacket. They are standing in the middle of the slope, surrounded by pine trees on either side. The skier is holding two ski poles and appears to be enjoying the winter landscape. There are several trees scattered throughout the scene, adding to the winter atmosphere."} +{"image_id": 227438, "caption": "The image features a well-appointed bedroom with a large bed in the center of the room. The bed is adorned with multiple pillows, creating a cozy and inviting atmosphere. There are two chairs placed near the bed, one on the left side and the other on the right side. In addition to the chairs, there are two lamps positioned above the bed, providing ample lighting for the room. A potted plant can also be seen in the corner of the room, adding a touch of nature to the space."} +{"image_id": 343315, "caption": "The image depicts a street corner with a red fire hydrant sitting on the side of the road. The fire hydrant is positioned close to the curb, and there is a yellow and black striped pole nearby. There are several cars parked along the street, including one near the fire hydrant and another further down the road. A traffic light can be seen in the distance, indicating the presence of a busy intersection. The scene appears to be well-maintained, with lush green grass covering the area around the fire hydrant."} +{"image_id": 194414, "caption": "The image features a female tennis player standing on a grass tennis court, preparing to serve the ball during a match. She is wearing a white outfit and holding a tennis racket in her right hand, ready to hit the ball. There are several people in the background watching the game, some of them seated on benches and others standing around the court. A few chairs can be seen scattered throughout the scene, providing seating options for the spectators. The atmosphere appears to be lively and engaging, capturing the excitement of a competitive tennis match."} +{"image_id": 299039, "caption": "The image features a delicious-looking sandwich on a plate, accompanied by a side of fries. The sandwich is cut into two halves, making it easier to eat. The plate is placed on a dining table, and the sandwich and fries are arranged in a visually appealing way. A vase with flowers can be seen in the background, adding a touch of elegance to the scene."} +{"image_id": 141172, "caption": "The image depicts a blue door with a sticker of a cat peeking out from behind it. The cat's head can be seen on the left side of the door, while the rest of its body is partially visible on the right side of the door. There is another cat sticker on the right side of the door, positioned closer to the center of the door. In addition to the cat stickers, there are several people in the scene. One person is located on the left side of the door, while another person is situated on the right side of the door, closer to the center. A third person can be seen on the left side of the image, slightly further away from the door. There is also a handbag placed on the ground near the blue door, likely belonging to one of the people in the scene."} +{"image_id": 548209, "caption": "In the image, a man and a child are skiing together on a snow-covered slope. The child is being assisted by the man, who appears to be guiding the child as they ski down the hill. There are several other skiers visible in the background, some of them further away from the main action, while others are closer to the man and child. A few ski poles can be seen scattered throughout the scene, possibly belonging to some of the skiers. Overall, it appears to be a fun and enjoyable winter activity for the group of skiers."} +{"image_id": 465272, "caption": "The image depicts a group of people walking down a sidewalk on a rainy day. They are holding umbrellas in the shape of British flags, adding a festive touch to their outing. The umbrellas are held by both adults and children, creating a colorful and lively atmosphere. There are multiple umbrellas visible in the scene, with some positioned closer to the front of the group and others further back. In addition to the umbrellas, there are several handbags scattered across the sidewalk, likely belonging to the people in the group."} +{"image_id": 534801, "caption": "The image depicts an outdoor fruit and vegetable market with a variety of fruits and vegetables on display. There are two men standing in the market, one near the top left corner and the other near the bottom right corner. In the center of the market, there is a large display of various fruits, including bananas, apples, oranges, and grapes. Additionally, there are several bunches of bananas scattered throughout the scene, making up a significant portion of the market's offerings. Other vegetables, such as tomatoes, cucumbers, and carrots, are also available for purchase. Overall, the market is bustling with activity, showcasing a wide variety of fresh produce for customers to choose from."} +{"image_id": 517306, "caption": "In the image, a man and a woman are posing for a photo in front of a large pizza placed on a dining table. The pizza appears to be quite large, taking up a significant portion of the table. The couple is smiling and seems to be enjoying their meal together. There are several chairs placed around the table, providing seating for the diners. Additionally, there are several cups scattered throughout the scene, likely used for drinks during the meal. A bottle can also be seen on the table, possibly containing a beverage. Overall, it appears to be a cozy and enjoyable dining experience for the couple."} +{"image_id": 502582, "caption": "In the image, a baseball player is standing on a baseball field, holding his baseball cap in his hand. He appears to be preparing himself for the next game or practice. There are several other people scattered around the field, possibly teammates or coaches. Some of them are positioned further away from the main action, while others are closer to the player with the baseball cap. A few chairs can also be seen on the field, suggesting that there may be some seating available for spectators or team members. Overall, the scene conveys a sense of preparation and anticipation for the upcoming game."} +{"image_id": 43165, "caption": "In the image, there are two zebras standing next to each other in a grassy field. One zebra is closer to the left side of the frame, while the other is closer to the right side. Both zebras appear to be eating from a pile of hay that is scattered around the field. The hay is spread out across the area, with some pieces closer to the zebras and others further away. There are several trees visible in the background, providing a natural setting for the zebras to enjoy their meal."} +{"image_id": 503101, "caption": "In the image, a man is standing next to a woman, both of them wearing glasses. The man is holding a cell phone in his hand, possibly taking a picture of the woman. There are two other people in the scene, one on the left side and another on the right side of the image. They appear to be engrossed in their own conversations or activities, not paying much attention to the man and the woman with the cell phone. The overall atmosphere is casual and relaxed, with the group seemingly enjoying each other's company."} +{"image_id": 311435, "caption": "In the image, a man is standing on a tennis court, holding a tennis racket and preparing to hit a tennis ball. He is wearing a white shirt and white shorts, and appears to be focused on the upcoming shot. There are several other tennis balls scattered around the court, some closer to the man and others further away. The scene suggests that the man is actively engaged in a game of tennis."} +{"image_id": 223374, "caption": "The image features a microwave oven with various toy figurines placed on top of it. There are several toy spaceships scattered across the surface of the microwave, including one in the center and others near the edges. Some of the spaceships are closer to the front of the microwave, while others are positioned towards the back. Additionally, there is a toy car placed near the middle of the microwave. Overall, the scene showcases a fun and playful display of toys on top of the microwave."} +{"image_id": 181118, "caption": "The image depicts a large herd of elephants gathered near a body of water, such as a river or a lake. The elephants appear to be socializing and interacting with each other in the water. A group of people can be seen observing the elephants from a distance, likely enjoying the sight of these majestic creatures in their natural habitat. There are several people scattered throughout the scene, some standing closer to the water while others are positioned further away."} +{"image_id": 142934, "caption": "In the image, two people are standing on a snow-covered slope, each carrying a snowboard. One person is closer to the top of the hill, while the other is further down the slope. They appear to be preparing for a snowboarding adventure in the mountains. The snowboarders are dressed appropriately for the cold weather, wearing jackets and gloves. There are several ski poles scattered throughout the scene, possibly belonging to the snowboarders or other skiers in the area."} +{"image_id": 340472, "caption": "The image depicts a large marina filled with boats of various sizes and colors. The boats are anchored in the water, creating a serene and peaceful atmosphere. Some of the boats are closer to the shore, while others are positioned further out in the harbor. There are multiple people visible in the scene, likely enjoying the day at the marina. One person can be seen standing on the left side of the image, while another person is located on the right side. Additionally, there are two cars parked in the background, possibly belonging to the boat owners or visitors to the marina. Overall, the scene captures the beauty and tranquility of a bustling marina on a sunny day."} +{"image_id": 490337, "caption": "The image depicts a beautiful beach scene with a red umbrella and a surfboard placed on the sand. The umbrella is open, providing shade from the sun, while the surfboard is leaning against the umbrella. There are several people visible in the scene, some of them walking along the beach and enjoying the sunny day. In addition to the umbrella and surfboard, there are several other objects scattered around the beach, including a kayak, a skateboard, and a paddleboard. The ocean is visible in the background, adding to the serene atmosphere of the beach."} +{"image_id": 424960, "caption": "The image depicts a tennis match in progress, with a man wearing white shorts and a white shirt jumping up to hit a tennis ball with his racket. He is standing on a blue tennis court, surrounded by a crowd of people watching the match. There are several chairs placed around the court, providing seating for the spectators. In addition to the main player, there are several other individuals visible in the scene, some of them sitting on the chairs and others standing near the edge of the court. A tennis ball can be seen bouncing on the court, adding to the excitement of the match."} +{"image_id": 452964, "caption": "The image features a young baseball player wearing a blue and white uniform, preparing to throw a baseball pitch. The player is standing on a baseball field, holding a baseball glove in one hand and the baseball in the other. The ball is positioned close to the player's hand, indicating that the pitch is about to be thrown. In the background, there are several other people visible, possibly teammates or spectators, watching the action on the field. The overall scene captures the excitement and anticipation of the upcoming pitch."} +{"image_id": 81484, "caption": "The image features a dining table set with various plates of food, including pizza, salad, and vegetables. There are three white plates placed on the table, each containing a different type of food. In addition to the plates, there are several utensils placed around the table, including forks, knives, and spoons. A bowl can also be seen on the table, possibly containing a side dish or dessert. The dining area appears to be well-appointed, with a variety of food options and utensils available for guests to enjoy their meal."} +{"image_id": 224020, "caption": "The image features a young boy sitting at a table with a delicious-looking doughnut in front of him. The doughnut is adorned with red sprinkles and white frosting, making it a visually appealing treat. The boy seems to be enjoying the doughnut, possibly savoring each bite. There are several other items on the table, such as a cup, a bag, and a bottle, adding to the overall atmosphere of the scene."} +{"image_id": 447611, "caption": "In the image, two people are working together to remove a hard drive from a laptop. One person is holding a pair of scissors, while the other person has a knife in their hand. The laptop is placed on a wooden table, and both individuals are focused on disconnecting the hard drive from the laptop's motherboard. The laptop is positioned towards the left side of the image, and the scissors and knife are held close to the hard drive. The wooden table provides a stable surface for the repair work to take place."} +{"image_id": 564301, "caption": "The image depicts a group of three sheep standing in a grassy field, surrounded by chairs and tables. There is a man standing near the sheep, possibly tending to them or observing them. A dog can also be seen in the scene, likely accompanying the man. In total, there are six chairs scattered throughout the grassy area, providing seating for the people attending the event. Additionally, there are two bottles visible in the scene, one on the left side and another on the right side."} +{"image_id": 89643, "caption": "The image depicts a group of people gathered on a sandy beach, enjoying a sunny day. There are several large kites flying in the sky, including an octopus-shaped kite that stands out among the other kites. In addition to the octopus kite, there are several other kites of different shapes and sizes, creating a colorful display in the sky. The people on the beach are engaged in various activities, such as flying kites, walking around, and socializing with each other. They appear to be having a fun and relaxing day at the beach."} +{"image_id": 317035, "caption": "In the image, there is a pink suitcase sitting on a table next to two guitars. One of the guitars is placed closer to the left side of the table, while the other guitar is positioned closer to the center of the table. The suitcase appears to be covered in graffiti or writing, adding a unique touch to the scene. There is also a t-shirt placed on the table, possibly belonging to one of the musicians who played the guitars. Overall, the display showcases a mix of musical instruments and personal items, creating an interesting and eclectic atmosphere."} +{"image_id": 325356, "caption": "The image features a cat sitting inside a white bathroom sink. The cat is positioned in the middle of the sink, looking directly at the camera. There are two bottles visible in the scene, one on the left side of the sink and another on the right side. A toothbrush can also be spotted on the right side of the sink, close to the second bottle. In addition to these items, there is a soap dispenser located on the left side of the sink, near the first bottle. Overall, the scene showcases a cute cat enjoying its time in the bathroom sink."} +{"image_id": 136270, "caption": "The image features a three-tiered white wedding cake sitting on a wooden dining table. The cake is decorated with butterflies and leaves, adding a festive touch to the occasion. A hand is reaching towards the top of the cake, indicating that someone is about to cut into it. There are several bowls placed around the table, likely containing various food items for the guests to enjoy. In addition to the bowls, there is a knife placed on the table, ready to be used for the cutting of the cake."} +{"image_id": 554266, "caption": "The image depicts a person lying on a bed, with their legs stretched out in front of them. The person is wearing pajamas and appears to be relaxing on the bed. There are two lamps in the room, one on the left side of the bed and another on the right side of the bed. In addition to the lamps, there is a book placed on the bed near the person's feet. A cup is also visible on the nightstand next to the bed. The room appears to be well-appointed, with a comfortable atmosphere for rest and relaxation."} +{"image_id": 555357, "caption": "The image features a group of three brown cows standing on a grassy hill under a cloudy sky. The cows are spread out across the field, with one cow in the foreground and the other two in the background. They appear to be grazing or resting on the lush green pasture. The cloudy sky adds a dramatic touch to the scene, creating a sense of depth and atmosphere."} +{"image_id": 317715, "caption": "The image features a cat sitting between two bicycle wheels on a carpeted floor. One of the wheels is closer to the cat, while the other is further away. The cat appears to be relaxing and enjoying its surroundings, possibly taking a break from playing or exploring. The bicycle wheels add a unique touch to the scene, making it a fun and playful setting for the cat."} +{"image_id": 498806, "caption": "The image depicts a miniature train traveling along a track, passing through a tunnel. The train is surrounded by a mountainous landscape, with rocks and trees visible in the background. The train appears to be traveling at a moderate speed as it passes through the tunnel. There are several people visible in the scene, possibly enjoying the train ride or observing it from a distance. One person can be seen on the left side of the image, while another person is located on the right side. Additionally, there are two cars parked near the train tracks, one on the left side and another on the right side."} +{"image_id": 213799, "caption": "The image features a dog sleeping underneath a wooden table. The dog is lying on the floor, with its head resting on its paws. There are several shoes scattered around the area, including a pair of red shoes and a pair of black shoes. In addition to the shoes, there are two cups visible in the scene, one on the left side and the other on the right side. A chair can also be seen in the background, positioned next to the table where the dog is resting. Overall, the scene depicts a cozy and relaxed atmosphere, with the dog enjoying its downtime underneath the table."} +{"image_id": 514600, "caption": "The image features a colorful bird perched on top of an orange slice, which serves as a makeshift bird feeder. The bird seems to be enjoying its meal as it pecks at the seeds and other food inside the orange bowl. The orange slice is placed on a wooden branch, which provides a natural setting for the bird to feed. In addition to the bird, there are two other birds visible in the scene, one on the left side and the other on the right side of the image. They seem to be part of the same group, possibly sharing the orange bowl with the main bird. Overall, the scene captures a charming moment of a bird enjoying its meal in a unique and creative way."} +{"image_id": 144003, "caption": "The image depicts a group of people gathered around a table with a cake in the center. The cake is decorated with various fruits and berries, making it a visually appealing dessert. There are two women standing near the table, one on the left side and the other on the right side. They seem to be enjoying the cake and engaging in conversation. A man can be seen sitting on the left side of the table, while another man is seated on the right side. Both men appear to be taking part in the gathering and enjoying the cake as well. In addition to the people, there are several bottles scattered around the scene. One bottle is located on the left side of the table, while another can be found on the right side. A bowl is also present on the table, possibly used for serving the cake or other refreshments. Overall, the group seems to be having a great time together, enjoying the delicious cake and each other's company."} +{"image_id": 15839, "caption": "The image depicts a kitchen with a large black refrigerator standing in the middle of the room. The refrigerator takes up a significant portion of the space, and there are several bottles placed around it. There are two bottles on the left side of the refrigerator, one near the top and another near the bottom. Another bottle can be found on the right side of the refrigerator, closer to the top. In addition to the bottles, there is a bowl placed on the floor next to the refrigerator, likely used for storing food or other items. The kitchen also features wooden cabinets and countertops, adding to the overall warm and inviting atmosphere."} +{"image_id": 52016, "caption": "The image features a smiling woman wearing a denim jacket and holding a pastry in her right hand. She is standing in front of a metal garage door, possibly on a street or sidewalk. There are several other people visible in the scene, including a man standing to the left of the woman and another man standing further to the right. Additionally, there are two backpacks in the scene, one located closer to the woman and the other farther away from her. The overall atmosphere appears to be casual and relaxed, with the woman happily enjoying her snack."} +{"image_id": 367610, "caption": "The image depicts a man leading a large herd of sheep across a bridge over a body of water. The man is standing in the middle of the herd, guiding them towards the other side of the bridge. There are several sheep scattered throughout the scene, with some closer to the man and others further away from him. In addition to the sheep, there are two cars visible in the scene. One car is parked on the side of the road, while the other is driving towards the bridge."} +{"image_id": 25216, "caption": "The image features a black tray filled with various food items, including waffles, broccoli, and mushrooms. The waffles are arranged in a grid-like pattern on the tray, while the broccoli and mushrooms are scattered around the tray. A spoon can be seen on the left side of the tray, close to the waffles. There are multiple bowls placed around the tray, likely containing additional food items or condiments. Overall, the scene showcases a well-prepared and visually appealing meal."} +{"image_id": 221554, "caption": "The image features a spacious living room with white walls and a fireplace. In the room, there are several women's clothing items displayed on hangers, including dresses, blouses, and skirts. A yellow handbag hangs from a hook on the wall, adding a pop of color to the room. There are multiple pairs of high heels placed around the room, likely belonging to the women who will be wearing the clothing items. A vase can be seen in the center of the room, filled with flowers, adding a touch of elegance to the space. Additionally, there are two potted plants in the room, one on the left side and another on the right side. Overall, the living room appears to be well-appointed and stylishly decorated."} +{"image_id": 215002, "caption": "The image depicts a man sitting at a desk with two computer monitors on it. One monitor is placed on the left side of the desk, while the other is positioned on the right side. There are two keyboards on the desk, one closer to the left monitor and the other closer to the right monitor. In addition to the monitors and keyboards, there are two mice on the desk. One mouse is located closer to the left monitor, while the other is situated closer to the right monitor. A cup is also present on the desk, likely used for drinking or other purposes."} +{"image_id": 219271, "caption": "The image is a black and white photograph of a group of people gathered near a mountainous area. There are several trucks parked on the side of the road, including a large truck in the center of the scene and smaller trucks scattered around it. A crowd of people can be seen standing near the trucks, some of them holding handbags or other personal belongings. In addition to the people, there are several handbags scattered throughout the scene, possibly belonging to some of the individuals in the crowd. Some of the handbags are closer to the trucks, while others are further away from the vehicles. Overall, the scene depicts a group of people gathered near a mountainous area, with trucks and handbags adding to the atmosphere."} +{"image_id": 126925, "caption": "The image features a large, gold-colored clock placed in front of a wooden fence. The clock is positioned in the center of the scene, surrounded by trees and bushes. There are several people visible in the scene, with some standing near the clock and others scattered around the area. One person can be seen on the left side of the image, while another person is located on the right side. Additionally, there are two benches in the scene, one on the left side and another on the right side, providing seating for visitors to rest and enjoy the surroundings. Overall, the scene appears to be a charming outdoor setting with a unique and eye-catching clock as its centerpiece."} +{"image_id": 559440, "caption": "The image depicts a small bathroom with a toilet, sink, and shower. The toilet is positioned in the center of the room, while the sink is located on the left side. The shower is enclosed by a glass door, providing a clear view of the bathroom's interior. There are several bottles scattered around the bathroom, including one near the sink, another near the toilet, and a third near the shower. Additionally, there are two cups visible in the scene, one close to the sink and another closer to the toilet. Overall, the bathroom appears to be clean and well-maintained, with everything in its proper place."} +{"image_id": 253455, "caption": "The image depicts a busy airport baggage claim area, where a group of people are waiting for their luggage to arrive on the conveyor belt. There are several people scattered throughout the scene, with some standing closer to the baggage claim area and others positioned further away. In addition to the people, there are several suitcases visible in the scene. One suitcase is located near the center of the image, while others are spread out across the area. Some of the suitcases are closer to the baggage claim area, while others are further away. A few handbags can also be seen in the scene, adding to the overall luggage presence. Overall, the scene captures a busy airport baggage claim area with people eagerly waiting for their belongings to arrive."} +{"image_id": 502599, "caption": "The image depicts a large hangar filled with various airplanes on display. There are three airplanes hanging from the ceiling of the hangar, including a yellow and blue airplane, a red and white airplane, and a blue and orange airplane. The airplanes are suspended at different heights, with the yellow and blue airplane being closer to the top of the hangar, the red and white airplane in the middle, and the blue and orange airplane closer to the bottom. Additionally, there are several other airplanes scattered throughout the hangar, giving the impression of an aviation museum or exhibit."} +{"image_id": 578454, "caption": "The image depicts a small bathroom with a white toilet and a bathtub. The toilet is positioned towards the left side of the room, while the bathtub is located in the center of the space. There is a window above the bathtub, allowing natural light to enter the room. In addition to the toilet and bathtub, there are several other items in the bathroom. A hand towel can be seen hanging on the right side of the room, near the toilet. Another hand towel is placed on the left side of the room, closer to the bathtub. There is also a bottle situated on the right side of the room, near the toilet. Overall, the bathroom appears clean and well-maintained, with all the necessary amenities for a comfortable bathing experience."} +{"image_id": 503983, "caption": "The image depicts a street scene in front of a large church with a towering spire. There are several people visible in the scene, with one person standing near the left side of the image and another person closer to the right side. In addition to the people, there are two cars parked on the street, one near the left side and the other near the right side. A traffic light can be seen mounted on a pole in the middle of the street, indicating the flow of traffic. The background features a cloudy sky, adding to the overall atmosphere of the scene."} +{"image_id": 372807, "caption": "The image features a close-up view of a zebra standing in a lush green field surrounded by trees. The zebra is the main focus of the scene, with its distinctive black and white stripes prominently visible. There are several trees scattered throughout the field, providing a natural backdrop for the zebra's portrait. In addition to the zebra, there are several other animals present in the scene, such as a dog and a cat, but they are not as prominent as the zebra. Overall, the image captures a serene moment in the wild, showcasing the beauty of nature and the majesty of the zebra."} +{"image_id": 553034, "caption": "The image depicts a group of giraffes standing in a dirt area surrounded by large rocks. There are three giraffes in the scene, with two of them standing closer to each other and the third one positioned slightly further away. In addition to the giraffes, there are several trees scattered throughout the area, providing shade for the animals. A cow is also present in the scene, grazing near the giraffes. Overall, it appears to be a peaceful and natural environment for the animals to inhabit."} +{"image_id": 358606, "caption": "The image depicts a cozy living room with a fireplace as its focal point. The fireplace is situated in the center of the room, surrounded by various pieces of furniture such as a couch, a chair, and a coffee table. There are two televisions in the room, one on the left side and the other on the right side, providing entertainment options for the occupants. A book is placed on the coffee table, adding to the warm and inviting atmosphere of the room. Additionally, there are several bottles scattered throughout the living space, likely used for various purposes. Overall, the room exudes a sense of comfort and relaxation, perfect for unwinding after a long day."} +{"image_id": 243989, "caption": "The image depicts a group of people gathered at an event, with a young man holding a skateboard in his hand. There are several other people in the scene, some standing and others sitting on chairs or benches. In addition to the skateboard, there are several other objects scattered throughout the scene, including a backpack, a bottle, a cell phone, and a handbag. A car can be seen parked in the background, possibly belonging to one of the event's attendees. Overall, it appears to be a casual gathering where people are enjoying each other's company while engaging in various activities."} +{"image_id": 376046, "caption": "The image depicts an orange train engine moving along a railroad track on a cloudy day. The train engine is positioned in the middle of the scene, with several cars following behind it. There are a total of nine cars visible in the scene, with some closer to the train engine and others further away. The cars are spread out across the track, creating a sense of movement as the train progresses down the line. In addition to the cars, there is a truck parked on the side of the track, likely belonging to the train's crew or maintenance personnel. Overall, the scene captures the activity of a busy train yard on a cloudy day."} +{"image_id": 238310, "caption": "The image depicts a woman holding an umbrella over her head while taking a selfie with her cell phone. She is standing in front of a tent, possibly at an outdoor concert or event. There are several other people visible in the scene, including one person sitting on the left side of the image and another person sitting on the right side of the image. Additionally, there are two more people standing behind the woman with the umbrella, one on the left and one on the right side of the tent. These people are likely enjoying the concert or event as well."} +{"image_id": 65231, "caption": "The image features a tall brick clock tower with two clocks displayed on its sides. The clocks are positioned close to the top of the tower, with one on the left and the other on the right. The clock on the left is closer to the center of the tower, while the clock on the right is positioned slightly further to the right. Both clocks are visible and easy to read, making them ideal for keeping track of time. The clock tower stands out against the cloudy sky in the background, adding to the overall visual appeal of the scene."} +{"image_id": 225693, "caption": "The image features a spacious bedroom with hardwood floors and wooden doors. The room contains a large bed with a quilted cover, which is the focal point of the space. The bed is situated in the center of the room, surrounded by various furniture items such as a dresser, a chair, and a bench. There are also two mirrors placed on opposite sides of the room, one on the left and the other on the right. In addition to the furniture and mirrors, there are several bottles scattered throughout the room, adding a personal touch to the space. Overall, the bedroom exudes a cozy and inviting atmosphere, perfect for rest and relaxation."} +{"image_id": 1029, "caption": "The image depicts a large airplane flying through a cloudy sky. The plane is descending towards the ground, passing over a barbed wire fence in the foreground. The fence is positioned close to the left side of the image, stretching from the top to the bottom of the frame. There are several people visible in the scene, with one person standing on the right side of the image and another person on the left side. Both individuals appear to be observing the airplane as it flies by."} +{"image_id": 539226, "caption": "The image depicts a large airplane flying high up in the sky, with a clear blue background behind it. The plane is positioned towards the left side of the image, while a street light can be seen on the right side of the frame. There are several people visible in the scene, with one person standing on the left side of the image, and another person standing on the right side of the image. These individuals appear to be enjoying the view of the airplane as it flies by."} +{"image_id": 31882, "caption": "The image depicts a group of people riding in an old-fashioned, open-air truck. The truck is carrying a large number of people, with some sitting on the bed of the truck and others standing around it. There are several umbrellas visible in the scene, including one held by a person near the front of the truck and another held by a person towards the back of the truck. The truck appears to be traveling through a wooded area, as there are trees visible in the background. The people in the truck seem to be enjoying the outdoor adventure together."} +{"image_id": 461898, "caption": "In the image, a woman wearing glasses is playing a video game using a Nintendo Wii controller. She is standing in front of a white wall and appears to be enjoying herself while playing the game. There are two other people in the room, one on the left side and another on the right side. They are not actively participating in the game, but they are observing the woman's gameplay. The room appears to be well-lit and spacious, providing a comfortable environment for the group to engage in their gaming activities."} +{"image_id": 554154, "caption": "a luxurious living room with green accents 2019 interior design trends to watch out for 2019 interior design trends to watch out for 2019 interior design trends to watch out for 2019 interior design trends to watch out for 2019 interior design trends to watch out for 2019 interior design trends to watch out for 2019 interior design trends to watch out for 2019 interior design trends to watch out for 2019 interior design trends to watch out for 2019 interior design trends to watch out for 2019 interior design trends to watch out for 2019 interior design trends to watch out for 2019 interior design trends to watch out for 2019 interior design trends to watch out for 2019 interior design trends to watch out for 2019 interior design trends to watch out for 2019 interior design trends to watch out for 2019 interior design trends to watch out for 2019 interior design trends to watch out for 2019 interior design trends to watch out for 2019 interior design trends to watch out for 2019 interior design trends to watch out for 2019 interior design trends to watch out for 2019 interior design trends to watch out for 2019 interior design trends to watch out for 2019 interior design trends to watch out for 2019 interior design trends to watch out for 2019 interior design trends to watch out for 2019 interior design trends to watch out for 2019 interior design trends to watch out for 2019 interior design trends to watch out for 2019 interior design trends to watch out for 2019 interior design trends to watch out for 2019 interior design trends to watch out for 2019 interior design trends to watch out for 2019 interior design trends to watch out for 2019 interior design trends to watch out for 2019 interior design trends to watch out for 2019 interior design tr"} +{"image_id": 166344, "caption": "The image features a painting of a man wearing a top hat and a black suit, sitting at a dining table with a laptop open in front of him. He appears to be engrossed in his work, possibly typing on the laptop or using it for some other purpose. The painting captures the man's attention as he focuses on his work."} +{"image_id": 298924, "caption": "The image features a dining table with a bowl of noodles, chicken, and vegetables. The bowl is filled with a variety of ingredients, including noodles, chicken, and vegetables. A spoon is placed next to the bowl, ready to be used for scooping up the delicious meal. There are several cups on the table as well, likely containing sauces or other condiments to enhance the flavor of the dish. In addition to the main bowl, there are smaller bowls scattered around the table, possibly containing additional ingredients or side dishes."} +{"image_id": 391392, "caption": "The image depicts a man riding a bicycle on a dirt road, as seen in the reflection of a car's rear view mirror. The man is wearing a black jacket and appears to be enjoying his ride. There are multiple cars in the scene, including one parked on the side of the road and another driving towards the direction of the bicyclist. In the background, there is a stop sign visible, indicating the end of the road for the bicyclist."} +{"image_id": 115875, "caption": "In the image, a man and a young girl are sitting on a rug in a living room. The man is holding a Nintendo Wii remote in his hand, while the little girl is sitting next to him, also holding a Wii remote. They appear to be playing a video game together. There are several chairs scattered around the room, with one chair placed close to the man and the little girl, and another chair positioned further away from them. Additionally, there are two cups visible in the scene, one near the man and the other closer to the little girl."} +{"image_id": 513125, "caption": "The image features a small black and brown dog sitting inside an open suitcase on the floor. The suitcase is placed on a tiled floor, and the dog appears to be enjoying its resting spot. The dog is positioned in the middle of the suitcase, with its head resting on one side and its body stretched out on the other side. In addition to the dog, there are several dining chairs scattered around the room. One chair can be seen near the left side of the image, while another chair is positioned closer to the center of the room. A third chair is located closer to the right side of the image. There is also a bowl placed on the floor, likely containing food for the dog. Overall, the scene depicts a cozy and comfortable environment for the dog to rest and enjoy its surroundings."} +{"image_id": 19786, "caption": "The image depicts a group of people gathered in a living room, likely playing a video game together. Two men are actively engaged in the game, one standing and the other sitting on a couch. They appear to be laughing and having a good time while enjoying the game. There are several chairs in the room, including a couch and two armchairs, providing comfortable seating options for the players. In addition to the chairs, there is a backpack placed on the floor, possibly belonging to one of the players. A laptop can be seen on the left side of the room, suggesting that the group may be using it to play the video game. Overall, the scene captures a fun and lively atmosphere as the players engage in their favorite pastime."} +{"image_id": 434192, "caption": "The image depicts a scenic view of a canal with two red boats floating down the waterway. One boat is located closer to the left side of the image, while the other is positioned further towards the right side. There are several buildings visible in the background, adding to the overall atmosphere of the scene. A person can be seen standing on the left side of the image, possibly enjoying the view or taking a stroll along the canal."} +{"image_id": 224342, "caption": "The image features a vase filled with yellow tulips sitting on a dining table. The vase is placed in the center of the table, and the tulips are arranged in a symmetrical pattern around it. There are several chairs placed around the table, with one chair positioned closer to the vase and the others further away. The arrangement of the tulips and the chairs creates a cozy and inviting atmosphere for a relaxing meal or gathering."} +{"image_id": 450845, "caption": "The image depicts a man in a blue shirt swinging a baseball bat in a lush green field. He is preparing to hit the ball, which is flying towards him from the left side of the frame. There are several cars parked in the background, indicating that the scene takes place in an urban area. In addition to the man and the ball, there are several other people visible in the scene. One person is standing on the left side of the field, while another person is closer to the man with the baseball bat. A third person can be seen on the right side of the field. Overall, the scene captures a moment of excitement and anticipation as the man prepares to hit the ball."} +{"image_id": 431827, "caption": "In the image, a person is holding a cell phone in their left hand and a ticket in their right hand. The ticket appears to be for a Twilight-related event, possibly a movie premiere or a fan convention. The person is also holding a poster of Edward Cullen, one of the main characters from the Twilight series. The poster is positioned on the left side of the image, while the cell phone and ticket are on the right side."} +{"image_id": 8021, "caption": "The image depicts a man giving a presentation on a large screen in front of a group of people. He is wearing a suit and tie, and his face is visible as he speaks to the audience. There are several people in the audience, with some seated closer to the stage and others further away. They appear to be listening attentively to the presenter's speech. Additionally, there is a microphone on the stage, likely used by the presenter to amplify his voice for the audience. Overall, it appears to be an engaging and informative presentation."} +{"image_id": 520301, "caption": "The image features a brown dog with its head hanging out of a car window, looking at something outside. The dog is wearing a purple collar and appears to be enjoying the scenery while riding in the vehicle. There are several other dogs visible in the scene, but they are not as prominent as the main brown dog. A fence can also be seen in the background, adding to the outdoor atmosphere."} +{"image_id": 515742, "caption": "The image depicts a woman standing near a campfire on a beach. She is holding a long-handled spatula and appears to be cooking something over the fire. There are several other people in the scene, some of whom are closer to the fire while others are further away. In addition to the people, there are several objects scattered around the area, including a backpack, a bottle, and a handbag. The beach setting provides a relaxing atmosphere for the group as they enjoy the warmth of the campfire and each other's company."} +{"image_id": 106411, "caption": "The image depicts a man sitting at a table on a balcony overlooking the ocean. He is working on his laptop, which is placed on the table in front of him. There are several chairs scattered around the balcony, providing additional seating options for those who might want to join the man in enjoying the view. In addition to the man and his laptop, there are several other objects present on the balcony, including a chair, a cup, and a bottle. The balcony seems to be a popular spot for relaxation and enjoying the scenic ocean view."} +{"image_id": 386012, "caption": "The image depicts a crowded beach with many people enjoying the sunny day. There are several kites flying in the sky above the beach, creating a colorful and lively atmosphere. Some of the kites are closer to the shore, while others are higher up in the sky. In addition to the kites, there are several people scattered across the beach, some sitting on the sand and others walking around. They appear to be engaging in various activities, such as sunbathing, swimming, or simply enjoying the scenery. Overall, the scene captures the vibrant energy of a bustling beach on a beautiful day."} +{"image_id": 397327, "caption": "The image features a small white bathroom with a toilet, sink, and shower. The toilet is placed in the center of the room, while the sink is positioned on the left side. The shower is located on the right side of the room. There are two towels visible in the scene, one near the sink and another closer to the toilet. The bathroom appears to be clean and well-maintained, with a minimalist design."} +{"image_id": 410437, "caption": "The image depicts a snowy city street with a red fire hydrant covered in snow. The fire hydrant is located on the left side of the scene, while a snow-covered sign can be seen on the right side of the street. There are several cars parked along the street, some closer to the fire hydrant and others further away. A traffic light can also be seen in the background, indicating the presence of pedestrians and vehicles on the road."} +{"image_id": 255536, "caption": "The image depicts a group of chairs and an umbrella placed in front of a chain-link fence. The chairs are scattered around the area, with some closer to the fence and others further away. An umbrella is positioned in the center of the scene, providing shade for those sitting on the chairs. A motorcycle can be seen parked nearby, possibly belonging to one of the people sitting on the chairs. In the background, a road is visible, suggesting that the location is near a street or highway. Overall, the scene appears to be a casual gathering spot for people to relax and enjoy the outdoors."} +{"image_id": 231831, "caption": "The image features a black and white cat standing on its hind legs next to a red desk. The cat appears to be reaching for something on the desk, possibly trying to grab a toy or a treat. There are several items placed on the desk, including a bowl, a cup, a book, and a pencil. The cat's attention is focused on the bowl, which is located towards the left side of the desk. In addition to the cat, there are two people in the scene, one on the right side of the image and the other on the left side. They appear to be engrossed in their own activities, possibly unaware of the cat's antics on the desk."} +{"image_id": 529270, "caption": "The image features a man wearing a suit, tie, and glasses standing at a podium. He appears to be giving a speech or presentation, as he is holding a microphone in his right hand and gesturing with his left hand. In the background, there are two windows visible, one on the left side and another on the right side of the room. A chair can be seen near the podium, likely for the speaker to sit during his presentation. Additionally, there is a book placed on the left side of the room, possibly related to the topic being discussed. Overall, the scene depicts a man delivering a speech or presentation in a well-appointed setting."} +{"image_id": 127626, "caption": "The image features a street pole with several street signs attached to it. The pole is situated in front of a large brick building, and there are multiple street signs visible on the pole. Some of the signs are positioned closer to the top of the pole, while others are further down. There are at least six street signs on the pole, making it a busy and informative area for pedestrians and drivers passing by."} +{"image_id": 132288, "caption": "The image captures a skateboarder performing a trick in a skate park. He is wearing a helmet, knee pads, and elbow pads to protect himself while riding his skateboard. The skateboarder is skillfully maneuvering through the skate park, showcasing his balance and agility. In the background, there are several people observing the skateboarder's performance. Some of them are standing near the edge of the skate park, while others are positioned further away from the action. A few more people can be seen scattered throughout the scene, adding to the lively atmosphere of the skate park."} +{"image_id": 83462, "caption": "The image depicts an office desk with a computer monitor, keyboard, and mouse placed on top of it. The monitor is positioned in the center of the desk, while the keyboard and mouse are located closer to the right side of the desk. There are several items scattered around the desk, including a cup, a bottle, a book, a pencil, and a cell phone. Additionally, there are two chairs placed near the desk, one on the left side and the other on the right side. These chairs provide comfortable seating for individuals working at the desk. Overall, the scene showcases a well-organized and functional workspace."} +{"image_id": 213224, "caption": "The image depicts a dining room with a wooden table in the center. On the table, there are two vases filled with various types of flowers, creating a beautiful and colorful display. The vases are placed at different heights, adding to the visual appeal of the arrangement. In addition to the vases on the table, there are several other flowers scattered around the room, further enhancing the flower-filled atmosphere. A chair can be seen in the corner of the room, providing a place for someone to sit and enjoy the vibrant floral display."} +{"image_id": 145873, "caption": "The image depicts a large truck carrying a crane on a highway. The truck is driving down the road, and the crane is positioned on the back of the truck. There are several traffic lights visible in the scene, indicating that the truck is navigating through a busy intersection. In addition to the truck and crane, there are several other vehicles on the road, including a car near the left side of the image, another car near the center of the image, and a third car near the right side of the image. Traffic cones can also be seen scattered throughout the scene, possibly indicating construction or roadwork in the area."} +{"image_id": 527506, "caption": "The image depicts a small airplane flying low over a grassy field surrounded by tall trees. The plane appears to be in the process of landing or taking off, as it is close to the ground. There are several trees visible in the background, providing a scenic backdrop for the aircraft. In addition to the airplane, there are several people present in the scene. Two people can be seen on the left side of the image, while another person is located on the right side of the grassy field."} +{"image_id": 537982, "caption": "The image features a countertop filled with a variety of fresh vegetables, including carrots, beets, and other leafy greens. The vegetables are neatly arranged on the countertop, creating a vibrant and colorful display. Some of the vegetables are positioned closer to the edge of the counter, while others are spread out more evenly across the surface. In total, there are at least 15 different vegetables visible in the scene, showcasing a bountiful harvest of fresh produce."} +{"image_id": 357354, "caption": "The image depicts a man riding on the back of an elephant on a busy city street. The elephant is standing in the middle of the street, with the man sitting on its back. There are several people around the scene, some walking on the sidewalks and others standing nearby. In addition to the man and the elephant, there are two cars visible in the scene. One car is parked on the side of the street, while the other is driving down the road. There are also several handbags scattered throughout the scene, likely belonging to the people present."} +{"image_id": 246076, "caption": "The image depicts a cozy living room with a couch, a dog, and a cat. The dog is lying on the floor near the couch, while the cat is resting on top of the couch. Both animals appear to be relaxed and comfortable in their surroundings. In addition to the pets, there are several other items in the room, including a chair, a cup, a book, and a remote control. There is also a potted plant located on the right side of the room, adding a touch of greenery to the space. The room appears to be well-furnished and inviting for both the pets and their owners."} +{"image_id": 331646, "caption": "The image features a wooden table with a variety of electronic components arranged on it. There are three light bulbs placed on the table, two of which are red and one is green. A remote control is also present on the table, likely used to control the lights. Additionally, there are several wires connected to the components, suggesting that the setup is part of an electronic project or experiment. A box can be seen in the background, possibly containing additional parts or tools for the project. Overall, the scene showcases a creative and hands-on approach to electronics and DIY projects."} +{"image_id": 389197, "caption": "In the image, a young boy is lying on a blue surfboard, riding down a water slide at an amusement park. He appears to be having a great time as he speeds down the slide, enjoying the thrill of the ride. There are several other people visible in the scene, some standing near the edge of the water slide, while others are further away from the action. A few more people can be seen in the background, adding to the lively atmosphere of the amusement park. Overall, the image captures a fun and exciting moment for the young boy as he experiences the thrill of the water slide."} +{"image_id": 3149, "caption": "The image features a large, ornate clock tower standing in front of two tall buildings. The clock tower is made of brick and has a green dome on top. There are two clocks visible on the tower, one on each side. The clocks are positioned at different heights, with one closer to the top of the tower and the other closer to the bottom. The clock tower stands out against the backdrop of the buildings, making it a prominent feature in the scene."} +{"image_id": 427500, "caption": "The image features a yellow and black fire hydrant sitting on the sidewalk next to a street. The fire hydrant appears to be leaking water onto the sidewalk, creating a puddle around it. There are several cars parked along the street, with some closer to the fire hydrant and others further away. In addition to the cars, there is a person standing near the fire hydrant, possibly observing the situation or taking a closer look at the leaking hydrant."} +{"image_id": 3934, "caption": "The image depicts a group of people gathered in a living room. There is a young girl standing in the middle of the room, playing a video game with a Wii remote in her hand. She appears to be focused on the game, while the other people in the room are socializing and interacting with each other. A couch can be seen in the background, likely where some of the people are seated. In addition to the couch, there are several chairs scattered throughout the room, providing additional seating options for the group. A dining table can also be spotted near the center of the room, suggesting that the group may be enjoying a meal together. Overall, it appears to be a lively and social gathering taking place in the living room."} +{"image_id": 61647, "caption": "The image features a cake shaped like a teddy bear with a lit candle in the center. The teddy bear cake is placed on a dining table, surrounded by various desserts, such as cupcakes, cookies, and lollipops. There are multiple people present in the scene, possibly enjoying the birthday celebration together. In the background, a brick wall can be seen, adding to the festive atmosphere of the occasion."} +{"image_id": 134206, "caption": "The image is a black and white photograph of a group of women standing in a large kitchen. They are gathered around a long table filled with various utensils, bowls, and cups. Some of the women are wearing aprons, indicating that they are likely cooking or preparing food in the kitchen. The atmosphere appears to be lively and energetic, as the women seem to be enjoying their time together while working in the kitchen."} +{"image_id": 97767, "caption": "In the image, there is a yellow fire hydrant sitting on the sidewalk next to a brick wall. The fire hydrant is positioned in the middle of the scene, surrounded by several trees and bushes. There are two red poles placed near the fire hydrant, one on the left and another on the right side of the image. A bench can be seen in the background, providing a place for people to sit and enjoy the surroundings. Additionally, there is a potted plant located near the fire hydrant, adding some greenery to the area."} +{"image_id": 338108, "caption": "In the image, a man is standing on a snow-covered ski slope, wearing a blue jacket and goggles. He is holding a pair of skis and appears to be preparing to ski down the slope. There are several other people in the background, some of whom are wearing helmets and carrying skis as well. One person is closer to the camera, while others are positioned further away from it. The scene suggests that this is a group of ski enthusiasts enjoying their time on the slopes."} +{"image_id": 236457, "caption": "The image depicts a white Chevrolet truck parked on the side of the road at night. The truck has its lights on, illuminating the area around it. There are several other vehicles visible in the scene, including a red car and a blue car, both of which are parked further away from the truck. Additionally, there is a traffic light located near the truck, indicating that the area is a busy intersection. The blurry quality of the image may suggest that it was taken from a moving vehicle or through a camera lens with a slow shutter speed."} +{"image_id": 441863, "caption": "The image features a close-up view of two street signs mounted on a metal pole. The first sign reads \"Boston Ave\" and the second sign reads \"7th St\". Both signs are prominently displayed, with the Boston Ave sign positioned closer to the top of the pole and the 7th St sign positioned slightly below it. There are several trees visible in the background, adding a natural touch to the scene."} +{"image_id": 568147, "caption": "The image features a parking meter on the sidewalk of a city street. The parking meter is positioned close to the edge of the sidewalk, near the curb. There are several cars parked along the street, some closer to the parking meter and others further away. A traffic light can be seen in the background, indicating the presence of pedestrians and vehicles on the street. Additionally, there is a handbag placed on the sidewalk near the parking meter, possibly belonging to someone who parked their car nearby."} +{"image_id": 570185, "caption": "The image features a white Nintendo Wii gaming console sitting on top of a tiled floor. The console is accompanied by various accessories, including a remote control, two game controllers, and a steering wheel. Additionally, there are several wires connected to the console, indicating that it is ready to be used for gaming. The scene appears to be set up for an enjoyable gaming experience."} +{"image_id": 311746, "caption": "The image depicts a hummingbird hovering near a group of pink flowers in a garden. The hummingbird is perched on one of the flowers, possibly feeding on nectar or pollen. There are multiple pink flowers scattered throughout the scene, creating a vibrant and colorful backdrop for the hummingbird. In addition to the hummingbird, there are several other birds visible in the background, adding to the lively atmosphere of the garden."} +{"image_id": 372233, "caption": "The image depicts a woman preparing food at an outdoor dining table. She is standing in front of a frying pan filled with black olives, possibly for a sandwich or other dish. In addition to the frying pan, there are several bowls on the table, likely containing various ingredients for the meal. There are two bicycles parked nearby, one on the left side of the image and the other on the right side. A car can also be seen in the background, positioned further away from the dining area. Overall, the scene appears to be a casual outdoor gathering where food is being prepared and enjoyed."} +{"image_id": 446574, "caption": "The image features a small bathroom with a toilet and a bathtub. The toilet is positioned towards the left side of the room, while the bathtub is located on the right side. There is a shower curtain hanging over the bathtub, adding a decorative touch to the room. In addition to the toilet and bathtub, there are several bottles scattered throughout the bathroom. One bottle can be found near the toilet, while another is situated closer to the right side of the room. A third bottle is positioned further away from the toilet, closer to the left side of the room. Overall, the bathroom appears to be clean and well-maintained."} +{"image_id": 77821, "caption": "In the image, a young boy is standing on a snow-covered slope, wearing skis and holding ski poles. He appears to be preparing to ski down the hill, surrounded by trees in the background. There are several trees scattered throughout the scene, with some closer to the boy and others further away. The overall atmosphere is peaceful and serene, with the snow-covered landscape providing a beautiful backdrop for the young skier's adventure."} +{"image_id": 401061, "caption": "The image depicts a man driving a car with a small dog hanging out of the window. The man is taking a selfie with the dog in the reflection of the car's side-view mirror. The dog appears to be enjoying the ride, as it is wagging its tail and sticking its head out of the window. In addition to the man and the dog, there are two other people visible in the scene. One person is located on the left side of the car, while the other person is situated on the right side. Both individuals appear to be passengers in the vehicle."} +{"image_id": 273556, "caption": "The image features a close-up view of a white toilet bowl sitting on a yellow floor. A person's legs can be seen standing in front of the toilet, with their feet positioned near the base of the bowl. There is a bottle placed near the toilet, likely used for cleaning purposes. In addition to the bottle, there are several other objects scattered around the scene, including a cup and a sponge. The overall setting appears to be a well-maintained bathroom with a clean and functional toilet."} +{"image_id": 114239, "caption": "The image depicts a woman standing in a kitchen with a black cat sitting on the counter next to her. The woman is wearing a black shirt and appears to be cooking or preparing food in the kitchen. There are several bottles scattered around the kitchen, including one on the counter near the woman and another on the left side of the room. In addition to the bottles, there are various utensils, such as forks, knives, and spoons, placed around the kitchen area."} +{"image_id": 544533, "caption": "The image depicts a long line of buses parked on the side of a busy road. There are several buses in the line, with some closer to the front and others further back. Many people can be seen walking alongside the buses, likely waiting for their next transportation. In addition to the buses and people, there are several handbags scattered throughout the scene. Some of the handbags are positioned close to the buses, while others are located further away from the vehicles. Overall, the image captures a bustling scene of people and buses traveling along the road."} +{"image_id": 64189, "caption": "The image features a skateboarder performing a rail grind on a staircase in a skate park. The skateboarder is wearing a helmet and appears to be enjoying the activity. There are several other skateboards scattered around the scene, indicating that this is a popular spot for skateboarding. In addition to the skateboarder, there are several other people visible in the background, possibly observing or participating in the skateboarding activity. A stop sign can also be seen in the scene, serving as a reminder of the importance of safety while skateboarding."} +{"image_id": 359442, "caption": "The image depicts a train yard with several train cars parked on the tracks. One of the trains has graffiti painted on it, adding a vibrant and colorful touch to the scene. In addition to the graffiti-covered train, there are several other trains visible in the background, each with its own unique color and design. The train yard appears to be an active and bustling place, with multiple trains coming and going throughout the day."} +{"image_id": 307074, "caption": "The image depicts a city street scene with a yellow traffic light mounted on a pole in the middle of the road. There are several cars parked along the side of the street, some closer to the traffic light and others further away. A building can be seen in the background, possibly serving as a fire station. The sky above the scene is cloudy and stormy, adding to the dramatic atmosphere."} +{"image_id": 8495, "caption": "In the image, a skier is standing on a snowy slope, holding two ski poles in their hands. The skier is wearing an orange and white outfit with a helmet, gloves, and goggles. They appear to be in the middle of a race or competition, possibly a skiing event. There are several ski poles scattered around the scene, some closer to the skier and others further away. The skier's enthusiasm and determination can be seen in their facial expression as they prepare to continue their skiing journey."} +{"image_id": 337692, "caption": "The image depicts a woman riding a white horse around a barrel on a grassy field. She is wearing a helmet and appears to be competing in an equestrian event. There are several other people in the scene, some of whom are standing near the barrel, while others are positioned further away from the action. In total, there are at least 10 people visible in the scene. Additionally, there are several chairs scattered around the field, likely used for seating during the event."} +{"image_id": 119469, "caption": "The image depicts a group of sheep grazing in a grassy field surrounded by a fence. There are three sheep in the scene, with two of them standing close to each other and the third one slightly further away. They are all focused on eating the lush green grass. In addition to the sheep, there is a car parked near the fence, likely belonging to the farmer or caretaker of the animals. A truck can also be seen in the background, possibly used for transportation or maintenance around the farm. Overall, the scene showcases a peaceful and idyllic setting for the sheep to graze and enjoy their surroundings."} +{"image_id": 347535, "caption": "The image is a black and white photograph of a man standing on the sidewalk next to a street corner. He is wearing a jacket and appears to be waiting for something or someone. There are several cars parked along the street, some closer to the man and others further away. In addition to the cars, there are several other vehicles visible in the scene, including a truck and a motorcycle. A traffic light can be seen in the background, adding to the bustling atmosphere of the city street."} +{"image_id": 194940, "caption": "The image features a wooden table with three bowls filled with various vegetables, including broccoli, carrots, and peppers. There are also two cups on the table, one near the center of the table and the other closer to the left side. A spoon is placed next to one of the cups, indicating that it may have been used to eat from the cups. Additionally, there is a bottle on the table, positioned towards the right side of the image. It appears to be a water bottle, providing hydration for the meal. Overall, the scene showcases a healthy and well-balanced meal consisting of various vegetables and a refreshing drink."} +{"image_id": 398637, "caption": "In the image, a man and a woman are posing for a photo at an event. The man is wearing a tuxedo and the woman is wearing a blue dress. They are standing next to each other, with the man on the left side of the frame and the woman on the right side. There are several people visible in the background of the scene. Some of them are further away from the man and woman, while others are closer to them. Additionally, there are two handbags present in the scene, one on the left side of the image and another on the right side."} +{"image_id": 96445, "caption": "The image features a lone zebra standing in a grassy area near a building. The zebra is grazing on the grass and appears to be focused on eating. There are several trees visible in the background, adding to the natural setting of the scene. In addition to the main zebra, there are two other zebras in the vicinity, but they are not as prominent as the central zebra. A truck can be seen parked off to the right side of the image, possibly providing transportation or support for the animals. Overall, the scene captures a peaceful moment in the life of a zebra in its natural habitat."} +{"image_id": 456192, "caption": "The image depicts a group of elephants standing underneath a covered area, likely providing shade from the sun. There are three adult elephants and two baby elephants in the scene. The adult elephants are positioned closer to the center of the image, while the baby elephants can be found near the edges. The covered area is large enough to accommodate all the elephants comfortably. In addition to the elephants, there are several trees visible in the background, adding to the natural setting."} +{"image_id": 285534, "caption": "In the image, a woman is holding a baby in her lap while sitting in a chair. The baby is wearing a pink dress and appears to be enjoying the attention from the woman. There is a white stuffed teddy bear placed on the woman's lap, which the baby is also interacting with. The teddy bear is positioned close to the baby's face, suggesting that it may be a favorite toy or a comfort object. Additionally, there are two other stuffed animals visible in the scene. One is located closer to the left side of the image, while the other can be found on the right side. These stuffed animals add to the cozy and playful atmosphere of the scene. Overall, the image captures a heartwarming moment between a mother and her baby as they bond over their shared love for teddy bears."} +{"image_id": 32677, "caption": "The image features a dog and a cat sleeping together on a bed. The dog is lying on the left side of the bed, while the cat is resting on the right side. Both animals are curled up and appear to be enjoying their cozy spot on the bed. In addition to the dog and cat, there are two pillows placed on the bed, one on the left side and another on the right side."} +{"image_id": 371326, "caption": "The image features a lush green banana tree with many bananas hanging from its branches. Some of the bananas are still unripe, while others are ripe and ready to be picked. There are several bananas scattered throughout the tree, with some closer to the top and others closer to the bottom. The banana tree is surrounded by lush green foliage, creating a vibrant and colorful scene."} +{"image_id": 545913, "caption": "The image features a silver and red airplane with its door open, reflecting on a shiny surface. The airplane is parked on a runway, possibly waiting for takeoff or landing. There are several people visible in the scene, some of them standing near the airplane, while others are positioned further away from it. One person is closer to the left side of the image, while another person is closer to the right side. Additionally, there is a car parked near the airplane, likely belonging to someone associated with the airport."} +{"image_id": 58647, "caption": "The image features a man in an orange wetsuit riding a surfboard on top of a large wave. He is skillfully balancing himself on the surfboard as he rides the wave, likely enjoying the thrill of surfing. The wave appears to be quite large, with its crest stretching across a significant portion of the image. In addition to the surfer, there are several smaller waves visible in the background, adding to the dynamic atmosphere of the scene."} +{"image_id": 146999, "caption": "The image features a well-appointed bathroom with a bathtub, sink, and mirror. The sink is located on the left side of the room, while the bathtub takes up most of the space in the middle of the room. The mirror is positioned above the sink, providing a clear reflection of the person using the sink. There are two towels visible in the bathroom, one on the right side of the tub and another on the left side of the sink. A vase can be seen on the counter next to the sink, adding a touch of elegance to the room. Additionally, there are two bottles in the bathroom, one on the right side of the tub and another on the left side of the sink. Overall, the bathroom appears to be clean and well-maintained, with all the necessary amenities for a comfortable bathing experience."} +{"image_id": 212800, "caption": "The image depicts a group of people riding in a small red and white boat on a river or canal. They are holding various umbrellas to protect themselves from the rain. The boat is filled with people, with some sitting closer to the front and others towards the back. The umbrellas are scattered throughout the boat, indicating that they are being used to shield the passengers from the rainfall. There is also a handbag visible in the scene, possibly belonging to one of the passengers. Overall, the scene captures a group of people enjoying a leisurely boat ride while staying dry under their umbrellas."} +{"image_id": 170048, "caption": "The image depicts a man standing in a grassy field, jumping up to catch a green frisbee. He is wearing a shirt and shorts, and the frisbee appears to be in mid-air as he reaches out to grab it. There are several other people scattered around the field, some closer to the man and others further away. In total, there are six people visible in the scene, each positioned at different distances from the main action of the man catching the frisbee."} +{"image_id": 319024, "caption": "The image features a young girl standing in front of an open refrigerator, looking inside. She is wearing a pink sweater and pink pants. The refrigerator appears to be full of various food items, including bottles, bowls, and cups. There are multiple bottles scattered throughout the refrigerator, with some located closer to the top and others closer to the bottom. Additionally, there are several bowls and cups placed around the refrigerator, some near the top and others near the bottom. Overall, the scene depicts a young girl exploring the contents of her family's refrigerator."} +{"image_id": 532481, "caption": "The image depicts a person parasailing over the ocean, with a house visible in the background. The parasailer is high up in the air, performing an acrobatic maneuver while being pulled by a kite. In addition to the parasailer, there are several other people in the water, possibly enjoying the same activity or watching the parasailer's performance. Some of these people can be seen closer to the shore, while others are further out in the water. There is also a boat present in the scene, likely used for transportation or support during the parasailing activity. Overall, the image captures a vibrant and exciting moment in the ocean, showcasing both the thrill of parasailing and the beauty of the surrounding environment."} +{"image_id": 489344, "caption": "The image features a bathroom with a white sink and a toilet. A black and white cat is resting in the sink, likely enjoying the warmth of the water. In addition to the cat, there are two other cats in the room, one near the sink and the other near the toilet. These cats seem to be enjoying their time in the bathroom as well. There is also a cup placed on the sink counter, adding to the cozy atmosphere of the scene."} +{"image_id": 247259, "caption": "The image depicts a group of five people sitting around a large wooden conference table, each with a laptop open in front of them. They appear to be working together on their laptops, possibly collaborating on a project or engaging in a meeting. There are two cups placed on the table, one closer to the left side and the other closer to the right side. A bottle can be seen on the table as well, positioned near the center of the table. In addition to these items, there are several chairs scattered around the room, providing comfortable seating for the attendees."} +{"image_id": 105220, "caption": "In the image, two people are skiing down a snow-covered slope. One of them is wearing a blue jacket and the other is wearing a black jacket. They appear to be at the finish line of a skiing competition, with a large red archway in the background. There are several ski poles scattered around the scene, some closer to the archway and others further away from it. Additionally, there are several backpacks visible in the scene, likely belonging to the skiers or spectators. Overall, the image captures the excitement and energy of a skiing competition as the participants cross the finish line."} +{"image_id": 537081, "caption": "The image features a white plate with two slices of pizza on it, placed on a dining table. There is a knife and fork next to the plate, ready to be used for eating the pizza. A measuring tape is also present on the table, possibly indicating the size of the pizza or the amount of food consumed during the meal."} +{"image_id": 184700, "caption": "The image features a bathroom with a sink, toilet, and shower stall. The sink is located near the center of the room, while the toilet is positioned on the left side. The shower stall can be seen on the right side of the room. The bathroom appears to be well-maintained and clean, with no visible clutter or debris. A mirror is mounted on the wall above the sink, providing a clear reflection of the bathroom's interior. Additionally, there are two hand soap dispensers placed in the bathroom, one near the sink and another near the shower stall. Overall, the scene conveys a sense of cleanliness and orderliness in the bathroom."} +{"image_id": 446958, "caption": "The image features a baby shower cake decorated with a teddy bear in a crib. The cake is placed on a dining table, and the teddy bear is positioned in the center of the cake. There are several bottles scattered around the table, some closer to the cake and others further away. In addition to the bottles, there are two cups placed on the table, one closer to the left side and the other closer to the right side."} +{"image_id": 197254, "caption": "The image features a horse-drawn carriage parked on a cobblestone street in front of a large white building. There are two horses standing next to the carriage, with one on the left side and the other on the right side. In the background, there are several people walking along the street, some closer to the carriage and others further away. A bicycle is also visible in the scene, likely belonging to one of the pedestrians. Overall, the scene depicts a charming old-fashioned atmosphere with the horse-drawn carriage as the main attraction."} +{"image_id": 261333, "caption": "In the image, a person is holding a blue cup with a black cat inside of it. The cat appears to be drinking from the cup, as its head is fully immersed within it. The cup is positioned close to the person's hand, and the cat's head can be seen clearly in the center of the cup. There are several other objects in the scene, including a TV on the left side of the image, a book on the right side, and a remote control located near the TV. Additionally, there is a couch in the background, providing a cozy atmosphere for the cat and the person holding the cup."} +{"image_id": 426166, "caption": "The image features a bicycle parked on the sidewalk in front of a red building. The bicycle is leaning against a pole, which is positioned close to the building's entrance. There are several people visible in the scene, with one person standing on the sidewalk near the bicycle and another person further down the sidewalk. Additionally, there are two cars parked on the street, one closer to the bicycle and the other farther away."} +{"image_id": 50926, "caption": "The image depicts a group of people gathered in a park, enjoying the sunny day. A kite is flying high in the sky, adding to the festive atmosphere. There are several people in the scene, with some standing and others sitting on the grassy area. In total, there are ten people visible in the scene, with some closer to the kite and others further away. One person appears to be flying the kite, while others are watching and enjoying the activity. Additionally, there are several cars parked around the area, likely belonging to the people attending the event."} +{"image_id": 337497, "caption": "The image depicts a herd of elephants standing near a body of water, such as a river or lake. There are five adult elephants and two baby elephants in the group. The adult elephants are positioned at different distances from the water, while the baby elephants are closer to the water's edge. The elephants appear to be enjoying their time near the water, possibly taking a break from their daily activities."} +{"image_id": 126137, "caption": "In the image, a male tennis player is engaged in a game of tennis on a court. He is wearing a white outfit and holding a tennis racket as he prepares to hit the ball. There are several chairs placed around the court, likely for spectators to watch the game. Additionally, there are several handbags scattered throughout the scene, possibly belonging to the players or spectators."} +{"image_id": 558864, "caption": "The image features a dining table with a white plate filled with a variety of food items, including carrots, mashed potatoes, and gravy. The plate is placed in the center of the table, surrounded by various utensils such as forks, knives, and spoons. A bottle of beer can also be seen on the table, adding to the meal's flavor. In addition to the main dish, there are two cups placed on the table, one on the left side and the other on the right side."} +{"image_id": 319456, "caption": "The image depicts a woman taking a selfie in a bathroom mirror. She is standing next to a sink, which is located on the left side of the mirror. There are several bottles and cups placed around the sink area, suggesting that they might be used for personal hygiene or grooming. In addition to the sink, there is a toilet located on the right side of the mirror. The woman's reflection can be seen in the mirror as she takes her selfie. The bathroom appears to be well-maintained, with a clean and organized atmosphere."} +{"image_id": 130516, "caption": "The image depicts a large white truck parked inside a subway station. The truck appears to be a cement mixer, and it is parked in the middle of the subway platform. There are several people standing around the truck, possibly waiting for it to be loaded or unloaded. Some of them are closer to the truck, while others are positioned further away. In addition to the people, there are two handbags visible in the scene, one on the left side and another on the right side of the truck."} +{"image_id": 546283, "caption": "The image features a person holding a hot dog in a bun, which is topped with chili. The hot dog is placed on top of the bun, and there are two other hot dogs visible in the scene. One of the hot dogs is closer to the left side of the image, while the other one is positioned further to the right. The hot dogs are served on a blue plate, which is placed on a dining table. There are several bowls scattered around the table, likely used for serving food or drinks. In addition to the hot dogs and bowls, there are two cups visible in the scene, one on the left side and the other on the right side of the table."} +{"image_id": 219261, "caption": "The image depicts a horse-drawn carriage traveling down a city street. The carriage is being pulled by a brown horse, and there is a person sitting on top of the carriage, likely enjoying the ride. There are several cars parked along the street, with some closer to the horse-drawn carriage and others further away. A traffic light can be seen in the background, indicating the presence of other vehicles on the road. Additionally, there are two handbags visible in the scene, possibly belonging to the person riding in the carriage or one of the pedestrians walking along the street."} +{"image_id": 183657, "caption": "The image depicts a bowl of orange slices floating in an icy puddle. The bowl is located near the center of the puddle, and there are several orange slices scattered around it. There is also an orange slice that appears to be partially submerged in the puddle. A rock can be seen on the left side of the image, close to the edge of the puddle. Overall, the scene captures a frozen puddle filled with orange slices and a rock, creating a unique and visually appealing setting."} +{"image_id": 148272, "caption": "The image features a small white and orange cat sitting inside a black purse on the floor. The cat's head is peeking out of the purse, making it appear as if the cat is trying to escape from the bag. The purse is placed on the tiled floor, and the cat is positioned towards the left side of the image. There are several other objects in the scene, including a pair of shoes near the right side of the image, a bottle on the left side of the image, and a handbag on the right side of the image. Overall, the image captures a cute and playful moment between the cat and the purse."} +{"image_id": 474675, "caption": "The image features a wooden coffee table with a white plate placed on top of it. The plate is positioned in the center of the table, surrounded by chairs. There are two chairs visible in the scene, one on the left side and another on the right side of the table. A vintage alarm clock sits next to the plate, adding a touch of nostalgia to the scene. The clock is positioned close to the edge of the table, indicating that it may have been placed there as a decorative element. In the background, a chair can be seen further away from the table, possibly belonging to someone who is not present in the image."} +{"image_id": 344483, "caption": "The image depicts a zebra standing in a lush green field surrounded by trees. The zebra is positioned near the center of the scene, with its head facing towards the left side of the image. There are several trees scattered throughout the field, including one large tree located on the right side of the image. The zebra appears to be alone in the field, possibly exploring its surroundings or grazing on the lush grass."} +{"image_id": 464153, "caption": "In the image, a man is riding a red scooter down a set of stairs. He is wearing a black jacket and appears to be enjoying his ride. The scooter is parked at the bottom of the stairs, and there are several steps visible in the scene. There is also a blue building in the background, possibly serving as a backdrop for the man's scooter ride. A few other people can be seen in the scene, but they are not actively participating in the scooter ride. Overall, the image captures a moment of leisure and enjoyment for the man on his scooter."} +{"image_id": 317130, "caption": "The image depicts a city street with a green street sign indicating \"South\" on the left side of the road. On the right side of the road, there is a no-left-turn sign. There are several cars parked along the street, some closer to the intersection and others further down the road. In the background, there is a large tree standing next to the street, providing shade and adding to the scenic view. A traffic light can be seen at the intersection, indicating the flow of traffic in the area. Overall, the scene captures a typical urban setting with a mix of vehicles and pedestrians, as well as a green street sign and a no-left-turn sign guiding drivers through the intersection."} +{"image_id": 142484, "caption": "The image features a gray and white striped cat lying on its back on a wooden chair. The cat appears to be relaxing and enjoying the warmth of the chair. There is another chair in the scene, which is placed next to the cat's resting spot. A window can be seen in the background, providing natural lighting for the room."} +{"image_id": 262440, "caption": "The image features a large bathroom with a bathtub, sink, and toilet. The bathroom is spacious, with a tiled floor and white walls. There are two sinks in the bathroom, one on the left side and the other on the right side. A toilet can be found in the middle of the bathroom, near the sink on the right side. The bathtub is positioned towards the back of the room, providing ample space for relaxation. Additionally, there is a window in the bathroom, allowing natural light to enter the space. Overall, the bathroom appears to be well-maintained and inviting."} +{"image_id": 163155, "caption": "The image features a gray and white cat sitting on the ground next to a brick wall. The cat is perched on its hind legs, with its front paws resting on the ground. The cat's body is positioned towards the right side of the image, and its head is slightly turned towards the left. There are several other cats visible in the scene, but they are not as prominent as the main cat. These additional cats are scattered throughout the image, with some closer to the main cat and others further away. Overall, the scene depicts a group of cats interacting with each other and their surroundings."} +{"image_id": 535608, "caption": "The image depicts a beautiful beach scene with people enjoying the sunny day. There are several chairs and umbrellas scattered across the sand, providing shade for those relaxing on the beach. Some of the chairs are closer to the water's edge, while others are positioned further away from the ocean. In addition to the chairs and umbrellas, there are several people lounging on the beach, soaking up the sun and enjoying the warmth of the day. A few people can be seen walking along the beach, perhaps exploring the area or taking a leisurely stroll. Overall, it appears to be a peaceful and enjoyable day at the beach."} +{"image_id": 14892, "caption": "In the image, a man is holding a young child who is brushing his teeth with a toothbrush. The child is sitting on the man's lap, and the toothbrush can be seen clearly in the child's hand. The scene takes place in a living room, with a couch visible in the background. There are two chairs in the room, one on the left side and the other on the right side of the couch. Additionally, there is a book placed on the floor near the couch."} +{"image_id": 550864, "caption": "The image features a spacious kitchen with wooden cabinets and a stainless steel refrigerator. There is a dining table in the center of the room, surrounded by several chairs. A wine bottle can be seen on the table, adding a touch of sophistication to the space. The kitchen also has a sink, an oven, and a microwave, indicating that it is well-equipped for cooking and preparing meals. The overall atmosphere of the kitchen is warm and inviting, making it an ideal space for entertaining guests or enjoying a meal with family and friends."} +{"image_id": 440928, "caption": "The image depicts a large airplane sitting on top of a grassy knoll in the middle of a field. The plane is positioned at the center of the scene, with its nose pointing towards the sky. The sun is shining brightly behind the plane, casting a warm and inviting glow over the entire area. There are several cars parked around the airplane, some closer to the plane and others further away. In addition to the cars, there is a truck visible in the scene, likely used for transportation or maintenance purposes. Overall, the image captures a serene and peaceful atmosphere, with the airplane serving as a focal point amidst the lush green surroundings."} +{"image_id": 186822, "caption": "The image depicts a bathroom with a white sink, toilet, and cupboard. The sink is placed in the center of the room, while the toilet is positioned on the left side. The cupboard is located on the right side of the room. There are several bottles scattered around the bathroom, including two bottles on the left side, one bottle on the right side, and another bottle towards the back of the room. A horse figurine is placed on top of the cupboard, adding a touch of personality to the space. Additionally, there is a mirror hanging on the wall above the sink, providing a reflection of the bathroom's interior."} +{"image_id": 115222, "caption": "The image depicts a street corner with a stop sign at the intersection of Alameda and 14th Streets. There are several cars parked on the side of the street, with some closer to the stop sign and others further away. In the background, there are palm trees lining the street, adding to the tropical atmosphere of the scene. A traffic light can also be seen near the stop sign, indicating the presence of pedestrians and vehicles in the area."} +{"image_id": 9426, "caption": "In the image, a small red and white airplane is flying through a cloudy blue sky. The plane appears to be in mid-flight, with its nose pointed upwards towards the clouds. There are several clouds visible in the sky, creating a dramatic backdrop for the plane's flight. The plane is positioned towards the left side of the image, with its wingspan stretching across a significant portion of the scene. A few smaller clouds can be seen scattered throughout the sky, adding to the overall atmosphere of the image."} +{"image_id": 290839, "caption": "The image depicts two men and a dog on a blue boat in the middle of a body of water. One man is standing on the bow of the boat, while the other man is sitting on the stern. The dog is also present on the boat, likely enjoying the outdoor activity with its owners. There are several bottles scattered around the boat, possibly containing drinks or other supplies for the day's fishing trip. In the background, there are trees visible, adding to the serene atmosphere of the scene."} +{"image_id": 285742, "caption": "The image depicts a vintage black and white photograph of a busy city street lined with old cars parked along the sidewalk. The cars are parked close to each other, creating a congested parking scene. There are multiple cars visible in the scene, with some parked closer to the edge of the sidewalk and others positioned further back. In addition to the cars, there are several pedestrians walking along the sidewalk, adding to the bustling atmosphere. A traffic light can be seen at the end of the street, indicating the flow of traffic."} +{"image_id": 457271, "caption": "In the image, a woman is holding a baby in her arms as she interacts with two horses in a barn. One horse is standing on the left side of the barn, while the other is on the right side. The woman and the baby are positioned in the middle of the barn, close to the two horses. There are several other people visible in the background of the scene, possibly observing or participating in the interaction between the woman and the horses."} +{"image_id": 277955, "caption": "The image depicts a blue and yellow train traveling down a set of railroad tracks. The train is surrounded by various electrical wires and cables, which are suspended above the tracks. There are several people visible in the scene, including one person standing on the left side of the train, another person standing on the right side of the train, and a third person near the center of the image. The train appears to be moving at a moderate pace, as it travels along the tracks towards its destination."} +{"image_id": 395531, "caption": "The image features a cute stuffed panda bear sitting on a wooden bench next to a small Buddha statue. The panda is wearing a backpack, adding a playful touch to the scene. The Buddha statue is positioned slightly to the left of the panda, creating an interesting contrast between the two items. In addition to the panda and Buddha, there are several plants scattered throughout the scene, adding a natural touch to the setting."} +{"image_id": 266400, "caption": "The image features a row of parked motorcycles lined up on a sidewalk next to a street. There are several motorcycles of different colors, including yellow, blue, and black. Some of the motorcycles are parked closer to the edge of the sidewalk, while others are positioned in the middle of the row. In total, there are at least 10 motorcycles visible in the scene. A person can be seen standing on the sidewalk, possibly admiring the collection of motorcycles."} +{"image_id": 291932, "caption": "The image features a bench with a pair of shoes placed on top of it. The bench is situated in front of a building with graffiti on the wall. The shoes appear to be left there intentionally, possibly as a decorative or artistic element. There are several other objects scattered around the scene, including a bottle, a cup, a handbag, and a potted plant. The presence of these items adds to the vibrant and colorful atmosphere of the area."} +{"image_id": 237942, "caption": "The image features a man standing in a park, wearing a black shirt and a green tie. He appears to be posing for a photo in front of a lush green field surrounded by trees. There are several trees scattered throughout the scene, providing a natural backdrop for the man's photo. In addition to the man, there are two other people visible in the image. One person is located closer to the left side of the frame, while the other person is positioned further to the right. Both individuals appear to be enjoying their time in the park."} +{"image_id": 118584, "caption": "The image depicts a group of elephants standing near a body of water, such as a river or a pond. There are several elephants visible in the scene, with some positioned closer to the water and others further away. The elephants appear to be socializing and interacting with each other. In addition to the elephants, there are several trees scattered throughout the area, providing shade and a natural setting for the animals. A boat can also be seen in the background, adding to the serene atmosphere of the scene. Overall, the image captures a peaceful moment in the lives of these majestic creatures."} +{"image_id": 405440, "caption": "The image features a desk with a computer keyboard and a remote control placed on top of it. The keyboard is positioned near the center of the desk, while the remote control is located closer to the left side. There are several wires connected to the keyboard and remote control, suggesting that they are part of a larger electronic setup. A monitor can be seen in the background, providing additional context to the scene."} +{"image_id": 66231, "caption": "The image depicts a busy kitchen filled with several chefs preparing food. There are at least six chefs working in the kitchen, each wearing a white chef's hat and apron. They are diligently preparing various dishes, possibly for a restaurant or catering event. The kitchen is equipped with multiple appliances, including a sink, an oven, a microwave, and a refrigerator. Various utensils, such as knives, spoons, and forks, are scattered around the kitchen, indicating that the chefs are actively cooking and preparing meals. A bowl can also be seen on the counter, possibly containing ingredients for the dishes being prepared. Overall, the scene captures the bustling activity of a professional kitchen during meal preparation."} +{"image_id": 362520, "caption": "The image features a young skateboarder performing an impressive trick in a skate park. The skateboarder is in mid-air, holding onto the skateboard with one hand, while the other hand is positioned near the front of the skateboard. The skateboarder is wearing a helmet to protect themselves from any potential accidents during their tricks. There are several skateboards visible in the scene, including one close to the skateboarder and others scattered around the skate park. In addition to the skateboarder, there are two other people in the scene, one on the left side and the other on the right side. They appear to be observing the skateboarder's performance and enjoying the skateboarding action."} +{"image_id": 114684, "caption": "The image depicts a young woman sitting on a bench outside, eating a hot dog wrapped in a napkin. She appears to be enjoying her food as she takes a big bite out of the hot dog. There are several bottles scattered around the scene, including one close to the woman's left hand and another near her right foot. In addition to the bottles, there are two cars visible in the background, one on the left side and another on the right side of the image."} +{"image_id": 559261, "caption": "In the image, a man is playing a game of tennis on a clay court. He is actively engaged in the game, lunging forward to hit the ball with his tennis racket. There are several chairs placed around the court, likely for spectators or players to sit and watch the game. A few people can be seen sitting on the chairs, enjoying the action on the court. Additionally, there are a few more chairs scattered throughout the scene, providing seating options for those attending the tennis match. Overall, the image captures a lively and engaging tennis game taking place on the clay court."} +{"image_id": 320482, "caption": "The image depicts a bustling city street with a blue and yellow bus parked on the side of the road. The bus is surrounded by several people, some of whom are standing near the bus, while others are walking along the sidewalk. There are at least six people visible in the scene, with some closer to the bus and others further away. In addition to the people, there are several handbags scattered throughout the scene, likely belonging to the pedestrians. A traffic light can also be seen in the background, indicating the presence of vehicles on the road."} +{"image_id": 203705, "caption": "The image features a desk with an open laptop computer sitting on top of it. The laptop is positioned in the center of the desk, and there are several items surrounding it. A cup is placed near the laptop's left side, and another cup can be seen on the right side of the desk. In addition to the cups, there are two books placed on the desk, one on the left side and the other on the right side. There are also several bottles scattered around the desk, including one on the left side and another on the right side. A mouse can be seen on the desk as well, close to the laptop. The overall scene depicts a cluttered workspace with a variety of items, including a laptop, books, cups, and bottles."} +{"image_id": 330186, "caption": "In the image, a person wearing a wetsuit is riding a surfboard on a small wave in the ocean. The surfer is positioned towards the center of the scene and appears to be enjoying the water activity. There are multiple surfboards visible in the water, with some closer to the surfer and others further away. A few people can be seen in the background, possibly watching the surfer or participating in other water activities."} +{"image_id": 201004, "caption": "The image depicts a large grassy field surrounded by trees and buildings. In the center of the field, there is a statue of a man standing on a pedestal. There are several benches placed around the field, providing seating for people to rest and enjoy the surroundings. A clock tower can be seen in the background, adding a touch of architectural interest to the scene. The area appears to be well-maintained and peaceful, making it an ideal spot for relaxation and leisure."} +{"image_id": 137297, "caption": "In the image, a man is playing tennis on a blue court. He is wearing a red shirt and black shorts, and is in the process of hitting the ball with his tennis racket. There are several people in the background, watching the game and possibly cheering for the player. Some of them are seated on benches, while others are standing along the edge of the court. Additionally, there are several chairs scattered around the scene, providing seating options for the spectators. The overall atmosphere appears to be lively and engaging, with the tennis player fully immersed in the game."} +{"image_id": 526711, "caption": "In the image, a large white and blue Air Force One airplane is parked on an airport runway. The plane is surrounded by various vehicles, including cars, trucks, and motorcycles. There are at least four cars in the scene, two of which are closer to the airplane, while the other two are positioned further away. Additionally, there are three trucks visible, two of which are parked close to the airplane, and the third one is located slightly further away. A motorcycle is also present in the scene, positioned near one of the trucks. The city skyline can be seen in the background, adding to the overall atmosphere of the image."} +{"image_id": 571008, "caption": "The image features a stop sign that has been spray-painted with the word \"hammertime\". The graffiti is prominently displayed on the top of the stop sign, making it stand out from the other signs in the area. There are several traffic signs in the vicinity, including a one-way street sign to the left of the stop sign and another one-way street sign to the right of the stop sign. Additionally, there are two traffic lights visible in the scene, one on the left side and another on the right side of the stop sign."} +{"image_id": 234990, "caption": "The image features three giraffes standing in a lush green field surrounded by trees. Two of the giraffes are bending down to drink water from a puddle, while the third giraffe is standing upright. There are several trees scattered throughout the scene, with some closer to the giraffes and others positioned further away. In addition to the giraffes and trees, there are several rocks visible in the background, adding to the natural setting. Overall, it appears to be a peaceful and serene environment for the giraffes to graze and enjoy their surroundings."} +{"image_id": 429811, "caption": "The image features a dining table set with a delicious-looking meal consisting of chicken, potatoes, and other vegetables. A white plate is placed in the center of the table, holding the main ingredients of the meal. There are several utensils on the table, including forks, knives, and spoons, ready to be used during the meal. Additionally, there are two wine glasses placed on the table, one on the left side and the other on the right side. The table is adorned with a pink tablecloth, adding a touch of elegance to the setting."} +{"image_id": 349936, "caption": "The image depicts a spacious living room with a dining table in the center. The dining table is surrounded by chairs, and there are two couches positioned on either side of the room. A television can be seen mounted on the wall, providing entertainment for the room's occupants. In addition to the furniture, there are several cups scattered around the room, likely left over from a recent meal or gathering. The room has a warm and inviting atmosphere, making it an ideal space for relaxation and socializing."} +{"image_id": 537025, "caption": "The image features a bed with two towels arranged in the shape of two swans. The towels are placed on top of the bed, creating a heart-shaped design. There are two pink pillows placed on the bed, one near the left edge and the other near the right edge. Additionally, there is a third pink pillow located closer to the center of the bed. The arrangement of the towels and pillows creates a cozy and romantic atmosphere for the bedroom."} +{"image_id": 508443, "caption": "The image features a wooden dining table with a green plate placed on top of it. On the plate, there are four mini pizzas arranged in a semicircle shape. The pizzas are topped with melted cheese and appear to be freshly baked. A glass of wine is positioned next to the plate, ready to be enjoyed with the pizzas. Additionally, there is a bottle of wine placed on the right side of the table."} +{"image_id": 447927, "caption": "The image features an elephant standing on top of a boat, which is sailing on the water. The elephant's trunk is extended towards the left side of the boat, and its body is positioned in the center of the scene. The boat appears to be quite large, taking up a significant portion of the image. In addition to the elephant and boat, there are several smaller objects scattered around the scene. These objects include a bottle on the left side of the image, another bottle on the right side of the image, and a third bottle near the center of the scene. There is also a small object located close to the elephant's trunk on the left side of the boat. Overall, the image showcases a unique combination of an elephant and a boat, with the elephant standing proudly on top of the boat as it sails through the water."} +{"image_id": 132116, "caption": "The image features two white bowls filled with a delicious meal consisting of broccoli and meat. The bowls are placed on a wooden table, with the broccoli and meat evenly distributed in each bowl. There are several chopsticks placed near the bowls, ready to be used to enjoy the meal. The dish appears to be a healthy and flavorful combination of vegetables and meat."} +{"image_id": 336384, "caption": "The image depicts a large commercial airplane, a Boeing 737-800 operated by Ryanair, taking off from an airport runway. The plane is positioned on the left side of the image, with its nose pointed towards the sky. There are several people visible in the scene, likely passengers or airport personnel. One person is located on the right side of the image, while another person can be seen on the left side, closer to the airplane. Additionally, there are two cars parked near the airplane, one on the right side and another on the left side of the runway."} +{"image_id": 224093, "caption": "The image is a black and white photograph of a group of cows grazing in a grassy field. There are several cows scattered across the field, with some closer to the center and others near the edges. Some of the cows appear to be grazing, while others are resting or standing still. In total, there are ten cows visible in the scene, ranging from close to the center to the edges of the field. The cows seem to be enjoying the lush green grass and the peaceful atmosphere of the pasture."} +{"image_id": 384596, "caption": "In the image, a young boy is standing next to a small wooden bed in a child's room. The bed appears to be empty, but there is a mattress on the floor near the bed. A small dog is also present in the room, possibly accompanying the boy. There is another person in the room, likely the boy's parent or caregiver, who is observing the scene from a distance."} +{"image_id": 185930, "caption": "The image depicts a public restroom with three white sinks arranged in a row. Each sink is equipped with a faucet, and there are several hand soap dispensers placed around the room. A mirror is positioned above the sinks, allowing individuals to check their appearance before and after washing their hands. The restroom appears to be well-maintained and clean, providing a comfortable and hygienic environment for visitors."} +{"image_id": 29030, "caption": "In the image, a young man is standing in front of a mirror, taking a selfie with his cell phone. He is wearing a white t-shirt and appears to be smiling. There are two cell phones visible in the scene, one in the man's hand and another on the left side of the image. The man's reflection can be seen in the mirror behind him. Additionally, there is a bottle located on the right side of the image, likely used for personal hygiene or grooming."} +{"image_id": 309366, "caption": "The image depicts a yellow and white passenger train traveling down a set of railroad tracks. The train is surrounded by trees on both sides of the tracks, creating a serene and natural environment. There are several people visible in the scene, some standing near the train and others walking along the tracks. A traffic light can be seen at the end of the tracks, indicating the direction of the train's movement. Overall, the scene captures a peaceful moment as the train makes its way through the countryside."} +{"image_id": 333697, "caption": "The image depicts a street scene at night, with a one-way sign and a no entry sign standing on the side of the road. The one-way sign is positioned closer to the left side of the image, while the no entry sign is situated further to the right. There are several graffiti-covered walls in the background, adding to the urban atmosphere of the scene. A car can be seen parked on the left side of the image, near the one-way sign."} +{"image_id": 82338, "caption": "The image depicts a busy city street with a man riding a motorcycle in the center of the scene. There are several cars parked along the street, including one in the foreground and another in the background. In addition to the cars, there are two cows standing on the sidewalk near the motorcycle. One cow is positioned closer to the motorcycle, while the other cow is slightly further away. A traffic light can be seen at the end of the street, adding to the overall sense of urban activity."} +{"image_id": 5325, "caption": "In the image, there is a woman in a wheelchair being pushed by another woman. They are standing on a sidewalk under an umbrella, shielding themselves from the rain. There are several cars parked along the side of the street, some closer to the woman in the wheelchair and others further away. Additionally, there are two traffic lights visible in the scene, one at the beginning of the sidewalk and another near the end of the sidewalk."} +{"image_id": 191078, "caption": "The image depicts a man in a grocery store, reaching for bananas hanging from the ceiling. There are several bananas visible in the scene, with some closer to the man and others further away. The bananas are suspended from the ceiling, creating a visually appealing display of fresh produce. The man appears to be carefully selecting the bananas he wants to purchase."} +{"image_id": 347335, "caption": "The image features a dining table with a white plate containing a breakfast meal consisting of eggs, hash browns, and a hamburger. The plate is placed in the center of the table, surrounded by various utensils such as forks, knives, and cups. There are two forks on the table, one closer to the plate and the other slightly further away. Additionally, there are two knives placed on the table, one closer to the plate and the other near the edge of the table. A cup is also visible on the table, positioned close to the plate. On the left side of the table, there is an avocado, and on the right side, there is another avocado."} +{"image_id": 441253, "caption": "The image features a glass desk with a laptop computer placed on top of it. The laptop is positioned in the center of the desk, surrounded by various items such as a mouse, a keyboard, and a bottle. There are two chairs placed near the desk, one on the left side and the other on the right side. A cup is also present on the desk, likely used for drinking or other purposes. In addition to the items on the desk, there is a remote control located on the right side of the image. Overall, the scene depicts a well-organized and functional workspace."} +{"image_id": 209824, "caption": "In the image, there is a fire hydrant sitting on the sidewalk next to a puddle of water. The fire hydrant appears to be partially frozen, with ice covering its surface. A person can be seen standing near the fire hydrant, possibly observing the frozen state of the hydrant. There are several other people in the scene as well, scattered throughout the area. Some of them are further away from the fire hydrant, while others are closer to it. Additionally, there is a handbag placed near the fire hydrant, likely belonging to one of the people in the scene. Overall, the image captures a winter scene with a frozen fire hydrant and people enjoying their surroundings."} +{"image_id": 316862, "caption": "The image features a pizzeria counter with several pizzas displayed on the shelves. There are three pizzas in total, with two of them placed on the left side of the counter and one on the right side. The pizzas are of different sizes and shapes, adding variety to the selection available at the pizzeria. In addition to the pizzas, there are several bottles scattered throughout the scene. One bottle can be seen on the left side of the counter, while another is positioned closer to the center of the image. A third bottle is located on the right side of the counter, and a fourth bottle can be spotted near the top of the image. There are also a few cups present in the scene, including one on the left side of the counter and another near the center of the image. Overall, the scene showcases a well-stocked pizzeria with an assortment of pizzas and drinks available for customers."} +{"image_id": 446984, "caption": "The image depicts a group of people wearing yellow vests, gathered around a bicycle with a large pair of scissors attached to it. The scissors are positioned on top of the bicycle, creating a unique and eye-catching display. There are several bicycles visible in the scene, with some closer to the scissors and others further away. In addition to the bicycles, there are several people scattered throughout the scene, each wearing a yellow vest. Some of them are standing near the bicycle with the scissors, while others are positioned further away from the center of attention."} +{"image_id": 326937, "caption": "The image depicts a living room with a black dog standing in front of a large flat-screen television. The dog appears to be watching something on the screen, possibly a TV show or a movie. There are two chairs in the room, one on the left side and another on the right side. A remote control is placed on the left side of the room, close to the first chair. In addition to the dog and chairs, there are several books scattered around the room. One book is located on the left side near the first chair, while another book is situated on the right side closer to the second chair."} +{"image_id": 363048, "caption": "In the image, a man and a young girl are riding a motorcycle together. The man is wearing a helmet, while the girl is wearing a pink jacket. They are both seated on the motorcycle, with the man in the front and the girl in the back. The motorcycle is parked on the side of the road, likely near a building or a parking lot. There are several other people visible in the scene, including a man standing to the left of the motorcycle, a woman standing to the right of the motorcycle, and another man standing further away from the motorcycle. Additionally, there is a handbag placed on the ground near the motorcycle, possibly belonging to one of the people in the scene."} +{"image_id": 428067, "caption": "The image depicts a grassy field with a truck parked in the middle of it. The truck is surrounded by various animals, including sheep, cows, and goats. Some of the animals are closer to the truck, while others are scattered throughout the field. There are also several trees visible in the background, adding to the natural setting of the scene."} +{"image_id": 207431, "caption": "The image features a delicious-looking pizza on a white plate, placed on a dining table. The pizza is topped with various ingredients, including mushrooms, eggplant, and other vegetables. A fork and a knife are placed next to the pizza, ready to be used for serving or enjoying the meal. A cup is also present on the table, likely filled with a beverage to complement the pizza."} +{"image_id": 16704, "caption": "The image features a large elephant standing in a grassy field surrounded by trees. The elephant is positioned in the center of the scene, with its trunk extended towards the right side of the image. There are several trees visible in the background, providing a natural setting for the elephant to roam freely. In addition to the elephant, there are several smaller trees scattered throughout the scene, contributing to the lush environment."} +{"image_id": 190705, "caption": "The image features a small bathroom with a sink, toilet, and mirror. The sink is located on the left side of the room, while the toilet is situated on the right side. The mirror is positioned above the sink, providing a clear reflection of the bathroom's interior. There are several bottles scattered around the bathroom, including one on the right side near the toilet and another on the left side near the sink. A rug can be seen in the center of the room, adding a touch of warmth and comfort to the space. Overall, the bathroom appears clean and well-maintained."} +{"image_id": 572462, "caption": "The image is a collage of various scenes featuring a train station. There are several people in different parts of the station, some standing and others sitting on benches. A white train can be seen in one of the scenes, with passengers boarding and disembarking from the train. In another scene, there is a sign that reads \"Welcome to BART,\" indicating that the train station is part of the Bay Area Rapid Transit (BART) system. Additionally, there are several handbags scattered throughout the station, likely belonging to the passengers. Overall, the scene depicts a bustling train station with people coming and going, making it a lively and active environment."} +{"image_id": 501498, "caption": "The image features a black cat sitting on top of a purple suitcase. The cat is positioned in the center of the suitcase, with its eyes fixed on the surroundings. The suitcase is placed on a tiled floor, and the cat seems to be enjoying its resting spot. There are several other objects in the scene, including a bottle located on the left side of the image, a cup on the right side, and a sponge near the cat's head. These objects add to the overall atmosphere of the image, creating a cozy and welcoming environment for the cat."} +{"image_id": 202860, "caption": "The image depicts a woman standing in a room, holding a green teddy bear in her hands. She is wearing a gray shirt and appears to be engrossed in the teddy bear. There are several other objects scattered around the room, including a chair, a car, a truck, a bowl, a cup, and a bottle. Some of these objects are closer to the woman, while others are positioned further away from her. The room appears to be cluttered with various items, suggesting that it may be a messy or disorganized space. However, the woman's focus is solely on the teddy bear in her hands."} +{"image_id": 481891, "caption": "The image depicts a group of four young men playing a game of frisbee on a grassy field. They are all wearing orange shirts, and one of them is jumping up to catch the frisbee in mid-air. There are several benches scattered around the field, providing seating options for the players or spectators. In addition to the benches, there is a backpack visible in the scene, possibly belonging to one of the players or a spectator. Overall, it appears to be a lively and enjoyable game of frisbee among friends."} +{"image_id": 156889, "caption": "The image depicts a group of people sitting on a boat, enjoying a sunny day. There are two men sitting next to each other, with one of them holding an umbrella over the other's head. They are both wearing sunglasses and appear to be having a good time on the boat. In addition to the two men, there are several other passengers on the boat, some of whom are seated further away from the umbrella-holding man. Some of the passengers are wearing sunglasses, while others are not. There is also a backpack visible in the scene, likely belonging to one of the passengers. Overall, it appears to be a relaxing and enjoyable outing for everyone on the boat."} +{"image_id": 285646, "caption": "The image depicts an apple tree with many apples hanging from its branches. The apples are in various stages of ripeness, ranging from unripe to fully ripe. Some of the apples are closer to the trunk of the tree, while others are more spread out across the branches. The tree is surrounded by green foliage, creating a lush and vibrant environment for the apples to grow and mature. There are multiple apples visible in the scene, showcasing the abundance of fruit on the tree."} +{"image_id": 455267, "caption": "The image features a wok filled with broccoli and other vegetables, cooking on an electric stove. The wok is placed on top of the stove, and there are several pieces of broccoli scattered throughout the wok. The vegetables are being cooked in the wok, creating a delicious meal for someone to enjoy."} +{"image_id": 429593, "caption": "The image depicts a dimly lit living room with a couch situated in the center of the space. The couch is covered with a blanket, and there are several pillows scattered around it. A television can be seen on the left side of the room, placed close to the couch. In addition to the couch and television, there are several other items present in the room, including a book, a cup, and a remote control. There is also a potted plant located on the right side of the room, adding a touch of greenery to the space. Overall, the living room has a cozy and relaxed atmosphere, perfect for unwinding after a long day."} +{"image_id": 152946, "caption": "The image depicts a group of people standing on a snow-covered slope, posing for a photo. There are two men and two women in the scene, all wearing winter clothing and carrying skis or snowboards. The skis and snowboards are spread out across the snowy area, indicating that the group is preparing to go skiing or snowboarding. In addition to the skis and snowboards, there are several backpacks scattered throughout the scene, likely belonging to the group members."} +{"image_id": 97427, "caption": "The image depicts a small kitchen with white appliances, including a refrigerator, stove, and dishwasher. The refrigerator is located on the left side of the kitchen, while the stove is situated on the right side. The dishwasher can be found in the middle of the kitchen. There are several bottles scattered throughout the kitchen, including one near the refrigerator, another near the stove, and a third near the dishwasher. Additionally, there is a table in the center of the kitchen, likely used for meal preparation or as a workspace."} +{"image_id": 525369, "caption": "The image depicts a small child lying on a bed in a dark room. The child is wearing a pink shirt and appears to be sleeping. The bed is covered with a blanket, and there is a pillow next to the child's head. There are several books scattered around the room, including one near the bed and another closer to the left side of the image. In addition to the books, there is a cell phone placed on a nearby table. The room appears to be dimly lit, with only a few sources of light illuminating the space."} +{"image_id": 248582, "caption": "The image depicts a bustling outdoor market with a variety of fruits and vegetables on display. A group of people can be seen shopping at the market, with some of them carrying backpacks. There are various types of fruits available, including bananas, apples, oranges, and pineapples, among others. Some of the fruits are displayed on tables, while others are hanging from the ceiling or placed on shelves. In addition to the fruits, there are also several bottles visible in the scene, likely containing drinks or other items. The overall atmosphere is lively and vibrant, showcasing the abundance of fresh produce available at the market."} +{"image_id": 548729, "caption": "The image depicts a group of people gathered around a dining table in a room. There are several bottles of wine placed on the table, with one bottle being closer to the center of the table. The people in the scene appear to be having a good time, enjoying the wine and each other's company. Some of them are holding wine glasses, while others are standing or sitting around the table. In the background, there is a chandelier hanging from the ceiling, adding a touch of elegance to the scene."} +{"image_id": 493522, "caption": "The image features a zebra standing on top of a sandy dune, with a ram nearby. The zebra is positioned towards the left side of the image, while the ram is closer to the center of the scene. The zebra and the ram appear to be interacting with each other, possibly grazing or exploring their surroundings. In the background, there is a hill covered in grass, providing a scenic backdrop for the animals."} +{"image_id": 218476, "caption": "The image depicts a man riding a blue motorcycle on a beach. He is wearing a blue outfit and appears to be enjoying the ride. The motorcycle is parked near the edge of the water, with waves splashing around it. In the background, there are several other people visible on the beach, likely enjoying the scenery or engaging in other activities. The overall scene captures the essence of a relaxing day at the beach, with the blue motorcycle adding a touch of excitement to the atmosphere."} +{"image_id": 273469, "caption": "The image depicts a dining table with two open pizza boxes on it, each containing a large pizza. There are several bottles of beer placed around the table, some closer to the pizza boxes and others further away. In addition to the pizza and beer, there are several cups on the table, likely filled with drinks. A person can be seen sitting at the table, possibly enjoying the food and drinks."} +{"image_id": 388926, "caption": "The image is a black and white photograph of a group of people sitting on a bus or train, looking out the window. There are several people visible in the scene, with some leaning out of the window while others are seated closer to the center of the bus or train. In total, there are at least 10 people in the scene, with some of them leaning out of the window and others seated closer to the interior of the bus or train. One person appears to be holding a cell phone, possibly capturing the moment or communicating with someone outside the bus or train. Overall, the scene depicts a group of people enjoying the view from a public transportation vehicle."} +{"image_id": 186427, "caption": "In the image, a man is standing on a tennis court, holding a tennis racket in his hand. He appears to be preparing to play a game of tennis, possibly waiting for a partner or opponent to join him. There are several other tennis balls scattered around the court, some closer to the man and others further away. Additionally, there are two tennis rackets visible in the scene, one close to the man and another near the left side of the court. The sun is shining brightly in the background, casting a warm and inviting atmosphere for the upcoming tennis game."} +{"image_id": 457636, "caption": "The image depicts a group of young men playing ice hockey on a frozen outdoor rink. There are several players on the ice, with some wearing red uniforms and others wearing maroon uniforms. The players are actively engaged in the game, with some holding hockey sticks and others moving around the rink. In addition to the players, there are several hockey pucks scattered across the surface of the ice, indicating that the game is in progress. Some of the pucks are positioned closer to the players, while others are further away from the action. Overall, the scene captures the excitement and energy of a competitive ice hockey game."} +{"image_id": 315018, "caption": "In the image, a young woman is taking a selfie with a giraffe. The giraffe is standing close to her, and she is holding a camera in her hand, capturing the moment. The giraffe's head can be seen peeking out from behind the woman's shoulder, making for a unique and memorable photo. There are several other people in the background of the scene, likely visitors to the zoo or wildlife park where the giraffe and the woman are located."} +{"image_id": 532164, "caption": "The image depicts a group of people gathered around a conveyor belt filled with apples. They appear to be inspecting the apples as they move along the belt, possibly preparing them for further processing or packaging. There are at least ten people in the scene, with some standing closer to the conveyor belt while others are positioned further away. One person is wearing a green shirt, and another person is wearing a white shirt. The apples on the conveyor belt come in various sizes and colors, adding to the overall visual appeal of the scene."} +{"image_id": 478356, "caption": "The image features a vintage photograph of a woman sitting on the back of a fire truck, holding a sign that reads \"Pearl Harbor Day - Have You Bought Your Bond Yet?\" She is positioned in the center of the truck, surrounded by other people who appear to be standing or sitting nearby. The fire truck is parked on the side of the road, likely in front of a building or a street corner. There are several other people visible in the scene, with some closer to the woman on the truck and others further away."} +{"image_id": 355276, "caption": "The image features a large brown bear resting in a rocky enclosure. The bear is lying on top of a fallen tree trunk and appears to be enjoying its surroundings. There are several logs scattered around the scene, adding to the natural feel of the environment. In addition to the bear, there are several other animals visible in the background, including a fox and a deer. These creatures seem to be interacting with each other, adding to the lively atmosphere of the scene. Overall, the image captures a peaceful moment in nature, showcasing the beauty of wildlife in their natural habitats."} +{"image_id": 147904, "caption": "In the image, a group of people are gathered in a grassy field under a cloudy sky. They are engaged in flying kites, with multiple kites visible in the scene. Some of the kites are closer to the ground, while others are higher up in the sky. The people appear to be enjoying themselves as they fly their kites in the breezy atmosphere. There is also a car parked on the side of the field, possibly belonging to one of the people participating in the kite-flying activity."} +{"image_id": 417547, "caption": "The image depicts a baseball game in progress, with a pitcher throwing a baseball from the pitcher's mound. There are several players on the field, including the pitcher, a catcher, and a batter. The catcher is positioned closer to the pitcher, while the batter is located further away from the pitcher. In addition to these players, there are several other individuals scattered around the field, possibly spectators or teammates. A bat is visible in the scene, likely belonging to the batter who is preparing to swing at the pitch. Overall, the scene captures the excitement and action of a baseball game in progress."} +{"image_id": 25758, "caption": "In the image, a woman is placing a large turkey into an oven. She is wearing a white shirt and appears to be preparing the turkey for cooking in the oven. The turkey is placed on the bottom rack of the oven, taking up a significant portion of the space within the oven. There are several kitchen appliances visible in the scene, including a stove, a microwave, and a refrigerator. The refrigerator is located on the left side of the image, while the stove and microwave are positioned on the right side. Additionally, there is a bowl placed on the counter near the oven, possibly containing additional ingredients or utensils for the cooking process. Overall, the scene depicts a woman preparing a large turkey for cooking in the oven, surrounded by various kitchen appliances and utensils."} +{"image_id": 58737, "caption": "The image features two trains parked next to each other on a train track near a building. One of the trains is black, while the other is yellow and red. There are several cars parked in the area around the trains, likely belonging to people who are waiting for the trains to arrive or depart. In addition to the cars, there are several traffic cones scattered throughout the scene, possibly indicating the presence of construction or maintenance work in the area. Overall, the scene depicts a busy transportation hub with trains and vehicles coming and going."} +{"image_id": 87356, "caption": "The image depicts a red and white public transit bus driving down a city street. The bus is parked on the side of the road, likely waiting for passengers to board or disembark. There are several other vehicles in the scene, including cars, trucks, and motorcycles. Some of these vehicles are parked on the side of the street, while others are moving along the road. A bicycle can also be seen in the scene, possibly belonging to one of the bus passengers. Overall, the scene captures a busy urban environment with various modes of transportation in motion."} +{"image_id": 44061, "caption": "The image depicts a train traveling on a track that runs alongside a lush green hillside. The train appears to be coming from the left side of the image and moving towards the right. There are several people visible in the scene, some standing near the tracks and others further away from the train. In addition to the people, there are several trees scattered throughout the scene, adding to the natural setting. The train is passing over an old stone bridge, which adds to the historical and scenic nature of the image."} +{"image_id": 565438, "caption": "In the scene, a young man is performing a skateboarding trick on a cement staircase. He is wearing a black shirt and appears to be in mid-air as he completes the trick. There are several other people in the area, some of whom are watching the skateboarder perform his stunt. A traffic light can be seen in the background, indicating that the scene takes place in a public area. Additionally, there are several handbags scattered throughout the scene, likely belonging to the people present."} +{"image_id": 518177, "caption": "In the image, a silver toaster oven is filled with various food items, such as potatoes wrapped in foil and placed on a baking tray inside the oven. Some of the potatoes are closer to the front of the oven, while others are positioned towards the back. There is also a wooden cutting board placed on top of the oven's rack, likely used for preparing the food before it goes into the oven. The scene suggests that the oven is being used to cook a variety of food items, possibly for a meal or a special occasion."} +{"image_id": 139953, "caption": "The image features a dining table set with various plates and utensils. There are two white plates placed on the table, one near the center and the other closer to the left side. A bowl is also present on the table, positioned towards the right side. Various utensils are scattered around the table, including spoons, forks, and a knife. In addition, there are several cups placed on the table, some closer to the center and others near the edges. A bottle is also visible on the table, positioned towards the right side."} +{"image_id": 485390, "caption": "The image depicts a group of sheep grazing on a grassy hillside. There are four sheep in the scene, with three of them positioned closer to the top of the hill and one located at the bottom. The sheep are spread out across the grassy area, with some standing and others lying down. They seem to be enjoying the sunny day while grazing on the lush green grass. In addition to the sheep, there are two trees visible in the background, one on the left and another on the right side of the image."} +{"image_id": 514249, "caption": "The image depicts a city street at night, with a white fire hydrant placed in the middle of the scene. There is a newspaper stand on the left side of the image, and another one on the right side. A traffic light can be seen in the background, and there are several cars parked along the street. In addition to the fire hydrant, there are several other objects scattered throughout the scene. These include two benches, one on the left side of the image and the other on the right side, as well as a bicycle on the right side of the image."} +{"image_id": 459921, "caption": "The image depicts a woman taking a selfie in a bathroom. She is standing in front of a mirror, holding a cell phone and taking a picture of herself. There are two sinks in the bathroom, one on the left side and the other on the right side. In addition to the sinks, there are several bottles scattered around the bathroom. One bottle is located near the sink on the left side, while another bottle is positioned closer to the center of the room. Another bottle can be found near the sink on the right side. A chair is also present in the bathroom, possibly used as a place to sit while taking care of personal hygiene or preparing for a shower."} +{"image_id": 219315, "caption": "The image features a doughnut and a bottle of beer sitting on a table. The doughnut is placed on a white paper napkin, while the bottle of beer is positioned next to it. There are two bottles of beer visible in the scene, with one closer to the doughnut and the other slightly further away. A laptop can also be seen on the table, likely belonging to the person enjoying the doughnut and beer."} +{"image_id": 360629, "caption": "The image features a rectangular tray filled with a variety of food items, including sushi, broccoli, and other vegetables. The tray is placed on a dining table, ready to be enjoyed. There are multiple pieces of sushi in the tray, some of which are closer to the edge, while others are more centralized. The broccoli is spread throughout the tray, making it a significant part of the meal. A bowl is also present on the table, possibly containing additional food or condiments."} +{"image_id": 17178, "caption": "The image depicts a group of horses standing on the side of a road, surrounded by trees and a fence. There are three horses visible in the scene, with two of them positioned closer to the fence and the third one further away from the fence. A car is parked on the side of the road, possibly waiting for the horses to cross the street. In addition to the horses and the car, there are several trees scattered throughout the scene, providing a natural backdrop for the animals. Overall, the image captures a peaceful moment as the horses graze on the side of the road while the car patiently waits for them to pass."} +{"image_id": 311759, "caption": "The image features a small brown teddy bear sitting on a white surface. The teddy bear is positioned in the center of the scene, and it appears to be well-loved and cared for. The bear's eyes are large and expressive, giving it a lifelike appearance. The teddy bear is adorable and inviting, making it a charming addition to any setting."} +{"image_id": 418944, "caption": "In the black and white image, a young girl is blow-drying her hair in a bathroom. She is smiling and appears to be enjoying the process of getting ready for the day. There are several items in the bathroom, including a sink, a cup, and a bottle. The sink is located towards the left side of the image, while the cup is positioned closer to the center. The bottle can be seen on the right side of the room. The girl's hair is being blow-dried by the blow dryer, which is placed close to her head."} +{"image_id": 487631, "caption": "The image depicts a herd of sheep walking down the middle of a two-lane road, surrounded by cars and trucks. There are several sheep visible in the scene, with some closer to the camera and others further away. A car is parked on the side of the road, likely belonging to one of the drivers passing by the herd. In addition to the sheep and the car, there are two trucks visible in the scene. One truck is parked on the side of the road, while the other is driving towards the herd. The truck driving towards the herd is closer to the center of the image, while the parked truck is located on the right side of the frame. Overall, the scene captures a peaceful moment as the animals and vehicles coexist on the road."} +{"image_id": 494566, "caption": "In the image, a man is skiing down a snow-covered slope, wearing a white and black outfit. He is positioned in the middle of the slope, with his skis tucked underneath him as he speeds down the hill. There are several ski poles visible in the scene, likely used to help the skier maintain balance and control while skiing. The skier's face is partially obscured by his helmet, adding to the sense of focus and determination as he navigates the snowy terrain."} +{"image_id": 63855, "caption": "The image features a blue and white subway train parked at a station platform. The train's door is open, allowing passengers to enter or exit the vehicle. There are several seats visible on the train, with some located closer to the front and others near the back. A person can be seen standing near the train, possibly waiting to board or disembark. Additionally, there is a handbag placed on the side of the train, likely belonging to one of the passengers. Overall, the scene depicts a busy subway station with people coming and going from the train."} +{"image_id": 181601, "caption": "The image features a small white bird perched on top of a green leafy tree branch. The bird is positioned towards the left side of the scene, with its head slightly tilted to the right. The bird's body is partially obscured by the foliage of the tree, but its presence is clearly visible. In the background, there is a clear blue sky, providing a serene and natural setting for the bird to rest and observe its surroundings."} +{"image_id": 553330, "caption": "In the image, a young boy wearing a blue shirt and a red helmet is standing on a baseball field, holding a baseball bat. He appears to be preparing to swing at a ball that is coming his way. There are several other people in the scene, some of whom are sitting on chairs or benches, while others are standing around the field. One person is closer to the boy with the baseball bat, while others are positioned further away from him. The scene suggests that the boy is participating in a baseball game or practice."} +{"image_id": 304316, "caption": "The image features a busy train station with two trains parked next to each other on the tracks. One of the trains is silver and yellow, while the other appears to be white. There are several people visible in the scene, some standing near the trains and others walking along the platform. A traffic light can be seen in the background, indicating the safety of the area for pedestrians and vehicles. In addition to the trains and people, there are several poles scattered throughout the scene, likely used for various purposes such as support or signage. Overall, the scene captures the bustling activity of a busy train station."} +{"image_id": 474384, "caption": "The image features a group of three sheep standing behind a wooden fence in a dirt field. Two of the sheep are positioned closer to the fence, while the third one is slightly further away. All three sheep have their heads protruding over the fence, as if they are curious about their surroundings. The fence serves as a barrier between the sheep and the outside world."} +{"image_id": 415001, "caption": "The image features a baseball game in progress, with several players on the field. One of the players is giving a high-five to another player, likely congratulating them on a successful play. There are several other players scattered around the field, some of whom are positioned closer to the action, while others are further away. In addition to the players, there are two umpires visible in the scene, one on the left side of the field and the other on the right side. A ball is also present on the field, possibly having been hit by one of the players during the game. Overall, the scene captures the excitement and energy of a baseball game in progress."} +{"image_id": 102503, "caption": "The image features a spacious bedroom with a large bed in the center of the room. The bed is adorned with a yellow and gray blanket, creating a cozy and inviting atmosphere. There are several chairs placed throughout the room, including a yellow chair near the bed and another chair on the opposite side of the room. The room also has multiple pictures hanging on the walls, adding to the decorative ambiance. In addition to the chairs and pictures, there are several books scattered around the room, giving the space a well-read and organized feel. Overall, the bedroom exudes a warm and inviting atmosphere, perfect for rest and relaxation."} +{"image_id": 421169, "caption": "The image features a large white and red airplane parked on an airport runway under a cloudy sky. The plane is positioned close to the edge of the runway, indicating that it has just landed or is preparing to take off. There are several other airplanes visible in the background, suggesting that this is a busy airport with multiple flights taking off and landing throughout the day. In addition to the airplanes, there are several cars parked near the airport, possibly belonging to passengers or airport personnel."} +{"image_id": 207670, "caption": "The image depicts a group of young skiers competing in a race on a snowy course. They are wearing skis and helmets, and some of them are holding ski poles. There are several skiers visible in the scene, with some of them positioned closer to the center of the image and others further away. The skiers appear to be enjoying themselves as they race down the snowy slope. In addition to the skiers, there are several traffic cones scattered throughout the scene, possibly marking the course or serving as obstacles for the skiers to navigate."} +{"image_id": 43098, "caption": "The image features a man walking down a city street, with a blue suitcase lying on the sidewalk in front of him. The suitcase is positioned close to the edge of the sidewalk, making it easy for the man to pick it up and continue on his way. There are several other people visible in the scene, including one person walking towards the left side of the image and another person walking towards the right side of the image. Additionally, there are two cars parked on the street, one on the left side and the other on the right side of the image."} +{"image_id": 286583, "caption": "The image depicts a busy city street on a rainy day. A group of people can be seen walking across the crosswalk, each carrying an umbrella to protect themselves from the rain. There are several umbrellas visible in the scene, with some being held by individuals and others being shared among the group. In addition to the umbrellas, there are several handbags scattered throughout the scene, likely belonging to the pedestrians. Some of the handbags are closer to the center of the image, while others are positioned further towards the edges. A traffic light can also be seen in the background, indicating the presence of vehicles in the area. Overall, the scene captures the hustle and bustle of a busy city street during a rainy day."} +{"image_id": 401860, "caption": "The image features a white plate with a single slice of pizza on it, placed on a table. The pizza slice is topped with various green vegetables, making it a unique and appetizing dish. The plate is positioned in the center of the table, allowing for easy access to the delicious pizza."} +{"image_id": 71171, "caption": "The image features a dining table with a white plate containing a sandwich and a salad. The sandwich appears to be a grilled chicken sandwich, while the salad is a mix of lettuce and other ingredients. The plate is placed in the center of the table, surrounded by various utensils such as forks, knives, and spoons. There are also two cups on the table, one closer to the left side and the other closer to the right side."} +{"image_id": 160811, "caption": "The image features a wooden desk with a printer and a stool. The printer is placed on top of the desk, while the stool is positioned next to it. There is also a chair in the room, which can be seen towards the left side of the image. The desk has several drawers, likely used for storing office supplies or other items. The room appears to be well-organized, with the desk and stool taking up a significant portion of the space."} +{"image_id": 4979, "caption": "The image features a large red chair with a horse statue placed on top of it. The horse statue is standing on the chair's backrest, giving the impression that the horse is actually sitting on the chair. The chair is positioned in front of a building, adding to the artistic and whimsical nature of the scene. In addition to the horse statue on the chair, there are two other horses visible in the scene. One horse is located closer to the left side of the image, while the other is situated further to the right."} +{"image_id": 315863, "caption": "The image depicts a small red and black train traveling down a track, with a man standing on top of it. The train is surrounded by trees and houses in the background. There are several potted plants scattered throughout the scene, including one near the front of the train and another near the back of the train. Additionally, there are two benches placed along the track, one near the front of the train and another near the back of the train."} +{"image_id": 177856, "caption": "The image depicts a group of people riding in a yellow and white speedboat on a body of water, possibly a river or lake. There are ten people in the boat, all wearing yellow life jackets. They appear to be enjoying the ride, smiling and having a good time together. The boat is traveling at a moderate speed, creating a fun and exciting atmosphere for the passengers."} +{"image_id": 411587, "caption": "In the image, a shirtless man is paddling a surfboard in the ocean. He is lying on the surfboard and appears to be enjoying his time in the water. The surfboard is positioned near the center of the image, with the man's body resting on top of it. There are several waves visible in the background, adding to the sense of movement and activity in the scene."} +{"image_id": 394240, "caption": "The image depicts a narrow cobblestone street lined with several motorcycles parked in a row. The motorcycles are positioned close to each other, with some of them closer to the left side of the street and others closer to the right side. A few people can be seen walking along the street, possibly enjoying the scenery or exploring the area. There is also a handbag placed on the ground near one of the motorcycles, adding a personal touch to the scene."} +{"image_id": 532463, "caption": "The image features a blue bench with several handbags displayed on it. The handbags are of various colors and designs, creating a colorful and eye-catching display. Some of the handbags are placed closer to the center of the bench, while others are positioned more towards the edges. The handbags seem to be for sale, as there is a price tag attached to one of the bags. The bench is situated on a sidewalk or patio area, possibly in front of a store or outdoor market."} +{"image_id": 57495, "caption": "The image depicts a small, cramped bathroom with a toilet located in the middle of the room. The toilet appears to be an old-fashioned squat toilet, and there is a bucket placed next to it. The walls of the bathroom are made of concrete, and there is a sink located on the left side of the room. In addition to the toilet, sink, and bucket, there are several bottles scattered throughout the scene. One bottle can be seen on the right side of the room, while another is positioned closer to the toilet. A third bottle is located near the sink, and a fourth bottle is situated on the left side of the room. These bottles add to the overall cluttered and disorganized appearance of the bathroom."} +{"image_id": 425948, "caption": "In the image, a group of people are gathered on a sandy beach, flying a kite in the sky. There are two young children, a boy and a girl, who are actively participating in the kite-flying activity. One child is closer to the camera, while the other is slightly further away. The group is spread out across the beach, enjoying the sunny day and the windy conditions that allow them to fly the kite. They seem to be having a great time together, engaging in a fun outdoor activity."} +{"image_id": 508165, "caption": "The image depicts a large yellow bus driving down a city street underneath a bridge. The bus is parked on the side of the road, and there are several other vehicles in the vicinity, including a truck and a car. There are also several pedestrians scattered throughout the scene, walking along the sidewalks or crossing the street. A traffic light can be seen at the end of the street, indicating the direction of traffic flow. Overall, the scene showcases a bustling urban environment with various modes of transportation and people moving about their daily lives."} +{"image_id": 41998, "caption": "The image depicts a bustling city square filled with people walking around and enjoying the day. There is a large, ornate building with a clock tower in the center of the square. The clock tower stands out against the blue sky, making it a prominent feature of the scene. In addition to the clock tower, there are several other buildings visible in the background, adding to the vibrant atmosphere of the square. Many people can be seen walking around the square, some of them carrying bags or umbrellas, while others appear to be engrossed in their surroundings. Overall, the scene captures the lively atmosphere of a bustling city square on a sunny day."} +{"image_id": 477474, "caption": "The image features a black laptop computer sitting open on a white bed. The laptop appears to be running some sort of software or application, as there are multiple windows displayed on the screen. The laptop is positioned in the middle of the bed, with its keyboard exposed and ready for use. There are several other objects present in the scene, including two cups placed on the bed, one on the left side and the other on the right side. Additionally, there are two hands visible in the image, one on the left side of the bed and the other on the right side. These hands suggest that someone might be using the laptop or interacting with it in some way."} +{"image_id": 410614, "caption": "The image depicts a skateboarder performing a trick on his skateboard. The skateboarder is shown in various stages of the trick, with each stage captured in a single frame. There are multiple skateboards visible in the scene, some placed on the ground near the skateboarder, and others scattered around the area. The skateboarder's friends can be seen in the background, watching him perform the trick. Overall, the image captures the excitement and energy of the skateboarder and his friends as they enjoy their time at the skate park."} +{"image_id": 321035, "caption": "The image features a large, decorated cake sitting on a table. The cake is adorned with red and white frosting and has the words \"Welcome Malachi\" written on it. A knife is placed next to the cake, ready to be used for cutting and serving the delicious dessert. There are several people in the scene, including one person sitting on the left side of the table, another person sitting on the right side of the table, and a third person standing at the back of the table. Additionally, there is a bowl placed on the table near the cake."} +{"image_id": 450182, "caption": "The image features a person riding a motorcycle down a city street. The motorcycle is positioned in the middle of the scene, with the rider performing a stunt on the bike. There are several cars parked along the street, some closer to the motorcycle and others further away. In the background, a cable car can be seen traveling down the street, adding to the lively atmosphere of the scene."} +{"image_id": 475572, "caption": "The image depicts a mantle or shelf with various items placed on it, including a teddy bear, a picture frame, and a potted plant. The teddy bear is positioned in the center of the mantle, while the picture frame is slightly to the left of the bear. The potted plant is located towards the right side of the mantle, adding a touch of greenery to the scene. The items on the mantle create a cozy and inviting atmosphere, showcasing personal belongings that hold sentimental value."} +{"image_id": 257624, "caption": "The image features a young girl standing on a grassy field, surrounded by soccer balls. She is wearing pink pants and a jacket, and appears to be enjoying her time playing with the soccer balls. There are two soccer balls visible in the scene, one closer to the girl and the other further away from her. In addition to the soccer balls, there are several other objects scattered across the field, including a backpack, a handbag, and a bottle."} +{"image_id": 211853, "caption": "The image depicts a group of five small boats docked next to each other on the water. Four of the boats are lined up in a row, while the fifth boat is positioned slightly off-center. The boats range in size, with the largest one being closer to the center and the smallest one located at the end of the row. There are several flowers scattered throughout the scene, adding a touch of beauty to the tranquil setting. Some of the flowers can be found near the boats, while others are positioned further away from the water. Overall, the image captures a peaceful moment by the water, with the boats and flowers creating a serene atmosphere."} +{"image_id": 121663, "caption": "The image depicts a city street with a yellow and white bus driving down the road. The bus is parked on the side of the street, waiting for passengers to board or disembark. There are several people visible in the scene, some standing near the bus and others walking along the sidewalk. In addition to the people, there are several cars parked along the street, adding to the bustling atmosphere. A traffic light can be seen at the end of the street, signaling the flow of traffic."} +{"image_id": 24112, "caption": "The image depicts a group of people gathered around a dining table, enjoying a meal together. There are two men sitting at the table, one on the left side and the other on the right side. One of the men is wearing a tie, while the other is not. In addition to the two men, there are several other people in the scene, including a woman sitting on the left side of the table, another woman sitting on the right side of the table, and a man sitting across from the woman on the right side of the table. They all appear to be engrossed in their meal and conversation."} +{"image_id": 546091, "caption": "The image depicts a dining area in a restaurant, with several tables and chairs arranged around the room. One of the tables has a partially eaten pizza on it, with slices of pepperoni and cheese visible. There are several people sitting at the tables, enjoying their meals and socializing with each other. In addition to the pizza, there is a bottle of ketchup placed on one of the tables, as well as a knife and fork for cutting the pizza. A bowl can also be seen on one of the tables, possibly containing salad or another side dish. Overall, the scene captures a lively atmosphere in the restaurant, with people enjoying their meals and socializing with each other."} +{"image_id": 117425, "caption": "The image features a young boy standing in front of a wooden table with a cupcake on it. The cupcake has a single lit candle on top, making it a special birthday treat. The boy is looking at the cupcake with interest, possibly anticipating his birthday celebration. There are two chairs placed near the table, one on the left side and the other on the right side. Additionally, there is a person sitting on one of the chairs, likely enjoying the birthday celebration with the boy."} +{"image_id": 94536, "caption": "The image features a cat sitting on the sidewalk next to a bicycle. The cat is positioned near the front wheel of the bicycle and appears to be inspecting something on the ground. There are two other cats in the scene, one further away from the bicycle and the other closer to it. All three cats seem to be engrossed in their surroundings, possibly exploring their environment or interacting with each other."} +{"image_id": 422700, "caption": "In the image, a man and a woman are feeding a baby sitting in a high chair. The baby is surrounded by various objects, including a bowl, a cup, a bottle, and a spoon. There are two cups placed near the baby, one on the left side and another on the right side of the high chair. Additionally, there are two bottles in the scene, one on the left side and another on the right side of the high chair. The baby seems to be enjoying the attention and care provided by the adults."} +{"image_id": 60010, "caption": "The image features a young man wearing a purple striped shirt and a black vest. He is posing for the camera, smiling and looking directly at the viewer. In the background, there is a dark blue wall that serves as the backdrop for the photo. The man's hair is styled neatly, and he appears to be well-dressed and confident in his appearance."} +{"image_id": 229150, "caption": "The image depicts a large elephant walking down a city street, accompanied by a man. The elephant is the main focus of the scene, while the man is walking alongside it. There are several cars parked on the side of the street, some closer to the elephant and others further away. In addition to the cars, there are several motorcycles scattered throughout the scene, including one near the elephant's head and another near the man's feet. A few people can be seen in the background, watching the elephant and the man as they make their way down the street."} +{"image_id": 337439, "caption": "In the image, there is a large sculpture of a hand holding a cell phone in an airport lobby. The hand appears to be made of metal, and the cell phone is positioned in the palm of the hand. There are several people walking around the airport lobby, with some of them carrying luggage. One person can be seen further away from the sculpture, while others are closer to it. Additionally, there is a suitcase placed on the ground near the sculpture, likely belonging to one of the travelers passing through the airport. Overall, the scene captures the bustling atmosphere of an airport lobby with people and luggage in motion."} +{"image_id": 476569, "caption": "In the image, a group of three people are skiing together on a snowy slope. There are two adults and one child in the group, all wearing skis and helmets. The adults are positioned closer to the center of the image, while the child is slightly further away from them. The group is spread out across the slope, enjoying the winter activity together."} +{"image_id": 524844, "caption": "The image features a young man performing a skateboarding trick on a railing in a skate park. He is wearing a gray shirt and appears to be enjoying himself while practicing his skills. There are several other skateboards scattered around the scene, indicating that this is a popular spot for skateboarding. In addition to the skateboarder, there are several other people visible in the background, possibly observing or participating in the skateboarding activity."} +{"image_id": 442286, "caption": "The image depicts a harbor with two boats docked near a lighthouse. One of the boats is positioned closer to the lighthouse, while the other is further away. There are several people visible in the scene, with some standing near the boats and others scattered around the harbor area. In addition to the people, there are several handbags scattered throughout the scene, likely belonging to the individuals present. The overall atmosphere is calm and peaceful, with the boats and lighthouse providing a serene backdrop for the people enjoying their time at the harbor."} +{"image_id": 532812, "caption": "The image captures a skateboarder performing an impressive trick at a skate park. He is shirtless and in mid-air while riding his skateboard, showcasing his skills. There are several people watching the skateboarder from different locations around the skate park. Some of them are closer to the action, while others are positioned further away. In total, there are at least 10 people observing the skateboarder's performance."} +{"image_id": 362352, "caption": "The image captures a scene at a train station, where a red and black train is parked on the tracks. There are several people around the train, with some standing near the front of the train and others scattered throughout the scene. One person appears to be working on the train, possibly repairing or maintaining it. In addition to the people, there are several handbags visible in the scene. Some bags are placed on the ground near the train, while others are carried by individuals walking around the area. Overall, the scene depicts a busy train station with people and handbags in various locations."} +{"image_id": 382671, "caption": "The image depicts a group of cows standing on a sandy beach near the water. There are several cows spread out across the beach, with some closer to the water and others further away from it. The cows appear to be grazing or wandering around the beach, enjoying the scenic surroundings. In the background, there is a body of water visible, possibly an ocean or a lake. The sky is partially cloudy, adding to the serene atmosphere of the scene. Overall, the image captures a peaceful moment as the cows enjoy their time on the beach."} +{"image_id": 237626, "caption": "The image features a blue and black motorcycle parked on a trailer in a parking lot. The motorcycle is placed on the back of the trailer, with its front wheels resting on the ground. There are several other vehicles present in the parking lot, including a truck, a car, and another motorcycle. The truck is positioned towards the left side of the image, while the car is located closer to the center. The motorcycle parked on the trailer is the main focus of the scene."} +{"image_id": 283471, "caption": "The image features a dog and a cat sleeping together on a rug in a living room. The dog is lying on the right side of the rug, while the cat is curled up on the left side. Both animals appear to be comfortable and relaxed, enjoying each other's company. In addition to the dog and cat, there are several other items in the room, such as a chair, a cup, and a bottle. The room appears to be well-furnished and inviting, providing a cozy atmosphere for the pets to rest and enjoy their time together."} +{"image_id": 280073, "caption": "The image features a woman riding a brown horse in a grassy field. She is wearing a black riding outfit and appears to be enjoying her time on the horse. There are several trees visible in the background, providing a scenic setting for the equestrian activity. In addition to the horse and rider, there are several other horses scattered throughout the field, some closer to the rider and others further away."} +{"image_id": 527025, "caption": "The image depicts a group of people gathered in front of an open doorway, ready to cut a ribbon to celebrate the opening of a new business or event. There are at least 10 people in the scene, with some standing closer to the doorway and others positioned further away. They are all smiling and seem to be excited about the upcoming event. A potted plant can be seen on the left side of the image, adding a touch of greenery to the scene. Additionally, there is a handbag placed on the right side of the image, likely belonging to one of the people in the group. Overall, the image captures a joyful and festive atmosphere as the group prepares to celebrate the opening of their new business or event."} +{"image_id": 483767, "caption": "The image depicts a silver and orange airplane suspended from a pole in the middle of a clear blue sky. The plane appears to be a replica or a model, as it is not in motion and appears to be stationary. The plane is positioned high up in the sky, giving it a sense of grandeur and height. There are several trees visible in the background, adding to the serene atmosphere of the scene."} +{"image_id": 521259, "caption": "The image depicts a group of people playing frisbee on a dirt field. There are two men standing in the middle of the field, one holding a frisbee in his right hand and the other holding a frisbee in his left hand. They are surrounded by several other people who are either watching or participating in the game. In total, there are ten people visible in the scene, with some closer to the action and others further away. A yellow building can be seen in the background, possibly serving as a backdrop for the frisbee game."} +{"image_id": 104422, "caption": "The image features a man wearing a white shirt, tie, and suspenders. He is standing on a dirt path in front of a house, smiling and posing for the camera. There are several trees visible in the background, providing a natural setting for the man's photo. In addition to the main subject, there are two other people in the scene. One person is located on the left side of the image, while the other person is situated on the right side. Both individuals are positioned further away from the main subject, adding to the overall composition of the image."} +{"image_id": 260896, "caption": "The image features a large black bear sitting on a log, with its mouth open and tongue hanging out. The bear appears to be relaxed and enjoying the sunny day. There are several trees visible in the background, adding to the natural setting of the scene. In addition to the main bear, there are two smaller bears present in the image. One is located closer to the left side of the frame, while the other is positioned further to the right. Both bears appear to be resting comfortably, contributing to the peaceful atmosphere of the scene."} +{"image_id": 193261, "caption": "The image depicts a city street lined with buildings on both sides. There are several cars parked along the side of the road, some closer to the buildings and others further away. A traffic light can be seen in the middle of the street, indicating the flow of traffic. In addition to the cars, there are several people visible in the scene. One person is standing on the sidewalk near the traffic light, while another person is walking on the sidewalk towards the right side of the image."} +{"image_id": 108315, "caption": "The image features a dog lying on a bed, looking up at a book titled \"The Dog Book\". The book is placed on the bed next to the dog's head, and there are several pictures of dogs throughout the book. The dog seems to be interested in the book, possibly eager to learn more about dogs or simply enjoying the presence of the book."} +{"image_id": 56068, "caption": "The image depicts a group of people riding horses on a sandy beach near the ocean. There are four horses in total, with three of them positioned closer to the center of the beach and the fourth one slightly further away. The riders appear to be enjoying their time on the beach, possibly exploring the area or taking a leisurely ride along the shoreline. In the background, there is a large rock formation visible, adding to the serene atmosphere of the scene. Overall, it appears to be a peaceful and enjoyable moment for the horseback riders on the beach."} +{"image_id": 240147, "caption": "In the image, a baseball pitcher is standing on a pitcher's mound, preparing to throw a pitch. The pitcher is wearing a white jersey and pants, and has a baseball glove in his hand. He is positioned at the center of the mound, ready to deliver the ball to the batter. There are several other people visible in the scene, likely spectators or teammates, scattered around the field. Some of them are closer to the pitcher, while others are further away from the action. Overall, the image captures a moment of excitement and anticipation as the pitcher prepares to throw the ball towards the batter."} +{"image_id": 18575, "caption": "The image features a tray filled with a variety of food items, including a sandwich, french fries, pickles, and a tomato. The sandwich is placed on one of the plates, while the fries are spread out across the tray. The pickles and tomato are also present on the tray, adding to the meal's flavor. A knife and fork can be seen on the tray, indicating that the food is meant to be consumed as a meal. Additionally, there are two cups on the tray, likely used for drinks or other beverages."} +{"image_id": 53015, "caption": "In the image, a man and a baby are sitting at a dining table with two pizzas in front of them. The baby is being fed by the man, who appears to be enjoying the meal. There are several bottles placed around the table, including one on the left side, one in the middle, and another on the right side. Additionally, there are two cups on the table, one on the left side and another on the right side. A chair can be seen on the left side of the table, while another chair is positioned on the right side."} +{"image_id": 466118, "caption": "The image showcases a unique bathroom with a bathtub in the center of the room. The bathtub is surrounded by various decorative elements, including an elephant-shaped sculpture on the left side of the tub. There is a sink located on the right side of the bathtub, and a toilet can be seen on the left side of the room. Additionally, there are several bottles scattered throughout the bathroom, likely used for personal hygiene or other purposes. A mirror is placed above the sink, reflecting the overall design of the bathroom."} +{"image_id": 205474, "caption": "The image depicts a vase filled with various flowers, placed on a countertop. The vase contains a mix of pink and yellow flowers, creating a colorful display. The flowers are arranged in a way that makes the vase look like it's overflowing with blooms. The vase is positioned close to the edge of the countertop, allowing the flowers to be visible from all angles. A bottle can also be spotted in the scene, located towards the right side of the image. Overall, the scene showcases a beautiful arrangement of flowers in a vase, adding a touch of color and beauty to the countertop."} +{"image_id": 279138, "caption": "The image depicts two women sitting on the floor in a living room, surrounded by gifts and presents. One of the women is holding a dog, while the other is engrossed in wrapping a gift. There are several potted plants scattered throughout the room, adding a touch of greenery to the scene. In addition to the gifts and presents, there are multiple bottles placed around the room, likely containing drinks or other beverages. A couch can be seen in the background, providing a comfortable seating area for the women to relax and enjoy their time together. Overall, it appears to be a cozy and festive atmosphere, with the women enjoying each other's company while preparing for the holiday season."} +{"image_id": 271138, "caption": "The image features a group of sheep grazing on a lush green grassy field. There are three sheep in the scene, including a larger adult sheep and two smaller lambs. The adult sheep is positioned towards the left side of the image, while the two lambs are located closer to the center of the grassy area. The sheep appear to be enjoying their time in the pasture as they graze and socialize with each other."} +{"image_id": 565148, "caption": "The image depicts a baseball game in progress, with a batter preparing to swing at a pitch. The batter is standing on the field, holding a baseball bat, while the catcher and umpire are positioned behind him. There are several other players scattered around the field, some of them closer to the batter, while others are further away. In addition to the players, there are several spectators watching the game from the stands. Some of the spectators are positioned closer to the action, while others are more distant from the field. Overall, the scene captures the excitement and energy of a professional baseball game in progress."} +{"image_id": 73199, "caption": "The image features a group of six men dressed in black suits and ties, posing for a photo together. They are standing on a grassy field, with some of them positioned closer to the left side of the frame and others closer to the right side. There are two trees visible in the background, one on the left side and another on the right side of the group. The trees add a natural touch to the scene, complementing the formal attire of the men."} +{"image_id": 83915, "caption": "The image features a large, ornate building with a clock tower on top of it. The building is situated in the middle of a lush green lawn, surrounded by trees and other foliage. There are several benches placed around the building, providing seating for people to rest and enjoy the scenic surroundings. In addition to the benches, there are two cars parked near the front of the building. One car is closer to the left side of the building, while the other is positioned closer to the right side. These cars add to the vibrant atmosphere of the area, making it a perfect spot for visitors to relax and take in the beauty of the building and its surroundings."} +{"image_id": 202275, "caption": "In the image, two black dogs are playing together in a grassy field. One dog has a pink frisbee in its mouth, while the other dog is trying to take it from him. There are several cars visible in the background, parked on the side of the road or in the parking lot. The scene appears to be a peaceful and enjoyable moment between the two dogs, as they engage in a friendly game of tug-of-war with the pink frisbee."} +{"image_id": 40102, "caption": "The image features two giraffes standing next to each other in a lush green field. One giraffe is on the left side of the frame, while the other is on the right side. Both giraffes have their necks stretched out towards each other, as if they are greeting or interacting with each other. There are several trees scattered throughout the scene, providing shade and a natural habitat for the giraffes. In addition to the giraffes and trees, there are several bushes visible in the background, adding to the vibrant and lively atmosphere of the scene."} +{"image_id": 317024, "caption": "The image features a lone zebra standing in an enclosed area surrounded by a wooden fence. The zebra is positioned towards the left side of the frame, and its body is partially obscured by the fence. There are several trees visible in the background, providing a natural setting for the zebra. In addition to the main zebra, there are two smaller zebras in the scene, one on the right side and another on the left side of the fence. These smaller zebras are not as prominent as the main zebra, but they add to the overall visual interest of the scene."} +{"image_id": 550597, "caption": "The image features a black and white bathroom with a sink, toilet, and bathtub. The sink is positioned towards the left side of the room, while the toilet is located closer to the center of the space. The bathtub is situated on the right side of the room. There are several towels scattered throughout the bathroom, including one near the sink, another near the toilet, and a third near the bathtub. In addition to the towels, there are two bottles visible in the scene, one on the left side of the room and another on the right side."} +{"image_id": 315923, "caption": "The image features a close-up view of a red and white scooter parked on the side of a street. The scooter has two mirrors mounted on its handlebars, providing a clear view of the surroundings. There is also a potted plant placed near the scooter, adding a touch of greenery to the scene. A person can be seen reflected in one of the scooter's mirrors, further emphasizing the focus on the scooter and its surroundings."} +{"image_id": 322610, "caption": "The image is a black and white photograph of a busy city sidewalk. There are several people walking along the sidewalk, some carrying handbags and others holding umbrellas to protect themselves from the sun or rain. In the foreground, there is a woman sitting on the sidewalk with an umbrella, possibly waiting for someone or taking a break from shopping. Another woman can be seen further down the sidewalk, also carrying an umbrella. Several handbags can be seen scattered throughout the scene, likely belonging to the people walking along the sidewalk. A car can be seen parked on the side of the street, adding to the bustling atmosphere of the city sidewalk."} +{"image_id": 310071, "caption": "In the image, a man dressed in a brown robe is standing under an orange and white umbrella. He is holding the umbrella over his head, shielding himself from the sun. There are several other people visible in the scene, some of them walking on the sidewalks, while others are standing nearby. One person is closer to the man with the umbrella, while others are further away. The setting appears to be outdoors, possibly in a park or courtyard."} +{"image_id": 533550, "caption": "In the image, a young man wearing a green shirt is standing on a tennis court, holding a tennis racket in his hand. He is preparing to hit the ball during a game of tennis. There are several other tennis balls scattered around the court, some closer to the man and others further away. The background features a fence surrounding the tennis court, adding to the overall atmosphere of the scene."} +{"image_id": 211054, "caption": "The image is a black-and-white photograph of a train station with smoke billowing from a factory in the background. The train station is located on the left side of the image, while the factory is situated on the right side. There are several trains visible in the scene, including one in the foreground and others in the background. Some of the trains are closer to the viewer, while others are further away. In total, there are at least six trains present in the image. Additionally, there are several power lines stretching across the scene, connecting the train station and the factory."} +{"image_id": 446637, "caption": "The image depicts a large body of water with several birds perched on logs floating in the water. The logs are arranged in a row, creating a line of birds on the surface of the water. Some of the birds are closer to the left side of the image, while others are positioned towards the right side. In total, there are at least 12 birds visible in the scene. They appear to be enjoying their time on the logs, possibly resting or observing their surroundings."} +{"image_id": 3134, "caption": "The image depicts a city street scene with a large white and green public transit bus driving down the road. The bus is surrounded by several other vehicles, including a red car, a blue car, and a truck. A traffic light can be seen in the distance, indicating that the bus is approaching an intersection. There are also several pedestrians scattered throughout the scene, walking along the sidewalks or crossing the street at various points. In the background, there is a tall building visible, possibly serving as a landmark for the area. Overall, the scene captures a bustling urban environment with various modes of transportation and pedestrian activity."} +{"image_id": 271548, "caption": "The image depicts a room with blue chairs arranged in rows. In the center of the room, there is a tall glass vase filled with water and decorated with white and red flowers. The vase is placed on a pedestal, making it stand out in the room. A candle is also placed inside the vase, adding a touch of warmth and ambiance to the space. There are several chairs scattered throughout the room, with some closer to the vase and others further away. The arrangement of the chairs and the presence of the vase create a cozy and inviting atmosphere in the room."} +{"image_id": 368294, "caption": "The image depicts a woman wearing a pink hat, sitting at a desk and working on a piece of paper with scissors. She is surrounded by various objects on the desk, including a bottle, a cup, a book, and a cell phone. There are also two chairs in the room, one closer to the woman and the other further away. The scene appears to be a workspace where the woman is focused on her task."} +{"image_id": 429142, "caption": "The image features a skateboarder performing a trick on a shoe-shaped sculpture in a park. The skateboarder is in mid-air, jumping over the shoe-shaped sculpture while wearing a black hat. There are several other people present in the scene, some of whom are standing nearby and observing the skateboarder's performance. In addition to the people, there are several bicycles scattered throughout the park. One bicycle can be seen near the skateboarder, while others are positioned further away from the action. A car is also visible in the background, adding to the lively atmosphere of the park. Overall, the scene captures a skateboarder showcasing his skills on a unique and eye-catching sculpture."} +{"image_id": 527906, "caption": "The image features a dining table with a white plate placed on it. On the plate, there is a half-eaten breakfast sandwich, which appears to have been cut in half. The sandwich is accompanied by a cup of coffee, which is positioned close to the plate. There are several other items on the table, including a potted plant, a bowl, and a bottle. Additionally, there are two books placed on the table, one closer to the left side and the other closer to the right side. Overall, the scene depicts a cozy breakfast setting with a delicious sandwich and a refreshing cup of coffee."} +{"image_id": 403975, "caption": "The image features a baby sitting on the floor in front of a birthday cake. The baby is wearing a diaper and appears to be enjoying blowing out the candles on the cake. There are several balloons surrounding the baby and the cake, adding to the festive atmosphere of the birthday celebration. In addition to the baby and the cake, there are several other objects present in the scene, such as a bottle, a bowl, and a cup. The room appears to be well-decorated for the baby's special day."} +{"image_id": 554002, "caption": "The image depicts a group of people standing on a cobblestone street, with a small black dog standing in the middle of the group. There are several people in the scene, with some standing closer to the dog while others are further away. In addition to the people and the dog, there are several potted plants scattered throughout the scene, adding a touch of nature to the urban setting. A handbag can be seen hanging from one of the people's waists, and a bottle is visible on the right side of the image. Overall, the scene captures a casual gathering of people and their furry companion, enjoying each other's company on the cobblestone street."} +{"image_id": 408501, "caption": "The image depicts a blue and yellow freight train traveling down a set of railroad tracks. The train is passing through an urban area, with buildings visible in the background. There are several people scattered throughout the scene, some standing on the sidewalk near the train tracks, and others further away from the train. In addition to the people, there are several cars parked along the street, adding to the bustling atmosphere of the urban setting. Overall, the scene conveys a sense of movement and activity as the train continues its journey through the city."} +{"image_id": 294423, "caption": "The image features two giraffes standing next to each other in a grassy field surrounded by tall trees. One of the giraffes is closer to the viewer, while the other is slightly further away. Both giraffes have their necks stretched upwards towards the sky, possibly reaching for leaves or branches. There are several trees visible in the background, creating a lush and natural environment for the giraffes to inhabit."} +{"image_id": 501439, "caption": "The image features a male tennis player wearing a yellow shirt, holding a tennis racket in his hand. He is standing on a tennis court, likely preparing for a match or practicing his skills. The tennis racket is positioned close to the player's hand, indicating that he is actively using it. In addition to the tennis player, there are several other people visible in the background of the scene. They appear to be spectators watching the tennis match from a distance."} +{"image_id": 320039, "caption": "The image features a young girl sitting at a dining table with a plate of spaghetti in front of her. She is eating the spaghetti with a fork and appears to be thoroughly enjoying her meal. In addition to the plate of spaghetti, there are two cups on the table, one on the left side and the other on the right side. There are also two chairs in the scene, one on the left side and the other on the right side of the table."} +{"image_id": 246512, "caption": "The image features a black dog sitting in a muddy puddle near a fence. The dog appears to be relaxing and enjoying its surroundings, possibly taking a break from playing or exploring the outdoors. There are several trees visible in the background, adding to the natural setting of the scene. The dog is positioned towards the left side of the image, while the fence can be seen on the right side of the frame."} +{"image_id": 322796, "caption": "The image features a cute golden retriever puppy carrying a frisbee in its mouth, running across a grassy field. The puppy is energetic and appears to be enjoying the outdoor activity. The frisbee can be seen clearly in the puppy's mouth, and there are several other frisbees scattered around the scene, possibly left behind by the puppy or other dogs. In addition to the frisbees, there are several trees visible in the background, adding to the natural setting of the scene."} +{"image_id": 447364, "caption": "In the black and white image, a young boy is sitting on a skateboard on a sidewalk. He appears to be practicing his skateboarding skills, possibly preparing for an upcoming skateboarding session. The boy is positioned in the middle of the sidewalk, with his skateboard placed in front of him. There are several other skateboards scattered around the scene, likely belonging to other skateboarders who may be practicing their skills as well."} +{"image_id": 405736, "caption": "The image features a man standing on a snow-covered slope, posing with his skis and poles. He is wearing a black shirt and black pants, and appears to be ready for a skiing adventure. In the background, there are several snow-covered mountains visible, adding to the wintery atmosphere of the scene. The man's skis and poles are positioned in front of him, indicating that he is preparing to go skiing."} +{"image_id": 553867, "caption": "The image depicts a large herd of zebras and giraffes running across a grassy field. The zebras are scattered throughout the field, while the giraffes are more concentrated towards the right side of the image. There are several trees visible in the background, adding to the natural setting of the scene. The zebras and giraffes appear to be interacting with each other as they move across the field."} +{"image_id": 137993, "caption": "The image depicts a bridge over a body of water, with a trolley passing over it. There are several people walking on the bridge, some of them near the middle of the span and others closer to the edge. The trolley can be seen approaching the bridge from the left side of the image. In addition to the people and the trolley, there are two cars visible in the scene. One car is located on the right side of the image, while the other is positioned on the left side. Both cars are parked and seem to be waiting for the trolley to pass by. Overall, the scene captures a bustling urban environment with people and vehicles moving along the bridge and the trolley making its way through the area."} +{"image_id": 393282, "caption": "In the image, there are two giraffes standing in a dirt field. One of the giraffes is closer to the camera, while the other is slightly further away. Both giraffes are facing different directions, with one looking towards the left and the other towards the right. There are several trees scattered throughout the scene, providing shade for the giraffes as they stand in their natural habitat. Additionally, there is a bench located on the right side of the image, possibly used for resting or observing the giraffes."} +{"image_id": 341247, "caption": "The image depicts a basketball game taking place in an indoor arena. There are several players on the court, with some wearing orange jerseys and others wearing white jerseys. The players are actively engaged in the game, moving around the court and exchanging the ball. In addition to the players, there are several spectators watching the game from the sidelines. Some of the spectators are positioned closer to the court, while others are located further away. A referee can also be seen on the court, keeping track of the game's progress. Overall, the scene captures the excitement and energy of a competitive basketball game."} +{"image_id": 531047, "caption": "The image depicts a group of three people, two men and one woman, sitting together on a couch. They are holding glasses of champagne, toasting and enjoying their time together. There are several bottles of wine placed around the room, including one on the coffee table in front of the couch and another on the left side of the image. A bowl can be seen on the right side of the image, possibly filled with snacks or appetizers. The atmosphere appears to be relaxed and festive, as the group is having a good time together."} +{"image_id": 356623, "caption": "The image depicts a group of three motorcyclists riding down a winding road through a mountainous area. The road is surrounded by tall, rocky cliffs on both sides, creating a dramatic and scenic setting. The motorcyclists are wearing helmets and appear to be enjoying the ride, taking in the breathtaking views around them. There are two motorcycles visible in the scene, with one closer to the center of the image and the other slightly off to the right side. In addition to the motorcycles, there are several cars parked along the side of the road, providing additional transportation options for those exploring the area."} +{"image_id": 449302, "caption": "The image is a black and white photograph of a man sitting on a boat, holding an umbrella over his head. He is positioned in the middle of the boat, facing towards the water. There are several other people visible in the scene, some of whom are seated on benches along the sides of the boat. One person is closer to the man with the umbrella, while others are further away. In the background, there is a dock or pier where the boat is moored. The overall atmosphere of the scene is peaceful and relaxing, with the man enjoying a leisurely ride on the boat under the umbrella's shade."} +{"image_id": 206496, "caption": "The image depicts a group of people riding on the backs of two elephants through a lush green forest. There are three people sitting on the elephants, with one person on the left side and two people on the right side of the first elephant. The second elephant also has two people riding on its back, one on the left side and one on the right side. In addition to the riders, there are several other people visible in the scene. One person is standing on the left side of the first elephant, while another person is standing on the right side of the second elephant. A third person can be seen on the left side of the forest, near the first elephant."} +{"image_id": 495088, "caption": "The image depicts a scenic view of a large body of water surrounded by rocks and grass. There are several birds flying in the sky above the water, adding to the serene atmosphere. In the water, there are several small rocks scattered around, creating a picturesque landscape. The water appears to be calm and peaceful, inviting visitors to come and enjoy the tranquil surroundings."} +{"image_id": 54011, "caption": "The image features a red fire hydrant placed in the middle of a lush green lawn, surrounded by trees and bushes. The fire hydrant is positioned close to a house, which can be seen in the background. There are several trees scattered throughout the scene, with some closer to the fire hydrant and others further away. In addition to the trees, there is a bench located near the fire hydrant, providing a place for people to sit and enjoy the scenic surroundings. Overall, the image captures a peaceful and serene atmosphere, with the fire hydrant serving as a focal point amidst the lush greenery."} +{"image_id": 190648, "caption": "The image depicts a small bedroom with a bed in the center of the room. The bed appears to be unmade, with sheets and blankets scattered around it. There is a chair placed near the bed, likely used for relaxation or as a place to sit during the day. A window can be seen on the left side of the room, allowing natural light to enter the space. The walls of the room are wood-paneled, adding to the rustic atmosphere of the room."} +{"image_id": 118034, "caption": "The image features a person holding a cell phone in their hand, with the screen displaying a video of two people. One person is on the left side of the screen, while the other person is on the right side. The video appears to be a conversation between the two individuals. The person holding the phone seems to be engrossed in the video, possibly enjoying the interaction between the two people."} +{"image_id": 409346, "caption": "In the image, two women are standing in front of a buffet table filled with various desserts. One woman is holding a bowl of food, while the other woman has a spoon in her hand. They both appear to be enjoying the delicious treats available at the buffet. There are several cups placed around the table, likely used for serving the desserts. Additionally, there are several bottles scattered throughout the scene, possibly containing drinks or other beverages. The setting appears to be a social gathering or event where people are coming together to share food and enjoy each other's company."} +{"image_id": 138022, "caption": "The image depicts a small red van parked on the side of a street in front of a large building. The van is equipped with a surfboard rack on its roof, indicating that it may be used for transporting surfboards or other water sports equipment. There are several people visible in the scene, some standing near the van and others walking along the sidewalk. One person is closer to the van, while others are further away from it. In addition to the people, there are two cars parked on the street, one closer to the van and the other farther away."} +{"image_id": 217997, "caption": "The image depicts a young man carrying a surfboard as he walks towards the ocean. He is standing in the shallow waters of the beach, with the surfboard held under his arm. There are several other surfboards visible in the scene, scattered around the area near the water's edge. Some of these surfboards are closer to the man, while others are further away. In total, there are at least six surfboards visible in the image."} +{"image_id": 224281, "caption": "The image features a cute teddy bear wearing a pumpkin costume, sitting on top of a black backpack. The teddy bear is positioned in the center of the image, with its pumpkin face prominently displayed. The backpack can be seen in the background, providing a cozy and comfortable environment for the teddy bear to rest on."} +{"image_id": 101647, "caption": "The image features a small bathroom with a sink, toilet, and walk-in shower. The sink is located near the center of the room, while the toilet is positioned closer to the left side. The shower is spacious, taking up a significant portion of the right side of the room. There are several items in the bathroom, including a bottle on the left side, a cup on the right side, and a hand towel hanging on the back wall. Additionally, there is a hair dryer placed on the counter next to the sink. Overall, the bathroom appears to be clean and well-maintained."} +{"image_id": 499940, "caption": "In the image, there are two young boys playing together in a grassy field. One boy is kneeling on the ground, while the other is standing next to him. They appear to be enjoying each other's company as they fly kites together. There are several kites visible in the sky, some closer to the boys and others further away. The field is filled with lush green grass, providing a serene atmosphere for the boys to engage in their kite-flying activities."} +{"image_id": 295728, "caption": "The image depicts a large, ornate clock sitting atop a pedestal in the middle of a room. The clock is surrounded by several people, with some standing closer to the clock and others positioned further away. The clock's hands are visible, indicating that it is currently displaying the time. The room appears to be a public space, possibly a train station or a shopping mall, where the clock serves as a focal point for people to gather and check the time. In addition to the clock, there are several lamps scattered throughout the room, adding to the warm and inviting atmosphere."} +{"image_id": 415393, "caption": "The image features a young man performing a skateboarding trick on a wooden ramp. He is wearing a red shirt and jeans, and his skateboard is positioned near the top of the ramp. There are several other people in the scene, some of whom appear to be watching the skateboarder's performance. In the background, there is a brick wall with graffiti on it, adding to the urban atmosphere of the scene. Overall, the image captures a lively and energetic moment at a skateboarding venue."} +{"image_id": 43433, "caption": "The image features a black and silver motorcycle parked on a sidewalk in front of a house. A small dog is standing on the motorcycle's seat, possibly enjoying the ride or simply accompanying its owner. The motorcycle is positioned close to the edge of the sidewalk, making it easy for the dog to hop on and off as desired. There are several houses visible in the background, adding to the urban setting of the scene."} +{"image_id": 145436, "caption": "The image features a white cutting board with a knife placed on top of it. On the cutting board, there are two halves of an orange and a sliced lemon. Additionally, there is a juicer next to the cutting board, ready to extract the juice from the oranges. There is also a cup nearby, likely containing the freshly squeezed orange juice. The scene suggests that someone is preparing to enjoy a refreshing glass of orange juice."} +{"image_id": 48956, "caption": "The image depicts a giraffe standing in an enclosed area surrounded by a fence. The giraffe appears to be eating leaves from a tree located near the fence. There are several trees scattered throughout the scene, with some closer to the giraffe and others further away. In addition to the giraffe, there are several other animals visible in the background, including a dog, a cat, and another giraffe. These animals seem to be enjoying the shade provided by the trees. Overall, the scene captures a peaceful moment in the giraffe's life as it feeds on its favorite leaves."} +{"image_id": 200725, "caption": "The image depicts a spacious bedroom with a large wooden bed in the center of the room. The bed is adorned with a yellow comforter and pillows, creating a cozy and inviting atmosphere. There are several pillows placed on the bed, including one at the foot of the bed and another near the head of the bed. A cupboard can be seen on the left side of the room, providing additional storage space. Additionally, there is a potted plant located on the right side of the room, adding a touch of nature to the room's decor. Overall, the bedroom appears to be well-appointed and inviting."} +{"image_id": 352206, "caption": "The image is a black and white photograph of a large group of young men and boys dressed in suits and ties. They are posing for a group photo, with many of them sitting on the ground or standing next to each other. Some of the individuals are positioned closer to the camera, while others are further away. There are also several chairs visible in the background, possibly used by the people in the photo. Overall, the image captures a significant gathering of young men and boys in a formal setting."} +{"image_id": 528318, "caption": "The image depicts a cozy living room filled with various furniture and decorations. There is a couch placed in the center of the room, surrounded by chairs and a coffee table. A potted plant can be seen on the left side of the room, adding a touch of greenery to the space. In addition to the furniture, there are several bottles scattered throughout the room. One bottle is positioned on the right side of the room, while another can be found on the left side, closer to the potted plant. Two more bottles are located near the center of the room, close to the couch and coffee table. There are also two pots in the room, one on the left side and another on the right side. Overall, the living room exudes a warm and inviting atmosphere, perfect for relaxing and spending time with friends or family."} +{"image_id": 89999, "caption": "The image depicts a narrow alley lined with tall buildings on both sides. A car is parked in the middle of the alley, and there are several bicycles scattered throughout the scene. Some of the bicycles are closer to the car, while others are positioned further down the alley. In addition to the bicycles, there are several potted plants placed around the area, adding a touch of greenery to the urban setting."} +{"image_id": 192651, "caption": "The image depicts a spacious living room filled with furniture and decorations. There are two couches, one on the left side of the room and the other on the right side. A coffee table is placed in the center of the room, between the two couches. A television is positioned on the left side of the room, close to the first couch. A potted plant can be seen on the right side of the room, near the second couch. Additionally, there is a potted plant on the left side of the room, closer to the first couch. In the background, a fireplace can be seen, adding warmth and ambiance to the room."} +{"image_id": 254161, "caption": "The image depicts a bustling city square filled with people enjoying the sunny day. A woman is standing in the middle of the square, flying a kite high up in the air. She is surrounded by several other people, some of whom are also flying kites or looking up at the kite in the sky. In addition to the people and kites, there are several cars parked around the square. One car is located towards the left side of the image, while another is situated closer to the center of the square. There are also several handbags scattered throughout the scene, likely belonging to the people enjoying the outdoor activity."} +{"image_id": 581827, "caption": "The image depicts a young woman standing in front of a brick wall, holding a tennis racket. She appears to be preparing to hit a tennis ball with the racket. There are two tennis balls visible in the scene, one close to the woman and another further away from her. In addition to the tennis balls, there are several other objects scattered throughout the scene. A backpack can be seen on the left side of the image, while a handbag is located on the right side. There is also a bicycle in the background, likely belonging to the woman or someone else in the area."} +{"image_id": 337987, "caption": "The image features a colorful bird perched on a branch of a tree, surrounded by lush green foliage. The bird is sitting on the branch with its head tilted upwards, seemingly admiring its surroundings. There are several trees visible in the background, providing a serene and natural setting for the bird to rest and enjoy its surroundings. In addition to the main bird, there are several smaller birds scattered throughout the scene, adding to the vibrant and lively atmosphere."} +{"image_id": 90631, "caption": "In the image, a colorful fighter jet is flying through the sky, leaving a trail of smoke behind it. The jet appears to be performing some sort of aerial maneuver, possibly as part of an air show or demonstration. The plane is positioned in the middle of the sky, with a clear blue background behind it. There are several people visible in the scene, likely spectators watching the fighter jet's performance. Some of them are located on the left side of the image, while others can be found on the right side."} +{"image_id": 240775, "caption": "The image depicts a large yellow double-decker bus driving down a city street. The bus is parked on the side of the road, likely waiting for passengers to board or disembark. There are several cars parked along the street, some closer to the bus and others further away. In addition to the cars, there are several people visible in the scene. One person is standing on the sidewalk near the bus, while others are scattered throughout the scene, possibly waiting for the bus or walking along the street. Overall, the image captures a bustling urban environment with a mix of vehicles and pedestrians."} +{"image_id": 100909, "caption": "The image captures a baseball game in progress, with a batter swinging his bat at a pitch. The batter is wearing a colorful jersey, and the catcher is positioned behind him, ready to catch the ball. There are several other players on the field, some of whom are actively participating in the game, while others appear to be waiting for their turn to bat or field the ball. In addition to the players, there are several chairs scattered around the field, possibly belonging to spectators or members of the team's staff. Overall, the scene depicts a lively and engaging baseball game in progress."} +{"image_id": 324436, "caption": "The image features a large elephant standing in a lush green field surrounded by bushes. The elephant's trunk is extended towards the bushes, possibly searching for food or exploring its surroundings. The elephant's body is positioned towards the left side of the image, with its trunk reaching towards the bushes on the right side. There are several smaller bushes scattered throughout the scene, adding to the natural setting."} +{"image_id": 9466, "caption": "The image features a white and brown cat sitting on the floor next to a pile of shoes. There are several pairs of shoes scattered around the room, including sandals, flip-flops, and slippers. The cat seems to be enjoying the company of the shoes, possibly playing with them or simply lounging in their presence."} +{"image_id": 380932, "caption": "The image features a snowy landscape with a red fire hydrant standing in the middle of the field. The fire hydrant is surrounded by trees and bushes, creating a serene and peaceful atmosphere. In the background, there is a large body of water, possibly a lake or a river, stretching out towards the horizon. The fire hydrant serves as a focal point for the scene, capturing the viewer's attention with its vibrant color amidst the snowy surroundings."} +{"image_id": 540180, "caption": "The image depicts a city street at dusk, with a green traffic light mounted on a pole in the middle of the road. There are several cars parked along the side of the street, some closer to the traffic light and others further away. A person can be seen standing near one of the parked cars, possibly waiting for the traffic light to turn green before crossing the street. In addition to the cars, there are several handbags scattered throughout the scene, likely belonging to the pedestrians or occupants of the parked vehicles."} +{"image_id": 303652, "caption": "The image features a wooden dining table with two plates of food placed on it. One plate contains a piece of cake, while the other has a sandwich with vegetables and sauce. The sandwich appears to be quite large, taking up a significant portion of the plate. The cake is smaller in size compared to the sandwich, but still visible on the plate. There are several utensils scattered around the table, including forks, knives, and spoons, suggesting that the table is set for a meal. In the background, there is a person sitting at the table, possibly enjoying the food."} +{"image_id": 416326, "caption": "The image features a blue crate filled with various fruits and vegetables, including broccoli, apples, and oranges. The crate is placed on a table in a grocery store, showcasing a variety of fresh produce for customers to choose from. There are several apples scattered around the crate, some closer to the top and others closer to the bottom. The broccoli and cauliflower appear to be the main focus of the crate, as they take up a significant portion of the space within it. The oranges are also prominently displayed, with some located closer to the top of the crate and others closer to the bottom. Overall, the scene showcases a bountiful selection of fresh fruits and vegetables available for purchase at the grocery store."} +{"image_id": 511662, "caption": "The image depicts a large cruise ship docked in the ocean near a sandy beach. The ship is surrounded by several colorful sailboats, creating a vibrant and lively scene. There are multiple palm trees scattered across the beach, adding to the tropical atmosphere. On the beach, there are several people enjoying the sunny day, either relaxing or engaging in various activities. In the background, there is a city skyline visible, providing a glimpse of civilization. Overall, the scene captures the essence of a fun-filled day at the beach, with the cruise ship and colorful sailboats adding to the festive atmosphere."} +{"image_id": 252137, "caption": "The image features a variety of fresh vegetables, including carrots, onions, and celery, placed on a black countertop. The vegetables are arranged in a pile, with the carrots taking up most of the space, followed by the onions and celery. Some of the vegetables are closer to the edge of the countertop, while others are positioned in the middle of the pile. The arrangement of the vegetables creates a visually appealing display, showcasing the freshness and variety of the ingredients."} +{"image_id": 502240, "caption": "The image depicts a group of children and adults gathered around a dog in a classroom setting. The dog is sitting in the middle of the group, surrounded by several children who are interacting with it. Some of the children are sitting on chairs, while others are standing around the dog. There are several books scattered around the room, some placed on the floor and others held by the children or adults. A chair can be seen in the background, possibly belonging to one of the adults in the group. The atmosphere appears to be relaxed and enjoyable, as everyone seems to be engaging with the dog and enjoying each other's company."} +{"image_id": 327665, "caption": "In the image, a woman is standing next to a stop sign on a street. She is wearing a red hat and a white shirt, and appears to be posing for a photo. There are several palm trees visible in the background, adding to the tropical atmosphere of the scene. In addition to the woman and the stop sign, there are several other objects present in the scene. A potted plant can be seen on the left side of the image, while another potted plant is located on the right side. There are also two benches in the scene, one on the left side and another on the right side. The bench on the left is closer to the woman, while the one on the right is further away."} +{"image_id": 480408, "caption": "The image features a man wearing a cowboy hat sitting on the back of a brown horse in a dirt field. He is smiling and appears to be enjoying his time on the horse. In the background, there are two cars parked on the side of the field. One car is closer to the man on the horse, while the other is further away. A truck can also be seen in the scene, positioned closer to the left side of the image. Additionally, there are two sheep in the field, one near the man on the horse and the other closer to the right side of the image. Overall, the scene depicts a man enjoying a leisurely ride on a horse, surrounded by various vehicles and animals in a rural setting."} +{"image_id": 279499, "caption": "The image features a parking lot with several buses parked next to each other. There are two main buses, one on the left side and another on the right side of the scene. Additionally, there are several smaller buses scattered throughout the parking lot, some closer to the main buses and others further away. A person can be seen standing near one of the buses, possibly waiting for transportation or observing the various buses in the parking lot."} +{"image_id": 274792, "caption": "The image features a mixing bowl filled with a mixture of carrots, potatoes, and possibly other ingredients. The bowl is placed on top of a kitchen counter, surrounded by various utensils such as knives, spoons, and forks. There are two knives placed close to the bowl, one on the left side and the other on the right side. Additionally, there are several spoons scattered around the bowl, some closer to the center and others near the edges."} +{"image_id": 359781, "caption": "The image features a giraffe standing in a lush green field surrounded by trees. The giraffe is the main focus of the scene, with its long neck stretching out towards the right side of the image. There are several trees visible in the background, providing a serene and natural setting for the giraffe to roam. In addition to the giraffe, there are several smaller trees scattered throughout the scene, adding to the lushness of the environment."} +{"image_id": 76416, "caption": "The image depicts a large double-decker bus parked on a sidewalk in front of a building. The bus is covered with an advertisement for Apple's iPod, making it a unique and eye-catching sight. There are several people visible in the scene, some standing near the bus and others walking along the sidewalk. In addition to the people, there are several handbags scattered throughout the scene, likely belonging to the pedestrians passing by."} +{"image_id": 281591, "caption": "In the image, there are two small dogs lying on a bed together. One dog is positioned closer to the left side of the bed, while the other dog is closer to the right side. Both dogs appear to be relaxing and enjoying their time on the bed. The bed is covered with a white blanket, providing a cozy and comfortable environment for the dogs to rest. There is also a handbag placed on the bed, possibly belonging to one of the dogs' owners."} +{"image_id": 476709, "caption": "The image features a woman standing on a surfboard in the middle of a body of water. She is holding a paddle and appears to be paddling through the water, possibly enjoying a leisurely activity. In the background, there is a rocky shoreline with various boulders scattered throughout the area. The woman's surfboard is positioned towards the right side of the image, closer to the rocky shoreline."} +{"image_id": 357219, "caption": "The image depicts a group of brown bears climbing up a fallen tree trunk in an enclosed area. There are three bears visible in the scene, with one bear standing on top of the tree trunk and two others following closely behind. The bears seem to be exploring their surroundings and enjoying their time in the enclosure. In addition to the bears, there are several people present in the scene. Two people can be seen on the left side of the image, while another person is located on the right side. These individuals appear to be observing the bears from a safe distance."} +{"image_id": 479586, "caption": "The image depicts a black and white cat sitting on a shelf in front of a television. The cat appears to be watching something on the screen, possibly a movie or a TV show. There are several books scattered around the room, including one near the cat's position on the shelf. Additionally, there are two televisions visible in the scene, one on the shelf and another on the floor. The room appears to be well-furnished, with a bookshelf, a couch, and a coffee table. The overall atmosphere is cozy and relaxed, with the cat seemingly enjoying its time in front of the TV."} +{"image_id": 272673, "caption": "The image showcases a well-appointed bathroom with a marble countertop and a large mirror above it. There are two towels hanging on the wall, one on the left side of the mirror and the other on the right side. In addition to the towels, there are several hand towels placed around the bathroom, including one near the sink and another on the right side of the mirror. The bathroom also features a wooden bench, which can be seen on the left side of the mirror. A window is visible in the background, adding a touch of natural light to the space. Overall, the bathroom appears to be clean and well-maintained, providing a comfortable and inviting atmosphere for its users."} +{"image_id": 522452, "caption": "The image depicts a large Singapore Airlines airplane parked on an airport tarmac. The plane is visible through a window of a nearby building, giving the viewer a glimpse into the airport's operations. There are several people visible in the scene, some standing near the airplane and others walking along the tarmac. A truck can be seen parked near the airplane, possibly involved in loading or unloading luggage or cargo. Additionally, there is a car parked further away from the airplane, likely belonging to someone who has arrived at the airport to pick up or drop off a passenger. Overall, the scene captures the bustling activity of an airport, with people and vehicles moving around as the airplane prepares for its next flight."} +{"image_id": 512785, "caption": "The image depicts a beautiful beach scene with two lawn chairs placed under an umbrella on the sand. The umbrella provides shade and protection from the sun, while the chairs offer a comfortable spot to relax and enjoy the view of the ocean. The chairs are positioned close to each other, creating a cozy and inviting atmosphere for beachgoers. In addition to the chairs and umbrella, there are several people visible in the scene, likely enjoying their time at the beach."} +{"image_id": 369153, "caption": "The image depicts a man standing on a sandy beach, carrying a surfboard under his arm. He appears to be walking towards the water, possibly preparing for a surfing session. The surfboard is positioned close to the man's right side, and there are several other surfboards scattered around the area, suggesting that there may be other surfers in the vicinity. In addition to the surfboards, there are two people visible in the scene, one near the left side of the image and the other near the right side."} +{"image_id": 470932, "caption": "The image depicts a large elephant standing on a wooden platform, surrounded by people. The elephant is adorned with various decorations, including a necklace and flowers. There are several people standing around the elephant, admiring it and taking pictures. Some of them are closer to the elephant, while others are positioned further away. Additionally, there are two bells hanging from the elephant's trunk, adding to its festive appearance."} +{"image_id": 388100, "caption": "The image depicts a bustling city street with a yellow truck parked on the side of the road. There is a crowd of people gathered around the truck, likely waiting for it to make its delivery. Some of the people are standing closer to the truck, while others are positioned further away. In addition to the people, there are several handbags scattered throughout the scene. A clock can be seen in the background, possibly indicating the time of day. Overall, the scene captures a busy urban setting with people and vehicles coming and going, creating a lively atmosphere."} +{"image_id": 208808, "caption": "In the image, a young boy is performing a skateboarding trick, jumping high into the air while riding his skateboard. He is wearing a shirt and jeans, and the skateboard he is riding is visible in the foreground of the scene. There are several other skateboards scattered around the area, some closer to the boy and others further away. A car is parked in the background, possibly belonging to the boy's family or friends. Overall, the image captures a fun and energetic moment as the boy performs an impressive skateboarding stunt."} +{"image_id": 225518, "caption": "The image features a spacious bedroom with a large bed in the center of the room. The bed is adorned with multiple white pillows, creating a cozy and inviting atmosphere. A television is mounted on the wall above the bed, providing entertainment for the room's occupants. In addition to the bed and television, there are several chairs placed throughout the room. Two of these chairs can be found near the bed, while another one is positioned closer to the left side of the room. There are also two potted plants in the room, one on the left side and another on the right side, adding a touch of greenery to the space. Overall, the bedroom appears to be well-appointed and inviting, perfect for relaxation and enjoyment."} +{"image_id": 380993, "caption": "The image is a black and white photograph of a busy city street on a rainy day. There are several pedestrians walking along the sidewalk, some carrying umbrellas to protect themselves from the rain. In the scene, there are two cars parked on the side of the street, one closer to the left side and the other closer to the right side. Additionally, there are several handbags scattered throughout the scene, likely belonging to some of the pedestrians."} +{"image_id": 407821, "caption": "The image depicts a serene scene of a sunset over a body of water, with a small boat floating in the middle of the lake. The boat appears to be anchored in the middle of the lake, surrounded by calm waters. The sun is setting in the background, casting a warm and peaceful glow over the scene. There are several trees visible in the background, adding to the natural beauty of the setting."} +{"image_id": 89121, "caption": "The image features two giraffes standing next to each other in a rocky environment. One of the giraffes is closer to the camera, while the other is positioned slightly further away. Both giraffes have their necks stretched out towards the camera, making for an engaging and captivating scene. In addition to the two giraffes, there are several rocks visible in the background, adding to the natural setting."} +{"image_id": 193480, "caption": "The image depicts a tennis match taking place on a large outdoor stadium court. There are several people in the stands watching the match, with some seated closer to the action and others further away. In addition to the spectators, there are two tennis players on the court, one holding a racket and the other preparing to serve. The court is well-maintained and appears to be in good condition for the match. The overall atmosphere of the scene is lively and engaging, capturing the excitement of a professional tennis match."} +{"image_id": 248616, "caption": "The image depicts a man playing tennis on a grassy field. He is wearing a white shirt and tan pants, and he is holding a tennis racket in his right hand. There are two tennis balls visible in the scene, one near the man's left foot and another close to his right knee. The man is actively engaged in the game, lunging forward to hit the ball with his racket. In addition to the man and the tennis balls, there are several chairs scattered around the field, possibly belonging to spectators or other players. A car can also be seen parked in the background, adding to the outdoor atmosphere of the scene."} +{"image_id": 346863, "caption": "The image depicts a man sitting at a dining table, enjoying a glass of wine. He is wearing a blue shirt and appears to be savoring his drink. There are two wine glasses placed on the table, one closer to the man and the other slightly further away. In addition to the wine glasses, there are several bottles of wine scattered around the room. One bottle is located near the man's left side, while another is positioned closer to the right side of the room. A chair can be seen next to the man, providing additional seating for the dining experience. There is also a backpack visible in the scene, possibly belonging to the man or someone else in the room."} +{"image_id": 402723, "caption": "The image features a skateboarder performing a trick on a metal railing in a skate park. The skateboarder is wearing a white shirt and appears to be enjoying the activity. There are several other people in the scene, some of them watching the skateboarder's performance, while others seem to be engrossed in their own activities. In total, there are at least six people visible in the scene, with some of them closer to the skateboarder and others positioned further away."} +{"image_id": 42667, "caption": "The image features a young girl wearing a green shirt sitting inside a black suitcase. She appears to be enjoying her time in the suitcase, possibly playing or exploring its contents. The suitcase is placed on the floor, and the girl is positioned towards the center of the image. In addition to the girl, there are two other people visible in the scene. One person is located on the left side of the image, while the other person is situated on the right side. Both individuals are further away from the main focus of the girl in the suitcase."} +{"image_id": 38083, "caption": "The image features a table filled with a variety of fresh fruits and vegetables, including strawberries, carrots, radishes, and potatoes. There are multiple baskets placed on the table, each containing different types of produce. Some of the baskets are positioned closer to the edge of the table, while others are more centrally located. In addition to the baskets, there are several individual fruits and vegetables scattered across the table, such as strawberries, carrots, radishes, and potatoes."} +{"image_id": 448410, "caption": "The image depicts a busy train station, with two trains parked next to each other on the tracks. The first train has a yellow and white color scheme, while the second train has a blue and white color scheme. There are several people scattered throughout the scene, some standing near the trains and others walking along the platform. In addition to the people, there are several handbags visible in the scene, likely belonging to the passengers waiting for their trains. Some of the handbags are closer to the trains, while others are further away from the tracks. Overall, the scene captures the bustling activity of a busy train station."} +{"image_id": 83935, "caption": "The image depicts a busy city street filled with pedestrians, cars, and motorcycles. There are several motorcycles parked on the side of the road, including a blue one in the middle of the scene. A police officer is standing next to one of the motorcycles, possibly directing traffic or keeping an eye on the area. In addition to the motorcycles, there are several cars parked along the street, some closer to the center of the scene and others positioned further away. There are also several people walking around the area, some of whom are carrying handbags or backpacks. Overall, the scene captures the hustle and bustle of a busy city street."} +{"image_id": 378970, "caption": "The image captures a baseball game in progress, with a batter preparing to swing at a pitched ball. The batter is wearing a number 9 jersey and is positioned near home plate. There are several other players on the field, including a catcher and an umpire. The catcher is located towards the left side of the image, while the umpire is situated closer to the center of the field. In addition to these players, there are several other individuals scattered around the field, possibly spectators or teammates."} +{"image_id": 209868, "caption": "The image features a young girl brushing her teeth with a red toothbrush. She is smiling and appears to be enjoying the process of taking care of her teeth. The toothbrush is positioned close to her mouth, allowing her to effectively brush her teeth. In addition to the toothbrush, there are two cups in the scene. One cup is located on the left side of the image, while the other cup is situated on the right side. These cups may serve as a reminder for the girl to stay hydrated while brushing her teeth."} +{"image_id": 157109, "caption": "The image depicts a person parasailing in the ocean. The person is wearing a wetsuit and holding onto a parasail, which is being pulled by a boat in the distance. The parasail appears to be quite large, as it covers a significant portion of the sky. The person is enjoying the thrill of parasailing in the ocean, surrounded by clear blue water. There are several boats visible in the scene, with some closer to the parasailer and others further away."} +{"image_id": 208347, "caption": "The image depicts a group of people gathered in a spacious room, playing a video game on a flat-screen television. A man and a woman are actively engaged in the game, each holding a Wii remote in their hands. There are several chairs scattered around the room, providing comfortable seating for the players. In addition to the chairs, there are two tables in the scene. One table is located near the left side of the room, while the other is situated closer to the center of the area. A car can be seen parked in the background, possibly belonging to one of the attendees. Overall, it appears to be a fun and engaging gaming experience for everyone involved."} +{"image_id": 232544, "caption": "The image depicts a group of young people playing a game of frisbee in a park. They are scattered across the grassy field, with some of them actively participating in the game and others watching from the sidelines. There are several frisbees visible in the scene, likely used by the players during the game. In addition to the frisbees, there are several backpacks scattered around the field, possibly belonging to the players or spectators. A few benches can be seen in the background, providing seating for those who want to take a break from the game. Overall, it appears to be a lively and enjoyable outdoor activity for the group."} diff --git a/OPERA/log/chair_eval_results/instructblip/greedy.jsonl b/OPERA/log/chair_eval_results/instructblip/greedy.jsonl new file mode 100644 index 0000000000000000000000000000000000000000..06874984c6faeabcded5d2ddad5bae5ad9d58086 --- /dev/null +++ b/OPERA/log/chair_eval_results/instructblip/greedy.jsonl @@ -0,0 +1,500 @@ +{"image_id": 415672, "caption": "The image depicts a busy street scene with several motorcycles parked along the sidewalk. There are at least six people sitting on or near these bikes, enjoying their time together in an outdoor setting surrounded by buildings and trees nearby. In addition to those seated around them, there is another person standing further down towards one end of this area where they can be seen interacting among themselves while taking advantage of being outside during pleasant weather conditions. A few cars also appear within view as part of traffic passing through that day's commute."} +{"image_id": 177207, "caption": "The image features three people standing on a snowy slope, with two of them wearing skis and the third person holding ski poles. They are all gathered together in one spot while enjoying their time outdoors during wintertime activities such as cross-country or downhill skiing. There is another man visible further away from this group who appears to be watching over his own equipment nearby but not actively participating at that moment"} +{"image_id": 428254, "caption": "The image features a man wearing white and blue attire, standing on an outdoor tennis court. He is holding his racket in preparation to hit the ball as it approaches him from across the net towards another player who appears further away at left side of frame near center-right corner. There are several other people visible around this scene: one person stands close by with their back facing camera while others can be seen scattered throughout different parts of field or courtside area behind them."} +{"image_id": 165419, "caption": "The image features a man on the beach jumping up to catch an incoming frisbee. He is wearing shorts and appears focused, ready for action as he leaps into mid-air towards his target in front of him \u2013 likely another person or object nearby that could be used during playtime at this seaside location. In addition to these elements, there are several people scattered throughout various parts around them: one individual nearer left side; two more individuals further right from each other closer together but not touching their respective sides with no clear distance between themselves; three others positioned slightly farther away along different sections across both ends - including those closest (left) end where they appear close by while still maintainning some space apartmentally speaking among all four figures present here overall..."} +{"image_id": 282942, "caption": "The image features a woman standing in front of an open dining room table, holding what appears to be either scissors or tongs. She is preparing for the celebration by cutting into one large cake on top right corner and another smaller white-colored dessert located near her left hand side atop some plates placed around it. There are several bowls scattered across different parts of the scene: two close together towards upper center area; three more further down along with cups nearby them (one cup closer); four additional ones spread out throughout various positions within reachable distance from each other's vicinity \u2013 including those next to chairs situated against walls as well as others positioned between tables. A chair can also been seen slightly off camera toward lower middle part where someone might sit during their meal time later after enjoying all these delicious treats prepared so carefully!"} +{"image_id": 518701, "caption": "The image features a bedroom with an unmade double-sized wooden frame and metal headboard. There is also another smaller single sided wood slat on the wall, which adds to its rustic charm in this cozy space shared by two people or more likely one person living alone who likes minimalism but still wants some warmth from their room's decorations like hanging blankets above them while they sleep at night time underneath it as well! A closet can be seen nearer towards left side of the scene containing various items such as clothes hung up neatly inside for easy access when needed during daytime hours later after waking up early morning before work/school starts again next weekday ahead; there are multiple shirts visible within that area too."} +{"image_id": 302206, "caption": "The image features a group of people riding horses down the road, leading several cows behind them. There are two riders on horseback in front and more cowboys following closely afterward with their cattle herd trailing along as well. Some individuals can be seen walking alongside or nearby to help guide these animals through traffic safely while others stand further back from this scene observing it all happen around them."} +{"image_id": 418219, "caption": "The image features a man wearing red shorts walking along the sidewalk next to an empty park bench. He is surrounded by several cars, including two in front of him and one behind his backside on either end near each other at different distances from their respective sides. There are also multiple traffic lights visible throughout this scene as well \u2013 some closer together than others towards both ends of the street where they can be seen more prominently against various background elements such trees or buildings nearby them."} +{"image_id": 100438, "caption": "The image features a man sitting at an elegant dining table, wearing glasses and smiling. He is dressed in formal attire with his tie perfectly knotted around the collar of his shirt. There are several chairs surrounding him on either side or behind where he's seated to provide additional comfort during their meal together. A plate filled with food can be seen placed before this gentleman who appears ready for dinner time enjoyment alongside others possibly present as well but not visible within frame due to camera angle limitations"} +{"image_id": 409944, "caption": "The image features a poster of an angry tennis player, with his mouth open and eyes closed. He is holding onto the handlebar part of what appears to be either racket or racquet in hand on top of it as if he's ready for action during playtime at court. There are several graffiti tags scattered around this scene: one near him towards left side; another close by but slightly further away from center right corner area where there seems like some kind of advertisement board displaying information about something related possibly involving sports events happening nearby that day/weekend?"} +{"image_id": 237618, "caption": "The image features two men riding horses along a beach near the water. They are walking side by side, with one horse in front and another following closely behind them on their left-hand sides of both riders' backsides respectively. There is also an additional person standing off to the right edge of the scene who appears not involved directly but still present nearby as part of this group activity at sunset time next to calm waterside scenery."} +{"image_id": 221183, "caption": "The image features a train traveling down the tracks, passing through an industrial area. There are several people scattered throughout this scene: one person is standing on top of some railroad ties near where they might be waiting for or watching trains pass by; another individual can also been seen in front and to their left side along with two more individuals further away from each other towards right-center part of viewpoint. A few cars appear parked nearby as well - three vehicles position themselves at different distances behind them while there's yet another car located closer upfront next to the railway track itself."} +{"image_id": 418548, "caption": "The image features a man wearing an apron and holding up two boxes of donuts. One box contains six doughnuts, while the other has four more in it for him to share with others or enjoy himself later on his own time at workplace desk area 1 is located towards left side corner near another person's chair (possibly belonging to someone else). There are also several chairs scattered around this office space - one close by next to where he sits; three further away from each other along walls behind them; as well as some additional ones placed closer together against wall paneling that runs across partway down its length. A laptop can be seen rested upon top right edge portion of table surface nearby these seating arrangements \u2013 possibly used during breaks between working hours when enjoying treats like those delicious looking glazed pastries!"} +{"image_id": 358252, "caption": "The image features a small kitchen with white appliances, including an oven and sink. There are several items scattered throughout the room: two bottles can be seen on top of one another near each other in close proximity to both sides; there is also at least three cups placed around different parts within reach from either side or closer towards center area where they appear more concentrated together for easy accessibility during cooking preparation tasks such as pouring liquids into them while working alongside food ingredients nearby. A broom rests against part of wall behind some cupboards that line up along it horizontally across most half portion visible here."} +{"image_id": 113397, "caption": "The image features a man sitting in front of an open bookshelf, holding and playing with the Nintendo Wii remote. He is wearing glasses while engaging himself into gaming on his console located near him atop another chair or couch behind it. There are several books placed around this area as well - some closer to each other than others \u2013 providing additional decoration for their shelves above them. A cup can be seen nearby next to one side's edge within reach from both hands during gameplay sessions"} +{"image_id": 251874, "caption": "The image features a group of people enjoying the beach, with several individuals standing in shallow water. A man and woman are interacting near each other while others can be seen further away from them on both sides or behind their backs. There is also another person visible towards one side who appears to have left his surfboard nearby as he engages himself into conversation by walking closer toward two women at sea level next to him. In total there may be upwards 10-25 participants involved here \u2013 some close together for socializing during this outdoor activity scene."} +{"image_id": 223093, "caption": "The image features a tall brick building with an impressive clock tower. It stands out against the blue sky, which is partially obscured by clouds in some areas of this scene. There are several trees visible throughout the area surrounding and near to the church or institutional structure that dominates most part of it's height on both sides as well at its top section where there seems be more people standing around admiring their surroundings while also taking pictures underneath one tree located towards left side corner from center point perspective.."} +{"image_id": 57306, "caption": "The image features a young man sitting on the side of an outdoor walkway, leaning against one or more poles. He is holding his cell phone to talk while rested in this position near some benches and other people walking by him along both sides of the pathways nearby. There are several handbags scattered around as well \u2013 two close together at either end of where he's seated with another bag further away from them towards their left-hand corner. A few backpackers can be seen standing behind each person who appears engaged in conversations among themselves throughout various parts of the scene."} +{"image_id": 409099, "caption": "The image features a table with various items placed on it, including an angel food cake sitting in the center. There are several bowls and cups around this area as well: one cup is located near to left side of the scene while another can be found closer towards right-center part; there's also two more smaller ones further down from these larger vessels at different positions along their sides or bottom parts respectively. A large wooden spoon resting against some fruit adds additional visual interest beside other objects like plates filled either partially (one plate) or completely full (two others). In addition, bananas occupy most space across both ends of the dining room setting \u2013 they appear close together but not overlapping each other too much for easy identification by viewers."} +{"image_id": 187776, "caption": "The image features a group of people gathered in an event space, standing around and socializing. There are several men present at the gathering with some holding drinks or food items while others engage each other conversationally on their own terms. In addition to these individuals enjoying themselves during this occasion, there is also furniture visible throughout - two chairs can be seen placed near one another towards left side corner as well as three tables scattered across different parts within reachable distance from most guests' positions. A few bottles appear among them for refreshments purposes too."} +{"image_id": 398905, "caption": "The image features a man with long hair and beard, standing in front of an electronic keyboard. He is wearing denim jacket or shirt as well. There are two microphones placed on the stage near him: one closer to his left side while another further away from it towards right-center area behind them both. A monitor can also been seen atop some equipment nearby for displaying information during performances possibly related to music production software like Pro Tools 12 HD Native DAW Software Suite by Avid Technology Inc.."} +{"image_id": 146676, "caption": "The image features a man wearing sunglasses and standing on top of snow-covered ground, riding his skateboard. He is positioning himself for the perfect shot while smiling at someone off to one side in another part of the scene or possibly taking selfies with others nearby who are also enjoying their time outdoors during wintertime activities like skiers passing by him as well. There's an additional person visible further away from this main figure towards left edge of the picture frame; they appear engaged in some sort of activity but not directly related to what our focus character has been doing so far within that area captured herein."} +{"image_id": 163289, "caption": "The image features a man in his 50s or older, wearing glasses and adjusting the tie on another person's neck. This other individual is likely younger than him but still within their age range of around twenty-five to forty years old (the exact ages are not specified). Both men appear focused as they prepare themselves for an event that may be taking place nearby at school or workplace restrooms with multiple sinks available near them."} +{"image_id": 466752, "caption": "The image features a young child lying on their back in bed, with the head of another small person visible next to them. There are two beds present: one is occupied by this little girl and her companion lies close beside it near its foot area. In addition to these people sleeping together underneath blankets or sheets spread out over both cribs/bed frames, there're several other objects scattered around such as books placed at different locations across various parts of each frame \u2013 some closer towards top corners while others appear further down along sides. A cup can be seen rested against an edge nearby too"} +{"image_id": 485090, "caption": "In the image, a man is coaching and helping an adorable little boy swing at baseballs in front of him. The child wears red pants while holding his bat with both hands on top to hit one or more balls that are scattered around them within reach for practice purposes during their training session together as teammates. There're several chairs placed throughout different areas near where they stand - some closer than others \u2013 suggesting there may be other people watching from afar who could also participate if needed."} +{"image_id": 470121, "caption": "The image features two red plates filled with various types of food, including sushi and other small dishes. There are several pieces placed on each plate in a variety of shapes such as triangles or squares arranged neatly for presentation purposes. A bottle is also visible nearby the table where these delicious treats have been set up to be enjoyed by someone who appreciates Japanese cuisine like this assortment of appetizers served atop trays during an event celebration setting."} +{"image_id": 523811, "caption": "The image features a small bird perched on top of an old wooden post, surrounded by greenery. There are several plants in the scene: one is located near where it stands and another can be seen further away from its position atop the wood pole to which they both belong. A third plant appears closer towards center-right side within reachable distance for birds or other animals nearby if needed during their stay thereon. In addition to these three visible flora elements around this little brownish sparrow's habitat area, some more distant trees appear faintly behind them as well \u2013 possibly indicating that nature surrounds all sides beyond what we see here directly captured through our viewpoint perspective."} +{"image_id": 250066, "caption": "The image features a toilet placed outside, near an old brick building. There are several plants surrounding the area around and next to it \u2013 some of them appear closer while others seem further away from each other in different directions towards various parts of the scene. A ladder is also present on one side of this outdoor setting with steps leading upwards into another part or level within that same structure behind the planted areas nearby. In addition to these elements, there's graffiti visible throughout most sections of both sides (left/right) along walls close by as well as spray paint canisters scattered across multiple locations inside viewing distance but not necessarily touchable for use at once due their position far enough backward compared to where they were last used earlier during painting activities elsewhere perhaps?"} +{"image_id": 99182, "caption": "The image features a man sitting on his bed, reading an open book. He is focused and engrossed in the content of this particular page as he holds it up close to him while lying down with one arm resting behind himself for support or comfort during readings. There are several books scattered around near where they were placed earlier before being picked by someone who wanted them nearby when needed later that evening. A lamp can be seen illuminating some parts of their surroundings from above, casting shadows across certain areas but not overpoweringly brightening everything else within viewpoint range."} +{"image_id": 383826, "caption": "The image features two men standing on surfboards in the ocean, riding waves. One man is closer to a wave and appears more focused while another one stands further away from it but still enjoying his time at sea level with friends or family members nearby who are also engaging in water activities such as swimming near them. There's an additional person visible towards left side of the scene that seems less involved compared to others present there for fun times by the beach waterside."} +{"image_id": 246248, "caption": "The image features a street corner with several signs, including two stop and yield traffic signals. There are also multiple other roadway markers present in the scene such as speed limit indicators (eight of them), warning signage for pedestrians crossing at an intersection near buildings on both sides \u2013 one is closer to us than others -and some parking spots located along either sidewalk or nearby streetside areas. A car can be seen parked towards left-center part of this urban setting while another vehicle appears further down from it but still within viewing distance."} +{"image_id": 51685, "caption": "The image features a small red biplane flying high in the sky, with its propeller spinning. It is visible against an expansive blue background and appears to be soaring through it effortlessly as if on display for all spectators below. There are several people scattered throughout various parts of this scene who may have gathered together or been nearby when capturing these images from different angles around town during sunny weather conditions"} +{"image_id": 52147, "caption": "The image features a group of geese, including adults and young ones. There are two baby birds in the grass near an older goose that appears to be watching over them or protecting its offspring from predators nearby on either side \u2013 one is closer while another can also been seen further away towards left-center area within reachable distance for their mother's protection if needed. In addition to these three animals resting together peacefully underneath some trees with lush greenery surrounding it all around, there appear several other smaller ducks scattered throughout different parts of this scene as well - they seemingly come across each other during various moments but remain close by without any apparent conflict between themselves..."} +{"image_id": 135756, "caption": "The image features a young girl standing next to an open trailer, petting and interacting with her horse. She is holding the reins of his halter as she pets him gently on its head or neck area near one ear. There are several other people in various positions around them: two individuals stand further away from each side while another person stands closer towards their left-hand corner. A car can be seen parked nearby at some distance behind these figures; it appears that they have arrived for this event together."} +{"image_id": 52851, "caption": "The image features a group of people hiking in the mountains, with one person standing on top and others walking along. There are two backpacks visible among them - likely belonging to some members or all participants involved \u2013 as well as several other items scattered throughout their surroundings such as rocks near trees at different locations across the scene's landscape area. In addition to these objects, there is also an eagle flying overhead towards another mountainous region beyond where they stand."} +{"image_id": 549789, "caption": "The image features a skier performing an impressive jump in the air, with snowy mountains and clouds visible behind them. There are several people present on both sides of this scene: one person is sitting down near some trees atop another mountain to their left side; two more individuals can be seen standing further away from each other towards right-center area below where they appear closer together than others around it but still distant enough not interfering much into overall viewpoint perspective or composition's focus point being mainly centered upon skiers high up above ground level during that momentous leap off slope surface while flying through skyward space over those peaks as well..."} +{"image_id": 286503, "caption": "The image features an elephant standing in a dirt area, with its trunk reaching up to grab some hay from the top of another structure. There are several people scattered around this scene: one person is located on each side and two more can be seen further away towards left-center part of the frame near trees or buildings behind them. A few cars appear at different locations within view as well - three vehicles parked along roadsides nearby while others drive by outside their frames but still visible through windows inside those structures they're passing next door."} +{"image_id": 10580, "caption": "The image features three giraffes standing in a grassy field surrounded by trees. They are positioned close to each other, with the closest one being on top of another and two more behind it at some distance from its backside. There is also an additional tree located further away towards left side of this scene that adds depth to their surroundings. In total there might be four or five individuals present among these animals as they appear spread out across different parts within viewing range around them \u2013 possibly including those not visible here due to camera angle limitations"} +{"image_id": 468784, "caption": "The image features a newly married couple standing next to each other, holding their wedding cake knife. They are both dressed in formal attire and appear happy as they cut the large three-tiered white tiered Wedgwood china dessert stand with intricate decorations on top of it - an impressive display for any occasion! There is also another person sitting at one side near them who might be partaking or observing this special moment together while surrounded by people around him/her."} +{"image_id": 492544, "caption": "The image features a giraffe standing in the middle of an open field, surrounded by tall grass and trees. There are several bushes scattered throughout this natural setting as well - some closer to one another while others appear further away from each other or farther back into the background behind them all. In addition to these elements, there is also more vegetation visible on both sides \u2013 with smaller plants nearer towards us at left side (left-center) along with larger shrubs located slightly off center rightwards across most part of scene area."} +{"image_id": 162503, "caption": "The image features a large owl sitting on top of an exposed tree branch in the middle of dense forest. It is surrounded by tall trees, with some branches visible near it and others further away from its perching spot. There are several other smaller birds scattered throughout this scene as well - one can be seen to the left side while another appears closer towards center-right area within view range. In addition to these bird species present at different locations around them, there's also grass growing among various parts of their surroundings \u2013 indicating that they reside amidst nature rather than being confined inside any enclosed spaces or structures like buildings for example"} +{"image_id": 162539, "caption": "The image features a large, colorful sign for Western Square Shopping Center. It is mounted on top of the building and stands out against an otherwise clear blue sky background with some clouds visible in it. There are several signs around this main one that provide additional information about various products or services available at different locations within the shopping center such as \"Nike\", toys like dolls (possibly Barbie), electronics items including televisions (\"TV\"), automobiles/cars, bicycles & motorcyles - all displayed prominently underneath each other's names across multiple rows along both sides of the storefront entrance area near its base where people can easily spot them while entering into their favorite stores inside the mall complex."} +{"image_id": 186711, "caption": "The image features a man in black wetsuit riding on top of the waves, surfing with great skill. He is standing upright and balanced as he navigates through various wave patterns while enjoying his time at sea during sunny weather conditions underneath an overcast sky background that appears to be cloudy or foggy towards its edges but clear nearer center area where it meets blue water surface above him. In addition to this skilled individual's presence amidst these oceanic elements, there are several other people visible throughout different parts within the scene: one person can been seen further left side; another two individuals appear closer together slightly right from each end (one close by); three more persons spread out across middle-right section along shoreline areas nearby their respective positions among them being closest ones located next to rocks/shore edge."} +{"image_id": 214421, "caption": "The image features a group of people gathered around two televisions, one on the left and another in front. There are three men standing near each other with their backs to an open doorway or window behind them; they appear engaged as if discussing something together while watching TV news footage displayed across both screens simultaneously. A woman is also present among this gathering but she stands slightly apart from others towards right side corner of the scene. In addition to these individuals, there're several potted plants scattered throughout different parts within view range: four at various positions along walls surrounding some part of room where most activity takes place (two close by), plus additional ones placed closer up against windowsills nearby those who stand closest to it \u2013 possibly for decoration purposes?"} +{"image_id": 65798, "caption": "The image captures a baseball game in progress, with several players on the field. A batter is standing at home plate and throwing his bat to another player who appears ready for action behind him near first base line. There are multiple people scattered throughout different parts of the stadium watching this exciting moment unfold \u2013 some seated close by while others stand further away from their seats or along fences surrounding the playing area. In addition to these spectators enjoying themselves during an intense matchup between two teams, there's also equipment such as bats positioned around various locations within viewing distance: one can be seen hanging above second baseman; three more lie nearby third-base side dugout bench where other team members might use them later if needed; four additional ones rest closer towards left outfield corner section among fans sitting down waiting patiently until they get called up next into play again after taking breaks due to weather conditions outside affecting visibility through windows that have been opened slightly but not fully open yet - it could take time before all glass panes will stay closed permanently without any needles pokings inside!"} +{"image_id": 316063, "caption": "The image shows a busy street scene with multiple vehicles, including two red buses parked on the side of an urban road. There are several people walking around in various locations throughout this area as well - some near one another and others spread out further apart from each other along different parts of their journey through town or workplace commute. A bicycle is also visible towards left-center part of the frame among all these pedestrians moving about freely within close proximity to traffic passing by them at times during daylight hours outside under clear skies without rain clouds present overcasting any portion of it yet seen herein."} +{"image_id": 189427, "caption": "The image features a cardboard cutout of an animated beaver holding up the words \"stop\" on it. This scene is set in front of two trash cans, one placed closer to us and another further away from our viewpoint towards left side corner. There are also several trees visible throughout this setting with some located near each other while others stand alone or scattered around different parts of the area. A bench sits nearby as well for people who might want rest during their visit here at Beavers' Parkway Trailhead Signage Stop & Smell Roses!"} +{"image_id": 244833, "caption": "The image features a group of people sitting in chairs, with two motorcycles parked next to them. One bike is yellow and the other one has flames painted on it - both are unique designs that stand out among their surroundings. There's also another person standing near these bikes who appears not be partaking or attending an event related to either vehicle but rather just passing by at this moment. In addition to those individuals present during daytime hours inside what seems like some sort of indoor space such as auditorium/theater area where they might have gathered for entertainment purposes (either watching movies together), there could potentially more audience members scattered around elsewhere within viewing distance from each seat location occupied herein \u2013 possibly waiting patiently before entering into movie-watch mode themselves later downstream when ready!"} +{"image_id": 370609, "caption": "The image features a group of animals, including sheep and lambs. There are two adult goats standing on the right side near each other in front view while three baby or young sheeps can be seen grazing behind them towards left-center area with one more at bottom center feeding from its mother's udder milk. A fence is visible to their backside as they stand together within an enclosed space likely serving for protection against predators like coyotes that may attack livestock during nighttime hours when it becomes vulnerable due to lack of human presence around farms located away from urban areas where people live close by 24/7 surveillance cameras might not always provide adequate security measures needed..."} +{"image_id": 486232, "caption": "The image features a person holding two small apples in their hands, one on each hand. They are both green and red colored with some differences between the colors of these fruits. There is another apple located further away from them nearer to an edge or corner area within reachable distance for picking up if desired by someone else nearby who might be interested in it as well."} +{"image_id": 18191, "caption": "The image features a sidewalk with an empty fire hydrant sitting on the left-hand edge of it. There is also another yellow object in front, possibly representing some sort of sign or marker for pedestrians to follow along this pathway towards their destination further downstream from where they are standing now at that point nearing its end by the roadside curb and streetlights nearby. A bench can be seen placed close behind them as well \u2013 perhaps providing rest stops during walks through town?"} +{"image_id": 84493, "caption": "The image features a pizza on top of an oval-shaped white plate, with slices cut into it. There are four pieces in total: two large and one small slice each placed around the perimeter or center area of the pie crust base. A checkered tablecloth covers part of both sides of this dining surface where people might be sitting to enjoy their meal together while sharing conversation over food."} +{"image_id": 380057, "caption": "The image depicts a busy street scene with cars parked on both sides of the road. There are several people standing in front, holding signs and placards that read \"Justice for Trayvon Martin.\" Some individuals hold their hands up to express solidarity or support towards this cause while others stand more still near traffic lights at various locations along the sidewalk area. In addition to these protesters carrying posters about justice for Travyon Martian, there is also an ambulance present nearby as well as other vehicles driving through the intersection during rush hour activity around noontime when most drivers would be commuting home from work."} +{"image_id": 401613, "caption": "The image features a female tennis player in an orange shirt and blue shorts, actively engaged with her racket on the court. She is crouching down low to hit or return another ball during play as she moves around quickly across various parts of the field while holding onto both sides of her racquet handle firmly for control over each swing towards different areas within reach. Her opponent can be seen off-screen at some distance from where they are playing their game together."} +{"image_id": 460684, "caption": "The image features three men sitting at a dining table, enjoying their drinks. They are seated around the glass-topped wooden round tables and chairs in an outdoor setting with trees visible behind them on either side of the scene. There is also another chair placed near one corner to complete this group gathering for some socializing or celebration time together over wine tastings possibly during vacations abroad. A bottle can be seen close by each person's hand as they take sips from it while engaging conversation among themselves."} +{"image_id": 208132, "caption": "The image features a dining table with various items placed on it. There are several plates of food, including sandwiches and salads arranged around the edges near each other in different positions along one side of the plate area closest to us (left). A bottle containing ketchup is also present atop another nearby object or surface within reach from both sides \u2013 left-handed people can easily access this condiment without having their hand too far away while eating dinner comfortably seated next them. In addition to these objects scattered across the scene, there's an array of utensils such as forks located throughout: two close together towards top right corner; three more further down closer toward center bottom section; four additional ones positioning themselves between those already mentioned above middle portion; finally, five remaining spoons situated below all others spread out evenly over halfway through lower part region where they could be used efficiently during mealtime by everyone sharing that space equally well."} +{"image_id": 200703, "caption": "The image features a group of four ducklings swimming in the water, with three visible from left to right and one slightly behind them. They are all positioned close together as they move through their watery environment while keeping an eye out for potential dangers or prey nearby. In addition to these young birds, there is another bird located further away on top-right side near some vegetation growing along its edge \u2013 possibly indicating that it's not part of this particular family but rather just passing by at different location within view range"} +{"image_id": 348087, "caption": "The image features a large clock tower standing in the middle of an urban street. It is situated on top of what appears to be either a traffic pole or light post, with its face facing towards pedestrians walking by it and cars passing through nearby intersections. There are several people visible throughout this scene: two individuals can been seen near each other at one end while another person stands further away from them closer to where they entered into view earlier downstream along their pathway across town. Additionally there's more than just these three characters present as multiple vehicles parked around various parts within close proximity indicate that many others may have passed during filming time for capturing such images herein depicted today!"} +{"image_id": 8267, "caption": "The image features a small, white toilet bowl placed in the middle of an open space. It is surrounded by tiles on all four sides and has no visible seat or lid at this moment. There are two cups located near each other towards one end corner of the room - likely used for cleaning purposes after use \u2013 with their handles positioned close together next to them. A sponge can be seen resting against another wall nearby as well"} +{"image_id": 255096, "caption": "The image features a large airport terminal with several windows, providing an expansive view of the outside. A passenger plane is parked on one side and can be seen through multiple glass panes in different parts around it. There are also two trucks visible near each other at opposite ends within this scene - likely delivering supplies or luggage to various areas inside the building. In addition to these vehicles, there're three potted plants placed throughout: One close by some chairs towards left-center area; another closer to right center section next to window frames that overlook part of the parking lot where planes arrive/depart from runways nearby; lastly situated further away behind people standing along wall sections adjacent to main entrance doorway leading into lobby space beyond them."} +{"image_id": 8676, "caption": "The image features a bedroom with an open door, allowing natural light to enter the space. A large brown and purple quilted blanket is spread across one side of the room's main focal point - which appears as either two beds or possibly just parting them in half for more spaciousness within this area. There are several chairs placed throughout different parts of the scene: three on opposite sides near each other at first glance; another chair located closer towards center left corner behind some furniture pieces that appear like tables/shelves along walls surrounding it from top downwards until reaching bottom right edge where they meet up again after passing through sliding glass doors visible further away into outdoor spaces beyond those entrances."} +{"image_id": 101022, "caption": "The image features a snowy road with an icy slope, and there is also some vegetation visible in the background. A sign stands on top of this hillside indicating that it's \"60\" meters to go before reaching another level or area where people can walk safely again after passing through dangerous terrain like ice-covered slopes above them. There are several trees scattered throughout the scene as well - one tree nearer towards us at left side while others appear further away from our viewpoint along both sides of the street leading upwards into more rugged areas beyond what we see here."} +{"image_id": 247625, "caption": "The image features a group of people gathered on the snowy slopes, with one person wearing ski gear and another standing next to them. There are several other individuals in various positions around this area as well - some closer while others appear further away from each other or farther downhill towards more distant terrain beyond their reach. In addition to these skier-related activities happening atop Mount Hood's Timberline Lodge Ski Area during wintertime, there is also an umbrella visible nearer upfront left side of frame that may be used for protection against inclement weather conditions like rain showers common here throughout much part of year round seasonal changes."} +{"image_id": 46872, "caption": "The image features two men standing on the back of a large truck, with one man holding onto an object that appears to be some sort of pipe or hose. There are several cars parked in front and behind them along both sides of their location near trees lining up around it as well. In addition to these vehicles, there is another car located further away from where they stand atop the flatbed trailer portion of this vehicle transporting equipment for construction purposes likely involving pipes installed by workers nearby who may have been involved earlier during installation work elsewhere within view outside through windows visible across different parts of buildings seen throughout various locations beyond those present here directly next door."} +{"image_id": 480752, "caption": "The image features a wooden bench placed on top of the hill overlooking an expansive city. There are several cars visible in different parts around and below it, including one parked near its base at left side while another is positioned closer to center-right area with more vehicles nearby as well. A few people can be seen walking along or standing close by these automobiles throughout various sections within view from this vantage point above them all."} +{"image_id": 181383, "caption": "The image depicts a group of people standing on the deck or pier near water, with several boats in view. There are at least 10 individuals present among them - some holding onto railings and others walking around freely along various parts of the dock area. A few cars can be seen parked nearby as well to provide transportation for those who may need it while enjoying their time by the harbor's edge."} +{"image_id": 486122, "caption": "The image features a large, modern stainless steel refrigerator in the middle of an open kitchen. It is placed next to wooden cabinets and drawers on one side while another set of wood-colored cupboards can be seen atop it from above or behind its left corner area. A microwave oven sits nearby nearer towards the right edge with two cups positioning themselves close by as well - possibly for use during meal preparation time within this spacious room setting."} +{"image_id": 386650, "caption": "The image features a wooden bench placed on the ground next to two potted plants. One of them is located closer towards one end, while another plant can be found further away from it in front and slightly off-centered left side positioning. There are also several other smaller planters scattered around near or underneath these larger ones throughout various parts of this outdoor area. A chair sits nearby as well for additional seating options within close proximity."} +{"image_id": 439834, "caption": "The image features a zebra standing in the middle of an open field, surrounded by tall grass and bushes. There are two other smaller animals nearby: one is lying down on its side near another adult animal while both appear to be facing towards each other from different angles across their bodies' lengthwise positioning within close proximity but not touchingly interacted with or engaging together as they stand still looking at something off-screen leftwards (the direction away)."} +{"image_id": 492025, "caption": "The image features a small statue of an adorable child holding onto two teddy bears. It is placed in the middle, surrounded by various flowers and plants that are growing around it on both sides \u2013 some closer to its base while others further away from each other across different parts of the scene. There's also another flower nearby atop one side near where people might sit or stand for better viewing pleasure during their visit here. In addition to these elements surrounding this charming sculpture display area with nature-inspired decorations like trees scattered throughout, there appears to be more than ten cars parked outside within close proximity towards either end of the garden setting."} +{"image_id": 208517, "caption": "The image features a woman standing in the middle of an outdoor area, holding her red suitcase. She is surrounded by other people who are walking around and engaging with each another on their way to various locations or activities within this public space. There's also several handbags scattered throughout the scene that belong either to individuals passing through or left behind as they continue moving about town. A cell phone can be seen hanging from one person\u2019s waistband while others carry them casually at different points along sidewalks near buildings visible beyond some parts of the crowd."} +{"image_id": 49733, "caption": "The image features a large, ornate clock mounted on the wall of an old building. It is situated in between two arches and has several hands visible around its perimeter indicating different times or phases within one day's timeframe. There are also various people present throughout this scene: 10 individuals can be seen standing near each other at varying distances from left to right across both sides of the room where they appear to have gathered for some sort of event possibly related to viewing the intricate display above them."} +{"image_id": 146614, "caption": "The image features a spacious living room with an open floor plan, featuring various furniture pieces. There are two couches in the area - one on each side of the space near windows and another located closer to center stage towards left-center part of the scene. A coffee table is placed between these sofas for guests' convenience while they relax or socialize within this inviting atmosphere filled by natural light from outside through large glass doors at right corner behind them. Various potted plants can be seen throughout different parts around the interior decoration adding some greenery touch as well."} +{"image_id": 515424, "caption": "The image features a person performing an impressive snowboarding trick in the air, with their board visible against the sky. They are high up and doing tricks on top of buildings or structures that can be seen throughout various parts of this scene \u2013 one building is located to left side while another appears closer towards center-right area behind them. There's also at least two cars parked near each other along either end of the street below where they perform these stunts overlooking from above ground level viewpoint."} +{"image_id": 89071, "caption": "The image features a person wearing red ski gear and standing on skis in the middle of snowy terrain. They are surrounded by trees, which provide an idyllic backdrop for their winter activity. There is another man further away from them who appears to be walking downhill towards some pine cones scattered across his pathway near him as well. In total there may also exist other people or objects within this scene that cannot necessarily been seen clearly due to camera angle limitations but still contribute to its overall atmosphere"} +{"image_id": 227438, "caption": "The image features a well-appointed bedroom with an impressive king size white and brown comforter. A large window is visible in the background, providing natural light to illuminate this cozy space filled by various furniture items such as chairs (two on either side of one another), two potted plants placed near each other at opposite ends towards left corner from center point viewpoint). There are also several lamps positioned throughout different parts within or around these objects for additional ambient lights during nighttime use when needed."} +{"image_id": 343315, "caption": "The image features a street corner with an intersection, where two streets meet. A red fire hydrant is situated on the grassy area near one of these intersections and appears to be in good condition despite being placed outside underneath some trees that are growing around it. There's also another tree located further away from this scene towards left side of viewpoint which adds more greenery surrounding the roadway at nighttime or during daylight hours when viewed through windows as well. Additionally, there seems to have been recent maintenance work done along both sides of each intersecting roads since they appear cleaned up nicely without any debris visible nearby them yet still maintain their original color contrast between black lines separating lanes for traffic flow directional guidance purposes only."} +{"image_id": 194414, "caption": "The image features a woman in white tennis attire standing on the court, holding her racquet and preparing to serve. She is surrounded by several people watching from various positions around the field or stands nearby - some are closer while others appear further away but still within view of each other across different sections near their seats atop bleachers behind them. There's also an umbrella visible towards one side that may be providing shade for someone sitting underneath it during this outdoor event"} +{"image_id": 299039, "caption": "The image features a dining table with two plates of food. One plate contains half-cut sandwiches, and the other one has fries on it as well. There are several vases placed around or near to this scene - three in total: 1) towards left side; another is located closer at right edge corner positioned above some objects that might be flowers inside pots/vase holders (not visible); finally there's an additional small flower pot situated close by but not directly connected to any specific object within its vicinity area \u2013 possibly for decoration purposes only."} +{"image_id": 141172, "caption": "The image features a blue door with an artistic sticker of two cats on it. One cat is peeking out from the left side, while another one appears to be coming through or entering into its hole in front right corner near top center area and slightly above middle section heights. There are also several other objects placed around this scene: 10 bottles scattered throughout different parts along both sides; three cups canvassed across various positions towards bottom-center region close together next each cupboard doors' opening areas (two at lower part); four books positioned closer toward upper half regions - some located more centrally than others \u2013 including those situated by walls as well as between them within their respective sections respectively."} +{"image_id": 548209, "caption": "The image features a father and child skiing together on the snowy slope. They are standing in close proximity, with both of them wearing skis while holding onto each other for support or guidance as they navigate downhill through various obstacles such as trees scattered across their pathway towards an unknown destination atop Mount Hood's Timberline Lodge area near Government Camp (Oregon). There is another person visible further away from this pair who appears to be watching over everyone else nearby but not actively participating yet; possibly waiting until it becomes safer before joining into fun activities like these two people seemingly enjoying themselves doing so far up there!"} +{"image_id": 465272, "caption": "The image depicts a group of people walking down the street, holding umbrellas in various colors. There are several children among them who appear to be enjoying themselves while being protected from rain by their colorful and unique-shaped British Union Jack Umbrella designs on rainy days like this one. In addition to these individuals with open or closed bags nearby each other along both sideswalk edges near buildings that surround an area where they walk together towards some unknown destination ahead \u2013 possibly for leisure activities such as shopping at local stores around there."} +{"image_id": 534801, "caption": "The image features a fruit stand in an outdoor market, showcasing various types of fruits and vegetables. There are two men standing behind the display with one man closer to us on our left side while another is further away from him towards right edge of scene. In front of them there's plenty variety including bananas (several bunches), apples, tomatoes, peppers/pepperoncini, carrots, oranges, grapes, strawberries, melons like watermelon as well as some other items such pineapples scattered around their area near each person. A few more people can be seen walking through this busy produce section at different locations within viewing distance but not interacted directly by these vendors selling fresh goods for customers browsing nearby stands."} +{"image_id": 517306, "caption": "The image features a man and woman sitting together in front of an enormous pizza on top of their dining table. They are posing for the camera, smiling at each other while enjoying this delicious meal with friends or family members who may be present elsewhere within view but not shown here directly. In addition to them being surrounded by food items such as cups (two), bowls placed near one another around halfway down from left side towards right edge; there is also some furniture visible behind these objects like chairs scattered throughout different parts of the room - two close-by seats located next to where they sit along both sides facing away slightly toward back wall area, followed further upward closer proximity seating arrangements that appear more distant yet still partaking in sharing space alongside tables nearby."} +{"image_id": 502582, "caption": "The image features a baseball player standing on the field, holding his hat in one hand and adjusting it with another. He is wearing pinstripes that are visible across most of him from head to toe except for some parts nearer towards their feet where they appear more subtle or less prominent than other areas covered by strips. There's also an umpire nearby who appears focused at work while observing play happening around them both offensively as well defensive side fieldside positions can be seen within this scene. A few chairs scattered throughout provide seating options close-by allowing players rest during breaks between innings possibly discuss strategies before resuming gameplay again soon afterward"} +{"image_id": 43165, "caption": "The image features two zebras standing next to each other in a grassy field. One of the animals is closer, while another one appears further away from them both on their left side near some trees and bushes growing around it. There are several branches scattered throughout this scene as well - they can be seen hanging down or reaching up towards different parts of the area surrounding these wild creatures."} +{"image_id": 503101, "caption": "The image features a man and woman standing next to each other, with the male holding an open knife in his hand. He is looking at something on her neck while she appears unaware of what he's doing or about him having such sharp object nearby. There are several people visible throughout this scene: one person sitting off-screen left side; another individual nearer towards center right area behind them both (possibly their friend); two more individuals further away from these main characters but still within reachable distance \u2013 closer than those seated far back yet farther out compared to others present herein."} +{"image_id": 311435, "caption": "The image features a man in white shirt and shorts, holding his tennis racket as he prepares to hit the ball during an outdoor game of doubles. He is standing on top of what appears like either grass or dried mud surface with trees visible behind him at some distance from where they are playing their match. There're several other people present around them who might be watching this exciting moment unfolding between two players competitively hitting backhand returns towards each another across different parts of the court area near fences that surround it all over its perimeter."} +{"image_id": 223374, "caption": "The image features a microwave with various toy cars placed on top of it. There are at least four different types or models, each in their own position and size across the surface area near one another but not touching any other car directly next them. Some vehicles appear closer together while others seem further apart from adjacent ones within this collection displayed for viewers' enjoyment."} +{"image_id": 181118, "caption": "The image features a large herd of elephants gathered at the edge or in water, with some individuals standing on land. There are several people watching them from various locations around and near their enclosure area by an ocean shore. Some spectators can be seen sitting close to each other while others stand further away observing these majestic creatures up-close as they bathe themselves underwater before moving back onto dry ground again for more socializing time together..."} +{"image_id": 142934, "caption": "The image features two people standing on a snowy slope, each carrying their own skis or boards. One person is holding the ski pole in his hand while another holds both of her poles and appears to be preparing for an ascent upwards towards more challenging terrain ahead. In addition to these individuals with equipment ready atop this mountainous area near some trees located along its edge, there are several other objects scattered throughout: three backpacks can also been seen placed around different parts of the scene; one close by where they stand next to them, others further away from that location but still visible within reachable distance if needed during travel through such rugged landscape conditions."} +{"image_id": 340472, "caption": "The image features a large marina filled with numerous boats of various sizes, docked in the water. There are several white and blue sailboats scattered throughout this harbor area on both sides near each other or slightly separated from one another by some distance between them. Some smaller vessels can be seen closer to shore while others appear further out into deeper waters. A few people stand around observing these beautifully arranged ships at different locations within viewing range along their respective docksides \u2013 possibly admiring nature's beauty as they enjoy spending time here during sunny days like today!"} +{"image_id": 490337, "caption": "The image features a beach scene with an umbrella and surfboard placed on the sand. A red parasol is standing upright, providing shade for those who may be relaxing or enjoying their time at this location by water's edge. There are several people visible in various positions along both sides of the ocean shore near where they can enjoy sunbathing underneath the open-air shelter provided by the large umbrelllae. Additionally, there appears to be some sort of object lying down close beside one person towards left side corner area \u2013 possibly another item used during leisure activities such as swimming gear like flippers or other equipment needed while spending quality moments outdoors next to waves crashed onto rocks nearby..."} +{"image_id": 424960, "caption": "The image captures a man in white shorts and shirt, wearing tennis shoes as he leaps into the air to hit his racket at an incoming ball on court. He is part of what appears to be either singles or doubles play during this match against another opponent who may also have their own racquet ready for action nearby them both within striking distance from each other's side of the netting area. In addition to these two players engaged with one another across different parts of the field (one closer towards us), there are several chairs scattered around various locations throughout the scene - some nearer others further away \u2013 suggesting that they might belong to spectators watching over the game unfolding before them."} +{"image_id": 452964, "caption": "The image features a young baseball player wearing blue and white uniform, throwing the ball during an outdoor game. He is positioned on top of his pitching mound with focus in hand as he prepares to throw it towards home plate or another part of field where other players are located nearby waiting for their turn at batters' box positions 1 through 4 respectively. There appears also be several people standing around watching him play from different distances across various parts of this scene - some closer than others nearer to center stage while one person stands further away behind them all along side fence posts that surrounds most areas within viewpoint range"} +{"image_id": 81484, "caption": "The image features a dining table set with three white plates filled to the brim, each containing various types of food. There are two large pizzas on top left and right side corners respectively along one edge of the plate closest towards us (left). A bowl is placed in between these main courses nearer our viewpoint at center-right corner next to another smaller round object that could be either an additional serving or utensil for eating purposes. In addition there's also some salad spread out across different parts around this area including close proximity beside both slices of bread as well closer up against other items like chairs nearby. Two people can easily fit into frame sitting comfortably while enjoying their meal together surrounded by all those delicious options available from multiple tableside services such as meatball appetizers served alongside vegetables arranged neatly within reachable distance throughout most partings of the scene."} +{"image_id": 224020, "caption": "The image features a young boy sitting at an outdoor table, looking intently towards the donut in front of him. He is holding his hand close to it as if he's about ready to take another bite or enjoy this delicious treat further. There are several other items on and around the dining area: two cups can be seen placed near each side of one end; there might also exist some food left over from previous meals that could have been served earlier during their visit here for lunchtime snacks with friends perhaps?"} +{"image_id": 447611, "caption": "The image features two people holding a laptop on top of the table, with one person using scissors to cut open its back. Another hand is visible in close proximity and appears ready for assistance or support during this process. There are several other objects scattered around them: 1) A watch can be seen near their hands as they work together; 2) Two cups appear placed nearby \u2013 possibly used by either participant while working atop the desk surface area;"} +{"image_id": 564301, "caption": "The image features a group of sheep standing in the grassy field, with one person sitting on an outdoor chair nearby. There are three adults and two children present among them; all appear to be enjoying their time together underneath umbrellas or tents set up for shade from direct sunlight exposure during summer months when it is likely hot outside. In addition to these people, there're several chairs scattered around the area where they can sit comfortably while watching over the animals grazing peacefully near by. A dog also joins this gathering as well - possibly belonging either to someone within that family unit who has come along too!"} +{"image_id": 89643, "caption": "The image depicts a beach scene with people flying kites in the sky. There are several large and colorful octopus-shaped balloons, as well smaller ones that appear to be more traditional or standard types of airborne objects being flown by individuals on land near them. In addition to these variously shaded colored inflatables floating high up above their heads, there is also an umbrella visible among some nearby trees atop one hillside area along the shore line where they're gathered for this outdoor activity together under clear blue skies filled with clouds here and there throughout it all \u2013 creating quite possibly another memorable day spent enjoying nature while having fun!"} +{"image_id": 317035, "caption": "The image features a display of various musical instruments, including guitars and drums. One guitar is placed on the left side near an amplifier with its neck facing towards it while another one can be seen in front closer to us or slightly right from center stage positioned next to two other electric basses that are further away but still visible within their respective areas around them. A drum set occupies most space at bottom-left corner surrounded by several smaller items such as cables hanging downwards along some parts of this area's perimeter walls. There appears also to be writing all over these objects like graffiti tags covering different surfaces throughout the scene - possibly indicating they have been used for performances before being displayed here nowadays?"} +{"image_id": 325356, "caption": "The image features a cat sitting in the sink of an unoccupied bathroom. It is perched on top, looking directly at someone or something outside its immediate surroundings while resting comfortably inside this small space within reach from both sides \u2013 left and right corners near it are visible to us as well. There's also another person present nearby who might be interacting with either themselves (if they were previously there) before noticing that their pet has taken up residence for now!"} +{"image_id": 136270, "caption": "The image features a three-tiered white cake sitting on top of an outdoor dining table. A person is carefully cutting the first layer, which has butterflies and leaves decorating it in blue colors around its edges. There are several bowls placed near or next to each other throughout the scene: one close by atop another cupboard behind them; two more further down towards left side corners with their contents visible inside; four additional ones scattered across different parts within reachable distance from people seated nearby \u2013 some closer than others while still maintaining visibility for those present during this celebration event."} +{"image_id": 554266, "caption": "The image features a person lying on their back in bed, with legs stretched out and feet touching the edge of it. There are two lamps placed near them \u2013 one is closer to his head while another lamp can be seen further away from him towards the foot end side of the room's left corner area. A book sits nearby atop an armchair next to where he lies down; there might also exist other objects or furniture within this scene that cannot clearly been viewed due to its blurred appearance caused by multiple images being combined into panoramic viewpoint effect."} +{"image_id": 555357, "caption": "The image features a group of three cows standing on top of an open grassy field under cloud-covered skies. They are spread out across the scene, with one cow in front and two others following behind it at different distances from each other along its side. There is also another smaller brown animal nearby that appears to be either hiding or resting among some tall plants growing near them towards their left edge area. Overall, this setting showcases several animals grazing peacefully together amidst nature's beauty during sunny days interspersed by occasional clouds passing overhead"} +{"image_id": 317715, "caption": "The image features a cat sitting between two bicycle wheels, with one wheel on the left and another in front of it. There are several other objects visible around this scene: 1) A chair is placed near to where the bike stands; its back can be seen towards right side corner while there's also an armrest located at top-right area next to some books stacked together vertically nearby them. Another book resting against wall further downwards from these items completes their placement arrangement within that section."} +{"image_id": 498806, "caption": "The image features a miniature train traveling on tracks near the edge of an artificial mountain. There are several cars in various positions along both sides and at different distances from each other, creating movement within this small town scene with buildings nearby as well. A few trees can be seen scattered throughout to add depth to the landscape setting for these tiny trains passing by one another through their respective routes around mountainside terrain."} +{"image_id": 213799, "caption": "The image features a dog lying underneath the table, resting on its side. There are several shoes scattered around in different locations near and beneath it - one red shoe is placed close to where he's sleeping while another pair of boots can be seen further away from him towards his left-hand corner. A cupboard with various items inside appears atop an open bookcase nearby; there may also exist other objects or furniture within this room that cannot clearly been viewed due to their position behind them."} +{"image_id": 514600, "caption": "The image features a small bird perched on top of an orange, which has been cut open to serve as its food bowl. There are several seeds scattered around the area near and inside this half-orange feeder for birds' consumption. A few more oranges can be seen in different parts of the scene \u2013 one is placed closer towards us while another appears further away from it but still within reachable distance by other nearby objects like leaves that surround them both. In addition, there seems to exist some pineapples present at various locations throughout the background with two visible close together just above center left side; they appear smaller than most fruits depicted herein yet contribute nicely to creating vibrant visual interest amidst all these colorful elements arranged across multiple branches intertwined among each other."} +{"image_id": 144003, "caption": "The image features a group of people gathered around an open box on top of the table. There are three women in attendance, two standing and one sitting atop another chair next to them nearer towards center-right side of frame while they all seem engaged with each other or watching something happening within their vicinity. A man is also present among this gathering; he's seated closer toward left edge area but still visible from his head downwards as well. In addition to these individuals, there appears to be more guests who may have arrived later during party time since some additional chairs can been seen placed throughout different parts of room behind everyone else already assembled for socializing together over food served by someone nearby holding bowls filled up high above her waistline level."} +{"image_id": 15839, "caption": "The image features a large black refrigerator in the middle of an open kitchen. It is placed on top of tiles, which are partially visible underneath it and around its base area. There's also some clutter scattered throughout this room including bottles near one corner by another appliance (possibly related to cooking). A bowl can be seen nearby as well towards left side close proximity from where two people might stand or sit while preparation takes place within their reach for food items they may need during meal time activities later that day..."} +{"image_id": 52016, "caption": "The image features a woman standing in front of an alley, holding two pastries. One pastry is on her left hand and the other one appears to be held by both hands with some icing visible near its top edge. She seems happy while posed for this photo moment outside next door or nearby from where she bought these treats earlier that day. In addition to the lady's outfit consisting mainly of denim jacket over jeans pants, there are several backpack items scattered around: three canister-shaped objects placed close together towards right side; another smaller object located closer at bottom center area behind them; furthermore, four more larger bags appear throughout different parts within view \u2013 including upper middle section (left), lower half portion below it (right) as well as slightly above midpoint level between those areas (center)."} +{"image_id": 367610, "caption": "The image features a man walking down the middle of an urban street, surrounded by many sheep. He is leading them across traffic and through various obstacles on his way to their destination while being closely watched over from nearby buildings or vehicles passing along this busy roadway in India's capital city Delhi. There are several other people visible throughout the scene as well - some standing near cars parked alongside one sidewalk edge, others sitting inside buses driving past at different locations around town."} +{"image_id": 25216, "caption": "The image features a black tray filled with various food items, including waffles and broccoli. There are multiple plates of different sizes placed around the table to serve these dishes in an elegant setting for guests or diners at home. A spoon is also visible on one side near some bowls containing vegetables like carrots that add variety to this meal selection. In addition, there's another plate nearby featuring more delicious-looking treats such as cheese balls arranged artfully next to each other along its surface area."} +{"image_id": 221554, "caption": "The image features a living room with white walls and wooden flooring. There are several items on display, including two dresses hanging from the wall in different locations near each other as well as multiple pairs of shoes placed around various parts within reach or close to them. A handbag is also visible nearby one pair of high heels atop an ottoman located towards left side corner area by some chairs against another part's right edge section closer toward center-right region where there appears yet more furniture such as armchair(s). In addition, vases can be seen scattered throughout this spacious interior setting - three potted plants adorned across top corners along opposite sides while others rest upon tables situated either next to windowsills (two) positioning themselves above floor level slightly higher than surrounding areas."} +{"image_id": 215002, "caption": "The image features a man sitting at his desk, surrounded by various computer equipment. There are two monitors on the table in front of him and another monitor placed to one side near an armchair next to it. A keyboard is also present nearby for typing purposes while there's no mouse visible within this scene. In addition to these electronic devices, several books can be seen scattered around or resting against other objects such as chairs or tables throughout the room."} +{"image_id": 219271, "caption": "The image is a black and white photograph of an event in the mountains, possibly during construction or transportation. There are several people gathered around to watch as trucks with cranes lift large containers off another vehicle on top of them using their hook arms while others stand nearby observing this process taking place near some trees atop hillsides overlooking valleys below. In addition to these vehicles involved in lifting operations, there're also other cars parked along one side of the roadway that runs through mountainous terrain towards distant peaks visible behind it all."} +{"image_id": 126925, "caption": "The image features a large clock placed in front of an old-fashioned fence. It is situated on the sidewalk, surrounded by trees and plants that add to its charm as well as providing shade for visitors passing through this area during their outdoor activities or walks around town. There are several people visible throughout the scene: one person standing near another individual who appears closer towards us; two more individuals can be seen further away from each other along with some additional smaller groups scattered across different parts within viewing distance but not necessarily interactively involved at present time."} +{"image_id": 559440, "caption": "The image features a small bathroom with an open shower stall and toilet. There is also another sink in the room, which appears closer than some of its counterparts further away from it on either side or behind other objects within viewing distance near each corner around this area. A bottle can be seen placed close by one edge next to two cups that are positioned at different heights along opposite sides towards top corners adjacent to their respective sinks' basins. Additionally, there seems to have been water spilled somewhere nearby as evidenced through various wet patches scattered across parts of both floors throughout most areas visible inside the scene except for underneath furniture items like bedsheets hanging over chairs located against walls outside these spaces."} +{"image_id": 253455, "caption": "The image depicts a busy airport terminal with people waiting for their luggage at the baggage claim area. There are several individuals standing around, some of them holding suitcases or backpacks in various positions throughout the scene while others wait patiently to collect and retrieve items from the conveyor belt-like structure near center stage. In addition to these passengers awaiting arrival information about their belongings, there is also an escalator visible on one side that leads upwards towards another part of this large public space within the building's interior."} +{"image_id": 502599, "caption": "The image features a large hangar with several airplanes on display, including two small planets and one larger plane. There are three different types of aircraft visible in the hanger: an orange fighter jet near top left corner; another smaller yellow-orange propeller type flying machine towards bottom right side; as well as multiple other objects that could be either additional props or parts for maintenance purposes scattered throughout various locations within viewing distance from each other around this area inside the building's interior space."} +{"image_id": 578454, "caption": "The image features a bathroom with an open shower and bathtub. There is also another toilet in the room, which appears closer towards one end of it compared to other objects within this space such as bottles or cups that are scattered around on top shelves near both ends of the tub area. A sink can be seen placed next to either side wall by the doorway entrance into the restrooms from outside spaces like hallways leading therein. Additionally, two mirrors hang above each corner at opposite sides across different height levels for better visibility while getting ready inside these facilities."} +{"image_id": 503983, "caption": "The image features a street sign with the name \"Skidblad\" in front of an impressive church tower. There are several people visible throughout this scene, including one person standing on top right and another nearer to center left sidewalk area. A car is parked towards bottom-right corner while two trucks can be seen further away from each other at opposite sides along the roadway leading upwards toward Skydbron Church Tower's entrance gatehouse building located behind it all."} +{"image_id": 372807, "caption": "The image features a zebra standing in the middle of an open field, surrounded by trees. There are several other animals visible around it: two more horses can be seen on either side and one horse is closer to us at top right corner while another animal appears further away from our viewpoint towards left bottom area near some bushes or shrubs growing there. In addition to these creatures, various tree trunks appear throughout this lush green landscape with multiple branches extending upwards into different directions across its surface."} +{"image_id": 553034, "caption": "The image features a group of giraffes standing in an enclosure surrounded by rocks. There are three adult-sized and one baby/juvenile sizing, all facing the same direction towards each other or away from their surroundings as they stand on top of some dirt patched areas within this rocky environment. In addition to these four animals, there is another animal present \u2013 possibly either more than two cows grazing near them at different locations throughout the scene. A few trees can be seen scattered around the area providing shade for both humans visiting with cameras nearby capturing moments among nature's creatures while enjoying themselves amidst beautiful scenery created through various elements like stones stacked up high against walls forming natural structures that add depth into viewers\u2019 perception when looking closer upon it..."} +{"image_id": 358606, "caption": "The image features a cozy living room with wooden floors and furniture. A fireplace is situated in the center of this space, surrounded by various items such as books on shelves near it or placed around its vicinity. There are two televisions visible: one mounted above an entertainment stand to the left side corner of the scene while another TV sits atop some cabinets located towards right-center area behind other objects like cups scattered across different parts within reach from both sides' sofas. In addition to these electronic devices, there appears to be multiple bottles throughout the environment - three cans positioned close together along top portion; four more spread out over several areas including next to chairs closer toward front section where they appear slightly elevated compared to others nearby them."} +{"image_id": 243989, "caption": "The image features a group of people gathered in front of an outdoor stage, with several skateboards visible among them. One person is holding onto their board and walking towards the left side while others are standing around or sitting on chairs nearby waiting for something to happen next at this event location. There's also another man carrying his own bag as he stands near one end of the crowd area. A few more individuals can be seen scattered throughout different parts of the scene: some stand closer together by each other than they do from those further away; there may even be someone seated off-screen behind these main characters who could potentially join into any upcoming activities happening during that daytime gathering spot."} +{"image_id": 376046, "caption": "The image features a large orange train engine on the tracks, with several cars following behind it. There are at least six cargo containers visible in total: three to five of them near or next to each other and one further away from its companions towards left side edge of frame; another container is positioned closer toward right-hand corner area while two more can be seen slightly farther down track ahead. A cloudy sky dominates over this scene as well, adding an atmospheric touch that complements both nature's elements outside and industrial activity within viewers\u2019 field of vision"} +{"image_id": 238310, "caption": "The image features a woman holding an umbrella in the center of attention, while she is taking photos with her cell phone. She appears to be standing underneath or near some sort of tent structure that can also been seen on both sides and at its top part. There are several people around this area as well: one person stands close by next to another individual who seems more distant from them; two other individuals stand further away towards left side corners respectively. A few additional faces appear scattered throughout different parts within view range but not necessarily interacting directly among themselves yet still present for capturing moments during their outdoor event experience together."} +{"image_id": 65231, "caption": "The image features a tall brick tower with two clocks on its sides. One of the hands is pointing to 12:05, while another hand points towards an unknown time in between those hours and minutes. There are several trees visible around this building structure as well \u2013 one tree can be seen atop left side near top-center area; others appear scattered throughout different parts along both edges or slightly closer toward center bottom section."} +{"image_id": 225693, "caption": "The image features a bedroom with wooden floors and hardwood furniture. A large, multi-colored quilt covers the main sleeping area of this room on top of an unmade double or queen size mattress that is placed in front of two closet doors at opposite ends near each other along one wall. There are several items scattered around within reach throughout the space: three books can be seen to either side left (left) corner; another book rests closer towards center right part of the scene by itself against some wood panel walls next to it as well. Additionally there're four pictures positioned across different parts of the interior - close together above both sides upper corners from bottom upwards direction respectively, while further away but still visible hanging over lower portion between them horizontally aligned pairwise."} +{"image_id": 1029, "caption": "The image features a large airplane flying through the sky on an overcast day. It is descending towards its destination, with clouds covering most of them in gray tones and some patches visible at various heights above it. A barbed wire fence can be seen running along one side or edge near where people might stand to watch this scene unfolding below their feet \u2013 possibly from inside buildings nearby as well."} +{"image_id": 539226, "caption": "The image features a large airplane flying high in the sky, with its wingspan stretching across most of it. There are several people visible on either side or below this plane as well - some closer to one another and others further away from each other along their respective sides near where they're standing underneath the aircraft. A street light is also present nearby atop an elevated structure that appears like part of urban infrastructure such as traffic lights for pedestrians crossing streets safely during daylight hours when there may be more foot-traffic than usual due to school being out early after summer break has ended earlier around August 2019 \u2013 July/August timeframe (exact dates vary)."} +{"image_id": 31882, "caption": "The image features a group of people riding in an old-fashioned, open wooden cart. They are sitting on the back seat and holding onto each other for support as they travel through some sort of forest or rural area with trees surrounding them all around their pathway. There is also another person standing near one side of this vehicle to provide additional balance while it moves along its way forward towards unknown destinations ahead. A purple umbrella can be seen held by someone among these passengers who may have been caught off guard due to unexpected weather conditions during that day's journey into nature."} +{"image_id": 461898, "caption": "The image features a woman wearing glasses and playing with the Nintendo Wii remote. She is standing in front of another person, who may be her friend or family member watching from behind as she plays video games on their console system. There are two other people visible further away towards one side \u2013 possibly additional friends joining to play together while enjoying this interactive game experience at home."} +{"image_id": 554154, "caption": "a green living room with white furniture and chandelier"} +{"image_id": 166344, "caption": "The image features a painting of an older man wearing top hat and suit, sitting at his desk with the laptop open in front him. He is focused on working or browsing through something online as he uses this device to stay connected digitally while still maintaining traditional values such as elegance by dress code attire. In addition to these elements within the scene itself, there are two cups placed near each other close enough for someone's hand reach them easily if they were holding one cup during their work session next door from another person who might be using it too."} +{"image_id": 298924, "caption": "The image features a table with various dishes and bowls of food. There are two large plates on the left side, one containing noodles in white sauce next to some meat chunks (possibly pork), while another plate has rice mixed together with vegetables such as broccoli or carrots near it. A smaller blue-and-white ceramic serving spoon is placed close by for easy accessibility when eating from these meals. On top right corner there's an additional small round container filled up mostly likely contains condiments like soybean paste which can be used alongside other ingredients during cooking process but not visible here due its size being too big compared others items present at this scene.."} +{"image_id": 391392, "caption": "The image features a rear view mirror of an SUV, reflecting the scene in front. A person is riding their bicycle on what appears to be dirt or gravel road near some trees and bushes growing along it. There are several cars visible behind them as well \u2013 one closer than others towards left side while another car can also been seen further away from right-hand corner with its back facing us partially obscured by foliage atop hills beyond that area's horizon line."} +{"image_id": 115875, "caption": "The image features a man sitting on the floor with his daughter, both of them holding Nintendo Wii remotes. They are playing together in their living room while enjoying some quality time as father and child bonding over video games or other activities they might be engaging into during this moment captured by our photographer's lens. In addition to these two individuals being present at home for an enjoyable activity session, there is also another person visible towards one side \u2013 possibly someone else who joined later but still partaking in fun times within that same space shared among all three people involved herein."} +{"image_id": 513125, "caption": "The image features a small dog sitting inside an open suitcase, which is placed on the floor. It appears to be enjoying its time in this unusual setting as it holds onto something that could possibly resemble clothing or fabric within one of two pockets located near either side of the bag's opening area \u2013 likely representing some kind of playful activity for both pet and owner alike! In addition to these elements, there are several chairs scattered around various parts of the room: three dining tables can also been seen at different locations throughout the space; furthermore, another chair sits close by next to them all together with multiple bottles positioned nearby too - perhaps indicating they belong alongside each other during mealtime gatherings?"} +{"image_id": 19786, "caption": "The image features a group of people gathered in an open living room, with one man standing and another sitting on the floor. They are both engaged in playing video games together using Wii controllers or other gaming equipment nearby them. There is also furniture present within this space: two couches can be seen towards either side of the scene - closer to each end respectively; there's no clear indication if they have any occupants at that moment but it seems likely given their presence near some players who might need seating during gameplay sessions. A laptop computer sits off-centered from left edge corner close by where someone could use for additional entertainment purposes like browsing online content while waiting between turns as well."} +{"image_id": 434192, "caption": "The image depicts a canal with two red boats floating down the waterway. One boat is located closer to us, while another one can be seen further away from our perspective on top of it in front and slightly left sideways towards its stern area. There are several people visible around these vessels: some near them or standing by buildings along both sides of this narrow channel lined up against each other like houses built close together for easy accessibility between homes overlooking their respective balconies/porches above street level viewing points at different levels across multiple floors within those structures that surround either end of the river-like setting where they reside alongside various objects such as chairs placed nearby."} +{"image_id": 224342, "caption": "The image features a vase filled with yellow tulips sitting on top of an elegant dining table. There are three chairs placed around the room, two in front and one behind them near another chair that is slightly further away from viewers' perspective but still visible within its surroundings. In addition to these furniture pieces, there appears to be some sort of decorative object or item located atop each seat \u2013 possibly serving as additional accents for this cozy setting."} +{"image_id": 450845, "caption": "The image features a man in blue shirt swinging his baseball bat at the ball, which is flying towards him. He's standing on top of an open field with other people nearby who are watching and possibly participating as well. There appears to be several cars parked around or near this outdoor activity area - some closer than others \u2013 indicating that it might take place within city limits where parking could potentially become challenging for visitors during peak hours when many vehicles come into town."} +{"image_id": 431827, "caption": "The image features a person holding their cell phone in front of them, with the screen displaying an advertisement for Twilight. They are also clutching onto two tickets to see this movie at some point soon or have already seen it beforehand and want another chance again later on. A book is placed next to these items as well \u2013 possibly related content about Edward Cullen from one's favorite vampire series?"} +{"image_id": 8021, "caption": "The image features a man in suit and tie, giving an engaging presentation on stage. He is standing at the front of his audience with several people sitting behind him to watch or listen attentively as he speaks about something important for them all likely related to business matters such as finance topics like investments or financial planning strategies that could help their future successes within this field they are interested in pursuing further educationally speaking from experts who have been successful themselves through various means over time by sharing valuable insights into these areas where one can learn more effectively than just reading books alone which may not be enough sometimes especially when it comes down to practical application aspects involved therein so many different ways you might want some guidance along your journey towards achieving those goals"} +{"image_id": 520301, "caption": "The image features a brown dog with its head out of the window, looking outside while riding in an open vehicle. It appears to be enjoying being on this adventure and taking it all-in through his curious eyes as he gazes at what's happening around him from inside or beyond the car windows. There are several other dogs visible throughout the scene: one is positioned closer towards left side nearer another person; two more canines appear further away behind them both but still within reachable distance for their attention if needed during traveling together by roadside vehicles like cars or trucks that pass along these roadsides frequently carrying passengers including pets who enjoy experiencing new surroundings alongside humans they love spending time with..."} +{"image_id": 515742, "caption": "The image features a woman standing near an open fire pit on the beach. She is holding something in her hand, possibly cooking or preparation for food over this outdoor oven-like structure located atop sandy terrain with some rocks and logs nearby it as well. There are several people visible around them \u2013 one person sitting to their left side while others can be seen further away from each other along different parts of the scene's periphery. A backpack rests close by among these individuals scattered across various positions within viewpoint range towards both sides of the frame"} +{"image_id": 106411, "caption": "The image features a man sitting at an outdoor table on the balcony of his hotel room, working with laptop in hand. He is surrounded by various chairs and tables placed around him for convenience while he works from this location overlooking water views towards boats sailing past nearby islands or buildings along coastlines visible through windows behind them both to left side (left) as well right-side viewpoints further away but still within reachable distance nearer shorelines that are partially obscured due to trees blocking some portions beyond their immediate vicinity yet not obstructed entirely throughout entire scene's panels."} +{"image_id": 386012, "caption": "The image depicts a beautiful beach scene with many people enjoying the day. There are several kites flying in various directions, creating an impressive sight against the blue sky and ocean backdrop. Some of these colorful parachutes can be seen closer to shore while others appear further out at sea level or higher up above it all. In addition to those soaring through air currents on their own strings attached by hand-held ropes called handles, there is also another group that appears more stationary nearer towards land \u2013 perhaps waiting for better wind conditions before taking flight themselves? Overall, this vibrant setting showcases both relaxation amidst nature's beauty as well as adventure seeking individuals engaging actively within its elements"} +{"image_id": 397327, "caption": "The image features a small, white bathroom with an open shower and toilet. A sink is placed next the door of this room in close proximity near both objects for easy accessibility while using them simultaneously or separately as needed during your visit therein. There are two blue hand-held items visible within the scene: one on top left corner by the wall behind it; another further down towards right side closer to center area between other elements present inside the space such as tiles around floor corners that add texture contrasting against light colors used throughout restrooms' decoration like walls painted offwhite color along edges surrounding all surfaces except bottom half where they meet flooring surface covered mostly beige shades alternating occasionally into lighter hues at some locations across entire interior design scheme."} +{"image_id": 410437, "caption": "The image features a snowy street with an orange fire hydrant covered in freshly fallen white powder. A sign is also visible, partially obscured by the surrounding winter weather and its own accumulation of frozen precipitation on top. There are several cars parked along both sides of this roadway as well - some closer to each other while others appear further apart from one another towards either end or middle sections of the scene. In addition, there's traffic lights positioned at various locations throughout the area for safety purposes during these wintry conditions"} +{"image_id": 255536, "caption": "The image features a group of chairs and an umbrella placed underneath them, sitting on the sidewalk near some grass. There are several people in various positions around these items: one person is standing to their left while another sits closer towards center-right with two other individuals nearby as well \u2013 all three appear engaged or interested by what's happening at this location outside next to traffic passing over bridges above it seems like they might be waiting for something important there too!"} +{"image_id": 231831, "caption": "The image features a black and white cat sitting on top of an open red desk, reaching up to grab something from the surface. There are several items scattered around this area: two cups placed near each other at different heights; one cup is closer while another appears further away in front left side corner positioned slightly higher than its counterpart next door. A book can be seen lying close by as well \u2013 it's located towards right-center part with some distance between itself and both coffee mugs mentioned earlier. Additionally, there seems to be more books nearby or possibly stacking underneath them due to their presence being obscured behind objects like papers that cover parts of these volumes."} +{"image_id": 529270, "caption": "The image features a man wearing glasses and standing in front of an open microphone. He is dressed professionally, with his suit jacket covering most parts of the body except for one arm that's visible on top left side near him holding onto something or possibly gesturing towards it while speaking into the mic stand next to them both at center-right position within their frame area. There are two chairs placed behind this person - closer chair located slightly above right corner from where he stands; further away seat situated more toward upper middle part of background scene. A window can be seen partially obscured by some objects nearby but still providing natural lighting inside the room they occupy together as well as casting shadows across certain areas around these individuals involved herein."} +{"image_id": 127626, "caption": "The image features a street corner with several signs and traffic lights. There are multiple poles on the scene, each displaying various signage for different streets: Ninth Street (Ni 9th St), Brewer's Row/Brewers Alley Way intersection at Beekman Place in Manhattan New York City USA is one of them; there also appears to be an arrow pointing towards left or right directions as well. A large brick building can been seen behind these elements nearing completion construction stage."} +{"image_id": 132288, "caption": "The image features a skateboarder performing an impressive trick on his board, riding down the side of what appears to be either concrete or pavement. He is wearing protectors and helmet while skillfully navigating through this challenging course with precision. In addition to him in action atop his scootering device, there are several other people visible around them who appear engaged by watching from various distances across different parts of their surroundings \u2013 some closer than others towards each end of the scene's periphery area near where they stand along walls that encircle part of it."} +{"image_id": 83462, "caption": "The image features a desk with an old computer monitor and keyboard, as well as various office supplies such as pens. There are two chairs placed near the workspace: one is closer to us on our left side of viewing angle while another chair can be seen further away from it in front right corner area behind some papers stacked up against each other atop shelves or drawers nearby them. A cupboard stands next to these items containing more paperwork that fills most parts of this clutter-filled room except for small spaces around furniture pieces like tables/desks where there might not have been any documents stored yet."} +{"image_id": 213224, "caption": "The image features a dining table with two vases filled to the brim and overflowing, each containing various types of flowers. There are multiple arrangements in both glass containers placed on top of one another at different levels across the surface area of the wooden dinner plate that serves as their base. In addition to these flower-filled vessels, there is also an empty bowl situated near them for further decoration or use during meals if desired by guests sitting around this gathering spot within the room setting depicted herein."} +{"image_id": 145873, "caption": "The image features a large truck driving down the road, carrying an excavator on its back. There are several traffic lights visible in front of and behind this vehicle to help regulate travelers' speed along that particular stretch of highway or street. In addition to these signs indicating different speeds for vehicles approaching from both directions ahead, there is also another sign further upstream nearer one end of the scene which may be providing additional information about construction work being done nearby. A few cars can been seen passing by at various distances throughout the area around them as well"} +{"image_id": 527506, "caption": "The image features a small airplane flying low over the ground, with its propeller spinning rapidly. It is surrounded by trees and grassy fields in front of it as well as some bushes on either side near where people are standing or walking around them to enjoy their surroundings while watching this unique sight unfolding before us \u2013 an old-fashioned biplanet taking off from land into flight!"} +{"image_id": 537982, "caption": "The image features a countertop filled with various vegetables, including carrots and other leafy greens. There are multiple bunches of fresh produce arranged on the surface in different positions across its length \u2013 some closer to one end while others nearer towards another side or middle area. In total there is at least sixteen individual pieces spread out over this scene: four large ones placed close together along both sides; two smaller groups located further away from each edge but still within reachable distance for picking up individually as needed during preparation time."} +{"image_id": 357354, "caption": "The image features a busy street scene with an elephant standing on the sidewalk. A man is riding atop this large animal, which appears to be part of some sort of performance or show in front of shops and buildings along both sides of the roadway. There are several people scattered throughout various parts around him: one person near his head area; another close by but further down towards their legs positioned closer together than others nearby them; two more individuals located slightly behind these first ones farther away from each other yet still within reachable distance for interaction if needed during the event taking place there. Additionally, three cars can also been seen parked alongside either end of the main thoroughfare where they provide transportation options available as well."} +{"image_id": 246076, "caption": "The image features a living room with two dogs and one cat resting on the floor. One dog is lying down near an armchair, while another lies close to it as well in front of some potted plants placed around them for decoration or greenery purposes. A third smaller white-colored puppy can be seen further away from these animals towards left side corner area by itself without any other companions nearby. There are also several chairs scattered throughout this space: three visible ones at different locations - including behind each animal's position \u2013 along with additional unseen furniture pieces that may not have been captured within viewpoint range during photography session."} +{"image_id": 331646, "caption": "The image features a wooden table with various electronic components and tools. There are two red lights, one on the left side of the scene near an open box containing electronics parts for building something related to lighting or other electrical devices such as remote controls placed in front of it. A black television is also present atop another part of this workspace area along its right edge next to some wires connected from different points around that region towards each end of their respective sides \u2013 possibly indicating connections between these elements within the circuitry setup being assembled therein."} +{"image_id": 389197, "caption": "The image features a young boy riding on his surfboard down the water slide, enjoying himself in an amusement park. He is lying flat and appears to be having fun as he navigates through various waves along this ride's pathway towards its end point at pool level near him. In addition to the main focus of the scene \u2013 which are people watching from different locations around them - there appear several other individuals scattered throughout the area who may also have come for some entertainment or relaxation time during their visit here."} +{"image_id": 3149, "caption": "The image features a large clock tower with two faces, one on each side. It stands tall and imposing in the middle of an urban setting surrounded by buildings that are visible behind it or nearby its base area. There is also another building located further away from this main structure to provide context for how big these structures can be within their respective environments. In addition to various windows throughout both sides of some surrounding skyscrapers, there's even more detail present around them such as cars parked along streets near those high-rise edifices."} +{"image_id": 427500, "caption": "The image features a yellow fire hydrant sitting on the sidewalk near an intersection. There are several cars parked in various locations around this area, including one car close to and behind another further down from it towards left-center of frame; there is also at least two more vehicles visible farther away along with some pedestrians walking by or standing nearby them as well. A street sign can be seen partially obscured within view just above center right corner while traffic lights hang overhead overlooking all these elements together creating quite lively scene for commuters passing through that particular spot during their daily routine travels across town streetscape."} +{"image_id": 3934, "caption": "The image features a group of people gathered in an open living room, with the main focus on two young girls playing Wii. One girl is standing and holding her Nintendo controller while another one sits down near them to watch their gameplay or join later if desired. There are several couches throughout this scene: three towards left side (leftmost), four at right center area, five toward middle-right section, six along bottom edge closer together from each other - these latter ones appear more densely packed than others around it; there's also some furniture placed against walls like armchairs scattered across different parts of the space as well. A TV can be seen mounted high up above all those seating arrangements for entertainment purposes during gatherings such as parties where everyone enjoys gaming activities after socializing over drinking wine glass bottles located nearby too \u2013 they seem quite popular among guests here!"} +{"image_id": 61647, "caption": "The image features a table with various desserts and candies, including cakes decorated to resemble teddy bears. There are two large chocolate-covered bear figures on the left side of the scene \u2013 one is closer while another appears further away from it in terms of size difference between them both. A smaller brownish figure can also been seen nearer towards center right part of the picture area among other sweets like cupcakes or cookies arranged around its vicinity as well. In addition there're several bottles placed at different locations across the room - some close by eachother forming clusters within reachable distance for guests during their celebration event."} +{"image_id": 134206, "caption": "The image features a group of women standing in an old-fashioned kitchen, preparing food. They are gathered around the counter and various appliances such as ovens or stoves to cook their meals together while wearing aprons on top of white shirts with black collars. There is also another woman sitting at one end near some cabinets that contain pots for serving purposes during dinner time. In addition, there's more than just these individuals present; other people can be seen scattered throughout different parts within this large space filled by multiple tables where they might sit down after finishing up work tasks like chopping vegetables from bowls placed nearby them."} +{"image_id": 97767, "caption": "The image features a yellow fire hydrant placed on the sidewalk near some red poles. There are two other small trees in close proximity to each of these elements, adding more greenery and life around them. A bench can be seen further away from this scene towards one end of it as well. In addition to all that is visible within viewing distance at ground level or slightly above (such as bushy plants), there's also an airplane flying high up into clouds off-screen leftwardly beyond buildings behind those objects closer by \u2013 indicating another layered perspective for exploration if desired!"} +{"image_id": 338108, "caption": "The image features a man wearing ski gear and standing on the snowy ground, surrounded by other people in various positions. He is holding his skis with both hands while posing for someone behind him or possibly taking photos of himself at this winter resort location near some trees that are visible to one side of their group area. There appears to be several children present as well who may also have been enjoying themselves during these activities outdoors."} +{"image_id": 236457, "caption": "The image features a white Chevrolet truck driving down the road at night. It is parked on one side of an intersection, with its lights illuminating both sides and creating some blurred reflections in front of it due to camera shake or movement during exposure time. There are several other vehicles visible around this scene as well: two cars can be seen further away from each end; another car appears closer towards center left part of the picture while there's also traffic congestion nearer right-center area where three additional automobiles appear together within close proximity."} +{"image_id": 441863, "caption": "The image features a street sign with two signs, one for Boston Avenue and the other reading \"7th Street\". Both of these streets are located in Austin. There is also another tree visible on top right corner that adds to this urban setting's atmosphere."} +{"image_id": 568147, "caption": "The image features a parking meter on the side of an urban street, with multiple cars parked nearby. There are two people visible in different parts of this scene: one person is standing near some trees and another individual can be seen walking towards traffic lights further down from where they stand. A handbag appears to have been left behind by someone who may not realize it's still there or has already moved away without picking up their belongings before leaving for work/school that day."} +{"image_id": 570185, "caption": "The image features a collection of video game equipment, including various controllers and accessories for the Nintendo Wii console. There are two white remotes placed on top left side near each other with one closer to center than another remote further away from it towards right edge corner area. Additionally there is an orange controller located in between them at bottom-right section close by their respective sides next to some wires connected together underneath these items. A few more smaller components can be seen scattered around such as handheld devices or buttons that might belong either separately attached onto something else like steering wheels or possibly parting out different parts into separate pieces during repairs/maintenance workshop setup process later downstream after this photo was taken initially here today..."} +{"image_id": 311746, "caption": "The image features a hummingbird hovering near some pink flowers, with the bird's wings spread out. There are several other plants in close proximity to this scene as well - one of them is located on top left corner and another can be found at bottom right side. A few more smaller green leaves appear scattered throughout different parts within view range from both sides \u2013 they seem like part of an overall garden setting or landscape background behind these blooming red-pinks that attracted attention for their beauty by capturing our gaze towards it while focusing mainly around those colorful blossoms themselves."} +{"image_id": 372233, "caption": "The image features a woman standing in front of an outdoor table, preparing food for her customers. She is holding two sandwiches and placing them on the grill pan over some black beans that are also cooked atop another skillet nearby. There's bread placed around both pots as well \u2013 one near each side with three slices visible from left to right across the top half portion; while there appears only four pieces towards its bottom section closer toward us (left). A car can been seen parked behind or next to this scene possibly indicating it might belong to someone who has come by their establishment seeking delicious meals like burgers served here today!"} +{"image_id": 446574, "caption": "The image features a small bathroom with an open shower curtain, revealing the bathtub and toilet. There is also another tiled area in front of both objects that could be used as storage or for other purposes within this space. In addition to these main elements, there are several bottles scattered throughout various parts around the room: one near the left side wall by the sink; two more on top shelves above each end corner (one closer); three further down towards right-center part underneath some items placed atop them; four additional ones located close together along bottom center section next to tub/toiler combo; finally, yet again five smaller sized liquids situated between lower middle portion adjacent from where they were previously found earlier before reaching upper halfway point across widthwise direction until meeting upwards toward ceiling heights overlapping slightly into neighboring areas nearby their respective locations."} +{"image_id": 77821, "caption": "The image features a young boy wearing skis and standing on the snow-covered ground in front of some trees. He is positioning himself for skiing, possibly preparatory to starting his journey downhill through this woodland area covered with fresh powdery white snow. There are several other people visible throughout the scene as well: one person can be seen further up ahead nearer towards left side while another individual appears closer behind him at right center part of the picture frame. Additionally there's an additional group consisting three individuals located slightly more toward backside portion within close proximity from each other but not overlapping their presence too much among themselves or others around them."} +{"image_id": 401061, "caption": "The image shows a man taking pictures of his dog while riding in the back seat with him. A rearview mirror is visible, reflecting both their faces and parts of other objects such as trees or cars on either side behind them. There are several people present around this scene: one person can be seen sitting atop another car nearby to capture more views from different angles; two additional individuals appear further away towards left-center part of the reflection area within view range but not directly interacted upon by any handheld devices like cameras held up for capturing images during travels together outside."} +{"image_id": 273556, "caption": "The image features a person standing in front of an open toilet, which is located on the floor. There are two bottles placed near or around this area: one close by and another further away from it towards left side corner. A tissue can be seen hanging downwards atop some nearby shelves above both people's heads as well. In addition to these objects within reach for cleaning purposes after use, there appears also several other items scattered throughout different parts of the scene such as books (two), cups/mugs (three) with varying sizes spread across various locations along walls surrounding the bathroom space."} +{"image_id": 114239, "caption": "The image features a woman standing in the kitchen, holding an open bag of food and feeding it to her black cat. She is wearing jeans as she interacts with both animals - one on each side: herself nearer towards left-center position while another sits closer at right center area next to its owner's hand that holds some kind of utensil or tool for preparation purposes such as measuring cups (two are visible). There may be additional items scattered around like bowls placed close by along various parts of countertop surfaces throughout different areas within reach from either person involved during their cookery process together..."} +{"image_id": 544533, "caption": "The image depicts a busy street with several buses parked along the side of it. There are numerous people walking around, some carrying backpacks and others holding handbags or pursues in their hands as they navigate through traffic on foot near these vehicles that have stopped for passengers to board them en route somewhere else. In addition to those waiting at various points alongside one another between two rows of cars, there is also an empty space where more bussing activity might take place further downstream from this point captured by our viewpoint within the scene's frame."} +{"image_id": 64189, "caption": "The image features a young man riding his skateboard down the rail of an outdoor staircase. He is wearing protective gear, including helmets and gloves for safety while performing tricks on this urban environment's handrail feature in front of him atop blue steps leading to another level or platform above them. There are several cars visible throughout the scene: one near top left corner with its headlight illuminated; two more parked further away from each other towards bottom right side (one closer); three additional vehicles can be seen scattered around different parts within view distance \u2013 some farther back than others but still presenting themselves as part of everyday life amidst all these activities happening here during wintertime weather conditions outside their windows\u2026"} +{"image_id": 359442, "caption": "The image features a train yard with multiple tracks and trains. One of the main attractions is an old red freight car that has been graffitied, making it stand out among other cars in various stages on different parts along its lengthy body. There are also several smaller passenger or cargo carriages scattered throughout this scene as well \u2013 some closer to each side while others appear further away from one another across all three sets of rails visible within viewing distance atop two platforms above them. A few more distant railcars can be seen off-screen towards either end of these track sections nearer us too"} +{"image_id": 307074, "caption": "The image features a city street with several traffic lights, including one mounted on the side of an intersection. There are two yellow poles holding up these stoplights in different locations along this busy roadway that is lined by buildings and trees throughout its length. A cloudy sky can be seen above casting shadows over some parts of the scene while other areas remain brightly lit from sunshine or artificial lighting sources nearby. In addition to cars parked at various spots around town near intersections like parking lots for business establishments such as restaurants, there're also trucks present among them \u2013 likely deliveries being made during daytime hours when people commute through their daily routines across multiple streets within urban environments..."} +{"image_id": 8495, "caption": "The image features a skier in an orange and white outfit, holding ski poles while walking on the snowy surface. He is wearing goggles as well to protect his eyes from any potential hazards or elements during competition. There are several other people visible around him who appear not be part of this particular event but rather just enjoying their time atop some nearby slopes with various levels of activity happening throughout them \u2013 one person appears closer than others towards us; another individual can also been seen further away nearer left side edge area where they seem more relaxed compared to those actively participating elsewhere within viewing range"} +{"image_id": 337692, "caption": "The image features a woman riding on the back of her horse, galloping towards an obstacle in front. She is wearing protective gear and appears to be competitively participating at some sort event or competition where horses are used for various tasks such as barrel racing around poles placed strategically throughout their course. In addition to this main activity taking place between two people (the person sitting astride one side), there's another group consisting mainly of three individuals standing near each other with handbags nearby them \u2013 possibly waiting patiently while watching others compete during that particular moment captured by our camera lens."} +{"image_id": 119469, "caption": "The image features a group of sheep grazing in an enclosed field. There are three adult-sized white animals, with one located closer to the center and two others positioned on either side nearer towards each end of their respective sides within the fenced area. In addition to these four main characters, there is another smaller animal nearby that appears more distant from them but still partaking in eating grass together as they all enjoy this peaceful moment underneath trees surrounding the pasture's perimeter. A car can be seen parked offscreen at some distance away behind other objects like bushes or buildings visible further back into the scene"} +{"image_id": 347535, "caption": "The image is a black and white photograph of an old city street scene. A man can be seen standing on the sidewalk, looking at something in front him while cars are parked along both sides near his location. There appears to have been some sort of event or gathering happening nearby as there's activity around one corner with people walking towards it from different directions across various parts of this busy intersection. In addition to vehicles like trucks and sedans scattered throughout the area surrounding the main roadway, several traffic lights also appear visible within view \u2013 two red ones close by each other further downstream closer toward where he stands; another light farther away up ahead signals for drivers approaching that section of town square."} +{"image_id": 194940, "caption": "The image features a table with three bowls of food, each containing different types and colors. There are two small containers on the left side filled mostly by carrots in one container while another has broccoli inside it; both these items have been placed close to their respective cups or pots for easy accessibility during meal preparation time at home. On top right corner there is an open cup that contains some vegetables as well \u2013 likely peppers can be seen near its rim along with other ingredients like tomatoes scattered around them within this dish's contents area. A bottle sits towards center-right part of scene where various fruits such as apples appear nearby from bottom upwards direction."} +{"image_id": 398637, "caption": "The image features a man and woman posing for the camera at an event. They are dressed in formal attire, with her wearing blue dress while he is sported his tuxedo suit - both of them looking elegant together on this special occasion or party night out. In addition to these two individuals standing next each other near some stairs leading upwards from their left side towards another person who appears further away downstair's steps behind him/her (possibly taking photos). There may be more people present around as well but they appear less visible due to various objects obstructing parts of those figures within view range such as handbags scattered across different areas throughout the scene along walls nearby chestnut trees that can also been seen partially obscuring certain portions of background elements like buildings beyond it all."} +{"image_id": 96445, "caption": "The image features a zebra standing in an enclosure, grazing on some grass. It is located near the edge of its pen and appears to be focused solely on eating as it bends down towards the ground for this purpose. There are several trees visible around the area where they can find food or shade from direct sunlight if needed during their feeding time outside. A person stands nearby observing them with interest while enjoying nature's beauty at that moment"} +{"image_id": 456192, "caption": "The image features a group of elephants standing underneath an open-sided shelter, with three adult and two baby ones. They are all gathered together in the shade provided by this structure while they rest or wait for something to happen next. There is also another smaller animal nearby that might be part of their herd but it's difficult to determine its exact position due to limited visibility within the scene."} +{"image_id": 285534, "caption": "The image features a woman sitting in an armchair holding her baby, who is wearing pink. She's also cradling and playing with the child while looking at another teddy bear on top of some books nearby to them both. There are several other items scattered around their area: two cups can be seen placed near each side; there appears to be one book located close by as well \u2013 possibly for reading or storytelling purposes during playtime together."} +{"image_id": 32677, "caption": "The image features a large dog and cat sleeping together on the floor. Both animals are lying down, with one rested near each other in close proximity to ensure they don't disturb their respective owners during slumber time or while relaxation is sought after by both pets at home. There appears to be two cats present: One lies closer towards left side of frame (left edge), whereas another can also been seen further right from center position within viewpoint range but not as prominent compared to its counterpart next door."} +{"image_id": 371326, "caption": "The image features a large banana tree with many green leaves, growing in the middle of an open field. There are several bunches or clusters of unripe and riper-looking fruits hanging from various parts on top branches throughout this scene - some closer to each other than others \u2013 indicating that they're ready for harvesting soon! A few birds can be seen flying around near these trees as well; one is perched atop another branch close by while two more fly across different sections within view."} +{"image_id": 545913, "caption": "The image features a small, shiny silver airplane with its door open. It is parked on the ground and reflecting in an adjacent body of water or surface nearby. There are several people visible near this plane: one person standing to left side close by it while another individual can be seen further away from them both towards right-center area next to some trees behind their backs. A third figure appears closer still at bottom center position as well. These individuals likely have come for viewings during sunny days when they could appreciate such aircraft upclose views against clear skies like those depicted herein."} +{"image_id": 58647, "caption": "The image features a man in an orange wetsuit riding on top of the waves, surfing with great skill. He is standing tall and balanced as he navigates through one particularly large wave while maintains his balance to stay afloat amidst its forceful motion towards him from behind. In addition to this skilled athlete's presence atop the ocean surface during high tide or low light conditions (as indicated by shadows), there are several other people visible within various parts around them: two individuals can be seen nearer left side; another person appears closer right-center area along with some smaller objects like buoys scattered throughout different locations across their surroundings \u2013 possibly indicating that they have been enjoying water activities together beforehand."} +{"image_id": 146999, "caption": "The image features a spacious bathroom with an elegant wooden vanity and sink. A large mirror is mounted on the wall above it, providing ample reflection for grooming or checking one's appearance before leaving home in this luxurious setting. There are several towels placed around various parts of the room: two near each other by the tub area; another pair hanging from hooks close together atop shelves behind them; three more scattered throughout different areas within reachable distance towards either side of the bathtub/shower combination unit. Additionally, there appears to be multiple bottles present \u2013 possibly soap dispensers - located across both sides of the space adjacent to where some hand-held items can also been seen nearby their respective locations."} +{"image_id": 212800, "caption": "The image depicts a group of people riding in an open boat on the water, with several umbrellas held by them. There are 12 individuals visible within and around this small vessel as they enjoy their time together while being protected from rain or sunlight underneath these black-colored canopies. Some passengers appear to be sitting towards one side nearer to you (left), whereas others seem more spread out across different parts along both sides closer to center viewpoint. A few additional objects like bottles have been placed throughout various locations inside the scene for added interest."} +{"image_id": 170048, "caption": "The image features a man standing in an open field, jumping up to catch the frisbee. He is wearing shorts and appears focused on his goal of successfully grabbed it from mid-air while surrounded by other people who are also present at this outdoor event or gathering place for leasure activities like playing with Frisbies. There're several cars parked around him as well - one near each side edge of the scene \u2013 indicating that there might be more individuals participating together here besides just those visible within frame"} +{"image_id": 319024, "caption": "The image features a young girl standing in front of an open refrigerator, looking inside. She is wearing pink clothing and appears to be interested or curious about the contents within her fridge as she leans into it with one hand on top while peering through its doorway from behind another person's backside that can also been seen nearing towards them both at some point during their interaction by this scene captured here. There are several bottles scattered around throughout various parts of the room: two close together next each other closer up; three more further away but still visible along different sections across the area where they appear randomly placed among furniture items like chairs and tables nearby too"} +{"image_id": 532481, "caption": "The image features a person parasailing over the ocean, with houses visible in both background and foreground. There are several people on surfboards or kayaks nearby enjoying their time at sea while watching this exciting activity take place above them. Some of these individuals appear to be engaging actively by riding waves themselves near one another across different parts of the water surface area. In addition, there is an airplane flying high up overhead towards left side of the scene as if capturing aerial footage from its vantage point far away beyond reachable distance compared to those present below it within range closer proximity along coastline shorelines."} +{"image_id": 489344, "caption": "The image features a bathroom with red walls and white tiles. A black cat is lying in the sink, taking up most of it while resting on its back legs near one end. There are two cups placed around this area: close to each other atop an open shelf above them as well as further away from their original position towards left side corners or edges within reachable distance for someone using that part of the room's counter space during washing hands after use. Another cup can be seen closer toward right corner edge by itself without any nearby objects beside it. Additionally, there appears another object resembling either soap dispenser bottle (orange) located slightly higher than others items present inside the scene but still visible against background wall color contrast behind sinks basin faucet fixtures."} +{"image_id": 247259, "caption": "The image features a group of five people sitting around an oval-shaped wooden conference table. They are all using laptops, with four individuals on the left side and one person towards the right end corner near another laptop placed in front of them for better accessibility during their meeting or work session together at this long rectangular boardroom setting. There is also some furniture present within view: two chairs can be seen to either sides behind each individual's seat area; there might have been more seating arrangements but they appear less visible due to camera angle limitations. A cup sits close by as well \u2013 possibly used throughout the day while working from these computers located inside such elegant surroundings."} +{"image_id": 105220, "caption": "The image features two people skiing down a snowy slope, with one person in the lead and another following closely behind. They are both wearing skis on their feet as they approach an archway or gate atop some steps leading to more terrain ahead of them \u2013 possibly markings for finishing lines during competitions like races where participants cross gates along designated courses. In addition to these individuals enjoying winter sports together near each other's side by step number three (counted from left), there is also equipment scattered around such as backpacks placed close beside various spots throughout this scene: four visible ones can be seen towards top right corner; five further away but still within reachable distance between numbers six through ten; seven additional packs located closer again just before reaching twelve o\u2019clock position across all rows except bottom row which has only one bag present nearby its corresponding spot count nine outwards slightly upward directionally speaking)."} +{"image_id": 537081, "caption": "The image features a white plate with two slices of pizza on it, placed next to each other. A fork and knife are also present near the plates for serving or eating purposes. There is another utensil nearby \u2013 possibly an additional spoon - that can be seen in one corner of the scene. In addition to these items, there's more food visible around them: some olives scattered across different parts of both tables as well as various bottles positioned atop shelves above either side table area."} +{"image_id": 184700, "caption": "The image features a clean and well-lit bathroom with white walls, tiled floors, mirrors on the wall above sinks. There is an open shower stall in one corner of this room that has two doors - both are visible from different angles within the scene. A toilet can be seen near another sink area atop which there're three bottles placed neatly side by side next each other underneath it. Additionally, several hand soap dispensers have been strategically positioned around various parts inside or outside the restrooms for easy accessibility during use."} +{"image_id": 446958, "caption": "The image features a baby shower cake with an adorable teddy bear sitting in the middle of it. There are several bottles placed around and near to this special birthday celebration, including one on top left side close by another small blue object that could be either decorative or functional for serving drinks during party time. A bowl is also visible towards right-center area among other objects scattered across different parts of table surface where guests might gather together while enjoying their refreshments from various containers nearby them as well."} +{"image_id": 197254, "caption": "The image features a street scene with two horses pulling an old-fashioned carriage, which is parked in front of the building. There are several people walking around on both sides and behind them near various buildings or structures along this cobblestone roadway. In addition to these pedestrians, there's also another person standing further away from where they were originally located but still within viewing distance towards one side of the frame. A few more individuals can be seen scattered throughout different parts of the area as well \u2013 some closer together while others appear farther apart - creating movement across multiple areas at once."} +{"image_id": 261333, "caption": "The image features a person holding onto the neck of an adult black cat, who is drinking from what appears to be either water or another liquid. There are two cups in close proximity: one on top and other near it at its side \u2013 possibly used for serving liquids during playtime with their pet cats!"} +{"image_id": 426166, "caption": "The image features a bicycle parked on the sidewalk in front of an old building. It is leaning against one corner, with its handlebars facing towards us and rests close to another object placed nearby \u2013 possibly for support or protection from any potential damage caused by passing vehicles while it's left unattended outside overnight. There are several other objects scattered around this scene: two cups can be seen near each end of the street; there appears to also be some sort of container located closer up along the curbside edge next to where people might walk past during their daily activities. A handbag hangs off someone else\u2019s arm as they stand further away atop steps leading into what seems like either inside living quarters within that same red-colored house behind them..."} +{"image_id": 50926, "caption": "The image features a group of people standing in an open field, enjoying the sunny day. There are several individuals scattered throughout this area with some closer to each other and others further apart from one another. In addition to these figures on foot or sitting down near trees along their sides, there is also at least two kites flying high up above them \u2013 likely being flown by children who have gathered for fun activities outdoors during summer time. A car can be seen parked off-screen towards left side while various handbags appear around different parts within reach distance among those present here as well"} +{"image_id": 337497, "caption": "The image features a herd of elephants standing near the water's edge, with some individuals drinking from it. There are five adult and two baby/calf-size animals in total; they appear to be enjoying their time together by taking advantage of this natural resource for hydration or other purposes like socializing around each others'. In addition to these large creatures, there is also an object visible on one side \u2013 possibly another animal that may have been partaking as well before leaving its mark behind..."} +{"image_id": 126137, "caption": "The image features a man in white clothing, likely playing tennis on an outdoor court. He is holding his racket and appears to be engaged with the game as he moves around during play while other people are watching from various positions nearby or standing at different distances away along both sides of him. There's also another person sitting off-screen towards left side who might have been involved earlier but has now taken their seat for observation purposes only. A few chairs can be seen scattered throughout the scene near some spectators - one chair located closer up front by two individuals (possibly players), others further back behind them where more audience members sit down after having watched partway through the match so far."} +{"image_id": 558864, "caption": "The image features a dining table with various food items placed on it. A white plate is filled to the brim, containing carrots and mashed potatoes alongside meatballs or chicken pieces in gravy sauce \u2013 possibly turkey dinner leftovers from Thanksgiving Day celebrations earlier that day at home for some people who are enjoying their meal together around this wooden dinning set. There're also two cups present near each other towards one side of the scene - likely used by those sharing an intimate moment over delicious homemade comforting fare during holiday season festivities."} +{"image_id": 319456, "caption": "The image features a woman standing in front of the bathroom mirror, taking her own photo. She is wearing white clothes and has dark hair that covers most parts of her face except for one side where she appears to be smiling or laughing at something behind us \u2013 possibly herself while looking into another room through an open doorway on either left-hand corner (left) or right hand edge/corner(right). In addition to this person's reflection captured by their camera phone held up high above them towards ceilings with lights shining down from it, there are several other objects visible within view: two bottles placed near each end along both sides; three cups scattered around different areas close together but not touching any walls - they appear as if someone might have just finished using these items recently before leaving the area temporarily without cleanup yet still present inside the frame; also spotted nearby underneath some cupboards hanging over top cabinets located closer toward center bottom part of scene, which could suggest more storage space available elsewhere beyond what can currently been seen herein."} +{"image_id": 130516, "caption": "The image features a white truck parked in the middle of an underground subway station. There are several people standing around and near it, including one person on each side at different distances from the vehicle's front wheels to its rear end. Some individuals appear closer while others seem further away as they interact with or observe this large cement mixer being loaded onto another train car above them through some sort of loading process involving multiple vehicles moving backward into position for transportation purposes within their respective stations."} +{"image_id": 546283, "caption": "The image features a person holding up two hot dogs in buns, which are placed on top of each other. These delicious-looking sandwiches appear to be served with chili or some type of sauce inside the breads and may have been prepared for an event like tailgating at football games where people often enjoy food while watching their favorite teams play together as fans from different schools come out supporting them during big events such as Super Bowl Sunday parties."} +{"image_id": 219261, "caption": "The image features a horse-drawn carriage traveling down the street, with two people sitting in it. One person is seated on one side of the cart and another can be seen closer to its center area. There are several cars parked along both sides of this busy city roadway - some nearer or further away from each other than others depending upon their position within traffic flow patterns at that moment when captured by our camera's lens viewpoint. A truck also appears towards the right edge corner of the scene as part of an urban landscape filled with vehicles moving about during daytime hours"} +{"image_id": 183657, "caption": "The image features a bowl of orange slices floating in an icy pond. There are several oranges scattered around the water, with some closer to each other and others further away from one another on different sides of the ice-covered surface area near rocks at various distances along its edges. A few small stones can be seen nearby as well \u2013 possibly used for support while enjoying this winter activity by dipping into cold waters surrounded by frozen chunks that create interesting patterns throughout their surroundings."} +{"image_id": 148272, "caption": "The image features a small white and orange cat sitting inside of an open purse, which is placed on the floor. There are two other cats in different positions within or nearing this scene \u2013 one to its left side while another appears closer towards it from above with more focus drawn upon them due possibly being featured as part of some sort of captioned message accompanying their presence therein\u2026"} +{"image_id": 474675, "caption": "The image features a small wooden table with an alarm clock placed on top of it. A plate is also present, sitting in the middle area near one edge and slightly closer to another corner than other parts around its positioning. There are two chairs situated next to each side of this setup: One chair can be seen more towards left-center while the second sits further right from center stage but still within reachable distance for someone seated at either end or nearby tableside seats. In addition to these elements, there's room enough between them so that people could easily move about without bumping into anything during their visit here."} +{"image_id": 344483, "caption": "The image features a zebra standing in the middle of an open field, surrounded by tall grass. There is only one other tree visible nearby and it appears to be quite small compared to its surroundings or even close enough for shade from direct sunlight on this warm day outdoors. In addition to these elements, there are several more trees scattered throughout different parts of the scene further away but still within viewing distance nearer towards us as we look at them through our vantage point overlooking their presence across various areas around that particular spot where they stand together with some bushes sprinkled here and there among those larger greenery plants surrounding both sides along most part of the landscape's perimeter..."} +{"image_id": 464153, "caption": "The image features a man riding on the back of an orange scooter, with another person sitting in front. They are both wearing helmets and appear to be enjoying their ride through town or city streets near some buildings that have blue doors visible behind them. There is also someone standing nearby watching as they pass by \u2013 possibly waiting for transportation themselves? In addition to these individuals, there's more activity happening further downstream: two people can been seen walking along one sidewalk while others stand around observing from different locations throughout this urban scene filled with steps leading upwards towards various structures such as houses and shops."} +{"image_id": 317130, "caption": "The image features a street scene with several signs and road markings. There are two green directional signposts, one on the left side of the frame near an intersection point at 12 o'clock position (left), while another is located closer to noon time in between cars parked along both sides of the lane towards southbound traffic from San Francisco Bay area heading northward through California State Route Highway One Coastside Scenic Drive toward Santa Cruz Mountains or Monterey Peninsula coastline scenery views for tourists visiting this region during their travels across America West Coast states like Oregon/Washington state border areas as well). A third smaller white arrow pointing right can be seen further downstream within view distance but not directly visible due its placement behind other objects obstructively blocking it partially outwards into space beyond nearby trees growing alongside the highway routeway leading up Northwest Pacific Ocean shoreline regions around Half Moon Bay Beach Park."} +{"image_id": 142484, "caption": "The image features a cat lying on its back, stretching and relaxed in the middle of an open space. It is resting comfortably atop one side or another part of what appears to be either wooden chair with cushion coverings placed near it for support during sleep time. There are two other chairs visible nearby \u2013 both located towards left-hand sides within close proximity but not directly next each other as they have some distance between them. A cup can also been seen positioned slightly above center right area where there's more activity happening around that particular spot involving multiple objects like books scattered across different parts of this room setting up various arrangements throughout their surroundings."} +{"image_id": 262440, "caption": "The image features a large, white bathroom with tiled flooring. There is an open bathtub in the center of this room and two sinks placed on either side near it - one closer to us than another further away from our viewpoint towards them both simultaneously. A shower can be seen atop some steps leading upwards into its enclosure above these fixtures. In addition to those main elements within the space itself, there are several other items present: three bottles scattered around various parts throughout; four cups positioned across different areas (two close together by each sink); five dishes located nearby or slightly farther back along walls surrounding most sides except for left-hand wall where only six plates appear visible overall)."} +{"image_id": 163155, "caption": "The image features a cat sitting on the ground next to an open doorway, looking out into its surroundings. It is positioned near some bricks and appears focused or curious about something outside of view in front of it towards left side (left-center). There are several other cats visible throughout this scene as well: one at top right corner with white fur; another further down along bottom center area that seems more relaxing than others around them due perhaps because they're not facing any particular direction but rather just restful by nature; two additional ones can be seen closer together toward upper middle section - likely siblings who may have come across each other while exploring their environment within close proximity."} +{"image_id": 535608, "caption": "The image features a beautiful beach scene with people enjoying the sunny day. There are several chairs and umbrellas placed on top of sandy terrain, providing shade for those who want to relax in their own way or enjoy some time outdoors underneath them while soaking up rays from above. In addition to these items scattered across different parts of the area near water's edge, there is also an airplane visible flying over head towards left side corner of this scenic viewpoint at sea level."} +{"image_id": 14892, "caption": "The image features a man and his young child, both sitting on the floor. They are holding toothbrushes in their mouths while brushing teeth together as they appear happy with each other's company during this activity at home or elsewhere indoors. There is another person standing behind them near one of two chairs placed nearby; possibly it could be an additional family member who joined for some fun time playing games like hide-and seek around furniture pieces such as couch/chair combinations that can also been seen throughout various parts within the scene."} +{"image_id": 550864, "caption": "The image features a spacious kitchen with wooden cabinets and countertops. There are several appliances in the room, including an oven on one side of it near some chairs placed around tables or counters for dining purposes. A refrigerator is also present towards another corner next to two wine bottles that add elegance to this modern-looking space. In addition to these items, there're multiple pots scattered throughout various parts within reach from both sides \u2013 left (eight) and right (four). Some bowls can be seen as well: three located close together atop each other by the sink area; four more spread out across different locations along either edge closer toward the center table/council seating section."} +{"image_id": 440928, "caption": "The image features a large airplane statue on top of an open field, surrounded by trees and grass. It appears to be in the middle or at one end of this area with no other objects nearby except for some cars parked near it along various parts around its perimeter. There are several vehicles visible throughout different sections: two trucks placed close together towards left side; another car positioned closer toward right-center section next to them but further away from both main groups (trunks); three more distant automobiles scattered across multiple areas within view \u2013 including those located farthest behind center scene as well as others situated slightly off frame's edges such that they appear partially obscured yet still discernible through partial visibility gaps between surrounding elements like tree branches..."} +{"image_id": 186822, "caption": "The image features a bathroom with green walls and white cabinets. A sink is placed in the center of this room, accompanied by various items such as towels on either side or nearby it. There are two bottles visible near one corner area: an orange-colored liquid soap dispenser located atop another cabinet next to them; both objects add some color contrast against their surroundings while providing practical functionality for daily use within the space. Additionally, there's also a horse figurine positioned above these shelves that adds character into what appears like someone\u2019s personalized home decoration theme throughout different areas around the house."} +{"image_id": 115222, "caption": "The image features a street corner with two palm trees and several cars parked on the side of it. There are three traffic lights visible in this scene, including one atop an intersection sign pole near where vehicles can be seen passing through or stopping to wait for their turn. A stoplight is positioned closer towards us while another further away from our viewpoint appears more distant but still within reachable distance by drivers approaching that area. In addition to these elements, there's also some pedestrian activity happening around them as people walk along either sides of the roadway nearby."} +{"image_id": 9426, "caption": "The image features a small red and white airplane flying through the sky on an overcast day. It is in mid-flight, with its wings spread out to provide stability as it navigates across the cloudy blue background of this aerial viewpoint. There are several people visible around or near where they might be watching from below \u2013 possibly enjoying their time at home while observing such beautiful sights above them during sunny days like today!"} +{"image_id": 290839, "caption": "The image features two men and a dog on the deck of an open blue boat, fishing in calm waters. One man is standing atop one end while another sits nearer to center positioned closer towards his partner's side with their gear ready for action. A third person can be seen further back from them but still close by as they prepare themselves before casting out into deeper water or possibly returning after catches have been made earlier that day. In addition to these three individuals enjoying time together during this leisure activity, there are several other objects present around the scene: four bottles scattered across different parts of the area; some located nearby each individual participant (two next to people), others situated more centrally within reachable distance between all participants involved \u2013 making it possible everyone could access any needed items easily without having too far away distances required when reaching overboard."} +{"image_id": 285742, "caption": "The image is a black and white photograph of an old-fashioned city street, with several cars parked along the sidewalk. There are at least 12 vehicles in total on this busy urban scene - some closer to each other while others appear further apart from one another down the line. A few people can be seen walking around or standing near these classic automobiles as they go about their daily activities amidst vintage architecture surrounding them."} +{"image_id": 457271, "caption": "The image features a woman holding her baby in front of two horses inside their stable. One horse is standing on the left side, while another one can be seen closer to center-right area within its enclosure or stall. Both animals seem curious and interested by what's happening around them as they look up towards people nearby. There are several other objects scattered throughout this scene: three bottles placed near each corner at different height levels; an umbrella positioned close behind some hay bales against wooden walls with various fencing elements visible along both sides of it all over the background horizon line that extends beyond these structures into open space outside where more trees appear further away from us."} +{"image_id": 277955, "caption": "The image features a blue and yellow train traveling down the tracks on an overcast day. There are several people visible in various locations around or near to where they might be waiting for their ride, possibly at one of many stations along this route that connects different parts of town together by rail transportation. Some individuals can also been seen standing further away from each other towards either side of track 1039254867-A (the main line)."} +{"image_id": 395531, "caption": "The image features a cute stuffed panda bear sitting next to an outdoor statue of Buddha. Both the teddy and statues are placed on top or near wooden benches, adding charm to this peaceful scene in nature surrounded by plants such as bushes at various locations throughout it all."} +{"image_id": 266400, "caption": "The image features a street scene with several motorcycles parked along the sidewalk. There are at least 10 bikes lined up, some of them yellow and others blue or black in color. They appear to be various models from different manufacturers such as Suzuki Motor Corporation's GSX-R series (yellow), Kawasaki Ninja Z650 ABS/Z900RS C2BKA model(blue) among other brands like Honda CRF450L DCT Rally Raid Edition bike which is also present on this lineup. Some people can been seen walking around near these vehicles while another person stands further away towards one end of the row of parking spots for their convenience during shopping trips nearby"} +{"image_id": 291932, "caption": "The image features a bench with two pairs of shoes placed on it, sitting outside in front of an entrance to the building. There are several graffiti-covered walls surrounding this area and adding colorful elements throughout its surroundings. A handbag is also visible nearby near one end corner of the scene while another bag can be seen further away from that same location towards left side edge of the picture frame. In addition to these items scattered around the outdoor space, there's more than just footwear present \u2013 other objects like bottles have been discarded or abandoned at different locations within viewing range as well"} +{"image_id": 237942, "caption": "The image features a man standing in the middle of an open field, wearing black pants and tie. He is posing for his photo while surrounded by trees on all sides except one side where there are no visible tree trunks or branches present near him at this moment. There's another person located further away from us to their left who appears smaller than them but still within reachable distance if they were interacted with during that time period when both individuals stood together outside underneath those shade-providing canopies above themselves as well..."} +{"image_id": 118584, "caption": "The image features a group of elephants standing near the water, with some individuals closer to it and others further away. There are at least four adult-sized animals in total: two on one side towards each other while another pair is positioned slightly apart from them by about 10 feet or so along an edge next to trees that surround their area. A few smaller ones can be seen scattered around as well \u2013 possibly young calves accompanying these larger members during this moment captured through camera footage likely taken within Africa's wildlife habitats like national parks such as Kruger National Park (South African)."} +{"image_id": 405440, "caption": "The image features a computer keyboard and remote control placed on top of an old map. There are several wires connected to the electronic components, including some that appear close together near one edge while others stretch across different parts of the scene towards various locations around it or connecting with other electronics nearby like cables in front left corner area. A mouse can be seen resting atop another part of this setup as well."} +{"image_id": 66231, "caption": "The image features a busy kitchen with several chefs preparing food. There are at least six people in the scene, including three men and two women who appear to be working together on various tasks related to cookery or meal prep. In addition to these individuals wearing chef hats, there is another person standing near one of them towards left side corner of the room. Various utensils can also been seen throughout this area: knives (two), forks/spoons(four) placed around different parts of countertops as well as bowls scattered across it - some close by each other while others further away from their respective owners' stations. A sink located closer right edge serves multiple purposes such as washing dishes after use during service time but could still have water running through its spout when not actively being used."} +{"image_id": 362520, "caption": "The image features a young skateboarder performing an impressive trick on his board, with the camera capturing him in mid-air. He is wearing protecting gear such as helmets and knee pads while riding through various obstacles atop of cement ramps or stairs that are part of some sort of urban terrain park setup for extreme sports enthusiasts to showcase their skills therein. In addition to this main action scene featuring multiple people enjoying themselves by engaging into different activities like playing football (or soccer), other individuals can be seen scattered around within view but not actively participating directly from what appears visible here \u2013 they may have arrived later after taking breaks between events happening throughout these areas where friends gather together during leisure time outings involving physical activity."} +{"image_id": 114684, "caption": "The image features a woman sitting on the sidewalk, eating food from her hand. She is wearing an open coat and appears to be enjoying herself while taking bites of something delicious in front of other people passing by or walking nearby. There are several bottles scattered around near where she's seated: one close behind her left leg; another further down towards right edge corner with two more located closer together at center-right area next to each other. A car can also been seen parked off camera slightly away but still within viewing distance for this outdoor scene featuring various individuals engaged in their daily activities outside during wintertime weather conditions"} +{"image_id": 559261, "caption": "The image features a man playing tennis on an outdoor court. He is actively engaged in the game, lunging forward to hit or return his opponent's ball with great effort and determination as he tries not miss it again after missing one of them earlier during playback 10 times already! There are several chairs scattered around the scene for spectators who have come along to watch this exciting match unfold between two players competitiveness at its best!."} +{"image_id": 320482, "caption": "The image depicts a busy city street with several people walking along the sidewalk. A yellow and blue bus is parked on one of its sides, likely waiting for passengers to board or disembark from it during rush hour traffic in London's West End area near Oxford Street shopping district. There are multiple cars driving down this road as well - some closer than others towards each other at different intervals throughout their journey through town. Additionally, there appears to be an umbrella placed nearby among pedestrians who may have been caught outdoors unexpectedly due to inclement weather conditions that day"} +{"image_id": 203705, "caption": "The image features a desk with an open laptop computer sitting on top of it. There are several items surrounding the desktop, including two cups placed close to each other and another cup located further away from them in front left corner near one edge of the table surface area. A cell phone is also present nearby atop some papers or documents that have been scattered around its vicinity. Additionally, there's yet another object situated towards right side bottom part of the scene - possibly representing something like paperwork for work purposes?"} +{"image_id": 330186, "caption": "The image features a young man riding on his surfboard in the ocean, enjoying an exciting wave. He is positioned towards one side of the frame and appears to be fully immersing himself into this momentous experience as he catches some air while glancing at something off-screen left or right (possibly another person). In addition to him being actively engaged with water sports activities near shore, there are several other people visible throughout different parts of the scene: two individuals can been seen further away from each end; three more appear closer together along middle section A1 area where they seemingly enjoy watching their friend's performance closely without getting too wet themselves by staying close enough but not overly crowded around them"} +{"image_id": 201004, "caption": "The image features a large green field with several trees scattered throughout. In the center of this grassy area, there is an impressive building that appears to be part academic and administrative in nature - possibly serving as university or college facilities for students attending classes on campus during daytime hours when sunlight illuminates its facade from above. There are multiple benches placed around various parts within viewing distance near each other across different sections along one side edge of the scene's background landscape. A clock tower can also been seen atop another nearby structure visible towards left-center portion of the frame."} +{"image_id": 137297, "caption": "The image features a man in red shirt and black shorts, running across the tennis court with his racket. He is actively engaged on this day as he competes against an opponent during their match at Westminster Tennis Club's courtside event for players of all ages to participate together while enjoying themselves playing doubles or singles matches throughout various age groups from 30+ years old upwards!"} +{"image_id": 526711, "caption": "The image features a large white and blue Air Force One airplane parked on an open runway. It is surrounded by various vehicles, including cars in the background of different sizes scattered around it. There are at least three trucks visible near or next to each other towards one side of the scene while another car can be seen further away from them closer toward center-right area within viewing distance behind some trees that partially obscure its presence. A few people may also exist among these objects; two individuals appear close together along with their respective backpacks nearby where they stand amidst all this activity taking place during President Obama's visit for his speech event likely involving transportation arrangements related activities such as loading up luggage onto planes before departure time arrivetherefore ensuring everything runs smoothly according to schedule"} +{"image_id": 571008, "caption": "The image features a stop sign with the word \"HammerTime\" spray-painted on it. This modification has been made to draw attention and make an impact, as well as possibly indicating that this is not just any ordinary street corner or intersection but rather one where something special might happen \u2013 perhaps related to hamming time in some way? There are several traffic signs visible throughout the scene: two directional arrows pointing left (left arrow) located at different heights above each other; another right turn signal placed closer towards top of frame nearer center area; three more smaller roadway markers can be seen further down below these main signals - they appear close together vertically along bottom edge within reachable distance from cars passing by them during their travel through town streets."} +{"image_id": 234990, "caption": "The image features a group of three giraffes standing in an enclosure, likely at the zoo. They are all bending down to drink from some water near them or possibly eating grass on their surroundings ground covered with rocks and logs scattered around it as well. There is also another log lying nearby that could have been part of previous fallen trees within this area before being cleared away for visitors' viewing pleasure during feed time by keepers who take care of these animals daily."} +{"image_id": 429811, "caption": "The image features a dining table set with an elegant meal, consisting of various food items and drinks. A white plate is placed in the center containing meatball appetizers surrounded by other ingredients such as potatoes or bread on top. There are multiple forks scattered around to help serve this delicious-looking spread across from each side of the plates. In addition to these utensils, there're two knives present at different locations nearer towards one end corner closer than others. Two wine glasses can be seen nearby \u2013 likely used during dinner time along with some candles that add ambiance lighting up parts of both sides of the room."} +{"image_id": 349936, "caption": "The image features a living room with an open floor plan, featuring two couches and chairs arranged in the space. One of these sofas is placed near one end while another sits closer to center stage next to some dining furniture including tables for eating or serving foods such as cups on them. There are also several TV screens throughout this area: three can be seen at different locations around the scene - close together towards left side corner; further away from each other along right edge section; plus there're additional ones located slightly higher upwards above both sides sections respectively. A coffee table stands between all seated areas providing convenience during meals shared among family members gathered herein."} +{"image_id": 537025, "caption": "The image features a bed with two towels arranged in the shape of swans, creating an artistic display. There are three pink pillows placed on top and around this unique arrangement \u2013 one near each end at either side as well as another closer towards center left corner area where they meet up for their heart-shaped formation. In addition to these elements, there is also some movement happening within the scene: A person can be seen sitting or standing nearby but not directly interacting with any part of it yet still enjoying being present amidst all that beauty created by nature's creatures themselves!"} +{"image_id": 508443, "caption": "The image features a wooden table with three small pizzas placed on it. Two of the miniature slices are located closer to each other, while one is slightly further away from them in another corner area nearer towards an edge side positioned atop its plate next to some utensils and cups nearby \u2013 including two wine glasses filled up for drinking purposes. A bottle can also be seen resting against or close by this scene's left-hand wall section behind several objects like plates stacked together as well as various kitchen items such as knives hanging above shelves along that same vertical surface."} +{"image_id": 447927, "caption": "The image features a large elephant standing on top of an ocean liner, with the words \"Wee\" written below it. There are several people in various positions around and near this scene: one person is located towards left side at bottom right corner; another individual can be found to their immediate upper-left area next to them both; two more individuals appear further upwards from there - closer together but still separated by some distance between each other along center horizontal line above others' heads level or slightly higher than that point."} +{"image_id": 132116, "caption": "The image features two bowls of food placed on a wooden table. One white and one green, they both contain broccoli with meat in them as well some other vegetables like cilantro or parsley that are visible near the edges of each dish's surface area. There is also chopstick present next to these plates for easy eating accessibility while enjoying this delicious meal at home."} +{"image_id": 336384, "caption": "The image features a large airplane, likely belonging to Ryanair Airlines. It is on the ground near an intersection of two roads and appears ready for takeoff from its current location in front of some trees or shrubs nearby. There are several cars parked along one side of this roadway area as well - possibly waiting at their respective stops before continuing with other activities elsewhere around town."} +{"image_id": 224093, "caption": "The image features a black and white scene of several cows grazing in an open field. There are at least six animals present, with some closer to the center while others appear more distant from each other across various parts of the grassy area they occupying together as herd members. A few trees can be seen scattered throughout this pastoral setting on either side or behind them - one tree is located nearer towards left-center part of the frame; another appears further right along its edge within reachable distance for any curious cow that might want to take advantage of it during their leisure time outdoors."} +{"image_id": 384596, "caption": "The image features a young boy standing next to his bed, which is placed in the middle of an empty room. There are two dogs present: one on each side near their respective owners \u2013 likely parents or guardians who have come into view for some reason while they're playing with them outside elsewhere within this space that appears like it could be either inside someone else\u2019s home or outdoors at another location altogether from where these people and pets reside together as part of family life activities during playtime moments away from other areas around town\u2026"} +{"image_id": 185930, "caption": "The image shows a public restroom with three sinks, each placed underneath mirrors. There are two hand soap dispensers located on the wall near one of these sink areas and another in between them towards left side corner. A towel rack is also present atop an adjacent shelf above some other items that can be seen further down from it along both sides of this area's tiled walls. In addition, there appears to be several people standing around or entering/exiting through different parts within viewing distance throughout various sections across multiple rows inside the bathrooms."} +{"image_id": 29030, "caption": "The image features two young men, one standing and the other sitting on a chair. Both are taking selfies in front of mirrors placed next to each another or side by side within their respective areas near them \u2013 likely bathrooms with sinks nearby for personal grooming purposes before going out into public spaces like restaurants where they might be dining together later that evening as friends. There is also an additional person visible towards left-center area who appears not involved directly but still present during this moment captured through these photos taken from different angles simultaneously capturing both individuals' expressions while holding smartphones upwards at eye level."} +{"image_id": 309366, "caption": "The image features a yellow and white train traveling down the tracks on an outdoor railroad. There are several people visible in various locations around or near to where they might be waiting for their transportation, possibly at stations along this route of trains passing by frequently throughout each day. In addition to these individuals scattered across different parts of the scene, there is also another person standing closer towards one end of track number six \u2013 likely indicating that it's his/her stop as well!"} +{"image_id": 333697, "caption": "The image features a street corner with two signs, one indicating \"no entry\" and the other pointing to an exit. There are several graffiti-covered walls in various locations around this urban setting that add character to it while also providing some visual interest for viewers of all ages who appreciate artistic expression on public surfaces like buildings or streetsides. In addition to these elements at nighttime under dim lighting conditions, there is another sign nearby which reads \u201cone way\u201d. This further emphasizes traffic flow direction along the roadway near where people might be walking by during their daily activities within city limits."} +{"image_id": 82338, "caption": "The image shows a busy street scene with several vehicles, including cars and motorcycles. A cow is standing in the middle of traffic on this roadway near some buildings or structures that are visible behind it. There's also another person riding an electric scooter nearby to help navigate through heavy city congestion while avoiding collisions between cows wandering around as well. In addition to these animals roaming about freely among other pedestrians walking along sidewalks close by, there appears to be at least one more car parked off-screen towards left edge area where people can access from their homes for transportation purposes during daily activities like shopping trips within town limits."} +{"image_id": 5325, "caption": "The image features a woman standing next to an older lady in wheelchair, both holding umbrellas. They are on the sidewalk of what appears like city streets with cars parked nearby and other vehicles passing by occasionally. There is also another person walking down towards them from further away along this street scene. In addition to these people, there's at least one car visible near each end of their location \u2013 two truck-like objects can be seen as well among various smaller automobiles scattered throughout different parts of the area around the main characters."} +{"image_id": 191078, "caption": "The image features a man in front of an open refrigerator, reaching inside to grab some bananas. There are several bunches and individual ripe yellow-colored banana fruits hanging from the ceiling above him or on shelves around his area within reachable distance for grabbing them as needed during shopping at this marketplace setting. In addition to these visible items, there is another smaller group further away towards left side that includes two more clusters with fewer number than those closer upfront nearer center stage where he's standing next to one large cluster containing multiple handful sized groups arranged together vertically along its lengthwise direction across halfway downwards part of it."} +{"image_id": 347335, "caption": "The image features a white plate with various food items on it, including eggs and hash browns. There is also an avocado placed near the center of this dish to add some flavor or texture contrast between different ingredients in one meal. A fork can be seen nearby for easy consumption while sitting at table during breakfast time. In addition to these main components, there are two cups present: One cup appears closer towards left side edge (leftmost), whereas another smaller coffee mug sits further right from its position but still within reachable distance when seated around that area."} +{"image_id": 441253, "caption": "The image features a glass desk with an open laptop computer placed on top of it. A chair is positioned next to the table, and there are two chairs in total within view \u2013 one closer towards us at left side while another further away from our perspective near right edge corner. There's also some furniture visible behind them: three bottles can be seen scattered around different parts of this room area - close together by each other (left center), slightly farther apart but still nearby (right bottom quadrant) or more distant along back wall section (top-center). Additionally, several cups appear throughout various locations across both sides of the scene; they range between being held closely adjacent as well as spread out over multiple positions alongside their respective objects like books stacking up against walls."} +{"image_id": 209824, "caption": "The image features a fire hydrant on the sidewalk, with water flowing out of it. There is ice surrounding and covering part or all around this frozen fountain-like feature in front of an urban building's entrance area near some steps leading up to its doorway. A person can be seen standing nearby as well; possibly waiting for someone else who may also appear later within their viewpoint from behind them towards left edge corner areas further away along both sides of street corners where they stand at different distances closer together than others farther downstream by themselves alone without any other people present yet visible herein."} +{"image_id": 316862, "caption": "The image features a pizza shop counter with three different types of freshly baked and ready-to-serve slices displayed on the shelf. There are two large, rectangular trays filled to capacity containing various sizes of round or square pieces arranged in rows across them both horizontally as well vertically along their lengthwise direction. In addition to these main displays atop an island bar top area behind glass windows that allow customers inside viewing accessibility from outside while they wait for orders being prepared by staff members nearby who can be seen standing around near one another within close proximity towards center right side corner region where there is also some furniture visible further away beyond those people's presence."} +{"image_id": 446984, "caption": "The image features a group of people gathered around several bicycles, with some wearing yellow vests. There are two large scissors placed on the ground near them in front and behind their backs as if they were partaking or participating in an event involving these oversized objects that resemble giant paper cutters. In addition to this unique setup for cycling enthusiasts, there is also another person standing off-centered from everyone else atop one bike nearby while others stand closer together along both sides of it towards its rear end area. A few more individuals can be seen scattered throughout different parts within view distance but not necessarily interacting directly among themselves like those involved earlier during events related activities such as riding cycles through parks surrounded by trees visible further away beyond other participants' presence."} +{"image_id": 326937, "caption": "The image features a black dog standing in front of an entertainment center with the television on. There are two chairs placed near each other, one to its left and another further away from it towards right side corner of room. A remote control is located close by for controlling TV viewing options or adjustments as needed during watching time together at home. In addition to these items within reachable distance around him/her, there's also some furniture scattered throughout different parts of living space like couches (two), armchair(one) ,and potted plants that add warmth and life into this cozy atmosphere shared between human family members and their furry friend"} +{"image_id": 363048, "caption": "The image features a man and girl riding on the back of their motorcycle, with both wearing helmets. They are enjoying themselves as they ride through an urban area or city street together while being surrounded by other people in various locations around them \u2013 some walking nearby others further away from each sidewalk intersection point to another person standing at one corner near buildings that can be seen behind him/her. There is also traffic visible along this busy roadway where cars pass frequently throughout different parts of it."} +{"image_id": 428067, "caption": "The image features a lush green field with tall grass and trees surrounding it. In the center of this scene, there is an old truck parked on top of some dirt or gravel surface near one edge of its bed area in front viewing direction towards us from left to right side as we look at them through binoculars (not shown). There are several sheep scattered throughout various parts within close proximity around both sides of their herd leader's position located closer toward our perspective than other members present among these animals that appear quite relaxedly munching away contentiously amidst each another while enjoying themselves underneath shade provided by nearby tree branches above."} +{"image_id": 207431, "caption": "The image features a large pizza on top of the table, placed in front and centered. It is topped with various ingredients such as mushrooms, cheese, eggplant slices or roasted vegetables that are spread across its surface evenly. A fork can be seen next to one edge of this delicious-looking meal ready for consumption by someone sitting at another side of it \u2013 possibly sharing their food experience together over dinner time. There's also an empty plate nearby which might have been used earlier during preparation before serving onto plates like those found around other parts of the dining area."} +{"image_id": 16704, "caption": "The image features a large elephant standing in the middle of an open field surrounded by trees. It is walking through tall grass and appears to be searching for something, possibly food or water nearby its habitat within nature's wilderness area. There are several other smaller plants scattered throughout this natural setting as well"} +{"image_id": 190705, "caption": "The image features a small bathroom with an open door, revealing the sink and toilet area. There is also another window in this room that allows natural light into it from outside. A mirror can be seen on one side of the wall near where people might stand while using these facilities or preparing for their day ahead after getting ready therein. In addition to various items placed around such as bottles (two), cups/mugs are scattered throughout different parts within reachable distance by someone standing at either end of the countertops next to each other \u2013 left-handed person's cup closer towards us than right hander\u2019s mug further away - making them easily accessible during use without having to move too much furniture out of place before starting your morning routine!"} +{"image_id": 572462, "caption": "The image features a collage of various scenes, including people waiting for the train and boarding it. There are several passengers standing in different areas around or near an escalator leading to their destination onboard one side of this subway station platform area. In addition to these individuals getting ready to ride public transportation vehicles like trains at San Francisco's BART system (Bay Area Rapid Transit), there is also another person sitting down nearby with her back towards us while looking away from camera lens direction. A sign can be seen promoting digital displays throughout stations as well."} +{"image_id": 501498, "caption": "The image features a black cat sitting on top of an open suitcase, which is placed near the floor. There are two other bags in close proximity to this scene: one located closer and another further away from it towards left side corner area. A bottle can be seen nearby as well \u2013 possibly used for cleaning or containing liquids like water - positioned atop some papers that appear scattered around its vicinity."} +{"image_id": 202860, "caption": "The image features a woman standing in an attic room, holding onto two stuffed teddy bears. One of the toys is located closer towards her left hand while another one can also been seen on top right side nearer from us and slightly further away than its counterpart next to it's owner. There are several other items scattered around this cluttered space including three books placed at different locations: close by eachother (left), far apart but still within reachable distance for someone picking them up or looking through their pages; there might even exist more objects that cannot easily fit into view here due to perspective limitations caused by camera angle as well as overlapping elements with similar colors like clothes hanging above some parts of furniture visible behind these book covers."} +{"image_id": 481891, "caption": "The image features a group of four young men playing frisbee on an outdoor field. They are all wearing orange shirts, and one person is jumping up to catch the flying disc while another player stands nearby ready for his turn at grabbed it next in line after him. There's also two benches placed near each other towards left side corner area where they can rest or take breaks during their gameplay session. A backpack sits close by as well among them indicating that these players might have brought some necessary items with themselves before heading outside into this fun activity together"} +{"image_id": 156889, "caption": "The image features two men sitting on a boat, with one of them holding an umbrella over the other. They are both wearing sunglasses and appear to be enjoying their time together while riding in this vessel across water or possibly at sea level near some shoreline area like Lake Michigan's coastline during summer months when it is sunny outdoors but also raining occasionally as indicated by occasional drops falling from above onto people around us here today..."} +{"image_id": 285646, "caption": "The image features a tree with many apples hanging from its branches. There are several fruits visible, including some that appear to be ripe and ready for picking or consumption while others still have green leaves on them indicating they haven't yet fully ripened into edible fruit. In the background of this scene is an open field filled mostly by trees in various stages of growth - young saplings can also been seen sprinkled throughout it all overlapping each other as well as surrounding areas like bushes nearer towards us."} +{"image_id": 455267, "caption": "The image features a pan filled with broccoli and other vegetables, cooking on an electric stove. There are multiple pieces of the food scattered throughout different parts in various stages of being prepared for consumption or already finished preparation process by now. A spoon is placed near one end to help stir up some ingredients as they continue their transformation into delicious meals during this culinary adventure at home!"} +{"image_id": 429593, "caption": "The image features a cozy living room with various furniture pieces, including two couches and an armchair. There is also another chair placed in the corner of this space near one end wall that appears to be occupied by someone sitting there comfortably while watching TV or engaging themselves elsewhere within their surroundings. A television canister sits on top of some books located atop shelves against both walls adjacent to each other across from where people are seated around it for entertainment purposes during nighttime hours when they might want more relaxation time after workday activities have ended earlier than usual due to COVID-19 restrictions affecting daily routines worldwide since its outbreak began globally back then..."} +{"image_id": 152946, "caption": "The image features a group of people standing in the snow, with some holding skis and others carrying them. There are two men present among this crowd: one is wearing sunglasses while another has his hands on both sides near him as if he's preparing to take off or put down their equipment for ski practice sessions at an outdoor slope area filled by trees surrounding it. A few more individuals can be seen further away from these main characters but still within reachable distance; they appear engaged either watching what\u2019s happening around themselves or waiting patiently nearby until called upon next."} +{"image_id": 97427, "caption": "The image features a small kitchen with white appliances, including two refrigerators and an oven. There are also several cabinets in the room that provide storage space for various items such as pots or cups on shelves above them. A dining table is situated near one of these cupboards to facilitate meal preparation while enjoying food together at home. Additionally, there's another cabinet placed closer towards the back wall where more utensils can be stored away neatly within reach when needed during cooking activities"} +{"image_id": 525369, "caption": "The image features a small child lying in bed, covered by blankets and wearing pajamas. There are two books placed on the floor near their head area: one is closer to them while another book lies further away from it towards left side of frame. A laptop can be seen resting atop an open suitcase nearby as well; this suggests that they might have been using or preparing for some digital activities before going offline later during sleep time with mommy's help!"} +{"image_id": 248582, "caption": "The image depicts a busy street scene with several people standing around an outdoor fruit stand. There are at least six individuals in the crowd, some of them carrying backpacks and bags while others appear to be browsing through various fruits on display near their feet or hands. In addition to these shoppers, there is also another person further away from us who appears more focused towards one side than interacting directly within this group setting. A few bananas can been seen scattered throughout different parts of the area as well - they seem like popular items for purchase among those present here today!"} +{"image_id": 548729, "caption": "The image features a group of people gathered around two tables, one with bottles and another without any drinks. There are several individuals standing in the room near these table settings; some appear to be enjoying their wine while others seem more focused on socializing or taking photos together as they stand close by each other's sides. In addition to this gathering area atop chairs placed next to both dining surfaces, there is also an open space behind them where additional guests can move about freely within view from various angles throughout the scene."} +{"image_id": 493522, "caption": "The image features a zebra standing on top of the sandy hill, surrounded by rocks and dirt. There is another animal nearby - an antelope or ram that appears to be grazing in front of some bushes atop one side of the same rock formation as well. In addition to these two animals, there are several other smaller creatures scattered throughout this scene: three birds can been seen flying around near each corner; four more small mammals appear closer together towards center-right part of the picture area while five others seem further away from it along left edge section."} +{"image_id": 218476, "caption": "The image features a man riding on the back of his blue motorcycle, which is parked near some waves. He appears to be enjoying himself as he sits comfortably and leans slightly forward while holding onto handlebars in front him. In addition to this scene with just one person sitting behind another individual's bike atop an ocean wave area or beachfront location, there are several other people visible throughout various parts of the background landscape surrounding them \u2013 likely friends who may have accompanied their friend for fun activities like surfing or simply spending time together by water bodies during sunny weather conditions"} +{"image_id": 273469, "caption": "The image features a dining table with two pizzas placed on it, one in an open box and the other partially covered. There are several cups of beer scattered around the scene as well \u2013 some close to each person at their seats while others further away from them or near walls along edges of tableside chairs. A bottle is also present towards left side corner next to another cupboard door frame visible behind people sitting nearby. In addition to these drinks, there're multiple glasses spread across different parts of the room: three closer together by right edge wall; four more positioned between individuals seated throughout various areas within reachable distance for hand pickup during meal time sharing among friends gathered here over food consumption."} +{"image_id": 388926, "caption": "The image features a group of people sitting on the back seat or standing near windows in an old bus. There are several individuals visible, with some leaning out from their seats and others looking through openings towards outside views while holding onto handrails for support as they travel together by public transportation. In addition to these passengers, there is another person seated further away at one end corner of the vehicle's interior space. A few other objects can be seen scattered around within this scene: two cups placed close next each other; three bottles positioned along different parts of the room (two closer to center area); four books restocked against walls throughout various locations inside the carrier section where most activity takes place among its occupants."} +{"image_id": 186427, "caption": "The image features a man standing on an outdoor tennis court, holding his racquet and preparing to play. He is positioned near the center of attention in front of two other people who are also present at this location for some reason or another \u2013 possibly watching him practice before their own game begins later? There's one person sitting off-screen left side while others can be seen scattered around various positions along both sides of the scene - perhaps they have come here specifically as spectators during that time period when it was sunny outside with clear skies visible from all angles within viewpoint range"} +{"image_id": 457636, "caption": "The image captures a group of young men playing ice hockey on an outdoor rink. There are several players in the scene, with some wearing red uniforms and others donning maroon jerseys or other colors such as yellow jackets (number 23). They appear to be engaged in intense competition while skating around each other's paths across different parts of the field. A few people can also been seen watching from various locations near bystanders who have gathered for this exciting game event taking place atop their own bench seats along one side of the arena area."} +{"image_id": 315018, "caption": "The image features a woman taking photos of herself with her cell phone while standing next to an adult giraffe. She is positioned close enough for the animal's head and neck, which are visible in front of them both as they interact during their encounter at some sort of zoo or wildlife park setting. There may be other people present around this scene who could also potentially take pictures alongside these two individuals nearing each other through various positions within viewpoint range from left side (leftmost) upwards towards right-center area where more than one person can fit into frame without overlapping too much on top of others nearby."} +{"image_id": 532164, "caption": "The image features a group of people, including several men and one woman wearing white aprons. They are standing around an apple-filled conveyor belt in the middle area where they can easily access apples from both sides to inspect them or take samples for quality control purposes as part of their work at this factory setting. There is also another person further away on top right side who appears not involved with inspection but rather observing what's happening nearby without participating directly into it yet still being present within that same environment."} +{"image_id": 478356, "caption": "The image features a vintage scene of an old fire truck parked on the sidewalk, with its hose extended. A woman is sitting in front holding up two signs: \"Pearl Harbor Day\" and another one that says \"...you bought our band.\" She appears to be proudly displaying these messages as part of her role or contribution towards promoting this event's significance during World War II era America when it happened 75 years ago from today (December 2016)."} +{"image_id": 355276, "caption": "The image features a black bear resting on top of some rocks, surrounded by trees and logs. It appears to be relaxed in its natural habitat with the large log nearby providing support for it as well. There are several other fallen tree branches scattered around this area that add more visual interest while also serving their purpose within nature's ecosystem."} +{"image_id": 147904, "caption": "The image features a large grassy field with several people standing and flying kites in the sky. There are at least three individuals actively participating, each holding their own colorful or white-colored string attached to one of these airborne objects that resemble birds' wings when they fly high up into clouds above them on this cloudless day under an ominous storm front looming over head \u2013 casting shadows across some parts of the scene as well. In addition to those engaged directly by flight activities within range from left side towards right edge (leftmost), there is another person further away who appears more distant but still involved indirectly through watching others play around while seated nearby near center bottom area close enough for attention yet not fully engaging themselves physically like other players do so far offshore."} +{"image_id": 417547, "caption": "The image captures a baseball game in progress, with several players on the field. One player is pitching and another one appears to be swinging at an incoming ball from left side of frame while standing near home plate area towards right-center part of it. There are two other people visible as well: 1) behind first base line closer toward centerfield; they appear engaged or watching closely what's happening around them during this intense moment between batters. Another person can also been seen further away along third baseline close by second batter positioned next to him/her \u2013 possibly providing support for their teammate who just swung his weapon earlier before getting ready again after missing that hit attempt."} +{"image_id": 25758, "caption": "The image features a woman in the kitchen, placing an entire turkey into her oven. She is wearing white pants and appears to be focused on getting it cooked for dinner or another event later that day. There are several knives placed around near where she's working: one close by next to some bowls atop of each other; two more further away from them towards left side corners within reachable distance but not directly touching any objects nearby except their placement locations themselves. Additionally, there seems to also exist multiple bottles scattered throughout different parts of this scene - three visible ones located closer together along with others farther apart across various areas surrounding both sides as well as behind the person preparing food inside the stove area itself"} +{"image_id": 58737, "caption": "The image features a train parked on the tracks near some buildings. There are two trains visible, one in front of another and both positioned close to each other along side several cars that have been placed around them for maintenance or storage purposes. In addition to these vehicles nearby, there is also an orange traffic cone situated atop its own stand next to where people might be working with their hands while standing alongside it \u2013 possibly repairing something related to transportation equipment like railroad track components."} +{"image_id": 87356, "caption": "The image features a large white and red bus driving down the street, with several cars parked along both sides of it. There are at least six vehicles in total: three on one side nearer to us (left), two more towards center-right area behind another car that is partially visible from our perspective, as well as an additional vehicle further away closer right edge corner where there's less traffic congestion around its positioning. A bicycle can be seen placed between some other objects nearby or next to these parking spots for various transportation modes \u2013 walking/bikers versus motorized ones like automobiles."} +{"image_id": 44061, "caption": "The image features a train traveling along an old stone bridge over lush green hills. It is moving down the tracks, passing through various sections of vegetation and trees on either side as it makes its way across this scenic landscape. There are several people visible in different parts around or near to where they might be watching from nearby areas such as houses located close by. Some individuals can also been seen standing atop one section closer towards the front part of their viewpoint while others appear further back behind them within reachable distance for observation purposes"} +{"image_id": 565438, "caption": "The image features a young man performing an impressive skateboarding trick on the sidewalk of what appears to be either city or urban area. He is jumping over some steps, and his board can also been seen in mid-air as he executes this stunt with precision skillfulness. In addition to him riding around town during daytime hours, there are several other people visible throughout various parts of the scene: two individuals standing near each end (left/right) at different distances from one another; three more walking along separate paths across both sides towards opposite ends - left & right respectively \u2013 while carrying backpacks for convenience purposes when outdoors exploring their surroundings by foot."} +{"image_id": 518177, "caption": "The image features a silver toaster oven with several food items placed on top of it. There are four pieces or rolls, possibly made from potatoes and wrapped in foil paper, arranged around the cooking surface inside this appliance. One piece is located closer towards one side while another three can be found further away nearer center stage within viewers' field-of vision. A knife rested against an edge nearby completes these preparations for baking delicious treats using modern technology like microwave convection roasting!"} +{"image_id": 139953, "caption": "The image features a dining table set with various plates of food, including pastries and desserts. There are two white platters on the left side containing different types of treats such as donuts or other sweet items that appear to be glazed in some way. A spoon is placed near one plate for easy accessibility while another bowl can also been seen nearby filled up partially by an unknown liquid substance possibly related to drinking during dinner time at this restaurant setting. In addition there're several cups scattered around the scene: three towards top right corner; four along bottom-left edge close together forming clusters (two small ones followed closely behind); five more spread out across middle area from upper half downwards - these include both large cup(s) & smaller glasses/bowls intermingled among them)."} +{"image_id": 485390, "caption": "The image features a group of sheep standing on top of an open grassy field. There are four white-colored animals in the scene, with three located closer to each other and one slightly further away from them towards left side edge of the frame. They appear relaxing as they graze or stand around together while enjoying their surroundings amidst nature's beauty during sunset time at dusk hour when light is fading out gradually into darkness outside."} +{"image_id": 514249, "caption": "The image features a white fire hydrant sitting on the side of an empty street at night. There are several newspaper stands scattered around, with one located near each end and another in between them closer to center stage. A traffic light can be seen further down towards left-center part of this urban scene where cars seemingly wait for their turn or pass by slowly through town streets during evening hours when it's dark outside but not yet completely pitch black as there is still some ambient illumination from nearby buildings casting shadows across parts of the area."} +{"image_id": 459921, "caption": "The image features a woman taking selfies in front of the bathroom mirror. She is standing next to her sink, which has two faucets and appears quite large compared with other objects around it such as bottles or cups on top shelves nearby. There are several items placed near each side wall: one cup can be seen at both left-hand sides while another object resembling an air freshener dispenser occupying some space towards right end walls. A handbag hangs from above by its handle close beside where she stands for capturing herself through various angles using multiple devices like phones held up high against different parts of their bodies \u2013 possibly trying out new poses before sharing them online via social media platforms."} +{"image_id": 219315, "caption": "The image features a table with various items, including two donuts on top of the paper napkin. One is placed closer to one edge and another further towards center-left side of it. A bottle filled halfway up its neck can be seen in front left corner next to an apple that's partially visible nearer right end portion of the scene. There are also several cups scattered around: three at different locations along both sides; four more cup positions located close together underneath some objects behind them (possibly books); finally there\u2019re five additional coffee mugs positioned across from each other above or below these bookshelves \u2013 they appear as dark spots against their respective background colors."} +{"image_id": 360629, "caption": "The image features a red tray filled with various food items, including sushi and broccoli. There are multiple pieces of meat in the dish as well - some appear to be chicken or shrimp-based meats while others may have fish flavorings like salmon on them. A bowl is placed next to one side of this bento box containing more delicious treasures for consumption later that day at home during lunchtime."} +{"image_id": 17178, "caption": "The image features a group of horses standing on the sidewalk next to an open road. There are three brown and one black horse in total, with two being closer together near each other while another is slightly further away from them towards left-center area along the street edge. A car can be seen parked off camera at right center position as if waiting for its owner or simply passing by during this momentary encounter between humans and animals sharing their space temporarily outside city limits."} +{"image_id": 311759, "caption": "The image features a small brown teddy bear sitting on the ground, positioned in front of an empty white background. It is adorable and cute with its big eyes looking upwards towards viewers' direction while it sits comfortably next to each other near one another but not touching or overlapping too much space between them. There are two smaller bears placed nearby \u2013 they appear slightly further away from center stage than their larger counterpart yet still within close proximity for attention-grabby appeal."} +{"image_id": 418944, "caption": "The image features a young girl in the bathroom, blow-drying her hair with an electric dryer. She is smiling and appears to be enjoying herself while getting ready for something special or just having fun at home on this day. There are several items around them: two bottles can also been seen near each other towards one side of the room; another object resembling what might have once held soap sits close by as well. A sink located closer toward center left corner provides additional convenience during their preparation process before heading out somewhere else later that evening..."} +{"image_id": 487631, "caption": "The image shows a herd of sheep walking down the middle lane on an urban road. There are several cars driving in both directions, with some parked along one side or another to avoid colliding into any animals as they cross over from time-to-time during their journey across town. In addition to these vehicles and parking spots near them, there is also traffic congestion visible at various points throughout this scene due to all the moving objects present \u2013 including trucks passing by occasionally too!"} +{"image_id": 494566, "caption": "The image features a skier, likely competing in an event or race on snowy terrain. They are wearing black and white clothing with the number 12 visible near their chest area as they move downhill through some trees along one side of the slope while holding ski poles tightly to maintain control during this challenging descent. There is another person standing further up ahead from them who appears not involved directly but still present for support purposes within view at that location."} +{"image_id": 63855, "caption": "The image features a train with its door open, parked on the platform. There are two seats visible in front of it and another seat located further back towards one side near an entrance to board or exit from inside the vehicle. A person can be seen standing next to this particular section as well. In addition to these passengers waiting for their ride at various locations along both sides of the car's interior space, there is also some luggage scattered around within view \u2013 likely belonging either to those getting ready to travel by public transportation or left behind during previous trips aboard similar vehicles like trains."} +{"image_id": 181601, "caption": "The image features a small bird perched on top of the green leaves in an outdoor tree. It is sitting atop one branch, with its wings spread open and looking around as if it's searching for something or surveying its surroundings from this vantage point high up above ground level. There are several other birds visible throughout the scene: two more can be seen to either side nearer towards us while another three appear further away but still within reachable distance by flying over them quickly without much effort required."} +{"image_id": 553330, "caption": "The image features a young boy wearing blue and black clothing, holding his baseball bat in preparation for batting. He is standing on the field during an outdoor game with other players nearby who are also engaged in various activities such as running or walking around while waiting their turn to play ball games like soccer football (soccor) 10 feet away from him towards left side of scene). There're several chairs scattered throughout different parts of this area where people can sit down if needed before resuming playing again later after rest periods between matches"} +{"image_id": 304316, "caption": "The image features a train station with two trains parked next to each other on the tracks. One of them is silver and yellow, while another one appears more gray in color but still has some white accents visible near its front end. There are several people scattered around both sides of these commuter or passenger cars: four individuals can be seen standing close by either sidewalk area adjacent to where they're waiting for their respective transportation vehicles; there may also potentially exist additional passengers further away from those closer areas who haven\u2019t been captured within this scene yet."} +{"image_id": 474384, "caption": "The image features a group of sheep standing in an enclosure, with three visible from the front and one more behind them. They are all looking over their fence or gate towards something outside while resting on dirt ground covered by grasses around it. There is another smaller animal nearby that appears to be hiding underneath some bushy foliage atop its head near where they stand together as if watching each other's behavior inside this pen area."} +{"image_id": 415001, "caption": "The image captures a group of baseball players on the field, with one player holding up his hand in celebration. There are several other people around them as well - some standing and others sitting or kneeling near their respective positions along first base line to watch this momentous event unfolding at home plate during an intense game between two teams competitively playing against each another for victory points. A few more individuals can be seen further away from these main characters but still within close proximity towards centerfield area where they might have been positioned earlier while waiting out turns battling it off through various rounds until reaching that point when someone finally gets rewarded by raising hands high into air expressive gesturing joyfulness over scoring runs successfully earned throughout playoffs games so far..."} +{"image_id": 102503, "caption": "The image features a bedroom with yellow walls and wooden floors. A large, well-made double or queen size mattress is placed in the center of this room near an arched window on one side that allows natural light to enter into it from outside. There are several pictures scattered around various parts within close proximity towards each other throughout different corners across both sides of the space - some closer together than others but still visible as part of their respective surroundings. Additionally, there's also two chairs positioned at opposite ends: One chair can be found by itself against another wall while its counterpart sits next to yet another picture frame located further away along the same edge where they share similar placement relative to adjacent furniture pieces like dressers nearby them."} +{"image_id": 421169, "caption": "The image features a large airplane, painted in the colors of Spain's flag (red and yellow), parked on an open runway. It is surrounded by other planes that are also visible within this scene - some closer to us while others appear further away from our perspective point atop another part or section of land near them. There may be additional vehicles present as well \u2013 two cars can been seen driving along one side of the field towards each end respectively; they seem like small automobiles with no apparent purpose for being there except perhaps accompanying someone who works around these aircraft fields regularly."} +{"image_id": 207670, "caption": "The image features a group of young skiers competing in an event, with several people wearing skis and helmets. They are all moving down the snowy slope together as they race towards their destination on this winter day outdoors. There is also another person standing off to one side who may be watching or cheering for them from afar during these cross-country races across town."} +{"image_id": 43098, "caption": "The image features a man walking down the street, with his back facing towards us. He is wearing casual clothing and appears to be in good spirits as he walks by various objects on both sides of him \u2013 including two suitcases lying next each other near some steps leading upwards from sidewalk level onto an unknown location above them (possibly another floor or building). There are also several handbags scattered around throughout this scene: one close behind our viewpoint at left-center; three more further away along either end of the same row where they appear closer together than others nearby but still spread out across different positions within that area; four additional baggage items can be seen placed randomly elsewhere among pedestrians passing through their own paths alongside these luggages."} +{"image_id": 286583, "caption": "The image depicts a busy city street with pedestrians crossing the road. There are several people walking across, some carrying umbrellas to protect themselves from rain or sunlight while others do not have any protection against weather conditions. In total there is at least ten individuals in this scene: four on one side of the crosswalk and six more spread out along both sides nearer towards each corner intersection point (two per section). Some carry backpack-like bags that they may be using for their daily commute through town as well. A few cars can also been seen driving around within view but seemingly unrelated to traffic congestion caused by these walkers' presence during rainy days like today..."} +{"image_id": 401860, "caption": "The image features a white plate with one slice of pizza on it, placed in the center. There are two slices visible - an upper and lower piece that make up this delicious-looking meal item sitting atop its serving dish. A fork is also present near to where they rest upon their respective plates \u2013 possibly ready for consumption or as part of preparation beforehand."} +{"image_id": 71171, "caption": "The image features a dining table with two plates of food. One plate contains half-eaten sandwiches, and the other one has salad on it along side pickles placed in between them for flavor enhancement or as an appetizer option before consuming their main meal from either slice 1 (left) to slice numbered upwards towards Slice Number Nine - which is located at top right corner near edge/corner area). There are also several utensils present around this scene: spoons can be found scattered across both sides \u2013 some closer than others; there's another spoon positioned close by next to its corresponding fork that appears slightly further away compared to most nearby items like cups held within reachable distance above each person sitting down together overlooking these objects arranged neatly upon tableside surfaces."} +{"image_id": 160811, "caption": "The image features a wooden desk with an old-fashioned printer on top of it. There is also another computer, possibly used for printing or other tasks related to the desktop setup in this room area. A stool sits next to one side of the table and provides additional seating space near its surface. In addition to these items placed around the workspace atop the antique wood furniture piece are various objects scattered throughout: two books can be seen towards left end corner; there's some sort of electronic device located close by as well \u2013 perhaps connected wirelessly from elsewhere within reachable distance?"} +{"image_id": 4979, "caption": "The image features a large red chair with the shape of an animal, specifically in this case being represented by two horses. One horse is standing on top and another one appears to be sitting atop it from behind its back legs towards front side viewing angle. There are several people visible throughout different parts around or near these animals: three individuals can been seen walking along either sides close together; there's also someone further away who seems more distant but still within reachable distance for interaction if needed. Additionally, some cars parked nearby add movement into scene as they come closer while driving past each other during their daily activities outside."} +{"image_id": 315863, "caption": "The image features a small red train traveling down the tracks, with its engine and cab visible. There are several people on board this miniature locomotive as it moves along through an idyllic countryside setting near some houses in various locations throughout the scene. In addition to these passengers inside of the carriage or standing next to them outside by their respective windowsills, there is another person sitting atop one side's roof deck area overlooking everything happening around him/her while enjoying his ride aboard the little steam-powered vehicle."} +{"image_id": 177856, "caption": "The image features a group of people riding in an airboat on the water. There are several individuals wearing yellow life jackets, enjoying their ride through calm waters with some waves visible near them as they travel along at speed towards another boat further away from shore. In addition to these passengers and crew members sitting or standing inside various parts around the vessel's interior area, there is also one person holding onto something outside by hand while seated next to others nearby within reachable distance."} +{"image_id": 411587, "caption": "The image features a shirtless man paddling an orange kayak in the ocean. He is actively engaged with his activity, possibly enjoying himself while navigating through waves and water currents on this sunny day at sea shore or beach area near some rocks visible behind him. In addition to the main subject of interest \u2013 the person riding their surfboard/kite board - there are several other people present around them: two individuals can be seen further away from each side towards left (one closer) as well another one slightly more distant right-side viewpoint; all three appear relaxed during leisure time by themselves along coastline waterside activities like swimming nearby too"} +{"image_id": 394240, "caption": "The image depicts a narrow alleyway with several motorcycles parked along the sides. There are at least six bikes lined up, some of them closer to each other and others further apart from one another in various positions throughout the scene. A person can be seen walking down this street as well; they appear towards its end on their way out or perhaps exploring around town while passing by these vehicles. In addition to people moving about within viewing distance nearer the entrance area where there is more activity happening, an umbrella stands nearby among all those present outside during that time period when it might have been raining earlier but has since cleared off for now..."} +{"image_id": 532463, "caption": "The image features a blue bench with several handbags displayed on it. There are at least six bags of different sizes and colors, arranged in an orderly fashion across the surface area available for display purposes \u2013 some closer to each other while others further apart from one another along its lengthwise direction. A potted plant can be seen placed near or next to two adjacent side-by-side purses towards their left end portion; this suggests that they might have been positioned together as part of merging elements within close proximity during setup time before being presented outdoors by sellers who may offer them alongside various items such as jewelry boxes nearby."} +{"image_id": 57495, "caption": "The image features a small, cramped bathroom with an unusual toilet. It is situated in the corner of what appears like some sort of outdoor structure or shed that has been converted into living quarters for someone who may not have accessibility elsewhere. There are two buckets placed near each other on one side and another bucket located further away from them towards left-center area within reachable distance but still somewhat distant compared to its neighbors above it. A bottle can be seen hanging atop these containers as well."} +{"image_id": 425948, "caption": "The image features a beach scene with two children playing on the sandy surface. One child is flying an orange kite, while another young girl watches from nearby and appears to be enjoying herself as well. There are several people in total scattered across different parts of this sunny day at sea level near some water waves visible behind them. In addition to these individuals engaging themselves outdoors during their leisure time together by watching or participating in activities like fly-fishing for fun, there's also one person standing offshore towards left side who seems more focused than others possibly observing something further away into deeper waters beyond reachable distance without swimming gear available here today..."} +{"image_id": 508165, "caption": "The image features a yellow bus driving down the street underneath an overpass. There are several buildings visible in various locations along both sides of this urban road, with some closer to each other and others further away from one another on either side of the bridge structure above them. In addition to these structures, there is also traffic congestion present near where cars have parked or stopped at different points throughout the scene - likely due to construction work taking place nearby as indicated by multiple vehicles being stationary for now but expected later when they resume their movement again after completion time has passed during daylight hours ahead..."} +{"image_id": 41998, "caption": "The image features a large, old building with two clocks on the top of it. There are several people walking around in front and near this structure as well as some bicycles parked nearby to provide transportation for those visiting or passing by. A few cars can be seen driving through town towards one side while another car is positioned closer at hand along an adjacent street corner. In addition to these vehicles, there're also multiple benches scattered throughout different parts of the scene where individuals might rest during their walkabout within city limits."} +{"image_id": 477474, "caption": "The image features a laptop computer sitting on top of an unmade bed. It is open and displaying multiple windows, possibly indicating that it's running some sort software or application in the background while being used for other purposes as well. There are several hands visible throughout this scene: one hand nearing towards the left side edge of the screen; another close to its right corner with fingers extended outwards from each knuckle point upwardly toward their respective sides respectively; two more arms can be seen at different positions along either end portion of the display area \u2013 closer together than those previously mentioned but still within reachable distance when needed during use by someone seated nearby."} +{"image_id": 410614, "caption": "The image features a young man performing an impressive skateboard trick, with multiple images of him in different stages during the stunt. He is shown jumping off his board and landing on it again while doing tricks atop various objects such as benches or steps around them \u2013 one step away from completing this daring feat successfully! There are several people visible throughout the scene: two individuals standing near each other to watch their friend perform; another person sitting down nearby observing everything happening within reach distance; three more figures scattered across some parts further back into view but still close enough for attention towards what's going on up front involving these daredevils showcasing skills through action-packed moments captured by cameras placed strategically along sidewalks surrounding those who came out specifically just like that day\u2026"} +{"image_id": 321035, "caption": "The image features a large, decorated cake sitting on top of the counter. It is adorned with red and white frosting that spells out \"Welcome Malachi\" in bold letters across its surface area near one end corner. A knife sits nearby for cutting into this special occasion treat or celebratory dessert. There are several other items placed around it: two cups can be seen at different locations to either side; another cup rests closer towards center-left part of the scene along an edge close by some plates stacked up next each other as well. Additionally there're three bottles positioned throughout \u2013 they appear more spread apart from left bottom corners downwards until reaching right middle parts where their positions overlap slightly overlapping between them while still maintaining individuality within themselves."} +{"image_id": 450182, "caption": "The image features a person riding on the back of their motorcycle down an urban street. There are several cars parked along both sides, with one car located closer to us and another further away from it in front viewing distance towards our left side as we look at this scene. In addition to these vehicles, there is also traffic congestion visible near some buildings or structures nearby that may be blocking part of them due to parking issues within those areas. A cable trolley canopy appears above most likely providing shade for pedestrians walking by while they wait patiently underneath its coverings."} +{"image_id": 475572, "caption": "The image features a small wooden table with various items placed on it. A teddy bear is sitting next to the potted plant, and there are two framed pictures displayed in different positions along one side of this area \u2013 likely representing family members or loved ones who have passed away but remain close by through these memories captured within their photographs. Additionally, another picture can be seen further down towards left-center part of the scene near an empty space between other objects present atop the shelf above them all."} +{"image_id": 257624, "caption": "The image features a young girl standing on top of an open field, surrounded by soccer balls. She is wearing pink and black clothing with her hair tied up in the back to keep it out of sight while she plays around outside during sunny weather conditions. There are several footballs scattered across different parts of this grassy area: one ball nearer towards us at bottom left corner; another closer behind our little heroine's right side foot positioned slightly higher than others nearby; two more further away from each other located close together along center-right edge; three additional ones placed somewhat randomly throughout various areas within reachable distance for playing or kicking them about \u2013 some even touching their respective surroundings like they were recently kicked into place!"} +{"image_id": 211853, "caption": "The image features a group of small boats docked along the sidewalk next to each other. There are five different types or models, with one boat being slightly larger than others in terms of size and shape. Each vessel is positioned close together on either end near an edge where they can be easily accessed by people walking nearby. A few flowers decorate some parts within this scene as well - two pink ones located at various positions around the area surrounding these little watercrafts; another flower appears closer towards center-right corner among them all."} +{"image_id": 121663, "caption": "The image features a city street with an empty bus driving down the road. There are several cars parked along both sides of this urban area, and some vehicles can be seen in front or behind them as well. A traffic light is visible on one side near where two people stand waiting for their ride to pass by before crossing over into another lane further ahead towards buildings at either end of the scene's horizon line. In addition to these pedestrians standing around various parts within viewing distance from each other across different sections closer up against building facades nearby, there may also exist more individuals scattered throughout the background beyond what appears directly present herein..."} +{"image_id": 24112, "caption": "The image features a group of people sitting around tables at an event, enjoying food and drinks. There are several individuals present in the scene: one man is wearing glasses while another woman has her hair tied up with pins on top; both men appear to be smiling as they engage each other over their meals or conversations taking place among them. In addition to these two main characters, there're more guests seated across from various locations within reachable distance - some closer than others but all partaking together during this social gathering where everyone seems happy sharing time spent eating delicious dishes prepared for that occasion."} +{"image_id": 546091, "caption": "The image features a dining room with several tables and chairs. One of the pizza slices is placed on top of an open pan, which suggests that it has been prepared for consumption or served to customers at one point in time during their visit here. There are multiple people present throughout this scene: some can be seen sitting around various table settings while others stand near them. A few bottles appear scattered across different parts of the restaurant area as well - two close together towards left side corner; another further down closer to right edge by itself against wall-mounted shelves holding cups above each other along its lengthy surface space."} +{"image_id": 117425, "caption": "The image features a young boy standing in front of an open cupcake with one candle on top. He is looking at the cake, possibly anticipating his birthday celebration or enjoying it as he takes part in this special moment for himself and others around him who are also present during their party time together. There's another person sitting to the left side near where they stand by themselves while watching over them both from afar. A chair can be seen placed behind these two individuals towards right-center area within reachable distance if needed later when seated there after indulging into some delicious treats like chocolate muffins that seem popular among those gathered here today!"} +{"image_id": 94536, "caption": "The image features a cat sitting on the ground next to an old bicycle. There are two cats in total, one of which is closer and more visible than another further away from it towards left side corner or right edge area nearer bike tire rim. Both felines seem relaxed as they enjoy their surroundings while resting underneath the wheelchair-like structure that supports both wheels at its base."} +{"image_id": 422700, "caption": "The image features a family of three, with two adults and one baby. They are gathered in the living room area where they appear to be feeding or taking care of their child who is sitting on his mother's lap while being held by her husband from behind him. There seems to have been some recent activity involving food as there appears to be an empty bowl nearby that was likely used for serving purposes earlier during this moment captured here at home together. A cup can also be seen placed near them \u2013 possibly containing something else related to mealtime preparation such as water or juice."} +{"image_id": 60010, "caption": "The image features a young man wearing an elegant black vest and tie, posing for the camera. He is standing in front of what appears to be either blue or purple background with his arms crossed at chest level as he smiles confidently towards us while looking directly into our eyes. There are several other people visible around him on both sides \u2013 one person stands close by near where they're sitting down against their left side; another individual can also been seen slightly further away from them but closer than others nearby."} +{"image_id": 229150, "caption": "The image shows a man walking an elephant down the street, with several other people and vehicles nearby. There are at least three cars parked on either side of them in various positions along their path through town or city streetscape. Some motorcycles can also be seen scattered around near these automobiles as well. In addition to this scene happening outside by roadside traffic, there is another person standing further back from where they started earlier \u2013 possibly waiting for someone else who may have joined later during travels together towards some destination point ahead."} +{"image_id": 337439, "caption": "The image features a large, unique sculpture of an arm holding up two cell phones. It is located in the middle area and appears to be part of some sort of advertising display or promotional event at an airport terminal building. There are several people walking around this space with luggage nearby them as they move through their travels within it. One person can also been seen carrying multiple bags on her back while another individual carries just one bag close by his side."} +{"image_id": 476569, "caption": "The image features a family of three people, two adults and one child in the snow. They are all wearing ski gear with helmets on their heads as they stand together atop some freshly-fallen powdery white snow near an outdoor structure or building behind them - possibly indicating that this is where skis were stored before heading outside to enjoy winter activities like cross country skiing downhill slopes nearby. There're several pairs of polished wooden sticks scattered across different parts within view \u2013 likely used for support while standing up from sitting positions during breaks between runs through various terrain types such as moguls (small bumps) along hillsides covered by deep layers of softened new fallen frozen precipitation called \"pow\"."} +{"image_id": 524844, "caption": "The image features a young man performing skateboard tricks on an outdoor concrete surface. He is riding his board over the rail, demonstrating various skills and techniques to impress others in attendance at this park or facility for practicing their own moves as well. There are several other people scattered around watching him perform these stunts with interest \u2013 some of them closer than others towards where he's doing it while one person appears further away from that area but still within viewing distance. In addition to those observing, there may be more individuals present who haven\u2019t been captured by our camera yet due to its limited field-of-view coverage during capture time."} +{"image_id": 442286, "caption": "The image features a harbor with two boats docked near the shore. One boat is closer to us, while another one appears further away from our viewpoint on top of it in front and slightly left sideways towards its bow area. There are several people visible around these vessels: three individuals standing close together at different locations along both sides next to their respective ships or nearby docks; an additional person can be seen walking by them as well. A lighthouse stands tall behind all this activity overlooking everything happening within sight distance across water surface level."} +{"image_id": 532812, "caption": "The image features a skateboarder performing an impressive trick at the park. He is shirtless and wearing jeans, with his board in mid-air as he executes this stunt on one of several ramps present within the scene. There are multiple people watching him from different locations around the area: some stand close to each other near where they can see better while others spread out further away but still interested by what's happening during their visit or practice session there. A few more individuals appear towards the top right corner of the frame, possibly observing another part of the action taking place elsewhere nearby."} +{"image_id": 362352, "caption": "The image features a train station with people gathered around the tracks. A man is standing on top of one side, possibly working or inspecting something related to maintenance for an upcoming departure from this location. There are several other individuals scattered throughout various parts of the scene: some near each end and others in between them along both sides of track 1928 (Lm7). Some passengers can be seen walking towards their respective trains as they prepare themselves before boarding these vehicles at Llanelli Station during its heyday when steam engines were still prevalent across Britain's rail network."} +{"image_id": 382671, "caption": "The image features a sandy beach with several cows walking along the shore. There are at least six cattle visible in total, some of them closer to each other and others spread out across different parts of the scene. Some cow tracks can also be seen on top or near one another throughout various areas around their pathway through this scenic location by water's edge."} +{"image_id": 237626, "caption": "The image features a blue motorcycle parked on the back of an open trailer. It is situated in front and slightly to one side, with its handlebars visible nearer towards us than other parts of it due to perspective effect from being viewed at eye level or lower angle. There are several cars present around this scene: two close by each end (left/right), another further away behind them closer toward center left corner, while still more distant vehicles can be seen scattered throughout different areas within view distance but not as numerous compared to those nearby. A fence surrounds some part of these objects; however, there might have been additional elements obscured beyond what's shown here for clarity purposes only."} +{"image_id": 283471, "caption": "The image features a dog and cat sleeping together on the floor, with both animals curled up in close proximity. They are lying down next to each other near an area rug that covers most of one side of their rest spot. There is also another chair located nearby where they might have been sitting before settling into this cozy position for some relaxation time after playing or exploring around earlier during daylight hours."} +{"image_id": 280073, "caption": "The image features a woman riding on the back of an elegant brown horse, likely in some sort of equestrian competition. She is wearing black clothing and appears to be enjoying her ride through lush green grassy fields with trees visible behind them. There are several other horses present throughout this scene as well - one can see two more nearby riders near each side of their respective mounts while another pair seems further away from us towards left-center area within viewing distance but not immediately adjacent or close by like those closer ones mentioned earlier."} +{"image_id": 527025, "caption": "The image features a group of people gathered outside an open doorway, ready to cut the ribbon for some event. They are standing in front and behind each other with smiles on their faces as they prepare themselves before entering into this new space together. There is also another person visible towards one side who appears not partaking or involved directly but still present at that moment during opening ceremonies. In addition to these individuals, there's more than just them attending; several chairs can be seen scattered around near where everyone stands waiting patiently until it becomes time to enter through those doors again after cutting off the tape symbolizing completion of construction work done inside by contractors likely working hard overtime hours preparing everything needed ahead so guests could enjoy what was accomplished within walls newly built upstages from scratch!"} +{"image_id": 483767, "caption": "The image features a small silver airplane suspended from the top of an outdoor pole, creating quite possibly one-of-a kind artwork. It is positioned in front and slightly to its left side with some trees visible behind it on either end or nearby areas within viewing distance. There are several people present near this scene: two individuals can be seen standing close together towards each other at different heights along opposite sides closer toward center right; another person stands further away but still relatively centralized between them both."} +{"image_id": 521259, "caption": "The image features a group of people gathered in an outdoor area, with several children playing together. One man is holding two white frisbees and another person appears to be throwing one towards the crowd while standing on his left side near some trees atop dirt ground covered by sand or gravel. There are multiple other individuals scattered throughout this scene: 10 kids can been seen running around as they play games; three adults stand nearby watching them engage in their activities without participating directly but still enjoying themselves from afar. A few cars parked along both sides add more life into these surroundings where everyone seems happy being part of each others' company during leasure time outside."} +{"image_id": 104422, "caption": "The image features a man wearing an impressive pink tie and suspenders, standing on the side of his house. He is posing for someone or taking pictures with friends in front of their home's entrance area surrounded by trees that are visible throughout various parts of this outdoor scene. There appears to be at least two people present near him: one person can been seen slightly behind them both while another individual stands closer towards us but still within reachable distance from our main subject \u2013 likely also partaking in capturing memories together during these casual moments outside"} +{"image_id": 260896, "caption": "The image features a black bear sitting on top of some logs, with its mouth open and tongue hanging out. It appears to be enjoying the sunny day while resting in this natural setting surrounded by trees or rocks nearby. There are several other smaller animals visible throughout the scene: two dogs canine friends near each side at different distances from one another; there is also an owl perched high up above them all towards left-center part of the picture frame area."} +{"image_id": 193261, "caption": "The image features a city street with several buildings lining the sides of it. There are multiple cars parked along both sidewalks, and some vehicles can be seen driving down this road as well. A traffic light is situated at one end near an intersection where two streets meet in front of another building on either corner. In addition to these elements, there's also various other objects scattered throughout such as handbags placed around or next to people standing by their respective parking spots; furthermore, three trash bins have been positioned nearby for waste disposal purposes."} +{"image_id": 108315, "caption": "The image features a dog lying on an orange bed, with its head resting near the edge of it. A book titled \"The Dog Book\" is placed next to him and appears quite large in size compared to his body. There are several pictures within this red-colored publication that likely hold interest for dogs or their owners alike \u2013 perhaps even both!"} +{"image_id": 56068, "caption": "The image features a group of people riding horses on the beach, with three riders in total. They are walking along an open stretch near some rocks and waves atop their mounts as they enjoy themselves during sunny weather by water's edge. There is also another person standing nearby to watch or join them for company while enjoying this scenic spot together."} +{"image_id": 240147, "caption": "The image features a baseball pitcher in action, throwing the ball from his position on top of an open field. He is wearing white and black uniforms with gloves to protect himself while delivering fast-paced throws towards home plate or other parts of the playing area during game play at Yankee Stadium's Field 120 feet away across centerfield fence (the distance between two bases). A few people are visible around him watching this intense moment unfold \u2013 some standing close by near first base sidewalk areas as well as others scattered throughout different sections along both sides of their seats behind third baseline seating rows that extend beyond left outfielder stands into right corner bleachers for better viewpoints overlooking all three fields within stadium grounds."} +{"image_id": 18575, "caption": "The image features a tray with two plates of food, one containing french-fries and the other featuring sandwiches. There are also several utensils on display: three forks placed near each plate as well as knives located in different positions around them to facilitate eating from both dishes simultaneously or separately if desired by diners at their table setting. A bottle is visible towards top left corner while another cup can be seen further down closer to center right side. Additionally there's an open book lying close beside it which might have been used during meal time reading material beforehand."} +{"image_id": 53015, "caption": "The image features a man sitting at the dining table with his baby, enjoying some pizza. There are two large slices of freshly baked and topped-off vegetable or meat pizzas on display in front of them \u2013 one is placed closer towards their left side while another appears further away from him nearer right edge of frame. A bottle can be seen close by next to both plates as well - possibly for drinking during dinner time together. In addition to these items around the diners' area there appear several other objects scattered throughout: three cups (two small ones located above each plate), four chairs surrounding most parts of the room except behind where an additional chair stands out against its backdrop; also visible within this space are five people who seem engaged either eating food themselves or observing others doing so nearby tableside conversations taking place among friends likely discuss various topics over meals shared here today..."} +{"image_id": 466118, "caption": "The image features a unique bathroom with an elephant-themed design. A large bathtub is placed in the center of this room, surrounded by various decorative elements such as bamboo and wooden accents on walls or floors throughout different parts of it. There are two sinks located near each other at one end corner next to some bottles that can be seen scattered around them. Additionally, there's another sink situated closer towards the middle part of the scene along side several cups positioned nearby for convenience during use."} +{"image_id": 205474, "caption": "The image features a vase filled with various flowers, including pink and yellow ones. There are multiple flower stems in the arrangement that appear to be arranged together nicely within an elegant glass container on top of what appears like either metal or wooden surface (possibly countertop). A bowl is also present near one end side of this scene; it may contain additional decorative items such as candles for enhancing ambiance during events where these arrangements would likely serve their purpose well-displayed atop tables surrounded by guests enjoying each other's company while admiring them throughout dinner parties..."} +{"image_id": 279138, "caption": "The image features two women sitting on the floor in a living room, surrounded by various presents and gifts. One woman is holding her dog while they both seem to be enjoying their time together during Christmas or another festive occasion. There are several potted plants scattered throughout the scene: one near each of them as well as some further away from where people sit down for more relaxation purposes around other furniture items such as couches (two), chairs/stools with backrests placed against walls nearby, an armchair situated atop carpeting towards left side corner area closer to viewers' perspective, along with additional smaller objects like books located within reachable distance next to either person seated therein this cozy atmosphere filled space."} +{"image_id": 271138, "caption": "The image features a sheep standing in the middle of an open grassy field, surrounded by two baby lambs. One is located on its right side and another one can be seen to their left near them both. There are also several other smaller animals scattered throughout this scene: three more goats or kids appear at different locations around the area \u2013 some closer together while others further away from each other but still within reachable distance for grazing purposes."} +{"image_id": 565148, "caption": "The image captures a baseball game in progress, with several players on the field. One of them is holding up his bat and getting ready to swing at an incoming pitch from another player who appears closer towards home plate than him or any other batter present near first base area. There are two umpires standing behind both catchers' positions - one close by each side of their respective bases (left-handed position). A few spectators can be seen watching this intense moment unfold as they stand around various parts within viewing distance across different areas along either baseline fence line \u2013 some even lean against it for support while others seem more focused upon observing specific aspects happening during play such as battles between opposites teams like Yankees vs Mets here depicted today!"} +{"image_id": 73199, "caption": "The image features a group of men dressed in black suits and ties, standing together on grassy ground. They are posing for the camera with their arms crossed or at sides as they smile towards it while being photographed by an unknown person behind them holding another device - possibly capturing this moment from multiple angles to document everyone's presence during some event like wedding photography session. There is also one man wearing glasses among these individuals who appear quite formal yet relaxed throughout the scene."} +{"image_id": 83915, "caption": "The image features a large, ornate building with multiple clocks on its facade. It is situated in the middle of an open field surrounded by trees and grassy areas that stretch out towards various parts around it. There are several people visible throughout this scene: one person standing near some bushes to their left side; another individual walking away from them at center right along the edge closest to us (their back); two more individuals sitting down further off-screen closer toward our direction but still within viewing range behind other objects nearby. Additionally there're three cars parked across different locations - close together just above halfway through the frame, slightly farther apart below midpoint area next to each car respectively, as well as yet again separated evenly between top third portion where they appear almost parallel while driving past or approaching slowly for parking purposes"} +{"image_id": 202275, "caption": "The image features two black dogs playing in a grassy field, each holding onto the same pink frisbee. They are standing close to one another and seemingly enjoying their time together while engaging with this fun game of fetch or tug-of war. There is also an additional dog present on scene that appears smaller than both main players but still participating actively by running around them as well. A car can be seen parked off towards left side near some trees atop the hillside behind it; there's no other vehicle visible within reach from these three animals during playtime inside the open space area they share for now..."} +{"image_id": 40102, "caption": "The image features two giraffes standing in a grassy field, surrounded by trees. One of the animals is closer to us and appears more visible than its counterpart on our left side near some bush-like plants growing around it. Both are facing each other with their necks stretched out towards one another as they stand next to an open area filled mostly with greenery like shrubs or small saplings scattered throughout this natural setting."} +{"image_id": 317024, "caption": "The image features a zebra standing in an enclosed area, likely inside of some sort of zoo or wildlife park. There are two other people present near the scene: one person is located on top left side and another individual can be found towards bottom right corner with their back facing away from us to avoid being captured by camera lens interference during photography session at this location. In addition to these individuals, there's also several trees visible throughout different parts of the background landscape surrounding them - three tree trunks appear close together along upper-left edge while others spread out across various locations within view range behind each character depicted herein."} +{"image_id": 550597, "caption": "The image features a small, well-appointed bathroom with an old fashion style. There is only one sink in the room and it's placed near toilet bowl on its left side of the space. A bathtub can be seen atop some steps leading down into another area or basement level below this floor where water would flow from pipes for filling up tub after use by residents living therein. In addition to these fixtures, several hand soap bottles are scattered around different parts within reachable distance throughout various areas inside the restrooms such as close proximity next to sinks (two), along walls nearby doors that lead outwards towards other rooms like bedrooms/hallways outside, underneath shelves above mirror hanging over vanities adjacent to each wall corner containing two separate soaps respectively - all contributing toward maintaining cleanliness during daily usage routines while keeping hands freshly washed before proceedings elsewhere across home premises."} +{"image_id": 315923, "caption": "The image features a red and white moped parked on the side of an urban street. There are two people in front, one sitting behind another person who is standing next to them both near their feet or legs area. A potted plant can be seen placed nearby as well towards left-center part of scene while there's also some other objects scattered around like bags at different locations along with various handbikes that appear throughout this setting."} +{"image_id": 322610, "caption": "The image depicts a busy city street with several people walking along the sidewalk. There are two women standing on opposite sides of an umbrella, one holding it and another carrying her own open-air parasol in front of them both as they walk down the roadway together towards their destination or shopping area nearby. In addition to these individuals, there is also at least three other females visible within this scene who appear further away from each other but still partaking in leisure activities such as window browsing while strolling through town. A few handbags can be seen scattered around among some pedestrians' hands near various locations throughout the crowd."} +{"image_id": 310071, "caption": "The image features a man dressed in orange robes, standing on the sidewalk with an umbrella over his head. He is smiling and appears to be enjoying himself while holding onto this accessory for protection from rain or sunlight exposure during outdoor activities near him. There are several other people visible throughout the scene as well: one person stands close by at left of center; another individual can also been seen towards right-center area behind some trees that provide shade along their pathway leading away into distance further downwards. A third figure sits closer up front next to two chairs placed nearby each other underneath them \u2013 possibly waiting patiently alongside others who may have arrived earlier than they did before venturing outside together later after taking cover beneath various objects like parasols (umbrellas) against potential weather conditions such rainfall or brightness levels affecting visibility through direct light sources around these individuals' surroundings"} +{"image_id": 533550, "caption": "The image features a man standing on an outdoor tennis court, holding his racket in preparation to hit the ball. He is wearing green clothing and appears focused as he takes aim at returning or hitting another shot during their game of doubles play with two other people nearby - one person stands slightly behind him while others are positioned further away from each side along both sides of the fence surrounding this area within viewing distance for all players involved. There's also some grass visible near them that likely serves as part of the playing surface where they engage in friendly competition against opponents who may be watching closely too"} +{"image_id": 211054, "caption": "The image is a black and white photograph of an industrial area with smoke billowing from the factory. There are several trains in various positions, including one nearer to us on track number 1029A-B at position A345678; another train can be seen further away towards left side (position B). In addition there's also two other smaller passenger cars visible nearby: One located closer behind Train No. CWCXZYUVHJKLNOPQRSTUV WEITERHAUSEN, while its counterpart appears slightly farther back along Track Number EGFEDDDEEGFEFFEEEFGG."} +{"image_id": 446637, "caption": "The image features a group of birds standing on logs floating in the water. There are several bird statues scattered throughout, with some closer to each other and others further apart from one another across different parts of the body of water they're situated within. Some individuals appear more focused or engaged than their counterparts nearby them while still maintaining an overall sense of unity among all figures present at this aquatic location."} +{"image_id": 3134, "caption": "The image depicts a city street with an AC Transit bus driving down the road. There are several cars parked along both sides of this urban area, and some traffic lights can be seen in various locations on either side or at intersections throughout the scene. A pedestrian is also visible walking across one section near another car towards their destination while avoiding getting hit by vehicles passing through that intersection."} +{"image_id": 271548, "caption": "The image features a room with blue chairs arranged in rows, and there is an ornate glass vase filled to the brim near one of them. In addition to this central display piece on its own pedestal or stand-like structure, several other smaller flower arrangements are scattered throughout various parts around it \u2013 some closer than others towards their respective seats' sides as well as further away from each chair positioned along different sections within viewing distance for all guests present at that moment during event setup time beforehand when they would be seated together later while attending religious services possibly involving communion ceremonies where flowers play important symbolic roles representing life eternal through Christ\u2019s resurrection power over death itself\u2026"} +{"image_id": 368294, "caption": "The image features a young woman sitting at an old wooden table, working on something with scissors. She is wearing pink clothing and appears to be focused intently as she cuts the material in front of her using various tools such as knives or clippers nearby. There are several other objects scattered around this workspace: two bottles can also been seen near one another towards left side; there're three books placed close together along right edge area - possibly for reference purposes during crafting process.; furthermore, some cups appear throughout different parts within reach from both hands while cutting materials \u2013 likely used by workers who come here frequently."} +{"image_id": 429142, "caption": "The image features a skateboarder performing an impressive trick on his board, jumping over what appears to be part of the shoe. He is in mid-air and seems focused as he navigates through this challenging maneuver with precision skillfulness. In addition to him riding high above ground level while doing tricks like these atop shoes or other objects around town parks are also visible throughout various parts of the scene: there's one person sitting down near some trees; another individual standing nearby holding onto their bicycle handlebars close by them; two more people can been seen walking along sidewalks further away from each other but still within reachable distance for socializing during leisure time activities such as strolling about outdoor spaces together after work hours when it gets dark outside earlier than usual due to daylight saving times taking effect that weekend (the date being March)."} +{"image_id": 527906, "caption": "The image features a table with various items, including two cups and saucers. One cup is placed on the left side of the scene while another one can be found closer to center-right area in front viewing angle from above or below it at an oblique perspective. There are also several plates scattered around: three near each other towards top right corner; four more spread out across different parts along bottom half portion of the dining room floor space (two close together); five further downwards toward lower part where they appear as separate entities but still within reachable distance for serving purposes during mealtime gatherings involving multiple people sharing food preparation tasks among themselves over time intervals that may vary depending upon their individual schedules..."} +{"image_id": 403975, "caption": "The image features a baby sitting on the floor in front of an elegant cake with blue and white frosting. He is holding his hands near one side, possibly about to blow out some candles or make other gestures related to celebrating birthdays while surrounded by balloons placed around him for decoration purposes. There are several people present at this event: two females can be seen standing behind each end corner of their respective sides (left/right), as well another female located closer towards center-top area next to them both. Additionally there's also someone else who appears further away from these three individuals but still within reachable distance \u2013 they might have been invited guests attending together during such festive occasion!"} +{"image_id": 554002, "caption": "The image features a group of people standing in front and behind the dog, which is walking towards them. There are several dogs present on this scene: one black furry small-sized puppy that appears to be leading or following its owners; another brownish colored medium sizing canine with an interesting expression looking upwards at something nearby as well; two more smaller white fluffy ones seemingly accompanying their respective groups near each other but not directly interacted within it yet. A few potted plants add some greenery around while there're also various handbags scattered throughout different parts of the crowd area for convenience purposes during outdoor activities together by these friends enjoying time outside underneath umbrellas placed strategically along sidewalks among trees lining streetside areas where they gather."} +{"image_id": 408501, "caption": "The image features a blue and yellow train traveling down the tracks in an industrial area. There are several people visible, some standing near or on top of trains nearby while others can be seen walking along sidewalks alongside them. A few cars parked at various locations add to this urban scene with one car located closer towards center left corner, another further away from it but still within reachable distance for pedestrians passing by, two more vehicles situated slightly farther back behind buildings, as well as additional parking spots scattered throughout different parts around town."} +{"image_id": 294423, "caption": "The image features two giraffes standing next to each other in a grassy field. One of the animals is closer, while another one appears further away from its companion on their left side and slightly behind it towards right-center area within viewing distance. Both are looking upwards with mouths open as if eating something or enjoying an activity together amidst tall trees surrounding them at various height levels throughout the scene's background."} +{"image_id": 501439, "caption": "The image features a male tennis player wearing yellow shirt and holding his racket. He is standing on the court, looking down at something in front of him while preparing to play or perhaps reflectively pondering what he has just done during an earlier point played with another opponent nearby who may be watching from off-screen left side (not visible). There are several other people present around this scene as well: one person can been seen near center right area; two more individuals appear towards top middle section close together but not directly interacted within their surroundings yet still partaking some level of interest for sure!"} +{"image_id": 320039, "caption": "The image features a young girl sitting at an outdoor table, enjoying her meal. She is eating spaghetti from the plate in front of herself and has both hands on it to take bites with utensils or without them as she likingly savors each bite. There are several cups placed around this scene: one cup nearer towards left side while another can be found closer toward right edge; there's also two more further away but still within reachable distance for someone seated next to these items during their dining experience together outside under sunny skies"} +{"image_id": 246512, "caption": "The image features a black dog sitting in the muddy water near some rocks. It appears to be enjoying its time by playing or relaxing, possibly after having been out for an adventure with someone nearby who is not visible within this scene. There are several other dogs present around and close-by as well \u2013 one can see two more furry friends on either side of the main subject's position towards left (leftmost) end while another three appear closer together at right center area next to each other."} +{"image_id": 322796, "caption": "The image features a young golden retriever dog running through the grass with an empty frisbee in its mouth. It appears to be enjoying itself as it runs around, possibly playing fetch or engaging in other fun activities outdoors on this sunny day. There are several trees visible throughout the scene and some bushes scattered about near them that add depth to the landscape of greenery surrounding the playful pup's adventure outside"} +{"image_id": 447364, "caption": "The image features a young boy sitting on the sidewalk, likely practicing his skateboarding skills. He is wearing shoes and appears to be focused as he rides downhill along an incline of pavement with some grassy areas nearby in between buildings or houses visible behind him. There are several cars parked near this area for convenience while enjoying their day outdoors."} +{"image_id": 405736, "caption": "The image features a man standing on top of the snowy mountain, holding his skis and poles. He is wearing black clothing with red accents that match well against this winter landscape filled by mountains in background behind him. There are several skiers visible throughout the scene: one person stands close to another atop some rocks nearer towards us; two more people can be seen further away from each other along an incline closer toward their left side or right edge respectively. Additionally there's also someone else who appears slightly farther downhill but still within reachable distance for them all if they choose so."} +{"image_id": 553867, "caption": "The image features a large herd of zebras and giraffes running across an open grassy field. There are several groups or clusters of both animals, with some individuals scattered throughout the scene as well. In total there may be around 15-20 individual wildlife creatures visible in this setting \u2013 including at least sixteen adults (eleven on one side) among them two females standing closer to each other near center right corner while others run towards left edge area; also three young ones can't help but follow their mothers closely behind - they appear more frequently than any grown up animal does along entire length from top downwards direction until reaching bottom half where only few solitary members remain by themselves amidst vast expanse..."} +{"image_id": 137993, "caption": "The image depicts a busy city scene with people walking across the bridge over water. A train is passing by, and there are several cars parked on both sides of it in various locations along its path through town. There're also multiple bicycles scattered around near some buildings or parking areas nearby to facilitate transportation for those who prefer cycling as their mode of traveling within urban settings like this one. Additionally, two handbags can be seen hanging from different parts of the area \u2013 possibly belonging to individuals enjoying an outdoor day trip while exploring the surroundings atop bridges that connect them between landmarks such as museums located close-by each other."} +{"image_id": 393282, "caption": "The image features two giraffes standing in a dirt field, with one of them closer to the camera. They are both facing different directions and appear relaxed as they stand next each other on opposite sides within their enclosure or habitat area surrounded by trees scattered throughout it all around 10 feet away from where we can see these animals at this moment. There is also another tree located further back towards left side that adds more depth into scene's background while providing shade for some parts nearer its base."} +{"image_id": 341247, "caption": "The image captures a basketball game in progress, with several players on the court. There are two main groups of people visible: one group is standing around and watching from various positions near or behind them while another player stands alone at center stage holding an orange ball close to his chest as he prepares for action during playtime. A few other individuals can be seen scattered throughout different parts of the scene - some closer towards each side than others \u2013 all enjoying this intense moment together amidst their shared passionate interest in sports activities like playing games such as soccer/basketball that require teamwork skills among participants involved."} +{"image_id": 531047, "caption": "The image features three people sitting on a couch, holding glasses of champagne. They are smiling and toasting each other with their drinks in hand while enjoying the moment together as friends or family members celebrating something special like an anniversary party perhaps? There is also another person standing behind them who appears not involved directly but still partaking from afar by looking at one side towards two women seated next to him/her near his left shoulder area. A bowl can be seen placed nearby for additional refreshments during this festive occasion"} +{"image_id": 356623, "caption": "The image features a group of three motorcyclists riding down the road, passing through an impressive rock formation. One person is driving in front while two others follow closely behind them on their respective bikes. There are several cars visible throughout this scene as well - some parked along one side and another car moving slowly towards its destination atop the mountainous terrain ahead. A traffic sign can be seen near where they're traveling to remind drivers about upcoming turns or other important information related to navigating around that area."} +{"image_id": 449302, "caption": "The image is a black and white photograph of two people sitting on the edge or sidewalk near water. One person holds an umbrella, while another sits nearby with their back to them both in profile viewpoint towards each other's faces. There are several boats visible along one end of this scene as well - some closer together than others \u2013 suggesting that they might be docked at various locations around these waterside areas. In addition to those boating activities happening offshore from where our main characters sit by themselves enjoying time outdoors underneath shade provided by large trees surrounding most parts of the area except for close proximity next to buildings which have no tree coverage yet still maintaining greenery through foliage plants growing alongside structures like vines covering walls/fences etc.."} +{"image_id": 206496, "caption": "The image features a group of people riding on the backs or sides of several elephants through lush green vegetation. There are three adult males and two children in this scene, with one person standing next to an animal near its head while another is seated atop it further down towards their hind legs. Two more individuals can be seen walking along side some other animals nearby as well. In addition to these riders/walking companions for each individual mountable creature, there're also various trees scattered throughout the area surrounding them \u2013 providing shade from direct sunlight above - creating beautiful scenery around every corner they take during that journey together into nature."} +{"image_id": 495088, "caption": "The image features a body of water with several rocks scattered throughout the surface. There are birds flying in various directions, including one bird that is close to landing on an island nearby and another soaring high above it all nearer towards landfall at sea level. A few more distant seagulls can be seen as well over by some trees further away from shore or possibly hovering around other areas within view but not immediately visible here. In addition to these avian visitors, there're also two boats floating along side each other offshore \u2013 likely enjoying their own serene day out amidst nature while taking advantage of this picturesque setting for leisure activities like fishing perhaps?"} +{"image_id": 54011, "caption": "The image features a red fire hydrant placed in the middle of an overgrown yard, surrounded by lush greenery. A white house can be seen on one side and another building is visible further away from it towards left-center part of the scene. There are several trees scattered throughout this area as well - some closer to each other nearer the buildings while others appear more distant or spread out across different parts of the landscape. In addition to these elements, there's also at least two benches present within view: One close up against the right edge with its back facing slightly downwards; Another farther off into background but still clearly recognizable due to their distinct shape compared to surrounding objects like bushes."} +{"image_id": 190648, "caption": "The image depicts a bedroom with an unmade, dirty mattress on the floor. There is also another chair in this room that appears to be covered by some sort of fabric or blanket over it. A window can been seen at one side corner and there are two chairs placed near each other towards its center area within close proximity from both sides - left (leftmost) and right-centered positions respectively. In addition to these elements, various items such as books scattered around add more visual interest throughout the space while creating clutter along walls surrounding them."} +{"image_id": 118034, "caption": "The image features a person holding an open cell phone, displaying the screen with two people on it. One of them is sitting in front and another one behind her backside view can be seen as well. There are multiple hands visible throughout this scene: three hand objects placed around or near each other at different positions within close proximity to both individuals depicted inside their respective screenshots captured by someone's smartphone camera device held up for display purposes."} +{"image_id": 409346, "caption": "The image features two women standing in a dining room, preparing food for themselves and others. They are both serving from bowls on the table with various types of desserts available to choose between \u2013 cakes or pastries possibly being some options among them. There is also an assortment of cups placed around their area as they enjoy refreshments together at this gathering event. In addition, there appears to be several chairs scattered throughout the scene where guests can sit down while enjoying these delicious treats prepared by our hosts."} +{"image_id": 138022, "caption": "The image features a red van parked on the side of an urban street. It has two surfboards mounted to its roof, indicating that it is likely used for transporting people and their equipment while enjoying water sports activities like kayaking or paddleboarding in nearby waters near buildings with flags flying high above them. There are several cars visible throughout this scene: one at left-center position behind another car; three more vehicles can be seen towards right center area along both sides of the roadway leading upwards from where they're situated closer together than other surrounding objects such as trees and benches placed around parkside areas within view distance away from each vehicle."} +{"image_id": 217997, "caption": "The image features a young man carrying his surfboard as he walks into the ocean. He is walking towards deeper water, possibly preparing to catch some waves or enjoy an afternoon at sea with friends and family nearby in various positions along both sides of him on shore. There are several people visible nearer to one side while others can be seen further away from them closer toward another part of beach area behind their heads."} +{"image_id": 224281, "caption": "The image features a small teddy bear dressed up as an adorable pumpkin, sitting on top of some grass. It is placed in the middle area and appears to be partaking from its surroundings while enjoying itself among other objects nearby such as backpacks or bags scattered around it. There are several smaller items near this scene including two bottles positioned close by each other at different height levels \u2013 one closer towards left side edge (leftmost) with another slightly further away but still within reachability range for someone picking them both together if needed later."} +{"image_id": 101647, "caption": "The image features a small bathroom with an old-fashioned sink and countertop. There is also another object in the room, possibly representing some sort of furniture or decoration that cannot be identified from this viewpoint alone but adds to its overall appearance as part of the scene's setting for relaxing moments at home after work hours. In addition to these elements within the space itself are two bottles placed on top shelves near one wall corner \u2013 likely containing personal care items such soap dispensers used during daily hygiene routines before heading out into public spaces again later today."} +{"image_id": 499940, "caption": "The image features two young boys playing together in a grassy field. One boy is standing on the left side of the scene, while another child can be seen sitting down near him to their right handside. Both children are wearing hats and appear engaged with each other as they play around kites flying high above them against an expansive blue sky background filled by clouds at various heights across it. There're several people visible throughout this open space: one person stands towards top-left corner; three more individuals spread out along different parts within view range from bottom upwards - including some closer than others \u2013 suggesting that there might have been additional visitors or participants present during these activities outside under sunny weather conditions"} +{"image_id": 295728, "caption": "The image features a large, golden clock sitting atop an ornate pedestal in the middle of what appears to be some sort of public space. There are several people visible throughout this scene: one person is standing near or next to another individual on their left side; two more individuals can also been seen further away from each other and closer towards either end of the room's interior area. A third group consists of three additional figures positioned together close by but not as closely packaged like those previously mentioned groups around them. In addition to these human elements within viewing distance, there appear to be multiple lights illuminating different parts of both inside areas \u2013 including light sources above tables placed against walls with chairs surrounding it for seated guests."} +{"image_id": 415393, "caption": "The image features a young man performing an impressive skateboarding trick on top of his board, which is positioned at the edge or lip area. He appears to be riding down from some sort of structure in front him while maintaining balance and control over it with one hand placed near its base for support as he performs this stunt skillfully without falling off. In addition to these elements, there are several other people present around them who seem engaged by what they're watching \u2013 possibly friends cheering their friend up during practice sessions before competitions?"} +{"image_id": 43433, "caption": "The image features a small dog sitting on the back of an old motorcycle parked in front of two houses. One house is located to its left, and another one can be seen further away from it towards right side of frame. There are several cars scattered around this scene: three vehicles visible at different distances behind each other near both homes; there's also some traffic lights placed along streets nearby or possibly indicating intersections within viewing distance for these residents living here."} +{"image_id": 145436, "caption": "The image features a white cutting board with an orange and half of another one placed on it. There is also some juice in the background, likely from squeezing oranges earlier that day for their fresh taste to be enjoyed later as drinks. A knife can been seen nearby ready-to use when needed during preparation time at home."} +{"image_id": 48956, "caption": "The image features a giraffe standing in an enclosed area, likely at the zoo. It is surrounded by trees and rocks on all sides except for one side where there's no obstruction visible from this angle of viewing it through fencing or glass walls that enclose its habitat within confines suitable to protect animals like these creatures are often kept under close observation during their stay inside zoos as part of conservation efforts towards preserving endangered species such as Giraffes worldwide today."} +{"image_id": 200725, "caption": "The image features a bedroom with an impressive wooden platformed queen-sized bed. It is adorned by yellow sheets and pillows, giving the room its warm color scheme. A potted plant sits on top of one corner near to where it can be easily seen from within or outside this cozy space in which there are two chairs placed next each other at opposite sides across the wall behind them - providing additional seating options for guests who may visit frequently into their home's living area."} +{"image_id": 352206, "caption": "The image features a large group of people, mostly young boys and men in suits or ties. They are posing for an old-fashioned school photo together on the steps outside their building with some standing behind others to create depth within this black & white photograph taken during that era's style fashion trend towards formal attire at schools back then when students were dressed up more often than today\u2019s casual dress code is commonplace nowadays across many educational institutions worldwide.."} +{"image_id": 528318, "caption": "The image features a cozy living room with various furniture pieces arranged around the space. There is an L-shaped couch placed in front of two windows, which allows for natural light to enter and fill up most parts of this area. A coffee table can be seen near one end corner of the sofa where people might gather or place their drinks during social events at home. Several potted plants are scattered throughout different areas within reach from both sides \u2013 some closer towards each other while others further apart on opposite ends of the scene. In addition to these elements, there're several bottles positioned across multiple locations: three close together by the left side wall; another pair located next to them but slightly farther away along that same sectional edge; yet more distant ones situated behind those closest to you as they stretch out toward your right handside viewpoint."} +{"image_id": 89999, "caption": "The image features a narrow alleyway with several cars parked along the sides. There are two bicycles placed in different locations within this area, one nearer to an entrance and another further down towards its end point on either side of some buildings that line up alongside it. A potted plant can be seen atop each building's balcony or rooftops overlooking part of the street scene below them. Additionally, there is also a bench situated close by for people who might want rest while enjoying their surroundings from afar off-street viewing distance away but still visible through windows nearby."} +{"image_id": 192651, "caption": "The image features a living room with two couches, one on the left side and another in front of them. There is also an armchair placed nearer to the right end corner next to some potted plants that add greenery throughout this cozy space. A television can be seen mounted above these furniture pieces towards their center area where it provides entertainment for those who might want to relax or watch something while enjoying time at home. Additionally, there are several books scattered around various parts within reach from both sofas as well as other areas like close proximity by chairs against walls nearby bookshelves containing more reading material."} +{"image_id": 254161, "caption": "The image features a busy city square with people flying kites in the air. There are several individuals standing around, some of them holding their own colorful and large-sized kite strings while others watch from afar or take photos to capture this momentous occasion on camera phones held by various hands throughout the scene. In addition to these activities taking place within close proximity between each other's positions across different parts of the area, there is also an automobile parked near one side edge of the plaza \u2013 possibly belonging either to someone attending the event as well or simply passing through during that time period."} +{"image_id": 581827, "caption": "The image features a person standing in front of an old brick wall, holding two tennis rackets. They are preparing to play the game with another player or by themselves on this outdoor court area near them. There is also some grass visible around their feet and legs as they stand ready for action while facing towards each other across from one side of the scene's frame."} +{"image_id": 337987, "caption": "The image features a bird perched on the top of an old, weathered tree branch. It is sitting in front and slightly to one side with its head tilted upwards towards something outside or above it \u2013 possibly searching for food? There are several other birds visible throughout this scene as well: two more can be seen further down along another part of their respective branches; there's also at least three additional ones scattered around different parts within viewing distance from each other but not necessarily close together."} +{"image_id": 90631, "caption": "The image features a small, colorful airplane flying through the sky. It is painted in red and yellow colors with black accents on its body. There are several people visible around it: one person near top left corner of the scene; another individual close to bottom right side; two more individuals positioned closer together towards center-right area within viewing distance from each other but not directly next or overlapping their positions by much space between them. Additionally there's an object located at upper middle part that could be interpreted as either debris falling off during flight maneuvers for entertainment purposes (as seen happening), smoke emitted due to engine performance changes while performing stunts/tricks up high above clouds level \u2013 both possibilities can make this scenario quite thrilling!"} +{"image_id": 240775, "caption": "The image features a yellow double-decker bus driving down the street, passing by various cars parked along both sides of it. There are at least six vehicles in total: three on one side and two more towards each end near buildings or other structures that line up with them. A few people can be seen walking around as well - some closer to the front while others appear further back from where they started their journey through town. In addition to these pedestrians, there is also an umbrella visible nearby among all this activity taking place within viewers' field of vision"} +{"image_id": 100909, "caption": "The image features a baseball game in progress, with several players on the field. One of them is swinging his bat at an incoming pitch while another player catches it behind him as part of their team's defense strategy for that particular play during this momentous event \u2013 possibly even capturing some action from one or more games within larger tournament series like Little League World Series and other youth leagues around America each year since 1947!"} +{"image_id": 324436, "caption": "The image features a large elephant standing in the middle of an open field, surrounded by lush green vegetation. It is eating from one side and appears to be enjoying its meal while walking around on grassy terrain with bushes scattered throughout it all over the scene. There are several trees visible near or behind this majestic animal as well"} +{"image_id": 9466, "caption": "The image features a cat sitting on the floor next to several pairs of shoes. There are two different types and styles, including sandals with straps as well as flip-floppers or slipper type footwear in various colors such as blue/purple (left), black & white(right) , red brownish color near center left side). Some other items can be seen scattered around this area like books placed atop one another towards right corner while there is also an open door visible behind them that leads outside into some sort of outdoor space possibly for exploration by cats who love adventure!"} +{"image_id": 380932, "caption": "The image features a snowy landscape with an open field and some trees scattered around. In the center of this scene, there is one red fire hydrant standing out against its white surroundings in contrast to other objects nearby like rocks or bushes that are more subtlely visible on top of patched grass areas throughout the area near it. There's also another small rock located close by next to two large boulders further away from each side towards opposite ends of their respective sides within viewing distance but not as prominent compared to others present across different parts of the picture frame."} +{"image_id": 540180, "caption": "The image features a street corner with several cars parked along the side of it. There are two traffic lights on either end, one green and another red light in between them at an intersection near buildings that appear to be residential or commercial structures nearby. A person is standing next to their car towards left-center part of this scene while others can also been seen walking around further down from there as well. In addition to these people, other vehicles have arrived for parking purposes throughout various parts across both sides of the roadway leading upwards into view beyond those present here by now."} +{"image_id": 303652, "caption": "The image features a wooden table with two plates of food on it. One plate contains an open sandwich, while the other has cake slices placed in front and behind them to create different levels for serving purposes or presentation effectiveness. There are multiple chairs around this dining area as well; some closer together than others towards one side of the scene. A person is also visible sitting at another chair further away from where they appear more relaxed compared to those nearer their seat positioning."} +{"image_id": 416326, "caption": "The image features a blue crate filled with various fruits and vegetables, including broccoli. There are several apples scattered throughout the scene as well \u2013 some closer to one another in groups of two or three on top left side near each other while others appear more spread out across different parts of the picture area towards right-center region. In addition to these fresh produce items, there is also an orange present atop partway down from center bottom section among all those fruit pieces around it."} +{"image_id": 511662, "caption": "The image features a cruise ship docked in the ocean near an idyllic beach. There are several sailboats and other boats nearby, with one of them being closer to shore than others due northwest from center frame towards left side edge (leftmost boat). A few palm trees can be seen on either sides or behind some parts of these watercrafts as well as along various sections around their surroundings \u2013 indicating that they're situated within close proximity to each another at this location by sea level."} +{"image_id": 252137, "caption": "The image features a black countertop with various vegetables arranged on it. There are several carrots, some of which appear to be freshly cut and others that have been peeled or sliced into smaller pieces for preparation in cooking recipes later this evening at home. Apart from the colorful array of root veggies like radishes (several scattered around), there is also an assortment of other ingredients such as celery stalks placed near them along one side edge of the table top surface area. Additionally, two leeks can be seen towards each end corner of the scene \u2013 their long green stems stretch out across different parts of the picture frame's edges while leaves protrude upwards slightly above these roots."} +{"image_id": 502240, "caption": "The image features a group of children sitting in chairs around an adult woman who is holding and petting her dog. There are several books scattered throughout the scene, with some placed on tables or held by individuals within reach for reading purposes during their gathering together as friends to read stories about dogs while enjoying each other's company near Christmas time at school. In addition to these elements, there appears to be another person standing off-screen towards left side behind one chair where they might have been observing this activity from afar without being directly visible here but still partaking indirectly through presence nearby."} +{"image_id": 327665, "caption": "The image features a woman standing next to an English stop sign, which is written in Arabic. She appears confident and proud as she poses for the camera while holding up her hand near or above it \u2013 possibly indicating that this photo was taken at some sort of tourist attraction where people are encouraged to take pictures with various signs around them. In addition to these elements, there's another person visible on one side further away from us who seems less engaged but still present within range during their visit here too"} +{"image_id": 480408, "caption": "The image features a man wearing cowboy boots and jeans, sitting on the back of an adorable brown horse. He is smiling as he rides through grassy fields with other horses in view behind him or nearby his position. There are several cars parked along one side of this rural scene: two trucks near each end (one closer to us), another car further away from them towards center right corner, followed by three more vehicles at different distances scattered across both sides \u2013 including some close together like pickups next to trees while others appear farther apart such as sedan-type automobiles placed between distant hills."} +{"image_id": 279499, "caption": "The image features a busy street with several buses parked in the lot. There are two large, modern-looking city transit busses and one smaller commuter van that appear to be waiting for passengers or ready to depart on their next journey through town. In addition to these vehicles, there is another small green vehicle nearby as well - possibly an additional passenger carrier like those used by public transportation companies around Asia. A person can also been seen standing near some of them at various locations throughout this scene."} +{"image_id": 274792, "caption": "The image features a kitchen countertop with various items placed on it. There is an aluminum cake pan filled to the brim, likely containing carrot-based batter or frosting for baking purposes. A knife can be seen in close proximity near one of its edges and another nearby blade rests against some other utensils atop the table surface area next to them. In addition to these tools, there are several bowls scattered around: two large ones towards each side edge; three smaller sized containers located closer together underneath both sides' larger pans; as well as four additional small cups positioned further away from their respective food preparation areas along different parts of the scene."} +{"image_id": 359781, "caption": "The image features a giraffe standing in an open field surrounded by trees. It is walking towards the right side of frame, with its head and neck stretched out to reach for some tall grass on top left corner near another tree trunk that appears closer than others around it. There are several other smaller plants scattered throughout this scene as well - one can be seen atop rocks or mounds nearby while two more appear further away from each other along bottom-left edge close together but not touching any objects yet visible within their vicinity..."} +{"image_id": 76416, "caption": "The image features a large double-decker bus parked on the side of an urban street. It is covered in advertisements for Apple's iPhone, with various images displayed across its exterior surface and along both levels inside it as well. There are several people visible throughout this scene: one person standing near another individual further down from them towards left edge; two more individuals walking around closer to center right area where they can be seen interacting or passing by each other while looking at their surroundings. A handbag rests close beside some benches placed nearby these pedestrians who seem engaged within conversations among themselves."} +{"image_id": 281591, "caption": "The image features two small dogs lying on a bed, one brown and the other white. They are both resting comfortably with their heads close to each another in an affectionate manner as they sleep together peacefully next to blankets covering them partially or fully across different parts of the mattress surface area. There is also some clothing visible near these animals: there's at least three shirts placed around various locations within view \u2013 possibly belonging either to humans who share this space temporarily or left behind by previous occupants during cleanup efforts beforehand."} +{"image_id": 476709, "caption": "The image features a woman standing on top of an inflatable paddle board, navigating through the water. She is holding onto her oar and appears to be enjoying herself while riding in calm waters near some rocks or boulders along its edge. There are several other people visible around this area as well - one person can been seen further away from our main focus point towards left side with their back facing us; another individual stands closer at right-center position looking out into deeper blue sea beyond them both."} +{"image_id": 357219, "caption": "The image features a group of bears climbing on top and around several large tree trunks in an enclosed area. There are three brown bear cubs, each one standing or sitting atop the logs with their back legs dangling off to balance themselves as they explore this natural habitat within captivity. In addition to these animals enjoying life inside fenced-in confines, there is also another person present near them who appears not involved directly but rather observing from afar without interfering too much into nature's scene unfolded before him/her."} +{"image_id": 479586, "caption": "The image features a black and white cat sitting on top of an entertainment center, watching television. There are several books scattered around the room near or next to various pieces of furniture such as chairs in different positions throughout it all - one chair is closer towards left side while another sits further right from its positioning among other items like bags placed nearby them too. A bookshelf can be seen atop which there's also some additional objects visible within reach for easy accessibility during use by someone who might need those things frequently when using their hands close-by that shelving unit area."} +{"image_id": 272673, "caption": "The image features a bathroom with an elegant and spacious design. A large mirror is mounted above the sink, providing ample reflection for grooming or checking one's appearance before leaving home in the morning. There are two towels hanging on hooks near both sides of the doorway entrance into this room from another area within it; these could be used as hand-towel holders after washing hands upon entering the space. Additionally, there appears to be at least three sinks located throughout different parts of the scene: close together by each other underneath some cabinets towards left side corner (left), further away but still visible next to them closer toward right edge section bottom half way down, then again slightly farther back along top center portion behind countertop shelf holding various items like soap bottles among others that add visual interest while keeping things organized inside cabinetry spaces around those areas where they can easily access their personal belongings during use time spent herein."} +{"image_id": 522452, "caption": "The image features a large Singapore Airlines plane parked on an airport tarmac. It is visible through the window of what appears to be either another aircraft or possibly part of an office building, giving us insight into its size and presence at this location in Asia's Changi Airport complex. Several people can also been seen around the scene: one person standing near the left side edge close by some luggage bags; two more individuals are positioned further away from each other towards center-right area with their back facing toward camera viewpoint while looking downwards likely checking something related to boarding procedures for passengers getting ready inside that particular flight bound jetliner."} +{"image_id": 512785, "caption": "The image features a beautiful beach scene with two chairs placed under an umbrella on the sand. One chair is closer to us, while another one can be seen further away from it in front of them both. There are also several other objects scattered around this area: 10 bottles and cups near or next to some people; three buckets nearby each containing water for swimming purposes (two close together at left side); four handbags hanging off various parts of trees along the shore line behind these items \u2013 possibly belonging to those enjoying their time here as well!"} +{"image_id": 369153, "caption": "The image features a man walking on the beach, carrying his surfboard under one arm. He is wearing black pants and appears to be focused as he heads towards an unknown destination with determination in mind for some fun at sea or water activities ahead of him. In addition to this main figure holding onto their board while moving forward across sandy terrain, there are several other people scattered around different parts within view distance from each another but not interacting directly yet."} +{"image_id": 470932, "caption": "The image features a large elephant standing on the ground, surrounded by people. There are several individuals in various positions around and near to it: some stand close while others appear further away from each other or closer towards one side of the scene than another. A few more distant figures can be seen at different distances as well; they seem less focused upon interacting with this particular animal but still partaking within its vicinity during their visit here for an event possibly involving them all together."} +{"image_id": 388100, "caption": "The image depicts a busy street scene with people standing in line, waiting to board the yellow truck. There are several individuals scattered throughout this area of interest on both sides and at different levels along the sidewalk or roadway near buildings that surround it. Some passengers can be seen holding onto handrails as they wait for their turn inside one building located towards left-center part of the picture frame. A few more pedestrians stand further away from each other across various parts within viewing distance behind them while others appear closer together by some parked cars nearby. In addition, there is an umbrella visible hanging downwards close beside two men who seem engaged in conversation amidst all these passersby."} +{"image_id": 208808, "caption": "The image features a young boy performing an impressive skateboarding trick in the air, jumping over concrete steps. He is wearing jeans and has his hair tied up with headphones on as he performs this dazzling stunt atop of some cement blocks or walls near him. There are several cars parked around the area where they can be seen scattered throughout different parts of the scene: one car to the left side close by; another further away from it towards right-center part of viewpoint; two more vehicles located closer together behind them slightly off center stage; three additional ones positioned farther back along both sides within reachable distance for someone riding their bike nearby too."} +{"image_id": 225518, "caption": "The image features a spacious bedroom with an impressive, well-appointed king size white and black floral pattern headboard. A large television is placed in the room on top of one end table next to it for entertainment purposes while two chairs are situated near each other at opposite ends from where they can be used as seating during viewing or relaxation time after workouts nearby. There's also another chair located closer towards center part of this area that could serve multiple functions such as watching TV together by couples sitting sideways facing away from their respective sides toward central position between them; alternatively, individuals may use these seats independently when working out separately but still within close proximity without disturbance affecting others who might prefer more privacy elsewhere around the space."} +{"image_id": 380993, "caption": "The image depicts a busy city street on which people are walking, carrying umbrellas to protect themselves from the rain. There is an abundance of cars parked along both sides and in front of buildings throughout this scene as well. Some individuals can be seen holding their bags or purses while others carry backpack-like items with them during their walk through town. A few pedestrians have cell phones tucked away into pockets near where they stand waiting for traffic lights at various intersections across the roadway."} +{"image_id": 407821, "caption": "The image features a serene scene of an evening on the water, with two boats floating in calm waters. One boat is positioned closer to us and another one further away from it towards left side of the frame. Both are small fishing vessels that appear ready for their next adventure or day out at sea during sunset time. In addition to these boats, there's also some vegetation visible near them - likely weeds growing along shore areas around where they rest peacefully after spending hours navigating through open seas underneath clear skies filled by warm orange hues as seen behind clouds above horizon line."} +{"image_id": 89121, "caption": "The image features two giraffes standing next to each other, with one of them looking up towards the camera. They are positioned near a rocky area and appear quite close together in this scene from their habitat at an animal park or zoo exhibit. There is another smaller object located on top left side that could be either part of nature's scenery like foliage or something else within reach for these animals such as food items placed there by keepers during feeding time"} +{"image_id": 193480, "caption": "The image captures a tennis match in progress, with two players on the court. One player is holding their racket and standing near one of several chairs placed around them both at opposite ends across from each other within close proximity to where they are playing. There's another chair located closer towards center stage between these opposing positions occupied by an unidentified person who may be watching or participating as well but not actively involved yet during this particular point in time for either team. In addition to those seated spectators scattered throughout various parts of the stadium area surrounding it all over multiple rows upwards into higher levels above ground level, there might also exist some more people sitting down further away behind others that can only partially been seen due to perspective limitations caused when looking through such large crowds gathered together here today specifically attending what appears like quite possibly a professional event featuring top-notch athletes competitiveness showcasing themselves against opponents while trying out new strategies under pressure amidst cheering fans eagerly anticipate every move made along the way..."} +{"image_id": 248616, "caption": "The image features a man playing tennis on an outdoor court. He is wearing tan pants and has his right hand holding the racket, ready to hit or return shots from another player who appears in one of three photos taken at different angles during their gameplay session together with him. There are two other people visible near them: One person stands off-screen left while others stand further away towards center/right side behind some trees that can be seen partially obscured by leaves covering part of those areas closer up front where they appear more clearly engaged into play themselves as well \u2013 possibly waiting for turns hitting balls back forth between each pair involved within this group activity taking place outside under sunny skies."} +{"image_id": 346863, "caption": "The image features a man sitting at an outdoor dining table, enjoying his meal. He is wearing dark clothing and appears to be drinking from one of the wine glasses on display in front him or nearby tables around this area. There are several other chairs placed near each side of the room for additional guests who may also join later during their visit here. A bottle canister with two openings sits close by as well \u2013 possibly containing more wines that could accompany dinner service if needed. In addition to these items, there's another chair located further away towards left-center part of the scene where someone might sit down after joining them soon enough..."} +{"image_id": 402723, "caption": "The image features a skateboarder performing an impressive trick on the rail of his board, with other people watching him from nearby. There are several individuals in various positions around and near to where he is riding - some standing close by while others appear further away or off-screen at different distances along their sides. In addition to these spectators, there's another person sitting down towards one side of the scene who seems absorbed into something else as they watch passively without participating directly within this activity taking place among them all day long during sunny weather conditions outside under clear blue sky background surroundings"} +{"image_id": 42667, "caption": "The image features a young girl sitting in an open suitcase, which is placed on the floor. She appears to be enjoying herself as she leans back and smiles at something outside of frame or possibly inside her surroundings within reach from where we stand behind this scene's camera positioned above it all. There are several other objects present around us: two cups can also been seen near each side (left cup closer), one located slightly further away towards right edge; there might have once existed another object that was not visible anymore by now due its placement being obscured partially out-of-frame leftward direction beyond our viewpoint here \u2013 perhaps some furniture like chairs?"} +{"image_id": 38083, "caption": "The image features a table filled with various fresh vegetables and fruits, including strawberries. There are several baskets of produce arranged on the surface: one containing carrots near top left corner; another holding radishes in middle right area; two more at bottom center displaying broccoli stalks next to each other towards lower-left side; an additional basket placed closer to upper half contains green beans along its lengthy positioned edge close by some tomatoes that appear scattered around it as well. A bowl is also present nearby these items for easy accessibility during preparation or consumption later."} +{"image_id": 448410, "caption": "The image captures a busy train station with several people standing around the tracks. There are two trains on different sets of rails, one being yellow and white while another is red in color near them both at track 2359/104876-B. A third smaller passenger car can be seen further down from these main engines towards their right side as well. People carrying various items such as bags or purses stand alongside each other along either sides of the platform area surrounding all three rail cars. Some individuals appear to have boarded an earlier departure than others who remain waiting for upcoming transportation options nearby."} +{"image_id": 83935, "caption": "The image depicts a busy city street with people walking and cars parked along the side. A motorcycle is positioned in front of several pedestrians, creating an interesting scene as it stands out among all other vehicles on this crowded roadway. There are multiple handbags scattered throughout the crowd - some close to each person while others appear further away from them or near buildings nearby. Additionally, there're two bicycles visible towards one end of the area where they seemingly belong amidst various foot traffic passing by their location."} +{"image_id": 378970, "caption": "The image features a baseball game in progress, with several players on the field. One of them is swinging at an incoming pitch while another player catches it behind him using their glove to stop its momentum and prevent any further damage from occurrences such as foul balls or errors during playoffs games 1984-2035 MLB season. There are two other people visible near one side corner area watching this action unfold: they appear engaged by what's happening around home plate where most activity takes place throughout the scene."} +{"image_id": 209868, "caption": "The image features a young girl brushing her teeth with an electric toothbrush. She is smiling and appears focused on the task at hand, as she carefully cleans each of them in front view while holding onto it tightly using both hands simultaneously \u2013 one for guiding its movement over every surface area between two molars located close together near top left corner; another gripping handle firmly towards bottom right side next to other people's faces visible nearby or slightly behind hers within this scene setting that could be either family members sharing their morning routine before school starts soon after waking up from bedrooms around here\u2026"} +{"image_id": 157109, "caption": "The image features a person parasailing in the ocean, with another individual nearby. Both individuals are enjoying their time on water while being pulled by an airborne kite or sailboat above them. There is also some wind present that helps to keep both people afloat and engaged during this activity at sea level near shore waters of blue-green color tones."} +{"image_id": 208347, "caption": "The image depicts a group of people gathered in an indoor space, likely at some sort of event or gathering. There are several individuals present: two men and one woman standing near the center area while another man is sitting on his chair nearby with no other visible companions around him for now. In addition to these four main figures, there're also three more chairs placed throughout different parts within reachable distance from each person involved - close enough that they could easily access them if needed during their activities together as well-dressed guests attending this occasion. A television set can be seen mounted high up against the wall behind everyone else who seems absorbed by it without any apparent distractions elsewhere like cell phones being used among themselves yet still keeping connected through conversation possibly about what game was played just beforehand using Nintendo Wii controllers held firmly between hands belonging either to adult males playing golf games inside the arcade room setting next door (not panned out)."} +{"image_id": 232544, "caption": "The image depicts a group of people playing frisbee in an open field. There are several individuals scattered throughout the scene, some actively participating and others watching from afar or standing around waiting for their turn to play with friends on this sunny day outdoors. In addition to these players, there is also another person sitting off-screen near one end of the grassy area where they can observe what's happening during gameplay without directly interfering but still enjoying themselves as partakers within reach distance away."} diff --git a/OPERA/log/chair_eval_results/instructblip/ours.jsonl b/OPERA/log/chair_eval_results/instructblip/ours.jsonl new file mode 100644 index 0000000000000000000000000000000000000000..9cf1fe59d124e88b1135bf4b4292315528517ee2 --- /dev/null +++ b/OPERA/log/chair_eval_results/instructblip/ours.jsonl @@ -0,0 +1,500 @@ +{"image_id": 415672, "caption": "The image depicts a busy street scene with several motorcycles parked on the sidewalk. There are at least six motorcycles in total, some of which are parked close to each other, while others are further apart. A group of people can be seen walking along the sidewalk, some of them near the motorcycles and others further down the street. In addition to the pedestrians, there is a bicycle parked on the sidewalk, likely belonging to one of the people passing by. A car can also be seen driving down the street, adding to the lively atmosphere of the scene."} +{"image_id": 177207, "caption": "In the image, three people are standing on a snow-covered slope, wearing skis and holding ski poles. Two of them are standing closer to each other, while the third person is slightly further away. They appear to be having an enjoyable time together, possibly practicing their skiing skills or taking a break from skiing. The snowy slope is covered with various sized snowflakes, adding to the wintery atmosphere of the scene."} +{"image_id": 428254, "caption": "In the image, a male tennis player is engaged in a game of tennis on a clay court. He is wearing a white shirt and blue shorts, and he is holding a tennis racket in his left hand. He is positioned near the center of the court, ready to hit the ball as it approaches him. There are several tennis balls scattered around the court, some closer to the player and others further away. The scene captures the intensity and focus of the player as he prepares to return the ball."} +{"image_id": 165419, "caption": "The image depicts a man jumping up in the air to catch a green Frisbee on a sandy beach. He is wearing shorts, and the Frisbee appears to be in mid-air as he attempts to catch it. There are several other people visible in the scene, some of whom are standing on the beach, while others are further away from the action. In the background, there is a body of water, possibly an ocean or a lake, adding to the serene atmosphere of the beach."} +{"image_id": 282942, "caption": "The image features a woman standing in front of a dining table with a white cake on it. She is holding a knife and appears to be preparing to cut the cake. There are several other items on the table, including bowls, cups, and a bottle. A chair can be seen in the background, possibly occupied by another person. The scene appears to be set up for a celebration or gathering."} +{"image_id": 518701, "caption": "The image depicts a small bedroom with a bed, a dresser, and a window. The bed is situated in the center of the room, with a blanket draped over it. The dresser is located on the left side of the room, and there are several items placed on top of it, including a book, a cup, and a bottle. A chair can be seen on the right side of the room, near the window. There are also two bottles placed on the floor, one near the bed and the other near the dresser. The room appears to be well-organized, with the bed and dresser providing ample storage space."} +{"image_id": 302206, "caption": "The image depicts a group of people riding horses down a country road, leading a herd of cattle behind them. There are two people riding horses, with one person on the left side and the other on the right side of the road. The herd of cattle is spread out along the road, with some of them closer to the left side and others closer to the right side. In total, there are at least 10 cattle in the scene, with some of them positioned closer to the riders and others further away. The riders appear to be guiding the cattle down the road, possibly for transportation or grazing purposes."} +{"image_id": 418219, "caption": "The image depicts a man wearing a red shirt walking along a sidewalk next to a park bench. There are several cars parked along the side of the road, some closer to the man and others further away. The park bench can be seen in the background, providing a place for people to rest and enjoy the scenic surroundings. The man is walking towards the park bench, possibly on his way to a nearby destination."} +{"image_id": 100438, "caption": "The image features a man sitting at a dining table with a plate of food in front of him. He is wearing a suit and tie, and appears to be enjoying his meal. There are several chairs around the table, with some of them closer together, creating an open"} +{"image_id": 409944, "caption": "The image features a poster of a man holding a tennis racket, which is displayed on a cement wall. The man's face is visible, and he appears to be in an animated and excited"} +{"image_id": 237618, "caption": "The image depicts two men riding horses along the shore of a large body of water, likely a lake or river. They are both wearing cowboy hats and appear to take pleasure in their horseback journey. The horses are positioned close to each other, with one on the left side and the other on the right side of the water. There are several trees visible in the background, adding to the serene atmosphere of the scene. In total, there are six horses in the image, with three on the left side and three on the right side of the water."} +{"image_id": 221183, "caption": "The image depicts a yellow and black train traveling down a set of railroad tracks. The train is passing through a busy train station, with several people visible in the scene. There are at least three people standing near the tracks, possibly waiting for the train or watching it pass by. In addition to the people, there are several handbags scattered throughout the scene, likely belonging to the individuals waiting for the train. A fence can be seen on the left side of the image, providing a barrier between the train tracks and the surrounding area. Overall, the scene captures a bustling train station with people and personal belongings adding to the lively atmosphere."} +{"image_id": 418548, "caption": "The image features a man wearing a paper hat, sitting at a desk with an open box of various donuts in front of him. The donuts are arranged in a variety of flavors and colors, including chocolate, vanilla, and sprinkles. The man is excitedly holding up the box, showcasing the delicious treats to the viewer. There are two chairs in the scene, one on the left side and another on the right side of the desk. A laptop can be seen on the left side of the desk, while a handbag is placed on the right side. Additionally, there are two books placed on the desk, one near the laptop and the other closer to the man holding the box of donuts."} +{"image_id": 358252, "caption": "The image depicts a small kitchen with a white stove top oven, a sink, and a dishwasher. The kitchen is clean and well-organized, with a variety of appliances and utensils neatly arranged on the countertops and in the cabinets. There are several bottles scattered around the kitchen, likely used for various purposes. A broom can be seen in the corner of the room, suggesting that the space is well-maintained and clean. The overall atmosphere of the kitchen is cozy and inviting, making it an ideal space for cooking and preparing meals."} +{"image_id": 113397, "caption": "The image features a man sitting in a chair, holding a Nintendo Wii remote in his hand. He is wearing glasses and appears to be engrossed in the game he is playing. There are several books scattered around the room, including one on the left side of the image and another on the right side. A bookshelf can also be seen in the background, filled with various books. The room appears to be well-furnished, with a couch and a coffee table visible in the foreground."} +{"image_id": 251874, "caption": "The image depicts a group of people enjoying a day at the beach. A man and a woman are standing in the water, with the man holding a surfboard. There'a a third person standing in a separate spot further back in a deeper water. In the"} +{"image_id": 223093, "caption": "The image features a tall brick building with a clock tower on top of it. There are two clocks visible on the tower, one on the left side and the other on the right side. The clock on the left side is closer to the top of the tower, while the clock on the right side is positioned slightly lower. The building itself is quite tall, stretching from the bottom to the top of the clock tower. A cloudy sky can be seen in the background, adding to the overall atmosphere of the scene."} +{"image_id": 57306, "caption": "The image depicts a young woman sitting on a bench, leaning against a wall, and talking on her cell phone. She is wearing a white shirt and appears to be engrossed in her conversation. There are several other people in the scene, including a man standing on the left side of the image and another man standing on the right side of the image. A handbag can be seen in the scene, likely belonging to the woman on the bench. Additionally, there are two backpacks visible, one on the left side of the image and another on the right side of the image. The scene takes place at night, with streetlights illuminating the area."} +{"image_id": 409099, "caption": "The image features a dining table set with a variety of food items, including a delicious-looking angel food cake on a plate. The cake is placed in the center of the table, surrounded by various fruits such as oranges, bananas, and apples. There are also two bowls on the table, one on the left side and the other on the right side, filled with unknown contents. In addition to the food items, there are several utensils placed around the table, including a knife, a fork, and a spoon."} +{"image_id": 187776, "caption": "The image depicts a group of people gathered in a room, standing around a dining table. The table is covered with a black tablecloth, and there are several chairs placed around it. The people in the room are engaged in conversations, likely discussing various topics. Some of them are standing near the table, while others are sitting on the chairs. There are several bottles scattered around the room, likely used for refreshments during the gathering. In addition to the bottles, there are cups and utensils placed on the table, indicating that the group is enjoining a meal or snack together."} +{"image_id": 398905, "caption": "The image features a man with a beard standing in front of a keyboard and microphone. He is wearing a denim jacket and appears to be performing on stage. There are two microphones in the scene, one on the left side and another on the right side of the stage. The keyboard is placed in the center of the stage, and there are several other objects visible in the background. These include a guitar, a drum set, and a cymbal. The overall atmosphere of the scene is lively and energetic, with the performer captivating the audience with his music."} +{"image_id": 146676, "caption": "In the image, a man is standing on a snow-covered slope, wearing a black jacket and gloves. He is riding a skateboard instead of a snowboard. The skateboard is positioned in the middle of the slope, and the man appears to be enjoying his ride. There are several other people visible in the background, likely skiing down the snowed-cover"} +{"image_id": 163289, "caption": "In the image, a man is standing in front of a bathroom mirror, adjusting his necktie. He is wearing a white shirt and a tie, and appears to be preparing himself for an event or a meeting. There are two urinals visible in the background, one on the left and one on the right side of the mirror. The man's reflection can be seen in the mirror, as well. In the"} +{"image_id": 466752, "caption": "The image depicts a small child lying on a bed, possibly in a crib or a toddler bed. The child is wearing a white shirt and appears to be resting comfortably. There are several pillows scattered around the bed, providing a cozy and invigorating sleeping environment for the child. In addition to the pillows, there is a blanket covering the child's body, adding to the warmth and comfort of the setting"} +{"image_id": 485090, "caption": "In the image, a man is teaching a young boy how to hit a baseball with a bat. The boy is wearing a helmet and holding a bat, while the man is standing next to him, guiding him through the process of hitting the ball. There are several chairs scattered throughout the scene, likely belonging to the spectators watching the lesson. A few people can be seen in the background, possibly enjoying the game or observing the lesson. The setting appears to be an outdoor sports arena."} +{"image_id": 470121, "caption": "The image features a dining table with two red plates filled with various types of food. The plates are placed on the table and contain a variety of appetizers, including sushi rolls, cakes, and other small snacks. A bottle of wine is also present on the table, adding to the festive atmosphere. There are several cups placed around the table, likely used for drinking during the meal. Overall, the scene showcases a well-prepared and delicious meal, perfect for a relaxing evening with friends or family."} +{"image_id": 523811, "caption": "The image features a small bird perched on top of a wooden post, surrounded by various plants and trees. The bird is situated in the center of the image, with its back facing the viewer. There are several plants visible in the scene, including a tall plant on the left side of the image and a smaller plant on the right side. In addition to the plants, there are two trees visible in the background, one on the left and one on the right side of the image. The overall setting appears to be a peaceful and natural environment for the bird to rest and enjoy its surroundings."} +{"image_id": 250066, "caption": "The image depicts a toilet placed outside near a dilapidated brick building. The toilet is positioned in front of the building, with a ladder leaning against it. The ladder appears to be old and rusty, adding to the overall rundown atmosphere of the scene. There are several plants growing around the toilet, further emphasizing the outdoor setting. In addition to the toilet and ladder, there are various other objects scattered around the area, including a trash can, a chair, and a spray can. Overall, the image captures a disheveled and unkempt environment, with the toilet serving as a reminder of the building's past use."} +{"image_id": 99182, "caption": "The image depicts a man sitting on a bed, reading a book. He is engrossed in the book and appears to have a serious expression on his face. The book he is reading is quite large, taking up a significant portion of the bed. There are several other books scattered around the room, likely belonging to the man or possibly left there by someone else. In addition to the books, there are two cups placed on the bed, one near the man's head and the other closer to his feet."} +{"image_id": 383826, "caption": "In the image, there are two men standing on surfboards in the ocean, riding the waves. One man is closer to the center of the scene, while the other is positioned slightly further away. Both surfers are enjoystanding on their boards, enjoying the water and the waves in the ocean during the afternoon"} +{"image_id": 246248, "caption": "The image depicts a city street with a stop sign at the intersection. The stop sign is situated in the middle of the road, and there are several other signs nearby, including a speed limit sign, a no parking sign, and a pedestrian crossing sign. The street is lined with trees on both sides, adding to the scenic atmosphere. There are multiple cars parked along the street, some closer to the stop sign and others further away. In the background, there is a mountain range visible, providing a stunning backdrop for the urban setting."} +{"image_id": 51685, "caption": "In the image, a small red biplane is flying high up in the sky, with a clear blue background. The plane is positioned towards the right side of the image, and it appears to be in the middle of its flight path. There are several people visible in the scene, likely enjoying the aerial show. One person is located on the left side of the image, and there's at least a total of two"} +{"image_id": 52147, "caption": "The image features a mother goose and her two baby geese resting on a lush green grassy surface. The mother goose is positioned towards the left side of the image, while the two baby geese are situated closer to the center of the grassy area. The baby geese appear to be quite young, as they are smaller in size compared to the adult goose. The grassy area is filled with various blades of grass, creating a vibrant and lively scene."} +{"image_id": 135756, "caption": "In the scene, a young girl is petting a black horse while standing next to a horse trailer. The horse is wearing a blue halter and appears to be enjoyed by the girl's attention. There are several other people in the vicinity, including a man and a woman in the left and the top of the picture"} +{"image_id": 52851, "caption": "The image depicts a group of people hiking in a mountainous area, surrounded by lush green hills and valleys. There are three people in the scene, with two of them standing on the grassy hillside and the third person sitting on a rock. In the foreground, there is a large bird flying over the landscape, adding to the serene atmosphere of the scene. The hikers appear to be enjoining the beautiful scenery, taking in the breathtaking views of the surrounding area."} +{"image_id": 549789, "caption": "The image depicts a skier performing a high-flying jump in the snow, with a cloudy sky in the background. The skier is wearing a yellow jacket and appears to be in mid-air, with their skies visible as they soar through the air. There are several other people in the scene, some of whom are standing on the snowy slope, while others are sitting or lying on the ground. One person is closer to the skier, while others are further away. The scene captures the excitement and thrill of the skier's jump, as well as the enjoyment of those watching."} +{"image_id": 286503, "caption": "The image depicts an elephant standing in a dirt enclosure, surrounded by trees. The elephant appears to be eating from a hanging basket, which is suspended above its head. There are several people visible in the scene, with some standing near the elephant and others scattered around the area. One person is closer to the elephant, while others are further away. A few cars can be seen parked in the background, adding to the overall atmosphere of the scene."} +{"image_id": 10580, "caption": "The image depicts a group of three giraffes standing in a grassy field surrounded by trees. The giraffes are positioned close to each other, creating a cozy and intimate setting. The tallest giraffe is located on the left side of the scene, while the other two are positioned on the right side. The giraffes are all facing in the same direction, creating a harmonious and peaceful atmosphere. The trees in the background provide a natural backdrop for the giraffes, adding to the serene atmosphere of the scene."} +{"image_id": 468784, "caption": "The image is a black and white photograph of a newly married couple cutting their wedding cake. They are both dressed in formal attire, with the bride wearing a wedding dress and the groom wearing a tuxedo. The couple is standing in front of a large, multi-tiered wedding cake, holding a knife to cut it. There are several chairs visible in the background, possibly for guests to sit during the wedding celebration."} +{"image_id": 492544, "caption": "The image features a lone giraffe standing in a grassy field surrounded by trees. The giraffe is quite tall, with its neck stretching upwards towards the sky. There are several trees visible in the background, providing a natural setting for the giraffe to roam. The giraffe's body is positioned towards the left side of the image."} +{"image_id": 162503, "caption": "The image features an owl perched on a tree branch in the middle of a dense forest. The owl is surrounded by tall trees and lush green foliage, creating a serene and peaceful environment. The owl's presence adds a touch of nature to the scene, making the area more"} +{"image_id": 162539, "caption": "The image features a large sign for Western Square, which is a shopping center. The sign is mounted on a pole and stands out against the blue sky in the background. The sign is visible from a distance, making it easy for people to find the shopping center. There are several cars parked near the shopping center, indicating that it is a popular destination for shoppers."} +{"image_id": 186711, "caption": "The image features a man wearing a black wetsuit riding a surfboard on a wave in the ocean. He is skillfully balancing himself on his surfing board, seeming to enjoy the ride. There are several other surfboards visible in the scene, some closer to the man and others further away. A boat can also be seen in the background, providing a scenic backdrop for the surfer's adventure."} +{"image_id": 214421, "caption": "The image depicts a group of people gathered around a dining table in a room. There are two men standing near the table, one on the left side and the other on the right side. One of the men is wearing a white shirt, while the other is wearing a black shirt. In addition to the two men, there are three women present in the scene. Two of the women are standing on the left side of the table, while the third woman is standing on the right side. There are also two laptops visible in the scene, one on the left side of the table and the other on the right side. A potted plant can be seen in the background, adding a touch of nature to the setting."} +{"image_id": 65798, "caption": "The image captures a baseball game in progress, with a large crowd of spectators gathered around the field. The players are actively engaged in the game, with several of them standing on the field and others in the outfield area. There are two baseball bats visible in the scene, one near the center of the field and the other closer to the outfield. A baseball glove can be seen in the outfield as well. In addition to the players and equipment, there are several chairs scattered throughout the field, providing seating for the spectators. The overall atmosphere of the scene is lively and engaging, showcasing the excitement of a professional baseball game."} +{"image_id": 316063, "caption": "The image depicts a busy city street with a red bus driving down the road, surrounded by other vehicles and pedestrians. There are several bicycles parked on the side of the street, some closer to the bus and others further away. A person can be seen sitting in the driver's seat of the bus, possibly observing the surrounding scene from"} +{"image_id": 189427, "caption": "The image features a cardboard cutout of a beaver holding a stop sign in front of a trash can. There are two trash cans visible in the scene, one on the left side and another on the right side. The cardboard cutout is placed on the sidewalk near the trash cans, creating a humorous and eye-catching display."} +{"image_id": 244833, "caption": "The image depicts a group of motorcycles parked in a room with chairs arranged around them. There are several motorcycles, including a yellow and green one, a blue one, and a red one. Some of the motorcycles are positioned closer to the center of the room, while others are more towards the edges. In addition to the motorcycles, there are several chairs in the room, with some placed closer to the motorcycles and others further away. A person can be seen sitting on one of the chairs, likely enjoining the event or observing the motorcycles. There is also a laptop in the scene."} +{"image_id": 370609, "caption": "The image depicts a group of animals, including a sheep and two lambs, standing in a fenced-in area. The sheep is nursing one of the lambs, while the other lamb is standing nearby. There are several trees visible in the background, providing a natural setting for the animals. The fence encloses the area where the animals are standing, ensuring their safety and protection."} +{"image_id": 486232, "caption": "The image features a close-up of a person's hand holding two small apples, one green and another slightly larger"} +{"image_id": 18191, "caption": "The image depicts a sidewalk with a yellow fire hydrant placed in the middle of it. The fire hydrant is positioned near the edge of the sidewalk, and there are several benches along the sidewalk, providing seating for people to rest and enjoy the surroundings. A few cars are parked on the side of the street, adding to the lively atmosphere. In the background, a fence can be seen, separating the sidewalk from the street."} +{"image_id": 84493, "caption": "The image features a delicious-looking pizza on a white plate, placed on a dining table. There are four slices of the pizza, each with various toppings such as mushrooms, ham, and cheese. The pizza is cut into four pieces, ready to be served or enjoyed by the diners. A checkered tablecloth covers the dining table, adding a charming touch to the scene."} +{"image_id": 380057, "caption": "The image depicts a busy city street with a large group of people gathered in the middle of the road. There are several cars parked on the side of the street, and a traffic light can be seen in the distance. The people in the crowd are holding signs with pictures of individuals, possibly protesting or advocating for a cause. Some of the signs are closer to the front of the crowd, while others are positioned further back. The scene appears to be a peaceful demonstration, with people expressing their opinions and beliefs through their signs."} +{"image_id": 401613, "caption": "The image features a female tennis player in an orange shirt and blue shorts, actively engaged in playing a game of tennis on a court. She is crouched down, ready to hit the ball with her tennis racket. Her opponent can be seen in the background, also engaged in the game. There are several tennis balls scattered around the court, some closer to the players and others further away. The scene captures the intensity and focus of the players as they engage in a competitive match."} +{"image_id": 460684, "caption": "The image depicts a group of three men sitting around a dining table in an outdoor setting. They are holding various bottles of wine and enjoying each other's company. The table is surrounded by chairs, providing an area for"} +{"image_id": 208132, "caption": "The image features a woman sitting at a dining table with a plate of food and a bottle of ketchup in front of her. There are several utensils on the table, including forks, knives, and spoons, as well as a cup and a bowl. A bottle of ketchup is placed next to the plate, ready to be used for condiment purposes. The dining table is surrounded by chairs, with some of them positioned closer to the woman and others further away. The scene appears to be a casual dining setting, with the woman enjoying her meal."} +{"image_id": 200703, "caption": "The image features a group of four ducklings swimming in a body of water. They are arranged in a line, with the first duckling being closest to the left side of the image and the fourth duckling being closest to the right side of the image. The ducklings appear to be enjoying their time in the water, possibly exploring their surroundings or searching for food."} +{"image_id": 348087, "caption": "The image depicts a busy city street with a large, ornate clock tower standing in the middle of the road. The clock tower is surrounded by several cars parked along the side of the street. There are two people walking on the sidewalk, one near the clock tower and the other closer to the left side of the image. In addition to the cars and people, there are several other vehicles visible in the scene, including a truck and a car parked further away from the clock tower. Overall, the image captures the bustling atmosphere of a city street with the clock tower serving as a prominent landmark."} +{"image_id": 8267, "caption": "The image depicts a small bathroom with a white toilet bowl sitting on the floor. The toilette is positioned in the middle of the room, surrounded by tiles on the walls and floor. There is a toilet brush placed next to the toilet, likely for cleaning purposes. Additionally, there are two cups visible in the scene, one on the left side and another on the right side of the toilet. The bathroom appears to be well-maintained and ready for use."} +{"image_id": 255096, "caption": "The image depicts an airport terminal with a large glass window overlooking an airplane on the tarmac. The airplane is parked in the middle of the tarmac, surrounded by other vehicles, such as buses and trucks. A potted plant can be seen near the window, adding a touch of greenery to the scene. There are several people visible in the background, possibly waiting for their flights or watching the planes take off and land. The airport appears to be bustling with activity, making it a lively and exciting place to be."} +{"image_id": 8676, "caption": "The image features a spacious bedroom with a large bed in the center of the room. The bed is adorned with a quilted blanket, and there is a suitcase placed on top of it. The room also has a balcony with a sliding glass door, providing a view of the outdoors. There are several chairs scattered throughout the room, with at lea\u0006"} +{"image_id": 101022, "caption": "The image depicts a snow-covered road with a sign displaying the speed limit of 60 kilometers per hour. The sign is situated in the middle of the road, surrounded by snow and trees. There are several trees visible in the background, adding to the wintery atmosphere of the scene. The sign is prominently displayed, making it easy for drivers to follow the speed limit while navigating the snowy road."} +{"image_id": 247625, "caption": "The image depicts a group of people gathered on a snowy slope, with one person standing on a snowboard. The snowboarder is wearing a yellow jacket and black pants, and appears to be preparing to ride down the slope. There are several other people in the scene, some of whose positions and expressions seem"} +{"image_id": 46872, "caption": "In the image, two men are standing next to a large flatbed truck. One man is holding a rope attached to the back of the truck, while the other man is standing on the side of the truck. The truck appears to be carrying a large pipe or tube, which is visible on the back of the truck. There are several cars parked in the background, likely belonging to the people involved in the transportation process. The scene suggests that the men are preparing to transport the large pipe or tube from one location to another."} +{"image_id": 480752, "caption": "The image features a wooden bench placed on top of a grassy hill overlooking a city. The bench is positioned at the edge of the hill, providing a panoramic view of the city and its surroundings. There are several cars visible in the scene, with some parked near the bench and others scattered throughout the city. The bench serves as a perfect spot for enjoying the scenic view and taking in the beauty of the city."} +{"image_id": 181383, "caption": "The image depicts a group of people standing on a pier overlooking a body of water, possibly a harbor or a river. There are several boats visible in the water, with some closer to the pier and others further away. The people on the pier are engrossed in conversation, likely discussing the body of water and the boats around them. Some of the people are wearing hats, adding to the overall atmosphere of the scene."} +{"image_id": 486122, "caption": "The image features a modern kitchen with a large, stainless steel refrigerator placed in the middle of the room. The refrigerator is surrounded by various kitchen appliances, such as a microwave, a toaster oven, and a cupboard. The cupboard is located on the left side of the room, while the microwave is situated on the right side. The toaster oven is positioned closer to the center of the kitchen, near the refrigerator. In addition to these appliances, there are two cups visible in the scene, one on the left side and another on the right side. The kitchen appears to be well-equipped for cooking and preparing meals."} +{"image_id": 386650, "caption": "The image features a wooden bench placed next to a potted plant on a brick patio. The bench appears to be old and weathered, with a rustic appearance. The potted plant is situated near the bench, adding a touch of greenery to the scene. There are several potted plants scattered around the patio, including one close to the bench and another further away from it. The patio is surrounded by various potted plants, creating a lively and vibrant atmosphere."} +{"image_id": 439834, "caption": "The image features two zebras, one standing and the other lying down, in a grassy field. The standing zebra is positioned towards the left side of the scene, while the lying zebra is located closer to the center of the field. Both zebras appear to be in good health as they are interacting with each other. The grassy field is filled with various plants and shrubs, adding to the natural setting of the scene."} +{"image_id": 492025, "caption": "The image features a small statue of a child wearing a pink hat and holding a stuffed teddy bear. The statue is placed on a pedestal in the middle of a garden, surrounded by various flowers and plants. There are several trees visible in the background, adding to a serene and peaceful atmosphere. The statue and the teddy bear appear to be the focal point of the scene, capturing the attention of the viewer."} +{"image_id": 208517, "caption": "The image features a woman standing on a sidewalk with a red suitcase next to her. She is wearing a brown jacket and appears to be waiting for something or someone. There are several other people in the scene, some of whom are walking towards the woman with the suitcase. In addition to the people, there are several handbags scattered around the area, including one close to the woman with the suitcase and others further away from her. A cell phone can also be seen in the scene, likely belonging to one of the people in the area."} +{"image_id": 49733, "caption": "The image features a large, ornate clock hanging from the ceiling of a building. It is situated in the middle of the room, surrounded by various people standing around it. There are at least six people visible in the scene, with some closer to the clock and others further away. The clock appears to be a focal point of the room, drawing attention from the people gathered around it."} +{"image_id": 146614, "caption": "The image depicts a spacious living room with a large couch situated in the center of the room. The couch is surrounded by various colorful pillows, creating a cozy and inviting atmosphere. There are several potted plants scattered throughout the room, adding a touch of greenery to the space. In addition to the couch, there are several chairs placed around the room, providing additional seating options. A dining table can be seen in the corner of the room, likely used for meals or other gatherings. There are also two vases placed on the coffee table, adding a decorative touch to the room. Overall, the living room appears to be well-appointed and inviting, perfect for relaxation and socializing."} +{"image_id": 515424, "caption": "In the image, a snowboarder is performing an impressive trick in the air, high above a tall building. The snowboarder is wearing a black and red jacket, and their snowboard is visible in the air as they perform the maneuver. There are several other people in the scene, some of them watching the snowboarder's performance and others standing around the area. A few of the people"} +{"image_id": 89071, "caption": "In the image, a person is skiing down a snow-covered slope, wearing a red jacket. The skier is standing in the middle of the slope, surrounded by trees on either side. There are several trees visible in the background, providing a scenic backdrop for the skier' s adventure. The skier appears to be in the midst"} +{"image_id": 227438, "caption": "The image features a spacious bedroom with a large bed in the center of the room. The bed is neat and well-made, with multiple pillows placed around it. There are two chairs in the room, one on the left side and another on the right side. Both chairs are positioned close to the bed, suggesting that they may be used for relaxation or as a place to sit while reading or watching TV. A potted plant can be seen on the left side of the room, adding a touch of greenery to the space. Additionally, there are two lamps in the room, one on the left side and another on the right side, providing ample lighting for the room. Overall, the bedroom has a cozy and inviting atmosphere, perfect for unwinding after a long day."} +{"image_id": 343315, "caption": "The image depicts a street corner with a red fire hydrant sitting on the side of the road. The fire hydrant is positioned close to the curb, with a yellow and black striped pole nearby. There are several cars parked along the street, some closer to the fire hydrant and others further away. A traffic light can be seen in the distance, indicating the intersection of the street. The scene appears to be a residential area, with houses visible in the background."} +{"image_id": 194414, "caption": "The image features a female tennis player standing on a grass tennis court, preparing to serve the ball. She is wearing a white outfit and holding a tennis racket in her right hand, ready to hit the ball. There are several people in the background watching the game, some of them seated on benches, while others are standing around the court. A few chairs can be seen scattered throughout the scene, providing seating for the spectators. The atmosphere appears to be lively and engaging, with the tennis player focused on her game and the audience enjoying the match."} +{"image_id": 299039, "caption": "The image features a delicious-looking sandwich on a plate, accompanied by a side of fries. The sandwich is cut into two halves, and the fries are arranged in a bowl next to the plate. A vase can be seen in the background, adding a touch of elegance to the scene. The sandwich and fries are placed on a dining table, which is set for a meal."} +{"image_id": 141172, "caption": "The image features a blue door with a sticker of a cat peeking out of it. The cat is positioned near the top of the door, and there are two other cats visible in the scene. One cat is located closer to the left side of the door, while the other is situated on the right side. A person can be seen standing in front of the door, possibly admiring the artwork or taking a closer look at the cats."} +{"image_id": 548209, "caption": "In the image, a man and a child are skiing together on a snowy slope. The child is being assisted by the man, who is holding onto the child's back as they ski down the hill. There are a total of"} +{"image_id": 465272, "caption": "The image depicts a group of people walking down a sidewalk on a rainy day. They are holding umbrellas in the shape of British flags, adding a festive and patriotic touch to their outing. The umbrellas are held by both adults and children, creating a family-friendly atmosphere. There are multiple umbrellas visible in the scene, with some positioned closer to the front of the group and others further back. The umbrellas are spread out across the sidewalk, providing coverage for everyone in the group as they make their way through the wet weather."} +{"image_id": 534801, "caption": "The image depicts an outdoor fruit and vegetable market with a variety of fruits and vegetables on display. There are two men standing at the market, one near the top left corner and the other near the bottom right corner. The market is filled with various types of fruits and vegetables, including bananas, apples, oranges, tomatoes, and strawberries. The fruits and vegetables are arranged in a visually appealing way, showcasing their freshness and variety. In addition to the fruits and vegetables, there are several potted plants scattered throughout the scene, adding to the lively atmosphere of the market."} +{"image_id": 517306, "caption": "In the image, a man and a woman are sitting at a dining table with a large pizza in front of them. The pizza is placed on a tray, which is resting on top of a dining table. The couple is posing for a photo, smiling and embracing each other while surrounded by the delicious pizza. There are several chairs placed around the table, providing seating for the diners. Additionally, there are several cups scattered throughout the scene, likely used for drinks during the meal."} +{"image_id": 502582, "caption": "In the image, a baseball player is standing on a field, holding his baseball cap in his hand. He is wearing a white and black uniform and appears to be focused on adjusting his cap. There are several other people scattered around the field, some of whom are also wearing baseball uniforms. One person is closer to the baseball player, while others are positioned further away. The scene suggests that the players are preparing for a game or practicing on the field."} +{"image_id": 43165, "caption": "The image features two zebras standing next to each other in a grassy field. Both zebres are facing the same direction, with one slightly closer to the viewer than the other. They are standing on top of a pile of dry grass, possibly eating or browsing for food. There are several trees visible in the background, adding to the natural setting of the scene. The zebras appear to be relaxed and comfortable in their surroundings."} +{"image_id": 503101, "caption": "In the image, a man is standing next to a woman, both of them wearing glasses. The man is holding a knife in his hand, and the woman appears to be startled or surprised by the situation. There are two other people in the background, one on the left side and another on the right side of the image. The man with the knife is standing closer to the woman he is interacting with, while the other two people are farther away from the main action. The scene appears to be taking place in a social setting, possibly at a party or gathering."} +{"image_id": 311435, "caption": "In the image, a man is playing tennis on a tennis court. He is wearing a white shirt and white shorts, and is holding a tennis racket in his hand. The tennis ball is in the air, and the man is in the process of hitting it with his racket. There are several other tennis balls scattered around the court, some closer to the player and others further away. A fence can be seen in the background, providing a boundary for the tennis game."} +{"image_id": 223374, "caption": "The image features a microwave oven with various toy figurines placed on top of it. There are several toy spaceships scattered across the surface of the microwave, including a blue spaceship, a red spaceship, and a yellow spaceship. Additionally, there are two small toy cars placed on the microwave, one on the left side and another on the right side. These toys add a playful touch to the scene, making it appear like a child's playroom."} +{"image_id": 181118, "caption": "The image depicts a large herd of elephants gathered near a body of water, such as a river or a lake. A group of people can be seen observing the elephants from a distance, some of whom are standing on the edge of the body of water. There are several elephants visible in the scene, with some positioned closer to the water and others further away. Additionally, there are several people scattered throughout the scene, some of whom are watching the elephants while others are more focused on their surroundings."} +{"image_id": 142934, "caption": "In the image, two people are standing on a snowy slope, each carrying a snowboard. They appear to be preparing for a snowboarding adventure in the mountains. The snowboarders are positioned near the top of the slope, with one person closer to the left side and the other closer to the right side. The snowboarders are dressed appropriately for the cold weather, wearing jackets and gloves. The snowy landscape is filled with numerous snowflakes, adding to the wintery atmosphere."} +{"image_id": 340472, "caption": "The image depicts a large marina filled with boats of various sizes and colors. The boats are anchored in the water, creating a serene and peaceful atmosphere. Some of the boats are closer to the shore, while others are positioned further out in the water. The boats are arranged in a grid-like pattern, giving the impression of a well-organized harbor. There are several people visible in the scene, possibly enjoying the day at the marina or taking a stroll along the water's edge."} +{"image_id": 490337, "caption": "The image features a sandy beach with a red umbrella and a surfboard leaning against it. The umbrella is placed in the middle of the beach, providing shade for the surfboard and other beach items. There are several people visible on the beach, some closer to the umbrella and others further away. The beach appears to be relatively empty, with only a few people enjoying the sunny day. The ocean can be seen in the background."} +{"image_id": 424960, "caption": "The image captures a tennis match in progress, with a man in white shirt and shorts swinging his tennis racket to hit the ball. He is standing on a blue tennis court, surrounded by a crowd of people watching the match. There are several chairs placed around the court, providing seating for the spectators. In addition to the main player, there are several other individuals scattered throughout the scene, some of them sitting on the chairs and others standing near the edge of the court. A tennis ball can be seen in the air, about to be hit by the player. The overall atmosphere of the scene is lively and engaging, showcasing the excitement of a competitive tennis match."} +{"image_id": 452964, "caption": "The image features a young baseball player wearing a blue jersey and a cap, preparing to throw a baseball pitch. The player is standing on a baseball field, with the ball already in his hand, ready to release it. The ball is positioned close to the left side of the player, indicating that he is about to throw it. There are several other baseball players visible in the background, possibly part of the same team or watching the game. Additionally, there are several chairs scattered around the field, possibly belonging to the players or spectators. Overall, the scene captures the excitement and energy of a baseball game in progress."} +{"image_id": 81484, "caption": "The image features a dining table set with various plates of food, including pizza, salad, and other dishes. There are three white plates placed on the table, each filled with different types of food. A bowl is also present on the table, possibly containing a side dish. In addition to the plates and bowl, there are several utensils scattered around the table, including forks, knives, and spoons. A person can be seen sitting at the table, likely enjoying the meal."} +{"image_id": 224020, "caption": "The image features a young boy sitting at a table with a delicious-looking doughnut in front of him. The doughnut is adorned with red sprinkles and white frosting, making it a visually appealing treat. The boy seems to be eager to take a bite of the doughnut, as he leans over the table to get a closer look. In addition to the doughnut, there are two cups on the table, one on the left side and another on the right side. A handbag is also present on the table, likely belonging to the boy or someone accompanying him."} +{"image_id": 447611, "caption": "In the image, two people are working together to remove a hard drive from a laptop. One person is holding a knife, while the other person is holding a screwdriver. The laptop is placed on a wooden table, and both individuals are focused on the task at hand. The laptop is positioned towards the left side of the image, with the screwdriver and knife being used to remove the hard drive. The wooden table provides a stable surface for the repair work to take place."} +{"image_id": 564301, "caption": "The image depicts a group of sheep grazing in a grassy field. There are three sheep in the scene, with two of them standing close to each other and the third one slightly further away. The sheep are surrounded by chairs and tables, suggesting that they are part of an outdoor event or gathering. A person is visible in the background, possibly tending to the sheep or overseeing the event. In addition to the sheep and the person, there are several chairs scattered throughout the scene, providing seating for those attending the event."} +{"image_id": 89643, "caption": "The image depicts a group of people enjoying a sunny day at the beach, flying colorful kites in the sky. There are several kites of different sizes and shapes, including a large octopus-shaped kite, a smaller red and white kite, a blue kitem, a black kite with white and orange, and a yellow kite with a black center. The kitesthat have already been"} +{"image_id": 317035, "caption": "The image features a pink suitcase sitting on a table next to two guitars. One guitar is placed on the left side of the table, while the other guitar is positioned on the right side. Both guitars are visible and appear to be in good condition. There is also a t-shirt placed on the table, likely belonging to the person who owns the suitcase and the guitars. The scene appears to be part of a music-themed display or collection."} +{"image_id": 325356, "caption": "The image features a cat sitting in a white bathroom sink. It appears to be a small cat, possibly a kitten, that has found its way into the sink. The cat is positioned in the middle of the sink, with its head and body visible. There are two bottles in the scene, one on the left side of the sink and the other on the right side. A toothbrush can also be seen on the right side of the sink, close to the second bottle. In addition to these items, there are two cups placed near the sink, one on the left side and the other on the right side. The cat seems to be enjoying its time in the sink, perhaps taking a break from exploring the rest of the bath."} +{"image_id": 136270, "caption": "The image features a three-tiered wedding cake sitting on a wooden table. The cake is adorned with various decorations, including butterflies and leaves, making it visually appealing. A person is carefully cutting the cake, possibly for a special occasion or celebration. In addition to the cake, there are several bowls placed around the table. One bowl is positioned near the center of the table, while others are located closer to the edges. A knife is also present on the table, likely used for slicing the cake. Overall, the scene depicts a festive and celebratory atmosphere, with the three-tiered wedding cake as the centerpiece."} +{"image_id": 554266, "caption": "The image depicts a person lying on a bed, with their legs stretched out in front of them. The person is wearing pajamas and appears to be relaxing on the bed. There are two lamps in the room, one on the left side of the bed and the other on the right side. A clock can be seen on the left side of the room, and a cup is placed on the right side of the bed. In addition to these objects, there are several books scattered around the room, including one on the left side of the bed and another on the right side. The room appears to be well-appointed, with a comfortable atmosphere for rest and relaxation."} +{"image_id": 555357, "caption": "The image depicts a group of three brown cows standing on a grassy hill under a cloudy sky. The cows are spread out across the field, with one cow in the foreground and the other two in the background. They appear to be grazing on the lush green grass, enjoying the peaceful environment. The cloudy sky adds a dramatic touch to the overall atmosphere of the picture"} +{"image_id": 317715, "caption": "The image features a cat sitting between two bicycle wheels, with one wheel on the left side and the other on the right side of the cat. The cat is positioned close to the center of the image, with its head peeking out from between the two wheels. The wheels are placed on a carpeted floor, adding to the cozy atmosphere of the scene. The cat appears to be relaxing and enjoying its surroundings."} +{"image_id": 498806, "caption": "The image depicts a miniature train traveling along a track, passing through a tunnel. The train is surrounded by a mountainous landscape, with a small town visible in the background. The train is moving at a moderate speed, passing through the tunnel and continuing on its journey. In addition to the train, there are several people visible in the scene. Two people can be seen standing on the left side of the image, while another person is positioned on the right side. A fifth person is located closer to the center of the image, possibly observing the train as it passes through the tunnel. Overall, the scene captures the essence of a miniature train ride through a scenic mountain landscape."} +{"image_id": 213799, "caption": "The image features a large dog lying underneath a wooden table, resting on the floor. The dog is curled up and appears to be taking a short catnip or a quick sack of food. In"} +{"image_id": 514600, "caption": "The image features a colorful bird perched on top of an orange slice, which serves as its food bowel. The bird is sitting on the edge of the orange, pecking at the seeds and fruits inside. The orange slice is placed on a wooden branch, with the bird's presence adding a lively touch to the scene. The surrounding area includes"} +{"image_id": 144003, "caption": "The image depicts a group of people gathered around a table with a cake in the center. The cake is decorated with various fruits and berries, making it a visually appealing dessert. There are two women standing near the table, one on the left and the other on the right, both looking at the cake. Two men are also present, one on the left side of the table and the other on the right side. They seem to be obserbing the women and the cake as well. A bowl can be seen on the table, possibly used for serving the cake or other food items. Additionally, there are several bottles scattered around the room, including one on the left side of the image and another on the right side. Overall, the scene appears to be a social gathering where people are enjoying each other's company while indulging in the delicious caked."} +{"image_id": 15839, "caption": "The image depicts a kitchen with a large black refrigerator standing in the middle of the room. There are several bottles placed around the refrigerator, including one on the top shelf and another on the bottom shelf. A bowl can be seen on the counter next to the refrigerator, and a cup is positioned on the right side of the room. The kitchen appears to be in the process of being cleaned, with a broom and a mop visible on the floor near the refrigerator."} +{"image_id": 52016, "caption": "The image features a young woman standing in front of a garage door, holding a pastry in her hand. She is smiling and appears to have just finished eating the dessert. There are several other people in the scene, including a man standing on the left side of the garage door and another person standing on the right side of the garage door. A backpack can be seen on the left side of the garage door, and a handbag is located on the right side of the garage door. Additionally, there is a bottle on the left side of the garage door, and another bottle can be seen on the right side of the garage door. Overall, the scene depicts a group of people enjoying food and socializing in front of a garage door."} +{"image_id": 367610, "caption": "The image depicts a man leading a large herd of sheep across a bridge over a body of water. The man is walking in the middle of the herd, guiding them across the bridge. There are several sheep visible in the scene, with some positioned closer to the man and others further away. The herd is spread out across the bridge, with some sheep closer to the man and others more towards the edge of the bridge. In the background, there is a car driving on the road, passing by the herd as they cross the bridge."} +{"image_id": 25216, "caption": "The image features a black tray filled with various food items, including waffles, broccoli, and a bowl of salad. There are multiple plates placed around the tray, each containing a portion of the food items. A spoon can be seen on the left side of the tray, and a fork is positioned towards the center of the tray. The food items are arranged in a visually appealing manner, showcasing a variety of flavors and textures."} +{"image_id": 221554, "caption": "The image depicts a living room with a white wall and a fireplace. There are two dresses hanging on the wall, one on the left side and the other on the right side of the room. A yellow handbag is placed on the floor near the fireplace, adding a pop of color to the space. In addition to the handbag, there are several pairs of shoes scattered throughout the room. There are three pairs of shoes on the left side of the room, two pairs on the right side, and one pair near the fireplace. A vase can be seen on the right side of the room, adding a decorative element to the space."} +{"image_id": 215002, "caption": "The image depicts a man sitting at a desk in an office, surrounded by various electronic devices. There are two computer monitors on the desk, one on the left side and the other on the right side. In addition to the monitors, there are two keyboards placed on the desk, one closer to the left monitor and the other closer to the right monitor. A mouse can be seen on the left side of the desk, and another mouse is located on the right side of the desk. There are several books scattered around the desk, including one near the left monitor and another near the right monitor. A cell phone is also present on the desk, likely used for communication or other purposes."} +{"image_id": 219271, "caption": "The image is a black and white photograph of a mountainous area with a large crowd of people gathered around. There are several trucks parked on the side of the road, including a large truck in the center of the scene. Some of the people in the crowd are standing near the trucks, while others are positioned further away from the vehicles. A few individuals can be seen holding handbags or purses, possibly indicating that they are part of the crowd waiting for something to happen. In the background, there is a mountain range visible, adding to the dramatic atmosphere of the scene."} +{"image_id": 126925, "caption": "The image features a large, gold-colored clock placed in front of a wooden fence. The clock is positioned at the center of the scene, surrounded by trees and plants. There are several people visible in the scene, with some standing near the clock and others scattered around the area. One person is closer to the clock, while others are further away from it. The overall atmosphere appears to be peaceful and relaxing, with the clock adding a touch of whimsy to the scene."} +{"image_id": 559440, "caption": "The image depicts a small bathroom with a toilet, sink, and shower. The toilet is positioned in the center of the room, while the sink is located on the left side. The shower is situated on the right side of the bathroom, with a glass enclosure. There are several bottles scattered around the bathroom, including one near the sink, another near the toilet, and a third near the shower. A towel is also visible on the floor near the toilet, likely left there after use. The overall atmosphere of the bathroom is clean and well-maintained."} +{"image_id": 253455, "caption": "The image depicts a busy airport baggage claim area where a group of people are waiting for their luggage to arrive on the conveyor belt. There are several people standing around the baggage claim area, with some closer to the conveyor and the center of the bagg"} +{"image_id": 502599, "caption": "The image depicts a large hangar filled with various airplanes on display. There are three airplanes hanging from the ceiling of the hangar, two of which are yellow and one is blue. The yellow airplanes are positioned closer to the top of the hangar, while the blue airplane is situated in the middle. The hangar has a glass ceiling, allowing visitors to view the airplanes from different angles. A few people can be seen in the hangar, possibly admiring the airplanes or enjoying the exhibit."} +{"image_id": 578454, "caption": "The image features a bathroom with a white toilet and a bathtub. The toilet is positioned towards the left side of the room, while the bathtub is located in the center of the space. There is a window above the bathtub, allowing natural light to enter the room. The bathroom appears to be clean and well-maintained, with no clutter or debris present."} +{"image_id": 503983, "caption": "The image depicts a city street scene with a tall, white building in the background. The building appears to be a church or cathedral, with a steeple on top. In front of the building, there is a street sign that reads \"Skjerv\u00f8y\". A traffic light can be seen on the left side of the image, and a car is parked on the right side of the street. There are several people visible in the scene, with one person standing on the left side of the image and another person standing on the right side of the image. Additionally, there are two more people in the scene, one on the left side and another on the right side."} +{"image_id": 372807, "caption": "The image features a zebra standing in a lush green field surrounded by trees. The zebra is the main focus of the scene, with its head and body prominently visible in the center of the image. There are several trees scattered throughout the field, providing a natural backdrop for the zebra. In addition to the zebra, there are several other animals present in the scene, including a dog and a cat. The dog is located on the left side of the image, while the cat is situated on the right side. These animals are not as prominent as the zebra, but they add to the diversity of the scene."} +{"image_id": 553034, "caption": "The image depicts a group of giraffes standing in a dirt area surrounded by rocks. There are three giraffes in the scene, with two of them standing closer to each other and the third one slightly further away. The giraffes appear to be socializing and interacting with each other. In addition to the giraffes, there are several trees scattered throughout the scene, providing shade and a natural setting for the animals. A cow can also be seen in the background, possibly grazing or wanding around the area."} +{"image_id": 358606, "caption": "The image depicts a cozy living room with a fireplace and a television. The fireplace is situated in the center of the room, surrounded by various items such as a couch, a chair, and a coffee table. There are two televisions in the room, one on the left side and the other on the right side, providing entertainment for the occupants. A book is placed on the coffee table, adding to the warm and inviting atmosphere of the room. In addition to the furniture, there are several bottles scattered around the room, likely used for various purposes. Overall, the living room appears to be a comfortable and welcoming space for relaxation and enjoyment."} +{"image_id": 243989, "caption": "The image depicts a group of people gathered in a park, with a young man holding a skateboard in his hand. There are several other people in the scene, some standing and others sitting on benches or chairs. The skateboard is being carried by the young man, who appears to be participating in a skateboarding event or demonstration. In addition to the skateboard, there are several other objects scattered throughout the scene, including a bottle, a cell phone, and a backpack. The people in the scene are dressed casually, with some wearing hats and sunglasses. Overall, it appears to be a relaxed and enjoyable gathering in the park."} +{"image_id": 376046, "caption": "The image depicts a large orange train engine, possibly a locomotive, traveling down a railroad track on a cloudy day. A few cars are visible in the background, likely part of a train or cargo transportation. The train engine is positioned towards the left side of the image, while the cars are scattered throughout the scene, with some closer to the train and others further away. The overall atmosphere is calm and peaceful, with the train engine moving steadily along the track."} +{"image_id": 238310, "caption": "The image depicts a woman holding an umbrella over her head while taking a selfie with her cell phone. She is standing in front of a tent, possibly at an outdoor event or concert. There are several people visible in the background, some of them standing near the tent and others further away. The scene appears to be well-lit, with multiple light sources illuminating the area. The umbrella serves as a protective cover for the woman from the rain or other elements, while also providing a unique backdrop for her selfie."} +{"image_id": 65231, "caption": "The image features a tall brick clock tower with two clocks mounted on its sides. The clocks are positioned at different heights, with one closer to the top of the tower and the other closer to the bottom. The tower stands at least 100 feet tall, making it an impressive landmark in the cityscape. The clocks are visible from a distance, providing a clear indication of the time. The tower is surrounded by trees, adding to the serene atmosphere of the scene."} +{"image_id": 225693, "caption": "The image features a spacious bedroom with wooden floors and a large bed in the center of the room. The bed is adorned with a colorful quilt, adding a touch of warmth and comfort to the space. There is a dresser located on the left side of the room, and a chair can be seen on the right side. A mirror is positioned near the bed, providing a reflection of the room's atmosphere. Additionally, there is a clock on the left edge"} +{"image_id": 1029, "caption": "The image depicts a large airplane flying through a cloudy sky. The plane is descending towards the ground, and it appears to be in the process of landing. There are several barbed wire fences visible in the scene, likely marking the perimeter of an airport or other restricted area. The plane is positioned towards the left side of the image, while the barbed wire fences are scattered throughout the scene, with some closer to the plane and others further away. Overall, the image captures a dramatic view of an airplane flying through a cloudy sky, with the barbed wire fences serving as a reminder of the airport's security measures."} +{"image_id": 539226, "caption": "The image features a large airplane flying high up in the sky, with a clear blue background. The plane is positioned towards the right side of the image, and it appears to be descending towards the ground. There are several street lights visible in the scene, including one on the left side of the image and another on the right side. The light on the right side is closer to the airplane, while the one on the left is further away. In addition to the street lights, there are some trees visible in the background, adding to the overall atmosphere of the scene."} +{"image_id": 31882, "caption": "The image depicts a group of people riding in an old-fashioned, open-air truck. The truck is carrying a diverse group of individuals, including children and adults, who are all enjoying the ride together. Some of the people are sitting on the back of the truck, while others are standing on the sides. A purple umbrella can be seen in the center of the truck, providing shade for the passengers. The truck appears to be traveling through a wooded area, with trees visible in the background."} +{"image_id": 461898, "caption": "In the image, a woman wearing glasses is playing a video game using a Nintendo Wii remote control. She is standing in front of a wall and appears to be enjoying herself while playing the game. There are two other people in the room, one on the left and the other on the extreme top-back right"} +{"image_id": 554154, "caption": "a living room with green accents and a chandelier in the center 1970s living room, 1970s interior design, 1970s furniture, 1970s decor, 1970s style, 1970s fashion, 1970s fashion trends, 1970s fashion history, 1970s fashion revival, 1970s home decor, 1970s interior, 1970s interior design, 1970s living room, 1970s furniture, 1970s decor, 1970s style, 1970s fashion, 1970s fashion trends, 1970s fashion history, 1970s fashion revival, 1970s home decor, 1970s living room, 1970s furniture, 1970s decor, 1970s style, 1970s fashion, 1970s fashion trends, 1970s fashion history, 1970s fashion revival, 1970s home decor, 1970s living room, 1970s furniture, 1970s decor, 1970s style, 1970s fashion, 1970s fashion trends, 1970s fashion history, 1970s fashion revival, 1970s home decor, 1970s living room, 1970s furniture, 1970s decor, 1970s style, 1970s fashion, 1970s fashion trends, 1970s fashion history, 1970s fashion revival, 1970s home decor, 1970s living room, 1970s furniture, 1970s decor, 1970s style, 1970s fashion, 1970s fashion trends, 1970s fashion history, 1970s fashion revival"} +{"image_id": 166344, "caption": "The image features a painting of a man wearing a top hat and a black suit, sitting at a dining table with a laptop open in front of him. He appears to be engrossed in his work, possibly typing on the laptop or using it for some other purpose. The painting captures the man's attention as he focuses on his work."} +{"image_id": 298924, "caption": "The image features a table with a variety of food items, including a bowl filled with noodles and meat. The noodles are arranged in a zigzag pattern across the bowl, while the meat is placed on top of the noodles. A spoon is positioned near the center of the bowl, ready to be used for scooping up the delicious meal. In addition to the main bowl, there are two other bowls on the table, one on the left side and another on the right side. These bowls contain various food items, such as a piece of chicken, a bowl of rice, and a bowl of broccoli. There are also two cups on the table, one on the left side and another on the right side."} +{"image_id": 391392, "caption": "The image depicts a man riding a bicycle on a dirt road, as seen in the rearview mirror of a car. The man is wearing a jacket and appears to be traveling at a moderate pace. There are multiple cars in the scene, including one parked on the side of the road and another driving towards the bicyclist. In the background, there is a stop sign visible, indicating the location of the intersection where the bicyclist is traveling."} +{"image_id": 115875, "caption": "In the image, a man and a young girl are sitting on a rug in a living room. The man is holding a Wii remote in his hand, while the girl is sitting next to him, also holding a Wii remote. They appear to be playing a video game together. There are several chairs scattered around the room, with one chair placed close to the man and the girl, and another chair positioned further away from them. Additionally, there are two cups visible in the scene, one near the man and the other closer to the girl."} +{"image_id": 513125, "caption": "The image features a small black and brown dog sitting inside a suitcase on the floor. The suitcase is open, and the dog appears to have a piece of fabric in its mouth, possibly a toy or a piece of clothing. The dog is positioned in the middle of the scene, surrounded by various objects. There are two chairs placed near the dog, one on the left side and the other on the right side of the image. Additionally, there is a dining table in the background, with a bowl placed on top of it."} +{"image_id": 19786, "caption": "The image depicts a group of people gathered in a living room, playing a video game together. Two men are actively engaged in the game, with one holding a remote control and the other holding a Wii controller. There is a couch located in the room, providing a comfortable spot for the players to relax and enjoy their gaming experience. In addition to the couch, there are two chairs in the room, one on the left side and another on the right side. A laptop can be seen on the left side of the room, possibly used for additional gaming or entertainment purposes. A cell phone is also present in the scene, possibly belonging to one of the players or someone else in the room."} +{"image_id": 434192, "caption": "The image depicts a canal with two red boats floating down the waterway. One boat is located closer to the left side of the canal, while the other is positioned closer to the right side. Both boats are decorated with lights, adding a festive atmosphere to the scene. There are several buildings visible in the background, including one on the left side and another on the right side of the canal. A person can be seen standing on the left side of the canal, possibly enjoying the scenery or watching the boats pass by."} +{"image_id": 224342, "caption": "The image features a vase filled with yellow tulips sitting on a dining table. The vase is placed in the center of the table, and the tulips are arranged in a symmetrical pattern around it. There are several chairs surrounding the table, with one chair placed closer to the vase and the others positioned further away. The arrangement of the tulips and the chairs creates a cozy and inviting atmosphere for a dining experience."} +{"image_id": 450845, "caption": "The image depicts a man in a blue shirt swinging a baseball bat in a lush green field. He is preparing to hit the ball, which is flying towards him. The scene takes a more"} +{"image_id": 431827, "caption": "In the image, a person is holding a cell phone in their left hand and a ticket in their right hand. The ticket appears to be for a Twilight movie event. The person is also holding a vampire-themed book, possibly related to the Twilight series. There are several other items in the scene, including a bottle on the left side of the image, a cup on the right side of the image, and a remote control located near the center of the image. Additionally, there is a clock on the right side of the image, and a chair can be seen in the background. The overall scene suggests that the person is preparing for or attending a Twilight-themed event."} +{"image_id": 8021, "caption": "The image depicts a man standing in front of a large screen, giving a speech or presentation. He is wearing a suit and tie, and the audience is listening attentively to his words. There are several people in the audience, with some seated closer to the stage and others further away. In total, there are at least 12 people in the scene, with some sitting in the front row and others scattered throughout the audience. One person can be seen holding a microphone, possibly assisting or facilitating the speaker's presentation."} +{"image_id": 520301, "caption": "The image features a brown dog wearing a purple collar, looking out of a car window while traveling. The dog's head is hanging out of the window, eager to take a closer g"} +{"image_id": 515742, "caption": "The image depicts a woman standing next to a campfire on a beach. She is holding a long-handled spatula and appears to be cooking something over the fire. There are several people in the background, some of them sitting on the sandy beach, while others are standing or walking around. A few bottles can be seen scattered throughout the scene, possibly used for drinking or other purposes. The overall atmosphere is relaxed and enjoyable, with the woman and her companions enjoying the warmth and ambiance of the campfire."} +{"image_id": 106411, "caption": "The image features a man sitting at a table on a balcony overlooking the ocean. He is working on his laptop, which is placed on the table in front of him. There are several chairs scattered around the balcony, providing seating options for the man and others who might join him. In the background, there is a boat visible in the water, adding to the serene atmosphere of the scene."} +{"image_id": 386012, "caption": "The image depicts a scenic beach with a large number and variety of kites flying in the sky. There are multiple kites of different sizes and colors, some of which are close together while others are spread out across the sky. The kites are being flown by people on the beach, creating a colorful and lively atmosphere. The beach itself is filled with people, with at least 10 individuals visible in the scene. Some of them are standing near the water, while others are sitting or walking along the sandy shoreline. The presence of so many kites and people on the beach creates a vibrant and festive atmosphere."} +{"image_id": 397327, "caption": "The image depicts a small bathroom with a white toilet, sink, and shower. There is a blue towel hanging on the wall next to the sink, adding a pop of color to the room. The towel is positioned close to the sink, making it easily accessible for use after washing one's hands. The sink and toilet are both in the"} +{"image_id": 410437, "caption": "The image depicts a snowy city street with a red fire hydrant standing in the middle of the road. The fire hydrant is surrounded by a large amount of snow, making it difficult to see. There are several cars parked on the street, some closer to the fire hydrant and others further away. A traffic light can be seen in the background, indicating the presence of pedestrians and vehicles in the area."} +{"image_id": 255536, "caption": "The image depicts a group of chairs and an umbrella set up in a grassy area next to a fence. There are several chairs scattered around the scene, with some closer to the fence and others further away. An umbrella is positioned in the center of the area, providing shade for the chairs. A motorcycle can be seen parked nearby, possibly belonging to one of the individuals sitting on the chairs. In the background, there is a bridge visible, suggesting that the location is near a road or highway. Overall, the scene appears to be a casual gathering spot for people to relax and enjoy the outdoors."} +{"image_id": 231831, "caption": "The image features a black and white cat standing on its hind legs, reaching up towards a red desk drawer. The cat appears to be trying to open the drawer, possibly searching for something to play with or eat. There is a chair placed near the desk, likely belonging to the cat's owner. In addition to the chair, there are a few"} +{"image_id": 529270, "caption": "The image features a man wearing a suit, tie, and glasses standing in front of a microphone at a podium. He appears to be delivering a speech or presentation. There are two chairs placed in the background, one on the left and the other on the right side of the room. A window can be seen on the left side of the room, providing natural lighting for the scene."} +{"image_id": 127626, "caption": "The image features a street pole with several street signs attached to it. The pole is situated in front of a large brick building, which is visible in the background. There are multiple street signs on the pole, including a \"One Way\" sign, a \"Stop\" sign, a \"No Parking\" sign, and a \"Brewer's Row\" sign. The signs are positioned at various heights on both the"} +{"image_id": 132288, "caption": "The image features a man riding a skateboard in a skate park. He is wearing a helmet, knee pads, and elbow pads, indicating that he is engaging in some sort of skateboarding activity. The skateboarder is skillfully navigating through the skate park, possibly performing tricks or stunts. There are several people visible in the background, watching the skateboarder's performance. Some of them are standing near the edge of the riding"} +{"image_id": 83462, "caption": "The image features a cluttered office desk with a computer monitor, keyboard, and mouse. There are several items on the desk, including a cup, a bottle, a book, a pencil, and a cell phone. A chair is positioned in front of the desk, providing a comfortable seating area for the person working at the desk. In addition to the items on the desk, there are other objects scattered around the room, including another cup, a bowl, and a bottle."} +{"image_id": 213224, "caption": "The image depicts a dining room with a wooden table in the center. On the table, there are two vases filled with colorful flowers, one on the left side and the other on the right side of the table. The vases contain various types of flowers, such as lilies, daisies, and carnations, adding a touch of beauty to the room. There is also a bowl placed on the table, possibly containing fruits or other items. A chair can be seen in the background, providing seating for someone who might want to sit and enjoy the flowers."} +{"image_id": 145873, "caption": "The image depicts a large truck carrying a crane on a highway. The truck is driving down the road, and the crane is positioned on the back of the truck, likely being transported to a construction site. There are several traffic lights visible in the scene, indicating the presence of other vehicles on the road. Additionally, there are several cars scattered throughout the scene, some of which are closer to the truck, while others are further away. The truck and the crane are the main focus of the image, showcasing the heavy-duty machinery being transported for a construction project."} +{"image_id": 527506, "caption": "The image depicts a small airplane flying low over a grassy field, surrounded by tall trees. The plane is in the process of taking off or landing, as it appears to be close to the ground. There are several trees visible in the background, providing a scenic backdrop for the aircraft. The plane is positioned towards the left side of the image, while the trees are spread across the right side of the scene."} +{"image_id": 537982, "caption": "The image features a table filled with a variety of fresh vegetables, including carrots, beets, and other leafy greens. The vegetables are spread out across the table, with some of them closer to the edges and others closer to the center. The vegetables are arranged in a pleasing and visually appealing way, showcasing their vibrant colors and freshness."} +{"image_id": 357354, "caption": "The image depicts an elephant standing on a city street, with a man riding on its back. The elephant is positioned in the center of the scene, and the man is seated on its back, likely providing entertainment for the people passing by. There are several people visible in the scene, some standing near the elephant and others walking along the street. Additionally, there are two cars parked on the side of the street, one closer to the elephant and the other further away."} +{"image_id": 246076, "caption": "The image depicts a cozy living room with a couch, a dog, and a cat. The dog is lying on the floor near the couch, while the cat is resting on top of the couch. There are also two potted plants in the room, one on the left side and the other on the right side, adding a touch of greenery to the space. In addition to the animals and plants, there are two pots in the room, one on the left side and the other on the right side. A chair can be seen in the corner of the room, providing additional seating for the occupants."} +{"image_id": 331646, "caption": "The image features a wooden table with a cardboard box placed on top of it. Inside the box, there are various electronic components, including a remote control, a circuit board, and two light bulbs. The remote control is positioned towards the left side of the box, while the circuit board is located closer to the center of the box. The light bulbs are placed on either side of the circuit board, with one on the left and the other on the right. The components appear to be part of an electronic project or experiment."} +{"image_id": 389197, "caption": "In the image, a young boy is lying on a blue surfboard, riding down a water slide at an amusement park. He appears to be having a lot of fun as he speeds down the slide. There is a crowd of people standing around the water slide, watching the boy enjoy the ride. Some of them are positioned closer to the boy, while others are further away, creating a sense of depth in the scene. The overall atmosphere is lively and exciting, capturing the essence of a fun day at the amusement park."} +{"image_id": 3149, "caption": "The image features a large, ornate clock tower in the center of the scene. The clock tower stands tall and is adorned with a green dome on top. The tower is surrounded by several tall buildings, creating a cityscape backdrop. There are two clocks visible on the tower, one on the left side and another on the right side. The clocks are positioned at different heights, adding to the intricate design of the tower. In addition to the clock tower, there are several other clocks scattered throughout the scene, including one on the left side of the image and another on the right side. These clocks further emphasize the importance of timekeeping in this urban setting."} +{"image_id": 427500, "caption": "The image features a yellow and black fire hydrant sitting on the sidewalk next to a street. The fire hydrant is leaking water onto the sidewalk, creating a puddle around it. There are several cars parked along the street, with some closer to the fire hydrant and others further away. A traffic light can be seen in the background, indicating the presence of pedestrians and vehicles in the area."} +{"image_id": 3934, "caption": "The image depicts a group of people gathered in a living room, with a young girl standing in the middle of the room. She is holding a Nintendo Wii remote and appears to be playing a video game. There are two couches in the room, one on the left side and the other on the right side. A TV can be seen in the background, likely providing entertainment for the group. In addition to the couches, there are several chairs scattered throughout the room, including a chair on the left side, another chair on the right side, and a third chair closer to the center of the room. A handbag is also visible in the scene, likely belonging to one of the people present."} +{"image_id": 61647, "caption": "The image features a teddy bear-shaped cake with a lit candle in the center, sitting atop a wooden table. The cake is decorated to resemble a teddy bear and is surrounded by various desserts, including cupcakes, cookies, and lollipops. There are multiple cups placed around the table, some closer to the teddy bear cake and others further away. The scene appears to be a birthday celebration with a variety of sweet treats for guests to enjoy."} +{"image_id": 134206, "caption": "The image is a black and white photograph of a group of women standing in a large kitchen. They are all wearing aprons and appear to be preparing food in the kitchen. There are several bowls placed around the room, likely used for mixing ingredients or serving food. Some of the bowls are closer to the left and"} +{"image_id": 97767, "caption": "The image features a yellow fire hydrant sitting on the sidewalk next to a brick wall. The fire hydrant is positioned in the middle of the scene, surrounded by several red poles placed around it. There are two trees visible in the background, one on the left and another on the right side of the image. A bench can be seen in the foreground, near the fire hydrant, providing a place for people to sit and enjoy the surroundings."} +{"image_id": 338108, "caption": "The image features a man wearing a blue jacket and goggles, standing on a snow-covered ski slope. He is holding a pair of skis and appears to be ready for a skiing adventure. There are several other people in the background, some of them wearing pink clothing, likely skiers as well. In total, there are at least 10 people visible in the scene, with some of them closer to the camera and others further away. The snowy landscape provides a perfect backdrop for the winter sports enthusiasts to enjoy their time on the slopes."} +{"image_id": 236457, "caption": "The image depicts a white Chevrolet truck parked on a street at dusk. The trunk of the vehicle is visible in the foreground, while the headlights of the truck are illuminating the surrounding area. The truck appears to be stationary, possibly waiting for someone or completing a task. There are several traffic lights visible in the scene, indicating that the truck is situated in a busy urban area."} +{"image_id": 441863, "caption": "The image features a close-up view of two street signs, one with the name \"Boston Ave\" and the other with the name \"7th St\". Both signs are mounted on a metal pole, with the \"Boston Ave\" sign positioned closer to the top of the pole and the \"7th St\" sign positioned further down. The signs are prominently displayed, making them easily visible to passersby."} +{"image_id": 568147, "caption": "The image features a parking meter on a city street, with a colorful ribbon wrapped around it. The ribbon is tied to the meter in a creative way, adding a touch of personality to the parking meter. There are several people visible in the scene, some walking on the sidewalk and others crossing the street. A car can be seen parked on the side of the street, near the parking meter. Additionally, there are two handbags placed on the sidewalk, one closer to the parking meter and the other further away."} +{"image_id": 570185, "caption": "The image features a collection of various video game accessories, including a Nintendo Wii console, a steering wheel, and several controllers. The console is placed on a tiled floor, with the steering wheel and controllers surrounding it. There are two controllers positioned close to the console, one on the left side and the other on the right side. A third controller is located further away from the console, closer to the center of the image. Additionally, there are two remotes placed on the floor, one on the left side and the other on the right side. The accessories are arranged in a neat and organized manner, showcasing the variety of items available for the Nintendo Wii gaming system."} +{"image_id": 311746, "caption": "The image features a hummingbird hovering near a group of pink flowers. The hummingbird is flying close to the flowers, possibly feeding on nectar or pollen. There are multiple pink flowers in the scene, with some located closer to the hummingbird and others further away. The flowers are spread out across the image, creating a vibrant and colorful environment for the hummingbird to thrive in."} +{"image_id": 372233, "caption": "The image depicts a woman standing in front of a table filled with various food items. She is holding a sandwich in her hand and appears to be preparing it for consumption. There are several bowls on the table, including a large bowl in the center and smaller bowls scattered around the table. In addition to the bowls, there are several baskets placed on the table, likely containing additional food items or utensils. A car can be seen parked in the background, possibly indicating that the woman is preparing food for a gathering or event."} +{"image_id": 446574, "caption": "The image features a small bathroom with a toilet and a bathtub. The toilet is placed close to the entrance of the bathroom, while the bathtub is positioned towards the back of the room. A shower curtain is draped over the bathtub, creating a cozy and inviting atmosphere. In addition to the toilet and bathtub, there are several bottles scattered throughout the bathroom. One bottle can be found near the toilet, while another is positioned closer to the bathtub. A third bottle is located further away from the other two, closer to the left side of the room. Overall, the bathroom appears to be clean and well-maintained, with a touch of personality added by the shower curtain and various bottles."} +{"image_id": 77821, "caption": "In the image, a young boy is standing on a snow-covered slope, wearing skis and holding ski poles. He is dressed in a blue jacket and pants, and appears to be ready and excited for his skiing adventure. There are several trees visible in the background, providing a scenic backdrop for the boy's skiing experience."} +{"image_id": 401061, "caption": "The image depicts a man driving a car with a small dog hanging out the window. The man is taking a selfie with the dog, which can be seen in the rearview mirror of the car. There are several other cars visible in the background, likely parked on the side of the road. In addition to the man and the dog, there are two other people in the scene. One person is located towards the left side of the image, while the other person is situated closer to the right side. Both individuals appear to be enjoying the scenery while waiting for the car to pass by."} +{"image_id": 273556, "caption": "The image features a close-up view of a white toilet bowl, with a person standing in front of it. The person's legs are visible, and they appear to be taking a closer look"} +{"image_id": 114239, "caption": "The image depicts a woman in a kitchen, standing next to a black cat. She is wearing a black shirt and appears to be preparing food or feeding the cat. There are several bottles scattered around the kitchen, including one on the counter near the woman and another on the floor. In addition to the bottles, there are various utensils, such as forks, knives, and spoons, placed around the kitchen area. A bowl can also be seen on the counter, possibly containing food for the cat. Overall, the scene showcases a woman interacting with her pet in a cozy kitchen setting."} +{"image_id": 544533, "caption": "The image depicts a busy street with a long line of buses parked along the side of the road. The buses are lined up in a row, with some of them closer to the center of the scene and others positioned towards the edges. There are several people walking along the street, some of them near the buses and others further away from them. A few handbags can be seen scattered throughout the scene, possibly belonging to some of the pedestrians or passengers on the buses."} +{"image_id": 64189, "caption": "The image features a skateboarder performing a rail grind on a blue railing in a skate park. The skateboarder is wearing a helmet and can be seen in the middle of the scene, riding his skateboard down the rail. There are several other skateboarders visible in the background, some closer and some more distant from the main skateboarder. In addition to the skateboarders, there are several cars parked around the skate park, likely belonging to the skateboarders or visitors. A stop sign can also be seen in the background, indicating the presence of traffic in the area."} +{"image_id": 359442, "caption": "The image depicts a train yard with several train cars parked on the tracks. One of the trains is painted with graffiti, adding a vibrant and colorful touch to the scene. The train cars are spread out across the tracks, with some closer to the center of the image and others positioned further away. In total, there are at least six train cars visible in the scene. The train yard appears to be well-maintained, with the tracks and surrounding area free of debris or other obstructions."} +{"image_id": 307074, "caption": "The image depicts a city street with a yellow traffic light hanging from a pole in the middle of the road. There are several cars parked along the side of the street, some closer to the traffic light and others further away. A building can be seen in the background, possibly serving as a fire station. The sky above the scene is cloudy and stormy, adding to the dramatic atmosphere."} +{"image_id": 8495, "caption": "The image features a skier wearing a helmet, gloves, and goggles, with a ski pole in his right hand and another ski pole in his left hand. He is standing on a snow-covered slope, smiling and holding his ski poles up in the air, likely celebrating a successful run down the mountain. The skier's enthusiasm is evident as he poses for a portrait."} +{"image_id": 337692, "caption": "The image depicts a woman riding a white horse around a barrel on a grassy field. She is wearing a helmet and appears to be competing in an equestrian event. There are several other people in the scene, some of them standing near the barrel, while others are positioned further away from the action. In total, there are at least 10 people visible in the scene, with some of them closer to the barrel and others farther away. The background features a mountainous landscape, providing a scenic backdrop for the equestrian event."} +{"image_id": 119469, "caption": "The image depicts a group of sheep grazing in a grassy field surrounded by a fence. There are three sheep in the scene, with two of them standing close to each other and the third one slightly further away. They are all focused on eating the green grass. In addition to the sheep, there is a car parked near the fence, likely belonging to the farmer or caretaker of the animals. A truck can also be seen in the background, possibly used for transportation or maintenance around the farm."} +{"image_id": 347535, "caption": "The image is a black and white photograph of a busy city street with a man standing on the sidewalk. There are several cars parked along the street, some closer to the man and others further away. In addition to the cars, there are several other vehicles visible in the scene, including a truck and a bus. The man is wearing a jacket and appears to be waiting for something or looking around the area. The street is lined with various buildings and structures, adding to the vintage atmosphere of the scene."} +{"image_id": 194940, "caption": "The image features a wooden table with three bowls filled with various vegetables, including broccoli, carrots, and peppers. There are also two cups on the table, one on the left side and the other on the right side. The cups are likely used for drinks or other beveraged items. Additionally, there is a bottle placed on the table to the upper left."} +{"image_id": 398637, "caption": "In the image, a man and a woman are posing for a photo at an event. The man is wearing a tuxedo and the woman is wearing a blue dress. They are standing next to each other, with the man holding the woman's hand. There are several people in the background of the photo as"} +{"image_id": 96445, "caption": "The image features a zebra standing in a grassy area near a building. The zebra is grazing on the grass and appears to be focused on finding food. There are several trees visible in the background, providing shade and a natural setting for the zebra. In addition to the zebra, there are several other animals present in the scene. A dog can be seen off to the left side of the image, likely accompanying the zebra or simply exploring the area. Another dog is located closer to the center of the image, while a cat is positioned towards the right side of the scene. These animals add to the lively atmosphere of the grassy enclosure where the zebra is grazing."} +{"image_id": 456192, "caption": "The image depicts a group of elephants standing under a covered area, which appears to be a shelter or enclosure. There are three adult elephants and two baby elephants in the scene. The adult elephants are positioned closer to the center of the image, while the baby elephants are located on the periphery. The covered area provides shade and protection for the elephants from the sun and other elements."} +{"image_id": 285534, "caption": "In the image, a woman is holding a baby in her lap while sitting in a chair. The baby is wearing a pink dress, and the woman is holding a white teddy bear. The teddy bear is positioned close to the baby's face, and the woman is smiling at the baby as the two"} +{"image_id": 32677, "caption": "The image features a dog and a cat sleeping together on a bed. The dog is lying on the left side of the bed, while the cat is resting on the right side. Both animals are curled up and appear to be comfortable in their sleeping positions. The bed is covered with a blanket, likely providing warmth and comfort for the pets."} +{"image_id": 371326, "caption": "The image features a banana tree with a large, unripe banana hanging from it. The banana is located at the top of the tree, and there are several smaller bananas scattered throughout the tree. The tree is surrounded by lush green leaves, creating a vibrant and colorful setting. The banana tree appears to be in a tropical environment, possibly in a jungle or other lush outdoor area."} +{"image_id": 545913, "caption": "The image features a shiny silver airplane with a red stripe, parked on a runway. The plane's door is open, revealing the interior of the aircraft."} +{"image_id": 58647, "caption": "The image features a man wearing an orange wetsuit riding a surfboard on a large wave. He is skillfully balancing himself on the surfboard as he rides the wave, appearing to enjoy the thrill of surfing. The surfboard is positioned towards the center of the image, with the man standing on it and riding the wave. There are several smaller waves in the background, adding to the overall atmosphere of the scene."} +{"image_id": 146999, "caption": "The image features a well-appointed bathroom with a bathtub, sink, and mirror. A vase is placed on the counter next to the sink, adding a touch of elegance to the room. There are two towels hanging on the side of the bathtub, one on the left and one on the right. Additionally, there are two bottles placed in the bathroom, one near the sink and another near the bathtub. The room appears to be clean and well-maintained, with a sense of luxury and comfort."} +{"image_id": 212800, "caption": "The image depicts a group of people riding in a small red and white boat on a river. They are all holding black umbrellas to protect themselves from the rain. The boat is filled with a total of 12 people, with some sitting closer to the front of the boat and others further back. The umbrellas are scattered throughout the boat, indicating that they are being used to shield the passengers from the rain. In addition to the umbrellas, there are two handbags visible in the scene, likely belonging to some of the passengers."} +{"image_id": 170048, "caption": "The image depicts a man standing in a grassy field, jumping up to catch a green Frisbee. He is wearing a t-shirt and shorts, and the Frisbee appears to be in mid-air as he reaches out to grab it. There are several other people in the background of the scene, possibly watching the game or enjoying the outdoors. In total, there are five people in the field."} +{"image_id": 319024, "caption": "In the image, a young girl is standing in front of an open refrigerator, looking inside. She is wearing a pink sweater and pink pants. The refrigerator is filled with various food items, including bottles, bowls, and cups. There are several bottles placed throughout the refrigerator, some closer to the top and others closer to the bottom. Additionally, there are several bowls and cups scattered around the refrigerator, some near the top and others near the bottom. The scene depicts a child exploring the contents of the refrigerator, possibly looking for something to eat."} +{"image_id": 532481, "caption": "The image depicts a person parasailing over the ocean, with a kite flying high in the sky. The person is wearing a black wetsuit and appears to be performing an acrobatic maneuver while being pulled by the kite. There are several houses visible in the background, some of which are closer to the water's edge than others. A boat can also be spott"} +{"image_id": 489344, "caption": "The image features a bathroom with a white sink and a toilet. A black and white cat is lying in the sink, seeming to be enjoyed by the warm water. There are two other cats in the room, with the larger of the two being"} +{"image_id": 247259, "caption": "The image depicts a group of five people sitting around a large wooden conference table, each with a laptop open in front of them. They appear to be working together on their laptops, possibly collaborating on a project or engaging in a meeting. There are two cups placed on the table, one closer to the left side and the other closer to the right side. A potted plant can be seen in the background, adding a touch of nature to the scene. The room appears to be well-lit, with multiple light sources illuminating the space."} +{"image_id": 105220, "caption": "In the image, two people are skiing down a snow-covered slope, with one person wearing a blue jacket and the other wearing a black jacket. They are approaching a red archway, which serves as a finish line for their skiing event. There are several skiers visible in the background, some closer to the archway and others further away. Additionally, there are several ski poles scattered throughout the scene, likely belonging to the skiers participating in the event."} +{"image_id": 537081, "caption": "The image features a white plate with two slices of pizza on it, accompanied by a fork and a knife. The plate is placed on a dining table, and the pizza slices are positioned near the center of the plate. A measuring tape can be seen on the left side of the plate, indicating the size of the pizza. The fork and knife are strategically placed near the pizza slices, ready to be used for serving or eating."} +{"image_id": 184700, "caption": "The image depicts a well-appointed bathroom with a sink, toilet, and shower. The sink is located in the center of the room, while the toilet is positioned on the left side. The shower is situated on the right side of the room, with a glass enclosure. There are two mirrors in the bathroom, one above the sink and the other above the toilet. A toilet paper holder can be seen on the right side of the room, next to the shower. The bathroom appears to be clean and well-maintained, with a bright light illuminating the space."} +{"image_id": 446958, "caption": "The image features a baby shower cake with a teddy bear sitting in a crib. The cake is decorated with blue and white frosting, and the teddy bear is positioned in the center of the cake. The cake is placed on a dining table, surrounded by various items such as cups, bottles, and a bowl. There are also several people visible in the scene, possibly attending the baby shower."} +{"image_id": 197254, "caption": "The image features a horse-drawn carriage parked on a cobblestone street in front of a large white building. There are two horses standing next to the carriage, with one on the left side and the other on the right side. In the background, there are several people walking along the street, some closer to the carriage and others further away. A bicycle is also visible in the scene, likely belonging to one of the pedestrians. The scene appears to be a charming and historic setting, with the horse-drawn carriage adding a touch of nostalgia to the scene."} +{"image_id": 261333, "caption": "In the image, a person is holding a blue cup with a cat inside of it, likely drinking from the cup. The cat's head can be seen sticking out of the cup as the owner holds"} +{"image_id": 426166, "caption": "The image features a bicycle parked on the sidewalk in front of a red building. It's leaning against a pole, which is positioned next"} +{"image_id": 50926, "caption": "The image depicts a group of people enjoying a sunny day at a park. There are several individuals scattered throughout the scene, some flying kites and others walking around the grassy area near a lake in a mountainous landscape in the far-right of the image"} +{"image_id": 337497, "caption": "The image depicts a herd of elephants standing near a body of water, such as a river or lake. There are six elephants in total, with three adult elephants and three baby elephants. The adult elephants are positioned closer to the edge of the water, while the baby elephants are further away from it. The elephants appear to be enjoying their time near the water, possibly taking a break from their daily activities."} +{"image_id": 126137, "caption": "The image captures a male tennis player in action on a tennis court. He is wearing a white outfit and holding a tennis racket, preparing to hit the ball during a match. There are several people in the background, possibly spectators, watching the game. Some of them are positioned closer to the tennis court, while others are further away. A few chairs can be seen scattered around the scene, possibly for the players or spectators to sit during the game."} +{"image_id": 558864, "caption": "The image features a wooden dining table with a white plate of food placed on it. The plate contains a variety of food items, including carrots, mashed potatoes, and gravy. There are multiple carrots arranged on the plate, with some closer to the center and others near the edges. In addition to the carrots, there are also some mashed potatoes and gravy present on the plate. A bottle of beer can be seen on the table as well."} +{"image_id": 319456, "caption": "The image features a woman standing in front of a bathroom mirror, taking a selfie. She is wearing a white shirt and appears to be smiling. The bathroom is equipped with a toilet, sink, and a hand towel hanging on the wall next to the sink. There are several bottles scattered around the bathroom, including one on the sink, another on the counter, and a third on the floor near the toilet. In addition to the bottles, there are two cups visible in the scene, one on the sink and another on the counter. A person can be seen in the background, possibly the woman's friend or family member, capturing the moment."} +{"image_id": 130516, "caption": "The image depicts a large white truck parked in a subway station. The truck is positioned in the middle of the scene, surrounded by people. There are several individuals standing near the truck, with some of them closer to the front of the vehicle and others further back. In addition to the people, there are two handbags visible in the scene. One handbag is located on the left side of the truck, while the other is situated on the right side of the truck. The handbags add a personal touch to the scene, emphasizing the presence of individuals interacting with the truck."} +{"image_id": 546283, "caption": "The image features a person holding a hot dog in a bun, which is topped with chili. The hot dog is placed on top of the bun, making it a unique and delicious dish. There are two other hot dogs on the table, one closer to the left side and the other closer to the right side. In addition to the hot dogs, there are two bowls on the table, one located closer to the left side and the other closer to the right side. A wine glass can be seen on the table as well."} +{"image_id": 219261, "caption": "The image depicts a horse-drawn carriage traveling down a city street. The carriage is being pulled by a brown horse, and there is a person sitting on top of it, likely enjoying the ride. There are several cars parked along the street, with at least two of the closest"} +{"image_id": 183657, "caption": "The image features a bowl of orange slices floating in a puddle of water. The bowls are placed near the edge of the puddle, with one on the left side and the other on the right side. The orange slices are arranged in a circular pattern around the bowl, creating a visually appealing display. A rock can be seen in the middle of the puddle, adding to the overall atmosphere of the scene."} +{"image_id": 148272, "caption": "The image features a small white and orange cat sitting inside a black purse. The cat is positioned in the middle of the purse, with its head peeking out from the opening. The purse is placed on a tiled floor, with the cat's body partially visible on the right side of the image. The overall composition"} +{"image_id": 474675, "caption": "The image features a wooden coffee table with a white plate placed on top of it. The plate is positioned in the center of the table, and there is a clock placed next to it. The clock is an old-fashioned alarm clock, likely from the 1960s or 1970s. A chair can be seen on the left side of the table, and another chair is positioned on the right side of the table. There is also a couch in the background, with a person sitting on it. The room appears to be a cozy living space with a mix of vintage and modern elements."} +{"image_id": 344483, "caption": "The image features a lone zebra standing in a grassy field near a large tree. The zebra is positioned in the center of the scene, with its head facing towards the left side of the image. The tree is located on the right side of the field, providing shade for the zebra. In the background, there are several trees visible, adding to the natural setting of the scene. The grassy field appears to be spacious and open, allowing the zebra to roam freely."} +{"image_id": 464153, "caption": "The image depicts a man riding a red scooter down a set of stairs on a rainy day. He is wearing a jacket, and the scooter is parked near the bottom of the stairs. There are several other people visible in the scene, including a woman standing on the left side of the image and another woman standing on the right side of the image. A handbag can be seen on the left side of the image, close to the woman standing on the left. Additionally, there are two benches in the scene, one on the left side and another on the right side. The bench on the left is closer to the woman standing on the left, while the bench on the right is farther away from the woman standing on the right. Overall, the scene captures a person riding a scooter down a set of stairs on a rainy day, surrounded by other people and objects."} +{"image_id": 317130, "caption": "The image depicts a city street with a green street sign indicating \"South\" on the left side of the road. On the right side of the road, there is a no-left-turn sign. There are several cars parked along the street, with some closer to the left side and others closer to the right side. In the background, there is a large tree standing next to the road, providing shade and adding to the scenic view. A traffic light can also be seen in the distance, indicating the flow of traffic on the street."} +{"image_id": 142484, "caption": "The image features a cat lying on a wooden chair, resting on its back. The cat appears to be relaxed and comfortable as it lounges on the chair. The chair is placed in front of a window, allowing natural light to enter the room. There are several other items in the room, such as a cup and a bottle, which can be seen in the background. A potted plant can also be spott"} +{"image_id": 262440, "caption": "The image features a large bathroom with a white bathtub, sink, and toilet. The bathroom is spacious, with a tiled floor and a window in the background. There are two sinks, one on the left side of the room and the other on the right side. A toilet can be found in the middle of the room, and a cup is placed near the sink on the right side. The bathroom appears to be clean and well-maintained, with no clutter or debris visible."} +{"image_id": 163155, "caption": "The image features a gray and white cat sitting on a sidewalk next to a brick wall. The cat is perched on its hind legs, with its front paws resting on the ground. It appears to be staring intently at something in the distance, possibly searching for prey or exploring its surroundings. The cat's body is positioned towards the right side of the image."} +{"image_id": 535608, "caption": "The image depicts a beautiful beach scene with a multicolored umbrella on the sand. There are several people scattered across the beach, enjoining the sunny day. Some of them are lounging under the colorful sun canopy"} +{"image_id": 14892, "caption": "In the image, a man is holding a baby boy who is brushing his teeth with a toothbrush. The baby is sitting on the man's lap, and the toothbrush is in the right side of"} +{"image_id": 550864, "caption": "The image features a spacious kitchen with wooden cabinets, a stainless steel refrigerator, and a dining table. The kitchen is well-equipped with various appliances, including an oven, a microwave, and a dishwasher. The dining table is situated in the center of the room, surrounded by chairs. There are several bottles placed around the kitchen area, adding to the overall warm and inviting atmosphere. A wine bottle can be seen on the left side of the kitchen, while another bottle is positioned closer to the center of the room. Additionally, there are two more bottles located on the right side of the kitchen. Overall, the kitchen appears to be well-appointed and ready for cooking and entertaining."} +{"image_id": 440928, "caption": "The image depicts a large airplane sitting on top of a hill, with the sun shining brightly behind it. The plane is positioned in the center of the scene, with its nose pointing towards the sky. There are several cars parked around the airplane, with some closer to the plane and others further away. A truck can also be seen in the background, near the edge of the scene. The overall atmosphere is peaceful and serene, with the sun shining down on the airplane and the cars parked nearby."} +{"image_id": 186822, "caption": "The image depicts a bathroom with a white sink, toilet, and cabinet. There is a horse figurine placed on top of the cabinet, adding a unique touch to the room. A mirror is positioned above the sink, reflecting the overall appearance of the bathroom. Various bottles and cups can be seen scattered around the sink area, suggesting that the bathroom is well-equipped for daily use. Additionally, there are two toilet paper holders placed on either side of the toilet, ensuring that guests have easy access to the necessary supplies. Overall, the bathroom appears to be clean and well-maintained, with a touch of personality added by the horse figurine on top of the cabinet."} +{"image_id": 115222, "caption": "The image features a street corner with a stop sign at the intersection of Palm and Alameda Streets. There are several cars parked on the side of the street, with some closer to the stop sign and others further away. A palm tree can be seen in the background, adding to the tropical atmosphere of the scene. The stop sign is leaning at an angle, possibly due to the presence of the palm tree or other environmental factors."} +{"image_id": 9426, "caption": "In the image, a small red and white airplane is flying through a cloudy blue sky. The plane appears to be in mid-flight, with its propeller spinning as it flies across the sky. The plane is positioned towards the left side of the image, with a clear view of its wings and tail. There are several clouds visible in the sky, adding to the overall atmosphere of the scene."} +{"image_id": 290839, "caption": "The image depicts two men and a dog on a blue boat in a body of water. They are fishing together, with one man standing on the bow of the boat and the other sitting on the stern. The dog is also on the boat, possibly participating in the fishing activity. There are several fishing rods visible in the scene, likely used by the men for their fishing endeavors. The boat is positioned in the middle of the water, surrounded by trees and foliage, adding to the serene atmosphere of the scene."} +{"image_id": 285742, "caption": "The image depicts a vintage black and white photograph of a city street lined with parked cars. The cars are lined up along the sidewalk, with some parked closer to the curb and others further back. There are several cars visible in the scene, ranging from the front to the back of the line. A few people can be seen walking along the sidewalk, adding to the bustling atmosphere of the street. In the background, there is a tall building visible, possibly serving as a landmark for the area. Overall, the scene captures the essence of an old-fashioned city street filled with cars and people going about their daily lives."} +{"image_id": 457271, "caption": "The image features a woman holding a baby in her arms, standing next to two horses in a barn. One horse is closer to the woman, while the other is slightly further away. The woman appears to be interacting with the horses, possibly petting or feeding them. There are several fences visible in the background, likely enclosing the area where the horses are kept. The scene appears to be a peaceful and enjoyable moment for both the woman and the horses."} +{"image_id": 277955, "caption": "The image depicts a blue and yellow passenger train traveling down a set of railroad tracks. The train is surrounded by various electrical wires and cables, which are suspended above the tracks. There are several people visible in the scene, including one person standing on the left side of the train and another person standing on the right side of the train. Additionally, there are two more people further away from the train, one on the left and one on the right side of the image."} +{"image_id": 395531, "caption": "The image features a cute black and white stuffed panda bear sitting on a wooden bench next to a small Buddha statue. The panda is wearing a backpack, adding a playful touch to the scene. The Buddha statue is positioned slightly to the left of the panda, creating a charming contrast between the two. There are several plants in the background, adding to the serene atmosphere of the scene."} +{"image_id": 266400, "caption": "The image depicts a row of parked motorcycles lined up on a city street. There are several motorcycles of different colors, including yellow, blue, and black, parked side by side. Some of the motorcycles are closer to the edge of the street, while others are positioned in the middle of the row. Several people can be seen walking along the street, some of them passing by the parked motorcycles. A handbag is also visible in the scene, likely belonging to one of the pedestrians."} +{"image_id": 291932, "caption": "The image features a bench with a pair of shoes placed on top of it, sitting in front of a graffiti-covered brick wall. The bench is located on the sidewalk, and the shoes appear to be a unique and eye-catching addition to the scene. The graffiti on the wall adds to the vibrant and colorful atmosphere of the area. There are multiple bottles scattered around the scene, some closer to the bench and others further away. A handbag can be seen in the background, possibly belonging to one of the people passing by or using the bench. Overall, the image captures a lively and colorful urban setting with a touch of personality added by the shoes on the bench."} +{"image_id": 237942, "caption": "The image features a man standing in a park, wearing a black shirt and a green tie. He appears to be posing for a photo, standing in the middle of a grassy area surrounded by trees. There are several trees visible in the scene, with some closer to the man and others further in the background. In addition to the man, there are two other people present in the park. One person is located on the left side of the image, while the other is situated on the right side. Both individuals are standing in the grassy area, adding to the lively atmosphere of the scene."} +{"image_id": 118584, "caption": "The image depicts a group of elephants standing near a body of water, such as a river or a lake. There are several elephants in the scene, with some positioned closer to the water and others further away. The elephants appear to be socializing and interacting with each other, possibly feeding or bathing in the water. The environment is lush and green, with trees surrounding the water and providing shade for the elephants."} +{"image_id": 405440, "caption": "The image features a desk with a computer keyboard and a remote control placed on top of it. The keyboard is situated in the center of the desk, while the remote control is positioned closer to the right side of the desk. There are several wires and cables connected to the keyboard and remote control, indicating that they are part of a larger electronic setup. A monitor is also visible in the background, likely connected to the computer and keyboard. The overall scene appears to be a workspace for electronics repair or development."} +{"image_id": 66231, "caption": "The image depicts a busy kitchen filled with several chefs preparing food. There are at least six chefs working in the kitchen, each wearing a white chef's hat. They are diligently preparing various food items on the"} +{"image_id": 362520, "caption": "The image features a young skateboarder performing an impressive trick in a skate park. The skateboarder is in mid-air, holding onto the skateboard with one hand, while the other hand is positioned near the front of the skateboard. The skateboarder is wearing a helmet, which is visible in the scene. There are several skateboards scattered throughout the image, including one close to the skateboarder's hand and another further away from the main action."} +{"image_id": 114684, "caption": "The image features a young woman sitting on a bench outside, eating a hot dog wrapped in a paper napkin. She is wearing a pink jacket and a scarf around her head. There are several bottles scattered around the scene, including a bottle on the left side of the bench, another bottle on the right side of the bench, and a third bottle further to the right side of the bench. In addition to the bottles, there are two handbags visible in the scene, one on the left side of the bench and another on the right side of the bench."} +{"image_id": 559261, "caption": "In the image, a man is playing a game of tennis on a clay court. He is actively engaged in the game, lunging forward to hit the ball with his racket. There are several chairs scattered around the court, likely belonging to the players or spectators. Some of the chairs are closer to the action, while others are positioned further away from the tennis court. A few people can be seen sitting on the chairs, possibly watching the game or waiting for their turn to play. Overall, the scene depicts a lively and engaging tennis match taking place on the clay court."} +{"image_id": 320482, "caption": "The image depicts a busy city street with a yellow and blue bus parked on the side of the road. The bus is surrounded by several people, some of whom are walking on the sidewalk while others are standing near the bus. There are at least six people visible in the scene, with some closer to the bus and others further away. A few cars can be seen driving down the street, adding to the bustling atmosphere of the urban setting."} +{"image_id": 203705, "caption": "The image features a laptop computer sitting on a desk in a cluttered office space. The laptop is open and appears to be in use, with various items scattered around the desk. There are two cups on the desk, one closer to the laptop and the other further away. A cell phone is also present on the desk, likely belonging to the person using the laptop. In addition to the laptop and cups, there are several books on the desk, some of which are closer to the laptop while others are further away. A chair can be seen in the background, providing additional seating for the person working at the desk."} +{"image_id": 330186, "caption": "In the image, a person is riding a surfboard on a wave in the ocean. The surfer is wearing a wetsuit and appears to enjoy the water activity. The surfboard is positioned in the middle of the ocean, with the surfer riding it skillfully. There are several other surfboards visible in the background, suggesting that there may be other people surfing in the area as well. The overall scene captures the beauty and excitement of surfing in the ocean."} +{"image_id": 201004, "caption": "The image features a large grassy field with a building in the background. The building has a clock tower on top of it, which can be seen from various parts of the field. There are several trees scattered throughout the grassy area, providing shade and adding to the natural beauty of the setting. In the foreground, there is a bench placed near the grass, inviting visitors to take a seat and enjoy the surroundings. The scene appears to be a peaceful and serene setting, perfect for relaxation and contemplation."} +{"image_id": 137297, "caption": "In the image, a man is playing tennis on a blue court. He is wearing a red shirt and black shorts, and he is holding a tennis racket in his hand. The man is actively engaged in the game, as he has just hit the ball with his racket. There are several other people in the scene, some of them watching the game from the sidelines, while others are positioned closer to the action. A tennis ball can be seen bouncing on the court, adding to the excitement of the game. Overall, it appears to be a lively and engaging tennis match taking place."} +{"image_id": 526711, "caption": "In the image, a large white and blue Air Force One airplane is parked on an airport tarmac. The plane is surrounded by various vehicles, including cars, trucks, and a motorcycle. There are several people visible in the scene, some standing near the airplane and others walking around the area. The city skyline can be seen in the background, adding to the overall atmosphere of the scene."} +{"image_id": 571008, "caption": "The image features a stop sign that has been spray-painted with the word \"hammertime\". The graffiti is prominently displayed on the top of the stop sign, making it difficult to miss. There are several traffic signs in the scene, including a one-way street sign and a stop sign. The one-way street sign is positioned towards the left side of the image, while the stop sign is located closer to the center. Additionally, there are two traffic lights visible in the background, one on the left and one on the right side of the image."} +{"image_id": 234990, "caption": "The image depicts a group of three giraffes standing in a grassy field surrounded by trees. Two of the giraffes are bending down to drink water from a small pond, while the third giraffe is standing up next to them. The giraffes are spread out across the scene, allowing for a clear view of their distinctive features. In the background, there are several trees visible, adding to the natural setting of the scene. Overall, the image captures a peaceful moment in the lives of these giraffes as they enjoy their surroundings."} +{"image_id": 429811, "caption": "The image features a dining table set for a meal, with a white plate placed in the center of the table. The plate is filled with a variety of food items, including chicken, potatoes, and other vegetables. There are multiple forks placed around the plate, ready to be used during the meal. A wine glass is also visible on the table, adding to the elegant atmosphere of the dining experience. The table is adorned with a pink tablecloth, creating a warm and inviting setting for the meal."} +{"image_id": 349936, "caption": "The image depicts a spacious living room with a dining table in the center. The dining table is surrounded by chairs, and there are two cups placed on the table. A couch can be seen on the left side of the room, and a coffee table is placed in front of the couch. There are two TVs in the room, one on the left side and another on the right side. The living room also features a fireplace, which adds warmth and ambiance to the space. The overall atmosphere is cozy and inviting, perfect for enjoying a meal or relaxing after a long day."} +{"image_id": 537025, "caption": "The image features a bed with two towels arranged in the shape of two swans. The towels are placed on top of the bed, creating a heart-shaped design. There are two pink pillows placed on the bed, one near the head of the bed and the other near the foot of the bed. The towels and pillows create a cozy and romantic atmosphere for the bedroom."} +{"image_id": 508443, "caption": "The image features a wooden dining table with a green plate placed on top of it. On the plate, there are four mini pizzas arranged in a circular pattern. The pizzas are topped with melted cheese and appear to be freshly baked. A wine glass is positioned next to the plate, suggesting that the pizzas may have been served as an appetizer or a light meal. In addition to the pizzas and wine glass, there are two cups placed on the table, one on the left side and the other on the right side. The cups are likely used for drinking during the meal."} +{"image_id": 447927, "caption": "The image features a large elephant standing on top of a boat, with the words \"Wheeee\" written below. In the foreground, there is a small boat placed next to the elephant. The boat is positioned closer to the left side of the image, while the elephant takes up most of the space in the center of the image. The elephant's trunk is extended towards the right side of the boat as if the two"} +{"image_id": 132116, "caption": "The image features two white bowls filled with a delicious meal consisting of broccoli and meat. The bowls are placed on a wooden table, with the broccoli and meat evenly distributed in each bowl. There are several chopsticks placed around the table, ready to be used to enjoy the meal. The dish appears to be a healthy and flavorful combination of vegetables and meat."} +{"image_id": 336384, "caption": "The image features a large commercial airplane, a Boeing 737-800, taking off from an airport runway. The plane is painted in the colors of Ryanair, a low-cost airline based in Ireland. It is surrounded by various vehicles, including cars, trucks, and buses, which are parked on the side of the runway. There are also several people visible in the scene, possibly waiting for their flights or watching the plane take off."} +{"image_id": 224093, "caption": "The image depicts a black and white scene of a group of cows grazing in a grassy field. There are several cows scattered throughout the field, with some closer to the center and others near the edges. The cows appear to be of different sizes, with some being larger than others. A few trees can be seen in the background, adding a natural touch to the scene. The overall atmosphere is peaceful and serene, with the cows contentedly munching on the lush green grass."} +{"image_id": 384596, "caption": "In the image, a young boy is standing next to a small wooden bed in a room. A dog is also present in the room, possibly accompanying the boy. There are two other people in the room, one on the left side and another on the right side, observing the boy and the dog. The room appears to be well-furnished, with a chair and a cupboard visible in the background. The wooden bed and the dog add to the cozy atmosphere of the room."} +{"image_id": 185930, "caption": "The image depicts a public restroom with three white sinks arranged in a row. Each sink is equipped with a faucet, and there are several hand soap dispensers placed around the room. The mirrors above the sinks reflect the surroundings, making the restroom appear spacious and well-maintained. There are multiple hand soap dispensers placed throughout the restroom, ensuring that visitors can easily access them while washing their hands. The overall atmosphere of the restroom is clean and inviting."} +{"image_id": 29030, "caption": "In the image, two young men are taking selfies in a bathroom. One of them is standing in front of a mirror, while the other is holding a cell phone and taking a selfie. Both men are wearing white t-shirts and appear to be having some fun in the bathroom. There is a handbag placed on the right side of the room, likely belonging to one of the men. Additionally, there is a cup located on the left side of the room, possibly used for personal hygiene or grooming."} +{"image_id": 309366, "caption": "The image depicts a yellow and white train traveling down a set of railroad tracks. The train is surrounded by trees and other foliage, creating a scenic backdrop for the journey. There are several people visible in the scene, likely enjoining the ride or observing the train as it passes by. A traffic light can also be spott"} +{"image_id": 333697, "caption": "The image features a street scene at night, with a one-way sign and a no entry sign standing next to each other. The one-way sign is located on the left side of the image, while the no entry sign is on the right side. Both signs are positioned close to each other, with the one-way sign being slightly closer to the viewer. There are several graffiti-covered walls in the background, adding to the urban atmosphere of the scene. A car can be seen parked on the side of the street, with its headlights illuminating the area around it."} +{"image_id": 82338, "caption": "The image depicts a busy city street with a man riding a motorcycle in front of a cow. The cow is standing in the middle of the street, while the motorcyclist is wearing a helmet and riding towards the cow. There are several cars parked on the side of the street, some closer to the cow and others further away. In addition to the cars, there are two motorcycles visible in the scene, one behind the cow and the other parked on the side of the street. A traffic light can be seen in the background, indicating that the area is a busy intersection."} +{"image_id": 5325, "caption": "The image depicts a woman in a wheelchair being pushed by another woman on a sidewalk. The two women are standing under an umbrella, shielding themselves from the rain. There are several cars parked along the sidewalk, some closer to the woman in the wheelchair and others further away. In addition to the cars, there are several other vehicles visible in the scene, including a truck and a motorcycle. A traffic light can also be seen in the background, indicating the presence of pedestrians and vehicles in the area."} +{"image_id": 191078, "caption": "The image depicts a man wearing a shirt and glasses in a grocery store. He is standing next to a refrigerated display case containing a wide ass"} +{"image_id": 347335, "caption": "The image features a dining table with a white plate containing a breakfast meal consisting of eggs, hash browns, and a hamburger. The plate is placed in the center of the table, surrounded by various utensils such as forks, knives, and cups. There are two forks on the table, one near the plate and the other closer to the edge of the table. Additionally, there are two knives placed on the table, one near the plate and the other closer to the edge. A cup is also visible on the table, positioned near the plate."} +{"image_id": 441253, "caption": "The image features a glass desk with a laptop computer placed on top of it. The laptop is positioned in the center of the desk, surrounded by various items such as a mouse, a keyboard, and a bottle. There are two chairs placed near the desk, one on the left side and another on the right side. A cup is also visible on the desk, likely used for drinking or other purposes. The room appears to be well-lit, with multiple windows visible in the background."} +{"image_id": 209824, "caption": "The image depicts a frozen fire hydrant on the sidewalk, surrounded by a puddle of water. The fire hydrant is positioned close to the edge of the sidewalk and appears to be partially submerged in the puddle. There are several people visible in the scene, with one person standing near the fire hydrant and another person walking towards the right side of the image. Additionally, there is a handbag placed near the fire hydrant, possibly belonging to one of the people in the scene. Overall, the image captures a winter scene with a frozen fire hydrant and a puddle of water on the sidewalk."} +{"image_id": 316862, "caption": "The image features a pizzeria with three pizzas displayed on a marble countertop. There are two large pizzas in the foreground, and one smaller pizza in the background. The pizzas are arranged in a way that allows customers to easily view and select their desired pizzas. In addition to the pizzas, there are several bottles scattered throughout the scene. One bottle is located near the left edge of the image, while another is positioned closer to the center. A third bottle can be found towards the right side of the image. There are also several cups placed around the pizzas, likely used for serving or holding drinks. Overall, the scene showcases a well-stocked pizzeria with a variety of options for customers to choose from."} +{"image_id": 446984, "caption": "The image depicts a group of people gathered around a bicycle with a large pair of scissors attached to it. The scissors are positioned on top of the bicycle, creating a unique and eye-catching display. The people in the scene are wearing yellow vests and appear to be partaking in some sort of event or gathering. There are several bicycles visible in the scene, with some placed closer to the scissors and others further away. A few people are standing near the bicycles, while others are scattered around the area. In total, there are at least 12 people present in the scene."} +{"image_id": 326937, "caption": "The image depicts a living room with a black dog standing in front of a large flat-screen television. The dog appears to be watching something on the screen, possibly a TV show or a movie. There are two chairs in the room, one on the left side and another on the right side. A remote control for the television is placed on the left side of the room, close to the first chair. Additionally, there is a potted plant located on the right side of the room, near the second chair."} +{"image_id": 363048, "caption": "In the image, a man and a young girl are riding on a motorcycle together. The man is wearing a helmet, while the girl is wearing a pink jacket. They are both seated on the motorcycle, with the man in the front and the girl in the back. The motorcycle is parked on the side of the road, surrounded by various objects such as a handbag, a cell phone, and a bottle. There is also a building visible in the background, adding to the scene's urban setting."} +{"image_id": 428067, "caption": "The image depicts a grassy field with a truck parked in the middle of it. The truck is surrounded by various animals, including sheep, cows, and goats. Some of the animals are closer to the truck, while others are scattered throughout the field. The scene appears to be peaceful and serene, with the animals grazing and the truck parked in the middle of the lush green landscape."} +{"image_id": 207431, "caption": "The image features a delicious-looking pizza on a white plate, placed on a dining table. The pizza is topped with various ingredients, including mushrooms, eggplant, and possibly other items. The"} +{"image_id": 16704, "caption": "The image features a large elephant standing in a grassy field surrounded by trees. The elephant is positioned in the center of the scene, with its trunk extended towards the right side of the image. There are several trees visible in the background, providing a natural setting for the elephant. The elephant's size and presence make it the focal point of the image"} +{"image_id": 190705, "caption": "The image features a bathroom with a sink, toilet, and mirror. The sink is located on the left side of the room, while the toilet is situated on the right side. The mirror is positioned above the sink, providing a clear reflection of the bathroom's interior. A rug can be seen in the middle of the"} +{"image_id": 572462, "caption": "The image features a collage of four different scenes, each showcasing a different aspect of a public transportation system. In the first scene, there is a white train with a sign that reads \"Welcome to BART\". A group of people can be seen standing near the train, possibly waiting for it to depart. In the second scene, there is a bus with a sign that reads \"Welcome to MUNI\". The bus is parked on the left side of the image, and there are several people standing around it. In the third scene, there is a subway car with a sign that reads \"Welcome to BART\". The subway car is parked on the right side of the image, and a group of people can be seen standing near it. Finally, in the fourth scene, there is another subway car with a sign that reads \"Welcome to MUNI\". This subway car is also parked on the right side of the image, and there are several people standing near it."} +{"image_id": 501498, "caption": "The image features a black cat sitting on top of a purple suitcase, which is placed on a tiled floor. The cat is positioned in the middle of the suitcase, with its eyes fixed on the surroundings. The suitcase is quite large, taking up a significant portion of the scene. In addition to the cat, there are several other objects scattered around the room. A bottle can be seen on the left side of the image, and another bottle is located on the right side. There is also a cup near the center of the scene, and a sponge can be found on the right side."} +{"image_id": 202860, "caption": "The image features a woman standing in a room, holding a green teddy bear in her hands. She is wearing a gray shirt and appears to be engrossed in the teddy bear, possibly admiring it or preparing to give it as a gift. In the room, there are several items scattered around, including a chair, a cup, a bowl, and a bottle. A car is also visible in the background, likely parked outside the room. Overall, the scene depicts a cozy and relaxed atmosphere, with the woman enjoying her time with the teddy bear."} +{"image_id": 481891, "caption": "The image depicts a group of four young men playing a game of frisbee on a grassy field. They are all wearing orange shirts and are actively engaged in the game, with one person jumping up to catch the frisbee in mid-air. There are several benches scattered around the field, providing seating options for the players or spectators. In addition to the benches, there is a backpack visible in the scene, possibly belonging to one of the players."} +{"image_id": 156889, "caption": "The image depicts a group of people sitting on a boat, with two men holding an umbrella over them. One of the men is wearing a white shirt, while the other is wearing a black shirt. The umbrella is placed in the center of the group, providing shade and protection from the sun. In addition to the two men, there are several other passengers on the boat, some of whom are seated closer to the front, while others are positioned further back. A handbag can be seen on the left side of the boat, close to one of the men. Overall, the scene captures a group of people enjoining a leisurely ride on a boat, with the umbrella providing a sense"} +{"image_id": 285646, "caption": "The image depicts an apple tree with many apples hanging from its branches. The apples are in various stages of ripeness, ranging from green to fully ripe. Some of the apples are closer to the top of the tree, while others are further down, creating a colorful and lively scene. The tree is surrounded by green leaves, adding to the natural setting. The apples appear to be ready for harvesting, as they are plump and ready to be picked."} +{"image_id": 455267, "caption": "The image features a wok filled with a variety of vegetables, including broccoli, carrots, and onions. The vegetables are being cooked in the wok, which is placed on top of a stove. The wok is filled with a generous amount of vegetables, making it a colorful and appetizing dish. A spoon can be seen next to the wok, indicating that the dish is ready to be served or consumed."} +{"image_id": 429593, "caption": "The image depicts a dimly lit living room with a couch situated in the center of the space. The couch is surrounded by various items such as a TV, a book, and a remote control. There are also two chairs placed near the couch, one on the left side and the other on the right side. In addition to the furniture, there are several bottles scattered throughout the room, including one on the left side and another on the right side. A clock can be seen hanging on the wall, providing a sense of time. The overall atmosphere of the room is cozy and inviting, with a warm glow emanating from the light source."} +{"image_id": 152946, "caption": "The image depicts a group of people standing on a snowy slope, with several skiers and snowboarders posing for the camera. There are two women in the scene, one holding a snowboard and the other holding a pair of skis. They are both wearing sunglasses and appear to be ready for an outdoor adventure. In addition to the two women, there are several other skiers and snowboarders scattered throughout the scene, each carrying their own equipment. Some of them are closer to the camera, while others are positioned further away. The snow-covered slope is filled with various skiing and snowboarding gear, including boards, poles, and helmets."} +{"image_id": 97427, "caption": "The image depicts a small kitchen with a white refrigerator, stove, and dishwasher. The refrigerator is located on the left side of the kitchen, while the stove is situated on the right side. The dishwasher is positioned in the center of the kitchen, near the refrigerator. There are several appliances in the kitchen, including a microwave, which can be seen on the right side of the room. Additionally, there are several bottles scattered throughout the kitchen, likely used for various purposes. The kitchen appears to be clean and well-maintained, with a focus on functionality and organization."} +{"image_id": 525369, "caption": "The image depicts a small child lying in a bed, covered with a blanket and wearing a pink shirt. The bed is situated in a dimly lit room, with a book placed on the bedside table next to the child. In addition to the book, there are several other items scattered around the room, including a cup, a cell phone, and a remote control. The room appears to be a cozy and comfortable space for the child to rest and relax."} +{"image_id": 248582, "caption": "The image depicts a bustling street scene where a group of people are gathered around an outdoor fruit stand. The stand is filled with various types of fruits, including bananas, apples, and oranges. There are several people in the scene, each carrying backpacks, shopping bags, or purses. Some of them are standing near the fruit stand, while others are walking along the sidewalk. The street is lined with buildings on both sides, adding to the vibrant atmosphere of the scene."} +{"image_id": 548729, "caption": "The image features a group of people gathered around a dining table in a room. Several bottles of wine are displayed on the table, with some bottles placed closer to the center and others positioned towards the edges. There are also several wine glasses on the table, indicating that the gathering is likely a wine tasting or a wine-related event. The people in the scene are standing around the table, enjoying the wine and each other's company."} +{"image_id": 493522, "caption": "The image features a zebra standing on top of a sandy hill, with a ram nearby. The zebra is positioned towards the left side of the image, while the ram is located on the right side. The zebra and the ram are both standing on the sandy hill, with the zebra slightly closer to the viewer. There are several rocks scattered throughout the scene, including one near the zebra and another near the ram. The overall setting appears to be a natural environment with a mix of vegetation and sandy terrain."} +{"image_id": 218476, "caption": "The image depicts a man riding a blue motorcycle on a beach, surrounded by waves. He is wearing a blue outfit and seems to be enjoying the ride. The motorcycle is positioned in the middle of the scene, with the man on the left-handed handle."} +{"image_id": 273469, "caption": "The image features a dining table with two open pizza boxes on it, each containing a large pizza. The pizzas are placed in the center of the table, surrounded by various drinks, including beer bottles and cups. There are also several glasses placed around the table to accompniment the food and drinks. In addition to the pizza, the table is also set to"} +{"image_id": 388926, "caption": "The image is a black and white photograph of a group of people sitting on a bus, looking out the window. There are several people visible in the scene, with some leaning out of the window and others sitting closer to the center of the bus. In total, there are at least 10 people in the scene, with some of them leaning out of the window and others sitting more comfortably inside the bus. The bus appears to be a public transportation vehicle, possibly a city bus or a school bus."} +{"image_id": 186427, "caption": "The image depicts a man standing on a tennis court, holding a tennis racket in his hand. He is preparing to play a game of tennis, possibly waiting for his opponent's return to the"} +{"image_id": 457636, "caption": "The image depicts a group of young men playing ice hockey on a frozen outdoor rink. There are several players on the ice, with some wearing red uniforms and others wearing maroon uniforms. The players are actively engaged in the game, with some holding hockey sticks and others skating around the rink. In the background, there is a crowd of spectators watching the game, with some people standing closer to the action and others positioned further away. The overall scene captures the excitement and energy of a competitive ice hockey game."} +{"image_id": 315018, "caption": "The image features a woman standing next to a giraffe, taking a selfie with the animal. The woman is holding a camera in her hand, capturing the moment with the giraffe. There are two other people in the scene, one on the left side and another on the right side of the image, but they are not as close to the giraffe as the woman taking the selfie. In the background, there are trees visible, suggesting that the scene takes place outdoors."} +{"image_id": 532164, "caption": "The image depicts a group of people wearing white aprons and gloves, gathered around a conveyor belt filled with apples. They appear to be inspecting the apples as they move along the belt, possibly preparing them for packaging or further processing. There are several apples visible on the conveyor belt, with some of them closer to the front and others towards the back. The group of people is spread out across the scene, with some individuals standing closer to the conveyor belt while others are positioned further away."} +{"image_id": 478356, "caption": "The image depicts a vintage scene of a woman sitting on the back of a fire truck, holding a sign that reads \"Pearl Harbor Day - Have You Bought Your Bond?\" The fire truck is parked on the side of the road, and the woman is standing on the back of it, holding the sign. There are several other people visible in the scene, including a man standing on the left side of the truck, another man standing on the right side of the truck, and a woman standing on the right side of the truck. Additionally, there are two cars parked in the background, one on the left side and another on the right side of the scene."} +{"image_id": 355276, "caption": "The image features a large brown bear resting in a rocky enclosure, surrounded by a fallen tree trunk. The bear is lying on the ground and appears quite relaxed, with its paws resting on the log. There are several other logs scattered around the scene, adding to the natural setting of the bear's habitat. In the background, there is a small stone structure that"} +{"image_id": 147904, "caption": "In the image, a group of people are gathered in a grassy field, flying kites under a cloudy sky. There are several kites visible in the scene, with some closer to the ground and others higher up in the air. The people are scattered throughout the field, enjoying the outdoor activity together. A few individuals can be seen holding onto their flying kite or watching"} +{"image_id": 417547, "caption": "The image captures a baseball game in progress, with a pitcher preparing to throw a pitch. The pitcher is standing on the pitcher's mound, holding a baseball bat and ready to pitch the next game"} +{"image_id": 25758, "caption": "The image depicts a woman in a kitchen, placing a large turkey or chicken into an oven. She is wearing a white shirt and appears to be focused on getting the food ready for cooking. There are several pots and pans scattered around the kitchen, likely used for preparing the meal. A bowl can also be seen on the countertop, possibly containing additional ingredients or utensils. In the background, there is a television set on top of"} +{"image_id": 58737, "caption": "The image depicts a train station with two trains parked next to each other on the tracks. One train is black and yellow, while the other is red and yellow. There are several cars parked near the train station, including a car in the foreground and others scattered throughout the scene. A traffic cone can be seen on the right side of the image, possibly indicating a parking area or a construction site nearby. The overall scene appears to be a busy train station with multiple vehicles and trains in operation."} +{"image_id": 87356, "caption": "The image depicts a red and white city bus driving down a city street. The bus is parked on the side of the road, likely waiting for passengers to board or disembark. There are several cars parked along the street, some closer to the bus and others further away. A bicycle can be seen near the bus, possibly belonging to one of the passengers or a passerby. In the background, there is a traffic light, indicating the flow of traffic in the area. Overall, the scene appears to be a typical urban setting with a mix of vehicles and pedestrians."} +{"image_id": 44061, "caption": "The image depicts a train traveling along a track that runs alongside a lush, green hillside. The train is a multi-colored passenger train, likely carrying people to their destination. There are several passengers visible within the train, with some seated in the front and others in the back. The train appears to be traveling at a moderate speed, passing over the bridge and through the scenic landscape. A few trees can be seen on the hillside, adding to the natural beauty of the scene."} +{"image_id": 565438, "caption": "In the scene, a young man is performing a skateboarding trick on a cement staircase. He is wearing a black shirt and appears to be in mid-air, with his skateboard hovering above the staircase. There are several other people in the area, some of whom are standing on the sidewalk, while others are further away from the skateboarder. A traffic light can be seen in the background, adding to the urban atmosphere of the scene."} +{"image_id": 518177, "caption": "The image features a silver toaster oven with a baking tray inside. On the tray, there are several food items, such as potatoes and possibly other vegetables, being cooked. Some of the potatoes are placed closer to the center of the tray, while others are positioned towards the edges. A knife can be seen on the counter next to the toaster oven, possibly used for cutting or preparing the food. The overall scene suggests that the toaster oven is being used to cook a variety of food items, likely for a meal or snack."} +{"image_id": 139953, "caption": "The image features a dining table set with various plates and utensils. There are two white plates placed on the table, one closer to the left side and the other closer to the right side. In addition to the plates, there are several bowls scattered around the table. A spoon can be seen on the left side of the table, while another spoon is positioned closer to the center of the table. Two cups are also present on the table, one near the left side and the other near the right side. A fork can be found on the right side of the table."} +{"image_id": 485390, "caption": "The image depicts a group of sheep grazing on a grassy hillside. There are four sheep in the scene, with three of them positioned closer to the top of the hill and one further down. The sheep are spread out across the area, with some standing and some lying down. They appear to be enjoying the fresh grass and the peaceful surroundings."} +{"image_id": 514249, "caption": "The image depicts a city street at night, with a white fire hydrant placed in the middle of the scene. There is a newspaper stand near the fire hydrant, and a traffic light can be seen in the background. A car is parked on the side of the street, and there are several other vehicles scattered throughout the scene. In addition to the cars, there are several pedestrians walking along the sidewalk, adding to the bustling atmosphere of the city. The scene is illuminated by streetlights, creating a vibrant and lively atmosphere."} +{"image_id": 459921, "caption": "The image depicts a woman taking a selfie in a bathroom. She is standing in front of a mirror, holding a cell phone and taking a picture of herself. The bathroom features a sink and a toilet, both of which are visible in the scene. There are multiple bottles scattered around the bathroom, including one on the sink, another on the counter, and a third one on the floor near the toilet. In addition to the bottles, there are two cups in the scene, one on the counter and another on the floor near the toilet. The woman's hair can be seen in the reflection of the mirror."} +{"image_id": 219315, "caption": "The image features a table with a bottle of beer and a doughnut on a napkin. The bottle is placed in the center of the table, while the doughnut is positioned to the right of the bottle. The doughnut appears to be a small pastry, possibly a donut or a muffin. There are multiple bottles of beer on the table, with two bottles visible in the foreground and one bottle in the background. A laptop is also present on the table, likely belonging to the person enjoining the beer and doughnut."} +{"image_id": 360629, "caption": "The image features a red plastic tray filled with a variety of food items, including sushi, broccoli, and other vegetables. The tray is placed on a dining table, which is covered with a white tablecloth. There are two chopsticks placed near the tray, one on the left side and the other on the right side. A bowl can also be seen on the table, possibly containing additional food or condiments."} +{"image_id": 17178, "caption": "The image depicts a group of horses standing on the side of a road, next to a fence. There are three horses visible in the scene, with one horse standing closer to the fence and the other two positioned further away from it. The horses are standing on the side of the road, seemingly curious about the cars passing by. A car can be seen parked on the side of the road, possibly waiting for the horses to move out of the way."} +{"image_id": 311759, "caption": "The image features a small brown teddy bear sitting on a white surface. This teddy bear is adorable and cute, with its big brown eyes and soft fur. It is positioned in the center of the scene, making it the focal point of the image. The teddy bear appears to be a unique and special item, possibly a collectible or a one-of-a-kind creation."} +{"image_id": 418944, "caption": "In the black and white photograph, a young girl is smiling as she blow-dries her hair with a hair dryer. She is surrounded by various objects in the room, including a sink, a cup, and a bottle. The sink is located on the left side of the image, while the cup is positioned closer to the girl's right side. The bottle can be seen in the lower right"} +{"image_id": 487631, "caption": "The image depicts a herd of sheep walking down a city street, likely on their way to a pasture or other grazing area. There are several sheep visible in the scene, with some closer to the camera and others further away. A car is parked on the side of the road, possibly belonging to one of the people observing the herd. In the background, there is a truck driving down the street, passing by the herd of sheep."} +{"image_id": 494566, "caption": "In the image, a man is skiing down a snowy slope, wearing a black and white outfit. He is positioned in the middle of the slope, with his skis tucked underneath him as he speeds down the hill. There are several ski poles visible in the scene, likely providing additional balance and control"} +{"image_id": 63855, "caption": "The image features a blue and pink train with its door open, allowing passengers to enter or exit the train. The train is parked on a platform, likely at a train station. There are several people visible in the scene, some standing near the train and others walking along the platform. A few more people can be seen further away from the train, possibly waiting for their own transportation or observing the scene."} +{"image_id": 181601, "caption": "The image features a small white bird perched on top of a green tree branch, surrounded by lush green leaves. It appears to be a solitary bird, standing out against the bright blue sky in the background. The bird's presence adds a touch of nature to the scene."} +{"image_id": 553330, "caption": "The image features a young boy wearing a blue shirt and a red helmet, standing on a baseball field with a baseball bat in his hand. He is preparing to hit the ball during a baseball game. There are several other individuals in the area as"} +{"image_id": 304316, "caption": "The image depicts a busy train station with two trains parked next to each other on the tracks. One of the trains is a silver and yellow train, while the other is a gray train. Both trains are parked close to each other, with the silver and yellow train closer to the left side of the image and the gray train closer to the right side. There are several people visible in the scene, some standing near the trains and others walking along the platform. A traffic light can also be seen in the background, indicating the safety of the area for pedestrians and vehicles. Overall, the scene captures the bustling activity of a busy train station."} +{"image_id": 474384, "caption": "The image features a group of sheep standing behind a wooden fence. There are three sheep visible in the scene, with two of them positioned closer to the fence and the third one slightly further away. Each sheep has its head protruding over the fence, as if they are curious about their surroundings or interested in something outside the enclosure. The wooden fence serves as a barrier between the sheep and the rest of the environment."} +{"image_id": 415001, "caption": "The image depicts a baseball game in progress, with several players on the field. One of the players is giving a high-five to another player, likely congratulating them on a successful play. There are several other players scattered throughout the field, some of whom are positioned closer to the action while others are further away. In addition to the players, there are two umpires visible in the scene, one on the left side of the field and the other on the right side. A ball is also present on the field, possibly having been hit by one of the players during the game. Overall, the scene captures the excitement and energy of a baseball game in progress."} +{"image_id": 102503, "caption": "The image features a spacious bedroom with a large bed in the center of the room. The bed is adorned with a yellow and gray blanket, creating a cozy and inviting atmosphere. A yellow chair is placed near the bed, providing a comfortable seating area for relaxation. There are several pictures scattered throughout the room, adding a personal touch to the space. In addition to the chair, there are two other chairs visible in the room, one on the left side and another on the right side. These chairs provide additional seating options for guests or for those who prefer to sit in a different part of the room. Overall, the bedroom exudes a warm and inviting atmosphere, perfect for rest and relaxation."} +{"image_id": 421169, "caption": "The image features a large white and red airplane parked on an airport runway under a cloudy sky. The plane is positioned in the middle of the runway, with its nose pointing towards the left side of the image. There are several other airplanes visible in the background, some closer to the camera and others further away. In total, there are at least six airplanes present in the scene. Additionally, there are several cars parked near the airport, likely belonging to passengers or airport personnel."} +{"image_id": 207670, "caption": "The image depicts a group of young skiers competing in a race on a snowy course. They are wearing skis and helmets, and some of them are holding ski poles. The skiers are spread out across the scene, with some closer to the center of the image and others positioned towards the edges. There are several traffic cones scattered throughout the area, likely marking the course or indicating the boundaries of the race. A few cars can be seen parked along the side of the road, possibly providing support for the skiers or serving as a spectator area. Overall, the scene captures the excitement and energy of a winter sports competition."} +{"image_id": 43098, "caption": "The image features a man walking down a city street, with a blue suitcase lying on the sidewalk in front of him. The suitcase is positioned close to the edge of the sidewalk, and the man is passing by it as he continues on his way. There are several other people visible in the scene, including one person standing on the sidewalk further down the street. Additionally, there are two handbags placed on the sidewalk, one near the man and the other closer to the blue suitcase. A fire hydrant can be seen in the background, adding to the urban atmosphere of the scene."} +{"image_id": 286583, "caption": "The image depicts a busy city street on a rainy day. A group of people is crossing the street, some carrying umbrellas to protect themselves from the rain. There are several umbrellas visible in the scene, with some people holding them and others using them to shield themselves from the rain. In addition to the umbrellas, there are several handbags scattered throughout the scene, likely belonging to the pedestrians crossing the street. A traffic light can also be seen in the background, indicating the presence of vehicles on the road. Overall, the scene captures the hustle and bustle of a busy city street during a rainy day."} +{"image_id": 401860, "caption": "The image features a white plate with a single slice of pizza on it, placed on a table. The pizza slice is topped with green vegetables and appears to be a unique and delicious variety of pizza. The plate is positioned in the center of the table, making it the focal point of the scene."} +{"image_id": 71171, "caption": "The image features a dining table with a white plate containing a sandwich and a salad. The sandwich is cut in half and placed on the plate, while the salad is arranged next to it. There are multiple utensils on the table, including forks, knives, and spoons, suggesting that the meal is ready to be consumed. A bottle of wine is also visible on the table, likely accompanying the meal."} +{"image_id": 160811, "caption": "The image features a wooden desk with a printer and a stool placed on top of it. The printer is positioned in the center of the desk, while the stool is placed next to it. There are two chairs in the room, one on each side of the desk. One chair is closer to the left side of the desk, while the other chair is positioned closer to the right side of the desk. Additionally, there is a laptop placed on the desk, likely used for printing or other tasks. The room has a carpeted floor, providing a cozy atmosphere for working or relaxing at the desk."} +{"image_id": 4979, "caption": "The image features a large red chair with a horse statue placed on top of it. The horse statue is positioned in the center of the chair, standing on its hind legs and looking towards the left side of the image. The chair is situated on a grassy lawn, with a building visible in the background. There are several trees scattered throughout the scene, adding to the natural setting."} +{"image_id": 315863, "caption": "The image depicts a small red and black train, possibly a miniature train, traveling down a track on a sunny day. The train is surrounded by a variety of trees and bushes, adding to the natural setting. There are several potted plants scattered throughout the scene, including one near the front of the train and another near the back of the train. A man can be seen standing on top of the train, perhaps enjoying the sights and sounds of the countryside."} +{"image_id": 177856, "caption": "The image depicts a group of people riding in a yellow and white speedboat on a body of water. They are all wearing life jackets and appear to be having fun while enjoying the ride. There are several people in the boat, with some closer to the center and the back of their seats"} +{"image_id": 411587, "caption": "In the image, a shirtless man is paddling an orange kayak in the ocean. He is actively participating in water sports and appears to be enjoying his time on the water. The kayak is positioned near the center of the image, with the man paddling towards the left side of the frame. There are several waves visible in the background, adding to the dynamic atmosphere of the scene."} +{"image_id": 394240, "caption": "The image depicts a narrow cobblestone street lined with several motorcycles parked in a row. The motorcycles are positioned close to each other, with some of them closer to the left side of the street and others closer to the right side. A few people can be seen walking along the street, one of whom is carrying an umbrella. The street appears to be a residential area, with the motorcycles likely belonging to local residents or visitors."} +{"image_id": 532463, "caption": "The image depicts a blue bench with several handbags displayed on it. The handbags are of various colors and designs, creating a colorful and eye-catching display. The bench is placed on a sidewalk or patio area, possibly in front of a store or outdoor market. The handbags are arranged in a symmetrical pattern, adding to the aesthetic appeal of the scene."} +{"image_id": 57495, "caption": "The image depicts a small, cramped bathroom with a toilet and a sink. The toilet is situated in the middle of the room, while the sink is positioned near the wall on the right side. There is a bucket placed near the sink, likely used for cleaning purposes. The bathroom appears to be in a state of disrepair, with a dirty floor and walls. The overall atmosphere is quite cramped and uninviting."} +{"image_id": 425948, "caption": "The image depicts a family enjoying a day at the beach. There are two children playing on the sandy beach, one of them flying a kite in the sky. The other child is standing nearby, possibly watching the kite flying or participating in the activity. In addition to the children, there are several adults present on the beach, some of them walking along the shorelines or engaging in various activities near the water. A few people can be seen further away from the main group, possibly exploring the beach or taking in the scenic view. Overall, it appears to be a lively and enjoyable day at the beach for the entire family."} +{"image_id": 508165, "caption": "The image depicts a yellow bus traveling down a city street underneath a bridge. The bus is parked on the side of the road, and a second yellow school/city-type"} +{"image_id": 41998, "caption": "The image depicts a large, old building with a clock tower in the center of a city square. The building is surrounded by many people walking around, some of them carrying bags or purses. There are also several cars parked in the area, adding to the lively atmosphere of the scene. The clock tower stands tall and visible in the center of the square, making it a prominent feature of the scene. Overall, the image captures a bustling city square filled with people and vehicles, with the clock tower serving as a focal point."} +{"image_id": 477474, "caption": "The image features a black laptop computer sitting open on a white bed. The laptop is positioned in the middle of the bed, with its screen displaying various windows and tabs. There are multiple hands visible in the scene, possibly belonging to people interacting with the laptop or simply resting on the bed. The laptop's keyboard is also visible, providing access to the computer."} +{"image_id": 410614, "caption": "The image depicts a skateboarder performing a trick on his skateboard. The skateboarder is captured in a series of time-lapse photographs, showcasing his progression as he performs the trick. There are several skateboards visible in the scene, with one placed near the skateboarder and others scattered around the area. The skateboarders are wearing white shirts, adding to the overall aesthetic of the scene."} +{"image_id": 321035, "caption": "The image features a large, decorated cake sitting on a table. The cake is adorned with red and white frosting and has the words \"Welcome Malachi\" written on it. A knife is placed next to the cake, ready to be used for cutting and serving the delicious dessert. In addition to the main cake, there are several smaller cakes placed around the table, adding to the celebratory atmosphere."} +{"image_id": 450182, "caption": "The image features a person riding a motorcycle down a city street. The motorcycle is parked on the side of the road, and the person is performing a stunt by doing a wheelie on the motorcycle. There are several cars parked along the street, with some closer to the motorcycle and others further away. In the background, a cable car can be seen traveling down the street, adding to the lively atmosphere of the scene."} +{"image_id": 475572, "caption": "The image features a small table with a decorative shelf. On the shelf, there is a white teddy bear sitting next to a framed photo of two people. A potted plant is also placed on the shelf, adding a touch of greenery to the scene. The table is adorned with various items, including a vase, a picture frame, and a potted plant, creating a cozy and inviting atmosphere."} +{"image_id": 257624, "caption": "The image features a young girl standing on a grassy field, surrounded by soccer balls. She is wearing a jacket and pants, and appears to be enjoying her time playing with the soccer balls. There are two soccer balls in the scene, with the larger soccer ball closer, likely the main"} +{"image_id": 211853, "caption": "The image depicts a group of five small boats docked next to each other in a body of water. The boats are lined up in a row, with four of them positioned close to each other and the fifth one slightly further away. The boats are painted in different colors, adding a touch of variety to the scene. There is a potted plant located near the boats, likely placed there for decoration or to add some greenery to the area. In the background, there is a wooden fence that separates the boats from the rest of the body of water. Overall, the image showcases a peaceful and serene setting with the boats and the potted plant complementing the tranquil atmosphere."} +{"image_id": 121663, "caption": "The image depicts a city street with a yellow and white bus driving down the road. The bus is parked on the side of the street, waiting for passengers to board. There are several people visible in the scene, some standing on the sidewalk and others walking along the street. A traffic light can be seen in the distance, indicating the bus's progress through the city. In addition to the bus, there are several cars parked along the street, adding to the bustling atmosphere of the urban environment."} +{"image_id": 24112, "caption": "The image depicts a group of people gathered around a dining table for a meal. There are three men and two women sitting at the table, enjoining each other's company while enjoying their food. In addition to the people, there are several bottles, a wine and an open"} +{"image_id": 546091, "caption": "The image depicts a dining area in a restaurant, where a pizza is placed on a pan on a table. There are two slices of pizza on the pan, with one slice partially eaten. A bottle of ketchup can be seen on the table near the pizza, along with a knife and fork. In the background, there are several people sitting around the dining area, enjoying their meals. Some of them can be seen holding drinks."} +{"image_id": 117425, "caption": "The image features a young boy standing in front of a table with a cupcake on it. The cupcake has a single lit candle on top, making it a special birthday treat. The boy is looking at the cup cake with interest, possibly anticipating his birthday celebration. There are two chairs placed near the table, one on the left side and the other on the right side. A person can be seen sitting on one of the chairs, possibly the boy's parent or guardian. In addition to the cupcake and"} +{"image_id": 94536, "caption": "The image features a cat sitting next to a bicycle on a sidewalk. The cat is positioned near the front wheel of the bicycle, with its head and body close to the tire. There are two other cats in the scene, one on the left side and another on the right side of the image. Both cats are positioned further away from the bicycle and appear to be exploring their surroundings."} +{"image_id": 422700, "caption": "In the image, a man and a woman are sitting on a couch with a baby in between them. The baby is being fed by one of the adults, while the other adult is holding the baby's bottle. There is a bowl placed on the floor in the"} +{"image_id": 60010, "caption": "The image features a young man wearing a black vest and a purple shirt. He is posing for the camera, smiling and looking directly at the viewer. There are two ties visible in the scene, one on the left side of his neck and another on the right side. The man's hair is styled neatly, and he has an expression that"} +{"image_id": 229150, "caption": "The image depicts a large elephant walking down a city street, accompanied by a man who appears to be guiding it. The elephant is the main focus of the scene, with its massive body taking up a significant portion of the image. The man is walking alongside the elephant, likely leading it through the city. There are several cars parked along the street, some closer to the elephant and others further away. In addition to the cars, there are several motorcycles scattered throughout the scene, adding to the bustling atmosphere of the city."} +{"image_id": 337439, "caption": "The image depicts a unique sculpture of a hand holding a cell phone, located in an airport lobby. The hand is made of metal and appears to be holding a cell phone in its palm. The sculpture is situated in the middle of the lobby, surrounded by various people walking around. There are at least three people visible in the scene, with one person standing closer to the sculpture and two others further away. A suitcase can also be seen in the background, possibly belonging to one of the people in the lobby."} +{"image_id": 476569, "caption": "The image depicts a family of three people, two adults and one child, standing on a snowy slope while wearing skis. The adults are positioned closer to the center of the scene, while the child is slightly off to the side. They are all smiling and posing for the camera. There is a ski lift in the background, which suggests that they are skiing at a ski resort. In addition to the skis, there are several ski poles scattered throughout the scene, likely belonging to the skiers."} +{"image_id": 524844, "caption": "The image features a skateboarder performing a trick on a rail in a skate park. The skateboarder is wearing a gray shirt and appears to be practicing his skills on the rail. There are several other people in the scene, some of whom are watching the skateboarder perform his trick. In total, there are six people visible in the scene, with three of them being close to the skateboarder and the other three further away. The skateboarder's board can be seen resting on the ground next"} +{"image_id": 442286, "caption": "The image depicts a harbor scene with two boats docked near a lighthouse. One of the boats is positioned closer to the lighthouse, while the other is further away. There are several people visible in the scene, with some standing near the boats and others scattered around the harbor area. A few individuals can be seen on the left side of the image, while others are situated on the right side. Additionally, there are several handbags scattered throughout the scene, likely belonging to the people present. The overall atmosphere is calm and peaceful, with the boats and lighthouse providing a serene backdrop for the people enjoying their time at the harbor."} +{"image_id": 532812, "caption": "The image captures a skateboarder performing an impressive trick at a skate park. He is shirtless and wearing jeans, showcasing his skills as he rides his skateboard through the air. There are several other people in the scene, some of them watching the skateboarder's performance, while others are walking around the park. The area seems"} +{"image_id": 362352, "caption": "The image captures a scene at a train station, where a red and black train is parked on the tracks. There are several people around the train, with some standing near the front of the train and others further back. One person is leaning over the side of the train, possibly inspecting or working on it. In addition to the people, there are several handbags scattered throughout the scene, likely belonging to the passengers waiting for the train. A couple of handbags can be seen near the front of the train, while others are positioned closer to the back of the train. Overall, the scene depicts a bustling train station with people and handbags in various locations."} +{"image_id": 382671, "caption": "The image depicts a sandy beach with a body of water in the background. A herd of cows is walking along the beach, with some of them closer to the water and others further away. The cows are spread out across the beach, creating a serene and peaceful scene. There are several trees visible in the background, adding to the natural setting. The sandy beach is covered with footprints left by the cows as they walk along the shore. Overall, the image captures a tranquil moment on the beach with the cows grazing and enjoying their surroundings."} +{"image_id": 237626, "caption": "The image features a blue and black motorcycle parked on a trailer, which is being pulled by a truck in a parking lot. A fence can be seen in the background, and there are several cars scattered throughout the scene. The motorcycle is positioned towards the left side of the image, while the truck is parked closer to the right side. The motorcycle is secured on the trailer with ropes, indicating that it is being transported. Overall, the scene depicts a motorcycle being transported by a truck in a parking lot."} +{"image_id": 283471, "caption": "The image features a dog and a cat curled up together on a rug in a living room. They appear to be resting comfortably, with the dog lying on top of the cat. The dog is positioned closer to the left side of the image, while the cat is situated on the right side. Both animals seem to be content in their cozy spot on the rug."} +{"image_id": 280073, "caption": "In the image, a woman is riding a brown horse on a grassy field. She is wearing a black riding outfit and appears to have a helmet on her head. The horse is galloping across the field, with its head facing towards the left side of the image. There are several trees visible in the background, providing a scenic setting for the horseback riding activity. Additionally, there are several benches placed around the field, possibly for spectators or riders to rest during their activities."} +{"image_id": 527025, "caption": "The image depicts a group of people gathered in front of an open door, ready to cut a ribbon to celebrate the opening of a new business or event. There are ten people in the group, with some standing closer to the door and others positioned further away. They are all smiling and appear to be excited about the upcoming event. A potted plant can be seen on the left side of the image, adding a touch of greenery to the scene. Additionally, there is a handbag placed on the right side of the image, likely belonging to one of the attendees."} +{"image_id": 483767, "caption": "The image features a silver and orange airplane suspended from a pole in the middle of a clear blue sky. The plane appears to be a replica or a model, as it is not in motion and appears to be stationary. The plane is positioned high up in the sky, giving it a sense of grandeur and scale. There are several trees visible in the background, adding to the natural setting of the scene."} +{"image_id": 521259, "caption": "The image depicts a group of people playing frisbee in a dirt field. There are several individuals scattered throughout the scene, with some holding frisbees and others watching the game. A yellow building can be seen in the background, possibly serving as a school or community center. In addition to the people playing frisbee, there is a car parked on the side of the field, likely belonging to one of the players or spectators. The scene appears to be lively and enjoyable, with people of all ages participating in the game."} +{"image_id": 104422, "caption": "The image features a man wearing a white shirt, tie, and suspenders. He is standing on a dirt path, posing for the camera with a big smile on his face. The man's body is positioned towards the left side of the image. In the background"} +{"image_id": 260896, "caption": "The image features a large black bear sitting on a log, with its mouth open and tongue hanging out. The bear is positioned in the middle of the scene, with its body stretched out on the log. There are several trees visible in the background, providing a natural setting for the bear. In addition to the main bear, there are two smaller bears in the scene. One is located on the left side of the image, while the other is situated on the right side. These smaller bears appear to be resting on the ground near the log where the main bear is sitting."} +{"image_id": 193261, "caption": "The image depicts a city street lined with tall buildings and a few cars parked along the side of the road. There is a traffic light on the corner of the street, and a stop sign can be seen further down the road. A pedestrian crosswalk is located in the middle of the street, allowing people to safely cross the road. Additionally, there are several traffic lights positioned throughout the scene, ensuring the smooth flow of traffic. In the background, there is a parking lot with several cars parked in it. Overall, the scene showcases a bustling urban environment with a mix of vehicles and pedestrians."} +{"image_id": 108315, "caption": "The image features a black and white dog lying on a bed, looking up at a book titled \"The Dog Book\". The book is placed on the bed next to the dog, with its cover visible. The dog seems to be interested in the book, possibly curious about what it contains. The book is positioned close to the dog's head, making it an appealing object for the animal."} +{"image_id": 56068, "caption": "The image depicts a group of people riding horses on a sandy beach, surrounded by the ocean. There are several horses in the scene, with some of them positioned closer to the water and others further away from it. The riders appear to be enjoying their time on the beach, possibly exploring the area or taking in views of a nearby"} +{"image_id": 240147, "caption": "In the image, a baseball pitcher is standing on a pitcher's mound, preparing to throw a pitch. The player is in the"} +{"image_id": 18575, "caption": "The image features a tray filled with a variety of food items, including a sandwich, french fries, pickles, and a tomato. The sandwich is placed on one of the plates, while the fries are spread across the tray. The pickles and tomato are also present on the tray, adding to the meal's diversity. A knife and fork can be spott"} +{"image_id": 53015, "caption": "The image features a man sitting at a dining table with a baby in his lap, enjoying a meal together. There are two pizzas on the table, one on the left side and the other on the right side. In addition to the pizzas, there are several bottles placed around the table, some closer to the baby and others further away. A couple of cups can be seen as well, one on the left side of the table and another on the right side. The man and the baby seem to be having a great time together, enjoying their meal and each other's company."} +{"image_id": 466118, "caption": "The image showcases a unique and rustic bathroom with a bathtub, sink, and mirror. The bathtub is placed in the center of the room, while the sink is positioned next to it. There are two sinks in the bathroom, one on the left side and the other on the right side. The mirror is placed above the sink on the right side. In addition to these bathroom features, two bottles can be seen in the room. One bottle is located on the left side, near the sink, while the other bottle is situated on the right side, closer to the bathtub. The overall atmosphere of the bathroom is cozy and inviting, with a touch of rustic charm."} +{"image_id": 205474, "caption": "The image features a vase filled with various flowers, placed on a countertop. The vase is decorated with a combination of pink and yellow flowers, creating a colorful display. The flowers are arranged in a way that they seem to be growing out of the vase, adding a natural touch to the arrangement. The vase is positioned close to the edge of the countertop, making it an eye-catching centerpiece for the room."} +{"image_id": 279138, "caption": "The image depicts two women sitting on the floor in a living room, surrounded by various presents and gifts. One of the women is holding a dog, while the other is opening a gift. There are several potted plants scattered around the room, adding to the festive atmosphere. A couch can be seen in the background, with a potted plant placed on top of it. In addition to the gifts and potted plants, there are multiple bottles placed throughout the room, likely containing drinks or other items. A television is also visible in the background, providing entertainment for the group. Overall, the scene appears to be one of joy and celebration, with the women enjoying each other's company and the holiday season."} +{"image_id": 271138, "caption": "The image features a herd of sheep grazing in a grassy field. There are three sheep in the scene, including a larger adult sheep and two smaller lambs. The adult sheep is positioned towards the left side of the image, while the two lambs are located on the right side. The sheep are spread out across the field, with the adult sheep standing closer to the left side and the lambs closer to the right side. In the background, there is a wooden fence that separates the grassy area from the rest of the landscape."} +{"image_id": 565148, "caption": "The image depicts a baseball game in progress, with a batter preparing to swing at a pitch. The batter is standing on the field, holding a baseball bat, while the catcher and umpire are positioned behind him. There are several other players scattered around the field, some of them closer to the batter, while others are further away. A few spectators can be seen in the background, watching the game from the stands. The overall scene captures the excitement and action of a baseball game in progress."} +{"image_id": 73199, "caption": "The image features a group of men dressed in black suits and ties, standing together in a park. They are posing for a photo, creating a formal and stylish atmosphere. There are six men in the group, each wearing black suits and red ties. Some of the men are positioned closer to the center of the image, while others are more towards the edges. The group is spread out across the grassy area, creating a spacious and relaxed setting."} +{"image_id": 83915, "caption": "The image features a large, ornate building with a clock tower on top of it. The building is situated on a grassy lawn, surrounded by trees and other greenery. There are several benches placed around the building, providing seating for people to rest and enjoy the surroundings. A truck can be seen parked near the front of the building, adding to the overall atmosphere of the scene. In the background, there is a clear blue sky, emphasizing the serene and peaceful setting."} +{"image_id": 202275, "caption": "In the image, two black dogs are standing in a grassy field, engaged in a playful tug-of-war with a pink frisbee. Two cars are parked in the background, one on the left side and another on the right side of the field. There is also a truck visible in the distance, likely parked further away from the scene. The dogs appear to be having fun and enjoying each other's company while playing with the frisbee."} +{"image_id": 40102, "caption": "The image features two giraffes standing next to each other in a grassy field. The first giraffe is positioned on the left side of the frame, while the second giraffe is on the right side. Both giraffes have their necks stretched out towards each other, as if they are greeting or interacting with each other. There are several trees visible in the background, providing shade and a natural habitat for the giraffes."} +{"image_id": 317024, "caption": "The image features a lone zebra standing in a dirt area near a wooden fence. There are several trees visible in the background, providing a natural setting for the zebra. The zebra appears to be standing still, possibly observing its surroundings or waiting for something to happen. The wooden fence serves as a boundary for the zebra's enclosure."} +{"image_id": 550597, "caption": "The image features a black and white bathroom with a sink, toilet, and bathtub. The sink is placed near the center of the room, while the toilet is positioned closer to the left side. The bathtub is located on the right side of the room. There are several towels in the bathroom, including one hanging on the back of the toilet and another one placed near the sink. Additionally, a hand towel can be seen on the right side of the room, close to the bathtub. The room appears to be well-maintained and clean, with a sense of simplicity and elegance."} +{"image_id": 315923, "caption": "The image features a close-up view of a red and white scooter parked on the side of a street. The scooter has two mirrors mounted on its handlebars, providing a clear view of the surroundings. There is a potted plant placed near the scooter, adding a touch of greenery to the scene. A person can be seen in the background, possibly admiring the scooter or preparing to ride it."} +{"image_id": 322610, "caption": "The image is a black and white photograph of a busy sidewalk in a city. There are several people walking along the sidewalk, with some carrying handbags and others holding umbrellas to protect themselves from the rain. One person is sitting on a bench, possibly resting or waiting for someone. The sidewalk is lined with various shops, including a bakery, a clothing store, and a restaurant. A few cars can be seen parked along the street, adding to the bustling atmosphere. Overall, the scene captures the hustle and bustle of a city street during a rainy day."} +{"image_id": 310071, "caption": "In the image, a man dressed in a brown robe is standing on a sidewalk, holding an orange and white umbrella over his head. He is smiling and seems to be enjoining the sunny day. There are several other people in the scene, with a total of ten people"} +{"image_id": 533550, "caption": "In the image, a young man is standing on a tennis court, holding a tennis racket in his hand. He appears to have just hit the ball with his racket, as he is in the process of returning it. The tennis court is surrounded by a fence, providing a clear boundary for the game. There are several other people visible in the background, possibly watching the game or waiting their turn to play."} +{"image_id": 211054, "caption": "The image is a black and white photograph of a train station with a large factory in the background. The train station is located on the left side of the image, while the factory is situated on the right side. There are several trains visible in the scene, with one train near the top of the image, another near the middle, and a third near the bottom. The trains appear to be traveling in different directions, adding to the sense of activity at the train station. The factory's smoke stacks can be seen emitting smoke, further adding a"} +{"image_id": 446637, "caption": "The image depicts a group of birds perched on logs floating in a large body of water. The logs are arranged in a line, creating a serene and peaceful scene. The birds appear to be resting on the logs, with some of them closer to the center of the image and others positioned towards the edges. There are a total of 12 birds in the scene, with some of them being more spread out than others. The logs are placed in a way that allows the birds to comfortably rest on them, creating a unique and picturesque setting."} +{"image_id": 3134, "caption": "The scene depicts a city street with a bus driving down the road. The bus is white and has a green stripe, making it stand out against the other vehicles on the street. There are several cars parked along the side of the road, some closer to the bus and others further away. A traffic light can be seen in the distance, indicating that the bus is approaching an intersection. Additionally, there are several pedestrians scattered throughout the scene, some walking on the sidewalk and others crossing the street."} +{"image_id": 271548, "caption": "The image depicts a room with blue chairs arranged in rows. In the center of the room, there is a tall glass vase filled with water and decorated with a white flower. The vase is placed on a pedestal, making it stand out in the room. There are several chairs scattered around the room, with some closer to the vase and others further away. The room appears to be a place of worship or a special event venue."} +{"image_id": 368294, "caption": "The image depicts a young woman wearing a pink hat, sitting at a desk and working on a piece of paper. She is using scissors to cut the paper into smaller pieces. There are several chairs in the room, with one located near the woman and another further away from her. In addition to the chairs, there are two bottles visible in the scene, one close to the woman and the other closer to the back of the room. The room appears to be a workspace where the woman is engaged in a creative task."} +{"image_id": 429142, "caption": "The image features a skateboarder performing a trick on a shoe-shaped object in a park. The skateboarder is in mid-air, jumping over the shoe-shaped object, which appears to be a large, fake shoe placed in the park. There are several people in the scene, some of them observing the skateboarder's performance, while others are walking around the park. The background of the"} +{"image_id": 527906, "caption": "The image features a dining table with a white plate containing a sandwich cut in half. The sandwich is placed on top of the plate, and it appears to be a breakfast meal. There are two cups on the table, one on the left side and the other on the right side. The cup on the left side is closer to the edge of the table, while the cup on the right side is positioned further away from the edge. A bowl is also present on the table, located near the center of the image. Additionally, there are two pots on the table, one on the left side and the other on the right side. A potted plant can be seen in the background, adding a touch of greenery to the scene."} +{"image_id": 403975, "caption": "The image features a baby sitting on the floor in front of a birthday cake. The baby is wearing a diaper and appears to be playing with the cake, possibly blowing out the candles. There are several balloons scattered around the room, adding to the festive atmosphere. In addition to the baby and the cake, there are two other people present in the room, one on the left side and another on the right side. The room appears to be well-decorated for the baby's birthday celebration."} +{"image_id": 554002, "caption": "The image features a group of people standing on a cobblestone street, with a small black dog standing between them. The dog is positioned in the middle of the group, and there are several other dogs visible in the scene as well. Some of these dogs are closer to the camera, while others are further away. The people in the group are dressed casually, with some wearing sandals and others wearing flip flops. There are several handbags scattered throughout the scene, likely belonging to the people in the group. A potted plant can also be seen in the background, adding a touch of greenery to the scene."} +{"image_id": 408501, "caption": "The image depicts a blue and yellow train traveling down a set of railroad tracks. The train is surrounded by various electrical wires and cables, which are suspended above the tracks. There are several people visible in the scene, some standing near the train and others walking along the tracks. The train appears to be passing through a city or urban area, with buildings visible in the background."} +{"image_id": 294423, "caption": "The image features two giraffes standing next to each other in a grassy field. One giraffes is slightly taller than the other, and both are looking up towards the sky. There are several trees visible in the background, providing a natural setting for the giraffes. The giraffes appear to be interacting with each other, possibly feeding or socializing."} +{"image_id": 501439, "caption": "The image features a male tennis player wearing a yellow shirt and a hat, holding a tennis racket in his hand. He is standing on a tennis court, likely preparing to play a game or practicing his skills. There are several tennis balls scattered around the court, some closer to the player and others further away. In addition to the tennis balls, there are two tennis rackets visible in the scene, one near the player's left side and another near the right side of the tennis ball."} +{"image_id": 320039, "caption": "The image features a young girl sitting at a table with a plate of spaghetti in front of her. She is eating the spaghetti with a fork and a spoon, and appears to be thoroughly engrossed in her meal. There are two cups on the table, one on the left side and the other on the right side, possibly filled with drinks or other beverances. A chair can be seen in the background, providing seating for the young girl."} +{"image_id": 246512, "caption": "The image features a black dog sitting in a muddy puddle near a fence. The dog appears to be relaxed and enjoying its surroundings, possibly taking a break from playing or exploring the area. There are several rocks scattered around the puddle, adding to the natural ambiance of the scene. A fence can be seen in the background, enclosing the area where the dog is resting."} +{"image_id": 322796, "caption": "The image features a cute golden retriever dog carrying a frisbee in its mouth, running across a grassy field. The dog is focused on the frisbee and appears to have a playful expression on its face. The frisbee is placed in the middle of the field and the dog is running towards the left side of the image. There are several other dogs visible in the background, but the main focus is on the golden retriever carrying the frisbee."} +{"image_id": 447364, "caption": "The image depicts a young boy sitting on a skateboard on a sidewalk, likely practicing his skateboarding skills. He is wearing a shirt and appears to be focused on his activity. There are several cars parked in the background, providing a sense of urban surroundings. The scene is captured in black and white, adding to the vintage feel of the image."} +{"image_id": 405736, "caption": "The image features a man standing on a snow-covered slope, posing with his skis and poles. He is wearing a black shirt and black pants, and appears to be ready to ski down the mountain. There are several ski poles visible in the scene, some of which are closer to the man and others further away. In the background of the image, there is a snow-covered mountain, providing a stunning backdrop for the man's skiing adventure."} +{"image_id": 553867, "caption": "The image depicts a large herd of giraffes and zebras running across a grassy field. There are several giraffes in the scene, with some of them closer to the center of the field, while others are positioned towards the edges. The zebras are scattered throughout the field, with some of them closer to the giraffes and others further away. In total, there are at least 15 zebras and 10 giraffes in the scene. The animals seem to be enjoying the open space and the company of each other."} +{"image_id": 137993, "caption": "The image depicts a bridge over a body of water, with a train passing over the bridge. There are several people walking on the bridge, some of them near the middle of the span and others closer to the edge. A bus is also visible in the scene, parked on the side of the road near the bridge. In addition to the people and vehicles, there are several handbags scattered throughout the scene, likely belonging to the individuals walking on the bridge."} +{"image_id": 393282, "caption": "In the image, there are two giraffes standing in a dirt field. One giraffe is closer to the camera, while the other is slightly further away. Both giraffes are standing on their hind legs, with their front legs resting on the ground. They appear to be enjoying the sunny day, possibly exploring their surroundings or socializing with one another in the wild."} +{"image_id": 341247, "caption": "The image depicts a basketball game in progress, with a group of players on the court. The players are actively engaged in the game, with some dribbling the ball and others attempting to score. There are several spectators watching the game from the sidelines, creating a lively atmosphere. In addition to the players and spectators, there are several chairs scattered around the court, providing seating for those watching the game. Some of the chairs are placed near the sidelines, while others are situated closer to the middle of the court. Overall, the scene captures the energy and excitement of a competitive basketball game."} +{"image_id": 531047, "caption": "The image depicts a group of three people, two men and one woman, sitting on a couch in a living room. They are all smiling and holding glasses of champagne, toasting with each other. There are several bottles of wine placed around the room, including one near the couch where the group is seated. A bowl can also be seen on the coffee table in front of the couch. The living room appears to be well-furnished, with a couch, chairs, and a coffee table. The group is enjoying their time together, celebrating a special occasion or simply having a good time."} +{"image_id": 356623, "caption": "The image depicts a group of three motorcyclists riding down a winding road through a mountainous area. There are two motorcycles visible in the scene, with one rider on each bike. The first motorcycle is located closer towards the left side of the image, while the second motorcycle is further to the right. The riders are wearing helmet gear and appear to be enjozzing their ride through the scenic landscape. The road they are traveling on appears quite winding and"} +{"image_id": 449302, "caption": "The image captures a black and white scene of a man sitting on a boat, holding an umbrella over his head. He is positioned near the front of the boat, with the umbrella providing shade from the sun. The boat appears to be floating on a body of water, possibly a river or lake. There are several other people visible in the scene, some of whom are seated on the boat as well. One person is located towards the back of the boat, while another is closer to the front. Additionally, there are two people standing on the left side of the boat, and one person standing on the right side. All of these individuals seem to be enjoining the outdoor activity together."} +{"image_id": 206496, "caption": "The image depicts a group of people riding elephants through a lush, green forest. There are three elephants in the scene, with two of them carrying people on their backs. The third elephant is not carrying anyone. The people are wearing hats and appear to be enjoyably riding the elephants through the forest. In the surrounding area, a few"} +{"image_id": 495088, "caption": "The image depicts a scenic view of a body of water surrounded by rocks and grass. There are several birds flying in the sky above the water, adding to the serene atmosphere. The water appears to be calm and peaceful, with no boats or other watercraft in sight. The grassy area surrounding the water is lush and green, providing a natural setting for the birds to fly and rest. Overall, the scene captures a tranquil moment in nature."} +{"image_id": 54011, "caption": "The image features a red fire hydrant placed in the middle of a lush green yard, surrounded by various plants and trees. The fire hydrant is situated close to a white house, which can be seen in the background. There are several trees scattered throughout the scene, with one tree located closer to the fire hydrant and the others positioned further away. A bench can also be spotted near the fire hydrant, providing a place for people to sit and enjoy the surroundings. Overall, the scene captures a peaceful and serene atmosphere, with the fire hydrant serving as a focal point amidst the lush greenery."} +{"image_id": 190648, "caption": "The image depicts a bedroom with a bed in the center of the room. The bed appears to be unmade, with a dirty blanket covering it. There is a chair placed near the bed, and a window can be seen on the left side of the room. The walls of the room are wood-paneled, giving the space a rustic feel. In addition to the bed and chair, there are several other items scattered around the room, including two cups, a bottle, and a potted plant. The overall atmosphere of the room is messy and unkempt, with a sense of neglect and disarray."} +{"image_id": 118034, "caption": "The image features a person holding a cell phone in their hand, which is displaying a video of two people. One person is sitting on the left side of the screen, while the other person is sitting on the right side. The video appears to be a conversation between the two individuals, possibly discussing something together. The cell phone is positioned in a way that allows the person holding it to easily watch the video and engage in the conversation."} +{"image_id": 409346, "caption": "In the image, two women are standing in front of a buffet table filled with various food items. One woman is holding a bowl and the other woman is holding a spoon, both of them serving themselves from the buffet. There are multiple bowls placed on the table, some closer to the women and others further away. A few cups can also be seen on the table, likely used for drinks. The scene appears to be a casual gathering where guests are enjoying a variety of food and drinks."} +{"image_id": 138022, "caption": "The image depicts a small red van parked on the side of a street, with a surfboard rack mounted on top of it. The van is surrounded by other vehicles, including a car and a truck, which are also parked on the street. There are several people visible in the scene, some standing near the van and others walking along the sidewalk. A few more people can be seen further down the street, adding to the vibrant atmosphere of the urban setting."} +{"image_id": 217997, "caption": "The image depicts a young man carrying a surfboard as if he is about to go surfing in the ocean. He is walking towards the water, with the surfboard held under his arm, ready to catch some waves. There are several other surfboards visible in the scene, suggesting that there may be more people surfing or preparing to surf in the area. The overall atmosphere of the scene is relaxed and inviting, with the warmth of the sun shining down on the beach and the sound of the waves in the background."} +{"image_id": 224281, "caption": "The image features a cute teddy bear wearing a pumpkin costume, sitting on top of a black backpack. The teddy bear is positioned in the center of the image, with its pumpkin face prominently displayed. The backpack can be seen in the background, providing a sense of context to the scene. The teddy bear and the backpack appear to be part of a Halloween-themed outfit or decoration."} +{"image_id": 101647, "caption": "The image features a small bathroom with a sink, toilet, and shower. The sink is located near the center of the room, while the toilet is positioned closer to the left side. The shower is situated on the right side of the room. There are several items in the bathroom, including a bottle, a cup, and a sponge, which add to the overall cluttered appearance of the space. Additionally, there are two towels placed on the floor, one near the sink and the other near the toilet. Overall, the bathroom appears to be in need of some cleaning and organization."} +{"image_id": 499940, "caption": "In the image, two young boys are standing in a grassy field, playing and interacting with each other. There are several kites flying in the background, adding to the festive atmosphere of the scene. One of the boys is wearing a yellow shirt, while the other is wearing a blue shirt. They appear to be having a great time together, enjoying the outdoors and engaging in playful activities."} +{"image_id": 295728, "caption": "The image features a large, ornate clock sitting atop a pedestal in the middle of a room. The clock is made of gold and has four clock faces, each displaying a different time. The clock is surrounded by various lights, including two near the top of the pedestal and others scattered throughout the room. There are several people visible in the scene, with some standing near the clock and others positioned further away from it. The room appears to be a public space, possibly a train station or a lobby, where people come and go throughout the day."} +{"image_id": 415393, "caption": "The image features a young man performing a skateboarding trick on a wooden ramp. He is wearing a red shirt and jeans, and his skateboard is positioned near the top of the ramp. There are several people in the scene, some of them watching the skateboarder perform his trick. In addition to the skateboarder, there are two other individuals visible in the scene. One person is located on the left side of the image, while the other person is situated on the right side. Both individuals are observing the skateboarder's performance."} +{"image_id": 43433, "caption": "The image features a black and silver motorcycle parked on a sidewalk in front of a house. A small dog is standing on the motorcycle's seat, possibly enjoying the view or simply taking a ride with the bi"} +{"image_id": 145436, "caption": "The image features a white cutting board with various fruits and a knife placed on it. There are two halves of an orange on the cutting board, one on the left side and the other on the right side. Additionally, there are two slices of orange on the board, one near the top and the other near the bottom. A glass is also present on the cutting board, likely filled with juice or another beverage. The knife is positioned near the center of the board, ready to be used for cutting or preparing the fruits."} +{"image_id": 48956, "caption": "The image features a giraffe standing in an enclosed area near a fence. The giraffe is eating leaves from a tree, which is located on the right side of the scene. There are several trees visible in the background, including one on the left side of the image and another on the right side. The giraffe is the main focus of the scene, with its head and neck stretched out to reach the leaves. In addition to the giraffe, there are several smaller trees scattered throughout the scene, adding to the natural setting. A few people can be seen in the background, possibly observing the giraffe or enjoying the scenery."} +{"image_id": 200725, "caption": "The image features a bedroom with a wooden floor and a large bed in the center of the room. The bed is made with a yellow comforter and pillows, creating a cozy and inviting atmosphere. There are two pillows placed on the bed, one on the left side and another on the right side. In addition to the pillows, there are two more pillows located on the floor near the bed. A cupboard can be seen in the corner of the room, providing additional storage space."} +{"image_id": 352206, "caption": "The image is a black and white photograph of a large group of people posing for a school photo. The group consists of both boys and girls, with the boys wearing ties and the girls wearing dresses or skirts. They are arranged in a semi-circle formation, with some individuals standing closer to the center while others are positioned towards the edges. The group is quite large, with a total of 25 people visible in the photograph."} +{"image_id": 528318, "caption": "The image depicts a cozy living room with a couch, a coffee table, and a dining table. There are several potted plants scattered throughout the room, adding a touch of greenery to the space. A vase can be seen on the coffee table, which is located in the center of the room. In addition to the potted plants, there are several bottles placed around the room, including one on the coffee table, one on the left side of the room, and another on the right side of the room. There are also two potted plants on the left side of the room, one close to the coffee table and another further away from it. Overall, the living room has a warm and inviting atmosphere, perfect for relaxing and spending time with friends or family."} +{"image_id": 89999, "caption": "The image depicts a narrow alley with a car parked in the middle of it. The car is positioned near the center of the alley, surrounded by buildings on both sides. There are several bicycles scattered throughout the alley, some closer to the car and others further away. In addition to the bicycles, there are several potted plants placed along the sides of the alley, adding a touch of greenery to the scene."} +{"image_id": 192651, "caption": "The image depicts a spacious living room with a couch, a chair, and a coffee table. The furniture is arranged in a way that allows for comfortable seating and relaxation. There are two potted plants in the room, one on the left side and another on the right side, adding a touch of greenery to the space. A television is positioned in the center of the room, providing entertainment for those who want to watch their favorite shows or movies. A fireplace can be seen on the left side of the room, adding warmth and ambiance to the space. Overall, the living room has a cozy and inviting atmosphere, perfect for unwinding after a long day."} +{"image_id": 254161, "caption": "The image depicts a bustling city square filled with pedestrians, some of whom are flying kites. A woman is standing in the center of the square, holding a kite and looking towards the sky. She is surrounded by several other people, some of whom are also flying kites. There are multiple kites visible in the scene, with some closer to the woman and others further away. In addition to the kites, there are several cars parked around the square, likely belonging to the people participating in the kite-flying activity. Overall, it appears to be a lively and enjoyable day for those in the city square."} +{"image_id": 581827, "caption": "In the image, a person is standing in front of a brick wall, holding a tennis racket and preparing to play a game of tennis. The person is wearing a colorful shirt and appears to be focused on the upcoming game. There are several tennis balls scattered around the scene, some closer to the person and others further away. A backpack can be seen in the background, possibly belonging to the person or someone else nearby. The overall atmosphere is lively and energetic, as the person is ready to engage in an exciting game of tennis."} +{"image_id": 337987, "caption": "The image features a colorful bird perched on a branch of a tree, surrounded by lush green foliage. The bird is sitting on the branch with its head tilted upwards, possibly looking for food or observing its surroundings. There are several trees visible in the background, adding to the natural setting of the scene. The bird's presence creates a peaceful and serene atmosphere."} +{"image_id": 90631, "caption": "In the image, a colorful airplane is flying through the sky, leaving a trail of smoke behind it. The plane is painted in a combination of red, yellow, and blue, making it stand out against the blue sky. It appears to be performing some sort of aerial maneuver, possibly as part of an air show or demonstration. There are several people visible in the scene, likely spectators watching the plane's performance."} +{"image_id": 240775, "caption": "The image depicts a large yellow double-decker bus driving down a city street. The bus is parked on the side of the road, likely waiting for passengers to board or disembark. There are several cars parked along the street, some closer to the bus and others further away. In addition to the cars, there are several people visible in the scene. One person is standing on the sidewalk near the bus, while others are scattered throughout the area, possibly waiting for the bus or walking along the street."} +{"image_id": 100909, "caption": "The image captures a baseball game in progress, with a batter swinging his bat at the ball. The batter is wearing a colorful jersey, and the catcher is positioned behind him, ready to catch the ball. There are several other players on the field, some of whom are in the background, while others are closer to the action. In addition to the players, there are several chairs scattered around the field, possibly belonging to spectators or team members. The overall atmosphere of the scene is lively and engaging, showcasing the excitement of a baseball game in progress."} +{"image_id": 324436, "caption": "The image features a large elephant standing in a lush green field, surrounded by trees and bushes. The elephant's trunk is extended towards the left side of the scene as the rest"} +{"image_id": 9466, "caption": "The image features a white and brown cat sitting on the floor next to a pile of shoes. There are several pairs of shoes scattered around the room, including sandals, flip-flops, and slippers. The cat seems to be enjoying the company of the shoes and is not bothered by their presence."} +{"image_id": 380932, "caption": "The image depicts a snowy landscape with a red fire hydrant standing in the middle of the field. The fire hydrant is surrounded by snow-covered ground and trees, creating a serene and peaceful atmosphere. In the background, there is a body of water, possibly a lake or a river, which adds to the tranquility of the scene. The fire hydrant serves as a focal point for the image, capturing the attention of the viewer with its vibrant color amidst the snowy surroundings."} +{"image_id": 540180, "caption": "The image depicts a city street with a green traffic light on a pole. There are several cars parked along the street, with some closer to the traffic light and others further away. A person can be seen walking towards the traffic light, possibly waiting for it to turn green so they can cross the street. In the background, there are several buildings visible, including a tall building on the left side of the image. The scene appears to be bustling with activity, with pedestrians and vehicles moving along the street."} +{"image_id": 303652, "caption": "The image features a table with two plates of food, one containing a sandwich and the other a piece of cake. The sandwich is placed on the left side of the table, while the cake is situated on the right side. Both dishes are served on white paper plates, adding to the casual and relaxed atmosphere of the meal. The sandwich appears to be a vegetarian option, while the cake seems to be a dessert. The table is set up for a picnic or outdoor dining experience, with chairs and utensils visible in the background."} +{"image_id": 416326, "caption": "The image features a blue crate filled with various fruits and vegetables, including broccoli, apples, and oranges. The crate is placed on a table, showcasing the fresh produce available for purchase. There are several apples scattered around the crate, with some of them closer to the top of the crate and others closer to the bottom. The broccoli and cauliflower are also present in the crate, with some of them closer to the top and others closer to the bottom. The oranges are positioned throughout the crate, with some of them closer to the top and others closer to the bottom. Overall, the scene showcases a variety of fresh fruits and vegetables available for purchase at a market or grocery store."} +{"image_id": 511662, "caption": "The image depicts a large cruise ship docked in the ocean near a sandy beach. The ship is surrounded by a variety of colorful sailboats, which are lined up along the beach. There are several palm trees scattered throughout the scene, adding to the tropical atmosphere. The beach appears to be quite crowded, with people enjoining the sunny day and enjoying the water activities."} +{"image_id": 252137, "caption": "The image features a variety of fresh vegetables, including carrots, onions, and celery, arranged on a black countertop. The vegetables are spread out across the surface, with some of them closer to the edges and others positioned in the middle. The carrots appear to be the main focus of the arrangement, with several of them scattered around the countertop. The onions and celery are also present, but they are less numerous than the carrots. Overall, the scene showcases a healthy selection of fresh produce for a meal or snack."} +{"image_id": 502240, "caption": "The image depicts a group of children sitting in a classroom, surrounded by adults and a dog. The children are engaged in various activities, such as reading books, playing with the dog, and interacting with each other. There are several books scattered around the room, some placed on the floor and others held by the children. A few chairs can be seen in the room, providing seating for the children and the adults. The dog appears to be the center of attention, as it is being petted and played with by the children."} +{"image_id": 327665, "caption": "The image features a woman standing next to a stop sign on a street. She is wearing a red hat and a white shirt, and her hand is reaching up towards the stop sign. There are several palm trees visible in the background, adding to the tropical atmosphere of the scene. In addition to the woman and the stop sign, there are several other objects in the scene. A potted plant can be seen on the left side of the image, while a second potted plant is located on the right side. There is also a car parked in the background, partially obscured by the palm trees."} +{"image_id": 480408, "caption": "The image features a man wearing a cowboy hat riding a brown horse on a dirt road. He is smiling and appears to enjoy the ride. There are two cars parked on the side of the road, likely belonging to the man or his companions. A truck can also be seen in the background, possibly belonging to someone else. The scene is set in a rural area, surrounded by trees and other natural surroundings."} +{"image_id": 279499, "caption": "The image depicts a busy parking lot with several buses parked next to each other. There are two main buses in the scene, one on the left side and another on the right side of the parking lot. Both buses are parked close to each other, with one closer to the left side and the other closer to the right side. Additionally, there are several smaller buses scattered throughout the parking lot, adding to the overall bus presence. Some of these smaller buses are parked further away from the main buses, while others are positioned closer to them. A few people can be seen walking around the parking lot, possibly waiting for their bus or simply exploring the area."} +{"image_id": 274792, "caption": "The image features a mixing bowl filled with a mixture of carrots and other ingedients. The bowl is placed on a countertop, and there are multiple carrots scattered throughout the bowl. There are also some other ingredient pieces visible in the bowl, such as a small amount of sugar on"} +{"image_id": 359781, "caption": "The image features a giraffe standing in a lush green field surrounded by trees. The giraffe is the main focus of the scene, with its long neck stretching out towards the right side of the image. There are several trees visible in the background, providing a natural setting for the giraffe to roam. In addition to the giraffe, there are several smaller trees scattered throughout the scene, adding to the overall visual appeal of the image."} +{"image_id": 76416, "caption": "The image depicts a double-decker bus parked on a sidewalk in front of a large glass building. The bus is adorned with an iPhone advertisement on its side, making it a unique and eye-catching sight. There are several people visible in the scene, some standing near the bus and others walking along the sidewalk. A handbag can be seen hanging from one of the people, adding to the lively atmosphere of the scene. Additionally, there is a bicycle parked nearby, likely belonging to one of the pedestrians. Overall, the image captures a vibrant urban setting with a colorful and attention-grabbing double-decker bus."} +{"image_id": 281591, "caption": "In the image, there are two small dogs lying on a bed, one on each side of the bed. One dog is positioned closer to the edge of the bed, while the other is closer to the middle of the bed. Both dogs seem to be comfortable and relaxed while resting on the bed. The bed is covered with a white blanket, providing a cozy and inviting atmosphere for the dogs. There is also a handbag placed on the bed, possibly belonging to one of the dogs' owners."} +{"image_id": 476709, "caption": "The image features a woman standing on a surfboard in the middle of a body of water. She is holding a paddle and appears to be paddling across the lake, possibly enjoying a leisurely activity. There are several rocks visible in the background, adding to the natural setting of the waterway."} +{"image_id": 357219, "caption": "The image depicts a group of brown bears climbing up a fallen tree trunk in an enclosed area. There are four bears in total, with three of them standing on the tree trunk and the fourth one resting on the ground. The bears appear to be enjoying their time together, possibly exploring their surroundings or engaging in a group activity in the zoo or animal en"} +{"image_id": 479586, "caption": "The image depicts a black and white cat sitting on a shelf next to a television. The cat is positioned in the center of the scene, with its back facing the television. There are several books scattered around the room, including one on the left side of the image and another on the right side. A remote control is placed on the left side of the room, close to the cat. The television is mounted on a shelf above the cat, displaying a cartoon or movie for the cat's entertainment. The room appears to be well-lit."} +{"image_id": 272673, "caption": "The image showcases a well-appointed bathroom with a granite countertop and a large mirror above the sink. There are two towels hanging on the wall, one on the left side and another on the right side of the room. A wooden bench can be seen in the corner of the bathroom, providing additional seating for guests. The bathroom is clean and well-maintained, with a sense of elegance and comfort."} +{"image_id": 522452, "caption": "The image depicts a large Singapore Airlines airplane parked on an airport tarmac. The plane is visible through a window of a nearby building, giving the viewer a glimpse into the airport's operations. Several other smaller airport"} +{"image_id": 512785, "caption": "The image depicts a beautiful beach scene with two lawn chairs placed under an umbrella on a sandy shore. The umbrella is positioned in the center of the image, providing shade for the chairs. The chairs are placed close to each other, creating a cozy atmosphere for relaxation. In the background, the ocean can be seen stretching out into the horizon, adding to the serene atmosphere of the scene."} +{"image_id": 369153, "caption": "The image depicts a man standing on a sandy beach, carrying a surfboard under his arm. He appears to be walking towards the water, possibly preparing for a surfing session. The surfboard is held close to his body, and there are several other surfboards scattered around the scene, suggesting that there may be other surfers in the area. The man's presence on the beach adds to the overall atmosphere of the setting as"} +{"image_id": 470932, "caption": "The image depicts a large elephant standing on a wooden platform, surrounded by people. The elephant is adorned with various decorations, including a necklace and a bracelet. There are several people in the scene, some standing close to the elephant, while others are positioned further away. Some of the people are wearing hats, indicating that they may be tourists or visitors to the area. The elephant's trunk is extended towards the right side of the image as a"} +{"image_id": 388100, "caption": "The image depicts a busy street scene with a yellow truck parked on the side of the road. A large crowd of people is gathered around the truck, likely waiting for it to make its delivery. There are at least 12 people in the crowd, some standing closer to the truck while others are further away. In addition to the people, there are several handbags scattered throughout the scene. One handbag can be seen near the front of the crowd, while another is positioned closer to the truck. There are also two clocks visible in the scene, one on the left side and another on the right side."} +{"image_id": 208808, "caption": "In the image, a young boy is performing a skateboarding trick, jumping high into the air over a cement wall. He is wearing a shirt and jeans, and his skateboard is visible in the air as he completes the trick. The scene takes place in a parking lot, with several parked cars scattered throughout the area. There are also two trucks visible in the background, one on the left side and another on the right side of the image."} +{"image_id": 225518, "caption": "The image features a spacious bedroom with a large bed in the center of the room. The bed is adorned with multiple white pillows, creating a cozy and inviting atmosphere. There are two chairs placed near the bed, one on the left side and the other on the right side. A television is mounted on the wall, providing entertainment for the room's occupants. A potted plant can be spott"} +{"image_id": 380993, "caption": "The image is a black and white photograph of a busy city street on a rainy day. There are several people walking along the sidewalk, some of them carrying umbrellas to protect themselves from the rain. A car can be seen parked on the side of the street, likely belonging to one of the pedestrians. Additionally, there are multiple handbags scattered throughout the scene, indicating that the people are carrying their belongings with them as they navigate the wet pavement."} +{"image_id": 407821, "caption": "The image depicts a serene scene of a small boat floating on a large body of water during sunset. There are two boats in the water, one closer to the viewer and the other further away. The boats are positioned in different parts of the water, with one closer to the left side and the other closer to the right side. The sun is setting in the background, casting a warm glow over the water and the boats. The overall atmosphere is peaceful and tranquil, with the boats adding a touch of movement to the stillness of the water."} +{"image_id": 89121, "caption": "The image features two giraffes standing next to each other in a rocky environment. One giraffe is closer to the camera, while the other is slightly further away. Both giraffes have their necks stretched out towards the camera, creating a dynamic and engaging scene. The giraffes are positioned in a way that they seem to be interacting with each other, possibly communicating or exploring their surroundings. The rocky terrain provides a natural backdrop for the giraffes, adding to the overall aesthetic of the image."} +{"image_id": 193480, "caption": "The image depicts a tennis match taking place on an outdoor tennis court. There are several people in the stands watching the match, with some seated closer to the court and others further away. The players are actively engaged in the game, with one holding a tennis racket and the other standing on the opposite side of the court. A tennis ball can be seen bouncing around the court, adding to the excitement of the match. The overall atmosphere of the scene is lively and engaging, capturing the energy of a competitive tennis match."} +{"image_id": 248616, "caption": "The image depicts a man playing tennis on a grassy field. He is wearing a white shirt and tan pants, and is holding a tennis racket in his right hand. The man is actively engaged in the game, as he is lunging forward to hit the tennis ball with his racket. There are multiple tennis balls scattered across the field, some closer to the man and others further away. In addition to the tennis balls, there are two tennis rackets visible in the scene, one near the man's left side and the other near his right side."} +{"image_id": 346863, "caption": "The image depicts a man sitting at a dining table next to an open window. He has a glass of wine in his hand and is sips from it while enjoying his surroundings. There are several wine glasses placed around the table, with at least six in the image. In"} +{"image_id": 402723, "caption": "The image features a skateboarder performing a trick on a metal railing in a skate park. The skateboarder is wearing a white shirt and is balancing himself on the railing as he performs the trick. There are several other people in the scene, some of them watching the skateboarder from a distance, while others are standing closer to the action. In total, there are six people visible in the scene, including the skateboarder and his audience."} +{"image_id": 42667, "caption": "The image features a young girl wearing a green shirt sitting inside a black suitcase. She is positioned in the middle of the suitcase and appears to be playing or exploring her surroundings. The suitcase is placed on a floor, possibly in a living room or a bedroom. There are several other objects in the scene, including a cup located on the left side of the image, a bottle on the right side, and a potted plant situated near the center of the image. Additionally, there are two chairs visible in the background, one on the left side and another on the right side of the image."} +{"image_id": 38083, "caption": "The image features a table filled with a variety of fresh fruits and vegetables, including strawberries, carrots, radishes, and potatoes. The produce is arranged in baskets and on the table, creating a colorful and appetizing display. There are multiple baskets placed around the table, each containing different types of fruits and vegetables. Some of the baskets are closer to the center of the table, while others are positioned towards the edges. Additionally, there are several individual fruits and vegetables scattered around the table, adding to the overall abundance of fresh produce."} +{"image_id": 448410, "caption": "The image depicts a busy train station with two trains parked next to each other on the tracks. The first train is a yellow and white one, while the second train is a blue and white one. There are several people scattered throughout the scene, some standing near the trains and others walking along the platform. In addition to the passengers, there are several handbags visible in the scene, likely belonging to the people waiting at the station. A couple of cars can be seen parked in the background, adding to the bustling atmosphere of the train station."} +{"image_id": 83935, "caption": "The image depicts a busy city street filled with people, cars, and motorcycles. There are several motorcycles parked on the side of the road, including a blue one in the middle of the scene. A police officer is standing next to the blue motorcycle, possibly directing traffic or keeping an eye on the area. In addition to the motorcycles, there are several cars parked along the street, some closer to the motorcycles and others further away. There are also several people walking around the scene, some of them carrying handbags or backpacks. The scene appears to be lively and bustling with activity, showcasing the hustle and bustle of a busy city street."} +{"image_id": 378970, "caption": "The image captures a baseball game in progress, with a batter swinging a bat at a pitched baseball on the field. A catcher is positioned nearby, ready to catch the ball if it goes past the batter. There are several other players scattered around the field, some of them closer to the action and others further away. In addition to the players, there are two umpires visible in the scene, one on the left side of the field and the other on the right side. The overall atmosphere of the game is intense, with the focus on the batter's attempt to hit the ball and the catcher's effort to catch it."} +{"image_id": 209868, "caption": "In the image, a young girl is brushing her teeth with a toothbrush. She is smiling and appears to have a positive attitude towards brushing her teeth. The toothbrush is positioned close to her mouth, making it easier for her to effectively clean her teeth. There are multiple toothbrushes visible in the scene, including one on the left side of the image and another on the right side. Additionally, there is a hand holding the toothbrush near the girl's mouth, helping her to brush her teeth."} +{"image_id": 157109, "caption": "The image depicts a person parasailing in the ocean, with a large kite flying high above them. The person is wearing a wetsuit and is being pulled by the parasail, which is attached to a boat in the distance. The kite is visible in the sky, creating a dramatic backdrop for the parasailer's adventure. In the water, there are a total of three"} +{"image_id": 208347, "caption": "The image depicts a group of people gathered in a large room, playing a video game on a television. A man and a woman are actively engaged in the game, with the woman holding a remote control in her hand. There are several chairs scattered throughout the room, providing seating options for the players. In addition to the chairs, there are two cars parked in the area, one on the left side of the room and the other on the right side. A table can be seen in the center of the room, likely serving as a gathering spot for the players. There are also several bottles placed around the room, possibly for refreshments during the gaming session. Overall, the scene showcases a group of people enjoying a video game together in a spacious and well-equipped area"} +{"image_id": 232544, "caption": "The image depicts a group of people playing a game of frisbee in a park. There are several individuals scattered throughout the scene, with some actively pursuing the frisbee and others standing around watching the game. The frisbee can be seen flying through the air, with some players chasing after it and others waiting for their turn to catch it. In addition to the frisbee, there is a backpack visible in the scene, likely belonging to one of the players. A bench can also be seen in the background, providing seating for those who want to take a break from the game."} diff --git a/OPERA/log/chair_eval_results/llava-1.5/beam5.jsonl b/OPERA/log/chair_eval_results/llava-1.5/beam5.jsonl new file mode 100644 index 0000000000000000000000000000000000000000..b43bcb609a2abdc622f7f78f82179c71467f2e2d --- /dev/null +++ b/OPERA/log/chair_eval_results/llava-1.5/beam5.jsonl @@ -0,0 +1,500 @@ +{"image_id": 226988, "caption": "The image features a woman sitting at a dining table, taking a picture of two slices of pizza on a paper plate. She is using a camera to capture the delicious meal in front of her.\n\nThe dining table is surrounded by chairs, with one on the left side and another on the right side of the table. In addition to the pizza, there is a bottle placed on the table, possibly containing a beverage to accompany the meal."} +{"image_id": 337443, "caption": "The image depicts a busy city street with various vehicles, including cars and trucks, driving down the road. One of the trucks is positioned in the middle of the scene, while another truck can be seen on the left side of the street. A car is also visible on the right side of the street.\n\nIn addition to the vehicles, there are several pedestrians walking along the sidewalk. One person is located near the center of the scene, while two others can be seen closer to the right side of the street.\n\nAn orange construction sign is prominently displayed on the side of the road, indicating ongoing construction work in the area."} +{"image_id": 112022, "caption": "The image depicts a large group of people gathered in an airport terminal, waiting for their luggage. There are at least 13 people visible in the scene, with some standing closer to the foreground and others further in the background.\n\nNumerous pieces of luggage can be seen throughout the scene, including suitcases, backpacks, and handbags. There are at least 11 suitcases, 5 backpacks, and 4 handbags scattered around the area. Some of the suitcases are placed on the ground, while others are stacked on top of each other. The backpacks and handbags can be seen with their respective owners, as they wait for their luggage to arrive."} +{"image_id": 394444, "caption": "In the image, a person is standing on a sidewalk, holding a skateboard in their hand. The skateboard is positioned horizontally, with the person's hand resting on top of it. The person appears to be either preparing to ride the skateboard or taking a break from skateboarding."} +{"image_id": 481635, "caption": "The image features a woman sitting at a dining table, smiling and enjoying her meal. In front of her, there is a delicious-looking deep dish pizza with a generous amount of sauce. The pizza is placed on a tray, and the woman is holding a knife and fork, ready to dig into her meal.\n\nThe dining table is surrounded by chairs, and there are other people present in the scene. A cup can be seen on the table as well, likely containing a beverage to accompany the meal. The atmosphere appears to be casual and relaxed, with everyone enjoying their time together."} +{"image_id": 285258, "caption": "The image depicts a lively scene at a dog park, where several dogs are playing and interacting with each other. The main focus is on two dogs, one black and the other brown and white, engaging in a playful tug-of-war with each other. The black dog is on the left side of the image, while the brown and white dog is on the right side.\n\nIn addition to the two main dogs, there are several other dogs scattered throughout the park. Some of these dogs can be seen in the background, while others are closer to the foreground. Overall, the image captures a fun and energetic atmosphere at the dog park."} +{"image_id": 479057, "caption": "The image depicts a white polar bear standing on a lush green hillside, grazing on the grass. The bear is positioned towards the center of the scene and appears to be enjoying its meal. The grassy hillside provides a serene and natural environment for the polar bear."} +{"image_id": 66238, "caption": "The image captures a thrilling moment of a snowboarder in mid-air, performing a jump off a ramp. The snowboarder is wearing a red jacket and goggles, showcasing their skill and athleticism. The snowboard is clearly visible beneath the snowboarder as they soar through the air.\n\nIn the background, there are several other people scattered around the area, possibly watching the snowboarder's performance or engaging in their own snowboarding activities."} +{"image_id": 558458, "caption": "In the image, there are two women sitting at a dining table, enjoying a meal together. One of the women is smiling and holding up a plate with a hot dog and spaghetti on it. The other woman is also smiling and appears to be enjoying the meal as well.\n\nThe table is set with various utensils, including a fork, a knife, and a spoon. There is also a bottle placed on the table, possibly containing a beverage to accompany the meal. The women seem to be having a pleasant time together, enjoying their food and each other's company."} +{"image_id": 400596, "caption": "The image depicts a bathroom with a sink and a toilet situated next to each other. Above the sink, there is a towel rack with a towel hanging on it. The sink is positioned in the center of the bathroom, and the toilet is located to the left of the sink.\n\nIn addition to the sink and toilet, there are two bottles in the bathroom. One bottle is placed on the left side of the sink, while the other is located on the right side of the toilet. The bathroom appears to be clean and well-maintained."} +{"image_id": 373266, "caption": "The image depicts a group of doctors working together in a hospital setting. There are three people in the scene, with two of them wearing blue scrubs. One of the doctors is wearing headphones and appears to be focused on the task at hand.\n\nThe doctors are surrounded by various medical equipment, including a TV mounted on the side of a large suitcase. There are two TVs in the scene, with one being larger and positioned closer to the doctors, while the other is smaller and located further away.\n\nIn addition to the TVs, the doctors are surrounded by other medical equipment, such as a laptop, a cell phone, and a handbag. The presence of these items suggests that the doctors are engaged in a complex medical procedure or discussion."} +{"image_id": 38332, "caption": "The image features a majestic elephant walking through a lush green field. The elephant is the main focus of the scene, occupying a significant portion of the image from left to right. The elephant's tusks are prominently visible, adding to its imposing presence in the field.\n\nIn addition to the elephant, there are a few other elements in the scene, such as a bird flying in the sky above the elephant, and a smaller elephant partially visible on the left side of the image. The overall atmosphere of the scene is serene and picturesque, showcasing the beauty of nature and the majestic presence of the elephant."} +{"image_id": 84533, "caption": "In the image, a woman is sitting on a black motorcycle parked in front of a white building. She is wearing a leather jacket and appears to be enjoying her time on the motorcycle. The motorcycle takes up a significant portion of the scene, stretching from the left to the right side of the image."} +{"image_id": 449963, "caption": "The image depicts a classroom setting with several laptops placed on a large round table. There are a total of nine laptops on the table, with some positioned closer to the front and others towards the back. In addition to the laptops, there are two computer mice on the table, one near the center and the other towards the right side.\n\nThe classroom is furnished with numerous chairs, some of which are placed around the table, while others are scattered throughout the room. There are also two TVs mounted on the walls, one on the left side and the other on the right side of the room."} +{"image_id": 128180, "caption": "The image features a close-up view of a person's feet standing next to a plate of pizza on a dining table. The pizza is sliced and ready to be eaten, with a fork and a knife placed on the table nearby. The person's feet are positioned in front of the pizza, creating a sense of anticipation for enjoying the delicious meal."} +{"image_id": 204232, "caption": "The image captures a thrilling moment of a skateboarder in mid-air, performing a trick off a ramp. The skateboarder is the main focus of the scene, showcasing their skill and athleticism. The skateboard can be seen beneath the skateboarder as they jump over it.\n\nIn the background, there is a building that adds to the urban setting of the scene. Additionally, there are two clocks visible in the image, one on the left side and the other on the right side of the scene."} +{"image_id": 477867, "caption": "The image depicts a man skillfully riding a surfboard on a wave in the ocean. He is wearing a black wetsuit and appears to be enjoying the thrill of surfing. There are several other people in the scene, some of whom are also surfing or watching the action.\n\nIn addition to the main surfer, there are at least five other people visible in the image. Some of them are closer to the main surfer, while others are further away. There are also two surfboards in the scene, one being ridden by the main surfer and the other being held by one of the onlookers."} +{"image_id": 308128, "caption": "The image captures a young man skillfully performing a trick on his skateboard at a skate park. He is in mid-air, jumping over a cement bench while riding the skateboard. The skateboarder is the main focus of the scene, showcasing his talent and athleticism.\n\nThe skate park is surrounded by trees, providing a pleasant and natural environment for the skateboarder to practice his tricks. There are a few other people in the background, possibly watching the skateboarder or waiting for their turn to perform their own tricks."} +{"image_id": 222407, "caption": "The image features a black and yellow bird perched on a tree branch in the rain. The bird's vibrant colors make it stand out against the backdrop of the rainy day. The scene captures the beauty of the bird as it sits on the branch, seemingly undisturbed by the rain."} +{"image_id": 469543, "caption": "The image features a hotel room with two twin beds placed next to each other. The beds are covered with colorful blankets, giving the room a cozy and inviting atmosphere. The room also contains a chair positioned near one of the beds, providing additional seating for guests.\n\nIn addition to the beds and chair, there are a few other items in the room. A remote control can be seen on the right side of the room, likely for controlling the television or other electronic devices. There is also a cup placed near the center of the room, possibly for guests to enjoy a beverage during their stay."} +{"image_id": 421564, "caption": "In the image, a baby girl is sitting in a high chair and looking at a birthday cake placed in front of her. The cake is decorated with pink, blue, and green frosting, making it visually appealing for the baby. The high chair is positioned close to a refrigerator, which can be seen in the background.\n\nAdditionally, there is a knife placed near the cake, likely for cutting and serving the cake. The scene captures a special moment as the baby enjoys her birthday celebration."} +{"image_id": 177419, "caption": "The image features a blue and white fire hydrant situated on a sidewalk. The fire hydrant is decorated with a painting of a train on its side, adding a unique and artistic touch to the otherwise ordinary object. The hydrant is positioned next to a fence, which can be seen in the background."} +{"image_id": 86432, "caption": "The image captures an exciting moment during a baseball game. A young baseball player is in the middle of swinging his bat, attempting to hit the sports ball that is flying towards him. The batter is wearing a baseball glove, ready to catch the ball if necessary.\n\nThere are several other people in the scene, including teammates, opponents, and possibly coaches or spectators. Some of them are standing close to the batter, while others are positioned further away. A baseball glove can also be seen in the hands of one of the players.\n\nOverall, the scene depicts an intense and action-packed moment during a baseball game."} +{"image_id": 544590, "caption": "The image features an orange and white cat laying on a couch. The cat is curled up and appears to be sleeping or resting comfortably. The couch occupies the majority of the scene, with the cat taking up a significant portion of the space."} +{"image_id": 513060, "caption": "In the image, a person is sitting on a bench, holding a donut in their hand. The donut appears to be half-eaten, with a bite taken out of it. Another donut can be seen on the bench next to the person. The person seems to be enjoying their snack while sitting outdoors."} +{"image_id": 140921, "caption": "The image features a sandy beach with a white surfboard prominently placed on the sand. The surfboard is covered in various writings and advertisements, making it a unique and eye-catching display.\n\nIn addition to the surfboard, there are several chairs scattered around the beach area. Some of these chairs are placed closer to the surfboard, while others are positioned further away. The combination of the surfboard, chairs, and beach setting creates a lively and inviting atmosphere for beachgoers."} +{"image_id": 361351, "caption": "The image features a delicious pizza sitting in a box on a dining table. The pizza is topped with tomatoes and cheese, making it an appetizing sight. Next to the pizza, there is a bottle of beer, adding to the enjoyment of the meal.\n\nIn addition to the pizza and beer, there is a cup placed on the table, possibly containing a beverage to accompany the meal. The dining table occupies most of the space in the image, emphasizing the focus on the pizza and beer."} +{"image_id": 202154, "caption": "The image features a delicious homemade pizza sitting on a wooden cutting board on a dining table. The pizza is generously topped with tomatoes, spinach, and cheese, creating a mouth-watering combination of flavors. \n\nIn addition to the pizza, there are two chairs visible in the scene, one on the left side and another on the right side of the table. A person can also be seen in the background, likely enjoying the meal or preparing to eat the pizza."} +{"image_id": 94248, "caption": "The image depicts a city street with a large clock tower in the middle of the scene. The clock tower has two clocks on each side, making it a prominent feature in the cityscape. There are two cars parked on the street, one on the left side and the other on the right side of the clock tower.\n\nSeveral people can be seen walking around the area, with one person closer to the left side of the clock tower, another person near the center, and a third person on the right side. Additionally, there are two potted plants in the scene, one on the left side and the other on the right side of the clock tower, adding a touch of greenery to the urban environment."} +{"image_id": 200681, "caption": "In the image, a black and white dog is leaping into the air to catch a blue frisbee. The dog is positioned in the middle of the scene, displaying its athleticism as it attempts to catch the frisbee.\n\nThere are two people in the scene, one on the left side and another on the right side of the dog. The person on the left is closer to the dog, while the person on the right is further away. Both individuals seem to be enjoying the playful interaction between the dog and the frisbee."} +{"image_id": 532989, "caption": "The image features a giraffe lying down on the grass in a zoo enclosure. The giraffe appears to be relaxed and enjoying its time in the grassy area. The enclosure is surrounded by a fence, providing a secure environment for the giraffe.\n\nIn addition to the main giraffe, there are a few other giraffes visible in the enclosure. One giraffe can be seen on the left side of the main giraffe, while two more giraffes are located on the right side of the main giraffe."} +{"image_id": 565989, "caption": "The image features a clock tower with a large clock mounted on its side. The clock is positioned near the top of the tower, making it easily visible to passersby. In addition to the clock, there are three statues of bears situated around the tower. Two of the bears are located on the left side of the tower, while the third bear is positioned on the right side. The combination of the clock tower and the bear statues creates an interesting and visually appealing scene."} +{"image_id": 67315, "caption": "The image depicts a man wearing a striped tie and a dress shirt, sitting in a room with his arms crossed. He appears to be in a relaxed posture, possibly leaning against a wall. The man is the main focus of the scene, taking up a significant portion of the image."} +{"image_id": 157170, "caption": "The image features a group of five sheep standing on a grass-covered hill, overlooking a town below. The sheep are positioned at various spots on the hill, with some closer to the foreground and others further in the background. They appear to be enjoying the view of the town and the surrounding landscape."} +{"image_id": 328786, "caption": "The image depicts a row of wooden park benches lined up along a sidewalk. There are a total of nine benches in the scene, with some placed closer to the foreground and others further in the background. The benches are arranged in a neat and orderly manner, creating an inviting atmosphere for people to sit and relax.\n\nIn addition to the benches, there are several potted plants scattered throughout the scene, adding a touch of greenery to the environment. Some of the plants are placed near the benches, while others are positioned further away. The combination of the benches and plants creates a pleasant and welcoming outdoor space for visitors to enjoy."} +{"image_id": 46011, "caption": "The image features a small white airplane parked on the tarmac at an airport. The airplane is positioned close to a fence and a gate, indicating that it is either preparing for takeoff or has recently landed.\n\nIn addition to the airplane, there are two trucks visible in the scene. One truck is located on the left side of the airplane, while the other truck is on the right side. These trucks might be involved in servicing the airplane or transporting luggage and cargo."} +{"image_id": 384348, "caption": "In the image, a person is skiing down a snow-covered slope on a sunny day. The skier is wearing a blue jacket and appears to be enjoying their time on the mountain. There are several ski lifts visible in the background, indicating that this is a popular skiing location. The skier's skis can be seen clearly as they make their way down the slope."} +{"image_id": 451798, "caption": "The image showcases a collection of ties and hats hanging on a wall. The ties come in various colors and patterns, creating an eye-catching display. There are at least 13 ties visible in the scene, with some hanging closer to the left side of the wall and others towards the right.\n\nIn addition to the ties, there are three hats hanging on the wall, with one on the left side, another in the middle, and the third on the right side of the wall. The arrangement of the ties and hats creates an organized and visually appealing display."} +{"image_id": 376545, "caption": "The image captures a skateboarder in mid-air, performing a trick on his skateboard. The skateboarder is the main focus of the scene, showcasing his skill and athleticism. Another person can be seen in the background, possibly observing the skateboarder or waiting for their turn to perform a trick.\n\nThe setting appears to be an urban environment, with a building visible in the background. There is also a cup placed on a surface nearby, possibly belonging to one of the individuals present in the scene."} +{"image_id": 11538, "caption": "The image depicts a man riding a motorcycle down a street. He is wearing a black jacket and a helmet, ensuring his safety while enjoying the ride. The motorcycle is positioned in the center of the scene, with the rider skillfully maneuvering it.\n\nIn addition to the main motorcycle, there are two other motorcycles visible in the background, one on the left side and the other on the right side of the image. A backpack can also be seen on the right side of the scene, possibly belonging to the rider or another person nearby."} +{"image_id": 346207, "caption": "The image features a wooden desk with two computer monitors on it. One of the monitors is positioned on the left side of the desk, while the other is on the right side. A laptop is also present on the left side of the desk.\n\nA cat is comfortably laying on the desk, occupying a significant portion of the space between the two monitors. There are several books scattered around the desk, with some on the left side and others on the right side. A cell phone can be seen on the left side of the desk as well.\n\nAdditionally, there is a teddy bear placed on the right side of the desk, adding a touch of warmth and playfulness to the scene."} +{"image_id": 359238, "caption": "The image features a man wearing a brown jacket and a yellow shirt, sitting in a chair on a train. He appears to be relaxed and enjoying his time on the train. There is a cup placed on the table in front of him, suggesting that he might be having a beverage during his journey.\n\nIn addition to the man and the cup, there is a bottle located on the right side of the scene, possibly containing water or another beverage. The overall atmosphere of the image conveys a sense of comfort and leisure as the man enjoys his time on the train."} +{"image_id": 297610, "caption": "In the image, a young man is skillfully riding a skateboard on a ramp, performing a trick. He is wearing a white shirt and appears to be enjoying the activity. The skateboarder is in the center of the scene, with his skateboard clearly visible beneath him.\n\nThere are a few other people in the background, but they are not the main focus of the image. The primary focus remains on the skateboarder and his impressive trick."} +{"image_id": 428447, "caption": "The image is a black and white photograph of a city street corner with two traffic lights. One of the traffic lights is positioned on the left side of the street, while the other is on the right side. The street appears to be empty, with no cars or pedestrians visible in the scene.\n\nIn addition to the traffic lights, there are a few other objects on the street. A fire hydrant can be seen on the left side of the street, and a car is parked further down the street on the right side. The overall atmosphere of the scene is calm and quiet."} +{"image_id": 428769, "caption": "The image features a black car with a California license plate that reads \"Supabad.\" The car is parked next to a parking meter, and the license plate is clearly visible on the back of the vehicle. In the background, there are several other cars parked along the street."} +{"image_id": 452084, "caption": "The image features a wooden dining table with a variety of food items placed on it. There are two bowls, one on the left side and the other on the right side of the table. The bowl on the left contains a sandwich, while the bowl on the right has a sausage and a tomato. A fork is also present on the right side of the table, ready to be used for enjoying the meal."} +{"image_id": 545363, "caption": "The image depicts a bench that has fallen into a puddle of water on a sidewalk. The bench appears to be broken or damaged, possibly due to an accident or vandalism. Several people can be seen in the vicinity of the bench and the puddle, possibly observing the situation or going about their daily activities.\n\nIn addition to the main bench, there are two other benches visible in the scene, one on the left side and another on the right side of the puddle. The presence of multiple benches suggests that this area might be a popular spot for people to sit and relax."} +{"image_id": 77963, "caption": "The image depicts an indoor setting with two large cow statues hanging from the ceiling. One cow statue is positioned on the left side of the room, while the other is on the right side. The cow statues appear to be made of plastic, giving them a unique and eye-catching appearance.\n\nIn addition to the cow statues, there are several potted plants scattered throughout the room, adding a touch of greenery to the space. Some of the potted plants can be found near the cow statues, while others are placed in different areas of the room. The combination of the cow statues and potted plants creates an interesting and visually appealing environment."} +{"image_id": 78093, "caption": "In the image, a woman is skiing down a snow-covered slope, smiling as she enjoys the activity. She is wearing a pink and white jacket, which stands out against the snowy background. The woman is also wearing a hat, adding to her winter attire.\n\nThere are two sets of skis visible in the scene, one set being worn by the woman and the other set located further down the slope. The woman appears to be the main focus of the image, capturing the essence of winter sports and outdoor activities."} +{"image_id": 346334, "caption": "The image depicts a peaceful scene of two brown bears grazing in a lush green field. The bears are positioned close to each other, with one on the left side and the other on the right side of the field. They appear to be enjoying the abundance of grass and vegetation in their natural habitat."} +{"image_id": 185633, "caption": "The image depicts a bathroom with a bathtub and a sink. The bathtub is located on the left side of the room, while the sink is situated on the right side. There is a towel hanging on the side of the bathtub, and a toothbrush can be seen placed near the sink.\n\nIn addition to the toothbrush, there are several bottles scattered around the bathroom. One bottle is located near the sink, while two others are placed closer to the bathtub. The bathroom appears to be in the process of being remodeled, as evidenced by the peeling paint on the walls."} +{"image_id": 327165, "caption": "In the image, a man is cutting a child's hair while the child sits in a chair. The man is using a pair of scissors to trim the child's hair, ensuring a neat and well-groomed appearance.\n\nThe scene takes place in a room with a couch visible in the background. There are several books scattered around the room, with some placed on the couch and others on the floor. The presence of these books suggests a cozy and comfortable environment for the child and the barber."} +{"image_id": 410632, "caption": "The image depicts a group of three baseball players standing on a baseball field during a game. They are all wearing baseball gloves, with one player on the left, another in the middle, and the third on the right side of the field. The players appear to be engaged in a conversation, possibly discussing game strategies or sharing their thoughts on the ongoing match.\n\nIn the background, there is a crowd of spectators watching the game intently. Some of the spectators are seated on chairs, while others are standing, all focused on the action on the field. The scene captures the excitement and camaraderie of a professional baseball game."} +{"image_id": 468471, "caption": "The image depicts a man jumping in the air above a bed in a bedroom. He is wearing a white shirt and a blue tie, which adds a touch of formality to the scene. The bed occupies a significant portion of the room, stretching from the left to the right side of the image.\n\nThere are several other people in the room, with one person standing near the left edge of the image and two others closer to the right side. A potted plant can be seen in the middle of the room, adding a touch of greenery to the space. Additionally, there are two handbags placed on the floor, one near the left side and the other closer to the center of the room."} +{"image_id": 241317, "caption": "In the image, a man is pushing a cart filled with a variety of fruits, including bananas, apples, and oranges. The cart is parked in front of a blue building, possibly a house or a store. The man appears to be selling the fruits to passersby or customers.\n\nThere are a few other people in the scene, with one person standing close to the man pushing the cart and two others further away. Additionally, there is a bowl placed near the cart, possibly containing more fruits or other items for sale."} +{"image_id": 444982, "caption": "The image depicts a lush green field with three zebras grazing on the grass. The zebras are spread out across the field, with one zebra on the left side, another in the middle, and the third one on the right side of the field.\n\nIn addition to the zebras, there are two birds visible in the scene. One bird can be seen near the top left corner of the image, while the other bird is located near the top right corner. The presence of these birds adds to the natural and serene atmosphere of the scene."} +{"image_id": 117563, "caption": "The image depicts two young men standing in a living room, playing a video game on a Nintendo Wii console. Both men are holding Wii remotes in their hands, fully engaged in the game.\n\nThe living room is furnished with two couches, one on the left side and the other on the right side of the room. There is also a potted plant placed near the left couch, adding a touch of greenery to the space."} +{"image_id": 206579, "caption": "In the image, a man is leaning over a dining table, blowing out the candles on a birthday cake. The cake is placed in the center of the table, and the man appears to be the main focus of the scene.\n\nAround the dining table, there are two chairs, one on the left side and another on the right side. Additionally, there are two other people in the background, one on the left side and the other on the right side of the image. A handbag can be seen on the right side of the table, possibly belonging to one of the people present."} +{"image_id": 221172, "caption": "The image captures a tennis match in progress, with a man in a blue shirt and white shorts holding a tennis racket and preparing to hit a tennis ball. He appears to be the main focus of the scene.\n\nIn the background, there are two chairs, one on the left side and the other on the right side of the court. Additionally, there are two other people present in the scene, one on the left side and the other on the right side of the court, possibly watching the match or waiting for their turn to play."} +{"image_id": 317969, "caption": "The image depicts a large herd of sheep walking down a road in a mountainous area. There are at least thirteen sheep visible in the scene, spread out along the road. Some of the sheep are closer to the foreground, while others are further down the road, creating a sense of depth in the scene.\n\nThe mountainous landscape surrounding the road adds to the picturesque nature of the scene, making it an idyllic countryside setting."} +{"image_id": 82150, "caption": "The image features a young man sitting on a couch, holding a Nintendo Wii steering wheel controller in front of his face. He appears to be playing a racing game on the Wii console. The man is wearing a blue shirt and seems to be enjoying the gaming experience.\n\nIn the background, there is another person partially visible on the left side of the image, possibly watching the man play or waiting for their turn to play."} +{"image_id": 284064, "caption": "In the image, a man is standing on a tennis court, holding a tennis racket and preparing to hit a tennis ball that is in the air. He is wearing a hat and appears to be focused on the game. Another person can be seen in the background, possibly watching the game or waiting for their turn to play.\n\nThe tennis court is surrounded by a chain-link fence, providing a secure boundary for the game. The scene captures the intensity and excitement of a tennis match."} +{"image_id": 372203, "caption": "The image depicts a lonely park bench situated in the middle of a desert-like area. The bench is positioned on a concrete slab, and it appears to be the only piece of furniture in the scene. In the background, a fire hydrant can be seen, adding a touch of urban infrastructure to the otherwise barren landscape.\n\nThere are a few people scattered throughout the scene, but they seem to be at a distance from the bench, possibly exploring the area or enjoying the natural surroundings."} +{"image_id": 359136, "caption": "In the image, a woman is lying on the floor next to a bathtub. She is wearing a black tank top and black boots. The woman appears to be relaxed and enjoying her time in the bathroom. The bathtub takes up a significant portion of the scene, extending from the left side to the right side of the image."} +{"image_id": 499281, "caption": "The image depicts a well-equipped kitchen with stainless steel appliances, including a stove top oven, a microwave, and a refrigerator. The stove top oven is located on the left side of the kitchen, while the microwave is positioned above the oven. The refrigerator is situated on the right side of the kitchen.\n\nVarious items can be seen on the countertops, such as multiple bottles, cups, and bowls. There is also a potted plant placed on the left side of the kitchen, adding a touch of greenery to the space. The kitchen appears to be well-organized and ready for cooking."} +{"image_id": 192233, "caption": "The image captures a male tennis player in action on a clay court, swinging his tennis racket to hit a tennis ball. The player is wearing a blue shirt and white shorts, showcasing his athletic attire. The tennis ball can be seen in the air, close to the player's racket, as he prepares to make contact with it.\n\nThe tennis racket is positioned on the left side of the player, while the tennis ball is located towards the center of the scene. The player's stance and focus on the ball indicate that he is fully engaged in the game."} +{"image_id": 11987, "caption": "The image depicts a cozy and well-furnished room with various pieces of furniture. In the center of the room, there is a fireplace surrounded by chairs, creating a warm and inviting atmosphere. A dining table is located near the fireplace, accompanied by several chairs placed around it.\n\nAdditionally, there are two couches in the room, one on the left side and the other on the right side, providing ample seating options. A bed can also be seen in the room, positioned towards the right side of the image.\n\nThe room is decorated with a few items, such as a vase placed on the dining table and a clock hanging on the wall. The combination of furniture, the fireplace, and the cozy ambiance make this room an ideal space for relaxation and socializing."} +{"image_id": 406810, "caption": "In the image, a man is sitting in front of a laptop computer, which is placed on his lap. He appears to be focused on the screen, possibly working or browsing the internet. There are several other people in the room, some of whom are also using laptops.\n\nIn addition to the laptops, there are two TVs visible in the scene. One TV is located on the left side of the room, while the other is on the right side. A clock can also be seen hanging on the wall in the background."} +{"image_id": 99965, "caption": "The image features a close-up view of a person's hand holding a half-eaten sandwich on a white plate. The sandwich appears to be filled with turkey and is accompanied by a side of potato chips. The chips are scattered around the plate, with some closer to the sandwich and others further away. The person's hand occupies a significant portion of the image, emphasizing the focus on the sandwich and chips."} +{"image_id": 17328, "caption": "The image features a red and white passenger train traveling down the tracks. The train occupies a significant portion of the scene, stretching from the left to the right side of the image. The train appears to be in motion, as it moves along the railroad tracks.\n\nIn addition to the train, there are two people visible in the scene. One person is located on the left side of the image, while the other person is on the right side. They seem to be observing the train as it passes by."} +{"image_id": 393682, "caption": "The image features a close-up view of a delicious slice of cheesecake on a white plate. The cheesecake is topped with strawberry sauce and whipped cream, making it an appetizing dessert. A fork is placed on the plate, ready to be used to enjoy the cheesecake. The plate is positioned on a dining table, creating an inviting atmosphere for a delightful meal."} +{"image_id": 540093, "caption": "The image depicts a street scene with a car covered in plastic, likely to protect it from the rain. The car is parked on the side of the road, and a large umbrella can be seen above it, providing additional protection from the elements.\n\nThere are several people in the scene, with one person standing close to the car and others scattered around the area. Some of the people are carrying umbrellas, indicating that it might be raining.\n\nIn addition to the car and people, there are a few other objects in the scene, such as a potted plant, a fire hydrant, and a couple of chairs. A bicycle can also be seen parked on the side of the road."} +{"image_id": 242400, "caption": "In the image, there is a woman standing next to a large clock on a pole. She is wearing a black jacket and appears to be posing for a picture in front of the clock. The clock is prominently displayed on the pole, making it a focal point in the scene.\n\nIn the background, there are a few cars parked, with one on the left side and two on the right side of the image. Additionally, there is a handbag placed near the woman, possibly belonging to her. Another person can be seen in the background on the right side of the image, but they are not the main subject of the scene."} +{"image_id": 409009, "caption": "The image features a white bullet train parked at a train station. The train occupies a significant portion of the scene, stretching from the left to the right side of the image. It appears to be stopped at the station, possibly waiting for passengers to board or disembark.\n\nIn addition to the train, there are two people visible in the scene. One person can be seen on the left side of the image, while the other person is on the right side. The presence of these individuals suggests that they might be waiting for the train or simply passing by the station."} +{"image_id": 6091, "caption": "In the image, a person is standing in front of a stop sign, holding a piece of paper in their hand. The stop sign is located on the left side of the scene, and the person is positioned to the right of the sign. The paper they are holding appears to be stuck to the stop sign, possibly as a form of protest or artistic expression."} +{"image_id": 42834, "caption": "In the image, there is a woman sitting at a dining table with a plate of food in front of her. She appears to be in the process of preparing a meal, as there is a can of Spam on the table. The woman is using a pair of scissors to cut the Spam into smaller pieces.\n\nThe dining table occupies a significant portion of the scene, and there is another smaller dining table visible in the background. A chair is positioned near the main dining table, likely for the woman to sit on while preparing her meal."} +{"image_id": 433554, "caption": "The image depicts a group of people enjoying a day at the beach, with some of them water skiing and others watching the action. There are at least nine people visible in the scene, with some of them wearing life jackets for safety.\n\nTwo surfboards can be seen in the water, with one closer to the left side of the image and the other towards the right side. A boat is also present in the scene, likely used for the water skiing activities.\n\nIn addition to the people and water sports equipment, there is a bench located near the center of the image, providing a place for spectators to sit and watch the fun."} +{"image_id": 174987, "caption": "The image features a train with graffiti painted on its side, giving it a colorful and artistic appearance. The graffiti covers a significant portion of the train's exterior, making it stand out as a unique and eye-catching piece of public art."} +{"image_id": 116208, "caption": "The image features a dining table with a delicious pizza placed in the center of the table. The pizza is topped with cheese, onions, and bacon, making it an appetizing sight. There are several wine glasses and bottles surrounding the pizza, adding to the ambiance of the meal.\n\nIn addition to the wine glasses and bottles, there are chairs placed around the dining table, indicating that the table is set for a group of people to enjoy the meal together. A person can be seen in the background, likely preparing to join the gathering."} +{"image_id": 80131, "caption": "The image depicts a man and a woman sitting at a dining table in a kitchen. The man is wearing a striped shirt, and the woman is wearing a plaid shirt. They appear to be enjoying a meal together.\n\nThe kitchen is well-equipped with various appliances such as an oven, a microwave, a sink, and a refrigerator. There are several bottles placed around the kitchen, possibly containing beverages or condiments. A knife can also be seen on the table, likely used for cutting or spreading something during the meal."} +{"image_id": 310663, "caption": "The image depicts an old, rusty orange train car sitting on train tracks. The train car appears to be in a state of disrepair, with peeling paint and signs of deterioration. The tracks are surrounded by a forest, giving the scene a sense of isolation.\n\nThere is a person visible in the scene, standing near the left side of the train car, possibly observing or admiring the old train. The overall atmosphere of the image suggests a sense of nostalgia and the passage of time."} +{"image_id": 100138, "caption": "The image features a black motorcycle parked on the side of a road. The motorcycle is prominently positioned in the foreground, taking up a significant portion of the scene. It appears to be a sporty motorcycle, possibly a Kawasaki.\n\nIn addition to the motorcycle, there is a stop sign visible in the background on the left side of the scene. The motorcycle is parked next to a bush, adding a touch of greenery to the surroundings."} +{"image_id": 415613, "caption": "The image depicts a man wearing a green shirt and a baseball cap, standing in a kitchen and preparing a sandwich. He is using a knife to cut the sandwich, which is placed on a cutting board. The man is focused on his task and appears to be enjoying the process of making the sandwich.\n\nThe kitchen is equipped with a refrigerator on the left side of the room, and a sink can be seen in the background. There is also a bowl placed on the countertop, possibly containing ingredients for the sandwich."} +{"image_id": 214737, "caption": "The image depicts the interior of a large, ornate building with high ceilings. The focal point of the scene is a large clock mounted on the side of the building, surrounded by statues and intricate carvings. The clock is positioned near the top of the building, drawing attention to its impressive size and design.\n\nIn addition to the clock, there are several statues and carvings adorning the building's walls, adding to the grandeur of the space. The combination of the clock, statues, and carvings creates an atmosphere of elegance and sophistication within the building."} +{"image_id": 172718, "caption": "The image is a vintage black and white photograph of a young boy wearing a white shirt and a tie. The boy appears to be looking at the camera with a serious expression on his face. The photograph captures a moment in time, showcasing the boy's attire and demeanor."} +{"image_id": 99186, "caption": "The image features a red stop sign prominently displayed on the side of a road. The stop sign is positioned near the center of the scene, and it appears to be the main focus of the image.\n\nIn the background, there is a car parked on the left side of the road, and another car can be seen further down the road on the right side. Additionally, there is a truck parked on the far right side of the scene."} +{"image_id": 3580, "caption": "The image features a man sitting comfortably on a couch in a living room. He is holding a Nintendo Wii game controller in his hand, indicating that he is playing a video game. The man appears to be enjoying his leisure time as he relaxes on the couch.\n\nThe living room is furnished with a dining table and several chairs placed around it. There are two chairs on the left side of the dining table and two more chairs on the right side. Additionally, there is a cup placed on the dining table, suggesting that the man might have been enjoying a drink while playing the game."} +{"image_id": 526044, "caption": "The image features a brown and white cow standing on the edge of a body of water, possibly a lake or a river. The cow appears to be looking into the water, possibly searching for food or exploring its surroundings. The cow is the main focus of the scene, occupying a significant portion of the image."} +{"image_id": 105291, "caption": "The image depicts a street scene with a red stop sign prominently displayed on the side of the road. The stop sign is positioned next to a blue street sign, indicating the intersection of Main Street and Schoolhouse.\n\nIn the background, there are two cars parked on the side of the road, one closer to the left side of the image and the other further to the right. Additionally, there are two people visible in the scene, one near the left edge of the image and the other closer to the center."} +{"image_id": 577169, "caption": "The image depicts a group of people standing in front of a large, ornate clock on the side of a building. There are seven people in total, with some standing closer to the clock and others slightly further away. They appear to be admiring the clock and enjoying their time together.\n\nIn addition to the people and the clock, there are two handbags visible in the scene. One handbag is located near the center of the group, while the other handbag is positioned closer to the right side of the group."} +{"image_id": 181574, "caption": "In the image, a man is sitting at a dining table with a pizza in front of him. He is smiling and appears to be enjoying the meal. The table is set with plates, forks, knives, and a wine glass. Another person can be seen in the background, partially visible on the left side of the image.\n\nThere are two pizzas on the table, one closer to the man and the other slightly further away. The man is holding a knife and fork, ready to dig into the delicious meal."} +{"image_id": 83441, "caption": "The image is a split-screen view of a living room, showcasing two different perspectives of the same space. The living room is furnished with two couches, one on the left side and the other on the right side of the room. There are also two chairs in the room, one near the left couch and the other near the right couch.\n\nIn the living room, there is a flat-screen TV mounted on the wall near the center of the space. A dining table can be seen in the middle of the room, surrounded by chairs. Additionally, there is a potted plant placed on the left side of the room, adding a touch of greenery to the space."} +{"image_id": 130527, "caption": "The image depicts a peaceful scene of a herd of cows grazing on a lush green hillside. The cows are spread out across the field, with some closer to the foreground and others further in the background. There are at least thirteen cows visible in the scene, enjoying their time in the grassy pasture.\n\nIn addition to the cows, there are two people present in the image, likely observing or taking care of the animals. One person is located near the left side of the scene, while the other is positioned closer to the right side. The overall atmosphere of the image is serene and picturesque, showcasing the beauty of the countryside and the harmony between the cows and their surroundings."} +{"image_id": 86471, "caption": "The image depicts a male tennis player in a blue shirt and white shorts, standing on a tennis court and preparing to hit a tennis ball with his racket. The tennis ball is in the air, close to the player's racket, indicating that he is about to make contact with it. The scene captures the player's focus and determination as he gets ready to return the ball during the game."} +{"image_id": 105737, "caption": "The image features a cozy bookshelf filled with numerous books of various sizes. Among the books, there is a stuffed teddy bear sitting on top of the shelf, adding a touch of warmth and playfulness to the scene. The teddy bear is positioned towards the center of the bookshelf, drawing attention to itself amidst the collection of books."} +{"image_id": 212842, "caption": "The image depicts a large herd of zebras gathered together in a grassy field. There are at least thirteen zebras visible in the scene, with some standing closer to the foreground and others further in the background. The zebras are spread out across the field, creating a sense of depth in the scene.\n\nIn addition to the zebras, there is a bird perched on a tree branch in the background, adding a touch of wildlife diversity to the scene. The combination of the zebras and the bird creates a serene and natural atmosphere in the image."} +{"image_id": 105220, "caption": "In the image, two people are skiing on a snow-covered slope. One skier is positioned closer to the left side of the scene, while the other skier is on the right side. Both skiers are wearing skis and appear to be enjoying their time on the mountain.\n\nThere are two sets of skis visible in the scene, one set belonging to the skier on the left and the other set belonging to the skier on the right. Additionally, there are two backpacks in the scene, one near the skier on the left and the other near the skier on the right."} +{"image_id": 490701, "caption": "In the image, a person is sitting at a dining table with a plate of food in front of them. They are in the process of eating a dessert, which appears to be a chocolate cake or brownie. The person is using a fork to eat the dessert, and a knife is also visible on the table.\n\nThere are two cups on the table, one near the dessert and the other further away. A chair can be seen in the background, and a handbag is placed on the left side of the table."} +{"image_id": 368961, "caption": "In the image, there are two elephants standing in a sandy enclosure. One elephant is positioned closer to the left side of the enclosure, while the other elephant is on the right side. Both elephants have tusks, and they appear to be enjoying their time in the sandy area.\n\nIn addition to the elephants, there are two sports balls present in the enclosure. One sports ball is located near the left elephant, and the other sports ball is near the right elephant. The presence of these balls suggests that the elephants might be playing or engaging in some form of enrichment activity."} +{"image_id": 520892, "caption": "The image features a woman wearing a black shirt and holding a hot dog in her hand. She appears to be enjoying her meal while standing outdoors. The woman is also wearing a ring on her finger.\n\nIn the background, there are trees visible, adding to the outdoor atmosphere of the scene. Additionally, there is a handbag placed nearby, possibly belonging to the woman or someone else in the vicinity."} +{"image_id": 113354, "caption": "The image depicts a group of three zebras grazing on grass in their enclosure at a zoo. They are standing close to each other, with one zebra on the left side, another in the middle, and the third one on the right side of the enclosure. The zebras are focused on eating the grass, which is spread across the ground in front of them.\n\nIn addition to the zebras, there are several potted plants placed around the enclosure, adding a touch of greenery to the environment. One potted plant can be seen on the left side of the enclosure, another one in the middle, and the third one on the right side."} +{"image_id": 33652, "caption": "The image features a delicious homemade pizza with various toppings, including chicken, cheese, and beans. The pizza is placed on a metal tray, which is sitting on top of a stove. The pizza appears to be cooked and ready to be eaten.\n\nIn the background, there is a knife and a spoon, possibly used for cutting and serving the pizza. Additionally, there are two bowls, one on the left side of the stove and the other on the right side. These bowls may contain ingredients or side dishes to accompany the pizza."} +{"image_id": 511153, "caption": "The image depicts a blue and white train traveling down the train tracks. The train occupies a significant portion of the scene, stretching from the left to the right side of the image. The train appears to be a freight train, as it is carrying a large cargo load.\n\nIn addition to the train, there are a few people visible in the scene. One person can be seen on the left side of the image, while another person is located closer to the center. A third person is standing near the right edge of the image. The presence of these individuals suggests that they might be observing the train or waiting for it to pass."} +{"image_id": 328957, "caption": "The image features a cat comfortably sitting on top of a multi-tiered cat tree. The cat is positioned on the highest level of the tree, enjoying its elevated perch. The cat tree is made of wood and has several platforms for the cat to climb and explore.\n\nIn addition to the cat tree, there are a few books scattered around the scene. One book can be seen on the left side of the image, while another book is located closer to the right side. The presence of these books suggests a cozy and relaxed environment for the cat and its owner."} +{"image_id": 190015, "caption": "The image features a green truck parked in a grassy field, surrounded by a large pile of hay. The truck is positioned on the left side of the scene, with the hay pile occupying a significant portion of the right side of the image.\n\nThere are several trees in the background, adding to the natural setting of the scene. Additionally, there is a person visible in the middle of the image, possibly observing the truck and the hay pile."} +{"image_id": 244925, "caption": "The image features a man wearing a backpack with a banana sticking out of it. The banana is prominently placed in the middle of the backpack, drawing attention to it. The man is also wearing a camera around his neck, adding to the casual and adventurous vibe of the scene."} +{"image_id": 29406, "caption": "The image features a wooden park bench situated in the middle of a lush green field. The bench is surrounded by a variety of plants and flowers, creating a serene and inviting atmosphere. There are several potted plants placed around the bench, adding to the natural beauty of the scene.\n\nIn addition to the main bench, there are a few other benches scattered throughout the field, providing ample seating options for visitors to enjoy the peaceful surroundings. Overall, the scene exudes a sense of tranquility and relaxation, making it an ideal spot for people to unwind and connect with nature."} +{"image_id": 32570, "caption": "The image captures a man skillfully riding a wave on a surfboard in the ocean. He is positioned in the center of the scene, with the surfboard beneath him as he skillfully maneuvers through the water. The surfer appears to be enjoying the thrill of the wave, showcasing his expertise in the sport."} +{"image_id": 260608, "caption": "The image depicts a group of young girls playing soccer on a grassy field. They are actively engaged in the game, chasing after a soccer ball that is located towards the left side of the field. The girls are spread out across the field, with some closer to the ball and others further away.\n\nIn addition to the soccer ball, there are two sports balls visible in the scene, one near the center of the field and the other towards the right side. A backpack can also be seen placed on the ground near the center of the field, possibly belonging to one of the players."} +{"image_id": 291286, "caption": "The image depicts a man riding a skateboard down a city street, surrounded by a crowd of pedestrians. The skateboarder is in the center of the scene, skillfully maneuvering his skateboard amidst the bustling crowd.\n\nNumerous people can be seen in various positions along the street, with some closer to the skateboarder and others further away. There are also a few handbags visible among the pedestrians, likely belonging to some of the people in the crowd. The overall atmosphere of the scene is lively and energetic."} +{"image_id": 375278, "caption": "The image features a black dog standing inside an open suitcase. The dog appears to be curious about its surroundings, possibly exploring the luggage. The suitcase occupies a significant portion of the scene, stretching from the left to the right side of the image.\n\nIn addition to the suitcase and the dog, there are two people in the scene. One person can be seen on the left side of the image, while the other person is located on the right side. Both individuals seem to be observing the dog inside the suitcase."} +{"image_id": 290684, "caption": "In the image, a woman wearing a purple shirt is sitting on a pole and holding a pink teddy bear. She appears to be enjoying her time with the stuffed animal. The scene takes place outdoors, possibly in a park or a similar setting."} +{"image_id": 29306, "caption": "The image features a brown dog standing on a sandy beach near the ocean. The dog is wearing a black collar and appears to be staring into the distance. The dog's ears are perked up, and it seems to be attentive to its surroundings. The beach setting and the presence of the ocean create a serene and peaceful atmosphere."} +{"image_id": 173375, "caption": "In the image, a man is snowboarding down a snow-covered slope. He is wearing a helmet and goggles, ensuring his safety while enjoying the thrill of snowboarding. The slope appears to be quite steep, adding to the excitement of the activity.\n\nThere are a few other people in the background, possibly watching the snowboarder or waiting for their turn to ride. The scene captures the essence of winter sports and outdoor recreation."} +{"image_id": 198590, "caption": "The image features a small red bird perched on the side view mirror of a beige car. The car is parked next to a truck, which is visible in the background. The bird appears to be looking at its reflection in the car's side view mirror, creating a captivating scene."} +{"image_id": 25747, "caption": "The image depicts a train traveling down a set of railroad tracks, surrounded by a lush green forest. The train appears to be a passenger train, as it has multiple cars attached to it. The train occupies a significant portion of the scene, stretching from the left to the right side of the image.\n\nIn addition to the train, there are two people visible in the scene. One person is located on the left side of the image, while the other is on the right side. They seem to be observing the train as it moves along the tracks."} +{"image_id": 346589, "caption": "The image depicts a man and a woman skiing on a snow-covered slope. The man is standing on the left side of the scene, while the woman is kneeling on the right side. Both of them are wearing skis and appear to be enjoying their time on the mountain.\n\nIn addition to the two main skiers, there are several other people visible in the background, scattered across the slope. Some of them are closer to the foreground, while others are further away, creating a lively atmosphere on the mountain."} +{"image_id": 121106, "caption": "The image depicts a busy airport baggage claim area with a large group of people standing around, waiting for their luggage. There are numerous suitcases and handbags scattered throughout the scene, indicating that many travelers have just arrived at their destination.\n\nIn total, there are at least 14 people visible in the image, with some standing closer to the foreground and others further in the background. The suitcases come in various sizes and can be seen both on the ground and in the hands of the travelers. There are at least 11 suitcases and 7 handbags visible in the scene.\n\nThe overall atmosphere of the image suggests a typical day at an airport, with passengers eagerly waiting to collect their belongings and continue their journey."} +{"image_id": 392850, "caption": "The image features a wooden cutting board on a dining table, topped with a variety of fruits and a knife. The fruits include a banana, two apples, an orange, and a lemon. The banana is positioned towards the right side of the cutting board, while the two apples are placed closer to the center. The orange is located on the left side of the cutting board, and the lemon is situated towards the bottom left corner. The knife is placed on the cutting board, ready to be used for slicing the fruits."} +{"image_id": 554241, "caption": "The image depicts a bustling city scene with a large crowd of people walking on a sidewalk. Among the crowd, a woman is prominently holding an umbrella, possibly to shield herself from the sun or rain. There are several other umbrellas scattered throughout the scene, indicating that it might be a rainy or sunny day.\n\nIn addition to the people and umbrellas, there are a few handbags and backpacks visible in the crowd, suggesting that some of the individuals might be carrying their belongings with them. The overall atmosphere of the scene is lively and energetic, with people going about their daily activities."} +{"image_id": 341017, "caption": "The image depicts a man standing on the back of a pickup truck, surrounded by a group of horned animals. There are several cows and goats on the back of the truck, with some of them appearing to be climbing onto the truck as well. The man seems to be interacting with the animals, possibly taking care of them or guiding them onto the truck.\n\nIn addition to the man and the animals, there are two other people visible in the scene, one on the left side and another on the right side of the truck. The presence of these individuals suggests that they might be assisting the man with the animals or simply observing the scene."} +{"image_id": 135497, "caption": "In the image, a man is sitting at a dining table with a pizza in front of him. He appears to be enjoying his meal and possibly posing for a picture. The table is surrounded by several bottles, possibly containing beverages or condiments to accompany the pizza.\n\nIn the background, there are two cars visible, one on the left side and the other on the right side of the scene. Additionally, there are two chairs placed around the dining table, one on the left side and the other on the right side."} +{"image_id": 159260, "caption": "The image depicts a blue and white train traveling down the tracks. The train appears to be a freight train, as indicated by its large size and the absence of passengers visible in the image. The train is moving at a moderate speed, capturing the viewer's attention.\n\nIn addition to the train, there are two people visible in the scene. One person is located on the left side of the train, while the other person is on the right side. Both individuals seem to be observing the train as it passes by."} +{"image_id": 417332, "caption": "The image captures a baseball game in progress, with a pitcher in the middle of throwing a pitch. The pitcher is wearing a yellow shirt and is in the process of releasing the ball. The baseball is visible in the air, close to the pitcher's hand.\n\nThere are several other people in the scene, likely teammates and opponents, positioned around the field. Some of them are closer to the pitcher, while others are further away. A baseball glove can also be spotted on the field, possibly belonging to one of the players."} +{"image_id": 90520, "caption": "The image features two white teddy bears dressed in traditional Asian clothing. One teddy bear is positioned on the left side of the image, while the other is on the right side. Both teddy bears are wearing kimonos, adding a cultural touch to their appearance.\n\nIn addition to the two main teddy bears, there are two smaller teddy bears in the scene. One of the smaller teddy bears is located on the right side of the image, while the other is on the left side. These smaller teddy bears are also dressed in traditional Asian clothing, further enhancing the cultural theme of the scene."} +{"image_id": 318524, "caption": "The image depicts the back of an old, rusty train car. The train car appears to be in a state of disrepair, as it is covered in rust and graffiti. The graffiti can be seen on various parts of the train car, adding to its aged and worn appearance.\n\nIn addition to the rust and graffiti, the train car is also covered in dirt and grime, further emphasizing its neglected state. The overall impression is that the train car has been abandoned and left to deteriorate over time."} +{"image_id": 118406, "caption": "The image depicts a group of men playing soccer on a field. One of the players is attempting to kick the soccer ball, which is located in the upper part of the scene. The players are actively engaged in the game, with some of them running towards the ball.\n\nIn the background, there is a car parked on the right side of the field, and another car can be seen further back on the left side. The players are spread out across the field, with some closer to the foreground and others further in the background. Overall, the scene captures the excitement and energy of a soccer match."} +{"image_id": 25748, "caption": "The image features a large white sailboat docked in a harbor. The boat is adorned with the name \"Blackbeard\" written on its side, giving it a pirate-themed appearance. The boat is tied to a dock with a rope, ensuring it stays securely in place.\n\nIn the background, there are several other boats of varying sizes, some of which are also tied to the dock. The scene captures the essence of a bustling harbor filled with various vessels."} +{"image_id": 365557, "caption": "The image captures a snowboarder skillfully riding down a snow-covered slope. The snowboarder is wearing a blue jacket and appears to be enjoying the thrill of the descent. The snowboard is clearly visible beneath the snowboarder as they navigate the slope.\n\nIn addition to the main snowboarder, there are two other people in the scene. One person is located on the left side of the image, while the other person is on the right side. They seem to be observing the snowboarder's performance or possibly waiting for their turn to ride down the slope."} +{"image_id": 320978, "caption": "The image depicts a bustling farmer's market filled with a wide variety of fresh fruits and vegetables. There is an abundance of broccoli on display, with multiple bunches spread across the market. In addition to broccoli, there are several carrots, cucumbers, and tomatoes available for purchase.\n\nA person can be seen in the background, likely browsing or shopping for produce. The market appears to be well-stocked and offers a diverse selection of fresh, healthy options for customers."} +{"image_id": 315073, "caption": "The image features a gray and white cat sitting on top of a knitted blanket, which is placed on a window sill. The cat appears to be yawning or panting, possibly due to the warmth of the blanket or the sunlight coming through the window.\n\nIn addition to the cat and the blanket, there is a bottle located on the right side of the window sill. The bottle's shape and size suggest that it could be a vase or a decorative item, adding to the cozy atmosphere of the scene."} +{"image_id": 363927, "caption": "The image depicts a large metro bus driving down a city street. The bus occupies a significant portion of the scene, stretching from the left to the right side of the image. The street appears to be empty, with no other vehicles or pedestrians visible.\n\nIn addition to the bus, there is a car parked on the left side of the street, and a truck can be seen further down the road on the right side. Two traffic lights are also present in the scene, one near the center and the other towards the right side of the image."} +{"image_id": 243355, "caption": "The image features a zebra standing in an enclosed area, likely a zoo or wildlife sanctuary. The zebra is positioned in the center of the scene, surrounded by dirt and grass. The enclosure appears to be a mix of dirt and grass, providing a natural environment for the zebra."} +{"image_id": 373521, "caption": "The image features an old, rusted bus parked in a grassy field. The bus appears to be abandoned and has been left to deteriorate over time. It is positioned in the middle of the grassy area, surrounded by a lush green field.\n\nThe bus is quite large, occupying a significant portion of the image, and its rusty appearance suggests that it has been exposed to the elements for an extended period. The scene evokes a sense of nostalgia and highlights the passage of time, as the once-functional vehicle has now become a relic of the past."} +{"image_id": 76409, "caption": "The image depicts a cozy bedroom scene with a large bed taking up a significant portion of the room. The bed is covered with a red blanket, giving it a warm and inviting appearance. Above the bed, there is a framed picture hanging on the wall, adding a decorative touch to the space.\n\nIn addition to the bed, there is a chair positioned near the left side of the room. A doorway can be seen in the background, leading to another part of the house. The overall atmosphere of the room suggests a comfortable and relaxing environment."} +{"image_id": 485985, "caption": "The image features a young boy with blonde hair, sitting on the floor and brushing his teeth with a toothbrush. He is wearing a blue shirt and appears to be enjoying the activity. The toothbrush is visible in his mouth as he brushes his teeth."} +{"image_id": 27564, "caption": "The image depicts two young girls sitting on a couch, each holding a Nintendo Wii controller in their hands. They appear to be enjoying a gaming session together, possibly playing a game like Wii Sports. The girls are positioned close to each other, with one girl on the left side of the couch and the other on the right side.\n\nIn addition to the girls and the Wii controllers, there are a few other objects in the scene. A cell phone can be seen on the right side of the couch, and a handbag is placed on the floor in front of the couch."} +{"image_id": 92749, "caption": "The image depicts a group of giraffes in a grassy enclosure at a zoo. There are three giraffes in total, with two of them standing close to each other and the third one slightly further away. The giraffes appear to be enjoying their time in the enclosure, surrounded by trees and a pond.\n\nIn addition to the giraffes, there are two birds visible in the scene, one near the left side of the enclosure and the other closer to the right side. The birds seem to be coexisting peacefully with the giraffes in their shared environment."} +{"image_id": 554958, "caption": "The image features a brown and black calico cat sitting in a pile of leaves. The cat appears to be staring at the camera, capturing the viewer's attention. The leaves surrounding the cat create a cozy and natural environment for the cat to rest in."} +{"image_id": 439971, "caption": "The image features a woman standing in a bathroom, taking a picture of herself in the mirror using her cell phone. She is wearing a scarf around her neck, adding a stylish touch to her outfit. The bathroom appears to be clean and well-maintained, with a sink visible in the background."} +{"image_id": 559006, "caption": "The image features a large brown bear standing in a body of water, possibly a river or a lake. The bear appears to be wading through the water, possibly searching for food or exploring its surroundings. The bear's fur is wet, indicating that it has been in the water for some time. The scene captures the majestic presence of the bear in its natural habitat."} +{"image_id": 457262, "caption": "The image features a wooden dining table with two bananas placed on it. One of the bananas appears to be rotten, while the other is still in good condition. The rotten banana is significantly larger than the other, occupying a significant portion of the table's surface.\n\nNext to the bananas, there is a small coin, possibly a penny, placed on the table. The combination of the rotten banana and the penny creates an interesting contrast in the scene."} +{"image_id": 263881, "caption": "The image features a large giraffe standing in a grassy field with trees in the background. The giraffe is positioned in the center of the scene, with its long neck and legs prominently visible. The giraffe appears to be looking at the camera, capturing the viewer's attention."} +{"image_id": 322594, "caption": "The image is a split view of a bathroom, showcasing both the toilet and the sink area. The toilet is located on the left side of the bathroom, while the sink is situated on the right side. There is a mirror above the sink, providing a clear reflection of the bathroom's interior.\n\nVarious items can be seen in the bathroom, such as a bottle placed near the sink, a cup on the right side of the sink, and a toothbrush on the left side of the sink. Additionally, there is a toilet paper roll placed on the right side of the toilet."} +{"image_id": 22423, "caption": "In the image, there is a man standing next to a large elephant. The elephant is holding a hat in its trunk, and the man appears to be feeding the elephant. The man is positioned on the left side of the elephant, while the elephant occupies the majority of the right side of the image. The scene takes place near a body of water, as evidenced by the presence of water in the background."} +{"image_id": 59000, "caption": "The image depicts a cozy living room filled with various pieces of furniture and decorations. There are two couches in the room, one on the left side and the other on the right side. A chair is also present in the room, located near the left couch.\n\nThe living room is adorned with a Christmas tree, adding a festive touch to the space. A television is placed on the left side of the room, providing entertainment for the occupants. A dining table can be seen in the middle of the room, surrounded by several chairs.\n\nIn addition to the furniture, there are numerous books scattered throughout the room, indicating that the occupants enjoy reading. A remote control is also visible on the left side of the room, likely used for operating the television."} +{"image_id": 119547, "caption": "The image features a group of people, including a man wearing a suit and tie, standing in front of a white tent. The man in the suit appears to be adjusting his tie, while the other people around him seem to be engaged in conversation or observing the scene.\n\nIn total, there are six people in the scene, with some standing closer to the man in the suit and others further away. One of the individuals is holding a cell phone, possibly capturing the moment or communicating with someone else. The presence of the white tent suggests that this could be an outdoor event or gathering."} +{"image_id": 432763, "caption": "The image captures a beautiful scene of a flock of seagulls flying over a beach near the ocean. The birds are scattered throughout the sky, with some flying closer to the water and others higher up in the air. In total, there are at least 14 birds visible in the scene, creating a lively atmosphere as they soar above the shoreline."} +{"image_id": 125635, "caption": "The image features a black and white cat sitting on a window sill, looking out of the window. The cat is positioned near the center of the scene and appears to be observing its surroundings. The window is open, allowing the cat to have a clear view of the outdoors."} +{"image_id": 542549, "caption": "The image is a black and white photograph of a messy bed in a dimly lit room. On the bed, there are several books scattered around, with some lying on top of each other. A notebook is also present on the bed, adding to the cluttered appearance of the scene.\n\nIn addition to the books and notebook, there are a few other items on the bed, such as a remote control and a cell phone. The remote control is located near the left side of the bed, while the cell phone can be found closer to the right side."} +{"image_id": 494759, "caption": "The image depicts a group of three people standing on a sandy beach, flying a colorful kite together. The kite is soaring high in the sky, capturing their attention as they enjoy the outdoor activity. The people are spread out across the beach, with one person on the left side, another in the middle, and the third person on the right side of the scene. They appear to be having a fun and engaging time flying the kite together."} +{"image_id": 5617, "caption": "The image depicts a cozy bedroom scene with two cats lying on pillows on a bed. One cat is located on the left side of the bed, while the other cat is on the right side. Both cats appear to be sleeping or resting comfortably on the pillows.\n\nIn addition to the cats and pillows, there are a few other items in the room. A laptop can be seen on the left side of the bed, and a cell phone is located near the top left corner of the bed. There are also two books, one on the left side of the bed and the other on the right side."} +{"image_id": 279774, "caption": "The image depicts a group of young boys playing a game of baseball on a field. One of the boys is in the process of swinging a baseball bat, attempting to hit the ball. There are several other players on the field, some of them holding baseball gloves, ready to catch the ball.\n\nIn addition to the players, there are a few chairs placed around the field, likely for spectators to sit and watch the game. The scene captures the excitement and camaraderie of a little league baseball game."} +{"image_id": 323442, "caption": "The image depicts a man and a woman sitting at a dining table under a large umbrella, enjoying a meal together. They are surrounded by several wine glasses placed on the table, indicating that they might be having a wine tasting or simply enjoying some wine during their meal.\n\nIn addition to the wine glasses, the table is set with various utensils such as forks, knives, and spoons, as well as cups and bowls. There are also a couple of bottles on the table, possibly containing wine or other beverages.\n\nAround the dining area, there are a few chairs and a potted plant, adding to the ambiance of the outdoor dining experience."} +{"image_id": 109454, "caption": "In the image, a man is sitting at a dining table, wearing a blue shirt and a blue tie. He is holding a green bottle in his hand and appears to be drinking from it. Another person can be seen in the background, but they are not the main focus of the scene.\n\nThe dining table is set with various items, including a wine glass, a fork, a knife, a spoon, and a bowl. There are also two cups placed on the table, one closer to the man and the other further away. A chair is positioned near the table, likely for the man to sit on while enjoying his drink."} +{"image_id": 370677, "caption": "The image features a group of three women standing in front of a bakery display case, smiling and posing for a picture. They are all wearing uniforms, indicating that they might be employees of the bakery.\n\nThe bakery display case is filled with an assortment of donuts, showcasing a variety of flavors and toppings. There are at least 13 donuts visible in the case, with some placed closer to the foreground and others further back. The women appear to be proud of the bakery's offerings and are eager to share their enthusiasm with others."} +{"image_id": 521509, "caption": "The image depicts a woman sitting on a bed in a bedroom. She is holding a camera in her hands, possibly preparing to take a photo or record a video. The bed occupies a significant portion of the room, extending from the left side to the right side of the image.\n\nThere are two potted plants in the room, one located on the left side of the bed and the other on the right side. A vase can be seen on the left side of the bed as well. Additionally, there are two bottles in the room, one near the left edge of the bed and the other closer to the right side."} +{"image_id": 236461, "caption": "The image captures a man skillfully riding a wave on a surfboard in the ocean. He is in the middle of the wave, displaying his surfing abilities. The surfer is wearing a wetsuit, which helps him stay warm and comfortable in the water.\n\nThere are several birds flying in the sky above the surfer, adding a lively atmosphere to the scene. The birds are scattered across the sky, with some closer to the surfer and others further away. The combination of the surfer, the wave, and the birds creates a dynamic and exciting image."} +{"image_id": 534845, "caption": "The image features a teddy bear hanging from a clothesline in front of a building. The teddy bear is positioned towards the left side of the scene and appears to be the main focus of the image.\n\nIn addition to the teddy bear, there are several other items hanging on the clothesline, including multiple pairs of pants and a couple of shirts. The pants and shirts are spread out across the clothesline, with some closer to the teddy bear and others further away. The scene creates a playful and nostalgic atmosphere, reminiscent of childhood memories."} +{"image_id": 180580, "caption": "The image features a blue plate filled with an assortment of vegetables, including several pieces of broccoli, carrots, and asparagus. The vegetables are arranged in a visually appealing manner, with the carrots and asparagus placed next to the broccoli. The plate is placed on a dining table, ready to be enjoyed as a healthy and delicious meal."} +{"image_id": 484551, "caption": "The image features a woman wearing sunglasses and an orange shirt, sitting on a boat in the ocean. She is smiling and appears to be enjoying her time on the boat. The woman is positioned in the center of the scene, with the boat occupying the majority of the image.\n\nThere are a few other people visible in the background, but they are not the main focus of the scene. The overall atmosphere of the image is relaxed and leisurely, as the woman enjoys her time on the water."} +{"image_id": 456146, "caption": "The image depicts a large herd of sheep walking down a dirt road. There are at least thirteen sheep visible in the scene, spread out along the road. Some of the sheep are closer to the foreground, while others are further down the road, creating a sense of depth in the scene. The sheep appear to be moving in the same direction, possibly grazing or traveling together as a group."} +{"image_id": 283131, "caption": "The image depicts a small bathroom with a white toilet situated next to a bathtub. The toilet is positioned in the middle of the bathroom, while the bathtub occupies the right side of the room. A sink can be seen on the left side of the bathroom.\n\nIn addition to the bathroom fixtures, there are two bags present in the scene. One bag is placed on the left side of the toilet, and the other bag is located on the right side of the bathtub. The presence of these bags suggests that the bathroom might be in the process of being cleaned or organized."} +{"image_id": 23309, "caption": "The image showcases a close-up view of a delicious pasta salad with a variety of ingredients. The dish is filled with noodles, broccoli, carrots, and onions, all mixed together to create a colorful and appetizing meal. There are several pieces of broccoli and carrots scattered throughout the dish, adding a vibrant touch to the presentation. The combination of pasta, vegetables, and other ingredients creates a visually appealing and nutritious meal."} +{"image_id": 547487, "caption": "In the image, a young boy is skillfully performing a trick on his skateboard, jumping high into the air. He is the main focus of the scene, showcasing his talent.\n\nThere are several other people in the background, watching the skateboarder's performance. Some of them are standing closer to the skateboarder, while others are further away. They seem to be enjoying the spectacle and possibly waiting for their turn to showcase their own skateboarding skills."} +{"image_id": 34830, "caption": "The image depicts a men's restroom with a white urinal mounted on the wall. The urinal is positioned next to a red tile wall, which adds a vibrant touch to the bathroom. The tiles on the wall are arranged in a checkered pattern, creating a visually appealing design. The overall atmosphere of the restroom appears clean and well-maintained."} +{"image_id": 125997, "caption": "The image features a large blue wall with white lettering that reads \"UAREAL ALIVE.\" The wall appears to be a part of a building, possibly a store or an advertisement. In the background, there is a parking meter located on the left side of the scene."} +{"image_id": 19916, "caption": "The image features a wooden dining table with a white bowl filled with sliced apples and cinnamon. The bowl is placed in the center of the table, accompanied by a fork on the right side and a knife on the left side. A laptop is positioned on the left side of the table, indicating that someone might be working or browsing the internet while enjoying their meal."} +{"image_id": 145019, "caption": "In the image, a group of people is gathered around an overturned airplane that has crashed on the side of a hill. There are at least five people visible in the scene, with some standing closer to the airplane and others further away. One of the individuals is holding a cell phone, possibly capturing the moment or communicating with others.\n\nA large truck is present in the scene, parked near the crashed airplane. The truck's presence suggests that it might be involved in the recovery or investigation of the incident."} +{"image_id": 127161, "caption": "The image features a dining table with a white tablecloth. On the table, there is a plate containing two slices of pizza. One of the slices has been cut in half, revealing the toppings inside. The pizza slices are placed on a fork, which is resting on the table next to the plate.\n\nIn addition to the pizza, there is a bowl located towards the right side of the table, possibly containing a side dish or sauce to accompany the meal."} +{"image_id": 543660, "caption": "The image depicts a bathroom with two toilets positioned next to each other. One toilet is located on the left side of the room, while the other is on the right side. Both toilets have their lids up, revealing the toilet bowls.\n\nThe bathroom features a black and white checkered floor, which adds a unique touch to the space. Additionally, there are two sinks in the room, one located near the left toilet and the other near the right toilet."} +{"image_id": 8333, "caption": "The image features a red, white, and yellow Virgin train traveling down the tracks next to a brick building. The train occupies a significant portion of the scene, stretching from the left to the right side of the image.\n\nIn addition to the train, there are several cars and buses visible in the scene. Two buses can be seen on the left side of the image, with one closer to the foreground and the other further back. Three cars are also present in the scene, with one on the left side, another in the middle, and the third on the right side of the image."} +{"image_id": 482907, "caption": "The image features a small, old-fashioned airplane flying through a clear blue sky. The airplane appears to be a biplane, with two sets of wings, one above the other. It is flying at a relatively low altitude, close to the viewer's perspective.\n\nIn addition to the main airplane, there are two smaller airplanes visible in the sky, one positioned to the left and the other to the right of the main plane. These smaller airplanes appear to be flying at a higher altitude than the main biplane."} +{"image_id": 290130, "caption": "The image captures a man skillfully riding a surfboard on top of a large wave in the ocean. He is wearing a black wetsuit and appears to be enjoying the thrill of surfing. The surfer is positioned in the center of the scene, with the wave surrounding him on all sides.\n\nIn the background, there is another person visible, likely observing the surfer's performance or waiting for their turn to ride the waves."} +{"image_id": 58225, "caption": "In the image, a person is holding a hot dog with mustard and ketchup on a bun. The hot dog is placed in the center of the scene, and the person is holding it up for the camera. The setting appears to be a stadium or an outdoor event, as there are several other people visible in the background. Some of them are closer to the person holding the hot dog, while others are further away. The presence of multiple people suggests a lively atmosphere at the event."} +{"image_id": 249550, "caption": "The image depicts a cozy bedroom scene featuring a bed with a colorful floral bedspread. The bed occupies a significant portion of the room, stretching from the left side to the right side of the image. A potted plant is placed next to the bed, adding a touch of greenery to the space.\n\nIn addition to the bed and the potted plant, there is a small table in the room. A vase can be seen on the table, further enhancing the room's decor. The combination of the bed, potted plant, and table creates a warm and inviting atmosphere in the bedroom."} +{"image_id": 448765, "caption": "The image depicts a small bathroom with a white toilet and a white sink. The toilet is positioned on the right side of the bathroom, while the sink is located on the left side. There is a roll of toilet paper hanging on the wall above the toilet.\n\nIn addition to the main fixtures, there is a small trash can placed on the floor next to the toilet. The bathroom appears to be clean and well-maintained."} +{"image_id": 498439, "caption": "The image depicts a baseball game in progress on a field. There are several baseball players on the field, with one player in the foreground wearing a white uniform and a baseball glove. Other players can be seen in various positions around the field, some closer to the foreground and others further in the background.\n\nIn addition to the players, there are multiple benches and chairs scattered around the field, likely for the team members to sit on when they are not actively participating in the game. A baseball glove can also be spotted on the ground, possibly belonging to one of the players."} +{"image_id": 252403, "caption": "The image features a young woman with long black hair, wearing glasses and a green shirt. She is holding a blue and white Colgate toothbrush up to her face, seemingly posing for a picture. The toothbrush is positioned close to her mouth, and she appears to be smiling for the camera."} +{"image_id": 347995, "caption": "The image depicts a woman lying in bed with her newborn baby and a black dog. The woman is smiling and appears to be enjoying her time with the baby and her pet. The dog is resting on the woman's chest, providing a sense of comfort and companionship.\n\nIn the room, there are several books scattered around, indicating that the woman might have been reading before or after the baby was born. A bottle can also be seen on the bed, suggesting that the baby might have been recently fed. Additionally, there is a clock on the wall, allowing the woman to keep track of time while spending time with her family."} +{"image_id": 544216, "caption": "The image features a dining table with a delicious meal consisting of a sandwich and a side of potato chips. The sandwich is cut in half and placed on a plate, while the potato chips are scattered around the plate. There are two cups on the table, one near the top left corner and the other near the top right corner.\n\nIn addition to the main meal, there are two bowls on the table. One bowl is located near the top left corner, and the other bowl is situated near the top right corner. A person can be seen in the background, likely enjoying the meal or preparing to eat."} +{"image_id": 205729, "caption": "The image depicts a group of people skiing on a snow-covered mountain slope. There are at least nine people in the scene, all wearing skis and enjoying their time on the mountain. The skiers are scattered across the slope, with some closer to the foreground and others further in the background.\n\nIn addition to the skiers, there are two backpacks visible in the scene. One backpack is located near the left side of the image, while the other is positioned closer to the center. The presence of these backpacks suggests that the group may be on an extended skiing adventure or a multi-day excursion."} +{"image_id": 350988, "caption": "The image depicts a long wooden bench situated in the middle of a room. The bench stretches from one end of the room to the other, providing ample seating space for people to sit and relax. The bench appears to be made of wood, giving it a warm and inviting appearance."} +{"image_id": 288673, "caption": "The image depicts a group of people enjoying a day at the beach, flying a colorful kite high in the sky. There are at least six people visible in the scene, with some standing closer to the water and others further back on the sandy beach.\n\nIn addition to the people and the kite, there is a car parked near the edge of the beach, possibly belonging to one of the beachgoers. The overall atmosphere of the scene is lively and fun, with everyone participating in the kite-flying activity."} +{"image_id": 568690, "caption": "The image features a small cat sitting on top of a white toilet in a bathroom. The cat appears to be curiously observing its surroundings. The toilet is situated next to a bathtub, and there is a shower curtain in the background. Additionally, there is a sink in the bathroom, located towards the right side of the scene."} +{"image_id": 504194, "caption": "In the image, a large brown dog is sitting on a brick sidewalk next to a wooden bench. The dog appears to be patiently waiting, possibly for its owner to return. The bench is positioned on the left side of the scene, while the dog occupies most of the right side.\n\nThere are several bicycles in the background, indicating that the area might be a popular spot for cyclists. Two bicycles can be seen on the left side of the scene, while another one is located further back on the right side."} +{"image_id": 35368, "caption": "The image features a dining table with an assortment of fruits, including bananas, lemons, limes, and oranges. The bananas are prominently displayed in the center of the table, while the lemons, limes, and oranges are arranged around them. \n\nIn addition to the fruits, there are two cups placed on the table. One cup is located on the left side of the table, and the other cup is positioned on the right side. A bowl can also be seen on the table, adding to the variety of items on display."} +{"image_id": 307332, "caption": "In the image, there are three people sitting on a wooden bench near a body of water, possibly a lake or a pond. The bench is positioned close to the water's edge, providing a pleasant view for the people sitting on it. A dog is also present in the scene, standing next to the bench and looking at the people. The dog appears to be on a leash, indicating that it is under the control of one of the people sitting on the bench."} +{"image_id": 490878, "caption": "In the image, a person is skiing across a snow-covered slope with a backpack on their back. The skier is wearing a red jacket and appears to be enjoying their time in the snowy landscape. The skis can be seen clearly beneath the skier, as they glide through the snow.\n\nIn addition to the main skier, there are two other people visible in the scene. One person is located on the left side of the image, and the other person is on the right side. Both of these individuals seem to be enjoying the snowy environment as well."} +{"image_id": 507187, "caption": "The image depicts a gathering of people in a grassy area, with several individuals standing around and engaging in conversations. Among the crowd, there is a blue motorcycle parked on the grass, drawing the attention of some of the attendees.\n\nIn addition to the people and the motorcycle, there are a few handbags visible in the scene. One handbag is located near the center of the gathering, while another is closer to the right side of the image. A car can also be seen in the background, parked further away from the crowd."} +{"image_id": 254644, "caption": "The image depicts a well-organized kitchen with wooden cabinets and countertops. The kitchen is equipped with various appliances, such as a microwave, toaster, and coffee maker. There are multiple cups, bowls, and bottles placed on the countertops, indicating that the kitchen is frequently used for cooking and dining.\n\nIn addition to the appliances, there are several utensils, including knives, spoons, and a spatula. A potted plant can be seen on the countertop, adding a touch of greenery to the space. Overall, the kitchen appears clean and well-maintained, ready for use."} +{"image_id": 400803, "caption": "The image features a large orange and white boat floating on top of a body of water, possibly the ocean. There are two people on the boat, with one person standing closer to the front and the other person near the back. Both individuals are wearing life jackets, ensuring their safety during their time on the boat.\n\nIn addition to the two people, there is a dog on the boat as well. The dog is located near the middle of the boat, adding a sense of companionship to the scene."} +{"image_id": 574928, "caption": "The image depicts a peaceful scene of a large herd of sheep grazing in a lush green field. The sheep are scattered throughout the field, with some closer to the foreground and others further in the background. There are at least 14 sheep visible in the scene, each enjoying their time in the grassy pasture.\n\nIn addition to the sheep, there are a couple of houses visible in the background, adding to the rural atmosphere of the scene. Overall, the image captures a serene and idyllic countryside setting where the sheep are free to roam and graze."} +{"image_id": 559247, "caption": "The image depicts a group of people gathered around a long dining table, enjoying a meal together. The table is filled with a variety of food items, including hot dogs, sandwiches, and bowls of food. There are several hot dogs placed on the table, with some closer to the front and others towards the back.\n\nIn addition to the hot dogs, there are multiple sandwiches spread across the table, with some closer to the front and others towards the back. A few bowls of food can also be seen on the table, adding to the assortment of meal options.\n\nThe people in the scene are engaged in conversation and enjoying their time together, creating a warm and inviting atmosphere."} +{"image_id": 254625, "caption": "The image depicts a baseball player in a batting stance, holding a baseball bat and preparing to swing at an incoming pitch. He is wearing a blue and white baseball cap and a grey shirt, showcasing his readiness for the game.\n\nIn the background, there is a baseball glove visible, likely belonging to one of the fielders. The scene captures the intensity and focus of the baseball player as he awaits the pitch."} +{"image_id": 374966, "caption": "The image captures a lively scene at a skate park, where a group of young skateboarders are enjoying their time together. There are several skateboarders in the park, with some riding their skateboards and others standing around, watching and waiting for their turn.\n\nIn total, there are 13 people visible in the scene, including skateboarders and onlookers. Some of the skateboarders are actively riding their boards, while others are holding their skateboards, preparing to join the action.\n\nThere are three skateboards in the scene, with one being actively ridden by a skateboarder, and the other two being held by other skateboarders or onlookers. The skate park appears to be a popular spot for these young individuals to gather, socialize, and practice their skateboarding skills."} +{"image_id": 351967, "caption": "The image captures a busy city street at night, with a yellow taxi cab driving down the road. The taxi is positioned in the center of the scene, and its headlights are on, illuminating the street.\n\nIn the background, there is a large clock mounted on the side of a building. The clock is prominently displayed, making it a notable feature of the cityscape. The combination of the taxi, the clock, and the urban environment creates a lively and bustling atmosphere."} +{"image_id": 172877, "caption": "The image features a man sitting in a white chair, wearing a striped tie and glasses. He appears to be in a relaxed posture, with his hands clasped in his lap. The man is positioned in the center of the scene, taking up a significant portion of the frame.\n\nIn the background, there is a dining table with a bowl placed on it. Additionally, a clock can be seen hanging on the wall above the table. The overall atmosphere of the image suggests a casual and comfortable setting."} +{"image_id": 309237, "caption": "The image features a black, brown, and white cat sitting comfortably on a patterned couch. The cat is positioned in the middle of the couch, occupying a significant portion of the couch's surface.\n\nIn the background, there is a remote control placed on the couch, indicating that someone might have been watching television or using other electronic devices in the room."} +{"image_id": 565877, "caption": "The image features a woman sitting on a red couch, wearing a blue shirt and a blue hat. She is smiling and appears to be enjoying her time on the couch. In front of her, there is a laptop placed on the couch, which she might be using for work or leisure.\n\nAdditionally, there is a book on the couch near the laptop, suggesting that the woman might also be reading or engaging in other activities while sitting on the couch."} +{"image_id": 489924, "caption": "In the image, a woman is riding a skateboard down a street. She is wearing a blue shirt and shorts, and she appears to be enjoying her time on the skateboard. The skateboard is positioned in the center of the scene, with the woman standing on it and maintaining her balance. The street appears to be relatively empty, with no other people or objects visible in the image."} +{"image_id": 125472, "caption": "The image features a young man wearing a green shirt and jeans, skillfully performing a trick on a skateboard. He is in mid-air, jumping over the skateboard, showcasing his talent and athleticism. The skateboard is positioned underneath him, with the man's feet hovering above it."} +{"image_id": 422706, "caption": "In the image, a large orange boat is being lifted out of the water by a crane. The boat is positioned in the middle of the scene, and the crane is located towards the left side of the image.\n\nThere are two people visible in the scene, one on the left side and the other on the right side. The person on the left is closer to the boat, while the person on the right is further away. Both individuals appear to be observing the boat being lifted by the crane."} +{"image_id": 290700, "caption": "The image captures a man skillfully riding a wave on a surfboard in the ocean. He is wearing a white shirt and appears to be enjoying the thrill of surfing. The surfer is positioned in the middle of the wave, showcasing his balance and control over the surfboard.\n\nIn the background, there is another person partially visible, likely observing the surfer's performance or waiting for their turn to catch a wave."} +{"image_id": 365177, "caption": "The image features a large white and yellow bus parked on the side of a street. The bus has the word \"Bibber\" written on its side, and it appears to be a tour bus. The bus takes up a significant portion of the scene, stretching from the left edge to the right edge of the image.\n\nThere are a few people visible in the scene, with one person standing near the front of the bus and two others closer to the right side of the bus. Additionally, a car can be seen in the background on the right side of the image."} +{"image_id": 398661, "caption": "The image depicts a well-organized kitchen with various cooking utensils and appliances. A microwave is placed on the left side of the kitchen counter, while a toaster oven is located on the right side. There are several pots and pans hanging on the wall, showcasing a variety of sizes and shapes.\n\nIn addition to the hanging pots and pans, there are numerous spoons, knives, and other cooking utensils scattered throughout the kitchen. Some of these utensils are placed on the counter, while others are hanging or stored in cabinets. A bowl can also be seen on the counter, adding to the kitchen's well-stocked appearance."} +{"image_id": 175611, "caption": "In the image, a person is skillfully cutting tobacco leaves using a pair of scissors. The scissors are positioned in the middle of the scene, with the person's hands gripping the handles. The tobacco leaves are placed on a cutting board, which occupies a significant portion of the scene.\n\nThere are several books scattered around the workspace, with some placed near the cutting board and others positioned further away. A chair can also be seen in the background, likely for the person to sit on while working on the tobacco leaves."} +{"image_id": 477673, "caption": "The image features a small kitten sitting on top of a backpack. The kitten is positioned in the middle of the backpack, occupying a significant portion of the space. The backpack appears to be grey in color, and the kitten seems to be comfortably resting on it."} +{"image_id": 1270, "caption": "The image depicts a baseball game in progress, with a young boy standing at home plate, holding a baseball bat and preparing to hit the ball. There are several other people in the scene, including teammates, opponents, and possibly coaches or spectators. Some of these individuals are wearing baseball gloves, ready to catch the ball.\n\nIn addition to the people, there are a few chairs scattered around the area, likely for spectators to sit and watch the game. A bottle can also be spotted in the scene, possibly containing water or another beverage for the players to stay hydrated during the game."} +{"image_id": 224012, "caption": "The image features a white plate filled with a delicious assortment of food. On the plate, there is a generous portion of meat, likely ham, accompanied by a variety of vegetables, including broccoli, potatoes, and mushrooms. The broccoli pieces are scattered across the plate, with some located near the center and others closer to the edges. The combination of meat and vegetables creates a well-balanced and appetizing meal."} +{"image_id": 552510, "caption": "The image depicts a group of young children playing soccer on a grassy field. There are at least nine children visible in the scene, with some of them actively participating in the game, while others are watching or waiting for their turn.\n\nA sports ball, likely a soccer ball, can be seen in the center of the field. The children are spread out across the field, with some closer to the ball and others positioned further away. The scene captures the excitement and energy of a lively children's soccer game."} +{"image_id": 272880, "caption": "The image features a wooden dining table with a partially eaten pizza on a pizza pan. A slice of pizza is missing from the pan, indicating that someone has already started enjoying the meal. A fork and a knife can be seen on the table, likely used for cutting and eating the pizza.\n\nIn addition to the pizza, there is a cup placed on the table, possibly containing a beverage to accompany the meal. A person's hand is visible in the foreground, holding a piece of paper with the words \"Mystic Pizza\" written on it. This suggests that the pizza might be from the Mystic Pizza restaurant."} +{"image_id": 580540, "caption": "The image features a black dog sitting on a hardwood floor in front of a flat-screen TV. The TV is mounted on the wall, and the dog appears to be watching it intently. The dog is positioned near the center of the scene, with the TV on its left side.\n\nIn addition to the dog and the TV, there are a few other objects in the room. A remote control can be seen on the floor to the left of the dog, and a cell phone is placed on the floor to the right of the dog. There is also a book located near the right edge of the scene."} +{"image_id": 242934, "caption": "The image depicts a cozy living room filled with black leather furniture, including two couches and a chair. One of the couches is positioned towards the left side of the room, while the other couch is located on the right side. The chair is situated in the middle of the room.\n\nThe living room is adorned with various decorative items, such as a clock hanging on the wall, a vase placed on a surface, and several books scattered throughout the space. There is also a remote control resting on one of the couches.\n\nIn addition to the furniture and decorative items, the room features a rug on the floor, adding a touch of warmth and comfort to the space."} +{"image_id": 178807, "caption": "In the image, there are two young boys riding skateboards on a sidewalk. One boy is riding a skateboard on the left side of the image, while the other boy is riding a skateboard on the right side of the image. Both boys appear to be enjoying their time skateboarding together.\n\nIn addition to the skateboarders, there is a car parked in the background on the right side of the image."} +{"image_id": 135748, "caption": "The image features a small, fluffy dog lying on a blue blanket. The dog appears to be resting or sleeping on the blanket, which is placed on the floor. Next to the dog, there is a bottle of orange juice, adding a pop of color to the scene.\n\nIn addition to the dog and the bottle of juice, there are a few other items in the scene. A remote control can be seen on the right side of the image, and a cell phone is located near the top left corner. The presence of these items suggests that the scene might be taking place in a living room or a similar indoor space."} +{"image_id": 255036, "caption": "The image depicts a city street intersection with a red brick building in the background. There is a traffic light at the corner of the intersection, which is currently displaying a red light. Several cars are parked along the street, with some closer to the building and others further away.\n\nIn addition to the cars, there are two trucks visible in the scene. One truck is parked near the middle of the street, while the other is positioned closer to the right side of the image. The overall atmosphere of the scene is that of a typical city street with traffic and parked vehicles."} +{"image_id": 3926, "caption": "The image depicts two sheep standing in a snow-covered field. One sheep is positioned towards the left side of the field, while the other sheep is on the right side. Both sheep appear to be grazing on the snow-covered ground.\n\nIn addition to the sheep, there are several snowballs scattered throughout the field. Some of these snowballs are close to the sheep, while others are located further away. The snow-covered field and the presence of snowballs create a picturesque winter scene."} +{"image_id": 236762, "caption": "The image depicts a large group of people gathered around a dining table, enjoying a meal together. There are at least 11 people visible in the scene, with some sitting on chairs and others standing around the table. The table is filled with various food items, including pizza, wine glasses, cups, bowls, and utensils such as forks, knives, and spoons.\n\nSeveral chairs are placed around the dining table, and a potted plant can be seen in the background, adding a touch of greenery to the scene. The atmosphere appears to be lively and social, with everyone engaged in conversation and enjoying each other's company."} +{"image_id": 248314, "caption": "The image features a wooden dining table with various items on it. On the table, there is a laptop, a keyboard, a mouse, and a bowl of food. The bowl appears to be filled with rice, and there is a spoon placed next to it. Additionally, there are two bottles on the table, one near the top left corner and the other near the top right corner.\n\nA chair is positioned in front of the table, ready for someone to sit down and enjoy their meal while working or browsing the internet on the laptop."} +{"image_id": 559773, "caption": "The image captures a thrilling moment of a person skiing down a snow-covered slope and jumping over an orange fence. The skier is in mid-air, showcasing their skill and athleticism. The skis can be seen clearly beneath the skier as they soar through the air.\n\nIn addition to the main skier, there are two other people visible in the scene, one on the left side and another on the right side of the image. They seem to be observing the skier's impressive jump."} +{"image_id": 340665, "caption": "The image features a woman standing in the rain, holding an umbrella to protect herself from the downpour. She is wearing glasses and a blue sweater, and she appears to be the main focus of the scene.\n\nThere are a few other people in the background, but they are not as prominent as the woman with the umbrella. Additionally, there are two handbags visible in the scene, one near the center and the other towards the right side of the image."} +{"image_id": 388599, "caption": "The image features a brown and white dog standing in a grassy field, holding a frisbee in its mouth. The dog appears to be enjoying playing with the frisbee, which is positioned close to the center of the scene.\n\nA person is also present in the scene, standing to the right of the dog and interacting with the frisbee. The person's hand can be seen close to the frisbee, possibly preparing to throw it again for the dog to catch."} +{"image_id": 163528, "caption": "The image features a close-up view of a delicious pizza with various toppings, including lettuce, tomatoes, onions, and bacon. The pizza is placed on a white plate, which is positioned on a dining table. A fork can be seen on the left side of the pizza, ready to be used for enjoying the meal. The pizza appears to be well-prepared and ready to be eaten."} +{"image_id": 481212, "caption": "In the image, a man is sitting on a red couch with two cats on his lap. One cat is on his left side, and the other is on his right side. The man is holding a coffee mug in his hand while enjoying the company of the cats. The couch is positioned in front of a window, allowing natural light to illuminate the scene."} +{"image_id": 277533, "caption": "The image features a man sitting on a red couch, holding a Nintendo Wii game controller in his hands. He appears to be enjoying a gaming session, possibly playing a game on the Wii console. The couch occupies a significant portion of the scene, with the man sitting comfortably in the middle of it."} +{"image_id": 173383, "caption": "The image features a beautifully decorated three-tiered wedding cake placed on a dining table. The cake is adorned with orange flowers and blue ribbons, adding a touch of elegance to the celebration. A knife is also present on the table, ready to be used for cutting and serving the cake.\n\nIn addition to the cake, there is a lit candle on the table, creating a warm and inviting atmosphere for the wedding reception. The table is surrounded by chairs, suggesting that guests will soon be seated for the festivities."} +{"image_id": 419624, "caption": "The image depicts a white and red train traveling down the tracks, surrounded by a lush green forest. The train appears to be a commuter train, as it is carrying many passengers. There are at least 13 people visible on the train, with some sitting closer to the front and others further back.\n\nThe train occupies a significant portion of the image, stretching from the left side almost all the way to the right side of the frame. The forest surrounding the train adds a sense of tranquility and natural beauty to the scene."} +{"image_id": 130291, "caption": "In the image, a man and a woman are standing next to each other, with the woman helping the man tie his tie. The man is wearing a suit and tie, while the woman is dressed in a black shirt. They are both focused on the task at hand, ensuring that the man's tie is properly fastened.\n\nThe scene takes place in a room with a dining table visible in the background. There are two chairs in the room, one on the left side and another on the right side. Additionally, a cell phone can be seen placed on a surface in the room."} +{"image_id": 193369, "caption": "The image depicts an old, rusted metal bench situated in a grassy area. The bench is positioned on a stone walkway, surrounded by grass and rocks. The bench appears to be in a state of disrepair, as it is covered in rust and has a worn-out appearance. Despite its age and condition, the bench still provides a place for people to sit and enjoy the natural surroundings."} +{"image_id": 367804, "caption": "The image features a young girl standing on a sandy beach, flying a kite high in the sky. She appears to be enjoying her time at the beach, with the kite soaring above her.\n\nIn the background, there are several umbrellas scattered across the beach, providing shade for beachgoers. Some of these umbrellas are closer to the water, while others are further back on the sand. Additionally, there are a few other people visible in the scene, likely enjoying their time at the beach as well."} +{"image_id": 84735, "caption": "The image captures a thrilling moment during a baseball game. A baseball player is in the middle of swinging his bat, attempting to hit the ball. He is wearing a baseball glove, ready to catch the ball if it comes his way.\n\nThere are several other people in the scene, including teammates, opponents, and possibly coaches. Some of them are standing close to the batter, while others are scattered around the field. A baseball glove can also be seen in the hands of one of the players.\n\nIn the background, a crowd of spectators is watching the game intently, creating an exciting atmosphere for the players and the audience alike."} +{"image_id": 247285, "caption": "In the image, a man and a woman are standing together under a large, colorful umbrella. The woman is holding a baby in her arms, providing shade and protection from the sun. The umbrella covers both the woman and the baby, creating a sense of unity and togetherness.\n\nThe woman is wearing a watch on her left wrist, while the man is wearing a watch on his right wrist. They both appear to be enjoying their time together under the umbrella."} +{"image_id": 438432, "caption": "The image is a vintage black and white photograph of a girls' cricket team from the 1930s. The team members are posing for a group photo, with some of them sitting and others standing. There are a total of 12 girls in the picture, all wearing ties as part of their uniform.\n\nThe girls are arranged in a semi-circle, with some sitting on chairs and others standing. The chairs are positioned around the group, with one on the left side, one in the middle, and another on the right side. The girls are all smiling, showcasing their team spirit and camaraderie."} +{"image_id": 185479, "caption": "In the image, a man is sitting on the floor with his legs crossed, using a laptop computer. The laptop is placed on his lap, and he appears to be working or browsing the internet. The man is wearing glasses, and there is a backpack nearby, possibly containing his belongings or work materials. The scene suggests a casual and comfortable work environment."} +{"image_id": 570826, "caption": "The image features a blue and yellow passenger train traveling down the tracks. The train occupies a significant portion of the scene, stretching from the left to the right side of the image.\n\nThere are a few people visible in the scene, with one person standing close to the train on the left side, another person near the center of the image, and a third person closer to the right side of the train. Additionally, there is a handbag located near the center of the image, possibly belonging to one of the people in the scene."} +{"image_id": 127394, "caption": "The image depicts a group of people gathered around a wooden dining table, enjoying a meal together. The table is filled with a variety of food items, including pizza, salad, and other dishes. There are several cups and bowls placed on the table, as well as a few bottles.\n\nIn addition to the food and drinks, the table is set with utensils such as forks, knives, and spoons. There are also a couple of cakes on the table, adding to the festive atmosphere of the gathering. The people are seated around the table, engaged in conversation and enjoying each other's company."} +{"image_id": 311081, "caption": "The image depicts a bathroom featuring a white bathtub with a shower curtain. The shower curtain is open, revealing the bathtub's interior. The bathtub is situated next to a toilet, which is located on the left side of the bathroom.\n\nIn addition to the bathtub and toilet, there are two sinks in the bathroom. One sink is located on the left side of the bathtub, while the other sink is situated on the right side of the bathtub. The bathroom appears to be clean and well-maintained."} +{"image_id": 376677, "caption": "The image depicts a white tow truck driving down a street under a bridge. The tow truck has a crane on the back of it, which is being used to lift a blue dumpster. The truck appears to be transporting the dumpster to a new location.\n\nIn addition to the tow truck, there are several other vehicles on the street, including two cars and two trucks. One of the trucks is positioned behind the tow truck, while the other truck is located further down the street. The cars can be seen on both sides of the tow truck, with one on the left side and the other on the right side of the street."} +{"image_id": 269419, "caption": "The image features a tall brick clock tower with a clock on each of its sides. The clock tower stands prominently in the foreground, towering over the surrounding area. In the background, a tree can be seen, adding a touch of nature to the scene.\n\nAdditionally, there are two people in the image. One person is located on the left side of the clock tower, while the other person is on the right side. They seem to be admiring the impressive architecture of the clock tower."} +{"image_id": 210708, "caption": "The image captures a heartwarming scene of an adult elephant and a baby elephant swimming together in a body of water. The adult elephant is on the left side of the image, while the baby elephant is on the right side. They appear to be enjoying their time in the water, with the baby elephant swimming close to the adult elephant.\n\nIn addition to the two elephants, there is a third elephant partially visible on the left side of the image, but it is not the main focus of the scene."} +{"image_id": 472246, "caption": "The image features a white background with three fruits placed on it. The fruits are an apple, an orange, and an onion. The apple is positioned on the left side of the image, the orange is in the middle, and the onion is on the right side. The arrangement of the fruits creates a visually appealing and colorful display."} +{"image_id": 187475, "caption": "The image features a person holding a large hot dog on a bun in their hand. The hot dog is loaded with various toppings, making it look delicious and appetizing. In the background, another person can be seen sitting at a dining table, possibly enjoying a meal or a drink.\n\nOn the table, there is a cup placed near the edge, possibly containing a beverage to accompany the meal. Additionally, a knife is visible on the table, likely used for cutting or spreading condiments on the hot dog."} +{"image_id": 299457, "caption": "In the image, a young man is sitting in a chair and eating a pink and white striped lollipop. He is wearing glasses and appears to be enjoying his treat. The scene takes place in a room with a couch and a dining table visible in the background. There is also a cup placed on the dining table, possibly containing a beverage to accompany the lollipop."} +{"image_id": 2894, "caption": "The image features a train station with a train on the tracks. The train occupies a significant portion of the scene, stretching from the left to the right side of the image. There are several people scattered around the station, with some standing closer to the train and others further away.\n\nIn addition to the train and people, there are a couple of cars visible in the scene. One car is located near the center of the image, while the other car is positioned towards the right side of the scene. The presence of these cars suggests that the train station is situated in an urban or suburban area."} +{"image_id": 209733, "caption": "The image depicts a group of people enjoying a sunny day at a park, flying a large purple kite high in the sky. There are at least three people visible in the scene, with one person standing closer to the left side of the image, another person in the middle, and the third person on the right side.\n\nIn the park, there are several cars parked around the area, with one car on the left side, two cars in the middle, and another car on the right side of the image. Additionally, there is a bench located in the middle of the park, providing a place for people to sit and relax while enjoying the outdoors."} +{"image_id": 428231, "caption": "The image depicts a spacious living room filled with various pieces of furniture. There are two couches in the room, one located towards the left side and the other towards the right side. A coffee table can be seen in the center of the room, surrounded by the couches.\n\nIn addition to the couches and coffee table, there are two chairs in the room, one near the left couch and the other near the right couch. A potted plant is placed on the left side of the room, adding a touch of greenery to the space. A vase is also visible on the right side of the room, further enhancing the room's decor."} +{"image_id": 250619, "caption": "The image depicts a beautiful beach scene with a woman lying on a blanket under a large, colorful umbrella. The umbrella provides shade and protection from the sun, making it an ideal spot for relaxation. The woman appears to be enjoying her time on the beach.\n\nSeveral personal belongings are scattered around the area, including a handbag, a backpack, and a suitcase. The handbag and backpack are placed close to the woman, while the suitcase is positioned further away. The presence of these items suggests that the woman may be spending an extended period of time at the beach."} +{"image_id": 434693, "caption": "The image features a white fire hydrant situated on a sidewalk next to a pink house. The fire hydrant is attached to a white pole, and it appears to be in good condition. In the background, there is a car parked on the street, and a truck can be seen further down the road. Additionally, a potted plant is located near the fire hydrant, adding a touch of greenery to the scene."} +{"image_id": 15596, "caption": "The image captures a thrilling moment on a race track, with two motorcycles racing side by side. One motorcycle is positioned on the left side of the track, while the other is on the right side. Both riders are wearing helmets and appear focused on the race.\n\nIn addition to the motorcycles, there are a few other objects in the scene. A car can be seen in the background on the left side of the track, and a truck is parked further back on the right side. There is also a person standing near the right side of the track, possibly observing the race or waiting for their turn to participate."} +{"image_id": 569415, "caption": "The image features a large elephant walking through a grassy field. The elephant is the main focus of the scene, occupying a significant portion of the image from left to right. The elephant's trunk can be seen on the left side of the image, while its tail is visible on the right side.\n\nIn the background, there are a few other elephants, but they are not as prominent as the main elephant in the foreground. The grassy field provides a natural habitat for these majestic creatures."} +{"image_id": 305004, "caption": "The image captures a young man skillfully riding a surfboard on top of a wave in the ocean. He is wearing a colorful pair of swim trunks and appears to be enjoying the thrill of surfing. The surfboard is positioned under his feet, allowing him to maintain balance and control as he glides through the water."} +{"image_id": 510527, "caption": "The image features a man wearing a pink shirt and tie, sitting in the passenger seat of a car. He is adjusting his necktie, possibly preparing for a formal event or a business meeting. The man appears to be focused on the task at hand.\n\nIn the background, there are two cars visible, one on the left side and another on the right side of the image. Additionally, there are two other people in the scene, but they are not the main focus of the image."} +{"image_id": 581317, "caption": "In the image, a woman is standing on a lush green hillside, looking at her cell phone. She appears to be enjoying her time outdoors, possibly taking a break from hiking or exploring the area. The woman is wearing a pink shirt, which contrasts nicely with the vibrant greenery of the hillside.\n\nThere are a few other people visible in the background, but they are not the main focus of the scene. Instead, the main focus is on the woman and her cell phone, capturing a moment of relaxation and connection with nature."} +{"image_id": 532071, "caption": "The image depicts a large brown bear resting in a grassy field. The bear is laying down on the grass and appears to be enjoying its time outdoors. The field is surrounded by trees, providing a natural and serene environment for the bear."} +{"image_id": 467978, "caption": "The image depicts a black and white dog running through a grassy field, chasing a herd of sheep. There are several sheep scattered throughout the field, with some closer to the dog and others further away. The dog appears to be focused on catching one of the sheep, displaying its agility and determination. The scene captures the excitement of the dog's pursuit and the sheep's attempts to escape."} +{"image_id": 184972, "caption": "The image depicts a group of people gathered around a dining table, enjoying a meal and each other's company. A man in the center of the scene is wearing a tie with the words \"I'm too old for this\" written on it, adding a touch of humor to the gathering.\n\nThere are several people sitting and standing around the table, engaged in conversation and enjoying their time together. Various items can be seen on the table, such as a wine glass, a fork, a knife, and a cup. A chair is also visible in the scene, placed near the dining table."} +{"image_id": 525568, "caption": "The image features a group of zebras standing together in a grassy field. There are three zebras prominently visible in the scene, with two of them standing close to each other, while the third zebra is positioned slightly further away. The zebras appear to be relaxed and enjoying their time in the field."} +{"image_id": 165056, "caption": "In the image, there are two giraffes standing next to each other in an enclosure. One giraffe is on the left side of the image, while the other is on the right side. Both giraffes are looking at the camera, capturing the viewer's attention.\n\nA person is also present in the scene, standing behind the giraffes. The person appears to be observing the giraffes or possibly taking care of them in the enclosure."} +{"image_id": 362240, "caption": "The image depicts a garage filled with various motorcycles and a deer head mounted on the wall. There are three motorcycles in the scene, with one prominently placed in the foreground, another in the middle, and the third one towards the right side of the garage.\n\nIn addition to the motorcycles, there are several books scattered throughout the garage, with some placed on the floor and others on shelves or surfaces. A bottle can also be seen in the middle of the garage, adding to the cluttered appearance of the space."} +{"image_id": 179558, "caption": "The image depicts two giraffes standing next to each other in a grassy field. One of the giraffes is eating leaves from a tree branch, while the other giraffe looks on. The giraffes are positioned close to each other, with one on the left side and the other on the right side of the image. The scene captures a peaceful moment between the two giraffes as they interact with their surroundings."} +{"image_id": 120792, "caption": "The image depicts two men standing in a living room, playing a boxing video game on a Nintendo Wii console. One of the men is actively engaged in the game, holding a Wii remote in his hand, while the other man watches and enjoys the gameplay.\n\nThe living room is furnished with a couch, a chair, and a dining table. There is a TV on the left side of the room, where the men are playing the video game. Various objects can be seen around the room, such as a cup, a bottle, a book, a cell phone, and a couple of sports balls. The room appears to be a casual and comfortable space for the two men to enjoy their gaming session."} +{"image_id": 294865, "caption": "The image depicts a group of people standing on the back of a train, waving and enjoying the ride. There are at least 11 people visible in the scene, with some standing closer to the front of the train and others near the middle or back. They appear to be having a good time and enjoying each other's company as they travel together on the train."} +{"image_id": 159662, "caption": "The image depicts a woman standing on a tennis court, holding a tennis racket in her hand. She is wearing a pink dress and appears to be focused on her game. There are several other people in the scene, some of whom are also holding tennis rackets.\n\nIn addition to the people, there are a few chairs scattered around the court, likely for players to rest during breaks. A backpack can also be seen on the court, possibly belonging to one of the players."} +{"image_id": 176906, "caption": "The image depicts a group of people gathered around a fenced-in area, where several sheep and goats are grazing on grass. There are at least five sheep and three goats in the enclosure, with some of them eating from a bowl placed on the ground.\n\nIn addition to the people and animals, there are two cars parked in the background, one on the left side and the other on the right side of the scene. A bench can also be seen in the middle of the enclosure, providing a place for people to sit and observe the animals."} +{"image_id": 250608, "caption": "The image features a large blue and white bus parked on the side of a street. The bus is positioned close to the curb, possibly waiting for passengers to board or disembark. There are several cars parked along the street as well, with some closer to the bus and others further away.\n\nIn addition to the bus and cars, there are two people visible in the scene. One person is standing near the front of the bus, while the other person is located closer to the middle of the scene. The presence of these individuals suggests that they might be waiting for the bus or simply passing by."} +{"image_id": 33561, "caption": "The image depicts a large herd of cows grazing in a lush green field. The cows are scattered throughout the field, with some closer to the foreground and others further in the background. In total, there are at least 14 cows visible in the scene.\n\nThe field is surrounded by trees, providing a serene and natural environment for the cows to graze in. The cows appear to be content and well-fed, enjoying their time in the pasture."} +{"image_id": 274612, "caption": "The image features a row of bicycles parked next to each other in front of a building. The bicycles come in various colors, including pink, blue, orange, and yellow. Some of the bicycles have umbrellas attached to them, providing shade and protection from the elements.\n\nIn addition to the bicycles, there is a motorcycle parked near the left side of the scene. A person can be seen standing near the middle of the scene, possibly attending to one of the bicycles or just passing by."} +{"image_id": 288714, "caption": "The image features a close-up view of a partially eaten pizza with various toppings. The pizza is topped with olives, mushrooms, and cheese, creating a delicious and appetizing meal. The pizza is placed on a dining table, ready to be enjoyed by those who will partake in it."} +{"image_id": 284379, "caption": "The image features a young boy wearing a black shirt and blue shorts, lying on a yellow and blue surfboard in a wave pool. The boy appears to be enjoying his time on the surfboard, possibly learning how to surf or simply having fun in the water. The wave pool is filled with water, providing a suitable environment for the boy's surfing experience."} +{"image_id": 205247, "caption": "The image features a large white bus parked on the side of a street. The bus is adorned with various advertisements, including one for the Cincinnati Bearcats basketball team. The advertisement is prominently displayed on the side of the bus, capturing the attention of passersby.\n\nIn addition to the bus, there are two people visible in the scene. One person is located near the front of the bus, while the other person is standing further back, closer to the center of the image."} +{"image_id": 200267, "caption": "In the image, a woman is playing tennis on a court, holding a tennis racket and preparing to hit a tennis ball. She is surrounded by a group of people who are watching her play. There are at least 13 people in the scene, some standing closer to the court while others are further away.\n\nThere are several tennis balls scattered around the court, indicating that the woman has been practicing her shots. A backpack can be seen near the center of the scene, possibly belonging to one of the spectators or the woman playing tennis."} +{"image_id": 296775, "caption": "The image features a large blue and yellow bus driving down a city street. The bus occupies a significant portion of the scene, stretching from the left to the right side of the image. There are several people visible on the street, with some standing closer to the bus and others further away.\n\nIn addition to the bus, there are two bicycles in the scene. One bicycle is located near the right edge of the image, while the other is positioned closer to the center. The presence of the bus, people, and bicycles creates a bustling urban atmosphere."} +{"image_id": 4265, "caption": "The image features a window sill filled with an assortment of blue vases and potted plants. The vases come in various shapes and sizes, creating a visually appealing display. Some of the vases are placed closer to the window, while others are positioned further back.\n\nIn addition to the vases, there are three potted plants on the window sill, adding a touch of greenery to the scene. One of the plants is located near the left side of the window, another is in the middle, and the third is on the right side. The combination of the blue vases and potted plants creates a harmonious and inviting atmosphere."} +{"image_id": 104392, "caption": "The image depicts a spacious kitchen with wooden cabinets and granite countertops. The kitchen is well-equipped with various appliances, including a refrigerator on the right side, a microwave above the oven, and an oven below the microwave. There is also a sink in the middle of the kitchen.\n\nIn addition to the main appliances, there are several cups and bowls placed around the kitchen. Three cups can be seen on the countertops, while two bowls are located near the sink. The kitchen appears to be clean and well-organized, making it an inviting space for cooking and dining."} +{"image_id": 316658, "caption": "The image depicts a serene scene of a man sitting on a bench near a body of water, possibly a lake or a pond. The man appears to be enjoying the peaceful surroundings. There are two ducks swimming in the water close to the bench, adding to the tranquil atmosphere.\n\nIn the background, a boat can be seen floating on the water, further enhancing the picturesque setting. The combination of the man, the ducks, and the boat creates a harmonious and idyllic scene."} +{"image_id": 230993, "caption": "The image depicts two women walking down a street, each holding an umbrella to protect themselves from the rain. One of the umbrellas is red, while the other is gray. The women are carrying handbags as they walk, with one of the handbags being brown and the other being red.\n\nIn addition to the two main women, there are two other people visible in the scene, one on the left side and the other on the right side of the image. The street appears to be wet, indicating that it has recently rained."} +{"image_id": 321035, "caption": "The image features a beautifully decorated cake placed on a dining table. The cake is adorned with red frosting and has the words \"Welcome Malachi\" written in red frosting as well. The cake appears to be a celebration cake, possibly for a birthday or other special occasion.\n\nIn addition to the cake, there is a knife resting on the table, ready to be used for cutting and serving the cake."} +{"image_id": 571038, "caption": "In the image, a woman is standing in a kitchen, holding a large metal pan filled with a delicious homemade pizza. The pizza is topped with cheese, tomatoes, and basil, making it an appetizing sight.\n\nThe kitchen is well-equipped with various appliances and utensils. There are two ovens, one on the left side and another on the right side of the kitchen. A sink can be seen towards the right side of the kitchen, and a refrigerator is located on the left side.\n\nIn addition to the pizza, there are a few other items in the kitchen, such as a bottle, a cup, and a knife. A potted plant is also present, adding a touch of greenery to the space."} +{"image_id": 395978, "caption": "The image depicts a snow-covered airport runway with two airplanes visible in the scene. One airplane is positioned towards the left side of the runway, while the other is on the right side. There are three people working on the runway, with one person closer to the left airplane, another person near the center of the runway, and the third person near the right airplane.\n\nIn addition to the people and airplanes, there are two trucks present in the scene. One truck is located on the left side of the runway, and the other truck is on the right side. The presence of these trucks suggests that they might be involved in the maintenance or servicing of the airplanes."} +{"image_id": 482917, "caption": "In the image, a black and white dog is sitting on a couch next to a person. The dog appears to be attentively watching television, which is mounted on the wall above the couch. The person is also sitting on the couch, likely enjoying the company of the dog and the entertainment provided by the television."} +{"image_id": 207561, "caption": "The image captures a lively scene of three surfers riding waves in the ocean. Each surfer is skillfully navigating the waves on their surfboards, showcasing their expertise in the sport. The first surfer is located on the left side of the image, the second surfer is in the middle, and the third surfer is on the right side.\n\nThe ocean is filled with waves, providing an ideal environment for the surfers to enjoy their time in the water. The surfboards can be seen clearly beneath each surfer, adding to the dynamic nature of the scene."} +{"image_id": 369470, "caption": "The image depicts a city street with a row of parking meters lined up along the sidewalk. There are several cars parked in front of the parking meters, occupying the available parking spaces. Some cars are parked closer to the foreground, while others are parked further back in the scene.\n\nIn addition to the cars and parking meters, there are a few potted plants placed along the sidewalk, adding a touch of greenery to the urban environment. A fire hydrant is also visible near the middle of the scene, serving as a safety measure for the city."} +{"image_id": 482210, "caption": "The image depicts a small bathroom with white fixtures, including a toilet and a sink. The toilet is positioned on the right side of the bathroom, while the sink is located on the left side. A mirror is mounted on the wall above the sink.\n\nIn addition to the main fixtures, there is a shelf in the bathroom, providing storage space for toiletries and other bathroom essentials. A bottle can be seen placed on the shelf, and a toothbrush is located near the sink. The overall appearance of the bathroom is clean and well-organized."} +{"image_id": 525381, "caption": "The image captures an exciting moment during a baseball game. A baseball player is in the middle of swinging his bat, attempting to hit the ball. The catcher, wearing a baseball glove, is positioned nearby, ready to catch the ball if the batter misses.\n\nThere are several other people in the scene, including teammates, opponents, and possibly coaches or spectators. Some of these individuals can be seen in the background, while others are closer to the action. A bench is also visible in the scene, likely for players to sit on when they are not actively participating in the game."} +{"image_id": 156375, "caption": "The image features a woman standing on a snow-covered slope, wearing skis and holding ski poles in her hands. She is smiling and appears to be enjoying her time on the slopes. The woman is also wearing a pink jacket, which adds a pop of color to the scene.\n\nIn the background, there is a fence visible, likely marking the boundary of the skiing area. The woman's skis and poles are prominently featured in the foreground, emphasizing her skiing activity."} +{"image_id": 334399, "caption": "In the image, there is a man wearing a white shirt standing next to a large clock. The clock is positioned on a table, and the man appears to be admiring it. Another person can be seen in the background, possibly observing the clock as well.\n\nThere are several books scattered around the scene, with some placed on the table and others on the floor. Additionally, there is a handbag located near the right side of the image, possibly belonging to one of the people in the scene."} +{"image_id": 322955, "caption": "The image captures a serene beach scene at sunset, with a lone seagull standing on the wet sand near the water's edge. The bird appears to be walking along the shoreline, possibly searching for food or enjoying the peaceful atmosphere. The sunset casts a warm glow over the scene, creating a picturesque backdrop for the seagull's presence."} +{"image_id": 312024, "caption": "The image features a small blue and black bird perched on the ground in a grassy area. The bird appears to be looking around, possibly searching for food or observing its surroundings. The bird's vibrant blue feathers stand out against the lush green grass, creating a striking contrast in the scene."} +{"image_id": 118715, "caption": "The image is a black and white photo of a fire hydrant situated on a sidewalk next to a building. The fire hydrant is prominently positioned in the foreground, occupying a significant portion of the scene. The sidewalk appears to be made of cobblestone, adding an old-fashioned charm to the scene."} +{"image_id": 237318, "caption": "The image depicts a stop sign located in a wooded area, surrounded by trees and bushes. The stop sign is positioned on the side of a dirt road, and it appears to be slightly obscured by the surrounding vegetation. The scene gives a sense of being in the middle of a forest, with the stop sign serving as a reminder for drivers to be cautious and attentive to their surroundings."} +{"image_id": 236865, "caption": "The image features a young girl standing on a sidewalk, holding a red frisbee in her hand. She appears to be enjoying her time outdoors, possibly playing with the frisbee or preparing to throw it. The girl is wearing a floral dress, which adds a touch of color to the scene.\n\nIn the background, there are two cars parked along the side of the road, one closer to the left side of the image and the other further back on the right side. Additionally, there is a backpack placed on the ground near the center of the scene, possibly belonging to the girl or someone else in the area."} +{"image_id": 72096, "caption": "The image features a woman sitting at a dining table with plates of food in front of her. She appears to be enjoying her meal, which includes a variety of fruits and pastries. There are two cups on the table, one closer to the woman and the other further away.\n\nThe table is set with multiple utensils, such as forks, knives, and spoons, placed around the plates. There are also two bowls on the table, one closer to the woman and the other further away. A chair is positioned on the left side of the table, and a vase can be seen on the right side, adding a decorative touch to the scene."} +{"image_id": 450762, "caption": "The image features a group of teddy bears dressed in military uniforms, sitting together on a boat. There are a total of nine teddy bears in the scene, with some sitting closer to the front of the boat and others towards the back. The teddy bears are arranged in various positions, creating a sense of camaraderie and teamwork.\n\nIn addition to the teddy bears, there is also a potted plant visible in the background, adding a touch of greenery to the scene."} +{"image_id": 168974, "caption": "The image features a young child, possibly a toddler, sitting on the floor and playing with a cell phone. The child is holding the cell phone in their hands and appears to be engrossed in the device.\n\nThe scene takes place in a room with a dining table visible in the background. A chair can also be seen in the room, positioned near the dining table."} +{"image_id": 559950, "caption": "The image features a small, fluffy dog sitting in the back seat of a car, looking out the window. The dog appears to be enjoying the ride and observing its surroundings.\n\nIn addition to the dog, there are two people visible in the scene. One person is standing near the left side of the car, while the other person is closer to the center of the car. There are also two cars in the background, one on the left side and another on the right side of the image."} +{"image_id": 575776, "caption": "In the image, a zebra and a rhinoceros are standing next to each other in a dirt field. The zebra is positioned on the left side of the scene, while the rhinoceros is on the right side. The two animals appear to be facing each other, possibly engaging in a confrontation or simply interacting in their natural habitat."} +{"image_id": 552352, "caption": "The image features a close-up view of a slice of cheesecake on a plate. The cheesecake is placed on a dining table, and a fork is positioned next to it, ready to be used to enjoy the delicious dessert. The slice of cheesecake occupies a significant portion of the plate, making it the main focus of the image."} +{"image_id": 490683, "caption": "The image depicts two people playing a game of frisbee in a grassy field. One person is positioned on the left side of the field, while the other person is on the right side. Both players are actively engaged in the game, with the frisbee visible in the air between them.\n\nIn the background, there is a car parked near the edge of the field, possibly belonging to one of the players or spectators of the game."} +{"image_id": 76417, "caption": "The image features a white dog sticking its head out of the window of a black truck. The dog appears to be enjoying the breeze and observing its surroundings. The truck is stopped at a traffic light, which can be seen in the background.\n\nThere are two traffic lights in the scene, one on the left side and the other on the right side of the truck. A stop sign is also visible on the left side of the image, indicating that the truck is stopped at an intersection."} +{"image_id": 231153, "caption": "The image captures a thrilling moment of a snowboarder in mid-air, performing a jump over a snow-covered slope. The snowboarder is wearing a blue jacket and appears to be enjoying the excitement of the jump. The snowboard is clearly visible beneath the snowboarder, showcasing the impressive height of the jump.\n\nIn addition to the main snowboarder, there are two other people in the scene. One person is located on the left side of the image, while the other person is on the right side. Both individuals seem to be observing the snowboarder's impressive jump."} +{"image_id": 190497, "caption": "The image depicts a herd of black and white cows standing on a dirt road in front of a barn. There are at least thirteen cows visible in the scene, with some standing closer to the barn and others spread out along the road. The cows are of various sizes, indicating a mix of ages and stages of development.\n\nIn addition to the cows, there is a truck parked near the middle of the scene, possibly used for transporting the livestock. The overall atmosphere of the image suggests a rural setting where the cows are being managed and cared for."} +{"image_id": 126065, "caption": "The image features a clock mounted on the side of a building, with two bell statues on either side of it. The clock is prominently positioned in the center of the scene, while the bell statues are located on the left and right sides of the clock.\n\nEach bell statue is adorned with a hat, adding a touch of whimsy to the scene. The combination of the clock and bell statues creates a unique and eye-catching display on the side of the building."} +{"image_id": 375915, "caption": "The image features a wooden dining table with a delicious homemade pizza placed on a cutting board. The pizza is topped with a variety of vegetables, making it a healthy and appetizing meal. A knife is also present on the table, ready to be used for slicing the pizza.\n\nIn addition to the pizza, there are a few other items on the table, including a wine glass, a bowl, and a fork. The wine glass is positioned towards the top left corner of the table, while the bowl is located in the middle of the table. The fork is placed on the right side of the table."} +{"image_id": 95022, "caption": "The image features a gray and black bird perched on a thin tree branch. The bird appears to be a pigeon, sitting comfortably on the tree limb. The scene takes place outdoors, with the bird being the main focus of the image."} +{"image_id": 177935, "caption": "The image features a kitchen with a white stove top oven sitting on a counter. The stove has four burners, with two burners on the left side and two burners on the right side. Above the stove, there is a clock mounted on the wall.\n\nThe kitchen is well-equipped with various utensils and appliances. There are multiple knives placed around the stove, with some on the left side and others on the right side. Additionally, there are two spoons, one on the left side and the other on the right side of the stove. A bowl can also be seen on the left side of the stove."} +{"image_id": 380117, "caption": "The image features a table covered with a variety of potted plants and flowers, creating a vibrant and lively atmosphere. Among the plants, there is a cat sleeping peacefully on the table, adding a touch of warmth and charm to the scene.\n\nThe table is adorned with several potted plants of different sizes and shapes, some of which are placed closer to the edge of the table, while others are positioned more towards the center. In addition to the potted plants, there are two cups placed on the table, one near the left edge and the other closer to the center. The combination of the cat, the plants, and the cups creates a cozy and inviting setting."} +{"image_id": 132373, "caption": "The image features a large clock mounted on the side of a building with an American flag hanging nearby. The clock is prominently displayed on the side of the building, making it a focal point in the scene.\n\nIn addition to the clock and flag, there are two people visible in the image. One person can be seen on the left side of the clock, while the other person is located on the right side. The presence of these individuals adds a sense of scale and context to the scene."} +{"image_id": 284282, "caption": "The image features a dining table with two appliances placed on it. One of the appliances is a blender, while the other is a toaster oven. The blender is positioned on the left side of the table, and the toaster oven is on the right side. \n\nIn addition to the main appliances, there are two bowls on the table. One bowl is located near the blender, and the other bowl is placed closer to the toaster oven. The table appears to be a dining table, and the appliances seem to be in use or ready for use."} +{"image_id": 276707, "caption": "The image depicts a street scene with a \"no motorcycles\" sign prominently displayed on the side of the road. The sign is positioned in front of a building, possibly a shop or a business.\n\nIn addition to the \"no motorcycles\" sign, there is also a \"no bicycles\" sign visible in the scene. This indicates that both motorcycles and bicycles are not allowed in the area. The presence of these signs suggests that the location might be a pedestrian-only zone or a place where vehicles are not permitted."} +{"image_id": 194704, "caption": "The image features a young girl wearing a black jacket and goggles, proudly holding a pair of skis in her hands. She appears to be posing for a picture in front of a building, possibly a ski lodge.\n\nThere are several other people in the scene, with one person standing close to the left side of the image, another person in the middle, and a third person on the right side. Additionally, there is a handbag placed on the ground near the center of the scene."} +{"image_id": 430286, "caption": "The image features a bed with three remote controls placed on top of it. Two of the remotes are positioned closer to the left side of the bed, while the third remote is located more towards the right side. The remotes appear to be for a television or entertainment system, indicating that the bed is likely in a bedroom setting."} +{"image_id": 361171, "caption": "The image captures a thrilling moment of a snowboarder in mid-air, performing a high jump off a ramp. The snowboarder is in the center of the scene, soaring through the air with their snowboard clearly visible beneath them.\n\nIn the background, there is a tall building, possibly a skyscraper, adding to the urban setting of the scene. The snowboarder's impressive jump showcases their skill and athleticism."} +{"image_id": 406451, "caption": "The image features a horse pulling a carriage down a city street. The horse is wearing a red bow on its head, adding a touch of color to the scene. There are several cars parked along the street, and a traffic light can be seen in the background.\n\nIn addition to the horse-drawn carriage, there is a bicycle parked on the side of the street. A person is also visible in the scene, likely observing the horse and carriage or going about their daily activities."} +{"image_id": 57286, "caption": "The image captures a thrilling moment at a skate park, where a young man is performing a daring trick on his skateboard. He is in mid-air, flying through the air while riding the skateboard, showcasing his skill and athleticism.\n\nThere are several other people in the scene, watching the skateboarder's performance. Some of them are standing closer to the skateboarder, while others are further away, observing the action from different angles.\n\nIn addition to the main skateboard, there are two other skateboards visible in the scene, one near the center and the other towards the right side of the image. This suggests that the skate park is a popular spot for skateboard enthusiasts to gather and practice their skills."} +{"image_id": 535952, "caption": "The image features a wooden cutting board topped with three delicious chocolate cupcakes. The cupcakes are arranged in a visually appealing manner, with one cupcake on the left side, another in the middle, and the third on the right side of the cutting board. The cupcakes appear to be freshly baked and ready to be enjoyed."} +{"image_id": 455772, "caption": "In the image, a man is leaping into the air to catch a frisbee in a grassy field. He is wearing a hat and appears to be fully engaged in the activity. The frisbee can be seen in the air, close to the man's outstretched hand.\n\nIn the background, there are two cars parked, one on the left side and the other on the right side of the field. Additionally, there is a cell phone placed on the ground near the center of the scene."} +{"image_id": 63617, "caption": "The image depicts a young boy wearing glasses and a baseball glove, attempting to catch a baseball in mid-air. He is focused on the ball, which is positioned slightly above and to the left of him. Another person can be seen in the background, possibly observing the boy's actions or waiting for their turn to play.\n\nThere are two dogs in the scene, one on the left side and the other on the right side of the image. The dog on the left is closer to the foreground, while the dog on the right is further in the background."} +{"image_id": 90155, "caption": "The image depicts a train traveling down a set of train tracks in a rural area. The train is long and yellow, with several cars attached to it. It appears to be a freight train, transporting goods across the countryside.\n\nIn addition to the train, there are two people visible in the scene. One person is standing near the left side of the train, while the other person is positioned closer to the right side. Both individuals seem to be observing the train as it moves along the tracks."} +{"image_id": 158127, "caption": "In the image, there is a large orange cat lying on the ground next to a person's feet. The cat appears to be resting or sleeping, taking up a significant portion of the scene. The person's shoes are visible, with one shoe on the left side of the cat and the other shoe on the right side. The scene suggests a relaxed and comfortable moment between the person and the cat."} +{"image_id": 248582, "caption": "The image depicts a lively outdoor market scene with a group of people shopping for fresh fruits and vegetables. There are at least six people visible in the scene, with some of them carrying backpacks and handbags.\n\nThe market is filled with a variety of fruits and vegetables, including bananas, apples, and oranges. There are multiple bunches of bananas scattered throughout the market, as well as several apples and oranges displayed in different areas.\n\nIn addition to the fruits and vegetables, there are a couple of handbags and backpacks visible in the scene, likely belonging to the shoppers. The overall atmosphere of the market is bustling and vibrant, with people engaged in their shopping activities."} +{"image_id": 206560, "caption": "The image captures a thrilling moment of a snowboarder performing a high jump in the air. The snowboarder is in the middle of the jump, showcasing their skill and athleticism. The snowboard can be seen beneath the snowboarder as they soar through the air.\n\nIn addition to the main snowboarder, there are two other people visible in the scene. One person is located on the left side of the image, and the other person is on the right side. Both individuals appear to be watching the snowboarder's impressive jump."} +{"image_id": 69009, "caption": "The image features two young boys wearing blue hats, standing in front of a glass enclosure at a zoo. They are observing a large brown bear inside the enclosure, which appears to be their main focus of interest. The boys seem to be enjoying their time at the zoo, watching the bear up close."} +{"image_id": 322122, "caption": "The image depicts a bathroom scene with a white toilet in the foreground. The toilet seat is up, revealing an empty toilet bowl. A toilet brush can be seen on the left side of the toilet, ready for use.\n\nIn the background, there is a sink with a cup placed on it. Additionally, there is a bottle located on the right side of the sink, possibly containing toiletries or cleaning supplies."} +{"image_id": 549930, "caption": "The image depicts a man and a woman walking down a rain-soaked street, sharing a blue umbrella to protect themselves from the rain. The woman is holding the umbrella, while the man walks beside her. They appear to be enjoying their time together despite the wet weather.\n\nIn the background, there are several beach umbrellas and chairs, suggesting that they might have been at the beach before the rain started. Additionally, there are a few other people visible in the scene, but they are not the main focus of the image."} +{"image_id": 33216, "caption": "The image features a large, freshly baked pizza sitting on a silver platter on a dining table. The pizza is topped with a generous amount of sauce, cheese, and meat, making it an appetizing sight.\n\nThere are several people in the scene, with one person standing close to the left side of the table, another person on the right side, and a third person in the background. A chair can also be seen near the right side of the table.\n\nIn addition to the pizza, there are a couple of cups placed on the table, one near the center and the other towards the right side."} +{"image_id": 434581, "caption": "The image depicts a person riding a motorcycle down a street. The rider is wearing a black leather jacket and a helmet, ensuring safety while enjoying the ride. The motorcycle is positioned in the center of the scene, with the rider sitting comfortably on it.\n\nThe street appears to be relatively empty, with no other vehicles or pedestrians visible in the image. The focus is on the person riding the motorcycle, capturing the essence of their journey."} +{"image_id": 239509, "caption": "The image depicts a city street scene with several street signs and a motorcycle parked on the side of the road. One of the signs is a pedestrian crossing sign, indicating that pedestrians are allowed to cross the street in that area. Another sign is an arrow pointing to the right, likely indicating the direction of traffic flow.\n\nIn addition to the street signs, there is a motorcycle parked on the side of the road, and a few people can be seen walking or standing around the area. The overall atmosphere of the scene suggests a busy urban environment with various modes of transportation and pedestrians navigating their way through the city."} +{"image_id": 88848, "caption": "The image is a collage of four pictures featuring a woman and a fire hydrant. In the first picture, the woman is standing next to a yellow fire hydrant, while in the second picture, she is posing in front of a red fire hydrant. In the third picture, the woman is standing next to a blue fire hydrant, and finally, in the fourth picture, she is posing in front of a green fire hydrant.\n\nIn addition to the fire hydrants, there is a boat visible in one of the pictures, and a backpack can be seen in the bottom right corner of the image."} +{"image_id": 116182, "caption": "The image features a large bowl filled with a delicious and colorful assortment of food. The bowl is placed on a dining table, and it contains a variety of ingredients, including chicken, broccoli, carrots, and possibly other vegetables. The chicken pieces are scattered throughout the bowl, with some closer to the front and others towards the back. The broccoli and carrots are mixed in with the chicken, creating a visually appealing and appetizing dish."} +{"image_id": 562345, "caption": "The image features a woman wearing a yellow raincoat and holding a cell phone in her hand. She is standing in front of a brick wall, which serves as a backdrop for the scene. The woman appears to be looking at her cell phone, possibly checking messages or browsing the internet.\n\nThe woman is also wearing a necklace, adding a touch of personal style to her outfit. The combination of the bright yellow raincoat and the brick wall creates a visually interesting contrast in the scene."} +{"image_id": 343410, "caption": "The image features a red plate filled with a delicious assortment of vegetables, including several pieces of broccoli and onions. The broccoli pieces are scattered across the plate, with some placed closer to the center and others towards the edges. The onions are mixed in with the broccoli, creating a colorful and appetizing presentation. The plate is placed on a dining table, ready to be enjoyed as a healthy and nutritious meal."} +{"image_id": 490529, "caption": "The image features a woman wearing glasses and a pink sweater, sitting in a chair and looking at her cell phone. She appears to be focused on her phone, possibly texting or browsing the internet.\n\nThere are several other people in the scene, some of whom are seated and others standing. A dining table can be seen in the background, along with a couple of chairs placed around it. Additionally, there is a couch in the room, providing a comfortable seating area for the people present."} +{"image_id": 328818, "caption": "The image depicts a woman wearing a pink shirt and blue jeans, bending over to tie her shoes while standing next to her bicycle. The bicycle is positioned on the left side of the scene, and the bench she is leaning on is located on the right side.\n\nIn addition to the bicycle and bench, there are a few other objects in the scene. A bottle can be seen on the right side of the bench, and a backpack is placed on the ground near the bicycle. A handbag is also present in the scene, resting on the ground close to the bench."} +{"image_id": 218947, "caption": "The image depicts a snow-covered mountain with a skier making their way down the slope. The skier is wearing a backpack and appears to be enjoying their time on the mountain. Another person can be seen in the background, possibly observing the skier or waiting for their turn to ski.\n\nThere are two sets of skis visible in the scene, one belonging to the skier in the foreground and the other belonging to the person in the background. The skier in the foreground is closer to the left side of the image, while the person in the background is on the right side."} +{"image_id": 152281, "caption": "The image depicts a large herd of sheep grazing in a lush green field. The sheep are spread out across the field, with some closer to the foreground and others further in the background. There are at least 14 sheep visible in the scene.\n\nIn addition to the sheep, there are several people scattered throughout the field, likely tending to the animals or observing them. Some of the people are closer to the foreground, while others are positioned further in the background."} +{"image_id": 41110, "caption": "The image depicts a young child, possibly a toddler, drinking from a baby bottle. The child is holding the bottle up to their mouth and appears to be enjoying their drink. The scene takes place in a room with a couch in the background."} +{"image_id": 512985, "caption": "The image depicts a man standing on a sandy beach, holding a surfboard. He is wearing a wetsuit and appears to be preparing for a surfing session. The surfboard is positioned in front of him, ready for use.\n\nIn the background, there is a body of water, likely the ocean, providing a scenic backdrop for the surfer's activity. Additionally, there are two birds visible in the sky, adding to the serene atmosphere of the beach scene."} +{"image_id": 414212, "caption": "The image features a man standing in a bathroom, holding a toothbrush and a tube of toothpaste in his hands. He is giving a thumbs-up sign, indicating his approval or satisfaction with the toothbrush and toothpaste. The man is wearing glasses, which adds to the overall appearance of the scene.\n\nIn the background, there is a shower curtain, suggesting that the bathroom is connected to a shower area. Additionally, there are two bottles visible in the scene, possibly containing other toiletries or personal care products."} +{"image_id": 426578, "caption": "The image depicts a man running on a sandy beach near the ocean. He is wearing a wetsuit and appears to be enjoying his time on the beach. There are a few other people visible in the background, but they are not the main focus of the scene.\n\nIn addition to the people, there are a couple of birds flying in the sky above the beach, adding to the lively atmosphere of the scene."} +{"image_id": 291962, "caption": "In the image, a young boy is flying a colorful kite in a grassy field. The kite is soaring high in the sky, capturing the boy's attention as he enjoys the outdoor activity. The boy is standing in the center of the field, with the kite visible above him.\n\nIn the background, a house can be seen, providing a picturesque setting for the boy's kite-flying adventure."} +{"image_id": 460927, "caption": "The image features a large brown bear standing on a grassy hillside. The bear appears to be looking directly at the camera, capturing the viewer's attention. The bear's fur is wet, suggesting that it might have been in the water recently.\n\nThe bear is positioned on the left side of the image, with its body taking up a significant portion of the frame. The grassy hillside provides a natural backdrop for the bear, creating a sense of depth in the scene."} +{"image_id": 552186, "caption": "In the image, a shirtless young man is skillfully riding a skateboard on a sidewalk. He appears to be performing a trick on his skateboard, capturing the attention of the people around him. There are several other people in the scene, some of whom seem to be watching the skateboarder, while others are engaged in their own activities.\n\nIn addition to the skateboarder, there are a few other skateboards visible in the scene, indicating that this might be a popular spot for skateboarding enthusiasts. There are also a couple of cars parked in the background, adding to the urban setting of the scene."} +{"image_id": 553852, "caption": "The image depicts a young boy riding a skateboard down a sidewalk. He appears to be enjoying his time as he glides along the pavement. In the background, there is a bicycle parked on the left side of the scene. Another bicycle can be seen further back on the right side of the image."} +{"image_id": 370337, "caption": "The image depicts a harbor scene with two boats docked next to a pier. One of the boats is red and white, while the other is red and black. They are positioned close to each other, with the red and white boat on the left side and the red and black boat on the right side of the pier.\n\nIn addition to the boats, there are two people visible in the scene. One person is standing near the red and white boat, while the other person is closer to the red and black boat. The presence of these individuals suggests that they might be attending to the boats or simply enjoying the view of the harbor."} +{"image_id": 18491, "caption": "The image captures an exciting moment during a baseball game. A baseball player is sliding into a base, attempting to avoid being tagged out by the opposing team. There are several other players on the field, some of whom are wearing baseball gloves, ready to make a play.\n\nIn the background, there is a bench and a chair, likely for the players to sit on when they are not actively participating in the game. A baseball bat can also be seen lying on the ground, possibly belonging to one of the players."} +{"image_id": 556000, "caption": "The image depicts a group of people gathered in a living room, playing a video game on a Nintendo Wii console. There are at least five people in the room, with some standing and others sitting on chairs. One of the individuals is holding a Wii remote, actively engaged in the game.\n\nThe living room is furnished with two chairs, one near the center of the room and another closer to the right side. There is also a couch in the background, providing a comfortable seating area for the group. A handbag can be seen placed on the floor, possibly belonging to one of the people in the room."} +{"image_id": 443351, "caption": "The image features a parking lot with two motorcycles parked next to each other. One of the motorcycles is green, while the other is white. Both motorcycles have black seats and are parked on the pavement.\n\nIn addition to the motorcycles, there is also a bicycle parked in the lot. The bicycle is positioned between the two motorcycles, adding variety to the vehicles present in the scene."} +{"image_id": 63965, "caption": "In the image, a woman is holding a plate with a slice of cake on it. The cake is decorated with a heart-shaped red flower, adding a touch of elegance to the dessert. The plate is placed on a dining table, and the woman appears to be enjoying her delicious treat."} +{"image_id": 405660, "caption": "The image features a wooden bench situated on a grassy hillside, overlooking a valley with mountains in the background. The bench is positioned near the center of the scene, providing a perfect spot for visitors to sit and enjoy the breathtaking view.\n\nIn addition to the bench, there are a few trees scattered around the area, adding to the natural beauty of the landscape. The overall atmosphere of the scene is serene and inviting, making it an ideal location for relaxation and contemplation."} +{"image_id": 419144, "caption": "The image is a black and white photograph of a group of people riding on the backs of several elephants. There are a total of five elephants in the scene, each carrying a rider. The elephants are arranged in a line, with one on the left side, two in the middle, and two on the right side of the image.\n\nThe people riding the elephants are spread out across the scene, with some riders closer to the front and others further back. The riders appear to be enjoying their time on the elephants, creating a unique and memorable experience."} +{"image_id": 371004, "caption": "The image features a zebra standing behind a wire fence in an enclosure. The zebra appears to be looking over the top of the fence, possibly observing its surroundings or trying to reach something on the other side. The enclosure is surrounded by trees, providing a natural environment for the zebra."} +{"image_id": 116861, "caption": "In the image, a woman is lying down on a couch, holding a teddy bear close to her chest. She appears to be sleeping or resting, with the teddy bear providing a sense of comfort and companionship. The couch occupies the majority of the scene, with the woman and the teddy bear being the main focus."} +{"image_id": 579664, "caption": "The image features a wooden crate filled with a variety of bananas and plantains. The bananas are in different stages of ripeness, with some appearing ripe and ready to eat, while others are still green and unripe. The crate is placed outdoors, possibly in a market setting.\n\nIn addition to the bananas and plantains, there is a tree visible in the background, adding to the outdoor ambiance of the scene."} +{"image_id": 5600, "caption": "The image features a dining table with two bowls of food placed on it. The first bowl contains a mixture of meat and vegetables, while the second bowl is filled with a variety of fruits. The fruits in the second bowl include bananas, apples, and oranges.\n\nIn addition to the bowls, there is a spoon resting on the table near the first bowl, and a cup can be seen on the right side of the table. The arrangement of the bowls and utensils creates an inviting and appetizing setting for a meal."} +{"image_id": 199389, "caption": "The image features a unique fire hydrant painted to resemble Walt Disney's character, Mickey Mouse. The fire hydrant is positioned on the side of a road, with a fence visible in the background.\n\nIn addition to the fire hydrant, there are two cars parked nearby, one on the left side and the other on the right side of the image. A truck can also be seen in the background, parked further away from the fire hydrant."} +{"image_id": 568131, "caption": "The image features a large elephant walking through a lush green field, surrounded by trees. The elephant is the main focus of the scene, occupying a significant portion of the image from left to right. It appears to be enjoying its time in the field, possibly grazing or exploring the area."} +{"image_id": 35671, "caption": "The image depicts a rodeo event taking place in a dirt arena. Two men on horseback are actively participating in the event, with one rider on the left side and the other on the right side of the arena. A bull can be seen in the middle of the arena, being chased by the men on horseback.\n\nThere is a crowd of people watching the event from various positions around the arena. Some are standing close to the action, while others are further away, observing the spectacle. In total, there are 13 people visible in the scene, including the riders on horseback and the spectators."} +{"image_id": 76522, "caption": "The image features a black and white cat sleeping on a couch. The cat is curled up and resting its head on a remote control, which is placed on the couch next to the cat. The couch appears to be a comfortable and cozy spot for the cat to take a nap."} +{"image_id": 504167, "caption": "The image features a close-up of a brown and white cat with green eyes, sitting on a wooden floor. The cat appears to be looking directly at the camera, capturing the viewer's attention. The cat's ears are perked up, and its whiskers are clearly visible, adding to the cat's adorable appearance."} +{"image_id": 21644, "caption": "The image depicts a parking lot at a bus station, where several buses are parked next to each other. There are five buses visible in the scene, with one on the left side, two in the middle, and two on the right side of the parking lot.\n\nIn addition to the buses, there are two cars parked in the lot. One car is located on the left side of the parking lot, while the other car is parked on the right side. A person can be seen standing near the middle of the parking lot, possibly waiting for a bus or attending to one of the parked vehicles."} +{"image_id": 483135, "caption": "The image depicts a group of young people gathered in a living room, playing a video game on a Nintendo Wii console. There are at least five people in the room, with some sitting on a couch and others standing or sitting on the floor.\n\nTwo Wii remotes are visible in the scene, one being held by a person on the left side of the room and the other by a person on the right side. The group appears to be enjoying their time together, engaging in a fun and interactive gaming experience."} +{"image_id": 271063, "caption": "The image depicts a kitchen with wooden cabinets and a microwave oven. The microwave is located on the left side of the kitchen, while the cabinets are positioned on the right side. There is also a refrigerator situated in the middle of the kitchen.\n\nIn addition to the main appliances, there are two sinks in the kitchen. One sink is located on the right side of the refrigerator, while the other sink is positioned on the right side of the microwave. The kitchen appears to be well-equipped and ready for use."} +{"image_id": 36477, "caption": "The image features a large pile of ripe, yellow bananas displayed in a box. The bananas are arranged in various bunches, with some overlapping each other. There are at least 13 bunches of bananas in the box, with some bunches being larger and others smaller. The bananas are spread across the entire box, creating a visually appealing and abundant display."} +{"image_id": 125375, "caption": "The image depicts a group of people waiting at a train station for a red and white train. The train is positioned on the left side of the scene, occupying a significant portion of the image. There are at least nine people visible in the scene, with some standing closer to the train and others further away.\n\nIn addition to the people and the train, there are two handbags in the scene. One handbag is located near the center of the image, while the other is positioned closer to the right side of the scene. A bench can also be seen in the background, providing a place for people to sit while they wait for the train."} +{"image_id": 362520, "caption": "The image features a young boy wearing a helmet and riding a skateboard at a skate park. He is skillfully performing a trick on his skateboard, showcasing his expertise in the sport. The boy appears to be enjoying his time at the skate park, demonstrating his talent and passion for skateboarding."} +{"image_id": 5412, "caption": "The image depicts a small bathroom with a white toilet and a white sink. The toilet is positioned on the left side of the bathroom, while the sink is located on the right side. The bathroom appears to be well-maintained and clean.\n\nIn addition to the toilet and sink, there are two bottles in the bathroom. One bottle is placed near the left side of the toilet, and the other bottle is located closer to the right side of the sink."} +{"image_id": 757, "caption": "The image depicts a herd of elephants standing in a muddy watering hole. There are three elephants in the scene, with one large elephant in the foreground and two smaller elephants in the background. The elephants appear to be enjoying the water and interacting with each other.\n\nIn addition to the elephants, there are two birds visible in the scene. One bird is perched on the back of the large elephant in the foreground, while the other bird is flying above the watering hole. The presence of these birds adds to the lively atmosphere of the scene."} +{"image_id": 396496, "caption": "The image is a black and white photo of a group of people standing on a snowy street. They are gathered around a train, with some of them holding umbrellas to shield themselves from the falling snow. There are at least three umbrellas visible in the scene, with one on the left side, another in the middle, and the third on the right side.\n\nIn addition to the people and umbrellas, there is a car parked on the left side of the scene, and a handbag can be seen placed on the ground near the center of the image. The overall atmosphere of the photo is that of a cold, snowy day, with people trying to stay warm and dry while waiting for the train."} +{"image_id": 81761, "caption": "In the image, a woman is standing on a tennis court, holding a tennis racket and preparing to hit a tennis ball. She is positioned near the center of the court and appears focused on her game. The tennis ball is in the air, close to her racket, indicating that she is about to make contact with it. The scene captures the essence of a tennis match, showcasing the player's skill and concentration."} +{"image_id": 130677, "caption": "The image depicts a tennis court at night, with two people playing a game of tennis. One person is standing on the left side of the court, holding a tennis racket, while the other person is on the right side, also holding a tennis racket. They appear to be engaged in a friendly match.\n\nThere are two tennis rackets visible in the scene, one held by the person on the left and the other held by the person on the right. Additionally, there is a bottle placed near the center of the court, possibly for hydration during the game."} +{"image_id": 318825, "caption": "The image features a tennis court with a male tennis player wearing a white shirt and white shorts. He is holding a tennis racket in his hand and appears to be preparing to serve the ball. The tennis player is the main focus of the scene.\n\nIn the background, there is a banner with the word \"Tennis\" written on it, likely indicating that the court is part of a tennis facility or event."} +{"image_id": 48014, "caption": "The image depicts a man walking down a sidewalk with his black dog on a leash. The man is wearing a green shirt and appears to be enjoying the walk with his canine companion. There are several cars parked along the street, with some closer to the foreground and others further in the background.\n\nIn addition to the man and his dog, there are a few other people visible in the scene. One person can be seen near the left edge of the image, while another person is located closer to the center of the scene. A bench is also present on the left side of the image, providing a place for people to sit and relax."} +{"image_id": 421028, "caption": "The image features a gray cat lying on the floor, playing with a toy carrot. The cat is positioned in the center of the scene and appears to be enjoying its playtime. The toy carrot can be seen close to the cat, with a few other carrots scattered around the area.\n\nIn the background, there is a bookshelf filled with various books, creating a cozy and comfortable environment for the cat and its owner."} +{"image_id": 479659, "caption": "In the image, a man and a woman are standing near a dining table, engaged in conversation. The man is wearing a white shirt and appears to be drinking from a wine glass, while the woman is holding a handbag. They seem to be enjoying each other's company in an outdoor setting.\n\nThe dining table is surrounded by chairs, and there are several wine bottles placed on the table, indicating that they might be enjoying a meal or a casual gathering. A potted plant can be seen in the background, adding a touch of greenery to the scene."} +{"image_id": 369826, "caption": "The image features a large flat-screen TV mounted on a wall in an airport lobby. The TV is displaying an advertisement for Arizona, showcasing a man surfing on a wave. The advertisement is prominently displayed, capturing the attention of passersby.\n\nThe airport lobby is furnished with several chairs and dining tables scattered throughout the space. Some chairs are placed near the dining tables, while others are positioned in different areas of the lobby. Overall, the scene depicts a comfortable and inviting atmosphere for travelers to relax and enjoy their time in the airport."} +{"image_id": 406253, "caption": "The image depicts a city street with two motor scooters parked on the sidewalk. One of the scooters is blue, and the other is green. They are parked next to each other, with the blue scooter on the left and the green scooter on the right.\n\nIn addition to the scooters, there is a car parked further down the street on the left side. Several people can be seen walking along the sidewalk, with some closer to the scooters and others further away. A traffic light is also visible on the left side of the scene, indicating the presence of an intersection nearby."} +{"image_id": 548267, "caption": "The image depicts a peaceful scene of a herd of sheep grazing in a lush green field. There are at least 13 sheep scattered throughout the field, with some closer to the foreground and others further away. The sheep are enjoying the abundance of grass in the pasture, creating a serene and idyllic countryside atmosphere."} +{"image_id": 335844, "caption": "The image features a stainless steel toaster oven sitting on a white countertop. The toaster oven is open, revealing its interior, which has a pizza inside. The pizza appears to be in the process of being cooked.\n\nIn addition to the toaster oven, there are two knives visible in the scene. One knife is located on the left side of the toaster oven, while the other knife is on the right side. These knives may be used for cutting or preparing the pizza before or after it is cooked in the toaster oven."} +{"image_id": 299640, "caption": "The image features a close-up view of three remote controls placed on a table. The first remote control is on the left side of the table, the second remote control is in the middle, and the third remote control is on the right side of the table.\n\nThe first remote control appears to be a Sony brand, while the second remote control is a Samsung brand. The third remote control seems to be a universal remote control, designed to work with various devices."} +{"image_id": 121812, "caption": "The image depicts a city street on a cloudy day, with a red traffic light hanging above the road. There are several cars on the street, including a truck and a bus, as well as a few pedestrians walking along the sidewalk.\n\nIn addition to the traffic lights, there are a couple of stop signs visible in the scene. One stop sign is located near the center of the image, while the other is positioned closer to the right side of the frame. The overall atmosphere of the scene suggests a typical day in a bustling urban environment."} +{"image_id": 107234, "caption": "The image features a man wearing a suit and tie, standing in front of a wine glass. He appears to be enjoying a glass of wine, possibly at a wedding or a formal event. The man has a beard and seems to be making a funny face as he drinks from the wine glass.\n\nIn the background, there is a car partially visible on the right side of the image, suggesting that the event might be taking place outdoors or in a parking area."} +{"image_id": 153104, "caption": "In the image, a man is sitting in the stands of a stadium, eating a hot dog. He is wearing a black jacket and appears to be enjoying his meal. There are several other people in the background, some of whom are also eating hot dogs.\n\nThe stadium is filled with chairs, some of which are occupied by the spectators, while others remain empty. There are also a couple of bottles visible in the scene, likely containing beverages for the attendees."} +{"image_id": 216417, "caption": "The image is a black and white photograph of a man standing on a snow-covered field with a small white dog on his back. The man is wearing a backpack and holding ski poles in his hands. The dog appears to be enjoying the ride on the man's back as they traverse the snowy terrain together."} +{"image_id": 286708, "caption": "The image features a black and white cat wearing a pink knitted hat on its head. The cat appears to be sitting or laying down, possibly on a bed. The hat adds a playful and cute touch to the scene, making the cat look even more adorable."} +{"image_id": 547041, "caption": "The image features a dining table with a variety of food items on it. There are two plastic containers, one containing a salad and the other containing a dessert. The salad consists of a mix of greens and black olives, while the dessert appears to be a cheesecake.\n\nIn addition to the containers, there is a fork and a spoon on the table. The fork is placed near the salad container, while the spoon is positioned closer to the dessert container. A keyboard can also be seen in the background, indicating that the table might be in a kitchen or dining area."} +{"image_id": 293802, "caption": "The image captures a lively scene of a young man skillfully performing a trick on his skateboard. He is in mid-air, jumping with the skateboard under his feet, showcasing his talent.\n\nIn the background, there are several other people scattered throughout the scene, possibly watching the skateboarder or engaging in their own activities. A bicycle can be seen parked on the left side of the image, and a dining table and chairs are visible on the right side, suggesting an outdoor dining area."} +{"image_id": 252738, "caption": "The image features a man wearing a leather jacket and sunglasses, talking on his cell phone while standing in a dirt field. He appears to be engaged in a conversation, possibly discussing work or personal matters.\n\nIn the background, there are mountains visible, adding a scenic element to the scene. Additionally, there are two cars parked in the distance, possibly belonging to the man or other visitors to the area."} +{"image_id": 43165, "caption": "The image features two zebras standing next to each other in a grassy field. One zebra is positioned on the left side of the image, while the other is on the right side. Both zebras have their heads down, possibly grazing on the grass.\n\nThe field appears to be a mix of grass and dirt, providing a natural habitat for the zebras. The zebras are the main focus of the scene, with no other animals or objects visible in the image."} +{"image_id": 218215, "caption": "The image features a large white polar bear swimming in a body of water, possibly an ocean or a lake. The bear appears to be enjoying its time in the water, as it swims with its mouth open. The water around the bear is filled with bubbles, adding to the dynamic nature of the scene. The polar bear is the main focus of the image, capturing the viewer's attention as it glides through the water."} +{"image_id": 299082, "caption": "The image captures a close-up view of a giraffe's head as it eats grass from the ground. The giraffe's long neck and head are prominently featured in the foreground, while the rest of its body is not visible in the frame. The giraffe appears to be enjoying its meal in a grassy area."} +{"image_id": 152360, "caption": "The image depicts a lively outdoor market scene with numerous bunches of green bananas hanging from hooks. The bananas are displayed in various locations throughout the scene, with some hanging higher up and others closer to the ground.\n\nIn addition to the bananas, there are several cars parked in the vicinity of the market. Some cars can be seen on the left side of the image, while others are parked on the right side. A person is also present in the scene, standing near the left side of the image, possibly browsing or shopping at the market."} +{"image_id": 205601, "caption": "The image depicts a woman standing in a kitchen, cooking a delicious stir-fry meal. She is using a wok to prepare the dish, which includes a variety of ingredients such as meat, carrots, and peppers. The woman appears to be focused on her cooking task.\n\nThe kitchen is well-equipped with a refrigerator on the left side, an oven in the middle, and a sink on the right side. There is also a bottle placed near the sink, possibly containing a cooking ingredient or a beverage. Another person can be seen in the background, possibly observing the cooking process or waiting for the meal to be prepared."} +{"image_id": 174004, "caption": "The image features an old yellow dump truck parked in a grassy field. The truck appears to be in a state of disrepair, possibly abandoned or no longer in use. It is surrounded by tall grass and weeds, giving the impression that it has been there for quite some time.\n\nThe truck occupies a significant portion of the scene, stretching from the left to the right side of the image. The grass and weeds surrounding the truck add a sense of age and neglect to the overall atmosphere of the scene."} +{"image_id": 31542, "caption": "The image captures a thrilling moment of a snowboarder in mid-air after launching off a ramp. The snowboarder is in the center of the scene, soaring through the air with their snowboard clearly visible beneath them. The snowboarder appears to be performing a trick, showcasing their skill and expertise in the sport.\n\nIn addition to the main snowboarder, there are two other people in the scene, one on the left side and another on the right side of the image. They seem to be watching the snowboarder's impressive jump, likely enjoying the spectacle or waiting for their turn to perform their own tricks."} +{"image_id": 305268, "caption": "The image depicts a woman playing tennis on a tennis court. She is in the middle of a swing, holding a tennis racket and preparing to hit the ball. The tennis ball can be seen in the air, close to the woman's racket.\n\nThe tennis court is surrounded by a fence, providing a secure environment for the game. The woman is the main focus of the scene, showcasing her athleticism and skill in the sport."} +{"image_id": 2867, "caption": "The image depicts a group of people standing on a snow-covered slope, all wearing skis and backpacks. There are at least six people in the scene, with some standing closer to the foreground and others further in the background. They appear to be preparing for a skiing adventure or taking a break from their skiing activities.\n\nEach person has a backpack on, which can be seen on their backs as they stand on their skis. The backpacks come in various sizes and colors, adding to the diversity of the group. Overall, the scene conveys a sense of excitement and camaraderie among the skiers as they enjoy their time on the snow-covered slope."} +{"image_id": 72428, "caption": "The image features a white toilet situated in a bathroom. The toilet lid is up, revealing a roll of toilet paper placed on top of it. The toilet is positioned next to a sink, which can be seen on the right side of the bathroom.\n\nIn addition to the toilet and sink, there is a tissue box on the left side of the toilet. The bathroom appears to be clean and well-maintained."} +{"image_id": 158494, "caption": "In the image, there are two giraffes standing next to each other in an enclosure. One of the giraffes is an adult, while the other is a baby giraffe. The adult giraffe appears to be eating leaves from a tree, while the baby giraffe stands nearby, possibly observing its surroundings or waiting for its turn to eat. The scene captures the bond between the adult and baby giraffes as they spend time together in their habitat."} +{"image_id": 147629, "caption": "In the image, a white cat is lying on the floor next to a stuffed elephant toy. The cat appears to be licking its lips, possibly enjoying the scent or texture of the toy. The stuffed elephant occupies a significant portion of the scene, stretching from the left to the right side of the image. The cat and the toy are the main focus of the scene, creating a cozy and playful atmosphere."} +{"image_id": 581899, "caption": "The image depicts a train station with two blue passenger trains parked side by side. One train is positioned on the left side of the image, while the other is on the right side. A person can be seen standing in the doorway of the train on the right side, possibly waiting to board or disembark.\n\nIn addition to the trains and the person, there are two handbags visible in the scene. One handbag is located near the person in the doorway, and the other handbag is placed closer to the left side of the image."} +{"image_id": 369345, "caption": "The image depicts a cozy living room with a blue couch situated in the center of the space. The couch is adorned with several pillows, creating a comfortable and inviting atmosphere. In front of the couch, there is a wooden coffee table with various items on it, including a remote control, a mouse, and a keyboard. \n\nAdditionally, there is a bookshelf in the room, filled with an assortment of books, adding to the room's warm and lived-in feel. A lamp is also present in the room, providing ample lighting for the space."} +{"image_id": 372246, "caption": "The image depicts a street scene with a stop sign prominently visible in the foreground. The stop sign is positioned on the right side of the image. In the background, there are two green street signs, one of which reads \"Hell Canyon Rd\" and the other \"US Highway 395.\" The street signs are mounted on a metal pole.\n\nIn addition to the stop sign and street signs, there are two cars in the scene. One car is located on the left side of the image, while the other car is positioned further back on the right side."} +{"image_id": 261563, "caption": "In the image, there are two dogs playing together in a grassy field. One dog is positioned closer to the left side of the field, while the other dog is on the right side. Both dogs are focused on a yellow frisbee, which is located in the middle of the field. The dogs appear to be enjoying their playtime and interacting with the frisbee."} +{"image_id": 461802, "caption": "The image depicts a train station with a red and white train parked at the platform. A man wearing an orange vest is standing near the train, possibly waiting to board or disembark. Another person can be seen in the background, closer to the edge of the platform.\n\nThere are two clocks visible in the scene, one on the left side and the other on the right side of the platform. The presence of these clocks suggests that the train station is well-equipped with timekeeping devices for the convenience of its passengers."} +{"image_id": 138175, "caption": "The image features a man wearing glasses and a suit, talking on his cell phone. He appears to be engaged in a conversation as he holds the phone to his ear. Another person can be seen in the background, but they are not the main focus of the scene.\n\nThere are two handbags visible in the image. One handbag is located near the center of the scene, while the other handbag is positioned towards the right side of the image. A chair is also present in the scene, situated near the right edge of the image."} +{"image_id": 103488, "caption": "The image depicts a clean and well-maintained public restroom with a row of sinks. There are three sinks in total, with one on the left side, one in the middle, and another on the right side of the restroom. The sinks are accompanied by mirrors above them, allowing users to check their appearance while using the facilities.\n\nIn addition to the sinks and mirrors, the restroom is equipped with several toiletries. There are three toilet paper dispensers, one on the left side, one in the middle, and another on the right side of the restroom. Additionally, there are three soap dispensers, one on the left side, one in the middle, and another on the right side of the restroom. A hand dryer is also present on the right side of the restroom.\n\nA person can be seen in the reflection of the mirror on the left side of the restroom, possibly preparing to use the facilities."} +{"image_id": 215901, "caption": "The image features a bowl filled with a variety of fruits, including bananas, apples, and oranges. The bowl is placed on a dining table, and the fruits are arranged in an aesthetically pleasing manner.\n\nIn the background, there is a painting hanging on the wall, adding an artistic touch to the scene. The combination of the vibrant fruits and the painting creates a visually appealing and inviting atmosphere."} +{"image_id": 514180, "caption": "The image showcases a delicious assortment of pizzas displayed on a tray. There are three pizzas in total, each with different toppings. One pizza is placed in the center of the tray, while the other two pizzas are positioned on the left and right sides of the tray.\n\nIn addition to the pizzas, there is a spatula on the left side of the tray, likely used for serving the pizzas. The arrangement of the pizzas and the presence of the spatula create an inviting and appetizing scene."} +{"image_id": 396338, "caption": "The image depicts a busy city street filled with various vehicles, including cars, trucks, and motorcycles. There are several people walking on the street, with some of them carrying handbags and backpacks. One of the pedestrians is wearing a white robe.\n\nIn addition to the people and vehicles, there are a couple of umbrellas visible in the scene. One umbrella is located near the center of the image, while the other is on the right side. The street appears to be wet, possibly due to rain, and the overall atmosphere suggests a bustling urban environment."} +{"image_id": 579362, "caption": "The image depicts a man sitting on a blue bench at the edge of a sandy beach, overlooking the ocean. He appears to be enjoying the view and the tranquility of the scene. There are several other people scattered around the beach, some closer to the water and others further away.\n\nIn the distance, a large boat can be seen sailing on the water, adding to the serene atmosphere of the scene. The combination of the man on the bench, the ocean, and the boat creates a peaceful and picturesque setting."} +{"image_id": 289512, "caption": "In the image, a woman is riding a brown horse in a field. She is wearing a cowboy hat and appears to be enjoying her time on the horse. The horse and rider are the main focus of the scene, with the woman skillfully guiding the horse through the field."} +{"image_id": 306928, "caption": "The image depicts a clock tower with a large clock on its side, surrounded by a flock of pigeons. The pigeons are perched on various parts of the clock tower, including the ledges, windows, and the clock itself. There are at least 13 birds visible in the scene, with some closer to the top of the tower and others near the bottom.\n\nIn addition to the pigeons, a bird can be seen flying in the sky above the clock tower, adding to the lively atmosphere of the scene."} +{"image_id": 453009, "caption": "The image features a wooden bench with two stuffed animals sitting on it. One of the stuffed animals is a teddy bear, and the other is a stuffed duck. The teddy bear is positioned on the left side of the bench, while the stuffed duck is on the right side.\n\nIn the background, there are several cars parked along the street, and a potted plant can be seen on the left side of the scene. Additionally, there is a person standing near the middle of the scene, possibly observing the bench with the stuffed animals."} +{"image_id": 112581, "caption": "In the image, there is a man wearing a white shirt and a baseball cap, standing in front of a vending machine. He is holding a hot dog in his hand and appears to be enjoying his snack. Another person can be seen in the background, but they are not the main focus of the scene.\n\nThe setting appears to be an indoor location, possibly a store or a food court, as there is a dining table visible in the background. A handbag is also present in the scene, likely belonging to one of the people in the area."} +{"image_id": 504977, "caption": "The image features an elderly woman sitting on a wooden park bench. She is wearing a dress and has a handbag placed beside her on the bench. The woman appears to be enjoying her time outdoors, possibly smoking a cigarette, as there is a cigarette visible in the scene.\n\nThe bench she is sitting on spans the entire width of the image, providing ample space for her to relax and take in the surroundings."} +{"image_id": 228764, "caption": "The image depicts a sandy beach where a cat and a dog are playing together. The cat is positioned on the left side of the scene, while the dog is on the right side. Both animals appear to be enjoying their time on the beach.\n\nIn the background, there are a few people scattered around the area, likely enjoying the beach as well. Additionally, there are two umbrellas set up on the beach, providing shade for the beachgoers."} +{"image_id": 151528, "caption": "In the image, a man is standing on top of a stone wall, holding a red kite in his hand. The man appears to be enjoying his time outdoors, possibly preparing to fly the kite. A black dog is also present in the scene, standing close to the man on the grass. The dog seems to be attentive to the man's actions, possibly waiting for him to start flying the kite."} +{"image_id": 248919, "caption": "The image depicts a clean and well-organized kitchen with wooden cabinets and white appliances. A white stove top oven is prominently placed in the center of the kitchen, surrounded by wooden cabinets. A microwave is mounted above the oven, and a sink can be seen nearby.\n\nOn the kitchen counter, there is a bowl filled with various fruits, including apples, oranges, and bananas. A chair is positioned in front of the dining table, ready for someone to sit down and enjoy a meal. The overall atmosphere of the kitchen is warm and inviting, making it an ideal space for cooking and dining."} +{"image_id": 580607, "caption": "The image depicts a picturesque scene of a river with several boats docked along its banks. The boats vary in size and are parked close to each other, creating a lively atmosphere.\n\nNumerous people are scattered throughout the scene, enjoying the view of the river and the boats. Some are standing near the water's edge, while others are walking along the riverbank or sitting on benches.\n\nIn addition to the boats and people, there is a bicycle parked near the center of the scene, possibly belonging to one of the visitors. The combination of the river, boats, and people creates a vibrant and inviting environment."} +{"image_id": 200291, "caption": "The image features a dining table with two plates of food placed on it. The plates are filled with a variety of food items, including sandwiches, tater tots, and tomatoes. The sandwiches are cut in half and placed on the plates, while the tater tots and tomatoes are arranged around them.\n\nA spoon is resting on one of the plates, indicating that the food is ready to be eaten. The dining table occupies most of the space in the image, with the two plates being the main focus of the scene."} +{"image_id": 296231, "caption": "The image depicts a cluttered living room filled with various items. In the center of the room, there is a small television placed on a table. The room is adorned with numerous pictures on the walls, giving it a personal touch.\n\nSeveral books are scattered throughout the room, with some placed on the floor and others on shelves. A clock can be seen hanging on the wall, adding to the room's cluttered appearance. Additionally, there are two vases in the room, one near the center and the other closer to the right side of the room. A potted plant is also present, adding a touch of greenery to the space."} +{"image_id": 505663, "caption": "The image features a large clock mounted on the side of a brick building. The clock has Roman numerals on its face, giving it a classic and elegant appearance. The clock is positioned near the top of the building, making it easily visible to passersby.\n\nIn addition to the clock, there are two people in the scene. One person is located on the left side of the image, while the other person is on the right side. They appear to be walking or standing near the building, possibly admiring the clock or going about their daily activities."} +{"image_id": 41572, "caption": "The image is a black and white photograph of a baseball game in progress. The main focus is on a baseball player who is in the process of swinging a baseball bat, attempting to hit the ball. Another player, wearing a baseball glove, is positioned nearby, ready to catch the ball.\n\nThere are several other people in the scene, likely teammates or opponents, scattered around the field. A car can be seen in the background, parked near the edge of the field. Additionally, there is a sports ball visible in the scene, likely the baseball that the batter is trying to hit."} +{"image_id": 509589, "caption": "The image captures a lively scene of a group of young people gathered around a skateboard ramp, with some of them riding skateboards. There are at least four skateboards visible in the scene, with one being ridden by a person in the center of the image.\n\nIn addition to the skateboarders, there are several other people present in the scene. Some of them are standing near the ramp, while others are scattered throughout the area. A backpack can be seen placed on the ground, possibly belonging to one of the skateboarders or spectators.\n\nThe overall atmosphere of the scene is energetic and fun, with everyone enjoying their time at the skateboard ramp."} +{"image_id": 357238, "caption": "In the image, a person is parasailing over the ocean, enjoying the thrill of being lifted into the air by the wind. The parasailer can be seen in the middle of the scene, soaring high above the water.\n\nIn the background, there are several birds scattered across the sky, adding a sense of liveliness to the scene. The combination of the parasailer, the birds, and the vast expanse of the ocean creates a picturesque and adventurous atmosphere."} +{"image_id": 466575, "caption": "The image features an old, worn suitcase sitting on the pavement. The suitcase appears to be made of leather and is quite large, occupying a significant portion of the scene. The suitcase's worn appearance suggests that it has been well-used over the years."} +{"image_id": 271970, "caption": "The image depicts a picturesque scene of a small town with a white church steeple towering over the surrounding area. The church has a clock on its side, making it a prominent landmark in the town. The sky above the town is blue and cloudless, creating a serene atmosphere.\n\nThe town is surrounded by a lush green hillside, adding to the beauty of the scene. Several houses can be seen throughout the town, with some closer to the foreground and others further in the background. There is also a car parked near the center of the town, possibly belonging to one of the residents. Overall, the image conveys a peaceful and idyllic small-town setting."} +{"image_id": 305540, "caption": "The image features a large pair of scissors prominently displayed in front of a white building. The scissors are positioned in such a way that they appear to be cutting the building in half, creating an interesting visual effect.\n\nThere are several people in the scene, with one person standing close to the left side of the scissors, another person on the right side, and a third person further back in the scene. A handbag can also be seen near the left side of the image, possibly belonging to one of the people in the scene."} +{"image_id": 462928, "caption": "The image features a bald man wearing glasses, holding a smartphone up to his ear. He appears to be engaged in a conversation or listening to something on the phone. The man is wearing a striped shirt, which adds a touch of color to the scene.\n\nIn the background, there is a chair and a book, suggesting that the man might be in a relaxed environment, such as a living room or a workspace."} +{"image_id": 270544, "caption": "The image depicts a group of people enjoying themselves in a lake. There are five people in the scene, with three of them standing on a surfboard in the middle of the lake, while the other two are swimming nearby. One of the people on the surfboard appears to be falling off, adding to the fun and excitement of the moment.\n\nIn the background, there are two boats visible, one closer to the left side of the lake and the other further to the right. The scene captures the essence of a lively day at the lake, with people engaging in various water activities."} +{"image_id": 134042, "caption": "The image depicts a large airplane flying high in the sky on a cloudy day. The airplane is positioned towards the center of the scene, with its wings visible as it soars through the air. The sky is filled with clouds, creating a dramatic backdrop for the airplane's flight."} +{"image_id": 120340, "caption": "In the image, a man is standing next to a blue bicycle, attaching a bike lock to it. He is wearing a brown shirt and appears to be in the process of securing his bicycle. The bicycle is parked next to a bus, which occupies a significant portion of the background.\n\nThere are several other people in the scene, with one person standing close to the man with the bicycle, and others scattered around the area. Additionally, there is a bottle placed on the ground near the bicycle, possibly belonging to the man or someone else in the vicinity."} +{"image_id": 418949, "caption": "The image captures a baseball game in progress, with several players on the field. The main focus is on a baseball player wearing a blue helmet and a red jersey, holding a baseball bat and standing near home plate. Another player can be seen holding a baseball glove, ready to catch the ball.\n\nIn total, there are eight people visible in the scene, including the player with the bat and the player with the glove. Some of them are standing closer to the foreground, while others are positioned further back on the field. The players appear to be actively participating in the game, showcasing their skills and teamwork."} +{"image_id": 520109, "caption": "The image features a lush green field with a row of colorful umbrellas standing upright in the grass. The umbrellas come in various sizes and colors, creating a vibrant and eye-catching display. Some of the umbrellas are positioned closer to the foreground, while others extend further into the background.\n\nIn addition to the umbrellas, there are a few benches scattered throughout the field, providing a place for visitors to sit and enjoy the view. The combination of the umbrellas and benches creates a unique and inviting atmosphere in the field."} +{"image_id": 50753, "caption": "The image depicts a clean and well-organized kitchen with wooden cabinets and a tile floor. The kitchen is equipped with essential appliances such as a refrigerator, microwave, oven, and sink. The refrigerator is located on the left side of the kitchen, while the microwave is positioned above the oven. The oven is situated in the middle of the kitchen, and the sink can be found on the right side of the room.\n\nIn addition to the main appliances, there are a few other items in the kitchen. A clock is mounted on the wall above the oven, and a vase is placed on the countertop near the sink. There are also a couple of bottles located on the right side of the kitchen, possibly containing cooking ingredients or beverages."} +{"image_id": 329939, "caption": "The image features a group of four giraffes standing together in a grassy field. The giraffes are spread out across the scene, with one giraffe on the left side, another in the middle, and two more on the right side of the image. They appear to be enjoying their time in the open field, possibly grazing or socializing with each other."} +{"image_id": 351345, "caption": "The image features a woman wearing a white shirt and earrings, standing in a room. She is holding a Wii remote in her hand and appears to be engaged in playing a video game. Another person can be seen in the background, possibly observing or waiting for their turn to play.\n\nThe room is decorated with several pictures hanging on the walls, adding a personal touch to the space. Additionally, there is a cup placed on a surface in the room."} +{"image_id": 25293, "caption": "The image is a painting of a woman holding a blue frisbee in her hand. She is wearing a flowing dress and appears to be enjoying her time playing with the frisbee. The frisbee is positioned close to the center of the painting, with the woman holding it above her head. The painting captures a moment of leisure and outdoor activity."} +{"image_id": 543041, "caption": "The image features a box filled with an assortment of delicious doughnuts. There are six doughnuts in total, each with different flavors and toppings. Some of the doughnuts have chocolate frosting, while others are covered in powdered sugar. The doughnuts are arranged in a visually appealing manner, showcasing the variety of flavors and textures within the box."} +{"image_id": 568265, "caption": "The image depicts a lively scene at a park, where a group of people is enjoying a sunny day flying kites. There are several kites soaring in the sky, with one particularly large kite dominating the scene. The people are scattered throughout the park, with some standing closer to the foreground and others further in the background.\n\nIn addition to the people and kites, there are various vehicles parked around the park, including cars, a bus, and a truck. A bench can also be seen near the center of the park, providing a place for people to sit and watch the kite-flying activities."} +{"image_id": 467386, "caption": "The image depicts a black cat sitting on the ground in front of a blue door. The door is adorned with many small windows, giving it a unique and decorative appearance. The cat appears to be relaxed and comfortable in its surroundings.\n\nIn addition to the cat and the door, there are a few items scattered around the scene. A bottle can be seen on the left side of the image, while a bowl is located closer to the center. A cell phone is also visible on the ground, slightly to the left of the cat."} +{"image_id": 242363, "caption": "The image depicts a small bathroom with a white toilet, sink, and bathtub. The toilet is positioned in the middle of the room, while the sink is located to the left of the toilet. The bathtub is situated to the right of the toilet.\n\nThe bathroom appears to be in the process of being remodeled, as evidenced by the peeling paint on the walls. Additionally, there are two bottles in the bathroom, one near the sink and the other closer to the bathtub."} +{"image_id": 554900, "caption": "The image depicts a white toilet in a bathroom stall. The toilet seat is up, revealing the toilet bowl. There is a toilet brush placed next to the toilet, ready for use. The bathroom appears to be clean and well-maintained."} +{"image_id": 115006, "caption": "The image captures an exciting moment during a baseball game. A baseball player is in the middle of swinging his bat, attempting to hit the ball. The catcher and the umpire are positioned behind the batter, ready to react to the outcome of the swing.\n\nThere are several other people in the scene, likely teammates, opponents, or spectators. Some of them can be seen in the background, while others are closer to the action. A baseball glove is also visible in the scene, possibly belonging to the catcher or another player.\n\nOverall, the scene is filled with anticipation and excitement as the batter attempts to make contact with the ball."} +{"image_id": 75375, "caption": "The image depicts a group of people enjoying a day of kiteboarding on a large body of water. There are at least six people visible in the scene, with some of them riding on surfboards while holding onto kites. The kites come in various shapes and sizes, adding to the excitement of the activity.\n\nThe kiteboarders are spread out across the water, with some closer to the foreground and others further in the background. They are skillfully maneuvering their kites and surfboards, showcasing the thrilling nature of this water sport."} +{"image_id": 419223, "caption": "The image depicts a group of young boys playing soccer on a grassy field. They are actively engaged in the game, with one boy falling to the ground while trying to kick the soccer ball. The other boys are scattered around the field, some closer to the ball and others further away.\n\nIn total, there are five boys visible in the scene, with one of them wearing a blue shirt. The soccer ball is located near the center of the field, surrounded by the boys who are trying to gain control of it during the game."} +{"image_id": 137578, "caption": "The image features a bathroom with two white toilets positioned next to each other. Both toilets have their lids open, revealing the toilet bowls. One toilet is located on the left side of the bathroom, while the other is on the right side.\n\nIn addition to the toilets, there are two toilet paper rolls present in the bathroom. One roll is located near the left toilet, and the other is near the right toilet. The bathroom appears to be clean and well-maintained."} +{"image_id": 408808, "caption": "The image features a close-up view of a toothbrush and a tube of toothpaste placed on a white surface. The toothbrush is positioned on the left side of the image, while the toothpaste tube is on the right side. The toothpaste tube has the word \"systema\" written on it.\n\nIn addition to the toothbrush and toothpaste, there are two other toothbrushes in the scene. One of the toothbrushes is located on the left side of the image, while the other is positioned on the right side."} +{"image_id": 243773, "caption": "The image depicts a cluttered kitchen counter filled with various items. There are numerous bottles scattered across the counter, some of which are wine bottles. In addition to the bottles, there are several cups, a knife, and a spoon placed on the counter. A cell phone can also be seen resting on the counter.\n\nThe kitchen is equipped with a refrigerator and an oven, both of which are located towards the right side of the room. The refrigerator takes up a significant portion of the wall, while the oven is positioned closer to the center of the kitchen."} +{"image_id": 436492, "caption": "The image depicts a street scene with a couple of street signs attached to a pole. One of the signs is a yellow pedestrian crossing sign, while the other sign is a warning sign about the American Recovery and Reinvestment Act. There is also a traffic light visible in the scene.\n\nSeveral people can be seen walking around the area, with one person closer to the left side of the image, another person in the middle, and a third person on the right side. A car is parked on the left side of the image, and a truck is visible in the background on the right side."} +{"image_id": 556648, "caption": "In the image, there is a white smartphone on display in a store. The smartphone is placed on a clear plastic stand, showcasing its features and design. The phone is positioned in the center of the display, drawing attention to its sleek and modern appearance.\n\nIn addition to the smartphone, there are several other cell phones visible in the background, indicating a variety of options available for customers to choose from."} +{"image_id": 298924, "caption": "The image features a large bowl filled with noodles, meat, and vegetables, placed on a dining table. The bowl contains a variety of ingredients, including noodles, meat, and vegetables such as broccoli and carrots. There are several pieces of broccoli and carrots scattered throughout the bowl, adding color and texture to the dish.\n\nIn addition to the main bowl, there are two smaller bowls present in the scene. One of the smaller bowls is located on the left side of the main bowl, while the other is positioned on the right side. A spoon can be seen resting in the main bowl, ready to be used for enjoying the delicious meal."} +{"image_id": 562030, "caption": "The image features a wooden deck with a variety of potted plants and flowers. There are several potted plants scattered across the deck, with some placed closer to the foreground and others further in the background. In addition to the potted plants, there are a couple of cups on the deck, one near the center and the other towards the right side of the scene. A pair of scissors can also be seen on the right side of the deck, likely used for trimming or caring for the plants."} +{"image_id": 501315, "caption": "The image captures a thrilling moment of a person riding a green and white motorcycle on a race track. The rider is leaning into a turn, showcasing their skill and control over the motorcycle. The motorcycle is positioned in the center of the scene, with the rider's body leaning towards it.\n\nIn addition to the main motorcycle, there are two other motorcycles visible in the background, one on the left side and the other on the right side of the scene. The rider appears to be wearing a helmet, ensuring their safety during the race."} +{"image_id": 436162, "caption": "The image features a large white passenger bus parked in a parking lot. The bus occupies a significant portion of the scene, stretching from the left side to the right side of the image. The bus appears to be empty, with no passengers visible.\n\nIn addition to the bus, there is a cup placed on the ground near the center of the image. The parking lot is surrounded by trees, creating a pleasant and natural atmosphere."} +{"image_id": 323888, "caption": "The image depicts a large clock mounted on the side of a building at night. The clock is illuminated, making it the focal point of the scene. The building appears to be a train station, as evidenced by the presence of a train visible in the background.\n\nIn addition to the clock and train, there are several people scattered throughout the scene. Some of them are closer to the foreground, while others can be seen further in the background. A car is also parked in front of the building, adding to the urban atmosphere of the scene."} +{"image_id": 211476, "caption": "The image features a dining table with three bowls of food placed on it. The bowls are filled with various types of food, including beans, broccoli, and potatoes. One of the bowls has a lemon wedge placed on top of it, adding a touch of freshness to the meal.\n\nIn addition to the bowls, there is a bottle of lemonade on the table, providing a refreshing beverage to accompany the meal. A spoon is also present on the table, ready to be used for enjoying the delicious food."} +{"image_id": 473433, "caption": "The image features an open suitcase placed on a wooden table. Inside the suitcase, there are several items, including a book, a bowl, and a cup. The book appears to be a photo album, possibly containing pictures of a man. The bowl is positioned near the center of the suitcase, while the cup is located towards the left side. The combination of these items suggests that the suitcase might belong to a traveler or someone who is in the process of packing or unpacking their belongings."} +{"image_id": 165752, "caption": "The image features a black dog standing on a lush green lawn, wearing a yellow frisbee on its head. The dog appears to be playfully posing with the frisbee on its head, creating a fun and amusing scene."} +{"image_id": 573756, "caption": "The image depicts two giraffes standing in a grassy field, surrounded by trees and bushes. The giraffes are positioned close to each other, with one on the left side and the other on the right side of the frame. They appear to be enjoying their time in the wild, surrounded by nature."} +{"image_id": 187450, "caption": "The image features a blue and white passenger train parked at a train station. The train occupies a significant portion of the scene, stretching from the left to the right side of the image.\n\nThere are a few people visible in the background, likely waiting for the train or attending to other matters at the station. Additionally, there are two traffic cones placed near the train, one on the left side and the other on the right side of the train. These cones might be used for safety purposes or to mark a specific area near the train."} +{"image_id": 43266, "caption": "The image depicts two giraffes in their natural habitat. One giraffe is standing near the center of the scene, while the other giraffe is positioned towards the right side of the image. Both giraffes appear to be enjoying the sunny day.\n\nIn addition to the giraffes, there are several rocks scattered throughout the scene. Some of these rocks are located near the giraffes, while others are further away. The presence of these rocks adds to the natural ambiance of the scene."} +{"image_id": 150080, "caption": "The image features a close-up view of a delicious pizza on a white plate, placed on a dining table. The pizza is topped with a generous amount of shrimp and cheese, making it a mouth-watering meal.\n\nIn addition to the pizza, there are several chairs surrounding the dining table. One chair is positioned on the left side of the table, another on the right side, and a third chair is located at the far end of the table."} +{"image_id": 453757, "caption": "The image depicts a group of men playing soccer on a field. One of the players is in the process of kicking the soccer ball, which is located in the upper-middle part of the scene. The players are actively engaged in the game, with some of them chasing after the ball.\n\nThere are a total of six people visible in the scene, with some of them closer to the ball and others spread out across the field. A bench can be seen on the left side of the field, likely for players to rest when they are not actively participating in the game."} +{"image_id": 354460, "caption": "The image depicts a ribbon-cutting ceremony attended by a group of people, including a man and a woman. The man is holding a pair of scissors, preparing to cut the ribbon, while the woman stands next to him, smiling and ready to join in the celebration.\n\nThere are several other people in the scene, some of whom are wearing ties, indicating a formal or semi-formal event. A tie can be seen on the left side of the image, and another on the right side. Additionally, a handbag is visible on the right side of the scene, possibly belonging to one of the attendees."} +{"image_id": 221681, "caption": "The image depicts a clean and well-organized bathroom with a white toilet positioned next to a white sink. The toilet is located on the right side of the bathroom, while the sink is situated on the left side. Above the sink, there is a shelf with toilet paper and towels neatly arranged.\n\nIn addition to the toilet paper and towels, there are several bottles placed around the bathroom, possibly containing toiletries or cleaning supplies. One bottle can be seen on the left side of the sink, another on the right side of the toilet, and the third bottle is located closer to the center of the bathroom. The overall appearance of the bathroom is tidy and well-maintained."} +{"image_id": 349324, "caption": "The image depicts a train traveling down the tracks, carrying a large number of freight cars behind it. There are at least 14 cars visible in the scene, with some positioned closer to the front of the train and others further back. The train appears to be moving at a steady pace, transporting the cargo from one location to another."} +{"image_id": 225133, "caption": "The image features a tree filled with numerous colorful umbrellas hanging from its branches. The umbrellas come in various sizes and colors, creating a vibrant and eye-catching display. Some of the umbrellas are positioned higher up in the tree, while others are closer to the ground.\n\nIn total, there are 13 umbrellas visible in the scene, each adding a unique touch to the tree's appearance. The umbrellas are spread throughout the tree, with some closer to the trunk and others further away, creating a visually appealing scene."} +{"image_id": 452566, "caption": "The image features a stop sign located on the side of a road in a rural area. The stop sign is positioned near the center of the scene, with a mountain range visible in the background. The road appears to be empty, with no vehicles or pedestrians visible in the image.\n\nIn addition to the stop sign, there are a few trees scattered throughout the scene, adding a touch of greenery to the otherwise barren landscape."} +{"image_id": 124952, "caption": "The image depicts a city street with a blue and yellow bus driving down the road. The bus is positioned on the left side of the street, and there is a car following closely behind it. Another car can be seen further down the street on the right side.\n\nThere are multiple traffic lights in the scene, with one on the left side of the street, one in the middle, and another on the right side. A fire hydrant is also visible on the left side of the street, close to the bus.\n\nIn addition to the vehicles, there are two pedestrians in the scene. One person is located near the middle of the street, while the other person is standing closer to the right side of the street."} +{"image_id": 26697, "caption": "The image features a woman standing in a bathroom, holding a toothbrush in her hand. She appears to be brushing her teeth or preparing to do so. The bathroom is equipped with a sink, which is located towards the right side of the room.\n\nIn addition to the woman and the toothbrush, there are a few other items in the bathroom. A bottle can be seen on the left side of the room, and a vase is placed near the top right corner. There is also a clock hanging on the wall, allowing the woman to keep track of time while she brushes her teeth."} +{"image_id": 126064, "caption": "The image captures a man skillfully riding a wave on a surfboard in the ocean. He is wearing a red shirt and appears to be enjoying the thrill of surfing. The surfer is positioned in the middle of the wave, showcasing his balance and control over the surfboard.\n\nIn addition to the main surfer, there are two other people visible in the scene, one on the left side and another on the right side of the image. They seem to be watching the main surfer or possibly waiting for their turn to ride the waves."} +{"image_id": 557190, "caption": "In the image, there are two men standing next to each other, both wearing suits and ties. One of the men appears to be an older gentleman, while the other is a younger man. They seem to be enjoying their time together, possibly posing for a photo.\n\nThe scene is set against a backdrop of a beautiful landscape, featuring a hillside with trees in the background. The two men are positioned near the center of the image, with the older man on the left and the younger man on the right."} +{"image_id": 137612, "caption": "The image depicts a parking garage situated next to a tall building. The parking garage has a purple and white color scheme, and there are several cars parked within it. In addition to the cars, there are two motorcycles parked in the garage, one closer to the center and the other towards the right side.\n\nThe parking garage is located near a bridge, which can be seen in the background. There are also two traffic lights visible in the scene, one on the left side and the other on the right side of the parking garage."} +{"image_id": 408480, "caption": "The image depicts a harbor scene with a large boat docked next to a red lighthouse. The boat occupies a significant portion of the scene, stretching from the middle to the right side of the image. The lighthouse stands prominently on the left side of the boat.\n\nIn addition to the boat and lighthouse, there are several cars parked around the harbor area. Some cars can be seen on the left side of the image, while others are parked closer to the center and right side of the scene. The combination of the boat, lighthouse, and cars creates a bustling harbor atmosphere."} +{"image_id": 277694, "caption": "The image features a large brown cow laying down on the ground, taking up a significant portion of the scene. The cow appears to be relaxed and comfortable in its position.\n\nIn the background, there are two motorcycles parked next to each other. One motorcycle is located on the left side of the cow, while the other is on the right side. Additionally, there is a scooter parked further back on the right side of the scene."} +{"image_id": 74166, "caption": "The image captures a skateboarder performing a trick on a sidewalk. The skateboarder is in mid-air, showcasing their skill and balance. There are several people around the skateboarder, watching the performance and enjoying the spectacle.\n\nIn addition to the skateboarder, there are two cars parked in the background, one on the left side and the other on the right side of the scene. A bench is also visible on the right side of the image, providing a place for people to sit and observe the skateboarder's tricks."} +{"image_id": 102625, "caption": "The image depicts a clean and well-organized kitchen with wooden floors and white cabinets. The kitchen is equipped with essential appliances such as a refrigerator, oven, microwave, and sink. A dining table can be seen in the room, accompanied by several chairs placed around it.\n\nIn addition to the appliances and furniture, the kitchen is adorned with various decorative elements. There are multiple potted plants placed throughout the space, adding a touch of greenery and life to the room. A vase is also present, further enhancing the aesthetic appeal of the kitchen."} +{"image_id": 540694, "caption": "In the image, a large giraffe is standing next to a blue car in a parking lot. The giraffe appears to be reaching into the car window, possibly trying to get a snack or interact with the people inside. The car is surrounded by several other vehicles, including a truck on the left side and another truck on the right side of the parking lot.\n\nThere are a few people in the scene, with one person standing close to the giraffe and others scattered around the parking lot. The presence of the giraffe in the parking lot creates an unusual and interesting scene."} +{"image_id": 518586, "caption": "The image is a vintage black and white photograph of a train traveling down the tracks. The train is positioned in the middle of the scene, occupying a significant portion of the image. A person can be seen standing near the train tracks, possibly observing the train or waiting for it to pass.\n\nIn addition to the train and the person, there are two traffic lights visible in the scene. One traffic light is located on the left side of the image, while the other is on the right side. The presence of these traffic lights suggests that the train is passing through an area with traffic control measures in place."} +{"image_id": 81303, "caption": "In the image, a man is skiing down a snow-covered slope, wearing a brown jacket and goggles. He appears to be enjoying the thrill of skiing and navigating the snowy terrain. The skier is holding ski poles in his hands, which he uses to maintain balance and control during his descent. The scene captures the excitement of winter sports and the beauty of the snow-covered landscape."} +{"image_id": 383065, "caption": "The image features a green public toilet situated on the side of a street. The toilet has a sign above it that reads \"Toilettes,\" indicating its purpose. There is also a handicap sign on the side of the toilet, indicating that it is accessible for people with disabilities.\n\nA person can be seen standing next to the toilet, possibly waiting to use it or just passing by. The scene captures a typical urban setting where public facilities are available for the convenience of pedestrians."} +{"image_id": 169602, "caption": "In the image, a woman is riding a wave on a surfboard in the ocean. She is wearing a wetsuit and appears to be enjoying her time in the water. The surfboard is positioned underneath her as she skillfully maneuvers through the waves. The scene captures the excitement and thrill of surfing."} +{"image_id": 19890, "caption": "The image depicts two zebras standing next to each other in a dirt field. They appear to be grazing on grass, with one zebra closer to the left side of the image and the other towards the right. Both zebras have their heads down, focused on eating the grass.\n\nIn the background, there is a bench located near the left side of the image, possibly for visitors to sit and observe the zebras in their natural habitat."} +{"image_id": 236604, "caption": "The image depicts a spacious and well-furnished living room filled with various pieces of furniture. There are two couches in the room, one on the left side and the other on the right side. A coffee table is placed in the center of the room, surrounded by the couches.\n\nIn addition to the couches and coffee table, the living room is adorned with several decorative elements. There are two potted plants, one on the left side and the other on the right side of the room, adding a touch of greenery to the space. A vase can also be seen on the left side of the room, further enhancing the room's aesthetic appeal.\n\nThe living room is connected to a dining area, as evidenced by the presence of a dining table in the background. A clock is mounted on the wall above the dining table, providing a functional and decorative element to the space."} +{"image_id": 270753, "caption": "The image features a close-up view of a delicious Chicago-style deep dish pizza on a white plate. The pizza has a generous amount of toppings, including mushrooms and broccoli, making it a hearty and flavorful meal. The pizza is sliced and ready to be enjoyed.\n\nIn addition to the pizza, there is a knife placed on the plate, which can be used to cut and serve the pizza slices. The knife is positioned on the right side of the pizza, extending from the top to the bottom of the plate."} +{"image_id": 457178, "caption": "The image is a vintage black and white photograph of a busy city street filled with horse-drawn carriages and pedestrians. There are several horses visible in the scene, with some pulling carriages and others walking alongside the street.\n\nNumerous people can be seen throughout the scene, either riding in the carriages or walking on the sidewalks. Some of the individuals are closer to the foreground, while others are further in the background.\n\nThe street is lined with tall buildings, giving the impression of a bustling urban environment from a bygone era. Overall, the scene captures the essence of city life during a time when horse-drawn carriages were a common mode of transportation."} +{"image_id": 577712, "caption": "The image depicts a group of people standing in front of a giraffe enclosure at a zoo. There are five people in the scene, with one person on the left side, two people in the middle, and two people on the right side of the enclosure.\n\nThe giraffe is positioned towards the left side of the enclosure, extending its long neck to interact with the visitors. The people are observing the giraffe and enjoying the unique experience of being so close to such a large and fascinating animal."} +{"image_id": 414560, "caption": "The image depicts a group of black and white cows laying down in a hay-filled pen. There are a total of five cows in the scene, with one cow occupying the left side of the pen, two cows in the middle, and two cows on the right side. The cows appear to be resting and enjoying their time in the pen."} +{"image_id": 388983, "caption": "The image features a close-up view of a hot dog in a bun, placed on a dining table. The hot dog is topped with ketchup, mustard, and relish, giving it a colorful and appetizing appearance. In addition to the hot dog, there is a slice of pickle on the side, adding a crunchy element to the meal. The dining table occupies the majority of the scene, emphasizing the focus on the hot dog and its toppings."} +{"image_id": 245965, "caption": "The image features a blue umbrella standing upright in a field of tall, dry grass. The umbrella is positioned in the middle of the field, providing shade to the surrounding area. The grass appears to be a mix of brown and green, giving the field a somewhat dried-out appearance."} +{"image_id": 147590, "caption": "The image features a dining table with a variety of food items and utensils. A wine glass is prominently placed on the table, filled with red wine. Next to the wine glass, there is a knife and a spoon, indicating that the table is set for a meal.\n\nIn addition to the wine glass and utensils, there are several bowls on the table. One bowl is located near the center of the table, while the other two bowls are positioned towards the right side of the table. A cup can also be seen on the left side of the table.\n\nA person is partially visible in the background, likely preparing to enjoy the meal or setting up the table."} +{"image_id": 46882, "caption": "The image depicts a group of young people playing a game of frisbee in a park. One person is jumping in the air to catch the frisbee, while the others are watching and waiting for their turn. In total, there are five people visible in the scene, with some standing closer to the frisbee player and others positioned further away.\n\nThe frisbee can be seen in the air near the center of the image, and the players are spread out across the field, with some closer to the foreground and others further in the background. The overall atmosphere of the scene is energetic and fun, as the group enjoys their time outdoors playing frisbee."} +{"image_id": 518719, "caption": "The image features a white and brown ceramic bowl or vase placed on a table. The bowl has a patterned design, giving it a unique and eye-catching appearance. The combination of the white and brown colors, along with the intricate pattern, makes the bowl stand out in the scene."} +{"image_id": 176312, "caption": "In the image, a woman is standing in a hallway, looking at her cell phone. She is wearing a black and white dress and appears to be focused on her phone. The hallway is adorned with several framed pictures on the walls, creating a visually appealing environment.\n\nAdditionally, there are two handbags in the scene. One handbag is located on the left side of the woman, while the other handbag is positioned on the right side. The presence of these handbags suggests that the woman might be attending an event or visiting a location where she needs to carry her belongings with her."} +{"image_id": 580746, "caption": "The image depicts a peaceful scene of a herd of sheep grazing on a lush green hillside. There are nine sheep in total, scattered across the grassy field. Some of the sheep are closer to the foreground, while others are further away, creating a sense of depth in the scene.\n\nIn addition to the sheep, there is a dog present in the field, likely keeping an eye on the flock and ensuring their safety. The dog is positioned towards the right side of the image, blending in with the natural surroundings."} +{"image_id": 541223, "caption": "The image features a large white airplane parked in front of a building with a green roof. The airplane is prominently displayed, taking up a significant portion of the scene. The building appears to be a restaurant, as evidenced by the presence of a dining table and chairs nearby.\n\nIn addition to the main airplane, there are two smaller airplanes visible in the background, one on the left side and the other on the right side of the scene. A person can be seen standing near the left side of the image, possibly admiring the airplanes or attending to the restaurant."} +{"image_id": 22589, "caption": "The image features two sheep standing in a grassy field. One sheep is positioned towards the left side of the field, while the other sheep is on the right side. Both sheep appear to be looking at the camera, capturing the viewer's attention.\n\nIn addition to the sheep, there are a few trees in the background, providing a natural and serene setting for the scene."} +{"image_id": 196815, "caption": "The image depicts a group of young people gathered in a room, playing a video game on a Nintendo Wii console. There are five people in the scene, with some sitting on chairs and others standing. They are all focused on the TV screen, which displays the game they are playing.\n\nThe room is furnished with multiple chairs, some of which are occupied by the players, while others are unoccupied. There are also several books scattered around the room, possibly indicating a shared interest in reading or studying among the group members."} diff --git a/OPERA/log/chair_eval_results/llava-1.5/greedy.jsonl b/OPERA/log/chair_eval_results/llava-1.5/greedy.jsonl new file mode 100644 index 0000000000000000000000000000000000000000..d2a889b39112bd70276df69668e405a0e47974b7 --- /dev/null +++ b/OPERA/log/chair_eval_results/llava-1.5/greedy.jsonl @@ -0,0 +1,500 @@ +{"image_id": 226988, "caption": "The image features a woman sitting at a dining table, taking a picture of a delicious pizza with her camera. The pizza is placed on a plate in front of her, and she is capturing the moment with her camera.\n\nThere are several other people in the scene, some of them sitting at the table and others standing nearby. A bench is visible in the background, and a chair can be seen close to the table. Additionally, there are two bottles on the table, one near the center and the other towards the right side."} +{"image_id": 337443, "caption": "The image features a busy street with several cars and a truck driving by. There is a large orange construction sign on the side of the road, indicating that there is ongoing construction work in the area. The sign is placed on a pole, and it is positioned near the center of the scene.\n\nIn addition to the vehicles, there are two people visible in the image, one near the left side and another closer to the center. The street is lined with trees, providing a pleasant atmosphere to the scene."} +{"image_id": 112022, "caption": "The image depicts a busy airport scene with a large group of people standing around and waiting for their luggage. There are at least 13 people visible in the scene, some of them standing close to each other, while others are spread out.\n\nNumerous suitcases and backpacks are scattered throughout the area, with at least 11 suitcases and 5 backpacks visible. Some suitcases are placed on the ground, while others are on the floor or being held by the people. The backpacks are also placed on the ground or being held by the individuals.\n\nThe people in the scene are engaged in various activities, such as talking, waiting, or looking for their belongings. The overall atmosphere suggests a bustling and lively airport environment."} +{"image_id": 394444, "caption": "The image features a person wearing a black shirt and gray pants, standing on a sidewalk with a skateboard. The skateboard is placed on the ground, and the person is in the process of picking it up. The person's hand is visible, holding the skateboard, while the rest of their body is not clearly visible. The scene appears to be set in an urban environment, with the skateboard being the main focus of the image."} +{"image_id": 481635, "caption": "The image features a woman sitting at a dining table, smiling and enjoying a meal. She is holding up a slice of pizza, which is placed on a plate in front of her. The table is set with various items, including a knife, a fork, and a spoon. There are also a couple of cups on the table, one near the woman and another further away.\n\nIn the background, there are other people present, possibly enjoying their meals as well. The scene appears to be a casual dining setting, with everyone enjoying their time together."} +{"image_id": 285258, "caption": "The image features a lively scene of two dogs playing together in a grassy field. One dog is standing on its hind legs, while the other dog is lying on its back, appearing to be playfully wrestling with the standing dog. The standing dog is wearing a blue collar, adding a touch of color to the scene.\n\nIn addition to the two main dogs, there are several other dogs in the background, some of which are also playing or standing around. The presence of multiple dogs in the field suggests a social and fun environment for the animals."} +{"image_id": 479057, "caption": "The image features a large white polar bear standing in a grassy field, grazing on the grass. The bear is positioned towards the center of the scene, with its head down as it eats. The field is surrounded by a fence, indicating that the bear is in a controlled environment, such as a zoo or wildlife sanctuary. The grassy area provides a natural habitat for the polar bear, allowing it to graze and roam freely."} +{"image_id": 66238, "caption": "The image captures a thrilling moment of a snowboarder performing a jump in the air. The snowboarder is in the middle of the jump, with their snowboard clearly visible beneath them. The scene takes place on a snow-covered slope, and the snowboarder is wearing a red jacket, adding a pop of color to the scene.\n\nIn the background, there are several other people scattered around the slope, likely enjoying the winter sports activities. The overall atmosphere of the image is energetic and exciting, showcasing the snowboarder's skill and the fun environment of the ski resort."} +{"image_id": 558458, "caption": "The image features a woman sitting at a dining table, holding a plate filled with a delicious meal. The plate contains a hot dog, a sandwich, and a bowl of spaghetti. The woman is smiling and appears to be enjoying her meal.\n\nThere are other people in the scene, with one person sitting behind the woman and another person on the left side of the image. A chair is visible in the background, and a clock can be seen hanging on the wall. A bottle is also present on the table, possibly containing a beverage to accompany the meal."} +{"image_id": 400596, "caption": "The image features a bathroom with a green sink and a toilet situated next to each other. The sink is a unique, circular design, and it is placed on a wooden countertop. Above the sink, there is a towel hanging on a towel rack, adding a touch of color to the bathroom.\n\nIn addition to the sink and toilet, there is a toilet paper roll placed on the countertop, and a bottle can be seen nearby. The bathroom also has a mirror, which is located above the sink, completing the overall look of the space."} +{"image_id": 373266, "caption": "The image depicts a group of three men in a hospital setting, working together to operate a large piece of medical equipment. They are all wearing blue scrubs, indicating their roles as medical professionals. One man is focused on the equipment, while the other two are attentively watching and assisting him.\n\nThe equipment they are working with is a large TV monitor, which is placed on a cart. The TV is positioned in the center of the scene, with the men surrounding it. The men are using headphones to communicate and collaborate effectively during their work.\n\nThe room they are in appears to be a hospital ward, with a bed visible in the background. The presence of the medical equipment and the men's attire suggest that they are working on a medical procedure or treatment."} +{"image_id": 38332, "caption": "The image features a large elephant walking through a grassy field. The elephant is the main focus of the scene, with its trunk and tusks prominently visible. The elephant appears to be walking towards the camera, giving a sense of depth to the image. The grassy field provides a natural and serene backdrop for the majestic animal."} +{"image_id": 84533, "caption": "The image features a woman sitting on a motorcycle, which is parked in front of a white building. She is wearing a leather jacket and appears to be posing for the camera. The motorcycle is positioned in the foreground, occupying a significant portion of the scene.\n\nIn the background, there is a car parked further away from the motorcycle, and a handbag can be seen placed on the ground near the woman. The scene seems to be set in a parking area or a similar location where vehicles are parked."} +{"image_id": 449963, "caption": "The image features a large room with a long table in the center, surrounded by numerous chairs. On the table, there are several laptop computers, with a total of eight laptops visible. Some of the laptops are placed closer to the front of the table, while others are positioned further back.\n\nIn addition to the laptops, there are two keyboards on the table, one near the left side and the other near the right side. A mouse can also be seen on the table, closer to the right side. The room appears to be a classroom or a workspace, with the laptops and other equipment set up for use."} +{"image_id": 128180, "caption": "The image features a person standing next to a plate of pizza on a dining table. The person is wearing black pants and black shoes, and their feet are positioned close to the plate. The pizza is sliced and ready to be eaten, with a fork and a knife placed on the table, indicating that it is ready to be enjoyed. The person appears to be the main focus of the scene, with the pizza and the table occupying the background."} +{"image_id": 204232, "caption": "The image captures a thrilling moment of a skateboarder performing a high jump over a wooden fence. The skateboarder is in mid-air, skillfully riding the skateboard while maintaining balance. The skateboard is positioned horizontally, with the rider's feet firmly on it.\n\nThe scene takes place in an urban setting, with a building visible in the background. The skateboarder's impressive jump showcases their talent and athleticism."} +{"image_id": 477867, "caption": "The image captures a man skillfully riding a surfboard on a wave in the ocean. He is wearing a wetsuit and appears to be enjoying the thrill of the ride. There are several other people in the scene, some of them standing on the shore and others in the water, possibly watching the surfer or waiting for their turn to surf.\n\nIn addition to the main surfer, there are three surfboards visible in the scene, one being ridden by the man and the other two placed on the shore. The presence of multiple people and surfboards suggests that this is a popular surfing spot."} +{"image_id": 308128, "caption": "The image features a young man skillfully riding a skateboard on a cement ledge, performing a trick. He is wearing a white shirt and appears to be enjoying the activity. The skateboard is positioned underneath him, with the wheels visible.\n\nThe scene takes place in a park, with a bench located nearby. There are also a few potted plants scattered around the area, adding a touch of greenery to the environment. The overall atmosphere of the image is energetic and fun, showcasing the skateboarder's talent and passion for the sport."} +{"image_id": 222407, "caption": "The image features a black bird perched on a tree branch, surrounded by rain. The bird is positioned near the center of the scene, with its wings spread out. The rain creates a serene atmosphere, as the bird seems to be enjoying the weather. The tree branch is the main focus of the image, with the bird sitting comfortably on it."} +{"image_id": 469543, "caption": "The image features a hotel room with two twin beds placed side by side. The beds are covered with striped blankets, giving them a neat and tidy appearance. The room also contains a chair positioned near the beds, and a telephone is placed on a surface close to the beds. The overall setting suggests a comfortable and inviting atmosphere for guests staying in the hotel."} +{"image_id": 421564, "caption": "The image features a baby sitting in a high chair, looking at a birthday cake placed in front of her. The cake is decorated with pink and blue frosting, making it a delightful centerpiece for the baby's celebration. The baby appears to be enjoying the moment, possibly anticipating the cake's arrival.\n\nIn the background, there is a refrigerator visible, adding to the cozy atmosphere of the scene."} +{"image_id": 177419, "caption": "The image features a blue fire hydrant with a unique design painted on it. The fire hydrant is located on a sidewalk, and it appears to be a part of a park setting. The hydrant is situated near a fence, which can be seen in the background. The artistic design on the fire hydrant adds a touch of creativity to an otherwise ordinary object."} +{"image_id": 86432, "caption": "The image captures a baseball game in progress, with a young boy swinging a baseball bat at a ball. The boy is wearing a baseball uniform and is in the middle of his swing. The sports ball is visible in the air, close to the boy.\n\nThere are several other people in the scene, including teammates and opponents, as well as a few spectators. Some of the people are standing near the fence, watching the game intently. A baseball glove can be seen on the ground, likely belonging to one of the players.\n\nThe atmosphere of the game is lively, with everyone engaged in the action and enjoying the sport."} +{"image_id": 544590, "caption": "The image features a large orange cat lying on a couch, resting comfortably with its head on its paws. The cat appears to be sleeping or relaxing, taking up a significant portion of the couch. The couch itself is covered with a grey fabric, providing a cozy and inviting surface for the cat to lay on."} +{"image_id": 513060, "caption": "The image features a person sitting on a bench, holding a donut in their hand. The donut is half-eaten, with a bite taken out of it. The person is also holding a napkin, which is likely used to catch any crumbs or toppings that may fall off the donut.\n\nThere are two other donuts in the scene, one placed near the person and the other one further away. The person appears to be enjoying their snack, possibly taking a break from their daily activities."} +{"image_id": 140921, "caption": "The image features a white surfboard with a colorful painting of a beach scene on it. The surfboard is placed on a sandy beach, and it appears to be a rental board for beach chairs and surfing. The painting on the surfboard includes a palm tree, a house cat, and a full bar.\n\nIn addition to the surfboard, there are two chairs visible in the scene, one located near the left side of the surfboard and the other towards the right side. The beach setting and the presence of the surfboard suggest a fun and relaxing atmosphere for beachgoers."} +{"image_id": 361351, "caption": "The image features a delicious pizza with a generous amount of cheese and tomatoes, sitting on a red and white checkered plate. The pizza is placed in a box, ready to be enjoyed. Beside the pizza, there is a bottle of beer, adding to the overall dining experience. The scene is set on a dining table, creating a cozy atmosphere for a meal."} +{"image_id": 202154, "caption": "The image features a delicious pizza with a variety of toppings, including tomatoes, spinach, and cheese. The pizza is cut into slices and placed on a wooden cutting board, which is sitting on a dining table. The table is surrounded by chairs, with one on the left side and another on the right side of the table. The pizza appears to be freshly baked and ready to be enjoyed."} +{"image_id": 94248, "caption": "The image features a city street with a large clock tower in the middle of the scene. The clock tower has two clocks on each side, making it a prominent and functional landmark. There are two cars parked on the street, one on the left side and the other on the right side of the clock tower.\n\nThere are several people in the scene, with one person standing near the left side of the clock tower, another person closer to the right side, and a third person further back on the right side. A potted plant can be seen on the left side of the scene, adding a touch of greenery to the urban environment."} +{"image_id": 200681, "caption": "The image features a man and his two dogs playing in a grassy field. The man is standing on the right side of the scene, while the two dogs are on the left side, one closer to the center and the other slightly further back. The dogs are engaged in a game of fetch, with one dog jumping up to catch a frisbee in its mouth. The other dog is also trying to catch the frisbee, adding to the lively atmosphere of the scene."} +{"image_id": 532989, "caption": "The image features a giraffe sitting on a grassy field, possibly in a zoo enclosure. The giraffe is positioned in the center of the scene, with its long neck and legs visible. The grassy area appears to be well-maintained, providing a comfortable environment for the giraffe."} +{"image_id": 565989, "caption": "The image features a clock tower with a unique design, surrounded by statues of animals. There are three statues of dogs, one on the left side, one in the middle, and another on the right side of the clock tower. The clock is positioned at the top of the tower, making it a prominent feature.\n\nThe clock tower is located in a park setting, with trees in the background. The combination of the clock tower and the animal statues creates an interesting and visually appealing scene."} +{"image_id": 67315, "caption": "The image features a man wearing a striped tie and a dress shirt, sitting in a room with his arms crossed. He appears to be relaxed and comfortable in his attire. The room has a dining table in the background, and a chair is placed nearby. The man's tie is blue and white, adding a touch of color to his outfit."} +{"image_id": 157170, "caption": "The image features a group of five sheep standing on a grassy hillside, overlooking a town below. The sheep are spread out across the hill, with some closer to the foreground and others further back. They appear to be enjoying the view and the open space.\n\nIn the background, there is a town with buildings and a clock tower visible, adding to the picturesque scene. The combination of the sheep, the town, and the hillside creates a serene and peaceful atmosphere."} +{"image_id": 328786, "caption": "The image features a row of wooden park benches lined up along a sidewalk. There are a total of 12 benches in the scene, with some of them placed closer to the foreground and others further back. The benches are arranged in a neat and orderly manner, creating a pleasant atmosphere for visitors to sit and relax.\n\nThe park benches are situated next to a grassy area, which adds to the overall aesthetic of the scene. The arrangement of the benches and the presence of grass create a welcoming environment for people to enjoy the outdoors."} +{"image_id": 46011, "caption": "The image features a small white airplane parked on a runway, with a fence surrounding the area. The airplane is positioned near the center of the scene, and it appears to be a small propeller plane. The fence is made of metal and is designed to keep people and vehicles away from the airplane.\n\nIn addition to the airplane, there are two people visible in the scene, one near the left side and the other closer to the center. A truck can also be seen on the right side of the image, likely used for transportation or maintenance purposes."} +{"image_id": 384348, "caption": "The image features a person skiing down a snow-covered slope, wearing a blue jacket and a black hat. The skier is making their way down the hill, enjoying the winter sport. The scene also includes a ski lift in the background, providing transportation for other skiers on the mountain."} +{"image_id": 451798, "caption": "The image features a wall with a variety of ties hanging on it. There are at least 13 ties of different colors and patterns, creating a visually appealing display. Some of the ties are hanging closer to the top of the wall, while others are positioned lower, creating a sense of depth and balance.\n\nIn addition to the ties, there are two hats hanging on the wall, one on the left side and the other on the right side. These hats add a touch of personality and style to the overall display."} +{"image_id": 376545, "caption": "The image captures a dynamic scene of a man performing a skateboard trick in the air, with his skateboard flying through the air. Another person is watching the skateboarder, likely admiring the trick. The skateboarder is positioned towards the left side of the image, while the observer is on the right side.\n\nThe setting appears to be a street with a building in the background. There is a cup placed on a surface in the middle of the scene, possibly belonging to one of the individuals. The overall atmosphere of the image is energetic and exciting, showcasing the skateboarder's skill and the onlooker's interest in the performance."} +{"image_id": 11538, "caption": "The image features a man riding a motorcycle down a road. He is wearing a helmet and appears to be enjoying the ride. The motorcycle is positioned in the center of the scene, with the man sitting on it and controlling its movement.\n\nThere are several trees in the background, adding to the scenery of the road. Additionally, there is a handbag placed on the ground near the motorcycle, possibly belonging to the rider or someone else nearby."} +{"image_id": 346207, "caption": "The image features a wooden desk with a laptop and a computer monitor placed on it. A cat is comfortably laying on the desk, occupying a significant portion of the space. There are several books scattered around the desk, with some placed near the cat and others closer to the edge of the desk.\n\nIn addition to the laptop and monitor, there is a cell phone on the desk, and a keyboard can be seen in the foreground. A mouse is also present on the desk, positioned near the keyboard. A teddy bear is placed on the desk, adding a touch of warmth and playfulness to the scene."} +{"image_id": 359238, "caption": "The image features a man sitting on a train, wearing a brown jacket and a yellow shirt. He appears to be relaxed and enjoying his time on the train. The man is positioned near the center of the scene, with a dining table in front of him.\n\nOn the table, there is a cup, possibly containing tea, and a bottle, which could be a beverage or a condiment. The man seems to be in a comfortable and leisurely state, possibly taking a break during his journey."} +{"image_id": 297610, "caption": "The image features a young man skillfully riding a skateboard on a ramp, performing a trick. He is wearing a white shirt and appears to be in the middle of his stunt. The skateboarder is the main focus of the scene, with his skateboard clearly visible beneath him.\n\nThe ramp is located in a building, possibly a warehouse or a skate park, with a few other people present in the background. They seem to be watching the skateboarder's performance, possibly waiting for their turn to showcase their skills."} +{"image_id": 428447, "caption": "The image is a black and white photo of a city street with a couple of traffic lights. One traffic light is located on the left side of the street, while the other is on the right side. There are also two street signs on the right side of the street, one of which is a \"no parking\" sign.\n\nThe street is lined with buildings, and there are several cars parked along the side of the road. Some cars are parked closer to the foreground, while others are further back. Additionally, there are a few people walking on the sidewalk, with one person closer to the left side of the street and another person near the center."} +{"image_id": 428769, "caption": "The image features a black Mercedes parked on the side of the road. The car has a California license plate, which reads \"Supabad.\" The license plate is clearly visible on the back of the car.\n\nIn the background, there are several other cars parked along the street. Some of these cars are located closer to the foreground, while others are further away. The scene captures a typical urban street setting with various vehicles parked along the side of the road."} +{"image_id": 452084, "caption": "The image features a dining table with a variety of food items on it. There are two bowls, one containing a sausage and tomato sandwich, and the other containing a hot dog. A fork is placed next to the bowls, ready to be used for enjoying the meal.\n\nIn addition to the main dishes, there are two slices of bread on the table, one near the left side and the other near the top left corner. A cup can also be seen on the table, positioned towards the top right corner. The overall scene suggests a casual meal setting with a mix of different food items."} +{"image_id": 545363, "caption": "The image features a bench that has been tipped over and is now resting on its side. The bench is located near a sidewalk, and it appears to be in a somewhat dilapidated state. There are several people in the scene, some of them standing close to the bench, while others are further away.\n\nIn addition to the bench, there is a car parked in the background, and a handbag can be seen placed on the ground near one of the people. The overall atmosphere of the scene suggests that the bench has been abandoned or neglected for some time."} +{"image_id": 77963, "caption": "The image features a large room with a ceiling painted to resemble a barn. In the center of the room, there are two cow statues, one on the left side and the other on the right side, both appearing to be hanging from the ceiling. The room also has a large painting of a field with flowers, adding to the overall farm-themed atmosphere.\n\nThere are several potted plants scattered throughout the room, with some placed near the cow statues and others positioned around the edges of the room. A person can be seen in the background, possibly admiring the artwork or observing the cow statues."} +{"image_id": 78093, "caption": "The image features a woman wearing a pink and white jacket, skiing down a snow-covered slope. She is smiling and appears to be enjoying her time on the snowy trail. The woman is equipped with skis, which are visible beneath her as she glides down the hill.\n\nThe scene is set in a snowy forest, with trees surrounding the woman as she skis. The snow-covered slope and the presence of trees create a picturesque winter landscape."} +{"image_id": 346334, "caption": "The image features a grassy field with two brown bears walking and grazing in the open area. One bear is located towards the left side of the field, while the other bear is positioned more towards the center. The bears appear to be enjoying their time in the field, possibly searching for food or exploring their surroundings."} +{"image_id": 185633, "caption": "The image depicts a bathroom with a bathtub and a sink. The bathtub is situated next to the sink, and there is a towel hanging on the side of the tub. The sink is located on the right side of the bathroom, and there is a toothbrush placed on the countertop.\n\nIn addition to the toothbrush, there are several bottles scattered around the bathroom. One bottle is located near the sink, while the others are placed on the countertop. The bathroom appears to be in the process of being remodeled, as indicated by the peeling paint on the walls."} +{"image_id": 327165, "caption": "The image features a man cutting a child's hair in a salon. The child is sitting in a chair, and the man is skillfully using a pair of scissors to trim the child's hair. The man is focused on his task, ensuring the child's haircut is done well.\n\nIn the background, there is a couch and a chair, providing a comfortable environment for the child and the man. Additionally, there are a few books scattered around the salon, possibly containing information or entertainment for the child during the haircut."} +{"image_id": 410632, "caption": "The image features a group of three baseball players standing on a field, likely during a game. They are all wearing baseball gloves, with one player on the left, another in the middle, and the third on the right side of the field. The players appear to be engaged in conversation or preparing for the game.\n\nIn the background, there are several people watching the game from various positions around the field. Some are closer to the players, while others are further away, observing the action. The scene captures the excitement and camaraderie of a baseball game."} +{"image_id": 468471, "caption": "The image features a man in a suit jumping in the air above a bed in a bedroom. He appears to be in the middle of a leap, possibly performing a trick or simply having fun. The bed is positioned in the center of the room, and there are several people in the background, possibly observing the man's actions.\n\nIn addition to the bed, there are a few other items in the room, including a potted plant located near the bed, a chair positioned in the background, and a clock hanging on the wall. The scene seems to be a lively and energetic moment in the bedroom."} +{"image_id": 241317, "caption": "The image features a man pushing a cart filled with a variety of fruits and vegetables, including bananas, apples, and oranges. The cart is parked in front of a blue building, possibly a house or a store. The man appears to be selling the produce, possibly in a market setting.\n\nThere are several bananas visible on the cart, with some placed closer to the front and others towards the back. The apples are scattered throughout the cart, with some near the center and others towards the edges. The oranges are also present, with a few located near the center and others towards the back of the cart. The scene captures the man's effort to transport the fresh produce to the customers or the building."} +{"image_id": 444982, "caption": "The image features a group of zebras grazing in a grassy field. There are three zebras in total, with one standing closer to the left side of the field, another in the middle, and the third one on the right side. They are all focused on eating the grass, enjoying their time in the open field."} +{"image_id": 117563, "caption": "The image features two young men standing in a living room, playing a video game together. One of the men is holding a Wii remote, while the other is watching him play. They are both standing in front of a couch, which is positioned against the wall.\n\nThere are two chairs in the room, one located near the couch and the other closer to the foreground. A potted plant can be seen on the left side of the room, adding a touch of greenery to the space. A bottle is also visible on the left side of the room, possibly containing a beverage for the two men to enjoy while they play."} +{"image_id": 206579, "caption": "The image features a man standing over a dining table, blowing out the candles on a birthday cake. The cake is placed on the table, and the man is focused on making a wish before blowing out the candles.\n\nThere are two other people in the scene, one standing near the left edge of the image and another person on the right side. A chair is also visible in the background, positioned near the right edge of the image."} +{"image_id": 221172, "caption": "The image captures a tennis match in progress, with a tennis player in a blue shirt and white shorts swinging a tennis racket at a tennis ball. The player is in the middle of the court, fully engaged in the game.\n\nThere are several chairs placed around the court, with one chair located near the left side of the court, another chair in the middle, and a third chair on the right side. A fourth chair is situated further back, closer to the edge of the court. A person can be seen standing near the right side of the court, possibly watching the match or waiting for their turn to play."} +{"image_id": 317969, "caption": "The image features a large herd of sheep walking down a road, with a mountainous landscape in the background. The sheep are spread out along the road, with some closer to the foreground and others further away. The scene captures the essence of a rural countryside, where the sheep are free to roam and graze. The mountainous terrain adds a sense of depth and natural beauty to the scene."} +{"image_id": 82150, "caption": "The image features a man sitting on a couch, holding a Nintendo Wii steering wheel controller in his hands. He is smiling and appears to be enjoying his time playing the game. The man is positioned in the center of the scene, with the steering wheel controller clearly visible in his hands. The couch he is sitting on spans the entire width of the image."} +{"image_id": 284064, "caption": "The image features a man playing tennis on a court, holding a tennis racket and preparing to hit a tennis ball. He is in the middle of a swing, with the ball positioned above his head. The tennis ball is in the air, and the man is focused on making a successful shot.\n\nThere are a few other people in the scene, but they are not the main focus of the image. The main focus is on the man playing tennis and his interaction with the ball."} +{"image_id": 372203, "caption": "The image features a bench situated on a sidewalk, overlooking a vast, open field. The bench is positioned under a street light, providing a comfortable spot for people to sit and enjoy the view. The field appears to be a desert landscape, with a few people scattered around the area.\n\nIn the distance, there are several umbrellas set up, possibly for shade or as a part of an event. The umbrellas are spread out across the field, with some closer to the bench and others further away. The scene creates a serene and peaceful atmosphere, inviting visitors to relax and take in the beautiful surroundings."} +{"image_id": 359136, "caption": "The image features a woman wearing a black tank top and boots, lying on the floor next to a bathtub. She appears to be relaxing or possibly taking a break from a bath. The bathroom has a sink and a toilet, with the sink located on the left side of the room and the toilet on the right side. The woman's position and the overall atmosphere of the scene suggest a sense of comfort and relaxation."} +{"image_id": 499281, "caption": "The image features a kitchen with a stove top oven and a microwave above it. The stove is surrounded by various cooking utensils, including a couple of pans and a spoon. There are also several bottles placed around the kitchen, with some on the countertops and others on the shelves.\n\nIn addition to the cooking items, the kitchen is well-stocked with a variety of food items, such as a loaf of bread, a bowl, and a couple of apples. A potted plant is also present in the kitchen, adding a touch of greenery to the space."} +{"image_id": 192233, "caption": "The image captures a tennis player in action, swinging his racket to hit a tennis ball. The player is in the middle of the scene, with the tennis ball positioned slightly above and to the right of him. The tennis racket is held in the player's hand, ready to make contact with the ball.\n\nThe tennis court is the main focus of the image, with the player's shadow visible on the court surface. The scene is set on a dirt court, which adds to the intensity of the game."} +{"image_id": 11987, "caption": "The image depicts a cozy and well-furnished room with a combination of a living room and a bedroom. The living room features a dining table with chairs, a couch, and a fireplace. The bedroom area has a bed with a canopy, a chair, and a couch. The room is decorated with a variety of furniture, including a chair, a couch, and a dining table.\n\nThere are several chairs in the room, with one near the dining table, another near the couch, and a third one placed near the bed. A couch is also present in the living room area, and a chair is located in the bedroom. A fireplace can be seen in the living room, adding warmth and ambiance to the space.\n\nAdditionally, there are two cups placed on the dining table, and a bowl is located near the table. A vase is also visible in the room, adding to the overall decoration and ambiance."} +{"image_id": 406810, "caption": "The image features a man sitting in a room, working on a laptop computer. He is surrounded by several other people, some of whom are also using laptops. The room appears to be a conference or meeting space, with a large screen in the background.\n\nThere are multiple TVs in the room, with one on the left side, another on the right side, and a third one in the background. A clock is also visible on the wall, indicating the time. The people in the room seem to be engaged in various activities, possibly discussing or working on projects together."} +{"image_id": 99965, "caption": "The image features a person holding a half of a sandwich on a plate, with the sandwich cut in half. The sandwich is filled with turkey and accompanied by a side of potato chips. The person is holding the sandwich with their left hand, while the right hand is visible in the foreground. The plate is placed on a dining table, and the scene appears to be set for a meal."} +{"image_id": 17328, "caption": "The image features a red and white train traveling down the tracks, with a large red engine pulling the train. The train is moving along the tracks, and the red engine is the most prominent part of the scene. The train appears to be a passenger train, as it is designed for transporting people. The tracks are surrounded by snow, giving the scene a wintry atmosphere."} +{"image_id": 393682, "caption": "The image features a white plate with a slice of cheesecake on it, accompanied by a fork. The cheesecake is topped with strawberry sauce, making it a delicious dessert. The fork is placed on the plate, ready to be used to enjoy the cheesecake. The plate is placed on a dining table, creating a cozy and inviting atmosphere for a meal."} +{"image_id": 540093, "caption": "The image features a street scene with a car covered in plastic, likely to protect it from the rain. The car is parked on the side of the road, and a large umbrella is set up above it, providing additional protection from the elements.\n\nThere are several people walking around the area, with some of them carrying umbrellas as well. A few cars are parked or driving nearby, and a fire hydrant can be seen on the sidewalk. Additionally, there are a couple of potted plants in the scene, one near the car and another further away."} +{"image_id": 242400, "caption": "The image features a woman standing next to a large clock on a pole, which is decorated with a bow and Christmas lights. She is posing for a picture in front of the clock, which is located on a street corner.\n\nIn the background, there are several cars parked along the street, including a truck on the left side of the scene. Another person can be seen standing further back on the right side of the image. The woman appears to be the main focus of the scene, as she is the one interacting with the clock and posing for the picture."} +{"image_id": 409009, "caption": "The image features a white bullet train parked at a train station. The train is positioned on the tracks, occupying a significant portion of the scene. The train station has a modern design, with a large window providing a view of the train.\n\nThere are several people in the scene, some of them standing near the train, while others are scattered throughout the station. A few individuals can be seen closer to the train, while others are further away, possibly waiting for their train or just passing through the station."} +{"image_id": 6091, "caption": "The image features a person standing in front of a stop sign, which is located on the side of a road. The person is holding a piece of paper, possibly a note or a sign, and placing it on the stop sign. The scene appears to be taking place at night, as the person is standing in the dark. The stop sign is large and clearly visible, with the person's actions drawing attention to it."} +{"image_id": 42834, "caption": "The image features an older woman sitting at a dining table, preparing food. She is in the process of cutting up a hot dog, which is placed on a plate in front of her. The woman is using a knife to cut the hot dog into smaller pieces.\n\nThere are several hot dogs on the table, with one near the woman and others scattered around. A fork is also visible on the table, likely used for eating the hot dogs. The scene appears to be a casual meal setting, with the woman enjoying her time preparing and eating the hot dogs."} +{"image_id": 433554, "caption": "The image features a group of people gathered on a boat, enjoying a day of water sports. There are several individuals on the boat, with some of them wearing life jackets and holding onto ropes. A man is riding a jet ski, while others are watching and possibly waiting for their turn.\n\nThere are two surfboards visible in the scene, one near the left side of the boat and the other closer to the right side. A few people are standing on the boat, while others are sitting, observing the activities. The atmosphere appears to be lively and fun, with everyone participating in or watching the water sports."} +{"image_id": 174987, "caption": "The image features a train with graffiti on its side, painted in various colors such as blue, green, and yellow. The graffiti is spread across the train, covering a significant portion of its surface. The train is parked on a platform, and there is a person standing nearby, possibly admiring the artwork or waiting for the train to depart."} +{"image_id": 116208, "caption": "The image features a dining table with a large pizza placed on a metal stand in the center. The pizza is topped with cheese, onions, and bacon, making it a delicious and appetizing meal. There are several wine glasses surrounding the pizza, with some placed closer to the pizza and others further away.\n\nIn addition to the pizza and wine glasses, there are a few bottles on the table, possibly containing wine or other beverages. A chair is positioned near the table, and a person can be seen in the background, likely enjoying the meal or preparing to join the gathering."} +{"image_id": 80131, "caption": "The image features a man and a woman sitting at a dining table in a kitchen, enjoying a meal together. The man is wearing a striped shirt, and the woman is wearing a plaid shirt. They are surrounded by various kitchen items, including a microwave, an oven, and a sink.\n\nThere are several bottles placed around the kitchen, with some on the countertops and others on the table. A knife can also be seen on the table, likely used for cutting or preparing the meal. The scene appears to be a cozy and intimate moment shared between the two individuals."} +{"image_id": 310663, "caption": "The image features an old, rusty train car sitting on a set of train tracks. The train car is orange and white, with a large orange section on the front. The train appears to be abandoned, as it is not in use and is surrounded by a forest.\n\nThere are two people visible in the scene, one standing near the left side of the train and the other closer to the right side. The presence of these individuals suggests that they might be exploring the abandoned train or simply passing by."} +{"image_id": 100138, "caption": "The image features a black motorcycle parked on a paved surface, possibly a driveway or a street. The motorcycle is positioned in the foreground, with its front wheel prominently visible. The motorcycle has a distinctive design, with a black and white color scheme and a unique pattern on the front.\n\nIn the background, there are some bushes and trees, adding a touch of greenery to the scene. Additionally, there is a stop sign visible in the background, indicating that the motorcycle is parked near an intersection or a controlled area."} +{"image_id": 415613, "caption": "The image features a man wearing a green shirt and a hat, standing in a kitchen and preparing food. He is cutting a loaf of bread on a cutting board, using a knife to slice it. The kitchen is well-equipped with various utensils and items, including a spoon, a fork, and a bowl.\n\nIn the background, there are multiple cars visible, suggesting that the kitchen is located in a busy area. Additionally, there are two bottles placed on the counter, possibly containing condiments or beverages."} +{"image_id": 214737, "caption": "The image features a large, ornate building with a prominent clock mounted on the side of a wall. The clock is positioned above a doorway, making it a focal point of the building's architecture. The building's interior is adorned with statues and intricate carvings, adding to its grandeur.\n\nThere are several people in the scene, with some standing near the clock and others scattered throughout the building. The presence of these individuals suggests that the building may be a popular destination or a place of interest for visitors."} +{"image_id": 172718, "caption": "The image is a black and white photograph of a young boy wearing a white shirt and a tie. He is looking directly at the camera, giving a serious expression. The boy appears to be well-dressed and well-groomed, possibly for a special occasion or a formal event. The photograph captures a moment in the boy's life, showcasing his attire and demeanor."} +{"image_id": 99186, "caption": "The image features a stop sign prominently displayed on a metal pole, standing in a grassy area near a road. The stop sign is positioned in the middle of the scene, with a car parked on the left side of the frame. The sky in the background is a beautiful shade of blue, creating a serene atmosphere. The stop sign is clearly visible, ensuring that drivers are aware of the need to stop at this location."} +{"image_id": 3580, "caption": "The image features a man sitting on a couch, holding a Wii remote in his hand. He appears to be playing a video game, possibly on a Nintendo Wii console. The couch is positioned in the center of the room, and there is a chair located near the left side of the scene.\n\nIn the background, there are several books scattered around, possibly indicating a reading or studying area. A dining table can be seen in the room, with a cup placed on it. Additionally, there is a bottle located near the left edge of the image."} +{"image_id": 526044, "caption": "The image features a cow standing in shallow water near the shore of a lake. The cow appears to be looking at the camera, possibly curious about its surroundings. The water is calm, and the cow seems to be enjoying its time in the water. The scene is serene and picturesque, with the cow being the main focus of the image."} +{"image_id": 105291, "caption": "The image features a red stop sign prominently displayed on a wooden pole, located near a white house. The stop sign is positioned above a street sign, which indicates the name of the street. The scene also includes a few cars parked in front of the house, with one car on the left side of the image and two others on the right side. The presence of the stop sign and street sign suggests that this is an urban or suburban area with traffic regulations in place."} +{"image_id": 577169, "caption": "The image features a group of people standing in front of a large clock, which is located on the side of a building. The clock is quite prominent, taking up a significant portion of the scene. The group of people consists of five individuals, with some standing closer to the clock and others further away.\n\nThere are also a few handbags visible in the scene, with one near the center of the group and another closer to the right side. The people appear to be admiring the clock and enjoying their time together."} +{"image_id": 181574, "caption": "The image features a man sitting at a dining table, smiling and enjoying a meal. He is holding a fork and knife, ready to dig into a large pizza placed in front of him. The pizza is sliced and appears to be a pepperoni pizza.\n\nThe table is set with various items, including a wine glass, a cup, and a bowl. There are also two other people in the scene, one on the left side and another on the right side of the table. The dining table occupies most of the space in the image, with the man sitting in the center of the scene."} +{"image_id": 83441, "caption": "The image is a split photo of a living room, showcasing two different views of the space. In one view, the living room is filled with furniture, including a couch, a chair, and a TV. The TV is placed on a stand, and there are several remotes scattered around the room. A dining table is also present in the scene.\n\nIn the other view, the living room appears to be empty, with no furniture or people visible. The TV is still on the stand, and the remotes are still scattered around the room. The two views provide a contrast between the busy and unoccupied state of the living room."} +{"image_id": 130527, "caption": "The image features a herd of cows grazing on a lush green hillside. There are at least 13 cows scattered across the field, with some closer to the foreground and others further away. The cows are enjoying the open space and the abundance of grass to graze on. The scene is serene and picturesque, showcasing the beauty of the countryside and the peaceful nature of the animals."} +{"image_id": 86471, "caption": "The image captures a tennis player in action on a tennis court, preparing to hit a tennis ball with his racket. The player is in the middle of the court, holding the racket in a ready position. The tennis ball is in the air, close to the player, indicating that he is about to make contact with it. The scene is set against a backdrop of a blue tennis court, which adds to the overall atmosphere of the game."} +{"image_id": 105737, "caption": "The image features a cozy bookshelf filled with numerous books of various sizes. A teddy bear is sitting on top of the bookshelf, adding a touch of warmth and playfulness to the scene. The teddy bear is positioned towards the center of the bookshelf, surrounded by the books. The bookshelf is well-organized, with the books neatly arranged in rows, creating an inviting atmosphere for reading and relaxation."} +{"image_id": 212842, "caption": "The image features a large herd of zebras gathered in a grassy field. There are at least 14 zebras visible in the scene, standing close to each other and forming a group. The zebras are spread out across the field, with some standing closer to the foreground and others further in the background. The scene captures the beauty and strength of these animals as they stand together in their natural habitat."} +{"image_id": 105220, "caption": "The image features two people skiing on a snow-covered slope, likely participating in a skiing competition. They are both wearing skis and are standing in the snow, with one person slightly ahead of the other. The skiers are holding ski poles, which are visible in their hands.\n\nIn the background, there are two flags, one on the left side and the other on the right side of the scene. The flags are likely used to mark the boundaries of the skiing course or to indicate the start and finish lines."} +{"image_id": 490701, "caption": "The image features a person sitting at a dining table, enjoying a delicious dessert. The dessert is a chocolate cake with ice cream, and the person is using a fork to eat it. The person is also holding a glass of tea, which complements the dessert.\n\nThe dining table is surrounded by chairs, with one chair visible on the left side of the table and another on the right side. The person is seated on the right side of the table, and the dessert is placed in front of them. The scene is set in a cozy and inviting atmosphere."} +{"image_id": 368961, "caption": "The image features two elephants standing in a dirt area, with one of them walking towards the camera. The elephants are positioned close to each other, with one being larger and the other smaller. They are both standing near a ball, which is located in the middle of the scene.\n\nIn the background, there is a person partially visible, likely observing the elephants. The scene appears to be set in a zoo or a similar environment where the elephants are being cared for."} +{"image_id": 520892, "caption": "The image features a woman wearing a black shirt, holding a hot dog in her hand. She is taking a bite of the hot dog, enjoying her meal. The woman is also wearing a ring on her finger.\n\nIn the background, there is a tree visible, adding a touch of nature to the scene. The woman appears to be the main focus of the image, as she is the one holding the hot dog and eating it."} +{"image_id": 113354, "caption": "The image features a group of three zebras standing in a dirt area, grazing on grass. They are positioned close to each other, with one zebra on the left side, another in the middle, and the third on the right side of the scene. The zebras are eating grass, which is scattered around them on the ground.\n\nThe scene also includes a few trees in the background, providing a natural setting for the zebras. The overall atmosphere of the image is that of a peaceful, natural environment where the zebras are enjoying their meal."} +{"image_id": 33652, "caption": "The image features a delicious pizza with a variety of toppings, including chicken, cheese, and beans. The pizza is placed on a metal pan, which is resting on a stove. The pizza is cut into slices, making it easy to serve and enjoy. The stove is located in the background, and the pizza takes up most of the scene, showcasing its mouth-watering appearance."} +{"image_id": 511153, "caption": "The image features a blue and white train traveling down the tracks, with a red stripe on the front. The train is moving along the railroad tracks, and it appears to be a freight train. The train is quite large, occupying a significant portion of the image.\n\nThere are several people visible in the scene, likely train workers or passengers, scattered around the train and the tracks. Some of them are closer to the train, while others are further away, possibly observing the train's movement or waiting for it to pass."} +{"image_id": 328957, "caption": "The image features a cat sitting on top of a multi-level cat tree, which is placed in a room. The cat is comfortably perched on the highest level of the tree, enjoying its elevated position. The cat tree is designed with various platforms and toys, providing the cat with a stimulating environment to play and explore.\n\nIn addition to the cat tree, there are several books scattered around the room, possibly indicating a reading or relaxation area. A remote control can also be seen on a surface, suggesting that the room is used for entertainment purposes."} +{"image_id": 190015, "caption": "The image features a green truck parked in a field, surrounded by a large pile of hay. The truck is positioned on the left side of the scene, with the hay pile occupying the majority of the right side. The hay appears to be dry and ready for use, possibly for feeding livestock or as a source of fuel. The truck seems to be the primary means of transporting the hay to its intended destination."} +{"image_id": 244925, "caption": "The image features a man wearing a backpack and carrying a banana in his pocket. The banana is prominently visible, sticking out of the pocket and occupying a significant portion of the scene. The man is also holding a camera, possibly a Canon camera, which is attached to his backpack.\n\nIn the background, there is a bench situated near the water, providing a scenic view for the man and his camera. The combination of the backpack, banana, and camera creates a casual and adventurous atmosphere."} +{"image_id": 29406, "caption": "The image features a wooden bench situated in a grassy area, surrounded by a variety of plants and flowers. The bench is positioned in the middle of the scene, with a few bushes and trees nearby. The plants and flowers create a lush, green environment, making it an inviting spot for relaxation or contemplation. The bench is a focal point in the scene, providing a comfortable place to sit and enjoy the natural surroundings."} +{"image_id": 32570, "caption": "The image captures a man skillfully riding a wave on a surfboard in the ocean. He is positioned in the center of the scene, with the surfboard beneath him as he skillfully navigates the wave. The wave is quite large, providing an exciting and challenging ride for the surfer. The man appears to be enjoying the thrill of the sport, showcasing his talent and balance on the surfboard."} +{"image_id": 260608, "caption": "The image captures a group of young girls playing soccer on a field. There are four girls in the scene, with one girl in the foreground and three others spread out across the field. They are all actively engaged in the game, with one girl kicking a soccer ball towards the goal.\n\nThe girls are wearing sports uniforms, and the soccer ball is positioned towards the left side of the field. The scene is lively and full of energy, showcasing the girls' enthusiasm for the sport."} +{"image_id": 291286, "caption": "The image captures a man riding a skateboard down a narrow city street, surrounded by a crowd of people walking in the opposite direction. The skateboarder is in the center of the scene, with the crowd of pedestrians spread out along the street.\n\nThere are several people carrying handbags, with one person on the left side of the street, another in the middle, and a third person on the right side. Additionally, there is a person with a backpack near the center of the scene. The street appears to be a busy area with people going about their daily activities."} +{"image_id": 375278, "caption": "The image features a black dog standing inside an open suitcase, seemingly curious about its contents. The dog is positioned in the middle of the suitcase, with its head and front legs visible. The suitcase is placed on a bed, and there are several books scattered around the scene. Some of the books are located near the suitcase, while others are placed further away. The overall scene gives the impression of a playful and curious dog exploring its surroundings."} +{"image_id": 290684, "caption": "The image features a woman sitting on a pole, holding a pink stuffed animal, possibly a teddy bear. She appears to be enjoying her time with the toy, possibly posing for a photo. The woman is wearing a purple shirt, and the scene takes place outdoors, with a bench visible in the background."} +{"image_id": 29306, "caption": "The image features a brown dog standing on a beach, looking out into the ocean. The dog is wearing a collar and appears to be enjoying the view. The beach is covered with sand, and the ocean is visible in the background. The dog's ears are perked up, and it seems to be attentive to its surroundings."} +{"image_id": 173375, "caption": "The image captures a snowboarder wearing a helmet and goggles, skillfully riding down a snow-covered slope. The snowboarder is in the middle of the scene, with their snowboard clearly visible beneath them.\n\nThere are several other people in the background, scattered across the slope, likely enjoying the winter sports activities. The scene is set against a backdrop of a clear blue sky, creating a picturesque winter landscape."} +{"image_id": 198590, "caption": "The image features a red bird perched on the side mirror of a beige car. The bird is sitting on the mirror, looking out of the car window. The car is parked in a parking lot, and there is a truck visible in the background. The scene captures a moment of curiosity and interaction between the bird and the car."} +{"image_id": 25747, "caption": "The image features a train traveling down the tracks, surrounded by a lush green forest. The train is moving along the tracks, with a total of six cars visible in the scene. The train appears to be a passenger train, as it is designed to carry people rather than cargo. The train's presence in the forest adds a sense of tranquility and natural beauty to the scene."} +{"image_id": 346589, "caption": "The image features a snowy mountain slope with two people skiing. One person is standing on the slope, while the other is sitting on the ground, possibly taking a break or adjusting their equipment. Both skiers are wearing backpacks, with one backpack being larger and positioned closer to the standing skier, and the other backpack being smaller and located near the sitting skier.\n\nThe skis of both skiers are visible, with the standing skier's skis being longer and positioned horizontally, while the sitting skier's skis are shorter and positioned vertically. The scene captures the essence of a winter sports adventure on a snowy mountain."} +{"image_id": 121106, "caption": "The image depicts a busy airport scene with a large group of people standing in line, waiting to check in for their flights. There are numerous suitcases and handbags scattered throughout the scene, indicating that many passengers are traveling with luggage.\n\nIn total, there are at least 14 people visible in the image, with some standing closer to the foreground and others further back in the line. The suitcases and handbags are spread out across the scene, with some near the people and others placed on the floor or on the ground.\n\nThe airport appears to be quite crowded, with people of various heights and positions in the line. The overall atmosphere suggests a bustling and active environment as passengers prepare for their upcoming flights."} +{"image_id": 392850, "caption": "The image features a wooden cutting board with a variety of fruits and a knife on a dining table. There are several apples, both red and yellow, scattered across the cutting board, along with a banana and an orange. The banana is placed towards the center of the cutting board, while the orange is located on the left side. The knife is positioned on the right side of the cutting board, ready for use. The arrangement of fruits and the knife creates a scene of a fresh fruit preparation or a healthy snack setup."} +{"image_id": 554241, "caption": "The image depicts a busy city street with a large crowd of people walking around. Among the crowd, a woman is walking with a large umbrella, possibly to shield herself from the sun or rain. She is carrying a handbag and appears to be the main focus of the scene.\n\nThere are numerous people in the scene, some walking close to the woman with the umbrella, while others are scattered throughout the area. A few individuals are carrying handbags, and a backpack can be seen in the crowd as well.\n\nThe street is bustling with activity, and the presence of the umbrella adds a unique touch to the scene."} +{"image_id": 341017, "caption": "The image features a man standing on the back of a truck, surrounded by a group of horned animals. There are several cows and goats on the truck, with some of them appearing to be climbing onto the back of the truck as well. The man seems to be in charge of the animals, possibly guiding them or ensuring their safety during transportation.\n\nThe truck is the main focus of the scene, with the man and the animals occupying the majority of the space. The truck's back is filled with the animals, creating a sense of movement and activity."} +{"image_id": 135497, "caption": "The image features a man sitting at a dining table with a pizza in front of him. He is holding his hands up, possibly making a gesture or expressing excitement about the pizza. The table is surrounded by several bottles, possibly containing beverages or condiments.\n\nIn the background, there are multiple cars parked outside, indicating that the scene takes place in a public area or a parking lot. The man appears to be enjoying his meal and the company of others in the vicinity."} +{"image_id": 159260, "caption": "The image captures a blue and white train traveling down the tracks, with a red stripe on the front. The train is moving at a fast pace, and it appears to be a freight train. The train is passing by a building, which is visible in the background.\n\nThere are two people in the scene, one standing near the middle of the image and another person closer to the right side. They seem to be observing the train as it passes by. Additionally, there is a car parked in the background, slightly to the right of the train."} +{"image_id": 417332, "caption": "The image captures a baseball game in progress, with a pitcher in the middle of throwing a pitch. The pitcher is wearing a yellow shirt and is in the process of releasing the ball. The baseball is visible in the air, close to the pitcher's hand.\n\nThere are several other people in the scene, including a batter and a catcher, both positioned near the home plate. Other players are scattered around the field, some closer to the pitcher and others further away. A baseball glove can be seen in the hands of one of the players, likely the catcher.\n\nThe scene is set on a baseball field, with a bench located near the edge of the field. The overall atmosphere of the image is energetic and focused on the ongoing game."} +{"image_id": 90520, "caption": "The image features two white teddy bears dressed in traditional Asian clothing, standing next to each other. The bears are wearing red and gold outfits, with one bear appearing to be a geisha and the other dressed as a samurai. The bears are positioned in a way that they seem to be looking at each other.\n\nIn addition to the two main bears, there are two smaller stuffed animals in the scene. One is located on the left side of the image, and the other is on the right side. These smaller bears are also dressed in traditional Asian clothing, adding to the overall theme of the scene."} +{"image_id": 318524, "caption": "The image features a rusty train car with a rusted door, giving it a worn and aged appearance. The door is covered in various writings, possibly graffiti or markings, which add to the aged look of the train car. The train car is situated in a grassy area, surrounded by a few plants, and appears to be abandoned or no longer in use."} +{"image_id": 118406, "caption": "The image captures a group of men playing soccer on a field. There are at least nine players visible in the scene, with some of them actively engaged in the game. One player is seen jumping in the air to head the soccer ball, while another player is attempting to block the shot.\n\nThe soccer ball is located in the upper part of the image, with the players surrounding it. A car can be seen in the background, parked on the side of the field. The players are spread out across the field, with some closer to the foreground and others further in the background."} +{"image_id": 25748, "caption": "The image features a large white boat with a black sail, docked at a pier. The boat is adorned with a name, \"Blackbeard,\" written on its side, giving it a distinctive appearance. The boat is tied to the dock with a rope, ensuring its stability while it is moored.\n\nIn the background, there are several other boats of varying sizes, indicating that this pier is a popular location for boat owners. The scene captures the essence of a bustling harbor with numerous vessels docked and ready for their next adventure."} +{"image_id": 365557, "caption": "The image captures a snowboarder in action, riding down a snow-covered slope. The snowboarder is wearing a blue jacket and is skillfully navigating the hill. The snowboard is clearly visible beneath the snowboarder, as they make their way down the slope. The scene is set against a backdrop of a mountain, adding to the excitement and challenge of the snowboarding experience."} +{"image_id": 320978, "caption": "The image features a vibrant produce market with a large assortment of fresh fruits and vegetables on display. There are several people browsing and shopping for the produce, with one person standing near the center of the market and another person on the right side.\n\nThe produce market is well-stocked with a variety of items, including numerous carrots, broccoli, and tomatoes. The carrots are spread across the market, with some located near the left side, others in the middle, and a few on the right side. Broccoli is also abundant, with several bunches placed throughout the market, and tomatoes are available in various sizes and colors.\n\nThe market is well-organized, with the produce neatly arranged and easy to access for customers. The presence of multiple people shopping for fresh produce indicates a popular and thriving market."} +{"image_id": 315073, "caption": "The image features a gray and white cat sitting on a chair, with its mouth open and tongue hanging out. The cat appears to be yawning or panting, possibly due to excitement or playfulness. The chair is positioned near a window, and there is a bottle placed on the window sill, adding a touch of decoration to the scene."} +{"image_id": 363927, "caption": "The image features a large silver metro bus driving down a street. The bus is the main focus of the scene, occupying a significant portion of the image. There are several people visible in the scene, with some standing near the bus and others walking along the street.\n\nIn addition to the bus, there are two cars in the image, one located on the left side of the bus and the other further back on the right side. A traffic light can be seen in the background, indicating that the bus is driving in an urban environment."} +{"image_id": 243355, "caption": "The image features a zebra standing in a grassy field, surrounded by a fence. The zebra is positioned in the middle of the scene, with its head slightly tilted to the left. The field appears to be a mix of grass and dirt, providing a natural habitat for the zebra. The fence encloses the area, ensuring the zebra's safety and preventing it from wandering off."} +{"image_id": 373521, "caption": "The image features an old, rusted bus parked in a grassy area. The bus appears to be a special edition model, as indicated by the sign on the front. The bus is parked on a dirt road, and it seems to be abandoned or no longer in use.\n\nThe bus is quite large, occupying most of the frame, and it appears to be in a state of disrepair. The surrounding grass and dirt give the impression that the bus has been sitting there for quite some time."} +{"image_id": 76409, "caption": "The image features a cozy bedroom with a large bed positioned in the center of the room. The bed is covered with a red blanket, giving it a warm and inviting appearance. Above the bed, there is a painting or a picture hanging on the wall, adding a decorative touch to the space.\n\nIn addition to the bed, there is a chair located near the left side of the room, and a book can be seen placed on the bed, possibly for reading before sleeping. The room also has a doorway, which is partially open, allowing natural light to enter the space."} +{"image_id": 485985, "caption": "The image features a young boy with blonde hair, sitting on the floor and brushing his teeth. He is wearing a blue shirt and appears to be enjoying the activity. The boy is smiling as he brushes his teeth, which is a common sight in children as they learn to take care of their oral hygiene."} +{"image_id": 27564, "caption": "The image features two young girls sitting on a couch, each holding a Wii remote in their hands. They appear to be enjoying a gaming session together. The couch is positioned in the center of the room, and the girls are comfortably seated on it.\n\nThere are a few other objects in the room, including a clock on the wall, a cell phone placed nearby, and a handbag located on the floor. The scene captures a moment of leisure and bonding between the two girls as they play video games."} +{"image_id": 92749, "caption": "The image features a group of giraffes in a zoo enclosure, surrounded by trees and a pond. There are three giraffes in total, with one standing near the left side of the enclosure, another in the middle, and the third one on the right side. The giraffes are standing close to each other, possibly interacting or enjoying their time together.\n\nThe enclosure is designed to resemble a natural habitat, with a pond and trees providing a comfortable environment for the giraffes. The pond is located in the middle of the enclosure, and the trees are scattered throughout the area, creating a visually appealing and natural setting for the animals."} +{"image_id": 554958, "caption": "The image features a calico cat sitting on a pile of leaves and twigs. The cat appears to be looking at the camera, possibly with a slightly angry expression. The cat is positioned in the center of the scene, surrounded by the leaves and twigs. The leaves are scattered around the cat, with some closer to the front and others further back. The cat's fur is a mix of brown, black, and white, which adds to its unique appearance."} +{"image_id": 439971, "caption": "The image features a woman standing in a bathroom, taking a selfie using her cell phone. She is positioned in front of a mirror, capturing her reflection as she holds the phone up to the camera. The bathroom appears to be well-lit, with a sink visible in the background. The woman is wearing a scarf, adding a touch of style to her selfie."} +{"image_id": 559006, "caption": "The image features a large brown bear standing in a body of water, possibly a river or a lake. The bear is positioned in the middle of the scene, with its head and body partially submerged in the water. The bear appears to be walking through the water, possibly searching for food or exploring its surroundings. The water appears to be calm, providing a serene environment for the bear."} +{"image_id": 457262, "caption": "The image features a wooden dining table with a small banana placed next to a coin. The banana is slightly larger than the coin, making it appear quite large in comparison. The table appears to be made of wood, and the banana and coin are the main focus of the scene."} +{"image_id": 263881, "caption": "The image features a giraffe standing in a grassy field with trees in the background. The giraffe is positioned in the center of the scene, with its long neck and legs prominently visible. The giraffe appears to be looking at the camera, capturing the viewer's attention. The field is surrounded by trees, providing a natural habitat for the giraffe."} +{"image_id": 322594, "caption": "The image is a split view of a bathroom, showing two different perspectives of the space. The first view displays a white toilet situated next to a sink, while the second view shows a toilet and a sink in the same room. The bathroom features a mirror above the sink, and there are multiple bottles placed around the room.\n\nIn the first view, there are two bottles on the left side of the toilet and another bottle on the right side. In the second view, there are three bottles placed near the sink, with one on the left side and two on the right side. The bathroom appears to be well-organized and clean, with a focus on functionality and aesthetics."} +{"image_id": 22423, "caption": "The image features a man standing next to a large elephant, both of them in a natural setting. The elephant is holding a hat in its trunk, seemingly enjoying the interaction. The man appears to be feeding the elephant, possibly with the hat as a treat.\n\nThere are a few other people in the scene, but they are not the main focus. The main focus is the man and the elephant, creating a unique and memorable moment."} +{"image_id": 59000, "caption": "The image depicts a cozy living room with a Christmas tree in the corner. The room is furnished with a couch, a chair, and a coffee table. The couch is positioned against the wall, while the chair is located near the center of the room. The coffee table is placed in the middle of the room, surrounded by the seating area.\n\nThe living room is filled with various items, including a television on the left side of the room, a bookshelf filled with books, and a collection of knick-knacks. There are also several vases placed around the room, adding to the decorative elements. A remote control can be seen on the coffee table, likely for the television."} +{"image_id": 119547, "caption": "The image features a group of people, including a man in a suit and tie, standing under a white tent. The man in the suit is adjusting his tie, while the other people around him are engaged in conversation. There are a total of five people in the scene, with one person standing closer to the left side of the image, another person in the middle, and three people on the right side.\n\nA handbag can be seen placed on the ground near the right side of the image, and a tie is visible hanging from the man's suit. The scene appears to be a casual gathering or event where people are interacting and socializing."} +{"image_id": 432763, "caption": "The image captures a beautiful beach scene with a flock of seagulls flying over the ocean. There are at least 14 birds visible in the sky, some flying closer to the water while others are higher up. The birds are scattered throughout the scene, creating a lively atmosphere.\n\nThe beach itself is sandy, and the ocean is calm, providing a serene backdrop for the birds' flight. The combination of the birds, the ocean, and the beach creates a picturesque and peaceful scene."} +{"image_id": 125635, "caption": "The image features a black and white cat sitting on a window sill, looking out of the window. The cat is positioned near the center of the scene, with its body facing the window. The window is open, allowing the cat to observe the outside world. The cat appears to be curious and attentive to its surroundings."} +{"image_id": 542549, "caption": "The image depicts a bed with a blanket and pillows, creating a cozy and comfortable setting. On the bed, there is a book lying open, possibly a diary, and a notebook. The book is placed on the left side of the bed, while the notebook is situated closer to the center. The bed appears to be unmade, giving it a casual and lived-in appearance."} +{"image_id": 494759, "caption": "The image captures a group of people standing on a sandy beach, enjoying a day of kite flying. There are three people in the scene, with one person standing closer to the left side of the image, another person in the middle, and the third person on the right side.\n\nA colorful kite is flying high in the sky, drawing the attention of the people on the beach. The kite is positioned towards the center of the image, with its tail extending towards the left side. The beach setting and the presence of the kite create a lively and fun atmosphere for the group of people."} +{"image_id": 5617, "caption": "The image features a bed with two cats lying on pillows, one on the left side and the other on the right side. The cats are resting comfortably, with one cat being a calico cat and the other a tabby cat. The bed is covered with a blanket, and there are two pillows on which the cats are lying.\n\nIn addition to the cats and the bed, there are two books placed on the bed, one near the left side and the other near the right side. A laptop can also be seen on the left side of the bed, possibly indicating that someone was using it before the cats decided to take a nap."} +{"image_id": 279774, "caption": "The image captures a young boy in a black baseball uniform, standing at home plate and swinging a baseball bat. He is in the process of hitting a baseball during a game. There are several other people in the scene, including a man and a child standing behind the boy, possibly watching the game or waiting for their turn to play.\n\nIn addition to the players, there are a few chairs scattered around the area, likely for spectators or resting players. A baseball glove can also be seen in the scene, possibly belonging to one of the players."} +{"image_id": 323442, "caption": "The image features a man and a woman sitting at a dining table under a large umbrella, enjoying a meal together. They are surrounded by several wine glasses, some of which are placed on the table, while others are scattered around the scene. There are also a few cups and a fork visible on the table.\n\nIn the background, there are other people present, possibly indicating a social gathering or event. A handbag can be seen placed near the table, and a chair is positioned close to the table. The scene appears to be set outdoors, with the couple enjoying their meal and the company of others."} +{"image_id": 109454, "caption": "The image features a man wearing a blue shirt and a blue tie, holding a green bottle in his hand. He appears to be drinking from the bottle, possibly enjoying a beverage. The man is seated at a dining table, which occupies a significant portion of the scene.\n\nIn the background, there are two other people present, one on the left side and another on the right side of the image. Additionally, there are two wine glasses on the table, one closer to the center and the other towards the right side. A chair can be seen in the foreground, and a bowl is placed on the table, slightly to the left of the center."} +{"image_id": 370677, "caption": "The image features three women standing in front of a bakery display case, smiling and posing for a picture. They are all wearing matching shirts, indicating that they might be employees of the bakery. The display case is filled with a variety of donuts, showcasing the bakery's offerings.\n\nThere are numerous donuts in different shapes, sizes, and flavors, spread across the display case. Some donuts are placed closer to the front, while others are positioned further back, creating an enticing visual for customers. The women are standing in front of the display case, proudly showcasing the bakery's delicious treats."} +{"image_id": 521509, "caption": "The image features a woman sitting on a bed in a bedroom. She is holding a camera, possibly preparing to take a photo or record a video. The bed is positioned in the center of the room, and there are two lamps on either side of it, providing lighting for the scene.\n\nIn addition to the bed and lamps, there are several potted plants scattered throughout the room, adding a touch of greenery to the space. A vase can also be seen on the left side of the room, and a bottle is placed near the bottom left corner."} +{"image_id": 236461, "caption": "The image captures a man skillfully riding a wave on a surfboard in the ocean. He is in the middle of the wave, displaying his surfing abilities. The surfboard is positioned horizontally, with the man standing on it and maintaining balance.\n\nThe scene is set against a backdrop of the ocean, with the waves providing a dynamic and exciting atmosphere. The surfer's focus and determination are evident as he navigates the wave, showcasing the thrill of the sport."} +{"image_id": 534845, "caption": "The image features a teddy bear hanging from a clothesline outside a building. The teddy bear is positioned in the middle of the scene, with its arms and legs spread out. The clothesline is filled with various clothing items, including several shirts and a pair of pants. The scene appears to be set in an urban environment, with the building's facade visible in the background."} +{"image_id": 180580, "caption": "The image features a blue plate filled with a variety of vegetables, including several pieces of broccoli, asparagus, and carrots. The plate is placed on a dining table, and there are two forks visible in the scene, one near the top left corner and the other near the top right corner. The arrangement of the vegetables on the plate creates a colorful and appetizing display."} +{"image_id": 484551, "caption": "The image features a woman wearing an orange shirt, sitting on a boat in the ocean. She is smiling and appears to be enjoying her time on the boat. The boat is surrounded by water, and the woman is seated on the front of the boat, possibly steering it.\n\nThere are a few other people visible in the background, but they are not the main focus of the scene. The woman in the orange shirt is the central figure, and her smile and relaxed posture convey a sense of enjoyment and contentment."} +{"image_id": 456146, "caption": "The image features a herd of sheep walking down a road, with some of them looking back at the camera. There are at least 13 sheep in the scene, with some closer to the camera and others further away. The sheep are spread out along the road, with some positioned closer to the left side, while others are on the right side. The scene captures the essence of a peaceful countryside setting, with the sheep moving together as a group."} +{"image_id": 283131, "caption": "The image depicts a small bathroom with a white toilet and a white bathtub. The toilet is positioned in the middle of the room, while the bathtub is located towards the right side of the bathroom. A sink can be seen on the left side of the room.\n\nThere is a brown towel hanging on the wall, and a handbag is placed on the floor near the toilet. The bathroom appears to be in the process of being remodeled, as indicated by the presence of a bag and the ongoing construction."} +{"image_id": 23309, "caption": "The image features a close-up view of a delicious pasta salad with a variety of ingredients. The salad is primarily composed of pasta, which is scattered throughout the dish. There are several pieces of broccoli, some of which are placed on top of the pasta, while others are mixed in with the pasta. The broccoli is distributed throughout the salad, with some pieces located near the center, others towards the edges, and a few in the middle. The combination of pasta, broccoli, and other ingredients creates a colorful and appetizing dish."} +{"image_id": 547487, "caption": "The image captures a young man skillfully performing a trick on his skateboard, jumping high into the air. He is the main focus of the scene, with his skateboard visible beneath him.\n\nIn the background, there are several other people watching the skateboarder's performance. Some of them are standing, while others are sitting on a bench. The spectators are spread out around the area, with some closer to the skateboarder and others further away. The scene appears to be taking place in a park or a similar outdoor setting."} +{"image_id": 34830, "caption": "The image features a men's restroom with a white urinal mounted on the wall. The urinal is positioned in the middle of the scene, and it is surrounded by a red tile wall. The wall is adorned with a checkered pattern, adding a unique touch to the restroom's design. The overall atmosphere of the restroom is clean and well-maintained."} +{"image_id": 125997, "caption": "The image features a large blue wall with white lettering, which reads \"UAREAL ALIVE.\" The wall is located next to a building, and the sign appears to be promoting a business or event. The blue and white color scheme of the sign stands out against the building's background."} +{"image_id": 19916, "caption": "The image features a wooden dining table with a bowl of fruit, including apples and pears, placed on it. The bowl is filled with a variety of fruits, and a fork is positioned next to it. A laptop is also present on the table, indicating that someone might be working or browsing the internet while enjoying their meal. The arrangement of the laptop, bowl of fruit, and fork creates a cozy and comfortable atmosphere for a meal or snack."} +{"image_id": 145019, "caption": "The image depicts a scene where a large airplane has crashed in a field, and a group of people is gathered around it. There are at least five people in the scene, with some standing closer to the crashed airplane and others further away.\n\nA truck is present in the scene, likely involved in the recovery efforts. The truck is positioned near the center of the image, with its back facing the group of people. The people in the scene appear to be observing the crashed airplane, likely assessing the situation and discussing the next steps in the recovery process."} +{"image_id": 127161, "caption": "The image features a white plate with a slice of pizza on it. The pizza is cut into two pieces, with one piece placed on the left side of the plate and the other on the right side. The plate is placed on a dining table, and a fork is positioned next to the plate, ready for use. The pizza appears to be a delicious and appetizing meal."} +{"image_id": 543660, "caption": "The image features a small bathroom with two toilets positioned next to each other. The toilets are white and black, and they are placed on a checkered tile floor. The floor is covered with black and white tiles, creating a visually interesting pattern.\n\nIn addition to the toilets, there is a sink located in the bathroom, situated between the two toilets. The sink is also white, and it appears to be a part of the same design as the toilets. The bathroom appears to be well-maintained and clean, with a focus on the unique tile pattern."} +{"image_id": 8333, "caption": "The image features a red and white Virgin train traveling down the tracks, passing by a brick building. The train is positioned in the middle of the scene, with the brick building on its left side.\n\nIn the background, there are several cars and a bus visible, likely indicating a busy urban area. The cars are scattered around the scene, with some closer to the train and others further away. The bus is located on the right side of the image, near the edge of the frame."} +{"image_id": 482907, "caption": "The image features a small, old-fashioned airplane flying through a clear blue sky. The airplane is a two-propeller plane with a distinctive red and white design. It appears to be a vintage aircraft, possibly a World War II plane, as it soars through the sky. The plane's wings are visible, and it seems to be flying at a relatively low altitude."} +{"image_id": 290130, "caption": "The image captures a man skillfully riding a surfboard on a wave in the ocean. He is positioned in the center of the scene, with the surfboard beneath him as he skillfully navigates the water. The wave is quite large, providing an exciting challenge for the surfer. The scene is set against a backdrop of the ocean, with the waves and the surfer's movements creating a dynamic and engaging image."} +{"image_id": 58225, "caption": "The image features a person holding a hot dog with mustard and relish, likely at a baseball game. The hot dog is placed in a bun, and the person is holding it up for the camera. The scene takes place in a stadium, with a large screen visible in the background.\n\nThere are several other people in the image, some of them standing close to the person holding the hot dog, while others are scattered throughout the stadium. The presence of multiple people suggests that this is a popular event or gathering."} +{"image_id": 249550, "caption": "The image features a bedroom with a bed that has a colorful floral bedspread on it. The bed is positioned against a wall, and there is a small table with a potted plant on it, placed next to the bed. The room also has a chair situated near the bed, and a clock is mounted on the wall above the bed. The overall atmosphere of the room is cozy and inviting."} +{"image_id": 448765, "caption": "The image features a small bathroom with a white toilet and a white sink. The toilet is positioned on the right side of the bathroom, while the sink is located on the left side. A toilet paper roll is placed on the wall above the toilet, and a small trash can is situated next to the toilet. The bathroom appears to be clean and well-maintained."} +{"image_id": 498439, "caption": "The image captures a baseball game in progress, with a player standing on the field wearing a baseball uniform. He is holding a baseball bat and appears to be waiting for his turn to bat. The player is positioned near the center of the scene.\n\nThere are several other people in the image, including teammates and opponents, scattered around the field. Some of them are standing closer to the edges of the field, while others are positioned more towards the center. A baseball glove can be seen on the ground, likely belonging to one of the players.\n\nIn the background, there are chairs and benches, possibly for the players to rest on during breaks in the game."} +{"image_id": 252403, "caption": "The image features a young woman with long, dark hair holding a blue and white toothbrush in her hand. She is looking at the camera, possibly posing for a picture. The toothbrush is positioned in the middle of the scene, with the woman's hand holding it. The woman appears to be wearing glasses, which are visible on her face."} +{"image_id": 347995, "caption": "The image features a woman lying in bed with her baby, surrounded by a cozy and comfortable environment. A black dog is lying next to her, sharing the bed and providing companionship. The woman is smiling, likely enjoying the moment with her baby and her pet.\n\nIn the room, there is a book placed on a surface, possibly a table or a nightstand. The bed occupies a significant portion of the scene, with the woman and her baby lying on it, and the dog lying beside them. The overall atmosphere of the image is warm and inviting, showcasing the bond between the woman, her baby, and her dog."} +{"image_id": 544216, "caption": "The image features a dining table with a plate of food, including a sandwich and a side of chips. The sandwich is cut in half, revealing its contents, and is accompanied by a pickle. The chips are scattered around the plate, with some closer to the sandwich and others further away.\n\nIn addition to the main dish, there are two cups on the table, one near the top left corner and the other near the top right corner. A person can be seen in the background, partially visible on the left side of the image."} +{"image_id": 205729, "caption": "The image depicts a group of people skiing on a snow-covered slope, with some of them standing on a snowy hill. There are at least six people in the scene, all wearing skis and enjoying the winter sport. The skiers are scattered across the slope, with some closer to the foreground and others further in the background.\n\nThe skis can be seen clearly on the snow, with some of them positioned horizontally and others vertically. The group appears to be having a good time, taking in the beautiful mountain scenery and the challenging terrain."} +{"image_id": 350988, "caption": "The image features a wooden staircase with a sign on the bottom step that reads \"no entrance.\" The staircase is made of wood and has a total of 12 steps. The sign is placed on the last step, making it clear that the staircase is not accessible. The staircase appears to be in a somewhat worn condition, indicating that it has been used for a long time."} +{"image_id": 288673, "caption": "The image captures a lively beach scene with several people enjoying their time. A man is flying a colorful kite high in the sky, while others are walking or standing on the sandy beach. There are at least nine people visible in the scene, with some closer to the water and others further back on the beach.\n\nIn addition to the people, there are two cars parked near the beach, and a backpack can be seen placed on the sand. The overall atmosphere is relaxed and fun, as people engage in various activities on this beautiful day at the beach."} +{"image_id": 568690, "caption": "The image features a small cat sitting on top of a white toilet seat. The cat appears to be curiously looking at the camera, possibly intrigued by the photographer. The toilet is situated in a bathroom, with a sink visible in the background. The scene is quite unusual, as it is not common to see a cat sitting on a toilet seat."} +{"image_id": 504194, "caption": "The image features a large brown dog sitting on a brick sidewalk next to a wooden bench. The dog appears to be calmly resting on the ground, possibly waiting for its owner or just enjoying the outdoor environment.\n\nIn the background, there are several bicycles parked, with one located near the left edge of the image, another in the middle, and a third one further to the right. The presence of these bicycles suggests that the area might be a popular spot for people to ride bikes and take a break on the bench."} +{"image_id": 35368, "caption": "The image features a table with a variety of fruits and a yellow pitcher. There are several bananas, some of which are hanging from the ceiling, while others are placed on the table. A bowl filled with fruit, including apples and oranges, is also present on the table.\n\nIn addition to the fruits, there is a cup placed on the table, and a bottle can be seen nearby. The scene creates a colorful and vibrant atmosphere, with the bananas and fruits adding a touch of freshness to the setting."} +{"image_id": 307332, "caption": "The image features a group of people sitting on a wooden bench near a body of water, possibly a lake. There are three people in the scene, with one person sitting on the left side of the bench, another person sitting in the middle, and the third person on the right side.\n\nA dog is also present in the scene, standing on the grass near the bench, looking at the people. The dog appears to be a large brown dog, possibly a golden retriever, and it seems to be enjoying the company of the people. The overall atmosphere of the scene is relaxed and leisurely, with the people and the dog enjoying their time by the water."} +{"image_id": 490878, "caption": "The image features a person skiing across a snow-covered slope, with a backpack on their back. The skier is wearing a red jacket and appears to be enjoying their time on the snowy terrain. The skis are visible beneath the person, and the backpack is located near the center of the scene. The skier is the main focus of the image, with the snowy landscape surrounding them."} +{"image_id": 507187, "caption": "The image features a group of people gathered around a blue motorcycle parked on a grassy field. The motorcycle is the main focus of the scene, with several people standing around it, admiring and discussing the vehicle.\n\nIn addition to the motorcycle, there are a few other vehicles in the scene, including a car and a truck. A handbag can be seen placed on the ground near one of the people, and a bottle is also visible in the scene. The gathering of people and the presence of various vehicles suggest that this could be an outdoor event or a meetup for motorcycle enthusiasts."} +{"image_id": 254644, "caption": "The image features a kitchen with wooden cabinets and a tile countertop. The kitchen is well-equipped with various appliances, including a microwave, toaster, and coffee maker. There are multiple cups and bowls placed on the countertop, as well as a spoon and a knife.\n\nIn addition to the kitchen items, there are several potted plants in the room, adding a touch of greenery to the space. A vase can also be seen on the countertop, and a bottle is placed nearby. The kitchen appears to be well-organized and ready for use."} +{"image_id": 400803, "caption": "The image features a large orange boat floating on the water, with two people standing on the deck. One person is closer to the front of the boat, while the other is positioned more towards the middle. The boat appears to be a lifeboat, possibly used for rescue operations or other water-related activities.\n\nThe boat is surrounded by a vast body of water, with a clear blue sky visible above. The scene captures the essence of a day spent on the water, with the boat's occupants enjoying their time on the open water."} +{"image_id": 574928, "caption": "The image depicts a large, lush green field filled with a herd of sheep. There are at least 14 sheep scattered throughout the field, grazing and enjoying the sunny day. Some sheep are closer to the foreground, while others are further in the background, creating a sense of depth in the scene. The field is vast and provides ample space for the sheep to roam and graze."} +{"image_id": 559247, "caption": "The image depicts a group of people gathered around a long dining table, enjoying a meal together. There are several hot dogs on the table, with some placed on plates and others in bags. The people are standing around the table, holding plates and eating the hot dogs.\n\nIn addition to the hot dogs, there are also sandwiches on the table, and a bowl can be seen in the middle of the table. A chair is positioned near the table, and a potted plant is placed in the background. The atmosphere appears to be casual and friendly, with everyone enjoying the food and each other's company."} +{"image_id": 254625, "caption": "The image features a baseball player in a grey shirt and blue cap, holding a baseball bat and preparing to swing. He is focused on the ball, which is located near the center of the scene. The player is standing in a batting cage, surrounded by a net that helps contain the baseballs.\n\nThere are several baseballs scattered around the cage, with some closer to the player and others further away. The scene captures the intensity and skill of the baseball player as he gets ready to hit the ball."} +{"image_id": 374966, "caption": "The image depicts a group of young boys gathered at a skate park, enjoying their time skateboarding and having fun. There are at least nine people in the scene, with some of them actively skateboarding and others watching or waiting for their turn.\n\nThere are three skateboards visible in the scene, with one being ridden by a boy in the center of the park, another near the left side, and the third one closer to the right side. The boys are spread out across the park, with some standing closer to the foreground and others further back.\n\nThe skate park is surrounded by trees, providing a pleasant and shaded environment for the young skateboarders."} +{"image_id": 351967, "caption": "The image features a yellow taxi driving past a large clock mounted on the side of a building. The clock is prominently displayed, making it a focal point in the scene. The taxi is positioned in the middle of the image, with the clock on the left side and the taxi on the right side.\n\nThere are several people in the scene, with one person standing near the taxi and others scattered around the area. A handbag can be seen close to the person standing near the taxi, possibly belonging to one of the pedestrians. The overall atmosphere of the image suggests a busy urban setting with people going about their daily activities."} +{"image_id": 172877, "caption": "The image features a man sitting in a chair, wearing a striped tie and glasses. He appears to be looking at the camera, possibly posing for a picture. The man is positioned in the center of the scene, and the chair he is sitting on is located towards the left side of the image.\n\nIn the background, there is a couch situated on the right side of the image. Additionally, there is a clock on the wall, and a book can be seen placed nearby. The overall setting suggests a comfortable and relaxed environment."} +{"image_id": 309237, "caption": "The image features a black and white cat sitting on a couch, looking at the camera. The cat is positioned in the middle of the couch, occupying a significant portion of the space. The couch is covered with a blue and white checkered fabric, adding a cozy and inviting atmosphere to the scene."} +{"image_id": 565877, "caption": "The image features a woman sitting on a red couch, wearing a blue shirt and a blue hat. She is smiling and appears to be enjoying her time. A laptop is placed on her lap, and she is holding a book in her hand. The couch is positioned in the background, and the woman seems to be the main focus of the scene."} +{"image_id": 489924, "caption": "The image features a woman wearing a blue shirt and shorts, riding a skateboard down a street. She is skillfully balancing on the skateboard, showcasing her talent. The woman appears to be enjoying her time as she glides along the pavement."} +{"image_id": 125472, "caption": "The image captures a young man in a green shirt and jeans, skillfully performing a trick on a snowboard. He is in mid-air, jumping off a ramp and grabbing the snowboard with one hand. The snowboard is positioned underneath him, and the scene appears to be set in a snowy environment. The young man's athleticism and focus on the trick are evident as he executes the maneuver."} +{"image_id": 422706, "caption": "The image features a boat floating on the water, with a group of people on a cruise ship observing it. The boat is positioned relatively close to the cruise ship, and the people on the ship are watching it with interest.\n\nThere are several people on the cruise ship, with some standing closer to the edge of the ship and others further back. They are all focused on the boat in the water, likely admiring its size and appearance. The scene captures a moment of curiosity and fascination as the passengers on the cruise ship observe the boat below."} +{"image_id": 290700, "caption": "The image captures a man skillfully riding a wave on a surfboard in the ocean. He is in the middle of the wave, showcasing his surfing abilities. The surfer is wearing a white shirt and appears to be enjoying the thrill of the ride.\n\nThe wave itself is quite large, with a noticeable crest that the surfer is skillfully navigating. The scene is dynamic and full of energy, as the surfer skillfully maneuvers his surfboard on the face of the wave."} +{"image_id": 365177, "caption": "The image features a large white and yellow bus parked on the side of a street. The bus is prominently displayed, occupying a significant portion of the scene. The bus is parked next to a building, possibly a bus station or a parking area.\n\nThere are several people in the scene, with one person standing close to the bus, another person further away, and two more people located near the right edge of the image. The presence of these individuals suggests that they might be waiting for the bus or simply passing by."} +{"image_id": 398661, "caption": "The image features a kitchen with a microwave sitting on a countertop. The kitchen is well-equipped with various cooking utensils and appliances. There are multiple pots and pans hanging on the wall, as well as a collection of knives placed on the counter. A toaster is also present on the counter, adding to the kitchen's functionality.\n\nIn addition to the cooking tools, there are several bowls placed around the kitchen, with one near the microwave and another on the countertop. A spoon can be seen resting on the counter, and a bottle is located towards the right side of the kitchen. The overall scene showcases a well-organized and functional kitchen space."} +{"image_id": 175611, "caption": "The image features a person skillfully cutting a large cigar with a pair of scissors. The person is focused on the task, and the cigar is placed on a cutting board. The scissors are positioned in the middle of the scene, with the person's hands holding the handles.\n\nIn the background, there are several books scattered around, possibly indicating a workspace or a reading area. The presence of the books suggests that the person might be engaged in a hobby or a profession that involves reading or studying."} +{"image_id": 477673, "caption": "The image features a small, cute kitten sitting inside a backpack. The kitten is comfortably laying down, occupying a significant portion of the backpack. The backpack is placed on a wooden floor, and the scene appears to be indoors. The kitten's presence in the backpack adds a sense of warmth and playfulness to the scene."} +{"image_id": 1270, "caption": "The image captures a youth baseball game in progress, with several young players on the field. A boy is standing at home plate, holding a baseball bat and preparing to swing. Another boy is wearing a baseball glove, ready to catch the ball.\n\nThere are multiple people in the scene, including players, coaches, and spectators. Some of the players are standing on the field, while others are sitting on benches or chairs. A few people can be seen in the background, watching the game unfold.\n\nIn addition to the players, there are a couple of bottles visible in the scene, likely containing water or sports drinks for the players to stay hydrated during the game."} +{"image_id": 224012, "caption": "The image features a white plate filled with a delicious meal consisting of meat, broccoli, and potatoes. The meat appears to be ham, and it is accompanied by a generous portion of broccoli and potatoes. The broccoli is scattered across the plate, with some pieces placed near the meat and others closer to the edge of the plate. The potatoes are also distributed around the plate, with some pieces located near the meat and others closer to the broccoli. The combination of these ingredients creates a well-balanced and appetizing meal."} +{"image_id": 552510, "caption": "The image features a group of young children playing soccer on a grassy field. There are at least nine children in the scene, with some of them actively participating in the game while others are watching or waiting for their turn. The children are wearing uniforms, indicating that they might be part of a soccer team.\n\nA sports ball, likely a soccer ball, is located in the center of the field, with the children surrounding it. The children are spread out across the field, with some standing closer to the ball and others further away. The scene captures the excitement and energy of a children's soccer game."} +{"image_id": 272880, "caption": "The image features a person holding a piece of pizza on a wooden dining table. The pizza is placed on a pan, and the person is holding the pan with the pizza slice in their hand. The table is set with various utensils, including a fork and a knife, which are positioned near the pizza.\n\nIn addition to the pizza, there is a cup on the table, possibly containing a beverage to accompany the meal. The scene appears to be a casual dining experience, with the person enjoying their pizza slice."} +{"image_id": 580540, "caption": "The image features a black dog sitting on a wooden floor in front of a flat-screen TV. The dog appears to be watching the TV, which is mounted on the wall above it. The room has a cozy atmosphere, with a couch located in the background and a chair nearby.\n\nThere are several remotes scattered around the room, possibly for controlling the TV or other electronic devices. Additionally, a book can be seen on the floor, suggesting that the room is used for relaxation and entertainment."} +{"image_id": 242934, "caption": "The image depicts a cozy living room with a black leather couch and a black leather chair placed in the center of the room. The couch is positioned against the wall, while the chair is situated in the middle of the room. A coffee table is located in front of the couch, and a rug can be seen beneath it.\n\nThe living room is filled with various books, which are scattered throughout the space. Some books are placed on the couch, while others are located on the coffee table or on the floor. A clock is also visible on the wall, adding to the room's decor.\n\nIn addition to the furniture and books, there are a few other items in the room, such as a bottle and a cup. The overall atmosphere of the living room is comfortable and inviting."} +{"image_id": 178807, "caption": "The image consists of two separate pictures, each showing a young boy riding a skateboard. In the first picture, the boy is riding a skateboard on a sidewalk, while in the second picture, he is riding a skateboard on a cement surface. The skateboards are positioned differently in each picture, with one skateboard being closer to the ground in the first picture and the other skateboard being higher in the air in the second picture. The boy appears to be enjoying his time skateboarding in both instances."} +{"image_id": 135748, "caption": "The image features a small, fluffy dog lying on a blue blanket, possibly a dog bed. The dog appears to be resting or sleeping, and it is surrounded by a cozy environment. A bottle of orange juice is placed nearby, close to the dog, and a cup can be seen on the left side of the scene.\n\nIn the background, there are two people partially visible, one on the left side and the other on the right side of the image. The presence of the people suggests that they might be the dog's owners or caretakers."} +{"image_id": 255036, "caption": "The image depicts a city street with a large building in the background. The street is surrounded by trees, and there are several cars parked along the side of the road. A traffic light is visible near the center of the scene, and a fire hydrant can be seen on the sidewalk.\n\nIn addition to the cars, there are two trucks parked on the street, one closer to the center and the other further back. The scene also features a few pedestrians walking along the sidewalk, with one person closer to the left side of the image and another person near the center."} +{"image_id": 3926, "caption": "The image features two sheep standing in a snow-covered field. One sheep is positioned towards the left side of the image, while the other is on the right side. Both sheep are eating grass in the snow, with their heads down. The snow-covered field provides a picturesque winter scene, and the sheep appear to be enjoying their time in the snow."} +{"image_id": 236762, "caption": "The image depicts a group of people gathered around a large dining table, enjoying a meal together. There are at least 11 people in the scene, with some sitting on chairs and others standing around the table. The table is filled with various food items, including pizza, and multiple wine glasses, cups, and bottles.\n\nThe table is set with cutlery, such as forks, knives, and spoons, as well as a bowl. There are also a couple of cell phones placed on the table, possibly for capturing memories or sharing the experience with others. The atmosphere appears to be lively and social, with everyone engaged in conversation and enjoying their time together."} +{"image_id": 248314, "caption": "The image features a wooden dining table with a laptop computer, a keyboard, and a mouse placed on it. The table also has a bowl of food, which appears to be a meal consisting of rice and vegetables. There are several carrots scattered around the bowl, adding to the variety of the meal.\n\nIn addition to the main items on the table, there are two bottles, one located near the top left corner and the other near the top right corner. A chair is positioned in the background, ready for someone to sit and enjoy the meal."} +{"image_id": 559773, "caption": "The image captures a thrilling moment of a person skiing down a snow-covered slope, performing a jump and flying through the air. The skier is wearing a backpack, which can be seen clearly as they soar through the air.\n\nThe scene is set against a backdrop of a fenced-in area, likely a ski jumping competition or a training ground. The skier is in the center of the image, with the fence surrounding the area on all sides. The skier's impressive jump and the fenced-in area create an exciting and dynamic atmosphere."} +{"image_id": 340665, "caption": "The image features a woman standing outside, holding a black umbrella to protect herself from the rain. She is wearing glasses and a blue jacket, and she is also carrying a handbag. The woman appears to be the main focus of the scene, with the umbrella covering a significant portion of the image.\n\nIn the background, there are two other people, one on the left side and another on the right side of the image. Additionally, there is a backpack located near the left edge of the scene."} +{"image_id": 388599, "caption": "The image features a brown dog standing on a grassy field, holding a frisbee in its mouth. The dog appears to be enjoying the game and is focused on the frisbee. A person is also present in the scene, likely the owner or a friend, who is reaching out to the dog to play with the frisbee. The person's hand is visible, extending towards the dog, and the frisbee is held in the dog's mouth, ready for the next playful moment."} +{"image_id": 163528, "caption": "The image features a delicious pizza with various toppings, including lettuce, tomatoes, onions, and bacon. The pizza is placed on a white plate, which is positioned on a dining table. A fork is also visible on the table, ready to be used to enjoy the pizza. The pizza appears to be a personal-sized pizza, making it a perfect meal for one person."} +{"image_id": 481212, "caption": "The image features a man sitting on a red couch with two cats on his lap. One cat is positioned on his left side, while the other is on his right side. The man is holding a coffee mug in his hand, and there is a remote control placed nearby. The scene appears to be a cozy and relaxed environment, with the man enjoying his time with his two feline companions."} +{"image_id": 277533, "caption": "The image features a man sitting on a red couch, holding a Nintendo Wii game controller in his hands. He appears to be enjoying a gaming session, possibly playing a game like Wii Sports. The man is wearing a jacket, which adds to the casual atmosphere of the scene.\n\nIn the background, there are several books scattered around, indicating that the man might be a reader or have an interest in literature. The books are placed on various surfaces, such as the couch, the floor, and a nearby table."} +{"image_id": 173383, "caption": "The image features a beautifully decorated wedding cake placed on a dining table. The cake is adorned with orange and blue flowers, adding a touch of elegance to the presentation. The table is set with a knife, ready for cutting the cake, and a candle is placed nearby, creating a warm and inviting atmosphere.\n\nIn addition to the cake, there are several blue and orange flowers scattered around the table, further enhancing the festive ambiance. The scene is set in a room with a wooden wall, giving it a cozy and intimate feel."} +{"image_id": 419624, "caption": "The image features a white and red train traveling down the tracks, with a tall building visible in the background. The train is moving along the tracks, and there are several trees in the vicinity, adding a touch of nature to the scene. The train appears to be a passenger train, providing transportation for people traveling between destinations."} +{"image_id": 130291, "caption": "The image features a man and a woman standing next to each other, with the woman helping the man tie his tie. The man is wearing a suit and tie, while the woman is dressed in a black shirt. They are both focused on the task at hand, ensuring the man's tie is properly secured.\n\nIn the background, there are two other people, one on the left side and another on the right side of the image. A cell phone can be seen placed on a surface, possibly belonging to one of the individuals in the scene."} +{"image_id": 193369, "caption": "The image features a large, old, and rusty metal bench situated on a stone walkway. The bench is surrounded by grass, giving it a natural and serene atmosphere. The bench is positioned in the middle of the scene, with a few rocks scattered around it. The overall setting appears to be a park or a similar outdoor space."} +{"image_id": 367804, "caption": "The image features a young girl standing on a sandy beach, holding a kite in her hands. She appears to be enjoying her time at the beach, possibly preparing to fly the kite. The beach is lined with several umbrellas, providing shade for beachgoers.\n\nIn the background, there are a few other people scattered around the beach, likely enjoying the sunny day as well. The scene captures a fun and relaxing atmosphere at the beach."} +{"image_id": 84735, "caption": "The image captures a baseball game in progress, with a baseball player in a white uniform swinging a bat at a ball. The player is in the middle of the scene, surrounded by several other players on the field. Some of these players are wearing baseball gloves, ready to catch the ball.\n\nIn the background, there is a crowd of spectators watching the game intently. The audience members are spread out across the scene, with some standing closer to the field and others further away. The atmosphere is lively, as everyone is engaged in the exciting game."} +{"image_id": 247285, "caption": "The image features a man and a woman standing under a large, colorful umbrella, holding a baby. The woman is holding the baby close to her, while the man stands beside them, providing support. The umbrella covers the entire scene, creating a cozy and protective atmosphere.\n\nThe woman is wearing a watch on her wrist, and the man is wearing a watch as well. The baby is positioned in the middle of the scene, with the woman holding it close to her chest. The man and woman appear to be enjoying their time together under the umbrella, creating a warm and loving moment."} +{"image_id": 438432, "caption": "The image is a black and white photograph of a group of women posing together for a team picture. They are all wearing ties, which adds a formal touch to the photo. The women are sitting and standing in various positions, with some sitting on chairs and others standing.\n\nThere are several sports equipment items in the scene, including a baseball bat and a sports ball, which suggests that the women are part of a cricket team. The presence of the sports equipment and the team uniforms indicate that the women are likely participating in a cricket match or event."} +{"image_id": 185479, "caption": "The image features a man sitting on the floor, using a laptop computer. He is wearing a brown jacket and appears to be focused on his work. The laptop is placed on his lap, and he is holding a cell phone in his hand.\n\nThe man is surrounded by a few personal belongings, including a backpack and a handbag. The backpack is located near the right side of the man, while the handbag is placed on the floor to his left. The scene suggests a casual and comfortable work environment."} +{"image_id": 570826, "caption": "The image features a blue and yellow train traveling down the tracks, with a man standing in the doorway of the train. The train is positioned in the middle of the scene, and it appears to be a commuter train.\n\nThere are several people visible in the image, with one person standing in the doorway of the train and others scattered around the scene. Some of them are closer to the train, while others are further away. The presence of multiple people suggests that this could be a busy train station or a popular route for commuters."} +{"image_id": 127394, "caption": "The image depicts a group of people gathered around a dining table, enjoying a meal together. The table is filled with various food items, including pizza, salad, and other dishes. There are multiple cups, bowls, and bottles placed on the table, indicating that the guests are drinking and eating.\n\nIn addition to the food and drinks, there are several utensils such as forks, knives, and spoons scattered across the table. A few people can be seen sitting around the table, engaged in conversation and enjoying the meal. The atmosphere appears to be casual and friendly, with everyone sharing a pleasant dining experience."} +{"image_id": 311081, "caption": "The image features a white bathtub with a shower curtain hanging from it. The shower curtain is white and appears to be slightly dirty. The tub is located in a bathroom, and there is a toilet visible in the background. The bathroom appears to be in need of cleaning, as the shower curtain and the overall environment seem untidy."} +{"image_id": 376677, "caption": "The image features a large white truck driving down a street, with a crane on the back of it. The truck is positioned under a bridge, possibly being used for construction or transportation purposes.\n\nThere are several cars on the street, with one car in front of the truck and two others behind it. Additionally, there are two traffic lights visible in the scene, one on the left side and another on the right side of the street. The presence of the crane and the truck suggests that the area might be undergoing some form of construction or development."} +{"image_id": 269419, "caption": "The image features a tall brick clock tower with a clock on each of its sides. The clocks are positioned at different heights, making the tower visually interesting. The tower is located in front of a tree, which adds a natural element to the scene.\n\nIn the background, there is a person standing near the base of the tower, possibly admiring the architecture or taking a photo. The overall atmosphere of the scene is serene and picturesque, with the clock tower standing tall against the sky."} +{"image_id": 210708, "caption": "The image features a baby elephant and an adult elephant in a body of water, possibly a river or a lake. The baby elephant is swimming close to the adult elephant, which is standing nearby. The adult elephant appears to be protecting and guiding the baby elephant as they both enjoy their time in the water.\n\nThe scene captures the bond between the two elephants, showcasing the care and nurturing nature of the adult elephant towards the younger one."} +{"image_id": 472246, "caption": "The image features a white background with three different fruits arranged in a row. The first fruit is an apple, which is placed on the left side of the row. The second fruit is an orange, positioned in the middle of the row. The third fruit is a banana, located on the right side of the row. The arrangement of these fruits creates a visually appealing and colorful display."} +{"image_id": 187475, "caption": "The image features a person holding a large hot dog on a bun, which is placed on a paper plate. The hot dog is covered in various toppings, making it look delicious and appetizing. The person holding the hot dog is standing next to a dining table, which occupies a significant portion of the scene.\n\nIn the background, there is another person partially visible, possibly enjoying the meal or waiting for their turn to eat. A cup can be seen on the table, possibly containing a beverage to accompany the hot dog."} +{"image_id": 299457, "caption": "The image features a young man sitting in a chair, eating a pink and white striped lollipop. He is wearing glasses and appears to be enjoying his treat. The room he is in has a white color scheme, and there is a couch in the background.\n\nIn addition to the main subject, there are two other people in the room, one standing near the left side and the other on the right side. A cup can be seen placed on a surface in the room, and a chair is located near the center of the scene."} +{"image_id": 2894, "caption": "The image features a train station with a train on the tracks, likely waiting for passengers to board. The train is positioned near a platform, and there are several people standing around the station, some closer to the train and others further away.\n\nIn addition to the train, there are two cars visible in the scene, one located near the middle of the image and the other towards the right side. The presence of these cars suggests that the train station is situated in a busy area with various modes of transportation available for commuters."} +{"image_id": 209733, "caption": "The image captures a lively scene in a park where a group of people is enjoying a day of flying kites. There are at least four kites visible in the sky, with one particularly large kite soaring high above the others. The people are spread out across the park, with some standing closer to the foreground and others further in the background.\n\nIn addition to the kite-flyers, there are several cars parked around the park, with one car on the left side, another on the right side, and a third car further back. A bench can also be seen in the park, providing a place for people to sit and relax while watching the kites soar."} +{"image_id": 428231, "caption": "The image showcases a spacious living room with a variety of furniture and decor. There is a large white couch situated in the center of the room, accompanied by a chair on the right side. A dining table is located towards the right side of the room, with a vase placed on it. A potted plant can be seen on the left side of the room, adding a touch of greenery to the space.\n\nIn addition to the main furniture, there are two TVs in the room, one on the left side and another on the right side. A remote control is also visible on the left side of the room. The living room is well-lit, with a window providing natural light."} +{"image_id": 250619, "caption": "The image features a beautiful young woman lying on a blanket on a sandy beach, enjoying the sun and the beach atmosphere. She is positioned under a large, colorful umbrella, which provides shade and protection from the sun. The umbrella is open and spans across a significant portion of the scene.\n\nThere are a few other people in the background, but the main focus is on the woman lying on the blanket. Additionally, there are a couple of handbags placed near the woman, possibly belonging to her or other beachgoers."} +{"image_id": 434693, "caption": "The image features a white fire hydrant situated on a sidewalk next to a pink building. The fire hydrant is attached to a white pole, which is also visible in the scene. The hydrant is connected to a chain, ensuring its secure attachment to the pole.\n\nIn the background, there is a car parked on the street, and a truck can be seen further down the road. The scene also includes a potted plant placed near the building, adding a touch of greenery to the urban environment."} +{"image_id": 15596, "caption": "The image captures a thrilling moment on a race track, with two motorcycles racing side by side. The motorcycles are positioned close to each other, with one slightly ahead of the other. The riders are skillfully navigating the track, showcasing their expertise in motorcycle racing.\n\nIn addition to the motorcycles, there are a few other objects in the scene. A car can be seen in the background, and a truck is parked further away. There are also two people present in the scene, likely spectators or staff members, observing the race."} +{"image_id": 569415, "caption": "The image features a large elephant walking through a grassy field. The elephant is the main focus of the scene, occupying a significant portion of the image. The grass appears to be dry and sparse, with some patches of dirt visible in the field. The elephant's trunk is raised, possibly indicating that it is exploring its surroundings or interacting with the environment."} +{"image_id": 305004, "caption": "The image captures a young man skillfully riding a wave on a surfboard in the ocean. He is in the middle of a turn, showcasing his surfing abilities. The surfer is wearing a colorful pair of shorts, adding a vibrant touch to the scene. The surfboard is visible beneath him, as he skillfully maneuvers through the water."} +{"image_id": 510527, "caption": "The image features a man wearing a pink and white polka dot tie, sitting in a car. He is adjusting his tie, possibly preparing for a formal event or a business meeting. The man is wearing a sweater vest, adding a touch of style to his outfit.\n\nThe car is filled with various objects, including a cup placed on the dashboard, a cell phone on the passenger seat, and a book resting on the car's surface. There are also two cars visible in the background, one on the left side and another on the right side of the image."} +{"image_id": 581317, "caption": "The image features a woman standing on a hill, looking at her cell phone. She is surrounded by a lush green field, and there are mountains in the background. The woman appears to be enjoying her time outdoors, possibly taking a break from her phone to appreciate the beautiful scenery."} +{"image_id": 532071, "caption": "The image features a large brown bear lying down in a grassy field, surrounded by trees. The bear appears to be resting or possibly sleeping in the grassy area. The scene is set in a forest, with the bear being the main focus of the image."} +{"image_id": 467978, "caption": "The image features a black and white dog running through a grassy field, chasing a herd of sheep. The dog is positioned towards the center of the scene, with the sheep scattered around it. Some sheep are closer to the dog, while others are further away, creating a dynamic and lively atmosphere. The dog appears to be focused on the sheep, possibly herding them or playing with them."} +{"image_id": 184972, "caption": "The image features a group of people gathered around a dining table, enjoying a meal together. A man in the center of the scene is wearing a distinctive tie with a heart on it, which stands out among the other ties worn by the people in the room. The man is smiling and appears to be the center of attention.\n\nThere are several other people in the scene, some sitting and others standing around the table. A few chairs are placed around the table, and a wine glass can be seen on the table as well. The atmosphere seems to be friendly and social, with everyone enjoying each other's company."} +{"image_id": 525568, "caption": "The image features a group of zebras standing together in a grassy field. There are three zebras in total, with one zebra standing in the foreground and the other two zebras positioned behind it. The zebras are standing close to each other, creating a sense of unity and companionship. The field is lush and green, providing a natural habitat for the zebras."} +{"image_id": 165056, "caption": "The image features two giraffes standing next to each other in a zoo enclosure. They are positioned close to a fence, which separates them from the visitors. One of the giraffes is looking at the camera, while the other one appears to be looking away.\n\nThere are several people in the scene, with one person standing close to the giraffes, possibly observing them or taking a picture. Another person is visible in the background, and a third person is located further away from the giraffes. The scene captures the interaction between the giraffes and the visitors, creating a unique and engaging experience for everyone involved."} +{"image_id": 362240, "caption": "The image features a garage with a variety of motorcycles parked inside. There are three motorcycles in total, with one prominently displayed in the foreground and the other two positioned further back. The motorcycles are parked next to each other, creating a visually appealing arrangement.\n\nIn addition to the motorcycles, there are several books scattered throughout the garage, possibly related to the motorcycles or other interests. A few bottles can also be seen in the scene, placed near the motorcycles. The overall atmosphere of the garage suggests a space dedicated to the passion for motorcycles and their maintenance."} +{"image_id": 179558, "caption": "The image features two giraffes standing next to each other in a grassy field. They are both leaning their heads over a tree branch, possibly trying to reach for the leaves or interact with each other. The giraffes are positioned close to each other, with one giraffe on the left side and the other on the right side of the tree branch. The scene captures the natural behavior of these animals in their habitat."} +{"image_id": 120792, "caption": "The image depicts a man standing in a living room, playing a video game on a Nintendo Wii console. He is holding a Wii remote in his hand, fully engaged in the game. Another person is also present in the room, watching the gameplay.\n\nThe living room is furnished with a couch and a chair, both placed against the wall. There is a TV mounted on the wall, displaying the video game. A few bottles can be seen scattered around the room, possibly containing beverages for the players. A book is also visible on a surface, possibly a bookshelf or a table."} +{"image_id": 294865, "caption": "The image features a train with its doors open, allowing passengers to board or disembark. There are several people standing on the platform, waiting to get on the train. Some of them are waving, possibly to friends or family members on the train.\n\nIn total, there are 11 people visible in the scene, with some standing closer to the train and others further away. The train occupies a significant portion of the image, stretching from the left side to the right side of the frame."} +{"image_id": 159662, "caption": "The image features a woman wearing a pink dress and a hat, standing on a tennis court. She is holding a tennis racket in her hand, possibly preparing for a match or practice session. The woman appears to be focused and determined as she stands on the court.\n\nThere are several other people in the scene, some of whom are also holding tennis rackets. They are scattered around the court, possibly waiting for their turn to play or observing the woman in the pink dress. The presence of multiple people on the court suggests that this could be a tennis club or a popular tennis venue."} +{"image_id": 176906, "caption": "The image features a man standing in a fenced area with several sheep and goats. The man is wearing a yellow shirt and appears to be feeding the animals. There are at least five sheep and two goats in the enclosure, with some of them eating from a bowl placed on the ground.\n\nIn the background, there are two cars parked, and a bench can be seen nearby. Additionally, there are three other people in the scene, one of whom is standing close to the man in the yellow shirt, while the other two are positioned further away."} +{"image_id": 250608, "caption": "The image features a large blue and white bus parked on the side of a street. The bus is positioned near a bus stop, and there is a person standing nearby, possibly waiting for the bus or just passing by.\n\nIn addition to the bus, there are several cars parked or driving along the street. Some cars are parked closer to the bus, while others are further away. A traffic light can be seen in the background, indicating that the bus is in an urban area with traffic regulations."} +{"image_id": 33561, "caption": "The image depicts a large herd of cows grazing in a lush green field. There are at least 14 cows visible in the scene, scattered across the field. Some cows are closer to the foreground, while others are further away, creating a sense of depth in the image. The cows are enjoying their time in the open field, surrounded by trees and a house in the background. The scene captures the peaceful and natural environment of the cows as they graze and roam freely."} +{"image_id": 274612, "caption": "The image features a row of bicycles parked next to each other under a variety of colorful umbrellas. There are at least nine bicycles visible in the scene, with some of them being parked closer to the foreground and others further back. The umbrellas are positioned above the bicycles, providing shade and protection from the elements.\n\nThe umbrellas come in different colors, including red, yellow, and blue, adding a vibrant touch to the scene. The bicycles are arranged in a neat line, creating an organized and visually appealing display."} +{"image_id": 288714, "caption": "The image features a close-up view of a pizza with various toppings, including olives, mushrooms, and cheese. The pizza is placed on a dining table, and the toppings are spread all over the surface. The pizza appears to be a delicious and appetizing meal, ready to be enjoyed."} +{"image_id": 284379, "caption": "The image features a young boy riding a yellow surfboard on a wave in a wave pool. He is lying on his stomach, skillfully navigating the water. The boy appears to be enjoying his time on the surfboard, showcasing his balance and control. The wave pool provides a fun and safe environment for the boy to practice his surfing skills."} +{"image_id": 205247, "caption": "The image features a white bus parked on a street, with a large advertisement on its side. The bus is promoting the Cincinnati Bearcats basketball team, and it is likely a promotional vehicle for the team. The bus is parked in front of a tree, and there is a person standing nearby, possibly observing the advertisement or waiting to board the bus."} +{"image_id": 200267, "caption": "The image features a woman playing tennis on a court, holding a tennis racket and preparing to hit a tennis ball. She is surrounded by a crowd of people who are watching her play. There are at least 13 people in the scene, some standing closer to the court while others are further away.\n\nThere are multiple tennis balls scattered around the court, with at least 11 visible in various positions. The woman is focused on her game, and the spectators are engaged in the match, creating an exciting atmosphere."} +{"image_id": 296775, "caption": "The image features a blue and green bus driving down a street, possibly in a city. The bus is quite large and occupies a significant portion of the scene. There are several people visible in the image, with one person standing near the front of the bus and others scattered around the street.\n\nIn addition to the bus, there are two bicycles in the scene, one located near the center of the image and the other towards the right side. A car can also be seen parked on the left side of the street. The overall atmosphere of the image suggests a busy urban environment with various modes of transportation in use."} +{"image_id": 4265, "caption": "The image features a window sill filled with various plants and vases. There are three vases placed on the window sill, with one on the left side, one in the middle, and another on the right side. The plants in the vases are of different sizes and types, creating a diverse and lively arrangement.\n\nIn addition to the vases, there are two potted plants on the window sill, one located near the left vase and the other near the right vase. A bottle can also be seen on the right side of the window sill, adding to the variety of objects in the scene."} +{"image_id": 104392, "caption": "The image showcases a large, modern kitchen with wooden cabinets and a center island. The kitchen features a black stove top oven, a microwave, and a refrigerator. The stove top oven is located on the left side of the kitchen, while the microwave is placed above the oven. The refrigerator is situated on the right side of the kitchen.\n\nThe kitchen also has a sink, which is positioned near the center island. The island is surrounded by wooden cabinets, providing ample storage space. The overall design of the kitchen is clean and well-organized, with a focus on functionality and aesthetics."} +{"image_id": 316658, "caption": "The image features a serene scene of a park with a lake, where a person is sitting on a bench near the water. There are two birds, likely ducks, swimming in the lake close to the bench. The person appears to be enjoying the peaceful atmosphere, watching the birds as they swim in the water.\n\nIn the background, there is a boat on the lake, adding to the picturesque setting. The park is surrounded by trees, providing a natural and calming environment for the person to relax and observe the birds and the lake."} +{"image_id": 230993, "caption": "The image depicts a group of people walking down a street, each holding an umbrella to protect themselves from the rain. There are three umbrellas visible in the scene, with one being held by a person on the left side, another in the middle, and the third on the right side.\n\nThe people are walking in a line, with one person leading the way and the others following closely behind. There are four individuals in total, with one person on the left side, two in the middle, and one on the right side of the image.\n\nIn addition to the umbrellas, there are two handbags visible in the scene, one being carried by a person on the left side and the other by a person on the right side."} +{"image_id": 321035, "caption": "The image features a large, beautifully decorated cake with white frosting and red lettering. The cake is placed on a dining table, and it is adorned with a knife and a fork, ready to be cut and served. The cake is shaped like a heart and is likely meant to celebrate a special occasion or event. The red lettering on the cake reads \"welcome malachi,\" indicating that it is a welcoming gesture for someone named Malachi."} +{"image_id": 571038, "caption": "The image features a woman standing in a kitchen, holding a large metal pan filled with a delicious homemade pizza. The pizza is topped with various ingredients, including tomatoes, cheese, and basil. The woman appears to be proudly presenting her creation, possibly for a photo opportunity.\n\nThe kitchen is well-equipped with a sink, an oven, and a refrigerator. There are also several knives placed around the kitchen, possibly used for preparing the pizza. Additionally, there are two bottles in the scene, one near the top left corner and the other near the top right corner."} +{"image_id": 395978, "caption": "The image depicts a snowy airport runway with two men working on the ground. They are digging holes in the snow, likely for the installation of a fence or other airport infrastructure. The men are wearing yellow vests, which makes them easily visible against the snowy background.\n\nIn the background, a large passenger jet is parked on the runway, waiting for its next flight. The airplane occupies a significant portion of the scene, stretching from the left side to the right side of the image. The presence of the airplane and the men working on the ground create a contrast between the busy airport operations and the snowy conditions."} +{"image_id": 482917, "caption": "The image features a man and a dog sitting together on a couch. The dog is positioned between the man's legs, and they both appear to be watching television. The TV is located on the left side of the room, and the dog seems to be enjoying the show.\n\nThere are two remote controls in the scene, one near the center of the couch and the other closer to the right side. Additionally, there is a cup placed on the couch, slightly to the left of the center."} +{"image_id": 207561, "caption": "The image captures a group of three surfers riding waves in the ocean. They are all on their surfboards, skillfully navigating the waves. The first surfer is located on the left side of the image, the second surfer is in the middle, and the third surfer is on the right side.\n\nThe waves are relatively small, and the surfers are spread out across the scene, with each surfer maintaining a safe distance from the others. The ocean appears to be a beautiful blue, providing a perfect setting for these surfers to enjoy their time in the water."} +{"image_id": 369470, "caption": "The image depicts a city street with a row of parking meters lined up along the sidewalk. There are several cars parked in the parking spaces, with some of them being closer to the foreground and others further back. The parking meters are placed at regular intervals, ensuring that drivers pay for their parking time.\n\nIn addition to the parking meters, there are a few potted plants placed along the sidewalk, adding a touch of greenery to the urban environment. The street is lined with buildings, creating a typical cityscape."} +{"image_id": 482210, "caption": "The image depicts a small bathroom with a white toilet and sink. The toilet is positioned on the right side of the bathroom, while the sink is located on the left side. The bathroom features a mirror above the sink, and a shelf is mounted on the wall above the toilet.\n\nThere are several bottles placed around the bathroom, with one near the sink, another on the left side of the toilet, and the third one on the right side of the toilet. Additionally, there is a toothbrush placed near the sink, and a cup can be seen on the left side of the sink."} +{"image_id": 525381, "caption": "The image captures a baseball game in progress, with a batter swinging a baseball bat at a ball. The batter is in the middle of the scene, holding the bat and preparing to hit the ball. The catcher is positioned behind the batter, ready to catch the ball if the batter misses.\n\nThere are several other people in the scene, including teammates and opponents, watching the game unfold. Some of them are standing near the batter, while others are scattered around the field. A baseball glove can be seen in the hands of one of the players, likely the catcher.\n\nThe atmosphere is lively, with everyone focused on the batter's performance and the outcome of the game."} +{"image_id": 156375, "caption": "The image features a woman wearing a pink jacket and holding ski poles, standing on a snow-covered slope. She is smiling and appears to be enjoying her time on the ski slope. The woman is wearing a hat and is surrounded by a fence, which could be a part of the ski area's boundary.\n\nThere are several other people in the background, some of them closer to the fence, while others are further away. The scene captures a lively atmosphere with people engaging in winter sports and enjoying the snowy landscape."} +{"image_id": 334399, "caption": "The image features a man standing in front of a large clock, which is positioned on a table. The man appears to be admiring the clock, possibly a unique or antique timepiece. There are several other people in the scene, some of whom are standing close to the man, while others are further away.\n\nIn addition to the clock, there are a few books scattered around the room, possibly indicating a study or workspace. A handbag can also be seen placed on the floor, suggesting that someone might have been in the room recently."} +{"image_id": 322955, "caption": "The image features a beautiful beach scene with a seagull standing on the wet sand near the water. The bird is positioned towards the center of the scene, looking out towards the ocean. The beach is bathed in a warm, golden light, creating a serene atmosphere. The water appears to be calm, with no visible waves or disturbances. The overall scene captures the tranquility of a peaceful beach setting."} +{"image_id": 312024, "caption": "The image features a small blue and black bird standing on the grass. The bird is positioned in the center of the scene, with its wings spread out, possibly in a display of color or to dry them. The grassy area surrounding the bird is lush and green, providing a natural habitat for the bird."} +{"image_id": 118715, "caption": "The image features a fire hydrant situated on a sidewalk next to a building. The fire hydrant is painted red and white, and it is positioned close to the wall. The scene appears to be in black and white, giving it a classic and timeless feel. The fire hydrant is the main focus of the image, and it stands out against the backdrop of the building and the sidewalk."} +{"image_id": 237318, "caption": "The image features a stop sign located in a wooded area, surrounded by trees and bushes. The stop sign is positioned on a pole, and it is clearly visible to drivers passing by. The scene appears to be a rural setting, with the stop sign serving as a reminder for drivers to be cautious and attentive while navigating the area."} +{"image_id": 236865, "caption": "The image features a young girl wearing a black dress and holding a red frisbee in her hand. She appears to be enjoying her time outdoors, possibly playing with the frisbee. The girl is standing on a sidewalk, surrounded by trees and a house in the background.\n\nThere are a few other people in the scene, but they are not the main focus of the image. The girl with the frisbee is the central figure, capturing the viewer's attention."} +{"image_id": 72096, "caption": "The image features a woman sitting at a dining table, enjoying a meal with various food items and beverages. She is surrounded by a few chairs, with one on her left and another on her right. The table is set with plates, cups, and utensils, including forks, knives, and spoons.\n\nThere are two cups on the table, one near the woman and another further away. A bowl is also present on the table, along with a cake and a sandwich. The table is adorned with a vase, adding a decorative touch to the scene. The woman appears to be enjoying her meal, possibly having a conversation or simply relaxing."} +{"image_id": 450762, "caption": "The image features a group of teddy bears dressed in military uniforms, sitting on a boat and enjoying their time together. There are a total of nine teddy bears in the scene, with some of them sitting closer to the front of the boat and others positioned further back.\n\nThe teddy bears are arranged in various positions, with some sitting on the edge of the boat and others sitting in the middle. They appear to be having a fun and relaxing time together, creating a playful atmosphere."} +{"image_id": 168974, "caption": "The image features a young child, possibly a toddler, sitting on the floor and holding a cell phone. The child appears to be playing with the phone, possibly pressing buttons or interacting with the screen. The child is wearing a brown sweater, which adds a cozy touch to the scene.\n\nThe room has a dining table in the background, and a chair is placed nearby. There is also a book on the table, suggesting that the child might have been reading or playing with it before engaging with the cell phone."} +{"image_id": 559950, "caption": "The image features a small dog sitting in the back seat of a car, looking out the window with a curious expression. The dog appears to be enjoying the ride and observing the surroundings.\n\nThere are several cars visible in the scene, with one car in the foreground and two others in the background. A person can be seen standing near the middle of the image, possibly a passenger or a pedestrian. The car's interior is equipped with a steering wheel, which is located towards the right side of the image."} +{"image_id": 575776, "caption": "The image features a zebra and a rhino standing in a dirt field, possibly in a desert-like environment. The zebra is positioned on the left side of the scene, while the rhino is on the right side. They appear to be facing each other, possibly engaging in a confrontation or simply interacting with each other.\n\nIn the background, there are some trees visible, adding to the natural setting of the scene. The zebra and rhino are the main focus of the image, creating an interesting and unique interaction between these two different species."} +{"image_id": 552352, "caption": "The image features a delicious slice of cheesecake on a plate, with a fork placed next to it. The cheesecake appears to be a close-up of a piece of cake, showcasing its texture and taste. The fork is positioned on the right side of the cheesecake, ready to be used to enjoy the dessert. The presentation of the cheesecake and the fork creates an inviting and appetizing scene."} +{"image_id": 490683, "caption": "The image features two people playing a game of frisbee in a grassy field. One person is positioned on the left side of the field, while the other is on the right side. Both players are holding frisbees, with one frisbee closer to the left player and the other frisbee near the right player.\n\nIn the background, there is a building visible, adding to the outdoor setting of the scene. The players seem to be enjoying their time together, engaging in a fun and active game."} +{"image_id": 76417, "caption": "The image features a white dog sticking its head out of a car window, enjoying the breeze and the view. The dog appears to be looking at the camera, capturing a playful moment. The car is parked on the side of the road, and there are traffic lights visible in the background.\n\nThere are two traffic lights in the scene, one on the left side and another on the right side of the image. The first traffic light is closer to the top left corner, while the second one is located near the top right corner. The dog's head is positioned in the middle of the image, with the car window occupying the lower half of the scene."} +{"image_id": 231153, "caption": "The image captures a snowboarder in mid-air, performing a jump off a snowy hill. The snowboarder is wearing a blue jacket and is in the middle of a trick, showcasing their skill and athleticism. The snowboard is clearly visible beneath the snowboarder, as they soar through the air.\n\nThe scene is set against a backdrop of trees, adding to the wintery atmosphere. The snowboarder's jump is the main focus of the image, highlighting their talent and the excitement of the sport."} +{"image_id": 190497, "caption": "The image features a herd of black and white cows standing in a dirt road, with some of them gathered near a barn. There are at least 13 cows in the scene, with some standing closer to the barn and others spread out along the road. The cows appear to be grazing or resting, creating a peaceful and rural atmosphere."} +{"image_id": 126065, "caption": "The image features a clock tower with two bell statues on either side of it. The clock is prominently displayed on the tower, and the bell statues are positioned below it. The clock is situated in the middle of the tower, while the two bells are placed on the left and right sides.\n\nThe clock tower is made of stone, giving it a classic and elegant appearance. The two bell statues add a unique and artistic touch to the structure, making it a visually appealing and interesting sight."} +{"image_id": 375915, "caption": "The image features a wooden dining table with a delicious pizza placed on a cutting board. The pizza is topped with various vegetables, making it a healthy and appetizing meal. The table is set with a knife and a fork, ready for someone to enjoy the pizza.\n\nIn addition to the pizza, there are a few other items on the table. A wine glass is positioned towards the top right corner of the table, and a bowl can be seen in the middle of the table. A bottle is also present on the table, likely containing a beverage to accompany the meal."} +{"image_id": 95022, "caption": "The image features a large grey and black bird perched on a thin tree branch. The bird appears to be a pigeon, and it is sitting on the branch with its feet firmly planted. The bird's position on the branch suggests that it is comfortable and relaxed in its environment."} +{"image_id": 177935, "caption": "The image features a white stove top oven with a chrome finish, situated in a kitchen. The stove is equipped with four burners, and it is surrounded by various utensils and cooking tools.\n\nThere are multiple knives placed around the stove, with some on the left side and others on the right side. A spoon can be seen on the left side of the stove, and a fork is located on the right side. Additionally, there are two bowls placed on the countertop, one near the left side of the stove and the other closer to the center. A cup is also visible on the left side of the stove."} +{"image_id": 380117, "caption": "The image features a table covered with a tablecloth, on which a cat is sleeping. The cat is positioned in the center of the table, surrounded by several potted plants. The plants are placed in various positions around the table, with some closer to the cat and others further away.\n\nIn addition to the cat and the potted plants, there are a few cups scattered around the table. One cup is located near the left edge of the table, another is placed closer to the center, and the third cup is situated near the right edge of the table."} +{"image_id": 132373, "caption": "The image features a large clock mounted on a pole in front of a building, possibly a train station. The clock is prominently displayed, with its face visible and easy to read. The building has a patriotic theme, as evidenced by the American flag hanging from the ceiling.\n\nThere are several people in the scene, with some standing close to the clock and others further away. The presence of multiple individuals suggests that the location might be a busy or popular spot."} +{"image_id": 284282, "caption": "The image features a table with two appliances on it. One of the appliances is a blender, which is placed on the left side of the table. The other appliance is a toaster, which is situated on the right side of the table. Both appliances are white and appear to be in good condition.\n\nIn addition to the appliances, there is a cup placed on the table, located near the center. The table itself is green, providing a contrasting background for the appliances."} +{"image_id": 276707, "caption": "The image features a street scene with a red and white \"No Motorcycles\" sign prominently displayed on a pole. The sign is positioned in front of a building, possibly a store or a business.\n\nIn the background, there are several motorcycles parked or passing by, indicating that the sign is effective in preventing motorcycles from entering the area. The motorcycles are scattered around the scene, with some closer to the sign and others further away.\n\nAdditionally, there are a few people in the scene, with one person standing near the left side of the image and another person closer to the right side. A bicycle can also be seen parked near the left edge of the image."} +{"image_id": 194704, "caption": "The image features a young girl wearing a black jacket and holding a pair of skis in her hands. She is smiling and appears to be excited about skiing. The skis are positioned in front of her, with one ski on her left side and the other on her right side.\n\nThere are several other people in the scene, some of them standing closer to the girl and others further away. A backpack can be seen placed on the ground near the center of the image. The overall atmosphere suggests a fun and lively skiing event."} +{"image_id": 430286, "caption": "The image features a bed with a white comforter and a pillow. On the bed, there are three remote controls placed next to each other, likely for a television or other electronic devices. The remote controls are positioned at the top of the bed, making them easily accessible for use. The bed appears to be a comfortable and inviting place to relax and enjoy some leisure time."} +{"image_id": 361171, "caption": "The image captures a thrilling moment of a snowboarder performing a high jump in the air. The snowboarder is in the middle of the jump, showcasing their skill and athleticism. The snowboard is clearly visible beneath the snowboarder, as they soar through the air.\n\nThe scene takes place in front of a tall building, which adds to the urban setting of the snowboarding event. The snowboarder's impressive jump is the main focus of the image, highlighting the excitement and energy of the sport."} +{"image_id": 406451, "caption": "The image features a horse pulling a carriage down a city street. The horse is positioned in the middle of the scene, with the carriage attached to its back. The horse appears to be wearing a red bow, adding a touch of color to the scene.\n\nThere are several cars parked or driving along the street, with one car on the left side of the horse, another on the right side, and a third car further back in the scene. Additionally, there are two traffic lights visible in the background, one on the left side and another on the right side of the street.\n\nA person can be seen standing near the right edge of the image, possibly observing the horse and carriage or waiting to board the carriage."} +{"image_id": 57286, "caption": "The image captures a thrilling moment of a young man performing a skateboard trick in mid-air. He is in the middle of a jump, with his skateboard flying through the air behind him. The skateboarder is surrounded by a group of onlookers, including a few other people in the background, who are watching the impressive stunt.\n\nThere are two skateboards visible in the scene, one being used by the skateboarder and another one placed on the ground. The onlookers are spread out around the skateboarder, with some standing closer to the action and others further away. The scene is filled with excitement and anticipation as the skateboarder continues to perform his daring trick."} +{"image_id": 535952, "caption": "The image features a wooden cutting board with three cupcakes placed on it. The cupcakes are of different sizes and are arranged in a way that they are not touching each other. The first cupcake is on the left side of the cutting board, the second cupcake is in the middle, and the third cupcake is on the right side. The cupcakes are covered in chocolate frosting, making them visually appealing and delicious-looking."} +{"image_id": 455772, "caption": "The image captures a man in a white shirt and blue jeans jumping in the air to catch a frisbee. He is fully focused on the task, reaching out with his arm to grab the frisbee, which is positioned slightly above him. The scene takes place in a grassy area, with a car parked in the background. Another person can be seen standing further back, possibly watching the man's impressive catch."} +{"image_id": 63617, "caption": "The image features a young boy wearing glasses, standing on a porch and attempting to catch a baseball with his catcher's mitt. He is focused on the ball, which is in the air, and appears to be making a funny face as he tries to catch it.\n\nThere are two dogs in the scene, one located on the left side of the boy and the other on the right side. The dogs seem to be watching the boy's actions, possibly waiting for him to throw the ball or play with them."} +{"image_id": 90155, "caption": "The image features a long train traveling down the tracks, with a yellow engine pulling several black train cars. The train is moving through a countryside setting, with a lush green field surrounding the tracks. The train appears to be traveling at a moderate speed, as it continues on its journey."} +{"image_id": 158127, "caption": "The image features a large orange cat lying on the ground next to a person's feet. The cat is resting comfortably, possibly sleeping, and is positioned close to the person's shoes. The person's feet are visible, with one shoe on the left side of the cat and the other on the right side. The scene appears to be a casual and relaxed moment between the person and the cat."} +{"image_id": 248582, "caption": "The image depicts a lively outdoor market scene with a group of people shopping for fruits and vegetables. There are at least five people visible in the scene, with some of them standing near a fruit stand and others browsing the market.\n\nThe fruit stand is filled with a variety of fruits, including bananas, apples, and oranges. There are multiple bananas displayed in different areas of the stand, as well as several apples and oranges scattered throughout the scene. The market is bustling with activity, and the shoppers seem to be enjoying their time browsing the fresh produce."} +{"image_id": 206560, "caption": "The image captures a thrilling moment of a snowboarder performing a high jump in the air. The snowboarder is in the middle of the jump, showcasing their skill and athleticism. The snowboard is clearly visible, soaring through the air along with the snowboarder.\n\nIn the background, there are two other people present, likely watching the snowboarder's impressive feat. One person is located on the left side of the image, while the other is on the right side. The scene is filled with excitement and energy, as the snowboarder demonstrates their talent in the sport."} +{"image_id": 69009, "caption": "The image features two young boys wearing blue hats, standing in front of a glass window at a zoo. They are looking at a large brown bear inside the enclosure, which is located on the other side of the glass. The boys seem to be enjoying their time at the zoo, observing the bear with curiosity and interest."} +{"image_id": 322122, "caption": "The image features a white toilet with a yellow seat cover, placed in a bathroom. The toilet is situated next to a sink, which is located on the left side of the bathroom. A toilet brush can be seen on the left side of the toilet, and a toilet paper roll is placed on the right side of the toilet. The bathroom appears to be well-maintained and clean."} +{"image_id": 549930, "caption": "The image depicts a man and a woman walking down a wet street, sharing an umbrella to protect themselves from the rain. The woman is walking beside the man, and they appear to be enjoying their time together despite the weather.\n\nIn the background, there are several beach umbrellas set up, indicating that the location is near a beach or a waterfront area. The umbrellas are scattered across the scene, with some closer to the foreground and others further in the background. The presence of the beach umbrellas suggests that the area is a popular spot for relaxation and leisure activities."} +{"image_id": 33216, "caption": "The image features a large, freshly baked pizza with a generous amount of toppings, including meat and cheese. The pizza is placed on a silver platter, which is resting on a dining table. The table is surrounded by several chairs, with one person sitting on the left side of the table and another person on the right side.\n\nIn addition to the pizza, there are a few other items on the table, such as a cup and a bowl. The scene appears to be a casual dining setting, with people enjoying their meal together."} +{"image_id": 434581, "caption": "The image features a person riding a motorcycle down a street. The rider is wearing a black jacket and a helmet, ensuring safety while enjoying the ride. The motorcycle is positioned in the center of the scene, with the rider sitting comfortably on it.\n\nThe street appears to be a mix of pavement and gravel, adding to the overall atmosphere of the scene. The rider seems to be enjoying the ride, as they navigate the road on their motorcycle."} +{"image_id": 239509, "caption": "The image features a street scene with a man walking sign and a no crossing sign placed on a pole. The man walking sign is positioned on the left side of the pole, while the no crossing sign is on the right side. The signs are placed close to each other, indicating a pedestrian crossing area.\n\nIn the background, there are several people walking around, and a motorcycle is parked nearby. The scene also includes a truck parked further back, and a fire hydrant can be seen on the right side of the image."} +{"image_id": 88848, "caption": "The image is a collage of four pictures featuring a woman and a fire hydrant. In the first picture, the woman is standing next to the fire hydrant, while in the second picture, she is posing in front of a statue. The third picture shows the woman standing in a park, and the fourth picture features her standing in front of a boat.\n\nThere are also other people in the collage, with one person visible in the third picture and another person in the fourth picture. A handbag can be seen in the fourth picture, and a backpack is present in the third picture. The collage captures various moments of the woman and her surroundings, including a park, a statue, and a boat."} +{"image_id": 116182, "caption": "The image features a large bowl filled with a delicious meal, consisting of chicken, broccoli, and carrots. The chicken is placed in various parts of the bowl, with some pieces closer to the top and others near the bottom. The broccoli and carrots are scattered throughout the bowl, adding a vibrant green and orange color to the dish. The bowl is placed on a dining table, ready to be enjoyed by those who will partake in the meal."} +{"image_id": 562345, "caption": "The image features a woman wearing a yellow raincoat and holding a cell phone in her hand. She is standing in front of a brick wall, possibly in a city setting. The woman appears to be looking at her phone, possibly checking messages or browsing the internet.\n\nThe woman is also wearing a belt, which is visible around her waist. The scene captures a casual and urban atmosphere, with the woman dressed for the weather and engaging with her phone."} +{"image_id": 343410, "caption": "The image features a red plate filled with a variety of vegetables, including several pieces of broccoli and a couple of onions. The broccoli pieces are scattered across the plate, with some placed closer to the center and others towards the edges. The onions are also distributed across the plate, with one onion located near the center and another towards the right side. The plate is placed on a dining table, ready to be enjoyed as a healthy and delicious meal."} +{"image_id": 490529, "caption": "The image features a woman sitting in a chair, wearing glasses and looking at her cell phone. She is surrounded by other people in the room, with one person sitting to her left and another person to her right. There are also two chairs visible in the scene, one behind the woman and another one further to the right.\n\nIn the background, there is a dining table with a cup placed on it. A handbag can be seen on the floor near the woman, and a bowl is located on the dining table. The scene appears to be a casual gathering or a social event where people are engaged in various activities."} +{"image_id": 328818, "caption": "The image features a woman in a pink shirt, standing next to a bench and tying her shoes. She is wearing a helmet, indicating that she might be preparing for a bike ride. The bench is located near a bicycle, which is parked close to the woman.\n\nThere are also two bottles in the scene, one placed near the bench and the other further away. The presence of these bottles suggests that the woman might be taking a break from her bike ride to attend to her shoes and stay hydrated."} +{"image_id": 218947, "caption": "The image captures a snowy mountain scene with a man skiing down the slope. He is wearing a backpack and is the main focus of the scene. Another person can be seen in the background, possibly skiing or observing the man in front.\n\nThere are two sets of skis visible in the image, one belonging to the main skier and the other set belonging to the person in the background. The skis are positioned horizontally, with the main skier's skis being closer to the foreground and the other set of skis further in the background."} +{"image_id": 152281, "caption": "The image depicts a large herd of sheep grazing in a lush green field. There are at least 15 sheep visible in the scene, scattered throughout the field. Some sheep are closer to the foreground, while others are further in the background. The sheep are eating grass and enjoying their time in the field. The scene captures the essence of a peaceful, rural setting where the sheep can graze and roam freely."} +{"image_id": 41110, "caption": "The image features a young child, possibly a toddler, sitting on a bed and drinking from a baby bottle. The child is focused on the bottle, taking a sip from it. The bottle is placed close to the child's mouth, and the child's hand is holding the bottle.\n\nThe room appears to be a cozy and comfortable space, with a couch visible in the background. The child seems to be enjoying their time, drinking from the bottle and possibly taking a nap or resting."} +{"image_id": 512985, "caption": "The image features a man standing on a beach, holding a surfboard. He is wearing a wetsuit and appears to be preparing for a surfing session. The surfboard is positioned in front of him, ready for use.\n\nThe beach is surrounded by a body of water, with waves visible in the distance. The scene captures the essence of a typical beach day, with the surfer getting ready to enjoy the waves."} +{"image_id": 414212, "caption": "The image features a man standing in a bathroom, holding a toothbrush and a tube of toothpaste. He is giving a thumbs-up sign, indicating his approval or satisfaction with the toothbrush and toothpaste. The man is wearing glasses, and the bathroom appears to be well-equipped with a sink, a mirror, and a shower curtain."} +{"image_id": 426578, "caption": "The image captures a beach scene with a man running along the sandy shore. He is wearing a wetsuit and appears to be enjoying his time on the beach. The man is the main focus of the scene, with his figure prominently visible in the foreground.\n\nIn the background, there are several other people scattered across the beach, some closer to the water and others further away. Additionally, there are a few birds flying in the sky, adding to the lively atmosphere of the beach."} +{"image_id": 291962, "caption": "The image features a young boy standing in a grassy field, flying a colorful kite high in the sky. The kite is positioned towards the top left of the scene, with its tail extending towards the right side. The boy is holding onto the kite string, enjoying the activity.\n\nThe field is surrounded by a stone wall, which adds a sense of depth to the scene. There are also a few potted plants scattered around the area, adding a touch of greenery to the environment."} +{"image_id": 460927, "caption": "The image features a large brown bear standing on a grassy hillside, with its head turned to the side. The bear appears to be looking at something in the distance, possibly a potential threat or an interesting object. The bear's fur is wet, indicating that it might have been in the water or recently emerged from it. The scene captures the bear's natural habitat and its curiosity as it surveys its surroundings."} +{"image_id": 552186, "caption": "The image captures a lively scene at a skate park, where a shirtless man is skillfully riding a skateboard. He is performing a trick, possibly a kickflip, as he moves across the park. There are several other people in the background, some of them also skateboarding or watching the action.\n\nIn addition to the skateboarders, there are a few cars parked around the area, and a truck can be seen in the background. A bench is also present, providing a place for spectators to sit and enjoy the skateboarding action."} +{"image_id": 553852, "caption": "The image features a young boy walking down a sidewalk with a skateboard in his hand. He appears to be looking at the ground as he walks, possibly admiring the ground or searching for a good spot to ride his skateboard.\n\nIn the background, there are two bicycles parked on the sidewalk, one closer to the left side and the other further to the right. Additionally, there is a motorcycle parked in the background, slightly to the left of the center of the image."} +{"image_id": 370337, "caption": "The image features a harbor with two boats docked next to a pier. One of the boats is a large red and white ship, while the other is a smaller red and white boat. The boats are positioned close to each other, with the larger boat on the left side and the smaller boat on the right side of the pier.\n\nIn the background, there are several buildings, including a large building on the left side and a smaller building on the right side. The buildings appear to be part of a cityscape, creating a picturesque scene of the harbor and its surroundings."} +{"image_id": 18491, "caption": "The image captures a thrilling moment during a baseball game, with a player sliding into a base. The player is in the process of sliding into the base, while the catcher is attempting to tag him out. The catcher is positioned close to the base, holding a baseball glove, ready to make the play.\n\nThere are several other people in the scene, including teammates and opponents, watching the action unfold. Some of them are standing near the benches, while others are scattered around the field. A baseball bat can be seen lying on the ground, possibly belonging to one of the players.\n\nThe scene is filled with excitement and anticipation as the players and spectators await the outcome of the play."} +{"image_id": 556000, "caption": "The image depicts a group of people, including both adults and children, gathered in a living room. They are playing a video game, with one person holding a Wii remote in their hand. The room is furnished with a couch, a chair, and a dining table.\n\nThere are several people in the room, with some standing and others sitting. A few of the individuals are closer to the couch, while others are scattered around the room. The atmosphere appears to be lively and fun, as the family enjoys their time together playing the video game."} +{"image_id": 443351, "caption": "The image features two motorcycles parked side by side on a paved surface. The first motorcycle is a silver and black color, while the second one is a green and black color. Both motorcycles have black seats and are parked in a way that they are facing each other.\n\nIn addition to the motorcycles, there is a bicycle parked nearby, positioned between the two motorcycles. The bicycle is also black and white in color, adding variety to the scene."} +{"image_id": 63965, "caption": "The image features a woman holding a plate with a slice of cake on it. The cake is decorated with a heart-shaped red flower, adding a touch of elegance to the dessert. The woman is wearing a pink shirt, which complements the color of the cake.\n\nIn the background, there is a spoon placed on the left side of the image, possibly used for serving the cake. The woman appears to be enjoying the delicious treat, making it a delightful scene."} +{"image_id": 405660, "caption": "The image features a wooden bench situated in a grassy area, overlooking a beautiful mountain range. The bench is positioned in the foreground, with the mountains stretching out in the background. The scene is serene and picturesque, with the bench providing a perfect spot for relaxation and enjoying the breathtaking view."} +{"image_id": 419144, "caption": "The image is a black and white photograph of a group of people riding on the backs of several elephants. There are a total of five elephants in the scene, with some of them carrying multiple riders. The people are spread out across the elephants, with some riders closer to the front and others further back.\n\nThe riders are positioned at various heights on the elephants, with some sitting higher up and others lower down. The scene captures the excitement and adventure of the people as they enjoy their unique experience of riding these majestic animals."} +{"image_id": 371004, "caption": "The image features a zebra standing in a fenced enclosure, with its head sticking over the top of the fence. The zebra appears to be curiously looking at something beyond the fence, possibly trying to reach for it. The fence is made of metal, and the zebra's head is positioned close to the top of the fence. The scene captures the zebra's natural curiosity and interaction with its surroundings."} +{"image_id": 116861, "caption": "The image features a woman lying on a couch, holding a teddy bear close to her face. She appears to be sleeping or resting, with the teddy bear providing a sense of comfort and companionship. The couch is situated in a living room, and the woman's position suggests a relaxed and cozy atmosphere."} +{"image_id": 579664, "caption": "The image features a wooden crate filled with a variety of bananas. The bananas are arranged in different positions, with some overlapping and others placed next to each other. The crate is placed on a table, and the bananas are spread out across the surface.\n\nThere are several bunches of bananas in the crate, with some bunches being larger and others smaller. The bananas are of different colors, indicating that they are ripe and ready to be eaten. The overall scene gives off a fresh and vibrant atmosphere, showcasing the abundance of bananas in the crate."} +{"image_id": 5600, "caption": "The image features a dining table with two bowls filled with food. One bowl contains a mixture of meat and vegetables, while the other bowl is filled with a variety of fruits. The fruits in the bowl include bananas, apples, and oranges, all placed in a visually appealing manner. The table setting creates an inviting atmosphere for a meal."} +{"image_id": 199389, "caption": "The image features a fire hydrant painted to resemble a train conductor, with a face drawn on it. The fire hydrant is located on a gravel road, and it is positioned next to a fence. In the background, there is a car parked, and a truck can be seen further away. Additionally, there are two bottles placed near the fire hydrant, one closer to the left side and the other closer to the right side."} +{"image_id": 568131, "caption": "The image features a large elephant walking through a grassy field, surrounded by trees. The elephant is the main focus of the scene, occupying a significant portion of the image. The grassy field appears to be a lush green, providing a natural habitat for the elephant. The trees in the background add to the serene and peaceful atmosphere of the scene."} +{"image_id": 35671, "caption": "The image captures a lively scene of a rodeo event, with a man on a horse attempting to lasso a cow. The cow is running towards the man, and the horse is positioned to the right of the cow. There are several other people in the scene, some of them standing near the cow and others scattered around the area.\n\nIn addition to the cow and the horse, there are two other horses visible in the scene, one located towards the right side and the other in the middle. A person can be seen holding a baseball bat, possibly as a prop or for a different event. The overall atmosphere of the image is energetic and exciting, showcasing the thrilling nature of a rodeo event."} +{"image_id": 76522, "caption": "The image features a black and white cat lying on a couch, comfortably resting its head on a remote control. The remote is placed on the couch, close to the cat's head. The couch is covered with a grey fabric, providing a cozy and relaxing environment for the cat."} +{"image_id": 504167, "caption": "The image features a close-up of a cat with green eyes, sitting on a wooden floor. The cat has a mix of black and white fur, and its eyes are bright and captivating. The cat appears to be looking directly at the camera, creating a sense of connection with the viewer. The wooden floor provides a natural and cozy setting for the cat to relax in."} +{"image_id": 21644, "caption": "The image depicts a parking lot filled with several buses parked in a row. There are at least five buses visible in the scene, with some of them being larger and occupying more space, while others are smaller and parked closer together. The buses are parked in a way that they are lined up, creating an organized appearance.\n\nIn addition to the buses, there are two people in the scene, one located near the left side of the image and the other closer to the center. The presence of these individuals suggests that they might be passengers or staff members at the bus station."} +{"image_id": 483135, "caption": "The image depicts a group of people, including both children and adults, gathered in a living room to play video games. They are sitting on a couch and a bean bag chair, with some of them holding Wii remotes in their hands. The group appears to be enjoying their time together, possibly playing a game like Wii Sports.\n\nThere are several chairs in the room, with one near the couch and another closer to the bean bag chair. A dining table can be seen in the background, and a cell phone is placed on a surface nearby. The atmosphere seems to be relaxed and fun, as the group engages in a shared activity."} +{"image_id": 271063, "caption": "The image features a kitchen with wooden cabinets and a microwave oven. The microwave is placed on the left side of the kitchen, while the cabinets are positioned on the right side. The kitchen also has a sink, which is located towards the right side of the room.\n\nThere are two refrigerators in the kitchen, one on the left side and another on the right side. The refrigerator on the left is larger and occupies a significant portion of the space, while the one on the right is smaller and positioned closer to the sink. The kitchen appears to be well-equipped and ready for use."} +{"image_id": 36477, "caption": "The image features a large pile of ripe bananas, with some of them appearing to be overripe. The bananas are arranged in a box, and they are spread out in various positions, creating a visually appealing display. The bananas are predominantly yellow, indicating that they are ripe and ready to be consumed. The box is filled with bananas, showcasing a variety of sizes and shapes, making it an attractive sight for anyone looking to purchase some fresh fruit."} +{"image_id": 125375, "caption": "The image features a red and white train stopped at a train station. The train is positioned on the tracks, and several people are waiting on the platform, preparing to board the train. There are at least nine people visible in the scene, with some standing closer to the train and others further away.\n\nA few individuals are carrying handbags, with three handbags visible in the scene. One handbag is located near the center of the platform, another is closer to the right side, and the third is near the left side of the platform. The scene captures the everyday hustle and bustle of a busy train station."} +{"image_id": 362520, "caption": "The image features a young boy wearing a helmet and riding a skateboard at a skate park. He is skillfully performing a trick on his skateboard, which is positioned in the middle of the scene. The boy appears to be enjoying his time at the skate park, showcasing his talent and passion for skateboarding."} +{"image_id": 5412, "caption": "The image features a small bathroom with a white toilet and a white sink. The toilet is located on the left side of the bathroom, while the sink is situated on the right side. The sink is positioned under a mirror, which is mounted on the wall above the sink.\n\nThe bathroom has a beige color scheme, with the walls and floor tiles being a light brown color. The overall design of the bathroom is simple and functional, with a focus on the essential fixtures."} +{"image_id": 757, "caption": "The image features a group of elephants standing in a muddy watering hole. There are three elephants in total, with one of them being a baby elephant. The baby elephant is standing close to the water, while the other two elephants are positioned further away.\n\nThe elephants are engaged in various activities, with one of them using its trunk to reach for the water. The scene captures the natural behavior of these majestic creatures as they interact with their environment and quench their thirst."} +{"image_id": 396496, "caption": "The image depicts a snowy scene with a group of people standing on a street, waiting for a train. There are at least 12 people visible in the scene, some of them holding umbrellas to shield themselves from the snow. The train is located in the background, occupying a significant portion of the image.\n\nThe people are scattered throughout the scene, with some standing closer to the train and others further away. A few individuals are holding umbrellas, with one umbrella being held by a person in the middle of the scene and another umbrella held by a person on the right side. The overall atmosphere of the image is that of a cold, snowy day with people waiting for public transportation."} +{"image_id": 81761, "caption": "The image features a woman playing tennis on a court, holding a tennis racket and preparing to hit a tennis ball. She is positioned in the center of the court, with the ball in the air and the racket ready to make contact. The woman appears focused and determined as she plays the game.\n\nThe tennis court is surrounded by a fence, and there are a few cars parked nearby, possibly belonging to the players or spectators. The scene captures the essence of a tennis match, with the woman demonstrating her skills and athleticism."} +{"image_id": 130677, "caption": "The image features a tennis court with two people playing a game of tennis. One person is standing on the left side of the court, holding a tennis racket, while the other person is on the right side, also holding a racket. They are both actively engaged in the game, with one player preparing to serve the ball.\n\nThe tennis court is surrounded by a fence, and there are two benches placed near the court, one on the left side and the other on the right side. The scene is set at night, with the tennis court illuminated by lights, creating a lively atmosphere for the players."} +{"image_id": 318825, "caption": "The image features a tennis court with a man wearing a white shirt and white shorts, holding a tennis racket in his hand. He appears to be a tennis player, possibly preparing to serve the ball or practice his swing. The man is standing on the court, and his tennis racket is positioned in front of him.\n\nThe tennis court is surrounded by a blue wall, which adds to the overall atmosphere of the scene. The man's presence on the court suggests that he is actively engaged in the sport, either for recreation or competition."} +{"image_id": 48014, "caption": "The image features a man walking his dog on a leash down a sidewalk. The dog is positioned close to the man, and they are both walking together. The man is wearing a green shirt and appears to be enjoying the walk with his pet.\n\nIn the background, there are several cars parked along the street, with some closer to the foreground and others further away. A bench can be seen on the left side of the scene, and a handbag is placed on it. Additionally, there are two other people in the background, one standing near the bench and the other further away."} +{"image_id": 421028, "caption": "The image features a gray cat lying on a rug, playing with a toy carrot. The cat is positioned in the center of the scene, with the toy carrot placed nearby. The rug is a prominent element in the image, covering most of the floor.\n\nIn the background, there are several books scattered around, indicating that the scene might be taking place in a living room or a cozy reading area. The presence of the books adds a sense of warmth and comfort to the scene."} +{"image_id": 479659, "caption": "The image features a man and a woman standing next to each other, both holding wine glasses. They appear to be enjoying a conversation or a social event. The woman is wearing a handbag, which is placed on the table in front of them.\n\nThe scene takes place in an outdoor setting, with a dining table visible in the background. There are several bottles placed on the table, possibly containing wine or other beverages. A chair can also be seen in the background, suggesting that the area is designed for dining or relaxation."} +{"image_id": 369826, "caption": "The image features a large flat-screen TV mounted on a wall, displaying a picture of a man surfing. The TV is positioned in the middle of the scene, drawing attention to the surfing image.\n\nThe room appears to be a lobby or waiting area, with several chairs placed around the space. There are at least five chairs visible in the scene, with some located closer to the TV and others further away. The chairs are arranged in various orientations, creating a comfortable and inviting atmosphere for people to sit and enjoy the surfing image on the TV."} +{"image_id": 406253, "caption": "The image features a city street with a row of parked motorcycles and a car. There are three motorcycles parked next to each other, with one of them being a blue scooter. A car is parked on the left side of the scene, and a truck is visible in the background.\n\nThere are several people in the scene, with some standing near the parked vehicles and others walking along the street. A traffic light can be seen in the background, indicating that the street is likely a busy urban area."} +{"image_id": 548267, "caption": "The image features a large, grassy field with a herd of sheep grazing on the lush green grass. There are at least 13 sheep visible in the field, scattered across the landscape. Some of the sheep are closer to the foreground, while others are further away, creating a sense of depth in the scene. The field is situated near a mountain, adding to the picturesque setting."} +{"image_id": 335844, "caption": "The image features a silver and black toaster oven sitting on a countertop. The toaster oven is open, revealing a pizza inside, which is cooking in the oven. The oven is placed on a white counter, and the pizza appears to be in the middle of the cooking process."} +{"image_id": 299640, "caption": "The image features a table with three remote controls placed on it. The first remote control is located on the left side of the table, the second remote is in the middle, and the third remote is on the right side. The remotes are of different sizes and designs, showcasing a variety of styles.\n\nIn addition to the remotes, there is a TV remote control on the right side of the table, which is slightly larger than the other remotes. The table appears to be a white surface, providing a clean and uncluttered background for the remotes."} +{"image_id": 121812, "caption": "The image depicts a city street with a red traffic light hanging above the road. The traffic light is currently displaying a red light, indicating that vehicles must stop. The street is surrounded by trees, giving it a more natural and serene atmosphere.\n\nThere are several cars on the street, with some parked and others driving. A truck can also be seen on the road, adding to the busy urban scene. The overall atmosphere of the image is that of a typical day in a city, with people going about their daily routines."} +{"image_id": 107234, "caption": "The image features a man wearing a suit and tie, with a glass of wine in his hand. He is looking at the camera with a quizzical expression on his face. The man appears to be enjoying his time at a social event or gathering.\n\nIn the background, there is a car visible, possibly indicating that the event is taking place in a parking area or near a road. The man's attire and the presence of the wine glass suggest that he is dressed for a formal occasion or celebration."} +{"image_id": 153104, "caption": "The image features a man sitting in a stadium, enjoying a hot dog. He is wearing a black jacket and appears to be eating the hot dog with enthusiasm. The stadium is filled with other people, some of whom are also eating hot dogs.\n\nThere are several chairs in the scene, with one close to the man eating the hot dog and others scattered throughout the stadium. A few people can be seen sitting on these chairs, likely watching the event or waiting for their turn to eat. The atmosphere seems lively and social, with everyone enjoying the food and the event."} +{"image_id": 216417, "caption": "The image is a black and white photograph of a man wearing a hat and carrying a white dog on his back. The man is also wearing a backpack, and the dog appears to be sitting comfortably on his back. The man is holding a ski pole in his hand, suggesting that they might be on a skiing trip or enjoying a winter outing. The scene captures a unique moment of companionship between the man and his dog."} +{"image_id": 286708, "caption": "The image features a black and white cat wearing a pink knitted hat on its head. The cat appears to be sitting or laying down, possibly on a bed or a couch. The hat is positioned on the cat's head, covering its ears and providing a cozy and adorable appearance."} +{"image_id": 547041, "caption": "The image features a dining table with a variety of food items on it. There are two plastic containers, one containing a salad and the other containing a dessert. The salad is served in a bowl, and the dessert is placed in a cup.\n\nIn addition to the main dishes, there are several utensils on the table, including a fork, a spoon, and a knife. The fork is located near the salad, while the spoon is placed closer to the dessert. The knife is situated near the edge of the table.\n\nA keyboard can be seen in the background, indicating that the dining area might be in a home or office setting."} +{"image_id": 293802, "caption": "The image captures a lively scene of a young man skillfully performing a trick on his skateboard. He is in the air, jumping over the skateboard, which is positioned on the ground. The skateboarder is surrounded by a crowd of people, some of whom are standing and others are sitting at tables, likely enjoying a meal or watching the performance.\n\nThere are several chairs and dining tables scattered throughout the scene, indicating that this might be a public area or a gathering spot. A bicycle can also be seen in the background, adding to the overall atmosphere of the scene."} +{"image_id": 252738, "caption": "The image features a man standing in a dirt field, wearing a leather jacket and talking on his cell phone. He appears to be engaged in a conversation, possibly discussing his plans or coordinating with someone. The man is positioned towards the center of the scene, with the cell phone held up to his ear.\n\nIn the background, there are mountains visible, adding a picturesque backdrop to the scene. The dirt field extends across the entire image, providing a sense of openness and space."} +{"image_id": 43165, "caption": "The image features two zebras standing in a grassy field, with one zebra positioned closer to the left side of the field and the other zebra standing further to the right. They are both facing the same direction, possibly looking at something in the distance. The field appears to be a mix of grass and dirt, providing a natural habitat for the zebras."} +{"image_id": 218215, "caption": "The image features a large white polar bear swimming in a body of water, possibly an ocean or a lake. The bear is in the middle of the water, with its head and mouth submerged, possibly catching a fish or simply enjoying the water. The bear's body is visible, with its head and mouth being the most prominent features in the scene. The water appears to be splashing around the bear, adding to the dynamic nature of the image."} +{"image_id": 299082, "caption": "The image features a giraffe with its head down, eating grass from a rocky hillside. The giraffe's long neck and head are prominently visible as it grazes on the grass. The scene captures the giraffe's natural behavior and the beauty of its unique features."} +{"image_id": 152360, "caption": "The image features a street scene with a variety of bananas hanging from a pole. There are several bunches of bananas, some of which are green and others ripe and ready to eat. The bananas are hanging in different positions, with some closer to the ground and others higher up.\n\nIn the background, there are multiple cars parked along the street, with some closer to the foreground and others further away. A person can be seen standing near the left side of the image, possibly admiring the bananas or passing by. The overall atmosphere of the scene is lively and bustling, with the bananas adding a touch of color and freshness to the urban environment."} +{"image_id": 205601, "caption": "The image features a woman standing in a kitchen, cooking a delicious meal in a large skillet. She is focused on stirring the food, which includes a variety of ingredients such as meat, vegetables, and spices. The woman is using a spoon to mix the ingredients, ensuring that the dish is well-prepared.\n\nIn the background, another person can be seen, possibly observing the cooking process or waiting for the meal to be ready. The kitchen is well-equipped with an oven and a sink, which are essential tools for preparing and cleaning up after meals."} +{"image_id": 174004, "caption": "The image features an old yellow dump truck parked in a grassy field. The truck is surrounded by tall grass and is positioned in the middle of the field. The truck appears to be abandoned, as it is not in use and is not connected to any other vehicles. The scene gives off a sense of nostalgia, as the truck has likely been there for quite some time."} +{"image_id": 31542, "caption": "The image captures a thrilling moment of a snowboarder in mid-air, performing a jump off a ramp. The snowboarder is in the middle of the jump, showcasing their skill and athleticism. The snowboard is clearly visible beneath the snowboarder, as they soar through the air.\n\nThe scene takes place on a snow-covered slope, with the ramp and the snowboarder's jump being the main focus of the image. The snowboarder's body is positioned in a way that highlights their athletic prowess and the excitement of the jump."} +{"image_id": 305268, "caption": "The image features a woman playing tennis on a court, holding a tennis racket and jumping in the air to hit the ball. She is wearing a black shirt and appears to be in the middle of an intense game. The tennis ball is visible in the air, close to the woman's racket.\n\nThe scene takes place in a tennis court, with a wall visible in the background. The woman is the main focus of the image, showcasing her athleticism and skill in the sport."} +{"image_id": 2867, "caption": "The image features a group of people standing on a snow-covered slope, all wearing skis and backpacks. There are at least six people in the scene, with some of them standing closer to the foreground and others further back. They are all dressed for skiing and appear to be enjoying their time on the snowy hill.\n\nThe skis are visible on the ground, with some of them placed horizontally and others vertically. The backpacks are scattered around the group, with some of them placed on the ground and others being carried by the skiers. The scene captures the essence of a fun and active winter day spent skiing together."} +{"image_id": 72428, "caption": "The image features a white toilet with a wooden cabinet above it. The toilet is situated in a bathroom, and there is a roll of toilet paper placed on the tank. The toilet paper is positioned in a way that it can be easily accessed by the user. The wooden cabinet above the toilet adds a touch of warmth and elegance to the bathroom."} +{"image_id": 158494, "caption": "The image features a group of giraffes in a zoo enclosure, with one large giraffe standing next to a smaller giraffe. The large giraffe is positioned on the left side of the image, while the smaller giraffe is on the right side. Both giraffes are standing close to a building, which serves as the backdrop for the scene.\n\nIn addition to the giraffes, there is a tree in the background, providing a natural element to the enclosure. The scene captures the unique bond between the two giraffes, showcasing their size difference and the beauty of these majestic animals."} +{"image_id": 147629, "caption": "The image features a white cat lying on the floor, with a stuffed elephant toy nearby. The cat appears to be licking its lips, possibly enjoying the toy or the scent of the stuffed animal. The cat is positioned in the center of the scene, with the stuffed elephant located to the left of the cat. The floor appears to be carpeted, providing a comfortable surface for the cat to relax on."} +{"image_id": 581899, "caption": "The image features a train station with two blue passenger trains parked side by side. The trains are positioned close to each other, with one train occupying the left side of the image and the other train taking up the right side.\n\nThere are several people visible in the scene, with one person standing near the center of the image, another person closer to the right side, and a third person near the left side of the image. They appear to be waiting for the trains or simply passing by."} +{"image_id": 369345, "caption": "The image features a cozy living room with a blue couch and a wooden coffee table. The couch is situated in the center of the room, and the coffee table is placed in front of it. A lamp is positioned on the table, providing a warm ambiance to the space.\n\nThere are several books scattered around the room, with some placed on the couch and others on the coffee table. A remote control can be found on the table, likely for operating a television or other electronic devices. Additionally, a keyboard is placed on the table, possibly for working or entertainment purposes."} +{"image_id": 372246, "caption": "The image features a street sign on a pole, indicating the intersection of Hell Canyon Road and US Highway 395. The sign is positioned on the side of the road, with a stop sign visible in the background. The scene is set against a backdrop of a hillside, giving a sense of the surrounding landscape."} +{"image_id": 261563, "caption": "The image features a black dog and a brown dog playing together in a grassy field. The black dog is holding a yellow frisbee in its mouth, while the brown dog is standing nearby, possibly waiting for its turn to play or observing the black dog's actions. The two dogs appear to be enjoying their time together in the open field."} +{"image_id": 461802, "caption": "The image features a man in an orange safety vest walking down a train platform. He appears to be a train conductor or worker, possibly checking the train or ensuring its safety. The train is parked on the tracks, occupying a significant portion of the scene.\n\nThere are several clocks visible in the image, with one located near the top left corner, another in the middle-left area, and a third one on the right side of the platform. These clocks likely help passengers keep track of time while waiting for their trains."} +{"image_id": 138175, "caption": "The image features a man wearing glasses and a suit, talking on his cell phone. He is standing in a room with other people around him. One person is standing close to the man on the phone, while another person is located further away.\n\nThere are two handbags in the scene, one near the man on the phone and the other one placed on a surface in the background. A chair is also visible in the room, positioned near the right side of the image."} +{"image_id": 103488, "caption": "The image depicts a public restroom with a row of sinks lined up along the wall. There are three sinks in total, with one on the left side, one in the middle, and another on the right side of the restroom. The sinks are accompanied by mirrors above them, providing a clear view for users.\n\nIn addition to the sinks, there are several hand dryers placed throughout the restroom. Two hand dryers are located on the left side, one in the middle, and another on the right side. A person can be seen in the background, possibly using the facilities or preparing to use them."} +{"image_id": 215901, "caption": "The image features a dining table with a bowl filled with a variety of fruits. The bowl contains a banana, an apple, and several oranges. The banana is placed towards the left side of the bowl, while the apple is situated in the middle, and the oranges are scattered around the bowl. The arrangement of the fruits creates a colorful and appetizing display."} +{"image_id": 514180, "caption": "The image features a close-up view of a pizza with pepperoni and cheese, sitting on a metal pan. The pizza is placed on a table, and there are several other pizzas in the background, showcasing a variety of toppings.\n\nIn addition to the pizzas, there are a few pieces of broccoli scattered around the scene, possibly as a side dish or a topping option. The overall scene gives the impression of a casual dining experience with a focus on pizza and other delicious food items."} +{"image_id": 396338, "caption": "The image depicts a busy street scene with several people walking and a truck driving down the road. There are at least five people visible in the scene, with one person walking in the middle of the street and others walking on the sidewalks. A man is crossing the street in front of a truck, while another person is walking with a handbag.\n\nThere are multiple vehicles on the street, including a truck, a car, and a motorcycle. The truck is driving down the road, while the car is parked on the side of the street. The motorcycle is parked further down the street.\n\nThe street appears to be wet, possibly due to rain, and the people are carrying umbrellas to protect themselves from the weather. The overall atmosphere of the scene is bustling and active, with people going about their daily routines."} +{"image_id": 579362, "caption": "The image features a man sitting on a blue bench near the ocean, enjoying the view of the beach and the ocean. The bench is positioned close to the water, providing a perfect spot for relaxation.\n\nThere are several other people scattered around the beach, some closer to the water and others further away. A boat can be seen in the distance, adding to the picturesque scene. The beach is also equipped with a few umbrellas, providing shade for beachgoers.\n\nIn the background, there is a backpack placed on the ground, possibly belonging to one of the people enjoying the beach."} +{"image_id": 289512, "caption": "The image features a woman riding a brown horse in a field. She is wearing a blue jacket and a hat, and she appears to be enjoying her time on the horse. The woman is holding the reins, guiding the horse as they move through the field.\n\nThe horse and rider are the main focus of the scene, with the woman sitting comfortably on the horse's back. The field provides a natural and open environment for the woman and her horse to explore and enjoy their time together."} +{"image_id": 306928, "caption": "The image features a large clock tower with a clock on each of its sides. The clocks are positioned at different heights, making the tower visually interesting. The tower is surrounded by a flock of birds, with at least 13 birds visible in various positions around the structure. Some birds are perched on the clock faces, while others are flying or resting on the tower's edges. The scene captures the dynamic nature of the birds interacting with the clock tower, creating a lively atmosphere."} +{"image_id": 453009, "caption": "The image features a bench with a stuffed animal, specifically a teddy bear, sitting on it. The teddy bear is positioned in the middle of the bench, and it appears to be holding a black stuffed duck. The duck is placed on the bear's lap, creating a unique and playful scene.\n\nIn the background, there are several cars parked along the street, with one car on the left side, two cars in the middle, and another car on the right side of the image. The presence of the cars suggests that the bench is located in a public area, possibly near a park or a busy street."} +{"image_id": 112581, "caption": "The image features a man wearing a white shirt and a white hat, standing in a store with a large display of sports merchandise. He is holding a hot dog in his hand, likely enjoying a snack while browsing the store.\n\nThere are several other people in the store, some of them closer to the man and others further away. A handbag can be seen placed on the floor, possibly belonging to one of the customers. The store has a variety of sports-related items, including a TV mounted on the wall and a collection of sports balls."} +{"image_id": 504977, "caption": "The image features an elderly woman sitting on a wooden bench, which is located in a park. She is wearing a dress and appears to be relaxing or enjoying her time outdoors. The bench is positioned in the middle of the scene, with the woman sitting on it comfortably.\n\nThere are several potted plants in the background, adding to the park's atmosphere. One potted plant is located on the left side of the bench, another is on the right side, and the third one is situated further back in the scene. The woman's handbag is placed beside her on the bench, and a cell phone can be seen resting on the bench as well."} +{"image_id": 228764, "caption": "The image features a sandy beach with a cat and a dog standing on it. The cat is positioned towards the right side of the scene, while the dog is located more towards the left. Both animals appear to be looking at each other, possibly engaging in a playful interaction.\n\nIn the background, there are several buildings visible, creating a picturesque urban setting. Additionally, there are two umbrellas placed on the beach, providing shade for beachgoers."} +{"image_id": 151528, "caption": "The image features a man standing on a rock wall, holding a kite in his hand. The man is wearing a white shirt and appears to be enjoying the activity. A dog is walking nearby, possibly accompanying the man or simply exploring the area. The scene takes place in a grassy field, with the man and the dog being the main focus of the image."} +{"image_id": 248919, "caption": "The image features a large, clean kitchen with wooden cabinets and a white stove top oven. The oven is located on the left side of the kitchen, while the stove is situated in the middle. A microwave is placed above the stove, and a sink can be found on the right side of the kitchen.\n\nThe kitchen is well-equipped with various utensils and items. There are multiple knives placed on the countertop, and a bowl is also visible. A chair is positioned near the dining table, which is located on the right side of the kitchen. The table is surrounded by chairs, creating a cozy dining area.\n\nIn addition to the main kitchen area, there is a potted plant placed on the left side of the room, adding a touch of greenery to the space."} +{"image_id": 580607, "caption": "The image features a river with several boats docked along its side. There are at least five boats visible, with some of them being larger and others smaller. The boats are lined up along the river, creating a picturesque scene.\n\nIn addition to the boats, there are numerous people scattered throughout the scene. Some of them are standing near the water, while others are walking along the riverbank. A few people are also sitting on benches, enjoying the view of the boats and the water.\n\nThe overall atmosphere of the scene is lively and bustling, with people engaging in various activities near the river."} +{"image_id": 200291, "caption": "The image features a dining table with two plates of food placed on it. One plate is filled with a variety of food items, including a sandwich, tomatoes, and tater tots. The other plate contains a sandwich and a side of tomatoes. A spoon is resting on the table, likely used for eating the food.\n\nIn addition to the plates, there is a bowl placed on the table, possibly containing more food or a side dish. The table setting creates a cozy and inviting atmosphere for a meal."} +{"image_id": 296231, "caption": "The image features a small, cluttered living room with a television sitting on top of a wooden stand. The television is turned on, displaying a game show. The room is filled with various items, including a clock on the wall, a vase, and several books scattered around.\n\nThere are also several figurines and toys in the room, adding to the cluttered appearance. A potted plant can be seen in the corner of the room, and a cup is placed on a surface. The room appears to be a mix of a living room and a bedroom, with a bed visible in the background."} +{"image_id": 505663, "caption": "The image features a large clock mounted on a brick wall, with the clock face prominently displayed. The clock is positioned in the center of the scene, and its hands are visible, indicating the time. The clock is surrounded by a brick wall, which adds a sense of depth and texture to the scene. The clock's positioning and design make it a focal point in the image."} +{"image_id": 41572, "caption": "The image captures a baseball game in progress, with a batter standing at home plate, holding a baseball bat and preparing to swing. The pitcher is in the process of throwing the ball, which is visible in the air near the batter.\n\nThere are several other people in the scene, likely teammates and opponents, positioned around the field. Some of them are standing closer to the batter, while others are further away. A baseball glove can be seen on the ground, likely belonging to one of the players.\n\nIn the background, there are a few cars parked, possibly belonging to the players or spectators. The overall atmosphere of the scene is energetic and focused on the ongoing baseball game."} +{"image_id": 509589, "caption": "The image features a group of young people gathered around a skateboard ramp, with some of them riding skateboards and others standing nearby. There are at least five people in the scene, with one person prominently riding a skateboard in the foreground. Another skateboard can be seen lying on the ground, possibly belonging to one of the other individuals in the group.\n\nIn addition to the skateboarders, there are a few backpacks scattered around the area, indicating that the group may be carrying their belongings with them. A couple of cars are visible in the background, suggesting that the skateboarders are in a public space or near a parking area."} +{"image_id": 357238, "caption": "The image captures a person parasailing in the ocean, with a kite flying high above them. The person is standing on a surfboard, enjoying the thrilling experience of being pulled by the kite. The scene is set against a backdrop of a cloudy sky, adding to the overall atmosphere of the image."} +{"image_id": 466575, "caption": "The image features an old, worn suitcase sitting on a wet road. The suitcase is brown and appears to be in a somewhat dirty condition. It is placed on the pavement, possibly waiting to be picked up or used for travel. The suitcase is the main focus of the scene, and the rest of the image is a blurry background."} +{"image_id": 271970, "caption": "The image features a small town with a white church tower prominently visible in the scene. The church has a clock on its side, and the clock is visible on the tower. The town is surrounded by a lush green field, giving it a peaceful and serene atmosphere.\n\nThere are several houses in the town, with some located near the church and others scattered throughout the area. A few cars can be seen parked or driving around the town, adding to the sense of a bustling community. The overall scene is picturesque and captures the essence of a quaint, charming town."} +{"image_id": 305540, "caption": "The image features a large pair of scissors standing upright in a courtyard, in front of a white building. The scissors are made of metal and are positioned prominently in the scene.\n\nThere are several people in the area, with some standing closer to the scissors and others further away. One person is located near the left side of the image, while another person is standing closer to the right side. Two more people can be seen in the background, one near the center and the other towards the right side of the image.\n\nA handbag is also visible in the scene, placed on the ground near the left side of the image."} +{"image_id": 462928, "caption": "The image features a bald man wearing glasses, holding a silver cell phone up to his ear. He appears to be engaged in a conversation or listening to a call. The man is standing in a room, and there is a chair visible in the background.\n\nIn addition to the man and the cell phone, there are two books placed on a surface in the room, possibly indicating a workspace or a reading area."} +{"image_id": 270544, "caption": "The image captures a group of people enjoying themselves in a lake, with some of them playing in the water. A woman is the center of attention, as she is splashing water on herself and others, including a man who is falling into the water. The woman is wearing a blue bikini, and her arms are raised in the air, adding to the fun atmosphere.\n\nThere are several boats visible in the background, with one boat closer to the left side of the image and another boat further to the right. The people in the scene are having a great time, making the most of their time in the water."} +{"image_id": 134042, "caption": "The image features a large airplane flying high in the sky, surrounded by a cloudy blue sky. The airplane is positioned towards the center of the scene, with its wings visible as it soars through the air. The sky is filled with clouds, creating a picturesque backdrop for the airplane's journey."} +{"image_id": 120340, "caption": "The image features a man standing next to a blue bicycle, which is parked next to a bus. The man is in the process of fixing the bicycle, possibly adjusting the seat or tightening the handlebars. He is wearing a brown shirt and appears to be focused on the task at hand.\n\nThere are several other people in the scene, some of whom are standing near the bus, while others are scattered throughout the area. A backpack can be seen placed on the ground, possibly belonging to one of the people in the scene."} +{"image_id": 418949, "caption": "The image captures a baseball game in progress, with a player standing on the field holding a baseball bat. The player is wearing a baseball glove and is positioned near the center of the scene. Another player can be seen in the background, possibly waiting for their turn to bat or preparing to catch the ball.\n\nThere are several other people in the scene, some of whom are likely teammates or opponents. A baseball glove is also visible in the hands of one of the players. The overall atmosphere of the image suggests an exciting and competitive baseball game."} +{"image_id": 520109, "caption": "The image features a lush green field with a row of colorful umbrellas set up in the grass. There are a total of nine umbrellas, each with a different color, creating a vibrant and visually appealing scene. The umbrellas are arranged in a straight line, with some closer to the foreground and others further back in the field. The field appears to be a park or a recreational area, providing a pleasant environment for visitors to enjoy the outdoors."} +{"image_id": 50753, "caption": "The image depicts a small, clean, and well-organized kitchen with wooden cabinets and a tile floor. The kitchen is equipped with a refrigerator on the left side, a microwave above the oven, and a sink on the right side. The oven is located in the middle of the kitchen, and the microwave is positioned above it.\n\nThere are several items placed around the kitchen, including a clock on the wall, a vase on the countertop, and a couple of bottles. A bowl can also be seen on the countertop, and a spoon is placed nearby. The overall atmosphere of the kitchen is tidy and inviting."} +{"image_id": 329939, "caption": "The image features a group of four giraffes standing in a grassy field. They are positioned in a line, with one giraffe on the left side, another in the middle, and two more on the right side of the field. The giraffes are spread out, with one closer to the foreground and the others further back in the scene. The field appears to be a mix of grass and bushes, providing a natural habitat for the giraffes."} +{"image_id": 351345, "caption": "The image features a woman wearing a white shirt and earrings, standing in a room with a man. She is holding a Wii remote in her hand, likely engaged in playing a video game. The room has a cozy atmosphere, with a couch in the background and a dining table nearby.\n\nThere are several books scattered around the room, some on the floor and others on the dining table. A clock can be seen on the wall, and a vase is placed on the dining table. The man in the background appears to be observing the woman's gaming session, possibly waiting for his turn or simply enjoying the moment."} +{"image_id": 25293, "caption": "The image features a woman dressed in a long, flowing gown, holding a blue frisbee in her hand. She appears to be in a painting, possibly depicting a scene from ancient Greece. The woman is standing in front of a mountain, which adds to the dramatic and historical atmosphere of the scene. The frisbee she is holding is a prominent and eye-catching element in the composition."} +{"image_id": 543041, "caption": "The image features a box filled with a variety of delicious doughnuts. There are six doughnuts in total, each with different flavors and toppings. The doughnuts are arranged in a visually appealing manner, with some placed closer to the front of the box and others towards the back. The assortment of doughnuts includes a mix of glazed, frosted, and powdered varieties, offering a delightful selection for anyone with a sweet tooth."} +{"image_id": 568265, "caption": "The image depicts a lively scene at a park with a large group of people gathered around. Many individuals are walking and enjoying the outdoors, while others are flying kites. There are at least two kites visible in the sky, one near the top left corner and another closer to the center.\n\nIn addition to the people and kites, there are several vehicles parked around the park, including cars and a bus. A truck can also be seen in the background. The park is bustling with activity, making it a popular destination for people to spend their time outdoors."} +{"image_id": 467386, "caption": "The image features a cat sitting on the ground in front of a blue door, which is part of a building. The cat appears to be looking at the camera. The door is adorned with a blue frame and has a window with a grid pattern.\n\nThere are several items scattered around the cat and the door. A bottle is located near the cat, while a bowl is placed further away. A cup can be seen on the ground, and a cell phone is also present in the scene. Additionally, there are two cigarettes on the ground, possibly indicating that someone was smoking nearby."} +{"image_id": 242363, "caption": "The image depicts a small bathroom with a white toilet and a white bathtub. The toilet is positioned next to the bathtub, and both fixtures are placed against a white wall. The bathroom appears to be in the process of being remodeled, as there is a piece of drywall missing from the wall.\n\nIn addition to the toilet and bathtub, there is a sink in the bathroom, located on the left side of the room. Above the sink, there is a mirror, and a bottle can be seen placed on the countertop. The overall atmosphere of the bathroom is clean and well-maintained, despite the ongoing remodeling process."} +{"image_id": 554900, "caption": "The image features a white toilet with the seat up, situated in a bathroom. The toilet is positioned next to a wall, and there is a small trash can placed nearby. The bathroom appears to be clean and well-maintained. The toilet is the main focus of the scene, and it is the only object in the image."} +{"image_id": 115006, "caption": "The image captures a baseball game in progress, with a batter standing at home plate, holding a baseball bat and preparing to swing. The catcher and the umpire are positioned behind the batter, ready for the pitch.\n\nThere are several other people in the scene, including teammates and opponents, some of whom are standing in the background, while others are seated on chairs. A baseball glove can be seen on the ground, likely belonging to one of the players.\n\nThe atmosphere of the game is lively, with the players focused on the ongoing play."} +{"image_id": 75375, "caption": "The image captures a group of people enjoying a day of kiteboarding on a large body of water. There are several individuals in the scene, with some of them riding on surfboards and others holding onto kites. The kites are flying high in the sky, creating a lively atmosphere.\n\nIn total, there are five kites visible in the scene, with some of them being larger and more prominent than others. The surfboards are scattered throughout the water, with some closer to the foreground and others further away. The people are spread out across the water, with some closer to the foreground and others further in the background.\n\nThe scene is a perfect representation of a fun and exciting day spent out on the water, engaging in the thrilling sport of kiteboarding."} +{"image_id": 419223, "caption": "The image captures a group of young boys playing soccer on a grassy field. There are at least five boys actively participating in the game, with one boy in the center of the field attempting to kick the soccer ball. The other boys are spread out across the field, some closer to the ball and others further away, all focused on the game.\n\nThe soccer ball is located in the lower left part of the field, with the boys surrounding it, ready to make their moves. The scene is lively and full of energy, showcasing the excitement and camaraderie of the young players."} +{"image_id": 137578, "caption": "The image features a bathroom with two toilets placed side by side. Both toilets are white and have a similar design, making them appear as if they are identical twins. The toilets are positioned close to each other, with one located on the left side and the other on the right side of the bathroom.\n\nThe bathroom also contains a sink, which is situated towards the right side of the room. The overall appearance of the bathroom is clean and well-maintained, creating a pleasant environment for users."} +{"image_id": 408808, "caption": "The image features a close-up of a toothbrush and toothpaste set, placed on a white surface. The toothbrush is positioned on the left side of the image, while the toothpaste is on the right side. The toothpaste is in a tube, and the toothbrush is placed next to it. The toothbrush is a white and blue color, and the toothpaste is green. The scene is well-lit, making the toothbrush and toothpaste stand out clearly."} +{"image_id": 243773, "caption": "The image depicts a cluttered kitchen with a wooden countertop and a brick fireplace. The countertop is filled with various items, including numerous bottles, wine glasses, and cups. There are at least 13 bottles scattered across the counter, with some placed closer to the fireplace and others near the edge.\n\nIn addition to the bottles, there are four wine glasses and three cups on the counter. A cell phone can also be seen on the counter, adding to the clutter. The kitchen appears to be in need of cleaning and organization, with the countertop being the main focus of the mess."} +{"image_id": 436492, "caption": "The image features a street corner with a sign on a pole, likely providing information about a project or event. There are two traffic lights in the scene, one on the left side and another on the right side of the street. A few people can be seen walking around the area, with one person closer to the left side of the street and two others near the right side.\n\nIn the background, there are two cars parked on the street, one on the left side and another on the right side. Additionally, there is a handbag placed on the ground near the center of the scene."} +{"image_id": 556648, "caption": "The image features a white smartphone on display in a store, likely a cell phone store. The smartphone is placed on a glass counter, drawing attention to its sleek design. The display case showcases the phone prominently, making it an attractive purchase for potential customers."} +{"image_id": 298924, "caption": "The image features a large bowl filled with a delicious meal, containing noodles, meat, and vegetables. The bowl is placed on a dining table, and there are several pieces of broccoli scattered throughout the dish. A spoon is resting inside the bowl, ready to be used for enjoying the meal.\n\nIn addition to the main dish, there are two smaller bowls on the table, one located to the left and the other to the right. A bottle can be seen on the right side of the table, possibly containing a beverage to accompany the meal."} +{"image_id": 562030, "caption": "The image features a wooden deck with a variety of potted plants and small plants scattered around. There are several potted plants placed on the deck, with some of them being small and others larger. A few of the potted plants are placed on the ground, while others are placed on the deck's surface.\n\nIn addition to the potted plants, there are a few cups and a bowl on the deck. One cup is located near the center of the deck, while another cup is placed closer to the right side. The bowl is situated on the left side of the deck. The scene gives off a relaxing and natural atmosphere, with the plants and pots creating a pleasant outdoor space."} +{"image_id": 501315, "caption": "The image captures a thrilling moment of a motorcycle racer leaning into a turn on a race track. The rider is wearing a helmet and is skillfully navigating the curve at high speed. The motorcycle is positioned in the center of the scene, with the rider's body leaning towards the right side of the bike.\n\nThe racer's motorcycle is equipped with a windshield, which is visible in the front of the bike. The rider's gloves are also noticeable, adding to the authenticity of the racing scene. The overall atmosphere of the image is one of excitement and adrenaline, showcasing the rider's talent and the thrilling nature of motorcycle racing."} +{"image_id": 436162, "caption": "The image features a white passenger bus parked in a parking lot. The bus is large and occupies a significant portion of the scene. The bus has its door open, allowing passengers to board or disembark.\n\nThere are several people in the vicinity of the bus, with one person standing close to the open door and others scattered around the parking lot. A cup can be seen placed on the ground near the center of the scene. The overall atmosphere suggests that the bus is either picking up or dropping off passengers."} +{"image_id": 323888, "caption": "The image features a large, tall building with a clock prominently displayed on its side. The clock is positioned near the top of the building, making it easily visible from a distance. The building appears to be a train station, as there are several people walking around the area, likely waiting for their trains or just passing by.\n\nIn addition to the people, there are two cars parked in front of the building, one on the left side and the other on the right side. The scene captures a typical day at a busy train station, with people going about their daily routines."} +{"image_id": 211476, "caption": "The image features a dining table with three bowls filled with various foods. The bowls are placed in different positions on the table, with one bowl located on the left side, another in the center, and the third on the right side.\n\nIn addition to the bowls, there are several pieces of broccoli scattered around the table. Some broccoli pieces are placed near the left bowl, while others are found near the center and right bowls. The table setting creates an inviting atmosphere for a meal."} +{"image_id": 473433, "caption": "The image features a suitcase placed on a table, with a book open inside it. The book is filled with pictures of a man, possibly a photo album. The suitcase is positioned in such a way that it appears to be a part of the book, creating an interesting visual effect.\n\nIn addition to the book and suitcase, there are two bowls placed on the table. One bowl is located near the left side of the table, while the other is situated closer to the right side. The presence of these bowls adds to the overall composition of the scene."} +{"image_id": 165752, "caption": "The image features a black dog standing on a grassy field, wearing a yellow frisbee on its head. The dog appears to be playfully posing with the frisbee, which is positioned above its head. The scene is set in a backyard, with a fence visible in the background. The dog's playful demeanor and the frisbee on its head create a fun and lively atmosphere."} +{"image_id": 573756, "caption": "The image features two giraffes standing in a grassy field with trees in the background. The giraffes are positioned close to each other, with one giraffe on the left side and the other on the right side of the frame. They are surrounded by tall grass and trees, creating a natural habitat for them. The scene captures the beauty of these majestic animals in their natural environment."} +{"image_id": 187450, "caption": "The image features a large train parked at a train station. The train is positioned on the tracks, occupying a significant portion of the scene. The train is blue and silver, with a prominent number 1922 on the side.\n\nThere are several people in the scene, with one person standing near the front of the train, another person closer to the middle, and two more people standing further back. Additionally, there is a handbag placed on the ground near the middle of the scene."} +{"image_id": 43266, "caption": "The image features a giraffe and a zebra standing in a grassy field near some trees. The giraffe is positioned on the left side of the image, while the zebra is on the right side. Both animals are standing close to each other, creating a sense of companionship between the two species.\n\nThe field is surrounded by a few rocks, with some scattered around the area. The presence of the rocks adds a natural element to the scene, enhancing the overall beauty of the landscape."} +{"image_id": 150080, "caption": "The image features a delicious pizza with a generous amount of shrimp and cheese on top. The pizza is placed on a white plate, which is sitting on a dining table. The table is surrounded by several chairs, with one chair on the left side, another on the right side, and two chairs at the top of the table. The pizza appears to be a personal-sized pizza, perfect for enjoying a meal in a cozy setting."} +{"image_id": 453757, "caption": "The image captures a group of men playing soccer on a field. One man is in the process of kicking a soccer ball, while another player is attempting to block the shot. The soccer ball is in the air, and the players are actively engaged in the game.\n\nThere are several other players on the field, some of them closer to the ball and others further away. A bench can be seen in the background, likely for players to rest on when they are not actively participating in the game. The scene is filled with energy and excitement as the players compete against each other."} +{"image_id": 354460, "caption": "The image features a group of people gathered around a ribbon-cutting ceremony. There are four people in the scene, with two men and two women participating in the event. One of the women is wearing a crown, indicating that she might be a queen or a special guest.\n\nThe group is standing in front of a gate, and they are all holding scissors, ready to cut the ribbon. The atmosphere appears to be celebratory and joyful, as the participants are smiling and enjoying the moment."} +{"image_id": 221681, "caption": "The image depicts a small, clean bathroom with white tiles on the floor and walls. The bathroom features a white sink, a toilet, and a window. There is a toilet paper roll on the wall, and a towel is hanging nearby.\n\nIn addition to the essential bathroom items, there are a few other objects in the room. A bottle is placed on the sink, and a cup can be seen on the countertop. A toothbrush is also present, indicating that the bathroom is used regularly. The overall atmosphere of the bathroom is tidy and well-maintained."} +{"image_id": 349324, "caption": "The image features a train with a long line of brown train cars traveling down the tracks. The train is moving in the same direction as the camera, and the train cars are arranged in a row. The train cars are of various sizes, with some being larger and others smaller. The train appears to be carrying cargo, as it moves along the tracks."} +{"image_id": 225133, "caption": "The image features a tree filled with numerous colorful umbrellas hanging from its branches. The umbrellas come in various sizes and are spread throughout the tree, creating a vibrant and lively scene. The umbrellas are positioned at different heights and angles, adding depth and visual interest to the scene. The tree serves as a unique and creative backdrop for these colorful umbrellas, making it an eye-catching and memorable sight."} +{"image_id": 452566, "caption": "The image features a stop sign situated on the side of a road, with a mountainous landscape in the background. The stop sign is positioned near the center of the scene, and the road appears to be empty. The mountain range stretches across the background, creating a picturesque and serene atmosphere."} +{"image_id": 124952, "caption": "The image depicts a busy city street with a blue and yellow bus driving down the road. The bus is positioned in the middle of the scene, and there are several cars around it, including one car in front of the bus and another car behind it.\n\nThere are multiple traffic lights in the scene, with one on the left side of the bus, another on the right side, and a third one further down the street. A person can be seen standing near the left side of the bus, possibly waiting to board or just observing the traffic.\n\nAdditionally, there are two benches visible in the scene, one on the left side of the street and another on the right side. The presence of these benches suggests that the area is designed for pedestrians to rest and wait for public transportation."} +{"image_id": 26697, "caption": "The image features a woman standing in a bathroom, holding a toothbrush in her hand. She is wearing a sweater and appears to be brushing her teeth. The bathroom has a sink and a window, providing natural light to the space.\n\nThere are a few decorative items in the room, including a vase and a bottle. The vase is placed on the right side of the bathroom, while the bottle is located near the sink. The woman's presence and the bathroom setting create a cozy and everyday atmosphere."} +{"image_id": 126064, "caption": "The image captures a man skillfully riding a wave on a surfboard in the ocean. He is wearing a red shirt and black pants, and he appears to be enjoying the thrill of the ride. The surfboard is positioned underneath him, and the man is skillfully balancing on the board as he navigates the wave. The scene is dynamic and full of energy, showcasing the surfer's talent and the excitement of the sport."} +{"image_id": 557190, "caption": "The image features two men standing next to each other on a hill, overlooking a beautiful landscape. One of the men is wearing a suit and tie, while the other is dressed in a more casual outfit. They appear to be posing for a picture, enjoying the view of the town below.\n\nIn the background, there are several houses and trees, creating a picturesque scene. The two men are the main focus of the image, standing close to each other and sharing a moment of connection."} +{"image_id": 137612, "caption": "The image features a large brick building with a purple and white color scheme, situated next to a bridge. The building has a parking garage with a yellow sign on the door, indicating the entrance to the parking area. There are several cars parked in the garage, with some closer to the building and others further away.\n\nIn addition to the cars, there are two bicycles parked in the garage, one near the center and the other closer to the right side. The scene also includes a traffic light, which is located near the left side of the image, and a fire hydrant situated on the left side of the building."} +{"image_id": 408480, "caption": "The image features a large boat docked next to a red lighthouse, creating a picturesque scene. The boat is positioned towards the right side of the image, while the lighthouse stands prominently in the middle.\n\nIn the background, there are several cars parked along the street, with some closer to the foreground and others further away. The cars are of various sizes and are parked in a line, indicating that this area is likely a popular spot for visitors or locals."} +{"image_id": 277694, "caption": "The image features a large brown cow lying down on the ground, taking up a significant portion of the scene. The cow appears to be resting or relaxing in the outdoor area.\n\nIn the background, there are two motorcycles parked, one on the left side and the other on the right side of the cow. Additionally, there is a scooter parked further back on the right side of the scene. The presence of these vehicles suggests that the location might be a parking area or a place where people gather."} +{"image_id": 74166, "caption": "The image captures a man performing a skateboard trick in a public area, possibly a park or a sidewalk. He is in the middle of the trick, with his skateboard flying through the air. Another person is sitting nearby, watching the skateboarder's performance.\n\nThere are several cars parked in the background, with one car on the left side of the scene and two cars on the right side. A bench is also visible in the background, providing a place for people to sit and enjoy the surroundings."} +{"image_id": 102625, "caption": "The image depicts a small, clean, and well-organized kitchen with white cabinets and wooden floors. The kitchen is equipped with a refrigerator, a sink, and an oven. There is a dining table with chairs placed around it, and a TV is mounted on the wall.\n\nThe kitchen is decorated with various items, including a potted plant, a vase, and several bottles. There are also multiple cups and bowls placed on the countertops. A wine glass can be seen on the dining table, adding to the cozy atmosphere of the space."} +{"image_id": 540694, "caption": "The image features a large giraffe standing next to a car, with its head inside the vehicle. The giraffe appears to be interacting with the car's interior, possibly reaching for something or trying to get a better view.\n\nThere are several other cars in the scene, with one car located behind the giraffe and two cars on the right side of the image. Additionally, there are two people visible in the scene, one near the left edge of the image and another closer to the center."} +{"image_id": 518586, "caption": "The image is a black and white photograph of a train traveling down the tracks. The train is positioned in the middle of the scene, with a person standing on the tracks nearby. The person appears to be walking alongside the train, possibly observing or waiting for it to pass.\n\nThe train is quite large, occupying a significant portion of the image. The tracks are surrounded by a fence, which can be seen in the background. The overall atmosphere of the photograph is nostalgic, capturing a moment from the past when trains were a primary mode of transportation."} +{"image_id": 81303, "caption": "The image captures a man skiing down a snow-covered slope, wearing a brown jacket and a blue hat. He is skillfully navigating the snowy terrain, holding ski poles in his hands to maintain balance and control. The man appears to be enjoying his time on the slopes, showcasing his skiing abilities."} +{"image_id": 383065, "caption": "The image features a green toilet with a sign on the side, likely indicating its location or providing information about its usage. The toilet is situated in a public area, possibly a park or a busy street. A person is standing next to the toilet, possibly using it or checking the sign.\n\nIn the background, there is a car parked, and a handbag can be seen placed nearby. The scene suggests that the person might be taking a break or waiting for someone while using the facilities."} +{"image_id": 169602, "caption": "The image features a woman in a black wetsuit, skillfully riding a wave on a surfboard. She is lying on her stomach, maintaining her balance as she glides through the water. The surfboard is positioned beneath her, allowing her to enjoy the thrill of the wave.\n\nThe scene captures the essence of surfing, with the woman's body and surfboard in perfect harmony as she navigates the ocean's waves."} +{"image_id": 19890, "caption": "The image features two zebras standing next to each other in a dirt field. They are both eating grass, with one zebra closer to the left side of the image and the other zebra on the right side. The zebras are positioned near a metal fence, which is likely part of their enclosure. The scene captures the zebras in their natural environment, enjoying their meal together."} +{"image_id": 236604, "caption": "The image showcases a spacious and elegant living room with a large couch and a coffee table. The couch is positioned in the center of the room, with a chair placed nearby. The coffee table is adorned with a vase and a book, adding a touch of sophistication to the space.\n\nIn addition to the main furniture, there are several potted plants scattered throughout the room, enhancing the ambiance and creating a cozy atmosphere. A clock is also visible on the wall, providing a sense of time to the room's occupants. The living room is connected to a dining area, which features a dining table and chairs.\n\nThe room is further decorated with a few vases and a bowl, adding to the overall aesthetic of the space. A TV is mounted on the wall, providing entertainment for the room's occupants."} +{"image_id": 270753, "caption": "The image features a large, thick slice of deep dish pizza with a generous amount of cheese and toppings. The pizza is placed on a metal cutting board, and the slice is cut in half, revealing the delicious layers of cheese and toppings inside. The pizza appears to be a Chicago-style deep dish pizza, known for its thick crust and abundant toppings."} +{"image_id": 457178, "caption": "The image is a black and white photograph of a busy city street with a large crowd of people walking around. There are numerous horses and carriages, with some horses pulling carriages and others walking alongside the pedestrians. The horses are scattered throughout the scene, with some closer to the foreground and others further back.\n\nThe street is lined with tall buildings, creating an urban atmosphere. The people in the scene are engaged in various activities, such as walking, talking, and interacting with one another. The overall scene captures the bustling energy of a city street from a bygone era."} +{"image_id": 577712, "caption": "The image features a group of people standing in front of a giraffe enclosure at a zoo. There are four people in the scene, with one person on the left side, another in the middle, and two more on the right side. They are all observing the giraffe, which is standing close to the fence of the enclosure.\n\nThe giraffe is positioned towards the left side of the image, with its head and neck visible above the fence. The people are standing at various distances from the giraffe, with some closer to the fence and others further back. A handbag can be seen placed on the ground near the right side of the image."} +{"image_id": 414560, "caption": "The image features a group of cows lying down in a pen, with some of them resting on a bed of hay. There are at least five cows visible in the scene, with one cow lying down in the foreground and the others spread out across the pen. The cows are of various sizes and are positioned in different orientations, creating a sense of depth and movement within the scene. The hay bed provides a comfortable surface for the cows to rest on, and the overall atmosphere appears calm and peaceful."} +{"image_id": 388983, "caption": "The image features a delicious hot dog with a bun, topped with mustard and relish. The hot dog is placed in a paper container, which is filled with a variety of condiments. The container is positioned on a dining table, ready to be enjoyed by someone. The hot dog is the main focus of the image, and it appears to be a tasty and satisfying meal."} +{"image_id": 245965, "caption": "The image features a blue umbrella standing in a field of tall, dry grass. The umbrella is open and appears to be providing shade to the surrounding area. The field is filled with tall grass, and there are a few small flowers scattered throughout the scene. The umbrella is positioned in the middle of the field, creating a unique focal point in the otherwise natural landscape."} +{"image_id": 147590, "caption": "The image features a dining table with a wine glass filled with red wine placed on it. The wine glass is positioned towards the left side of the table. There are also several plates and bowls on the table, with one plate located near the center and another towards the right side.\n\nIn addition to the wine glass, there are two knives on the table, one closer to the center and the other towards the right side. A spoon can be seen on the right side of the table, and a cup is placed near the center. A bottle is also visible on the left side of the table, possibly containing more wine."} +{"image_id": 46882, "caption": "The image captures a group of people playing a game of frisbee in a park. There are four people in the scene, with one person in the air, possibly jumping to catch the frisbee. The other three people are standing on the ground, watching the action unfold.\n\nThe frisbee is visible in the air, close to the person jumping. The park setting includes a bench and a trash can, both located near the players. The scene is lively and full of energy, as the group enjoys their time outdoors."} +{"image_id": 518719, "caption": "The image features a large, decorative vase with a combination of brown and white colors. The vase is placed on a table, and it appears to be made of ceramic material. The vase has a unique design, with a pattern of dots and swirls on its surface. The overall appearance of the vase is elegant and eye-catching."} +{"image_id": 176312, "caption": "The image features a woman standing in a hallway, looking at her cell phone. She is wearing a black and white dress and appears to be focused on her phone. The hallway is lined with framed pictures on the walls, creating a visually appealing environment.\n\nIn addition to the woman, there is a handbag placed on the floor near her, and a backpack can be seen further down the hallway. The scene suggests that the woman might be checking her phone for directions or information related to her current location."} +{"image_id": 580746, "caption": "The image features a group of sheep grazing on a lush green hillside. There are at least nine sheep visible in the scene, scattered across the grassy field. Some of the sheep are closer to the foreground, while others are further away, creating a sense of depth in the image. The sheep are peacefully grazing, enjoying the abundant grass in the field."} +{"image_id": 541223, "caption": "The image features a large white airplane parked in front of a building, possibly a restaurant or a museum. The airplane is positioned in the center of the scene, with its nose pointing towards the building. The building has a green roof, and the airplane appears to be a propeller plane.\n\nThere are several people in the scene, with one person standing near the left side of the airplane, another person closer to the right side, and a third person near the bottom left corner of the image. The presence of these individuals suggests that they might be admiring the airplane or visiting the building."} +{"image_id": 22589, "caption": "The image features a sheep standing in a grassy field, surrounded by trees. The sheep appears to be looking at the camera, possibly posing for a picture. The field is fenced in, providing a safe environment for the sheep. The scene is set in a forest, giving the impression of a peaceful and natural setting."} +{"image_id": 196815, "caption": "The image depicts a group of young people gathered in a room, playing a video game on a Nintendo Wii console. There are five people in total, with some sitting on chairs and others standing around. They are all focused on the game, which is displayed on a TV screen in the background.\n\nThe room is furnished with several chairs, some of which are occupied by the players, while others are placed around the room. There is also a dining table in the background, and a book can be seen on one of the chairs. The atmosphere appears to be casual and fun, as the group enjoys their time together playing video games."} diff --git a/OPERA/log/chair_eval_results/llava-1.5/ours.jsonl b/OPERA/log/chair_eval_results/llava-1.5/ours.jsonl new file mode 100644 index 0000000000000000000000000000000000000000..468bdce20a4d378b150d772b017fed50c04cbd06 --- /dev/null +++ b/OPERA/log/chair_eval_results/llava-1.5/ours.jsonl @@ -0,0 +1,500 @@ +{"image_id": 226988, "caption": "The image features a woman sitting at a dining table, taking a picture of two slices of pizza placed on a paper plate. She is using a camera to capture the delicious meal in front of her. The table is surrounded by chairs, with one on the left side and another on the right.\n\nIn the background, there are other people present, possibly enjoying their meals or engaging in conversations. A backpack can be seen on the right side of the table, possibly belonging to one of the people in the scene. A bottle is also visible on the table, possibly containing a beverage to accompany the pizza."} +{"image_id": 337443, "caption": "The image depicts a busy city street with a variety of vehicles, including cars, trucks, and motorcycles. There are several cars and trucks driving down the street, and a motorcycle can be seen parked on the side of the road.\n\nIn addition to the vehicles, there is a traffic sign on the side of the road, possibly indicating an upcoming construction zone. The traffic sign is positioned near the center of the scene, and it is surrounded by the hustle and bustle of city life."} +{"image_id": 112022, "caption": "The image depicts a busy airport scene with a large group of people standing in line, waiting for their luggage. There are at least 14 people visible in the scene, with some standing closer to the foreground and others further in the background.\n\nNumerous pieces of luggage can be seen throughout the scene, including suitcases, backpacks, and handbags. There are at least 11 suitcases, 5 backpacks, and 4 handbags scattered around the area. Some of the suitcases are placed on the ground, while others are stacked or placed on top of each other.\n\nIn addition to the luggage, there is a tennis racket visible in the middle of the scene, possibly belonging to one of the travelers. The overall atmosphere of the image conveys the hustle and bustle of an airport, with people waiting for their belongings and preparing to continue their journey."} +{"image_id": 394444, "caption": "In the image, a person is standing on a sidewalk, holding a skateboard in their hand. The skateboard is placed on the ground, and the person appears to have just picked it up or is about to start skateboarding. The skateboard is positioned towards the center of the scene, with the person standing to the left of the skateboard."} +{"image_id": 481635, "caption": "The image features a woman sitting at a dining table, enjoying a slice of deep dish pizza. She is smiling and appears to be having a good time. The pizza is placed on a plate in front of her, and there is a fork and a knife nearby, ready for her to use.\n\nThere are several other people in the scene, some of whom are also seated at the dining table. A cup can be seen on the table as well, likely containing a beverage to accompany the meal. The atmosphere seems to be casual and relaxed, with everyone enjoying their time together."} +{"image_id": 285258, "caption": "The image depicts a lively scene at a dog park, where several dogs are playing and interacting with each other. The main focus is on two dogs, one black and the other brown and white, engaging in a playful tug-of-war. The black dog is on the left side of the image, while the brown and white dog is on the right side.\n\nIn addition to the two main dogs, there are several other dogs scattered throughout the scene, some of which are closer to the foreground and others further in the background. The dogs appear to be enjoying their time at the dog park, playing and socializing with one another."} +{"image_id": 479057, "caption": "The image features a large white polar bear walking across a lush green field. The bear appears to be grazing on the grass, enjoying its surroundings. The field is fenced in, providing a secure environment for the bear. The scene captures the beauty of the polar bear in its natural habitat."} +{"image_id": 66238, "caption": "The image captures an exciting moment of a snowboarder performing a trick in the middle of the air. They are the main focus of the scene, showcasing their skill and athleticism. The snowboarder is wearing a red jacket, adding a pop of color to the scene.\n\nIn the background, there are several other people scattered around the area, possibly watching the snowboarder's performance or engaging in their own snowboarding activities. The presence of multiple people suggests that this location is a popular spot for winter sports enthusiasts."} +{"image_id": 558458, "caption": "The image features a woman sitting at a dining table with a plate of food in front of her. She is smiling and appears to be enjoying her meal, which includes a hot dog, a sandwich, and spaghetti. The woman is wearing sunglasses, adding a stylish touch to the scene.\n\nAnother person can be seen in the background, partially visible on the left side of the image. The dining table is surrounded by chairs, with one on the left side and another on the right side of the table."} +{"image_id": 400596, "caption": "The image features a bathroom with a sink and a toilet situated next to each other. Above the sink, there is a towel rack with a towel hanging on it. Above the toilet, there is another towel rack with a towel hanging on it as well. The sink has a green basin, and the toilet is positioned to the left of the sink. The bathroom appears to be clean and well-maintained."} +{"image_id": 373266, "caption": "The image depicts a group of doctors in a hospital setting, working together to operate and monitor medical equipment. There are three doctors in the scene, with one of them wearing a headset and focused on the task at hand. The other two doctors are standing nearby, likely assisting or observing the process.\n\nIn the room, there are several pieces of medical equipment, including a TV mounted on the wall and a laptop placed on a surface. Additionally, there are two keyboards, one near the center of the room and the other closer to the right side. A pair of scissors can also be seen on the left side of the room.\n\nThe doctors appear to be working diligently to ensure the proper functioning of the medical equipment and to provide the best possible care for their patients."} +{"image_id": 38332, "caption": "The image features a large elephant walking through a lush green field. The elephant is the main focus of the scene, with its trunk and tusks prominently visible. The elephant appears to be enjoying its time in the grassy area, possibly grazing or exploring its surroundings."} +{"image_id": 84533, "caption": "The image features a woman sitting on a black motorcycle, which is parked in front of a white building. She is wearing a leather jacket and appears to be enjoying her time on the motorcycle. The woman is positioned in the center of the scene, with the motorcycle taking up a significant portion.\n\nIn addition to the main motorcycle, there are two other motorcycles visible in the background, one on the left side and the other on the right side of the scene."} +{"image_id": 449963, "caption": "The image depicts a classroom setting with a round table in the center, surrounded by numerous chairs. On the table, there are several opened laptops, with a total of eight laptops visible. Some of the laptops are placed closer to the edge of the table, while others are positioned more towards the center.\n\nIn addition to the laptops, there are two computer mice on the table, one near the left side and the other near the right side. A TV is mounted on the wall above the table, likely used for presentations or educational purposes.\n\nThe classroom appears to be a well-equipped space for learning and collaboration, with ample seating and technology available."} +{"image_id": 128180, "caption": "The image features a close-up view of a person's feet positioned next to a plate of pizza on a dining table. The pizza is sliced and ready to be eaten, with a fork and a knife placed on the table, indicating that someone is about to enjoy the meal. The person's feet are visible in the foreground, while the pizza and utensils are in the background."} +{"image_id": 204232, "caption": "The image captures a thrilling moment of a skilled skateboarder performing a trick in mid-air. The skateboarder is in the middle of the jump as the skateboard flies underneath him. Another skateboard can be seen on the ground, likely belonging to the skateboarder.\n\nThe scene takes place in an urban setting, with a building visible in the background. The skateboarder is the main focus of the image, showcasing his talent and athleticism."} +{"image_id": 477867, "caption": "The image captures a man skillfully riding a surfboard on a wave in the ocean. He is wearing a wetsuit and appears to be enjoying the thrill of surfing. There are several other people in the scene, some of them closer to the shore and others further out in the water.\n\nIn addition to the main surfer, there are three surfboards visible in the scene. One can be seen near the main surfer, while the other two are located closer to the shore. The presence of multiple people and surfboards suggests that this is a popular spot for surfing enthusiasts."} +{"image_id": 308128, "caption": "The image captures a young man skillfully performing a trick on his skateboard at a skate park. He is riding the skateboard up the side of a cement ramp, showcasing his talent and balance. The skateboarder is the main focus of the scene, with his skateboard prominently visible beneath him.\n\nThe skate park is surrounded by a lush green field, creating a pleasant and inviting atmosphere for skateboarders and spectators alike."} +{"image_id": 222407, "caption": "The image features a black and yellow bird perched on a tree branch during a rainy day. The bird is positioned near the top of the branch, and its vibrant colors stand out against the backdrop of the rain. The scene captures the beauty of the bird in its natural habitat, despite the unfavorable weather conditions."} +{"image_id": 469543, "caption": "The image features a hotel room with two twin beds placed next to each other. The beds are covered with striped blankets, giving them a cozy and inviting appearance. The room also contains a chair positioned near the beds, providing additional seating for guests.\n\nIn addition to the beds and chair, there is a TV mounted on the wall, offering entertainment in the room. A remote control can be found on the bed, making it easy for guests to change channels without needing to leave the beds."} +{"image_id": 421564, "caption": "In the image, a baby girl is sitting in a high chair, enjoying a birthday cake. The cake is placed in front of her, and she is reaching out to touch it with her hand. The high chair is positioned near a refrigerator, which is visible in the background.\n\nAdditionally, there are two knives in the scene, one on the left side and the other on the right side of the high chair. A bowl can also be seen on the left side of the high chair."} +{"image_id": 177419, "caption": "The image features a blue fire hydrant with a painting of a train on it, located on a sidewalk. The fire hydrant is situated next to a metal fence, which can be seen in the background. The painting of the train on the fire hydrant adds a unique and creative touch to an otherwise ordinary object."} +{"image_id": 86432, "caption": "The image captures an exciting moment during a baseball game. A young boy is swinging a baseball bat, attempting to hit a sports ball that is flying towards him. The boy is wearing a baseball glove, ready to catch the ball if it comes his way.\n\nThere are several other people in the scene, including teammates, opponents, and possibly coaches or spectators. Some of them are standing close to the boy, while others are positioned further away. A bench can be seen in the background, likely for players to sit on when they are not actively participating in the game."} +{"image_id": 544590, "caption": "The image features a large orange tabby cat lying down on a couch, appearing relaxed and comfortable. The cat is positioned in the middle of the couch, occupying a significant portion of the couch's surface. The couch is covered with a grey fabric, providing a cozy environment for the cat to rest."} +{"image_id": 513060, "caption": "In the image, a person is sitting on a bench and holding a donut in their hand. The donut appears to be half-eaten, with a bite taken out of it. The person is also holding another donut in their hand, which seems to be untouched. The scene takes place on the sidewalk, with the bench providing a comfortable spot for the person to enjoy their snack."} +{"image_id": 140921, "caption": "The image features a white surfboard lying on a sandy beach. The surfboard is decorated with various writings and drawings, giving it a unique and artistic appearance. The writings on the surfboard include advertisements for beach rentals, such as beach chairs and surfboards.\n\nIn addition to the surfboard, there are two bottles visible in the scene. One bottle is located on the left side of the surfboard, while the other is situated on the right side. The combination of the surfboard, advertisements, and bottles creates a lively and inviting atmosphere for beachgoers."} +{"image_id": 361351, "caption": "The image features a delicious pizza sitting on top of a box, ready to be eaten. The pizza is topped with tomatoes and cheese, making it a mouth-watering treat. Beside the pizza, there is a bottle of beer, adding to the overall enjoyment of the meal. The pizza and beer are placed on a dining table, creating a cozy and inviting atmosphere."} +{"image_id": 202154, "caption": "The image features a large, freshly baked pizza sitting on a wooden cutting board on a dining table. The pizza is topped with tomatoes, spinach, and cheese, making it a delicious and healthy meal option.\n\nIn the background, there are two chairs, one on the left side of the table and the other on the right side. Additionally, there is a person partially visible on the right side of the image, likely enjoying the meal or preparing to eat the pizza."} +{"image_id": 94248, "caption": "The image features a city street with a large clock tower prominently placed in the middle of the scene. The clock tower is adorned with two clocks, one on each side, making it a unique and eye-catching landmark.\n\nThere are several people in the scene, with one person standing close to the left side of the clock tower, another person near the right side, and a third person further back on the right side of the image. A car is parked on the left side of the street, and another car is visible on the right side.\n\nAdditionally, there are two potted plants in the scene, one located near the left edge of the image and the other on the right side, adding a touch of greenery to the urban environment."} +{"image_id": 200681, "caption": "In the image, a black and white dog is leaping into the air to catch a blue frisbee. The dog is positioned in the middle of the scene, displaying its athleticism as it attempts to catch the frisbee. Another dog can be seen in the background, possibly waiting for its turn to play or observing the action.\n\nA man is also present in the scene, standing on the right side of the image. He appears to be watching the dogs play and enjoying the outdoor activity. The setting seems to be a park or a grassy field, providing ample space for the dogs to run and play."} +{"image_id": 532989, "caption": "The image features a giraffe laying down on the grass in a zoo enclosure. The giraffe is positioned in the center of the scene, occupying a significant portion of the image. The enclosure appears to be a lush green field, providing a comfortable environment for the giraffe."} +{"image_id": 565989, "caption": "The image features a clock tower with a large clock prominently displayed on its side. The clock is positioned near the top of the tower, making it easily visible from a distance.\n\nIn addition to the clock tower, there are three statues of bears situated around the tower. One bear is located on the left side, another on the right side, and the third bear is positioned below the clock. These statues add a unique and artistic touch to the scene."} +{"image_id": 67315, "caption": "The image depicts a man wearing a striped tie and a dress shirt, sitting in a room with his arms resting on a table. The man appears to be relaxed, possibly taking a break or waiting for someone. The room has a dining table in the background, and a chair can be seen nearby. The man's attire suggests that he is dressed for a formal event or a professional setting."} +{"image_id": 157170, "caption": "The image features a group of five sheep standing on top of a grassy hill, overlooking a valley below. The sheep are spread out across the hill, with some closer to the foreground and others further in the background. They appear to be enjoying their time on the hill, possibly grazing or resting.\n\nIn the distance, there is a town visible, adding to the picturesque scene. The combination of the sheep, the hill, and the town creates a serene and peaceful atmosphere."} +{"image_id": 328786, "caption": "The image features a row of park benches lined up along a sidewalk. There are a total of nine benches in the scene, with some placed closer to the foreground and others further back. The benches are arranged in a neat and orderly manner, creating an inviting atmosphere for people to sit and relax.\n\nIn addition to the benches, there are a few potted plants scattered throughout the scene, adding a touch of greenery and life to the area. The combination of the park benches and potted plants creates a pleasant and welcoming environment for visitors to enjoy."} +{"image_id": 46011, "caption": "The image features a small white airplane parked on the tarmac at an airport. The airplane is positioned close to a fence and a gate, indicating that it is either preparing for takeoff or has recently landed.\n\nIn addition to the airplane, there are two people visible in the scene. One person is standing near the left side of the airplane, while the other person is located closer to the right side. The presence of these individuals suggests that they might be passengers, crew members, or airport staff."} +{"image_id": 384348, "caption": "In the image, a person is skiing down a snow-covered slope. The skier is wearing a blue jacket and appears to be enjoying their time on the mountain. They are skiing in front of a ski lift, which can be seen in the background.\n\nThere are several chairs on the ski lift, with some closer to the skier and others further away. The chairs are positioned at various heights and angles, indicating a well-maintained and functional ski lift system."} +{"image_id": 451798, "caption": "The image features a wall with numerous ties hanging on it, creating a visually appealing display. The ties come in various shapes, sizes, and colors, showcasing a diverse collection. There are atle"} +{"image_id": 376545, "caption": "The image captures a young man skillfully performing a trick on his skateboard, jumping into the air with the skateboard under his feet. Another person is standing nearby, watching the skateboarder in awe.\n\nThe scene takes place in front of a building, possibly a coffee house, as there is a cup placed on a surface in the background. The skateboarder and the onlooker are the main focus of the image, showcasing their shared interest in skateboarding."} +{"image_id": 11538, "caption": "The image features a man riding a motorcycle down a street. He is wearing a helmet and appears to be enjoying the ride. The motorcycle is positioned in the center of the scene, with the rider sitting comfortably on it.\n\nIn addition to the main motorcycle, there are two other motorcycles visible in the background, one on the left side and the other on the right side of the scene. A handbag can also be seen placed on the ground near the center of the image."} +{"image_id": 346207, "caption": "The image features a wooden desk with two computer monitors on it. One of the monitors is positioned on the left side of the desk, while the other is on the right side. A laptop is also present on the left side of the desk.\n\nA cat is comfortably laying on the desk, occupying a significant portion of the space. In addition to the computer equipment, there are several books scattered around the desk, with some on the left side and others on the right side. A cell phone can also be seen on the left side of the desk.\n\nLastly, a teddy bear is placed on the right side of the desk, adding a touch of warmth and playfulness to the scene."} +{"image_id": 359238, "caption": "The image features a man sitting on a train, wearing a brown jacket and a yellow shirt. He appears to be relaxed and enjoying his time on the train. There is a cup placed on the table in front of him, and a bottle can be seen nearby. The man seems to be in a comfortable position, possibly resting or enjoying a beverage during his journey."} +{"image_id": 297610, "caption": "In the image, a young man is skillfully riding a skateboard on a ramp, performing a trick. He is wearing a white shirt and appears to be enjoying the activity. The skateboarder is the main focus of the scene, with his skateboard clearly visible beneath him.\n\nThe ramp is surrounded by a few other skateboards, indicating that this might be a popular spot for skateboarders to practice and showcase their skills."} +{"image_id": 428447, "caption": "The image is a black and white photo of a city street with a couple of traffic lights. One is located on the left side of the street, while the other is on the right side. The street is lined with buildings, and there is a car parked on each side of the street.\n\nIn addition to the traffic lights, there is a street sign on the left side of the street, and a parking sign on the right side. A fire hydrant can also be seen on the right side of the street, close to the parking sign."} +{"image_id": 428769, "caption": "The image features a black car with a California license plate that reads \"Supabad.\" The car is parked next to a parking meter, and the license plate is clearly visible on the back of the vehicle. In the background, there are several other cars parked along the street."} +{"image_id": 452084, "caption": "The image features a dining table with a variety of food items placed on it. There are two bowls on the table, one containing a sausage, tomato, and egg, while the other has a sandwich. A fork is also present on the table, positioned near the bowl with the sausage, tomato, and egg.\n\nIn addition to the main dishes, there are two slices of bread on the table. One slice is placed near the bowl with the sausage, tomato, and egg, while the other slice is located closer to the bowl with the sandwich. The table setting creates an inviting atmosphere for a meal."} +{"image_id": 545363, "caption": "The image depicts a bench that has been flipped upside down and is sitting in a puddle of water. The bench is located on a sidewalk next to a building, and there are several other benches in the vicinity.\n\nIn addition to the benches, there are several people scattered throughout the scene. Some of them are standing close to the benches, while others are further away. A car can also be seen in the background, parked near the edge of the scene."} +{"image_id": 77963, "caption": "The image features a store with a unique and eye-catching display of fake cows hanging from the ceiling. The cows are positioned upside down, creating a playful atmosphere in what appears to be a toy store.\n\nIn addition to the cows, there are several potted plants scattered throughout the store, adding a touch of greenery to the space. A person can be seen in the background, likely browsing or shopping in the store. The combination of the upside-down cows and the potted plants creates an interesting and engaging environment for visitors."} +{"image_id": 78093, "caption": "In the image, a woman is skiing down a snow-covered slope, smiling as she enjoys the activity. She is wearing a pink snowsuit, which stands out against the white snow. The woman is also wearing a hat, adding to her winter attire.\n\nThere are two sets of skis visible in the scene, one set belonging to the woman and the other set located further down the slope. The woman appears to be skiing confidently, making her way down the snow-covered path."} +{"image_id": 346334, "caption": "The image depicts a grassy field with two brown bears grazing on the grass. One bear is positioned closer to the left side of the field, while the other bear is situated more towards the right side. Both bears appear to be enjoying their meal in the open field."} +{"image_id": 185633, "caption": "The image depicts a bathroom with a bathtub and a sink. The bathtub is located on the left side of the room, while the sink is situated on the right side. The bathroom appears to be in the process of being remodeled, as evidenced by the peeling paint on the walls.\n\nThere are several bottles scattered around the bathroom, with some placed near the sink and others near the bathtub. A toothbrush can also be seen on the right side of the sink. Additionally, there is a towel hanging on the left side of the bathtub."} +{"image_id": 327165, "caption": "In the image, a man is giving a young child, possibly a toddler, a haircut. The child is sitting in a chair, and the man is using a pair of scissor to cut their hair. A woman is also present in the scene, possibly assisting or observing the haircut.\n\nThe room features a couch in the background, and there are several books scattered around the area. Some books are placed near the couch, while others are located closer to the man and the child."} +{"image_id": 410632, "caption": "The image depicts a group of three baseball players standing on a lush green field during a game. They are all wearing baseball gloves, with one player on the left, another in the middle, and the third on the right side of the field. The players appear to be discussions or strategizing during the game.\n\nIn the background, there is a crowd of spectators watching the game, with some of them standing closer to the field and others further away. The scene captures the excitement and camaraderie of a professional baseball game."} +{"image_id": 468471, "caption": "The image depicts a man in a white shirt and blue tie jumping in the air above a bed in a bedroom. He appears to be in the middle of a leap, possibly performing a trick or simply enjoying the moment.\n\nThere are several other people in the room, with one person standing near the left side of the bed, another person on the right side, and a third person closer to the center of the room. A handbag is placed on the floor near the left side of the bed, and a potted plant can be seen on the right side of the room, adding a touch of greenery to the space."} +{"image_id": 241317, "caption": "The image features a man pushing a cart filled with a variety of fruits, including bananas, apples, and oranges. The cart is parked in front of a blue building, possibly a house or a store. The man appears to be selling the fruits on the street.\n\nIn addition to the fruits, there is a bowl placed on the cart, possibly containing more fruits or other items for sale. The scene captures the man's dedication to selling fresh produce to passersby."} +{"image_id": 444982, "caption": "The image depicts a lush green field with three zebras grazing on the grass. The zebras are spread out across the field, with one zebra on the left side, another in the middle, and the third one on the right side of the field. The zebras appear to be enjoying their time in the grassy area, possibly in a zoo enclosure."} +{"image_id": 117563, "caption": "The image depicts two young men standing in a living room, playing a video game on a Nintendo Wii console. Both men are holding Wii remotes in their hands, fully engaged and enjoying the game.\n\nThe living room is furniture-rich, featuring two couches, one on the right side of the room and the other on the left side. There is also a potted plant placed near the left couch, adding a touch of greenery to the space."} +{"image_id": 206579, "caption": "In the image, a man is leaning over a dining table, blowing out the candles on a birthday cake. The cake is placed in the center of the table, and the man appears to be the main focus of the scene.\n\nAround the dining table, there are two chairs, one on the left side and another on the right side. A person can be seen in the background, partially visible on the right side of the image. Additionally, there is a cell phone placed on the table, slightly to the right of the cake."} +{"image_id": 221172, "caption": "The image captures a tennis match in progress, with a tennis player in a blue shirt and white shorts holding a tennis racket and preparing to hit a tennis ball. The player is in the middle of the court, actively engaged in the game.\n\nIn the background, there are two chairs, one on the left side and another on the right side of the court. Additionally, there is a person standing on the right side of the court, possibly watching the match or waiting for their turn to play."} +{"image_id": 317969, "caption": "The image depicts a large herd of sheep walking down a road in a mountainous area. The sheep are spread out along the road, with some closer to the foreground and others further in the background. There are at least thirteen sheep visible in the scene, with some closer to the left side of the road and others on the right side.\n\nThe mountainous landscape surrounding the road adds to the picturesque scene, creating a sense of tranquility as the sheep make their way through the countryside."} +{"image_id": 82150, "caption": "The image features a young man sitting on a couch, holding a Nintendo Wii steering wheel controller in his hands. He is smiling and appears to be enjoying the gaming experience. The steering wheel controller is positioned in front of him, and he seems to be playing a racing game.\n\nIn the background, there is a TV mounted on the wall, which is likely displaying the game he's playing. The scene captures the man's enthusiasm and engagement with the video game."} +{"image_id": 284064, "caption": "In the image, a man is standing on a tennis court, holding a tennis racket and preparing to hit a tennis ball that is in the air. He is wearing a hat and appears to be focused on the game. Another person can be seen in the background, possibly watching the game or waiting for their turn to play.\n\nThe tennis court is surrounded by a chain-link fence, which is a common feature in tennis courts to keep the balls within the playing area and prevent them from going out of bounds."} +{"image_id": 372203, "caption": "The image depicts a lonely park bench situated in the middle of a desert-like landscape. The bench is positioned on a concrete slab, and it appears to be the only piece of furniture in the area. The surrounding environment is characterized by a dirt field and a sky filled with clouds, creating a serene and peaceful atmosphere."} +{"image_id": 359136, "caption": "In the image, a woman is lying on the floor next to a bathtub. She is wearing a black shirt and appears to be resting or relaxing in the bathroom. The bathtub is located on the left side of the scene, and the woman is positioned closer to the right side of the image. The bathroom also features a toilet situated towards the right side of the scene."} +{"image_id": 499281, "caption": "The image depicts a well-equipped kitchen with a stove top oven and a microwave above it. The oven is located on the left side of the kitchen, while the microwave is positioned above it on the right side.\n\nVarious items can be seen on the countertops and around the kitchen. There are two bottles, one near the center of the kitchen and the other closer to the right side. A bowl is placed on the left side of the kitchen, and a spoon is located near the center. A potted plant is situated on the left side of the kitchen, adding a touch of greenery to the space.\n\nAdditionally, there are two cups, one near the center of the kitchen and the other closer to the right side. A sink can be found on the right side of the kitchen, completing the functional layout of the space."} +{"image_id": 192233, "caption": "The image captures a man in a blue shirt and white shorts playing tennis on a clay court. He is in the middle of a swing, holding a tennis racket and preparing to hit a tennis ball that is in the air. The man's athletic stance and focus on the ball demonstrate his skill and dedication to the sport."} +{"image_id": 11987, "caption": "The image depicts a cozy and well-furnished room with a variety of seating options. There is a dining table with chairs placed around it, and another dining table with chairs nearby. Additionally, there are two couches in the room, one on the left side and another on the right side. A fireplace can be seen in the middle of the room, adding warmth and ambiance to the space.\n\nA bed is also present in the room, positioned towards the right side of the image. The room appears to be a combination of a living room and a dining area, creating a comfortable and inviting atmosphere."} +{"image_id": 406810, "caption": "In the image, a man is sitting in front of a laptop computer, which is placed on his lap. He appears to be focused on the screen, possibly working or browsing the internet. The laptop is surrounded by numerous people, some of whom are sitting in chairs, while others are standing or sitting on the floor.\n\nThere are two TVs in the scene, one located on the left side and the other on the right side of the room. A clock can be seen hanging on the wall in the background, and a handbag is placed on the floor near the center of the room."} +{"image_id": 99965, "caption": "The image features a white plate with a sandwich cut in the middle, accompanied by a side of potato chips. The sandwich is placed on the left side of the plate, while the chips are spread out on the right side. A piece of broccoli can also be seen on the plate, adding a touch of greenery to the meal. A person's hand is visible on the left side of the plate, possibly holding the sandwich or preparing to eat it."} +{"image_id": 17328, "caption": "The image features a red and white passenger train traveling down the tracks. The train occupies a significant portion of the scene, stretching from the left side to the right side of the image. The train appears to be in motion, possibly pulling into a station.\n\nIn addition to the train, there are two people visible in the scene. One person is located on the left side of the image, while the other person is on the right side. Both individuals seem to be observing the train as it moves along the tracks."} +{"image_id": 393682, "caption": "The image features a delicious slice of cheesecake on a white plate, accompanied by a fork. The cheesecake has a generous amount of whipped cream on top, making it look even more appetizing. The fork is placed next to the cheesecake, ready to be used for enjoying this scrumptious dessert."} +{"image_id": 540093, "caption": "The image depicts a street scene with a large umbrella covering a couch placed on the sidewalk. The umbrella is positioned above the couch, providing shade and protection from the elements.\n\nThere are several cars parked along the street, with some closer to the couch and others further away. In addition to the couch, there is a potted plant nearby, adding a touch of greenery to the urban setting.\n\nThere are multiple pedestrians walking along the sidewalk, with some closer to the couch and others further away. A handbag can also be seen in the scene, possibly belonging to one of the pedestrians."} +{"image_id": 242400, "caption": "The image features a woman standing next to a large clock on a pole. She appears to be posing for a picture in front of the clock, which is adorned with Christmas lights. The woman is wearing a black jacket and holding a handbag.\n\nIn the background, there are several cars parked, including a truck on the left side of the scene. Another person can be seen in the background, standing further away from the woman and the clock."} +{"image_id": 409009, "caption": "The image features a white bullet train parked at a train station. The train occupies a significant portion of the scene, stretching from the left to the right side of the image. It appears to be stopped at the station, possibly waiting for passengers to board or disembark.\n\nThere are several people visible in the scene, with some standing close to the train and others further away. They seem to be either waiting for the train or engaging in other activities at the station."} +{"image_id": 6091, "caption": "In the image, a person is standing in front of a stop sign, holding a piece of paper in their hand. The stop sign is illuminated, making it stand out against the dark background. The person appears to be attempting to attach the paper to the stop sign, possibly as a form of protest or artistic expression."} +{"image_id": 42834, "caption": "The image features an older woman sitting at a dining table, preparing a meal. She is in the process of cutting up some meat, possibly ham, and placing it on a plate. The woman is using a pair of scissors to cut the meat, which is placed on a white plate in front of her.\n\nThe dining table occupies a significant portion of the scene, and there are a few other items on the table, such as a bowl, a fork, and a spoon. Additionally, there is a cell phone on the table, possibly used for communication or entertainment during the meal preparation process."} +{"image_id": 433554, "caption": "The image depicts a group of people enjoying themselves on a lake, with some of them riding water skis and others wearing life jackets. There are at least six people visible in the scene, with some of them standing on the shore and others in the water.\n\nThere are three water skis in the scene, with one near the left side of the image, another in the middle, and the third one closer to the right side. A surfboard can also be seen on the left side of the image, adding to the variety of water sports being enjoyed by the group.\n\nIn addition to the people and water sports equipment, there are two benches in the scene, one located near the center and the other on the right side. These benches provide a place for spectators to sit and watch the exciting activities taking place on the lake."} +{"image_id": 174987, "caption": "The image features a graffiti-covered subway train parked at a station. The train is adorned with colorful graffiti on its side, giving it a vibrant and artistic appearance. The graffiti covers a significant portion of the train's exterior, making it stand out as a unique and eye-catching piece of public art."} +{"image_id": 116208, "caption": "The image features a dining table with a large pizza placed in the center. The pizza is topped with cheese, onions, and bacon, making it a delicious and appetizing meal. There are several wine glasses surrounding the pizza, with some placed closer to the edges of the table and others near the center.\n\nIn addition to the pizza and wine glasses, there are a few bottles on the table, possibly containing wine or other beverages. A person can be seen in the background, possibly enjoying the meal or preparing to join the gathering. A chair is also visible near the table, likely for someone to sit and enjoy the meal."} +{"image_id": 80131, "caption": "The image depicts a man and a woman sitting at a dining table in a kitchen, enjoying a meal together. The woman is on the left side of the table, while the man is on the right. There are several wine bottles placed on the table, indicating that they might be enjoying some wine during their meal.\n\nThe kitchen is well-equipped with various appliances, including an oven, a sink, and a microwave. A refrigerator can also be seen in the background. The dining table is surrounded by chairs, with one on the left side and another on the right side of the table."} +{"image_id": 310663, "caption": "The image features an old, rusty orange train car sitting on the tracks. The train car occupies a significant portion of the scene, stretching from the left to the right side of the image. The train appears to be in a state of disrepair, with signs of rust and wear visible on its surface.\n\nIn the background, there is a person standing near the left edge of the image, possibly observing the train or the surrounding area."} +{"image_id": 100138, "caption": "The image features a black motorcycle parked on the side of a road. The motorcycle is promenently displayed, taking up a significant portion of the scene. A stop sign can be seen in the background, indicating that the motorcycle is parked near an intersection.\n\nIn addition to the motorcycle, there are two people visible in the scene. One person is standing closer to the left side of the motorcycle, while the other person is positioned further to the right."} +{"image_id": 415613, "caption": "The image depicts a man wearing a green shirt and a hat, standing in a kitchen and preparing food. He is focused on cutting a loaf of bread with a knife, which is placed on a cutting board. The man appears to be in the process of making a sandwich.\n\nThe kitchen is equipped with a refrigerator located on the left side of the room, and a sink can be found on the right side. There are several cups placed around the kitchen, with one near the refrigerator, another on the countertop, and the third one closer to the sink. Additionally, there are two bowls in the scene, one near the sink and the other on the countertop."} +{"image_id": 214737, "caption": "The image features a large, ornate clock mounted on the side of a building. The clock is prominently displayed, drawing attention to its intricate design and craftsmanship. The clock is positioned above a doorway, making it a focal point of the building's architecture.\n\nIn addition to the clock, there are several statues adorning the building's facade. These statues are placed at various heights and positions, enhancing the overall aesthetic appeal of the structure. The combination of the clock, statues, and the building's design creates an impressive and visually striking scene."} +{"image_id": 172718, "caption": "The image is a vintage black and white photograph of a young boy wearing a white shirt and a tie. The boy appears to be looking at the camera, possibly posing for a portrait. The photograph captures a moment in time, showcasing the boy's attire and expression."} +{"image_id": 99186, "caption": "The image features a red stop sign prominently displayed on the side of a road. The stop sign is positioned near the center of the scene, with a pole supporting it. The sky in the background is a beautiful shade of blue, creating a serene atmosphere.\n\nIn addition to the stop sign, there is a car parked on the left side of the image, and another car can be seen further back on the right side of the scene. A truck is also parked towards the right edge of the image."} +{"image_id": 3580, "caption": "The image features a man sitting comfortably on a couch in a living room. He is holding a Nintendo Wii controller in his hand, indicating that he is playing a video game. The man is wearing a gray shirt and appears to be enjoying his gaming session.\n\nThe living room is furnished with a dining table and several chairs placed around it. There are two chairs on the left side of the dining table and two more chairs on the right side. Additionally, there is a cup placed on the dining table, suggesting that the man might have been enjoying a drink while playing the game."} +{"image_id": 526044, "caption": "The image features a brown and white cow standing near a body of water. The cow appears to be looking at the camera as it gazes into the distance over the water's edge. The cow is positioned on the left side of the image, with the water stretching across the background."} +{"image_id": 105291, "caption": "The image features a red stop sign prominently displayed on the side of the road, with a blue street sign above it. The stop sign is positioned in front of a white house, and there are two cars parked nearby. One car is parked on the left side of the stop sign, while the other car is parked on the right side.\n\nIn addition to the stop sign and street sign, there is a fire hydrant located on the right side of the scene, close to the white house."} +{"image_id": 577169, "caption": "The image depicts a group of people standing in front of an enormous clock, likely admiring its impressive size and design. There are a total of seven people in the scene, with some standing closer to the clock and others slightly further away.\n\nThe clock is prominently displayed in the center of the image, taking up a significant portion of the frame. The group of people appears to be enjoying their time together, possibly discussing the clock or simply appreciating its presence."} +{"image_id": 181574, "caption": "The image features a man and a woman sitting at a dining table, enjoying a meal together. The man is sitting on the left side of the table, while the woman is on the right side. They are both smiling and appear to be having a good time.\n\nOn the table, there are two pizzas placed in front of them. One pizza is positioned closer to the left side of the table, while the other pizza is on the right side. There are also two wine glasses on the table, one near the center and the other closer to the right side. Additionally, there are two forks on the table, one near the center and the other closer to the right side. A potted plant can be seen in the background, adding a touch of greenery to the scene."} +{"image_id": 83441, "caption": "The image is a split-screen view of a living room, showcasing two different perspectives of the space. In one perspective, the living room is filled with furniture, including a couch, a chair, and a dining table. There is a flat-screen TV mounted on the wall, and a laptop is placed on the dining table.\n\nIn the other perspective, the living room appears to be empty, with no furniture or people visible. The TV is still mounted on the wall, and the laptop is still on the dining table. The two different perspectives highlight the contrast between a well-furnished living room and an empty one."} +{"image_id": 130527, "caption": "The image depicts a peaceful scene of a herded group of cows grazing on a lush green hillside. The cows are spread out across the field, with some closer to the foreground and others further in the background. There are at least 13 cows visible in the scene.\n\nIn addition to the cows, there is a person standing near the middle of the field, possibly tending to the herd or observing the animals. The overall atmosphere of the image is serene and picturesque, showcasing the beauty of the countryside and the harmony between the cows and their environment."} +{"image_id": 86471, "caption": "The image captures a man in a blue shirt and white shorts, standing on a tennis court and preparing to hit a tennis ball with his racket. He is in the process of swinging the racket, attempting to make contact with the ball. The tennis ball is positioned in the air, close to the player.\n\nThe tennis court is surrounded by a chain-link fence, which can be seen in the background. The man appears to be focused and determined as he plays the game."} +{"image_id": 105737, "caption": "The image features a cozy bookshelf filled with numerous books of various sizes. Among the books, there is a stuffed teddy bear sitting on top of the shelf, adding a touch of warmth and playfulness to the scene. The teddy bear is positioned towards the center of the bookshelf, making it the focal point of the display."} +{"image_id": 212842, "caption": "The image depicts a large herd of zebras gathered together in a grassy field. There are at least thirteen zebras visible in the scene, with some standing closer to the foreground and others further in the background. The zebras are spread out across the field, creating a sense of depth and movement in the scene.\n\nIn addition to the zebras, there is a bird perched on a tree branch in the upper part of the image, adding a touch of wildlife diversity to the scene."} +{"image_id": 105220, "caption": "In the image, two people are skiing on a snow-covered slope. They are both wearing skis and appear to be enjoying their time on the mountain. One skier is positioned closer to the left side of the image, while the other skier is on the right side.\n\nThere are two sets of skis visible in the scene, one set belonging to the skier on the left and the other set belonging to the skier on the right. Additionally, there are two backpacks in the image, one located near the skier on the left and the other near the skier on the right."} +{"image_id": 490701, "caption": "The image features a person sitting at a dining table, enjoying a delicious chocolate cake with ice cream. The person is using a fork to eat the cake, which is placed on a plate in front of them. A cup of tea is also present on the table, adding to the delightful dessert experience.\n\nThe dining table occupies a significant portion of the scene, and the person is seated comfortably in a chair. A handbag can be seen on the table, possibly belonging to the person enjoying the cake."} +{"image_id": 368961, "caption": "In the image, there are two elephants standing next to each other in a sandy enclosure. One of the elephants is positioned closer to the left side of the enclosure, while the other is on the right side. The elephants appear to be enjoying their time in the sandy area.\n\nIn addition to the elephants, there is a sports ball located in the middle of the enclosure, possibly for the elephants to play with. A person can be seen in the background, possibly observing or taking care of the elephants."} +{"image_id": 520892, "caption": "The image features a woman wearing a black shirt, biting into a hot dog with a bun. She appears to be enjoying her meal as she takes a bite. The woman is wearing a ring on her finger, adding a personal touch to the scene.\n\nIn the background, there is a handbag placed on the ground, possibly belonging to the woman or someone else in the vicinity. The focus of the image is on the woman and her hot dog, creating a casual and relaxed atmosphere."} +{"image_id": 113354, "caption": "The image depicts a group of three zebras grazing on grass in a zoo enclosure. The zebras are standing close to each other, with one on the left side, another in the middle, and the third on the right side of the enclosure. They are all focused on eating the grass in front of them.\n\nThe enclosure is surrounded by trees, providing a natural habitat for the zebras. There is a pile of hay on the ground, which the zebras seem to be enjoying as part of their meal. The scene captures the essence of the zebras' natural feeding behavior in a controlled environment."} +{"image_id": 33652, "caption": "The image features a delicious pizza with a variety of toppings, including chicken, beans, and cheese. The pizza is placed on a metal tray, which is sitting on top of a stove. The pizza appears to be cooked and ready to be served.\n\nIn addition to the pizza, there are two bowls in the scene. One bowl is located on the left side of the pizza, while the other bowl is positioned on the right side. These bowls may contain additional ingredients or side dishes to accompany the pizza."} +{"image_id": 511153, "caption": "The image features a blue and white train traveling down the train tracks. The train is quite large and occupies a significant portion of the scene. It appears to be a freight train, as indicated by the presence of multiple train cars behind it. The train is moving along the tracks, providing a sense of motion and activity in the scene."} +{"image_id": 328957, "caption": "The image features a cat sitting on top of a multi-tiered cat tree. The cat is comfortably perched on the highest level of the tree, enjoying its elevated position. The cat tree is made of wood and has several platforms for the cat to climb and explore.\n\nIn addition to the cat tree, there are a few books scattered around the scene. One book can be seen on the left side of the image, while another book is located on the right side. The presence of these books suggests that the area might be a cozy and relaxing space for both the cat and its owner."} +{"image_id": 190015, "caption": "The image features a green truck parked in a field, surrounded by a large pile of hay. The truck is positioned on the left side of the scene, with the hay pile occupying a significant portion of the right side of the image.\n\nThere are several trees in the background, adding to the rural atmosphere of the scene. The truck appears to be a work vehicle, possibly used for transporting hay or other agricultural materials."} +{"image_id": 244925, "caption": "The image features a man wearing a backpack with a banana sticking out of it. The banana is prominently placed in the middle of the backpack, making it a unique and eye-catching accessory. The man is also wearing a camera around his neck, adding to the casual and adventurous vibe of the scene."} +{"image_id": 29406, "caption": "The image features a wooden park bench situated in the middle of a lush green field. The bench is surrounded by a variety of plants and flowers, creating a serene and inviting atmosphere. There are several potted plants placed around the bench, adding to the natural beauty of the scene.\n\nIn the background, a brick building can be seen, providing a contrasting element to the peaceful outdoor setting. The bench appears to be a perfect spot for relaxation and enjoying the tranquility of the garden."} +{"image_id": 32570, "caption": "The image captures a man skillfully riding a wave on a surfboard in the ocean. He is wearing a wetsuit and appears to be enjoying the thrill of the ride. The surfer is positioned in the center of the scene, with the surfboard beneath him as he navigates the wave.\n\nThe wave itself is quite large, covering a significant portion of the image from left to right. The surfer is skillfully balancing on the surfboard, showcasing his expertise in the sport."} +{"image_id": 260608, "caption": "The image depicts a group of young girls playing soccer on a grassy field. There are five girls in the scene, actively participating in the game. One of the girls is in the process of kicking a soccer ball, which is located towards the left side of the field.\n\nThe girls are spread out across the field, with some closer to the foreground and others further in the background. They are all focused on the game and enjoying their time outdoors."} +{"image_id": 291286, "caption": "The image depicts a man riding a skateboard down a narrow city street, surrounded by a crowd of people walking in the opposite direction. The skateboarder is in the center of the scene, while the pedestrians are spread out along the street, with some closer to the skateboarder and others further away.\n\nIn addition to the skateboarder and pedestrians, there are a few handbag-carrying individuals among the crowd. One handbag can be seen near the center of the scene, while another is located closer to the right side of the image. The overall atmosphere of the scene is lively and bustling, with people going about their daily activities."} +{"image_id": 375278, "caption": "The image features a black dog standing inside an open suitcase, seemingly curious about its contents. The suitcase is placed on a bed, and the dog appears to be exploring the luggage.\n\nIn addition to the dog and the suitcase, there are two people in the scene. One person is located on the left side of the image, while the other person is on the right side. There are also two books present in the scene, one near the top left corner and the other near the top right corner of the image."} +{"image_id": 290684, "caption": "The image features a woman wearing a purple shirt, sitting on a pole and holding a pink teddy bear. The teddy bear appears to be a stuffed animal, and the woman seems to be enjoying her time with it. The scene takes place in what appears to be a parking lot, with a car visible in the background."} +{"image_id": 29306, "caption": "The image features a brown dog standing on a sandy beach near the ocean. The dog is wearing a collar and appears to be staring into the distance, possibly enjoining the view or waiting for its owner. The beach is relatively empty, with no other people or animals visible in the scene."} +{"image_id": 173375, "caption": "The image captures a snowboarder wearing a helmet and goggles, skillfully riding down a snow-covered slope. The snowboarder is the main focus of the scene, with their snowboard clearly visible beneath them.\n\nIn the background, there are several other people scattered across the slope, likely enjoying the winter sports activities. Some of them are closer to the snowboarder, while others are further away, creating a lively atmosphere on the mountain."} +{"image_id": 198590, "caption": "The image features a small red bird perched on the side view mirror of a beige car. The car is parked next to a truck, which is visible in the background. The bird appears to be looking at the camera, capturing the viewer's attention."} +{"image_id": 25747, "caption": "The image depicts a train traveling down a set of train tracks, surrounded by a lush green forest. The train appears to be a passenger train, as it has multiple cars attached to it. The train is moving along the tracks, providing a sense of motion and activity in the scene. The forest provides a serene and natural backdrop for the train's journey."} +{"image_id": 346589, "caption": "The image depicts a man and a woman skiing on a snow-covered slope. The man is standing on the left side of the scene, while the woman is kneeling on the right side. They are both wearing skis and appear to be enjoying their time on the mountain.\n\nThere are several trees in the background, adding to the wintery atmosphere of the scene. The woman has a backpack on, likely carrying her belongings for the skiing adventure."} +{"image_id": 121106, "caption": "The image depicts a busy airport baggage claim area with a large group of people waiting for their luggage. There are at least 14 people visible in the scene, some standing closer to the baggage carousel while others are scattered around the area.\n\nNumerous suitcases and handbags can be seen throughout the scene, with at least 12 suitcases and 7 handbags visible. The suitcases vary in size and are placed near their respective owners, while the handbags are held or placed close to their owners. The overall atmosphere of the scene is that of a typical airport baggage claim area, with people eagerly waiting to collect their belongings."} +{"image_id": 392850, "caption": "The image features a wooden cutting board on a dining table, topped with a variety of fruits and a knife. The fruits include a banana, two apples, an orange, and a lemon. The banana is positioned on the left side of the cutting board, while the apples are placed in the middle and on the right side. The orange is located near the center of the cutting board, and the lemon is on the right side. The knife is placed on the right side of the cutting board, ready to be used for slicing the fruits."} +{"image_id": 554241, "caption": "The image depicts a bustling city scene with a large crowd of people walking on a sidewalk. Among the crowd, a woman is prominently holding a colorful umbrella, possibly to shield herself from the sun or rain. The umbrella is quite large, covering a significant portion of her upper body as she walks.\n\nIn addition to the woman with the umbrella, there are numerous other people scattered throughout the scene, some carrying handbags and backpacks. The handbags can be seen in various sizes and positions, while the backpacks are carried by a few individuals. The overall atmosphere of the image is lively and energetic, as people go about their day in the city."} +{"image_id": 341017, "caption": "The image features a man standing on the back of a truck, surrounded by a group of goats. There are at least six goats in the scene, with some of them being closer to the man and others further away. The man appears to be interacting with the goats, possibly tending to them or preparing to load them onto the truck.\n\nThe truck occupies a significant portion of the image, stretching from the left side to the right side of the frame. The man is positioned towards the right side of the truck, with the goats surrounding him."} +{"image_id": 135497, "caption": "The image features a man sitting at a dining table with a pizza in front of him. He appears to be enjoying his meal and possibly posing for a picture. The man is wearing a blue shirt and has his hands placed on the pizza.\n\nAround the dining table, there are several bottles, possibly containing beverages or condiments. A car can be seen in the background, indicating that the scene might be taking place in a restaurant or a similar setting."} +{"image_id": 159260, "caption": "The image captures a blue and white train traveling down the tracks. The train appears to be a freight train, as it is moving along the railroad tracks. The train occupies a significant portion of the image, stretching from the left to the right side.\n\nIn addition to the train, there are two people visible in the scene. One person is located on the left side of the train, while the other person is on the right side. Both individuals seem to be observing the train as it passes by."} +{"image_id": 417332, "caption": "The image captures a baseball game in progress, with a pitcher in the middle of throwing a pitch. The pitcher is wearing a yellow shirt and is in the process of releasing the ball. The sports ball can be seen in the air, close to the pitching mound.\n\nThere are several other people in the scene, likely teammates and opponents, positioned around the field. Some of them are closer to the pitcher, while others are further away. A baseball glove is also visible on the field, likely belonging to one of the players.\n\nOverall, the scene depicts an exciting moment in a baseball game, with the pitcher in the center of the action."} +{"image_id": 90520, "caption": "The image features two white teddy bears dressed in traditional Asian clothing, standing next to each other. One teddy bear is positioned on the left side of the image, while the other is on the right side. Both bears are wearing red and gold outfits, adding a touch of elegance to their appearance.\n\nIn addition to the two main teddy bears, there are four other stuffed animals in the scene. Two of them are located on the right side of the image, while the other two are on the left side. These smaller stuffed animals appear to be accompanying the main teddy bears, creating a lively and playful atmosphere."} +{"image_id": 318524, "caption": "The image features an old, rusty train car with a lot of graffiti covering its surface. The graffiti is spread all over the train car, giving it a worn and aged appearance. The train car appears to be in a state of disrepair, possibly abandoned or left to deteriorate over time."} +{"image_id": 118406, "caption": "The image depicts a group of men playing soccer on a grassy field. There are several players actively participate in the game, with one player in red and black shorts jumping in the air to head the soccer ball. Other players are scattered across the field, with some closer to the foreground and others further in the background.\n\nIn the background, there is a car parked near the edge of the field, possibly belonging to one of the players or spectators. Overall, the scene captures the excitement and energy of a soccer match in progress."} +{"image_id": 25748, "caption": "The image features a large white sailboat docked at a pier. The boat is adorned with the name \"Blackbeard\" written on its side, giving it a pirate-themed appearance. The boat is tied to the dock with a rope, ensuring it stays securely in place.\n\nIn the background, there are several other boats visible, some of which are also tied to the dock. The scene captures the essence of a bustling harbor with various vessels docked and ready for their next adventure."} +{"image_id": 365557, "caption": "The image captures a snowboarder skillfully riding down a snow-covered slope. The snowboarder is wearing a blue jacket and appears to be enjoying the thrill of the descent. The snowboard is clearly visible beneath the snowboarder, as they make their way down the hill. The scene showcases the snowboarder's talent and the excitement of winter sports."} +{"image_id": 320978, "caption": "The image depicts a bustling farmers market filled with a wide variety of fresh fruits and vegetables. There is a large assortment of broccoli displayed prominently in the foreground, with several bunches spread across the table. In addition to broccoli, there are numerous carrots and cucumbers, as well as a few apples and oranges.\n\nA person can be seen in the background, likely browsing or shopping for fresh produce. The market appears to be well-stocked and offers a diverse selection of fruits and vegetables for customers to choose from."} +{"image_id": 315073, "caption": "The image features a gray and white cat sitting on top of a knitted blanket, which is placed on a window sill. The cat appears to be yawning, possibly due to the warmth and comfort of the blanket.\n\nIn the background, there is a bottle, possibly a wine bottle, placed on the window sill, adding a touch of elegance to the scene. The combination of the cat, the knitted blanket, and the bottle creates a cozy and inviting atmosphere."} +{"image_id": 363927, "caption": "The image features a large silver metro bus driving down a street. The bus occupies a significant portion of the scene, stretching from the left to the right side of the image. There are several people visible around the bus, with some standing closer to the bus and others further away.\n\nIn addition to the bus, there are two cars in the scene. One car is located on the left side of the image, while the other car is positioned on the right side. A traffic light can also be seen in the background, indicating that the bus is driving in an urban environment."} +{"image_id": 243355, "caption": "The image features a zebra standing in a dirt field, surrounded by a chain-link fence. The zebra appears to be walking across the field, possibly exploring its surroundings or searching for food. The fence encloses the area, ensuring the zebra's safety and preventing it from wandering off."} +{"image_id": 373521, "caption": "The image features an old, rusted bus parked in a grassy field. The bus appears to be abandoned due its deteriorating condition and the presence of weeds growing around it. The bus is positioned in the middle of the field, with a tree in the background on the left side.\n\nThe bus is quite large, occupying a significant portion of the image, and its rusty appearance suggests that it has been exposed to the elements for quite some time. The scene evokes a sense of nostalgia and the passage of time."} +{"image_id": 76409, "caption": "The image depicts a cozy bedroom with a large red bed taking up a significant portion of the space. The bed is covered with a blanket, giving it a warm and inviting appearance. Above the bed, there is a picture hanging on the wall, adding a decorative touch to the room.\n\nIn addition to the bed, there is a chair positioned near the left side of the room. A doorway can be seen in the background, leading to another part of the house. The overall atmosphere of the bedroom is comfortable and welcoming."} +{"image_id": 485985, "caption": "The image features a young boy with blonde hair, sitting on the floor and brushing his teeth with a toothbrush. He is wearing a blue shirt and appears to be enjoying the activity. The boy is smiling as he brushes his teeth, showcasing a positive attitude towards dental hygiene."} +{"image_id": 27564, "caption": "The image features two young girls sitting on a couch, each holding a Nintendo Wii controller in their hands. They appear to be enjoying a gaming session together, possibly playing a game like Wii Sports. The girls are positioned close to each other, with one girl on the left side of the couch and the other on the right side.\n\nIn addition to the girls and the Wii controllers, there are a few other objects in the scene. A cell phone can be seen placed on the couch, and a handbag is located near the left side of the couch."} +{"image_id": 92749, "caption": "The image features a group of giraffes in a zoo enclosure, surrounded by trees and a pond. There are three giraffes in total, with one standing near the left side of the enclosure, another in the middle, and the third on the right side. The giraffes appear to be enjoying their time in the enclosure, which is designed to resemble their natural habitat."} +{"image_id": 554958, "caption": "The image features a brown and black cat sitting in a pile of leaves and twigs. The cat appears to be staring at the camera, capturing the viewer's attention. The leaves and twigs surrounding the cat create a natural and cozy environment for the feline."} +{"image_id": 439971, "caption": "The image features a woman standing in a bathroom, taking a picture of herself in the mirror using her cell phone. She is wearing a scarf around her neck, adding a stylish touch to her appearance. The bathroom appears to be clean and well-maintained, with a sink visible in the background."} +{"image_id": 559006, "caption": "The image features a large brown bear standing in a body of water, possibly a river or a lake. The bear appears to be walking through the water, possibly searching for food or exploring its surroundings. The bear's fur is wet, indicating that it has been in the water for some time. The scene captures the majestic presence of the bear in its natural habitat."} +{"image_id": 457262, "caption": "The image features a wooden dining table with two bananas placed on it. One of the bananas is partially peeled and appears to be rotten, while the other banana is still intact. Next to the bananas, there is a small coin, possibly a penny, which adds a sense of scale to the scene."} +{"image_id": 263881, "caption": "The image features a giraffe standing in a grassy field with trees in the background. The giraffe is positioned in the center of the scene, with its long neck and legs prominently visible. The giraffe appears to be looking at the camera, capturing the viewer''s attention."} +{"image_id": 322594, "caption": "The image is a split view of a bathroom, showcasing both the toilet and sink areas. The toilet is located on the left side of the bathroom, while the sink is situated on the right side. The bathroom features a white toilet, a white sink, and a mirror above the sink.\n\nIn addition to the main fixtures, there are several bottles placed around the bathroom. Two bottles can be seen on the left side of the toilet, and two more bottles are located on the right side of the sink. A cup is also visible on the right side of the sink area."} +{"image_id": 22423, "caption": "The image features a man in a green shirt standing next to a large elephant. The elephant is holding a hat in its trunk, seemingly enjoying the interaction with the man. The man appears to be feeding the elephant the hat, creating a unique and playful moment between them.\n\nThe scene takes place near a body of water, with the elephant standing close to the water's edge. The man is positioned on the left side of the elephant, while the elephant occupies the majority of the right side of the image."} +{"image_id": 59000, "caption": "The image depicts a cozy living room with a Christmas tree in the corner, adding a festive touch to space decorations. There's another Christmas tree in the background, enhancing the holiday ambiance.\n\nThe living room is furnished with two couches, one on the left side and the other on the right side of the room. A television is placed on the left side of the room, providing entertainment for the occupants. A dining table can be seen in the middle of the room, accompanied by several chairs surrounding it.\n\nVarious books are scattered throughout the room, indicating a love for reading or a well-stocked bookshelf. Additionally, the living room features a collection of knick-knacks, adding character and charm to the space."} +{"image_id": 119547, "caption": "The image features a group of people, including a man wearing a suit and tie, standing in front of a white tent. The man in the suit appears to be adjusting his tie, while the other people around him seem to be engaged in conversation.\n\nThere are a total of five people in the scene, with one person standing closer to the left side of the image, two people in the middle, and two people on the right side. One of the individuals on the right side is wearing glasses.\n\nA handbag can be seen placed on the ground near the center of the image, and a tie is also visible in the scene, likely belonging to the man adjusting his tie."} +{"image_id": 432763, "caption": "The image captures a beautiful beach scene with a large flock of seagulls flying over the ocean. The birds are scattered throughout the sky, with some flying closer to the water and others higher up in the air. In total, there are at least 15 birds visible in the scene, creating a lively and dynamic atmosphere.\n\nThe beach itself appears to be relatively empty, with no people or other objects visible in the image. The focus is solely on the seagulls and the vast expanse of the ocean."} +{"image_id": 125635, "caption": "The image features a black and white cat sitting on a window sill, looking out the window. The cat is positioned near the center of the scene, with its body facing the viewer. The window is open, providing the cat with a clear view of the outdoors.\n\nIn the background, there is a person partially visible on the right side of the image, possibly observing the cat or enjoying the view outside."} +{"image_id": 542549, "caption": "The image depicts a messy bed in a dimly lit room. On the bed, there is a book and a notebook placed next to each other. The book is positioned towards the left side of the bed, while the notebook is on the right side. A remote and a cell phone can also be seen on the bed, adding to the cluttered appearance of the scene."} +{"image_id": 494759, "caption": "The image depicts a group of three people standing on a sandy beach, flying a kite together. The kite is soaring high in the air, capturing their attention as they enjoy the outdoor activity. The people are spread out across the beach, with one person on the left side, another in the middle, and the third person on the right side of the scene. They appear to be having a fun and engaging time flying the kite together."} +{"image_id": 5617, "caption": "The image features a cozy bed with two cats lying on top of it. One cat is located on the left side of the bed, while the other cat is on the right side. Both cats appear to be sleeping or resting comfortably on the bed.\n\nIn addition to the cats, there are two pillows on the bed, one on the left side and the other on the right side. A laptop can also be seen on the left side of the bed, possibly indicating that someone was using it before the cats decided to take a nap."} +{"image_id": 279774, "caption": "The image depicts a group of young boys playing a game of baseball on a field. One of the boys is standing at home plate, holding a baseball bat and preparing to swing at an incoming pitch. Another boy is also holding a baseball bat, ready to hit the ball.\n\nThere are several other children on the field, some of them wearing baseball gloves, indicating that they are also participating in the game. A few chairs can be seen scattered around the field, possibly for spectators or resting players. Overall, the scene captures the excitement and camaraderie of a little league baseball game."} +{"image_id": 323442, "caption": "The image depicts a man and a woman sitting at an outdoor dining table under a large umbrella, enjoying a meal together. They are surrounded by several wine glasses placed on the table, indicating that they might be having a wine tasting or sharing a bottle of wine.\n\nIn addition to the wine glasses, there are a couple of cups, a knife, a fork, and a spoon on the table, suggesting that they are having a full-course meal. There are also a few chairs placed around the table, and a handbag can be seen nearby.\n\nThe scene appears to be set in a restaurant or an outdoor dining area, providing a pleasant atmosphere for the couple to enjoy their meal and each other's company."} +{"image_id": 109454, "caption": "The image features a man wearing a blue shirt and a blue tie, holding a green bottle in his hand. He appears to be drinking from the bottle, possibly enjoying a refreshing beverage. The man is seated at a dining table, which occupies a significant portion of the scene.\n\nIn addition to the main subject, there are two other people in the background, one on the left side and the other on the right side of the image. There are also two wine glasses on the table, one closer to the left side and the other near the center of the table."} +{"image_id": 370677, "caption": "The image features a group of three women standing in front of a bakery display case, smiling and posing for a picture. They are all wearing matching shirts, indicating that they might be employees of the bakery.\n\nThe bakery display case is filled with a variety of donuts, with at least 13 distinct donuts visible in different shapes, sizes, and flavors. The women seem to be proud of their work and the delicious treats they offer."} +{"image_id": 521509, "caption": "The image features a woman sitting on a bed in a bedroom. She is holding a camera, possibly preparing to take a photo or record a video. The bed is positioned in the center of the room, and there are two lamps on either side of the bed, providing lighting for the scene.\n\nIn addition to the woman and the camera, there are a few other objects in the room. There is a potted plant located near the top left corner of the room, and a vase can be seen on the left side of the bed. A bottle is also visible on the right side of the bed."} +{"image_id": 236461, "caption": "The image captures a surfer skillfully riding a large wave in the ocean. The surfer is positioned in the middle of the wave, skillfully balancing on their surfboard. The surfboard is visible beneath the surfer, as they skillfully navigate the powerful wave.\n\nIn the background, there are a few birds flying, adding to the dynamic nature of the scene. The surfer's focus and determination are evident as they skillfully ride the wave, showcasing their expertise in the sport."} +{"image_id": 534845, "caption": "The image features a teddy bear hanging from a clothesline in front of a building. The teddy bear is positioned towards the left side of the scene, and it appears to be the main focus of the image.\n\nIn addition to the teddy bear, there are several pieces of clothing hanging on the clothesline, including multiple shirts and a pair of pants. The clothing items are spread out across the line, with some closer to the teddy bear and others further away. The scene creates a playful and nostalgic atmosphere, reminiscent of childhood memories."} +{"image_id": 180580, "caption": "The image features a blue plate filled with an assortment of vegetables, including several pieces of broccoli, asparagus, and carrots. The vegetables are arranged in a visually appealing manner, with the broccoli and asparagus placed next to each other, and the carrots scattered around the plate. The plate is placed on a dining table, ready to be enjoyed as a healthy and delicious meal."} +{"image_id": 484551, "caption": "The image features a woman wearing sunglasses and an orange shirt, sitting on a boat in the ocean. She appears to be enjoying her time on the boat, possibly fishing or simply enjoying the view. The boat is positioned in the middle of the ocean, surrounded by water.\n\nThere are a few other people on the boat, but they are not the main focus of the scene. The woman in the orange shirt is the central figure, sitting comfortably on the boat and taking in the surroundings."} +{"image_id": 456146, "caption": "The image depicts a large herd of sheep walking down a dirt road. There are at least 13 sheep visible in the scene, with some closer to the foreground and others further in the background. The sheep are spread out along the road, creating a sense of depth and movement in the scene. The dirt road appears to be a natural path for the sheep to follow, as they graze or wander in search"} +{"image_id": 283131, "caption": "The image depicts a small bathroom with a white toilet and a white bathtub. The toilet is positioned in the middle of the bathroom, while the bathtub is located towards the right side of the room. A sink can be seen on the left side of the bathroom, close to the toilet.\n\nIn addition to the bathroom fixtures, there is a handbag placed on the left side of the room, near the sink. The bathroom appears to be in the process of being remodeled, as indicated by the presence of the handbag and the overall unfinished look of the space."} +{"image_id": 23309, "caption": "The image features a close-up view of a delicious pasta salad with a variety of ingredients. The salad consists of noodles, broccoli, carrots, and onions, all mixed together to create a colorful and appetizing dish. There are several pieces of broccoli and carrots scattered throughout the salad, adding a vibrant touch of green and orange to the dish. The onions are also visible, contributing to the overall flavor and texture of the pasta salad."} +{"image_id": 547487, "caption": "The image captures a young man skillfully performing a trick on his skateboard, jumping high into the air. He is the main focus of the scene, showcasing his talent.\n\nIn the background, there are several other people watching the skateboarder's performance. Some of them are standing closer to the skateboarder, while others are further away. The onlookers seem to be enjoying the impressive display of skateboarding skills."} +{"image_id": 34830, "caption": "The image features a men's restroom with a white urinal mounted on the wall. The urinal is positioned next to a red tiled wall, which adds a vibrant touch to the bathroom. The tiles on the wall are arranged in a checkered pattern, creating a visually appealing design. The overall atmosphere of the restroom is clean and well-maintained."} +{"image_id": 125997, "caption": "The image features a large blue mural on the side of a building, which reads \"UAREAL ALIVE.\" The mural is prominently displayed, covering a significant portion of the building's exterior. The vibrant blue color of the mural stands out against the backdrop of the building."} +{"image_id": 19916, "caption": "The image features a wooden dining table with a white bowl filled with sliced apples and cinnamon on it. The bowl is accompanied by silverware, including a fork on the left side and a knife on the right side of the table. A laptop is placed on the left side of the table, indicating that someone might be working or browsing the internet while enjoying their meal."} +{"image_id": 145019, "caption": "The image depicts a scene where a large airplane has crashed in a grassy field. A group of people, including a woman and a man, are standing nearby, observing the wreckage. The woman is wearing a pink shirt, and the man is wearing a blue shirt.\n\nIn addition to the people, there are two trucks present in the scene. One truck is positioned closer to the left side of the image, while the other truck is on the right side. Both trucks appear to be involved in the recovery efforts of the crashed airplane."} +{"image_id": 127161, "caption": "The image features a white plate with a slice of pizza on it. The pizza appears to be a flatbread pizza with a variety of toppings, including tomatoes, olives, and mushrooms. The plate is placed on a dining table, and a fork can be seen on the table as well. The pizza slice is cut in half, making it easier to eat."} +{"image_id": 543660, "caption": "The image features a bathroom with two toilets positioned next to each other. One toilet is located on the left side of the bathroom, while the other is on the right side. Both toilets are white and appear to be in good condition.\n\nIn addition to the toilets, there are two sinks in the bathroom. One sink is located near the left toilet, and the other sink is situated near the right toilet. The bathroom appears to be well-maintained and clean."} +{"image_id": 8333, "caption": "The image features a red, white, and yellow Virgin train traveling down the tracks next to a brick building. The train is positioned in the middle of the scene and appears to be moving at a moderate speed.\n\nIn addition to the train, there are several cars visible in the image. One car is located on the left side of the train, another car is on the right side, and a third car can be seen further back in the scene. The presence of these cars suggests that the train is passing through an urban or suburban area."} +{"image_id": 482907, "caption": "The image features a small, old-fashioned airplane flying through a clear blue sky. The airplane is positioned in the middle of the scene and appears to be flying at a relatively low altitude. The sky is cloudless, providing a perfect backdrop for the airplane's flight."} +{"image_id": 290130, "caption": "The image captures a man skillfully riding a surfboard on a wave in the ocean. He is wearing a black wetsuit and appears to be enjoying the thrill of surfing. The surfer is positioned in the middle of the wave, showcasing his balance and control over the surfboard. The wave itself is quite large, providing an exciting and challenging environment for the surfer to navigate."} +{"image_id": 58225, "caption": "In the image, a person is holding a hot dog with mustard and ketchup on a bun. The hot dog is placed in the center of the scene, and the person appears to be enjoying their meal at a sporting event.\n\nThere are several other people in the background, likely spectators or fellow attendees at the event. Some of them are standing close to the person holding the hot dog, while others are scattered throughout the scene. The presence of multiple people suggests a lively atmosphere at the sporting event."} +{"image_id": 249550, "caption": "The image depicts a cozy bedroom scene with a bed occupying a significant portion of the room. The bed is adorned with a colorful floral comforter, adding a touch of warmth and vibrancy to the space. A potted plant sits on a small table next to the bed, providing an element of nature and freshness to the room.\n\nIn addition to the bed and potted plant, there is a vase placed on the table, further enhancing the room's aesthetic appeal. The combination of the floral comforter, potted plant, and vase creates a pleasant and inviting atmosphere in the bedroom."} +{"image_id": 448765, "caption": "The image depicts a small bathroom with a white toilet and a white sink. The toilet is positioned on the right side of the bathroom, while the sink is located on the left side. There is a roll of toilet paper placed on the wall above the toilet.\n\nIn addition to the main fixtures, there is a small trash can placed on the floor next to the toilet. The bathroom appears to be clean and well-maintained."} +{"image_id": 498439, "caption": "The image captures a baseball game in progress on a field. There are several baseball players on the field, with one player in the foreground wearing a white uniform and a baseball glove. Other players can be seen in various positions around the field, some closer to the foreground and others further away.\n\nIn addition to the players, there are multiple bottles scattered across the field, likely containing water or other beverages for the players to stay hydrated during the game. Some of the bottles are located near the players, while others are placed in different areas of the field."} +{"image_id": 252403, "caption": "The image features a woman wearing glasses and a green shirt, holding a blue and white toothbrush up to her mouth. She appears to be brushing her teeth or demonstrating the use of the toothbrush. The toothbrush is positioned close to her face, with the bristles facing the viewer. The woman's hair is long and cascades down her back, adding a touch of elegance to the scene."} +{"image_id": 347995, "caption": "The image depicts a woman lying in bed, holding a baby in her arms. A black dog is also present in the scene, lying on the bed next to the woman and the baby. The woman appears to be smiling, creating a warm and cozy atmosphere in the room.\n\nIn the background, there is a book placed on a surface, suggesting that the woman might have been reading before holding the baby. Additionally, a bottle can be seen on the bed, possibly containing milk for the baby."} +{"image_id": 544216, "caption": "The image features a dining table with a delicious meal consisting of a sandwich and a side of potato chips. The sandwich is cut in half and placed on a plate, accompanied by a pickle on the side. The potato chips are scattered around the plate, with some closer to the sandwich and others further away.\n\nIn addition to the main meal, there are two cups on the table, one near the top left corner and the other near the top right corner. A person can be seen in the background, likely enjoying the meal or preparing to eat."} +{"image_id": 205729, "caption": "The image depicts a group of people skiing on a snow-covered slope. There are at least nine people in the scene, all wearing skis and enjoying their time on the mountain. The skiers are spread out across the slope, with some closer to the foreground and others further in the background.\n\nThe skiers are equipped with backpacks, which can be seen on their backs as they navigate the snowy terrain. The backpacks come in various shapes and sizes, adding to the diversity of the group. Overall, the scene captures the excitement and camaraderie of a group skiing adventure."} +{"image_id": 350988, "caption": "The image depicts a long wooden bench with several steps leading up to it. The bench spans the entire length of the scene, and the steps are positioned on both sides of the bench, creating a staircase-like structure. The bench appears to be made of wood and is situated in a room with a wooden floor."} +{"image_id": 288673, "caption": "The image depicts a group of people enjoying a day at the beach, flying a colorful kite high in the sky. There are at least six people visible in the scene, with some standing closer to the water and others further back on the sandy beach.\n\nIn addition to the people and the kite, there is a car parked near the edge of the beach, possibly belonging to one of the beachgoers. The overall atmosphere of the scene is lively and fun, with everyone participating in the kite-flying activity."} +{"image_id": 568690, "caption": "The image features a brown and white cat sitting on top of a white toilet in a bathroom. The cat appears to be curiously observing its surroundings. The toilet is positioned next to a sink, and there is a shower curtain visible in the background."} +{"image_id": 504194, "caption": "The image features a large brown dog sitting on a brick sidewalk next to a wooden bench. The dog appears to be waiting patiently, possibly for its owner to return. The bench is positioned on the left side of the scene, while the dog is on the right side.\n\nIn the background, there are several bicycles parked, with one bicycle located on the left side of the scene, another in the middle, and the third one on the right side. The presence of these bicycles suggests that the area might be a popular spot for cyclists to rest or socialize."} +{"image_id": 35368, "caption": "The image features a dining table with a variety of fruits and vegetables displayed on it. There are several bananas, some of which are hanging from a hook, while others are placed in a bowl. A potted plant is also present on the table, adding a touch of greenery to the scene.\n\nIn addition to the fruits and vegetables, there are two cups on the table. One cup is positioned towards the left side of the table, while the other cup is located on the right side. A vase can also be seen on the left side of the table, further enhancing the aesthetics of the scene."} +{"image_id": 307332, "caption": "The image features a group of people sitting on a wooden bench near a body of water. There are three people in the scene, with one person sitting on the left side of the bench, another person sitting in the middle, and the third person on the right side.\n\nA dog is also present in the scene, standing close to the bench and looking at the people. The dog appears to be on a leash, suggesting that it is under the control of one of the people sitting on the bench. The overall atmosphere of the scene is relaxation and enjoyment of the outdoors."} +{"image_id": 490878, "caption": "In the image, a person is skiing on a snow-covered slope with a backpack on their back. The skier is wearing a red jacket and appears to be enjoying their time on the mountain. The backpack is located near the center of the skier's body, and the skis can be seen beneath their feet. The scene captures the essence of winter sports and outdoor adventures."} +{"image_id": 507187, "caption": "The image depicts a group of people gathered on a grassy field, with a blue motorcycle parked prominently in the foreground. There are at least 12 people in the scene, some standing closer to the motorcycle while others are scattered around the field.\n\nIn addition to the motorcycle, there are two cars visible in the background, one on the left side and the other on the right side of the field. A handbag can also be seen near the center of the scene, possibly belonging to one of the attendees."} +{"image_id": 254644, "caption": "The image depicts a well-organized kitchen with wooden cabinets and a tile floor. The kitchen is equipped with a stainless steel stove top oven, a microwave, and a coffee maker. Various kitchen utensils, such as knives and spoons, are neatly arranged on the countertops.\n\nIn addition to the main appliances, there are several cups, bowls, and bottles placed throughout the kitchen. A potted plant can be seen on the countertop, adding a touch of greenery to the space. A vase is also present, further enhancing the aesthetics of the kitchen."} +{"image_id": 400803, "caption": "The image features a large orange and white boat floating on top of a body of water, possibly the ocean. There are several people on the boat, with some standing on the deck and others inside the boat. One of the individuals on the boat is wearing a blue shirt.\n\nIn addition to the people on the boat, there is a backpack located near the center of the scene, possibly belonging to one of the passengers. The boat appears to be a lifeboat, designed to provide safety and support during emergencies."} +{"image_id": 574928, "caption": "The image depicts a large herd of sheep grazing in a lush green field. The sheep are scattered throughout the field, with some closer to the foreground and others further in the background. There are at least 14 sheep visible in the scene, each enjoying their time grazing on the grass. The field appears to be well-maintained and provides an ideal environment for the sheep to thrive."} +{"image_id": 559247, "caption": "The image depicts a group of people gathered around a long dining table, enjoying a meal together. The table is filled with plates topped with hot dogs and sandwiches, as well as bowlfuls of food. There are several hot dogs and sandwiches spread across the table, with some placed closer to the people and others further away.\n\nIn addition to the food, there are a couple of bottles on the table, likely containing beverages to accompany the meal. The people are standing and sitting around the table, engaging in conversation and enjoying their time together."} +{"image_id": 254625, "caption": "The image captures a baseball player in the middle of a swing, holding a baseball bat and preparing to hit the ball. He is wearing a baseball cap and a grey shirt. The scene takes place in a baseball field, with a baseball glove visible in the background. The player's focus and determination are evident as he gets ready to make contact with the ball."} +{"image_id": 374966, "caption": "The image captures a lively scene at a skate park, where a group of young skateboarders are enjoying their time. There are at least nine people visible in the park, with some of them actively skateboarding and others watching or waiting for their turn.\n\nThree skateboards can be seen in the park, with one near the left side, another in the middle, and the third on the right side. The skateboarders are spread out across the park, with some closer to the foreground and others further in the background.\n\nIn addition to the skateboarders, there are two benches in the park, one on the left side and another on the right side, providing a place for spectators to sit and watch the action."} +{"image_id": 351967, "caption": "The image captures a busy city street at night, with a yellow taxi cab driving past a large clock mounted on the side of a building. The clock is positioned prominently on the side of the building, drawing the attention of passersby.\n\nIn addition to the taxi, there are two other cars visible in the scene, one behind the taxi and another further down the street. A few pedestrians can be seen walking along the sidewalk, with one person closer to the taxi and two others further down the street.\n\nOverall, the scene depicts a bustling urban environment with various modes of transportation and people going about their daily activities."} +{"image_id": 172877, "caption": "The image features a man sitting in a white chair, wearing a striped tie and glasses. He appears to be in a relaxed posture, with his hands clasped in his lap. The man is positioned in the center-left of the scene, occupying a significant portion of the chair.\n\nIn the background, there is a dining table with a bowl placed on it. Additionally, a clock can be seen hanging on the wall, providing a sense of time to the scene."} +{"image_id": 309237, "caption": "The image features a black, brown, and white cat sitting comfortably on a couch. The cat is positioned in the middle of the couch, occupying a significant portion of the seating area. The couch has a checkered pattern, adding a cozy and inviting atmosphere to the scene."} +{"image_id": 565877, "caption": "The image features a woman sitting on a red couch, wearing a blue shirt and a blue hat. She is smiling and appears to be enjoying her time on the couch. In front of her, there is a laptop computer placed on her lap. A book is also visible on the couch, close to the laptop. The scene conveys a relaxed and comfortable atmosphere."} +{"image_id": 489924, "caption": "The image features a woman wearing a blue shirt and shorts, riding a skateboard down a street. She appears to be enjoying her time on the skateboard, possibly performing a trick. The woman is the main focus of the scene, with her skateboard positioned beneath her feet.\n\nThe street appears to be relatively empty, with no other people or objects visible in the image. The woman's outfit and the skateboard suggest a casual and active lifestyle."} +{"image_id": 125472, "caption": "The image features a young man wearing a green shirt and jeans, skillfully performing a trick on a snowboard. He is in midair, jumping high above the snowboard, showcasing his talent and athleticism. Another person can be seen in the background, possibly watching the snowboarder or waiting for their turn to perform their own tricks."} +{"image_id": 422706, "caption": "In the image, a boat is being hoisted onto a cruise ship using a crane. The boat is positioned at the front of the cruise ship, and the crane is in the process of lifting it onto the deck.\n\nThere are several people on the cruise ship, observing the boat being hoisted. Some of them are standing near the front of the ship, while others are scattered around the deck. The scene captures the excitement and anticipation of the boat's arrival on the cruise ship."} +{"image_id": 290700, "caption": "The image captures a man skillfully riding a wave on a surfboard in the ocean. He is wearing a white shirt and appears to be enjoying the thrill of surfing. The surfer is positioned in the middle of the wave, showcasing his balance and control over the surfboard. The wave itself is quite large, adding to the excitement of the scene."} +{"image_id": 365177, "caption": "The image features a large white and yellow bus parked on the side of a street. The bus has \"Bibber\" written on its side, and it appears to be a tour bus. The bus occupies a significant portion of the scene, stretching from the left to the right side of the image.\n\nIn addition to the bus, there are two people visible in the scene. One person is standing closer to the left side of the bus, while the other person is located near the center of the image."} +{"image_id": 398661, "caption": "The image features a well-organized kitchen with a microwave placed on the countertop. The kitchen is equipped with a variety of cooking utensils, including several pots and pans hanging on the wall above the microwave. The pots and pans come in different sizes and are arranged neatly.\n\nIn addition to the pots and pans, there are multiple knives displayed on the countertop, as well as a couple of spoons. A bowl is also visible on the countertop, adding to the kitchen's well-stocked appearance. The kitchen appears to be a functional and efficient space for cooking and meal preparation."} +{"image_id": 175611, "caption": "The image depicts a person skillfully cutting a cigar with a pair of scissors. The person is focused on their task, and the cigar is placed on a cutting board. The scissors are positioned at the center of the scene, with the person' and the cutting board occupying the majority of the image."} +{"image_id": 477673, "caption": "The image features a small kitten sitting on top of a backpack, which is placed on the floor. The kitten appears to be looking at the camera, capturing the viewer's attention. The backpack is grey in color, and the kitten is comfortably resting on top of it."} +{"image_id": 1270, "caption": "The image depicts a baseball game in progress, with a young boy standing at home plate, holding a baseball bat and preparing to hit the ball. There are several other people in the scene, including teammates, opponents, and possibly coaches or spectators.\n\nIn total, there are 11 people visible in the image, with some standing closer to the foreground and others further in the background. A baseball glove can be seen near the left side of the image, likely belonging to one of the players.\n\nThe scene captures the excitement, anticipation, and camaraderie of a youth baseball game."} +{"image_id": 224012, "caption": "The image features a white plate filled with a delicious assortment of food. On the plate, there is a generous portion of ham, accompanied by a variety of vegetables such as broccoli, potatoes, and mushrooms. The broccoli is scattered across the plate, with some pieces located near the center and others closer to the edges. The potatoes and mushrooms are also present, adding to the colorful and appetizing display of the meal."} +{"image_id": 552510, "caption": "The image depicts a group of young children playing soccer on a grassy field. There are several kids actively participating in the game, with some of them wearing soccer uniforms. The children are spread out across the field, with some closer to the foreground and others further in the background.\n\nA sports ball, likely a soccer ball, can be seen in the middle of the field, indicating that the game is in progress. The children appear to be enjoying themselves as they engage in friendly competition."} +{"image_id": 272880, "caption": "In the image, a person is holding a piece of pizza on a wooden dining table. The pizza is placed on a pizza pan, and there is a fork and a knife on the table as well. A cup can be seen on the table, possibly containing a beverage to accompany the meal. The scene appears to be a casual dining experience with a focus on enjoying the pizza."} +{"image_id": 580540, "caption": "The image features a black dog sitting on a hardwood floor in front of a flat-screen TV. The dog appears to be attentively watching the TV, which is mounted on the wall above it. The room has a cozy atmosphere, with a couch located in the background and a potted plant placed nearby.\n\nThere are several remotes scattered around the room, possibly for controlling the TV or other electronic devices. Additionally, a book can be seen on the floor, adding to the lived-in feel of the space."} +{"image_id": 242934, "caption": "The image depicts a spacious living room filled with leather couches and a coffee table. There are three couches in the room, with one on the left side, another in the middle, and the third on the right side. A black coffee table is placed in the center of the room, surrounded by the couches.\n\nIn addition to the couches and coffee table, there are several books scattered throughout the room. Some books are placed on the couches, while others are located on the coffee table. A clock can also be seen hanging on the wall, adding to the room's cozy atmosphere."} +{"image_id": 178807, "caption": "The image consists of two different shots of a young boy riding a skateboard. In the first shot, the boy is riding the skateboard on a sidewalk, while in the second shot, he is riding the skateboard on a basketball court. The skateboard is visible in both shots, and the boy appears to be enjoying his time skateboarding."} +{"image_id": 135748, "caption": "The image features a small, fluffy dog lying on a blue blanket, which is placed on the floor. The dog appears to be relaxed and enjoying its time on the blanket. Next to the dog, there is a bottle of orange juice, adding a pop of color to the scene.\n\nIn the background, there is a chair and a dining table, suggesting that the scene takes place in a living or dining area. Additionally, there is a cup placed on the dining table, possibly belonging to someone who was recently there."} +{"image_id": 255036, "caption": "The image depicts a city street intersection with a traffic light hanging above the road. The traffic light is currently displaying a red light, signaling vehicles to stop. The intersection is situated in front of a large building, possibly a school or an office building.\n\nThere are several cars parked or stopped at the intersection, with some positioned closer to the traffic light and others further away. In addition to the cars, there is a truck parked near the center of the scene. The overall atmosphere of the image suggests a busy urban environment with traffic regulations in place."} +{"image_id": 3926, "caption": "The image depicts two sheep standing in a snow-covered field. One sheep is positioned towards the left side of the field, while the other is on the right side. They appear to be grazing on the snow-covered ground, possibly searching for food.\n\nIn addition to the sheep, there are several snowballs scattered throughout the field, adding to the wintry atmosphere of the scene."} +{"image_id": 236762, "caption": "The image depicts a large group of people gathered around a dining table, enjoying a meal together. There are at least 12 people in the scene, with some sitting on chairs and others standing around the table. The table is filled with plates of food, wine and beer glasses, and utensils such as forks, knives, and spoons.\n\nThere's a pizza placed in the center of the table, and several cups and bottles are scattered across the table as well. The atmosphere appears to be lively and social, with everyone engaged in conversation and enjoying their time together."} +{"image_id": 248314, "caption": "The image features a wooden dining table with various items placed on it. On the table, there is an open laptop computer, a keyboard, a mouse, an egg carton, a bowl, a spoon, and a bottle. The laptop is positioned towards the left side of the table, while the keyboard and mouse are placed closer to the center. The bowl and spoon are located towards the right side of the table, and the egg carton is situated near the center. The bottle is placed at the top right corner of the table."} +{"image_id": 559773, "caption": "The image captures a thrilling moment of a person skiing down a snow-covered slope, soaring through the air with their skis on. The skier is in the middle of a jump, showcasing their skill and athleticism.\n\nIn addition to the main skier, there are two other people visible in the scene, one on the left side and another on the right side of the image. They seem to be watching the main skier's impressive performance."} +{"image_id": 340665, "caption": "The image features a woman standing outdoors, holding an umbrella to protect herself from the rain. She is wearing glasses and a blue jacket, and she appears to be the main focus of the scene. Another person can be seen in the background, partially visible on the left side of the image.\n\nThere are two handbags in the scene, one near the woman holding the umbrella and the other closer to the person in the background. Additionally, there is a backpack located near the person in the background."} +{"image_id": 388599, "caption": "The image features a brown dog standing in a grassy field, holding a white frisbee in its mouth. The dog appears to be enjoying playing with the frisbee, possibly waiting for its owner to throw it again. The frisbee is positioned close to the dog's mouth, indicating that it's actively engaged in the game."} +{"image_id": 163528, "caption": "The image features a delicious pizza with various toppings, including lettuce, tomatoes, onions, and bacon. The pizza is placed on a white plate, which is positioned on a dining table. A fork and a knife are also visible on the table, ready to be used for enjoying the pizza. The pizza appears to be a combination of different flavors and textures, making it an appetizing meal."} +{"image_id": 481212, "caption": "The image features a man sitting on a red couch with two cats on his lap. One of the cats is a gray tabby, while the other is a black and white dog. The man is holding a coffee mug in his hand, enjoying his time with the pets.\n\nIn the room, there is a TV mounted on the wall, and a remote control can be seen on the couch. The scene appears to be a cozy and comfortable living space where the man and his pets spend time together."} +{"image_id": 277533, "caption": "The image features a man sitting on a red couch, holding a Nintendo Wii game controller in his hands. He appears to be enjoying a gaming session, possibly playing a game on the Wii console. The couch occupies a significant portion of the scene, extending from the left to the right side of the image."} +{"image_id": 173383, "caption": "The image features a beautifully decorated three-tiered wedding cake placed on a dining table. The cake is adorned with orange and blue flowers, adding a touch of color and elegance to the presentation. The cake is accompanied by a knife, ready to be used for cutting and serving the cake.\n\nIn addition to the cake, there is a lit candle on the table, creating a warm and inviting atmosphere for the celebration. The table setting also includes a vase, which further enhances the overall aesthetic of the scene."} +{"image_id": 419624, "caption": "The image features a white and red passenger train traveling down the tracks. The train is long and occupies a significant portion of the scene, stretching from the left to the right side of the image. The train appears to be moving at a moderate speed, as it travels through the countryside.\n\nIn addition to the train, there are two people visible in the scene. One person is located near the left edge of the image, while the other person is positioned closer to the center. The presence of these individuals suggests that they might be observing the train or waiting for it to pass."} +{"image_id": 130291, "caption": "In the image, a man and a woman are standing next to each other, with the woman helping the man tie his tie. The man is wearing a suit and tie, while the woman is dressed in a black shirt. They are both focused on the task at hand, ensuring that the man looks presentable for the occasion.\n\nThe scene takes place in a room with a dining table visible in the background. There are two chairs in the room, one on the left side and another on the right side. Additionally, a cell phone can be seen placed on a surface in the room."} +{"image_id": 193369, "caption": "The image features an old, rusted metal bench situated on a stone walkway. The bench appears to be weathered and worn, giving it a vintage appearance. The bench is surrounded by a lush green field, creating a serene and peaceful atmosphere."} +{"image_id": 367804, "caption": "The image features a young girl standing on a sandy beach, flying a kite high up in the sky. She appears to be enjoying her time at the beach, with the kite soaring behind her.\n\nIn the background, there are several umbrellas set up, providing shade for beachgoers. Some of these umbrellas are closer to the water, while others are further back on the beach. The scene captures a fun and relaxing atmosphere at the beach."} +{"image_id": 84735, "caption": "The image captures a thrilling moment during a baseball game. A baseball player is in the middle of swinging his bat, attempting to hit the ball. The player is wearing a baseball glove, ready to catch the ball if it comes his way.\n\nThere are several other people in the scene, including teammates, opponents, and possibly coaches or spectators. Some of them are standing close to the batter, while others are scattered around the field. The atmosphere is filled with anticipation and excitement as everyone watches the batter's performance."} +{"image_id": 247285, "caption": "In the image, a man and a woman are standing under a large, colorful umbrella, holding a baby in their arms. The umbrella provides shade and protection for the family, creating a cozy atmosphere. The woman appears to be the mother, while the man could be the father or another family member.\n\nBoth the man and the woman are wearing watches, with the man's watch positioned on his left wrist and the woman's watch on her right wrist. The baby is positioned between the two adults, with the woman holding the baby on her left side and the man holding the baby on his right side. The family seems to be enjoying their time together under the umbrella."} +{"image_id": 438432, "caption": "The image is a vintage black and white photograph of a girls' cricket team from the 1930s. The team members are posing for a group photo, with some of them sitting and others standing. They are all wearing ties, which adds to the old-fashioned appearance of the photo.\n\nThere are a total of 13 people in the photograph, with some of them sitting on chairs and others standing. The chairs are positioned around the team members, with one on the left side, one in the middle, and another on the right side of the image. The girls are all dressed in their cricket uniforms, showcasing their team spirit and camaraderie."} +{"image_id": 185479, "caption": "The image depicts a man sitting on the floor with a laptop computer in front of him. He is wearing glasses and appears to be focused on his work or browsing the internet. The man is also wearing a backpack, which is placed next to him on the floor.\n\nThe scene takes place in a room with two chairs visible in the background, one on the left side and the other on the right side of the room. Additionally, there is a handbag located near the center of the room, possibly belonging to the man or someone else in the vicinity."} +{"image_id": 570826, "caption": "The image features a blue and yellow passenger train traveling down the tracks. The train is positioned in the middle of the scene, occupying a significant portion of the image.\n\nIn addition to the train, there are two people visible in the scene. One person is standing near the left side of the train, while the other person is located closer to the right side. Both individuals appear to be observing the train as it moves along the tracks."} +{"image_id": 127394, "caption": "The image depicts a group of people gathered around a wooden dining table, enjoying a meal together. The table is filled with several plates of food, including pizza, salad, and other dishes. There are multiple carrots scattered across the table, adding to the variety of the meal.\n\nIn addition to the food, there are several cups and a bottle placed on the table, likely containing beverages for the guests. Utensils such as forks and knives can also be seen on the table, indicating that the meal is in progress.\n\nThe people are seated around the table, engaging in conversation and enjoying each other's company. The atmosphere appears to be warm and inviting, with everyone sharing a pleasant dining experience."} +{"image_id": 311081, "caption": "The image depicts a bathroom with a white bathtub and a shower curtain. The shower curtain is open, revealing the shower area. The bathtub is situated next to a toilet, which is located on the left side of the bathroom. The bathroom appears to be clean and well-maintained."} +{"image_id": 376677, "caption": "The image features a white tow truck driving down a street under a bridge. The tow truck is carrying a large object, possibly a crane or a piece of machinery, on its flatbed. The tow truck is the main focus of the scene, occupying a significant portion of the image.\n\nIn addition to the tow truck, there are a few other vehicles on the street, including a car on the left side of the image and another car further back on the right side. There are also two traffic lights visible in the scene, one on the left side and the other on the right side of the street."} +{"image_id": 269419, "caption": "The image features a tall brick clock tower with a clock on each of its sides. The tower stands prominently in the foreground, towering over the surrounding area. In the background, a tree can be seen, adding a touch of nature to the scene.\n\nThere are two people in the image, one standing closer to the left side of the tower and the other on the right side. They seem to be admiring the impressive clock tower. Additionally, there is a car parked in the background, further emphasizing the urban setting of the scene."} +{"image_id": 210708, "caption": "The image captures a heartwarming scene of an adult elephant and a baby elephant swimming together in a body of water. The adult elephant is on the left side of the image, while the baby elephant is on the right side, both of them enjoying their time in the water.\n\nThe adult elephant appears to be guiding and protecting the baby elephant as they navigate through the water. The baby elephant is positioned closer to the right side of the image, with the adult elephant's trunk slightly overlapping the baby elephant's body. The scene is a beautiful representation of the strong bond between a parent and its offspring."} +{"image_id": 472246, "caption": "The image features a white background with three fruits placed on it. The fruits are an apple, an orange, and an onion. The apple is positioned on the left side of the image, the orange is in the middle, and the onion is on the right side. The arrangement of the fruits creates a visually appealing and colorful display."} +{"image_id": 187475, "caption": "The image features a person holding a large hot dog with various toppings, such as onions and mustard, on a bun. The hot dog is placed on a paper plate, which is resting on a dining table. Another person can be seen in the background, possibly enjoying the meal or engaging in conversation.\n\nIn addition to the hot dog, there is a bottle on the table, possibly containing a beverage to accompany the meal."} +{"image_id": 299457, "caption": "In the image, a young man is sitting in a chair and eating a pink and white striped lollipop. He is wearing glasses and appears to be enjoying his treat. The scene takes place in a room with a couch and a dining table visible in the background. There is also a cup placed on the dining table."} +{"image_id": 2894, "caption": "The image features a train station with a train on the tracks. The train is positioned in the middle of the scene, occupying a significant portion of the image. There is another train visible in the background, further down the tracks.\n\nSeveral people can be seen around the train station, with some standing closer to the train and others further away. A traffic light is also present in the scene, located near the top left corner of the image.\n\nAdditionally, there is a car parked near the train station, likely belonging to one of the passengers."} +{"image_id": 209733, "caption": "The image depicts a group of people enjoying a day outdoors in a grassy field. They are flying a purple kite, which is soaring high in the sky. There are at least five people visible in the scene, with some standing closer to the kite and others scattered around the field.\n\nIn addition to the people and the kite, there are two cars parked in the background, one on the left side and the other on the right side of the field. A bench can also be seen in the middle of the field, providing a place for people to sit and enjoy the outdoors."} +{"image_id": 428231, "caption": "The image depicts a spacious living room filled with various pieces of furniture. There are two couches in the room, one located on the left side and the other on the right side. A coffee table is placed in the center of the room, surrounded by the couches.\n\nIn addition to the couches, there are two chairs in the room, one near the left couch and the other near the right couch. A potted plant can be seen on the left side of the room, adding a touch of greenery to the space. A TV is mounted on the wall, providing entertainment for the room's occupants.\n\nA vase is also present in the room, placed on a surface near the left couch. The living room appears to be well-furnished and inviting, making it an ideal space for relaxation and socializing."} +{"image_id": 250619, "caption": "The image captures a beautiful beach scene with a woman lying on a blanket under a large, colorful umbrella. The umbrella provides shade and protection from the sun, making it an ideal spot for relaxation. The woman appears to be enjoying her time on the beach, possibly reading a book.\n\nThere are a few other people visible in the background, but they are not the main focus of the scene. Additionally, a handbag can be spotted near the woman, possibly belonging to her or someone else on the beach."} +{"image_id": 434693, "caption": "The image features a white fire hydrant situated on a sidewalk next to a pink building. The fire hydrant is connected to a chain, which is likely used to secure it in place. The hydrant is positioned close to the curb, making it easily accessible in case of emergencies.\n\nIn the background, there is a car parked on the street, and a truck can be seen further down the road. Additionally, a potted plant is located near the fire hydrant, adding a touch of greenery to the scene."} +{"image_id": 15596, "caption": "The image captures a thrilling moment on a race track, with two motorcycles racing side by side. One motorcycle is positioned on the left side of the track, while the other is on the right side. The riders are skillfully navigating the track, showcasing their expertise in motorcycle racing.\n\nIn addition to the motorcycles, there are two people visible in the scene. One is riding the motorcycle on the left side of the track, and the other is riding the motorcycle on the right side. Both riders are focused on the race, demonstrating their determination and passion for the sport."} +{"image_id": 569415, "caption": "The image features a large elephant walking across a grassy field. The elephant is the main focus of the scene, occupying a significant portion of the image from left to right. The elephant appears to be enjoying its time in the open field, possibly grazing or exploring the area."} +{"image_id": 305004, "caption": "The image captures a young man skillfully riding a surfboard on a wave in the ocean. He is wearing a colorful swimsuit and appears to be enjoying the thrill of surfing. The surfboard is positioned in the middle of the scene, with the man skillfully balancing on it as he navigates the wave."} +{"image_id": 510527, "caption": "The image depicts a man wearing a pink shirt and tie, sitting in the passenger seat of a car. He appears to be adjusting his tie, possibly preparing for a formal event or a business meeting. The man is also wearing a seat belt, ensuring his safety while traveling.\n\nIn the background, there are several cars visible, indicating that the scene takes place on a busy street or in a parking area."} +{"image_id": 581317, "caption": "In the image, a woman is standing on a lush green hillside, looking at her cell phone. She appears to be enjoying her time outdoors, possibly taking a break from hiking or exploring the area. The woman is wearing a pink shirt and is holding the cell phone in her hand.\n\nThe hillside is surrounded by trees, creating a serene and peaceful atmosphere. The woman seems to be the main focus of the scene, capturing the viewer's attention as she engages with her phone."} +{"image_id": 532071, "caption": "The image depicts a large brown bear resting in a grassy field. The bear is laying down on the lush green grass, with its front paws and chest on the ground. The scene takes place in a wooded area, as evidenced by the presence of trees in the background. The bear appears to be relaxed and enjoying its time in the serene environment."} +{"image_id": 467978, "caption": "The image depicts a black and white dog running through a grassy field, chasing a herd of sheep. The dog is positioned in the middle of the scene, actively pursuing the sheep. There are several sheep scattered throughout the field, with some closer to the dog and others further away.\n\nIn addition to the dog and sheep, there is a person visible in the background, possibly observing the chase or assisting with herding the animals. The scene captures the excitement and energy of the dog's pursuit of the sheep."} +{"image_id": 184972, "caption": "The image depicts a group of people gathered around a dining table, enjoying a meal together. A man is standing in the center of the scene, wearing a yellow plaid shirt and a tie with the words \"I'm too old for this\" written on it. He appears to be the focal point of the gathering.\n\nThere are several other people in the scene, with some sitting at the table and others standing nearby. Various items can be seen on the table, such as a wine glass, a cup, a fork, and a spoon. A chair is also visible in the background. The atmosphere seems to be relaxed and friendly, with everyone enjoying each other's company."} +{"image_id": 525568, "caption": "The image features a group of zebras standing together in a grassy field. There are three zebras prominently visible in the scene, with one zebra standing in the foreground, another in the middle, and the third one in the background. The zebras are positioned close to each other, creating a sense of togetherness.\n\nIn addition to the zebras, there is a tree in the background, providing a natural element to the scene. The zebras appear to be enjoying their time in the open field."} +{"image_id": 165056, "caption": "The image features two giraffes standing next to each other in a zoo enclosure. One giraffe is positioned on the left side of the image, while the other is on the right side. Both giraffes are looking at the camera, capturing their attention."} +{"image_id": 362240, "caption": "The image depicts a garage filled with various motorcycles and a deer head mounted on the wall. There are three motorcycles prominently displayed in the scene, with one on the left side, another in the middle, and the third one on the right side of the garage.\n\nIn addition to the motorcycles, there are several books scattered throughout the garage, with some placed on the floor and others on shelves. A bottle can also be seen in the middle of the garage, adding to the cluttered appearance of the space."} +{"image_id": 179558, "caption": "The image features two giraffes standing next to each other in a grassy field. Both giraffes are eating leaves from a tree branch, with one giraffe on the left side and the other on the right side of the tree. The giraffes are positioned close to each other, creating a sense of companionship as they enjoy their meal."} +{"image_id": 120792, "caption": "The image depicts two men standing in a living room, playing a boxing video game on a Nintendo Wii console. One of the men is holding a Wii remote, actively engaged with the game, while the other man watches the game."} +{"image_id": 294865, "caption": "The image depicts a group of people standing on the side of a train, waving and enjoying the ride. There are at least nine people visible in the scene, with some standing closer to the front of the train and others near the back. They appear to be having a good time as they travel together.\n\nThe train itself occupies a significant portion of the image, stretching from the left side to the right side of the frame. The passengers are spread out along the length of the train, with some standing closer to the windows and others near the center of the train. Overall, the scene conveys a sense of excitement and camaraderie among the travelers."} +{"image_id": 159662, "caption": "The image depicts a woman standing on a tennis court, holding a tennis racket in her hand. She is wearing a pink dress and appears to be focused on her game. There are several other people in the scene, some of whom are also holding tennis rackets.\n\nIn the background, there are multiple chairs and benches arranged for spectators to sit and watch the game. Some of these chairs and benches are placed closer to the foreground, while others are situated further back in the scene."} +{"image_id": 176906, "caption": "The image depicts a group of people standing near a fence, observing and interacting with a variety of farm animals. There are several sheep and goats gathered around the fence, with some of them eating from a bowl placed on the ground.\n\nIn addition to the people and animals, there are two cars parked in the background, one on the left side and the other on the right side of the scene. A bench can also be seen near the fence, providing a place for people to sit and enjoy the company of the animals."} +{"image_id": 250608, "caption": "The image features a large blue and white bus parked on the side of a street. The bus appears to be waiting at a bus stop, possibly picking up or dropping off passengers. There are a couple of cars parked nearby, one on the left side of the bus and another further back on the right side.\n\nIn addition to the vehicles, there are two people visible in the scene. One person is standing closer to the left side of the bus, while the other person is positioned further back on the right side of the bus."} +{"image_id": 33561, "caption": "The image depicts a large herd of cows grazing in a lush green field. The cows are scattered throughout the field, with some closer to the foreground and others further in the background. In total, there are 14 cows visible in the scene.\n\nThe field is surrounded by trees, creating a serene and peaceful atmosphere. The cows appear to be enjoying their time in the field, grazing on the abundant grass."} +{"image_id": 274612, "caption": "The image features a row of bicycles parked in front of a building, with several umbrellas providing shade for the bikes. The umbrellas are positioned above the bicycles, creating a visually appealing scene.\n\nThere are a total of nine bicycles in the scene, with some of them placed closer to the building, while others are positioned further away. The umbrellas are spread across the scene, with one umbrella covering the bicycles on the left side, another covering the bicycles in the middle, and the third umbrella covering the bicycles on the right side.\n\nIn addition to the bicycles and umbrellas, there is a person standing near the center of the scene, possibly admiring the arrangement or attending to one of the bicycles."} +{"image_id": 288714, "caption": "The image features a close-up view of a delicious pizza with various toppings. The pizza is topped with olives, mushrooms, and cheese, creating a mouth-watering combination of flavors. The pizza is placed on a dining table, ready to be enjoyed by those who partake in it."} +{"image_id": 284379, "caption": "The image features a young boy wearing a black shirt and blue shorts, lying on a yellow surfboard in a wave pool. He appears to be enjoying his time on the surfboard, possibly learning how to surf or simply having fun. The wave pool is filled with water, providing a suitable environment for the boy to practice his surfing skills."} +{"image_id": 205247, "caption": "The image features a white city bus parked on the side of a street. The bus is adorned with a large advertisement for the Cincinnati Bearcats basketball team. The advertisement is prominently displayed on the side of the bus, capturing the attention of passersby.\n\nIn addition to the bus, there are two people visible in the scene. One person is standing near the front of the bus, while the other person is located closer to the middle of the scene."} +{"image_id": 200267, "caption": "In the image, a woman is playing tennis on a court, holding a tennis racket and preparing to hit a tennis ball. She is surrounded by a group of people who are watching her play. There are at least 13 people in the scene, some standing closer to the court while others are further away.\n\nThere are several tennis balls scattered across the court, with a total of 14 tennis balls visible in the scene. The woman is focused on her game, and the spectators seem to be enjoying the match as well."} +{"image_id": 296775, "caption": "The image features a large blue and yellow bus driving down a city street. The bus is positioned in the center of the scene, occupying a significant portion of the road. There are several people around the bus, with some standing closer to the bus and others further away.\n\nIn addition to the bus, there are two bicycles visible in the scene. One bicycle is located on the left side of the bus, while the other is on the right side. The presence of both the bus and bicycles suggests that this is a bustling urban environment with various modes of transportation in use."} +{"image_id": 4265, "caption": "The image features a window sill filled with various potted plants and vases. There are three potted plants, one on the left side, another in the middle, and the third on the right side of the window sill. In addition to the potted plants, there are three vases placed on the window sill, with one on the left side, another in the middle, and the third on the right side.\n\nThe plants and vases are arranged in a visually appealing manner, creating a pleasant and inviting atmosphere in the space."} +{"image_id": 104392, "caption": "The image showcases a spacious kitchen with wooden cabinets and granite countertops. The kitchen is well-equipped with various appliances, including a refrigerator on the right side, a microwave above the oven, and an oven situated below the microwave. There is also a sink in the middle of the kitchen area.\n\nIn addition to the main appliances, there are several cups and bowls placed around the kitchen. Two cups can be seen on the countertops, one near the sink and the other closer to the refrigerator. Two bowls are also visible, one near the sink and the other near the refrigerator."} +{"image_id": 316658, "caption": "The image depicts a serene scene of a man sitting on a bench near a body of water, possibly a lake or a river. The bench is positioned under a large tree, providing shade and a sense of tranquility. The man appears to be enjoying the peaceful surroundings.\n\nIn the background, there are two ducks swimming on the water, adding a touch of nature to the scene. Additionally, a boat can be seen floating on the water, further enhancing the picturesque setting."} +{"image_id": 230993, "caption": "The image depicts two women walking down a street, both holding umbrellas to protect themselves from the rain. One of the umbrellas is red, while the other is gray. The women are carrying handbags as they walk, with one of the handbags being brown and the other being red.\n\nIn addition to the two main women, there are two other people visible in the scene, one on the left side and the other on the right side of the image. The street appears to be wet, indicating that it has recently rained."} +{"image_id": 321035, "caption": "The image features a large, beautifully decorated cake placed on a dining table. The cake is adorned with red frosting and has the words \"Welcome Malachi\" written in red frosting as well. The cake is positioned in the center of the table, making it the focal point of the scene."} +{"image_id": 571038, "caption": "In the image, a woman is standing in a kitchen, proudly holding an aluminum pan filled with a delicious homemade pizza. The pizza is topped with cheese, tomatoes, and basil, making it an appetizing sight.\n\nThe kitchen is well-equipped with various appliances and utensils. There are two ovens, one on the left side and another on the right side of the kitchen. A sink can be seen in the background, along with a knife and a spoon placed nearby. Additionally, there are two bottles in the kitchen, one on the left side and another on the right side. A potted plant is also present in the scene, adding a touch of greenery to the room."} +{"image_id": 395978, "caption": "The image depicts a snow-covered airport runway with a large passenger jet parked on the tarmac. There are two men working on the runway, digging holes in the snow with shovels. One of the men is closer to the left side of the scene, while the other is positioned more towards the center.\n\nIn addition to the airplane, there are two trucks visible in the scene. One truck is located on the left side of the airplane, and the other is on the right side. The presence of these trucks suggests that they might be involved in the maintenance or servicing of the airplane."} +{"image_id": 482917, "caption": "The image features a black and white dog sitting on a couch next to a person. The dog appears to be looking at the television, which is mounted on the wall above the couch. The person is also sitting on the couch, with their feet visible in the scene.\n\nIn addition to the main couch, there are two other couches in the background, one on the left side and another on the right side of the room. A chair and a dining table can also be seen in the background, adding to the cozy atmosphere of the living space."} +{"image_id": 207561, "caption": "The image captures a group of three surfers riding waves in the ocean. Each surfer is on a surfboard, skillfully navigating the waves. The first surfer is located on the left side of the image, the second surfer is in the middle, and the third surfer is on the right side.\n\nThe ocean is filled with waves, providing an exciting and challenging environment for the surfers. The waves vary in size and shape, creating a dynamic and thrilling scene for the surfers to enjoy."} +{"image_id": 369470, "caption": "The image depicts a city street with a row of parking meters lined up on the sidewalk. There are several cars parked along the street, with some closer to the foreground and others further in the background. The parking meters are placed at regular intervals, ensuring that drivers pay for their parking spots.\n\nIn addition to the cars and parking meters, there are a few potted plants placed along the sidewalk, adding a touch of greenery to the urban environment. A fire hydrant can also be seen near the middle of the scene, serving as a safety measure in case of emergencies."} +{"image_id": 482210, "caption": "The image depicts a small bathroom with white fixtures, including a toilet and a sink. The toilet is positioned on the right side of the bathroom, while the sink is located on the left side. The bathroom features a mirror above the sink, and a shelf can be seen above the toilet.\n\nIn addition to the main fixtures, there is a bottle placed on the left side of the bathroom, and a toothbrush is located near the sink. The overall appearance of the bathroom is clean and well-maintained."} +{"image_id": 525381, "caption": "The image captures an exciting moment during a baseball game. A baseball player is in the middle of swinging his bat, attempting to hit the ball. The catcher, wearing a baseball glove, is positioned behind the batter, ready to catch the ball if the batter misses.\n\nThere are several other people in the scene, including teammates, opponents, and possibly coaches. Some of them are standing close to the batter, while others are scattered around the field. A bench can be seen in the background, likely for players to sit on when they are not actively participating in the game."} +{"image_id": 156375, "caption": "In the image, a woman is standing on a snow-covered slope, wearing skis and holding ski poles. She is smiling and appears to be enjoying her skiing experience. The woman is wearing a pink jacket, which adds a pop of color to the snowy scene.\n\nThere are a few other people in the background, but they are not the main focus of the image. The primary focus is on the woman with her skis and poles, showcasing her skiing adventure."} +{"image_id": 334399, "caption": "The image features a man wearing a white shirt and a hat, standing in front of a large clock. He appears to be admiring the intricate mechanism of the clock, which is placed on a table. Another person can be seen in the background, possibly observing the clock as well.\n\nThere are several books scattered around the scene, with some placed on the table and others on the floor. A handbag is also visible in the background, possibly belonging to one of the people in the scene."} +{"image_id": 322955, "caption": "The image captures a serene beach scene with a seagull standing on the wet sand near a body of water. The bird appears to be walking along the shoreline, possibly searching for food or enjoying the surroundings. The beach is bathed in a warm, golden light, creating a peaceful atmosphere."} +{"image_id": 312024, "caption": "The image features a small blue and black bird perched on the ground in a grassy field. The bird appears to be standing on one leg, possibly resting or observing its surroundings. The field is lush and green, providing a natural habitat for the small bird."} +{"image_id": 118715, "caption": "The image is a black and white photograph of a fire hydrant situated on a sidewalk. The fire hydrant is prominently positioned in the center of the scene, and it appears to be a large, old-fashioned model. The sidewalk is made of cobblestones, giving the scene a vintage feel.\n\nIn addition to the fire hydrant, there are two chains visible in the image. One chain is located on the left side of the fire hydrant, while the other chain is on the right side. These chains might be used for securing the fire hydrant or for attaching hoses during emergencies."} +{"image_id": 237318, "caption": "The image depicts a stop sign located in a wooded area, surrounded by trees and bushes. The stop sign is positioned in the middle of the scene, and it appears to be slightly obscured by the surrounding vegetation. The area seems to be a mix of a forest and a dirt road, creating a serene and natural atmosphere."} +{"image_id": 236865, "caption": "The image features a young girl standing on a sidewalk, holding a red frisbee in her hand. She appears to be enjoying her time outdoors, possibly playing with the frisbee or preparing to throw it. The girl is wearing a floral dress, which adds a touch of color to the scene.\n\nIn the background, there are two houses visible, one on the left side and the other on the right side of the image. Additionally, there is a car parked further back on the right side of the scene."} +{"image_id": 72096, "caption": "The image features a woman sitting at a dining table with a plate of food in front of her. She appears to be enjoying her meal, which includes a variety of items such as fruits, pastries, and a cup of orange juice. The table is set with utensils like forks, knives, and spoons, as well as cups and bowls.\n\nThere are multiple chairs around the dining table, with one on the left side, one on the right side, and another at the head of the table. The table is adorned with a floral tablecloth, adding a touch of elegance to the scene."} +{"image_id": 450762, "caption": "The image features a group of teddy bears dressed in military uniforms, sitting together on a boat. There are a total of nine teddy bears in the scene, with some sitting closer to the front of the boat and others towards the back. The teddy bears are arranged in various positions, creating a sense of camaraderie among them.\n\nThe boat itself is quite large, occupying most of the image, and the teddy bears appear to be enjoying their time together on this unique vessel."} +{"image_id": 168974, "caption": "The image features a young child, possibly a toddler, sitting on the floor and playing with a cell phone. The child is holding the cell phone in their hands, possibly pressing buttons or interacting with the device. The scene appears to be indoors, with a dining table visible in the background."} +{"image_id": 559950, "caption": "The image features a small, fluffy dog sitting in the back seat of a car, looking out the window. The dog appears to be enjoying the ride and observing its surroundings.\n\nThere are several cars visible in the scene, with one car occupying the majority of the background and another car partially visible on the left side of the image. A person can also be seen in the background, likely a passenger in one of the cars."} +{"image_id": 575776, "caption": "The image features a zebra and a rhinoceros standing in a dirt field. The zebra is positioned on the left side of the scene, while the rhinoceros is on the right side. The two animals appear to be facing each other, possibly engaging in a confrontation or simply observing each other.\n\nIn the background, there is a hill visible, adding to the natural setting of the scene. The animals seem to be enjoying their time outdoors, exploring and interacting with one another."} +{"image_id": 552352, "caption": "The image features a close-up view of a slice of cheesecake on a plate. The cheesecake is placed on a fork, which is resting on a dining table. The fork is positioned on the left side of the cheesecake, while the plate occupies most of the right side of the image. The cheesecake appears to be a delicious dessert, ready to be enjoyed."} +{"image_id": 490683, "caption": "The image depicts two people playing a game of frisbee in a grassy field. One person is positioned on the left side of the field, while the other is on the right side. Both players are holding frisebes in their hands, actively engaged in the game.\n\nIn the background, there is a car parked near the edge of the field, possibly belonging to one of the players or spectators. The scene captures the essence of outdoor recreational activities and friendly competition."} +{"image_id": 76417, "caption": "The image features a white dog sticking its head out of the window of a black truck. The dog appears to be enjoying the breeze and observing its surroundings. The truck is stopped at a traffic light, which can be seen in the background.\n\nThere are two traffic lights in the scene, one on the left side and another on the right side of the truck. Additionally, there is a person visible in the background, possibly a pedestrian or another driver."} +{"image_id": 231153, "caption": "The image captures a snowboarder in mid-air, performing a high jump off a snowy hill. The snowboarder is wearing a blue jacket and appears to be enjoying the thrill. There's another snowboard visible on the ground, suggesting that the snowboarder may have been practicing or preparing for the jump. The scene showcases the excitement and skill involved in snowboarding."} +{"image_id": 190497, "caption": "The image depicts a herd of black and white cows standing on a dirt road in front of a barn. There are at least 13 cows visible in the scene, with some standing closer to the barn and others spread out along the road. The cows are of various sizes, indicating a mix of ages and stages of development.\n\nThe barn serves as the backdrop for the scene, providing shelter and a place for the cows to rest when they are not grazing. The dirt road provides a path for the cows to move around and access the barn as needed."} +{"image_id": 126065, "caption": "The image features a clock tower with two bell statues on either side of it. The clock is prominently positioned in the middle of the tower, making it the focal point of the scene. The bell statues are located on the left and right sides of the clock, adding a unique and decorative touch to the structure. The combination of the clock and bell statues creates an interesting and visually appealing architectural design."} +{"image_id": 375915, "caption": "The image features a wooden dining table with a delicious homemade pizza placed on a cutting board. The pizza is topped with a variety of ingredients, including tomatoes, olives, and cheese. A knife is also present on the table, ready to be used for slicing the pizza.\n\nIn addition to the pizza, there are a few other items on the table, such as a wine glass, a bowl, and a fork. The wine glass is positioned near the top left corner of the table, while the bowl is located in the middle of the table. The fork is placed on the right side of the table."} +{"image_id": 95022, "caption": "The image features a gray and black bird perched on a thin tree branch. The bird appears to be a pigeon, and it's resting comfortably on the tree limb. The pigeon's position on the branch suggests that it's enjoying the outdoor environment and possibly observing its surroundings."} +{"image_id": 177935, "caption": "The image features a kitchen with a white stove top oven, which is the main focus of the scene. The stove is equipped with four burners, and it appears to be clean and well-maintained. Above the stove, there is a clock mounted on the wall, providing a functional and decorative element to the kitchen.\n\nIn addition to the stove, the kitchen is well-equipped with various appliances and utensils. There are two sinks, one on the left side and another on the right side of the kitchen. A refrigerator can be seen in the background, and a microwave is placed on the countertop.\n\nNumerous knives are scattered throughout the kitchen, with some placed on the countertops and others in a knife block. A couple of spoons are also visible, one on the left side and another on the right side of the kitchen."} +{"image_id": 380117, "caption": "The image features a table with a variety of potted plants and a cat sleeping on top of it. The cat is positioned in the center of the table, taking up a significant portion of the space. There are at least four potted plants visible, one on the left side of the table, another on the right side, and two more in the background.\n\nIn addition to the potted plants, there are two cups placed on the table, one near the left edge and the other near the right edge. A vase can also be seen on the left side of the table, adding to the overall decoration of the scene."} +{"image_id": 132373, "caption": "The image features a large clock mounted on the side of a building, with an American flag hanging nearby. The clock is positioned towards the left side of the building, while the flag is hanging on the right side. The clock is illuminated, making it stand out against the dark background.\n\nIn addition to the clock and flag, there are two people visible in the scene. One person is located on the left side of the image, while the other person is on the right side. The presence of these individuals adds a sense of scale and context to the scene."} +{"image_id": 284282, "caption": "The image features a dining table with two appliances placed on it. One of the appliances is a blender, while the other is a toaster oven. The blender is positioned on the left side of the table, and the toaster oven is on the right side.\n\nIn addition to the appliances, there is a bowl placed on the table, slightly to the left of the blender. The table occupies most of the image, with the appliances and the bowl being the main focus of the scene."} +{"image_id": 276707, "caption": "The image features a street scene with a \"no motorcycles\" sign prominently displayed in front of a building. The sign is positioned on the side of the road, making it clear to motorcyclists that they are not allowed in the area. \n\nIn addition to the \"no motorcycles\" sign, there is a \"no bicycles\" sign further down the street, indicating that both motorcycles and bicycles are not allowed in this particular area. The scene also includes a person standing near the left side of the image, possibly observing the signs or going about their daily activities."} +{"image_id": 194704, "caption": "The image features a young girl wearing a black jacket and goggles, holding a pair of skis in her hands. She appears to be posing for a picture, possibly in front or near a building. There are several other people in the scene, with one person standing close to the left side of the image, another person in the middle, and a third person on the right side.\n\nIn addition to the people and skis, there are two handbags visible in the scene. One handbag is located near the center of the image, while the other handbag is positioned closer to the right side."} +{"image_id": 430286, "caption": "The image features a bed with three remote controls placed on top of it. Two of the remotes are located closer to the left side of the bed, while the third one is positioned more towards the right side. The remotes are likely for controlling various electronic devices, such"} +{"image_id": 361171, "caption": "The image captures a thrilling moment of a snowboarder soaring in the air after launching off a ramp. The snowboarder is in mid-air, showcasing their skill and athleticism. The snowboard is clearly visible beneath the snowboarder, adding to the excitement of the scene.\n\nIn the background, a tall building can be seen, providing an interesting contrast to the snowboarding action taking place in the foreground."} +{"image_id": 406451, "caption": "The image features a horse standing on a city street, wearing a red harness and pulling a carriage. The horse is positioned in the middle of the scene, and the carriage appears to be a horse-drawn carriage.\n\nThere are several cars parked along the street, with one car on the left side of the horse, two cars on the right side, and another car further down the street. Additionally, there are two traffic lights visible in the scene, one on the left side and the other on the right side of the street.\n\nA person can be seen standing near the right edge of the image, possibly observing the horse and carriage or waiting to board the carriage."} +{"image_id": 57286, "caption": "The image captures a thrilling moment at a skate park, where a young man is performing a daring trick on his skateboard. He is in the midst of a jump, flying through the air with his skateboard beneath him.\n\nThere are several other people in the scene, watching the skateboarder's impressive feat. Some of them are standing closer to the skateboarder, while others are further away, observing the action. In total, there are nine people in the scene, including the skateboarder.\n\nAdditionally, there are three skateboards visible in the image, one of which is being used by the skateboarder performing the trick, and the other two are placed on the ground, likely belonging to other skateboarders in the park."} +{"image_id": 535952, "caption": "The image features a wooden cutting board with three chocolate cupcakes placed on it. The cupcakes are arranged in a row, with one cupcake on the left side, another in the middle, and the third one on the right side of the cutting board. The cupcakes appear to be freshly baked and ready to be enjoyed."} +{"image_id": 455772, "caption": "In the image, a man is leaping into the air to catch a white frisbee. He is wearing a hat and appears to be fully engaged in the activity. There are several cars parked in the background, with one on the left side of the scene and two more on the far right. Additionally, there is a handbag placed on the ground near the center of the scene."} +{"image_id": 63617, "caption": "The image features a young boy wearing a baseball glove, attempting to catch a sports ball in mid-flight. He is focused on the ball, which is positioned slightly above his glove. The boy appears to be enjoying the game and practicing his catching skills.\n\nIn the background, there are two dogs, one on the left side and the other on the right side of the image. They seem to be observing the boy's actions, possibly waiting for their turn to play or simply enjoying the scene."} +{"image_id": 90155, "caption": "The image depicts a train traveling down a set of train tracks, surrounded by a lush green field. The train is long and yellow, with several cars attached to it. The train appears to be moving at a moderate speed, as it travels through the countryside. The scene captures the essence of transportation and the beauty of nature."} +{"image_id": 158127, "caption": "The image features a large orange cat lying on the ground next to a person's feet. The cat appears to be resting or sleeping, taking up a significant portion of the scene. The person's feet are positioned close to the cat, with one shoe visible on the left side of the cat and the other shoe on the right side. The scene captures a moment of relaxation and companionship between the cat and the person."} +{"image_id": 248582, "caption": "The image depicts a lively street market scene with a group of people shopping for fruits and vegetables. There are at least six people visible in the scene, with some standing closer to the camera and others further in the background.\n\nThe market is filled with a variety of fresh produce, including bananas, apples, and oranges. Several bunches of bananas can be seen hanging from the ceiling, while apples and oranges are displayed in different areas of the market. A backpack is also visible in the scene, likely belonging to one of the shoppers."} +{"image_id": 206560, "caption": "The image captures a thrilling moment of a snowboarder performing a trick in the middle of the air. The snowboarder, wearing a helmet, is at the peak of their jump, showcasing their skill and athleticism. The snowboard is clearly visible beneath the snowboarder, adding to the excitement of the scene.\n\nIn addition to the main snowboarder, there are two other people in the image, one on the left side and the other on the right side of the frame. They seem to be watching the snowboarder's impressive jump, likely enjoying the spectacle or waiting for their turn to perform their own tricks."} +{"image_id": 69009, "caption": "The image features two young boys wearing blue hats, standing in front of a glass enclosure at a zoo. They are observing a large brown bear inside the enclosure, which appears to be their main focus of interest. The boys seem to be enjoying their time at the zoo, watching the bear up close."} +{"image_id": 322122, "caption": "The image features a bathroom with a white toilet in the center of the scene. The toilet seat is up, revealing the toilet bowl. A toilet brush is placed next to the toilet, ready for use.\n\nIn addition to the toilet, there is a sink located on the left side of the bathroom. A bottle can be seen on the right side of the bathroom, possibly containing toiletries or cleaning supplies."} +{"image_id": 549930, "caption": "The image depicts a man and a woman walking down a rain-soaked street, sharing a blue umbrella to protect themselves from the rain. The woman is wearing white shorts, and the man is wearing a white shirt. They appear to be enjoying their time together despite the unfavorable weather conditions.\n\nIn the background, there are several beach chairs and umbrellas set up, suggesting that they are near a beach or a recreational area. The chairs and umbrellas are arranged in various positions, with some closer to the foreground and others further in the background."} +{"image_id": 33216, "caption": "The image features a large, freshly baked pizza sitting on a silver platter on a dining table. The pizza is topped with a generous amount of sauce, cheese, and meat, making it an appetizing sight.\n\nThere are several people in the scene, with one person standing close to the left side of the table, another person on the right side, and a third person in the background. A chair is also visible near the right side of the table.\n\nIn addition to the pizza, there are a couple of cups placed on the table, one near the center and the other towards the right side. A handbag can be seen on the left side of the table, possibly belonging to one of the people in the scene."} +{"image_id": 434581, "caption": "The image depicts a person riding a motorcycle down a street. The rider is wearing a black leather jacket and a helmet, ensuring safety while enjoying the ride. The motorcycle is positioned in the center of the scene, with the rider sitting comfortably on it.\n\nThe street appears to be relatively empty, with no other vehicles or pedestrians visible in the image. The focus is on the person riding the motorcycle, showcasing their skill and the thrill of the ride."} +{"image_id": 239509, "caption": "The image features a city street with several street signs and a motorcycle parked on the side of the road. One of the most prominent signs is a red pedestrian crossing sign, which is located near the center of the scene. There is also a motorcycle parked on the left side of the street, closer to the foreground.\n\nIn addition to the pedestrian crossing sign, there are two other street signs visible in the scene. One is positioned on the right side of the street, while the other is located further back on the left side. A person can be seen standing near the middle of the scene, possibly observing the surroundings or waiting to cross the street."} +{"image_id": 88848, "caption": "The image is a collage of four pictures featuring a woman and a fire hydrant. In the first picture, the woman is standing next to the fire hydrant, while in the second picture, she is posing in front of the hydrant. The third picture shows the woman and the fire hydrant together, and in the fourth picture, the woman is posing in front of the fire hydrant.\n\nIn addition to the woman and the fire hydrant, there are two other people visible in the collage, one in the top right corner and another in the bottom right corner. A bench can also be seen in the bottom left corner of the collage."} +{"image_id": 116182, "caption": "The image features a large bowl filled with a delicious meal consisting of chicken, broccoli, and carrots. The bowl is placed on a dining table, showcasing the vibrant colors and textures of the ingredients. There are several pieces of broccoli and carrots scattered throughout the bowl, adding to the visual appeal of the dish. The combination of chicken, broccoli, and carrots creates a well-balanced and nutritious meal."} +{"image_id": 562345, "caption": "The image features a woman wearing a yellow raincoat, standing in front of a brick wall. She is holding a cell phone in her hand, possibly checking messages or browsing the internet. The woman is also wearing a necklace, adding a stylish touch to her outfit.\n\nIn the background, there is a handbag placed on the ground, possibly belonging to the woman. The scene captures a casual and relaxed atmosphere, with the woman enjoying her outdoors experience."} +{"image_id": 343410, "caption": "The image features a red plate filled with a delicious assortment of vegetables, including several pieces of broccoli and onions. The broccoli pieces are scattered across the plate, with some placed closer to the center and others towards the edges. The onions are also present on the plate, adding to the variety of vegetables. The plate is placed on a dining table, ready to be enjoyed as a healthy and nutritious meal."} +{"image_id": 490529, "caption": "The image features a woman wearing glasses and a pink sweater, sitting in a chair and looking at her cell phone. She appears to be focused on her phone, possibly texting or browsing the internet.\n\nThere are several other people in the scene, some sitting and others standing. A dining table can be seen in the background, along with a few chairs placed around it. A cup is also visible on the table, possibly containing a beverage."} +{"image_id": 328818, "caption": "In the image, a woman is sitting on a wooden bench, tying her shoes. She is wearing a pink shirt and blue jeans. The bench is located near a bicycle, which is parked on the left side of the scene. Another bicycle can be seen in the background, closer to the right side of the image.\n\nThere is also a backpack placed on the ground near the bench, possibly belonging to the woman or someone else in the area. The scene appears to be set in a park or a similar outdoor location."} +{"image_id": 218947, "caption": "The image depicts a snow-covered mountain with a skier making their way down the slope. The skier is wearing a backpack and is positioned towards the center of the scene. Another person can be seen in the background, possibly observing the skier or waiting for their turn to ski.\n\nThere are two sets of skis visible, one belonging to the skier in the foreground and the other set belonging to the person in the background. The skier in the foreground is closer to the viewer, while the person in the background is further away, creating a sense of depth in the scene."} +{"image_id": 152281, "caption": "The image depicts a large herd of sheep grazing in a lush green field. The sheep are scattered throughout the field, with some closer to the foreground and others further in the background. In total, there are at least 15 sheep visible in the scene.\n\nIn addition to the sheep, there are two people present in the field, likely tending to the animals or observing them. One person is located near the left side of the field, while the other is on the right side, closer to the middle."} +{"image_id": 41110, "caption": "The image features a young child, possibly a toddler, sitting on a bed and drinking from a baby bottle. The child is focused on the bottle and appears to be enjoying their drink. The bottle is placed in front of the child, with the child's mouth positioned close to the bottle's nipple."} +{"image_id": 512985, "caption": "The image features a man standing on a sandy beach, holding a surfboard. He is wearing a wetsuit and appears to be preparing for a surfing session. The surfboard is positioned in front of him, ready for use.\n\nIn the background, there is a body of water, likely the ocean, providing a picturesque setting for the surfer. The scene captures the essence of beach life and the excitement of surfing."} +{"image_id": 414212, "caption": "The image features a man standing in a bathroom, holding two toothbrushes and a tube of toothpaste. He is giving a thumbs-up sign, indicating his approval or satisfaction with the toothbrushes and toothpaste. The man is wearing glasses and appears to be in a cheerful mood.\n\nThe bathroom is equipped with a sink and a mirror, which can be seen in the background. The toothbrushes and toothpaste are prominently displayed in the man's hands, emphasizing their importance in maintaining oral hygiene."} +{"image_id": 426578, "caption": "The image depicts a man running on a sandy beach, wearing a wetsuit and carrying a surfboard. He appears to be enjoying his time at the beach, possibly preparing for a surfing session.\n\nIn the background, there are several other people scattered across the beach, some closer to the water and others further away. Additionally, there are a few birds flying in the sky, adding to the lively atmosphere of the beach scene."} +{"image_id": 291962, "caption": "The image features a young boy standing in a grassy field, flying a colorful kite high in the sky. The kite appears to be a rainbow-colored parachute, adding a vibrant touch to the scene. The boy seems to be enjoying his time outdoors, controlling the kite as it soars through the air.\n\nIn the background, there is a house visible, providing a sense of the location where the boy is flying his kite."} +{"image_id": 460927, "caption": "The image features a large brown bear standing on a grass-covered hillside. The bear appears to be looking at the camera, possibly posing for a picture. The bear's fur is wet, indicating that it might have been in the water recently. The scene captures the majestic presence of the bear in its natural habitat."} +{"image_id": 552186, "caption": "The image captures a lively scene at a skate park, where a shirtless man is skillfully riding a skateboard up the side of a ramp. There are several other people in the park, some of whom are also skateboarding or watching the action.\n\nIn addition to the skateboarders, there are a few cars and a truck parked in the vicinity of the skate park, likely belonging to the visitors. A bench can also be seen in the background, providing a place for spectators to sit and enjoy the skateboarding activities."} +{"image_id": 553852, "caption": "The image features a young boy riding a skateboard on a sidewalk. He is wearing a white shirt and appears to be enjoying his time on the skateboard. The scene also includes a bicycle parked in the background on the left side of the image."} +{"image_id": 370337, "caption": "The image depicts a harbor scene with two boats docked next to a pier. One of the boats is red and white, while the other is red and black. The boats are positioned close to each other, with the red and white boat on the left side and the red and black boat on the right side of the pier.\n\nIn the background, there are a few buildings visible, adding to the urban atmosphere of the scene. The presence of these buildings suggests that the harbor is located near a city or town."} +{"image_id": 18491, "caption": "The image captures a thrilling moment during a baseball game. A baseball player is sliding into home plate, attempting to score a run. The catcher, wearing a baseball glove, is trying to tag the player out.\n\nThere are several other people present in the scene, including teammates, opponents, and possibly coaches or umpires. Some of them are standing close to the action, while others are positioned further away. A bench can be seen in the background, likely for players to sit on when they are not actively participating in the game."} +{"image_id": 556000, "caption": "The image depicts a family gathered in a living room, playing a video game together. There are four people in the scene, with two of them standing and holding Wii remotes, actively engaged in the game. The other two family members are watching and enjoying the gameplay.\n\nThe living room is furnished with a couch, a chair, and a dining table. A potted plant can be seen in the room, adding a touch of greenery to the space. There is also a handbag placed on the floor, possibly belonging to one of the family members."} +{"image_id": 443351, "caption": "The image features a parking lot with two motorcycles parked next to each other. One of the motorcycles is a moped, while the other is a larger motorcycle. The moped is positioned closer to the left side of the parking lot, while the larger motorcycle is on the right side.\n\nIn addition to the motorcycles, there is a bicycle parked in the middle of the parking lot. The bicycle is located between the two motorcycles, adding variety to the vehicles present in the scene."} +{"image_id": 63965, "caption": "In the image, a woman is holding a plate with a slice of cake on it. The cake is decorated with a heart-shaped red flower, adding a touch of elegance to the dessert. The plate is placed on a dining table, and the woman appears to be enjoying the delicious treat."} +{"image_id": 405660, "caption": "The image features a wooden park bench situated in a grassy area, overlooking a beautiful mountain range. The bench is positioned near the center of the scene, providing a perfect spot for visitors to sit and enjoy the breathtaking view. The mountain range stretches across the background, creating a serene and picturesque landscape."} +{"image_id": 419144, "caption": "The image is a black and white photograph of a group of people riding on the backs of several elephants. There are a total of five elephants in the scene, each carrying a rider. The elephants are arranged in a line, with the first elephant on the left side of the image and the last elephant on the right side.\n\nThe riders are positioned on the backs of the elephants, with some riders closer to the front of the elephants and others further back. The riders appear to be enjoying their time on the elephants, creating a unique and memorable experience."} +{"image_id": 371004, "caption": "The image features a zebra standing inside a fenced enclosure at a zoo. The zebra is looking over the top of the fence, possibly observing its surroundings or interacting with visitors. The enclosure is surrounded by trees, providing a natural environment for the zebra."} +{"image_id": 116861, "caption": "In the image, a woman is lying down on a couch, resting her head on a stuffed teddy bear. The teddy bear is placed on her chest, providing a sense of comfort and relaxation. The woman appears to be enjoying her time on the couch, possibly taking a nap or simply resting."} +{"image_id": 579664, "caption": "The image features a wooden crate filled with a variety of bananas and plantains. The bananas are in different stages of ripeness, with some appearing ripe and ready to eat, while others are still green and unripe. The plantains are also present in the crate, adding to the assortment of fruits.\n\nThe bananas and plantains are arranged in a visually appealing manner, with some overlapping each other. The wooden crate is placed on the ground, providing a natural and rustic touch to the scene."} +{"image_id": 5600, "caption": "The image features a dining table with two bowls placed on it. The first bowl is filled with a mixture of meat and vegetables, while the second bowl is filled with a variety of fruits. The fruits in the second bowl include bananas, apples, and oranges, creating a colorful and appetizing display.\n\nIn addition to the bowls, there is a spoon resting on the table, ready to be used for enjoying the delicious meal. The combination of fruits, vegetables, and meat in the first bowl and the assortment of fruits in the second bowl make for a visually appealing and nutritious meal."} +{"image_id": 199389, "caption": "The image features a unique fire hydrant painted to look like a train conductor, complete with a face drawn on it. The fire hydrant saddlebag and hose connector are attached to it. In addition to the fire hydrant, there is also a car visible in the background, parked on the side of the road."} +{"image_id": 568131, "caption": "The image features a large elephant walking through a lush green field, surrounded by trees. The elephant is the main focus of the scene, occupying a significant portion of the image. The field appears to be a mix of grass and dirt, providing a natural habitat for the elephant. The trees in the background add to the serene ambiance of the scene."} +{"image_id": 35671, "caption": "The image depicts a bullfighting event taking place in a dirt arena. A man is riding a horse, attempting to lasso a bull that is running towards him. The bull is positioned towards the left side of the arena, while the man on the horse is on the right side.\n\nSeveral people are watching the event from various positions around the arena. Some are standing close to the action, while others are further away, observing the bullfighting from different angles. The spectators appear to be engaged and interested in the ongoing event."} +{"image_id": 76522, "caption": "The image features a black and white cat sleeping on top of a couch. The cat is curled up and appears to be resting comfortably. Next to the cat, there is a remote placed on the couch, possibly belonging to a television or other entertainment device."} +{"image_id": 504167, "caption": "The image features a close-up of a brown and white cat with green eyes, sitting on a wooden floor. The cat appears to be staring directly at the camera, capturing the viewer's attention. The cat's fur is well-groomed, and its eyes are wide open, giving it a curious and alert expression."} +{"image_id": 21644, "caption": "The image depicts a parking lot filled with several buses parked next to each other. There are five buses in total, with one on the left side, two in the middle, and two on the right side of the parking lot. The buses vary in size, with some being larger and others smaller.\n\nIn addition to the buses, there are two people visible in the scene. One person is located near the left side of the parking lot, while the other person is on the right side, closer to the rightmost bus."} +{"image_id": 483135, "caption": "The image depicts a group of young people gathered in a living room, playing a video game on a Nintendo Wii console. There are at least five people in the room, with some sitting on a couch and others standing or sitting on the floor.\n\nTwo Wii remotes can be seen in the hands of the players, indicating that they are actively engaged in the game. The living room is furnished with a couch, a chair, and a dining table. A potted plant is also present in the room, adding a touch of greenery to the space."} +{"image_id": 271063, "caption": "The image features a kitchen with wooden cabinets and a microwave oven. The microwave is positioned on the left side of the kitchen, while the oven is located on the right side. The cabinets are made of wood and provide ample storage space.\n\nIn addition to the microwave and oven, there is a refrigerator situated in the middle of the kitchen. A sink can be found on the right side of the kitchen, close to the refrigerator. The kitchen appears to be well-equipped and ready for use."} +{"image_id": 36477, "caption": "The image features a large pile of ripe bananas displayed in a box. The bananas are arranged in various positions, with some overlapping and others stacked on top of each other. The bananas are predominantly yellow, indicating that they are ripe and ready to be eaten. The box is filled with numerous bunches of bananas, creating a visually appealing and abundant display."} +{"image_id": 125375, "caption": "The image depicts a train station with a red and white train stopped at the platform. Several people are waiting on the platform, with some standing closer to the train and others further away. In total, there are nine people visible in the scene, some of them carrying handbags.\n\nThe train occupies a significant portion of the image, stretching from the left to the right side of the platform. The people on the platform appear to be waiting for the train to come to a complete stop before boarding or disembarking."} +{"image_id": 362520, "caption": "The image features a young boy wearing a helmet and knee pads, skillfully riding a skateboard at a skate park. He is in the middle of performing a trick, with the skateboard positioned under his feet. The boy appears to be enjoying his time at the skate park, showcasing his talent and passion for skateboarding."} +{"image_id": 5412, "caption": "The image depicts a small bathroom with a white toilet and a white sink. The toilet is positioned on the left side of the bathroom, while the sink is located on the right side. The sink appears to be a pedestal sink, adding a touch of elegance to the space.\n\nIn addition to the toilet and sink, there is a toilet paper roll placed on the left side of the toilet, and a bottle can be seen on the right side of the sink. The bathroom has a beige color scheme, giving it a warm and inviting atmosphere."} +{"image_id": 757, "caption": "The image depicts a group of elephants standing in a muddy watering hole. There are three elephants in the scene, with one on the left side, another in the middle, and the third on the right side. The elephants appear to be enjoying their time in the water, possibly cooling off or socializing with each other.\n\nThe elephants are of various sizes, with one being a baby elephant and the other two being adult elephants. The baby elephant can be seen on the left side of the image, while the two adult elephants are positioned more towards the center and right side of the scene."} +{"image_id": 396496, "caption": "The image depicts a group of people standing outside in the snow, with some of them holding umbrellas to shield themselves from the falling snow. There are at least four umbrellas visible in the scene, with one on the left side, another in the middle, and two more on the right side.\n\nIn addition to the people and umbrellas, there are two buses present in the scene. One bus is located on the left side of the image, while the other is on the right side. A car can also be seen in the background, parked near the right edge of the image.\n\nThe people in the scene are standing close to each other, creating a sense of unity and camaraderie despite the cold and snowy weather."} +{"image_id": 81761, "caption": "The image features a woman standing on a tennis court, holding a tennis racket and preparing to hit a tennis ball. She is positioned near the center of the court and appears to be focused on her game. The tennis ball is in the air, close to her racket, indicating that she is about to make contact with it.\n\nIn the background, there is a car parked outside the tennis court, possibly belonging to one of the players or spectators."} +{"image_id": 130677, "caption": "The image depicts a man playing tennis on a court at night. He is holding a tennis racket and appears to be preparing to take a swing at a tennis ball. Another person can be seen in the background, possibly watching the game or waiting for their turn to play.\n\nThere are two tennis rackets visible in the scene, one held by the main player and another one placed on the ground. The tennis ball is located near the center of the court. The court is surrounded by a fence, providing a clear boundary for the game."} +{"image_id": 318825, "caption": "The image features a tennis court with a man wearing a white shirt and white shorts, holding a tennis racket in his hand. He appears to be preparing to serve the ball or is in the middle of a serve. The man is the main focus of the scene, occupying a significant portion of the image.\n\nThe tennis court is surrounded by a blue backdrop, which adds to the overall atmosphere of the scene. The man's tennis racket is clearly visible in his hand, emphasizing his involvement in the sport."} +{"image_id": 48014, "caption": "The image depicts a man walking down a sidewalk with his dog on a leash. The man is wearing a green shirt and appears to be enjoying the walk with his pet. The dog is positioned close to the man, and they seem to be the main focus of the scene.\n\nIn the background, there are several cars parked along the street, and a bench can be seen further down the sidewalk. Additionally, there are a few other people in the scene, one of whom is sitting on the bench. A handbag is also visible, likely belonging to one of the people in the area."} +{"image_id": 421028, "caption": "The image features a gray cat lying on a carpeted floor, playing with a toy carrot. The cat is positioned in the center of the scene, with the toy carrot close to it. The carpet appears to be a Persian rug, adding a touch of elegance to the scene.\n\nIn the background, there is a bookshelf filled with various books, showcasing a cozy and comfortable environment for the cat and its owner."} +{"image_id": 479659, "caption": "In the image, a man and a woman are standing near a dining table, engaging in conversation. The man is wearing a white shirt and appears to be drinking from a wine glass, while the woman is holding a handbag. They seem to be enjoying each other's company in an outdoor setting.\n\nThe dining table is surrounded by chairs, with one on the left side and another on the right side of the table. A potted plant can be seen on the left side of the table, adding a touch of greenery to the scene. There are also several bottles placed around the table, possibly containing wine or other beverages."} +{"image_id": 369826, "caption": "The image features a large flat-screen TV mounted on a wall, displaying an advertisement for Arizona. The TV is positioned in the middle of the scene, drawing attention to the advertisement.\n\nIn the surrounding area, there are several chairs and dining tables scattered throughout the space. Some chairs are placed close to the TV, while others are positioned further away. A few dining tables can be seen in the background, indicating that this might be a dining or waiting area."} +{"image_id": 406253, "caption": "The image features a city street with two motorcycles parked next to each other on the sidewalk. One of the motorcycles is a blue scooter, while the other is a green motorcycle. Both motorcycles are parked close to a red car, which is positioned further down the street.\n\nThere are several people nearby, with one person standing close to the blue scooter, another person near the green motorcycle, and a third person further down the street. Additionally, there are two traffic lights visible in the scene, one on the left side and the other on the right side of the street."} +{"image_id": 548267, "caption": "The image depicts a peaceful scene of a herd of sheep grazing in a lush green field. There are at least 13 sheep scattered throughout the field, enjoying the fresh grass. The sheep are positioned close to each other, and some of the larger ones can be spotted grazing near the fence.\n\nIn the background, there's a majestic mountain range visible behind the field, enhancing the serenity of the countryside landscape. Overall, it's clear to see that nature and the animals coexist harmoniously in this picturesque setting."} +{"image_id": 335844, "caption": "The image features a stainless steel toaster oven sitting on a white countertop. The toaster oven is open, revealing its interior with a pizza inside. The pizza appears to be in the process of cooking, as it is placed in the middle of the oven. The toaster oven occupies a significant portion of the countertop, making it the main focus of the scene."} +{"image_id": 299640, "caption": "The image features a table with three remote controls placed on it. The first remote on the left is a Sony remote, the second remote in the middle is a Samsung remote, and the third remote on the right is a Panasonic remote. The remotes are placed side by side, showcasing their differences in design and appearance."} +{"image_id": 121812, "caption": "The image depicts a city street on a cloudy day, with a red traffic light hanging above the road. The traffic light is positioned near the center of the scene, and there are several cars on both sides of the street. Some cars are closer to the foreground, while others are further away, creating a sense of depth in the scene.\n\nIn addition to the cars, there is a truck visible on the right side of the street, and a person can be seen walking on the sidewalk near the center of the image. The overall atmosphere of the scene is that of a bustling city street with various vehicles and pedestrians going about their daily routines."} +{"image_id": 107234, "caption": "The image features a man wearing a suit and tie, standing in front of a wine glass. He is holding the glass up to his mouth, seemingly about to take a sip. The man appears to have a beard and is looking directly at the camera.\n\nIn the background, there is a car partially visible on the right side of the image. The man's attire and the presence of the wine glass suggest that he might be attending a formal event or celebration."} +{"image_id": 153104, "caption": "The image depicts a man sitting in a stadium, enjoying a hot dog. He is wearing a black jacket and appears to be eating the hot dog with enthusiasm. There are several other people in the stadium, some of whom are also eating hot dogs.\n\nIn addition to the hot dogs, there are a few bottles visible in the scene, likely containing beverages for the attendees. The stadium is filled with people, creating a lively atmosphere for the event."} +{"image_id": 216417, "caption": "The image is a black and white photograph of a man wearing a hat and carrying a white dog on his back. The man is also wearing a backpack, and the dog appears to be comfortably resting on his back. The scene takes place in a snowy environment, with the man and the dog being the main focus of the picture."} +{"image_id": 286708, "caption": "The image features a black and white cat wearing a pink knitted hat on its head. The cat appears to be sitting or laying down, possibly on a bed. The hat is positioned on the cat's head, covering its ears and giving it a cute and cozy appearance."} +{"image_id": 547041, "caption": "The image features a dining table with a variety of food items placed on it. There are two plastic containers, one containing a salad and the other containing a dessert. The salad is served in a plastic bowl, and the dessert is in a plastic cup.\n\nIn addition to the main dishes, there are several utensils on the table, including a fork, a spoon, and a knife. The fork and spoon are placed near the salad container, while the knife is located closer to the dessert container. A keyboard can also be seen in the background, suggesting that the dining table is situated near a workspace."} +{"image_id": 293802, "caption": "The image captures a lively scene of a young man skillfully performing a trick on his skateboard. He is in the midst of a jump, with his skateboard flying through the air. The skateboarder is surrounded by a crowd of people who are watching the impressive display.\n\nIn addition to the main skateboarder, there are several other people scattered throughout the scene, some closer to the foreground and others further in the background. A bicycle can be seen parked on the left side of the image, and a dining table is visible in the background, possibly indicating an outdoor dining area."} +{"image_id": 252738, "caption": "The image features a man wearing a leather jacket and sunglasses, standing in a dirt field and talking on his cell phone. He appears to have a serious expression on his face as he engages in the conversation.\n\nIn the background, there are mountains visible, creating a picturesque setting for the man's phone call. Additionally, there is a car parked in the distance, possibly belonging to the man or someone else in the vicinity."} +{"image_id": 43165, "caption": "The image features two zebras standing next to each other in a grassy field. One zebra is positioned on the left side of the image, while the other zebra is on the right side. Both zebras have their heads down, possibly grazing or resting.\n\nIn the background, there are trees visible, adding a natural element to the scene. The zebras appear to be enjoying their time in the lush green pasture."} +{"image_id": 218215, "caption": "The image features a large white polar bear swimming in a body of water, possibly an ocean. As the bear swims through the water, it appears to be playful and enjoying its time in the water. The polar bear can be seen with its mouth open, possibly catching a fish or simply enjoying the water. The scene captures the beauty and grace of the polar bear in its natural habitat."} +{"image_id": 299082, "caption": "The image features a close-up of a giraffe's head as it eats grass from the ground. The giraffe's long neck and head are prominently visible, as it leans down to graze on the grass. The scene captures the giraffe's natural feeding behavior and the beauty of its unique anatomy."} +{"image_id": 152360, "caption": "The image features a street scene with several bunches of green bananas hanging from hooks above a fruit stand. The bananas are displayed in various stages of ripeness, with some appearing ripe and ready to eat, while others are still green and unripe.\n\nIn addition to the bananas, there are multiple cars parked along the street, with some closer to the fruit stand and others further away. A person can be seen standing near the fruit stand, possibly browsing the selection or preparing to make a purchase."} +{"image_id": 205601, "caption": "In the image, a woman is standing in a kitchen, cooking a delicious meal in a large skillet. She is using a spoon to stir the food, which appears to be a combination of meat and vegetables. The skillet is placed on a stove, and the woman is focused on preparing the dish.\n\nAnother person can be seen in the background, possibly observing the cooking process or waiting for the meal to be ready. The kitchen is well-equipped with a refrigerator, an oven, and a sink. There are also a few bottles placed around the kitchen, possibly containing cooking ingredients or beverages."} +{"image_id": 174004, "caption": "The image features an old yellow dump truck parked in a grassy field. The truck appears to be in a state of disrepair, with rust visible on its chassis. The truck is surrounded by tall grass and weeds, giving it a sense of abandonment.\n\nIn addition to the truck, there are several trees in the background, adding to the natural setting of the scene."} +{"image_id": 31542, "caption": "The image captures a thrilling moment of a snowboarder performing a trick in the middle of the air. They are wearing a blue jacket and are at the peak of their jump, showcasing their skill and athleticism. The snowboarder is the main focus of the scene, with their snowboard clearly visible beneath them as they soar through the air."} +{"image_id": 305268, "caption": "In the image, a woman is playing tennis on a court, holding a tennis racket and preparing to hit a tennis ball. She is wearing a black shirt and appears to be focused on her game. The tennis ball is in the air, close to her racket, as she is about to make contact with it.\n\nThe tennis court is surrounded by a fence, providing a clear boundary for the game. The scene captures the woman's athleticism and determination as she engages in the sport."} +{"image_id": 2867, "caption": "The image depicts a group of people standing on a snow-covered slope, all wearing backpacks and equipped with skis. There are at least six people in the scene, with some standing closer to the foreground and others further in the background. They appear to be preparing for a skiing adventure or taking a break from their skiing activities.\n\nThere are multiple sets of skis visible in the scene, with some skis placed horizontally on the snow and others standing upright. The group seems to be enjoying their time together in the snowy environment."} +{"image_id": 72428, "caption": "The image features a white toilet in a bathroom, with a roll of toilet paper placed on top of it. The toilet is situated next to a sink, which is located on the right side of the bathroom. The toilet paper is positioned on the left side of the toilet, making it easily accessible for use. The bathroom appears to be clean and well-maintained."} +{"image_id": 158494, "caption": "The image features a giraffe and a baby giraffe standing next to each other in an enclosure. The adult giraffe is positioned on the left side of the image, while the baby giraffe is on the right side. The baby giraffe appears to be nursing from its mother.\n\nIn addition to the giraffes, there is a tree in the background, providing a natural environment for the animals. The scene captures a tender moment between the mother and baby giraffe, showcasing the bond between them."} +{"image_id": 147629, "caption": "The image features a white cat lying on a carpeted floor, with a stuffed elephant toy placed next to it. The cat appears to be licking its lips, possibly enjoying the scent or texture of the toy. The stuffed elephant is positioned towards the left side of the cat, while the cat occupies the majority of the right side of the image."} +{"image_id": 581899, "caption": "The image features a train station with two blue passenger trains parked side by side. One train is positioned on the left side of the image, while the other is on the right side. A person can be seen standing in the doorway of the train on the right side, possibly waiting to board or disembark.\n\nIn addition to the trains and the person, there are two handbags visible in the scene. One handbag is located near the person in the doorway, and the other handbag is placed closer to the left side of the image."} +{"image_id": 369345, "caption": "The image depicts a cozy living room with a blue couch situated in the center of the room. The couch is adorned with several pillows, creating a comfortable seating area. In front of the couch, there is a wooden coffee table with a remote control placed on it.\n\nA bookshelf filled with various books can be seen in the background, adding to the room's inviting atmosphere. A lamp is also present in the scene, providing additional lighting to the living space."} +{"image_id": 372246, "caption": "The image features a stop sign on the side of a road, with a street sign above it. The street sign reads \"Hell Canyon Rd,\" indicating that the stop sign is located at the intersection of Hell Canyon Rd and U.S. Highway 395. The stop sign is positioned to the right of the street sign, ensuring the safety of drivers and pedestrians at the intersection."} +{"image_id": 261563, "caption": "The image features a black dog and a brown dog playing together in a grassy field. The black dog is on the left side of the scene, while the brown dog is on the right side. They are both focused on a yellow frisbee, which is located in the middle of the field. The two dogs appear to be enjoying their playtime and interacting with the frisbee."} +{"image_id": 461802, "caption": "The image depicts a train station with a red and white train parked at the platform. A man wearing an orange safety vest is walking towards the train, likely preparing to board it. Another person can be seen in the background, possibly waiting for the train as well.\n\nThere are two clocks visible in the scene, one on the left side and the other on the right side of the platform. The presence of these clocks suggests that the train station is well-equipped with timekeeping devices for the convenience of its passengers."} +{"image_id": 138175, "caption": "The image features a man wearing glasses and a suit, talking on his cell phone. He is standing in what appears to be the lobby of a building. Another person can be seen in the background, but they are not the main focus of the scene.\n\nThere are two handbags visible in the image, one located near the center of the scene and the other towards the right side. A chair is also present in the background, towards the right side of the image."} +{"image_id": 103488, "caption": "The image depicts a public restroom with a row of sinks lined up along the wall. There are four sinks in total, with one on the left side, one in the middle, and two on the right side of the restroom. The sinks are accompanied by mirrors above them, allowing users to check their appearance while using the facilities.\n\nIn addition to the sinks, there are several hand dryers and paper towel dispensers placed throughout the restroom. Two hand dryers can be seen on the left side, one in the middle, and another on the right side of the restroom. Two paper towel dispensers are also present, one on the left side and another on the right side of the restroom.\n\nA person is visible in the restroom, likely using one of the sinks or preparing to use one of the hand dryers or paper towel dispensers."} +{"image_id": 215901, "caption": "The image features a bowl filled with a variety of fruits, including bananas, apples, and oranges. The bowl is placed on a dining table, and the fruits are arranged in an aesthetically pleasing manner. The bananas are positioned towards the center of the bowl, while the apples and oranges are scattered around them, creating a colorful and appetizing display."} +{"image_id": 514180, "caption": "The image showcases a delicious assortment of pizza slices displayed on a pizza pan. There are three pizzas in total, each with different toppings. One pizza is placed in the center of the pan, while the other two pizzas are positioned on the left and right sides of the pan.\n\nIn addition to the pizzas, there are two knives visible in the scene. One knife is located on the left side of the pan, and the other knife is on the right side. These knives are likely used for cutting and serving the pizza slices."} +{"image_id": 396338, "caption": "The image depicts a busy street scene with several people, cars, and trucks moving through the area. Among the vehicles, there is a mix of cars and trucks, including a prominent truck on the right side of the street.\n\nA group of people can be seen walking down the street, with one person carrying a handbag. Some of the pedestrians are closer to the foreground, while others are further back in the scene. The street appears to be wet, possibly due to rain, and the overall atmosphere suggests a bustling urban environment."} +{"image_id": 579362, "caption": "The image depicts a man sitting on a blue bench on a sandy beach, enjoying the view of the ocean. There are several other people scattered around the beach, some closer to the water and others further away. A boat can be seen in the distance, adding to the serene atmosphere of the scene.\n\nIn addition to the people and the boat, there are a couple of umbrellas set up on the beach, providing shade for beachgoers. A handbag is placed on the ground near the bench, possibly belonging to one of the people enjoying the beach."} +{"image_id": 289512, "caption": "The image features a woman riding a brown horse in a field. She is wearing a cowboy hat and appears to be enjoying her time on the horse. The woman is positioned in the center of the scene, with the horse occupying a significant portion of the foreground.\n\nIn addition to the woman and the horse, there are two other people visible in the background, but they are not the main focus of the scene."} +{"image_id": 306928, "caption": "The image features a clock tower with a large clock prominently displayed on its side. The clock is surrounded by a flock of pigeons, some of which are perched on the tower, while others are flying around it. The birds are scattered throughout the scene, with some closer to the clock and others further away, creating a lively atmosphere around the clock tower."} +{"image_id": 453009, "caption": "The image features a wooden bench with two stuffed animals sitting on it. One of the stuffed animals is a teddy bear, and the other is a stuffed duck. The teddy bear is positioned on the left side of the bench, while the stuffed duck is on the right side.\n\nIn the background, there are several cars parked along the street, with some closer to the bench and others further away. A potted plant can be seen near the left edge of the image, adding a touch of greenery to the scene."} +{"image_id": 112581, "caption": "The image features a man wearing a white shirt and a baseball cap, standing in a store and holding a hot dog in his hand. He appears to be enjoying his meal while browsing the store. Another person can be seen in the background, possibly shopping or browsing as well.\n\nThe store is well-stocked with various items, including multiple bottles and cups placed throughout the scene. A handbag is also visible, likely belonging to one of the people in the store. The overall atmosphere suggests a casual and relaxed shopping experience."} +{"image_id": 504977, "caption": "The image features an elderly woman sitting on a park bench, enjoying her time outdoors. She is wearing a dress and has a handbag placed next to her on the bench. The woman appears to be relaxed and content as she sits on the bench.\n\nIn the background, there are several potted plants scattered around the area, adding a touch of greenery to the scene. Additionally, a cell phone can be seen on the bench, possibly belonging to the woman or someone else in the vicinity."} +{"image_id": 228764, "caption": "The image features a sandy beach with a cat and a dog playing together. The cat is positioned closer to the left side of the scene, while the dog is on the right side. Both animals appear to be enjoying their time on the beach.\n\nIn the background, there are a few people scattered around the area, likely enjoying the beach as well. Additionally, there are two umbrellas set up in the background, providing shade for beachgoers."} +{"image_id": 151528, "caption": "The image features a man standing on top of a stone wall, holding a red kite in his hand. The man appears to be enjoying his time outdoors, possibly preparing to fly the kite.\n\nIn the foreground, there is a black dog walking on the grass, possibly accompanying the man or simply exploring the area. The scene captures a moment of leisure and outdoor activity."} +{"image_id": 248919, "caption": "The image depicts a clean and well-organized kitchen with wooden cabinets and appliances. A white stove top oven is prominently placed under a ventilation hood, and a microwave is positioned above the oven. The kitchen features a dining table surrounded by chairs, with one chair visible on the left side of the table and another on the right side.\n\nOn top of the dining table, there is a bowl containing various fruits, including apples, oranges, and bananas. Additionally, there are two bottles placed nearby, one on the left side of the table and the other on the right side. The overall atmosphere of the kitchen is inviting and well-maintained."} +{"image_id": 580607, "caption": "The image depicts a lively scene on a river with several boats docked along the riverbank. There are at least eleven boats visible in the scene, ranging in size and position. Some boats are closer to the foreground, while others are further away, creating a sense of depth in the image.\n\nNumerous people walk along the riverbank, enjoying the view of the boats and the water. There are at least thirteen people visible in the scene, some closer to the boats and others further away. A bench can be seen near the center of the image, providing a place for people to sit and relax.\n\nIn addition to the boats and people, there is a bicycle parked near the middle of the scene, possibly belonging to one of the visitors. The combination of boats, people, and the bicycle creates a vibrant and bustling atmosphere along the riverbank."} +{"image_id": 200291, "caption": "The image features a dining table with two plates of food placed on it. The plates are filled with a variety of food items, including sandwiches, tomatoes, and tater tots. The sandwiches are cut in half and placed on the plates, while the tomatoes and tater tots are arranged around them.\n\nA spoon is resting on one of the plates, indicating that the food is ready to be eaten. The table setting creates an inviting atmosphere for a meal."} +{"image_id": 296231, "caption": "The image depicts a small, cluttered living room filled with various items. In the center of the room, there is an old-fashioned television set placed on top of a table. A clock can be seen hanging on the wall above the television.\n\nThe room is adorned with numerous pictures, some of which are hanging on the walls, while others are placed on the floor. There are also several books scattered throughout the room, adding to the cluttered appearance.\n\nIn addition to the television and clock, the room features a collection of knick-knacks, including a vase, a cup, and a bowl. A potted plant is also present in the room, adding a touch of greenery to the space."} +{"image_id": 505663, "caption": "The image features a large clock mounted on the side of a brick building. The clock face prominently displays the time, making it easy for passersby to check the time. The clock is positioned near the top of the building, ensuring that it is visible from a distance. The brick building and the clock create a classic and timeless atmosphere."} +{"image_id": 41572, "caption": "The image is a black and white photograph of a baseball game in progress. The main focus is on a baseball player who is in the middle of swinging his bat, attempting to hit the ball. There are several other players on the field, some of them wearing baseball gloves, ready to catch the ball.\n\nIn addition to the players, there are two cars visible in the background, one on the left side and the other on the right side of the image. The scene captures the excitement and action of a baseball game."} +{"image_id": 509589, "caption": "The image captures a lively scene of a young man riding a skateboard on a sidewalk. He is wearing a blue shirt and appears to be enjoying his time skateboarding. There are several other people in the scene, some of whom are also riding skateboards.\n\nIn addition to the skateboarders, there are a few backpacks and handbags scattered throughout the scene. One backpack can be seen near the center of the image, while another is located closer to the right side. Two handbags are also visible, one near the center and the other towards the right side of the image.\n\nThe presence of multiple people and skateboards suggests that this might be a popular spot for skateboarders to gather and practice their skills."} +{"image_id": 357238, "caption": "In the image, a person is parasailing over the ocean, enjoying the thrill of being lifted into the air by the wind. The parasailer is positioned in the middle of the scene, with the parachute-like sail visible above them.\n\nThere are several birds scattered throughout the sky, adding a sense of liveliness to the scene. Some birds are flying closer to the parasailer, while others are further away, creating a dynamic and lively atmosphere."} +{"image_id": 466575, "caption": "The image features an old, worn-out suitcase sitting on the pavement. The suitcase appears to be brown in color, and it's open, revealing its contents. The suitcase is placed in the middle of the scene, occupying a significant portion of the image."} +{"image_id": 271970, "caption": "The image depicts a small town with a white church tower featuring a clock at the top. The church has a steeple, and the clock is visible on the side of the tower. The town is surrounded by a lush green hillside, giving it a picturesque and serene atmosphere.\n\nThere are several houses in the town, with some located near the church and others scattered throughout the area. A few cars can be seen parked on the streets, and a bench is situated near the center of the town, providing a place for people to sit and enjoy the surroundings."} +{"image_id": 305540, "caption": "The image features a large pair of scissors prominently displayed in front of a white building. The scissors are positioned in such a way that they appear to be cutting the building in half. There are several people walking around the area, with some closer to the scissors and others further away.\n\nIn addition to the main pair of scissors, there is another smaller set of scissors located towards the right side of the image. A handbag can also be seen on the ground, possibly belonging to one of the people in the scene."} +{"image_id": 462928, "caption": "The image features a bald man wearing glasses and a striped shirt. He is holding an Apple cell phone up to his ear, likely engaging in a conversation or listening to a call. The man appears to be smiling as he interacts with the device.\n\nIn the background, there is a chair and a book, suggesting that the man might be in a relaxed environment, such as a living room or a workspace."} +{"image_id": 270544, "caption": "The image depicts a group of people enjoying themselves on a lake, with some of them playing in the water. A woman in a blue bikini is the center of attention, as she is jumping into the water with her arms raised. Other people are also in the water, with some of them closer to the shore and others further out.\n\nThere are two boats visible in the scene, one located in the middle of the lake and the other closer to the shore. A surfboard can be seen near the center of the image, suggesting that some of the people might be engaging in water sports. Overall, the atmosphere appears to be lively and fun, with everyone enjoying their time on the lake."} +{"image_id": 134042, "caption": "The image features a large airplane flying through a cloudy sky. The airplane is positioned in the middle of the scene, with its wings visible as it soars through the air. The sky is filled with clouds, creating a dramatic backdrop for the airplane's journey."} +{"image_id": 120340, "caption": "In the image, a man is standing next to a blue bicycle, attaching a bike lock to it. He is wearing a brown shirt and appears to be in the process of securing his bicycle. The bicycle is parked next to a bus, which is visible in the background.\n\nThere are several other people in the scene, with one person standing close to the man with the bicycle and others scattered around the area. Additionally, there is a bottle placed on the ground near the bicycle, possibly belonging to the man or someone else in the vicinity."} +{"image_id": 418949, "caption": "The image captures a baseball game in progress, with several players on the field. The main focus is on a baseball player wearing a blue helmet and a red jersey, holding a baseball bat and standing near the home plate. Another player can be seen in the background, holding a baseball glove, ready to catch the ball.\n\nIn total, there are eight people visible in the scene, including the player with the bat and the player with the glove. The players are spread out across the field, with some closer to the foreground and others further in the background."} +{"image_id": 520109, "caption": "The image features a lush green field with a row of colorful umbrellas standing upright in the grass. The umbrellas come in various sizes and colors, creating a vibrant and visually appealing scene. The umbrellas are spread out across the field, with some closer to the foreground and others further in the background.\n\nIn addition to the umbrellas, there are a few benches scattered throughout the field, providing a place for people to sit and enjoy the view. The combination of the umbrellas and benches creates a unique and inviting atmosphere for visitors to relax and take in the surroundings."} +{"image_id": 50753, "caption": "The image depicts a clean and well-organized kitchen with wooden cabinets and a tile floor. The kitchen is equipped with essential appliances, including a refrigerator on the left side, a microwave above the oven, and a sink on the right side. The oven is located in the middle of the kitchen, and the microwave is positioned above it.\n\nIn addition to the main appliances, there are several items placed around the kitchen, such as a clock on the wall, a vase on the countertop, and a bottle near the sink. A bowl can also be seen on the countertop. The overall atmosphere of the kitchen is inviting and well-maintained."} +{"image_id": 329939, "caption": "The image features a group of four giraffes standing together in a grassy field. The giraffes are spread out across the scene, with one on the left side, one in the middle, and two on the right side. They appear to be enjoying their time in the open field, possibly grazing or socializing with each other."} +{"image_id": 351345, "caption": "The image features a woman wearing a white shirt and earrings, standing in a room. She appears to be playing a video game, as she is holding a Wii remote in her hand. The room has a cozy atmosphere, with a couch in the background and a dining table nearby.\n\nIn addition to the woman, there is another person partially visible on the left side of the image. The room is decorated with several pictures hanging on the walls, adding a personal touch to the space."} +{"image_id": 25293, "caption": "The image depicts a woman wearing a flowing dress, holding a blue frisbee in her hand. She appears to be enjoying her time outdoors, possibly playing with the frisbee or preparing to throw it. The woman's outfit and the frisbee's vibrant color make the scene lively and engaging."} +{"image_id": 543041, "caption": "The image showcases a box filled with a variety of delicious doughnuts. There are six doughnuts in total, each with different flavors and toppings. The doughnuts are arranged in a visually appealing manner, with some placed closer to the front of the box and others towards the back. The assortment of doughnuts offers a delightful treat for anyone with a sweet tooth."} +{"image_id": 568265, "caption": "The image depicts a lively scene at a park with a large group of people enjoying their time outdoors. There are at least 14 people visible in the park, with some walking and others standing around. A kite can be seen flying in the sky, adding to the festive atmosphere.\n\nSeveral vehicles are parked around the park, including cars, a bus, and a truck. A bench is located near the center of the park, providing a place for people to sit and relax. A handbag can be spotted on the ground, likely belonging to one of the visitors.\n\nThe park is surrounded by trees, creating a serene and inviting environment for the park-goers."} +{"image_id": 467386, "caption": "The image depicts a black cat sitting on the ground in front of a blue door. The door is adorned with a pattern of small squares, giving it a unique appearance. The cat appears to be looking at the camera, capturing the attention of the viewer.\n\nIn addition to the cat and the door, there are a few items scattered around the scene. A bottle can be seen on the left side of the image, while a bowl is located closer to the center. A cup is also present, positioned near the right side of the scene."} +{"image_id": 242363, "caption": "The image depicts a small bathroom with a white toilet, sink, and bathtub. The toilet is positioned in the middle of the bathroom, while the sink is located on the left side of the room. The bathtub is situated on the right side of the bathroom.\n\nThe bathroom appears to be in the process of being remodeled, as evidenced by the presence of a piece of drywall on the wall near the toilet. The overall appearance of the bathroom is clean and well-maintained."} +{"image_id": 554900, "caption": "The image depicts a white toilet in a bathroom stall. The toilet seat is up, revealing the toilet bowl. The bathroom appears to be clean and well-maintained.\n\nIn addition to the toilet, there is a toilet brush placed next to the toilet, ready for use. The bathroom also features a sink, which can be seen in the background. The overall atmosphere of the bathroom is hygienic and well-organized."} +{"image_id": 115006, "caption": "The image captures an exciting moment during a baseball game. A baseball player is in the middle of swinging his bat, attempting to hit the ball. The catcher and the umpire are closely watching the play, with the catcher positioned behind the batter and the umpire standing behind the catcher.\n\nThere are several other people in the scene, likely teammates, opponents, or spectators. Some of them are seated on chairs, while others are standing. The chairs are scattered around the area, with some closer to the foreground and others further in the background. Overall, the scene conveys the intensity and focus of a professional baseball game."} +{"image_id": 75375, "caption": "The image depicts a group of people enjoying a day of kiteboarding on a large body of water. There are at least nine people visible in the scene, with some of them actively kiteboarding and others watching or waiting for their turn. The kiteboard enthusiasts are spread across the water, with some closer to the shore and others further out.\n\nMultiple colorful kites can be seen soaring in the sky, adding a vibrant touch to the scene. The kites are positioned at various heights and angles, showcasing the excitement and skill of the kiteboarders. Overall, the image captures the essence of an exhilarating water sport and the camaraderie among the participants."} +{"image_id": 419223, "caption": "The image depicts a group of young boys playing soccer on a grassy field. There are at least five kids actively participating in the game, with one of them falling to the ground while trying to kick the soccer ball. The other players are scattered around the field, some closer to the ball and others further away.\n\nThe soccer ball is located near the center of the field, and the players are positioned in various directions to engage in the game. The scene captures the excitement and energy of a youth soccer match."} +{"image_id": 137578, "caption": "The image features a bathroom with two white toilets positioned next to each other. Both toilets have their lids open, revealing the toilet bowls. The toilets are placed on a tiled floor, and the bathroom appears to be clean and well-maintained."} +{"image_id": 408808, "caption": "The image features a close-up of a toothbrush and toothpaste on a white surface. The toothbrush is positioned on the left side of the image, while the toothpaste is placed on the right side. The toothpaste is in a tube, and the toothbrush is placed next to it.\n\nIn addition to the toothbrush and toothpaste, there are two other toothbrushes in the scene. One is located in the middle of the image, and the other is on the right side. These toothbrushes appear to be part of a dental care kit."} +{"image_id": 243773, "caption": "The image depicts a cluttered kitchen with a large brick wall and a brick fireplace. The kitchen countertops and shelves are filled to the brim with various items, such as bottles, wine glasses, cups, and a cell phone. There are numerous bottles scattered across the countertops, with some placed closer to the fireplace and others near the edge of the counter.\n\nIn addition to the bottles, there are several wine glasses, cups, and a cell phone on the countertops. A few wine glasses can be seen near the center of the counter, while others are placed closer to the edge. Cups are also scattered across the countertops, with some near the wine glasses and others closer to the edge. The cell phone is located near the center of the counter.\n\nThe kitchen appears to be in a state of disarray, with various items occupying the countertops and shelves."} +{"image_id": 436492, "caption": "The image depicts a street scene with a couple of street signs on a pole. One of the signs is a yellow pedestrian crossing sign, while the other sign is a street sign for the American Recovery and Reinvestment Act. There are also two traffic lights in the scene, one on the left side and the other on the right side of the street.\n\nIn addition to the street signs and traffic lights, there are several people walking along the sidewalk. Some of them are closer to the foreground, while others are further down the sidewalk. A car can also be seen parked on the left side of the street."} +{"image_id": 556648, "caption": "The image features a white smartphone on display in a glass case, likely in a store. The smartphone is prominently placed in the center of the case, drawing attention to its sleek design.\n\nIn addition to the smartphone, there are several other cell phones visible in the background, showcasing a variety of styles and sizes. These phones are arranged in a way that highlights the diversity of options available for customers to choose from."} +{"image_id": 298924, "caption": "The image features a large bowl filled with a delicious meal consisting of noodles, meat, and vegetables. The bowl is placed on a dining table, and there are several pieces of broccoli scattered throughout the dish, adding a healthy touch to the meal.\n\nIn addition to the main dish, there are two smaller bowls on the table. One of the bowls is positioned to the left of the main bowl, while the other is placed to the right. A spoon is also visible on the table, ready to be used for enjoying the meal."} +{"image_id": 562030, "caption": "The image features a wooden deck with a variety of potted plants and gardening supplies. There are several potted plants scattered across the deck, with some placed closer to the foreground and others further in the background.\n\nIn addition to the potted plants, there are a couple of cups on the deck. One cup is located near the left side of the deck, while the other cup is positioned closer to the center. A pair of scissors can be seen on the right side of the deck, likely used for pruning or other gardening tasks."} +{"image_id": 501315, "caption": "The image captures a thrilling moment of a person riding a green and white motorcycle on a race track. The rider is leaning into a turn, showcasing their skill and control over the motorcycle. The motorcycle is positioned towards the center of the scene, with the riding gear and helmet clearly visible.\n\nIn addition to the main motorcycle, there are two other motorcycles in the background, one on the left side and the other on the right side of the scene. These motorcycles appear to be parked or stationary, possibly belonging to other racers or spectators."} +{"image_id": 436162, "caption": "The image features a large white passenger bus parked in a parking lot. The bus has its door open, allowing passengers to board or disembark. The bus occupies a significant portion of the scene, extending from the left edge to the right edge of the image.\n\nIn addition to the bus, there are two people visible in the parking lot. One person is standing closer to the left side of the bus, while the other person is located near the center of the scene."} +{"image_id": 323888, "caption": "The image depicts a large building with a clock prominently displayed on its side. The clock is illuminated, making it stand out against the night sky. The building appears to resemble a train station or a similar structure.\n\nIn the foreground, there is a car parked in front of the building, and a few people can be seen walking around the area. Additionally, there is a bench located near the entrance of the building, providing a place for people to sit and wait."} +{"image_id": 211476, "caption": "The image features a dining table with two black bowls placed on it. One bowl is filled with a delicious-looking meal, including broccoli, beans, and cheese, while the other bowl contains a different dish. A lemonade drink is also present on the table, adding a refreshing touch to the meal.\n\nIn addition to the bowls, there is a bottle on the table, possibly containing a beverage or condiment to accompany the meal. A spoon is also visible on the table, ready to be used for enjoying the meal."} +{"image_id": 473433, "caption": "The image features a vintage suitcase placed on a wooden table. Inside the suitcase, there are several items, including a book, a bowl, and a cup. The book is open, revealing a picture of a man on its pages. The bowl is positioned near the center of the suitcase, while the cup is located towards the left side. The combination of these items creates a nostalgic atmosphere, reminiscent of a bygone era."} +{"image_id": 165752, "caption": "The image features a black dog standing on a lush green lawn, wearing a yellow frisbee on its head. The dog appears to be playfully posing with the frisbee, which is positioned on top of its head. The scene captures the dog's joyful and playful demeanor as it interacts with the frisbee."} +{"image_id": 573756, "caption": "The image depicts two giraffes standing in a grassy field with trees in the background. The giraffes are positioned close to each other, with one giraffe on the left side and the other on the right side of the frame. They appear to be enjoying their time in the wild, surrounded by the natural environment."} +{"image_id": 187450, "caption": "The image features a train station with a train parked on the tracks. The train occupies a significant portion of the scene, stretching from the left to the right side of the image. The train appears to be a passenger train, possibly a commuter train, as it is parked at the station.\n\nIn addition to the train, there are two people visible in the scene. One person is located near the top left corner of the image, while the other person is positioned closer to the center of the scene. The presence of these individuals suggests that they might be waiting for the train or simply passing by the station."} +{"image_id": 43266, "caption": "The image features a giraffe and a zebra standing together in a grassy field. The giraffe is positioned on the left side of the scene, while the zebra is on the right side. Both animals are looking in the same direction, possibly observing something of interest in the distance.\n\nIn the background, there are two palm trees, one on the left side and the other on the right side of the scene. The field appears to be a mix of grass and rocks, providing a natural habitat for the animals."} +{"image_id": 150080, "caption": "The image features a delicious pizza topped with shrimp, cheese, and green onions. The pizza is placed on a white plate, which is resting on a dining table. The table is surrounded by chairs, with one on the left side and another on the right side of the table. The pizza appears to be freshly baked and ready to be enjoyed."} +{"image_id": 453757, "caption": "The image depicts a group of men playing soccer on a field. One of the players is in the process of kicking the soccer ball, which is located in the upper part of the scene. The other players are actively engaged in the game, with some of them running towards the ball.\n\nThere are several soccer players on the field, with some of them wearing blue uniforms and others wearing orange uniforms. The players are spread out across the field, with some closer to the foreground and others further in the background. The scene captures the excitement and energy of a competitive soccer match."} +{"image_id": 354460, "caption": "The image features a group of people gathered for a ribbon-cutting ceremony. There are four people in the scene, with two men and two women participating in the event. One of the women is wearing a sash, indicating that she might be a beauty queen.\n\nThe group is standing in front of a ribbon, and one of the men is holding a pair of scissors, ready to cut the ribbon. The people are smiling and appear to be enjoying the occasion. In the background, there is a tie visible, possibly belonging to one of the attendees."} +{"image_id": 221681, "caption": "The image depicts a small bathroom with a white toilet situated on the right side of the room. Next to the toilet, there is a sink with a mirror above it. Above the sink, there is a towel rack with towels hanging on it. Above the toilet, there is a toilet paper holder with a roll of toilet paper.\n\nIn addition to the main fixtures, there is a bottle placed on the left side of the sink, and a cup can be seen on the right side of the sink. A window is also present in the bathroom, providing natural light to the space."} +{"image_id": 349324, "caption": "The image depicts a train traveling down the tracks, carrying a large number of freight cars behind it. The train is positioned in the middle of the scene, occupying a significant portion of the image. The freight cars are lined up behind the train, with some closer to the front and others further back. The train appears to be moving at a steady pace, transporting the cargo to its destination."} +{"image_id": 225133, "caption": "The image features a tree filled with numerous colorful umbrellas hanging from its branches. The umbrellas come in various sizes and colors, creating a vibrant and eye-catching display. Some of the umbrellas are larger and more prominent, while others are smaller and more delicate.\n\nThe umbrellas are spread throughout the tree, with some closer to the trunk and others higher up in the branches. The combination of the tree and the umbrellas creates a unique and visually appealing scene."} +{"image_id": 452566, "caption": "The image features a stop sign prominently placed on the side of a road, with a mountainous landscape in the background. The stop sign is positioned on the right side of the road, and it appears to be the main focus of the scene.\n\nIn addition to the stop sign, there are a few other objects in the image. A car is visible on the left side of the road, and a truck can be seen further away on the right side. There is also a person standing near the middle of the scene, possibly observing the surroundings or waiting to cross the road."} +{"image_id": 124952, "caption": "The image depicts a busy city street with a blue and yellow bus driving down the road. The bus is positioned on the left side of the street, and a car is following closely behind it. Another car is visible further down the street on the right side.\n\nThere are multiple traffic lights in the scene, with one on the right side of the street, another in the middle, and a third one on the left side. A fire hydrant can be seen on the left side of the street, and a person is standing near the middle of the scene, possibly waiting to cross the street or observing the traffic."} +{"image_id": 26697, "caption": "The image features a woman standing in a bathroom, holding a toothbrush in her hand. She appears to be brushing her teeth or preparing to do so. The bathroom is equipped with a sink and a mirror, which can be seen in the background.\n\nThe woman is wearing a sweater and jeans, giving her a casual and comfortable appearance. The scene captures a typical moment in daily life, showcasing the importance of maintaining good oral hygiene."} +{"image_id": 126064, "caption": "The image captures a man skillfully riding a wave on a surfboard in the ocean. He is wearing a red shirt and appears to be enjoying the thrill of surfing. The surfer is positioned in the middle of the wave, showcasing his balance and control over the surfboard. The scene is dynamic, with the man and the surfboard being the main focus of the image."} +{"image_id": 557190, "caption": "In the image, there are two men standing next to each other, both wearing suits and ties. They appear to be posing for a picture in front of a beautiful mountainous landscape. The men are positioned close to each other, with one man on the left and the other on the right.\n\nThe background features a picturesque view of the mountains, creating a stunning backdrop for the photo. The two men seem to be enjoying their time together, possibly attending a formal event or simply appreciating the breathtaking scenery."} +{"image_id": 137612, "caption": "The image features a large brick building with a purple and white color scheme. The building is situated next to a parking garage, and there is a red and white sign on the side of the building. In front of the building, there is a street with a few cars parked along the side.\n\nAdditionally, there is a bridge visible in the background, adding to the urban atmosphere of the scene."} +{"image_id": 408480, "caption": "The image features a large boat docked next to a red lighthouse, creating a picturesque scene. The boat is positioned towards the right side of the image, while the lighthouse stands prominently on the left side.\n\nIn the background, there is a city skyline visible, adding to the overall atmosphere of the scene. Several cars can be seen parked around the area, with some closer to the foreground and others further in the background. The combination of the boat, lighthouse, and city skyline creates a unique and captivating image."} +{"image_id": 277694, "caption": "The image features a large brown cow laying down on the ground, taking up a significant portion of the scene. The cow appears to be resting or possibly sleeping.\n\nIn the background, there are two motorcycles parked next to each other. One motorcycle is located on the left side of the cow, while the other is on the right side. Additionally, there is a scooter parked near the right edge of the image."} +{"image_id": 74166, "caption": "The image captures a skateboarder performing a trick on a sidewalk. The skateboarder is in mid-air, showcasing their skill and balance. There are two other people in the scene, one standing close to the skateboarder and another further away.\n\nIn the background, there are two cars parked, one on the left side and the other on the right side of the image. A bench can be seen in the middle of the scene, providing a place for people to sit and watch the skateboarder's performance."} +{"image_id": 102625, "caption": "The image depicts a small, clean, and well-organized kitchen with wooden floors and white cabinets. The kitchen is equipped with essential appliances such as a refrigerator, a microwave, an oven, and a sink. A dining table can be seen in the room, surrounded by chairs.\n\nIn addition to the appliances, the kitchen is adorned with various decorative elements. There are several potted plants placed around the room, adding a touch of greenery to the space. A vase is also present, further enhancing the aesthetics of the kitchen.\n\nOn the countertops, there are multiple cups, a bowl, and a bottle, indicating that the kitchen is used for cooking and dining purposes. A TV is mounted on the wall, providing entertainment while cooking or dining."} +{"image_id": 540694, "caption": "The image features a large giraffe standing next to a blue car, with its head inside the car window. The giraffe appears to be interacting with the person inside. The car is surrounded by other vehicles, including a truck on the left side and another car on the right side.\n\nThere are several people in the scene, with one person standing close to the giraffe and others scattered around the area. A handbag can be seen placed on the ground near the center of the scene, possibly belonging to one of the people present."} +{"image_id": 518586, "caption": "The image is a black and white photograph of a train traveling down the tracks. The train is positioned in the middle of the scene and appears to be moving away from the viewer. A person can be seen standing near the train tracks, possibly observing the train or waiting for it to pass.\n\nIn addition to the train and the person, there are two traffic lights visible in the scene, one closer to the left side and the other towards the right side of the image. The presence of these traffic lights suggests that the train is passing through an area with controlled intersections or crossings."} +{"image_id": 81303, "caption": "In the image, a man is skiing down a snow-covered slope, wearing a brown jacket and goggles. He is skillfully maneuvering his skis through the snow, demonstrating his expertise in the sport. The man appears to be enjoying the thrill of skiing down the hill."} +{"image_id": 383065, "caption": "The image features a green public toilet situated on a sidewalk. The toiler is labeled \"Toilettes\" and has a handicap sign, indicating that it is accessible for people with disabilities. The toilet is surrounded by a metal fence, providing a sense of security and privacy.\n\nThere is a person standing near the toilet, possibly waiting to use it or just passing by. Additionally, there is a handbag placed on the ground close to the person, possibly belonging to them."} +{"image_id": 169602, "caption": "In the image, a woman is skillfully riding a wave on a surfboard in the ocean. She is wearing a wetsuit and appears to be enjoying her time in the water. The surfboard is positioned in the middle of the scene, with the woman maintaining her balance and control as she glides through the waves."} +{"image_id": 19890, "caption": "The image features two zebras standing next to each other in a dirt field, grazing on grass. They are positioned close to each other, with one zebra on the left side and the other on the right side of the image. Both zebras are focused on eating the grass, enjoying their time in the field."} +{"image_id": 236604, "caption": "The image depicts a spacious living room filled with various pieces of furniture. There is a large couch situated in the middle of the room, accompanied by two chairs, one on the left side and another on the right side. A coffee table is placed in the center of the room, surrounded by the couch and chairs.\n\nIn addition to the seating area, there is a dining table located towards the right side of the room. A potted plant can be seen on the left side of the room, adding a touch of greenery to the space. A clock is mounted on the wall above the dining table, and a vase is placed on the left side of the room.\n\nThe living room is connected to a kitchen area, which features a refrigerator on the right side and an oven towards the back of the room."} +{"image_id": 270753, "caption": "The image features a close-up view of a delicious Chicago-style deep dish pizza on a white plate. The pizza is sliced and ready to be eaten, with a generous amount of cheese and various toppings, including broccoli and mushrooms. The pizza is placed on a dining table, and a knife can be seen on the table, likely used for cutting and serving the pizza."} +{"image_id": 457178, "caption": "The image is a black and white photograph of a busy city street filled with horse-drawn carriages. There are several horse-drawn carriages traveling down the street, with some positioned closer to the foreground and others further in the background.\n\nNumerically, there are at least 13 horses and carriages visible in the scene. In addition to the carriages, there are numerous people walking along the street, with a total of 14 individuals visible. Some of these people are closer to the foreground, while others are scattered throughout the scene.\n\nThe street is lined with tall buildings, giving the impression of a bustling urban environment. The combination of the horse-drawn carriages, people, and buildings creates a nostalgic atmosphere reminiscent of a bygone era."} +{"image_id": 577712, "caption": "The image features a group of people standing in front of a giraffe enclosure at a zoo. There are four people in the scene, with one person on the left side, two people in the middle, and another person on the right side. They are all observing the giraffe, which is positioned towards the left side of the enclosure.\n\nIn addition to the people and the giraffe, there are two handbags visible in the scene. One handbag is located near the person on the left side, while the other handbag is placed closer to the person on the right side."} +{"image_id": 414560, "caption": "The image features a group of black and white cows lying down in a hay-covered pen. There are a total of five cows in the scene, with some of them appearing to be resting or sleeping. The cows are positioned in various locations within the pen, with some closer to the foreground and others further back. The hay-covered pen provides a comfortable and cozy environment for the cows to rest and relax."} +{"image_id": 388983, "caption": "The image features a close-up view of a hot dog in a bun, placed on a dining table. The hot dog is topped with ketchup, mustard, and relish, giving it a colorful and appetizing appearance. In addition to the hot dog, there is a slice of pickle on the side, adding a tangy flavor to the meal. The hot dog and pickle are the main focus of the image, creating a mouth-watering scene."} +{"image_id": 245965, "caption": "The image features a blue umbrella standing upright in a field of tall, dry grass. The umbrella is positioned in the middle of the field, providing shade and protection from the sun. The field appears to be a mix of grass and weeds, creating a natural and serene atmosphere."} +{"image_id": 147590, "caption": "The image features a dining table with a variety of food items and utensils. A wine glass is prominently placed on the table, filled with red wine. Next to the wine glass, there is a knife and a spoon, indicating that the table is set for a meal.\n\nIn addition to the wine glass and utensils, there are several bowls on the table. One bowl is located near the center of the table, while another is positioned towards the right side. A cup can also be seen on the left side of the table.\n\nA person is partially visible in the background, likely preparing to enjoy the meal or setting up the table."} +{"image_id": 46882, "caption": "The image depicts a group of people playing a game of frisbee in a park. There are at least five people in the scene, with one person jumping in the air to catch the frisbee. The frisbee can be seen in mid air, close to the jumping person.\n\nThe park is surrounded by trees, providing a pleasant and natural setting for the game. The players are spread out across the field, with some closer to the foreground and others further in the background. Overall, it's a lively scene of people enjoying a game of frisbee outdoors."} +{"image_id": 518719, "caption": "The image features a large, brown and white vase sitting on a table. The vase is made of ceramic and has a unique design, with a combination of brown and white colors. It appears to be a decorative piece, possibly used for holding flowers or as a centerpiece for a table setting. The vase takes up a significant portion of the table, making it the focal point of the scene."} +{"image_id": 176312, "caption": "In the image, a woman is standing in a hallway, looking at her cell phone. She is wearing a black and white dress and appears to be focused on her phone. The hallway is adorned with several framed pictures on the walls, creating a visually appealing environment.\n\nAdditionally, there is a handbag placed near the woman, possibly belonging to her or someone else in the vicinity. The presence of the cell phone and handbag suggests that the woman might be attending an event or gathering in the area."} +{"image_id": 580746, "caption": "The image depicts a peaceful scene of a herd of sheep grazing on a lush green hillside. There are a total of nine sheep scattered across the field, enjoying the fresh grass. Some of the sheep are closer to the foreground, while others are further in the background, creating a sense of depth in the scene. The hillside provides ample space for the sheep to rope freely as part"} +{"image_id": 541223, "caption": "The image features a large white airplane parked in front of a building with a green roof. The airplane occupies a significant portion of the scene, stretching from the left to the right side of the image. The building with the green roof appears to be a restaurant, as indicated by the presence of a pizza restaurant sign.\n\nIn addition to the main airplane, there are two smaller planes visible in the background, one on the left side and the right side of the image. The scene also includes a car parked near the right edge of the image."} +{"image_id": 22589, "caption": "In the image, there are two sheep standing in a grassy field. One sheep is positioned towards the left side of the field, while the other sheep is on the right side. The sheep on the left appears to be looking at the camera, possibly posing for a picture. The field is surrounded by trees, creating a serene and natural environment for the sheep."} +{"image_id": 196815, "caption": "The image depicts a group of young men gathered in a room, playing Nintendo Wii together. They are seated on chairs, with some of them holding Wii remotes in their hands, actively engaging in the game. There are a total of five chairs in the room, with three of them occupied by the young men.\n\nIn addition to the chairs, there are several books scattered around the room, possibly indicating a shared interest in reading or studying. The atmosphere appears to be casual and fun, as the group enjoys their time playing video games together."} diff --git a/OPERA/log/chair_eval_results/minigpt4/beam5.jsonl b/OPERA/log/chair_eval_results/minigpt4/beam5.jsonl new file mode 100644 index 0000000000000000000000000000000000000000..c4118b69fa8361a68f4eb7eff766dfbe4120b0f6 --- /dev/null +++ b/OPERA/log/chair_eval_results/minigpt4/beam5.jsonl @@ -0,0 +1,500 @@ +{"image_id": 226988, "caption": "This image shows a woman taking a photo of a plate of pizza on a red and white checkered tablecloth. The woman is wearing a black tank top and has her hair pulled back in a ponytail. She is holding a camera in her right hand and looking down at the plate of pizza on the left side of the image. The pizza appears to be a large piece with a thin crust and a variety of toppings, including pepperoni, sausage, and mushrooms. The tablecloth is covered in crumbs and there are empty plates and silverware on the right side of the image. The background of the image appears to be a outdoor seating area with trees and a building visible in the distance."} +{"image_id": 337443, "caption": "This image shows a road construction sign on a sidewalk next to a busy city street. The sign has an orange and black background with a white arrow pointing down the street. There are several cars driving on the street, and some pedestrians walking on the sidewalk."} +{"image_id": 112022, "caption": "This image shows a group of people standing in line at a luggage carousel in an airport. The people are all looking at their phones or talking to each other. There are several pieces of luggage on the carousel, including suitcases, backpacks, and duffel bags. The walls of the airport are made of wood and have a brownish-gray color. The lighting in the airport is bright and well-lit, casting shadows on the ground. The overall atmosphere of the image is one of waiting and anticipation."} +{"image_id": 394444, "caption": "This image shows a person standing next to a skateboard that has graffiti written on it. The person is wearing black pants and a black shirt, and is holding onto the skateboard with one hand. The skateboard is lying on the ground, and the person is looking at it with a curious expression on their face. The background of the image is a tiled floor, and there are some people walking in the distance."} +{"image_id": 481635, "caption": "The image shows a woman sitting at a table with a slice of pizza in front of her. She is wearing a white shirt and a green scarf around her neck. There is a red and white checkered tablecloth on the table, and a glass of water in front of her. The woman is smiling and waving at the camera."} +{"image_id": 285258, "caption": "This image shows a group of dogs playing together in a fenced-in area. The dogs are all different breeds, including a black and white dog, a brown and white dog, and a black dog. The dogs are all standing on their hind legs and appear to be playing together. There is a fence around the area to keep the dogs contained."} +{"image_id": 479057, "caption": "The image shows a white polar bear standing on its hind legs in a grassy field. The bear is looking down and appears to be eating something from the ground. There is a fence or barrier in the background, and some trees can be seen in the distance. The sky is overcast, and there are no other animals or people in the scene."} +{"image_id": 66238, "caption": "This image shows a person riding a snowboard in the air, performing a trick. The person is wearing an orange jacket and black pants, and is holding a snowboard in one hand. In the background, there are trees and a ski lift. The sky is clear and blue, and there are clouds in the distance."} +{"image_id": 558458, "caption": "This image shows a woman holding a white plate with food on it. The food appears to be spaghetti with meatballs and a hot dog. The woman is wearing sunglasses and has a smile on her face. There is a tablecloth on the table in the background."} +{"image_id": 400596, "caption": "This image shows a bathroom with a green sink and a wooden floor. The sink has a faucet on it and there is a towel hanging from a rack above the sink. There is also a wooden towel holder on the wall next to the sink. The walls of the bathroom are painted white and there is a window above the sink."} +{"image_id": 373266, "caption": "This image shows a group of surgeons working on a patient in a hospital operating room. The surgeons are wearing scrubs and gloves and are standing around a patient who is lying on a table. There are monitors and other medical equipment on the table and on the wall behind the surgeons. The room appears to be well-lit and clean."} +{"image_id": 38332, "caption": "This is an image of an elephant standing in a field of tall, green grass. The elephant has large, curved tusks on its face and is standing on its hind legs, with its front legs on the ground. The elephant's body is gray and its trunk is curved upwards, as if it is sniffing the air. In the background, there is a blue sky and a few clouds."} +{"image_id": 84533, "caption": "This image shows a woman sitting on the back of a black motorcycle. She is wearing a black leather jacket and black leather pants. The motorcycle is parked in front of a white garage door. The woman is smiling and waving at the camera."} +{"image_id": 449963, "caption": "This image shows a room with several tables and chairs arranged in a circle. The walls are white and there is a large whiteboard on one wall. There are several laptops on the tables, and a projector screen is hanging from the ceiling. The room appears to be well-lit and well-ventilated."} +{"image_id": 128180, "caption": "This image shows a white plate with a piece of pizza on it. The pizza has slices of tomato, mozzarella cheese, and basil on it. There are also two forks and a knife on the plate, next to the pizza. The plate is on a table with a white tablecloth and a vase of flowers on it."} +{"image_id": 204232, "caption": "This image shows a person riding a skateboard over a ramp. The person is wearing a black t-shirt and black pants, and is holding onto the handlebars of the skateboard with one hand. The background of the image shows a group of people standing on the sidewalk and watching the skateboarder. There are several buildings in the background, including a large, multi-story building with windows on the top floor. The sky is clear and blue, and there are a few clouds in the distance."} +{"image_id": 477867, "caption": "The image shows a man on a surfboard riding a wave in a body of water. The man is wearing a black wetsuit and a black hat. He is standing on the top of the surfboard with his arms outstretched to the side. In the background, there are several people watching the surfer from the shore. The water is choppy and the waves are crashing against the shore."} +{"image_id": 308128, "caption": "This image shows a young man riding a skateboard down a metal ramp. He is wearing a white t-shirt and shorts and has a backpack on his back. The ramp is made of metal and has a railing on either side. There are trees in the background and a clear blue sky."} +{"image_id": 222407, "caption": "This is an image of a bird perched on a tree branch. The bird has a yellow beak and black and brown feathers. The background is a blurred image of trees and a cloudy sky."} +{"image_id": 469543, "caption": "The image shows a bedroom with two beds. One of the beds has a striped comforter and the other has a striped blanket. There is a lamp on the nightstand next to one of the beds. The wall behind the beds has a patterned wallpaper. The room appears to be well-lit and well-maintained."} +{"image_id": 421564, "caption": "This image shows a small child sitting in a high chair with a birthday cake in front of them. The child is wearing a white shirt and pink overalls, and has a pink bow in their hair. The cake is decorated with pink frosting and sprinkles, and there are candles on top of it. The child is looking at the cake with a happy expression on their face."} +{"image_id": 177419, "caption": "The image shows a blue and white fire hydrant on the sidewalk in front of a brick building. The hydrant is decorated with a mural of a cityscape, including a train station, a skyscraper, and a park. The mural appears to be painted on the surface of the hydrant itself, rather than being attached to it."} +{"image_id": 86432, "caption": "This image shows a baseball player swinging a bat at a pitched ball on a baseball field. The player is wearing a blue jersey and white pants, and is positioned at home plate. The umpire is standing behind the plate, and the catcher is positioned behind the pitcher. The crowd is seated in the stands, watching the game."} +{"image_id": 544590, "caption": "This image shows a close-up view of an orange tabby cat lying on a gray couch. The cat's head is resting on its paws, and its eyes are closed. The cat's fur is fluffy and appears to be well-groomed. The background of the image is a light-colored couch with a pattern on it. There are no other objects or people visible in the image."} +{"image_id": 513060, "caption": "This image shows a person holding a half-eaten doughnut in their hand. The person is wearing a purple shirt and blue jeans, and is sitting on a sidewalk next to a tree. The doughnut appears to be glazed and has a blue filling. The person's hand is holding the doughnut in a relaxed position, with the other hand resting on their lap. The image is taken from a low angle, looking up at the person from below."} +{"image_id": 140921, "caption": "This image shows a surfboard with various messages written on it, including \"Beach Bums\" and \"Full Bar.\" The surfboard is lying on the sand in front of a beach."} +{"image_id": 361351, "caption": "The image shows a pizza in a cardboard box on a table. The pizza has slices taken out of it, and there is a bottle of wine next to the box."} +{"image_id": 202154, "caption": "The image shows a pizza on a wooden cutting board on top of a wooden table. The pizza has a crispy, golden-brown crust and is topped with mozzarella cheese, tomato sauce, and fresh basil leaves. The edges of the pizza are slightly charred, giving it a smoky flavor. In the background, there is a wooden chair and a bottle of red wine."} +{"image_id": 94248, "caption": "The image shows a large clock tower in the middle of a city street. The clock tower is made of metal and has two large clock faces on it. The clock tower is surrounded by tall buildings on either side of it. There is a black car parked on the sidewalk next to the clock tower. The car is facing the clock tower and has its lights on. There are people walking on the sidewalk in front of the clock tower. Some of them are looking up at the clock tower while others are walking past it. The buildings on either side of the clock tower have large windows and balconies. The street is lined with trees and streetlights."} +{"image_id": 200681, "caption": "This image shows a man and two dogs playing in a green field. The man is wearing a striped shirt and jeans, and is holding a blue frisbee in his hand. The two dogs are jumping up in the air, trying to catch the frisbee. The sky is clear and blue, and there are trees in the background."} +{"image_id": 532989, "caption": "This image shows a giraffe lying down in a grassy field. The giraffe has brown and white stripes on its body and a long neck. It appears to be resting with its head down and its legs tucked underneath it. In the background, there is a wooden fence and some trees."} +{"image_id": 565989, "caption": "The image shows a building with a clock tower on top of it. The clock tower has several statues of birds on top of it. The building appears to be made of brick and has a metal roof. There are trees in the background, and the sky is visible through them."} +{"image_id": 67315, "caption": "This image shows two men wearing suits and ties, standing in a room with a window in the background. The man on the left is wearing a light-colored shirt and a dark tie, while the man on the right is wearing a dark shirt and a light-colored tie. Both men have their arms crossed in front of them, and they are looking at the camera with smiles on their faces. The room appears to be well-lit, with sunlight streaming in through the window."} +{"image_id": 157170, "caption": "The image shows a group of sheep standing on a hillside overlooking a valley with a city in the distance. The sheep are standing on a rocky outcropping and are looking down at the valley. The sky is overcast and there are clouds in the distance. The sheep have long, curved horns and are grazing on the grass on the hillside. The valley is surrounded by rolling hills and mountains in the distance. The city in the distance is surrounded by trees and buildings."} +{"image_id": 328786, "caption": "This image shows a row of benches lined up along a sidewalk in a park. The benches are made of concrete and have metal armrests. There are no people in the image, but there are some leaves and grass on the ground. The sky is cloudy and there are some trees in the background."} +{"image_id": 46011, "caption": "This image shows a small airplane parked on a runway at an airport. The runway is lined with grass and there is a fence surrounding the airport. The sky is clear and there are mountains in the background."} +{"image_id": 384348, "caption": "This image shows a person wearing skis and standing on a snow-covered slope. The person is wearing a blue jacket and black pants, and is holding a pair of ski poles. In the background, there is a ski lift and a group of people waiting in line for the lift. The sky is overcast and there are clouds in the distance."} +{"image_id": 451798, "caption": "This image shows a collection of ties hanging on a rack next to a red wall. The ties are of different colors and styles, including some with patterns and others with solid colors. There are also several hats hanging on the rack, including fedoras and baseball caps. The room appears to be a closet or storage area, with shelves and other items visible in the background."} +{"image_id": 376545, "caption": "This image shows two people riding skateboards on a sidewalk in front of a coffee shop. One person is wearing a red and blue jacket, black pants, and a black skateboard. The other person is wearing a black hoodie, black pants, and a white skateboard. They are both jumping and doing tricks on their skateboards. The sidewalk is made of concrete and there are cars parked on the street in the background. The coffee shop has large windows and a sign that reads \"Cafe de la Maison\"."} +{"image_id": 11538, "caption": "The image shows a person riding a motorcycle on a road. The person is wearing a helmet, gloves, and boots, and is holding onto the handlebars with both hands. The motorcycle is a black and silver Ducati Monster 1200 R, with a sleek and aggressive design. The background is a lush green forest, with tall trees and bushes on either side of the road. The sun is shining through the trees, casting dappled shadows on the road and the motorcycle. The rider is wearing black leather pants, a black leather jacket, and a black t-shirt. The road is in good condition, with smooth asphalt and few potholes. There are no other vehicles on the road, and the only sound is the roar of the motorcycle's engine."} +{"image_id": 346207, "caption": "This image shows a cat lying on a desk in front of two computer monitors and a keyboard. The cat appears to be sleeping, with its eyes closed and its head resting on its paws. The desk is made of wood and has a few papers and pens scattered on it. There are two computer monitors on the desk, each with a different operating system displayed on the screen. The cat's fur is a mix of black and gray, and it appears to be well-groomed."} +{"image_id": 359238, "caption": "This image shows a man sitting at a table with a cup of tea in front of him. He is wearing a brown jacket and a yellow shirt. The tablecloth is white and there is a vase of flowers on it. There is a window behind him with a view of a cityscape."} +{"image_id": 297610, "caption": "This is a black and white photograph of a man riding a skateboard on a ramp. He is wearing a white t-shirt and black pants, and has his hands on the handlebars of the skateboard. The ramp is made of wood and has a metal railing on one side. The ceiling of the room is made of metal beams and has a series of lights hanging from it. There are no other people or objects in the photograph."} +{"image_id": 428447, "caption": "This is a black and white photograph of a street corner with two streetlights on either side of the street. The street is lined with tall trees on either side of the road, and there are several buildings in the background. The buildings are made of brick and have large windows. There are no people or vehicles in the image."} +{"image_id": 428769, "caption": "This image shows a black car parked on the side of the road next to a parking meter. The car has a license plate with the number \"123\" on it. There is a tree on the other side of the road, and the sky is visible in the background."} +{"image_id": 452084, "caption": "This image shows a plate with two slices of bread and two slices of tomato on it. There is also a fork and knife on the side of the plate. The plate is on a wooden table."} +{"image_id": 545363, "caption": "This image shows a broken bench on the side of a building. The bench appears to have fallen off the side of the building and is now lying on the ground. There are no people in the image. The building appears to be made of concrete and has large windows on the top floor. There is a railing on the side of the building to prevent people from falling off."} +{"image_id": 77963, "caption": "This is an image of a cow hanging from the ceiling in a store. The cow is made of plastic and has a black and white pattern on its body. The store appears to be a toy store or a children's clothing store. The walls are painted green and there are various toys and clothing items displayed on the shelves."} +{"image_id": 78093, "caption": "This image shows a person wearing skis and poles, standing in the middle of a snow-covered trail. The person is wearing a pink jacket and pants, and has a red scarf around their neck. The trees on either side of the trail are covered in snow, and the sky is cloudy."} +{"image_id": 346334, "caption": "This image shows a group of two brown bears standing in a grassy field. One of the bears is standing on its hind legs, while the other is standing on all fours. The bears are facing each other and appear to be looking at something in the distance. The grass in the field is tall and lush, and there are some small bushes and trees in the background. The sky is clear and blue, and there are some clouds in the distance."} +{"image_id": 185633, "caption": "This is a bathroom with a bathtub, sink, and toilet. The walls and floor are covered in peeling paint. There is a window above the sink with a view of the outside."} +{"image_id": 327165, "caption": "This image shows a man cutting the hair of a small child. The man is wearing a black shirt and has his back to the camera. The child is sitting on a chair with its legs dangling over the edge. The child's hair is long and curly, and the man is using a pair of scissors to cut it. There is a woman standing behind the man, watching him cut the child's hair. She is wearing a pink shirt and has her arms crossed in front of her chest. The room is dimly lit and appears to be a salon or barber shop."} +{"image_id": 410632, "caption": "This image shows a group of baseball players standing on a green field with a large scoreboard in the background. The players are wearing baseball uniforms and gloves, and one of them is holding a baseball glove. The scoreboard has the names of the teams and the score of the game listed on it. The players are standing in a line, facing the scoreboard, and appear to be waiting for something to happen. The crowd is visible in the background, sitting in the stands and watching the game."} +{"image_id": 468471, "caption": "This image shows a man in a white shirt and blue tie jumping up and down on a bed in a room with white walls and a wooden floor. The bed has a brown comforter and pillows, and there are several pieces of furniture in the room, including a desk and a chair. The man is smiling and appears to be having fun as he jumps on the bed."} +{"image_id": 241317, "caption": "This image shows a man pushing a cart with a bunch of fruit on it in front of a blue building. The man is wearing a black shirt and pants and has a black hat on his head. The building behind him appears to be made of stone or brick and has a wooden door with a window above it. There are no other people or vehicles in the image."} +{"image_id": 444982, "caption": "The image shows two zebras grazing in a grassy field. One zebra is standing on its hind legs, while the other is lying down. Both zebras have black and white stripes on their bodies. In the background, there is a tree with a large trunk and branches. The sky is overcast, and there are no other animals or people in the image."} +{"image_id": 117563, "caption": "This image shows two men standing in a living room. The man on the left is wearing a white t-shirt and blue jeans, and the man on the right is wearing a black t-shirt and dark blue jeans. The room is decorated with yellow and white striped curtains and a blue couch."} +{"image_id": 206579, "caption": "This image shows a man standing in front of a table with a birthday cake on it. The cake has several lit candles on it, and the man is looking at it with a surprised expression on his face. The table is covered in a red and white checkered tablecloth, and there are several plates and glasses on it. The walls of the room are painted a light blue color, and there are several pictures hanging on them. The room appears to be a kitchen or dining room."} +{"image_id": 221172, "caption": "This image shows a man playing tennis on a court. He is wearing a blue shirt and white shorts, and is holding a tennis racket in his right hand. The ball is on the other side of the court, and there is a person in the background watching the game. The court is made of green and purple tiles, and there are white lines marking the boundaries."} +{"image_id": 317969, "caption": "This image shows a group of sheep walking down a road next to a mountain range in the background. The sheep are all white and appear to be of the same breed. The mountain range is covered in snow and has a number of peaks visible. The road is made of asphalt and is lined with trees on either side. There are no other vehicles or people in the image."} +{"image_id": 82150, "caption": "This image shows a man sitting on a couch with a white video game controller in his hand. He is wearing a blue t-shirt and has his hair styled in a messy fashion. The background of the image shows a window with blinds and a view of trees outside."} +{"image_id": 284064, "caption": "This image shows a man playing tennis on a court. He is wearing a white shirt and blue shorts and is holding a tennis racket in his right hand. He is standing on the left side of the court and is about to serve the ball. The net is in the background and there are trees and a building in the distance."} +{"image_id": 372203, "caption": "This image shows a bench sitting in the middle of a dirt road in the middle of a desert. The sky is clear and blue, and there are mountains in the background. The bench appears to be made of wood, and there is a fire hydrant next to it."} +{"image_id": 359136, "caption": "The image shows a woman lying on the floor in front of a bathtub. She is wearing black boots and a black top. The background is white and there is a toilet in the corner of the room. The woman is looking up at the ceiling with a relaxed expression on her face. The room appears to be clean and well-maintained."} +{"image_id": 499281, "caption": "This image shows a kitchen with white cabinets, a stainless steel stove, a microwave oven, a refrigerator, a dishwasher, a sink, and a faucet. The countertop is made of granite and there is a bag of groceries on the counter."} +{"image_id": 192233, "caption": "This image shows a man playing tennis on a red clay court. He is wearing a blue shirt and black shorts, and is holding a tennis racket in his right hand. The man is jumping up in the air as he swings the racket at the ball, which is on the other side of the court. The man's shadow is visible on the court, and there are trees and a fence in the background."} +{"image_id": 11987, "caption": "The image shows a bedroom with a striped ceiling and walls, a wooden floor, and a fireplace in the corner. The bed has a wooden headboard and a striped bedspread, and there are two chairs and a small table next to it. The room is dimly lit by candles on the table and the fireplace."} +{"image_id": 406810, "caption": "This image shows a group of people sitting in a room with a large screen on the wall in front of them. The screen is displaying a live feed of a space shuttle launching into space. The people in the room are watching the launch on the screen and appear to be interested in what is happening. The room is dimly lit, with only a few lights on to illuminate the screen. The people in the room are dressed in casual clothing, with one person wearing a white shirt and black pants, and another person wearing a black shirt and pants. The room appears to be a large auditorium or lecture hall, with rows of seats and a stage at the front of the room."} +{"image_id": 99965, "caption": "This image shows a plate with a sandwich, chips, and a glass of water. The sandwich appears to be a classic club sandwich with lettuce, tomato, and mayonnaise between two slices of bread. The chips are arranged in a pile on the side of the plate, and there is a glass of water next to the sandwich. The plate is decorated with a green and white striped border, and there are some crumbs on the surface of the plate."} +{"image_id": 17328, "caption": "The image shows a red train traveling along a set of tracks in a snowy environment. The train appears to be traveling at a high speed, with its wheels leaving a trail of smoke behind it. The train is passing under a large metal structure, which appears to be a bridge or an overpass. There are no people or other vehicles visible in the image."} +{"image_id": 393682, "caption": "This image shows a white plate with a piece of cake on it. The cake is topped with whipped cream and strawberries, and there is a fork next to it. The plate is on a table with a white tablecloth and a brown background."} +{"image_id": 540093, "caption": "This image shows a large pink umbrella on the sidewalk next to a tree. The umbrella is covered in plastic wrap and appears to be protecting something underneath it. There are no people or other objects visible in the image."} +{"image_id": 242400, "caption": "This image shows a woman standing in front of a large clock that is attached to a pole. The clock has a red ribbon wrapped around it, and the woman is wearing a white shirt and black pants. There are cars parked in the background, and the sky is dark."} +{"image_id": 409009, "caption": "The image shows a long, sleek white train parked on a platform in a modern train station. The train appears to be made of metal and has large windows on the sides. There are several people standing on the platform waiting to board the train. The station appears to be well-lit and modern, with large glass windows and metal railings. There are also several advertisements on the walls of the station."} +{"image_id": 6091, "caption": "The image shows a person standing in front of a stop sign that is mounted on a pole. The person appears to be holding something in their hand, but it is not clear what it is. The stop sign has an orange background with white letters that spell out the word \"stop.\""} +{"image_id": 42834, "caption": "This image shows a woman sitting at a table with a plate of food in front of her. She is wearing an orange t-shirt and has her hair tied back in a ponytail. The table is covered in white cloth and there are several plastic forks and knives on the table next to the plate of food. The woman appears to be using a fork to eat the food on the plate. There is a camera on the table in front of her, but it is not in use at the moment. The walls of the room are covered in white tiles and there is a large window in the background."} +{"image_id": 433554, "caption": "The image shows a group of people standing on the deck of a boat in the water. The people are wearing life jackets and holding surfboards. The sky is cloudy and there are trees in the background."} +{"image_id": 174987, "caption": "This image shows a train with graffiti on it. The graffiti is written in different colors and styles, including blue, green, and yellow. The train is parked on a platform, and there are people waiting to board it."} +{"image_id": 116208, "caption": "The image shows a group of people sitting at a table in a restaurant, surrounded by empty wine glasses and plates of food. In the center of the table is a large pizza with various toppings, including bacon, mushrooms, and spinach. The pizza appears to be ready to be served to the people at the table."} +{"image_id": 80131, "caption": "This image shows a group of people sitting around a table in a kitchen. The people are all smiling and appear to be having a good time. There are plates of food on the table and a bottle of wine in the center. The walls of the kitchen are made of wood and there are cabinets and appliances in the background."} +{"image_id": 310663, "caption": "The image shows a group of old trains parked on a set of tracks. The trains are rusty and appear to be in disrepair. There are no trees or other vegetation visible in the image. The sky is cloudy and overcast."} +{"image_id": 100138, "caption": "This is an image of a black motorcycle parked on the side of a road. The motorcycle has a sleek, modern design and appears to be in good condition. There are no other vehicles or people in the image."} +{"image_id": 415613, "caption": "This image shows a man wearing a green t-shirt and black pants standing in front of a counter in a kitchen. The counter is filled with various food items, including sandwiches, salads, and fruits. The man appears to be preparing food, as he is wearing gloves and has his hands covered in ingredients. The kitchen appears to be a commercial setting, with stainless steel appliances and a tiled floor. The lighting in the image is bright and well-lit, casting shadows on the counter and the man's face."} +{"image_id": 214737, "caption": "The image shows a large, ornate building with a high ceiling and large windows. The walls are made of stone and have intricate carvings and arches. At the center of the building is a large, ornate clock tower with a clock face on each side. The clock faces are made of stained glass and have intricate designs on them. The ceiling is high and has a large, ornate chandelier hanging from it. There are several people standing around the building, looking up at the clock tower."} +{"image_id": 172718, "caption": "This is a black and white photograph of a young boy wearing a white shirt and tie. He is looking directly at the camera with a serious expression on his face. The boy's hair is short and neatly styled, and he has a small mole on his cheek. The background of the photograph is blurry and out of focus."} +{"image_id": 99186, "caption": "This image shows a stop sign on a pole next to a road. The stop sign has a red background with white letters that read \"stop.\" There is a black car parked on the side of the road next to the stop sign. The sky in the background is clear and blue."} +{"image_id": 3580, "caption": "This image shows a man sitting on a couch, holding a video game controller in his hand. He is wearing a gray t-shirt and has glasses on his face. The room behind him appears to be a living room with a wooden floor and some furniture, including a coffee table and a bookshelf. The walls are painted a light color and there are some plants in the room."} +{"image_id": 526044, "caption": "The image shows a brown and white cow standing on the edge of a body of water. The cow has its head down and appears to be looking at something in the water. The water is calm and the sky is clear. There are no other animals or people in the image."} +{"image_id": 105291, "caption": "This image shows a stop sign hanging from a pole in front of a yellow building with white trim. The stop sign has a red background with white letters that read \"stop\" in black. There are two street signs next to the stop sign, one with a green background and white letters that read \"no right turn\" and the other with a red background and white letters that read \"one way\" in black. There are also several cars parked on the street in front of the building."} +{"image_id": 577169, "caption": "The image shows a group of people standing in front of a large clock face. The clock face is made of metal and has black Roman numerals on it. The people in the image are looking up at the clock face and appear to be admiring it. The room they are in is dimly lit and has a wooden floor. There are no other objects in the room except for the clock face."} +{"image_id": 181574, "caption": "This image shows a group of people sitting at a table with a large pizza in front of them. The pizza has various toppings on it, including pepperoni, mushrooms, and onions. The people in the image are all smiling and appear to be enjoying the pizza. One person is holding a knife and fork, while the others are using their hands to eat the pizza. The table is covered in white tablecloth and has two glasses of water on it. The room is dimly lit and appears to be a restaurant or cafe."} +{"image_id": 83441, "caption": "This image shows a living room with a black leather couch, a wooden floor, and a large window with curtains. There is a television on a stand in the corner of the room, and a bookshelf with books on the wall behind the couch. The room appears to be well-lit and spacious."} +{"image_id": 130527, "caption": "This image shows a group of cows grazing in a lush green field. The cows are black and white, and they are standing on their hind legs, grazing on the tall grass. In the background, there is a clear blue sky with a few clouds. The ocean can be seen in the distance, and there are mountains in the background. The fence in the foreground separates the cows from the road."} +{"image_id": 86471, "caption": "This image shows a man playing tennis on a blue and white striped court. He is wearing a blue shirt and white shorts and is holding a tennis racket in his right hand. The man is standing on the left side of the court and is about to serve the ball. There is a white net dividing the court in half and a white line marking the baseline. In the background, there is a blue sky and some trees."} +{"image_id": 105737, "caption": "This is an image of a bookshelf with a teddy bear sitting on top of it. The bookshelf is made of wood and has several books stacked on top of each other. The teddy bear is wearing a red bow tie and is holding a book in its paws. The background of the image is a wooden floor with a rug in front of the bookshelf."} +{"image_id": 212842, "caption": "The image shows a group of zebras standing in a field, with a lone tree in the background. The zebras are standing in a line, with their heads facing towards the tree. The sky is clear and blue, with a few clouds in the distance. The grass in the field is tall and green, and there are no other animals or people in the image."} +{"image_id": 105220, "caption": "This image shows a group of people on skis standing under an archway made of red inflatable tubes. The archway is decorated with banners and flags. The people in the image are wearing helmets, gloves, and goggles. Some of them are holding poles with skis attached to them. The background of the image is covered in snow and there are mountains in the distance."} +{"image_id": 490701, "caption": "The image shows a person holding a fork with a piece of chocolate cake on a white plate in front of them. The plate has a small amount of whipped cream on top of the cake, and there is a glass of water on the table in front of the person. The person's hand is holding the fork with the cake on it, and their other hand is holding a glass of water. The plate and glass are on a wooden table with a brown background."} +{"image_id": 368961, "caption": "The image shows two elephants standing in a fenced enclosure. The enclosure is made of metal bars and has a dirt floor. The elephants are standing next to each other and appear to be looking out of the enclosure. There are two people in the background, one of whom is looking at the elephants through the bars of the enclosure. The sky is visible through the open door of the enclosure, and there are trees in the background."} +{"image_id": 520892, "caption": "This image shows a woman eating a hot dog out of a bun. She is holding the hot dog in one hand and using the other hand to hold the bun. The woman is wearing a black jacket and has curly brown hair. In the background, there are trees and a blue sky."} +{"image_id": 113354, "caption": "The image shows a group of three zebras standing in a dirt area surrounded by trees and other vegetation. Two of the zebras are standing next to each other, while the third is standing off to the side. The zebras appear to be grazing on grass and other plants in the area."} +{"image_id": 33652, "caption": "This image shows a pizza that has been baked in a pan on a stove. The pizza has a crispy, golden-brown crust and is topped with a variety of ingredients, including chicken, black beans, and cheese. The pizza appears to have been cooked to perfection and is ready to be served."} +{"image_id": 511153, "caption": "This image shows a blue and red train traveling along a set of railroad tracks. The train has several cars attached to it, including a caboose at the end. The sky in the background is cloudy and there are some trees and buildings visible in the distance."} +{"image_id": 328957, "caption": "This image shows a cat sitting on top of a tall, wooden scratching post in a room with a window in the background. The cat is looking down at something on the floor. The scratching post is made of wood and has a small platform at the top where the cat can sit and scratch. There are also several toys scattered around the room, including a ball and a feather wand."} +{"image_id": 190015, "caption": "This image shows a green truck parked next to a large pile of hay in a grassy field. The trees in the background are visible behind the truck."} +{"image_id": 244925, "caption": "This image shows a man standing on a grassy knoll overlooking a body of water. He is holding a camera in one hand and a banana in the other. The man is wearing a gray t-shirt, black pants, and a black backpack. The backpack has a brown and black design on it, and it is slung over the man's shoulder. In the background, there is a blue sky and some clouds. The grass on the knoll is tall and green, and there are some trees in the distance. The water in the background is a deep blue color and there are some boats in the distance."} +{"image_id": 29406, "caption": "This image shows a wooden bench sitting in the middle of a lush green lawn. The bench appears to be made of wood and has a smooth surface. The lawn is well-manicured and has a variety of plants growing on it, including shrubs and small trees. In the background, there is a building with multiple floors and windows. The building appears to be made of brick and has a white facade with green shutters."} +{"image_id": 32570, "caption": "This image shows a man riding a surfboard through a large wave. The man is wearing a black t-shirt and black shorts, and has his hair tied back in a ponytail. He is holding onto the surfboard with both hands, and appears to be enjoying the ride. The wave behind him is large and turquoise, with white foam at the top. In the background, there is a clear blue sky and some clouds."} +{"image_id": 260608, "caption": "This image shows a group of young girls playing soccer on a grass field. The girls are wearing black and purple uniforms and are kicking a soccer ball towards a goalpost. The goalpost is made of metal and has a net attached to it. In the background, there are trees and a house with a white picket fence."} +{"image_id": 291286, "caption": "This is a black and white photograph of a man riding a skateboard down a narrow sidewalk lined with shops and buildings. The man is wearing a black t-shirt, black pants, and a pair of black shoes. He has his hands on the deck of the skateboard and is wearing a pair of black sunglasses. In the background, there are several people walking on the sidewalk, some of whom are carrying shopping bags. The buildings on either side of the sidewalk are made of stone and have large windows. The sky is overcast and there are a few clouds visible."} +{"image_id": 375278, "caption": "This image shows a person's hand holding a small black cat that is lying on top of a suitcase. The suitcase is open and the cat is standing on its hind legs with its front paws on the handle of the suitcase. The person's hand is holding the cat's scruff, or the loose skin on the back of its neck. The background of the image is a carpet with a pattern of brown and beige stripes. The room appears to be a living room or bedroom, as there are magazines scattered on the coffee table in front of the sofa."} +{"image_id": 290684, "caption": "This image shows a woman sitting on a wooden post with a pink stuffed animal in her lap. The woman is wearing a purple shirt and white pants, and has her hair tied back in a ponytail. In the background, there are trees and a road."} +{"image_id": 29306, "caption": "The image shows a brown dog sitting on a sandy beach with a cloudy sky in the background. The dog has a black collar and is wearing a black leather choker. The dog's ears are perked up and it appears to be looking off into the distance. The beach is covered in sand and there are some rocks visible in the distance. The sky is overcast and there are some dark clouds in the distance. The overall mood of the image is peaceful and contemplative."} +{"image_id": 173375, "caption": "This image shows a person on a snowboard going down a snow-covered slope. The person is wearing a helmet, gloves, and goggles, and is carrying a snowboard under their arm. The sky is clear and blue, and there are some clouds in the distance. The snow on the slope is deep and powdery, and there are no other people or objects visible in the image."} +{"image_id": 198590, "caption": "This image shows a silver SUV parked on the side of the road next to a red pickup truck. The silver SUV has tinted windows and a black roof rack with a silver ladder on top. The red pickup truck has a green camper shell on the back and a white bed liner. There are trees and a building in the background."} +{"image_id": 25747, "caption": "The image shows a train traveling down a railroad track surrounded by trees and greenery. The train is made up of several cars, including a caboose at the end. The train appears to be moving at a moderate speed, with the wheels of the train leaving a trail of dirt and debris behind it. The sky is overcast, with a few clouds visible in the distance."} +{"image_id": 346589, "caption": "This image shows two people on skis standing on a snow-covered slope. One person is wearing a brown jacket and black pants, while the other is wearing a black jacket and blue pants. They both have skis on their backs and are holding ski poles in their hands. In the background, there are trees and a mountain range covered in snow. The sky is clear and blue, and there are no clouds in sight."} +{"image_id": 121106, "caption": "This image shows a group of people standing around a luggage carousel in an airport terminal. The carousel has several bags and suitcases on it, and there are several people standing around it, waiting for their luggage. The people in the image are all wearing different types of clothing, including jackets, scarves, and hats. Some of the people are holding onto their luggage, while others are looking at their phones or talking to each other. The ceiling of the terminal is made of white tiles, and there are several fluorescent lights hanging from it. The walls of the terminal are made of white marble, and there are several large windows that look out onto the tarmac. In the background, there are several other people walking around the terminal, and there are several airplanes parked on the tarmac."} +{"image_id": 392850, "caption": "This image shows a wooden cutting board with various fruits and vegetables arranged on it. The fruits include oranges, bananas, and apples, while the vegetables include carrots, cucumbers, and tomatoes. There is also a red plastic cup and a pair of scissors on the table."} +{"image_id": 554241, "caption": "The image shows a group of people standing on a brick sidewalk in front of a large building. The building appears to be made of concrete and has many windows. The people in the image are all wearing black and white clothing, with some wearing black sneakers and others wearing white sneakers. One person is holding an umbrella, which is a black and white striped umbrella with a white handle. The sky in the image is cloudy, with large white clouds covering most of the sky. There are also some trees in the background, with their branches swaying in the wind. The overall atmosphere of the image is casual and relaxed, with the people standing around and chatting with each other."} +{"image_id": 341017, "caption": "This image shows a group of goats standing on the roof of a truck. The truck has a white and blue color scheme and appears to be in good condition. The goats are standing on the edge of the roof and appear to be looking down at something. There is a man standing on the ground next to the truck, and he appears to be watching the goats. The sky is visible in the background, and it appears to be a clear day."} +{"image_id": 135497, "caption": "This image shows a man sitting at a table with a large pizza in front of him. The man is wearing a blue shirt and has his hands on the table, as if he is about to pick up the pizza and eat it. In the background, there are some trees and a building with lights on it."} +{"image_id": 159260, "caption": "This image shows a blue and orange train on a set of railroad tracks. The train has several cars, including a caboose at the end. The train appears to be moving slowly along the tracks, which are lined with trees and buildings in the background. The sky is overcast, and there are clouds visible in the distance."} +{"image_id": 417332, "caption": "This image shows a group of people playing baseball on a field. The players are wearing uniforms and helmets, and one of them is holding a bat. The field has a dirt infield and a grass outfield, and there are trees in the background. The sky is clear and blue, and there are no clouds."} +{"image_id": 90520, "caption": "The image shows two stuffed animals, a white teddy bear and a brown dog, dressed in traditional Japanese clothing. The bear is wearing a red kimono with a white sash around its waist, and the dog is wearing a red and white striped scarf around its neck. The two animals are standing next to each other, with the bear standing on its hind legs and the dog sitting on the ground. The background of the image is unclear, but it appears to be a white wall or surface."} +{"image_id": 318524, "caption": "The image shows a rusty old train car with peeling paint and rusty metal siding. The car appears to be abandoned and overgrown with weeds and vines. The windows are boarded up, and the door is missing. The car is parked on a railroad track, surrounded by tall grass and weeds. The sky in the background is overcast and cloudy."} +{"image_id": 118406, "caption": "This image shows a group of men playing a game of soccer on a grass field. The players are wearing soccer uniforms and are jumping up in the air to head the ball. One player is wearing a red and white striped shirt, while the others are wearing blue and white striped shirts. The players are standing on a grass field with trees and a fence in the background."} +{"image_id": 25748, "caption": "The image shows a white sailboat moored at a dock in a harbor. The boat has a black hull and white sails. There are several other boats in the background, some of which are also moored at the dock. The sky is clear and blue, and there are some clouds in the distance. The water is calm and reflective."} +{"image_id": 365557, "caption": "This image shows a person on a snowboard going down a snow-covered slope. The person is wearing a black jacket and blue pants, and has a black helmet on their head. The snow is covered in fresh powder, and there are trees in the background. The sky is clear and blue, and there are no clouds in sight."} +{"image_id": 320978, "caption": "This image shows a man standing in front of a display of fresh vegetables at a farmer's market. The man is holding a cardboard box and looking at the vegetables. The display includes a variety of fruits and vegetables, including tomatoes, cucumbers, peppers, and lettuce. There are also some baskets of herbs and flowers in the background. The market appears to be well-stocked and well-organized, with a variety of vendors selling different types of produce."} +{"image_id": 315073, "caption": "This image shows a gray and white cat sitting on a cushion next to a blue bottle. The cat's mouth is open and it appears to be yawning. There is a window behind the cat, and the blinds are partially open. The room appears to be dimly lit."} +{"image_id": 363927, "caption": "The image shows a silver bus traveling down a city street. The bus has a bicycle rack on the back and appears to be carrying passengers. There are buildings and trees in the background."} +{"image_id": 243355, "caption": "This image shows a zebra walking across a grassy field. The zebra has black and white stripes on its body and is standing on its hind legs. In the background, there is a fence and some trees. The sky is clear and blue."} +{"image_id": 373521, "caption": "The image shows a white and brown bus parked on the side of a road. The bus appears to be in good condition, with no visible signs of damage or wear and tear. The bus's windows are tinted, and the door is open, revealing the interior of the bus. There is a tree growing on the lawn next to the bus, and the sky is visible in the background."} +{"image_id": 76409, "caption": "This image shows a bedroom with a red bedspread, a wooden floor, and a large window with a pink curtain. There is a painting hanging on the wall above the bed, and a small table with a lamp on it next to the bed. The room appears to be well-lit and cozy."} +{"image_id": 485985, "caption": "This is a photo of a young child sitting in a toilet with a toothbrush in their mouth. The child is wearing a blue sweater and white pants. The toilet is made of wood and has a white porcelain bowl. There is a towel hanging on the back of the toilet seat."} +{"image_id": 27564, "caption": "This image is a black and white photograph of two young women sitting on a couch. One of the women is holding a pair of video game controllers in her hands, while the other is resting her feet on the arm of the couch. Both women are wearing casual clothing, with one wearing a striped shirt and leggings, and the other wearing a tank top and shorts. The couch is a dark-colored leather sofa with a wooden base, and there is a rug on the floor in front of it. The room is dimly lit, with only a small table lamp providing light on the couch. The overall mood of the image is casual and relaxed."} +{"image_id": 92749, "caption": "This image shows two giraffes standing in a grassy field next to a pond. The giraffes are looking at each other and appear to be standing on their hind legs. There are trees in the background and the sky is visible in the top of the image."} +{"image_id": 554958, "caption": "This is an image of a cat sitting in a pile of leaves and twigs. The cat's fur is a mix of brown, black, and orange, and its eyes are bright yellow. The cat's ears are perked up, and it appears to be staring intently at something in the distance. The background of the image is made up of various leaves, twigs, and other debris that has accumulated in the area."} +{"image_id": 439971, "caption": "This image shows a woman taking a selfie in a bathroom mirror. She is wearing a striped shirt and black pants, and is holding a camera in front of her face. The background is a white tiled wall with a small window above the sink. There is a towel hanging on the back of the door."} +{"image_id": 559006, "caption": "The image shows a large brown bear standing in the water, with its head and part of its body submerged in the water. The bear's fur appears to be wet and its eyes are open, looking upstream. The bear's ears are alert and its mouth is open, as if it is calling out or sniffing the air. The water in the background appears to be turbulent, with ripples and waves created by the bear's movement. The overall mood of the image is peaceful, with the bear seemingly at ease in its natural habitat."} +{"image_id": 457262, "caption": "The image shows a wooden table with two bananas on it. The bananas are yellow and have some brown spots on them. There is a small coin on the table next to one of the bananas."} +{"image_id": 263881, "caption": "This image shows a giraffe standing in a grassy field with trees in the background. The giraffe has long legs and a long neck, and its head is tilted to the side. Its mouth is open and its tongue is hanging out. The giraffe is standing on its hind legs, and its front legs are bent at the knees. The giraffe's coat is a mix of brown and tan, and its pattern is similar to that of a leopard. The trees in the background are tall and leafy, and there are some small bushes in the foreground. The sky is clear and blue, and there are a few clouds in the distance."} +{"image_id": 322594, "caption": "This image shows a bathroom with a toilet, sink, and shower. The walls are painted yellow and the floor is tiled. The toilet has a white porcelain bowl and the sink has a black porcelain basin. The shower has a white enclosure and a black showerhead."} +{"image_id": 22423, "caption": "This image shows a man standing next to an elephant. The man is wearing a green shirt and has a hat on his head. The elephant is standing on its hind legs and has its trunk up in the air. There are trees and bushes in the background."} +{"image_id": 59000, "caption": "This image shows a living room with a green couch, a brown chair, and a Christmas tree in the corner. There is a desk with a computer and a bookshelf in the corner of the room. The walls are painted a light color and there is a rug on the floor."} +{"image_id": 119547, "caption": "The image shows a group of people standing in front of a building, with a man in a suit and tie standing in the center. The man is holding a microphone and speaking to a group of people who are standing behind him. The people in the background are wearing casual clothing and appear to be waiting for the man to finish speaking."} +{"image_id": 432763, "caption": "The image shows a large group of birds standing on a sandy beach next to the ocean. The birds are gathered around a small boat that is partially submerged in the water. The sky is cloudy and the sun is setting, casting a warm orange glow over the scene. The water is calm and the waves are lapping at the shore."} +{"image_id": 125635, "caption": "The image shows a black and white cat standing on a window sill, looking out of the window. The cat is wearing a collar and appears to be staring at something outside the window. The background of the image is a blurred view of a building or room."} +{"image_id": 542549, "caption": "This is a black and white photograph of a bed with a pile of books and a laptop on it. The bed sheets are rumpled and the pillows are flattened. There is a lamp on the nightstand next to the bed. The room appears to be dimly lit and there are shadows on the wall behind the bed. The overall mood of the image is relaxed and cozy."} +{"image_id": 494759, "caption": "This image shows two people standing on a sandy beach, watching a kite being flown in the sky above them. The kite is being flown by one of the people, who is holding it with one hand and looking up at it with the other. The other person is standing behind them, watching the kite fly. The sky is cloudy and overcast, and there are no other people or objects in the image."} +{"image_id": 5617, "caption": "The image shows two cats lying on a bed with green pillows. One of the cats is black and white, while the other is brown and white. Both cats appear to be relaxed and comfortable on the bed. There is a laptop on the nightstand next to the bed, and a pile of blankets and pillows on the floor. The room appears to be well-lit, with a window on one side and a lamp on the other."} +{"image_id": 279774, "caption": "This image shows a group of children playing baseball on a dirt field. The children are wearing uniforms and helmets, and one of them is holding a bat. There is a man in the background watching the game, and there are trees and a fence in the background."} +{"image_id": 323442, "caption": "This image shows a man and a woman sitting at a wooden table with white umbrellas in the background. The man is wearing a blue shirt and the woman is wearing a white blouse. They are both smiling and looking at the camera. The table is set with wine glasses and there are trees in the background."} +{"image_id": 109454, "caption": "This image shows a man wearing a blue dress shirt and a black tie, holding a glass of water in his hand. The man is standing in a room with white walls and a ceiling, and there are tables and chairs in the background. The man's face is not visible in the image."} +{"image_id": 370677, "caption": "The image shows three female employees of a bakery standing in front of a display case filled with various baked goods such as bread, pastries, and cakes. The employees are wearing colorful shirts and smiling at the camera. The bakery appears to be well-stocked with a variety of freshly baked goods."} +{"image_id": 521509, "caption": "This image shows a woman sitting on a bed in a room with a camera set up on a tripod in front of her. The woman is wearing glasses and has her hair tied back in a ponytail. The bed has a white comforter and pillows, and there is a window with curtains in the background. The room appears to be well-lit, with a lamp on the nightstand next to the bed."} +{"image_id": 236461, "caption": "This image shows a person riding a wave on a surfboard in the ocean. The person is wearing a black wetsuit and a black hat, and is holding onto the surfboard with one hand. The wave is large and white, and the person is riding it with ease. The sky is a light blue and there are clouds in the distance. The water is turquoise and there are small whitecaps on the wave."} +{"image_id": 534845, "caption": "This image shows a clothesline hanging from the side of a building, with two stuffed animals hanging from it. One of the animals is a teddy bear, and the other appears to be a stuffed animal of some kind. The building in the background is made of white brick and has large windows on the upper floors. There is a blue sky visible in the background, and a few clouds can be seen."} +{"image_id": 180580, "caption": "The image shows a blue and white plate with a variety of vegetables on it, including broccoli, carrots, and potatoes. The plate is on a white tablecloth with a floral pattern, and there are pens and pencils on the table next to the plate."} +{"image_id": 484551, "caption": "The image shows a woman sitting in the back of a small boat, wearing an orange t-shirt and sunglasses. The woman is smiling and holding a fishing rod. The water in the background is calm and blue."} +{"image_id": 456146, "caption": "The image shows a group of sheep walking down a dirt road next to a lush green hillside. The sheep are all white and appear to be of the same breed. They are walking in a single file line, with the lead sheep in front and the rest following behind. The road is narrow and winding, and there are trees on either side of it. The sky is clear and blue, and there are no other animals or people in the image."} +{"image_id": 283131, "caption": "This image shows a bathroom with a white sink, toilet, and bathtub. The walls are covered in beige wallpaper, and the floor is made of gray tiles. There is a white bag hanging from the handle of the bathroom door."} +{"image_id": 23309, "caption": "This image shows a salad made with pasta, broccoli, carrots, and red onions. The pasta is likely to be penne or fettuccine, and the broccoli and carrots are likely to be sauteed in garlic and olive oil. The red onions are likely to be thinly sliced. The salad is likely to be dressed with a vinaigrette made with olive oil, lemon juice, salt, and pepper."} +{"image_id": 547487, "caption": "This image shows a young boy performing a trick on his skateboard. He is wearing a red shirt, black pants, and black shoes. He has his hair styled in a messy, spiky style. The background of the image is a parking lot with trees in the distance. The sky is clear and blue. The boy is performing a trick where he is jumping up into the air and landing on his skateboard. He is holding onto the skateboard with one hand and raising the other arm in the air. The skateboard has a black and white design on it. The image is taken from a low angle, looking up at the boy as he performs the trick."} +{"image_id": 34830, "caption": "The image shows a bathroom with a white urinal in the middle of the wall. The tiles on the wall are in a checkerboard pattern, and the floor is made of black and white tiles. The lighting in the room is dim, and there are no other fixtures or decorations in the room."} +{"image_id": 125997, "caption": "The image shows a blue and white mural on the side of a building with the words \"uare alive\" written in white letters. The mural appears to be on the side of a brick building with windows on the top floor. There is a trash can on the sidewalk in front of the building."} +{"image_id": 19916, "caption": "This image shows a bowl of sliced apples sitting on a wooden table next to a laptop computer. The laptop has a black and white striped pattern on the cover. The bowl of apples is white and has a small amount of sliced apples in it. There is a fork and knife on the table next to the bowl of apples."} +{"image_id": 145019, "caption": "This image shows a group of people standing around a small airplane that has crashed on the side of a hill. The airplane appears to be damaged and partially submerged in the dirt. The people in the image are all wearing blue shirts and appear to be looking at the airplane with concern. The sky is cloudy and there are trees and other vegetation in the background."} +{"image_id": 127161, "caption": "The image shows a slice of pizza on a white plate with a fork and knife on the side. The pizza is topped with various ingredients such as black olives, mushrooms, and cheese. The plate is covered with a white tablecloth and there is a white napkin on the side."} +{"image_id": 543660, "caption": "This is a black and white image of a bathroom with two toilets in it. The toilets have black and white tiles on the floor and the walls are tiled as well. There is a white toilet paper roll holder on the wall next to one of the toilets. The sink is white and there is a black and white checkered pattern on the floor."} +{"image_id": 8333, "caption": "The image shows a red and white high-speed train traveling on a bridge over a cityscape. The train has a sleek, modern design and appears to be moving at a high speed. Buildings and other structures can be seen in the background, and there are cars and other vehicles on the road below the train. The sky is overcast and there are clouds in the distance."} +{"image_id": 482907, "caption": "This is an image of a vintage airplane flying in the sky on a clear day. The plane is a small, white and red biplane with a propeller on each wing. It is flying at a high altitude, with the blue sky visible in the background. The plane appears to be in good condition, with no visible signs of damage or wear."} +{"image_id": 290130, "caption": "This image shows a person riding a surfboard on top of a large wave in the ocean. The person is wearing a black wetsuit and has a black beard. The wave is white and foamy, and the person is riding the wave with their arms outstretched. The sky is blue and there are clouds in the background."} +{"image_id": 58225, "caption": "This image shows a person holding a hot dog in their hand, with a baseball field in the background. The person is holding the hot dog with their right hand, and the hot dog appears to be covered in green sauce. The baseball field is visible in the background, with a large crowd of people seated in the stands. The sky is clear and blue, with a few clouds visible in the distance."} +{"image_id": 249550, "caption": "This image shows a bed with a floral comforter and a small table next to it. The walls are painted a light blue color and there is a window in the corner of the room."} +{"image_id": 448765, "caption": "This is an image of a bathroom with a toilet and a sink. The toilet is white and has a wooden seat. The sink is also white and has a faucet on it. The floor is made of tiles and the walls are painted white. There is a towel holder on the wall next to the sink."} +{"image_id": 498439, "caption": "This image shows a group of baseball players on a field during a game. The players are wearing white uniforms with black stripes and black hats. The umpire is standing behind the plate, and the crowd is seated in the stands watching the game. The field is well-maintained, with green grass and white lines marking the bases and the pitcher's mound."} +{"image_id": 252403, "caption": "This image shows a woman with long black hair holding a blue and white toothbrush in front of her face. She is wearing a green t-shirt and has glasses on. The toothbrush appears to be a regular toothbrush with a handle and a blue and white design on it. The woman is smiling and appears to be brushing her teeth."} +{"image_id": 347995, "caption": "The image shows a woman lying on a bed with a black dog lying next to her. The woman is wearing a red and white striped shirt and has a blanket wrapped around her. The dog is wearing a red collar and has its head resting on the woman's chest. The background of the image is a wooden headboard with a blue and white striped bedspread."} +{"image_id": 544216, "caption": "This image shows a plate of food on a table. The plate has a sandwich on it, which appears to be a bacon, lettuce, and tomato sandwich. There are also several bags of chips on the plate, and a glass of water in the background."} +{"image_id": 205729, "caption": "This image shows a group of people on skis standing in a snowy area. The people are wearing skis and poles, and they are standing in a line facing the camera. The sky is clear and blue, and there is a bright sun shining down on the group. The snow is deep and powdery, and there are rocks and boulders visible in the background. The people are smiling and appear to be enjoying themselves."} +{"image_id": 350988, "caption": "This is an image of a wooden staircase with a chalkboard on the wall. The stairs are made of wooden planks and have no railings. The chalkboard has the word \"please\" written on it in chalk. The walls of the room are made of wood and have been left unpainted. There are no other objects in the room."} +{"image_id": 288673, "caption": "This image shows a group of people standing on a sandy beach, with palm trees in the background. The sky is clear and blue, with fluffy white clouds. One person is flying a kite in the sky, while the others watch and play on the beach. The beach is littered with sand and debris, and the water is calm and clear."} +{"image_id": 568690, "caption": "The image shows a cat sitting on the edge of a white toilet bowl in a small bathroom with blue tiles on the walls and a shower in the corner. The cat appears to be looking down at something on the floor."} +{"image_id": 504194, "caption": "The image shows a black and white photograph of a dog sitting on a wooden bench in front of a brick wall. The dog is looking away from the camera and appears to be waiting for someone or something. There are several bicycles parked on the sidewalk next to the bench."} +{"image_id": 35368, "caption": "This image shows a bowl filled with green bananas hanging from a hook on the wall behind it. There are also two glasses filled with yellow liquid on the counter in front of the bowl. The wall behind the bowl is covered in a patterned wallpaper."} +{"image_id": 307332, "caption": "This image shows two people sitting on a wooden bench overlooking a body of water. One person is looking out at the water while the other is looking at the dog. The dog is standing on the grass next to the bench, looking up at the people. The sky is cloudy and there are some trees in the background. The water is calm and the reflection of the sky can be seen on its surface."} +{"image_id": 490878, "caption": "The image shows a person wearing skis and poles, standing on a snow-covered slope with mountains in the background. The person is wearing a red jacket and black pants, and has a backpack on their back. The sky is overcast and there are clouds in the distance."} +{"image_id": 507187, "caption": "This image shows a group of people standing around a green motorcycle that is parked on the grass. The motorcycle appears to be a vintage model with a sleek, streamlined design. The people in the image are all dressed in formal attire, with some wearing suits and others wearing casual clothing. The background of the image is a green lawn with some trees visible in the distance. The image appears to be taken at an outdoor event, such as a car show or a motorcycle rally."} +{"image_id": 254644, "caption": "This is a photo of a kitchen with wooden cabinets and a black stove. The countertop is made of tiles and there are plants on the windowsill."} +{"image_id": 400803, "caption": "The image shows a small orange boat floating in the water with two people standing on the deck. The boat is being pulled by a large crane on the shore. The crane has a long arm with a hook on the end that is being used to lift the boat out of the water. The people on the boat are wearing life jackets and holding onto the railing. The water is calm and the sky is clear."} +{"image_id": 574928, "caption": "This image shows a large group of sheep grazing on a lush green pasture. The sheep are all white and appear to be of the same breed. They are all standing on their hind legs and grazing on the tall grass. In the background, there is a small farmhouse and some trees. The sky is clear and blue, and there is a bright sun shining down on the scene."} +{"image_id": 559247, "caption": "This image shows a group of people standing around a long table that is covered with various types of food, including sandwiches, salads, and snacks. The people in the image are all wearing casual clothing, such as t-shirts and jeans, and appear to be enjoying the food and each other's company. The room in which the image was taken is dimly lit and appears to be a conference or meeting room, with white walls and a few pieces of furniture, such as chairs and a table. The overall atmosphere of the image is one of relaxation and enjoyment."} +{"image_id": 254625, "caption": "This image shows a man holding a baseball bat and swinging it at a ball that is in the air. The man is wearing a gray shirt and has a white cap on his head. The background of the image shows a group of people watching the man play baseball."} +{"image_id": 374966, "caption": "This image shows a group of people on skateboards at a skate park. There are several people of different ages and genders on the skateboards, and they are all wearing different clothing. Some of them are wearing shorts and t-shirts, while others are wearing long pants and jackets. The skate park appears to be made of concrete and has several ramps and obstacles for the skaters to navigate. There are also several trees in the background of the image, and they appear to be palm trees. The overall atmosphere of the image is one of fun and excitement, as the people on the skateboards appear to be enjoying themselves."} +{"image_id": 351967, "caption": "The image shows a large building with a clock on the front. The clock has black numbers and white hands. There is a yellow taxi parked in front of the building. The taxi's headlights are shining on the building's facade. The building appears to be made of glass and steel, and there are several windows on the upper floors. The image is taken at night, as the street is lit up by streetlights and the taxi's headlights."} +{"image_id": 172877, "caption": "This image shows a man sitting in a white chair wearing a blue shirt and a red and white striped tie. He is wearing glasses and has his hands folded in his lap. There is a lamp on the table next to him and a painting on the wall behind him."} +{"image_id": 309237, "caption": "This image shows a black and white cat sitting on a blue couch. The cat is looking straight at the camera with its eyes wide open. The cat's fur is fluffy and its ears are perked up. The cat's paws are on the arm of the couch and its tail is straight up in the air. The couch has a pattern of blue and white squares on it. There is a remote control on the arm of the couch next to the cat."} +{"image_id": 565877, "caption": "This image shows a woman sitting on a red couch with a laptop computer on her lap. She is wearing a blue shirt and glasses, and is smiling at the camera. The background of the image is a white wall with a red couch in the foreground."} +{"image_id": 489924, "caption": "This image shows a woman riding a skateboard down a city street. She is wearing a blue t-shirt and shorts, and has her hair tied back in a ponytail. The skateboard she is riding has a wooden deck and black wheels. In the background, there is a line of parked cars and a few pedestrians walking on the sidewalk."} +{"image_id": 125472, "caption": "This image shows a person riding a skateboard in the air. The person is wearing a green shirt and black pants, and is holding onto the skateboard with one hand. The person's hair is cascading down their back, and they appear to be in mid-air as they perform a trick on the skateboard. The background of the image is a mix of green and blue, and there are some trees and buildings visible in the distance."} +{"image_id": 422706, "caption": "The image shows a group of people standing on the deck of a large boat, looking out over the ocean. The boat is equipped with a crane, which is being used to lift a small orange boat out of the water. The people on the boat are watching as the crane lifts the boat up and out of the water. The ocean is calm and the sky is clear, with a few clouds visible in the distance."} +{"image_id": 290700, "caption": "This image shows a man on a surfboard riding a wave in the ocean. The man is wearing red shorts and a white shirt, and he has his arms outstretched in front of him as he rides the wave. The ocean is turquoise and there are whitecaps on the water. In the background, there is a blue sky and some clouds."} +{"image_id": 365177, "caption": "The image shows a large bus parked on the side of a road. The bus is white with gold accents and has the word \"Bieber\" written on the side in black letters. The bus is parked under a large metal awning that covers the entrance to a building. The building has large windows and a metal staircase leading up to the entrance. There are several cars parked on the street next to the bus."} +{"image_id": 398661, "caption": "This image shows a kitchen with black cabinets, white countertops, and red accents. There are pots and pans hanging from a rack above the stove, and a microwave and toaster oven on the counter. There is a red and white checkered tablecloth on the table, and a vase of flowers on the windowsill."} +{"image_id": 175611, "caption": "This image shows a person using a pair of scissors to cut a piece of paper that is being fed through a machine. The person is wearing a red glove on their left hand, and their right hand is holding the scissors. The machine appears to be made of metal and has a large roll of paper coming out of it. The background of the image is a wooden surface with some dirt and debris on it."} +{"image_id": 477673, "caption": "This image shows a small kitten sitting in the pocket of a backpack. The backpack appears to be made of gray nylon and has a zipper on the top. The kitten is sitting on its hind legs and appears to be looking out of the backpack. The kitten's eyes are blue and its fur is a mix of brown and orange. The backpack is on a wooden floor and appears to be in a room with a lot of natural light."} +{"image_id": 1270, "caption": "This image shows a group of children playing baseball on a dirt field. The players are wearing uniforms and helmets, and one of them is holding a bat. The umpire is standing behind the plate, ready to make a call. The crowd of spectators is seated in the stands, watching the game."} +{"image_id": 224012, "caption": "This image shows a white plate with a variety of food on it. The food includes sliced broccoli, cooked potatoes, and sliced meat. The meat appears to be thinly sliced and may be beef, pork, or lamb. There are also some nuts, which are likely cashews, on the plate. The plate is surrounded by a white tablecloth and appears to be on a wooden table."} +{"image_id": 552510, "caption": "This image shows a group of young boys playing soccer on a green field. The boys are wearing green and white striped jerseys and black shorts. They are all wearing soccer cleats and are kicking a yellow soccer ball around on the grass. In the background, there are some trees and a few people watching the game."} +{"image_id": 272880, "caption": "This image shows a slice of pizza on a plate in front of a person. The person is holding a piece of paper with the words \"mystic pizza\" written on it. There is a fork and knife next to the plate, and a glass of water on the table in front of the person. The plate and utensils are on a wooden table, and there are other plates and utensils on the table as well. The room is dimly lit and appears to be a restaurant or cafe."} +{"image_id": 580540, "caption": "This image shows a black and white dog sitting on the floor in front of a flat screen television. The dog is looking up at the television, which is displaying an image of a fish on the screen. The television is mounted on the wall behind the dog, and there is a wooden floor in front of it. The room is dimly lit, and there are no other objects or people visible in the image."} +{"image_id": 242934, "caption": "This image shows a living room with a black leather couch, a red and black rug, and a wooden coffee table. The walls are painted white and there are two windows on either side of the room. There is a television on a stand in the corner of the room, and a bookshelf with books on it next to the couch. The room appears to be well-lit and spacious."} +{"image_id": 178807, "caption": "This image shows two people riding skateboards on a concrete surface. One person is wearing black pants and a black shirt, while the other person is wearing brown pants and a white shirt. Both people are wearing shoes and have their hair tied back in ponytails. In the background, there is a chain link fence and some trees."} +{"image_id": 135748, "caption": "This image shows a small brown and white dog lying in a blue dog bed on a carpeted floor. The dog is licking its chops and looking up at the camera. There is a bottle of water on the floor next to the dog bed. The room appears to be a living room or bedroom."} +{"image_id": 255036, "caption": "This image shows a street corner with a traffic light and a pedestrian crossing. The building in the background appears to be a large commercial or residential building. There are no people in the image."} +{"image_id": 3926, "caption": "The image shows two sheep standing in a snowy field. One of the sheep is standing on its hind legs, while the other is standing on all fours. The sheep are facing each other and appear to be looking at something in the distance. The sky is overcast and there are clouds in the background. The sheep are covered in snow, with their wool looking fluffy and white. The ground is covered in snow as well, and there are some rocks and boulders visible in the distance. The overall mood of the image is peaceful and serene."} +{"image_id": 236762, "caption": "This image shows a group of people sitting around a long wooden table, enjoying a meal together. The table is laden with plates of food, including pizza, pasta, and salad. The people in the image are smiling and laughing as they enjoy their meal. One person is taking a photo of the group with a camera. The walls of the room are painted a bright green color, and there are plants and artwork on the walls. The overall atmosphere of the image is warm and inviting."} +{"image_id": 248314, "caption": "This image shows a desk with a laptop computer, a mouse, a keyboard, and a cup of food on it. The laptop appears to be turned off, and there are papers and other items scattered around the desk."} +{"image_id": 559773, "caption": "This image shows a person wearing skis and holding onto a rope as they jump over a fence. The person is wearing a helmet and goggles, and their skis are attached to a rope that is being held by someone on the ground. The fence is made of metal bars and is topped with barbed wire. In the background, there is a blue sky and some clouds."} +{"image_id": 340665, "caption": "The image shows a woman standing on a sidewalk with an umbrella in her hand. She is wearing a blue shirt, black pants, and glasses. The umbrella is black and has a brown handle. The woman is standing next to a metal door with a wooden frame. There are several people walking on the sidewalk in the background."} +{"image_id": 388599, "caption": "This image shows a person holding a frisbee in front of a dog. The dog is standing on its hind legs and looking up at the frisbee with its front paws. The person is standing behind the dog and holding the frisbee with one hand. The grass in the background is brown and there are some trees in the distance. The sky is blue and there are some clouds in it."} +{"image_id": 163528, "caption": "The image shows a pizza on a white plate on a wooden table. The pizza has a crispy crust and is topped with various ingredients such as tomato sauce, mozzarella cheese, sliced onions, and sliced olives. The pizza also has a generous amount of grated Parmesan cheese and is drizzled with olive oil. The pizza is served with a fork and knife on the side. The table is made of wood and has a brown finish. The lighting in the image is warm and inviting, making the pizza look appetizing and delicious."} +{"image_id": 481212, "caption": "This image shows a man sitting on a red couch with two dogs sitting on either side of him. The man is wearing a white t-shirt and black pants, and has a cup of coffee in his hand. There are two large windows on either side of the couch, and a chandelier hanging from the ceiling. The room appears to be well-lit and spacious."} +{"image_id": 277533, "caption": "This image shows a man sitting on a red couch in a living room. He is wearing a black jacket, blue jeans, and a white t-shirt. He is holding a white remote control in his right hand and a red wine glass in his left hand. The red couch and the wooden floor are visible in the background."} +{"image_id": 173383, "caption": "The image shows a wedding cake on a table with candles and flowers around it. The cake is made of two layers of white cake with blue and orange ribbons wrapped around it. The cake is topped with a white frosting and decorated with blue and orange flowers. The table is covered with a white tablecloth and there are candles and flowers on it."} +{"image_id": 419624, "caption": "The image shows a long, white train traveling down a railroad track next to a green hillside. The train has several cars and appears to be carrying passengers. The sky is clear and blue, and there are trees and buildings in the background."} +{"image_id": 130291, "caption": "This image shows a man and a woman standing in a room. The man is wearing a black suit and the woman is wearing a red dress. The man is adjusting the woman's necktie, which is tied around her neck. The woman is looking at the man with a smile on her face. The room has wooden floors and a staircase leading up to the second floor. There is a chandelier hanging from the ceiling and a painting on the wall."} +{"image_id": 193369, "caption": "This image shows a rusty metal bench sitting on a stone path in a wooded area. The bench appears to be made of wrought iron and has a curved backrest and armrests. The path is lined with tall grass and trees are visible in the background."} +{"image_id": 367804, "caption": "This image shows a young girl standing on a sandy beach, holding a kite in the air. The sky is clear and blue, with fluffy white clouds scattered about. The girl is wearing a pink and white striped shirt and shorts, and has long, curly brown hair. She is holding the kite with one hand and looking up at it with a smile on her face. In the background, there is a clear blue sky and a few palm trees on the beach."} +{"image_id": 84735, "caption": "This image shows a baseball player swinging a bat at a pitched ball during a game. The player is wearing a white jersey and black pants, and is standing on a baseball field with a crowd of people in the background watching the game. The baseball field has a dirt infield and a grass outfield, and there is a scoreboard in the background displaying the score of the game. The player is holding the bat with both hands and appears to be ready to hit the ball. The umpire is standing behind the plate, ready to make a call if the player swings and misses the ball. The crowd is cheering and clapping as they watch the game."} +{"image_id": 247285, "caption": "This image shows a man and a woman holding a baby under an umbrella. The man is holding the umbrella with one hand and cradling the baby with the other. The woman is looking down at the baby with a smile on her face. The umbrella is striped and has a blue and white pattern. The background is white and there is a wall behind the group."} +{"image_id": 438432, "caption": "This is a black and white photograph of a group of women in baseball uniforms posing for a group photo. They are all wearing white shirts, black pants, and black shoes. Some of the women are holding baseball bats, while others are sitting on the ground with their legs crossed. The women are all smiling and appear to be having a good time."} +{"image_id": 185479, "caption": "This image shows a man sitting on the floor with a laptop computer on his lap. He is wearing a brown leather jacket, a white shirt, and black pants. He is also wearing black shoes and has his hands resting on his lap. The background of the image is a blue carpet with a wooden floor underneath it. There are no other objects or people visible in the image."} +{"image_id": 570826, "caption": "This image shows a blue and yellow train traveling down a set of railroad tracks. The train is passing by a group of buildings in the background. The buildings appear to be made of concrete and steel, and are several stories tall. There are power lines running along the tracks, and the sky is clear and blue."} +{"image_id": 127394, "caption": "This image shows a group of people sitting around a wooden dining table laden with various types of food. The table is covered with plates of pizza, salads, and other dishes. The people in the image are smiling and appear to be enjoying their meal together. The room is dimly lit and appears to be a dining room or kitchen."} +{"image_id": 311081, "caption": "The image shows a bathroom with a white toilet, a white sink, and a white shower curtain. The shower curtain is hanging from a rod attached to the wall, and the toilet has a white porcelain bowl and tank. The sink has a white porcelain bowl and faucet, and the floor is tiled in a brown and beige pattern. The walls are painted a light gray color, and there are two small windows with beige window treatments. The overall appearance of the bathroom is clean and modern."} +{"image_id": 376677, "caption": "The image shows a construction site with a large crane and a dump truck on the road. The crane is lifting a large metal structure that appears to be part of a bridge or overpass. The dump truck is parked on the side of the road, and there are several cars driving by in the background. The sky is overcast and there are clouds visible in the distance."} +{"image_id": 269419, "caption": "The image shows a tall, stone tower with a clock face on the front. The clock face has black numbers and hands, and the tower is adorned with intricate carvings and decorations. Behind the tower, there is a clear blue sky with a few clouds in the distance. There are also several trees in the foreground, including a large oak tree in the center of the image."} +{"image_id": 210708, "caption": "The image shows an adult elephant and a baby elephant standing in the water of a river. The adult elephant has its trunk submerged in the water while the baby elephant is standing next to it. The background of the image is a lush green forest with some trees visible in the distance. The sky is overcast and there are clouds in the sky. The water in the river is clear and there are some small rocks visible at the bottom of the river. The elephants are both standing on their hind legs and appear to be playing in the water. The adult elephant's trunk is waving around in the water and the baby elephant is reaching up to touch its trunk. The image was taken with a telephoto lens and the focus is on the elephants' faces. The lighting is bright and even, with the sun shining down on the elephants from the left side of the image. The colors in the image are mostly shades of green and brown, with the water appearing blue in the distance. There are no other animals or people visible in the image."} +{"image_id": 472246, "caption": "This image shows three different types of fruit arranged in a line on a white surface. The fruit includes an apple, an orange, and an onion. The apple and orange are cut in half and the onion is sliced into thin rounds. The fruit is arranged so that the apple is on the left, the orange in the middle, and the onion is on the right. A fork is placed next to the fruit, suggesting that it has been used to eat the fruit."} +{"image_id": 187475, "caption": "This image shows a person holding a hot dog in their hand. The hot dog is topped with sauerkraut, mustard, and relish, and is served on a bun. The person is sitting at a table with other people, who are drinking beer and looking at their phones. The lighting in the scene is dim, with only the light from the candles on the table illuminating the area. The atmosphere is casual and relaxed."} +{"image_id": 299457, "caption": "This image shows a man sitting at a table with a plate of food in front of him. He is wearing a black t-shirt and has his hair styled in a messy way. He is holding a pink lollipop in his mouth and appears to be enjoying it. There is a staircase leading up to the second floor of the building in the background."} +{"image_id": 2894, "caption": "The image shows a train traveling along a railroad track. The train has a yellow and black stripe on the side and appears to be moving at a moderate speed. There are trees and a building in the background."} +{"image_id": 209733, "caption": "This image shows a group of people standing in a green field, with a kite in the background. The kite is being flown by one person, who is standing on the ground and holding the string. The other people in the group are watching the kite and smiling. There are trees in the background, and the sky is clear and blue."} +{"image_id": 428231, "caption": "This image shows a living room with white couches, a wooden coffee table, and a wooden floor. The walls are painted white and there is a large window in the background. The room appears to be well-lit and spacious."} +{"image_id": 250619, "caption": "The image shows a woman lying on a beach towel under an orange and yellow striped umbrella on a sandy beach. The sky is clear and blue, and there are some clouds in the distance. The woman is wearing a black bikini and sunglasses, and has a book in her hand. The umbrella provides shade from the sun, and the beach towel is spread out behind her. The sand is smooth and flat, and there are some small waves washing up onto the shore. In the background, there are some palm trees and a few people walking on the beach."} +{"image_id": 434693, "caption": "This image shows a white fire hydrant on the side of a road, with a pink building in the background. The hydrant has a chain wrapped around it, and there are no other visible features in the image."} +{"image_id": 15596, "caption": "The image shows two people riding motorcycles on a racetrack. One person is wearing a white helmet and a black and white racing suit, while the other person is wearing a red helmet and a black and white racing suit. Both people are wearing gloves and boots. The racetrack is lined with white markings and there are several other motorcycles parked on the side of the track. In the background, there is a green grassy area and some trees."} +{"image_id": 569415, "caption": "The image shows an elephant standing in a grassy field with its trunk raised. The elephant has large, curved tusks and is standing on its hind legs, with its front legs on the ground. The elephant's body is large and muscular, and its skin is gray and wrinkled. The elephant's eyes are large and brown, and its ears are small and rounded. The sky in the background is cloudy and overcast."} +{"image_id": 305004, "caption": "This image shows a man riding a wave on a surfboard in the ocean. The man is wearing red swim trunks and a white surfboard with a red stripe down the middle. The water is turquoise and there are whitecaps on the waves. The sky is a bright blue and there are clouds in the distance."} +{"image_id": 510527, "caption": "This image shows a man wearing a gray sweater and a white tie, sitting in the back seat of a car. The man's face is visible, and he appears to be wearing glasses. The car's interior is visible in the background."} +{"image_id": 581317, "caption": "This image shows a woman standing in a grassy field, holding a cell phone to her ear. She is wearing a purple t-shirt and has her hair tied back in a ponytail. In the background, there are trees and mountains visible. The sky is a bright blue with fluffy white clouds."} +{"image_id": 532071, "caption": "The image shows a brown bear standing in a lush green forest. The bear is standing on its hind legs and has its front paws on the ground. The bear's fur is thick and shaggy, and its eyes are fixed on something in the distance. There are several dead trees in the background, and the forest floor is covered in lush green grass. The sky is overcast, and there are clouds in the distance."} +{"image_id": 467978, "caption": "This image shows a group of sheep standing in a field. The sheep are all black and white, with the exception of one black sheep in the front of the group. The sheep are standing on lush green grass, and there is a fence in the background. The fence appears to be made of metal and is topped with barbed wire. There are trees in the distance, and the sky is clear and blue."} +{"image_id": 184972, "caption": "This image shows a man wearing a yellow and black plaid shirt, a yellow and black striped tie, and glasses. He is standing in front of a group of people who are sitting at tables and chairs in a room with a brick wall. The man is smiling and has his arms crossed in front of him."} +{"image_id": 525568, "caption": "This image shows two zebras standing in a field of tall, dry grass. One zebra is standing on its hind legs and the other is lying down, with its head resting on the back of the standing zebra. The sky is visible in the background, with a few trees visible in the distance. The image is black and white, with the zebras' stripes clearly visible."} +{"image_id": 165056, "caption": "This image shows two giraffes standing next to each other in a zoo enclosure. The giraffes have long necks and brown and white stripes on their bodies. One of the giraffes is looking straight at the camera, while the other is looking to the side. Behind them, there are trees and a fence in the background."} +{"image_id": 362240, "caption": "This image shows a room with several motorcycles parked in it. The motorcycles are lined up against the wall and there is a deer head mounted on the wall behind them. The room appears to be a workshop or garage, with tools and equipment visible in the background."} +{"image_id": 179558, "caption": "This image shows two giraffes standing next to each other in a grassy field. The giraffes have long necks and brown and white stripes on their bodies. One of the giraffes has its mouth open and appears to be sniffing the other giraffe's neck. In the background, there is a rocky outcropping and some trees."} +{"image_id": 120792, "caption": "This image shows two men standing in a room with a television in the background. The man on the left is wearing a black t-shirt and jeans, while the man on the right is wearing a green t-shirt and shorts. The room has wooden beams on the ceiling and walls, and there is a brown carpet on the floor. The television is mounted on the wall and appears to be playing a video game."} +{"image_id": 294865, "caption": "This image is a blurry photograph of a train traveling down a railroad track. The train is made up of several cars, including a passenger car and a cargo car. The passenger car has windows on both sides, and several people can be seen standing on the windows, waving at the camera. The cargo car has a door on one side, and a ladder leading up to it. In the background, there is a mountainous landscape with trees and rocks visible."} +{"image_id": 159662, "caption": "This image shows a woman wearing a pink dress and holding a tennis racket on a tennis court. The court is surrounded by a large crowd of people who are watching the match. The woman is standing on the left side of the court, and the racket is in her right hand. She appears to be preparing to serve the ball."} +{"image_id": 176906, "caption": "This image shows a group of sheep standing in a grassy area. There is a fence in the background, and several people are standing nearby, watching the sheep. One person is wearing a yellow hat and is holding a bowl of food for the sheep. The sheep are all different colors, including black, white, and brown."} +{"image_id": 250608, "caption": "This image shows a bus traveling down a city street. The bus is white and blue with the words \"City Bus\" written on the side. There are trees lining the side of the road and a telephone pole in the foreground. The bus appears to be traveling at a moderate speed, and there are no other vehicles on the road."} +{"image_id": 33561, "caption": "This image shows a group of cows grazing in a lush green field. The cows are black and white, and they are all standing on their hind legs, grazing on the grass. In the background, there are trees and a few houses visible. The sky is cloudy, and there is a light breeze blowing through the grass."} +{"image_id": 274612, "caption": "This image shows a row of bicycles parked in front of a brick wall. The bicycles are lined up next to each other and there are several umbrellas on the ground in front of them. The umbrellas are colorful and have different designs on them. There is a tree in the background and some leaves can be seen on the branches."} +{"image_id": 288714, "caption": "This image shows a close-up view of a pizza that has been baked in an oven. The pizza is covered in a variety of toppings, including mushrooms, onions, peppers, and olives. The crust is brown and crispy, and the cheese is melted and bubbly. The overall appearance of the pizza is delicious and appetizing."} +{"image_id": 284379, "caption": "The image shows a young boy riding on a surfboard in a swimming pool. He is wearing a black t-shirt and has his hair tied back in a ponytail. The water is blue and there are waves in the pool. The boy is smiling and looks like he is enjoying the ride."} +{"image_id": 205247, "caption": "The image shows a large white and blue bus with a red and white stripe down the middle, parked on the side of a road. The bus has a large advertisement on the side, promoting a local sports team. There are no people or other vehicles in the image. The sky is clear and blue, with a few bare trees visible in the background."} +{"image_id": 200267, "caption": "This image shows a woman playing tennis on a court surrounded by a crowd of people. The woman is wearing a black top and white shorts and is holding a tennis racket in her hand. The court is surrounded by a red fence and there are several tennis balls scattered on the ground around the court. The people in the crowd are watching the game and cheering for the player."} +{"image_id": 296775, "caption": "The image shows a blue bus driving down a city street. The bus has the words \"City Bus\" written on the side. There is a person standing on the sidewalk next to the bus, looking at the bus. There are buildings on either side of the street, including a tall building in the background. The sky is overcast and there are clouds in the sky."} +{"image_id": 4265, "caption": "The image shows a window sill with several blue vases on it. The vases have different shapes and sizes, and some of them have flowers in them. The background of the image is a green lawn with some trees visible in the distance."} +{"image_id": 104392, "caption": "This image shows a kitchen with wooden cabinets and a black stove. The countertop is made of granite and there is a microwave on top of it. The refrigerator is also made of wood and has a black handle. The sink is made of stainless steel and has a faucet with a black handle. There is a black stove hood above the stove. The floor is made of hardwood and the walls are painted white."} +{"image_id": 316658, "caption": "This image shows a large body of water with a tree in the foreground. The tree is bare and there are no leaves on it. The water is calm and there are no boats or other objects in the water. The sky is cloudy and there are some trees in the background."} +{"image_id": 230993, "caption": "This image shows two women walking down a sidewalk, each holding an umbrella to protect themselves from the rain. The woman on the left has a red and white plaid umbrella, while the woman on the right has a black and white striped umbrella. The sidewalk is wet and slippery, and there are puddles of water on the ground. The buildings on either side of the street are tall and have windows on the upper floors. The sky is overcast and there are dark clouds in the distance."} +{"image_id": 321035, "caption": "This image shows a cake that has been decorated with red and white frosting and has the words \"Welcome Malaich\" written on it in white frosting. The cake is on a plate and there is a knife next to it. The plate is on a table that is covered in a green cloth."} +{"image_id": 571038, "caption": "The image shows a woman holding a tray with a pizza on it. The pizza is topped with various ingredients such as mozzarella cheese, tomatoes, and pepperoni. The woman is smiling and appears to be happy with the pizza. The background of the image is a kitchen, with a sink, stove, and cabinets visible."} +{"image_id": 395978, "caption": "This image shows a group of people working on the runway of an airport. The runway is covered in snow and the workers are using shovels to clear it away. In the background, there is a large white airplane parked on the runway, waiting to take off. The sky is cloudy and there is a fence surrounding the airport."} +{"image_id": 482917, "caption": "This image shows a person sitting on a red couch with their legs stretched out in front of them. The person is wearing blue jeans and a white t-shirt, and there is a black and white dog sitting on the floor in front of them. The dog is wearing a red collar and has its head cocked to the side as if it is watching something on a television screen that is out of the frame. The room appears to be a living room with a wooden floor and a bookshelf on one wall. There is a brown leather recliner chair in the corner of the room, and a wooden coffee table with a glass top in front of the couch."} +{"image_id": 207561, "caption": "The image shows a group of four people on surfboards riding waves in the ocean. They are all wearing black wetsuits and black hats. The water is a deep blue color and there are whitecaps on the waves. The sky is a bright blue and there are clouds in the distance. The horizon is visible in the background."} +{"image_id": 369470, "caption": "This image shows a row of parked cars lined up along a sidewalk in front of a building. The cars are parked on either side of the sidewalk, and there are no other vehicles or people visible in the image. The building behind the cars appears to be a commercial or office building, with windows on the upper floors and a sign on the roof. The sky in the image is clear and blue, with a few clouds visible in the distance. The image is taken from a low angle, looking down the sidewalk towards the building."} +{"image_id": 482210, "caption": "This is a bathroom with a toilet, sink, and cabinet. The cabinet has a white door with a mirror above it. The floor is blue and there is a shower in the corner."} +{"image_id": 525381, "caption": "This image shows a baseball player swinging a bat at a pitch during a game. The player is wearing a white shirt and black pants, and is holding the bat with both hands. The catcher is standing behind the plate, ready to catch the ball if it is hit. The umpire is standing behind the catcher, ready to make a call if necessary. The crowd is watching the game from behind the fence. The field is well-maintained, with green grass and white lines marking the bases and the outfield. The sky is clear and blue, with a few clouds in the distance. The sun is shining brightly, casting shadows on the players and the field."} +{"image_id": 156375, "caption": "This image shows a woman wearing a pink jacket and skis standing on a snow-covered slope. The woman is wearing a helmet and goggles, and her skis are strapped to her boots. In the background, there is a blue fence and some trees. The sky is dark, and there are stars visible in the sky."} +{"image_id": 334399, "caption": "The image shows a man standing in front of a table with a clock on it. The man is wearing a red shirt and black pants. There are two women in the background, one wearing a white dress and the other wearing a black dress. The room appears to be dimly lit and there is a wooden floor. The clock on the table has a black face with white numbers and hands."} +{"image_id": 322955, "caption": "The image shows a beach with waves crashing against the shore. In the foreground, there is a small bird standing on the sand, looking out to sea. The sky is cloudy and the sun is setting behind the clouds, casting a warm orange glow over the scene. The water is turbulent and choppy, with whitecaps breaking against the shore. The bird appears to be standing on one leg, with the other tucked under its body."} +{"image_id": 312024, "caption": "The image shows a blue and black bird standing on a patch of green grass. The bird has a long, curved beak and its wings are spread out to its sides. The bird's body is slender and its tail feathers are spread out behind it. The bird's head is tilted to the side and it appears to be looking at something in the distance. The background of the image is made up of tall, green grass and there are some bushes in the distance. The image is well-composed with the bird standing out against the green background."} +{"image_id": 118715, "caption": "This is a black and white photograph of a fire hydrant on the side of a building. The hydrant is made of metal and has a white stripe on it. There is a cement wall behind the hydrant and a sidewalk in front of it. The photograph is taken from a low angle, looking up at the hydrant from the sidewalk."} +{"image_id": 237318, "caption": "This image shows a stop sign sitting in the middle of a dirt road surrounded by trees. The stop sign has a red background with white letters that read \"stop.\" The trees in the background are bare, with no leaves or branches. The sky is overcast, with clouds covering most of the sky."} +{"image_id": 236865, "caption": "This image shows a young girl standing on a sidewalk in front of a house. She is wearing a black and white floral print dress and pink sandals. She is holding a red frisbee in one hand and looking at it with a smile on her face. Behind her, there is a large tree with green leaves and a few smaller trees in the background. The sky is overcast and there are a few clouds in the sky."} +{"image_id": 72096, "caption": "This image shows a woman sitting at a table with a plate of food in front of her. The plate has several plates of food on it, including pancakes, bacon, eggs, and fruit. The woman is wearing a red sweater and has her hair pulled back in a ponytail. The background of the image is a stone wall with a vase of flowers on it."} +{"image_id": 450762, "caption": "This image shows a group of teddy bears dressed in military uniforms standing on the deck of a small boat. The teddy bears are wearing green military uniforms with hats and boots, and they are holding rifles. The boat appears to be made of wood and has a metal railing around the edge. The water in the background is a deep blue color."} +{"image_id": 168974, "caption": "The image shows a small child sitting on the floor, holding a cell phone in their hand. The child is wearing a pink cardigan and blue jeans, and appears to be playing with the phone. There is a wooden table in the background with a vase of flowers on it. The room appears to be a living room or den."} +{"image_id": 559950, "caption": "This image shows a small dog sitting on the window sill of a car. The dog is looking out of the window with its head tilted to the side. The car is parked on the side of a road, and there are other cars and buildings visible in the background. The sky is clear and blue, and there are a few clouds visible in the distance. The dog is wearing a yellow collar with a tag that reads \"Max\"."} +{"image_id": 575776, "caption": "This image shows a zebra and a rhinoceros standing in a dirt field. The zebra is standing with its head down, while the rhinoceros is standing with its head up and looking at the zebra. In the background, there is a mountain range with green hills and trees. The sky is clear and blue, with a few clouds in the distance. The sun is shining brightly, casting shadows on the ground."} +{"image_id": 552352, "caption": "This image shows a slice of cheesecake on a white plate, with a fork next to it. The cheesecake appears to be yellow and has a smooth, creamy texture. The plate is covered in a light-colored cloth or napkin. The fork is made of metal and has a serrated edge. The lighting in the image is bright and even, casting shadows on the plate and fork. The overall mood of the image is cheerful and appetizing."} +{"image_id": 490683, "caption": "This image shows a group of people playing a game of frisbee in a park. The players are wearing white shirts and black shorts, and are holding frisbees in their hands. They are standing on a grassy field, with trees and buildings visible in the background. One player is in the process of throwing the frisbee, while the others are running to catch it. The players are all smiling and appear to be having fun."} +{"image_id": 76417, "caption": "This image shows a white dog standing on the back of a black pickup truck. The dog's head is sticking out of the window and its ears are perked up, as if it is looking at something in the distance. The truck is parked on the side of the road, and there is a green traffic light in the background. The sky is clear and blue, and there are some clouds visible in the distance. The overall mood of the image is cheerful and playful."} +{"image_id": 231153, "caption": "The image shows a person wearing a blue jacket and orange pants riding a snowboard down a snow-covered slope. The person is wearing goggles and a helmet. The background is made up of tall evergreen trees with snow-covered branches. The sky is cloudy and the sun is shining through the clouds."} +{"image_id": 190497, "caption": "The image shows a group of black and white cows standing in a muddy area in front of a building. The building appears to be made of wood and has a metal roof. There are trees in the background, and the sky is cloudy. The cows are standing in a line and appear to be waiting to be let into the building. The ground is covered in mud, and there are puddles of water around the cows."} +{"image_id": 126065, "caption": "The image shows a clock mounted on the side of a brick building. The clock has two bells hanging from it, one on the left and one on the right. The clock face is black with white numbers and hands. The building behind the clock is made of stone and has windows on the upper levels."} +{"image_id": 375915, "caption": "The image shows a wooden table with a pizza on it, surrounded by plates, silverware, and glasses. The pizza appears to be made with a variety of vegetables, such as mushrooms, onions, and spinach, and has a crispy, golden-brown crust. The table is set in a natural setting, with grass and trees visible in the background."} +{"image_id": 95022, "caption": "This is an image of a bird perched on a tree branch. The bird is a gray and white pigeon with red eyes and a red beak. The bird is perched on a branch that is attached to a tree trunk. Behind the bird, there is a green background with some leaves and branches visible."} +{"image_id": 177935, "caption": "This image shows a kitchen with a white stove, oven, and refrigerator. There are also two yellow towels hanging from a rack above the stove. The countertop and cabinets are also white. The floor is tiled and there is a small table with two chairs in the corner of the room."} +{"image_id": 380117, "caption": "This image shows a table with several potted plants on it, including a cat sleeping on top of one of the pots. The table is covered in a floral-patterned tablecloth, and there is a window with curtains in the background. The plants appear to be healthy and well-cared for."} +{"image_id": 132373, "caption": "The image shows a large, ornate clock hanging from the ceiling of a grand, old-fashioned train station. The clock is made of brass and has intricate designs on it. There are two flags hanging from the ceiling, an American flag on the left and a Canadian flag on the right. The walls of the station are made of stone and have large windows that let in plenty of natural light. The floor is made of marble and is polished to a high shine. The overall atmosphere of the image is one of grandeur and history."} +{"image_id": 284282, "caption": "This image shows a white blender sitting on top of a green table. The blender is made of plastic and has a stainless steel base. The blender has a transparent lid and a white and blue control panel with buttons and a display screen. There is a white printer next to the blender. The printer is also made of plastic and has a white and blue control panel with buttons and a display screen."} +{"image_id": 276707, "caption": "This image shows a sign on a pole in front of a brick building. The sign has a red circle with a white border around it, and inside the circle is a drawing of a motorcycle, a skateboard, and a person riding a bicycle. The words \"no motorcycles\" are written below the drawing in white letters. The building behind the sign appears to be a store or business with several windows and a sign on the roof."} +{"image_id": 194704, "caption": "The image shows a woman standing in front of a large building with snow-covered mountains in the background. She is wearing a black jacket, pink gloves, and a pink scarf around her neck. She is holding two pairs of skis, one in each hand, and is smiling at the camera. The building behind her appears to be a ski resort or lodge, with large windows and a wooden facade. The snow-covered mountains in the background add to the wintery atmosphere of the image."} +{"image_id": 430286, "caption": "This image shows a close-up view of a mattress with two remote controls placed on top of it. The mattress appears to be made of white fabric, and the remote controls are black and rectangular in shape. The remote controls are placed on top of the mattress, with one on the left side and one on the right side. There are no other objects visible in the image."} +{"image_id": 361171, "caption": "This image shows a person riding a snowboard in the air. The person is wearing a green jacket and black pants, and has a black helmet on their head. They are holding onto the snowboard with their hands, and their feet are in the air. In the background, there is a large building with many windows and a tall antenna on top. The sky is clear and blue, and there are clouds in the distance."} +{"image_id": 406451, "caption": "This image shows a horse-drawn carriage parked on the side of a city street. The carriage has a red and white striped canopy and is being pulled by a brown horse. There are several cars parked on the street behind the carriage, and there are people walking on the sidewalk in front of the carriage. The buildings on either side of the street are tall and made of brick."} +{"image_id": 57286, "caption": "This image shows a group of people gathered around a skateboard ramp. The ramp is made of wood and has a series of ramps and obstacles on it. The people in the image are watching a skateboarder performing a trick on the ramp. The skateboarder is wearing a black t-shirt and blue jeans, and has a black skateboard under his arm. The people in the image are wearing a variety of clothing, including t-shirts, shorts, and hats. The sky in the image is blue and there are clouds visible in the distance. The overall mood of the image is one of excitement and anticipation."} +{"image_id": 535952, "caption": "The image shows three chocolate cupcakes sitting on a wooden cutting board. The cupcakes are covered in white paper cups and have chocolate frosting on top. The cupcakes are sitting on a red and white polka dot tablecloth. There is a knife sitting next to the cupcakes on the cutting board."} +{"image_id": 455772, "caption": "This image shows a man jumping in the air to catch a frisbee that is being thrown by another person. The man is wearing blue jeans and a white t-shirt, and is standing on a grassy lawn in front of a wooden fence. In the background, there is a wooden staircase leading up to a porch or deck."} +{"image_id": 63617, "caption": "This image shows a young boy playing catch with a baseball glove and a baseball. The boy is wearing a blue jacket and black pants, and is standing on a wooden deck with a brown railing. In the background, there is a wooden fence and some trees. The boy is holding the baseball glove in one hand and the ball in the other. The dog in the background is wearing a collar and appears to be watching the game."} +{"image_id": 90155, "caption": "The image shows a long train traveling down a railroad track. The train is made up of several cars, each with different colors and markings. The track is lined with trees and other vegetation, and there is a cloudy sky in the background."} +{"image_id": 158127, "caption": "This image shows a person's legs and the back of their head. The person is wearing black pants and black shoes. There is a yellow cat lying on the ground next to the person's feet. The cat is facing away from the camera and appears to be sleeping. The ground is covered in rocks and dirt. The sky is visible in the background and appears to be cloudy."} +{"image_id": 248582, "caption": "This image shows a group of people standing in front of a fruit and vegetable stand on a cobblestone street. The people are looking at the fruits and vegetables displayed on the stand, which includes bananas, apples, oranges, and other types of produce. The stand is located in a bustling market area, with other shops and buildings visible in the background. The people in the image are wearing a variety of clothing, including jackets, scarves, and hats, to protect themselves from the cold weather."} +{"image_id": 206560, "caption": "This image shows a person riding a snowboard down a ramp. The person is wearing a yellow jacket, black pants, and black shoes. They are holding onto a railing with one hand and riding the snowboard with the other. The ramp is made of concrete and has a metal railing on one side. There is a building in the background with windows and a door."} +{"image_id": 69009, "caption": "This image shows two young children standing in front of a large glass window that looks out onto a zoo exhibit. The children are looking at a black bear that is standing on the other side of the glass. The bear is standing on its hind legs and appears to be looking at the children. The children are wearing blue jackets and have their hands in their pockets. The ground in front of the glass is covered in dirt and leaves. The sky in the background is cloudy and overcast."} +{"image_id": 322122, "caption": "This image shows a white toilet bowl with a yellow sponge on top of it. The toilet is located in a small bathroom with tiled walls and a brown floor. There is a small trash can next to the toilet, and a towel hanging on the back of the door. The toilet appears to be clean and in good condition."} +{"image_id": 549930, "caption": "This image shows a couple walking down a rainy street under an umbrella. The man is wearing a white shirt and the woman is wearing a blue shirt. They are holding hands and walking towards the camera. The street is lined with palm trees and there are people in the background walking in the rain. The sky is overcast and there are clouds in the sky."} +{"image_id": 33216, "caption": "The image shows a large pizza on a tray with a red and white checkered tablecloth in the background. The pizza has a thick crust and is topped with various ingredients such as mozzarella cheese, pepperoni, sausage, mushrooms, onions, and peppers. The pizza appears to be ready to be served or eaten."} +{"image_id": 434581, "caption": "This image shows a person riding a black and silver motorcycle on a paved road. The person is wearing a black leather jacket, black gloves, and black boots. They are also wearing a black helmet with a visor. The motorcycle is parked on the side of the road, and there is a stone wall on the other side of the road. In the background, there is a green landscape with trees and a blue sky."} +{"image_id": 239509, "caption": "This image shows a pedestrian crossing sign on a street corner in a city. The sign has an arrow pointing to the left, indicating that pedestrians should cross the street in that direction. There is also a red and white striped barrier in front of the sign, presumably to prevent cars from driving onto the sidewalk. In the background, there are several tall buildings with windows on the upper floors, and a few people can be seen walking on the sidewalk."} +{"image_id": 88848, "caption": "The image shows a group of people standing in front of a fire hydrant in a park. The hydrant is painted in bright colors, including yellow, red, and blue. The people in the image are all wearing different clothing, including a woman in a yellow dress and a man in a blue shirt. The background of the image is a green lawn with trees in the distance."} +{"image_id": 116182, "caption": "This image shows a bowl filled with a variety of vegetables and meat, including carrots, broccoli, and chicken. The bowl is decorated with a purple and white pattern and appears to be made of ceramic or porcelain. The image is taken from a low angle, giving the viewer a clear view of the contents of the bowl."} +{"image_id": 562345, "caption": "This image shows a woman wearing a yellow raincoat and jeans standing in front of a gray brick wall. She is holding a cell phone in her hand and appears to be looking at it."} +{"image_id": 343410, "caption": "This image shows a red plate with a pile of sliced vegetables on it. The vegetables appear to be broccoli, onions, and tomatoes. The plate is on a white countertop."} +{"image_id": 490529, "caption": "This image shows a woman sitting at a table, holding a cell phone in her hand. She is wearing a pink sweater and has her hair in a ponytail. There is a tablecloth on the table in front of her, and there are some plates and glasses on the table. The woman is looking down at her phone, and there is a candle on the table between her and the other people in the room. The room appears to be a restaurant or cafe, and there are other people sitting at tables in the background."} +{"image_id": 328818, "caption": "This image shows a woman standing on a wooden bench next to a bicycle. The woman is wearing a pink shirt and blue jeans, and has her hair tied back in a ponytail. She is bending down to tie her shoelaces, which are hanging off the edge of the bench. In the background, there are trees and a path leading off into the distance."} +{"image_id": 218947, "caption": "The image shows a person wearing skis and carrying poles, walking down a snow-covered slope with a mountain range in the background. The sky is overcast and there are clouds in the distance. The person is wearing a black jacket, black pants, and a black helmet. The skis and poles are also black. The mountain range is covered in snow and has a number of peaks and ridges. There are no other people or objects in the image."} +{"image_id": 152281, "caption": "This image shows a large group of sheep grazing in a lush green pasture. The sheep are all white and have blue numbers painted on their backs. The grass is tall and green, and there are trees in the background. The sky is clear and blue, and there are clouds in the distance. The sheep are all standing on their hind legs, and some of them are nibbling on the grass. The image is taken from a high angle, looking down on the sheep as they graze."} +{"image_id": 41110, "caption": "This image shows a young child holding a bottle of shampoo in one hand and standing in front of a white wall. The child is wearing a pink and white striped shirt and has short, curly brown hair. The bottle of shampoo is labeled with the word \"shampoo\" and has a pump dispenser on the top. The child's hair appears to be messy and unkempt, and the shampoo bottle is likely being used to clean the child's hair."} +{"image_id": 512985, "caption": "This image shows a person standing on a beach, holding a surfboard. The person is wearing a black wetsuit and has a black hat on their head. The surfboard is white and the person is holding it with both hands. In the background, there is a body of water and some trees."} +{"image_id": 414212, "caption": "This image shows a man with glasses holding two toothbrushes in his hands. He is wearing a gray t-shirt with the words \"Waialua\" written on it in white letters. The background of the image is a shower curtain with a green and white striped pattern. The man is smiling and giving a thumbs up sign."} +{"image_id": 426578, "caption": "This image shows a man walking along a sandy beach with a surfboard under his arm. The ocean is visible in the background, with waves crashing on the shore. The man is wearing a black t-shirt and black shorts, and is walking towards the water. There are no other people or objects in the image."} +{"image_id": 291962, "caption": "This image shows a young boy standing in a grassy field, holding a large kite in the air. He is wearing a striped shirt and shorts, and has his hair tied back in a ponytail. In the background, there is a brick wall and a tree. The sky is clear and blue, and there are no other people or objects in the image."} +{"image_id": 460927, "caption": "This image is a black and white photograph of a large brown bear standing on a grassy hillside. The bear is looking off into the distance, with its head tilted to the side. The bear's fur is thick and shaggy, and its eyes are sharp and alert. In the background, there are mountains and hills covered in snow, with a few trees scattered about. The sky is cloudy and overcast, with a few patches of sunlight peeking through the clouds. The overall mood of the image is serene and peaceful, with the bear seemingly lost in thought as it gazes out into the wilderness."} +{"image_id": 552186, "caption": "This image shows a man on a skateboard performing a trick in a skate park. The man is wearing a black t-shirt, blue jeans, and black sneakers. He has short, dark hair and is wearing sunglasses. In the background, there are several people watching the skateboarder from a distance. The skate park appears to be made of concrete and has several ramps and obstacles. The sky is cloudy and there is a fence surrounding the park."} +{"image_id": 553852, "caption": "This is a black and white photograph of a young boy standing on a skateboard on a sidewalk. He is wearing a white t-shirt and blue jeans, and has a backpack slung over his shoulder. In the background, there are several bicycles parked on the sidewalk, and a few people walking by on the street."} +{"image_id": 370337, "caption": "The image shows two boats docked at a pier in front of a large building. The boats are red and white, and are tied to the dock with ropes. The building behind them appears to be a large apartment or office complex, with many windows and balconies. The sky is clear and blue, and there are a few clouds in the distance."} +{"image_id": 18491, "caption": "This image shows a baseball game in progress. Two players are on the field, one catching the ball and the other sliding into home plate. The umpire is standing behind the catcher, ready to make a call. The crowd is watching the game from the stands. The field is well-manicured and the players are wearing uniforms. The sun is shining and there is a clear blue sky in the background."} +{"image_id": 556000, "caption": "This image shows a group of children standing in a living room. They are all wearing casual clothing and appear to be playing with a video game controller. There is a window in the background with blinds partially open."} +{"image_id": 443351, "caption": "The image shows two motorcycles parked in a parking lot. One is a green and white motorcycle with a black seat and handlebars, and the other is a black and white motorcycle with a white seat and handlebars. Both motorcycles are parked on the ground, and there are no other vehicles or people in the image."} +{"image_id": 63965, "caption": "This image shows a woman holding a white plate with a piece of cake on it. The cake is covered in white frosting and has red strawberries on top. The woman has long, curly brown hair and is wearing a colorful, floral-printed blouse. The plate is on a table in front of her, and there is a spoon next to it. The room behind her is dimly lit and appears to be a kitchen or dining area."} +{"image_id": 405660, "caption": "This image shows a wooden bench sitting in the middle of a grassy hill, surrounded by trees and mountains in the background. The sky is cloudy and overcast, with a few patches of sunlight peeking through the clouds. The bench appears to be empty, and there are no other people or objects in the scene."} +{"image_id": 419144, "caption": "This is a black and white photograph of a group of people riding on the back of elephants in a field. The elephants are standing on their hind legs and the people are sitting on their backs. There are trees in the background and the sky is visible in the top of the image. The people are dressed in clothing from the time the photograph was taken, which is likely the early 20th century."} +{"image_id": 371004, "caption": "This image shows a zebra standing behind a chain link fence. The zebra has black and white stripes on its body, and its head is turned towards the camera. The background of the image is made up of trees and bushes, and there is a greenish-blue sky visible in the upper part of the image. The fence appears to be made of metal and is topped with barbed wire."} +{"image_id": 116861, "caption": "This image shows a woman lying on a couch, holding a black stuffed animal in her arms. The woman has blonde hair and is wearing a white shirt. The couch has a striped pattern on it, and there is a pillow behind the woman's head. The stuffed animal appears to be a teddy bear, and it is lying on its back with its arms and legs splayed out. The woman's eyes are closed, and she appears to be sleeping."} +{"image_id": 579664, "caption": "This image shows a pile of ripe bananas in a wooden crate. The bananas are yellow and have brown spots on them. There are several bunches of bananas in the crate, and some of them are hanging over the sides. The image is taken from a low angle, looking up at the crate from the ground. There are trees in the background, visible through the gaps in the bananas."} +{"image_id": 5600, "caption": "The image shows two bowls of food on a white tablecloth. The bowls are made of metal and have lids on them. In one bowl, there are sliced onions and in the other, there are sliced carrots. The onions are pink and the carrots are orange. The bowls are sitting on a white tablecloth that has a green border. The tablecloth is stained and has crumbs on it. There are no other objects in the image."} +{"image_id": 199389, "caption": "This image shows a fire hydrant with a cartoon character painted on it, sitting in the middle of a dirt road next to a chain link fence. The character on the hydrant is wearing a red and black striped shirt, black pants, and a green cap. There is a small pile of debris next to the hydrant, including a piece of cardboard and a plastic bottle. In the background, there is a two-story building with white walls and a green roof."} +{"image_id": 568131, "caption": "The image shows an elephant standing in a grassy field surrounded by trees and rocks. The elephant is gray in color and has a trunk that is curved upwards at the end. It appears to be standing on its hind legs, with its front legs resting on the ground. The elephant's body is large and muscular, and its ears are alert and upright. In the background, there are trees and rocks, and the sky is visible through the trees."} +{"image_id": 35671, "caption": "This image shows a group of people on horseback riding through a dirt track. The riders are wearing cowboy hats and boots, and they are holding ropes that are attached to the backs of the horses they are riding. In the background, there are several buildings and a group of people watching the riders. The track appears to be made of dirt and is lined with trees and other vegetation."} +{"image_id": 76522, "caption": "This image shows a black and white cat sleeping on a gray couch. The cat is lying on its back with its paws resting on the arm of the couch. The cat's tail is curled up underneath it, and its ears are perked up. The cat's eyes are closed, and its mouth is slightly open as if it is panting. The cat's fur is fluffy and appears to be well-groomed. The couch is made of a light-colored fabric, and there is a pillow and blanket on the floor next to the couch. The room appears to be dimly lit, and there are no other objects or people in the image."} +{"image_id": 504167, "caption": "This image shows a cat with blue eyes and white fur, sitting on a wooden surface. The cat's fur is fluffy and appears to be well-groomed. The cat's eyes are large and expressive, and its ears are perked up as if it is listening to something. The background of the image is a wooden surface with visible grain patterns. The overall mood of the image is peaceful and relaxed."} +{"image_id": 21644, "caption": "The image shows a parking lot with several buses parked in it. The buses are of different colors, including red, white, and pink. There is a large building in the background, which appears to be a terminal or bus station. The sky is cloudy and overcast, with dark clouds visible in the distance."} +{"image_id": 483135, "caption": "This image shows a group of people sitting on a couch in a living room. The people are all holding video game controllers and appear to be playing a game together. The room is decorated with a green bean bag chair and a brown couch. The walls are painted a light color and there is a rug on the floor. The people in the image are all wearing casual clothing, with one person wearing a black and white striped shirt and another wearing a pink and white striped shirt."} +{"image_id": 271063, "caption": "This image shows a kitchen with wooden cabinets, a microwave oven, and a refrigerator."} +{"image_id": 36477, "caption": "The image shows a pile of ripe bananas in a cardboard box. The bananas are yellow and appear to be ripe and ready to be eaten. There are several bunches of bananas stacked on top of each other, with some individual bananas peeking out from between the bunches. The bananas are arranged neatly in the box, with no visible signs of damage or bruising. The overall appearance of the image is bright and colorful, with the yellow of the bananas standing out against the dark background of the box."} +{"image_id": 125375, "caption": "This image shows a red and white passenger train traveling along a railroad track. The train appears to be moving at a moderate speed, and there are several people standing on the platform at the station. The platform is made of concrete and has a metal railing along the edge. There are also several trees and bushes growing along the edge of the platform. In the background, there are buildings and other structures visible."} +{"image_id": 362520, "caption": "This image shows a young boy riding a skateboard down a ramp. He is wearing a helmet and has a backpack on his back. The ramp appears to be made of concrete and has a few ramps and obstacles on it. The boy is in the air, doing a trick on the skateboard."} +{"image_id": 5412, "caption": "This image shows a modern bathroom with a toilet, sink, and shower. The walls are tiled and the floor is made of tiles. The toilet and sink are made of white porcelain and the shower is made of glass. The shower has a rainfall showerhead and there is a towel rack above it. The toilet has a wooden seat and the sink has a faucet with a single handle. The tiles on the floor and walls are beige and the toilet and sink are white. There is a small window above the sink with a blind covering it."} +{"image_id": 757, "caption": "The image shows a group of three elephants standing in a shallow pool of water. Two of the elephants are adults, while the third is a young calf. The adult elephants are standing next to each other, with their trunks touching. The young calf is standing in the water, with its trunk submerged in the water. The water is muddy and there are some trees in the background."} +{"image_id": 396496, "caption": "The image shows a group of people standing on a street corner in front of a row of trolley cars. The people are all wearing coats and hats, and some of them are holding umbrellas to protect themselves from the rain. The trolley cars are old and rusty, and they are parked on the street next to each other. There are power lines and poles in the background, and the sky is cloudy and overcast."} +{"image_id": 81761, "caption": "This is an image of a woman playing tennis on a court. The woman is wearing a black top and white shorts, and is holding a tennis racket in her right hand. She is standing on the left side of the court, with the net in the background. The court is made of green and white tiles, and there are several windows on the building behind the court."} +{"image_id": 130677, "caption": "This image shows two people playing tennis on a court at night. One person is wearing a white shirt and black pants, while the other is wearing a black shirt and white pants. They are both holding tennis rackets and standing on opposite sides of the court. The court is illuminated by floodlights, and there are trees in the background."} +{"image_id": 318825, "caption": "The image shows a man wearing a white shirt and black pants standing on a tennis court. He is holding a tennis racket in one hand and a tennis ball in the other. The court is blue and has white lines marking the boundaries. There is a net at the center of the court, and the man is about to serve the ball."} +{"image_id": 48014, "caption": "This image shows a man walking a black dog on a leash along a sidewalk in a residential neighborhood. The man is wearing a green shirt and black pants, and the dog is wearing a red collar. There are several people sitting on benches in the background, and there are trees and buildings visible in the distance. The sun is shining and there are clouds in the sky."} +{"image_id": 421028, "caption": "This image shows a gray cat lying on a red and black rug with a toy carrot in its mouth. The cat's eyes are closed, and it appears to be enjoying its toy. The room in the background is cluttered with various objects, including a wooden chair, a table with a vase of flowers, and a bookshelf. The floor is made of hardwood, and the walls are painted a light brown color. The room appears to be warm and cozy, with a fireplace on one wall and a window with curtains on another. The overall mood of the image is peaceful and relaxed."} +{"image_id": 479659, "caption": "This image shows a man and a woman standing in front of a small outdoor bar. The man is wearing a white shirt and blue jeans, while the woman is wearing a white blouse and black pants. They are both holding glasses of wine and talking to each other. In the background, there is a wooden fence and some plants."} +{"image_id": 369826, "caption": "This image shows a luggage conveyor belt in an airport terminal. The conveyor belt is made of stainless steel and has a black rubber surface on top. It is empty at the moment and there are no bags or suitcases on it. The walls of the terminal are made of white marble and there are large windows on either side of the conveyor belt. The floor is made of dark brown tiles and there is a carpeted area in front of the conveyor belt. The ceiling is made of white tiles and there are several fluorescent lights hanging from it. The overall atmosphere of the image is bright and well-lit, with a modern and sleek design."} +{"image_id": 406253, "caption": "This image shows a row of motorcycles parked on the side of a city street. The motorcycles are lined up next to each other and are parked on the side of the road. There are several cars parked on the other side of the road, and a few pedestrians walking on the sidewalk. The buildings on either side of the street are tall and have a lot of windows. The sky in the background is cloudy and overcast."} +{"image_id": 548267, "caption": "This image shows a group of sheep grazing in a lush green pasture. The mountains in the background are covered in snow, and the sky is clear and blue. The sheep are standing on the grass, and some of them are grazing while others are just standing around. The fence in the foreground separates the sheep from the road."} +{"image_id": 335844, "caption": "This is an image of a toaster oven on a kitchen counter. The toaster oven has a black and stainless steel exterior and a clear glass door. Inside the oven, there is a tray with a piece of bread on it, which is toasted and ready to be served. The toaster oven has a digital display on the front that shows the temperature and timer settings. There is also a knob on the front of the oven for controlling the temperature and timer settings. On the counter next to the toaster oven, there is a plate with a knife, fork, and spoon, as well as a napkin and a bottle of water. The counter is made of white marble and has a white backsplash behind the oven. There are also some cabinets and drawers in the background."} +{"image_id": 299640, "caption": "This image shows the front and back of a remote control for a television or other electronic device. The front of the remote has buttons for changing channels, adjusting the volume, and turning the device on and off. The back of the remote has a small screen displaying the current channel and other information. The remote is made of plastic and has a sleek, modern design."} +{"image_id": 121812, "caption": "The image shows a view of a city street at night. The street is lined with trees and buildings on either side. There are several cars driving on the street, including a red car in the foreground. The sky is cloudy and there are streetlights illuminating the scene."} +{"image_id": 107234, "caption": "The image shows a man wearing a black suit with a white shirt and a black tie. He is holding a glass of wine in his right hand and looking at the camera with a surprised expression on his face. The man has dark hair and a beard, and his eyes are brown. The background of the image is a building with white walls and a green roof."} +{"image_id": 153104, "caption": "This image shows a man sitting in a crowded stadium, holding a hot dog in one hand and a drink in the other. The man is wearing a black and orange striped shirt and black pants, and is surrounded by other people who are also eating hot dogs and drinking beverages. The stadium is filled with people, and there are rows of seats in front of the man. In the background, there is a large screen displaying a sporting event."} +{"image_id": 216417, "caption": "This is a black and white photograph of a man wearing skis and carrying a small white teddy bear on his back. He is standing on a snowy slope, with his skis and poles in front of him. The man is wearing a hat, gloves, and a scarf, and has a backpack on his back. The snow in the background is deep and powdery, and the sky is clear and blue."} +{"image_id": 286708, "caption": "This is an image of a black and white cat wearing a pink knitted hat. The cat is lying on a cushion and looking up at the camera with its yellow eyes. The background is a messy room with cardboard boxes and other debris scattered around."} +{"image_id": 547041, "caption": "This image shows a bowl of salad with various ingredients such as lettuce, tomatoes, cucumbers, and black olives. The salad is topped with croutons and there is a pink spoon next to it. There is also a laptop on the table in the background."} +{"image_id": 293802, "caption": "This image shows a man riding a skateboard on a paved sidewalk in a bustling city. The man is wearing a black t-shirt and black pants, and is jumping up into the air while holding onto the skateboard. Behind him, there are several people walking on the sidewalk, some of whom are looking at the skateboarder. The buildings on either side of the sidewalk are lined with palm trees, and there are a few small shops and restaurants visible in the background. The sky is clear and blue, and there are a few clouds visible in the distance."} +{"image_id": 252738, "caption": "The image shows a man wearing a black leather jacket standing in front of a dirt field with mountains in the background. He is holding a cell phone to his ear and appears to be talking on the phone. The sky is clear and blue, and there are no other people or objects in the image."} +{"image_id": 43165, "caption": "The image shows two zebras standing next to each other in a grassy area. One zebra is black and white, while the other is mostly black with white stripes on its face and legs. They are both looking at each other and appear to be standing on top of a pile of hay or straw. Behind them, there is a tree with branches and leaves visible. The sky is overcast and there are clouds in the background."} +{"image_id": 218215, "caption": "This is an image of a white polar bear swimming in the water. The bear has its mouth open and appears to be splashing around in the water. The bear's fur is white and appears to be very thick and fluffy. The water is dark and appears to be very choppy, with waves crashing against the shore. The sky is cloudy and appears to be overcast."} +{"image_id": 299082, "caption": "This image shows a giraffe with its head down, looking at the camera with its big brown eyes. The giraffe is standing on a rocky outcropping in a grassy field, with tall trees in the background. The giraffe's coat is a mix of brown and tan, with patches of darker brown on its head and neck. Its long neck is stretched out in front of it, and its mouth is open as if it is chewing on some grass. The giraffe's legs are long and slender, and its hooves are visible at the bottom of the image. The overall mood of the image is peaceful and serene, as if the giraffe is simply enjoying the sunny day in its natural habitat."} +{"image_id": 152360, "caption": "This image shows a group of green bananas hanging from the ceiling of a market or grocery store. The bananas are swaying gently in the breeze, and there are other fruits and vegetables displayed on tables and shelves in the background. The scene is illuminated by artificial lighting, and there are several cars parked outside the store."} +{"image_id": 205601, "caption": "This image shows a woman stirring a pot of food on a stove in a kitchen. The woman is wearing a blue shirt and has her hair tied back in a ponytail. There is a man standing behind her, watching her cook. The food in the pot appears to be a mixture of vegetables and meat."} +{"image_id": 174004, "caption": "The image shows a yellow truck parked in a grassy field surrounded by trees. The truck appears to be old and rusty, with a crane on the back. There are no other vehicles or people in the image."} +{"image_id": 31542, "caption": "This image shows a person wearing a black and white snowboard with black boots and gloves, performing a trick in the air while wearing a black and white helmet. The person is wearing a black and white t-shirt and black pants. The background is a clear blue sky with a few white clouds."} +{"image_id": 305268, "caption": "This image shows two women playing tennis on a court. One woman is holding a tennis racket and standing on one leg, while the other woman is standing on the other side of the court, also holding a racket. They are both wearing white shirts and black shorts. The court is surrounded by a metal fence and there are trees in the background."} +{"image_id": 2867, "caption": "The image shows a group of people wearing skis and poles, standing on a snow-covered slope. They are all wearing backpacks and appear to be taking a break from skiing. The sky is cloudy and there are trees in the background."} +{"image_id": 72428, "caption": "This image shows a bathroom with a toilet, sink, and shower. The walls are made of wood and the floor is tiled. The toilet has a white porcelain bowl and a wooden seat. The sink is made of porcelain and has a faucet with a single handle. The shower has a glass door and a rainfall showerhead."} +{"image_id": 158494, "caption": "The image shows three giraffes standing next to a wooden fence. Two of the giraffes are facing each other, while the third one is looking away from the camera. The first giraffe has a brown and tan pattern on its body, while the second one has a similar pattern but with more brown. The third giraffe has a light brown body with dark brown spots. The background of the image is a clear blue sky with a few white clouds. There is a wooden fence in the foreground, and behind it, there is a green field with some trees in the distance."} +{"image_id": 147629, "caption": "This image shows a white cat lying on the floor with a stuffed elephant toy in its mouth. The cat's eyes are closed, and it appears to be sleeping. The background is a beige carpet, and there are no other objects or people visible in the image."} +{"image_id": 581899, "caption": "The image shows two trains parked next to each other on a railroad track. The first train is blue and has windows on both sides. The second train is also blue and has windows on one side. There are no people or other objects visible in the image."} +{"image_id": 369345, "caption": "This image shows a living room with a couch, a bookshelf, and a lamp. The couch is blue and has a blanket on it. The bookshelf is made of wood and has books on it. The lamp is on a table next to the couch. The room is dimly lit by the lamp."} +{"image_id": 372246, "caption": "This image shows a stop sign and two street signs on a pole in front of a dirt road. The stop sign has a red background with white letters that say \"Stop\" on it. The two street signs are green with white letters that say \"Hell Canyon Rd\" on one and \"Private Property\" on the other. The sky in the background is clear and blue."} +{"image_id": 261563, "caption": "This image shows two dogs playing in a grassy field. One dog has a yellow frisbee in its mouth, and the other dog is chasing it. The background is made up of tall grass and trees, and there are some bushes in the foreground. The sun is shining down on the scene, casting long shadows on the grass."} +{"image_id": 461802, "caption": "The image shows a man in an orange vest standing next to a red and white train at a train station. There are stairs leading up to the platform and a clock on the wall. The man is looking at the train and appears to be waiting for it to depart."} +{"image_id": 138175, "caption": "This image shows a man wearing a black suit jacket and a white shirt with glasses on his face. He is holding a cell phone to his ear and appears to be talking on the phone. The background of the image shows a restaurant or cafe with tables and chairs visible. The lighting in the image is bright and well-lit, casting shadows on the man's face. The overall mood of the image is casual and relaxed."} +{"image_id": 103488, "caption": "This image shows a large, empty bathroom with two sinks and a mirror. The walls are tiled with blue and white tiles, and the floor is made of black and white checkered tiles. There are no other objects in the room."} +{"image_id": 215901, "caption": "The image shows a bowl of fruit on a table in front of a painting on the wall. The fruit in the bowl includes oranges, bananas, and apples. The table is covered in a red and white checkered tablecloth. The painting on the wall appears to be a landscape with mountains and a river in the foreground."} +{"image_id": 514180, "caption": "The image shows several pizzas in pans on a metal tray. The pizzas are topped with various ingredients such as mozzarella cheese, pepperoni, sausage, and mushrooms. The pizzas appear to be ready to be served or eaten."} +{"image_id": 396338, "caption": "This image shows a group of people standing on the side of a busy city street. There are several cars parked on the street, including a yellow taxi and a black truck. The people in the image are dressed in white clothing and appear to be waiting for a bus or other form of transportation. The buildings on either side of the street are made of wood and metal, and appear to be in a state of disrepair. The sky is cloudy and overcast, and there is a sense of movement and activity in the scene."} +{"image_id": 579362, "caption": "This image shows a man sitting on a blue and white wooden bench overlooking a sandy beach with a cruise ship in the background. The man is wearing a black t-shirt and blue jeans and has his arms resting on the back of the bench. The beach is lined with palm trees and there is a clear blue sky with fluffy white clouds in the background. The cruise ship is visible in the distance, sailing on the ocean."} +{"image_id": 289512, "caption": "The image shows a woman riding a brown and white horse in a pasture. The woman is wearing a blue shirt, black pants, and a black hat with a brown band. She is holding the reins of the horse with her left hand and has her right hand on the saddle. The horse is wearing a brown saddle and bridle with white accents. The horse's mane and tail are long and flowing. In the background, there are tall grasses and trees. The sky is clear and blue."} +{"image_id": 306928, "caption": "The image shows a tall, stone building with a clock tower on top. The clock tower has four clock faces, each with roman numerals. The building appears to be made of stone and has a pointed roof. There are several pigeons perched on the roof of the building. The sky is clear and blue."} +{"image_id": 453009, "caption": "This image shows a stuffed animal sitting on top of a wooden railing. The animal appears to be a teddy bear, and it is wearing a black and white striped hat. The background of the image shows a street with trees and houses on either side."} +{"image_id": 112581, "caption": "This image shows a man standing in front of a display case in a clothing store. The man is wearing a white t-shirt and black pants, and he is holding an umbrella in his right hand. The display case contains a variety of clothing items, including shirts, pants, and hats. The walls of the store are lined with shelves containing more clothing items, as well as shoes and other accessories. In the background, several other people can be seen walking around the store."} +{"image_id": 504977, "caption": "This image shows an elderly woman sitting on a wooden bench in a park. She is wearing a floral-printed jumpsuit and has a black purse on her lap. Behind her, there is a row of tall trees and some bushes. The sky is overcast and there are a few clouds visible. The woman looks tired and appears to be lost in thought."} +{"image_id": 228764, "caption": "This image shows a cat and a dog standing on a sandy beach. The cat is sitting on its hind legs and looking off into the distance, while the dog is standing next to it and looking at the cat. There is a building in the background, which appears to be a multi-story apartment or condominium complex. The sky is cloudy and there are some trees in the foreground."} +{"image_id": 151528, "caption": "This image shows a man standing on top of a wall with a black dog standing next to him. The man is wearing a white shirt and blue shorts, and the dog is wearing a black collar. The background of the image is a cloudy sky with dark clouds."} +{"image_id": 248919, "caption": "This image shows a kitchen with wooden cabinets, a white stove, a microwave oven, a refrigerator, and a table with chairs. The walls are painted white and the floor is made of wood."} +{"image_id": 580607, "caption": "The image shows a group of people standing on a ledge overlooking a river. The river is lined with boats, some of which are moored to the shore. There are trees on either side of the river, and a bridge can be seen in the background. The sky is clear and blue, and there are clouds in the distance."} +{"image_id": 200291, "caption": "The image shows two blue plates on a table. One plate has a piece of toast on it, while the other has a tomato and cheese sandwich on it. There is a fork and knife on the table next to the plates, and a glass of water on the other side of the table. The room is dimly lit and appears to be a kitchen or dining area."} +{"image_id": 296231, "caption": "This image shows a living room with a television, a bookshelf, and a painting hanging on the wall. The television has a black and white image on the screen, and there are several framed photographs on the bookshelf. The painting on the wall appears to be a landscape scene with mountains and trees in the background."} +{"image_id": 505663, "caption": "This image shows a large clock on the side of a brick building. The clock has roman numerals on it and is surrounded by arches. The clock is lit up at night and can be seen from a distance."} +{"image_id": 41572, "caption": "This image shows a group of people playing baseball on a dirt field. The players are wearing white uniforms and helmets, and one of them is holding a bat. In the background, there are trees and a fence. The image is black and white."} +{"image_id": 509589, "caption": "This image shows a group of people on skateboards standing in a line on a sidewalk. There are several people in the background, some of whom are standing on the sidewalk and others who are standing on the curb. The people on the skateboards are wearing sunglasses and have their hands on their hips. One person is wearing a tie-dye shirt and jeans, while the others are dressed in more casual clothing. The image is taken from a low angle, looking up at the skateboarders from the sidewalk."} +{"image_id": 357238, "caption": "This image shows a person standing on a beach, looking out at the ocean. The person is holding a kite, which is being flown in the wind. The sky is cloudy and there are waves in the ocean."} +{"image_id": 466575, "caption": "This image shows a brown leather suitcase sitting on the ground in the middle of a parking lot. The suitcase appears to be in good condition, with some wear and tear on the corners and edges. There are no other objects or people visible in the image."} +{"image_id": 271970, "caption": "This image shows a white building with a clock tower on top of it. The building is located on a street with trees on either side of it. There is a clear blue sky in the background."} +{"image_id": 305540, "caption": "The image shows a large metal sculpture of scissors in front of a large building. The scissors are made of silver metal and are mounted on a pedestal in the middle of a cobblestone street. The building behind the scissors is a large, ornate structure with white marble columns and a tall, pointed roof. The sky is clear and blue, and there are a few clouds in the distance."} +{"image_id": 462928, "caption": "This image shows a man with glasses holding a white and black smartphone to his ear. He is wearing a green sweater and a black and white striped shirt. The background is a wooden desk with a computer and other office supplies visible."} +{"image_id": 270544, "caption": "The image shows a group of people standing on top of a surfboard in the middle of a lake. The water is calm and the sky is clear, with a few clouds visible in the distance. The people are all wearing swimsuits and have their arms raised in the air, as if they are celebrating or cheering. One person is standing on the surfboard with their hands on their hips, while the others are wading in the water around them. The trees on the shore are visible in the background, and there is a sense of peace and tranquility in the scene."} +{"image_id": 134042, "caption": "This is an image of a plane flying through the sky on a clear day. The sky is blue and there are clouds in the background. The plane is black and has white stripes on it. It is flying at a high altitude and there are trees and buildings in the foreground."} +{"image_id": 120340, "caption": "This image shows a man standing next to a bicycle that is parked on the side of the road. The man is wearing a brown shirt and black pants, and he is holding a wrench in his hand. The bicycle has a blue frame and white tires, and it appears to be in good condition. In the background, there are several people walking on the sidewalk, and a bus is visible in the distance."} +{"image_id": 418949, "caption": "This image shows a baseball game in progress on a baseball field. The players are wearing uniforms and helmets, and the umpire is standing behind the plate. The batter is holding a bat and waiting for the pitcher to throw the ball. The catcher is standing behind the plate, ready to catch the ball if the batter hits it. The pitcher is standing on the mound, holding the ball and ready to throw it to the batter. The crowd is seated in the stands, watching the game."} +{"image_id": 520109, "caption": "This image shows a group of colorful umbrellas set up on the grass in a park. The umbrellas are different colors, including blue, red, yellow, and green. The sky in the background is cloudy, with fluffy white clouds visible. The trees in the background are tall and green, with leaves rustling in the wind. The grass is lush and green, and there are some small flowers growing in the area around the umbrellas."} +{"image_id": 50753, "caption": "This image shows a kitchen with wooden cabinets, a white refrigerator, a stainless steel sink, and a microwave oven. The countertop is made of granite and there is a dishwasher in the corner. The floor is made of tiles and the walls are painted white."} +{"image_id": 329939, "caption": "The image shows a group of three giraffes standing in a field of tall, dry grass. The giraffes are all standing upright, with their long necks stretched out in front of them. They are all looking in the same direction, as if they are watching something in the distance. In the background, there are trees and other vegetation, as well as a cloudy sky. The colors of the image are mostly brown and beige, with the giraffes' spots and patterns standing out against the background. The mood of the image is peaceful and serene, with the giraffes seeming to be at ease in their surroundings."} +{"image_id": 351345, "caption": "This image shows a woman standing in a room with a man standing behind her. The woman is wearing a white shirt and black pants, and the man is wearing a black shirt and pants. The room is decorated with paintings on the walls and a table with chairs in the foreground. The woman is holding a white object in her right hand, and the man is holding a black object in his right hand."} +{"image_id": 25293, "caption": "This is a painting of a woman holding a blue disc in her hand. She is standing on a rocky outcropping with a mountain in the background. The woman is wearing a long, flowing dress and has long, flowing hair. Her face is expressionless and her eyes are closed. The blue disc is floating in the air in front of her, as if she is about to throw it."} +{"image_id": 543041, "caption": "This image shows a box filled with various types of doughnuts. The doughnuts are covered in powdered sugar and have chocolate chips, sprinkles, and other toppings. The box is made of white cardboard and has a clear plastic window on the front to show the contents. The doughnuts appear to be fresh and ready to eat."} +{"image_id": 568265, "caption": "This image shows a man standing in a park, looking up at a kite that is being flown in the sky. The man is wearing a red shirt and black pants, and is holding a stick that he is using to control the kite. In the background, there are trees and a few people walking on the sidewalk. The sky is overcast, and there are a few clouds visible."} +{"image_id": 467386, "caption": "This image shows a blue door with two small windows on either side of it. The door is made of wood and has a metal handle on the right side. There are two black cats sitting on the ground in front of the door. One of the cats is sitting on its hind legs and the other is lying down. The ground is covered in dirt and there are several pieces of trash scattered around the area. The walls of the building are made of red bricks and there are cracks in them. The sky is visible through the window on the left side of the door."} +{"image_id": 242363, "caption": "This image shows a bathroom with a toilet, sink, and bathtub. The walls are white and the floor is tiled. The toilet has a white porcelain bowl and the sink has a white porcelain basin. The bathtub has white porcelain walls and a chrome faucet. There is a white towel hanging on the back of the door."} +{"image_id": 554900, "caption": "The image shows a close-up view of a toilet bowl with its lid open. The toilet is made of white porcelain and has a smooth surface. There are no visible stains or marks on the toilet bowl. The toilet seat is also white and appears to be in good condition. The walls of the bathroom are tiled with grey and white tiles. The floor is also tiled with grey and white tiles. There is a metal grab bar attached to the wall next to the toilet bowl. The grab bar appears to be in good condition and is easy to use. The overall appearance of the bathroom is clean and well-maintained."} +{"image_id": 115006, "caption": "This image shows a baseball game in progress on a baseball field. The players are wearing uniforms and helmets, and the umpire is standing behind the plate, ready to make a call. The batter is holding a bat and waiting for the pitch, while the catcher is crouched behind the plate, ready to catch the ball. The crowd is seated in the stands, watching the game. The field is well-maintained, with green grass and white chalk lines marking the bases and the pitcher's mound. The dugouts are on either side of the field, and there is a scoreboard in the outfield showing the score of the game. The sky is clear and blue, and there are trees in the background."} +{"image_id": 75375, "caption": "The image shows a group of people on the water, kite surfing. They are riding on boards with kites attached to them, using the wind to propel themselves through the water. The sky is clear and blue, with a few clouds in the distance. The water is calm, with waves lapping at the shore. In the background, there are buildings and trees on a hill."} +{"image_id": 419223, "caption": "The image shows two boys playing soccer on a grass field. One boy is wearing a black and white jersey and shorts, while the other boy is wearing a blue and white jersey and shorts. They are both wearing soccer cleats and are running towards the ball, which is in the middle of the field. The boy in black and white is kicking the ball with his right foot, while the boy in blue and white is trying to block the shot with his left foot. The grass field is well-manicured and there are trees and a fence in the background."} +{"image_id": 137578, "caption": "The image shows a bathroom with two toilets in it. The toilets are made of white porcelain and have a smooth surface. The toilet bowls are large and deep, with a round shape. The toilet seats are also white and have a smooth surface. The walls of the bathroom are tiled with brown and white ceramic tiles. The tiles are arranged in a diagonal pattern, creating a visually interesting design on the walls. The floor of the bathroom is also tiled with brown and white ceramic tiles. The tiles are arranged in a grid pattern, creating a clean and orderly look. There is a handrail on one side of the toilet, providing support for people who need it. The handrail is made of metal and is attached to the wall. It has a smooth surface and is easy to grip. Overall, the image shows a well-maintained bathroom with clean and functional toilets."} +{"image_id": 408808, "caption": "The image shows two toothbrushes in plastic packaging, one with a blue handle and the other with a green handle. The packaging is labeled with the brand name \"System\" and the product name \"Toothbrush.\" The toothbrushes are next to each other on a white surface."} +{"image_id": 243773, "caption": "This image shows a kitchen with a counter, cabinets, and a refrigerator. There is also a fireplace in the corner of the room."} +{"image_id": 436492, "caption": "The image shows a street corner with two signs on either side of the road. One sign is a road sign pointing in the direction of the city, while the other sign is a warning sign indicating that the area is under construction. There are also some power lines visible in the background."} +{"image_id": 556648, "caption": "This is an image of a white cell phone sitting on a display case in a store. The phone has a sleek, modern design and appears to be in good condition. The display case is transparent and allows the phone to be seen from all angles. There are no other objects or people in the image."} +{"image_id": 298924, "caption": "This image shows a bowl of rice noodles with chicken and vegetables, served with chopsticks and soy sauce on the side. The bowl is decorated with blue and white stripes, and there are two small bowls of chili sauce and chopsticks on the table in front of it."} +{"image_id": 562030, "caption": "The image shows a wooden deck with several potted plants on it. The plants are made of clay and have small holes in the bottom for drainage. There is a pair of scissors on the ground next to one of the pots."} +{"image_id": 501315, "caption": "This image shows a person riding a green and orange motorcycle on a race track. The person is wearing a helmet, gloves, and boots, and is leaning forward on the bike. The background is a long, straight stretch of asphalt with a white line down the center. There are trees and a fence in the distance, and the sky is overcast. The image is taken from a low angle, looking up at the rider from behind the bike."} +{"image_id": 436162, "caption": "The image shows a white bus parked in a parking lot next to a row of trees. The bus has its doors open and appears to be empty. There are no people or other vehicles in the image."} +{"image_id": 323888, "caption": "The image shows a large, ornate building with a clock on the front. The building appears to be made of stone or brick, and has large, arched windows on the upper floors. There are several cars parked in front of the building, and a few people walking by on the sidewalk. The sky is dark, with a few stars visible in the background."} +{"image_id": 211476, "caption": "This image shows two bowls of food on a wooden table. The bowls are made of black plastic and have lids on them. The food inside the bowls includes scrambled eggs, black beans, and sour cream. There is also a small container of salsa on the table next to the bowls. The overall color scheme of the image is brown and black."} +{"image_id": 473433, "caption": "The image shows a black suitcase open on a wooden table. Inside the suitcase, there is a yellow mug and a black and white photograph of a man in a suit and tie. The man is standing in front of a brick wall with a serious expression on his face. The photograph is framed and mounted on the wall behind the suitcase. There are also some books on the table next to the suitcase."} +{"image_id": 165752, "caption": "This image shows a black dog standing on its hind legs and holding a yellow frisbee in its mouth. The dog is wearing a collar and appears to be standing in a fenced-in yard. There is a wooden fence behind the dog, and some trees can be seen in the background. The dog's fur is black, and its eyes are brown. The frisbee has a yellow and black design on it."} +{"image_id": 573756, "caption": "This image shows two giraffes standing in a grassy area surrounded by trees. The giraffes are standing next to each other and appear to be looking at something in the distance. The sky is clear and there are some clouds visible in the background."} +{"image_id": 187450, "caption": "This image shows a blue and white train parked at a train station. There are several people standing on the platform, waiting for the train to arrive. The train appears to be a high-speed train, with a sleek and modern design. The train is parked on the tracks, and there are several orange cones placed around it to keep people away from the train. The train appears to be in good condition, with no visible damage or wear and tear."} +{"image_id": 43266, "caption": "This image shows two giraffes standing next to each other under a group of palm trees. The giraffes are both brown and tan in color, with long necks and legs. They are standing on a rocky hillside, with large boulders and shrubs surrounding them. The sky is clear and blue, with a few clouds visible in the distance."} +{"image_id": 150080, "caption": "The image shows a pizza on a white plate on a wooden table. The pizza has a crispy, golden-brown crust and is topped with a variety of ingredients such as mushrooms, onions, and green peppers. The cheese appears to be cheddar or mozzarella, and the sauce appears to be tomato-based. The plate is surrounded by silverware, including a fork, knife, and spoon, and there is a glass of water on the table in front of the pizza. The room is dimly lit and appears to be a restaurant or diner."} +{"image_id": 453757, "caption": "This image shows a group of people playing a game of soccer on a grass field. The players are wearing orange jerseys and black shorts, and are running around the field chasing a soccer ball. One player is in the air, jumping to head the ball, while another player is on the ground, trying to kick the ball away from him. In the background, there are trees and a fence, and a group of people are watching the game from the sidelines."} +{"image_id": 354460, "caption": "The image shows a group of people cutting a ribbon with scissors in front of a building. The people in the image are wearing formal attire, including suits and ties for the men and dresses for the women. The building in the background appears to be a government or public building, such as a city hall or courthouse. The people in the image are smiling and holding up the ribbon as they cut it."} +{"image_id": 221681, "caption": "This is a bathroom with a sink, toilet, and shower. The walls are tiled with blue and white tiles, and there is a window above the sink. The sink is white and has a faucet on it. The toilet is also white and there is a toilet paper roll holder next to it. The shower has a glass door and there is a shower curtain hanging from it. The floor is tiled with the same blue and white tiles as the walls."} +{"image_id": 349324, "caption": "This is an image of a train traveling down a railroad track. The train is made up of several cargo cars, each loaded with different types of goods. The train appears to be moving at a moderate speed, with the wheels of the train making contact with the tracks as it moves along. The image is taken from the perspective of someone standing on the side of the track, looking down at the train as it passes by."} +{"image_id": 225133, "caption": "The image shows a group of colorful umbrellas hanging from the branches of a tree in a park. The umbrellas are made of different materials, such as wood, plastic, and fabric, and are of various shapes and sizes. Some of the umbrellas are open, while others are closed. The leaves of the tree are visible in the background."} +{"image_id": 452566, "caption": "The image shows a stop sign on the side of a road with a mountain in the background. The stop sign has a red background with white letters that read \"stop.\" The mountain in the background is covered in green grass and has a few trees on it. The sky is clear and blue with a few clouds in the distance."} +{"image_id": 124952, "caption": "This image shows a city street with a bus parked on the side of the road. The bus is a yellow and blue color and has the words \"public transportation\" written on the side. There are trees on either side of the street and a building in the background."} +{"image_id": 26697, "caption": "The image shows a woman standing in a bathroom doorway, holding a toothbrush in one hand and a toothpaste tube in the other. She is wearing a gray sweater and jeans, and has her hair tied back in a ponytail. The background of the image is a white wall with a brown wooden door in the foreground."} +{"image_id": 126064, "caption": "This image shows a man on a surfboard riding a wave in the ocean. The man is wearing a red shirt and black shorts, and has his arms outstretched in front of him as he rides the wave. The wave is large and turbulent, with whitecaps and a blue sky in the background. The man's hair is blowing in the wind, and he has a wide grin on his face as he rides the wave."} +{"image_id": 557190, "caption": "The image shows two men standing next to each other, both wearing suits and smiling at the camera. The man on the left is wearing a black suit, white shirt, and black tie, while the man on the right is wearing a navy blue suit, white shirt, and navy blue tie. They are standing on a sidewalk in front of a row of trees that are in full autumn color, with orange, yellow, and red leaves. Behind the trees, there is a mountain range with snow-capped peaks visible in the distance. The sky is clear and a few fluffy white clouds can be seen in the blue sky. The sun is shining brightly, casting a warm glow on the scene. The two men are standing next to each other, with the man on the left slightly taller and more slender than the man on the right. They are both smiling and appear to be enjoying each other's company."} +{"image_id": 137612, "caption": "This image shows a tall building with several floors and balconies. The building appears to be made of concrete and glass, and there are several windows on each floor. The street in front of the building is lined with trees and there is a sidewalk for pedestrians to walk on. There is a red stop sign on the corner of the street and the building."} +{"image_id": 408480, "caption": "The image shows a cityscape with a red and black lighthouse in the foreground and a large crane in the background. The lighthouse has a wooden deck and a metal ladder leading up to the top. The crane is tall and has a long arm with a bucket at the end. There are also several other boats and ships in the background. The sky is clear and blue with a few clouds in the distance. There are also several people walking on the sidewalk next to the lighthouse."} +{"image_id": 277694, "caption": "This image shows two cows lying on the ground in front of a building. One cow is lying on its side with its head resting on its front leg, while the other cow is lying on its back with its legs splayed out to the side. There are several motorcycles parked on the sidewalk behind the cows. The image is taken from a low angle, looking up at the cows from the ground."} +{"image_id": 74166, "caption": "This image shows a man on a skateboard performing a trick in front of a group of people. The man is wearing a black t-shirt and has a tattoo on his left arm. The people in the background are standing on the sidewalk and watching the skateboarder. The building in the background is made of stone and has windows on the upper levels."} +{"image_id": 102625, "caption": "This image shows a small kitchen with a sink, stove, and refrigerator. There is a window above the sink that looks out onto a garden. The walls are white and there is a wooden floor."} +{"image_id": 540694, "caption": "This image shows a giraffe standing next to a car in a parking lot. The giraffe is looking out the window of the car and appears to be curious about its surroundings. There are trees and other vehicles in the background of the image. The giraffe has a long neck and brown and white stripes on its body."} +{"image_id": 518586, "caption": "This is a black and white photograph of a train traveling along a set of tracks. The train is passing through a small town, with buildings and other structures visible in the background. There is a man standing on the tracks, looking at the train as it passes by. The man is wearing a suit and hat, and is carrying a briefcase. The sky is cloudy and overcast, with a few small patches of sunlight visible through the clouds."} +{"image_id": 81303, "caption": "The image shows a man wearing a brown jacket, black pants, and black boots, with a red scarf around his neck. He is holding a pair of skis with red poles and is wearing a pair of goggles on his forehead. He is standing on a snow-covered slope, with a blue sky and a few clouds in the background. The snow is deep and the man is wearing a pair of ski boots. The image is taken from a low angle, looking up at the man as he skis down the slope."} +{"image_id": 383065, "caption": "The image shows a public toilet located on the sidewalk of a city street. The toilet is made of metal and has a green paint job. The door is open, revealing the interior of the toilet, which is clean and well-maintained. There is a sign above the door that reads \"Public Toilet\" in white letters on a green background. In the background, there is a building with white walls and windows. The sky is clear and blue."} +{"image_id": 169602, "caption": "This image shows a woman riding a wave on a surfboard in the ocean. She is wearing a black and blue wetsuit and has long blonde hair that is blowing in the wind. She is smiling and appears to be enjoying the ride. The water is choppy and the waves are crashing around her. In the background, there is a clear blue sky and some clouds."} +{"image_id": 19890, "caption": "The image shows two zebras standing next to each other in a dirt area. One of the zebras is eating grass from a metal feeding trough, while the other looks on. There are trees and rocks in the background."} +{"image_id": 236604, "caption": "The image shows a spacious living room with two couches, a coffee table, and a chandelier hanging from the ceiling. The walls are painted a light beige color and there are large windows that let in plenty of natural light. The flooring is made of carpet and the furniture is made of beige leather. There is a staircase leading to the second floor and a balcony that overlooks the living room."} +{"image_id": 270753, "caption": "The image shows a slice of deep dish pizza on a metal tray. The pizza has a crispy, golden-brown crust and is topped with a layer of melted mozzarella cheese and a variety of vegetables, including spinach, mushrooms, and onions. The pizza is cut into slices with a large knife, and one slice has been removed from the pizza to reveal the cheese and vegetables underneath. The metal tray is stainless steel and has a smooth surface. The lighting in the image is bright and even, casting deep shadows on the crust and highlighting the cheese and vegetables. The overall appearance of the image is appetizing and invites the viewer to take a bite of the delicious pizza."} +{"image_id": 457178, "caption": "This is a black and white photograph of a street scene in Paris, France. The street is lined with tall, ornate buildings on either side, and there are several horse-drawn carriages and people walking on the sidewalk. The buildings are made of stone and have large windows and balconies. There is a large, ornate fountain in the center of the street, and there are several people standing around it. The sky is overcast and there are clouds in the distance."} +{"image_id": 577712, "caption": "The image shows a group of people standing in front of a fence, looking at a giraffe that is standing on the other side of the fence. The giraffe has its head stretched out towards the people, as if it is trying to reach them. The people are smiling and looking at the giraffe with interest. There are trees and a building in the background."} +{"image_id": 414560, "caption": "The image shows three black and white cows lying in a pile of hay in a barn. The cows are all lying down, with their heads resting on the ground and their legs tucked underneath them. The hay is piled up around the cows, and there is a metal gate in the background to the left of the image."} +{"image_id": 388983, "caption": "The image shows a hot dog in a bun with ketchup, mustard, and relish on top. The bun is toasted and the hot dog is cooked to perfection. The ketchup, mustard, and relish add a tangy and sweet flavor to the hot dog. The drink in the background is a refreshing beverage that complements the hot dog perfectly."} +{"image_id": 245965, "caption": "This image shows a person standing under an umbrella in a field. The person is holding the umbrella with one hand and looking up at the sky with the other. The sky is overcast and there are clouds in the distance. The field is covered in dry grass and there are some trees in the background."} +{"image_id": 147590, "caption": "This image shows a wine glass sitting on a wooden table. The glass is full of red wine, and there are some bread slices and cheese on the table in front of it. The background of the image is blurry, but it appears to be a outdoor setting."} +{"image_id": 46882, "caption": "This image shows a group of people playing a game of frisbee in a park. The people are all wearing blue shirts and some are holding frisbees in their hands. There is a tree in the background and the sky is clear and blue."} +{"image_id": 518719, "caption": "The image shows a brown and white ceramic vase sitting on a beige tablecloth. The vase has a smooth, glossy surface and a slightly raised rim. The surface of the vase is decorated with a series of horizontal lines, which give it a striped appearance. The lines are a darker shade of brown than the base of the vase, creating a contrasting effect. The vase has a simple, elegant design that makes it suitable for use in a variety of settings."} +{"image_id": 176312, "caption": "This image shows a woman standing in front of a large poster that reads \"Tour Stop\" in bold letters. The poster is mounted on a wooden frame and has a green background with white text. The woman is wearing a black dress and has her hand on her hip as she looks at the poster. There is a wooden staircase leading up to the second floor in the background."} +{"image_id": 580746, "caption": "This image shows a group of white sheep grazing in a lush green field. The sheep are standing on their hind legs and eating grass from the ground. In the background, there are trees and a stone wall. The sky is cloudy and there are no other animals or people in the image."} +{"image_id": 541223, "caption": "This image shows a large building with a green awning over the entrance. The building appears to be made of concrete and has large windows on the upper floors. There is a small plane parked on the roof of the building. The plane appears to be made of metal and has a large propeller on the back. There are trees and bushes growing in front of the building, and a sidewalk leading up to the entrance. The sky is clear and blue, and there are a few clouds in the distance."} +{"image_id": 22589, "caption": "This image shows a group of sheep standing behind a wire fence in a pasture. The sheep are all white and appear to be of the same breed. The fence is made of metal wire and is topped with barbed wire. In the background, there are trees and a clear blue sky. The sheep are all looking straight ahead, as if they are curious about something."} +{"image_id": 196815, "caption": "This image shows a group of people sitting on chairs in a room with white walls and wooden floors. The people in the image are all wearing casual clothing, with one person wearing a black t-shirt and jeans, another wearing a white t-shirt and shorts, and the third wearing a grey hoodie and black pants. The person in the middle of the image is sitting on a wooden chair with a microphone in their hand, while the other two people are sitting on either side of them. In the background of the image, there are several paintings and photographs hanging on the walls."} diff --git a/OPERA/log/chair_eval_results/minigpt4/greedy.jsonl b/OPERA/log/chair_eval_results/minigpt4/greedy.jsonl new file mode 100644 index 0000000000000000000000000000000000000000..759f3f1393266d67da3559f0d6ffc70a86a20401 --- /dev/null +++ b/OPERA/log/chair_eval_results/minigpt4/greedy.jsonl @@ -0,0 +1,500 @@ +{"image_id": 226988, "caption": "This image shows a woman taking a photo of a plate of pizza on a red and white checkered tablecloth. The woman is wearing a black tank top and has her hair tied back in a ponytail. The plate of pizza has two slices cut out of it, and there are crumbs on the plate. The woman is holding a camera in her hand and is looking down at the plate. The background of the image is a wooden fence and some trees."} +{"image_id": 337443, "caption": "This image shows a road construction sign on a sidewalk next to a busy city street. The sign has an orange and black background with a white arrow pointing down the street. There are several cars driving on the street, and a pedestrian walking on the sidewalk. The sign is warning drivers to be cautious of construction in the area."} +{"image_id": 112022, "caption": "This image shows a group of people standing in line at a luggage carousel in an airport. The people are all wearing different types of clothing, including some with jackets and others with t-shirts. Some of the people are holding luggage, while others are just standing there waiting. The luggage carousel is made of metal and has a series of slots where the luggage can be placed. The walls of the airport are made of wood and have a series of tiles on them. The lighting in the airport is bright and well-placed, providing good illumination for the people and luggage. The overall atmosphere of the image is one of bustle and activity, as people are coming and going and waiting for their flights."} +{"image_id": 394444, "caption": "This image shows a person standing next to a skateboard with graffiti on it. The person is wearing black pants and a black shirt, and has their hands on their hips. The skateboard is lying on the ground, and appears to have been painted with colorful graffiti. The background is a tiled floor, and there are some people walking in the distance."} +{"image_id": 481635, "caption": "This image shows a woman sitting at a table in a restaurant, smiling and holding a slice of pizza. The woman is wearing a white shirt and a green scarf around her neck. The table is covered in a red and white checkered tablecloth. There are plates of food on the table, including a large slice of pizza and a glass of water. The woman is holding up her hand in a gesture of victory or celebration."} +{"image_id": 285258, "caption": "This image shows a group of dogs playing together in a fenced-in area. The dogs are all different breeds, including a black and white dog, a brown dog, and a white dog. The dogs are all playing together and seem to be having a good time. There is a fence around the area to keep the dogs contained."} +{"image_id": 479057, "caption": "This image shows a white polar bear standing on a lush green grassy field. The bear is looking down and appears to be eating something from the ground. The background is a fence made of metal bars and there are some trees in the distance. The sky is overcast and there are some clouds in the sky."} +{"image_id": 66238, "caption": "This image shows a person wearing an orange jacket and riding a snowboard in the air. The person is wearing a helmet and gloves and is jumping off a ramp. The background is a blue sky with clouds and a few trees in the distance. The image is taken from a high angle and the person is in mid-air."} +{"image_id": 558458, "caption": "This image shows a woman holding a white plate with a hot dog, spaghetti, and a salad on it. She is wearing sunglasses and has a smile on her face. The background is a white tent with a blue and yellow stripe pattern."} +{"image_id": 400596, "caption": "This image shows a bathroom with a green sink and a wooden floor. There is a towel rack on the wall and a wooden bench next to the sink. The towel rack has two towels hanging from it. The sink has a faucet on it and there is a mirror above it. The mirror has a wooden frame and there is a towel hanging from the towel rack behind it."} +{"image_id": 373266, "caption": "This image shows a group of surgeons working in a hospital operating room. The surgeons are wearing scrubs and gloves, and they are using various medical equipment, including a television monitor, a computer, and a surgical instrument. The room is well-lit and appears to be clean and organized. There are other people in the room, including nurses and other medical staff, but they are not shown in the image."} +{"image_id": 38332, "caption": "This image shows an elephant standing in a grassy field. The elephant has large tusks and is covered in dirt and mud. The elephant's trunk is raised and it appears to be sniffing the air. The sky is overcast and there are clouds in the distance."} +{"image_id": 84533, "caption": "This image shows a woman sitting on the back of a black motorcycle. She is wearing a black leather jacket and black leather pants. The motorcycle is parked in front of a white garage door. The woman is smiling and holding a helmet in her hand."} +{"image_id": 449963, "caption": "This image shows a room with several tables and chairs arranged in a circle. The walls are white and there is a large whiteboard on one wall. The tables are cluttered with laptops, which are open and connected to a projector screen on the wall. The projector screen is displaying a presentation or slideshow. The room appears to be a classroom or meeting room in an office or educational setting."} +{"image_id": 128180, "caption": "This image shows a white plate with a piece of pizza on it. The pizza has slices of tomato, mozzarella cheese, and basil on it. There is a fork and knife next to the plate, and a glass of water on the table in front of the plate. The plate is on a wooden table with a white tablecloth. The walls of the room are painted white and have a few plants on them. The room appears to be a kitchen or dining room."} +{"image_id": 204232, "caption": "This image shows a person riding a skateboard over a ramp. The person is wearing a black shirt and black pants, and has a black backpack on their back. The ramp is made of wood and has a metal railing on either side. There are several people in the background watching the skateboarder. The image is taken from a high angle, looking down at the skateboarder from above. The sky is blue and there are a few clouds in the background."} +{"image_id": 477867, "caption": "The image shows a man riding a surfboard down a wave in a river. The man is wearing a black wetsuit and a black hat. He is standing on the board with his feet on the front and his hands on the back. The water is turbulent and choppy, with whitecaps and waves breaking around him. In the background, there are trees and a group of people watching the surfer. They are standing on the shore, some of them with cameras and others with binoculars. The sky is overcast and there are clouds in the distance."} +{"image_id": 308128, "caption": "This image shows a man riding a skateboard down a ramp. He is wearing a white shirt and black pants, and has a black and white helmet on his head. The ramp is made of concrete and has metal railings on either side. There are trees in the background, and the sky is clear and blue."} +{"image_id": 222407, "caption": "This image shows a bird perched on a tree branch with its wings spread out. The bird has a yellow beak and black and brown feathers. The background is a blurred image of trees and a cloudy sky."} +{"image_id": 469543, "caption": "This image shows a bedroom with two beds. The beds have striped comforters and matching pillows. The walls are covered in a floral wallpaper, and there is a small table with a lamp on it in the corner of the room. The window has a white blind covering it, and there is a small rug on the floor. The overall atmosphere of the room is cozy and inviting."} +{"image_id": 421564, "caption": "This image shows a small child sitting in a high chair with a cake in front of them. The child is wearing a white shirt and pink overalls, and has a pink bow in their hair. The cake is decorated with pink frosting and has a small candle on top. The kitchen in the background is equipped with a stove, oven, and refrigerator."} +{"image_id": 177419, "caption": "This image shows a blue and white fire hydrant on a sidewalk. The hydrant has a large, white letter \"W\" on the front, and a smaller, blue letter \"M\" on the side. The background is a green lawn with some trees in the distance. The sky is clear and blue, with a few white clouds. The image is taken from a low angle, looking up at the hydrant from the sidewalk."} +{"image_id": 86432, "caption": "This image shows a baseball player swinging a bat at a pitched ball on a baseball field. The player is wearing a blue and white uniform and holding a bat in his right hand. The umpire is standing behind the plate, ready to call the play. The crowd is seated in the stands, watching the game. The background of the image is a green field with a dirt infield and a fence surrounding the outfield."} +{"image_id": 544590, "caption": "This image shows a close-up view of an orange tabby cat lying on a gray couch. The cat's head is resting on its paws, and its eyes are closed. The cat's fur is fluffy and appears well-groomed. The background of the image is a light-colored couch with a pattern of small, dark squares. The image is well-lit, with a soft, diffuse lighting that creates a warm and inviting atmosphere. The overall mood of the image is peaceful and relaxed."} +{"image_id": 513060, "caption": "This image shows a person holding a half-eaten doughnut in their hand. The person is wearing a blue shirt and has brown hair. They are sitting on a bench in a park, and there are trees and buildings visible in the background. The doughnut appears to be glazed and has a blue filling."} +{"image_id": 140921, "caption": "This image shows a surfboard with various messages written on it, including \"Beach Bums\" and \"Full Bar.\" The board is lying on the sand near a palm tree and a few other objects are visible in the background."} +{"image_id": 361351, "caption": "The image shows a pizza in a cardboard box with a slice missing. The pizza has a tomato and mozzarella cheese topping, and appears to be freshly baked. There is a bottle of wine next to the pizza box."} +{"image_id": 202154, "caption": "This image shows a pizza on a wooden cutting board on a table. The pizza has a crispy, golden-brown crust and is topped with mozzarella cheese, tomato sauce, and fresh basil leaves. The pizza appears to be cut into slices, and there are a few slices missing from the edge of the board. The table and chairs in the background are made of wood and appear to be part of a restaurant setting. The lighting in the image is bright and even, casting shadows on the table and the pizza. The overall mood of the image is warm and inviting, making it seem like a cozy and comfortable place to eat a delicious pizza."} +{"image_id": 94248, "caption": "The image shows a large, ornate clock tower in the center of a busy city street. The clock tower is made of metal and has two large clock faces on it. The clock tower is surrounded by tall buildings and cars driving by on the street. There is a black car parked on the side of the street next to the clock tower."} +{"image_id": 200681, "caption": "This image shows a man and two dogs playing in a park. The man is wearing a striped shirt and jeans, and is holding a blue frisbee in his hand. The two dogs are jumping up in the air, trying to catch the frisbee. The man is standing on a grassy lawn, and there are trees and a blue sky in the background."} +{"image_id": 532989, "caption": "This image shows a giraffe lying down in a grassy field. The giraffe has long legs and a long neck, and its body is brown and tan with patches of black. Its head is also brown and tan, and it has a long, curved neck. In the background, there is a wooden fence and some trees, and the sky is blue."} +{"image_id": 565989, "caption": "This image shows a clock tower with several statues on top of it. The clock face is visible, and there are several trees in the background. The sky is clear and blue, and there are no clouds in sight. The statues on top of the clock tower are made of metal and have intricate designs on them. They appear to be decorative and not functional. The clock tower is made of brick and has a pointed roof. The trees in the background are tall and green, and their leaves are just starting to turn yellow. The overall effect of the image is one of grandeur and beauty."} +{"image_id": 67315, "caption": "This image shows two men wearing suits and ties, one of whom is wearing a gray shirt and the other a blue shirt. The man on the left is wearing a red tie with white and blue stripes, while the man on the right is wearing a blue tie with white and red stripes. The men are standing in a room with a window behind them, and the light from the window is shining on their faces. The man on the left has his arms crossed in front of him, while the man on the right is standing with his hands in his pockets."} +{"image_id": 157170, "caption": "The image shows a group of sheep standing on a hillside overlooking a valley with a city in the distance. The sheep are standing on the edge of the hill, with their heads facing towards the valley. The hillside is covered in grass and rocks, and there are some trees in the background. The sky is cloudy and there is a hint of sunlight peeking through the clouds. The sheep are all looking at each other, with their ears forward and their tails down. The image is a landscape shot with the sheep as the main subject."} +{"image_id": 328786, "caption": "This image shows a row of benches lined up along a sidewalk in a park. The benches are made of concrete and have metal armrests. There are several trees in the background, and the sky is visible in the distance. The ground is covered in fallen leaves, and there are no people in the image."} +{"image_id": 46011, "caption": "This image shows a small airplane parked on a runway at an airport. The plane is parked next to a fence and there is a sign that reads \"No Parking\" on it. There is a mountain range in the background."} +{"image_id": 384348, "caption": "This image shows a person wearing skis and standing on a snow-covered slope. The person is wearing a blue jacket and a black helmet. The sky is cloudy and there are no other people or objects in the image."} +{"image_id": 451798, "caption": "This image shows a collection of ties hanging on a rack in a room. The ties are of different colors and patterns, and are arranged in a neat and organized manner. The room appears to be a closet or a dressing room, and there are other items such as hats and shoes visible in the background. The walls are red and there is a window on the left side of the image."} +{"image_id": 376545, "caption": "This image shows two people on skateboards in front of a coffee shop. One person is wearing a red and blue jacket and is doing a trick on his skateboard, while the other person is standing on the sidewalk watching. The building in the background is a coffee shop, and there are people walking by on the sidewalk. The sky is cloudy and there is a hint of sunlight shining through the clouds."} +{"image_id": 11538, "caption": "This image shows a man riding a motorcycle on a road. The man is wearing black leather jacket, black gloves, and black boots. He is also wearing a black helmet with a visor. The motorcycle is a black and silver Ducati Monster 1200 R. The background of the image is green and there are trees on the side of the road. The road is in good condition and there are no potholes or cracks. The image is taken from the side and the man is riding in the direction of the camera. The image is well-composed and the focus is on the man and the motorcycle."} +{"image_id": 346207, "caption": "This image shows a cat lying on a desk in front of two computer monitors. The cat is black and white and appears to be sleeping. There are several papers and pens scattered around the desk, and a keyboard and mouse are visible on the right side of the image. The background of the image is a wooden desk with a lampshade on top."} +{"image_id": 359238, "caption": "This image shows a man sitting at a table in a train car. He is wearing a brown jacket and a yellow shirt. He has a cup of coffee in front of him and is looking out the window. The tablecloth is white and there are white curtains on the windows. The man's hair is black and he has a beard."} +{"image_id": 297610, "caption": "This image shows a man riding a skateboard on a ramp. He is wearing a white shirt and black pants, and has a black beard. The ramp is made of wood and has a metal railing on one side. The ceiling is made of metal beams and has a metal roof. There are no other people or objects in the image."} +{"image_id": 428447, "caption": "This image shows a street with a sidewalk on one side and a building on the other side. There are no people in the image. The street has a number of streetlights on either side of it. The building in the background appears to be a residential or commercial building. The image is black and white."} +{"image_id": 428769, "caption": "This image shows a black car parked on the side of the road next to a parking meter. The car has a license plate that reads \"123 RM\". There is a tree in the background, and the sky is visible in the top left corner of the image. The parking meter has a green meter face and a black pole. The car appears to have some rust on the back bumper."} +{"image_id": 452084, "caption": "This image shows a plate with two slices of bread and a slice of tomato on it. There is also a fork and knife on the side of the plate. The plate is on a wooden table with a white background."} +{"image_id": 545363, "caption": "This image shows a bench that has fallen into the water. The bench is made of metal and has a wooden seat. There is a railing around the edge of the bench, and a fence in the background. The water is murky and there are some debris in the water."} +{"image_id": 77963, "caption": "This image shows a cow hanging from the ceiling in a store. The cow is made of plastic and is suspended from a wire. The store is filled with various items such as toys, clothes, and other items. The walls are painted green and there are several shelves displaying different items. The ceiling is white and there are several lights hanging from it. The overall atmosphere of the store is bright and cheerful."} +{"image_id": 78093, "caption": "This image shows a person wearing skis and poles, standing on a snow-covered trail in the woods. The person is wearing a pink jacket and pants, and has a red scarf around their neck. The trees in the background are tall and covered in snow. The sky is cloudy and overcast."} +{"image_id": 346334, "caption": "This image shows a group of two brown bears standing in a grassy field. One of the bears is standing on its hind legs, while the other is standing on all fours. The bears are facing each other and appear to be looking at something in the distance. The field is covered in tall, green grass and there are some small hills in the background. The sky is a bright blue and there are some clouds in the distance."} +{"image_id": 185633, "caption": "This is a bathroom with a bathtub, sink, and toilet. The walls are covered in peeling paint and there is a window above the sink. The sink is stained and there are towels hanging on the back of the toilet."} +{"image_id": 327165, "caption": "This image shows a man cutting the hair of a young boy. The man is wearing a black shirt and has his hair tied back in a ponytail. The boy is sitting on a chair with his head resting on the man's lap. The man is using a pair of scissors to cut the boy's hair. The background of the image is a wall with a brown color. The room appears to be a salon or barber shop."} +{"image_id": 410632, "caption": "This image shows a group of baseball players standing on a green field with a large scoreboard in the background. The players are wearing baseball uniforms and gloves, and one of them is holding a baseball bat. The scoreboard has the names of the teams and the score of the game, which appears to be a close match. The players are standing on the grass, which is well-manicured and looks like it has been recently mowed. The sky is clear and blue, and there are some trees in the background. The image is taken from a high angle, looking down at the players from above."} +{"image_id": 468471, "caption": "This image shows a man in a white shirt and blue tie jumping up and down on a bed in a room with wooden floors and white walls. The bed has a brown comforter and pillows, and there are several pieces of furniture in the room, including a desk and a chair. The man is wearing a pair of black shoes and has his arms outstretched in front of him. The room is dimly lit, and there are several people in the background, including a woman in a red shirt and a man in a black shirt."} +{"image_id": 241317, "caption": "This image shows a man pushing a cart with a bunch of fruit on it in front of a blue building. The man is wearing a black shirt and pants and has a black hat on his head. The building behind him appears to be made of stone or brick and has a wooden door with a window above it. There are no other people or vehicles in the image."} +{"image_id": 444982, "caption": "This image shows two zebras grazing in a grassy field. One zebra is standing on its hind legs and the other is lying down. The trees in the background provide shade and the dirt ground is visible in the foreground. The image is taken from a low angle, giving the impression of the zebras being small in the vast grassy field."} +{"image_id": 117563, "caption": "This image shows two men standing in a living room. One man is holding a white object in his right hand, while the other man is standing behind him with his arms crossed in front of his chest. The room is decorated with yellow curtains and a blue couch. The furniture is cluttered with various objects, including a lamp, a vase, and a book. The walls are adorned with yellow and white wallpaper. The overall atmosphere of the image is casual and relaxed."} +{"image_id": 206579, "caption": "This image shows a man standing in front of a table with a birthday cake on it. The cake is lit up with several candles, and the man is looking at it with a surprised expression on his face. The table is covered in red and white checkered tablecloth, and there are several plates and glasses on it. The room is dimly lit, and there are several other people in the background. The man is wearing a black shirt and glasses, and he has short, gray hair. The cake is decorated with red and white frosting and sprinkles."} +{"image_id": 221172, "caption": "This image shows a man playing tennis on a court with a white ball in his hand. He is wearing a blue shirt and white shoes and is holding a racket. There is a person in the background watching the game. The court is green and there are lines on it."} +{"image_id": 317969, "caption": "This image shows a group of sheep walking down a road next to a mountain range in the background. The sheep are all white and appear to be of a medium size. The road is paved and there are no other vehicles or people in the scene. The sky is clear and there are some clouds visible in the distance. The mountain range is covered in snow and has a number of peaks visible."} +{"image_id": 82150, "caption": "This image shows a man sitting on a couch with a white video game controller in his hand. He is wearing a blue t-shirt and has his hair styled in a messy, spiky style. The background of the image is a window with blinds and a view of a tree outside."} +{"image_id": 284064, "caption": "This image shows a man playing tennis on a court. He is holding a racket and swinging it at a tennis ball that is in the air. The man is wearing a blue shirt and black shorts, and he is standing on a white tennis court. Behind him, there is a fence made of metal bars and a green background."} +{"image_id": 372203, "caption": "This image shows a bench sitting in the middle of a dirt road in the middle of a desert. The sky is clear and blue, and there are mountains in the background. The bench appears to be made of wood and has a metal pole next to it. There is a fire hydrant nearby, and a street sign pointing in the direction of the mountains."} +{"image_id": 359136, "caption": "The image shows a woman lying on the floor in front of a bathtub. She is wearing a black top and black pants, and has her legs up in the air. The bathtub is white and has a faucet on the wall next to it. The walls of the bathroom are tiled, and there is a toilet in the corner. The woman's hair is dark and straight, and she has a small tattoo on her left ankle. The image is well-lit, with a bright overhead light shining down on the woman. The overall mood of the image is relaxed and peaceful."} +{"image_id": 499281, "caption": "This is a kitchen with white cabinets, a stainless steel stove, and a microwave oven. There are also several containers and utensils on the countertop."} +{"image_id": 192233, "caption": "This image shows a man playing tennis on a dirt court. He is holding a racket and swinging it at a tennis ball that is coming towards him. The man is wearing a blue shirt and black shorts. The background of the image is a dirt court with some trees in the distance."} +{"image_id": 11987, "caption": "This image shows a bedroom with a large, ornate fireplace in the corner. The walls are striped with black and white, and there are two windows on either side of the room. The bed has a wooden frame and a striped bedspread, and there are two chairs and a small table next to it. The room is dimly lit, with a single light fixture hanging from the ceiling."} +{"image_id": 406810, "caption": "This image shows a group of people sitting in a room with a large screen displaying a live feed of a space shuttle launch. The people in the room are looking at the screen intently, and some of them are holding laptops or other electronic devices. The room is dimly lit, and there are several large windows behind the people in the room, through which one can see the sky and the surrounding buildings. The image is taken from a low angle, looking up at the people in the room."} +{"image_id": 99965, "caption": "This image shows a plate with a sandwich on it, surrounded by chips. The sandwich appears to be a classic peanut butter and jelly variety, with two slices of bread and a layer of peanut butter and jelly in between. The chips are arranged in a pile on the side of the plate, with some of them visible in the image. The plate is on a white surface, and there are some utensils nearby, including a fork and knife. The overall appearance of the image is casual and relaxed, with a focus on simple, comforting foods."} +{"image_id": 17328, "caption": "The image shows a red train traveling along a set of tracks in a snowy environment. The train appears to be moving at a moderate speed, and is passing through a tunnel. The tunnel has a metal roof and walls, and the train is visible through the windows. The train is also passing under a bridge, which is supported by metal beams. The image is taken from a high angle, looking down at the train from above."} +{"image_id": 393682, "caption": "The image shows a white plate with a piece of cake on it. The cake is covered in whipped cream and has a piece of strawberry on top. There is a fork on the side of the plate."} +{"image_id": 540093, "caption": "The image shows a pink umbrella on the sidewalk next to a tree. The umbrella is covered in plastic wrap and appears to be protecting something from the rain. There are no people or other objects in the image."} +{"image_id": 242400, "caption": "The image shows a woman standing next to a large black metal pole with a large clock on it. The clock has a red ribbon tied around it and the woman is wearing a black shirt and white pants. There are cars parked in the background and the street is lit up at night."} +{"image_id": 409009, "caption": "The image shows a white high-speed train with a sleek, modern design. The train is parked on a platform with a metal railing around it. The platform is made of concrete and has a few people standing on it. The train has large windows and a pointed nose. The train is parked on a platform with a metal railing around it. The platform is made of concrete and has a few people standing on it. The train has large windows and a pointed nose. The train is parked on a platform with a metal railing around it. The platform is made of concrete and has a few people standing on it. The train has large windows and a pointed nose. The train is parked on a platform with a metal railing around it. The platform is made of concrete and has a few people standing on it. The train has large windows and a pointed nose. The train is parked on a platform with a metal railing around it. The platform is made of concrete and has a few people standing on it. The train has large windows and a pointed nose. The train is parked on a platform with a metal railing around it. The platform is made of concrete and has a few people standing on it. The train has large windows and a pointed nose. The train is parked on a platform with a metal railing around it. The platform is made of concrete and has a few people standing on it. The train has large windows and a pointed nose. The train is parked on a platform with a metal railing around it. The platform is made of concrete and has a few people standing on it. The train has large windows and a pointed nose. The train is parked on a platform with a metal railing around it. The platform is made of concrete and has a few people standing on it. The train has large windows and a pointed nose. The train is parked on a platform with a metal railing around it. The platform is made of concrete and has a few people standing on it. The train has large windows and a pointed nose. The train is parked on a platform with a metal railing around it. The platform is made of concrete and has a few people standing on it. The train has large windows and a pointed nose. The train is parked on a platform with a metal railing around it. The platform is made of concrete and has a few people standing on it. The train has large windows and a pointed nose. The train is"} +{"image_id": 6091, "caption": "This image shows a stop sign with a person's hand in the foreground. The sign is red and white with black letters that read \"STOP.\" The person's hand is in the shape of a stop sign, with the fingers forming the shape of the letter \"O\" and the palm forming the shape of the letter \"P.\" The background is dark, with only the stop sign and the person's hand visible."} +{"image_id": 42834, "caption": "This image shows a woman sitting at a table with a white tablecloth and a plate of food in front of her. The woman is wearing an orange tank top and has short, curly hair. She is using a fork to pick up pieces of food from the plate and eating them. There are also several pieces of toilet paper on the table in front of her. The walls of the room are painted a light gray color and there are several large windows with white window treatments. The room appears to be a dining area or kitchen."} +{"image_id": 433554, "caption": "This image shows a group of people on surfboards standing on a wooden dock in the water. The people are wearing life jackets and are holding onto the ropes of the surfboards. There is a boat in the background with a person standing on the deck. The sky is cloudy and there are trees on the shore."} +{"image_id": 174987, "caption": "This image shows a train with graffiti on it. The train is white with blue and yellow stripes and has a bicycle on the side. The graffiti on the train reads \"hi\" in different colors and styles."} +{"image_id": 116208, "caption": "This image shows a pizza on a tray with various toppings, including bacon, mushrooms, and onions. There are also several glasses of wine on the table in front of the pizza. The pizza appears to be a large, round pie with a crispy crust and a cheesy, savory topping. The image is well-lit and the colors are vibrant and appetizing."} +{"image_id": 80131, "caption": "This image shows a group of people sitting around a kitchen table, laughing and having a good time. The people in the image are all wearing casual clothing, including a man in a striped shirt and a woman in a red blouse. The table is laden with food and drinks, including plates of food, glasses of wine, and a bottle of champagne. The room is dimly lit, with a few lamps and candles providing light. The walls are made of wood and have a few decorative items, including a vase of flowers and a painting on the wall. The overall atmosphere of the image is one of warmth and happiness."} +{"image_id": 310663, "caption": "The image shows a group of old trains parked on a set of tracks. The trains are rusty and appear to be in disrepair. There are no trees or other vegetation in the area, and the sky is cloudy and overcast."} +{"image_id": 100138, "caption": "This image shows a black motorcycle parked on the side of a road. The motorcycle has a sleek, modern design with a black and gold paint job. The motorcycle is parked next to a hedge, and there are trees and bushes in the background. The image is well-lit, with the sun shining down on the motorcycle."} +{"image_id": 415613, "caption": "This image shows a man wearing a green t-shirt and a black beanie hat standing in front of a counter in a kitchen. The counter is lined with various food items such as sandwiches, salads, and fruits. The man is holding a piece of bread and appears to be preparing a sandwich. The kitchen has a modern and industrial look with metal cabinets, a stainless steel sink, and a stainless steel counter. The walls are painted in a light gray color and there are a few plants in pots on the counter. The overall atmosphere of the image is warm and inviting."} +{"image_id": 214737, "caption": "The image shows a large, ornate building with a high ceiling and large windows. The building has a large, arched entrance with a large clock on the wall above it. The clock has intricate details and is surrounded by decorative molding. The building has a large, arched window on the top floor, and there are several smaller windows on the lower floors. The walls are made of stone and have intricate carvings and designs. The overall effect is one of grandeur and elegance."} +{"image_id": 172718, "caption": "This is a black and white photograph of a young boy wearing a white shirt and tie. He is looking directly at the camera with a serious expression on his face. The boy has short hair and is wearing glasses. The background of the photograph is blurry and out of focus."} +{"image_id": 99186, "caption": "This image shows a stop sign on a pole next to a road. The stop sign has a red background with white letters that read \"stop.\" There is a car parked on the side of the road, and a blue sky can be seen in the background."} +{"image_id": 3580, "caption": "This image shows a man sitting on a couch with a black and white dog in the background. The man is wearing a gray t-shirt and has a pair of black sunglasses on his head. He is holding a white remote control in his hand and appears to be watching a television. The room is cluttered with various items, including a bookshelf, a desk, and a chair. The walls are painted a light color and there is a window in the background."} +{"image_id": 526044, "caption": "The image shows a cow standing on a rocky beach next to a body of water. The cow has a brown and white coat and is looking out to sea. The water is calm and the sky is clear. There is a boat in the distance, partially submerged in the water. The image is a natural scene, with no people or other animals in sight."} +{"image_id": 105291, "caption": "This image shows a stop sign hanging from a pole in front of a yellow building with white trim. The stop sign has a red background with white letters that read \"stop\" in black. There are two street signs next to the stop sign, one with a green background and white letters that read \"no right turn\" and the other with a red background and white letters that read \"one way\". There are also several cars parked on the street in front of the building."} +{"image_id": 577169, "caption": "The image shows a group of people standing in front of a large clock with roman numerals on it. The clock is mounted on the wall of a large room with a wooden floor and a high ceiling. The people in the image are looking up at the clock and appear to be admiring it. The clock has a large face with black hands and hour markers. The clock is surrounded by a wooden frame and there are several small lights above it. The room appears to be dimly lit and there are no other objects in the image."} +{"image_id": 181574, "caption": "This image shows a group of people sitting at a table with a large pizza in front of them. The pizza has various toppings on it, including pepperoni, mushrooms, and onions. The people in the image are smiling and appear to be enjoying the pizza. There are also plates of food on the table, including salad and bread. The room is dimly lit, with a few candles on the table."} +{"image_id": 83441, "caption": "This image shows a living room with a black leather couch, a wooden floor, and a large window. There is a television on a stand in the corner of the room, and a bookshelf with books on it. The walls are painted white, and there is a large painting on one wall. The room is well lit by natural light from the window."} +{"image_id": 130527, "caption": "The image shows a group of cows grazing in a lush green field. The cows are black and white, and they are standing on their hind legs, grazing on the tall grass. The sky is clear and blue, with a few clouds in the distance. The ocean is visible in the background, with a few boats in the water. The fence in the foreground is made of wood and metal, and it divides the field into two sections. The image is taken from a car window, with the driver's side window on the left and the passenger's side window on the right. The car is parked on the side of the road, with a view of the ocean in the distance. The image is clear and well-lit, with good contrast between the green grass and the blue sky."} +{"image_id": 86471, "caption": "This image shows a man playing tennis on a blue and white striped court. He is wearing a blue shirt and white shorts and is holding a tennis racket in his right hand. The man is standing on the left side of the court and is about to serve the ball. The net is in the center of the court and the man's shadow is visible on the right side of the court. The background of the image is a white fence and a blue sky."} +{"image_id": 105737, "caption": "This image shows a bookshelf with a variety of books on it. The shelf is made of wood and has several shelves. On the top shelf, there is a stuffed animal, which appears to be a teddy bear wearing a red bow tie. The bear is sitting on top of a pile of books, which are arranged neatly on the shelf. The books on the shelf are of different sizes and shapes, and are stacked in a way that allows easy access to the ones at the top. The background of the image is a wall with a window and a curtain. The room appears to be a library or a study."} +{"image_id": 212842, "caption": "The image shows a group of zebras standing in a field, with a dead tree in the background. The zebras are all standing in a line, with their heads facing towards the camera. The sky is clear and blue, with a few clouds in the distance. The grass in the field is tall and green, and there are no other animals or people in the image."} +{"image_id": 105220, "caption": "This image shows a group of people on skis standing under an archway made of red inflatable tubes. The archway is surrounded by several banners with the words \"Hell Yeah\" written on them. The people in the image are wearing helmets and gloves and are holding their skis in their hands. The background of the image is a snowy mountain range with several ski lifts and other skiers in the distance."} +{"image_id": 490701, "caption": "This image shows a person holding a fork with a piece of chocolate cake on a white plate in front of them. The person is wearing a blue shirt and has a beard. There is a glass of water on the table in front of them."} +{"image_id": 368961, "caption": "The image shows a group of people standing in front of a wooden door with two elephants standing behind them. The elephants are standing on their hind legs and appear to be looking out of the doorway. The people in the image are looking at the elephants and appear to be smiling and laughing. The background of the image is a dirt road with trees and other vegetation in the distance. The sky is clear and blue."} +{"image_id": 520892, "caption": "This image shows a woman eating a hot dog out of a bun. She is holding the hot dog in her hand and biting into it. The woman has curly brown hair and is wearing a black jacket and a white shirt. In the background, there is a tree with leaves and a blue sky with clouds."} +{"image_id": 113354, "caption": "This image shows a group of three zebras standing in a dirt area surrounded by trees and other vegetation. Two of the zebras are standing next to each other, while the third is standing off to the side. The zebras are all striped and have black manes and tails. The image is taken in a zoo or wildlife park, with the trees and other vegetation in the background providing a natural setting for the animals."} +{"image_id": 33652, "caption": "This image shows a pizza on a tray on a stove top. The pizza has a crispy, golden brown crust and is topped with a variety of ingredients, including cheese, pepperoni, and onions. The pizza appears to be ready to be served or eaten."} +{"image_id": 511153, "caption": "The image shows a long, blue and red train traveling down a set of railroad tracks. The train has several cars, including a caboose at the end. There are also several other trains in the background, including a red and white train and a yellow and black train. The sky is cloudy and there are some trees and buildings in the distance."} +{"image_id": 328957, "caption": "This image shows a cat sitting on top of a tall cat tree in a room with a window in the background. The cat is sitting on a platform with a small ledge for it to rest on. The cat tree is made of wood and has a variety of perches and platforms for the cat to climb on. There are also several scratching posts and toys attached to the tree. The room is cluttered with various items, including a couch, a table, and a bookshelf. The window in the background is covered with curtains."} +{"image_id": 190015, "caption": "This image shows a green truck parked in a field with a large pile of hay in the background. The truck has a large bed and a cab with windows. The hay pile is tall and brown, and there are trees in the background."} +{"image_id": 244925, "caption": "This image shows a man standing on a grassy hill overlooking a body of water. He is wearing a black backpack with a brown and gray design on it, and has a banana in his hand. The man is wearing a white t-shirt and gray jeans, and has his hair styled in a messy, tousled way. The background of the image is a green and blue landscape with trees and a few houses visible in the distance. The sky is overcast, and there are clouds visible in the sky."} +{"image_id": 29406, "caption": "This image shows a wooden bench sitting in the middle of a green lawn. The bench appears to be made of wood and has a smooth surface. There are no other objects or people in the image. The background is made up of tall trees and a building in the distance. The image is taken from a low angle, looking up at the bench. The lighting is bright and even, casting shadows on the grass. The color scheme is mostly green, with some brown and yellow in the background. The mood of the image is peaceful and relaxing."} +{"image_id": 32570, "caption": "This image shows a man riding a surfboard through a large wave. The man is wearing a black t-shirt and black shorts, and has a black beard and sunglasses. He is holding onto the surfboard with his hands and has a look of determination on his face. The wave is large and turbulent, with white water crashing against the surfboard. The sky is blue and there are clouds in the distance."} +{"image_id": 260608, "caption": "This image shows a group of young girls playing soccer on a grass field. The girls are wearing black and purple uniforms and are kicking a soccer ball towards a goal. The goal is made of metal and has a net attached to it. There is a group of people watching the game from the sidelines. The people are standing on the grass and are wearing casual clothing. There is a house in the background with a white picket fence and trees surrounding it."} +{"image_id": 291286, "caption": "This image shows a man riding a skateboard down a narrow sidewalk in a busy city. The man is wearing a black shirt and pants and has a backpack on his back. There are several people walking on the sidewalk, some of them looking at the man as he passes by. The buildings on either side of the sidewalk are tall and made of stone or brick. There are no cars or other vehicles in the image. The lighting is bright and the colors are muted."} +{"image_id": 375278, "caption": "This image shows a person's hand holding a small black cat that is lying on top of a suitcase. The suitcase is open and appears to be empty except for the cat. The person's hand is resting on the handle of the suitcase, and the cat is looking up at the person with its eyes. The background of the image is a carpet with a pattern of dark and light colors. The room appears to be a living room or bedroom, as there are magazines scattered on a table nearby. The image is well-lit, with the light coming from a window on the left side of the frame. The overall mood of the image is playful and cute, as the cat and the person seem to be enjoying each other's company."} +{"image_id": 290684, "caption": "This image shows a woman sitting on a wooden post with a pink stuffed animal in her lap. She is wearing a purple shirt and white pants, and has her hair tied back in a ponytail. The image is taken from a low angle, looking up at the woman from the ground. There are trees in the background, and the sky is visible in the top of the image."} +{"image_id": 29306, "caption": "This image shows a brown dog sitting on a sandy beach with a cloudy sky in the background. The dog is wearing a black collar and has a curious expression on its face. The dog's ears are perked up and its tail is wagging. The beach is covered in sand and there are some rocks visible in the distance. The sky is overcast and there are some dark clouds in the distance. The overall mood of the image is peaceful and relaxed."} +{"image_id": 173375, "caption": "This image shows a person wearing a helmet and snowboarding down a snow-covered slope. The person is wearing a black jacket and pants, and their boots are visible as they ride the snowboard. The sky is clear and blue, and there are no other people or objects in the image."} +{"image_id": 198590, "caption": "This image shows a silver SUV parked on the side of the road next to a brick building. The truck has a black roof and tinted windows. There is a green pickup truck parked behind it, and a few trees in the background. The image is taken from the driver's side window of the SUV, looking out towards the road."} +{"image_id": 25747, "caption": "The image shows a long train traveling down a set of railroad tracks through a forest. The train is made up of several cars, including a red and white passenger car in the middle. The trees on either side of the tracks are tall and green, with some leaves still on them. The sky is overcast, with a few clouds visible in the distance."} +{"image_id": 346589, "caption": "This image shows two people on skis standing on a snow-covered slope. One person is wearing a black jacket and black pants, while the other is wearing a brown jacket and black pants. Both people are holding skis and have ski boots on their feet. In the background, there are trees and a mountain range. The sky is cloudy and there is a hint of sunlight peeking through the clouds."} +{"image_id": 121106, "caption": "This image shows a group of people standing in a crowded airport terminal. There are several luggage carts in the foreground, and a sign with the number 24 on it can be seen in the background. The people in the image are all wearing clothing suitable for travel, and some of them are holding luggage. The terminal appears to be well-lit and modern, with white walls and a gray floor. There are several other people in the background, but they are not clearly visible due to the crowded nature of the scene."} +{"image_id": 392850, "caption": "This image shows a wooden cutting board with various fruits and vegetables on it. The fruits include bananas, apples, oranges, and pineapples. The vegetables include carrots, cucumbers, and tomatoes. There is also a red plastic cup with a straw in it, a pair of scissors, and a knife on the cutting board. The background is a wooden floor with a brown stain. The lighting is bright and even, with no shadows. The mood is cheerful and inviting."} +{"image_id": 554241, "caption": "This image shows a group of people standing on a brick sidewalk in a city. The people are wearing various clothing, including a black and white striped shirt, a black and white striped skirt, and a black and white striped hat. The buildings in the background are tall and have many windows. The sky is cloudy and there are some trees in the foreground. The image is taken from a low angle and the people are standing in a group, with some holding umbrellas."} +{"image_id": 341017, "caption": "This image shows a group of people standing on the roof of a truck. The people are standing on the metal railing of the truck and are holding onto the back of the truck. The truck is white with blue accents and has a large metal railing on the back. There are several goats standing on the roof of the truck, and they are all white with brown spots. The people in the image are wearing different clothing, including a man in a black shirt and a woman in a white shirt. The sky is clear and blue in the background."} +{"image_id": 135497, "caption": "This image shows a man sitting at a table with a large pizza in front of him. The man is wearing a blue shirt and has his hands on the table, as if he is about to pick up the pizza. The table is covered with a white tablecloth and there are some plates and silverware on it. In the background, there are some trees and a building with lights on it. The image is taken at night, with the lights from the building and the stars visible in the sky."} +{"image_id": 159260, "caption": "The image shows a blue and orange train on a set of railroad tracks. The train has a long, sleek body with a pointed nose and a large cab at the front. The train is surrounded by tall buildings and trees, and there are several other trains in the distance. The sky is overcast and there are clouds in the background."} +{"image_id": 417332, "caption": "This image shows a group of baseball players on a field, with one player holding a bat and another holding a ball. The players are wearing uniforms and helmets, and the field is lined with green grass and dirt. In the background, there are trees and a blue sky with clouds. The image is taken from a high angle, looking down at the players from above."} +{"image_id": 90520, "caption": "The image shows two stuffed animals, a white teddy bear and a brown dog, dressed in traditional Japanese clothing. The bear is wearing a red kimono with a white sash and a black hat, while the dog is wearing a red and white striped scarf around its neck. The two animals are standing next to each other, with the bear standing on its hind legs and the dog sitting on the ground. The background of the image is a white wall with a small window in the center."} +{"image_id": 318524, "caption": "This image shows a rusty old train car with peeling paint and rusty metal siding. The train appears to be in disrepair and may have been abandoned. The surrounding area is covered in tall grass and weeds, with a few trees visible in the distance. The sky is overcast and there are no other visible objects in the image."} +{"image_id": 118406, "caption": "This image shows a group of people playing a game of soccer on a grass field. The players are wearing soccer uniforms and are jumping and running around the field. One player is in the air, trying to head the ball with his head. The other players are in different positions on the field, some of them are trying to kick the ball towards the goal. The background of the image is a row of trees and a fence. The image is taken from a high angle, looking down on the players."} +{"image_id": 25748, "caption": "This image shows a white sailboat with a black hull and a black stripe down the middle. The boat is tied to a dock at a marina, and there are other boats in the background. The sky is clear and blue, and there are some clouds in the distance. The boat appears to be in good condition, with no visible damage or wear."} +{"image_id": 365557, "caption": "This image shows a person wearing a black jacket and blue pants, standing on a snowboard on a snow-covered slope. The person is wearing gloves and a helmet, and is holding the snowboard with both hands. The snowboard has a black base and white tips, and the person's boots are also black. The background of the image is a snowy mountain range, with snow-covered trees and rocks visible in the distance. The sky is cloudy and overcast, with no visible sun or other light sources."} +{"image_id": 320978, "caption": "This image shows a man standing in front of a display of fresh vegetables at a farmer's market. The man is holding a cardboard box and looking at the vegetables. The display includes a variety of vegetables such as tomatoes, cucumbers, peppers, and lettuce. The market is likely a place where people go to buy fresh produce and other food items."} +{"image_id": 315073, "caption": "This image shows a gray and white cat sitting on a cushion next to a blue bottle. The cat is licking its lips and looking up at the camera with its eyes open. The background is a wooden floor with a window in the corner. The room appears to be dimly lit, with a single light source coming from the window. The cat's fur is fluffy and appears well-groomed. The bottle is a clear glass bottle with a cork on top. The cat's fur is fluffy and appears well-groomed. The bottle is a clear glass bottle with a cork on top. The cat's fur is fluffy and appears well-groomed. The bottle is a clear glass bottle with a cork on top. The cat's fur is fluffy and appears well-groomed. The bottle is a clear glass bottle with a cork on top. The cat's fur is fluffy and appears well-groomed. The bottle is a clear glass bottle with a cork on top. The cat's fur is fluffy and appears well-groomed. The bottle is a clear glass bottle with a cork on top. The cat's fur is fluffy and appears well-groomed. The bottle is a clear glass bottle with a cork on top. The cat's fur is fluffy and appears well-groomed. The bottle is a clear glass bottle with a cork on top. The cat's fur is fluffy and appears well-groomed. The bottle is a clear glass bottle with a cork on top. The cat's fur is fluffy and appears well-groomed. The bottle is a clear glass bottle with a cork on top. The cat's fur is fluffy and appears well-groomed. The bottle is a clear glass bottle with a cork on top. The cat's fur is fluffy and appears well-groomed. The bottle is a clear glass bottle with a cork on top. The cat's fur is fluffy and appears well-groomed. The bottle is a clear glass bottle with a cork on top. The cat's fur is fluffy and appears"} +{"image_id": 363927, "caption": "The image shows a silver bus traveling down a city street. The bus has a bicycle rack on the back and a sign on the side that reads \"Metro Bus.\" There are buildings and trees in the background."} +{"image_id": 243355, "caption": "This image shows a zebra walking across a grassy field. The zebra has black and white stripes on its body and is standing on its hind legs. In the background, there is a fence made of metal bars and a building with a metal roof. The sky is clear and blue, and there are trees in the distance."} +{"image_id": 373521, "caption": "The image shows a white and brown bus parked on the side of a road. The bus has a large front window and a set of double doors on the side. The bus appears to be in good condition, with no visible damage or rust. There is a tree growing in the front yard of the house next to the bus, and the grass on the side of the road is well-manicured. The sky is overcast, and there are no other visible objects in the image."} +{"image_id": 76409, "caption": "This image shows a bedroom with a red bedspread and a large window with a wooden frame. The bed is made with a white blanket and there is a wooden floor. The walls are painted a light color and there is a painting hanging on the wall. The room is dimly lit and there is a small table with a lamp on it. The bed has a wooden headboard and the bedside table has a lamp on it. The window has a wooden blind and there is a small rug on the floor. The room is small and cozy."} +{"image_id": 485985, "caption": "This image shows a young child sitting in a toilet with a toothbrush in their mouth. The child is wearing a blue sweater and has blonde hair. The background is wooden and there is a towel hanging on the wall. The toilet appears to be in a bathroom."} +{"image_id": 27564, "caption": "This image shows two young women sitting on a black leather couch. One of them is holding a pair of white video game controllers in her hands, while the other is resting her feet on the arm of the couch. The room is dimly lit, with a few pieces of furniture visible in the background. The overall mood of the image is relaxed and casual."} +{"image_id": 92749, "caption": "This image shows a group of giraffes standing in a grassy field next to a pond. The giraffes are all looking at each other and appear to be standing on their hind legs. There are trees in the background and a fence surrounding the field. The sky is clear and blue."} +{"image_id": 554958, "caption": "This image shows a cat sitting in a pile of leaves and twigs. The cat has a brown and orange coat with yellow eyes and black fur around its nose and mouth. Its ears are perked up and it appears to be looking directly at the camera. The background is made up of various leaves and twigs, and there are some pieces of paper scattered around the cat's feet. The overall mood of the image is one of curiosity and alertness."} +{"image_id": 439971, "caption": "This image shows a woman taking a selfie in a bathroom mirror. She is holding a camera in one hand and is looking at the camera with a smile on her face. The mirror behind her reflects the light from the camera flash. The walls of the bathroom are tiled and there is a window in the background."} +{"image_id": 559006, "caption": "This image shows a large brown bear standing in the water, with its head and part of its body submerged in the water. The bear's fur is dark brown and appears to be quite thick and healthy. Its eyes are open and it appears to be looking around, possibly searching for food or prey. The water in the background is a deep shade of blue and appears to be quite clear. There are no other visible objects or features in the image."} +{"image_id": 457262, "caption": "The image shows a wooden table with two bananas on it. One of the bananas has some brown spots on it, while the other is completely yellow. There is also a small coin on the table next to the bananas. The coin is a silver dollar, and it has a design on it. The design on the coin is the American flag."} +{"image_id": 263881, "caption": "This image shows a giraffe standing in a field with trees in the background. The giraffe has long legs and a long neck, and its head is tilted to the side. Its mouth is open and its tongue is hanging out. The giraffe is standing on its hind legs and its front legs are bent at the knees. The giraffe's coat is a mix of brown and tan, and its pattern is similar to that of a leopard. The trees in the background are tall and green, and there are some small bushes in the foreground. The sky is clear and blue, and there are some clouds in the distance."} +{"image_id": 322594, "caption": "This image shows a bathroom with a toilet, sink, and shower. The walls are painted yellow and the floor is tiled. The toilet is white and the sink is black. The shower has a white door and the walls are tiled."} +{"image_id": 22423, "caption": "This image shows a man standing next to an elephant. The man is wearing a green shirt and has a hat on his head. The elephant is standing on its hind legs and has its trunk up in the air. There is a fence in the background and some trees behind the fence."} +{"image_id": 59000, "caption": "This image shows a living room with a green couch, a brown chair, and a Christmas tree in the corner. The tree is decorated with ornaments and a star on top. There is a bookshelf in the corner with books on it. The room has a wooden floor and a window with curtains."} +{"image_id": 119547, "caption": "The image shows a group of people standing in front of a building. The people are wearing suits and ties, and one man is wearing a red tie. The man is holding a microphone and speaking to the other people in the group. There are also several other people in the background, some of whom are holding microphones and speaking to the man with the red tie. The image is taken in front of a building with white walls and a blue roof. There are several flags and banners hanging from the building, and there are trees and other greenery in the background."} +{"image_id": 432763, "caption": "The image shows a large group of birds standing on the sandy shore of a beach. The birds are gathered in a flock and are standing on their hind legs, with their wings spread out. Some of the birds are perched on the rocks in the water, while others are standing on the sand. In the background, there is a boat that appears to be stranded on the beach. The sky is cloudy and there is a hint of sunset in the distance."} +{"image_id": 125635, "caption": "This image shows a black and white cat sitting on a window sill, looking out of the window. The cat is wearing a collar and has white paws. The window is covered in a white blind, and there is a curtain on the other side of the window. The cat is looking out of the window, and there is a view of a building in the background. The cat's fur is fluffy, and it has a black nose and black eyes."} +{"image_id": 542549, "caption": "This image shows a bed with a blanket and pillows on it. There is a book and a notebook on the bedside table. The room appears to be dimly lit and there is a window with curtains in the background. The overall mood of the image is peaceful and relaxing."} +{"image_id": 494759, "caption": "This image shows two people standing on a beach, watching a kite being flown in the sky. The kite is being flown by one person, who is holding it with one hand and looking up at it with the other. The other person is standing nearby, watching the kite and looking at the ocean in the distance. The sky is cloudy and there are some dark clouds in the distance. The beach is covered in sand and there are some rocks visible in the background."} +{"image_id": 5617, "caption": "This image shows two cats lying on a bed. One cat is black and white, and the other is orange and white. Both cats are lying on their backs with their eyes closed. There are several pillows on the bed, including two large green ones in the center. The bed appears to be made with a comforter and blankets, and there are several pillows on the floor next to the bed. The room appears to be a bedroom, and there are several other items in the room such as a desk and a bookshelf."} +{"image_id": 279774, "caption": "This image shows a young boy holding a baseball bat and standing on a baseball field. The boy is wearing a black shirt and black pants, and he has a white helmet on his head. In the background, there is a man standing on the sidelines watching the boy. The man is wearing a white shirt and pants, and he has a cap on his head. There is a baseball in the air, and the boy is about to swing the bat and hit the ball. The baseball field has a dirt surface and a fence running along the outfield. There are trees and a building in the background."} +{"image_id": 323442, "caption": "This image shows a man and a woman sitting at a wooden table with white umbrellas in the background. The table is set with wine glasses and plates of food. The man and woman are smiling and looking at each other. The trees in the background are visible through the umbrellas."} +{"image_id": 109454, "caption": "This image shows a man wearing a blue shirt and a black tie, holding a glass of water in his hand. The man is standing in a room with white walls and a ceiling, and there are tables and chairs in the background. The man's face is not visible in the image."} +{"image_id": 370677, "caption": "The image shows three women standing in front of a display case filled with baked goods, such as bread and pastries. The women are wearing colorful shirts and smiling at the camera. The background is a white wall with a few baskets of bread on it. The image is well-lit and the colors are vibrant."} +{"image_id": 521509, "caption": "This image shows a woman sitting on a bed in a room with a tripod set up in front of her. The woman is wearing glasses and has her hair tied back in a ponytail. There is a window behind her with curtains drawn. The room has a wooden floor and a wooden headboard. There is a lamp on the bedside table and a framed picture on the wall behind her."} +{"image_id": 236461, "caption": "This image shows a person riding a wave on a surfboard in the ocean. The person is wearing a black wetsuit and a black hat, and is standing on the top of the wave with their arms outstretched. The water is turbulent and choppy, with whitecaps and foam. The sky is overcast and there are clouds in the distance. The surfboard is white with a black fin and the ocean is a deep blue color."} +{"image_id": 534845, "caption": "This image shows a clothesline hanging from the side of a building, with a teddy bear hanging from it. The building has white walls and a brown roof, and there are trees in the background. The sky is cloudy and there is a yellow sun in the corner of the image."} +{"image_id": 180580, "caption": "This image shows a plate of food on a table. The plate has a blue and white pattern and is covered in vegetables, including broccoli, carrots, and potatoes. There are also some pencils and a ruler on the table, suggesting that this is a place setting for a meal."} +{"image_id": 484551, "caption": "This image shows a woman sitting in the front of a small boat, wearing an orange t-shirt and sunglasses. The woman is smiling and holding a fishing rod. The water in the background is calm and blue. The sky is clear and there are some clouds in the distance."} +{"image_id": 456146, "caption": "This image shows a group of sheep walking down a dirt road. The sheep are all white and have long, fluffy coats. They are all walking in a line, with the lead sheep in front and the rest following behind. The road is lined with trees and shrubs, and there is a hill in the background. The sky is clear and blue, and there are no other animals or people in the image."} +{"image_id": 283131, "caption": "This image shows a bathroom with a white sink, toilet, and bathtub. The walls are painted in a light beige color and there is a large window with white curtains. The floor is made of tiles and there is a white bag on the counter."} +{"image_id": 23309, "caption": "This image shows a plate of pasta salad with various vegetables, including broccoli, carrots, and onions, as well as some cheese and olives. The pasta is likely made of penne or fusilli, and is coated in a vinaigrette dressing. The overall appearance of the dish is colorful and appetizing."} +{"image_id": 547487, "caption": "This image shows a young boy performing a trick on his skateboard. He is wearing a red shirt and black pants, and has a black skateboard in his hand. He is jumping into the air, with one leg extended forward and the other bent behind him. The background is a parking lot with trees in the distance. The sky is clear and blue, with a few clouds visible. The lighting is bright and even, with no shadows cast on the boy's face. The image is well-composed, with the boy's body positioned in the center of the frame and the skateboard in the foreground. The colors are vibrant and contrast well with the neutral tones of the parking lot and sky. Overall, the image is dynamic and captures the excitement of the boy's skateboarding trick."} +{"image_id": 34830, "caption": "This image shows a white urinal in a red tiled bathroom. The urinal is mounted on the wall and has a black and white checkered pattern on it. The floor is also tiled in black and white. The walls are also tiled in black and white. There is a small sink next to the urinal. The sink has a faucet and a towel rack above it. The towel rack has a black and white checkered pattern on it. The room is well lit by a large window on the left side of the image. The window has a black and white checkered pattern on it. The room appears to be a public restroom."} +{"image_id": 125997, "caption": "The image shows a blue and white mural on the side of a building. The mural reads \"uare alive\" in large white letters. The mural is surrounded by a yellow brick wall and a blue metal fence. There is a trash can on the sidewalk in front of the building."} +{"image_id": 19916, "caption": "This image shows a bowl of sliced apples on a wooden table next to a laptop computer. The laptop has a white background and the apples are in a white bowl with a black spoon next to it. The table is made of wood and has a striped pattern."} +{"image_id": 145019, "caption": "This image shows a group of people standing in a field, looking at a small airplane that has crashed into the ground. The plane is lying on its side, with its propeller and wheels visible. The people in the image are wearing blue shirts and appear to be looking at the plane with concern. The sky is cloudy and there are trees and bushes in the background."} +{"image_id": 127161, "caption": "The image shows a slice of pizza on a plate, with a fork and knife next to it. The pizza appears to be made with a variety of ingredients, including cheese, tomatoes, and olives. The plate is covered in a white cloth, and there is a glass of water and a fork and knife on the table in front of it. The room appears to be a restaurant or cafe, with white walls and a few tables and chairs. The lighting is bright and even, with no shadows or dark areas. The overall atmosphere is casual and relaxed."} +{"image_id": 543660, "caption": "This image shows a bathroom with two toilets and a shower. The walls are tiled with a black and white checkerboard pattern. The toilets are white and the shower is black. There is a white towel hanging on the back of the door. The floor is tiled with the same black and white checkerboard pattern."} +{"image_id": 8333, "caption": "The image shows a red and white train traveling on a bridge over a cityscape. The train is passing through a tunnel and the buildings on either side of the bridge are tall and modern. The train appears to be moving at a high speed and the sound of its engines can be heard in the background."} +{"image_id": 482907, "caption": "This is an image of a small, vintage airplane flying in the sky on a clear day. The plane is white with red and blue markings, and has a propeller on the back. The sky is blue and clear, with a few clouds in the distance."} +{"image_id": 290130, "caption": "This image shows a person riding a surfboard on top of a large wave in the ocean. The person is wearing a black wetsuit and has a black beard. The wave is white and foamy, and the person is riding the wave with their arms outstretched. The sky is blue and there are clouds in the background."} +{"image_id": 58225, "caption": "This image shows a person holding a hot dog in their hand, with a baseball field in the background. The person is wearing a white shirt and black pants, and has a black backpack on their back. The hot dog is covered in green sauce and has a bun on the bottom. The baseball field has a green grass field and a blue sky in the background. There are several people sitting in the stands, watching the game."} +{"image_id": 249550, "caption": "This image shows a bed with a floral comforter and a small table next to it. The walls are painted blue and there is a window with a white blind. The room appears to be a bedroom."} +{"image_id": 448765, "caption": "This is a bathroom with a toilet and a sink. The toilet is white and has a wooden seat. The sink is also white and has a faucet. The walls are tiled and there is a brown towel hanging on the back of the door."} +{"image_id": 498439, "caption": "This image shows a group of baseball players on a field, with a baseball bat and ball in the foreground. The players are wearing white uniforms and black helmets, and are standing on a dirt basepath. The umpire is standing behind the plate, and the crowd is seated in the stands behind the players. The field is well-manicured, with green grass and white lines marking the bases and the outfield. The sky is clear and blue, and there are trees in the background."} +{"image_id": 252403, "caption": "This image shows a woman with long black hair holding a blue and white toothbrush in front of her face. She is wearing a green t-shirt and has glasses on. The background is a wooden wall with a hanging toothbrush holder and a toothbrush hanging from it. The woman is smiling and looking at the camera."} +{"image_id": 347995, "caption": "This image shows a woman lying in bed with a black dog. The woman is wearing a red and white striped shirt and is holding a book. The dog is lying on top of the covers and has its head resting on the woman's chest. The bedroom has a wooden headboard and a brown wall. There is a wooden dresser with a mirror on top in the background."} +{"image_id": 544216, "caption": "This image shows a table with a white plate and a glass of water on it. There are also several pieces of food on the plate, including a sandwich, chips, and a side of coleslaw. The sandwich appears to be a classic bacon and lettuce variety, with sliced tomato and mayonnaise on top. The chips are crispy and appear to be salted. The coleslaw is a bright green color and looks freshly made."} +{"image_id": 205729, "caption": "The image shows a group of people on skis standing in a snowy area. They are wearing ski gear and holding ski poles. The sky is clear and blue, and there is a bright sun shining down on them. The snow is deep and the terrain is steep. The people are standing in a line, facing the camera. The image is taken from a low angle, looking up at the group."} +{"image_id": 350988, "caption": "This image shows a wooden staircase with wooden steps and a wooden handrail. The stairs are made of wood and have a wooden handrail on the side. The walls are made of wood and have a wooden floor. The stairs are empty and there is no one on them. The stairs are in a room with wooden walls and a wooden floor. The room is empty and there is no one in it."} +{"image_id": 288673, "caption": "This image shows a group of people standing on a sandy beach, with palm trees in the background. The sky is cloudy and there are white clouds in the sky. One person is flying a kite in the air, while others watch and play on the beach. The beach is covered in sand and there are some rocks in the water."} +{"image_id": 568690, "caption": "This image shows a cat sitting on a white toilet bowl in a bathroom. The cat is perched on the edge of the bowl with its paws on the side and its head tilted to the side. The toilet is surrounded by blue tiles on the floor and the walls. There is a blue shower curtain hanging on the wall behind the toilet. The cat appears to be looking down at something on the floor."} +{"image_id": 504194, "caption": "This image shows a dog sitting on a bench in front of a brick wall. The bench is made of wood and has a metal frame. There are several bicycles parked on the sidewalk next to the bench. The sky is cloudy and there are some trees in the background."} +{"image_id": 35368, "caption": "This image shows a bowl of fruit in a kitchen. The bowl contains sliced bananas, lemons, and limes. There is also a pitcher of water on the counter behind the bowl. The background is a wooden wall with a brown pattern."} +{"image_id": 307332, "caption": "This image shows a wooden bench with two people sitting on it, looking out at a body of water in the distance. The bench is made of a brown wood and has a metal frame. The people on the bench are wearing casual clothing and appear to be enjoying the view. The water is a deep blue color and there are some trees and shrubs growing along the edge of the water. The sky is a light blue and there are some clouds in the distance."} +{"image_id": 490878, "caption": "This image shows a person wearing skis and carrying a backpack on their back as they walk across a snowy landscape. The person is wearing a red jacket and black pants, and their skis are attached to poles that they are holding in their hands. The sky is overcast and there are mountains in the background."} +{"image_id": 507187, "caption": "This image shows a group of people standing around a green motorcycle that is parked on the grass. The motorcycle appears to be a vintage model, with a sleek, streamlined design and a glossy finish. The people in the image are all dressed in formal attire, with some wearing suits and others wearing casual clothing. The image appears to be taken at an outdoor event, as there are trees and other greenery visible in the background. The overall atmosphere of the image is one of relaxation and enjoyment."} +{"image_id": 254644, "caption": "This is a kitchen with wooden cabinets and a black stove. There are also plants on the countertop and a sink in the corner."} +{"image_id": 400803, "caption": "The image shows a small orange boat floating in the water with two people standing on the deck. The boat is being pulled by a large crane on the shore. The crane has a long arm with a hook on the end that is used to lift the boat out of the water. The water is calm and the sky is clear. The boat appears to be small and lightweight, with a white hull and black trim. The people on the deck are wearing black and white clothing and are holding onto the railing. The crane is operated by a person standing on the shore, who is wearing a yellow hard hat and orange safety vest. The image is taken from a high angle, looking down at the boat from above."} +{"image_id": 574928, "caption": "This image shows a large group of sheep grazing on a lush green field. The sheep are all white and appear to be of the same breed. They are all standing on their hind legs and grazing on the grass. In the background, there is a small village or farmhouse, which appears to be made of wood and has a thatched roof. The sky is clear and blue, and there are a few clouds in the distance. The sun is shining brightly, casting a warm glow over the scene. The image is taken from a high vantage point, giving the viewer a sense of the vastness of the landscape."} +{"image_id": 559247, "caption": "This image shows a group of people standing around a long table that is covered with various types of food. The people in the image are all wearing casual clothing, such as t-shirts and jeans, and are holding plates or trays with food on them. The table is lined with plates of sandwiches, salads, and other snacks. The room in which the image was taken appears to be a dining area or cafeteria, with white walls and a few windows. The lighting in the room is bright and even, casting shadows on the walls and floor. The overall atmosphere of the image is casual and relaxed, as the people are standing and chatting with each other while they eat."} +{"image_id": 254625, "caption": "This image shows a man holding a baseball bat and swinging it at a ball that is in the air. The man is wearing a gray shirt and has a white cap on his head. The background of the image shows a baseball field with a green grass and a blue sky."} +{"image_id": 374966, "caption": "This image shows a group of people on skateboards at a skate park. The people are wearing different clothing and some of them are wearing helmets. The skate park has a large half-pipe and a few smaller ramps. There are also some trees in the background. The image is taken from a high angle and the people are in the foreground."} +{"image_id": 351967, "caption": "The image shows a large building with a clock on the front. The clock has black numbers and white hands. There is a yellow taxi cab driving in front of the building. The taxi has a green light on the front and a blue light on the back. The building has a large glass window on the first floor. The window has a reflection of the taxi in it. There are several people walking on the sidewalk in front of the building. The sidewalk is made of concrete and has a line of trees on the other side. The trees are lit up at night with white lights. The sky is dark and there are stars visible in the sky."} +{"image_id": 172877, "caption": "This image shows a man sitting in a white chair with his hands folded on his lap. He is wearing a blue shirt and a red and white striped tie. The man has glasses on and is looking directly at the camera. There is a lamp on a table next to him, and a painting or picture on the wall behind him. The room appears to be well-lit and well-decorated."} +{"image_id": 309237, "caption": "This image shows a cat sitting on a couch with its head tilted to the side. The cat has a black and white coat with brown patches on its face and paws. Its eyes are closed, and it appears to be sleeping. The couch is covered in a blue and white patterned fabric, and there are several remotes and other objects on the table in front of the couch. The room appears to be a living room or family room, and there are other furniture pieces in the background."} +{"image_id": 565877, "caption": "This image shows a woman sitting on a red couch with a laptop computer on her lap. She is wearing a blue shirt and glasses, and has a smile on her face. The background of the image is a white wall with a red couch and a window in the background. The laptop appears to be an Apple MacBook Pro, and the woman is using it to type on the keyboard."} +{"image_id": 489924, "caption": "This image shows a woman riding a skateboard on a city street. She is wearing a blue t-shirt, shorts, and sneakers. Her hair is styled in a messy bun, and she has on a pair of sunglasses. The woman is holding onto the handlebars of the skateboard with one hand and wearing a pair of flip-flops on her feet. The street is lined with parked cars and there is a blue sky visible in the background."} +{"image_id": 125472, "caption": "This image shows a young man riding a skateboard in the air. He is wearing a green shirt and black pants, and has his hair styled in a messy, curly fashion. He is performing a trick, likely a jump or flip, as he is airborne. The background is a mix of green and blue, and there are trees and other buildings visible in the distance. The sky is clear and blue, with a few clouds visible."} +{"image_id": 422706, "caption": "The image shows a group of people standing on the deck of a large boat, looking out over the ocean. The boat is a small, orange and white vessel with a crane on the back. The crane is being used to lift a large object out of the water. The people on the boat are looking at the object being lifted and are smiling and laughing. The ocean is calm and blue in the background."} +{"image_id": 290700, "caption": "This image shows a man riding a wave on a surfboard. He is wearing a red and white striped shirt and has a black hat on his head. The wave is green and blue and the water is clear. The man is jumping and landing on the wave with ease."} +{"image_id": 365177, "caption": "This image shows a large bus parked on the side of a road. The bus is white with gold and black accents, and has the word \"Bieber\" written on the side in large letters. The bus is parked under a large metal awning, and there are several other vehicles parked nearby. The building in the background appears to be a large commercial or industrial structure, with metal beams and large windows."} +{"image_id": 398661, "caption": "This is a kitchen with black cabinets and a red and white striped curtain. There are pots and pans hanging from the wall and a microwave on the counter."} +{"image_id": 175611, "caption": "This image shows a person using scissors to cut a piece of paper that is being fed through a machine. The machine appears to be a type of printer or copier, and the person is using the scissors to cut the paper into smaller pieces. The person is wearing a red shirt and has their hands covered in ink or dye. The background of the image is a wooden table or desk with various tools and materials scattered around it."} +{"image_id": 477673, "caption": "This image shows a small kitten sitting in the pocket of a backpack. The backpack is made of gray and black materials and has a zipper on the top. The kitten is sitting with its head peeking out of the pocket and its eyes are looking up at the camera. The kitten's fur is a mix of brown and orange, and it has white paws and a white spot on its forehead. The backpack is on a wooden floor, which has a brown tone. The overall mood of the image is cute and playful."} +{"image_id": 1270, "caption": "This image shows a group of children playing baseball on a dirt field. The children are wearing uniforms and helmets, and one child is holding a bat. The umpire is standing behind the plate, and the crowd of spectators is seated in the stands. The sky is clear and the sun is shining."} +{"image_id": 224012, "caption": "This image shows a plate of food on a table. The plate has a piece of meat, potatoes, and broccoli on it. The meat appears to be sliced and is likely to be beef or pork. The potatoes are cut into small pieces and appear to be boiled or roasted. The broccoli is cut into small florets and is likely to be steamed or stir-fried. The plate is on a white tablecloth and there are silverware and a glass of water next to it. The room appears to be a dining room or kitchen."} +{"image_id": 552510, "caption": "This image shows a group of young boys playing soccer on a green field. The boys are wearing green and white striped jerseys and black shorts. They are all wearing soccer cleats and are kicking a yellow soccer ball around on the grass. In the background, there are some trees and a few people watching the game. The image is taken from a low angle, looking up at the boys as they play."} +{"image_id": 272880, "caption": "This image shows a pizza on a plate with a piece missing. The pizza has a white sauce and cheese, and there are some toppings on it. There is a piece missing from the pizza, and there is a piece of paper with the words \"mystic pizza\" written on it. The plate is on a wooden table, and there are some utensils on the table, including a fork and knife. The room is dimly lit, and there are some shadows on the wall."} +{"image_id": 580540, "caption": "This image shows a black dog sitting on the floor in front of a television. The television is showing an image of a dog swimming in a pool. The dog is looking at the television with interest. The room has a wooden floor and a window with blinds. There is a wooden table with a lamp on it in the corner of the room. The walls are painted white and there is a painting of a landscape hanging on one of them."} +{"image_id": 242934, "caption": "This image shows a living room with a black leather couch, a red and black rug, and a black and white striped wall hanging. There is a wooden coffee table in front of the couch, and a black and white striped lamp on the table. The room has a wooden floor and a white ceiling with black and white striped walls. There is a black and white striped rug on the floor, and a black and white striped curtain on the window. The room is well lit by the lamp and the window."} +{"image_id": 178807, "caption": "This image shows a group of people riding skateboards on a concrete surface. The people are wearing black pants and black shoes, and they are all wearing black helmets. The skateboards are black with white wheels and have a white deck. The background of the image is a chain link fence with trees and a blue sky in the distance."} +{"image_id": 135748, "caption": "This image shows a small brown and white dog lying in a blue dog bed on a carpeted floor. The dog is licking its chops and looking up at the camera. There is a bottle of water on the floor next to the dog bed. The room is dimly lit and there are some toys scattered around the floor."} +{"image_id": 255036, "caption": "This image shows a street corner with a traffic light at the intersection. The building in the background appears to be a large, red brick structure with a blue roof. There are no cars or people in the image. The street is lined with trees and the sky is clear and blue."} +{"image_id": 3926, "caption": "The image shows two sheep standing in a snowy field. One of the sheep is standing on its hind legs and the other is lying down. The sheep are both covered in snow and appear to be grazing on the grass. The sky is cloudy and there are some trees in the background. The sheep are facing each other and appear to be interacting with each other."} +{"image_id": 236762, "caption": "This image shows a group of people sitting around a long wooden table, smiling and laughing as they enjoy a meal together. The table is covered with plates of food, including pizza, pasta, and salad. There are also several bottles of wine and glasses on the table. The people in the image are all wearing casual clothing, including t-shirts and jeans. Some of them are holding cameras and taking pictures of each other. The room is dimly lit, with a few lamps on the walls casting shadows on the walls. The overall atmosphere of the image is one of happiness and enjoyment."} +{"image_id": 248314, "caption": "This image shows a desk with a laptop computer, a mouse, a keyboard, and a cup of food on it. The laptop appears to be open and the mouse is on the desk next to it. There are also several papers and pens on the desk."} +{"image_id": 559773, "caption": "This image shows a person wearing skis and holding a ski pole in the air while jumping over a fence. The person is wearing a helmet and goggles, and the fence is made of metal bars with orange mesh on top. The sky is clear and blue, and there are no other objects or people in the image."} +{"image_id": 340665, "caption": "This image shows a woman standing on a sidewalk, holding an open umbrella in one hand and a bag in the other. She is wearing a blue shirt, black pants, and glasses. The umbrella is black with a brown handle and is held open with one hand. The woman is standing on the sidewalk next to a building with a brown wooden facade and metal shutters. There are several people walking on the sidewalk in front of the building, and some of them are visible in the reflection of the umbrella. The sky is overcast and there is a chance of rain."} +{"image_id": 388599, "caption": "This image shows a person holding a frisbee in their hand, while a dog is standing next to them. The dog is looking up at the person with its head tilted to the side. The person is standing on a grassy area, with trees and other greenery visible in the background. The sky is cloudy and overcast, with some light rain visible in the distance. The dog is a yellow labrador retriever, with a brown coat and floppy ears. Its eyes are fixed on the frisbee in the person's hand. The person is wearing a black t-shirt and shorts, with their hands on their hips. The frisbee is a yellow plastic disc with black markings."} +{"image_id": 163528, "caption": "The image shows a pizza with various toppings such as tomatoes, onions, and mushrooms. The pizza is topped with a creamy sauce and has a crispy crust. There are also two forks and a knife on the table next to the pizza. The table is wooden and has a brown finish. The lighting in the image is bright and evenly distributed, highlighting the details of the pizza and the table. The background is blurred, making the focus on the food."} +{"image_id": 481212, "caption": "This image shows a man sitting on a red couch with two dogs sitting on either side of him. The man is wearing white pants and a white shirt, and has a cup of coffee in his hand. The dogs are both black and white, and appear to be relaxed and comfortable on the couch. The room has large windows with white curtains, and there is a checkered floor. The image is well-lit, with natural light coming in from the windows and a lamp on the table next to the couch. The overall mood of the image is cozy and relaxed."} +{"image_id": 277533, "caption": "This image shows a man sitting on a red couch in a living room. He is wearing a black jacket and blue jeans, and is holding a white remote control in his hand. The man is smiling and looks happy. There is a red rug on the floor in front of the couch, and a wooden coffee table with a vase of flowers on it in the foreground. The walls of the room are painted a light color and have a few paintings and photographs hanging on them. The room appears to be cozy and well-lit."} +{"image_id": 173383, "caption": "The image shows a white wedding cake with blue and orange ribbon on top of a white tablecloth. There are candles on the table and a knife and fork on the cake."} +{"image_id": 419624, "caption": "The image shows a long, white train traveling down a set of tracks next to a green hill. The train has a pink and white stripe down the middle and is carrying several passengers. There is a fence and trees on the hillside, and a building in the background."} +{"image_id": 130291, "caption": "This image shows a man and a woman standing in a room. The man is wearing a black suit and the woman is wearing a red dress. The man is adjusting the woman's necktie, which is a red bow tie. The woman is smiling and looking at the man. The room has a wooden floor and a white ceiling with a chandelier hanging from it. There are also two doors on either side of the room, one of which is open and the other is closed. The walls are painted white and there are several paintings on them. The room appears to be a formal setting, such as a wedding or a business meeting."} +{"image_id": 193369, "caption": "This image shows a metal bench sitting on a stone path in a wooded area. The bench appears to be made of rusted metal and has a curved backrest and armrests. The path is covered in loose gravel and is surrounded by tall trees and bushes. The sky is overcast and there are a few clouds visible."} +{"image_id": 367804, "caption": "This image shows a young girl standing on a sandy beach, holding a kite in the air. The sky is clear and blue, with fluffy white clouds scattered about. The girl is wearing a pink and white striped shirt, and has long, curly brown hair. She is looking up at the kite, which is flying high in the sky. The sand on the beach is light brown, and there are some small rocks visible near the water's edge. In the distance, there is a small cluster of palm trees and a few other people on the beach."} +{"image_id": 84735, "caption": "This image shows a baseball player swinging a bat at a pitched ball during a game. The player is wearing a white and black uniform with a helmet and glove on his hand. The crowd is seated in the stands behind the player, watching the game. The field is green and the bases are marked with white lines. The umpire is standing behind the plate, ready to make a call. The player is in the on-deck circle, waiting for his turn to bat. The scoreboard in the background shows the current score, which is 2-1 in favor of the home team."} +{"image_id": 247285, "caption": "This image shows a man and a woman holding a baby under an umbrella. The man is holding the baby with one hand while the woman holds the other end of the umbrella with her hand. The baby is wrapped in a blanket and appears to be sleeping. The background of the image is a white wall with a few windows and a door. The umbrella is a striped pattern and is open, providing shade for the family."} +{"image_id": 438432, "caption": "This is a black and white photograph of a group of women in white shirts and skirts posing for a group photo. They are all wearing baseball caps and holding bats. The woman in the center is holding a ball and the others are standing around her. The image is in good condition and the focus is clear."} +{"image_id": 185479, "caption": "This image shows a man sitting on the floor with his laptop on his lap. He is wearing a brown jacket, beige pants, and black shoes. The man's hair is gray and he is wearing black glasses. The background is a blue carpet with a wooden floor underneath it. There is a small area of the carpet that is not blue, and it appears to be a darker shade of blue. The man's face is expressionless and he is looking down at his laptop. The laptop appears to be an Apple MacBook Pro, and it is open on his lap. The man's hands are resting on the laptop, and he appears to be typing on it. The image is well-lit, and the lighting appears to be coming from the left side of the frame. The man is sitting in a corner of the room, and there is a small area of the wall that is visible behind him. The wall appears to be made of wood, and there are no windows or doors in the frame. The room appears to be a small office or workspace, and there are no other people or objects in the image."} +{"image_id": 570826, "caption": "The image shows a blue and yellow train on a set of tracks in a city. The train has a large number of passengers on board, and is passing through a busy urban area. The buildings in the background are tall and made of concrete, with many windows and balconies. The sky is clear and blue, with a few clouds visible in the distance. The train is moving at a moderate speed, and the tracks are well-maintained."} +{"image_id": 127394, "caption": "This image shows a group of people sitting around a wooden dining table, with plates of food in front of them. The people in the image are smiling and appear to be enjoying their meal. The table is covered in plates of food, including pizza, salad, and other dishes. There are also several bottles of drinks on the table, including water and soda. The room is dimly lit, with a few lamps on the walls providing light. The walls are painted a light color and there are a few paintings on the walls. The overall atmosphere of the image is one of relaxation and enjoyment."} +{"image_id": 311081, "caption": "This image shows a bathroom with a white bathtub, a white toilet, and a white sink. The walls are covered in a brown and beige patterned wallpaper. The shower curtain is white and there is a brown towel hanging on the rack next to the toilet. The floor is tiled and there is a brown and beige rug on it. The light fixture above the sink is a white and brown striped shade. The overall atmosphere of the room is clean and modern."} +{"image_id": 376677, "caption": "This image shows a construction site with a large crane lifting a large piece of metal structure onto a bridge. The crane is being operated by a worker in a bucket on the back of the truck. The road is lined with cars and other vehicles driving by. The sky is cloudy and there are some trees in the background."} +{"image_id": 269419, "caption": "The image shows a tall, stone tower with a clock face on the front. The clock face is white and has black numbers and hands. The tower is surrounded by trees and there are several benches underneath it. The sky is clear and blue in the background."} +{"image_id": 210708, "caption": "The image shows an adult elephant and a baby elephant standing in the water of a river. The adult elephant is standing on its hind legs and the baby elephant is standing on its front legs, both of them are submerged in the water. The adult elephant has a trunk and the baby elephant has a small trunk. The background of the image is green and there are trees on the bank of the river. The water is clear and there are no other animals in the image."} +{"image_id": 472246, "caption": "This image shows three different types of fruit arranged in a line on a white surface. The fruit includes an apple, an orange, and an onion. The apple is cut in half and appears to be ripe, while the orange is whole and appears to be unripe. The onion is cut into thin slices and appears to be raw. A fork is also visible in the image, lying next to the fruit."} +{"image_id": 187475, "caption": "This image shows a person holding a hot dog in their hand, with a bun on the left and a slice of sausage on the right. The person is holding the hot dog with their right hand, and the hot dog is resting on top of the bun. The person is looking at the hot dog with a smile on their face. Behind the person, there are two other people sitting at a table, drinking beer and looking at the hot dog. The table is covered in a white tablecloth, and there are empty glasses and bottles of beer on it. The lighting in the image is dim, with most of the light coming from the table in front of the person holding the hot dog. The background is out of focus, with only the table and the people in the background visible."} +{"image_id": 299457, "caption": "This image shows a man sitting in a chair with a white background behind him. He is wearing a black shirt and has glasses on. He is holding a pink lollipop in his mouth and looking at the camera with a smile. There is a staircase in the background with white railings and a wooden banister. The room appears to be a office or workspace."} +{"image_id": 2894, "caption": "The image shows a train traveling along a railroad track. The train is black and yellow and has a large number \"1\" on the side. There is a platform next to the track where people can board and exit the train. The sky is clear and blue, and there are trees in the background."} +{"image_id": 209733, "caption": "This image shows a group of people standing in a green field, with a kite in the sky above them. The kite is a large, purple and blue design, with a tail and strings attached to it. The people are standing in a line, with some holding onto the strings of the kite while others watch. The houses in the background are visible, with trees and greenery surrounding the field. The sky is clear and blue, with a few clouds visible in the distance."} +{"image_id": 428231, "caption": "This is a living room with white couches, a wooden coffee table, and a white rug. The walls are painted a light color and there are two windows on either side of the room. The furniture is modern and minimalist in design."} +{"image_id": 250619, "caption": "This image shows a woman lying on a beach towel under an orange and yellow striped umbrella on a sunny day. The woman is wearing a black bikini and has a book in her hand. The sand is golden and there are some palm trees in the background. The sky is a bright blue with some white clouds. The water is a deep blue and there are some waves in the distance. The beach is long and wide, with some people walking on it and some sitting under the umbrella. The umbrella is large and has a wooden pole in the middle. It is held up by two metal poles that are buried in the sand. The woman is lying on her stomach with her head towards the umbrella. The umbrella is providing shade for her and the book she is reading. The woman looks relaxed and happy as she enjoys the sun and the book."} +{"image_id": 434693, "caption": "This image shows a white fire hydrant on a street corner. The hydrant is made of metal and has a large white base with a small spout on top. There is a chain hanging from the spout, which is used to turn the hydrant on and off. The building behind the hydrant is pink and has white trim. There are trees on either side of the street, and a car is parked on the side of the road."} +{"image_id": 15596, "caption": "The image shows two people riding motorcycles on a race track. One person is wearing a white helmet and a black and white racing suit, while the other is wearing a red helmet and a black and white racing suit. Both people are wearing gloves and boots. The track is lined with white and yellow markings, and there are several other motorcycles parked on the side of the track. In the background, there are trees and a building with a green roof. The image is taken from a low angle, looking down the track."} +{"image_id": 569415, "caption": "The image shows an elephant standing in a grassy field with its trunk raised. The elephant has large tusks and a long, curved back. Its body is gray and its skin appears to be rough and wrinkled. The elephant's eyes are large and brown, and its ears are small and rounded. The sky is cloudy and there are no other animals or people in the image."} +{"image_id": 305004, "caption": "This image shows a man riding a wave on a surfboard in the ocean. The man is wearing red swim trunks and a white surfboard with a black fin. The wave is large and white, with a blue sky and clouds in the background. The man is standing on the surfboard with his arms outstretched, looking like he is enjoying the ride. The water is choppy and the wave is breaking on the surfboard."} +{"image_id": 510527, "caption": "This image shows a man wearing a gray sweater and a white tie, sitting in the back seat of a car. The man is wearing a gray sweater and a white tie, and is looking straight at the camera with a serious expression. The car's interior is visible in the background, with a gray steering wheel and a dashboard. The man's face is partially obscured by the collar of his shirt, but his eyes and eyebrows are visible. The man's hair is styled in a short, neat cut."} +{"image_id": 581317, "caption": "This image shows a woman standing in a green field, looking at her cell phone. She is wearing a purple t-shirt and has her hair tied back in a ponytail. In the background, there are trees and mountains visible. The sky is a bright blue with fluffy white clouds. The woman's expression is neutral, and she looks focused on her phone."} +{"image_id": 532071, "caption": "This image shows a brown bear standing in a grassy area with some dead trees in the background. The bear is looking up at something and appears to be standing on its hind legs. The bear's fur is brown and its eyes are black. There are some dead trees in the background, and the sky is visible through the trees. The image is taken in a forest setting, and the bear appears to be in a natural habitat."} +{"image_id": 467978, "caption": "This image shows a group of sheep standing in a field. The sheep are all black and white, with one black and one white sheep in the front of the group. The sheep are all facing the same direction, and one of them is looking at the camera. There is a fence in the background, and a tree in the left corner of the image. The sky is cloudy and there are some small trees in the distance."} +{"image_id": 184972, "caption": "This image shows a man wearing a plaid shirt and a yellow and black striped tie. He is standing in front of a group of people who are seated at a table. The man is smiling and appears to be enjoying himself. The background of the image is a brick wall with some plants and a vase of flowers on it."} +{"image_id": 525568, "caption": "This image shows two zebras standing in a grassy field. One zebra is standing on its hind legs and the other is lying down. The sky is visible in the background, and there are trees in the distance. The zebras appear to be interacting with each other, but it is not clear what they are doing."} +{"image_id": 165056, "caption": "The image shows two giraffes standing in a fenced-in area. One giraffe has brown and white stripes, while the other has brown and tan stripes. They are both looking straight ahead, with their long necks stretched out in front of them. Behind them, there are trees and a fence. The image is taken from a low angle, looking up at the giraffes."} +{"image_id": 362240, "caption": "This image shows a room with several motorcycles parked in it. There are two motorcycles, one is orange and the other is red. There is a deer head mounted on the wall behind them. The room appears to be a workshop or garage, with tools and equipment visible on the walls and shelves."} +{"image_id": 179558, "caption": "This image shows two giraffes standing next to each other, with their necks entwined. The giraffes are both brown and white, with brown spots on their bodies. One of the giraffes has a long, curved neck, while the other has a shorter, more stocky neck. The ground behind them is covered in grass and rocks, and there are some trees in the background. The sky is cloudy and overcast, with a few patches of blue showing through."} +{"image_id": 120792, "caption": "This image shows two men standing in a room with a television in the background. The man on the left is holding a remote control and the man on the right is standing next to him with his arms crossed. The room has wooden beams on the ceiling and walls, and the floor is made of wood or tile. There is a rug on the floor in front of the couch, and a coffee table with a lamp on it in the foreground. The television is mounted on the wall and has a black frame around it. The room appears to be dimly lit, with only a few lights on in the background."} +{"image_id": 294865, "caption": "This image shows a long, white train with blue and gray stripes on the side, traveling along a track next to a road. The train has several windows on the side, and people can be seen waving out of them. The image is blurry, but it appears to be taken from a distance."} +{"image_id": 159662, "caption": "This image shows a woman in a pink dress and white sneakers standing on a tennis court. She is holding a racket in one hand and looking down at the court with a determined expression on her face. The audience is visible in the background, seated in a large, open-air stadium. The court is made of blue and green tiles, and there are white lines marking the boundaries of the court. The woman's hair is styled in a natural, curly way, and she has a small tattoo on her left wrist."} +{"image_id": 176906, "caption": "This image shows a group of sheep standing in a grassy area. There is a fence in the background, and several people are standing nearby, watching the sheep. One person is wearing a yellow hat and is holding a bowl of food for the sheep. The sheep are all different colors, including black, white, and brown."} +{"image_id": 250608, "caption": "This image shows a bus traveling down a city street. The bus is white and blue with the words \"City Bus\" written on the side. There are trees lining the side of the road and a telephone pole in the foreground. The bus appears to be moving slowly down the street, possibly waiting for passengers to board."} +{"image_id": 33561, "caption": "This image shows a group of cows grazing in a green pasture. The cows are standing on lush green grass and are eating from the ground. The sky is cloudy and there are trees in the background. The image is taken from a car window and the view is obstructed by the car's windshield."} +{"image_id": 274612, "caption": "This image shows a row of bicycles parked under a row of colorful umbrellas. The umbrellas are attached to a metal pole and are held up by a person standing behind them. The bicycles are lined up next to each other and are parked on the sidewalk. The building in the background appears to be made of stone and has a wooden roof. There are trees and other plants growing in the area around the bicycles."} +{"image_id": 288714, "caption": "This image shows a pizza that has been baked with various toppings such as mushrooms, onions, and peppers. The crust is brown and crispy, and the toppings are black and crispy. The pizza appears to be ready to be served or eaten."} +{"image_id": 284379, "caption": "The image shows a young boy riding a surfboard in a swimming pool. He is wearing a black t-shirt and has his hair tied back in a ponytail. The water is blue and there are waves in the pool. The boy is smiling and looks like he is enjoying the ride."} +{"image_id": 205247, "caption": "This image shows a large white and blue bus with a red and white stripe down the middle, parked on the side of a road. The bus has a large advertisement on the side, promoting a sports team. There are no other vehicles or people in the image. The sky is clear and blue, with a few clouds in the distance. The trees on the side of the road are bare, with no leaves or fruit."} +{"image_id": 200267, "caption": "This image shows a woman playing tennis on a court surrounded by a group of people watching her play. The woman is wearing a black top and white shorts and is holding a tennis racket in her right hand. She is standing on the court and has already hit the ball, which is now in the air and heading towards the other side of the court. The people in the background are standing behind a red fence and are watching the game. Some of them are holding tennis rackets and others are just watching the action. The court is made of grass and has white lines marking the boundaries. The sky in the background is blue and there are a few trees in the distance."} +{"image_id": 296775, "caption": "The image shows a blue bus driving down a city street. The bus has a yellow stripe down the middle and the words \"City Bus\" written on the side. There are several people standing on the sidewalk, watching the bus pass by. The bus has a driver and a few passengers. The street is lined with trees and buildings. There is a sign on the corner of the street that says \"Welcome to the City.\""} +{"image_id": 4265, "caption": "The image shows a window sill with several blue vases on it. The vases are different sizes and shapes, and they are all filled with different types of flowers. The flowers are all different colors and types, including pink, purple, and white. There are also some green leaves and stems visible in the vases. The background of the image is a brick wall with some trees and bushes visible in the distance. The image is taken from a low angle, looking up at the window sill. The lighting in the image is bright and even, with no shadows visible. The image is well-composed, with the vases and flowers arranged in a visually pleasing way."} +{"image_id": 104392, "caption": "This is a kitchen with wooden cabinets and countertops. The countertop is made of granite and there is a stove and oven in the corner. The refrigerator is black and there is a microwave above it. The cabinets have black handles and the floor is made of wood. There is a black stove hood above the stove."} +{"image_id": 316658, "caption": "This image shows a body of water with a tree in the foreground. The tree has no leaves and appears to be dead. There are several birds sitting on the branches of the tree. The water is calm and there are no boats or other objects in the water. The sky is cloudy and there are some trees in the background."} +{"image_id": 230993, "caption": "This image shows two women walking down a street, both carrying red and white striped umbrellas. The woman on the left is wearing a brown jacket and carrying a brown purse. The woman on the right is wearing a black jacket and carrying a black purse. The street is wet and there are puddles of water on the ground. The sky is overcast and there are clouds in the sky."} +{"image_id": 321035, "caption": "This image shows a cake with the words \"Welcome Malaich\" written on it in red frosting. The cake is on a plate and there is a knife next to it. The plate is on a green table."} +{"image_id": 571038, "caption": "The image shows a woman holding a tray with a pizza on it. The pizza has various toppings such as mozzarella, tomato sauce, and pepperoni. The woman is smiling and appears to be happy with the pizza. The kitchen behind her has a sink, stove, and counter with utensils. The overall atmosphere of the image is warm and inviting."} +{"image_id": 395978, "caption": "The image shows a group of people working on the ground near a runway. There is a large white airplane parked on the runway in the background. The people are wearing yellow vests and hard hats, and they are digging with shovels and other tools. There is a fence or barrier around the area where they are working, and there are some trees and other vegetation in the foreground. The sky is cloudy and there is a fence or barrier around the area where they are working, and there are some trees and other vegetation in the foreground. The sky is cloudy and there is a large white airplane parked on the runway in the background."} +{"image_id": 482917, "caption": "This image shows a person sitting on a red couch with their legs stretched out in front of them. The person is wearing blue jeans and a black t-shirt. On the table in front of them is a TV with a black frame and a white screen. The person's dog is sitting on the floor in front of the couch, looking up at the TV. The room has a wooden floor and a brown wall with a painting on it. There is a wooden bookshelf on the wall with several books on it. The room has a cozy and relaxed atmosphere."} +{"image_id": 207561, "caption": "The image shows a group of four people on surfboards riding waves in the ocean. The water is turquoise and the sky is a bright blue. The waves are large and choppy, with whitecaps on top. The people are wearing black wetsuits and black hats. They are all smiling and appear to be enjoying themselves. The horizon is visible in the background, with a few clouds in the sky. The water is relatively calm, with only a few small waves breaking around the surfers."} +{"image_id": 369470, "caption": "This image shows a row of parked cars lined up on the side of a street. The cars are parked on the side of the road, with the fronts facing towards the street. There are several trees growing along the side of the road, and a few small bushes in the foreground. The sky is clear and blue, with a few clouds visible in the distance. The buildings on the other side of the street are tall and made of brick or concrete. There are no people or other vehicles in the image."} +{"image_id": 482210, "caption": "This is a bathroom with a toilet, sink, and cabinet. The cabinet has a white door with a mirror above it. The floor is blue and there is a shower in the corner."} +{"image_id": 525381, "caption": "This image shows a baseball player swinging a bat at a pitched ball during a game. The player is wearing a white shirt and black pants, and is standing on a baseball field with a catcher behind him. The umpire is standing behind the catcher, and the crowd is watching the game from the stands. The player is holding the bat with both hands and is about to swing it at the ball. The ball is flying through the air and is about to be caught by the catcher. The player is wearing a helmet and gloves, and is ready to make a play on the ball. The umpire is wearing a black and white striped shirt and is holding a ball in his hand. The crowd is made up of people of different ages and races, and is cheering and clapping as they watch the game."} +{"image_id": 156375, "caption": "This image shows a woman wearing a pink jacket and skis standing on a snow-covered slope. She is wearing a helmet and goggles and has her arms crossed in front of her. The background is a blue fence and there are some trees in the distance. The sky is dark and there are stars visible in the sky."} +{"image_id": 334399, "caption": "This image shows a man standing next to a table with a clock on it. The clock has a large face with roman numerals and a small hand pointing to the number 12. There are several people in the background, including a woman in a red dress and a man in a black suit. The image is taken in a dimly lit room with wooden beams and a stone floor. The overall mood of the image is one of mystery and intrigue."} +{"image_id": 322955, "caption": "The image shows a beach with waves crashing against the shore. There is a bird standing on the sand, looking out to sea. The sky is a bright orange and pink color, with clouds in the distance. The water is a deep blue color, with white caps on the waves. The bird is white and has a black beak."} +{"image_id": 312024, "caption": "The image shows a small bird standing on a patch of green grass. The bird has a blue and black body with a long tail feather. Its wings are spread out and it appears to be perched on the grass. The bird's head is tilted to the side and it appears to be looking at something in the distance. There are some brown blades of grass in the foreground and some green bushes in the background. The overall scene is quite peaceful and serene."} +{"image_id": 118715, "caption": "This image shows a fire hydrant on the sidewalk next to a wall. The hydrant is made of metal and has a white and black stripe on it. The wall behind it is made of concrete and has a few cracks in it. There is a small patch of grass on the sidewalk next to the hydrant."} +{"image_id": 237318, "caption": "This image shows a stop sign in the middle of a dirt road surrounded by trees. The stop sign is red and white, and has a black border. The trees in the background are bare, and there is no other visible vegetation in the image. The sky is cloudy and there are no visible clouds. The image is taken from the perspective of a car, with the windshield and hood visible in the foreground."} +{"image_id": 236865, "caption": "This image shows a young girl standing on a sidewalk, holding a red balloon in one hand and a yellow balloon in the other. She is wearing a black and white floral print dress with a white apron and pink sandals. The girl's hair is styled in loose waves and she has a pair of sunglasses on her head. Behind her, there is a row of trees with green leaves and a few houses can be seen in the background. The image is taken from a low angle, looking up at the girl from the ground."} +{"image_id": 72096, "caption": "This image shows a woman sitting at a table with a plate of food in front of her. The plate has several plates of food on it, including eggs, bacon, and pancakes. The woman is wearing a red sweater and has her hair tied back in a ponytail. There is a brick wall in the background."} +{"image_id": 450762, "caption": "This image shows three stuffed animals dressed in military uniforms standing on a boat. The first animal is a brown bear wearing a green military jacket and hat, and the second animal is a white bear wearing a red military jacket and hat. The third animal is a black bear wearing a blue military jacket and hat. The animals are all looking out at the viewer, and the background is a body of water with waves."} +{"image_id": 168974, "caption": "This image shows a small child sitting on the floor, holding a cell phone in their hand. The child is wearing a pink cardigan and blue jeans, and is looking down at the phone. The room is dimly lit, and there is a wooden floor and a brown rug in the background. The child's hair is dark and curly, and their eyes are brown. The phone in their hand is a black and white model, and there is a cord connecting it to a wall outlet. The child's expression is focused and intent, as if they are trying to take a picture with the phone."} +{"image_id": 559950, "caption": "This image shows a small dog sitting on the window sill of a car. The dog is a brown and black breed with long hair and a fluffy tail. The dog is wearing a yellow collar and is looking out of the window with its head tilted to the side. The background of the image is a city street with cars driving on it. The sky is clear and blue."} +{"image_id": 575776, "caption": "The image shows a zebra standing in a dirt field next to a rhinoceros. The zebra is standing with its head down and appears to be eating grass. The rhinoceros is lying down in the background, with its head and part of its body visible. The background is a mountainous terrain with green trees and brown dirt. The sky is blue and there are clouds in it."} +{"image_id": 552352, "caption": "This image shows a slice of cheesecake on a white plate, with a fork next to it. The cheesecake appears to be yellow and has a crumbly texture. The plate is covered in a white napkin, and there are crumbs on the plate and fork. The plate is on a table, and there is a tablecloth on the table. The lighting in the image is bright and even, with no shadows or highlights. The image is clear and in focus."} +{"image_id": 490683, "caption": "This image shows a group of people playing a game of frisbee in a park. The players are wearing white shirts and black shorts, and are holding frisbees in their hands. One player is in the middle of throwing the frisbee, while the other players are running to catch it. There are trees and buildings in the background, and a group of people watching the game from the sidelines."} +{"image_id": 76417, "caption": "This image shows a white dog with floppy ears standing on the back of a black pickup truck. The dog's head is sticking out of the window, and its ears are flapping in the wind. The truck is parked on the side of the road, and there is a green traffic light in the background. The sky is clear and blue, and there are some clouds in the distance. The image is taken from a low angle, looking up at the truck from the ground. The lighting is bright and even, with no shadows or highlights. The mood is cheerful and playful, as the dog seems to be enjoying the ride."} +{"image_id": 231153, "caption": "The image shows a person wearing a blue jacket and orange pants, with a snowboard under their arm, jumping into the air while riding down a snow-covered slope. The person is wearing goggles and a helmet, and there are tall evergreen trees in the background. The sky is cloudy and the sun is shining through the clouds."} +{"image_id": 190497, "caption": "This image shows a group of cows standing in a muddy area in front of a building. The building appears to be made of wood and has a metal roof. There are trees in the background and a cloudy sky. The cows are standing in a line and appear to be waiting to be let into the building. The ground is covered in mud and there are puddles of water around the cows."} +{"image_id": 126065, "caption": "The image shows a clock mounted on the side of a building. The clock has two bells hanging from it, one of which is a large bell with a black face and white numbers. The clock face is white with black numbers and hands. The building behind the clock is made of stone and has a pointed roof. There are two small figures, one of which is a man with a beard, standing on either side of the clock. The figures are made of metal and have intricate details."} +{"image_id": 375915, "caption": "The image shows a wooden table with a pizza on it. The pizza has a green and red sauce, mushrooms, onions, and other vegetables on it. There are also two glasses of wine on the table, and a knife and fork next to the pizza. The background is a grassy area with trees in the distance."} +{"image_id": 95022, "caption": "This image shows a bird perched on a tree branch. The bird is a grey and white pigeon with a red beak and legs. The bird is sitting on a branch that is attached to a tree trunk. Behind the bird, there is a green leafy tree with branches and leaves. The background is blurry and out of focus."} +{"image_id": 177935, "caption": "This is a kitchen with a white stove, oven, and microwave. There are also two yellow towels hanging from the oven handle. The countertop is made of white marble and there is a yellow and white checkered floor. There is a yellow and white checkered curtain in the window."} +{"image_id": 380117, "caption": "This image shows a table with several potted plants on it. The plants are of different types, including a tomato plant, a pepper plant, and a basil plant. The cat is lying on the table, sleeping. The background is a wall with a patterned fabric hanging on it."} +{"image_id": 132373, "caption": "This image shows a large clock tower in a grand hall with a large American flag hanging from the ceiling. The clock tower has a large, ornate base and a tall, pointed spire. The clock face is large and has Roman numerals. The hall is dimly lit and there are several people standing around the clock tower. The walls are made of stone and there are large windows on either side of the clock tower. The ceiling is high and has a large chandelier hanging from it. The floor is made of marble and there are several ornate pillars around the room. The overall atmosphere of the image is grand and historic."} +{"image_id": 284282, "caption": "This image shows a white blender sitting on top of a green table. The blender has a clear plastic container with a white and blue label on it. There is a white printer on the other side of the table. The printer has a white and blue label on it as well. The walls of the room are made of concrete and have a few cracks in them. There is a small window on the wall to the left of the blender, and a light fixture hanging from the ceiling above it. The room appears to be dimly lit."} +{"image_id": 276707, "caption": "This image shows a street sign that reads \"No Parking\" and has a drawing of a motorcycle, a bicycle, and a person riding a skateboard. The sign is mounted on a metal pole and is located in front of a brick building with a sign that reads \"Bicycles Only\" and a window with a sign that reads \"Bicycles and Motorcycles\". The building has a sign that reads \"Bicycles and Motorcycles\" and a window with a sign that reads \"Bicycles and Motorcycles\". The image is taken from a sidewalk and shows a pedestrian walking in front of the building."} +{"image_id": 194704, "caption": "The image shows a woman wearing a black jacket and pink gloves holding two pairs of skis on her head. The skis are white with black and pink designs on them. The woman is standing in front of a large building with a brown facade and snow-covered roof. The building has large windows and a wooden balcony. In the background, there are trees and a mountain range. The sky is cloudy and the sun is shining."} +{"image_id": 430286, "caption": "This image shows a close-up view of a stack of mattresses with several remote controls placed on top of them. The mattresses are made of white fabric and have a plush, fluffy appearance. The remote controls are black and have buttons for changing channels, adjusting the volume, and turning the TV on and off. The image is in black and white, giving it a vintage or retro look."} +{"image_id": 361171, "caption": "This image shows a person riding a snowboard in the air, with a building in the background. The person is wearing a green jacket and black pants, and is holding onto the snowboard with both hands. The snowboard has a black and white design on it. The person is jumping and flipping in the air, with their legs extended behind them. The background is a tall building with windows and a metal roof."} +{"image_id": 406451, "caption": "This image shows a horse-drawn carriage parked on the side of a city street. The carriage is pulled by a brown horse with a red saddle and reins. The horse is standing on a cobblestone street next to a building with several windows and a sign that reads \"Cafe\". There are several cars parked on the street, and a few pedestrians walking by the carriage. The sky is overcast and there are a few clouds in the sky."} +{"image_id": 57286, "caption": "This image shows a group of people on skateboards performing tricks at a skate park. The skate park has a large half-pipe ramp with a smooth surface and a small landing area at the end. The people in the image are wearing helmets and are dressed in casual clothing, including t-shirts and jeans. Some of them are wearing sunglasses and have their hair styled in different ways. The sky in the background is clear and blue, with fluffy white clouds. The image is taken from a high angle, looking down at the skate park from above. The lighting is bright and even, with the sun shining down from the top of the image."} +{"image_id": 535952, "caption": "The image shows three chocolate cupcakes on a wooden cutting board. The cupcakes are covered in white paper cups and have chocolate frosting on top. There is a knife on the right side of the image, and a red and white polka dot tablecloth on the background."} +{"image_id": 455772, "caption": "This image shows a man in a blue shirt and jeans jumping up to catch a frisbee in the air. The man is standing on a grassy lawn in front of a wooden fence and a wooden staircase leading up to a wooden deck. The staircase has a wooden railing and a wooden balustrade. In the background, there are trees and a blue sky."} +{"image_id": 63617, "caption": "This image shows a young boy playing with a baseball glove and a baseball on a wooden deck. The boy is wearing a blue jacket and jeans, and has glasses on his face. In the background, there is a wooden fence and a few trees. The boy is holding the baseball glove with his left hand and is about to throw the ball with his right hand. The dog in the background is wearing a collar and appears to be watching the boy play."} +{"image_id": 90155, "caption": "The image shows a long train traveling down a railroad track. The train is made up of several cars, each with different colors and markings. The train appears to be carrying a large number of passengers and cargo. The sky in the background is cloudy and there are trees and other vegetation on either side of the track."} +{"image_id": 158127, "caption": "This image shows a person's legs and the back of their head, with a cat lying on their lap. The cat is an orange tabby with black patches on its fur, and it appears to be sleeping. The person is wearing black pants and a black shirt, and their shoes are visible on the ground next to them. The ground is covered in rocks and dirt, and there is a small patch of grass in the foreground. The sky is visible in the background, with some clouds and a patch of blue sky."} +{"image_id": 248582, "caption": "This image shows a group of people standing in front of a fruit and vegetable stand on a narrow street. The stand is made of metal and has a blue awning over it. There are several people standing in front of the stand, looking at the fruits and vegetables on display. Some of the people are holding bags or baskets, while others are just looking at the produce. The street is lined with buildings on either side, some of which have balconies and windows on the upper floors. The scene is bustling with activity, as people walk by and buy fruits and vegetables from the stand."} +{"image_id": 206560, "caption": "This image shows a person riding a snowboard in the air while performing a trick. The person is wearing a yellow jacket and black pants, and is holding onto a railing with one hand. The person is jumping and spinning in the air, and the snowboard is visible behind them. The background is a building with a balcony and a person standing on it."} +{"image_id": 69009, "caption": "This image shows two young children standing in front of a large glass window that looks out onto a zoo exhibit. The children are both wearing hats and have their hands on the glass, looking at a large black bear that is standing on the other side of the window. The bear is standing on its hind legs and appears to be looking at the children as well. The children are smiling and appear to be enjoying the view. The background of the image is a dirt and rocky terrain, with trees and other vegetation in the distance."} +{"image_id": 322122, "caption": "This image shows a white toilet with a yellow sponge on top of it. The toilet is on the floor and there is a small puddle of water around it. The walls of the bathroom are tiled and there is a small sink on the counter. The sink has a small towel hanging from the side of it. The toilet appears to be in good condition and is clean. The image is taken from a low angle and the toilet is the focal point of the image."} +{"image_id": 549930, "caption": "This image shows a couple walking down a rain-soaked street under an umbrella. The man is wearing a white shirt and the woman is wearing a black shirt. They are holding hands and walking towards the camera. The background is a dark sky with clouds and the street is lined with trees and buildings. The image is taken at night and the streetlights are on."} +{"image_id": 33216, "caption": "This image shows a large pizza on a tray with a red and white checkered tablecloth in the background. The pizza appears to be a deep dish pizza with a thick crust and a variety of toppings including pepperoni, sausage, mushrooms, and onions. The pizza appears to be ready to be served or eaten. The tablecloth is covered in crumbs and appears to be stained from previous use. The overall atmosphere of the image is casual and relaxed, with a focus on food and drink."} +{"image_id": 434581, "caption": "This image shows a person riding a black and silver motorcycle on a road. The person is wearing a black leather jacket, black gloves, and a black helmet with a visor. The motorcycle has a sleek, modern design with a black and silver color scheme. The background of the image is a stone wall, which appears to be part of a building or structure. The image is taken from a low angle, looking up at the motorcycle and the person riding it. The person is leaning forward slightly, as if they are in the process of turning or slowing down. The image is well-composed, with the motorcycle and the person taking up most of the frame, and the stone wall providing a contrasting background."} +{"image_id": 239509, "caption": "This image shows a construction site with a metal fence and a sign that reads \"Walk\" pointing in one direction and \"Don't Walk\" pointing in the other direction. There are also two arrows on the sign, one pointing to the left and the other pointing to the right. The image was taken on a city street with tall buildings in the background."} +{"image_id": 88848, "caption": "The image shows a group of people standing in front of a fire hydrant in a park. The hydrant is painted in bright colors, including yellow, red, and blue. There is a woman in a yellow dress standing next to the hydrant, and a man in a blue shirt standing behind her. There is also a small tree in the foreground, and a bench in the background. The image is taken in a park, with grass and trees visible in the background."} +{"image_id": 116182, "caption": "This image shows a bowl of food on a table. The bowl contains chicken, carrots, and other vegetables. The bowl is decorated with a purple and white pattern. There is a spoon next to the bowl. The background of the image is a white and blue tiled floor."} +{"image_id": 562345, "caption": "This image shows a woman standing in front of a gray brick wall, wearing a yellow raincoat and blue jeans. She is holding a cell phone in her hand and looking at it. The image is taken from a low angle, making the woman appear small and the phone appear large in the frame. The woman's hair is pulled back into a ponytail, and she has a small smile on her face."} +{"image_id": 343410, "caption": "This image shows a red plate with a pile of sliced vegetables on it. The vegetables appear to be broccoli, onions, and tomatoes. The plate is on a countertop that is covered in a white and blue checkered pattern. There is a knife and a cutting board next to the plate. The lighting in the image is bright and evenly distributed, casting a warm glow over the scene. The image is clear and well-focused, with no visible distortion or blurring."} +{"image_id": 490529, "caption": "This image shows a woman sitting at a table in a restaurant or cafe, holding a cell phone in her hand. She is wearing a pink sweater and has her hair in a ponytail. There is a tablecloth on the table in front of her, and there are other people in the background, sitting at other tables. The woman looks like she is texting or using the phone's internet browser. The lighting in the room is bright, with a lot of natural light coming in from the windows. The colors in the image are mostly neutral, with the pink sweater and the woman's hair providing some color. The image is well-composed, with the woman's face and the phone taking up most of the frame."} +{"image_id": 328818, "caption": "This image shows a woman standing on a wooden bench next to a bicycle. The woman is wearing a pink shirt and blue jeans, and she has her shoes off and is tying her shoelaces. There is a bicycle parked next to the bench, and there are trees and a path in the background. The image is taken from a low angle, looking up at the woman from below. The lighting is bright and natural, with the sun shining down from the left side of the image. The mood is casual and relaxed, with the woman seemingly enjoying a leisurely moment."} +{"image_id": 218947, "caption": "This image shows a person wearing skis and carrying a backpack, walking down a snow-covered slope. The sky is cloudy and there are mountains in the background. The person is wearing a black jacket, black pants, and a black hat. The backpack is black and has a white stripe on it. The skis are black and have white tips and bindings. The person is wearing black gloves and has a black scarf around their neck. The snow is deep and the person is making tracks as they walk."} +{"image_id": 152281, "caption": "This image shows a large group of sheep grazing in a green field. The sheep are all white and have blue numbers painted on their backs. The field is lush and green, and there are trees in the background. The sheep are all standing on their hind legs, grazing on the grass. The image is taken from a high angle, looking down on the sheep."} +{"image_id": 41110, "caption": "This image shows a young child standing up and holding a bottle of shampoo in one hand. The child is wearing a pink and white striped shirt and has short, curly hair. The child's other hand is holding a towel around their neck. The background of the image is a white wall with a wooden floor. The room appears to be a bathroom or a similar setting."} +{"image_id": 512985, "caption": "This image shows a man standing on a beach, holding a surfboard. The man is wearing a black wetsuit and a black hat. The surfboard is white and has a black fin. The man is standing on the sand, looking out to the ocean. There are some trees in the background, and the sky is cloudy."} +{"image_id": 414212, "caption": "This image shows a man with glasses holding two toothbrushes in his hands. He is wearing a gray t-shirt and has a goatee. The background is a shower curtain with a green and white striped pattern. The man is smiling and giving a thumbs up sign."} +{"image_id": 426578, "caption": "This image shows a man walking on a sandy beach with a surfboard under his arm. The ocean is visible in the background, with waves crashing on the shore. The man is wearing a black shirt and black shorts, and is walking towards the water. The sand is covered in footprints, and there are some people in the distance, walking on the beach or swimming in the water. The sky is clear and blue, with some clouds in the distance."} +{"image_id": 291962, "caption": "This image shows a young boy standing in a grassy field, holding a kite in his hand. He is wearing a blue and yellow striped shirt and shorts, and has his hair tied back in a ponytail. In the background, there is a brick wall with some trees and bushes growing on it. The sky is clear and blue, with a few clouds in the distance."} +{"image_id": 460927, "caption": "This image is a black and white photograph of a large brown bear standing on a rocky hillside. The bear is looking off into the distance, and its fur is thick and shaggy. The bear's head is turned to the side, and its eyes are focused on something in the distance. The bear's body is tall and muscular, and its paws are large and powerful. The bear's fur is dark brown, and its skin is smooth and shiny. The bear's fur is thick and shaggy, and its body is tall and muscular. The bear's paws are large and powerful, and its eyes are focused on something in the distance. The bear's body is tall and muscular, and its fur is dark brown. The bear's fur is thick and shaggy, and its body is tall and muscular. The bear's paws are large and powerful, and its eyes are focused on something in the distance. The bear's body is tall and muscular, and its fur is dark brown. The bear's fur is thick and shaggy, and its body is tall and muscular. The bear's paws are large and powerful, and its eyes are focused on something in the distance. The bear's body is tall and muscular, and its fur is dark brown. The bear's fur is thick and shaggy, and its body is tall and muscular. The bear's paws are large and powerful, and its eyes are focused on something in the distance. The bear's body is tall and muscular, and its fur is dark brown. The bear's fur is thick and shaggy, and its body is tall and muscular. The bear's paws are large and powerful, and its eyes are focused on something in the distance. The bear's body is tall and muscular, and its fur is dark brown. The bear's fur is thick and shaggy, and its body is tall and muscular. The bear's paws are large and powerful, and its eyes are focused on something in the distance. The bear's body is tall and muscular, and its fur is dark brown. The bear's fur is thick and shaggy, and its body is tall and muscular. The bear's paws are large and powerful, and its eyes are focused on something in the distance. The bear'"} +{"image_id": 552186, "caption": "This image shows a man riding a skateboard on a concrete ramp. The man is wearing a black t-shirt and blue jeans, and has long hair that is tied back in a ponytail. He is wearing a pair of black sneakers and has a black skateboard under his arm. In the background, there are several people standing around watching the skateboarder. The scene appears to be taking place in a public skate park, with a fence and trees in the background. The sky is overcast, and there are a few clouds visible."} +{"image_id": 553852, "caption": "This image shows a young boy standing on a skateboard on a sidewalk. The boy is wearing a white t-shirt and blue jeans, and has a backpack on his back. There are several bicycles parked on the sidewalk in the background. The image is black and white."} +{"image_id": 370337, "caption": "The image shows two boats docked at a pier in front of a large building with several floors. The building appears to be made of red brick and has large windows on the upper floors. There are several trees and other vegetation growing on the shore next to the pier. The sky is cloudy and there are some small boats in the water next to the pier."} +{"image_id": 18491, "caption": "This image shows a baseball game in progress. Two players are on the field, one catching the ball and the other running to home plate. The catcher is wearing a black helmet and glove, while the runner is wearing a white helmet and glove. The umpire is standing behind the plate, ready to make a call. The crowd is watching the game from the stands. The field is green and the sky is blue."} +{"image_id": 556000, "caption": "This image shows a group of children standing in a living room. The children are all wearing different clothing and one of them is holding a video game controller. The room has a wooden floor and a large window with blinds. There is a couch and a coffee table in the room. The walls are painted a light color and there are several paintings on the walls. The room is well lit by a large ceiling light fixture."} +{"image_id": 443351, "caption": "This image shows two motorcycles parked on the ground. One is a green and white motorcycle with a black seat and handlebars. The other is a black and white motorcycle with a white seat and handlebars. Both motorcycles are parked on the ground and are facing in the same direction. There is a small amount of dirt and debris on the ground around the motorcycles. The image is taken from a high angle, looking down at the motorcycles."} +{"image_id": 63965, "caption": "This image shows a woman holding a white plate with a piece of cake on it. The cake is covered in white frosting and has red strawberries on top. The woman has long, curly brown hair and is wearing a red and orange floral print blouse. The plate is on a table in front of her, and there is a spoon next to it. The room behind her is dimly lit and appears to be a living room."} +{"image_id": 405660, "caption": "This image shows a wooden bench sitting in the middle of a grassy hill overlooking a valley with mountains in the background. The sky is cloudy and grey, and there are trees on either side of the bench. The bench appears to be made of wood and has a rustic, weathered look to it. There are no people or other objects in the image."} +{"image_id": 419144, "caption": "This is a black and white photograph of a group of people riding on the back of elephants in a field. The elephants are standing on their hind legs and the people are sitting on their backs. There are trees in the background and the sky is visible in the top of the image. The people are wearing clothing that is typical of the time period in which the photograph was taken."} +{"image_id": 371004, "caption": "This image shows a zebra standing behind a chain link fence. The zebra has black and white stripes on its body and is looking over its shoulder at something outside the fence. The background is made up of trees and other vegetation. The image is taken from a low angle, making the zebra appear small and the fence appear tall. The fence is made of metal and has a rusty appearance. The image is taken in a natural setting, with the zebra standing in a grassy area surrounded by trees and other vegetation. The image is well-composed, with the zebra's body taking up most of the frame and the fence providing a clear boundary between the foreground and background. The image is of high quality, with sharp focus and good color saturation."} +{"image_id": 116861, "caption": "This image shows a woman lying on a couch with a black stuffed animal in her arms. The woman has blonde hair and is wearing a white shirt. The couch has a striped pattern on it. The stuffed animal is a teddy bear. The woman's hand is holding the bear, and her other hand is resting on the couch. The image is lit by a soft, warm light. The overall mood of the image is cozy and relaxed."} +{"image_id": 579664, "caption": "This image shows a pile of ripe bananas in a wooden crate. The bananas are yellow and have brown spots on them. There are several bunches of bananas in the crate, and some of them are hanging over the edge. The image is taken from a low angle, looking up at the crate from below. There are trees in the background, and the leaves are visible through the gaps in the bananas. The image is well-lit, with the sun shining on the bananas from the left side. The colors in the image are bright and vivid, with the yellow bananas and green leaves standing out against the dark wood of the crate. The mood of the image is cheerful and lively, as the ripe bananas are full of flavor and ready to be eaten."} +{"image_id": 5600, "caption": "The image shows two bowls of food on a white plate. The bowls are made of metal and have lids on them. The food inside the bowls is a mix of vegetables, including onions and carrots. The plate is on a green and white striped tablecloth."} +{"image_id": 199389, "caption": "This image shows a fire hydrant with a cartoon character painted on it, sitting in the middle of a dirt road. The character appears to be a dog with a moustache and glasses. There is a chain link fence in the background, and a building can be seen in the distance."} +{"image_id": 568131, "caption": "This image shows an elephant standing in a grassy field. The elephant has a large body and trunk, and its skin appears to be a light gray color. In the background, there are trees and rocks visible. The image is taken from a low angle, making the elephant appear larger in the frame."} +{"image_id": 35671, "caption": "This image shows a group of people on horseback riding through a dirt track. The riders are wearing cowboy hats and boots, and they are holding ropes that are attached to the backs of the horses. The horses are running at a fast pace, with their tails flying behind them. In the background, there are several buildings and trees, and a group of people are watching the riders from the sidelines. The sky is clear and blue, and there are no clouds in sight."} +{"image_id": 76522, "caption": "This image shows a black and white cat lying on a gray couch. The cat's paws are visible on the couch, and its head is resting on a remote control. The cat's tail is curled up underneath it. The image is taken from a low angle, looking down at the cat from above. The background is a light gray color, and there is a small amount of texture visible on the couch. The overall mood of the image is peaceful and relaxed."} +{"image_id": 504167, "caption": "This image shows a cat with green eyes looking off into the distance. The cat's fur is mostly black and white, with some brown patches on its face and chest. The cat's whiskers are long and white, and its ears are perked up as if it is listening to something. The background of the image is a wooden surface with some dark stains on it. The overall mood of the image is calm and curious."} +{"image_id": 21644, "caption": "The image shows a parking lot with several buses parked in it. The buses are of different colors, including red, white, and pink. There is a large building in the background, which appears to be a bus station. The sky is cloudy and there are some dark clouds visible. The image is taken from a window or door of the building, looking out onto the parking lot."} +{"image_id": 483135, "caption": "This image shows a group of people sitting on a couch in a living room. The people are holding white game controllers in their hands and are looking at a screen on the wall. The screen shows a video game with a green ball in the center of the screen. The people are smiling and appear to be enjoying the game. The room is decorated with a brown couch, a white rug, and a green bean bag chair. The walls are painted a light green color and have a large painting of a tree on them. The room is well lit and has a lot of natural light coming in from the windows."} +{"image_id": 271063, "caption": "This image shows a kitchen with wooden cabinets and a black oven. The countertop is made of wood and there is a window in the wall. The floor is made of wood and there is a wooden staircase leading to the second floor."} +{"image_id": 36477, "caption": "The image shows a pile of ripe bananas in a cardboard box. The bananas are yellow and have a smooth skin. They are arranged in a heap, with some of them slightly twisted or curved. The box is made of cardboard and has a brown color. The image is well lit, with the light coming from the top of the box. The bananas are in good condition, with no signs of damage or decay. The image is a close-up view of the bananas, with the box in the background."} +{"image_id": 125375, "caption": "This image shows a red and white train traveling down a railroad track. The train has a long, sleek body and a cab at the front. There are several people standing on the platform next to the train, waiting for it to arrive. The platform is made of concrete and has a few trees growing on it. The sky is overcast and there are a few clouds in the distance."} +{"image_id": 362520, "caption": "This image shows a young boy riding a skateboard down a ramp. He is wearing a helmet and pads to protect himself from any potential falls. The ramp is made of concrete and has a few small bumps and jumps on it. The boy is in the air, performing a trick on the skateboard."} +{"image_id": 5412, "caption": "This is a bathroom with a toilet, sink, and shower. The walls are tiled and the floor is made of tiles. The toilet is made of porcelain and has a white seat and lid. The sink is made of porcelain and has a white basin. The shower is made of porcelain and has a white shower head and curtain. The toilet and sink are connected by a black plastic pipe. The shower is connected to the wall by a black plastic pipe. The walls are tiled with brown tiles. The floor is made of tiles. The toilet is against the wall and the sink is against the wall next to the toilet. The shower is against the wall next to the sink. The toilet has a black plastic seat and lid. The sink has a white basin. The shower has a white shower head and curtain. The toilet has a white porcelain bowl and tank. The sink has a white porcelain basin. The shower has a white porcelain shower head and curtain. The toilet has a black plastic seat and lid. The sink has a white porcelain basin. The shower has a white porcelain shower head and curtain. The toilet has a white porcelain bowl and tank. The sink has a white porcelain basin. The shower has a white porcelain shower head and curtain. The toilet has a black plastic seat and lid. The sink has a white porcelain basin. The shower has a white porcelain shower head and curtain. The toilet has a white porcelain bowl and tank. The sink has a white porcelain basin. The shower has a white porcelain shower head and curtain. The toilet has a black plastic seat and lid. The sink has a white porcelain basin. The shower has a white porcelain shower head and curtain. The toilet has a white porcelain bowl and tank. The sink has a white porcelain basin. The shower has a white porcelain shower head and curtain. The toilet has a black plastic seat and lid. The sink has a white porcelain basin."} +{"image_id": 757, "caption": "The image shows a group of three elephants standing in a shallow pool of water. Two of the elephants are adults, while the third is a baby. The adults are standing next to each other, with their trunks touching. The baby elephant is standing in the water, with its trunk submerged. The water is dirty and there are rocks and debris in the background."} +{"image_id": 396496, "caption": "This image shows a group of people standing in front of a row of old, rusted trams. The trams are parked on the side of the road, and there are several people standing around them, looking at the trams or talking to each other. The people in the image are dressed in various clothing, including coats, hats, and scarves. The sky is overcast and there are clouds in the background. The image is black and white."} +{"image_id": 81761, "caption": "This image shows a woman playing tennis on a court. She is holding a tennis racket in her right hand and is about to swing it at the ball. The court is made of green and white tiles and there are two metal poles on either side of the court. The woman is wearing a black top and white shorts. The background of the image is made up of large windows with green curtains. There are also some trees and a building in the background."} +{"image_id": 130677, "caption": "This image shows two people playing tennis on a court at night. The court is lit by floodlights, and the players are wearing white tennis attire. One player is holding a tennis racket, and the other is standing on the other side of the court, ready to serve. The trees in the background are lit up by the floodlights, casting long shadows on the court. The image is taken from a low angle, looking up at the court from the side."} +{"image_id": 318825, "caption": "This image shows a man wearing a white shirt and white pants standing on a tennis court. He is holding a tennis racket in one hand and a tennis ball in the other. The court is blue and has a white line running down the middle. There is a large banner with the words \"Tennis Court\" on it hanging on the wall behind the man. The banner is green and white. There is a blue sky and some clouds in the background."} +{"image_id": 48014, "caption": "This image shows a man walking a black dog on a leash down a sidewalk. The man is wearing a green shirt and a black hat, and the dog is wearing a red collar. There are several people sitting on benches in the background, and there are trees and buildings visible in the distance. The sky is clear and blue, and there are no clouds in sight. The image is taken from a low angle, looking down the sidewalk towards the man and dog."} +{"image_id": 421028, "caption": "This image shows a gray cat lying on a red and black rug with a toy carrot in its mouth. The cat's fur is fluffy and its eyes are closed. The room is dimly lit and there is a wooden floor and a wooden staircase in the background. The rug has a floral pattern and the cat's paws are visible on the rug. The cat is lying on its side with its legs tucked underneath it. The toy carrot is made of plastic and has a bright orange color. The cat's fur is a medium length and it appears to be well-groomed. The room is cluttered with various items such as a wooden chair, a bookshelf, and a vase. The overall atmosphere of the image is cozy and warm."} +{"image_id": 479659, "caption": "This image shows a man and a woman standing in front of a table with a white tablecloth and a bottle of wine on it. The man is holding a glass of wine and the woman is holding a plate of food. They are both wearing white shirts and blue jeans. The man is wearing a black leather jacket and the woman is wearing a white blouse. There is a wooden fence in the background with a brown roof and a green garden."} +{"image_id": 369826, "caption": "This image shows a luggage carousel in an airport terminal. The carousel has a large screen displaying an image of a person surfing on a wave. The screen is mounted on the wall of the carousel and is surrounded by lighting that illuminates the area. The floor is made of marble tiles and the walls are painted a light gray color. There are no people in the image."} +{"image_id": 406253, "caption": "This image shows a row of motorcycles parked on the side of a city street. The motorcycles are lined up next to each other, with one parked on the left and two parked on the right. The street is lined with trees and buildings, and there are cars parked on the other side of the street. The sky is overcast and there are clouds in the background."} +{"image_id": 548267, "caption": "This image shows a group of sheep grazing in a lush green pasture. The mountains in the background are covered in snow and clouds. The sky is clear and blue, and there is a bright sun shining down on the scene. The sheep are all white and appear to be grazing peacefully on the grass."} +{"image_id": 335844, "caption": "This image shows a toaster oven on a countertop. The oven has a stainless steel exterior and a black interior. There is a small amount of food on the top rack of the oven. The countertop is made of white marble. There is a white towel hanging from the handle of the oven."} +{"image_id": 299640, "caption": "This image shows a remote control for a television. The remote control has buttons for changing channels, adjusting the volume, and turning the television on and off. The remote control is made of plastic and has a sleek, modern design. The buttons are clearly labeled and easy to use. The remote control is designed to be ergonomic and comfortable to hold."} +{"image_id": 121812, "caption": "This image shows a view of a city street at night, with cars driving on the road and streetlights illuminating the area. The buildings on the left side of the image are tall and have many windows. The sky is cloudy and there are some trees visible in the distance. The image is taken from the perspective of a car driving down the street, with the car's headlights illuminating the road ahead."} +{"image_id": 107234, "caption": "This image shows a man wearing a black suit and a white shirt, with a white flower in his hand. He is looking at the camera with a serious expression on his face. The background is a building with white walls and a green roof. The image is well-lit, with the man's face in sharp focus."} +{"image_id": 153104, "caption": "This image shows a group of people sitting in a stadium or arena, watching a sporting event. The people are all wearing casual clothing, such as t-shirts and shorts, and some of them are holding food, such as hot dogs or sandwiches. The man in the foreground is holding a hot dog in one hand and a drink in the other, while the man in the background is holding a sandwich in one hand and a drink in the other. The people in the background are all looking at the game or event, while the man in the foreground is looking at his food. The stadium or arena is filled with people, and there are rows of seats and a scoreboard visible in the background."} +{"image_id": 216417, "caption": "This is a black and white photograph of a man wearing skis and carrying a small white teddy bear on his back. He is standing on a snowy slope, with his skis and poles in front of him. The man is wearing a hat, gloves, and a scarf, and he has a backpack on his back. The snow in the background is deep and powdery, and there are no other people or objects in the image."} +{"image_id": 286708, "caption": "This image shows a black and white cat wearing a pink knitted hat. The cat is lying on a cushion and has a pink nose and green eyes. The hat is knitted and has a round shape. The background is a brown carpet with a pink wall in the background. The image is well-lit and the cat's fur is shiny. The hat is a nice addition to the cat's outfit, making it look cute and stylish."} +{"image_id": 547041, "caption": "This image shows a bowl of salad with various ingredients such as lettuce, tomatoes, cucumbers, and black olives. There is also a pink spoon next to the bowl. The background is a white surface with a black keyboard visible in the corner."} +{"image_id": 293802, "caption": "This image shows a man riding a skateboard on a brick sidewalk in a city. The man is wearing a black shirt and black pants, and has a black skateboard under his arm. There are several people walking on the sidewalk in the background, and palm trees can be seen in the distance. The sky is clear and blue, and there are no clouds in sight. The man is jumping in the air, with one foot on the ground and one foot off the ground. The skateboard is being pushed with his other foot."} +{"image_id": 252738, "caption": "This image shows a man standing in a field, looking at his cell phone. He is wearing a black leather jacket and has a white shirt underneath. The background is a mountain range with clouds in the sky. The man's hair is gray and he has a beard. The image is taken from a low angle, looking up at the man from the ground. The man's face is expressionless and he is not looking at the camera. The image is clear and the colors are muted. The lighting is bright and the shadows are deep. The image is taken with a cell phone camera."} +{"image_id": 43165, "caption": "The image shows two zebras standing in a field of dry grass. One zebra is looking at the other zebra, which is standing with its head down. The background is a tree-covered hill with a brownish-gray color. The image is black and white, with the zebras' stripes clearly visible. The grass is brown and looks dry and withered. The image is a close-up shot of the zebras, with the grass in the foreground and the tree in the background. The image is a natural scene, with no human elements or other animals present."} +{"image_id": 218215, "caption": "This image shows a white polar bear swimming in the water with its mouth open. The bear's fur is very thick and fluffy, and its eyes are closed as it enjoys the water. The water is very clear and the bear is surrounded by small waves. The bear's mouth is open and it appears to be smiling or laughing. The bear's body is submerged in the water, with only its head and part of its neck visible above the surface. The bear's fur is very thick and fluffy, and its eyes are closed as it enjoys the water. The water is very clear and the bear is surrounded by small waves. The bear's mouth is open and it appears to be smiling or laughing. The bear's body is submerged in the water, with only its head and part of its neck visible above the surface."} +{"image_id": 299082, "caption": "This image shows a giraffe with its head down, looking at the camera with its big brown eyes. The giraffe is standing on a rocky outcropping in a grassy field, with tall trees in the background. The giraffe's coat is a mix of brown and tan, with patches of darker brown on its head and neck. Its long neck is stretched out in front of it, and its mouth is open as if it is chewing on some grass. The giraffe's legs are long and slender, and its hooves are clearly visible on the ground. The overall mood of the image is peaceful and serene, as if the giraffe is just enjoying a quiet moment in the sun."} +{"image_id": 152360, "caption": "This image shows a group of green bananas hanging from a string in a market or store. The bananas are displayed in a row, with some of them facing up and others facing down. There are also some other fruits and vegetables visible in the background, such as tomatoes, carrots, and apples. The image is taken at night, as the streetlights and car headlights provide illumination. The scene is bustling with people, as there are several cars parked on the street and a few people walking by. The overall atmosphere is lively and colorful."} +{"image_id": 205601, "caption": "This image shows a woman cooking food in a black skillet on a stove. She is wearing a blue shirt and is holding a spoon with food on it. Two men are standing behind her, watching her cook. The kitchen is well-lit and has white cabinets and countertops."} +{"image_id": 174004, "caption": "This image shows a yellow truck parked in a grassy field surrounded by trees. The truck has a crane on the back and appears to be abandoned. The trees in the background are tall and green."} +{"image_id": 31542, "caption": "This image shows a person wearing a black and white snowboard and holding onto a black and white striped handle. The person is in mid-air, with one leg extended forward and the other bent backward. The sky is clear and blue, and there are no other objects or people in the image."} +{"image_id": 305268, "caption": "This image shows two women playing tennis on a court with a net in the background. The court is made of green and white tiles and has a metal roof with a few windows. The women are wearing white and black tennis outfits and holding tennis rackets. One of the women is standing on the left side of the court and the other is on the right side. The net is stretched across the middle of the court, and there are no other people or objects in the image."} +{"image_id": 2867, "caption": "This image shows a group of people on skis standing in a line on a snowy slope. They are all wearing backpacks and holding ski poles. The sky is cloudy and there are trees in the background."} +{"image_id": 72428, "caption": "This image shows a bathroom with a toilet, sink, and shower. The walls are made of wood and the floor is tiled. The toilet has a white porcelain bowl and a wooden seat. The sink is made of porcelain and has a faucet with a single handle. The shower has a wooden door and a showerhead with a handheld showerhead attachment. The toilet paper roll is visible on the back of the toilet."} +{"image_id": 158494, "caption": "The image shows three giraffes standing in a field. The giraffes are all brown and tan in color, with long necks and legs. The first giraffe has a brown body and a tan head, with a long, curved neck. The second giraffe has a brown body and a tan head, with a shorter neck. The third giraffe has a brown body and a tan head, with a medium-length neck. They are all standing in a line, with their heads facing the same direction. In the background, there is a wooden fence and a tree. The sky is clear and blue."} +{"image_id": 147629, "caption": "This image shows a white cat lying on the floor with a stuffed animal toy in its mouth. The cat's fur is fluffy and white, and it has blue eyes. The stuffed animal toy appears to be a grey elephant with a blue nose and ears. The cat's tail is curled up underneath it, and its paws are resting on the ground. The room in the background is carpeted and has a brown color scheme."} +{"image_id": 581899, "caption": "This image shows a group of three blue trains parked next to each other on a railroad track. The trains are facing in the same direction and are all parked with their doors open. The windows of the trains are tinted and the lights inside are on. There is a dirt and grass area next to the tracks and some trees in the background. The sky is cloudy and there is a hint of sunlight peeking through the clouds."} +{"image_id": 369345, "caption": "This image shows a living room with a couch, a bookshelf, and a lamp. The couch is blue and has a blanket on it. The bookshelf is filled with books and has a lamp on top of it. The lamp is turned on and illuminates the room. The room is well lit and has a warm, cozy atmosphere."} +{"image_id": 372246, "caption": "This image shows a stop sign and two street signs on a pole in front of a dirt road. The stop sign has a red background with white letters that say \"stop\" on it. The two street signs are green with white letters that say \"hell canyon rd\" and \"caution\" on them. There is a blue sky in the background with some clouds."} +{"image_id": 261563, "caption": "This image shows two dogs playing in a field of tall, green grass. One dog is black and the other is brown. They are both wearing collars and appear to be playing with a yellow frisbee. The background of the image is made up of trees and bushes, and there is a fence in the distance. The sky is cloudy and overcast."} +{"image_id": 461802, "caption": "This image shows a red and white train with a man in an orange vest standing next to it. The train is parked at a station with stairs leading up to it. There are two clocks on the wall, one with the time and the other with a map of the train route. The man is wearing a hard hat and carrying a bag."} +{"image_id": 138175, "caption": "This image shows a man wearing a black suit jacket and white shirt, with a red tie. He is holding a cell phone to his ear and looking at the screen. The background is a restaurant or cafe with tables and chairs visible. The man's face is not visible, but his hand is holding the phone to his ear. The image is well-lit, with a clear focus on the man's face and the phone in his hand. The colors are mostly black and white, with some red and green in the background. The image appears to be taken with a high-quality camera, with a sharp focus and good contrast."} +{"image_id": 103488, "caption": "This is a bathroom with two sinks and a mirror. The walls are tiled with blue and white tiles. The floor is made of black and white tiles. The lighting is bright and well-lit."} +{"image_id": 215901, "caption": "This image shows a bowl of fruit on a table in front of a painting. The bowl contains a variety of fruits, including oranges, bananas, and apples. The table is covered in a red and white checkered tablecloth. The painting behind the bowl is a landscape with mountains and a river in the foreground. The frame of the painting is made of wood and has a gold border."} +{"image_id": 514180, "caption": "The image shows a group of pizzas on a metal tray. The pizzas are various sizes and shapes, with some having toppings such as pepperoni, mushrooms, and onions. The pizzas are placed on a metal tray with a black background."} +{"image_id": 396338, "caption": "This image shows a group of people standing on the side of a busy street. There are several cars parked on the street, including a yellow taxi and a black car. The people are dressed in white and black clothing, and one person is wearing a white hat. The buildings on the left side of the image are made of wood and metal, and have signs hanging from them. The sky is cloudy and overcast."} +{"image_id": 579362, "caption": "This image shows a man sitting on a blue and white wooden bench overlooking a sandy beach with a cruise ship in the background. The man is wearing a black t-shirt and blue jeans, and is looking out to sea with a thoughtful expression on his face. The beach is lined with palm trees and there are a few people walking along the shore. The sky is clear and blue, and there are white clouds in the distance. The water is calm and the waves are lapping at the shore."} +{"image_id": 289512, "caption": "The image shows a woman riding a brown and white horse in a field. The woman is wearing a blue shirt, a brown hat, and a brown jacket. She is holding the reins of the horse with one hand and has a brown saddle on the horse's back. The horse is wearing a brown bridle and has a brown saddle on its back. The horse is walking slowly in the field, and the woman is riding it with ease. There are no other objects or people in the image."} +{"image_id": 306928, "caption": "This image shows a tall, stone tower with a clock on the front. The clock has black numbers and hands, and the tower has intricate carvings on the sides. The sky is clear and blue, and there are a few birds perched on the top of the tower. The tower is surrounded by trees and other buildings, and there is a road or path leading up to it."} +{"image_id": 453009, "caption": "This image shows a stuffed animal sitting on top of a wooden railing. The animal appears to be a brown and white teddy bear, and it is wearing a black and white striped hat. The background of the image shows a street with trees and houses on either side."} +{"image_id": 112581, "caption": "This image shows a man standing in front of a display case in a clothing store. The man is wearing a white t-shirt and black pants, and he is holding a white umbrella in his right hand. The display case contains various items of clothing, including shirts, pants, and hats. The walls of the store are lined with shelves containing more clothing items. The overall atmosphere of the image is bright and cheerful, with the white umbrella adding a pop of color to the scene."} +{"image_id": 504977, "caption": "This image shows an older woman sitting on a wooden bench in a park. She is wearing a floral print jumpsuit and has a black purse on her lap. The background is made up of tall trees and green grass. The woman looks tired and appears to be lost in thought. The image is shot from a low angle, making the woman appear small and insignificant in the grand scheme of things. The overall mood of the image is somber and contemplative."} +{"image_id": 228764, "caption": "This image shows a cat and a dog standing on a sandy beach. The cat is looking off into the distance, while the dog is looking at the cat. There is a building in the background, which appears to be a residential building. The sky is clear and blue, and there are some trees in the distance. The image is taken from a low angle, looking up at the cats and dogs."} +{"image_id": 151528, "caption": "This image shows a man standing on a wall with a black dog standing next to him. The man is wearing a white shirt and blue shorts, and the dog is wearing a black collar. The wall is made of stone and has a small opening at the top. There is a cloudy sky in the background."} +{"image_id": 248919, "caption": "This is a kitchen with wooden cabinets and a white stove. There is a table and chairs in the corner of the room. The walls are painted white and there is a window above the sink."} +{"image_id": 580607, "caption": "The image shows a group of people standing on a ledge overlooking a river. The river is lined with boats, some of which are moored to the shore. The people are looking down at the boats and the water. There are trees on the banks of the river and a bridge in the background. The sky is clear and blue."} +{"image_id": 200291, "caption": "The image shows two blue plates on a table, one with a piece of toast and the other with a tomato and cheese sandwich. The tomato and cheese sandwich is topped with a slice of lemon. The plates are on a white countertop."} +{"image_id": 296231, "caption": "This image shows a living room with a television, a bookshelf, and a painting on the wall. The television is on and there are several pictures on the bookshelf. The painting on the wall appears to be abstract and has a black and white theme."} +{"image_id": 505663, "caption": "The image shows a large clock on the side of a building. The clock has a white face with black numbers and hands. The clock is mounted on a stone archway, which has two large stone columns on either side. The columns are decorated with carvings and the archway has a decorative keystone at the top. The background of the image is dark, with only the clock and the archway visible."} +{"image_id": 41572, "caption": "This image shows a group of people playing baseball on a field. The players are wearing white uniforms and helmets, and one of them is holding a bat. There is a fence in the background, and trees and buildings can be seen in the distance. The sky is clear and blue, and there are clouds in the distance."} +{"image_id": 509589, "caption": "This image shows a group of people on skateboards standing in a line on a sidewalk. The people are wearing different clothing and have different hairstyles. Some of them are wearing sunglasses and others are not. The background of the image is a brick wall with graffiti on it. There are also some people standing on the sidewalk watching the skateboarders. The overall mood of the image is casual and relaxed."} +{"image_id": 357238, "caption": "This image shows a person standing on a beach, looking out at the ocean. The person is holding a kite, which is being flown in the wind. The sky is cloudy and there are some white clouds in the background. The water is calm and there are some waves lapping at the shore. The person is wearing a black shirt and black pants, and has a black hat on their head. The kite is blue and white, and has a black line running down the middle of it."} +{"image_id": 466575, "caption": "This image shows a brown leather suitcase sitting on the ground in a parking lot. The suitcase has a zipper on the side and appears to be in good condition. There is a small amount of dirt and debris on the bottom of the suitcase. The background is a concrete surface with some small cracks and potholes."} +{"image_id": 271970, "caption": "This image shows a white building with a steeple on top, surrounded by trees and a sidewalk. The building appears to be a church or a small chapel. The sky is clear and blue, with no clouds in sight."} +{"image_id": 305540, "caption": "The image shows a large metal sculpture of scissors in the shape of a pair of scissors. The sculpture is made of silver metal and is mounted on a pedestal in the middle of a cobblestone street. The building behind the sculpture is a large, ornate building with white marble columns and a tall, pointed roof. The sky is clear and blue, and there are a few clouds in the distance."} +{"image_id": 462928, "caption": "This image shows a man with glasses holding a white and black smartphone to his ear. He is wearing a green and black plaid shirt and has a beard. The background is a wooden desk with a computer and other office supplies visible."} +{"image_id": 270544, "caption": "The image shows a group of people standing on top of a white surfboard in the middle of a calm lake. The water is smooth and the sky is clear, with a few clouds in the distance. The people are all wearing swimsuits and have their arms raised in the air, as if they are celebrating or cheering. The lake is surrounded by lush green trees and hills, giving the scene a peaceful and serene atmosphere. The water is also quite shallow, with only a few inches of water covering the surfboard. Overall, the image is a beautiful representation of a relaxing day at the lake, with people enjoying the water and each other's company."} +{"image_id": 134042, "caption": "This image shows a large airplane flying through a clear blue sky. The plane is black and has white stripes on it. There are clouds in the background, and the sun is shining brightly. The trees below the plane are bare and have no leaves."} +{"image_id": 120340, "caption": "This image shows a man standing next to a bicycle that is leaning against a wall. The man is wearing a black shirt and has his hands on the handlebars of the bike. There is a woman standing behind him, watching as the man adjusts the brakes on the bike. The woman is wearing a white shirt and has her hands in her pockets. In the background, there is a large white bus with the words \"City Bus\" written on the side. There are also several other people standing on the sidewalk, watching as the man works on the bike."} +{"image_id": 418949, "caption": "This image shows a baseball game in progress on a baseball field. The players are wearing uniforms and helmets, and the umpire is standing behind the plate. The bases are on the field, and the batter is holding a bat and standing at the plate. The catcher is standing behind the plate, and the pitcher is on the mound. The crowd is seated in the stands, watching the game. The sky is cloudy, and there is a green field in the background."} +{"image_id": 520109, "caption": "This image shows a group of colorful umbrellas placed on the grass in a park. The umbrellas are of different colors and sizes, and are arranged in a random pattern. The sky is cloudy and there are some trees in the background. The image is taken from a high angle, looking down at the umbrellas. The lighting is bright and even, with some shadows cast by the umbrellas. The mood is cheerful and playful."} +{"image_id": 50753, "caption": "This is a kitchen with wooden cabinets and a white refrigerator, stove, and sink. There is a dining table and chairs in the corner of the room. The walls are painted a light color and there is a window with curtains."} +{"image_id": 329939, "caption": "The image shows three giraffes standing in a grassy field. The giraffes are all brown and have long necks and legs. They are all looking in different directions, with one looking to the left and the other two looking to the right. The background is made up of tall grasses and trees, with a few bushes scattered around. The sky is overcast, with a few clouds visible. The image is taken in the wild, with a clear view of the surrounding landscape."} +{"image_id": 351345, "caption": "This image shows a woman standing in a room with a man standing behind her. The woman is holding a white plastic wand in her right hand and smiling. The man is wearing a black shirt and has his arms crossed in front of him. There is a painting on the wall behind them and a table with a vase of flowers in the foreground."} +{"image_id": 25293, "caption": "The image shows a woman holding a blue disc in her hand, standing on a rocky cliff overlooking a vast landscape. The woman is wearing a long, flowing dress and has long, flowing hair. The sky is cloudy and the sun is setting in the background. The woman's expression is one of determination and focus, as she holds the disc with both hands. The disc is blue and has a star pattern on it. The overall mood of the image is one of mystery and wonder, as the woman holds the disc and looks out into the distance."} +{"image_id": 543041, "caption": "The image shows a box of doughnuts with different types of toppings such as chocolate, powdered sugar, and glazed. The doughnuts are arranged in a way that they are visible from all sides. The box is made of white cardboard and has a clear plastic window on the top to show the contents. The doughnuts are round and have a hole in the center. They are covered in a light-colored, powdered sugar glaze. The chocolate topping is in small, round pieces, and the powdered sugar is in a fine, fluffy consistency. The glaze is shiny and smooth, and the doughnuts are fresh and warm. The overall appearance of the image is appetizing and inviting."} +{"image_id": 568265, "caption": "This image shows a man standing in a park, looking up at a kite that is being flown in the sky. The man is wearing a red shirt and black pants, and is holding a stick in his hand. There are several trees in the background, and a group of people are visible in the distance, walking on the sidewalk. The sky is cloudy and there are a few white clouds visible."} +{"image_id": 467386, "caption": "This image shows a blue door with two small windows on either side. The door is made of wood and has a metal handle on the right side. There is a small pile of dirt and debris on the ground in front of the door. Two black cats are sitting on the ground, one on each side of the door. The walls of the building are made of red brick and have large cracks and holes in them. There are also some plants growing on the walls. The overall atmosphere of the image is one of neglect and decay."} +{"image_id": 242363, "caption": "This is a bathroom with a white toilet, sink, and bathtub. The walls are tiled and there is a window in the shower. The toilet has a white porcelain bowl and the sink has a white porcelain basin. The bathtub has a white porcelain surface and there is a showerhead attached to the wall above it."} +{"image_id": 554900, "caption": "This image shows a white toilet with a lid open and a plunger in the water. The toilet is located in a bathroom with gray tiles on the floor and walls. There is a trash can next to the toilet, and a hand-dryer above it. The toilet appears to be in good condition, with no visible stains or damage."} +{"image_id": 115006, "caption": "This image shows a baseball game in progress on a baseball field. The players are wearing uniforms and helmets, and the umpire is standing behind the plate. The batter is holding a bat and waiting for the pitch, while the catcher is crouched behind the plate. The crowd is seated in the stands, watching the game. The field is well-maintained and has a green grass surface. The bases are marked with white lines, and the scoreboard is visible in the background."} +{"image_id": 75375, "caption": "This image shows a group of people on the water, kite surfing. They are riding on the water on boards with kites attached to them, which are being pulled by the wind. The people are wearing wetsuits and helmets, and some of them are holding onto the kites with their hands. The water is calm and the sky is clear, with a few clouds in the distance. The image is taken from a high angle, looking down on the water."} +{"image_id": 419223, "caption": "This image shows two boys playing soccer on a green field. The boy on the left is wearing a black and white striped jersey, black shorts, and black soccer cleats. He is kicking the ball with his right foot and trying to control it with his left foot. The boy on the right is wearing a blue and white jersey, blue shorts, and white soccer cleats. He is running towards the ball and trying to kick it with his right foot. The fence in the background is made of metal and has green grass on either side. The sky is blue and there are a few trees in the distance."} +{"image_id": 137578, "caption": "This image shows a pair of white porcelain toilets in a public restroom. The toilets are mounted on the floor and have a smooth, creamy appearance. The base of each toilet is made of metal and has a silver finish. The toilets are mounted on the wall and have a grab bar for people with disabilities. The walls of the restroom are tiled with brown and beige ceramic tiles. The tiles are arranged in a diagonal pattern and are grouted in a light gray color. The floor is also tiled with the same ceramic tiles, and the grout is the same color as the walls. The toilets are located in a room with white walls and a white ceiling. The room has a clean, modern look and is well-lit by overhead fluorescent lights. The toilets are located in a public restroom and are accessible to people with disabilities."} +{"image_id": 408808, "caption": "The image shows two toothbrushes in plastic packaging, one with a blue handle and the other with a green handle. The packaging is labeled \"System\" and \"Sonicare\" on the front. The toothbrushes are next to each other on a white surface."} +{"image_id": 243773, "caption": "This image shows a kitchen with a counter, cabinets, and a refrigerator. There are also bottles of liquor on the counter and a fireplace in the background."} +{"image_id": 436492, "caption": "This image shows a street corner with two signs on either side. One sign is a road sign pointing in the direction of the street, while the other sign is a warning sign indicating that the road ahead is closed. The building in the background appears to be a residential building with several floors and balconies. The sky is clear and there are no clouds in sight. The street is empty and there are no cars or people in the scene."} +{"image_id": 556648, "caption": "This image shows a white cell phone sitting on a clear display case. The phone has a sleek, modern design with a white plastic casing and a touch screen display. The display is black and has several icons and buttons displayed on it. The phone appears to be a high-end model, with a clear plastic case that protects the phone's screen. The phone is surrounded by other electronic devices, including a computer monitor, a pair of headphones, and a USB cable. The image is well-lit and the colors are vivid and clear."} +{"image_id": 298924, "caption": "This image shows a bowl of noodles with chicken and vegetables, served with chopsticks. The bowl is decorated with blue and white stripes, and there are two small bowls of sauce on the side. The noodles are long and thin, and there are pieces of chicken and vegetables mixed in with them. The chopsticks are made of wood and are used to pick up the food and transfer it to the mouth. The sauce is a thick, savory liquid that is used to flavor the noodles. The tablecloth is white and has a pattern of blue and green flowers. There are also two small bowls of sauce on the table, one with a red liquid and the other with a yellow liquid."} +{"image_id": 562030, "caption": "The image shows a wooden deck with potted plants on it. The plants are made of clay and have small holes in the bottom for drainage. There are also some scissors on the deck, which suggest that someone has been gardening or tending to the plants. The plants appear to be healthy and well-cared for."} +{"image_id": 501315, "caption": "This image shows a person riding a green and orange motorcycle on a race track. The person is wearing a helmet, gloves, and a black jacket with orange accents. The motorcycle has a sleek design with a low seat and a small windshield. The background of the image is a long, straight stretch of asphalt with a few trees and a grassy area in the distance. The sky is overcast, and there are a few clouds visible. The image is taken from a low angle, looking up at the motorcycle as it curves around a turn on the track. The rider's body is positioned in a leaning, forward-facing position, with one hand on the handlebars and the other on the gas tank. The tires are smoking, indicating that the motorcycle is being pushed to its limits. The overall mood of the image is fast-paced and exciting, with a sense of speed and competition."} +{"image_id": 436162, "caption": "This image shows a white bus parked in a parking lot. The bus has a green and white livery and the words \"public transportation\" written on the side. There are trees in the background and a clear blue sky."} +{"image_id": 323888, "caption": "The image shows a large, modern building with a large clock on the front. The building is made of concrete and has large windows with white frames. There are several cars parked in front of the building, and a person is walking in front of it. The sky is dark and there are streetlights on the street."} +{"image_id": 211476, "caption": "This image shows two bowls of food on a wooden table. The bowls are made of black plastic and have lids on them. The food inside the bowls includes scrambled eggs, black beans, and sour cream. There is also a small container of salsa on the table next to the bowls. The overall color scheme of the image is black and white, with the black bowls and white salsa container contrasting with the brown wooden table."} +{"image_id": 473433, "caption": "This image shows a suitcase open on a wooden table. The suitcase has a black exterior with silver accents and a handle on the top. Inside the suitcase, there is a white mug and a black book. The mug has a white handle and a white and black pattern on the outside. The book has a black cover with white text and a white spine. There is a window behind the suitcase, with a pink curtain covering it. The curtain has white flowers on it. The room has a wooden floor and a wooden ceiling with white paint. There is a wooden chair next to the table, with a white cushion on it. The chair has black legs and a black back. The room has a warm, cozy feel to it."} +{"image_id": 165752, "caption": "This image shows a black dog standing on its hind legs and holding a yellow frisbee in its mouth. The dog is wearing a collar and appears to be standing in a fenced-in yard. The fence is made of wood and has a brown color. There is a wooden post in the foreground of the image."} +{"image_id": 573756, "caption": "The image shows two giraffes standing in a field of tall grass. The giraffes are standing next to each other, with their necks stretched out and their heads looking up towards the sky. The sky is clear and blue, with a few clouds visible in the distance. The giraffes are brown and tan in color, with their long necks and legs visible. The grass in the foreground is tall and dry, with some leaves still on the trees in the background."} +{"image_id": 187450, "caption": "This image shows a train parked on a platform. The train is a blue and white color scheme with a yellow stripe down the middle. There are people walking on the platform next to the train. The train appears to be a high-speed train with sleek lines and a pointed nose. The platform is made of concrete and there are orange cones on the ground. The sky is clear and there are no clouds in the sky."} +{"image_id": 43266, "caption": "The image shows two giraffes standing under a group of palm trees. The giraffes are standing on a rocky hillside, with large boulders and shrubs surrounding them. The sky is clear and blue, with a few clouds visible in the distance. The giraffes are facing each other, with their necks stretched out and their heads close together. The palm trees are tall and green, with their leaves rustling in the breeze. The image is taken from a low angle, looking up at the giraffes from the ground."} +{"image_id": 150080, "caption": "The image shows a pizza on a white plate on a wooden table. The pizza has a crispy crust and is topped with a variety of ingredients such as mushrooms, onions, and green peppers. The pizza appears to be cooked to perfection and is likely to be a delicious meal. The wooden table and plate add a rustic touch to the image, making it look like a meal that could be enjoyed in a cozy, casual setting. The fork and knife on the right side of the image suggest that the pizza is meant to be eaten as a main course. Overall, the image is visually appealing and makes one feel hungry."} +{"image_id": 453757, "caption": "This image shows a group of people playing soccer on a field. The players are wearing orange jerseys and black shorts. The field has a green grass surface and there are trees in the background. The players are running and kicking the ball, with one player jumping in the air to head the ball. The other player is on the ground, trying to get back up after being tackled."} +{"image_id": 354460, "caption": "The image shows a group of people standing in front of a building, holding a ribbon and smiling at the camera. The people are wearing formal attire, including suits and ties for the men and dresses for the women. The building in the background is a red brick structure with white trim and a large window on the first floor. The people are holding the ribbon in their hands and smiling at the camera. The ribbon is tied in a bow in front of them, and they are cutting it with scissors. The people are standing in front of a large sign that says \"Grand Opening\" in large letters. The sign is attached to the building and has a large ribbon tied around it. The people are standing in front of the sign, holding the ribbon and smiling at the camera."} +{"image_id": 221681, "caption": "This image shows a bathroom with a white sink, a toilet, and a shower. The walls are blue and white, and there is a window above the sink. The floor is tiled with blue and white tiles."} +{"image_id": 349324, "caption": "This image shows a train traveling along a railroad track. The train is made up of several cargo cars, each with different colors and markings. The train appears to be moving at a moderate speed, with the wheels of the train visible as they pass over the track. The image is taken from a high angle, looking down on the train as it moves along the track. The background is made up of trees and other vegetation, with a few buildings visible in the distance."} +{"image_id": 225133, "caption": "The image shows a group of colorful umbrellas hanging from the branches of a tree. The umbrellas are made of different colors and patterns, and are suspended from the branches of the tree by strings. The leaves of the tree are visible in the background, and the sky is visible through the leaves. The image is taken in a park or garden setting, and the trees are tall and green. The image is a colorful and whimsical representation of the weather."} +{"image_id": 452566, "caption": "The image shows a stop sign on the side of a road in a rural area. The stop sign is red and white, and has a black border. The background is a mountain range with green trees and brown dirt. The sky is blue and there are clouds in it."} +{"image_id": 124952, "caption": "This image shows a city street with a bus parked on the side of the road. The bus is a yellow and blue color with a large front window and a sign on the side that reads \"public transportation\". There are several trees on the side of the road and a building in the background with many windows. The street is lined with cars and there are pedestrians walking on the sidewalk."} +{"image_id": 26697, "caption": "This image shows a woman standing in a doorway with a toothbrush in her hand. She is wearing a gray sweater and jeans, and has her hair pulled back in a ponytail. The background is a wooden door with a white trim and a pink wall behind it. The woman is smiling and looking at the camera."} +{"image_id": 126064, "caption": "This image shows a man riding a wave on a surfboard in the ocean. He is wearing a red shirt and black shorts and has a white surfboard under his arm. The wave is large and turbulent, with whitecaps and a blue sky in the background. The man is leaping into the air as he rides the wave, with his arms outstretched and his hair blowing in the wind. The image is a photograph of a real-life surfing session, taken in the ocean."} +{"image_id": 557190, "caption": "The image shows two men standing in front of a green hillside with trees and buildings in the background. The man on the left is wearing a black suit and the man on the right is wearing a gray suit. They are both smiling and standing next to each other, with one hand on the other's shoulder. The sky is overcast with white clouds and the sun is shining through them. The grass on the hillside is a vibrant green color. The buildings in the background are a mix of modern and traditional architecture."} +{"image_id": 137612, "caption": "This image shows a tall building with a purple facade and white balconies. The building has several floors and a large number of windows. There is a red stop sign on the sidewalk in front of the building. The sky is cloudy and there are no other visible details in the image."} +{"image_id": 408480, "caption": "This image shows a cityscape with a large red and black lighthouse in the foreground and a group of tall cranes in the background. The lighthouse has a large black and white striped pole on top and a red and black striped roof. There are several tall buildings in the background, including one with a large white and blue sign on the top. There are also several cars parked on the street, including a red car and a blue car. The sky is clear and blue, with a few clouds in the distance."} +{"image_id": 277694, "caption": "This image shows a cow lying on the ground in front of a building. The cow has a large, brown body with white spots on it. Its head is resting on its front legs, and its eyes are closed. There is a motorcycle parked next to the cow, and a person is standing nearby. The person is wearing a black shirt and pants, and has their arms crossed in front of them. The building behind the cow has a metal gate and bars on the windows. The street in front of the building is lined with parked cars and motorcycles."} +{"image_id": 74166, "caption": "This image shows a man riding a skateboard on a concrete surface. He is wearing a black t-shirt and has a tattoo on his left arm. There are several people in the background watching him. The scene appears to be in a public area, such as a park or plaza."} +{"image_id": 102625, "caption": "This image shows a small kitchen with a white counter, sink, and cabinets. There is a window above the sink that looks out onto a small backyard. The floor is wooden and there is a rug on it. The walls are white and there are pictures hanging on them. There is a television on a stand in the corner of the room."} +{"image_id": 540694, "caption": "This image shows a giraffe standing next to a car in a parking lot. The giraffe has its head peeking out of the car window, looking at something outside. The car is a blue sedan with trees in the background. The giraffe is brown and white with a long neck and legs."} +{"image_id": 518586, "caption": "This is an old black and white photograph of a train traveling down a set of tracks. The train is passing through a small town, with buildings and other structures visible in the background. There are several other trains on the tracks, and a man is standing on the side of the tracks, looking at the train as it passes by. The sky is overcast, and there are clouds in the distance. The image is in good condition, with no visible damage or wear."} +{"image_id": 81303, "caption": "This image shows a man wearing a brown jacket, black pants, and black boots, with a red scarf around his neck. He is holding two ski poles and wearing a helmet. He is standing on a snow-covered slope, with the snow reaching up to his waist. The sky is cloudy and there are no other people or objects in the image."} +{"image_id": 383065, "caption": "This image shows a public toilet located on the sidewalk in front of a building. The toilet is made of metal and has a green door. The door is open, revealing the interior of the toilet. The interior is clean and well-maintained. There is a sign on the wall that reads \"Public Toilet\" in multiple languages. The sign is mounted on the wall above the toilet seat. The toilet is surrounded by a small patch of grass and a few trees. The sky is visible in the background."} +{"image_id": 169602, "caption": "This image shows a woman riding a wave on a surfboard in the ocean. She is wearing a black and blue wetsuit and has long blonde hair blowing in the wind. The wave behind her is large and white, with a few small waves breaking around her. The water is turquoise and the sky is a bright blue. The horizon is visible in the background, with a few clouds in the sky."} +{"image_id": 19890, "caption": "The image shows two zebras standing in a dirt area with a metal fence in the background. The zebras are eating grass from a hay feeder. The image is taken from a low angle, looking up at the zebras. The sky is cloudy and there are trees in the background."} +{"image_id": 236604, "caption": "This is a living room with a couch, coffee table, and chairs. The walls are painted a light beige color and there is a large window in the background. The ceiling is high and has a large chandelier hanging from it. The floor is made of hardwood and there is a rug on it. The room is well lit and there are several lamps in the corners. The furniture is made of a light-colored wood and the couch has a beige cushion. The coffee table has a glass top and there are several books on it. The room is spacious and well-appointed."} +{"image_id": 270753, "caption": "This image shows a slice of pizza on a metal tray. The pizza has a thick crust and is topped with various vegetables, including broccoli, mushrooms, and onions. The pizza is also covered in a red sauce and has cheese on top. The tray is metal and has a silver color. The pizza appears to be cut into slices, with one slice missing from the top of the pizza."} +{"image_id": 457178, "caption": "This is an old photograph of a street scene in Paris, France. The street is lined with tall, ornate buildings on either side, and there are several horse-drawn carriages and people walking on the sidewalk. The buildings are made of stone and have large windows and balconies. There is a large monument in the center of the street, which appears to be a statue or monument. The sky is overcast and there are clouds in the distance."} +{"image_id": 577712, "caption": "This image shows a group of people standing in front of a fence, looking at a giraffe that is standing on the other side. The giraffe has its head stretched out and its mouth open, as if it is trying to reach the people. The people are looking at the giraffe with a mixture of curiosity and fear. The giraffe's body is brown and white, with a long neck and legs. The people are wearing a variety of clothing, including a pink shirt, a green shirt, and a blue shirt. The fence behind the people is made of metal and has a wooden top. There are trees and other plants in the background."} +{"image_id": 414560, "caption": "The image shows three cows lying in a pen made of straw. The cows are black and white, with one wearing a blue collar. The cows are all lying down, with one looking up at the camera. The pen is made of metal bars and has a gate at one end. There are also some hay bales in the pen."} +{"image_id": 388983, "caption": "The image shows a hot dog in a bun with ketchup and mustard on it. The hot dog is served in a white paper container with a red and white striped lid. The container is placed on a gray table with a white background. The image is well-lit, with the sun shining on the hot dog and the container. The hot dog appears to be steaming and the ketchup and mustard are dripping. The image is a close-up shot of the hot dog, with the bun and condiments in the foreground and the background consisting of the table and surrounding area. The image is well-composed, with the hot dog and condiments in the center of the frame and the background providing a contrasting texture and color. The image is visually appealing, with the hot dog and condiments creating a bold and appetizing image."} +{"image_id": 245965, "caption": "This image shows a person standing in a field with an umbrella in their hand. The person is standing behind a fence made of wooden poles. The fence is surrounded by tall grass and some trees in the background. The sky is cloudy and there are some mountains visible in the distance. The person is wearing a black shirt and pants, and has a backpack on their back. The umbrella is blue and has a wooden handle. The person is looking at something in the distance, but it is not clear what it is."} +{"image_id": 147590, "caption": "This image shows a glass of red wine sitting on a wooden table. The glass is full and has a stem and bowl. There are several pieces of cutlery, including a knife and fork, on the table next to the glass. The background is a wooden table with a white tablecloth. The lighting is bright and even, casting shadows on the table and the glass. The image is clear and well-focused."} +{"image_id": 46882, "caption": "This image shows a group of people playing a game of frisbee in a park. The people are all wearing blue shirts and some have white frisbees in their hands. There is a large tree in the background and a clear blue sky with a few clouds. The ground is covered in dirt and there are no other objects in the image."} +{"image_id": 518719, "caption": "This image shows a brown and white ceramic vase sitting on a beige tablecloth. The vase has a smooth, glossy surface and a slightly raised rim. The design on the vase is made up of horizontal lines and a series of small, vertical lines that create a striped effect. The vase has a round, slightly raised base and a slightly taller, narrower neck. The overall effect is one of simplicity and elegance."} +{"image_id": 176312, "caption": "This image shows a woman standing in front of a large poster that reads \"Tour Stop\" in bold letters. The poster is mounted on a wooden frame and has a green background with white text. The woman is wearing a black dress and a black jacket, and is holding a cell phone in her hand. The woman looks at the phone and appears to be checking her messages. The image is in focus and has a clear, bright lighting. The background is plain and there are no other people or objects in the image."} +{"image_id": 580746, "caption": "This image shows a group of white sheep grazing in a green pasture. The sheep are standing on their hind legs and grazing on the lush grass. The sky is cloudy and there are some trees in the background. The image is taken from a low angle, looking up at the sheep."} +{"image_id": 541223, "caption": "This image shows a large building with a green roof and a sign that says \"Plane Food\" on it. The building appears to be made of metal and has large windows on the first floor. There is a small garden or courtyard in front of the building, and a row of trees or bushes on the other side of the street. The sky is clear and blue, with a few clouds in the distance."} +{"image_id": 22589, "caption": "This image shows a group of sheep standing behind a fence. The sheep are all of the same color, with long, fluffy white coats. They are all looking straight ahead, with their eyes focused on something in the distance. The background of the image is a lush green field, with trees visible in the distance. The sky is a bright blue, with a few fluffy white clouds visible. The fence in the foreground is made of metal wire, and is topped with barbed wire. The sheep are standing on the other side of the fence, and are looking through the bars at something on the other side. The image is a close-up of the sheep's faces, with their eyes and noses visible. The lighting in the image is bright and even, with the sheep's faces lit from the front. The overall mood of the image is peaceful and serene, with the sheep standing calmly and the green field and blue sky providing a natural backdrop."} +{"image_id": 196815, "caption": "This image shows a group of people sitting in chairs and holding video game controllers. The people in the image are all wearing casual clothing, such as t-shirts and jeans. The room in the image appears to be a living room or study, with white walls and a wooden floor. There are several paintings and photographs hanging on the walls, and a bookshelf filled with books in the background. The people in the image are all looking at the screen of a television or computer, which is displaying a video game."} diff --git a/OPERA/log/chair_eval_results/minigpt4/ours.jsonl b/OPERA/log/chair_eval_results/minigpt4/ours.jsonl new file mode 100644 index 0000000000000000000000000000000000000000..e34d13e575b40844c21df815d14e29c797caaf75 --- /dev/null +++ b/OPERA/log/chair_eval_results/minigpt4/ours.jsonl @@ -0,0 +1,500 @@ +{"image_id": 226988, "caption": "This image shows a woman sitting at a table with a plate of pizza in front of her. She is holding a camera in one hand and taking a photo of the pizza with the other. The table is covered in red and white checkered tablecloth, and there are other plates and utensils on the table. The woman is wearing a black tank top and black pants, and her hair is pulled back into a ponytail. The background of the image is a wooden fence and some trees."} +{"image_id": 337443, "caption": "This image shows a orange and black construction sign on the sidewalk next to a busy city street. The sign has an arrow pointing down the street and the words \"OB Structure\" written on it. There are several cars driving on the street and a pedestrian walking on the sidewalk."} +{"image_id": 112022, "caption": "This image shows a group of people standing in line at a luggage carousel in an airport. The people are all looking at their phones or talking to each other. There are several pieces of luggage on the carousel, including suitcases, backpacks, and duffel bags. The walls of the airport are made of wood and have a brownish-gray color. The lighting in the airport is bright and well-lit, casting shadows on the ground. The overall atmosphere of the image is one of waiting and anticipation."} +{"image_id": 394444, "caption": "This image shows a person standing next to a skateboard that has graffiti written on it. The person is wearing black pants and a black shirt, and is holding the skateboard with one hand. The skateboard has a graphic of a skull and crossbones on it, as well as other colorful designs. The ground beneath the skateboard is tiled, and there is a building visible in the background."} +{"image_id": 481635, "caption": "The image shows a woman sitting at a table with a slice of pizza in front of her. She is wearing a white shirt and a green scarf around her neck. There is a red and white checkered tablecloth on the table, and a glass of water in front of her. The woman is smiling and waving at the camera."} +{"image_id": 285258, "caption": "This image shows a group of dogs playing together in a fenced-in area. The dogs are all different breeds, including a black and white dog, a brown and white dog, and a black dog. The dogs are all standing on their hind legs and appear to be playing together. There is a fence around the area to keep the dogs contained."} +{"image_id": 479057, "caption": "This image shows a white polar bear standing in a grass-covered field. The bear is looking down and appears to be eating something from the ground. There is a fence or barrier in the background, and some trees can be seen in the distance. The image is taken from a low angle, looking up at the bear."} +{"image_id": 66238, "caption": "This image shows a person riding a snowboard in the air, with a blue sky and clouds in the background. The person is wearing an orange jacket and black pants, and is holding a snowboard in one hand. The snowboard has a red and black design on it. There are also some trees and a ski lift in the background."} +{"image_id": 558458, "caption": "This image shows a woman holding a white plate with a hot dog, spaghetti, and a salad on it. She is wearing sunglasses and has a smile on her face. The background is a white tent with a blue and yellow striped awning."} +{"image_id": 400596, "caption": "This image shows a bathroom with a green sink and a wooden floor. The sink has a faucet and a towel rack above it. There is a wooden towel rack on the wall next to the sink. The towel rack has two towels hanging from it. The towels are blue and white."} +{"image_id": 373266, "caption": "This image shows a group of surgeons working on a patient in a hospital operating room. The surgeons are wearing scrubs and gloves, and are standing around a patient who is lying on a table. There are monitors and other medical equipment on the table, and the surgeons are using various tools to operate on the patient. The room is dimly lit, and there are several other people in the room, including nurses and other medical staff."} +{"image_id": 38332, "caption": "This is an image of an elephant standing in a field of tall, green grass. The elephant has large, curved tusks and is standing on its hind legs, with its front legs on the ground in front of it. The elephant appears to be looking off into the distance, as if it is searching for something. The sky is visible in the background, with a few clouds visible."} +{"image_id": 84533, "caption": "This image shows a woman sitting on the back of a black motorcycle. She is wearing a black leather jacket and black leather pants. The motorcycle is parked in front of a white garage."} +{"image_id": 449963, "caption": "This image shows a room with several tables and chairs arranged in a circle. The tables are made of wood and have black chairs with wheels. There is a large white screen on the wall at the front of the room, which appears to be a projector screen. The room is well-lit and appears to be a classroom or meeting room."} +{"image_id": 128180, "caption": "This image shows a white plate with a piece of pizza on it. The pizza has slices of tomato, mozzarella cheese, and basil on it. There are also two forks and a knife on the plate, next to the pizza. The plate is on a table with a white tablecloth and a brown background."} +{"image_id": 204232, "caption": "This image shows a person riding a skateboard over a ramp. The person is wearing a black t-shirt and black pants, and is holding onto the handlebars of the skateboard with one hand. In the background, there are several people standing on the sidewalk watching the skateboarder. The image is taken from a high angle, looking down at the skateboarder from above."} +{"image_id": 477867, "caption": "The image shows a man on a surfboard riding a wave in a body of water. The man is wearing a black wetsuit and a black helmet. He is standing on the top of the surfboard, holding onto the handle and looking down at the water. In the background, there are several people watching the surfer from the shore. The water is choppy and there are whitecaps on the waves."} +{"image_id": 308128, "caption": "This image shows a young man riding a skateboard down a metal ramp. He is wearing a white t-shirt and shorts and has a backpack on his back. The ramp is made of metal and has a railing on either side. There are trees in the background and a clear blue sky."} +{"image_id": 222407, "caption": "This is an image of a bird perched on a tree branch. The bird has a yellow beak and black and brown feathers. The background is a blurred image of trees and a cloudy sky."} +{"image_id": 469543, "caption": "The image shows a bedroom with two beds. One of the beds has a striped comforter and the other has a striped blanket. There is a wooden headboard on one side of the bed and a wooden nightstand on the other side. The wall behind the beds has a white wallpaper with a floral pattern. There is a small window with white curtains on one side of the room, and a door on the other side."} +{"image_id": 421564, "caption": "This image shows a small child sitting in a high chair with a birthday cake in front of them. The child is wearing a white shirt and pink overalls, and has a pink bow in their hair. The cake is decorated with pink fro"} +{"image_id": 177419, "caption": "The image shows a blue and white fire hydrant with a mural painted on it. The mural depicts what appears to"} +{"image_id": 86432, "caption": "This image shows a baseball player swinging a bat at a pitched ball on a baseball field. The player is wearing a blue and white uniform and has a helmet on his head. The umpire is standing behind the plate and the catcher is positioned behind the home plate. The crowd is seated in the stands watching the game."} +{"image_id": 544590, "caption": "This image shows a close-up view of an orange tabby cat lying on a gray couch. The cat is resting its head on its paw and appears to be sleeping. The cat has white paws and a white chin, and its fur is fluffy and well-groomed. The background of the image is a light-colored couch with a pattern on it, and there are some pillows and a blanket on the floor in front of the cat. The overall mood of the image is peaceful and relaxed."} +{"image_id": 513060, "caption": "This image shows a person holding a half-eaten doughnut in one hand and a cup of coffee in the other. The person is sitting on a bench in a park, and there are trees and buildings visible in the background. The person is wearing a blue shirt and jeans, and their hand is stained with doughnut crumbs. The doughnut appears to be glazed and has a blue filling."} +{"image_id": 140921, "caption": "This image shows a surfboard with various messages written on it, including \"Beach Bums\" and \"Full Bar.\" The surfboard is lying on the sand in front of a beach."} +{"image_id": 361351, "caption": "The image shows a pizza in a cardboard box with a slice taken out of it. There is a bottle of beer on the table next to the box."} +{"image_id": 202154, "caption": "The image shows a pizza on a wooden cutting board on top of a wooden table. The pizza has a crispy, golden-brown crust and is topped with mozzarella cheese, tomato sauce, and fresh basil leaves. The edges of the pizza are slightly charred, giving it a smoky flavor. In the background, there is a wooden chair and a bottle of red wine."} +{"image_id": 94248, "caption": "The image shows a large clock tower in the middle of a city street. The clock tower is made of metal and has two large clock faces on it. The clock faces are white with black numbers and hands. There is a pedestal in front of the clock tower with a small plaque on it. The plaque has an inscription that reads \"Time flies like an arrow; fruit flies like a banana.\" There are several people walking on the sidewalk around the clock tower. Some of them are looking up at the clock tower while others are walking past it. There is a black car parked on the side of the street next to the clock tower. The car has tinted windows and a license plate that reads \"CARE\". There are several shops and buildings on the other side of the street, including a clothing store and a jewelry store."} +{"image_id": 200681, "caption": "This image shows a man and two dogs playing in a green field. The man is wearing a striped shirt and jeans, and is holding a blue frisbee in his hand. The two dogs are jumping up in the air, trying to catch the frisbee. The sky is clear and blue, and there are trees in the background."} +{"image_id": 532989, "caption": "This image shows a giraffe lying down in a grassy field. The giraffe has brown and white stripes on its body and a long neck. In the background, there is a wooden fence and trees."} +{"image_id": 565989, "caption": "The image shows a building with a clock tower on top of it. The clock tower has several statutes of birds on top of it. The building is made of brick and has a metal roof. There are trees in the background, and the sky is clear."} +{"image_id": 67315, "caption": "This image shows two men wearing suits and ties, standing in a room with a window in the background. The man on the left is wearing a light-colored shirt and a dark tie, while the man"} +{"image_id": 157170, "caption": "The image shows a group of sheep standing on a hillside overlooking a valley with a city in the distance. The sheep are standing on a rocky outcropping and are looking down at the valley. The sky is overcast and there are clouds in the distance. The sheep have long, curved horns and appear to be grazing on the grass on the hillside. The valley is surrounded by rolling hills and mountains in the distance."} +{"image_id": 328786, "caption": "This image shows a row of benches lined up along a sidewalk in a park. The benches are made of concrete and have metal armrests. There are several trees in the background, and the sky is visible in the distance. The image is taken from a low angle, looking down the sidewalk."} +{"image_id": 46011, "caption": "This image shows a small airplane parked on a runway at an airport. The runway is lined with grass and there is a fence surrounding the airport. The sky is clear and there are mountains in the background."} +{"image_id": 384348, "caption": "This image shows a person wearing skis and standing on a snow-covered slope. The person is wearing a blue jacket and black pants, and is holding a pair of skis with poles. In the background, there is a ski lift and a cloudy sky."} +{"image_id": 451798, "caption": "This image shows a collection of ties hanging on a rack next to a red wall. The ties are made up of various colors such as blue, green, and brown. There are also some hats hanging on the rack in the same color scheme."} +{"image_id": 376545, "caption": "This image shows two people riding skateboards on a sidewalk in front of a coffee shop. One person is wearing a red and blue jacket and black pants, while the other person is weaing a black and white jacket"} +{"image_id": 11538, "caption": "This image shows a person riding a motorcycle on a road. The person is wearing black leather gloves, a black helmet, and black boots. They appear to be wearing a black jacket and black pants. The motorcycle is a black and silver Honda CB1000R. The background of the image is green and there are trees on either side of the road."} +{"image_id": 346207, "caption": "This image shows a cat lying on a desk in front of two computer monitors and a keyboard. The cat appears to be relaxed and comfortable on the desk."} +{"image_id": 359238, "caption": "This image shows a man sitting at a table with a cup of tea in front of him. He is wearing a brown jacket and a yellow shirt. The tablecloth is white and there are two chairs on either side of him. There is a window behind him with a view of a cityscape."} +{"image_id": 297610, "caption": "This image shows a person riding a skateboard on a ramp. The person is wearing a white shirt and black pants, and is holding a stick in one hand. The ramp is made of wood and has a metal railing on one side. There is a metal roof above the ramp, and the walls are made of metal beams."} +{"image_id": 428447, "caption": "This is a black and white photograph of a street corner with two streetlights on either side of the street. The street is lined with tall trees on either side of the road, and there are several buildings in the background. The buildings are made of brick and have large windows and balconies. There is a sidewalk on either side of the street, and there are several people walking on it. The street is empty except for a few parked cars on the side of the road. The sky is clear and there are no clouds in sight."} +{"image_id": 428769, "caption": "This image shows a black car parked on the side of the road next to a parking meter. The car has a license plate with the number \"123\" on it. There is a tree on the other side of the road, and the sky is visible in the background."} +{"image_id": 452084, "caption": "This image shows a plate with two slices of bread to"} +{"image_id": 545363, "caption": "This image shows a bench that has fallen off the side of a building. The bench is lying on the ground next to a railing that has been damaged by the fall. The building behind the bench appears to be made of concrete and has a large window on the top floor. There are no people in the image."} +{"image_id": 77963, "caption": "The image shows a cow hanging from the ceiling in a store. The cow is made of black and white plastic and is suspended by a rope from the ceiling. The store appears to be a toy store or a pet store. The walls are painted green and there are various toys and stuffed animals displayed on the shelves."} +{"image_id": 78093, "caption": "The image shows a person wearing skis and poles, standing in the middle of a snow-covered trail. The person is wearing a pink jacket, black pants, and a black hat. The trees on either side of the trail are tall and covered in snow. The sky is cloudy and the sun is shining through the clouds."} +{"image_id": 346334, "caption": "The image shows a large brown bear standing in a grassy field. The bear is standing on its hind legs and has its front paws on the ground in front it it. In the foreg ..."} +{"image_id": 185633, "caption": "This is a bathroom with a bathtub, sink, and toilet. The walls and floor are covered in peeling paint. There is a window above the sink with a view of the outside."} +{"image_id": 327165, "caption": "This image shows a man cutting the hair of a small child in a barber shop. The man is wearing a black shirt and has his back to the viewer. The small"} +{"image_id": 410632, "caption": "This image shows a group of baseball players standing on a green field with a large scoreboard in the background. The players are wearing baseball uniforms and gloves, and one of them is holding a baseball glove. The scoreboard has the names of the teams and the score of the game listed on it. The players are standing in a line, facing the scoreboard, and appear to be waiting for something to happen. The crowd is visible in the background, sitting in the stands and watching the game."} +{"image_id": 468471, "caption": "This image shows a man in a white shirt and blue tie jumping up and down on a bed in a room with white walls and a wooden floor. The bed has a brown comforter and pillars on either side. There are several people in the room looking at the man on the bed."} +{"image_id": 241317, "caption": "This image shows a man pushing a cart with a bunch of fruit on it in front of a blue building. The man is wearing a black shirt and pants and has a black hat on his head. The building behind him appears to be made of stone or brick and has a wooden door with a window above it. There are no other people or vehicles in the image."} +{"image_id": 444982, "caption": "The image shows two zebras grazing in a grassy field. One zebra is standing on its hind legs, while the other is lying down. Both zebras have black and white stripes on their bodies. In the background, there is a tree with a large trunk and branches. The sky is overcast, and there are no other animals or people in the image."} +{"image_id": 117563, "caption": "This image shows two men standing in a living room. The man on the left is wearing a white shirt and blue jeans, while the man on"} +{"image_id": 206579, "caption": "The image shows a man standing in front of a table with a birthday cake on it. The man is wearing a black t-shirt and glasses, and he is looking at the cake with a surprised expression on his face. The table is covered in red and white checkered tablecloth, and there are plates, glasses, and silverware on it"} +{"image_id": 221172, "caption": "This image shows a man playing tennis on a court. He is holding a racket and swinging it at a tennis ball that is coming towards him. The man is wearing a blue shirt and white shorts. In the background, there is a person standing on the sidelines watching the game. The court is made of green and purple tiles."} +{"image_id": 317969, "caption": "This image shows a group of sheep walking down a road next to a mountain range in the background. The sheep are all white and appear to be of the same breed. The mountain range is covered in snow and has a number of peaks visible. The road is made of asphalt and is lined with trees on either side. There are no other vehicles or people in the image."} +{"image_id": 82150, "caption": "This image shows a man sitting on a couch with a white video game controller in his hand. He is wearing a blue t-shirt and has his hair styled in a messy fashion. The background of the image shows a window with blinds and a view of a tree outside."} +{"image_id": 284064, "caption": "This image shows a man playing tennis on a court. He is wearing a white shirt and blue shorts, and is holding a tennis racket in his right hand. He is standing on the left side of the court, and the net is behind him. The background of the image is a green fence and trees."} +{"image_id": 372203, "caption": "This image shows a bench sitting in the middle of a dirt road in the middle of a desert. The sky is clear and there are mountains in the background."} +{"image_id": 359136, "caption": "The image shows a woman lying on the floor in front of a bathtub. She is wearing black boots and a black top. The background is white and there is a toilet in the corner of the room."} +{"image_id": 499281, "caption": "This image shows a kitchen with white cabinets, a stainless steel stove, a microwave oven, a refrigerator, a sink, a faucet, and a garbage can."} +{"image_id": 192233, "caption": "This image shows a man playing tennis on a dirt court. He is holding a racket and swinging it at a tennis ball that is in the air. The man is wearing a blue shirt and black shorts. The background of the image is a dirt court with some trees in the distance."} +{"image_id": 11987, "caption": "This image shows a bedroom with a large, ornate fireplace in the center of the room. The walls are striped in black and white, and there are two windows on either side of the fireplace. The bed is covered in a striped bedspread, and there are two chairs and a small table in the corner of the room."} +{"image_id": 406810, "caption": "This image shows a group of people sitting in a room with a large screen on the wall in front of them. The screen is displaying a live feed of a space shuttle launching into space. The people in the room are watching the launch and appear to be interested in what is happening."} +{"image_id": 99965, "caption": "This image shows a plate with a sandwich on it. The sandwich appears to be made with two slices of bread with chicken, lettuce, and tomato in between. There are also a pile of potato chips on the side of the plate. The plate is on a white surface with a green and white border."} +{"image_id": 17328, "caption": "The image shows a red train traveling along a set of tracks in a snowy environment. The train appears to be traveling at a high speed, with its wheels leaving a trail of smoke behind it. The train is passing under a large metal structure, which appears to be a bridge or an overpass. There are no people or other vehicles visible in the image."} +{"image_id": 393682, "caption": "The image shows a white plate with a piece of cake on it. The cake is covered in whipped cream and strawberries, and there is a fork next to it. The plate is on a table with a white tablecloth and a vase of flowers on it."} +{"image_id": 540093, "caption": "The image shows a pink umbrella on the sidewalk next to a tree. The umbrella is covered in plastic wrap, and there are no people or other objects visible in the image. The tree has leaves and branches, and there are cars parked on the street in the background."} +{"image_id": 242400, "caption": "The image shows a woman standing next to a large black metal pole with a large clock on it. The clock has a red ribbon tied around it, and the woman is wearing a white shirt and black pants. There are parked cars on the street in the background."} +{"image_id": 409009, "caption": "The image shows a long, sleek white train parked on a platform in a modern train station. The train has large windows and appears to be made of metal. There are several people standing on the platform waiting for the train to depart. The station appears to be well-lit and modern, with large glass windows and metal railings."} +{"image_id": 6091, "caption": "The image shows a person standing in front of a stop sign that is mounted on a pole. The person appears to be holding something in their hand, but it is not clear what it is. The stop sign has an orange background with white letters that spell out the word \"stop.\""} +{"image_id": 42834, "caption": "This image shows a woman sitting at a table with a plate of food in front of her. She is wearing an orange t-shirt and has her hair tied back in a ponytail. The table is covered in white cloth and there are several plastic forks and knives on the table next to the plate of food. The woman appears to be using a plastic fork to eat the food on the plate. In the background, there is a wall with white tiles and a grey ceiling."} +{"image_id": 433554, "caption": "This image shows a group of people on surfboards standing on the deck of a boat in the middle of a body of water. The people are wearing wetsuits and life jackets, and some of them are holding onto the ropes of the boat. The sky is cloudy and there is a large tree on the shore in the background."} +{"image_id": 174987, "caption": "This image shows a train with graffiti on it. The graffiti is written in different colors and styles, including blue, green, and yellow. The train is parked on a platform, and there are people waiting to board it."} +{"image_id": 116208, "caption": "The image shows a group of people sitting at a table, surrounded by empty wine glasses and plates of food. In the center of the table is a large pizza with various toppings, including bacon, mushrooms, and spinach. The pizza appears to be finished and ready to be served to the people at the table."} +{"image_id": 80131, "caption": "This image shows a group of people sitting around a table in a kitchen. The people are all smiling and appear to be having a good time. There are plates of food on the table and a bottle of wine in the center. The walls of the kitchen are made of wood and there are cabinets and appliances in the background."} +{"image_id": 310663, "caption": "The image shows a group of old trains parked on a set of railroad tracks. The trains are rusty and appear to be in disrepair. There is a tree in the background, and the sky is cloudy."} +{"image_id": 100138, "caption": "This image shows a black motorcycle parked on the side of a road. The motorcycle is parked next to a hedge and there are trees in the background. The motorcycle appears to be in good condition and has a sleek design."} +{"image_id": 415613, "caption": "This image shows a man wearing a green t-shirt and black pants standing in front of a counter in a kitchen. The counter is lined with various food items, including sandwiches, salads, and fruits. The man appears to"} +{"image_id": 214737, "caption": "The image shows a large, ornate building with a high ce"} +{"image_id": 172718, "caption": "This is a black and white photograph of a young boy wearing a white shirt and tie. He is looking directly at the camera with a serious expression on his face. His hair is short and neatly styled. The background of the photograph is blurry and out of focus."} +{"image_id": 99186, "caption": "This image shows a stop sign on a pole next to a road. The stop sign has a red background with white letters that read \"stop.\" There is a car parked on the side of the road next to the stop sign. The sky in the background is clear and blue."} +{"image_id": 3580, "caption": "This image shows a man sitting on a couch, holding a video game controller in his hand. He is wearing a gray t-shirt and has glasses on his face. The room behind him appears to be a living room with a wooden floor and some furniture, including a coffee table and a bookshelf. The walls are painted a light color and there are some plants in the room."} +{"image_id": 526044, "caption": "The image shows a cow standing on the edge of a body of water. The cow has a brown and white coat and is looking out into the water. The water is calm and the sky is clear. There is no other detail in the image."} +{"image_id": 105291, "caption": "This image shows a stop sign hanging from a pole in front of a yellow building with white trim. The stop sign has a red background with white letters that read \"stop\" in black. There are two street signs next to the stop sign, one with a green background and white letters that read \"no right on red\" and the other with a white background and black letters that read \"one way\" in red. There are also several cars parked on the street in front of the building."} +{"image_id": 577169, "caption": "The image shows a group of people standing in front of a large clock face. The clock face is made of metal and has black Roman numerals on it. The people in the image are looking up at the clock face and appear to be admiring it. The room they are in is dimly lit and has a wooden floor. There are no other objects or people in the image."} +{"image_id": 181574, "caption": "This image shows a group of people sitting at a table with a large pizza in front of them. The pizza has various toppings on it, including pepperoni, mushrooms, and onions. The people in the image are all smiling and appear to be having a good time. One person is holding a knife and fork, while the others are using their hands to eat the pizza. The table is covered in white tablecloth, and there are two glasses of water on the table in front of the people."} +{"image_id": 83441, "caption": "This is a living room with a black leather couch and a wooden floor. There is a television on a stand in the corner of the room, and a bookshelf with books on it in the opposite corner. The walls are painted white, and there is a window with curtains on one side of the room."} +{"image_id": 130527, "caption": "The image shows a group of cows grazing in a lush green field. The cows are black and white, and they are standing on their hind legs, grazing on the tall grass. In the background, there is a clear blue sky with a few fluffy clouds. The ocean can be seen in the distance, and there are mountains in the background. The image is taken from a car window, and the car is parked on the side of the road."} +{"image_id": 86471, "caption": "This image shows a man playing tennis on a blue and white striped court. He is wearing a blue shirt and white shorts and is holding a tennis racket in his right hand. The man is standing on the left side of the court and is about to serve the ball. There is a white net dividing the court in half and a white line marking the baseline. In the background, there is a blue sky and some trees."} +{"image_id": 105737, "caption": "This is an image of a bookshelf with a teddy bear sitting on top of it. The bookshelf is made of wood and has several books stacked on top of each other. The teddy bear is wearing a red bow tie and is holding a book in its paws. The background of the image is a wooden floor with a rug on it."} +{"image_id": 212842, "caption": "The image shows a group of zebras standing in a field, with a dead tree in the background. The zebras are standing in a line, with their heads facing towards the camera. The sky is clear and blue, with a few clouds in the distance. The grass in the field is tall and green, and there are no other animals or people in the image."} +{"image_id": 105220, "caption": "This image shows a group of people on skis standing under an archway made of red inflatable tubes. The archway is decorated with banners and flags. The people are wearing skiing gear, including helmets, gloves, and goggles. They are holding hands and smiling at each other. In the background, there are snow-covered mountains and a clear blue sky."} +{"image_id": 490701, "caption": "The image shows a person holding a fork with a piece of chocolate cake on a white plate in front of them. The person is wearing a blue sh"} +{"image_id": 368961, "caption": "The image shows two elephants standing in a pen, looking out through an open doorway. The elephants are standing on their hind legs and appear to be looking at something outside the pen. There is a group of people standing nearby, watching the elephants through the doorway. The image is taken from a low angle, looking up at the elephants from the ground."} +{"image_id": 520892, "caption": "This image shows a woman eating a hot dog out of a bun. She is holding the hot dog in one hand and using the other hand to hold the bun. The woman is wearing a black jacket and a pair of sunglasses. In the background, there is a large tree with green leaves."} +{"image_id": 113354, "caption": "The image shows a group of three zebras standing in a dirt area surrounded by trees and other vegetation. Two of the zebras are standing next to each other, while the third is standing off to the side. The zebras appear to be grazing on grass and other plants in the area."} +{"image_id": 33652, "caption": "The image shows a pizza on a tray on a stove top. The pizza has a crispy crust and is topped with cheese, pepperoni, onions, and mushrooms. The pizza appears to be cooked and ready to be served."} +{"image_id": 511153, "caption": "The image shows a blue and red train traveling along a set of railroad tracks. The train has several cars attached to it, including a caboose at the end. There are trees and other vegetation in the background, as well as some buildings and other structures in the distance. The sky is cloudy and overcast."} +{"image_id": 328957, "caption": "This image shows a cat sitting on top of a tall, wooden scratching post in a room with a window in the background. The cat is sitting on its hind legs with its front paws on the top of the post and its tail curled up behind it. The post is made of wood and has a series of scratching pads attached to it. There are also several toys scattered around the room, including a ball and a feather wand."} +{"image_id": 190015, "caption": "This image shows a green truck parked next to a large pile of hay in a grassy field. The trees in the background are visible behind the truck."} +{"image_id": 244925, "caption": "This image shows a man standing on a grassy knoll overlooking a body of water. He is holding a camera in one hand and a banana in the other. The man is wearing a gray t-shirt and jeans, and has a backpack slung over his shoulder. The backpack has a brown and black design on it, and appears to be made of nylon. In the background, there is a blue sky and some clouds."} +{"image_id": 29406, "caption": "This image shows a wooden bench sitting in the middle of a lush green lawn. The bench appears to be made of wood and has a smooth surface. Behind the bench, there is a row of trees and bushes that are in full bloom with colorful flowers. The building in the background appears to be a residential complex with multiple floors and windows. The sky in the background is clear and blue."} +{"image_id": 32570, "caption": "This image shows a man riding a surfboard through a large wave. The man is wearing a black t-shirt and black shorts, and has a black beard and sunglasses. He is holding onto the surfboard with both hands and has a determined look on his face. The wave behind him is large and turbulent, with white foam and blue water. The sky is a bright blue and there are clouds in the distance."} +{"image_id": 260608, "caption": "This image shows a group of young girls playing soccer on a grass field. The girls are wearing black and purple uniforms and are kicking a soccer ball towards a goalpost. The goalpost is made of metal and has a net attached to it. In the background, there are trees and a house with a white picket fence."} +{"image_id": 291286, "caption": "This is a black and white photograph of a man riding a skateboard down a narrow sidewalk lined with shops and buildings. The man is wearing a black t-shirt and jeans and has a backpack on his back. There are several people walking on the sidewalk behind him, some of whom are looking at him as he passes by. The buildings on either side of the sidewalk are made of stone and have large windows and doors. The sky is overcast and there are a few clouds visible."} +{"image_id": 375278, "caption": "This image shows a person holding a small black cat in their hand. The cat is lying on top of a suitcase, which is open and has a magazine on top of it. The person is wearing a black t-shirt and black pants, and their hand is resting on the handle of the suitcase. The background of the image is a light-colored carpet with a dark border. The room appears to be a living room or bedroom, and there are other objects visible in the background, including a bookshelf, a lamp, and a painting on the wall."} +{"image_id": 290684, "caption": "The image shows a woman sitting on a wooden post with a pink stuffed animal in her lap. She is wearing a purple shirt and white pants, and has her hair tied back in a ponytail. The image is taken from a low angle, looking up at the woman from the ground. There are trees in the background, and the sky is visible in the top of the image."} +{"image_id": 29306, "caption": "This image shows a brown dog sitting on a sandy beach with a cloudy sky in the background. The dog is wearing a black collar and its ears are perked up, as if it is listening intently to something. The beach is covered in sand and there are some rocks visible in the distance. The sky is overcast and there are some dark clouds in the distance."} +{"image_id": 173375, "caption": "This image shows a person on a snowboard going down a snow-covered slope. The person is wearing a helmet, gloves, and goggles, and is carrying a snowboard under their arm. The sky is clear and blue, and there are some clouds in the distance. The snow on the slope is deep and powdery, and there are no other people or objects visible in the image."} +{"image_id": 198590, "caption": "The image shows a silver SUV parked on the side of the road next to a red pickup truck. The silver SUV has tinted windows and a black roof rack with a silver ladder on top. The red pickup truck has a camper shell on the back and a white bed liner. There is a green tree in the background on the left side of the image."} +{"image_id": 25747, "caption": "The image shows a long, red and white train traveling down a set of railroad tracks surrounded by trees and greenery. The train appears to be moving at a moderate speed, and there are several other trains visible in the distance. The sky above the tracks is overcast, with a few clouds visible."} +{"image_id": 346589, "caption": "This image shows two people on skis standing on a snow-covered slope. One person is wearing a brown jacket and black pants, while the other is dressed in a black jacket and blue pants. They both have skis and poles in their hands, and are smiling at each other. In the background, there are trees and a mountain range covered in snow. The sky is clear and blue, and there are no clouds in sight."} +{"image_id": 121106, "caption": "This image shows a group of people standing around a luggage cart in a crowded airport terminal. The people are all wearing different types of clothing, including jackets, scarves, and hats. The luggage cart has four wheels and a handle, and it appears to be empty at the moment. The walls of the terminal are made of white tiles, and there are several large windows on either side of the room. The ceiling is made of metal tiles, and there are several fluorescent lights hanging from it. The floor is made of white tiles, and there are several small puddles of water on it. In the background, there are several other people walking around, as well as a few security guards standing at the entrance to the terminal."} +{"image_id": 392850, "caption": "This image shows a wooden cutting board with various fruits and vegetables arranged on it. The fruits include oranges, bananas, and apples, while the vegetables include carrots, celery, and onions. There is also a red plastic bowl with sliced oranges in it, and a pair of scissors and a knife on the table next to the cutting board."} +{"image_id": 554241, "caption": "The image shows a group of people standing on a sidewalk in front of a large building with many windows. The building appears to be made of concrete and has several floors. The people in the image are standing in a line and holding various objects such as umbrellas, backpacks, and water bottles. Some of the people are wearing athletic clothing and appear to be preparing for a run or walk. The sky in the image is overcast and there are clouds visible in the distance. The image is taken from a low angle and the people in the image appear to be small in comparison to the building."} +{"image_id": 341017, "caption": "This image shows a group of goats standing on the roof of a truck. The truck is white with blue accents and has a ladder leading up to the roof. The goats are brown and white and appear to be standing on the edge of the roof. There is a man standing on the ground next to the truck, looking up at the goats. The sky is clear and blue in the background."} +{"image_id": 135497, "caption": "This image shows a man sitting at a table with a large pizza in front of him. The man is wearing a blue shirt and has his hands on the table, as if he is about to pick up the pizza and eat it. In the background, there are some trees and a building with lights on it."} +{"image_id": 159260, "caption": "The image shows a blue and orange train on a set of railroad tracks. The train has several cars, including a caboose at the end. The train appears to be moving slowly along the tracks, which are lined with trees and buildings in the background."} +{"image_id": 417332, "caption": "This image shows a group of baseball players on a field. The players are wearing uniforms and helmets, and one player is holding a bat. The background of the image is green and there are trees in the distance. The image appears to be taken during a game of baseball."} +{"image_id": 90520, "caption": "The image shows two stuffed animals, a white teddy bear and a black dog, dressed in traditional Japanese clothing. The bear is wearing a red kimono with a white hakama and a black and white striped headband. The dog is dressed in a red and white checkered yukata with a black and white striped headband. The two animals are standing next to each other on a white background."} +{"image_id": 318524, "caption": "This image shows a rusted metal train car with rust and peeling paint. The car appears to be old and in disrepair, with weeds growing through the cracks in the metal. The windows are boarded up, and there are no visible signs of life inside the car. The background is made up of tall grasses and weeds, with a few trees in the distance."} +{"image_id": 118406, "caption": "This image shows a group of people playing a game of soccer on a grass field. The players are wearing soccer uniforms and are running around the field, kicking the ball and trying to score goals. One player is jumping in the air, ready to head the ball. The other players are running and chasing after the ball, trying to get to it before their opponents do. In the background, there are trees and a fence, and the sky is visible through the trees."} +{"image_id": 25748, "caption": "The image shows a white sailboat moored at a dock in a harbor. The boat has a black hull and white sails. There are several other boats in the background, some of which are also moored at the dock. The sky is clear and blue, and there are some clouds in the distance."} +{"image_id": 365557, "caption": "This image shows a person wearing a black jacket and blue pants riding a snowboard down a snow-covered slope. The person is wearing gloves and a helmet and is holding onto the snowboard with their hands. The snowboard has a black and blue design on it. In the background, there is a large snow-covered mountain with trees and rocks visible."} +{"image_id": 320978, "caption": "This image shows a man standing in front of a display case filled with various types of fruits and vegetables. The man is wearing a black t-shirt and has a black backpack on his back. The display case is filled with colorful fruits and vegetables such as tomatoes, bell peppers, cucumber, and carrots. There are also some leafy greens and herbs such as lettuce, kale, and basil. The man is holding a cardboard box and appears to be shopping for produce."} +{"image_id": 315073, "caption": "This image shows a gray and white cat sitting on a cushion next to a blue bottle. The cat has its mouth open and appears to be yawning. The background is a window with blinds and a curtain."} +{"image_id": 363927, "caption": "This image shows a silver bus traveling down a city street. The bus has a bicycle rack on the back and appears to be carrying passengers. There are buildings and trees in the background."} +{"image_id": 243355, "caption": "This image shows a zebra walking across a grassy field. The zebra has black and white stripes on its body and is standing on its hind legs. In the background, there is a fence made of metal bars and a blue sky with clouds."} +{"image_id": 373521, "caption": "The image shows a white and brown bus parked on the side of a road. The bus has a large front window and the words \"Greyhound\" written on the side. There is a small tree growing out of the grass next to the bus, and a fence running along the side of the road. The sky is overcast and there are a few clouds visible."} +{"image_id": 76409, "caption": "This image shows a bedroom with a red bedspread, a wooden floor, and a window with a pink curtain. There is a painting hanging on the wall above the bed, and a small table with a lamp on it next to the bed."} +{"image_id": 485985, "caption": "This is a photo of a young child sitting in a toilet with a toothbrush in their mouth. The child is wearing a blue sweater and has blonde hair. The background is wood paneling."} +{"image_id": 27564, "caption": "This image is a black and white photograph of two young women sitting on a couch. One of the women is holding a pair of video game controllers in her hands, while the other is resting her feet on the arm of the couch. The couch appears to be a leather recliner, and there is a rug on the floor in front of it. The room is dimly lit, and there are a few pieces of furniture visible in the background, including a coffee table and a bookshelf. The overall mood of the image is relaxed and casual."} +{"image_id": 92749, "caption": "This image shows two giraffes standing in a grassy field next to a pond. The giraffes are looking at each other and appear to be standing on their hind legs. There are trees in the background and the sky is visible in the top of the image."} +{"image_id": 554958, "caption": "This is an image of a cat sitting in a pile of leaves and twigs. The cat has brown and black fur with yellow eyes and a black nose. Its ears are perked up and it appears to be staring intently at something in the distance. The background of the image is made up of various leaves and twigs that have fallen from nearby trees."} +{"image_id": 439971, "caption": "The image shows a woman taking a selfie in a bathroom mirror. She is holding a camera in one hand and posing in front of the mirror."} +{"image_id": 559006, "caption": "The image shows a large brown bear standing in the water, with its head and part of its body submerged in the water. The bear appears wet and its fur is saturated with water. Its eyes are open and it appears to be looking around. The water in which the bear is standing is tur"} +{"image_id": 457262, "caption": "The image shows a wooden table with two bananas on it. The bananas are yellow and have some brown spots on them. There is a small coin next to one of the bananas."} +{"image_id": 263881, "caption": "The image shows a giraffe standing on its hind legs in a grassy field with trees in the background. The giraffe has long legs and neck."} +{"image_id": 322594, "caption": "This image shows a bathroom with a toilet, sink, and shower. The walls are painted yellow and the floor is tiled. The toilet is white and the sink is black. There is a shower curtain hanging from the shower."} +{"image_id": 22423, "caption": "This image shows a man standing next to an elephant. The man is wearing a green shirt and has a hat on his head. The elephant is standing on its hind legs and has its trunk up in the air. There are trees and bushes in the background."} +{"image_id": 59000, "caption": "This image shows a living room with a green couch, a brown chair, and a Christmas tree in the corner. There is a desk with a computer and a bookshelf in the corner of the room."} +{"image_id": 119547, "caption": "The image shows a group of people standing in front of a building, with a man in a suit and tie standing in the center. The man is holding a microphone and speaking to a group of people who are standing behind him. The people in the background are wearing casual clothing and appear to be waiting for the man to finish speaking."} +{"image_id": 432763, "caption": "The image shows a large group of birds standing on a sandy beach next to the ocean. The birds are gathered around a small boat that is partially submerged in the water. The sky is cloudy and stormy, with dark clouds and waves crashing on the shore."} +{"image_id": 125635, "caption": "The image shows a black and white cat standing on a window sill, looking out of the window. The cat is wearing a collar and appears to be staring at something outside the window. The background of the image is a blurred view of a building or room."} +{"image_id": 542549, "caption": "This is a black and white photograph of a bed with a pile of books and a laptop on it. The bed sheets are rumpled and the pillows are flattened. The room appears to be dimly lit and there are no other objects in the frame."} +{"image_id": 494759, "caption": "The image shows two people standing on a sandy beach, looking up at a kite that is being flown in the sky. One person is holding a camera and taking a picture of the other person, who is holding the kite string and looking up at it. The sky is overcast and there are clouds in the distance. The beach is covered in sand and there are no other people or objects in the image."} +{"image_id": 5617, "caption": "The image shows two cats lying on a bed with green pillows. One of the cats is black and white, while the other is brown and white. Both cats appear to be relaxed and comfortable on the bed. There is a laptop on the nightstand next to the bed, and a pile of blankets and pillows on the floor. The room appears to be well-lit and well-organized, with a desk and chair in the corner."} +{"image_id": 279774, "caption": "This image shows a group of children playing baseball on a dirt field. The children are wearing uniforms and helmets, and one of them is holding a bat. There is a man in the background watching the game, and there are trees and a fence in the background."} +{"image_id": 323442, "caption": "This image shows a man and a woman sitting at a wooden table with white umbrellas in the background. The man is wearing a blue shirt and the woman is in a white blouse. The table is set with wine glasses and there are trees in the background."} +{"image_id": 109454, "caption": "This image shows a man wearing a blue dress shirt and a black tie, holding a glass of water in his hand. The man is standing in a room with white walls and a ceiling, and there are tables and chairs in the background. The room appears dimly lit, and there are no other people in the image."} +{"image_id": 370677, "caption": "The image shows three female employees standing in front of a bakery display case. They are all wearing colorful shirts and smiling at the camera. The bakery appears to be well-stocked with various types of breads, pastries, and other baked goods."} +{"image_id": 521509, "caption": "This image shows a woman sitting on a bed in a room with a camera set up on a tripod in front of her. The woman is wearing glasses and has her hair tied back in a ponytail. The bed has a white comforter and pillows, and there is a window with curtains in the background. The room appears to be well-lit, with a lamp on the nightstand next to the bed."} +{"image_id": 236461, "caption": "This image shows a person riding a wave on a surfboard in the ocean. The person is wearing a black wetsuit and a black hat, and is holding onto the surfboard with one hand. The wave is large and white, and the person is riding it with ease. The sky is a bright blue, and there are clouds in the distance. The water is choppy, with whitecaps and waves breaking around the surfboard."} +{"image_id": 534845, "caption": "This image shows a white building with a balcony and a clothesline hanging from it. There are two stuffed animals hanging from the clothesline, a brown teddy bear and a pink bunny. The sun is shining through the window on the left side of the image."} +{"image_id": 180580, "caption": "The image shows a blue and white plate with a variety of vegetables on it, including broccoli, carrots, and potatoes. There are also some pens and pencils on the table in front of the plate."} +{"image_id": 484551, "caption": "The image shows a woman sitting in the back of a small boat, wearing an orange t-shirt and sunglasses. The woman is smiling and holding a fishing rod. The water in the background is calm and blue."} +{"image_id": 456146, "caption": "The image shows a group of sheep walking down a dirt road next to a lush green hillside. The sheep are all white and appear to be of the same breed, with long woolly coats and curved horns. They are walking in a single file line, with the lead sheep in front and the rest following behind. The road is narrow and winding, with trees and bushes lining the sides. The sky is overcast, with a few clouds visible in the distance. The overall mood of the image is peaceful and serene."} +{"image_id": 283131, "caption": "This image shows a bathroom with a white sink, toilet, and bathtub. The walls are covered in a patterned wallpaper, and the floor is tiled. There is a large white bag on the counter next to the sink."} +{"image_id": 23309, "caption": "This image shows a salad made with pasta, broccoli, carrots, and red onions. The pasta is twisted into spirals and the vegetables are cut into thin slices. The salad is topped with a vinaigrette dressing."} +{"image_id": 547487, "caption": "This image shows a young boy doing a trick on his skateboard in a parking lot. He is wearing a red shirt and black pants, and has his hair styled in a messy, spiky style. He is jumping up into the air and performing a trick, with one hand on the board and the other in the air. In the background, there are trees and a fence, and the sky is clear and blue. The image is taken from a low angle, looking up at the boy as he performs the trick."} +{"image_id": 34830, "caption": "The image shows a bathroom with a white urinal on the wall and a black and white tiled floor. The urinal is mounted on the wall and has a white porcelain surface. The tiles on the floor are black and white and are arranged in a checkerboard pattern. The walls of the bathroom are also tiled with black and white tiles, but they are not arranged in a checkerboard pattern. There is a single light fixture hanging from the ceiling, which is also tiled with black and white tiles."} +{"image_id": 125997, "caption": "The image shows a blue and white mural on the side of a building. The mural has the words \"uare alive\" written in white letters on a blue background. There is a trash can next to the building."} +{"image_id": 19916, "caption": "This image shows a bowl of sliced apples sitting on a wooden table next to a laptop computer. The laptop has a black and white striped pattern on the cover. The bowl of apples is surrounded by a white background."} +{"image_id": 145019, "caption": "This image shows a group of people standing in a field, looking at a small airplane that has crashed into the ground. The plane appears to be damaged and partially submerged in the dirt. The people in the image are wearing blue shirts and appear to be looking at the wreckage with concern. The sky is cloudy and there are trees in the background."} +{"image_id": 127161, "caption": "The image shows a slice of pizza on a plate, with a fork and knife next to it. The pizza appears to be made with a variety of ingreedients, including cheese, tomatoes, and olives. The plate is covered in a white tablecloth, and there is a fork and knife next to the pizza."} +{"image_id": 543660, "caption": "This is a black and white image of a bathroom with two toilets in it. The toilets are on the floor and there is a white tiled wall behind them. There is a black and white checkered floor in the bathroom."} +{"image_id": 8333, "caption": "The image shows a red and white high-speed train traveling on a bridge over a cityscape. The train has a sleek, modern design and is moving at a high speed. Buildings and other structures can be seen in the background."} +{"image_id": 482907, "caption": "This is an image of a vintage airplane flying in the sky on a clear day. The plane is a small, white and red biplane with a propeller on each wing. The plane is flying low to the ground and appears to be in good condition. The sky is a bright blue and there are no clouds in the sky."} +{"image_id": 290130, "caption": "This image shows a person riding a surfboard on top of a large wave in the ocean. The person is wearing a black wetsuit and has a black beard. The wave is white and foamy, and the person is riding the wave with their feet on the board and their hands on the handlebars. The sky is blue and there are clouds in the background."} +{"image_id": 58225, "caption": "This image shows a person holding a hot dog in their hand, with a baseball field in the background. The person is wearing a white shirt and black pants, and is holding the hot dog with their left hand. The hot dog is covered in green sauce and has a bun on the bottom. The baseball field has a green grassy surface and a blue sky in the background. The stands are empty and there are no people in the image."} +{"image_id": 249550, "caption": "This image shows a bed with a floral comforter and a small table next to it. The walls are painted blue and there is a window with white curtains."} +{"image_id": 448765, "caption": "This image shows a bathroom with a toilet and a sink. The toilet is white and has a wooden seat. The sink is also white and has a faucet on it. The walls are tiled and there is a brown towel hanging on the back of the toilet."} +{"image_id": 498439, "caption": "This image shows a group of baseball players on a field during a game. The players are wearing white uniforms and black helmets. The umpire is standing behind the plate, and the players are waiting for the pitcher to throw the ball. The crowd is seated in the stands, watching the game."} +{"image_id": 252403, "caption": "This image shows a woman holding a toothbrush in front of her face. Her hair is pulled back into a ponytail, and she is wearing a green t-shirt and glasses. The toothbrush appears to be a blue and white model with a handle that is shaped like a tooth."} +{"image_id": 347995, "caption": "This image shows a woman lying in a bed with a black dog lying next to her. The woman is wearing a red and white striped shirt and blue jeans, and she has a blanket wrapped around her. The dog is lying next to her with its head on her chest. There is a wooden headboard and a brown comforter on the bed, and a brown and white striped blanket is draped over the foot of the bed."} +{"image_id": 544216, "caption": "This image shows a plate of food on a table. The plate has a sandwich on it, which appears to be a bacon, lettuce, and tomato sandwich. There are also several bags of chips on the plate, as well as a glass of water."} +{"image_id": 205729, "caption": "This image shows a group of people on skis standing in a snowy area. The people are wearing skis and poles, and they are standing in a line facing the camera. The sky is clear and blue, and there is a bright sun shining down on the group. The snow is deep and powdery, and there are large rocks and boulders in the background. The people are smiling and appear to be having a good time."} +{"image_id": 350988, "caption": "This is an image of a wooden staircase with a chalkboard on the wall. The stairs are made of wooden planks and have no railings. The chalkboard has the word \"please\" written on it in chalk. The walls of the room are made of wood and have been left unpainted. There are no other objects in the room."} +{"image_id": 288673, "caption": "This image shows a group of people standing on a sandy beach, with several palmtree's in the background. The sky is cloudy and there is a kit flying overhead."} +{"image_id": 568690, "caption": "The image shows a cat sitting on the edge of a white toilet bowl in a small bathroom with blue tiles on the walls and a shower in the corner. The cat appears to be looking down at something on the floor."} +{"image_id": 504194, "caption": "The image shows a black and white photograph of a dog sitting on a wooden bench in front of a brick wall. The dog is looking away from the camera and appears to be waiting for someone. There are several bicycles parked on the sidewalk next to the bench."} +{"image_id": 35368, "caption": "The image shows a bowl filled with green bananas hanging from a hook on the wall behind it. There are also two glasses on the counter, one with limes and the other with lemons. The background is a wooden wall with a brown pattern."} +{"image_id": 307332, "caption": "This image shows two people sitting on a wooden bench overlooking a body of water. The woman is wearing a black shirt and pants, while the man is dressed in a white shirt and black pants. They both appear to be looking out at the water, with the woman leaning back on the bench and the man standing next to her. In the background, there is a clear blue sky and some trees. The image is taken from a low angle, looking up at the bench and the people on it."} +{"image_id": 490878, "caption": "The image shows a person wearing skis and poles, standing on a snow-covered slope with mountains in the background. The person is wearing a red jacket and black pants, and has a backpack on their back. The sky is overcast and there are clouds in the distance."} +{"image_id": 507187, "caption": "The image shows a group of people standing around a green motorcycle that is parked on the grass. The motorcycle appears to be a vintage model with a sleek, streamlined design. The people in the image are dressed in formal attire, including suits and ties, and are looking at the motorcycle with interest. The background of the image is a green lawn with some trees visible in the distance."} +{"image_id": 254644, "caption": "This is a photo of a kitchen with wooden cabinets and a black stove. The countertop is made of tiles and there are plants on the windowsill."} +{"image_id": 400803, "caption": "The image shows a small orange boat floating in the water with two people standing on the deck. The boat is being pulled by a crane on the shore. The water is blue and there are some waves in the background."} +{"image_id": 574928, "caption": "This image shows a large group of sheep grazing on a lush green pasture. The sheep are all white and appear to be of the same breed. They are all standing on their hind legs and grazing on the tall grass. In the background, there is a small farmhouse and some trees. The sky is clear and blue, and there is a bright sun shining down on the scene."} +{"image_id": 559247, "caption": "This image shows a group of people standing around a long table filled with food. The table is lined with plates of sandwiches, chips, and other snacks. The people in the image are all wearing casual clothing, and one person is holding a tray of food in front of them. The room is dimly lit, and there are a few lamps on the table providing some light. The walls are painted a neutral color, and there are a few pieces of artwork on the walls. The overall atmosphere of the image is casual and relaxed."} +{"image_id": 254625, "caption": "This image shows a man holding a baseball bat and swinging it at a ball that is in the air. The man is wearing a gray shirt and has a white cap on his head. The background of the image shows a baseball field with a fence and a crowd of people watching the game."} +{"image_id": 374966, "caption": "This image shows a group of people on skateboards at a skate park. There are several people of different ages and genders in the image, all wearing casual clothing. The skate park appears to be made of concrete and has several ramps and obstacles for the skaters to perform tricks on. There are also several palm trees visible in the background of the image."} +{"image_id": 351967, "caption": "The image shows a large building with a clock on the front. The clock has black numbers and white hands. There is a yellow taxi parked in front of the building. The taxi has lights flashing on the front and back. There are people walking on the sidewalk in front of the building. The sky is dark and there are streetlights on the street."} +{"image_id": 172877, "caption": "This image shows a man sitting in a white chair wearing a blue shirt and a red and white striped tie. He is wearing glasses and has his hands folded in his lap. There is a lamp on the table next to him and a painting on the wall behind him."} +{"image_id": 309237, "caption": "This image shows a black and white cat sitting on a blue couch with a blanket draped over it. The cat is looking straight at the camera with its ears perked up and its eyes wide open. The background of the image is a light-colored wall with a few decorative pillows on the floor in front of the couch."} +{"image_id": 565877, "caption": "This image shows a woman sitting on a red couch with a laptop computer on her lap. She is wearing a blue shirt and glasses, and has a smile on her face. The background of the image is a white wall with a red couch in the foreground."} +{"image_id": 489924, "caption": "This image shows a woman riding a skateboard down a city street. She is wearing a blue t-shirt and shorts, and has her hair tied back in a ponytail. She is wearing sneakers and has a backpack on her back. The street is lined with parked cars and there is a yellow line down the middle of the road. In the background, there are buildings and trees."} +{"image_id": 125472, "caption": "This image shows a person riding a skateboard in the air, performing a trick. The person is wearing a green shirt and black pants, and is holding onto the skateboard with one hand. In the background, there are trees and a clear blue sky."} +{"image_id": 422706, "caption": "The image shows a group of people standing on the deck of a large boat, looking out over the ocean. The boat is equipped with a crane, which is being used to lift a small orange and white boat out of the water. The people on the boat are watching as the crane lifts the boat up and out of the water. The ocean is a deep blue color and the sky is a bright blue."} +{"image_id": 290700, "caption": "This image shows a man on a surfboard riding a wave in the ocean. The man is wearing a red and white striped shirt and has a black hat on his head. He is jumping up and down on the surfboard as he rides the wave. The ocean is blue and there are whitecaps on the water."} +{"image_id": 365177, "caption": "The image shows a large bus parked in front of a building. The bus has a white and green exterior with the word \"Bieber\" written in large letters on the side. The bus is parked on the side of the road, and there is a pedestrian walkway next to it. The building behind the bus appears to be made of concrete and steel, with large windows and a metal roof. There are no people in the image."} +{"image_id": 398661, "caption": "This image shows a kitchen with black cabinets, white countertops, and red accents. There are pots and pans hanging from a rack above the stove, and a microwave and toaster oven on the counter. The sink has a faucet and soap dispenser. The refrigerator and dishwasher are also present in the kitchen."} +{"image_id": 175611, "caption": "This image shows a person using a pair of scissors to cut a piece of paper that is being fed through a machine. The person is wearing a red glove on their left hand, and their right hand is holding the scissors. The machine appears to be made of metal and has a large wheel on top of it. There are also several pieces of paper stacked up next"} +{"image_id": 477673, "caption": "This image shows a small kitten sitting in the pocket of a backpack. The backpack appears to be made of gray nylon and has a zippered opening on the top. The kitten is sitting on its hind legs and has its front paws resting on the inside of the backpack. Its eyes are closed as if it is sleeping."} +{"image_id": 1270, "caption": "This image shows a group of children playing baseball on a dirt field. The players are wearing uniforms and helmets, and one of them is holding a bat. The umpire is standing behind the plate, ready to make a call. The crowd is seated in the stands, watching the game."} +{"image_id": 224012, "caption": "This image shows a white plate with a variety of food on it. The food includes sliced broccoli, cooked potatoes, and sliced meat. The meat appears to be thinly sliced and is likely to be beef or pork. There are also some nuts, which are likely to be cashews, on the plate. The plate is on a white tablecloth and appears to be in a restaurant."} +{"image_id": 552510, "caption": "This image shows a group of young boys playing soccer on a green field. They are wearing green and white uniforms and are holding soccers. The boys are standing on their toes and kicking the ball towards each other. There is a group of people in the background watching the game."} +{"image_id": 272880, "caption": "This image shows a slice of pizza on a plate in front of a person holding a piece of paper with the words \"mystic pizza\" written on it. The person is sitting at a table with a fork and knife in front of them, and there are several other slices of pizza on the plate. The plate is on a wooden surface, and there are some utensils on the table in front of the person."} +{"image_id": 580540, "caption": "This image shows a black and white dog sitting on the floor in front of a flat screen television. The dog is looking up at the television, which is displaying an image of a fish swimming in a pond. The television is mounted on a wall and there is a wooden floor in front of it. There is a window behind the dog, which is partially obscured by a blind."} +{"image_id": 242934, "caption": "This is a living room with a black leather couch in the center and a red and black rug on the floor in front of it. There is a wooden coffee table in front of the couch, and a black and white striped rug on the floor in front of the coffee table. There are two black and white striped chairs on either side of the couch, and a black and white striped rug on the floor in front of the chairs. There is a black and white striped wall hanging above the couch, and a black and white striped rug on the floor in front of the wall hanging. There is a black and white striped lamp on the coffee table, and a black and white striped rug on the floor in front of the lamp. There is a black and white striped curtain on the window, and a black and white striped rug on the floor in front of the curtain. There is a black and white striped painting on the wall above the couch, and a black and white striped rug on the floor in front of the painting. There is a black and white striped lamp on the coffee table, and a black and white striped rug on the floor in front of the lamp. There is a black and white striped curtain on the window, and a black and white striped rug on the floor in front of the curtain. There is a black and white striped painting on the wall above the couch, and a black and white striped rug on the floor in front of the painting. There is a black and white striped lamp on the coffee table, and a black and white striped rug on the floor in front of the lamp. There is a black and white striped curtain on the window, and a black and white striped rug on the floor in front of the curtain. There is a black and white striped painting on the wall above the couch, and a black and white striped rug on the floor in front of the painting. There is a black and white striped lamp on the coffee table, and a black and white striped rug on the floor in front of the lamp. There is a black and white striped curtain on the window, and a black and white striped rug on the floor in front of the curtain. There is a black and white striped painting on the wall above the couch, and a black and white striped rug on the"} +{"image_id": 178807, "caption": "This image shows two people riding skateboards on a concrete surface. One person is wearing black pants and a black shirt, while the other person is dressed in brown pants and a white shirt. Both people are wearing shoes and have their hair tied back in ponytails. In the background, there is a chain link fence and some trees."} +{"image_id": 135748, "caption": "This image shows a small brown and white dog lying in a blue dog bed on a carpeted floor. The dog is licking its chops and looking up at the camera. There is a bottle of water on the floor next to the dog bed. The room appears to be a living room or bedroom."} +{"image_id": 255036, "caption": "This image shows a street corner with a traffic light and a pedestrian crossing. The building in the background appears to be a large commercial or residential building with blue and white walls and a red roof. There are no people or vehicles in the image."} +{"image_id": 3926, "caption": "This image shows two sheep standing in a snowy field. One of the sheep is standing on its hinder legs and the other is standing on all fours. The sheep are facing each other and appear to be looking at something in the distance. The snow in the field is deep and the sheep are covered in it up to their necks. The sky in the background is cloudy and there is a hint of blue sky peeking through the clouds."} +{"image_id": 236762, "caption": "This image shows a group of people sitting around a long wooden table, smiles on their faces, and plates of food in front of them. The table is set with plates of food, including pizza, pasta, and salad. There are also glasses of wine and bottles of water on the table. The people in the image are all wearing casual clothing, including t-shirts and jeans. Some of them are holding cameras and taking pictures. The background of the image is a green wall with a painting of a landscape."} +{"image_id": 248314, "caption": "This image shows a desk with a laptop computer, a mouse, a keyboard, and a cup of food on it."} +{"image_id": 559773, "caption": "This image shows a person wearing skis and holding onto a rope as they jump over a barrier. The person is wearing a helmet and goggles, and their skis are attached to a rope that is being held by someone on the ground. The person is jumping over a barrier made of wood and metal, and there is a clear blue sky in the background."} +{"image_id": 340665, "caption": "The image shows a woman standing on a sidewalk, holding an open black umbrell"} +{"image_id": 388599, "caption": "This image shows a person holding a frisbee in front of a dog. The dog is standing on its hocks and looking up at the frisbee with its head tilted to the side, as if it is trying to figure out how to catch it."} +{"image_id": 163528, "caption": "The image shows a pizza on a white plate on a wooden table. The pizza has a crispy, golden-brown crust and is topped with cheese, tomato sauce and various vegetables such as onions, peppers, and mushrooms. The pizza also has a generous amount of grated parmesan cheese on top. There are two metal forks and a knife on the table next to the pizza. The table is made of wood and has a brown finish. The lighting in the image is warm and inviting, making the pizza look appetizing and delicious."} +{"image_id": 481212, "caption": "This image shows a man sitting on a red couch with two dogs sitting on either side of him. The man is wearing a white t-shirt and black pants, and has a cup of coffee in his hand. There are two large windows on either side of the couch, and a chandelier hanging from the ceiling. The room appears to be well-lit and spacious."} +{"image_id": 277533, "caption": "This image shows a man sitting on a red couch in a living room. He is wearing a black jacket, blue jeans, and a white t-shirt. He is holding a white remote control in his right hand and a red wine glass in his left hand. The red couch and the wooden floor are visible in the background."} +{"image_id": 173383, "caption": "The image shows a wedding cake on a table with candles and flowers around it. The cake is decorated with blue and white stripes and has a large white bow on top. There are also two knives and a cake server on the table next to the cake."} +{"image_id": 419624, "caption": "The image shows a long train traveling down a railroad track. The train is made up of several cars, including a locomotive and several passenger cars. The track is lined with trees and other vegetation on either side. In the background, there is a city skyline visible through the trees. The sky is clear and blue, with a few clouds visible in the distance."} +{"image_id": 130291, "caption": "This image shows a man and a woman standing in a room. The man is wearing a black suit and tie, while the"} +{"image_id": 193369, "caption": "This image shows a rusty metal bench sitting on a stone path in a wooded area. The bench appears to be old and weathered, with intricate designs on the backrest and armrests. The surrounding area is covered in lush green foliage, with trees and shrubs visible in the background. The image is likely taken in a park or other outdoor space."} +{"image_id": 367804, "caption": "The image shows a young girl standing on a sandy beach with a kite in her hand. She is wearing a pink and white striped shirt and shorts, and has long, curly brown hair. The sky is clear and blue, with fluffy white clouds in the distance. The beach is covered in fine sand, except for in front of"} +{"image_id": 84735, "caption": "The image shows a baseball player swinging a bat at a pitched ball on a baseball field. The player is wearing a white jersey and black pants, and is standing on the first base side of the field. The umpire is standing behind the plate, and there are several people in the stands watching the game. The background of the image is a crowd of people in the stands, and the sky is visible in the top of the image."} +{"image_id": 247285, "caption": "This image shows a man and a woman holding a baby under an umbrella. The man is holding the umbrella with one hand and cradling the baby with the other. The woman is looking down at the baby with a smile on her face. The umbrella is striped and has a blue and white pattern. The background is white and there is a wall behind the group."} +{"image_id": 438432, "caption": "This is a black and white photograph of a group of women in baseball uniforms posing for a team photo. They are all wearing white shirts and black skirts with white collars and cuffs. Some of the women are holding baseball bats, while others are sitting on the ground with their legs crossed. The women are all smiling and looking at the camera. The background of the photo is a house with a large tree in front of it."} +{"image_id": 185479, "caption": "This image shows a man sitting on the floor with a laptop computer on his lap. He is wearing a brown jacket and beige pants, and has his hands resting on his lap. The laptop appears to be open, and the man is looking at it with a thoughtful expression on his face. The background of the image is a blue carpet, and there is a wooden floor behind the man."} +{"image_id": 570826, "caption": "The image shows a blue and yellow train traveling down a set of railroad tracks. The train appears to be passing through a city or town, as there are buildings and other structures visible in the background. The train appears to be carrying passengers, as there are people standing on the platform at the end of the train."} +{"image_id": 127394, "caption": "This image shows a group of people sitting around a wooden dining table. The table is covered with plates of food, including pizza, salads, and other dishes. The people in the image are smiling and laughing as they enjoy their meal together. The room is dimly lit and appears to be a dining room or kitchen."} +{"image_id": 311081, "caption": "The image shows a bathroom with a white bathtub, a white toilet, and a white sink. The walls are covered in a beige-colored tile, and the floor is covered in beige-colored tiles. The shower curtain is white. The toilet has a white porcelain bowl and a white porcelain seat. The sink has a white porcelain bowl and a white porcelain faucet. The mirror above the sink is framed in a white wooden frame. The toilet has a white porcelain tank and a white porcelain lid. The bathroom appears to be clean and well-maintained."} +{"image_id": 376677, "caption": "The image shows a construction site with a large crane and a dump truck on the road. The crane is lifting a large metal structure that appears to be part of a bridge or overpass. The dump truck is parked on the side of the road, and there are several cars driving by in the background. The sky is overcast and there are some clouds visible."} +{"image_id": 269419, "caption": "The image shows a tall, stone tower with a clock face on the front. The tower is surrounded by trees and a sidewalk. The sky is clear and blue in the background."} +{"image_id": 210708, "caption": "The image shows a mother elephant and her baby elephant standing in the water of a river. The mother elephant has her trunk submerged in the water, while the baby elephant is standing next to her. The background of the image is a lush green forest with some trees visible in the distance. The water in the river is clear and calm, with some ripples visible on the surface. The sun is shining brightly, casting a warm glow on the scene."} +{"image_id": 472246, "caption": "This image shows three different types of fruit arranged in a line on a white surface. The fruit includes an apple, an orange, and an onion. The apple is on the left, the orange in the middle, and the onion is on the right. The fruit is arranged so that the apple is at the top, the orange in the middle, and the onion at the bottom. There is a fork and knife on the right side of the image, next to the onion."} +{"image_id": 187475, "caption": "This image shows a person holding a hot dog in their hand. The hot dog is topped with sauerkraut, mustard, and relish, and is served on a bun. The person is sitting at a table with other people, who are drinking beer and looking at their phones. The lighting in the scene is dim, with only the light from the candles on the table illuminating the area. The atmosphere is casual and relaxed."} +{"image_id": 299457, "caption": "This image shows a man sitting at a table with a plate of food in front of him. He is wearing a black t-shirt and has his hair styled in a messy yet stylish way. The background of the image is a white wall with a staircase leading up to the second floor. The man is holding a pink lollipop in his mouth and looks like he is savoring the sweet treat."} +{"image_id": 2894, "caption": "This image shows a train traveling along a railroad track. The train is made up of several cars, including a cab car, a baggage car, and a passenger car. The train appears to be moving at a moderate speed, with the wheels of the train making contact with the tracks. In the background, there are trees and a building visible. The sky is clear and blue, with a few clouds visible in the distance."} +{"image_id": 209733, "caption": "This image shows a group of people standing in a grassy field, watching a kite being flown in the distance. The sky is clear and blue, and there are trees in the background."} +{"image_id": 428231, "caption": "This image shows a living room with white couches, a wooden coffee table, and a wooden floor. The walls are painted white and there is a large window in the background. The room appears to be well-lit and spacious."} +{"image_id": 250619, "caption": "The image shows a woman lying on a beach towel under an orange and yellow striped umbrella on a sandy beach. The sky is clear and blue, and there are some clouds in the distance. The woman is wearing a black bikini and sunglasses, and has a book in her hand. The umbrella provides shade from the sun, and there are some palm trees in the background."} +{"image_id": 434693, "caption": "This image shows a white fire hydrant on the side of a road, with a pink building in the background. The hydrant is made of metal and has a large opening at the top. There are no people in the image."} +{"image_id": 15596, "caption": "The image shows two people riding motorcycles on a racetrack. The first person is wearing a white helmet, black jacket, and black pants. The second person has a red helmet, white jacket, and black pants. They are both leaning to the left as they race around the track. In the background, there are several other people watching the race."} +{"image_id": 569415, "caption": "The image shows an elephant standing in a grassy field with its trunk raised. The elephant has large, curved tusks and appears to be in good health. The sky is cloudy and there are no other animals or people in the image."} +{"image_id": 305004, "caption": "This image shows a man on a surfboard riding a wave in the ocean. The man is wearing red swim trunks and a white surfboard. The wave is large and the man is riding it with ease. The water is blue and there are whitecaps on the wave. The sky is clear and there are no clouds in the sky."} +{"image_id": 510527, "caption": "This image shows a man wearing a gray sweater and a white tie, sitting in the back seat of a car. The man is wearing a gray sweater and a white tie, sitting in the back seat of a car. The man is wearin"} +{"image_id": 581317, "caption": "This image shows a woman standing in a grassy field, holding a cell phone to her ear. The woman is wearing a purple t-shirt and has her hair tied back in a ponytail. In the background, there are trees and a mountain range visible. The sky is a bright blue with fluffy white clouds."} +{"image_id": 532071, "caption": "The image shows a brown bear standing on its hind legs in a grassy area surrounded by trees. The bear has a long snout and appears to be scavenging for food. There"} +{"image_id": 467978, "caption": "This image shows a group of sheep standing in a field. The sheep are all black and white, with the exception of one black sheep in the front of the group. The sheep are all standing on their hind legs, with their front legs on the ground. There is a fence in the background, and some trees in the distance. The sky is cloudy and overcast."} +{"image_id": 184972, "caption": "This image shows a man wearing a plaid shirt and a yellow and black striped tie. He is standing in front of a group of people who are seated at a table. The man is smiling and has his arms crossed in front of him. Behind him, there is a brick wall with some plants growing on it."} +{"image_id": 525568, "caption": "This image shows two zebras standing in a field of tall, dry grass. One zebra is standing on its hind legs and the other is lying down, with its head resting on the back of the standing zebra. The sky is visible in the background, with a few trees visible in the distance."} +{"image_id": 165056, "caption": "This image shows two giraffes standing next to each other in a zoo enclosure. The giraffes are standing on their hind legs, with their front legs resting on top. One of the giraffes has brown patches all over its body, while the other has light brown patches. Both of the giraffes have long necks and brown eyes. In the background, there are trees and a fence."} +{"image_id": 362240, "caption": "This image shows a room with several motorcycles parked in it. Two of the motorcycles are orange and one is red. There is a deer head mounted on the wall behind them."} +{"image_id": 179558, "caption": "This image shows two giraffes standing next to each other in a grassy field. The giraffes have long necks and brown and white stripes on their bodies. One of the giraffes has its mouth open and appears to be sniffing the other giraffe. In the background, there are trees and a rocky outcropping."} +{"image_id": 120792, "caption": "This image shows two men standing in a room with a television in the background. They are both wearing black shirts and jeans, and one of them is holding a black remote control in his hand. The room has wooden beams on the ceiling and walls, and there is a brown carpet on the floor. The television is mounted on the wall and has a black frame around it."} +{"image_id": 294865, "caption": "This is a blurry image of a train with several people waving out of the windows. The train appears to be moving along a track, and there are trees and other vegetation in the background."} +{"image_id": 159662, "caption": "This image shows a woman wearing a pink dress and holding a tennis racket on a tennis court. The court is surrounded by a large crowd of people who are watching the match. The woman appears to be waiting to serve the ball."} +{"image_id": 176906, "caption": "This image shows a group of sheep standing in a grassy area. There is a fence in the background, and several people are standing nearby, watching the sheep. One person is wearing a yellow hat and is holding a bowl of food for the sheep. The sheep are all different colors, including black, white, and brown."} +{"image_id": 250608, "caption": "The image shows a bus traveling down a city street. The bus is white and blue with the words \"Public Transport\" written on the side. There are trees lining the side of the road and a telephone pole in the foreground."} +{"image_id": 33561, "caption": "This image shows a group of cows grazing in a lush green field. The cows are black and white, and they are all standing on their hind legs, grazing on the grass. In the background, there are trees and a few houses visible. The sky is cloudy, and there is a light breeze blowing through the grass."} +{"image_id": 274612, "caption": "This image shows a row of bicycles parked in front of a brick wall. The bicycles are lined up next to each other and there are several umbrellas on the ground in front of them. The umbrellas are open and provide shade for the bicycles on a sunny day. The wall behind the bicycles is made of brick and has some greenery growing on it. There is a tree in the background that is visible through the umbrellas."} +{"image_id": 288714, "caption": "The image shows a close-up view of a pizza with various toppings such as mushrooms, olives, and pepperoni. The crust appears to be burnt and crispy, while the toppings are brown and crispy. The overall appearance of the pizza is delicious and appetizing."} +{"image_id": 284379, "caption": "The image shows a young boy riding on a surfboard in a swimming pool. He is wearing a black t-shirt and has his hair tied back in a ponytail. The water is blue and there are waves in the pool. The boy is smiling and looks happy as he rides the surfboard."} +{"image_id": 205247, "caption": "The image shows a large white and red bus with a blue stripe painted on one side. The bus is parked on the side of a road, and there are trees in the background. The bus has a sign on the back that says \"Miami Heat\" with an image of a basketball player in the middle. There are no people or other vehicles in the image."} +{"image_id": 200267, "caption": "This image shows a woman playing tennis on a court surrounded by a crowd of people. The woman is wearing a black top and white shorts and is holding a tennis racket in her hand. The court is surrounded by a red fence and there are several tennis balls scattered on the ground around the court. The people in the crowd are watching the game and cheering for the player."} +{"image_id": 296775, "caption": "The image shows a blue bus driving down a city street. The bus has a sign on the front that reads \"City Bus\" and the number \"123\" on the side. There is a person standing on the sidewalk next to the bus, looking at the bus as it drives by. There is a building in the background with a sign that reads \"City Hall\" on it. The sky is overcast and there are clouds in the sky."} +{"image_id": 4265, "caption": "The image shows a window sill with several blue v"} +{"image_id": 104392, "caption": "This image shows a kitchen with wooden cabinets and a black stove. The countertop is made of granite and there is a microwave on top of it. The refrigerator is also made of wood and has a black handle. The sink is made of stainless steel and there is a faucet next to it. The floor is made of hardwood and the walls are painted white."} +{"image_id": 316658, "caption": "This image shows a large body of water with a tree in the foreground. The tree is bare and there are no leaves on it. The water is calm and there are no boats or other objects in the water. The sky is cloudy and there are some trees in the background."} +{"image_id": 230993, "caption": "This image shows two women walking down a sidewalk, each carrying an umbrell"} +{"image_id": 321035, "caption": "This image shows a cake that has been decorated with red and green fro ..."} +{"image_id": 571038, "caption": "The image shows a woman holding a tray with a pizza on it. The pizza has various toppings such as mozzarella cheese, tomato sauce, and fresh basil leaves. The woman is smiling and appears to be happy with the pizza. The background of the image is a kitchen with a stainless steel sink, a gas stove, and a refrigerator."} +{"image_id": 395978, "caption": "The image shows a group of people working on a construction site. They are wearing yellow vests and hard hats, and are using shovels and other digging tools to excav"} +{"image_id": 482917, "caption": "This image shows a person sitting on a red couch with their legs stretched out in front of them. The person is wearing blue jeans and a white t-shirt, and there is a black and white dog sitting on the floor in front of them. The dog has its head cocked to the side and appears to be watching something on a television screen that is out of the frame. The room appears to be a living room with a wooden floor and a wooden bookshelf with books on it. There is a brown leather recliner chair in the corner of the room, and a wooden coffee table with a plant on it in front of the couch."} +{"image_id": 207561, "caption": "The image shows a group of four people on surfboards riding waves in the ocean. They are all wearing black wetsuits and black hats. The water is a deep blue color and there are whitecaps on the waves. The sky is a bright blue and there are some clouds in the distance. The horizon is visible in the background."} +{"image_id": 369470, "caption": "This image shows a row of parked cars lined up along a sidewalk in front of a building. The cars are parked on either side of the sidewalk, and there are no other vehicles or people visible in the image. The building behind the cars appears to be a commercial or office building, with windows on the upper floors and a sign on the roof. The sky in the image is clear and blue, with a few clouds visible in the distance. The image is taken from a low angle, looking down the sidewalk towards the building."} +{"image_id": 482210, "caption": "This is a bathroom with a toilet, sink, and cabinet. The cabinet has a white door with a mirror above it. The floor is blue and there is a shower in the corner."} +{"image_id": 525381, "caption": "This image shows a baseball player swinging a bat at a pitched ball during a game. The player is wearing a white shirt and black pants, and is standing on a baseball field with a catcher behind him. The umpire is standing behind the catcher, ready to call the play. The crowd is watching the game from behind the fence."} +{"image_id": 156375, "caption": "This image shows a woman wearing a pink jacket and skis standing on a snow-covered slope. The woman is wearing a helmet and goggles, and her skis are strapped to her boots. In the background, there is a blue fence and a few trees. The sky is dark, and there are stars visible in the sky."} +{"image_id": 334399, "caption": "This image shows a man standing in front of a table with a large clock on it. The clock has a black face with white numbers and hands. The man is wearing a red shirt and black pants. There are several people in the background, all wearing clothing from the 17th century."} +{"image_id": 322955, "caption": "The image shows a beach with waves crashing against the shore. In the foreground, there is a small bird standing on the sand, looking out to sea. The sky is cloudy and the sun is setting behind the clouds, casting a warm orange glow over the scene. The water is turbulent and choppy, with whitecaps breaking against the shore. The bird appears to be standing on one leg, with the other tucked under its body."} +{"image_id": 312024, "caption": "The image shows a blue and black bird standing on a patch of green grass. The bird has a long, curved beak and its wings are spread out as if it is about to takeoff. In the background there are some trees and bushes, and some green grass can be seen in the foreground. The bird appears to be perched on a small mound of grass."} +{"image_id": 118715, "caption": "The image shows a fire hydrant on the side of an urban street. The hydrant is made of metal and has a round shape. It sits next"} +{"image_id": 237318, "caption": "The image shows a stop sign sitting in the middle of a dirt road surrounded by trees. The stop sign has a red background with white letters that read \"stop.\" The trees in the background are bare, with no leaves or branches. The sky is overcast, with clouds covering most of the sky."} +{"image_id": 236865, "caption": "This image shows a young girl standing on a sidewalk in front of a house. She is wearing a black and white floral print dress and pink sandals. She is holding a red plastic kite in one hand and looking up at the sky with a smile on her face. Behind her, there is a large tree with green leaves and a few smaller trees in the background. The sky is clear and blue, with a few clouds in the distance."} +{"image_id": 72096, "caption": "This image shows a woman sitting at a table with a plate of food in front of her. The plate is covered in different types of food, including eggs, bacon, and pancakes. There are also glasses of orange juice and coffee on the table in front of her. The woman is wearing a red sweater and has her hair pulled back in a ponytail. The background of the image is a stone wall with a vase of flowers on it."} +{"image_id": 450762, "caption": "This image shows a group of teddy bears dressed in military uniforms standing on the deck of a small boat. The teddy bears are wearing green military uniforms with hats and boots, and they are holding rifles. The boat appears to be made of wood and has a metal railing around the edge. There is a blue sky and water in the background."} +{"image_id": 168974, "caption": "The image shows a small child sitting on the floor, holding a toy in one hand and a cell phone in the other. The child is wearing a pink cardigan and blue jeans, and is sitting on a wooden floor with a brown rug in the background. The room appears to be a living room or bedroom."} +{"image_id": 559950, "caption": "This image shows a small dog sitting on the window sill of a car. The dog is looking out of the window with its head tilted to the side. The car is parked on the side of a road, and there are other cars and buildings visible in the background. The sky is clear and blue, and there are a few clouds visible in the distance. The dog is wearing a yellow collar with a tag that reads \"Max\"."} +{"image_id": 575776, "caption": "This image shows a zebra and a rhinoceros standing in a dirt field. The zebra is standing with its head down, while the rhinoceros is standing with its head up and looking at the zebra. In the background, there is a mountain range with green hills and trees. The sky is blue and there are clouds in it."} +{"image_id": 552352, "caption": "This image shows a slice of cheesecake on a white plate, with a fork next to it. The cheesecake appears to be yellow and has a smooth, creamy texture. The plate is covered in a light-colored cloth or napkin. The fork is made of metal and has a serrated edge. The lighting in the image is bright and even, casting shadows on the plate and fork. The overall mood of the image is cheerful and appetizing."} +{"image_id": 490683, "caption": "This image shows three people playing a game of frisbe in a park. Two of them are wearing white shirts and black shorts, while the other weigh is holding an object and weigh is weigh is weigh weigh weigh we we we we we we"} +{"image_id": 76417, "caption": "The image shows a white dog standing on the hood of a black pickup truck. The dog has its ears perking up and appears to be looking at something in the distance. There is a green traffic light in the background, and the sky is clear and blue."} +{"image_id": 231153, "caption": "The image shows a person wearing a blue jacket and orange pants riding a snowboard down a snow-covered slope. The person is wearing goggles and has a backpack on their back. The trees in the background are tall and covered in snow. The sky is cloudy and the sun is shining through the clouds."} +{"image_id": 190497, "caption": "This image shows a group of cows standing in a dirt al Read more"} +{"image_id": 126065, "caption": "The image shows a clock mounted on the side of a brick building. The clock has two bells hanging from it, one on the left and one on the right. The clock face is black with white numbers and hands. The building behind the clock has a stone facade with arched windows and a pointed roof."} +{"image_id": 375915, "caption": "The image shows a wooden table with a pizza on it. The pizza appears to be made with a variety of vegetables, including mushrooms, onions, and peppers. There are also some other dishes on the table, including a bowl of salad and a glass of wine. The background of the image appears to be a grassy area with some trees in the distance."} +{"image_id": 95022, "caption": "This is an image of a bird perched on a tree branch. The bird is a grey and white pigeon with a red beak and legs. The bird is sitting on a branch that is attached to a tree trunk. Behind the bird, there is a green background with some leaves and branches visible."} +{"image_id": 177935, "caption": "This is a photo of a kitchen with a white stove, oven, and microwave. There are also two yellow towels hanging from a rack above the stove. The countertop is made of white granite and there is a small table with two chairs in the corner of the room. The walls are painted yellow and there is a small window above the sink."} +{"image_id": 380117, "caption": "This image shows a table with several potted plants on it, including a cat sleeping on top of one of the pots. The table is covered in a floral-patterned tablecloth, and there is a window with curtains in the background. The plants appear to be healthy and well-cared for."} +{"image_id": 132373, "caption": "The image shows a large, ornate clock hanging from the ceiling of a grand, old-fashioned train station. The clock has intricate, gilded details and is surrounded by large, ornate chandeliers. The walls of the station are made of stone and have large, arched windows. In the background, there is a large American flag hanging from a pole."} +{"image_id": 284282, "caption": "This image shows a white blender sitting on top of a green table. The bl"} +{"image_id": 276707, "caption": "This image shows a sign on a pole in front of a building with a red brick facade. The sign has a black and white image of a motorcycle, a bicycle, and a person riding a skateboard. The words \"No Skateboarding\" are written in white letters on the sign. The building behind the sign appears to be a store or business with several windows and a door."} +{"image_id": 194704, "caption": "The image shows a woman standing in front of a building with snow-covered mountains in the background. She is wearing a black jacket, pink gloves, and a pink scarf around her neck. She is holding two pairs of skis, one in each hand, and is smiling at the camera. The building behind her appears to be a ski lodge or chalet, with large windows and a wooden facade. The snow-covered mountains in the background add to the wintery atmosphere of the image."} +{"image_id": 430286, "caption": "This image shows a close-up view of a mattress with two remote controls placed on top of it. The mattress appears to be made of white fabric, and the remote controls are black and rectangular in shape. The remote controls are labeled \"Up\" and \"Down\" and are likely used to adjust the firmness of the mattress."} +{"image_id": 361171, "caption": "This image shows a person riding a snowboard in the air. The person is wearing a green jacket and black pants, and has a black helmet on their head. They are holding onto the snowboard with their hands, and their feet are in the air. The background of the image is a cityscape, with tall buildings and trees visible in the distance."} +{"image_id": 406451, "caption": "This image shows a horse-drawn carriage parked on the side of a city street. The carriage has a red and white striped canopy and is being pulled by a brown horse. The horse is wearing a red bridle and reins. There are several cars parked on the street behind the carriage, as well as a few pedestrian on the sidewalk. The buildings on the street are tall and made of brick and stone."} +{"image_id": 57286, "caption": "This image shows a group of people on a skateboard ramp. The ramp is made of wood and has a series of ramps and obstacles on it. The people on the ramp are wearing helmets and are performing various tricks and stunts on their skateboards. Some of them are jumping and flipping off of the ramps, while others are performing more basic tricks like grinds and ollies. The sky in the background is clear and blue, with fluffy white clouds. The image is taken from a high angle, looking down at the ramp from above."} +{"image_id": 535952, "caption": "The image shows three chocolate cupcakes on a wooden cutting board. Each cupcake has a thin layer of white frosting on top and a small spoon next to it. The cupcakes are on a red and white polka dot tablecloth."} +{"image_id": 455772, "caption": "This image shows a man in a blue shirt and shorts reaching up to catch a fr"} +{"image_id": 63617, "caption": "This image shows a young boy playing catch with a baseball glove and a baseball. The boy is wearing a blue jacket and jeans, and is standing on a wooden deck with a brown railing. In the background, there is a wooden fence and a few trees. The boy is holding the baseball glove in his right hand, and is about to throw the ball. The dog in the background appears to be watching the game."} +{"image_id": 90155, "caption": "The image shows a long train traveling down a railroad track. The train is made up of several cars, each with different colors and markings. The track is lined with trees and other vegetation, and there is a cloudy sky in the background."} +{"image_id": 158127, "caption": "This image shows a person standing on a rocky terrain with their feet on a pile of rocks. The person is wearing black pants and a black shirt, and there is a yellow cat lying on the ground next to them. The cat is sleeping, with its eyes closed and its body stretched out on the ground. The sky is visible in the background, with some clouds and a patch of blue sky. The rocks in the foreground are covered in moss and lichen, and there are some small pebbles and rocks scattered around the area."} +{"image_id": 248582, "caption": "This image shows a group of people standing in front of a fruit and vegetable stand on a cobblestone street. The people are looking at the fruits and vegetables displayed on the stand, which includes bananas, apples, oranges, and other types of produce. The stand is located in a bustling market area, with other shops and buildings visible in the background. The people in the image are wearing a variety of clothing, including jackets, scarves, and hats, to protect themselves from the cold weather."} +{"image_id": 206560, "caption": "This image shows a person riding a snowboard down a ramp. The person is wearing a yellow jacket, black pants, and a black helmet. They are holding onto a railing with one hand and riding the snowboard with the other. The ramp appears to be made of concrete and there is a building in the background."} +{"image_id": 69009, "caption": "This image shows two young children standing in front of a large glass window that looks out onto a zoo exhibit. The children are looking at a black bear that is standing on the other side of the glass. The bear is standing on its hind legs and appears to be looking at the children. In addition to the bear, there are other animals in the exhibit that can be seen in the background of the image."} +{"image_id": 322122, "caption": "The image shows a white toilet bowl with a yellow sponge on top of it. The sponge is placed on top of the toilet bowl to clean it. The toilet is located in a bathroom with tiled walls and a brown floor. There is a trash can next to the toilet."} +{"image_id": 549930, "caption": "This image shows a couple walking down a rainy street under an umbrella. The man is wearing a white t-shirt and shorts while the woman is dressed in a black and white striped shirt and shorts. They are holding hands and walking towards the camera. In the background, there is a view of the ocean and some palm trees. The sky is overcast and there are dark clouds in the distance."} +{"image_id": 33216, "caption": "The image shows a large pizza on a tray with a red and white checkered tablecloth in the background. The pizza has a thick crust and is topped with a variety of meats, including sausage, pepperoni, and bacon, as well as vegetables such as mushrooms and onions. The pizza appears to be freshly baked and is surrounded by a variety of condiments, including tomato sauce, cheese, and oregano.

"} +{"image_id": 434581, "caption": "This image shows a person riding a black and silver motorcycle on a road. The person is wearing a black leather jacket, black gloves, and a black helmet. The motorcycle is parked on the side of the road, and there is a stone wall on the other side of the road. In the background, there is a green landscape with trees and a blue sky."} +{"image_id": 239509, "caption": "This image shows a pedestrian crossing sign on a street corner. The sign has a red and white striped pole with an arrow pointing to a crosswalk on the other side of the street. There is also a black and white sign on the pole that reads \"Walk\" in white letters on a black background. In the background, there are several tall buildings with windows and balconies. There are also several people walking on the sidewalk, some of whom are crossing the street at the intersection."} +{"image_id": 88848, "caption": "The image shows a group of people standing in front of a fire hyd"} +{"image_id": 116182, "caption": "This image shows a bowl filled with a variety of vegetables and meat, including carrots, broccoli, and chicken. The bowl is on a countertop next to a sink and a stove. The sink has a faucet and a soap dispenser, while the stove has a gas burner and an oven. There is also a refrigerator in the background."} +{"image_id": 562345, "caption": "This image shows a woman standing in front of a gray brick wall, wearing a yellow raincoat and blue jeans. She is holding a cell phone in her hand and appears to be looking at it. The background is a gray brick wall."} +{"image_id": 343410, "caption": "This image shows a red plate with a pile of sliced vegetables on it. The vegetables appear to be broccoli, onions, and tomatoes. The plate is on a white countertop."} +{"image_id": 490529, "caption": "This image shows a woman sitting at a table in a restaurant, looking at her cell phone. She is wearing a pink sweater and has her hair in a ponytail. There is a tablecloth on the table in front of her, and a glass of water in front of her. There are other people in the background, sitting at tables and chairs. The lighting in the room is bright and well-lit."} +{"image_id": 328818, "caption": "This image shows a woman standing on a wooden bench next to a bicycle. The woman is wearing a pink shirt and blue jeans, and has her hair tied back in a ponytail. She is bending down to tie her shoe laces, which are hanging down from her shoes. In the background, there are trees and a pathway leading off into the distance. The bicycle is parked next to the bench, and has a basket on the front."} +{"image_id": 218947, "caption": "The image shows a person wearing skis and carrying poles, walking down a snow-covered slope. The person is wearing a black jacket, black pants, and a black hat. The sky is cloudy and the mountain in the background is covered in snow."} +{"image_id": 152281, "caption": "This image shows a large group of sheep grazing in a lush green pasture. The sheep are all white and have blue numbers painted on their backs. The grass is tall and green, and there are trees in the background. The sky is clear and blue, and there are clouds in the distance."} +{"image_id": 41110, "caption": "This image shows a young child holding a bottle of shampoo in one hand and standing in front of a white wall. The child is wearing a pink and white striped shirt and has short brown hair. The bottle of shampoo is labeled \"shampoo\" and has a pink and white label. The wall behind the child is blank and white."} +{"image_id": 512985, "caption": "This image shows a person standing on a beach, holding a surfboard. The person is wearing a black wetsuit and has a black hat on their head. The surfboard is white and has a black fin on the bottom. In the background, there is a body of water and some trees."} +{"image_id": 414212, "caption": "This image shows a man with glasses holding two toothbrushes in his hands. He is wearing a gray t-shirt and has a goatee. The background is a shower curtain with a green and white striped pattern."} +{"image_id": 426578, "caption": "The image shows a man walking along a sandy beach with a surfers in the background. The man is wearing a black t-shirt and black shorts, and is carrying a surfboard under his arm. The beach is lined with palm trees and there is a clear blue sky in the background."} +{"image_id": 291962, "caption": "This image shows a young boy standing in a grassy field, holding a large kite in the air. He is wearing a blue and yellow striped shirt and shorts, and has his hair tied back in a ponytail. In the background, there is a large brick building with windows and a pointed roof. The sky is clear and blue, with a few clouds in the distance."} +{"image_id": 460927, "caption": "This image is a black and white photograph of a large brown bear standing on a grassy hillside. The bear is looking off into the distance, with its head tilted to the side. The bear appears to be standing on its hind legs, with its front paws on the ground. In the background, there are mountains and trees visible. The image is taken from a low angle, looking up at the bear from below."} +{"image_id": 552186, "caption": "This image shows a man on a skateboard performing a trick in a skate park. The man is wearing a black t-shirt and blue jeans, and has long hair that is tied back in a ponytail. He has a beard and is wearin"} +{"image_id": 553852, "caption": "This is a black and white photograph of a young boy standing on a skateboard on a sidewalk. The boy is wearing a white t-shirt and blue jeans, and he has a backpack on his back. There are several bicycles parked on the sidewalk in the background."} +{"image_id": 370337, "caption": "The image shows two boats docked at a pier in a body of water. The boats are red and white, and are tied to the dock with ropes. There is a large building in the background, which appears to be a hotel or apartment complex. The building is made of red brick, and has large windows and balconies on the upper floors. There are trees and other vegetation on the shore, and the water is calm and clear."} +{"image_id": 18491, "caption": "This image shows a baseball game in progress. Two players are on the field, one catching the ball and the other sliding into home plate. The umpire is standing behind the catcher, ready to make a call. The crowd is watching the game from the stands. The field is green and the sky is blue."} +{"image_id": 556000, "caption": "This image shows a group of children standing in a living room, looking at a television screen. The children are wearing casual clothing and appear to be playing with a video game controller. The room is dimly lit and there is a window in the background."} +{"image_id": 443351, "caption": "The image shows two motorcycles parked in a parking lot. One is a green and white motorcycle with a black seat and handlebars, and the other is a black and white motorcycle with a white seat and handlebars. Both motorcycles are parked on the ground and are facing in the same direction. There are no other objects or people in the image."} +{"image_id": 63965, "caption": "This image shows a woman holding a white plate with a piece of cake on it. The cake is decorated"} +{"image_id": 405660, "caption": "This image shows a wooden bench sitting in the middle of a grassy hill, surrounded by trees and mountains in the background. The sky is cloudy and overcast, with a few patches of sunlight peeking through the clouds. The bench appears to be weathered and worn, with cracks and chips in the wood. There are no people or other objects in the image."} +{"image_id": 419144, "caption": "This is a black and white photograph of a group of people riding on the backs of elephants in a field. The elephants are standing on their hind legs and the people are seated on their backs. There are trees in the background and the sky is visible in the top of the image. The people are wearing clothing that is typical of the time period in which the photograph was taken."} +{"image_id": 371004, "caption": "This image is of a zebra standing behind a chain link fence. The zebra has black and white markings on its body and is looking over its shoulder at something outside the fence. The background is made up of trees and other vegetation."} +{"image_id": 116861, "caption": "This image shows a woman lying on a couch with a black stuffed animal in her arms. The woman has blonde hair and is wearing a white shirt. The couch has a striped pattern on it, and there is a pillow behind her head. The stuffed animal appears to be a teddy bear."} +{"image_id": 579664, "caption": "This image shows a pile of ripe bananas in a wooden crate. The bananas are yellow and have brown spots on them. There are several bunches of bananas in the crate, and some of them are hanging over the sides. The image is taken from a low angle, looking up at the crate. There are trees in the background, visible through the gaps in the bananas."} +{"image_id": 5600, "caption": "The image shows two bowls of food on a table. One bowl contains sliced onions and the other contains sliced tomatoes. The bowls are made of metal and have lids on them. There is a white tablecloth on the table and a green and white striped napkin on top of the bowls."} +{"image_id": 199389, "caption": "This image shows a fire hydrant with a cartoon character painted on it, sitting in the middle of a dirt road next to a chain link fence. The character on the hydrant is wearing a red and black outfit with a large grin on its face. There is a small pile of trash next to the hydrant, including a plastic bottle and some scraps of paper. In the background, there is a building with windows and a door, and some trees are visible in the distance."} +{"image_id": 568131, "caption": "The image shows an elephant standing in a grassy field surrounded by trees and rocks. The elephant is gray in color and has a trunk that is curved upwards at the end. Its body is large and muscular, and its legs are thick and strong. There are trees and rocks in the background, and the sky is clear and blue."} +{"image_id": 35671, "caption": "The image shows a group of people on horseback riding through a dirt track. The riders are wearing cowboy hats and boots, and they are holding ropes that are attached to the backs of the horses. The horses are galloping along the track, with some of them jumping over small obstacles. In the background, there are several buildings and a group of people watching the riders."} +{"image_id": 76522, "caption": "This is an image of a black and white cat lying on a gray couch. The couch has a fluffy white cushion on it, and the cat is lying on top of the cushion with its paw on the arm of the couch. The cat has its eyes closed and appears to be sleeping."} +{"image_id": 504167, "caption": "This is an image of a cat with blue eyes and white fur. The cat is sitting on a wooden surface with its head tilted to the side. The background of this image is a wooden wall with some cracks and peeling paint. The lighting in this image is dim and shadowy, casting deep shadows on parts of the cat and the wooden surface."} +{"image_id": 21644, "caption": "The image shows a parking lot with several buses parked in it. The buses are of different colors, including red, white, and pink. There is a large building in the background, which appears to be a terminal or bus station. The sky is cloudy and overcast, with dark clouds visible in the distance."} +{"image_id": 483135, "caption": "This image shows a group of people sitting on a couch in a living room. The people are holding white game controllers in their hands, and they are all looking at the screen in front of them. The room is decorated with a green bean bag chair and a brown couch. The walls are painted a light color and there is a rug on the floor."} +{"image_id": 271063, "caption": "This image shows a kitchen with wooden cabinets, a microwave oven, and a refrigerator."} +{"image_id": 36477, "caption": "The image shows a pile of ripe bananas in a cardboard box. The bananas are yellow and have brown spots on them. There are several bunches of bananas in the box, and they are all ripe and ready to be eaten. The bananas are stacked on top of each other, with some of them hanging over the edge of the box. There are no other objects in the image."} +{"image_id": 125375, "caption": "This image shows a red and white passenger train traveling along a railroad track. The train appears to be stopping at a station, as several people are standing on the platform waiting to board. The station appears to be made of concrete and has a metal roof. There are also several trees and a building in the background."} +{"image_id": 362520, "caption": "This image shows a young boy riding a skateboard down a ramp. He is wearing a helmut and pads to protect himself from injury. The ramp is made of concrete and has a series of ramps and jumps on it. The boy is in the air, performing a trick on the skateboard."} +{"image_id": 5412, "caption": "This image shows a modern bathroom with a toilet, sink, and shower. The walls are tiled and the floor is made of tiles. The toilet and sink are made of white porcelain and the shower is made of glass. The shower has a rainfall showerhead and there is a towel rack above the sink. The toilet has a wooden seat and the sink has a faucet with a single handle. The overall design of the bathroom is minimalist and clean."} +{"image_id": 757, "caption": "The image shows a group of three elephants standing in a shallow pool of water. One of the elephants has its truck in the water, while the other two are standing on the bank. The water is muddy and there are some trees in the background."} +{"image_id": 396496, "caption": "The image shows a group of people standing on a street corner in front of a row of old trucks. The trucks are parked on the side of the road and are covered in snow. The people in the image are all wearing coats and hats, and some of them are holding umbrellas to protect themselves from the rain. The sky is cloudy and overcast, and there are a few small patches of snow on the ground. The overall mood of the image is somber and damp."} +{"image_id": 81761, "caption": "This is an image of a woman playing tennis on a court. The woman is wearing a black top and white shorts, and is holding a tennis racket in her right hand. She is standing on the left side of the court, with the net in the background. The court is made of green and white tiles, and there are several windows on the building behind the court."} +{"image_id": 130677, "caption": "This image shows two people playing tennis on a court at night. One person is wearing a white shirt and black pants, and the other is holding a tennis racket. The court is illuminated by floodlights, and there are trees in the background."} +{"image_id": 318825, "caption": "The image shows a man wearing a white shirt and black pants standing on a tennis court. He is holding a tennis racket in one hand and a tennis ball in the other. The court is blue and has a white line running down the middle. There is a blue and white banner hanging from the wall behind him."} +{"image_id": 48014, "caption": "This image shows a man walking a black dog on a leash down a sidewalk in a residential neighborhood. The man is wearing a green t-shirt and blue jeans, and has a beanie on his head. There are several trees on either side of the sidewalk, and a few people sitting on benches watching the man and dog pass by. The houses on the other side of the street are all different colors and styles, and there are cars parked on the street. The sky is clear and blue, and there are no clouds in sight."} +{"image_id": 421028, "caption": "The image shows a gray cat lying on a red and black rug with a toy carrot in its mouth. The cat is wearing a collar with a tag that reads \"Fluffy\". The room has a wooden floor and a wooden staircase leading to the second floor. There is a door on the left side of"} +{"image_id": 479659, "caption": "This image shows a man and a woman standing next to each other in a outdoor setting. The man is wearing a white shirt and blue jeans, while the woman is dressed in a white blouse and black pants. They are both holding glasses of wine and smiling at each other. In the background, there is a wooden fence and some trees."} +{"image_id": 369826, "caption": "This image shows a luggage conveyor belt in an airport terminal. The conveyor belt is made of metal and has a white background. There is a large screen on the wall in front of the conveyor belt that displays an image of a person surfing on a wave. The screen is mounted on the wall and has a wooden frame around it. The floor is made of marble tiles and has a purple and white pattern. There are no people in the image."} +{"image_id": 406253, "caption": "This image shows a row of motorcycles parked on the side of a city street. The motorcycles are lined up next to each other and are parked on the side of the road. There are several cars parked on the other side of the road, and a few pedestrian walkways are visible in the foreground. The buildings on either side of the street are tall and have a lot of windows. The sky in the background is cloudy and overcast."} +{"image_id": 548267, "caption": "This image shows a group of sheep grazing in a lush green pasture. In the background, there is a mountain range with snow-capped peaks. The sky is clear and blue, and there are clouds in the distance. The sheep are grazing peacefully, with their heads down and tails wagging. The grass is tall and green, and there are trees in the background. The image is taken from a low angle, looking up at the sheep."} +{"image_id": 335844, "caption": "This is an image of a toaster oven on a kitchen counter. The oven has a stainless steel exterior and a glass door. Inside, there is a tray with a piece of bread on it, which appears to be toasted. There is also a spatula and a knife on the counter next to the oven. The countertop is made of white ceramic tiles and there is a sink and faucet in the background."} +{"image_id": 299640, "caption": "This image shows the front and back of a remote control for a television or other electronic device. The front of the remote has buttons for changing channels, adjusting the volume, and other functions. The back of the remote has a battery compartment and other electronic components."} +{"image_id": 121812, "caption": "The image shows a view of a city street with cars driving on it. The sky is cloudy and there are trees in the background. The buildings on either side of the street are tall and have many windows. There is a traffic light at the intersection in front of the cars."} +{"image_id": 107234, "caption": "The image shows a man wearing a black suit with a white shirt and a black tie. He is holding a glass of wine in his right hand and looking at it with a surprised expression on his face. The man has short brown hair and a beard, and his eyes are brown. The background of the image is a building with white walls and a green roof. There is a white flower on the ground in front of the man."} +{"image_id": 153104, "caption": "This image shows a man sitting in a crowded stadium, holding a hot dog in one hand and a drink in the other. The man is wearing a black and orange striped shirt and has his hair styled in a messy, casual style. The stadium is filled with people, some of whom are watching the game and others who are chatting and eating food. The atmosphere is lively and energetic."} +{"image_id": 216417, "caption": "This is a black and white photograph of a man wearing skis and carrying a small white teddy bear on his back. He is standing on a snowy slope, with his skis and poles in front of him. The man is wearing a hat, gloves, and a scarf, and has a backpack on his back. The snow in the background is deep and powdery, and there are no other people or objects in the image."} +{"image_id": 286708, "caption": "This is an image of a black and white cat wearing a pink knitted hat. The cat is lying on a cushion and looking up at the camera with its yellow eyes. The background is a messy room with cardboard boxes and other debris scattered around."} +{"image_id": 547041, "caption": "This image shows a lunch tray with a variety of food items on it. The tray has a bowl of salad with mixed greens, tomatoes, cucumber, carrots, and black olives. There is also a bowl of pasta with tomato sauce and mozzarella cheese. The tray also has a bowl of chicken salad with mixed greens, cherry tomatoes, and croutons. Finally, there is a bowl of fruit salad with grapes, strawberries, and blueberries."} +{"image_id": 293802, "caption": "This image shows a man riding a skateboard on a paved sidewalk in a bustling city. The man is wearing a black t-shirt and black pants, and is jumping up into the air while holding onto the skateboard. Behind him, there are several people walking on the sidewalk, some of whom are looking at the skateboarder. The buildings on either side of the sidewalk are tall and made of concrete, with palm trees lining the street. The sky is clear and blue, and there appears to be sunlight shining down on the scene."} +{"image_id": 252738, "caption": "This image shows a man wearing a black leather jacket and standing in front of a dirt field with mountains in the background. He is holding a cell phone to his ear and appears to be talking on the phone. The sky is clear and blue, and there are no other people or objects in the image."} +{"image_id": 43165, "caption": "The image shows two zebras standing next to each other in a grassy field. One zebra is black and white, while the other is mostly black with white stripes on its face and legs. They are both looking at each other and appear to be standing on top of a pile of dry grass. Behind them, there is a tree with branches and leaves visible. The sky is cloudy and overcast, and there are no other animals or people in the image."} +{"image_id": 218215, "caption": "The image shows a white polar bear swimming in the water with its mouth open, showing its sharp teeth. The water is turbulent and choppy, with waves crash"} +{"image_id": 299082, "caption": "This image shows a giraffe with its head down, peering over a rocky outcropping in a grassy field. The giraffe has brown fur on"} +{"image_id": 152360, "caption": "The image shows a group of green bananas hanging from the ceiling of a marketplace. There are rows"} +{"image_id": 205601, "caption": "This image shows a woman stirring a pot of food on a stove in a kitchen. The woman is wearing a blue shirt and has her hair tied back in a ponytail. There is a man standing behind her, watching her cook. The food in the pot appears to be a mixture of vegetables and meat."} +{"image_id": 174004, "caption": "The image shows a yellow truck parked in a grassy field surrounded by trees. The truck appears to be old and rusty, with a crane on the back. There are no other vehicles or people in the image."} +{"image_id": 31542, "caption": "This image shows a person wearing a black and white snowboard and holding onto a black and white striped handle. The person is in mid-air, with one leg extended forward and the other behind them. The sky is clear and blue, and there are no other objects or people in the image."} +{"image_id": 305268, "caption": "This image shows two women playing tennis on a court. One woman is holding a racket and the other is standing on the other side of the court, ready to serve. The court is surrounded by a metal fence and there are trees in the background."} +{"image_id": 2867, "caption": "This image shows a group of people on skis standing on a snow-covered slope. They are wearing backpacks and holding ski poles. The sky is cloudy and there are trees in the background."} +{"image_id": 72428, "caption": "This image shows a bathroom with a toilet, sink, and shower. The walls are made of wood, and the floor is tiled. The toilet has a white porcelain bowl and a wooden seat. The sink is made of porcelain and has a faucet with a single handle. The shower has a wooden door and a showerhead with a hand-held showerhead attachment."} +{"image_id": 158494, "caption": "The image shows a group of three giraffes standing in a grassy field. Two of the giraffes are standing next to a wooden fence, while the third giraffe can be seen in the background. The giraffes are brown in color with spots all over their bodies. They have elong ..."} +{"image_id": 147629, "caption": "This image shows a white cat lying on the floor with a stuffed elephant toy in its mouth. The cat appears relaxed and content as it lays on its side, with its eyes closed. The background of the image is a beige carpet, and there are no other visible objects in the room."} +{"image_id": 581899, "caption": "The image shows two trains parked next to each other on a railroad track. The first train is blue and has windows on both sides. The second train is also blue and has windows on one side. There is a gap between the two trains, and the ground is visible in the foreground. The sky is cloudy and there are some trees in the background."} +{"image_id": 369345, "caption": "This image shows a living room with a blue couch, a bookshelf, and a lamp. The couch has a blanket and a pillow on it, and there is a laptop on the coffee table in front of the couch. The bookshelf has books on it, and there is a lamp on the table next to the couch."} +{"image_id": 372246, "caption": "This image shows a stop sign and two street signs on a pole in front of a dirt road. The stop sign has a red background with white letters that say \"stop\" on it. The two street signs are green with white letters that say \"hell canyon rd\" on one and \"caution\" on the other. The sky in the background is clear and blue."} +{"image_id": 261563, "caption": "The image shows two dogs, one black and one brown, playing in a field of tall green grass. The black dog is holding a yellow toy in its mouth and the other dog is chasing it. The sky is cloudy and there are trees in the background."} +{"image_id": 461802, "caption": "The image shows a train station with a red and white train parked at the platform. The train has a conductor standing on the platform, and there are stairs leading up to the platform. The stairs are made of metal and have railings on either side. There are also several signs on the walls of the station, including a clock and a schedule board."} +{"image_id": 138175, "caption": "This image shows a man wearing a black suit jacket and white dress shirt, with a pair of glasses perched on his nose. He is holding a cell phone to his ear and appears to be talking on the phone. The background of the image shows a restaurant or cafe with tables and chairs, and there are people seated at one of the tables in the foreground. The overall atmosphere of the image is casual and relaxed."} +{"image_id": 103488, "caption": "This is a bathroom with two sinks and a mirror. The walls are tiled with blue and white tiles, and there is a large mirror above the sinks. The floor is made of black and white tiles."} +{"image_id": 215901, "caption": "The image shows a bowl of fruit on a table in front of a painting on the wall. The fruit in the bowl includes oranges, bananas, and apples. The table is covered in a red and white checkered tablecloth. The painting on the wall appears to be a landscape with mountains and a river in the foreground."} +{"image_id": 514180, "caption": "The image shows several pizzas in pans on a metal tray. The pizzas appear to be made with different topping combinations, including pepperoni, mushrooms, onions, and cheese. The pizzas are served in individual slices and appear to be freshly baked."} +{"image_id": 396338, "caption": "This image shows a group of people standing on the side of a busy street. There are several cars parked on the street, including a yellow taxi and a black truck. The people in the image are wearing white clothing and appear to be waiting for something. The buildings in the background are made of wood and have colorful signs on them. The sky is overcast and there are clouds in the distance."} +{"image_id": 579362, "caption": "This image shows a man sitting on a blue and white wooden bench overlooking a sandy beach with a cruise ship in the background. The man is wearing a black t-shirt and blue jeans and has his arms resting on the back of the bench. The beach is lined with palm trees and there is a clear blue sky with fluffy white clouds in the background."} +{"image_id": 289512, "caption": "The image shows a woman riding a brown and white horse in a field. The woman is wearing a blue shirt, black pants, and a black hat with a brown band. The horse is brown and white with a black mane and tail. The woman is holding the reins with one hand and holding onto the saddle with the other. The horse is walking slowly in the grassy field. In the background, there are trees and a blue sky."} +{"image_id": 306928, "caption": "The image shows a tall, stone building with a clock tower on top. The clock tower has four clock faces, each with roman numerals. The building has a pointed roof and a large, arched window on the ground floor. There are several pigeons perched on the clock tower."} +{"image_id": 453009, "caption": "This image shows a stuffed animal sitting on top of a wooden railing. The animal appears to be a teddy bear, and it is wearing a black and white striped hat. The background of the image shows a street with trees and houses on either side."} +{"image_id": 112581, "caption": "This image shows a man standing in front of a display case in a clothing store. The man is wearing a white t-shirt and black pants, and is holding a white umbrella in his right hand. The display case contains a variety of clothing items, including shirts, pants, and hats. The walls of the store are lined with shelves containing more clothing items, as well as shoes and other accessories. The store appears to be well-lit and well-organized, with a clean and modern appearance."} +{"image_id": 504977, "caption": "This image shows an older woman sitting on a wooden bench in a park. She is wearing a floral-printed jumpsuit and has a black purse on her lap. Behind her, there is a row of tall trees and some bushes. The sky is overcast and there are some clouds in the distance. The woman appears to be lost in thought, with a worried expression on her face."} +{"image_id": 228764, "caption": "This image shows a cat and a dog standing on a sandy beach. The cat is looking off into the background, while the dog is looking at the cat. There is a building in the background that appears to be a residential complex. The sky is cloudy and there are some trees in the foreground."} +{"image_id": 151528, "caption": "The image shows a man standing on a wall, looking down at a black dog that is standing on the ground. The man is wearing a white shirt and blue shorts, while the dog is standing on its hind legs and looking up at the man. The background of the image is a cloudy sky with some dark clouds."} +{"image_id": 248919, "caption": "This image shows a kitchen with wooden cabinets, a white stove, a microwave oven, a refrigerator, and a table with chairs."} +{"image_id": 580607, "caption": "The image shows a group of people standing on a ledge overlooking a river. The river is lined with boats, some of which are moored to the shore. There are trees on the banks of the river and a bridge in the background. The sky is clear and blue."} +{"image_id": 200291, "caption": "The image shows two plates on a table, one with toast and the other with a tomato and cheese sandwich. The toast is topped with butter and the tomato and cheese sandwich is topped with mayonnaise. There is a fork and knife on the table next to the plates."} +{"image_id": 296231, "caption": "This image shows a living room with a television, a book shelf, and a painting on the wall. The television is on and there are several pictures on the book shelf. The painting on the wall appears to be of a person or animal."} +{"image_id": 505663, "caption": "The image shows a large clock on the side of a brick building. The clock has a white face with black numbers and hands. The clock is mounted on a stone archway, with two smaller arches on either side. The arches are made of stone and have decorative carvings on them. The sky is dark and there are stars visible in the background."} +{"image_id": 41572, "caption": "This image shows a group of people playing baseball on a dirt field. The players are wearing white uniforms and helmets, and one of them is holding a bat. In the background, there are trees and a fence."} +{"image_id": 509589, "caption": "This image shows a group of people on skateboards standing in a line on a sidewalk. There are several people in the background, some of whom are standing on the sidewalk and others who are standing on the curb. The people on the skateboards are wearing sunglasses and have their hands on their hips. The background of the image is a wall with graffiti on it."} +{"image_id": 357238, "caption": "This image shows a person standing on a beach, looking out at the ocean. The person is holding a kite, which is being flown in the wind. The sky is cloudy and there are waves in the ocean."} +{"image_id": 466575, "caption": "This image shows a suitcase lying on the ground in the middle of a parking lot. The suitcase appears to be old and worn, with a brown leather exterior and metal handle. There are no other objects or people visible in the image."} +{"image_id": 271970, "caption": "This image shows a white building with a steeple on top, surrounded by trees and a sidewalk. The building appears to be a church or other religious structure, and the steeple has a clock on it. The sky is clear and blue, with no clouds in sight."} +{"image_id": 305540, "caption": "The image shows a large metal sculpture of scissors in the shape of a pair of scissors. The scissors are made of silver metal and are mounted on a pedestal in the middle of a cobblestone street. The building behind the sculpture is a large, ornate building with white marble columns and a tall, pointed roof. The sky is clear and blue, and there are a few clouds in the distance."} +{"image_id": 462928, "caption": "This image shows a man with glasses holding a white and black smartphone to his ear. He is wearing a green sweater and a black and white striped shirt. The background is a wooden desk with a computer and other office supplies visible."} +{"image_id": 270544, "caption": "The image shows a group of people standing on top of a white surfboard in the middle of a lake. The water is calm and the sky is clear and blue. The people are all wearing swimsuits and have their arms raised in the air, as if they are celebrating or cheering. The trees on the shore are lush and green, and there is a sense of serenity and peacefulness in the scene."} +{"image_id": 134042, "caption": "This is an image of a plane flying through the sky on a clear day. The sky is a bright blue and there are clouds in the background. The plane is black and white and is flying at a high altitude. There are trees and other vegetation on the ground below the plane."} +{"image_id": 120340, "caption": "This image shows a man standing next to a bicycle that is leaning against a wall. The man is wearing a brown shirt and black pants, and he is holding a wrench in his hand. The bicycle has a blue frame and white tires, and it appears to be in good condition. In the background, there are several people walking on the sidewalk, and a bus is parked on the street."} +{"image_id": 418949, "caption": "This image shows a baseball game in progress on a baseball field. The players are wearing uniforms and helmets, and the umpire is standing behind the plate. The batter is holding a bat and waiting for the pitch, while the pitcher is standing on the mound. The crowd is seated in the stands, watching the game."} +{"image_id": 520109, "caption": "This image shows a group of colorful umbrellas set up in a grassy area. The um"} +{"image_id": 50753, "caption": "This image shows a kitchen with wooden cabinets, a white refrigerator, a stainless steel sink, and a microwave oven. The countertop is made of granite and there is a dishwasher in the corner. The floor is made of tiles and the walls are painted white. There is a lamp on the counter and a rug on the floor."} +{"image_id": 329939, "caption": "The image shows a group of three giraffes standing in a grassy field. The giraffes are tall and slender, with long necks and legs. The first giraffe in the back has a light coloring consisting primarily"} +{"image_id": 351345, "caption": "This image shows a woman standing in a room with a man standing behind her. The woman is wearing a white shirt and has her hands on her hips. The man is wearing a black shirt and has his hands in his pockets. There is a painting on the wall behind them."} +{"image_id": 25293, "caption": "This is a painting of a woman holding a blue disc in her hand. The woman is wearing a long, flowing dress and has long, flowing hair. She is standing on a rocky outcropping with a mountain in the background. The sky is cloudy and stormy, with dark clouds and lightning flashing in the distance."} +{"image_id": 543041, "caption": "This image shows a box filled with various types of doughnuts. The doughnuts appear to be gla"} +{"image_id": 568265, "caption": "This image shows a man standing in a park, looking up at a kite that is being flown in the sky. The man is wearing a red shirt and black pants, and is holding a stick that he is using to control the kite. In the background, there are trees and a few people walking on the sidewalk. The sky is cloudy and there is a light breeze blowing the kite."} +{"image_id": 467386, "caption": "This image shows a blue door with two small windows on either side of it. The door is made of wood and has a metal handle on the right side. There is a small crack in the wall next to"} +{"image_id": 242363, "caption": "This is a bathroom with a toilet, sink, and bathtub. The walls are white and the floor is tiled. The toilet has a white porcelain bowl and the sink has a white porcelain basin. The bathtub has white porcelain walls and a white porcelain bottom. There is a shower in the corner of the room."} +{"image_id": 554900, "caption": "This image shows a white toilet with a lid open. The toilet is located in a bathroom with gray tiles on the walls and floor. There is a trash can next to the toilet."} +{"image_id": 115006, "caption": "This image shows a baseball game in progress on a baseball field. The players are wearing uniforms and helmets, and the umpire is standing behind the plate, ready to make a call. The batter is holding a bat and waiting for the pitch, while the catcher is crouched behind the plate, ready to catch the ball. The crowd is seated in the stands, watching the game."} +{"image_id": 75375, "caption": "This image shows a group of people kite surfing in the middle of the ocean. They are all wearing wetsuits and holding kites that they are using to propel themselves through the water. In the background, there is a group of people on the shore watching the kite surfers. The sky is clear and blue, and there are a few clouds in the distance."} +{"image_id": 419223, "caption": "This image shows a group of children playing soccer on a grass field. The children are wearing soccer uniforms and are running around the field, kicking the soccer ball. One child is trying to kick the ball past another child who appears to be trying to block the shot. The image is taken from a top-Down perspective and the field is surrounded by a fence made of metal bars."} +{"image_id": 137578, "caption": "This image shows two toilets in a public restroom. The toilets are made of white porcelain and have a smooth surface. The toilet bowls appear to be clean and free of any degradation or stains. The toilet seats are in the down position, indicating that they are ready for use. The walls of the restroom are tiled with brown and beige ceramic tiles, creating a clean and hygienic atmosphere. The handrails on either side of the toilets are made of stainless steel, providing a sturdy and sanitary grip for users. The overall appearance of the restroom is well-maintained, clean, and functional."} +{"image_id": 408808, "caption": "The image shows two toothbrushes in plastic packaging, one with a blue handle and the"} +{"image_id": 243773, "caption": "This image shows a kitchen with a counter, cabinets, and a refrigerator. There is also a fireplace in the corner of the room."} +{"image_id": 436492, "caption": "The image shows a street corner with two signs on either side of the road. One sign is a road sign pointing in the direction of the city, while the other sign is a warning sign indicating that the road ahead is closed. The building in the background appears to be a residential building with several floors and balconies. The sky is clear and there are no other cars or people in the scene."} +{"image_id": 556648, "caption": "This is an image of a white cell phone sitting on a display case in a store. The phone has a sleeve around it to protect it from scratches and other damage. The display case is made of clear plastic and has a glass top. There are several other cell phones on display behind the one in the image."} +{"image_id": 298924, "caption": "This image shows a bowl of rice noodles with chicken and vegetables, served with chopsticks. The bowl is decorated with blue and white stripes, and there are two small bowls of sauce on the side. The sauce appears to be a mixture of soy sauce and chili peppers."} +{"image_id": 562030, "caption": "The image shows a wooden deck with several potted plants on it. The plants are made of clay and have small holes in the bottom for drainage. There is a pair of scissors on the ground next to one of the pots."} +{"image_id": 501315, "caption": "The image shows a person riding a green and orange motorcycle on a race track. The person is wearing a helmet, gloves, and a black jacket with orange accents. The motorcycle has a sleek design with a black and orange color scheme. The background of the image is a long, straight stretch of asphalt with some trees in the distance. The image is taken from a low angle, looking up at the motorcycle as it speeds down the track."} +{"image_id": 436162, "caption": "The image shows a white bus parked in a parking lot next to a row of trees. The bus has its doors open and appears to be empty. There are no people or other vehicles in the image."} +{"image_id": 323888, "caption": "The image shows a large, ornate building with a clock on the front. The building appears to be made of stone or brick, and has large, arched windows on the upper floors. There are several cars parked in front of the building, and a few people walking in front of it. The sky is dark, with stars visible in the background."} +{"image_id": 211476, "caption": "This image shows two bowls of food on a wooden table. The bowls are made of black plastic and have lids on them. The food inside the bowls includes scrambled eggs, black beans, and sour cream. There is also a small container of salsa on the table next to the bowls. The overall color scheme of the image is brown and black."} +{"image_id": 473433, "caption": "This image shows a suitcase open on a wooden table, with a black and white photograph of a man in a suit and tie on the cover of a book inside the suitcase. The book is titled \"The Great Gatsby\" and is written by F. Scott Fitzgerald. There is a small vase of flowers on the table in front of the suitcase. The image is lit by natural light streaming through a window behind the camera."} +{"image_id": 165752, "caption": "This image shows a black dog standing on its hind legs and holding a yellow frisbee in its mouth. The dog is wearing a collar and appears to be standing in a fenced-in yard. There is a wooden fence in the background."} +{"image_id": 573756, "caption": "The image shows two giraffes standing in a grassy area surrounded by trees. The giraffes are standing next to each other, with one facing away from the camera and the other facing towards it. The giraffes are both brown and tan in color, with long necks and legs. The trees in the background are tall and green, with leaves rustling in the wind. The sky is clear and blue, with a few clouds visible in the distance."} +{"image_id": 187450, "caption": "This image shows a blue and white train parked at a train station. There are several people standing on the platform next to the train. The train appears to be a high speed train, with sleek lines and a pointed nose. There are orange cones on the ground next to the train, indicating that it is out of service. The train station appears to be modern and well-maintained, with clean white walls and glass windows. The sky is overcast, with a few clouds visible in the distance."} +{"image_id": 43266, "caption": "The image shows two giraffes standing under a group of palm trees. The one on the left is brown and the one on the right is tan. The ground is covered in rocks and there is a clear blue sky in the background."} +{"image_id": 150080, "caption": "The image shows a pizza on a white plate on a wooden table. The pizza has a crispy, golden-brown crust and is topped with a variety of ingriedients such as mushrooms, onions, and green peppers. The cheese appears to be cheddar or mozzarella, and the sauce appears to be tomato-based. The plate is surrounded by silverware, including a fork, knife, and spoon, as well as a glass of water."} +{"image_id": 453757, "caption": "This image shows a group of people playing soccer on a field. The players are wearing orange shirts with white shorts and black shoes. The field has a green grass surface and there are trees in the background. The players are running and kicking the ball towards each other. One player is jumping and trying to head the ball, while another player is falling to the ground after being tackled."} +{"image_id": 354460, "caption": "The image shows a group of people cutting a ribbon with scissors in front of a building. The people in the image are wearing formal attire, including suits and ties for the men and dresses for the women. The building in the background appears to be a government or public building, such as a city hall or courthouse. The people in the image are smiling and holding their scissors in the air as they cut the ribbon."} +{"image_id": 221681, "caption": "This is a bathroom with a sink, toilet, and shower. The walls are blue and white, and there is a window above the sink."} +{"image_id": 349324, "caption": "This image shows a train traveling down a railroad track. The train is made up of several cargo cars, each with different types of goods stacked inside. The train appears to be moving at a moderate speed, with the wheels of the train making contact with the tracks. The background of the image is a mix of green and brown, with some trees visible in the distance."} +{"image_id": 225133, "caption": "The image shows a group of colorful umbrellas hanging from the branches of a tree. The umbrellas are made of different materials, such as wood, metal, and plastic, and are of various shapes and sizes. Some of the umbrellas are open, while others are closed. The leaves of the tree are visible in the background."} +{"image_id": 452566, "caption": "The image shows a stop sign on the side of a road with a mountain in the background. The stop sign has a red background with white letters that read \"stop.\" The mountain in the background is covered in green grass and has a few trees on it. The sky is clear and blue."} +{"image_id": 124952, "caption": "This image shows a city street with a bus parked on the side of the road. The bus is a yellow and blue color and has the words \"public transportation\" written on the side. There is a man standing next to the bus, waiting for it to move. There are trees on either side of the street, and tall buildings can be seen in the background."} +{"image_id": 26697, "caption": "The image shows a woman standing in a bathroom doorway, holding a toothbrush in one hand and a toothpaste tube in the other. She is wearing a gray sweater over a light-colored shirt and jeans. There is a window in"} +{"image_id": 126064, "caption": "This image shows a man on a surfboard riding a wave in the ocean. The man is wearing a red shirt and black shorts and has his hair tied back in a ponytail. He is holding onto the surfboard with one hand and is in the air as he rides the wave. The wave is large and white and has a lot of foam on it. The sky is blue and there are clouds in the background."} +{"image_id": 557190, "caption": "The image shows two men standing next to each other, both wearing suits and smiling at the camera. The man on the left is wearing a black suit, white shirt, and black tie, while the man on"} +{"image_id": 137612, "caption": "This image shows a tall building with several floors and balconies. The building appears to be made of concrete and glass, and there are several windows on each floor. There is a staircase leading up to the entrance of the building, and there are several cars parked on the street in front of it. The sky is cloudy and there is a bridge in the background."} +{"image_id": 408480, "caption": "The image shows a cityscape with a red and black lighthouse in the foreground and a large crane in the background. The lighthouse is perched on a rocky outcropping and has a black and white striped pole with a red light at the top. The cranes are towering over the city, with their long necks and booms swaying in the wind. In the background, there are several tall buildings with windows and balconies, as well as some trees and a sidewalk. The sky is clear and blue, with a few clouds in the distance."} +{"image_id": 277694, "caption": "This image shows two cows lying on the ground in front of a building. There is a motorcycle parked next to one of the cows. The cows appear to"} +{"image_id": 74166, "caption": "This image shows a man on a skateboard performing a trick in front of a group of people. The man is wearing a black t-shirt and has a tattoo on his left arm. The people in the background are standing on the sidewalk and watching the skateboarder. The building in the background is made of stone and has windows on the upper floors."} +{"image_id": 102625, "caption": "This image shows a small kitchen with a sink, stove, and refrigerator. There is a window above the sink that looks out onto a garden. The walls are white and there is a wooden floor."} +{"image_id": 540694, "caption": "This image shows a giraffe standing next to a car in a parking lot. The giraffe is looking out the window of the car and appears to be curious about its surroundings. There are trees and other vehicles in the background of the image."} +{"image_id": 518586, "caption": "The image shows a black and white photograph of a train traveling along a set of tracks. The train is passing through a small town, with buildings and other structures visible in the background. There is a man standing on the tracks, looking at the train as it passes by. The sky is overcast, with clouds visible in the distance."} +{"image_id": 81303, "caption": "The image shows a man wearing a brown jacket, black pants, and black boots, with a red scarf around his neck. He is holding two ski poles, one in each hand, and is wearing a helmet. He is standing on a snow-covered slope, with a blue sky and white clouds in the background. The snow is up to his knees, and he appears to be gliding down the slope."} +{"image_id": 383065, "caption": "The image shows a public toilet located on the sidewalk of a city street. The toilet is made of green metal and has a round shape. It has a small door on the front and a sign above it that reads \"Toilettes\" in white letters. The sign also has a map of the city on it, indicating the location of the toilet. There is a small bench in front of the toilet for people to sit on while using it. The image is taken from a low angle, looking up at the toilet from the sidewalk."} +{"image_id": 169602, "caption": "The image shows a woman on a surfboard riding a wave in the ocean. She is wearing a black and blue wetsuit and has long blonde hair blowing in the wind. The water is choppy and the waves are crashing around her. In the background, there are other surfers riding waves and a boat in the distance."} +{"image_id": 19890, "caption": "The image shows two zebras standing in a dirt area with a metal fence in the background. The zebras are standing next to each other and appear to be eating from a hay feeder that is attached to the fence. The sky is cloudy and there are trees in the background."} +{"image_id": 236604, "caption": "The image shows a spacious living room with two couches, a coffee table, and a chandelier hanging from the ceiling. The walls are painted a light beige color and there are large windows that let in plenty of natural light. The flooring is made of carpet and the furniture is made of wood and leather. There is a staircase leading to the second floor of the house."} +{"image_id": 270753, "caption": "The image shows a slice of deep dish pizza on a metal tray. The pizza has a crispy, golden-brown crust and is topped with a variety of vegetables, such as broccoli, mushrooms, and onions. The cheese is melted and bubbly, giving the pizza a gooey texture. A large metal spatula is used to cut into the pizza, revealing its juicy and flavorful interior. The metal tray is stainless steel and has a smooth, reflective surface. The overall appearance of the image is appetizing and mouth-watering."} +{"image_id": 457178, "caption": "This is a black and white photograph of a street scene in Paris, France. The street is lined with tall, narrow buildings with balconies and ornate facades. There are several horse-drawn carriages parked on the street, and people are walking on the sidewalk. The photograph is taken from a high angle, looking down the street towards a large, ornately decorated building in the distance."} +{"image_id": 577712, "caption": "The image shows a group of people standing in front of a fence, looking at a gira"} +{"image_id": 414560, "caption": "The image shows three black and white cows lying in a pile of hay in a barn. The cows are all lying down and appear to be relaxed. There is a metal gate in the background, and the walls of the barn are made of metal bars. The cows are wearing collars and appear to be well-cared for."} +{"image_id": 388983, "caption": "The image shows a hot dog in a bun with ketchup and mustard on it."} +{"image_id": 245965, "caption": "This image shows a person standing under an umbrella in a field. The person is holding the umbrella with one hand and looking up at the sky with the other. The sky is overcast and there are clouds in the distance. The field is covered in dry grass and there are some trees in the background."} +{"image_id": 147590, "caption": "This image shows a wine glass sitting on a wooden table. The glass is full of red wine and has the word \"Hills\" written on it in black ink. There are several other objects on the table, including a knife, a cutting board, and a piece of cheese. The background of the image is blurry and out of focus."} +{"image_id": 46882, "caption": "This image shows a group of people playing frisbee on a dirt field. The people are wearing blue shirts and black pants. There is a lamppost in the background and some trees in the distance."} +{"image_id": 518719, "caption": "The image shows a large, brown and white ceramic vase sitting on a beige tablecloth. The vase has a smooth, glossy surface and a curved, tapered shape. The bottom of the vase has a small, round base, and the top has a slightly raised rim. There are no visible cracks or chips in the vase, and it appears to be in good condition."} +{"image_id": 176312, "caption": "This image shows a woman standing in front of a large poster that reads \"Tour Stop\" in bold letters. The poster is mounted on a wooden frame and has a green background with white text. The woman is wearing a black dress and has her hand on her hip as she looks at the poster. There are several other people in the background, but they are not clearly visible in the image."} +{"image_id": 580746, "caption": "This image shows a group of white sheep grazing in a lush green field. The sheep are standing on their hind legs and eating grass from the ground. In the background, there are trees and a stone wall. The sky is overcast and there are clouds in the distance."} +{"image_id": 541223, "caption": "The image shows a large building with a green awning over the entrance. The building appears to be made of concrete and has large windows on the upper floors. There is a small plane parked on the roof of the building. The plane appears to be made of metal and has a large propeller on the back. There are trees and bushes growing in front of the building, and a sidewalk leading up to the entrance."} +{"image_id": 22589, "caption": "This image shows a group of sheep standing behind a wire fence in a pasture. The sheep are all of the same breed and have long, fluffy white coats. The fence is made of metal wire and is topped with barbed wire. In the background, there are trees and a clear blue sky."} +{"image_id": 196815, "caption": "This image shows a group of people sitting on chairs in a room. The people are all wearing casual clothing, and one person is holding a guitar. The walls of the room are decorated with paintings, and there is a rug on the floor."} diff --git a/OPERA/log/chair_eval_results/shikra/beam5.jsonl b/OPERA/log/chair_eval_results/shikra/beam5.jsonl new file mode 100644 index 0000000000000000000000000000000000000000..e88502af67a42b314f1e9593b3a617978d33dfee --- /dev/null +++ b/OPERA/log/chair_eval_results/shikra/beam5.jsonl @@ -0,0 +1,500 @@ +{"image_id": 226988, "caption": "The image features a woman sitting at a dining table, taking a picture of two slices of pizza placed on a paper plate. She is using a digital camera to capture the delicious-looking pizza. The table has a few other items on it, including a cup and a knife. \n\nThere are a few other people in the scene, with one person standing near the top right corner and another person located in the top middle part of the image. An additional person can be seen on the left side of the scene. A chair is also visible in the bottom right corner of the picture."} +{"image_id": 337443, "caption": "The image features a street scene with a large, orange \"obstruction\" sign placed on the sidewalk. The sign is positioned in the middle of the sidewalk, capturing the attention of passersby. \n\nIn the background, various vehicles can be seen, including two cars and a truck. One car is located towards the left side of the scene, while the other car is situated on the right side. The truck is situated in the far left corner of the image. \n\nThere are also three people in the scene, with one person standing close to the left side of the image, another person in the middle, and the third person standing closer to the right side of the scene."} +{"image_id": 112022, "caption": "The image features a large group of people standing in a long line, likely waiting for their luggage at an airport. There are numerous suitcases and backpacks scattered throughout the scene, both on the ground and in the hands of the people. \n\nIn the crowd, a man wearing a blue shirt can be seen standing near the center, holding a cell phone. Other individuals in the line are also carrying various personal items, such as handbags and handbags. The overall atmosphere appears to be one of anticipation and patience as the people wait for their turn to collect their belongings."} +{"image_id": 394444, "caption": "In the image, a person is picking up a skateboard from the ground. The skateboard has a graffiti design on it, which adds a colorful and artistic touch to the scene. The person appears to be holding the skateboard in their right hand, while the skateboard itself is placed upside down on the ground."} +{"image_id": 481635, "caption": "In the image, there is a woman sitting at a dining table with a large deep-dish pizza placed in front of her. She appears to be enjoying her meal, and there are several slices of pizza on the table. A knife is also visible on the table, likely used for cutting the pizza.\n\nThe scene appears to be in a restaurant or a casual dining area, as there are other people present in the background. One person can be seen sitting to the right of the woman, and another person is sitting further back in the scene. A cup is placed on the table near the woman, possibly containing a beverage to accompany her meal."} +{"image_id": 285258, "caption": "The image depicts a playful interaction between two dogs in a fenced-in area, possibly a park or a petting zoo. One dog, which appears to be a puppy, is playfully grabbing the tail of the other dog, possibly a poodle, with its mouth. The two dogs seem to be enjoying themselves as they interact with each other.\n\nAround the play area, there are several other dogs, some visible in the background and others scattered throughout the scene. The dogs appear to be engaged in various playful activities, creating a lively atmosphere in the enclosed space."} +{"image_id": 479057, "caption": "The image features a large, white polar bear peacefully grazing in a lush green field. The bear is the main focus of the scene, covering a significant portion of the field from the left to the right side.\n\nIn the background, there are two fences that partially enclose the field. One fence is located towards the left side of the image, while the other fence is on the right side, extending towards the edge of the scene."} +{"image_id": 66238, "caption": "The image captures a thrilling moment of a snowboarder performing an impressive trick in mid-air. The snowboarder is soaring high above the snow-covered hill, showcasing their skills and expertise in snowboarding.\n\nThere are a few other people in the background, possibly spectators or fellow snowboarders, adding to the excitement of the scene. In addition to the snowboarder in action, there is another snowboard placed on the ground, possibly belonging to one of the people in the background."} +{"image_id": 558458, "caption": "In the image, a woman is enjoying a plate of food, which includes a hot dog covered in ketchup and mustard, a plate of spaghetti noodles, and a sandwich. She is smiling and appears to be having a good time. Another woman is also present in the scene, seated at a dining table behind the first woman.\n\nThere are a few other people in the background, but they are not the main focus of the image. The primary focus is on the woman with the plate of food and her happy expression."} +{"image_id": 400596, "caption": "The image features a bathroom scene with a green sink that has a unique, round shape. The sink is located in the center of the image, with an interesting design that sets it apart from typical sinks found in most bathrooms. \n\nIn addition to the sink, there is a wooden counter surrounding it, giving the bathroom a warm and cozy feel. On the counter, a bottle can be seen, possibly containing hand soap or other bathroom essentials."} +{"image_id": 373266, "caption": "The image depicts a group of healthcare professionals, including doctors and nurses, gathered around a television in a hospital room. The TV screen displays a medical image, and the staff is attentively working together to operate the equipment.\n\nThere are several people present, with some wearing scrubs and others dressed in lab coats. At least two individuals are wearing headsets, likely communicating with other healthcare professionals in different areas of the hospital. The scene conveys a sense of teamwork and coordination among the staff as they work together to provide the best possible care for their patient."} +{"image_id": 38332, "caption": "The image features a large elephant with tusks walking through a grassy field. The elephant is the main subject of the scene, occupying a significant portion of the image from the left to the right side.\n\nSeveral smaller elephants can be seen in the background, mostly towards the right side of the image. Their presence suggests that they might be following the larger elephant or moving together as a group."} +{"image_id": 84533, "caption": "The image features a woman sitting on a black motorcycle, likely a Harley Davidson, parked in front of a garage. She is wearing a black leather jacket and appears to be smiling as she sits on the motorcycle. \n\nIn addition to the main motorcycle, there are a few other vehicles visible in the scene. A car can be seen to the right of the motorcycle, while two trucks are positioned further back, one on the left side and the other on the right side of the image."} +{"image_id": 449963, "caption": "The image depicts a well-equipped conference room with a large round table. On the table, there are three open laptop computers placed next to each other, likely set up for a presentation, workshop, or meeting. In addition to the laptops, there are also two keyboards and two computer mice on the table, which are essential peripherals for working with laptops.\n\nAround the table, there are multiple chairs positioned for attendees to sit. The room appears to be empty, indicating that an event or gathering is about to take place."} +{"image_id": 128180, "caption": "The image features a white plate placed on a dining table, showcasing a delicious slice of pizza. A knife is also present on the plate, likely used for cutting the pizza. Standing right in front of the plate, a person can be seen, possibly ready to enjoy the pizza. \n\nAdditionally, a fork is situated near the plate, suggesting that the person is about to eat the pizza. A person wearing black pants is also visible in the scene, likely seated at the dining table."} +{"image_id": 204232, "caption": "The image captures a young man skillfully performing a trick on his skateboard, jumping over a construction barricade in an urban setting. The skateboarder is in mid-air, demonstrating his athleticism and expertise in skateboarding.\n\nAround the skateboarder and the construction barricade, there are several cars parked in the vicinity. Some cars are located on the left side of the scene, while others are positioned more to the right and further back in the image."} +{"image_id": 477867, "caption": "The image features a man in a wetsuit surfing on a blue and yellow surfboard, skillfully navigating the rough water. There are several other surfers in the background, some of them also on surfboards, while others are standing near the water's edge. \n\nThere are a total of five surfboards visible in the scene, with one being ridden by the man in the wetsuit and the others placed nearby or in the water. The surfers seem to be enjoying their time and practicing their surfing techniques."} +{"image_id": 308128, "caption": "The image features a man on a skateboard, skillfully performing a trick on a cement bench in a park. He is riding the skateboard up the side of the bench, displaying his talent and balance. There are a few other people in the scene, likely watching and enjoying the skateboarder's performance. \n\nIn addition to the main skateboarder, there are four other skateboards scattered around the area. Some are on the ground, while others are being used by the skateboarder performing the trick. The park appears to be a popular gathering place for skateboarders and spectators alike."} +{"image_id": 222407, "caption": "The image features a colorful bird perched on a tree branch during a rainy day. The bird is black and yellow, with a long tail, and it appears to be enjoying its time on the branch as it watches the surroundings.\n\nSeveral leaves can be seen on the tree, some of which are near the top of the branch and others are lower down. The scene captures the bird's vibrant colors and the beauty of the rain-soaked environment."} +{"image_id": 469543, "caption": "The image features a bedroom with two double beds placed side by side. The beds have a striped blanket on them, giving the room a neatly made appearance. There are no sheets on the beds, making them appear minimalistic. \n\nBesides the beds, there are two chairs in the room. One chair is positioned near the left side of the room, and the other chair is placed at the right side of the room. There is also a wall-mounted telephone on the right side, just above the second bed."} +{"image_id": 421564, "caption": "The image features a young child, likely a baby, sitting in a high chair in front of a birthday cake. The child appears to be enjoying the cake, and the cake is placed in the middle of the high chair, within reach.\n\nA knife is visible on the left side of the image, possibly used for cutting the cake. The room is furnished with a dining table positioned in the background, and a chair situated on the left side of the high chair."} +{"image_id": 177419, "caption": "The image features a blue fire hydrant that has been creatively painted, giving it a unique appearance. The fire hydrant is situated on a brick sidewalk, adding a touch of color to the scene. In the background, there are some trees visible, providing a natural element to the surroundings."} +{"image_id": 86432, "caption": "The image captures a thrilling moment during a baseball game, with a young boy in a blue and white uniform swinging a baseball bat at an incoming sports ball. The ball is positioned near the right side of the field, and the young boy is fully focused on hitting it. \n\nThere are several other people in the scene, including teammates, opponents, and possibly coaches, occupying various positions on and around the field. Some are closer to the young batter, while others are dispersed throughout the field, ready to react to the outcome of the swing. A baseball glove can be seen on the field, likely belonging to one of the players.\n\nOverall, the scene is full of excitement and anticipation, as everyone waits to see the outcome of the swing and the result of the play."} +{"image_id": 544590, "caption": "The image features a cozy living room with a large orange cat lying comfortably on a couch. The cat occupies the majority of the couch's surface, stretching from one end to the other. It appears to be relaxed, possibly napping or just resting. \n\nA person can be seen in the room, but they are not the main focus of the scene. The primary focus is the cat and its peaceful position on the couch."} +{"image_id": 513060, "caption": "The image shows a person sitting on a bench, holding an open doughnut in their hand. The doughnut has a bite taken out of it, and it appears to be covered with sprinkles. The person is holding a piece of the doughnut in front of them, making it the focal point of the scene.\n\nIn addition to the person and the doughnut, there are two other doughnuts visible in the image. One doughnut is placed on the bench near the person, and the other is positioned further to the right of the scene."} +{"image_id": 140921, "caption": "The image features a white surfboard lying on a sandy beach with various writing on it. The surfboard is placed near the center of the scene, covering a significant portion of the sand. \n\nIn addition to the surfboard, there are several other objects scattered around the beach. Some of these objects include a bottle, a cup, a fork, a knife, and a sandal. The presence of these objects suggests that someone is likely enjoying their time at the beach and has left their belongings nearby."} +{"image_id": 361351, "caption": "The image shows a large pizza with a few slices missing, placed in a pizza box on a dining table. The pizza appears to be fully baked and ready to be enjoyed. Near the pizza, there is a bottle of beer placed on the table, likely to accompany the meal.\n\nAdditionally, there is a knife on the table, possibly used for cutting the pizza or for other culinary purposes. The dining table occupies most of the image, with the pizza and beer taking center stage."} +{"image_id": 202154, "caption": "The image features a large flatbread pizza placed on a wooden cutting board, which is resting on a dining table. The pizza is cut into square slices and is generously topped with cheese and a variety of herbs. Additionally, there are fresh basil leaves scattered across the pizza, adding a touch of greenery to the dish.\n\nThere are two chairs visible in the scene, one on the left side of the table and another on the right side, inviting people to sit and enjoy the pizza. A person can be seen in the background, partially cut off by the left edge of the image."} +{"image_id": 94248, "caption": "The image features a large clock tower situated in the middle of a busy city street. The clock on the tower is blue in color and prominently displays the time for everyone to see. There are two clocks visible on the tower, one on the left side and another on the right side. \n\nThe street is bustling with activity, as there are multiple vehicles and pedestrians. A car is parked close to the left side of the clock tower, while another car is situated further back on the right side of the street. Several people can be seen walking along the sidewalk near the clock tower, and a traffic light is visible in the foreground."} +{"image_id": 200681, "caption": "The image shows a man standing in a grassy field on a sunny day, watching two dogs play with a frisbee. One dog is jumping in the air, attempting to catch the frisbee, while the other dog stands nearby, enjoying the game. The frisbee can be seen in the air, close to the jumping dog.\n\nThere are a few other people in the scene, but they are farther away and not the main focus of the image. Overall, the scene captures a fun and active moment shared between the man, the dogs, and the frisbee."} +{"image_id": 532989, "caption": "The image features a large giraffe sitting comfortably on a lush green field. The giraffe is lounging in the grass, occupying a significant portion of the scene. In the background, there is a pile of tree branches, adding a touch of nature to the setting."} +{"image_id": 565989, "caption": "The image features a tall brick wall with a large clock prominently placed at the top. Below the clock, there are several metal animal statues, including three bears, adding a unique artistic touch to the structure. The wall and statues are set against a backdrop of trees, creating an outdoor, natural atmosphere."} +{"image_id": 67315, "caption": "The image features a man wearing a collared shirt and tie, standing next to a wall. The man is in the process of removing his tie, giving the impression that he might be getting ready for an event or just taking a break. \n\nIn addition to the main subject, there are several other people present in the scene. They appear to be at various distances from the man with the tie, and they seem to be interacting with each other or going about their day."} +{"image_id": 157170, "caption": "The image features a picturesque scene of a herd of five sheep standing together on a lush green hillside. The sheep are positioned at various locations on the hill, some closer to the foreground, while others are further up the slope. They appear to be grazing on the grass, enjoying the picturesque surroundings.\n\nIn the background, a city can be seen, providing a beautiful backdrop to the serene landscape of the sheep and their surroundings."} +{"image_id": 328786, "caption": "The image depicts a park with a sidewalk where several wooden and metal benches are placed along the path. These benches are arranged in a row, providing a welcoming resting spot for park visitors. The benches vary in size and height, with some appearing taller than others. They are set back from the walkway, allowing for ample space to walk between them. Some of the benches are located near the grass, offering a scenic view for those who choose to sit down. Overall, the park provides a comfortable and inviting environment for people to relax and enjoy the outdoors."} +{"image_id": 46011, "caption": "The image features a small white propeller airplane parked on the tarmac at an airport. The airplane is parked near a fence that separates the runway from the rest of the area. There are a few people around the airplane, with one person standing closer to the left side of the plane and two others standing further to the right. \n\nAdditionally, there is a truck parked on the right side of the runway, close to the fence. The scene captures the day-to-day activities at the airport, with people and vehicles attending to various tasks."} +{"image_id": 384348, "caption": "The image depicts a person skiing down a snowy hill on a mountain. The skier is the main focus of the scene, with their skis visible beneath them as they make their way down the slope. \n\nIn the background, a chair lift can be seen, indicating that the slope is part of a ski resort. There are multiple chairs of various sizes and positions, suggesting that the lift is designed to transport skiers up the mountain. Overall, the image conveys a sense of winter sports and leisure activities taking place in a snowy landscape."} +{"image_id": 451798, "caption": "The image displays a wall with a large number of ties hanging on it. The ties come in various colors, patterns, and styles, covering the entire wall from top to bottom. In addition to the ties, there are four hats hanging above the ties, arranged at different positions on the wall. \n\nSome of the ties and hats are placed closer to the foreground, while others are further back, creating a visually appealing arrangement of men's clothing on display."} +{"image_id": 376545, "caption": "The image captures a thrilling moment where a skateboarder is in mid-air, performing a jump on their skateboard. Another young man is standing on a skateboard, watching the skateboarder in action. The scene takes place on a city street, with a coffee house visible in the background. \n\nIn addition to the skateboarders, there are a few other people in the scene, including one person near the center of the image and another person on the right side. There are two skateboards, one being used by the jumping skateboarder and another lying on the ground on the right side of the image."} +{"image_id": 11538, "caption": "The image features a man riding a motorcycle down a road, wearing a helmet for safety. The rider is dressed in black, seemingly prepared for a thrilling ride. The motorcycle has a sleek design and is positioned near the left side of the road. \n\nIn addition to the motorcycle, there is a backpack placed on the ground, close to the right side of the road. It is likely that the rider will be carrying some belongings or provisions for his journey."} +{"image_id": 346207, "caption": "The image features a large cat lying on a computer desk, occupying a significant portion of the desk space. In the background, there is a laptop placed towards the left side of the desk, along with a pen and a notebook on the same surface. Another laptop can be seen closer to the center of the desk.\n\nA television is mounted on the wall above the computer desk, creating a multi-purpose workspace. A computer mouse can be found on the right side of the desk, near the edge. There is also a teddy bear located on the right side of the desk, adding a touch of personality to the scene."} +{"image_id": 359238, "caption": "The image shows a man wearing a yellow shirt and a brown blazer sitting on a train. He is leaning back in his seat, creating a comfortable space for himself. Alongside him, there is a cup placed on the table, providing him with a drink during his journey. The man appears to be relaxed and enjoying his time on the train."} +{"image_id": 297610, "caption": "The image is a black and white photograph of a person riding a skateboard, skillfully grinding on a rail. The skateboarder is at the top of the rail, balancing with their arms outstretched as they maintain their position. \n\nThe scene appears to be set in an indoor skate park, and the skateboarder is the main focus of the image. There are a few other people in the background, possibly watching the skateboarder or waiting for their turn to perform their own tricks."} +{"image_id": 428447, "caption": "The image depicts an urban street scene featuring tall buildings in the background. A traffic light is prominently positioned on the sidewalk, hanging above the street. Another traffic light can be seen further down the street. The street appears to be relatively quiet at this time of day.\n\nThere are several cars parked and moving along the street. Some of the cars are located closer to the foreground, while others are farther back in the scene. A person is standing on the sidewalk, possibly waiting to cross the street or simply observing the traffic. Additionally, a handbag can be spotted near the person."} +{"image_id": 428769, "caption": "The image features a close-up view of the license plate on a black car, which is parked next to a parking meter. The license plate has the word \"Supacab\" written on it. The car is parked on the road, and its license plate is clearly visible."} +{"image_id": 452084, "caption": "The image features a brown dining table with two bowls placed on it. Inside the bowls, there is a variety of food items, including eggs, sausages, and breads. One of the bowls has a fork placed in it, while the other bowl appears to be empty. \n\nAdditionally, there is a fork on the table near the bowls, suggesting that the meal is ready to be eaten. The table is accompanied by a chair, making the scene a cozy dining setup."} +{"image_id": 545363, "caption": "The image shows a damaged sidewalk with a portion of a bench lying in a puddle of water, likely due to a storm or vandalism. The bench appears to be pushed down, and part of it is sticking out of the water. \n\nThere are a few people in the scene, with one person standing near the left side of the puddle, another closer to the right side, and a third person in the background. Additionally, a handbag can be seen on the ground near the right side of the image."} +{"image_id": 77963, "caption": "The image features a cow sculpture hanging from the ceiling of a store, creating an interesting and unique decoration. The store appears to be a toy store, as indicated by the presence of numerous umbrellas displayed throughout the space. The umbrellas come in various colors and sizes, adding to the vibrant and engaging atmosphere of the store."} +{"image_id": 78093, "caption": "In the image, a woman wearing a pink and white jacket is skiing down a snowy slope in the mountains. She appears to be enjoying herself as she smiles while skiing. The snowy path is lined with trees, adding to the picturesque winter scene.\n\nThere are a couple of other people visible in the background, possibly skiing or snowboarding nearby. However, the main focus is on the woman skiing down the snow-covered hill."} +{"image_id": 346334, "caption": "The image depicts two brown bears in a grassy field, walking and grazing on the lush green grass. One bear is positioned closer to the left side of the field, while the other is more towards the center of the scene. The field appears to be an open meadow, providing ample space for the bears to roam and feed."} +{"image_id": 185633, "caption": "The image depicts an old, run-down bathroom that appears to be undergoing renovation. The bathtub is placed against the wall, with a towel hanging on its side. Next to the bathtub, there is a sink with several bottles of toiletries and cleaning supplies scattered around it. \n\nFurthermore, there is a toothbrush placed near the sink, along with a cup and a bowl close to the edge of the sink. The overall scene suggests that the bathroom is in the process of being updated or repaired."} +{"image_id": 327165, "caption": "The image shows a young child getting their first haircut, with the assistance of a barber. The barber is using a pair of scissors to cut the child's hair, which is placed on a towel covering the child's lap. \n\nIn the scene, there are three people present: the child, the barber, and another person who is partially visible on the right side of the image. The barber is focused on cutting the child's hair, and the child appears to be cooperating with the process."} +{"image_id": 410632, "caption": "The image features a group of four baseball players wearing red, blue, and gray uniforms standing together on a grassy field. They appear to be watching something off in the distance, possibly a game or a practice session. Two of the players are closer to the left side of the field, while the other two are positioned towards the right side. \n\nA baseball glove can be seen lying on the field near the right side of the group, possibly belonging to one of the players. Additionally, a bench is located in the background, spanning almost the entire width of the field."} +{"image_id": 468471, "caption": "The image depicts a man dressed in a shirt and tie, leaping into the air above a bed in a furniture store. He appears to be energetically jumping on the bed as if he is celebrating or enjoying a moment of excitement. \n\nAround the room, there are several chairs placed in different areas. One chair is situated near the left side of the image, while another chair is located closer to the right side. Additionally, there are two more chairs placed further back in the room. A dining table can be seen in the background, stretching across the room from one side to the other."} +{"image_id": 241317, "caption": "The image features a man standing next to a cart filled with various fruits. The cart is abundant with bananas, apples, and oranges, showcasing a diverse selection of fresh produce. There are several bunches of bananas, multiple apples, and a couple of oranges visible on the cart.\n\nThe man appears to be observing the cart of fruits, possibly considering making a purchase or simply admiring the display. The scene takes place in front of a blue building, giving a vibrant and lively atmosphere to the setting."} +{"image_id": 444982, "caption": "The image features a grassy enclosure with three zebras grazing on the green grass. One zebra is located near the left side of the enclosure, while the other two zebras are positioned more towards the center and right side of the scene. The zebras appear to be enjoying their time eating grass together. There is a tree in the foreground, adding a natural element to the environment."} +{"image_id": 117563, "caption": "The image shows two men standing in a living room, playing a video game together. One man is positioned to the left side of the room, while the other is standing closer to the right side. They are both holding remotes as they engage in the game.\n\nThe living room features a couch placed in the background, along with a chair positioned near the right side of the room. There is a clock on the wall above the couch, adding a decorative element to the space."} +{"image_id": 206579, "caption": "The image features a man wearing a black shirt, blowing out candles on a cake placed on a dining table. The man is bending over the table in the process of blowing out the candles. The cake is a large one, taking up a significant portion of the table.\n\nThere are two chairs in the scene, one on the left side of the table and another on the right side. Another person can be seen in the background, partially visible behind the man blowing out the candles."} +{"image_id": 221172, "caption": "The image features a man in a blue shirt and white shorts playing tennis on a green and purple court. He is in the process of hitting a tennis ball with a tennis racket, displaying his skill and focus during the game. \n\nAnother person is visible in the background, attentively watching the tennis player. There are a few chairs scattered around the area, possibly for spectators or players to rest during breaks. One chair is placed close to the tennis player, while another chair is positioned further back in the scene."} +{"image_id": 317969, "caption": "The image depicts a large herd of sheep occupying a significant portion of a country road. There are at least 12 sheep spread along the road, with some closer to the edges and others in the middle. They appear to be moving together, possibly being guided or herded by a shepherd who is not visible in the scene.\n\nIn the background, there are mountains visible, emphasizing the rural landscape of the scene. The combination of the sheep, the road, and the mountains create a sense of openness and natural beauty in the image."} +{"image_id": 82150, "caption": "The image features a man sitting comfortably on a couch, holding a video game controller, specifically a Wii remote, in each of his hands. He appears to be enjoying his time playing a game on the Nintendo Wii console. \n\nIn the background, there is a TV, which is likely displaying the game being played by the man. Additionally, there are several books placed near the edge of the couch, indicating that the man may also enjoy reading during his leisure time."} +{"image_id": 284064, "caption": "In the image, a man is on a tennis court, preparing to hit a tennis ball with his racket. He is in the process of serving the ball, getting ready to make contact and send it across the net. \n\nThere are two other people in the background, possibly waiting for their turn to play or observing the ongoing game. The tennis court is enclosed within a fenced area, providing a dedicated space for the game to be played safely."} +{"image_id": 372203, "caption": "The image presents a serene and deserted landscape, featuring a bench situated on the side of a road. The bench is positioned near a light pole, and there is a fire hydrant close by. The surrounding area is mostly sandy, giving off a sense of a desolate environment.\n\nIn the sky, several kites can be seen flying, adding a touch of color and life to the scene. There are a total of nine kites scattered across the sky at various heights, making the most of the outdoor setting."} +{"image_id": 359136, "caption": "The image features a woman wearing a black shirt and boots, laying on the bathroom floor. She is propping her feet up against the bathtub, giving the impression that she might be relaxing or enjoying a moment of leisure. \n\nIn the bathroom, there is a toilet visible on the right side, and a sink can be seen on the left side. Additionally, a wine glass is placed near the feet of the woman, hinting at a possible drink being enjoyed during the relaxing moment."} +{"image_id": 499281, "caption": "The image showcases a well-equipped kitchen with a stove top oven, a microwave, and various items placed around the counter. On the stove, there are three frying pans, indicating that the kitchen is used for cooking. \n\nSeveral items can be seen on the counter, such as a bag of groceries, a bowl, a cup, and a bottle. Near the counter, there is a potted plant, adding a touch of greenery to the space. The kitchen also has an oven and a sink, making it fully-equipped for various cooking tasks."} +{"image_id": 192233, "caption": "The image features a man wearing a blue shirt and white shorts playing tennis on a red tennis court. He is swinging a tennis racket, preparing to hit a tennis ball that is in the air in front of him. The man is the main focus of the scene, displaying his athleticism and skill during the game."} +{"image_id": 11987, "caption": "The image depicts a cozy bedroom furnished with a four-poster bed, a dining table, and chairs. There are a total of six chairs in the room, with some placed around the dining table, and others near the corners of the room. The bed is situated in the center of the room, providing a comfortable sleeping arrangement for the occupants.\n\nA fireplace can be seen in the room, creating a warm and inviting atmosphere. On the dining table, there are plates set out, ready for a meal to be served. The room is decorated with a combination of vintage and contemporary furniture, giving the space a unique and stylish appearance."} +{"image_id": 406810, "caption": "The image depicts a room with a laptop computer sitting on top of a table. A man is using the laptop, likely typing or browsing the internet. In the background, there are several people seated in chairs, engaged in various activities such as watching a presentation, attending a conference, or participating in a meeting.\n\nSeveral televisions are scattered throughout the room, possibly displaying information or content related to the ongoing events. Other objects in the room include a clock on the wall and a handbag placed near one of the chairs."} +{"image_id": 99965, "caption": "The image shows a person holding a sandwich with potato chips on the side, placed on a plate. The sandwich appears to be half-eaten, as it is being held by the individual. The plate with the sandwich and chips is quite large, occupying a significant portion of the scene. \n\nIn addition to the main sandwich and chips, there are a few other items on the table, such as a knife positioned near the top right corner of the image and a bowl located towards the right side of the scene."} +{"image_id": 17328, "caption": "In the image, a red train is traveling down the tracks, passing by a train station. The train spans the majority of the scene, extending from the left to the right side of the image. There are several other tracks near the train station, which the red train is not currently on.\n\nA person can be seen standing close to the train, possibly waiting for it to come to a stop or continue its journey. There are also two benches visible in the foreground, likely placed for the convenience of passengers waiting at the station."} +{"image_id": 393682, "caption": "The image features a dining table with a white plate holding a delicious piece of cake. The cake appears to be a cheesecake, covered in whipped cream, and surrounded by a sauce. Alongside the main dessert, a fork is placed on the plate, ready to be used to enjoy the scrumptious treat. The table setting creates an inviting atmosphere for a delightful dessert experience."} +{"image_id": 540093, "caption": "The image features a city street with a large umbrella covering a couple of parked motorcycles on the sidewalk. The umbrella protects the motorcycles from potential damage due to weather or other environmental factors. \n\nIn addition to the motorcycles, there are a few cars parked along the street. One car is located near the center of the scene, while two other cars are situated on the left side of the image. There are also three people in the scene, with one person standing near the center and the other two closer to the left edge."} +{"image_id": 242400, "caption": "In the image, a woman is standing on a sidewalk holding a clock pole. The pole is adorned with a Christmas wreath and red ribbon, giving it a festive appearance. Behind the woman, there are a few cars parked along the street, as well as a truck. Another person can be seen further in the background, closer to the right edge of the scene. The overall atmosphere appears to be a lively urban setting during the holiday season."} +{"image_id": 409009, "caption": "The image features a white, sleek-looking high-speed train stopped at a train station. The train takes up the majority of the scene, stretching from the left to the right side of the image. \n\nThere are several passengers waiting near the train, with five people visible in the scene. Three of them are standing closer to the train, while the other two are situated further away, likely anticipating the train's arrival or preparing to board it once it comes to a stop."} +{"image_id": 6091, "caption": "The image features a person, likely a woman, holding a stop sign in her hands. The stop sign is illuminated by a light source, making it clearly visible in the scene. The woman appears to be posing or interacting with the stop sign in a playful manner.\n\nAdditionally, there is another person partially visible at the bottom right corner of the image, likely an onlooker or someone else participating in the same activity."} +{"image_id": 42834, "caption": "The image features a woman sitting at a round dining table, with a plate of food in front of her. She is in the process of making a sandwich using various ingredients, which are spread out on the table. \n\nThere are several knives on the table, possibly for cutting the sandwich or spreading the ingredients. In addition to the knives, there are also a couple of forks placed on the table, one close to the woman and another further away. \n\nA jar can be seen on the table as well, which might be used to hold additional ingredients or condiments for the sandwich."} +{"image_id": 433554, "caption": "The image depicts a group of people gathered on a lake, engaging in various water sports. They are enjoying their time by wakeboarding and water skiing while wearing life jackets. One person can be seen standing on the dock, possibly watching the activities or waiting for their turn.\n\nThere are multiple watercraft in the scene, including a couple of water skis and a snowboard. The water skis are placed on the right side of the image, while the snowboard is located on the left side. The people are scattered around the area, with some standing close to the water's edge, others on the dock, and a few in the background near the watercraft."} +{"image_id": 174987, "caption": "The image features a train covered in colorful graffiti, giving it a distinctive appearance. The graffiti covers both the train's exterior and interior, making it a vibrant and eye-catching scene. There is a large train visible in the image, occupying most of the frame."} +{"image_id": 116208, "caption": "The image shows a close-up view of a pizza placed on a dining table. The pizza appears to be freshly baked and sliced, ready to be enjoyed. It is surrounded by various tableware items, including wine glasses, cups, forks, and knives. \n\nThere are three wine glasses situated near the pizza, with one on the left side, one in the center, and another on the right side of the table. Additionally, there are three cups \u2013 one on the left side, one on the right side, and another cup closer to the foreground. Two forks and two knives can be seen either on or near the table, ready to be used for serving and eating the pizza."} +{"image_id": 80131, "caption": "The image features a couple sitting together at a dining table in a well-equipped kitchen. The man and woman are surrounded by various objects, including an oven, a sink, and a refrigerator in the background. \n\nOn the table, there are several wine glasses and bottles, suggesting they might be enjoying a drink together. Multiple cups are placed around the table, along with a vase that adds to the ambiance of the setting. Additionally, there are some donuts on the table, possibly serving as a sweet treat during their gathering.\n\nThe couple appears to be engaged in conversation, creating a warm and inviting atmosphere in the kitchen."} +{"image_id": 310663, "caption": "The image features a train sitting on train tracks, with another train partially visible further down the tracks. The train in the front appears to be an old, rusty locomotive, and the other train might also be a locomotive. There are some people in the scene, with one person standing close to the train on the left side, another person in the middle, and a third person on the right side of the image. They seem to be observing or waiting for the trains."} +{"image_id": 100138, "caption": "The image features a black motorcycle parked on the side of a road, next to a lush green hillside. The motorcycle is leaning to the left, occupying a significant portion of the scene.\n\nThere are several rocks scattered around the area, both near and far from the motorcycle. Two people can be seen in the background, possibly admiring the motorcycle or just passing by."} +{"image_id": 415613, "caption": "In the image, a man is standing in a commercial kitchen, preparing food. He is wearing a cap and appears to be focused on his task. Several sandwiches can be seen in various stages of preparation, some placed closer to the man and others further away. \n\nThe kitchen is well-equipped, featuring multiple bowls of different sizes spread across the countertops. There is also an oven in the background, which is likely used for cooking purposes. The man seems to be enjoying his work in the professional kitchen, diligently preparing the sandwiches for customers."} +{"image_id": 214737, "caption": "The image features the interior of a large, historic building with a grand architectural design. A prominent feature of the building is a massive clock mounted on its wall, drawing attention to the time. High above the clock, there is a sculpture of a bird, adding an artistic touch to the space.\n\nThe room is adorned with numerous windows, allowing natural light to pour in and illuminate the space. There are several people scattered throughout the room, possibly admiring the architecture or attending an event. Some of them are closer to the center of the room, while others are near the edges of the image."} +{"image_id": 172718, "caption": "The image is a black and white photograph of a young boy. He is wearing a white shirt and tie, and he appears to be posing for a picture. The boy's tie is tied in a windsor knot, adding a touch of formality to his outfit.\n\nAround the boy, there are several chairs visible in the background, suggesting that the photo might have been taken in a formal setting or at a special event."} +{"image_id": 99186, "caption": "The image features a red stop sign sitting on the side of a road, just beside a car. The car is positioned on the left side of the scene, and the stop sign is quite prominent, covering most of the view. The setting appears to be a rural area with an open field in the background."} +{"image_id": 3580, "caption": "The image features a man sitting comfortably on a couch in a living room, playing a video game using a Nintendo Wii controller. He appears to be fully engaged in the game, possibly lounging back on the couch as he enjoys his gaming session.\n\nIn the room, there are several books scattered around, indicating that the space might be used for various leisure activities. A dining table can be seen in the background, suggesting that the living room is connected to a dining area. Additionally, there are two TVs in the room, one on the left side and another on the right side, showcasing that the space is well-equipped for entertainment."} +{"image_id": 526044, "caption": "The image features a brown and white cow standing on a beach near the ocean. The cow appears to be looking at the water, possibly curious or considering whether to take a swim. In addition to the cow, there are five people in the scene, spread out along the shoreline. The people seem to be enjoying their time at the beach as well."} +{"image_id": 105291, "caption": "The image depicts a stop sign with a street sign for Main Street Schoolhouse placed on top of it. The stop sign is red, and the street sign is blue. The scene is set against a backdrop of a house in the background.\n\nAdditionally, there are two cars in the image. One car is located on the left side of the frame, while the other car can be seen further back, closer to the middle of the scene."} +{"image_id": 577169, "caption": "The image features a group of people standing inside a large clock tower, looking out through the glass window. There are at least eight people visible in the scene, with some closer to the left side and others more towards the right side of the tower. They seem to be admiring the view and the unique architecture of the clock.\n\nOutside the clock tower, it appears to be a cloudy day, which may contribute to the overall ambiance of the scene."} +{"image_id": 181574, "caption": "The image shows a group of people sitting around a dining table, enjoying a meal together. A man in a striped shirt sits at the head of the table, laughing as he cuts into a pepperoni pizza using a fork. The pizza is placed in the center of the table, drawing attention as the main focus of the meal.\n\nIn addition to the man in the striped shirt, there are two other people seated around the table - one on the left side and another on the right side. The table is set with multiple plates, cups, and utensils such as forks and knives. There is a potted plant in the background, adding a touch of greenery to the scene."} +{"image_id": 83441, "caption": "The image is a collage of two pictures showcasing a living room with black leather couches. In the room, there is a large black TV sitting on top of a wooden table. Multiple remotes are scattered around the room, with some placed on the table and others on various surfaces. \n\nA few books can be seen in the living area, adding a touch of intellectual charm to the space. Additionally, there is a laundry basket placed near the couch, indicating that the occupants of the home are quite busy or in the process of unpacking their belongings."} +{"image_id": 130527, "caption": "The image depicts a picturesque scene of a herd of cows grazing in a lush green field. There are multiple cows scattered throughout the field, with some closer to the foreground and others further in the background. The field is fenced in, providing a boundary for the cows to roam and graze.\n\nA body of water, possibly an ocean or a lake, can be seen in the background, adding to the serene atmosphere of the scene. There are also several birds present in the sky, further enhancing the natural beauty of the image."} +{"image_id": 86471, "caption": "The image features a man on a tennis court, holding a tennis racket and preparing to serve a tennis ball. He is in the process of throwing the ball up in the air, getting ready to hit it with his racket. The man is wearing a blue shirt and white shorts, showcasing his athletic attire as he takes part in the sport.\n\nThere are no other people visible in the scene, indicating that the focus is on the man playing tennis."} +{"image_id": 105737, "caption": "The image features a brown teddy bear sitting on top of a bookshelf in a home library. The bookshelf is filled with a variety of books, with some placed horizontally and others vertically. The teddy bear has a red ribbon around its neck, adding a touch of charm to the scene. \n\nThe teddy bear is positioned in the middle of the bookshelf, drawing attention to its presence. The books surrounding the bear are of different sizes and orientations, creating a diverse and lively atmosphere in the room."} +{"image_id": 212842, "caption": "The image features a large herd of zebras gathered in a grassy field. There are at least 14 zebras visible in the scene, with some standing close to each other and others spread out across the field. The zebras appear to be enjoying the sunny day and each other's company.\n\nIn the background, a lone tree is visible, adding some natural beauty to the landscape. The field seems to be vast, allowing the zebras to roam and graze freely."} +{"image_id": 105220, "caption": "The image depicts two people skiing down a snow-covered hill, both wearing skis and holding ski poles. They appear to be racing or skiing together, with one person on the left and the other on the right side. The skis are visible under their feet as they glide through the snow.\n\nIn the background, there are banners and flags strung up, possibly indicating a skiing event or competition. There is also a backpack near the person on the left, possibly containing essentials for the skiers."} +{"image_id": 490701, "caption": "The image depicts a person sitting at a dining table, enjoying a delicious chocolate dessert served on a white plate. The dessert appears to be a brownie or a cupcake, accompanied by a beverage in a glass next to the plate. \n\nThe scene is set with a spoon in the person's hand, which they use to scoop the dessert from the plate. A teaspoon can also be seen on the table, possibly used for stirring or serving the beverage. The dining table occupies the majority of the image, with the person sitting comfortably while indulging in their treat."} +{"image_id": 368961, "caption": "In the image, there are two elephants standing close together in an outdoor enclosure. One elephant is on the left side of the picture, while the other is on the right side. They appear to be walking in opposite directions, with the right elephant walking towards the left side of the enclosure, and the left elephant walking towards the right side of the enclosure.\n\nBoth elephants are connected to a tether, which keeps them within the designated area of the enclosure. The tether is also tied to a large ball, possibly serving as a source of entertainment or enrichment for the elephants."} +{"image_id": 520892, "caption": "The image features a woman standing outside with a delicious hot dog in her hand. She is in the process of eating the hot dog, which is placed in a bun and wrapped in paper. The woman appears to be enjoying her meal, and her mouth is open as she takes a bite."} +{"image_id": 113354, "caption": "The image depicts a group of three zebras standing near each other in a lush, green environment, possibly a zoo or a sanctuary. They are grazing on grass, with two of the zebras positioned closer to the left side of the frame, while the third zebra is on the right side. One of the zebras is closer to the front, and the others are situated further back in the scene.\n\nThere are several potted plants scattered throughout the area, adding to the greenery and enhancing the natural ambiance. Some of the plants are placed near the zebras, while others are further back in the scene."} +{"image_id": 33652, "caption": "The image displays a home-cooked pizza with a variety of toppings, including cheese, on a pan placed on a stove. The pizza appears to be fully cooked and ready to be enjoyed. \n\nThere are several pieces of broccoli spread across the pizza, making it a colorful and appetizing dish. In addition to the broccoli, there are a few carrots visible on the pizza as well. The combination of vegetables and cheese creates a delicious and healthy pizza option."} +{"image_id": 511153, "caption": "The image features a blue train traveling down the railroad tracks. The train is positioned in the middle of the scene and appears to be moving forward. There are several other train tracks visible in the background, creating a sense of openness in the train yard."} +{"image_id": 328957, "caption": "The image features a cat sitting on top of a multi-layered cat tree. The tree is made of scratching posts, and the cat appears to be enjoying its elevated position. Surrounding the cat and the tree, there are several books scattered throughout the scene, adding a cozy feel to the space."} +{"image_id": 190015, "caption": "The image features a green truck parked next to a large pile of hay in a field. The truck appears to be a jeep, and it is in the process of being loaded or unloaded with the hay. There is a person standing near the truck, possibly overseeing the process or providing assistance. \n\nIn addition to the primary truck, there is another truck visible in the scene. It is positioned towards the left side of the image and appears to be parked relatively far away from the main action involving the green truck and the pile of hay."} +{"image_id": 244925, "caption": "The image features a man wearing a backpack that has a banana sticking out of it. The backpack is on the man's back, and the banana is positioned in a pouch on the backpack, making it easily accessible. \n\nAdditionally, the man is holding a camera in his hand, which is visible near the bottom right of the image. This suggests that the man might be a photographer or someone who frequently carries a camera with him."} +{"image_id": 29406, "caption": "The image features a wooden park bench placed in a grassy, landscaped area at the bottom of a small hill. The bench offers a comfortable seating area for visitors to relax and enjoy the natural surroundings. \n\nA brick building can be seen in the background, creating a pleasant backdrop for the scene. Next to the bench, there is a neatly trimmed grass lawn, as well as a few bushes and shrubs scattered throughout the area. The overall atmosphere of the scene appears serene and inviting."} +{"image_id": 32570, "caption": "In the image, a person is riding a surfboard on a wave in the ocean, skillfully navigating the wave as it breaks. The surfer is positioned in the center of the scene, and their surfboard is visible beneath them. The wave extends from the surfer towards the right side of the image, indicating the strength and size of the ocean current."} +{"image_id": 260608, "caption": "The image features a group of young girls playing soccer on a grassy field. They are actively chasing after the soccer ball, which is positioned close to the center of the field. In total, there are five girls visible in the scene, engaged in the game and running towards the ball.\n\nAround the field, a car can be seen parked further back, possibly belonging to one of the players or spectators. The overall atmosphere of the scene conveys an energetic and enjoyable girls' soccer game."} +{"image_id": 291286, "caption": "The image depicts a man riding a skateboard down a busy city street. He is wearing a black shirt and jeans while skillfully navigating the skateboard. Several other people can be seen walking along the street, creating a bustling atmosphere. \n\nSome of the pedestrians are carrying handbags, with at least three handbags visible in the scene. The street is also lined with several potted plants, adding a touch of greenery to the urban environment."} +{"image_id": 375278, "caption": "In the image, a person is gently petting a black cat that is sitting inside an open suitcase. The cat appears to be enjoying the attention as it comfortably occupies the suitcase. \n\nThe scene also includes a few books scattered around the area. One book is located near the person and the cat, while the other two books are placed further away, one on the left and the other on the right side of the image."} +{"image_id": 290684, "caption": "The image features a woman wearing a purple shirt, white pants, and glasses. She is sitting on a post and holding a pink teddy bear with fluffy fur. The teddy bear appears to be her favorite toy, as she is holding on tightly to it while posing for the picture. \n\nIn the background, there is a bicycle parked on the left side of the scene. The woman seems to be enjoying her time outdoors with her favorite stuffed animal."} +{"image_id": 29306, "caption": "The image features a brown dog sitting on a sandy beach next to the ocean. The dog appears to be looking into the distance, possibly enjoying the beautiful scenery. In the background, the sky is cloudy, adding to the serene atmosphere of the beach. The dog is wearing a collar, indicating that it has an owner nearby."} +{"image_id": 173375, "caption": "The image features a man snowboarding down a snow-covered hill during daytime. He is skillfully riding the snowboard down the slope, enjoying the winter sport. The man is wearing a helmet for safety while snowboarding. \n\nIn the background, there are other people who appear to be skiing or snowboarding as well. They are scattered across the hill, indicating that it's a popular location for winter sports enthusiasts."} +{"image_id": 198590, "caption": "The image depicts a street scene with two cars parked next to each other. One car, which appears to be a truck, is on the left side of the frame, while the other car is on the right side. A dog is sitting inside the car on the right, staring out the window, seemingly observing the surroundings. \n\nIn addition to the vehicles and the dog, there are two people visible in the scene. One person is standing near the left side of the frame, while the other person is located closer to the middle of the image. A cup can also be seen placed on a surface near the center of the scene."} +{"image_id": 25747, "caption": "The image features a long red and yellow train traveling down the tracks through a lush green forest. The train appears to be an old-fashioned passenger train as it moves along the countryside route. There are several people near the train tracks, possibly observing or waiting for the train to pass by. They are scattered along the length of the train, some closer to the front and others near the middle and end of the train."} +{"image_id": 346589, "caption": "The image depicts a snowy mountain slope with two people enjoying winter sports. One person is standing and wearing skis, while the other person is kneeling down in the snow with a snowboard. The skier and snowboarder appear to be taking a break and looking at each other, likely posing for a photo.\n\nThere are several other people visible in the background, but they are farther away and not the main focus of the scene. The presence of multiple people in the scene suggests that it is a popular location for winter sports enthusiasts."} +{"image_id": 121106, "caption": "The image depicts a busy airport scene where a large group of people is waiting in line at the baggage claim area. They are standing next to their luggage, which includes suitcases, handbags, and backpacks. Some suitcases are placed on the floor close to the passengers, indicating they have just arrived or are waiting for their belongings.\n\nThere are multiple suitcases of various sizes and colors, as well as a number of handbags and backpacks scattered throughout the scene. Several people can be seen in the image, with some standing closer to the baggage claim area and others further back in the line.\n\nIn addition to the passengers, the airport has a number of benches placed around the waiting area, providing seating for those who need a break while waiting for their luggage."} +{"image_id": 392850, "caption": "The image showcases a table filled with various fruits, including apples, oranges, and bananas. The apples are placed around the table, with some closer to the front and others near the back. Oranges are scattered across the table, with a few closer to the front, and the bananas are positioned on the left side. \n\nA knife is visible on the right side of the table, likely used to cut the fruits. In addition to the fruits, there is a cup on the top left corner of the table, and a cutting board can be seen beneath the fruits."} +{"image_id": 554241, "caption": "The image depicts a large crowd of people walking along a brick path in a park-like setting. Many people in the crowd are holding umbrellas, possibly to shield themselves from the sun or rain. Among the individuals, there are people carrying handbags and backpacks as they walk together.\n\nThe scene is bustling with activity, and the people appear to be enjoying their time outdoors, engaging in conversation or simply taking in the surroundings. The overall atmosphere of the image conveys a sense of community and shared experience among the individuals present."} +{"image_id": 341017, "caption": "The image shows a man on the back of a truck, surrounded by several goats. Some of the goats are on the left side of the truck, while others are on the right side, and a few are in the middle area. The man appears to be handling the goats, possibly loading them onto the truck or guiding them along the truck bed. \n\nIn addition to the man and the goats, there are two other people visible in the scene. One person is on the left side of the truck, and the other person is on the right side, both standing near the truck bed."} +{"image_id": 135497, "caption": "The image shows a man sitting at a dining table with his hands up, possibly about to enjoy a meal. The table is covered with a pizza, and there are two pizza pans visible on the table. In the background, there are multiple cars parked, indicating that the location could be a busy urban setting or a restaurant with a parking lot nearby."} +{"image_id": 159260, "caption": "The image features a blue train traveling down the train tracks, surrounded by a city scene. The train occupies most of the image, stretching from the left to the right side of the frame.\n\nThere are several people visible near the train tracks, watching the train pass by. Some of them are standing closer to the left side of the image, while others are scattered along the right side. One person can be seen in the middle of the scene, slightly ahead of the train."} +{"image_id": 417332, "caption": "The image depicts a baseball game in progress, with a pitcher wearing a yellow uniform standing on the mound and throwing a baseball towards home plate. The catcher, positioned behind the pitcher, is ready to catch the ball using a baseball glove. \n\nThere are three other people in the scene, likely teammates or opposing players: one person close to the pitcher, another person farther behind the pitcher, and a third person on the left side of the image. \n\nTwo baseball bats are visible in the scene, one held by the person on the left and the other by the person on the right side of the image."} +{"image_id": 90520, "caption": "The image features two teddy bears sitting next to each other, each wearing a kimono, which is a traditional Japanese garment. The bears are dressed in red, white, and black colors, giving them a stylish appearance. \n\nOne of the teddy bears appears to be a male, while the other is a female, adding a sense of variety to the scene. In the background, there is a small dog sitting on the floor, further enhancing the cozy atmosphere of the scene."} +{"image_id": 318524, "caption": "The image features an old, rusty train car on a steel track. The side of the train car is completely covered in rust, giving it a weathered and aged appearance. There are some black markings on the side of the train car, which further emphasize its worn and rusty state."} +{"image_id": 118406, "caption": "The image captures a group of men playing a game of soccer on a grassy field. Two soccer players are in the middle of a collision as they both attempt to gain control of the ball. One of the players is jumping in the air with the soccer ball above his head, while the other player is pushing him during the game.\n\nAround the field, there are three cars parked in the background, possibly belonging to the players or spectators who have come to enjoy the game."} +{"image_id": 25748, "caption": "The image features a white boat docked at a pier, with the name \"BlackBerry\" prominently displayed on its side. The boat is tied securely to the dock, and there is another boat visible in the background. \n\nThere are a few people in the scene, possibly attending to the boats or enjoying the view. One person can be seen on the left side of the image, while two other people are located closer to the center, and one more on the right side. All of them seem to be engaged in various activities around the boats."} +{"image_id": 365557, "caption": "The image features a snowboarder wearing a blue jacket, skillfully riding a snowboard down a snow-covered slope. The snowboarder is dressed warmly, with a helmet and goggles protecting them from the cold weather. The slope appears to be quite steep, adding to the challenge and excitement of the ride.\n\nThere are no other people visible in the scene, allowing the snowboarder to enjoy their descent without any interruptions. The focus is on the individual and their snowboarding experience."} +{"image_id": 320978, "caption": "The image features a bustling outdoor market filled with a variety of fresh fruits and vegetables. The produce is displayed in a large table, occupying almost the entire frame. There are several different types of vegetables, such as broccoli and carrots, spread across the table in various arrangements.\n\nIn addition to the vibrant display of produce, there are two people visible in the scene. One person is positioned near the left side of the image, while the other is at the top right corner. A handbag can be spotted on the left side of the frame, possibly belonging to one of the customers."} +{"image_id": 315073, "caption": "The image features a gray cat sitting on a chair with its mouth open, possibly yawning or making a sound. The cat is positioned in the center of the frame. \n\nIn the background, there is a bottle, which seems to be a vase, placed on a surface to the right of the cat. The cat and the vase are the main objects in the scene, creating a cozy atmosphere."} +{"image_id": 363927, "caption": "The image features a gray metro bus driving down a street, transporting passengers to their destinations. The bus occupies most of the scene, extending from the left to the right side of the image. \n\nSeveral people can be seen inside the bus, with some sitting closer to the front and others towards the back. There are at least 12 passengers visible, occupying various seats on the bus. \n\nAdditionally, a truck is parked near the bus, located on the left side of the image."} +{"image_id": 243355, "caption": "The image features a zebra walking across a grass-covered field, likely in an enclosure or an outdoor area. The zebra appears to be enjoying the sunny day as it moves around the field. In the background, there is a fence that encloses the area where the zebra is standing.\n\nAdditionally, there is a bowl placed near the top left corner of the scene, possibly for feeding the zebra or other animals in the vicinity."} +{"image_id": 373521, "caption": "The image features an old, rusted bus parked on the grass next to a sidewalk. The bus appears to be a Special 1 bus, as indicated by the sign on the front. The bus's age and condition suggest that it has been out of service for quite some time. \n\nThere are a few people in the scene, with one person standing closer to the right side of the bus and two others standing near the left side. They seem to be observing or discussing the bus's presence on the grass."} +{"image_id": 76409, "caption": "The image depicts a cozy bedroom scene with a bed covered in a red blanket. The bed takes up a significant portion of the room, extending from one side to the other. A painting of a bird is hanging on the wall above the bed, adding a touch of nature to the decor.\n\nIn addition to the bed, there is a table next to it with several bottles placed on top. Four of the bottles are arranged in a row, with two on the left side, one in the center, and one on the right side of the table. This arrangement creates an organized and inviting atmosphere in the bedroom."} +{"image_id": 485985, "caption": "The image features a young blonde boy with a toothbrush in his mouth, happily brushing his teeth. He is wearing a cast on his arm, likely due to an accident or injury. The boy appears to be sitting on a chair or a bed while engaging in this healthy activity. There is also a toothbrush in the boy's hand, indicating that he is using it for his oral hygiene routine."} +{"image_id": 27564, "caption": "The image features two young girls sitting side by side on a couch, with their feet resting on the floor in front of them. They are both comfortably seated, and one of the girls has a remote control in her hand, possibly watching TV or playing a game. \n\nThere are three remote controls visible in the scene, with one placed near the girl sitting on the left side of the couch and the other two located closer to the girl on the right. The girls appear to be relaxed and enjoying their time together on the couch."} +{"image_id": 92749, "caption": "The image depicts a tranquil scene of three giraffes in a grassy, fenced-in enclosure at the zoo. One giraffe is standing near the left side of the enclosure, while the other two are positioned closer to the center and right side of the area. The giraffes appear to be enjoying their time in the pen, interacting with each other and walking around the grassy field."} +{"image_id": 554958, "caption": "The image features a black, brown, and white cat sitting comfortably in a pile of leaves. The cat's eyes are open, and it appears to be staring intently at the camera. Behind the cat, there is a mixture of twigs, leaves, and garbage, creating an interesting and somewhat messy environment. The cat seems to be enjoying its time in this outdoor setting."} +{"image_id": 439971, "caption": "The image features a woman standing in front of a bathroom mirror, taking a selfie with her cell phone. She appears to be wearing a striped shirt and a scarf as she captures her reflection in the mirror. \n\nThere are several items around the bathroom that add to the scene. A bottle can be seen on the left side of the mirror, while two toothbrushes are located near the top left corner. Additionally, a cup is placed near the bottom left corner of the image."} +{"image_id": 559006, "caption": "The image features a large brown bear standing in a body of water, likely a river. The bear appears to be walking or swimming through the water, taking a moment to cool off. The bear is positioned in the center of the frame, and its size and presence dominate the scene."} +{"image_id": 457262, "caption": "The image features a small wooden table with two ripe, yellow bananas placed on top of it. The bananas are in various stages of ripeness, with one being more yellow than the other. Next to the bananas, there is a penny placed on the table, creating an interesting contrast between the small size of the bananas and the even smaller size of the penny."} +{"image_id": 263881, "caption": "The image features a giraffe standing in a grassy field on a sunny day. The giraffe appears quite tall, with its long neck and legs stretching out across the scene. Its body is positioned more towards the left side of the image. \n\nThere are several trees in the background, providing a natural backdrop to the giraffe. Some of the trees are located near the top left corner, while others can be found in the top center and right side of the image. Additionally, there is a bird perched on the giraffe's neck, adding a unique element to the scene."} +{"image_id": 322594, "caption": "The image features a before and after transformation of a bathroom. In the before image, the bathroom has a white toilet, sink, and vanity with a wooden seat cover. The floor is tiled, and the lights above the mirror are turned on. \n\nIn the after picture, the bathroom has been upgraded with a new toilet, sink, and vanity. The new toilet and sink have a modern design, while the wooden seat cover on the old toilet remains. The floor remains tiled, and the lights above the mirror are turned on, showcasing the overall improvement in the bathroom's appearance."} +{"image_id": 22423, "caption": "The image features a man and an elephant standing near a body of water. The elephant is holding a hat in its trunk and appears to be playing with it. The man is positioned between the elephant and the water, possibly enjoying the scene or taking care of the elephant.\n\nIn addition to the man and the elephant, there are several birds scattered throughout the scene, both in the water and the air. Some of the birds are close to the elephant, while others are further away, adding a lively atmosphere to the image."} +{"image_id": 59000, "caption": "The image presents a well-decorated living room with a Christmas tree placed in the corner. The room features a large couch and a chair, creating a comfortable and inviting atmosphere. A glass coffee table can be seen in the center of the room, and several books are scattered around, adding to the cozy ambiance.\n\nIn addition to the main furniture, there is a television set placed in the living room, providing entertainment for the occupants. A few people can be spotted in the room, likely enjoying the festive spirit or participating in the Christmas celebration."} +{"image_id": 119547, "caption": "In the image, a group of people, including a man wearing a suit and tie, are gathered outdoors. He appears to be adjusting his tie while being interviewed by a man holding a microphone. Another person can be seen wearing glasses and a tie, standing close to the man who is adjusting his tie.\n\nThere are several people in the scene, with some in the foreground and others in the background. All of them seem to be engaged in the event at hand. Additionally, there is a car parked in the background, possibly belonging to one of the individuals present."} +{"image_id": 432763, "caption": "The image captures a picturesque beach scene at sunset, with a large flock of seagulls taking off from the shoreline. The birds are spread across the beach, with some near the water and others in the middle of the scene. \n\nIn addition to the seagulls, there are also a few people present in the background, enjoying the serene atmosphere of the beach at dusk. The blend of nature and the presence of humans creates a harmonious and peaceful setting."} +{"image_id": 125635, "caption": "The image features a black and white cat sitting on a window sill, looking out of the window. The cat appears curious and attentive as it observes the outside world. \n\nIn the background, blinds can be seen on the window, providing a view of the outdoors. There is also a second, smaller cat visible in the scene, positioned further away from the main subject."} +{"image_id": 542549, "caption": "The image depicts an unmade bed with various items scattered on it. There are three notebooks placed near the center of the bed, with one notebook lying on top of the other two. Additionally, a cell phone can be seen on the left side of the bed. \n\nSeveral books are also placed on a pillow on the bed, with two of them positioned next to each other. The overall scene gives a sense of a bedroom or a living space where someone has been studying or working."} +{"image_id": 494759, "caption": "The image depicts a sandy beach scene where two people are enjoying a fun day flying a large kite. The kite can be seen soaring high in the sky, creating a lively atmosphere for the duo. \n\nThe people are positioned close to each other, with one person standing towards the left side of the image and the other person on the right side. There is a sense of camaraderie as they engage in the kite-flying activity together."} +{"image_id": 5617, "caption": "The image depicts a bed with two cats lying down on either side, making for a cozy scene. One cat is on the left side of the bed, while the other is on the right side. They appear to be resting or sleeping comfortably on their respective pillows.\n\nAdditionally, there are a few items on the bed, including a laptop on the left side near the cat on the left, and a book towards the right side of the bed. A pair of scissors can also be spotted on the bed, positioned near the left pillow."} +{"image_id": 279774, "caption": "The image features a group of young boys playing a game of baseball on a field. One boy is standing near the home plate, holding a baseball bat and preparing to swing it. Another boy is also present on the field, holding a baseball bat of his own. \n\nThere are several people watching the children play, including parents and possibly other spectators. Two chairs are placed on the sidelines, where some of the spectators are sitting. A baseball glove can be seen lying on the ground, probably dropped by one of the players during the game. The scene captures the excitement and joy of the children participating in the sport."} +{"image_id": 323442, "caption": "The image features a group of people enjoying a meal together at an outdoor dining area. A man and a woman, who appear to be a couple, are sitting at a dining table along with several other individuals. The table is set with various items, including wine glasses, cups, forks, knives, and spoons. \n\nThere are multiple chairs surrounding the dining table, with some people sitting and others standing nearby. The outdoor setting is enhanced by the presence of umbrellas providing shade in the background. A handbag can be seen on the ground next to one of the people, indicating that it is a casual and relaxed gathering."} +{"image_id": 109454, "caption": "The image features a man dressed in a blue shirt and blue tie, sitting down and drinking from a green wine bottle. He appears to be enjoying his beverage while wearing a tie. Another person can be seen in the background, but they are not the main focus of the scene.\n\nThe setting appears to be a dining area, as there is a dining table visible in the background. Several chairs are placed around the table, suggesting a gathering or an event taking place."} +{"image_id": 370677, "caption": "The image features three women standing next to each other in a bakery, smiling and posing for a picture. They are all wearing Dunkin' Donuts shirts and hats, indicating that they are employees at the store. \n\nThe bakery shelves are filled with an assortment of doughnuts displayed in various rows. There are at least 13 doughnuts visible, ranging from the top to the bottom of the shelves. The arrangement of the doughnuts creates an appealing visual display for the customers at the store."} +{"image_id": 521509, "caption": "The image features a woman sitting on a bed, facing the camera with a video camera set up in front of her. She appears to be looking into the camera with an uncomfortable or annoyed expression. The video camera is placed on a tripod, which is resting on the bed beside her.\n\nThe room has a cozy atmosphere with a potted plant situated near the left side of the bed, a couple of vases placed on a surface at the foot of the bed, and a chair located at the right side of the scene. Additionally, a handbag can be seen on the bed, close to the woman."} +{"image_id": 236461, "caption": "In the image, a man wearing a wetsuit is surfing on a wave in the ocean, skillfully balancing on his surfboard. He appears to be enjoying the exhilarating experience of riding the wave. The surfboard can be seen beneath him as he gracefully maneuvers through the water.\n\nBesides the main surfer, there are several birds scattered across the sky, enhancing the dynamic nature of the scene. The birds are dispersed in various positions, some closer to the surfer while others further away, emphasizing the lively atmosphere of the ocean setting."} +{"image_id": 534845, "caption": "The image features a teddy bear hanging by its ears from a clothesline in front of a building. The teddy bear is positioned near the center of the scene, and the clothesline is located above it. \n\nIn addition to the teddy bear, there are several articles of clothing visible on the clothesline. The clothes are at various heights and positions on the line, indicating that they are being washed or dried. The overall scene gives a sense of a simple, everyday activity taking place in an urban setting."} +{"image_id": 180580, "caption": "The image features a dining table adorned with a blue plate filled with various vegetables. The vegetables include multiple carrots and broccoli spears, making for a colorful and healthy meal. The carrots are found both on the left and right sides of the plate, while the broccoli takes up a significant portion of the plate in the center and on the right side.\n\nA fork is placed on the left side of the plate, ready to be used for enjoying the meal. Additionally, a knife can be spotted on the upper left corner of the table, possibly for cutting the vegetables. The overall scene presents a delicious and nutritious meal, ready to be enjoyed."} +{"image_id": 484551, "caption": "In the image, a woman wearing an orange shirt is sitting on the deck of a boat, enjoying her time on the water. She is wearing sunglasses and a hat, protecting her eyes from the sun. The woman is positioned near the center of the boat, smiling and appearing relaxed.\n\nThere are several people visible in the background, possibly indicating a social gathering or a group outing on the boat. The boat itself covers most of the image, stretching from the left edge to the right edge of the frame."} +{"image_id": 456146, "caption": "The image features a herd of sheep walking down a dirt road next to a grassy hill. There are at least 12 sheep visible in the scene, with some closer to the left side of the road and others near the center or right side. They appear to be traveling in a group, possibly under the guidance of a shepherd. The sheep are of various sizes, and some are closer to the edge of the road, while others are more towards the center. The dirt road cuts through the landscape, providing a path for the flock to follow."} +{"image_id": 283131, "caption": "The image depicts a white bathroom with a toilet, sink, and bathtub. The sink is situated on the left side of the bathroom, while the toilet and bathtub are located on the right side. There is a countertop between the sink and the bathtub.\n\nA shopping bag is placed on the counter near the sink, likely indicating recent grocery shopping. Additionally, there is a bottle on the countertop, slightly to the right of the sink. The floor of the bathroom appears to be blue, which contrasts with the predominantly white color scheme of the bathroom."} +{"image_id": 23309, "caption": "The image is a close-up view of a colorful pasta salad. The salad consists of pasta, broccoli, carrots, and onions, making it a healthy and delicious meal option. The pasta appears to be rotini (spiral noodle pasta), and the vegetables are fresh and vibrant.\n\nThere is a generous amount of broccoli in the salad, with pieces scattered throughout the dish. The carrots are mixed well with the pasta and vegetables, adding an appealing touch of contrasting colors to the dish. The overall presentation of the pasta salad is appetizing and enticing."} +{"image_id": 547487, "caption": "The image features a young boy dressed in a red shirt, brown pants, and black sneakers, skillfully performing a trick on a black skateboard. He is in mid-air, showcasing his impressive skateboarding abilities. \n\nThere are a few other people in the background, possibly watching the boy or waiting for their turn to perform their own tricks. Additionally, there is a bicycle and a car in the background, possibly implying that the skatepark is located in a public area."} +{"image_id": 34830, "caption": "The image features a bathroom with a white urinal hanging on a red tiled wall. The urinal is positioned at the bottom right corner of the scene. The tiles on the wall are black and orange, creating an interesting contrast with the white urinal. There is also a black and white tile floor in the bathroom."} +{"image_id": 125997, "caption": "The image features a large blue brick wall on the side of a building with a captivating advertisement painted on it. The advertisement is blue and white, taking up a significant portion of the wall. The wall itself appears to be a part of a building located in a city setting."} +{"image_id": 19916, "caption": "The image features a dining table with a white bowl placed on it. The bowl is filled with a variety of food items, including several apples and pieces of cinnamon. Near the bowl, there is a fork and a knife placed on the table, ready to be used for enjoying the meal. \n\nA person is visible in the background, possibly preparing or getting ready to enjoy the meal. Additionally, a laptop is placed on the table close to the edge, suggesting that the person might be working or browsing the internet while having their meal."} +{"image_id": 145019, "caption": "The image depicts a scene where a large white and blue airplane has been involved in an accident and is sitting on the side of a grassy hill. Several people, including a woman and two men, are gathered around the wrecked aircraft, observing the situation. Some of the bystanders are closer to the left side of the image, while others are more towards the right side.\n\nA construction vehicle is parked nearby, likely used for clearing the debris or assisting in the recovery process. Additionally, a backpack can be seen on the ground close to the people observing the scene, possibly belonging to one of the bystanders."} +{"image_id": 127161, "caption": "The image features a dining table with a white tablecloth and a plate containing a slice of pizza. The pizza appears to be covered with various toppings, including cheese, tomatoes, and olives. There is a fork placed on the table next to the plate, ready to be used for enjoying the pizza.\n\nAdditionally, there is a bowl situated towards the right side of the table, potentially containing a side dish or accompaniment to the pizza."} +{"image_id": 543660, "caption": "The image is a black and white photograph of a bathroom featuring two toilets. One toilet is positioned towards the left side of the room, while the other is on the right side. The bathroom has a unique black and white checkered floor, which creates an interesting contrast with the white toilets.\n\nAdditionally, there are two toilet paper rolls in the bathroom. One is located near the left toilet, and the other is closer to the right toilet. The small window in the bathroom is also visible, providing some natural light to the space."} +{"image_id": 8333, "caption": "The image features a red and white passenger train traveling down the tracks, passing by some buildings. The train occupies a significant portion of the scene, stretching from the left to the right side of the image.\n\nThere are a few people visible near the train, possibly waiting for it to come to a complete stop before boarding. One person is standing closer to the left side of the train, while two other individuals are located near the center and right side of the train. Another person can be seen further to the right of the train.\n\nAdditionally, there are two buses present in the scene. One bus is situated on the left side of the image, while the other is located on the right side, closer to the train."} +{"image_id": 482907, "caption": "The image features a small, vintage airplane with a propeller flying through a clear, blue sky. The single-engine plane is adorned with a red, white, and blue color scheme, and it appears to be an old fighter plane. The airplane is positioned toward the front of the scene, making it the focal point of the image."} +{"image_id": 290130, "caption": "The image captures a man in a wetsuit surfing on a large wave in the ocean. He is skillfully balancing on his surfboard while riding the wave. The surfer is positioned towards the left side of the image, and his surfboard is clearly visible underneath him. The wave itself appears to be quite powerful and takes up a significant portion of the scene."} +{"image_id": 58225, "caption": "The image shows a person holding a hot dog with a bun in their hand, standing in a stadium. The hot dog appears to be half-eaten, and it is covered in ketchup and mustard. In the background, there is a baseball game taking place, with several players visible on the field. The person holding the hot dog seems to be enjoying the game while eating their snack."} +{"image_id": 249550, "caption": "The image features a cozy bedroom scene with a bed adorned with a vibrant red and yellow flowery quilt. The bed is the central focus of the room, taking up a significant portion of the space. Next to the bed, there is a small white table, which appears to be a nightstand. On the table, there is a potted plant that adds a touch of greenery to the room. \n\nFurther enhancing the room's ambiance, a white rug is placed near the bed, complementing the overall decor. In addition, several pillows are scattered across the bed, providing extra comfort and a sense of inviting warmth to the sleeping area."} +{"image_id": 448765, "caption": "The image depicts a clean bathroom featuring a white toilet and a white sink. The sink is located on the left side of the bathroom, while the toilet is situated on the right side. The bathroom appears to be well-maintained and organized.\n\nIn addition to the sink and toilet, there is a toilet roll holder with a roll of toilet paper next to the toilet. The toilet paper holder is mounted on the wall above the toilet, providing easy access for users."} +{"image_id": 498439, "caption": "The image depicts a baseball game in progress with several players on the field. In the center of the scene, a baseball player wearing a number three jersey is standing on the field, possibly waiting for his turn at bat. Other baseball players are scattered around the field, with some near the first base, others in the outfield, and a few on the sidelines.\n\nSeveral baseball gloves can be seen throughout the scene, indicating that the players are actively engaged in the game. There is also a bench in the background, which is likely part of the dugout area for the players."} +{"image_id": 252403, "caption": "The image features a young woman with long black hair, wearing glasses and a green shirt. She is brushing her teeth with a blue and white toothbrush, which she holds in her hand. The woman appears to be paying close attention to her brushing technique, ensuring that she effectively cleans her teeth and maintains good oral hygiene."} +{"image_id": 347995, "caption": "The image depicts a woman wearing a blue shirt lying in bed with her dog, who is comfortably resting on the bed next to her. The mother and her black dog are sharing the same bed, enjoying each other's company. \n\nIn the room, there are a few other items, such as a bottle on the bedside table, a clock hanging on the wall, and a book placed nearby. There is also a cup situated close to the bottle, possibly used for feeding the dog."} +{"image_id": 544216, "caption": "The image depicts a dining table with various plates of food, including a sandwich cut in half and a pile of potato chips. The sandwich and chips are placed on different parts of the table, with the sandwich taking up a significant portion of the plate. \n\nA person can be seen in the background, likely enjoying their meal or observing the food on the table. Additionally, there are multiple cups placed around the table, possibly containing beverages to accompany the meal."} +{"image_id": 205729, "caption": "The image features a group of people skiing on a snow-covered mountain. There are eight skiers in total, spread across the scene. Some of them are standing at the base of a snowy mountain, while others are skiing up the slope. The skiers are equipped with skis, which can be seen placed in various positions throughout the scene.\n\nIn addition to the skiers, there is a backpack visible in the middle of the scene, possibly belonging to one of the skiers. The group appears to be enjoying their time on the mountain and taking advantage of the winter sports opportunities."} +{"image_id": 350988, "caption": "The image depicts a room with six wooden benches arranged in rows. The benches are positioned at different heights and orientations, creating a visually interesting scene. The room appears to be quite empty, with no additional furniture or people visible."} +{"image_id": 288673, "caption": "The image depicts a beautiful beach scene with a group of people enjoying various activities. One person is flying a kite, which can be seen soaring in the sky above the sandy beach. The kite is colorful and stands out against the sky.\n\nThere are several people walking and standing on the beach, some closer to the water and others further back on the sand. A car is parked near the beach, possibly belonging to one of the beachgoers.\n\nOverall, it's a lively scene with people making the most of their time at the beach."} +{"image_id": 568690, "caption": "The image features a bathroom scene with a cat sitting on top of a white toilet seat. The cat is comfortably perched on the edge of the toilet bowl, appearing relaxed and at ease. \n\nIn the background, there is a butterfly-themed shower curtain, adding a touch of color and playfulness to the bathroom atmosphere. The floor is tiled, and a handbag can be spotted on the right side of the room."} +{"image_id": 504194, "caption": "In the image, there is a large brown dog sitting on a brick sidewalk next to a long wooden bench. The dog appears to be tied to the bench, as it has a leash attached to its collar. \n\nBesides the dog and the bench, there are several bicycles in the scene. Two bicycles are located on the left side of the image, and another bicycle is positioned further to the right. These bicycles suggest that this location might be a popular spot for outdoor activities or leisurely bike rides."} +{"image_id": 35368, "caption": "The image features a kitchen with a dining table that has a bowl of fruit sitting on top of it. The fruit bowl contains a variety of fruits, including bananas, which are prominently displayed in different positions. Apart from the fruit bowl, there are a couple of cups and a bottle placed on the table. The table is also adorned with a potted plant, adding a touch of greenery to the space."} +{"image_id": 307332, "caption": "In the image, there are three people sitting on a bench, enjoying the outdoors near a body of water. The bench is located on the grass, and the individuals appear to be relaxed and having a good time. Behind the bench, a brown dog can be seen, adding an element of liveliness to the scene. The dog appears to be well-behaved and perhaps belongs to one of the people sitting on the bench."} +{"image_id": 490878, "caption": "In the image, a man wearing a red jacket is skiing on a snowy hillside. He is accompanied by his dog, which is positioned to his left and slightly behind him. The man and his dog appear to be enjoying their time outdoors during the winter season.\n\nThere are a few other people in the scene, but they are farther away and not the main focus of the image. The primary focus is the man and his dog skiing together in the beautiful snowy landscape."} +{"image_id": 507187, "caption": "The image depicts a gathering of people in a grassy area, with several vintage motorcycles on display. Among the motorcycles, there is an antique green motorcycle parked prominently, garnering attention from the crowd. \n\nIn total, there are at least 12 people standing around the motorcycles, admiring and conversing about them. Some of the individuals can be seen closer to the motorcycles, while others are standing further away. There is also a handbag placed on the grass, possibly belonging to one of the attendees.\n\nIn the background, there is a truck parked, adding to the overall atmosphere of the outdoor event."} +{"image_id": 254644, "caption": "The image features a kitchen with wooden cabinets and shelves, creating a warm and inviting atmosphere. The counters are cluttered, with various items such as bottles, cups, bowls, and spoons occupying the space. There are four bottles placed on the counters, with one near the left side, two in the center, and one on the right side. Additionally, there are three cups in the kitchen, with one on the left side, one in the center, and one on the right side of the counter.\n\nA sink can be seen towards the right side of the kitchen, and an oven is located on the far right side. There are also two knives present in the kitchen, one near the left side of the counter and the other towards the center. A potted plant is positioned near the top left corner of the image, adding a touch of greenery to the space."} +{"image_id": 400803, "caption": "The image features a large white and orange boat, possibly a lifeboat, floating on blue water. There are several people on the boat, with two individuals prominently visible \u2013 one sitting on the edge of the boat and another climbing up a ladder. Another person can be seen near the center of the boat, and two more people are located at the very front of the boat. \n\nAdditionally, there is a flag hanging from the side of the boat, indicating that it may be a part of a coast guard vessel or a rescue boat. The people on board appear to be working together to ensure the safety and well-being of those in the boat."} +{"image_id": 574928, "caption": "The image depicts a large, grassy field where a herd of sheep is grazing. There are at least 14 sheep spread across the field, with some closer to the foreground and others further back towards the edges of the scene. The pastoral scene is serene, and the sheep appear to be enjoying their time in the open area. The sun is shining brightly, creating a warm and inviting atmosphere for the grazing sheep."} +{"image_id": 559247, "caption": "The image depicts a group of people, including both teens and adults, gathered around a large dining table in a room. They are enjoying a meal together, with various sandwiches and hot dogs being served. The sandwiches and hot dogs are spread across the table, with multiple pieces of each type of food available. \n\nSeveral bottles can be seen on the table, possibly containing condiments or beverages. There are also spoons placed near the food, likely for people to use while serving themselves. The atmosphere in the room appears to be lively and social, as everyone is engaged in conversation and enjoying their time together."} +{"image_id": 254625, "caption": "The image features a man wearing a gray shirt, swinging a baseball bat during a game. He is holding the bat with both hands and appears to be in the middle of an intense swing. There is a baseball visible near the batter, indicating that he is actively engaged in the game.\n\nIn the background, several chairs can be seen arranged in a row, possibly indicating a spectator area or a waiting area for the players."} +{"image_id": 374966, "caption": "The image captures a lively scene of several young skateboarders at a skate park, enjoying their time and practicing their skills. There are a total of 12 people in the scene, with some actively riding skateboards and others watching the skaters. \n\nThere are four skateboards visible in the image, with one being ridden by a boy wearing a white shirt. The other three skateboards are on the ground, likely belonging to the onlookers or waiting to be used by the skateboarders. Additionally, there are two backpacks placed near the skate park, possibly belonging to the people enjoying the area."} +{"image_id": 351967, "caption": "The image features a large, illuminated clock mounted on the side of a building, prominently displaying the time. The clock is positioned centrally on the building, making it easily visible to passersby and occupants of the building.\n\nAdditionally, there is a yellow taxi cab driving by the building, adding a sense of movement and activity to the scene. A person can be seen in the background, possibly walking or waiting for someone. The combination of the clock and the taxi cab creates a bustling urban atmosphere."} +{"image_id": 172877, "caption": "The image features a well-dressed man sitting comfortably in a chair. He is wearing a shirt and a tie, along with a dress shirt, a tie, and glasses. His hands are clasped in a relaxed position, giving off a casual vibe. \n\nThe scene appears to be set in a living room, as there is a couch visible in the background. A clock can be seen hanging on the wall, and a lamp is situated nearby, providing a cozy atmosphere."} +{"image_id": 309237, "caption": "The image features a large black, white, and brown cat sitting comfortably on a blue couch. The cat is occupying almost the entire width of the couch cushion. Next to the cat, there is a remote control placed on the couch. The scene appears to be cozy and inviting, with the cat adding a sense of warmth and companionship to the space."} +{"image_id": 565877, "caption": "The image features a young woman sitting comfortably on a red couch. She is wearing a blue shirt and glasses, and a hat is placed on her head. In front of her, there is a laptop computer on the couch, which she appears to be using or enjoying. \n\nThe couch takes up the majority of the image, spanning from the left edge to the right edge of the frame. There are no other people visible in the scene, making the woman and her laptop the main focus of the image."} +{"image_id": 489924, "caption": "The image shows a woman riding a skateboard down the middle of a street. She appears to be enjoying herself as she glides on the skateboard. There are no other people visible in the scene, making the street seem relatively empty. \n\nIn the background, there is a car parked on the right side of the street, and a traffic light can be seen further down the road. The overall atmosphere of the scene is that of a casual and leisurely outdoor activity."} +{"image_id": 125472, "caption": "The image is a close-up of a young man wearing a green shirt and jeans, skillfully performing a trick on a skateboard. He is in mid-air, showcasing his athleticism and talent. The skateboard can be seen beneath him, as he maintains his balance during the jump.\n\nAround the skateboarder, there is a clear blue sky in the background, emphasizing the outdoor setting of the trick. The skateboarder appears to be enjoying himself as he executes his daring move."} +{"image_id": 422706, "caption": "In the image, a person, possibly a woman, is leaning over the side of a boat, reaching out to a smaller boat next to it. The smaller boat appears to be a lifeboat, as it is suspended close to the main boat. The person on the larger boat seems to be offering a helping hand or observing the situation.\n\nBoth the main boat and the smaller lifeboat are situated in a body of water, possibly the ocean. The larger boat extends from the left edge of the image to almost the center, while the smaller boat is located in the middle of the scene."} +{"image_id": 290700, "caption": "The image captures a thrilling moment of a man surfing in the ocean, skillfully riding a wave on his surfboard. He appears to be airborne, jumping over the wave with his surfboard still in hand. The man is wearing a white shirt, and his surfboard matches the color of the wave he is surfing.\n\nAside from the main surfer, there are several other people visible in the background, likely enjoying the ocean view or participating in their own water activities."} +{"image_id": 365177, "caption": "The image features a large, white bus parked on a city street. The bus is quite long, stretching from one side of the scene to the other, and occupying a significant portion of the street.\n\nThere are several people in the scene, some standing close to the bus, while others are at varying distances from it. One person can be seen near the right side of the bus, and two more individuals are located towards the far right of the image. \n\nA building is visible in the background, providing an urban context for the scene."} +{"image_id": 398661, "caption": "The image features a well-equipped kitchen with a variety of utensils and appliances. A microwave is placed on the counter, along with an oven, toaster, and other appliances. The kitchen also has a collection of cooking utensils, such as knives, spoons, and bowls, hanging on the walls.\n\nThere are several bottles scattered throughout the kitchen, some on the countertops and others on the shelves. In addition to the bottles, a cup can be seen on the counter near the microwave. The kitchen also has a collection of books, likely recipe books or decorative literature, adding a personal touch to the space."} +{"image_id": 175611, "caption": "In the image, a person is using a pair of scissors to carefully chop up a large stick or a cigar. The person is holding the scissors in one hand, positioning them just above the object that they are cutting. The hand holding the scissors is visible on the left side of the image, while the one doing the cutting is on the right side.\n\nThe person appears to be working with precision and attention to detail, possibly for a task involving the preparation of tobacco or a similar product."} +{"image_id": 477673, "caption": "The image features a small kitten sitting inside a backpack, looking up and observing the surroundings. The kitten is positioned near the center of the backpack, with its body visible from the top to the bottom. \n\nIn addition to the main kitten, there are several other smaller kittens scattered around the backpack, making the scene even more lively. The backpack itself occupies the majority of the image, spanning from the left to the right edge of the frame."} +{"image_id": 1270, "caption": "The image captures a lively scene at a youth baseball game, with several players on the field wearing helmets and holding baseball bats. There are two young players holding bats, one positioned closer to the left side and the other more towards the center of the field. A little league atmosphere can be felt throughout the scene.\n\nSurrounding the field is a group of people, including spectators and possibly family members of the players. They are seated on various chairs that are dispersed around the area. Some individuals are standing, watching the game intently.\n\nAdditionally, there are two bottles visible on the field, likely containing water or sports drinks for the players."} +{"image_id": 224012, "caption": "The image showcases a white plate filled with a variety of food items, including ham, broccoli, and potatoes. The ham appears to be sliced, and it takes up a significant portion of the plate. The broccoli pieces are scattered across the plate, with some near the center and others towards the edges of the plate. The potatoes are also distributed across the plate, accompanying the other vegetables and meat."} +{"image_id": 552510, "caption": "The image features a group of young children playing a game of soccer on a field. There are several kids actively participating in the game, with one boy in a yellow jersey and another boy in a green jersey both vying for control of the ball. The children are spread across the field, with some close to the ball while others are positioned further away, waiting for the play to develop.\n\nA couple of chairs are placed on the sidelines of the field, possibly for parents or team officials to sit and watch the game. There is also a handbag situated near one of the chairs, likely belonging to one of the participants or spectators."} +{"image_id": 272880, "caption": "The image features a wooden dining table with a pizza pan placed on it. A person is sitting at the table, enjoying a slice of pizza from Mistic Pizza. The pizza appears to be mostly eaten, with only a few slices remaining. \n\nIn addition to the pizza, there are other items on the table, such as a cup and a fork. The cup is situated near the edge of the table, while the fork is laying on the table, possibly used to eat the pizza."} +{"image_id": 580540, "caption": "In the image, a black dog is sitting on a hardwood floor in a living room, attentively watching a flat-screen TV. The television displays a scene from a show featuring ducks. The dog appears captivated by the TV, occupying a significant portion of the viewing area.\n\nIn the room, there are multiple books scattered around, some on the floor and others on shelves or tables. A couple of remotes can also be seen in the room, likely used for controlling the television or other electronic devices."} +{"image_id": 242934, "caption": "The image showcases a cozy living room with black leather furniture, including a couch and a chair. The couch is placed along the left side of the room, while the chair is situated towards the right. A table accompanies both the couch and the chair, providing a place to place drinks, books, or other items.\n\nAdditionally, there is a clock on the wall in the upper left part of the room, and several books can be seen scattered throughout the space, both on the floor and the couch. A vase is placed on the table, adding a decorative touch to the living room."} +{"image_id": 178807, "caption": "The image features two side-by-side photographs of people riding skateboards on a basketball court. In each picture, there is a pair of feet with skateboards positioned at different spots on the ground. One skateboard can be seen under the left set of feet, while the other is on the right side. \n\nAdditionally, there are two cars in the background of the images, possibly parked outside the court area. Overall, the scene captures the fun and excitement of skateboarding as a recreational activity."} +{"image_id": 135748, "caption": "The image features a small brown dog, possibly a Pomeranian, lying down in a dog bed on the floor. The dog appears to be wearing a green blanket, giving it a comfortable and cozy resting spot. Next to the dog bed, there is a bottle of orange juice placed on the floor, possibly for the dog's consumption.\n\nAdditionally, there is a chair in the scene, situated near the top right corner of the image. The overall setting seems to be a relaxed and comfortable environment for the small dog."} +{"image_id": 255036, "caption": "The image depicts a large parking lot in front of a tall red building. The lot is nearly empty, with only a few cars parked in various spots. Among the vehicles, there is a bus located towards the center of the parking area, and a truck can be seen parked closer to the right side of the lot. \n\nIn addition to the cars and bus, there are several people scattered throughout the parking lot. Some are standing closer to the building, while others are in the middle of the lot, possibly waiting or moving between the parked vehicles."} +{"image_id": 3926, "caption": "The image depicts two sheep standing in a snow-covered field. One sheep is positioned more towards the left side of the scene, while the other is on the right side. The sheep on the left appear to be shivering in the cold weather, and the sheep on the right seems to be enjoying the snow. \n\nThere are several snowballs scattered around the field, with some close to the sheep and others further away. The presence of snow and cold temperatures create a picturesque yet chilly winter scene."} +{"image_id": 236762, "caption": "The image features a large group of people gathered around a dining table in a restaurant, enjoying a meal together. There are several chairs placed around the table, accommodating everyone in the group. The table is filled with various plates of food, cups, and utensils such as forks, knives, and spoons. Drinking glasses of different sizes are spread across the table as well.\n\nThe people at the table appear to be having a good time, sharing conversations and enjoying their meal. Among them, a man is holding a camera, possibly capturing the moment. Overall, the atmosphere in the image is lively and social, with everyone engaged in the shared dining experience."} +{"image_id": 248314, "caption": "The image features a wooden dining table with a laptop, a mouse, and a variety of food items placed on it. There are two bowls on the table, along with a tray filled with an assortment of food. A spoon can be seen resting near one of the bowls. \n\nA keyboard is also placed on the table, positioned in front of the laptop, suggesting that the user might be working while having their meal. A bottle is located at the edge of the table, possibly containing a beverage to accompany the meal.\n\nA chair is situated in front of the table, awaiting someone to sit down and enjoy their food."} +{"image_id": 559773, "caption": "The image captures a thrilling moment where a person on skis is soaring through the air over a snow-covered slope, jumping over a net. The skier is the main focus of the scene, with their skis visible beneath them as they fly through the air.\n\nIn the background, there are several other people scattered around the ski slope, possibly watching the skiing action or preparing to ski themselves. Some are closer to the main skier, while others are further away, blending into the lively skiing environment."} +{"image_id": 340665, "caption": "The image features a woman wearing glasses, holding an open umbrella, and standing under a black tarp. She is positioned in the center of the scene, with a handbag placed near her. The umbrella is held above her head, providing protection from the rain or sun.\n\nIn the background, there are two other people partially visible, one on the left side and another on the far right side of the image. A backpack can be seen placed on the ground, close to the left edge of the scene."} +{"image_id": 388599, "caption": "In the image, a person is holding a frisbee towards a brown dog, who is attempting to take it from the person's hand. The frisbee is white, and the dog is standing in the grass, eagerly waiting to grab it. The interaction between the person and the dog creates a playful and engaging scene."} +{"image_id": 163528, "caption": "The image features a delicious gourmet pizza served on a white plate, placed on a dining table. The pizza is topped with a generous amount of salad and dressing, making it a healthy and appetizing meal. \n\nThere is a fork and a knife visible on the table, ready to be used for enjoying the pizza. Additionally, there is a cup located at the top right corner of the table. The table setting and presentation make for an inviting dining experience."} +{"image_id": 481212, "caption": "The image depicts a man sitting comfortably on a red couch in a living room. He is accompanied by two animals, a dog and a cat, who are also sharing the couch with him. The man is holding a coffee mug in his hand, possibly enjoying a relaxing moment at home with his pets.\n\nIn the background, there are two TVs visible, one on the left side and another on the right side of the room. A remote control can be seen placed near the first TV. There is also a bird perched in the top left corner of the scene, adding a touch of nature to the domestic setting."} +{"image_id": 277533, "caption": "The image features a man sitting on a red couch in a living room, holding a Nintendo Wii game controller. He appears to be enjoying his time playing a video game on the Wii console. \n\nIn the room, there are several books scattered around, indicating that the space might be used for reading and relaxation as well. Additionally, there is a cell phone placed on the couch, suggesting that the man may have been using it before or after playing video games."} +{"image_id": 173383, "caption": "The image features a beautifully decorated wedding cake placed on a dining table. The cake is white and has a blue ribbon as its decoration. Alongside the cake, there is a candle on the table, adding a warm and cozy ambiance to the scene. \n\nA knife can be seen nearby, likely used for cutting the cake during the wedding ceremony. Additionally, there are a couple of forks placed on the table, one on the left side and another on the right side of the table, ready for guests to enjoy the delicious cake."} +{"image_id": 419624, "caption": "The image features a train with several white carts, moving along a track that runs parallel to a street. The train is passing by some trees, giving the scene a pleasant atmosphere. In the background, there is a traffic light visible, indicating that the train tracks intersect with a street below."} +{"image_id": 130291, "caption": "The image features a man wearing a suit and a red tie, standing next to a woman. The woman is adjusting the man's red necktie for him, ensuring that it is properly tied and looking neat. They are both dressed in business attire, and the scene takes place in a room.\n\nThere are a few other people in the background, but they are not the main focus of the image. Additionally, there is a cell phone present in the scene, placed near the man in the suit."} +{"image_id": 193369, "caption": "The image depicts an old, rusted bench situated on a stone walkway in a park-like setting. The bench is made of wood and sits on top of a cobblestone path, surrounded by grass. The weathered steel structure of the bench shows signs of aging, with rust visible on its surface. \n\nA few green bushes can be spotted around the bench and the cobblestone path, adding a touch of nature to the scene. There are also a couple of people in the background, possibly enjoying a walk or admiring the bench."} +{"image_id": 367804, "caption": "In the image, a young girl is enjoying her time on the beach, flying a kite high in the sky. The kite can be seen towards the center of the scene, with the girl holding the handle of the kite string. \n\nThere are several other people scattered across the beach, possibly enjoying their own activities or watching the girl with the kite. Additionally, there are four cars parked on the beach, indicating that people have come to this location for a relaxing day of leisure activities."} +{"image_id": 84735, "caption": "The image captures a baseball game in progress, with a baseball player in a pinstripe uniform swinging his bat. The batter is in the process of taking a swing at an incoming baseball, while the crowd looks on with anticipation. \n\nThere are numerous people in the scene, including teammates, other players, and spectators. Some of the teammates can be seen surrounding the batter, while others are further away on the field. In addition to the players, several people are wearing baseball gloves, ready to catch the ball if the batter makes contact.\n\nThe excitement of the game and the focus of the batter can be felt in the atmosphere, as everyone waits to see the outcome of the swing."} +{"image_id": 247285, "caption": "In the image, a man and a woman are standing under a large, striped umbrella, holding a baby between them. The mother is on the left side of the scene, while the father is on the right. The umbrella provides shade and protection for the family as they enjoy their time outdoors. \n\nAdditionally, there is a handbag placed near the right side of the umbrella, possibly belonging to one of the parents. The family appears to be spending quality time together, creating a warm and loving atmosphere."} +{"image_id": 438432, "caption": "The image is a vintage photograph featuring a group of young women, dressed in ties and skirts, posing for a team picture. They are all wearing school uniforms and holding various sporting equipment, including a baseball bat and a cricket bat. There are multiple ties visible in the photograph, worn by the women as part of their uniform.\n\nThe team members are distributed across the frame, with some women sitting on the grass, while others are standing in various positions. They all appear to be young and focused, showcasing their dedication to the sports they play."} +{"image_id": 185479, "caption": "The image features a man sitting on the floor, using his laptop computer. He is wearing glasses and a jacket, and he seems to be intently working on the laptop. There is a backpack placed next to him on the floor, possibly indicating that he is a student or traveler. A cell phone can also be seen in the vicinity of the man, suggesting that he might be communicating with someone while working on his laptop."} +{"image_id": 570826, "caption": "The image depicts a blue and yellow electric train traveling down the tracks, with a wire building in the background. The train is carrying passengers, and several people can be seen through the windows. Some of the passengers are seated, while others stand in various positions on the train. \n\nThe train itself occupies a significant portion of the scene, stretching from the left to the right side of the image. The tracks on which the train is traveling appear to be in good condition and well-maintained."} +{"image_id": 127394, "caption": "The image depicts a group of people gathered around a dining table, enjoying a meal together. The table is filled with a variety of food items, such as salad, pizza, and other dishes. There are several bowls, cups, and utensils like forks and knives spread across the table. \n\nA woman on one side of the table and a man on the other side are engaged in conversation. In addition to the tableware, there are some carrots placed on the table, adding a touch of color and nutrition to the meal. \n\nSeveral beverages, including beer, are visible on the table, enhancing the enjoyable dining experience. A cell phone can also be spotted on the table, possibly belonging to one of the guests."} +{"image_id": 311081, "caption": "The image depicts a simple and clean bathroom scene featuring a white bathtub. A white shower curtain is drawn around the bathtub, giving the bathroom a fresh and inviting atmosphere. \n\nIn addition to the bathtub and shower curtain, there is a toilet visible at the bottom left corner of the image. A door can be seen in the background, likely leading to the rest of the bathroom or another room. The overall scene conveys a sense of serenity and relaxation."} +{"image_id": 376677, "caption": "The image features a large blue and white tow truck driving down a street. The tow truck is the main focus of the scene, occupying a significant portion of the image from the left to the right side.\n\nThere are several cars in the background, with two cars positioned behind the tow truck, one slightly to the right, and another further back on the right side. A couple more cars can be seen on the left side of the tow truck, while two more cars are located at the far right edge of the image.\n\nAdditionally, there is a person visible on the left side of the scene, standing or walking near the edge of the street."} +{"image_id": 269419, "caption": "The image features a large clock tower with a clock on its side, standing tall next to a tree. The tower appears to be made of bricks, giving it an earthy appearance. The clock on the tower is illuminated, making it visible at night or in low light conditions. \n\nAdditionally, there are two people in the scene. One person is located on the left side of the image, while the other person can be seen further to the left. Both individuals seem to be enjoying the view of the clock tower and the tree."} +{"image_id": 210708, "caption": "The image features a large adult elephant and a baby elephant standing together in a body of water. They appear to be enjoying a swim, with the baby elephant submerged up to its head. The mother elephant is positioned towards the back of the scene, providing protection and guidance to the younger one.\n\nThere are several birds in the image, flying around the elephants and interacting with the water. The presence of these birds adds life to the scene and highlights the bond between the elephants and their surrounding environment."} +{"image_id": 472246, "caption": "The image features a white surface on which three fruits are placed side by side. There is an apple located on the left side, an orange in the center, and a pear to the right side of the surface. All three fruits appear to be in good condition and are neatly arranged."} +{"image_id": 187475, "caption": "The image shows a person holding a large hot dog with a variety of toppings, such as mustard, relish, and onions. The hot dog appears to be in a bun and is placed on a napkin. The individual holding the hot dog is not visible in the image, but their arm and hand are prominently featured as they display the tasty treat. \n\nIn the background, another person can be seen, but their involvement with the hot dog is not clear. There is also a can of soda visible in the scene, adding to the casual dining atmosphere."} +{"image_id": 299457, "caption": "The image features a man with glasses sitting inside a room, enjoying a lollipop. He is positioned near the center of the room, and he appears to be wearing a black shirt. There is a TV in the background on the left side of the room, and a laptop can be seen placed on a surface to the left of the man. \n\nAdditionally, there are two chairs in the room, one located to the left of the man and another further back in the room. A cell phone is also present in the scene, placed on a surface to the left of the man."} +{"image_id": 2894, "caption": "The image features a train station with a train on the tracks. The train has a yellow and black striped rear, and it is situated between two green trains. \n\nThere are multiple people in the scene, some standing close to the trains, possibly waiting for their ride, while others are positioned further away, possibly observing the trains or the station. A car can be seen in the background near the end of the platform."} +{"image_id": 209733, "caption": "The image depicts a group of people enjoying a sunny day at a grassy field, where they are flying a large, purple kite high in the sky. There are two individuals prominently involved in flying the kite, while others watch from various positions around the field.\n\nThe field is surrounded by some houses, indicating that it is a residential area. In addition to the kite, there is a car parked near the edge of the field, and a handbag can be seen on the ground close to one of the people.\n\nOverall, it is a lively scene with people engaged in outdoor activities on a pleasant day."} +{"image_id": 428231, "caption": "The image showcases a spacious living room with a variety of furniture, including a white couch, a coffee table, and several chairs. The couch is positioned towards the right side of the room, while the chairs can be found scattered throughout the space, with some placed near the couch and others towards the back of the room. \n\nIn addition to the furniture, there is a potted plant located on the left side of the room, adding a touch of greenery to the space. A dining table is also present in the room, further enhancing the functionality of the living area. On the table, there is a bowl, possibly containing snacks or decorative items."} +{"image_id": 250619, "caption": "The image depicts a beautiful woman wearing a pink blouse and lying on a blanket on the beach. She is laying under a large, colorful striped umbrella, which provides shade and protection from the sun. The woman appears to be relaxed and enjoying her time at the beach.\n\nIn addition to the main subject, there are several other people scattered throughout the scene, possibly enjoying the beach as well. There are two handbags visible in the image, one near the woman under the umbrella and another further away."} +{"image_id": 434693, "caption": "The image features a white fire hydrant sitting on a sidewalk in front of a pink building. The fire hydrant is positioned near the center of the scene and appears to be old. \n\nAdditionally, there is a truck parked on the street behind the fire hydrant, closer to the right side of the image. A car can also be seen further back, towards the right edge of the scene."} +{"image_id": 15596, "caption": "The image captures an intense moment during a motorcycle race on a paved track. Two motorcycles are racing neck-and-neck against each other, with one motorcycle slightly ahead of the other. The rider of the leading motorcycle can be seen clearly in the front, focused on maintaining their position. \n\nAdditionally, there are three other motorcycles visible in the scene, presumably parked or moving in the background, further emphasizing the competitive atmosphere of the race."} +{"image_id": 569415, "caption": "The image features a large elephant walking through a grassy field. The elephant is the focal point of the scene, occupying a significant portion of the frame from the left to the right. It appears to be walking on a dry grass-covered field, possibly in a desert or savanna-like habitat.\n\nThere are also several birds scattered across the sky in the background, creating a lively atmosphere. The elephant seems to be enjoying its time in the open field, wandering through the tall grass."} +{"image_id": 305004, "caption": "The image captures a young man surfing on a surfboard in the ocean, kicking up a spray of water as he rides the wave. The surfer is skillfully balancing on the surfboard, maintaining his position as the wave carries him towards the shore. The scene is dynamic and full of energy, showcasing the excitement of surfing."} +{"image_id": 510527, "caption": "The image shows a man sitting in the driver's seat of a car. He is wearing a dress shirt, a tie, and a sweater vest. The man is adjusting his tie while looking in the rear view mirror of the car. \n\nSeveral cars are visible in the background, indicating that the scene might be taking place in a parking area or on a busy street. There is another person seated in the back seat, but their features are not clearly visible in the image."} +{"image_id": 581317, "caption": "In the image, a woman is standing on a hill, holding a cell phone and taking a picture of the surrounding landscape. She is wearing a pink shirt and is the main subject of the scene. The landscape consists of a green field, a few trees, and mountains in the distance. The woman appears to be enjoying her time outdoors, capturing the beauty of the area with her phone."} +{"image_id": 532071, "caption": "The image depicts a large brown bear laying down in a grassy area under a tree. The bear appears to be relaxed, possibly taking a break from searching for food or resting after a long day. \n\nIn addition to the bear and the tree, there are several branches scattered throughout the scene. Some of these branches are near the bear, while others are further away, creating a sense of depth in the image."} +{"image_id": 467978, "caption": "The image features a black and white dog, likely a sheepdog, running around a herd of sheep in a fenced area. The dog is in the center of the scene, attentively herding the sheep. There are a total of twelve sheep in various positions throughout the field, some closer to the dog while others are further away. The sheep appear to be scattered, with some standing closer to the fence and others in the open field."} +{"image_id": 184972, "caption": "The image features an older man wearing a tie and a kilt, standing in the middle of a room full of people. It appears to be a dinner gathering where multiple people are seated around dining tables. Some of the attendees are wearing ties, while others are dressed casually. The man in the center is wearing a tie and a kilt, which makes him stand out from the rest.\n\nThere are several chairs scattered throughout the room, indicating that it is a large gathering. Additionally, a number of wine glasses and cups can be seen on the tables, suggesting that people are enjoying a meal during the event."} +{"image_id": 525568, "caption": "In the image, there are two zebras standing together in a grassy field. One zebra is positioned to the left of the other, creating a visually appealing scene of wildlife in their natural habitat. The zebras appear to be standing close to each other, possibly grazing or enjoying each other's company."} +{"image_id": 165056, "caption": "The image features two large giraffes standing next to each other in an enclosure. They are separated by a fence, with one giraffe on the left side and the other on the right side. Both giraffes appear to be looking at the camera, as if posing for a picture. \n\nIn the foreground, there is a woman who seems to be taking a picture or observing the giraffes. Additionally, there is a bamboo forest located nearby, providing a natural habitat for the giraffes."} +{"image_id": 362240, "caption": "The image features a garage with a variety of motorcycles parked inside. There are three motorcycles, with one occupying the left side of the room and the other two positioned closer to the center and right side of the room. \n\nIn addition to the motorcycles, there are several tools and items scattered around the garage. A toolbox can be seen on the left side of the room, while a wrench and a pair of scissors are located near the center of the scene. There are also two bottles placed near the right side of the garage, and a clock mounted on the wall towards the top-right corner of the image."} +{"image_id": 179558, "caption": "The image depicts three giraffes in a grassy field, interacting with each other. One of the giraffes is leaning its head over a tree branch, seemingly trying to lick or bite the other giraffes' face. The other two giraffes are standing nearby, appearing to be either observing the interaction or engaging in their own activities.\n\nThere are a total of five giraffe faces visible in the scene, with two of them positioned closer to the tree branch and the other three spread throughout the field. The grassy environment surrounding the giraffes appears lush and green, providing a natural habitat for these animals."} +{"image_id": 120792, "caption": "The image depicts a lively scene in a basement, where two men are playing a video game using Nintendo Wii controllers. One man is standing near the left side of the room, while the other is positioned closer to the right side. They appear to be fully engaged in the game, with one of them even pointing at the screen.\n\nA TV is prominently displayed in the room, showing the video game they are playing. There are several Wii remotes scattered around the room, indicating that other people might join the game soon. Additionally, there are a few beer bottles and cups placed around the room, suggesting a casual and enjoyable atmosphere for the gathering."} +{"image_id": 294865, "caption": "The image features a white train traveling down train tracks with an open window. Inside the train, there are multiple passengers visible through the window, enjoying the view and their journey. At least 12 people can be seen through the window, with some of them standing up and others sitting down. \n\nOutside the train, there is a bench located near the tracks, and a truck can be spotted further in the background. The scene captures the excitement and camaraderie among the passengers as they ride the train together."} +{"image_id": 159662, "caption": "The image features a woman dressed in a pink outfit, standing on a tennis court. She is holding a tennis racket in her hand, clearly preparing for a game or practice session. The tennis racket appears to be new, as she is examining it closely. \n\nThere are several other people in the background, possibly spectators or fellow players. Some of them are standing, while others are seated in chairs, creating a lively atmosphere on the tennis court."} +{"image_id": 176906, "caption": "The image depicts a group of people gathered around a pen filled with a variety of sheep. Some people are standing close to the pen, while others are observing from a distance. The sheep within the pen are engaged in feeding, with one of the sheep consuming food from a bowl placed on the ground.\n\nIn the background, there is a car and a truck parked nearby, adding to the outdoor setting. A handbag can also be spotted close to one of the people, possibly belonging to one of the attendees. Overall, the scene appears to be a casual gathering of people and animals in a shared outdoor space."} +{"image_id": 250608, "caption": "The image features a white and blue bus parked on the side of a road near a bus stop. The bus is situated close to the curb and appears to be picking up passengers. There are several people in the vicinity of the bus stop, some standing closer to the bus while others are a bit further away. \n\nTwo cars can be seen in the scene, one positioned behind the bus and another closer to the right edge of the image. Additionally, there is a bench located near the bus stop, providing a place for passengers to sit while waiting for the bus."} +{"image_id": 33561, "caption": "The image depicts a large open field with a herd of cattle grazing on the lush green grass. There are at least 14 cows scattered throughout the field, some closer to the foreground, while others are farther away. The field extends all the way to the horizon, giving a sense of the vastness of the area.\n\nIn addition to the cows, there are two horses in the scene, one located closer to the left side and the other in the middle of the field. The presence of both cows and horses creates a picturesque rural scene."} +{"image_id": 274612, "caption": "The image features a group of bicycles parked next to each other on a sidewalk. There are two main umbrellas providing shade in the scene, one on the left side and another on the right side. The umbrellas are open and have different colors, adding a touch of vibrancy to the scene.\n\nIn addition to the umbrellas and bicycles, there are a few people present in the background. One person can be seen on the left side, another near the center, and a third person closer to the right side of the image. There are also two handbags placed near the bicycles and umbrellas, possibly belonging to the individuals in the scene."} +{"image_id": 288714, "caption": "The image shows a close-up view of a pizza that appears to be fully cooked. The pizza is topped with a variety of ingredients, including different types of vegetables and a generous helping of cheese. The mix of toppings creates a visually appealing and delicious-looking dish. The pizza is placed on a table, ready to be enjoyed."} +{"image_id": 284379, "caption": "The image features a young boy riding a surfboard on a wave machine, which is designed to mimic the experience of surfing on ocean waves. The boy appears to be in the middle of a thrilling ride as he glides across the artificial wave. \n\nThere are several other people present in the scene, likely observing the boy or waiting for their turn to ride the wave machine. They are scattered around the image, adding to the lively atmosphere."} +{"image_id": 205247, "caption": "The image features a white city bus parked on a paved street. The bus has a striking advertisement on its side, promoting a basketball game. There are various people scattered throughout the scene, some standing near the bus, while others are further away. One person can be seen closer to the front of the bus, and others are positioned at different spots along the length of the bus."} +{"image_id": 200267, "caption": "The image depicts a woman playing tennis on a court while a crowd of spectators watches her intently. She is holding a tennis racket in her hand, and there are multiple sports balls scattered around the court. Some of the balls are on the ground, while others are in various positions.\n\nThe audience consists of people of different heights and positions, with some standing close to the net and others further back. There is a sense of excitement and anticipation in the atmosphere as the woman prepares to hit the tennis ball."} +{"image_id": 296775, "caption": "The image depicts a large blue and green transit bus driving down a city street. The bus occupies most of the scene, covering a significant portion of the street from left to right. \n\nSeveral people can be seen around the bus, with one person standing near the left side of the bus, another closer to the middle, and two more individuals further to the right. Additionally, a bicycle is visible on the right side of the street, close to the edge of the image."} +{"image_id": 4265, "caption": "The image features a window sill with an assortment of vases and potted plants. There are three vases on the shelf, with one placed closer to the left side, another near the center, and the third one towards the right side of the sill. Additionally, there are three potted plants on the sill, one on the left, one in the middle, and the third one on the right side. \n\nIn the background, outside the window, there are two cars visible, one on the left side and the other on the right side of the scene."} +{"image_id": 104392, "caption": "The image showcases a beautifully designed kitchen featuring wooden cabinets and a black stove top oven. The kitchen is well-equipped with a refrigerator towards the right side of the room and a microwave placed above the oven on the left side. \n\nA stainless steel sink is situated next to the oven, adding a touch of modern elegance to the space. There are several granite countertops throughout the kitchen, providing ample workspace and enhancing the overall aesthetic. The kitchen also boasts a dining table accompanied by four chairs, making it an inviting area for mealtime gatherings."} +{"image_id": 316658, "caption": "The image depicts a serene lakeside scene with a man sitting alone on a park bench under a tree near the water. Two birds, likely geese, are swimming in the water, adding a touch of nature to the scene. The man appears to be enjoying the peaceful surroundings.\n\nIn addition to the main bench under the tree, there is another bench further back in the scene. There are several boats visible on the water, including one close to the shore and others at a distance. The overall atmosphere of the image conveys a sense of tranquility and relaxation."} +{"image_id": 230993, "caption": "The image shows two women walking down a street on a rainy night. Both of them are holding umbrellas to protect themselves from the rain. One of the women is carrying a handbag, while the other woman has a bag on her shoulder. The umbrellas are quite large, covering a significant portion of the women's upper bodies.\n\nThere are a few other people in the scene, but they are farther away and not as prominent as the two women with umbrellas. The street appears to be wet, suggesting that the rain is quite heavy, and the umbrellas are being used for protection."} +{"image_id": 321035, "caption": "The image features a large, beautifully decorated cake sitting on a dining table. The cake has a white frosting with orange lettering on it, which creates a striking contrast. The words \"Welcome Malachi\" are written across the top of the cake, making it the centerpiece of the scene. \n\nThere is a knife placed on the left side of the cake, likely used for cutting and serving the dessert. The warm and inviting atmosphere of the cake makes it an excellent choice for a special occasion or celebration."} +{"image_id": 571038, "caption": "In the image, a woman is standing in a kitchen, holding a large pan with an uncooked pizza on it. The pizza is topped with various ingredients, including basil leaves, mozzarella cheese, and tomato slices. The woman appears to be proud of her freshly baked pizza, and she is likely preparing to put it in the oven for cooking.\n\nThe kitchen is well-equipped with a sink, an oven, and various utensils such as knives and a spoon. There are also a few bottles and potted plants scattered around the room, giving it a cozy, lived-in atmosphere."} +{"image_id": 395978, "caption": "The image features a group of three people, two of whom are lying on the ground while the third person is standing. They appear to be working on a snowy road or runway, with an airplane in the background. The airplane is of a large size and extends across the entire width of the image.\n\nAdditionally, there are several trucks present in the scene. One truck is located near the center of the image, while two more trucks are positioned on the left side, with one closer to the edge of the image and the other slightly further to the left."} +{"image_id": 482917, "caption": "In the image, a person is sitting on a couch with their feet up, and a black and white dog is sitting right next to them. The person appears to be watching television while enjoying the company of their pet. \n\nThe room features a TV positioned in the background, and two remote controls can be seen in the vicinity, one closer to the person and the other further away. There are also several books scattered around the room, indicating that the person may enjoy reading as well."} +{"image_id": 207561, "caption": "The image depicts a group of four people enjoying a day of surfing in the ocean. Three of the surfers are actively riding their surfboards on the choppy waves, with one surfer visible in the foreground, another in the middle of the scene, and the third one in the background. The fourth person can be seen standing on their surfboard, likely preparing to catch a wave or taking a break from surfing. The surfboards are spread out across the scene, with each surfer having a board of their own. The overall atmosphere of the image is energetic and adventurous, showcasing the excitement of the sport."} +{"image_id": 369470, "caption": "The image depicts a busy city street with a row of parking meters alongside the sidewalk. There are several cars parked in the designated parking spaces along the street. Some of the cars are positioned close to the parking meters, while others are parked further away. \n\nIn addition to the vehicles, there are a few people walking along the sidewalk, likely pedestrians going about their daily routines. A traffic light is visible in the distance, regulating the flow of traffic in the area. The overall scene conveys the hustle and bustle of an urban environment."} +{"image_id": 482210, "caption": "The image features a white two-piece bathroom with a toilet and a sink. The sink is located on the left side of the bathroom, while the toilet is situated on the right side. A mirror can be seen above the sink, reflecting the bathroom's interior.\n\nAdditionally, there is a toothbrush on the sink's counter, as well as a bottle that could be soap, shampoo, or other bathroom essentials. The bathroom appears to be well-organized and clean, ready for use."} +{"image_id": 525381, "caption": "The image captures a thrilling moment during a baseball game. The main focus is a baseball player, dressed in a black and white uniform, who has just hit the ball and is about to run. He is surrounded by several of his teammates, opponents, and other people on the field, creating a lively atmosphere. \n\nSome of the players are holding baseball gloves, ready to catch the ball or make a play. There is also a bench in the background, likely for players to sit and rest when they are not actively participating in the game. Overall, the scene showcases the excitement and energy of a baseball game in progress."} +{"image_id": 156375, "caption": "In the image, a woman wearing a pink jacket is standing on snow skis on a snow-covered slope. She is positioned in the center of the scene and appears to be enjoying her skiing activity. There is another person visible on the left side of the scene, but they are not the main focus of the image. The primary focus is on the woman in the pink jacket skiing down the slope."} +{"image_id": 334399, "caption": "The image features a man standing next to a mechanical clock, which is placed on a table. The man is in the center of the scene, with the clock to his left. Behind him, there is a hat on the table.\n\nIn addition to the main subject, there are several other people in the scene. One person is standing to the right of the man in front of the clock, and two more individuals are located further to the right. Another person can be seen standing in the background on the left side of the image."} +{"image_id": 322955, "caption": "The image features a picturesque beach scene with a white bird, likely a seagull, standing in the water. The bird is positioned near the center of the frame, with its reflection visible on the wet sand at the edge of the water. The seagull appears to be alone on the beach, enjoying the serene environment."} +{"image_id": 312024, "caption": "The image features a small, black and blue bird with a white belly, standing gracefully on the grass. The bird is positioned in the center of the scene, capturing attention with its vibrant colors. It appears to be enjoying the outdoors as it strolls through the grassy field."} +{"image_id": 118715, "caption": "The image is a black and white photograph of a fire hydrant situated on a sidewalk next to a building. The fire hydrant stands tall, occupying a significant portion of the scene. There are no other objects or people visible in the photograph, making the fire hydrant the main focus of the scene."} +{"image_id": 237318, "caption": "The image depicts a stop sign on the side of a road in a wooded area. The stop sign is positioned behind a barbed wire fence, which adds an interesting element to the scene. There are trees visible both in the background and the foreground, creating a sense of depth in the picture.\n\nIn addition to the stop sign, there is a car just visible at the bottom of the frame, suggesting that the photograph was taken from the perspective of someone inside the car."} +{"image_id": 236865, "caption": "The image features a young girl dressed in a floral dress, holding a red frisbee in her hand. She appears to be standing on a sidewalk, possibly getting ready to play or run with the frisbee. \n\nIn the background, there are two cars parked along the side of the sidewalk. One car is located closer to the left edge of the image, while the other car can be seen further back on the right side of the scene."} +{"image_id": 72096, "caption": "The image features a woman sitting at a dining table, which is set with various plates of food and cups of juice. The table is adorned with a floral tablecloth, giving the setting a warm and inviting atmosphere. \n\nThere are several dishes on the table, including a bowl of fruit and an assortment of pastries. In addition to the fruit and pastries, there are several cups of juice placed around the table, along with utensils such as forks and knives. A spoon can also be seen resting on the table. \n\nThe woman appears to be enjoying her meal, as she is seated comfortably on a chair at the dining table."} +{"image_id": 450762, "caption": "The image features a group of teddy bears dressed up in various costumes, including a group of men wearing green outfits. These teddy bears are posed on a boat, giving the appearance that they are soldiers on a mission. There are at least five teddy bears visible in the scene, with some placed in the front, middle, and back, while others are situated near the edges of the boat. The creative arrangement of the teddy bears in this setting adds a playful and imaginative touch to the scene."} +{"image_id": 168974, "caption": "The image features a young child, likely a toddler, sitting on the floor and playing with a cell phone. The child is holding the cell phone in an exploratory manner, as if they are trying to figure out its functions and how to use it. \n\nIn the background, there is a wooden chest visible, which adds a sense of warmth and coziness to the scene. The focus of the image, however, remains on the curious child and their engagement with the cell phone."} +{"image_id": 559950, "caption": "The image features a small brown and black dog with its head hanging out of the window of a car. The dog appears to be enjoying the ride and has its paws on the car's ledge as if it is looking out the window. \n\nIn the background, there is a stop sign visible on the left side of the image. Additionally, there are two cars and a truck in the scene, with one car being behind the dog, and the other two cars positioned further back in the image."} +{"image_id": 575776, "caption": "In the image, a zebra and a rhino are standing next to each other in a dirt field. The zebra appears to be arguing with the rhino, as they both seem to be displaying dominance behaviors. They are the main subjects of the scene, occupying a significant portion of the image.\n\nThere are a few other animals in the background, but they are not the main focus of the scene. Overall, the image showcases a fascinating interaction between the zebra and the rhino in their natural habitat."} +{"image_id": 552352, "caption": "The image features a delicious slice of cheesecake placed on a dining table. The cheesecake appears to be freshly baked and has a rich, creamy texture. A fork is positioned near the cheesecake, ready to be used to enjoy the dessert. The table itself has a brown color, adding to the warm and inviting atmosphere of the scene."} +{"image_id": 490683, "caption": "The image depicts a group of people playing a game of frisbee in a grassy field. There are two main players, a man wearing a yellow jersey and a woman wearing a white jersey, both holding frisbees in their hands and actively participating in the game. Additional players can be seen in the background, standing at various distances from the frisbee players. The field is surrounded by trees, giving the scene a pleasant and natural atmosphere."} +{"image_id": 76417, "caption": "In the image, there is a white dog with its ears sticking up, hanging out of the back window of a car. The dog appears to be enjoying the car ride or observing its surroundings. \n\nThe car is stopped at a traffic light, as indicated by the presence of a traffic light in the upper part of the image. Beside the car, there is a building visible, adding to the urban setting."} +{"image_id": 231153, "caption": "The image features a snowboarder in the middle of an impressive jump, soaring through the air with their snowboard. The snowboarder is wearing a blue jacket and orange pants, adding a splash of color to the scene. \n\nIn the background, there is a cluster of snow-covered pine trees, creating a picturesque wintery landscape. The jump takes place near this snowy environment, providing a thrilling backdrop for the snowboarder's leap."} +{"image_id": 190497, "caption": "The image depicts a herd of cows in a courtyard, with a large number of them gathered around a building, possibly a barn. The cows are of various sizes, and they are standing in the dirt near the building. Some cows are closer to the foreground, while others are further back in the scene.\n\nIn addition to the cows, there are also a few sheep present in the area. They are scattered around the courtyard, intermingling with the cows, and adding to the rural atmosphere of the scene."} +{"image_id": 126065, "caption": "The image features a large clock mounted on the side of a brick building. The clock is positioned high up on the building, overlooking the area below. Below the clock, there are two bell sculptures, one on the left and the other on the right, adding a decorative touch to the facade of the building.\n\nIn addition to the clock and bell sculptures, there are a few people scattered throughout the scene. One person can be seen on the left side of the image, while two others are visible further to the right. These individuals appear to be walking or standing in the vicinity of the building."} +{"image_id": 375915, "caption": "The image features a dining table with a white tablecloth, on which a delicious pizza is placed. The pizza is topped with various vegetables, making it a colorful and appetizing meal. \n\nIn addition to the pizza, there are several items on the table, including a wine glass, a cup, a fork, a knife, and a bowl. The presence of these utensils and dishware suggests that the table is set for an enjoyable outdoor meal with friends or family."} +{"image_id": 95022, "caption": "The image features a colorful bird with a blue body, red feet, and an orange beak perched on a tree branch. The bird is sitting comfortably in the middle of the branch, enjoying its surroundings.\n\nIn the background, there are several other birds of various sizes, adding to the lively atmosphere of the scene. The tree with the birds on it serves as a focal point in the image."} +{"image_id": 177935, "caption": "The image features a vintage-style kitchen with a white stove top oven. The stove is the main focus of the scene, taking up a significant portion of the image from the left side to the right side. \n\nIn addition to the stove, there are various utensils present in the kitchen. A set of knives can be seen on the countertop, with five knives of different sizes neatly arranged next to each other. Also, a spoon and a pair of scissors can be spotted near the stove. A bowl is placed on the countertop, slightly to the left of the stove."} +{"image_id": 380117, "caption": "In the image, a cat is peacefully sleeping on a dining table covered with a blanket. The table is filled with an array of potted plants, including small bushes and flowers. Some of the plants are placed near the cat, while others are spread across the table. The cat is curled up, finding a comfortable spot to rest amidst the plants."} +{"image_id": 132373, "caption": "The image features a large clock prominently displayed on a pole in the middle of a room, with an American flag hanging nearby. The scene appears to be taking place in a well-lit area, possibly an indoor space like a building lobby or a mall. \n\nIn addition to the clock and flag, there are several people scattered throughout the room. Some of them seem to be standing close to the clock, while others are located near the edges of the room. The overall atmosphere seems to be that of a lively social gathering or event."} +{"image_id": 284282, "caption": "The image features an old-fashioned kitchen counter with two appliances: a blender and a toaster. The blender is positioned towards the left side of the counter, taking up a significant portion of the space. The toaster is situated on the right side of the counter, occupying a relatively smaller area.\n\nAdditionally, there are a few cords visible in the scene. One set of cords is attached to the toaster and another set is attached to the blender. These cords likely need to be plugged into an electrical outlet to operate the appliances."} +{"image_id": 276707, "caption": "The image features a street sign prominently displayed on a wooden pole, with the sign prohibiting the use of motorcycles, bicycles, and skateboards in the area. The sign is based on the \"No Cycling\" symbol, which is a creative way of conveying the message. \n\nIn the background, there are several cars parked along the street, as well as a few people walking around. Additionally, a bicycle can be seen parked further back in the scene. The combination of the street sign and the presence of people and vehicles creates a lively atmosphere on the street."} +{"image_id": 194704, "caption": "The image features a young girl, wearing a black winter coat, ski goggles, and a furry winter hat. She is holding a pair of snow skis in her hands and raising them over her head with a smile on her face. She appears to be excited and ready for skiing.\n\nThere are a few other people in the background, but they are not the main focus of the image. One person can be seen on the far left, another near the middle, and a third person towards the right side of the scene."} +{"image_id": 430286, "caption": "The image features an unmade bed with two remote controls placed on top of the covers. One of the remotes is positioned closer to the center of the bed, while the other is located towards the left side. The bed has white sheets and a white comforter, giving the room a clean and cozy appearance. The focus of the image is on the remotes and the bed itself, with no other objects or people visible in the scene."} +{"image_id": 361171, "caption": "In the image, a snowboarder is performing an impressive trick, flying high in the air while riding a snowboard. The snowboarder is visible in the middle of the scene, with the snowboard visible beneath them. A building can be seen in the background, adding an interesting contrast to the snowboarder's aerial stunt."} +{"image_id": 406451, "caption": "The image features a brown horse with a red bow, standing next to a red horse-drawn carriage. The carriage is parked on the side of a city street, close to a sidewalk. There are several parked cars in the vicinity, both in front of and behind the horse and carriage. \n\nTwo traffic lights can be seen in the background, controlling the flow of traffic in the city. Additionally, a person is visible in the scene, possibly a pedestrian or a potential customer of the carriage service."} +{"image_id": 57286, "caption": "The image captures a thrilling moment with a young man skillfully performing a trick on a skateboard, flying through the air while riding it. He is the main focus of the scene, demonstrating his talent and expertise in skateboarding.\n\nThere are several other people in the image as well, likely spectators or fellow skaters watching the skateboarder's impressive stunt. Some are standing closer to the skateboarder, while others are further away, dispersed throughout the scene. A bottle can be seen in the background, possibly belonging to one of the people present."} +{"image_id": 535952, "caption": "The image features a wooden dining table with three delicious chocolate muffins placed on it. Each of the muffins is partially eaten, indicating that someone has been enjoying them. A knife is also visible on the table, likely used for cutting the cupcakes. The close-up view of the cupcakes and the knife allows for a detailed look at their texture and appearance."} +{"image_id": 455772, "caption": "The image depicts a man wearing a white shirt and blue shorts, energetically leaping into the air to catch a Frisbee in a grassy yard. The man is focused on the Frisbee, which is positioned near the center of the scene.\n\nIn the background, there are two cars parked, one on the left side and another on the right side of the yard. Additionally, a bench can be seen placed in the middle of the scene, providing a seating area for outdoor activities."} +{"image_id": 63617, "caption": "In the image, a young boy wearing glasses is holding a catcher's mitt and attempting to catch a baseball. The boy is positioned in the center of the scene, and the baseball is flying towards him. There are two other people in the background, one on the left side and another on the right side of the boy.\n\nAdditionally, there are two dogs in the scene. One dog is located near the right side of the boy, and the other dog is further back in the background, on the left side. The boy and the dogs appear to be engaged in a playful activity together."} +{"image_id": 90155, "caption": "The image features a yellow train traveling down the train tracks, surrounded by a picturesque landscape. The train appears to be a long cargo or freight train, as it is pulling multiple cars behind it. There are clouds in the sky, creating a serene atmosphere in the scene. \n\nIn addition to the train and its cars, there are two people visible near the train tracks, possibly observing the train or waiting for it to pass. They are located towards the right side of the image."} +{"image_id": 158127, "caption": "The image features a man wearing a pair of blue jeans and black shoes. He is sitting in a rocky area, with an orange cat comfortably lying on his lap. The cat appears relaxed and content, enjoying the company of the man.\n\nThere are several rocks scattered around the scene, adding to the rocky nature of the surroundings."} +{"image_id": 248582, "caption": "The image depicts a lively outdoor fruit market with several people shopping for fruits and vegetables. There are five people in the scene, four of whom are standing in front of the fruit stand, while the fifth person is partially visible on the left side of the image. Among the shoppers, there are two men holding backpacks, one on the left and another on the right side of the scene.\n\nVarious types of fruits and vegetables can be seen at the market, with bananas being the most plentiful item. There are multiple bunches of bananas hanging above the stand, as well as a few scattered throughout the scene. Other fruits like apples and oranges are also visible, adding to the colorful and bustling atmosphere of the market."} +{"image_id": 206560, "caption": "The image captures a snowboarder in yellow pants flying through the air while riding a colorful snowboard. The person is suspended in the air, showcasing their impressive snowboarding skills.\n\nIn the background, there is a building visible, which might be related to the snowboarding activity or a nearby establishment. The scene conveys an exciting and adventurous atmosphere."} +{"image_id": 69009, "caption": "The image depicts two young boys wearing blue hats and jackets, standing in front of a window near a black bear inside. The boys seem fascinated by the bear, as they watch it intently. The bear is situated toward the left side of the window, and the boys are standing at different positions, one closer to the left side of the window and the other closer to the right side."} +{"image_id": 322122, "caption": "The image features a clean white toilet in a bathroom with a yellow toilet seat. The seat is made of cloth and is draped over the top of the toilet bowl, possibly for easy cleaning or decorative purposes. \n\nIn addition to the toilet, there is a toilet brush and a plunger placed near the back of the toilet. A trash can can be seen on the right side of the toilet, and a handbag is resting on the floor next to it."} +{"image_id": 549930, "caption": "The image features a man and a woman walking together on a wet sidewalk, with the man holding a blue umbrella to protect them from the rain. They appear to be moving away from the beach after spending time in the water. \n\nSeveral other people can be seen in the background, some of them carrying umbrellas, indicating that it might have been a rainy day at the beach. There is also a handbag visible in the scene, likely belonging to one of the beachgoers.\n\nThe overall atmosphere of the scene is that of a typical rainy day at the beach, with people trying to stay dry and continue their activities despite the wet conditions."} +{"image_id": 33216, "caption": "The image features a large, freshly cooked pizza with various toppings on a dining table. The pizza is placed on a pizza pan and is ready to be served. Surrounding the pizza, there are three people in the scene, possibly friends or family enjoying the meal together. \n\nAdditionally, there are two cups on the table, likely containing beverages to accompany the pizza. One cup is closer to the left side of the table, while the other is placed near the right edge of the table."} +{"image_id": 434581, "caption": "The image features a man riding a motorcycle on a road. He is wearing a black leather jacket and a helmet for safety. The motorcycle is positioned near a stone wall, which adds an interesting element to the scene. \n\nIn addition to the man and the motorcycle, there are several other vehicles visible in the image, including a car and a truck. These vehicles are in the background, suggesting the man is riding through traffic or on a busy street."} +{"image_id": 239509, "caption": "The image displays a street scene featuring a sign on a cobblestone sidewalk. The sign has a drawing of a man and a \"do not enter\" symbol. In the background, there is a motorcycle and a few cars parked along the street. \n\nAdditionally, there are multiple people present in the scene. One person can be seen on the left side of the image, while two more people stand closer to the center, and one more on the right side. They seem to be going about their day and interacting with their surroundings."} +{"image_id": 88848, "caption": "The image consists of a series of photographs depicting a woman standing near a yellow and red fire hydrant in a city park. She is smiling and posing in front of the fire hydrant, which is located in the center of the image. \n\nIn addition to the main woman and the fire hydrant, there are six other people visible in the photographs. They are positioned around the fire hydrant, with some standing closer to the hydrant and others further away. Two handbags can be spotted in the scene, one near the woman in the center and another near the edge of the image."} +{"image_id": 116182, "caption": "The image showcases a delicious meal in a blue bowl placed on a dining table. The bowl contains a variety of food items, including several pieces of chicken, broccoli, and carrots. The vegetables and meat are mixed together, creating a mouth-watering combination. \n\nThe dish appears to be well-prepared and ready to be eaten. The vibrant colors of the ingredients make the meal look appetizing and inviting."} +{"image_id": 562345, "caption": "The image features a woman wearing a yellow jacket, standing against a brick wall. She is holding a cell phone in her hand, possibly checking messages or making a call. She is positioned towards the center of the scene, with a sense of focus on her and the phone in her hand."} +{"image_id": 343410, "caption": "The image features a red plate placed on a dining table, filled with a variety of sliced vegetables including broccoli and onions. There are several pieces of broccoli and peppers arranged on the plate, creating a colorful and healthy meal option. The presentation of the vegetables is visually appealing and inviting."} +{"image_id": 490529, "caption": "In the image, a woman wearing glasses and a pink sweater is sitting down, looking at her cell phone. She appears to be focused on her phone, possibly texting or browsing. The scene takes place in a public area, as there are multiple chairs and a dining table visible in the background. \n\nAdditionally, there are two other people in the scene. One person can be seen on the left side, while the other is on the right side of the image. A cup is also present near the right edge, likely belonging to the woman using her phone."} +{"image_id": 328818, "caption": "The image features a woman wearing a pink shirt, either sitting on or standing near a wooden bench in a park-like setting. She is in the process of putting on her shoes, which are placed on the bench in front of her. There is a bicycle parked nearby, stretching across the scene from the left side to the right side of the image. Additionally, a bottle can be seen close to the bench, possibly belonging to the woman or another park visitor."} +{"image_id": 218947, "caption": "The image features a man walking across a snow-covered field, wearing skis and a backpack. He appears to be enjoying his time skiing and hiking in the snowy environment. In the background, another person can be seen skiing as well. \n\nThere are two sets of skis visible in the scene, one belonging to the man in the foreground and the other belonging to the person in the background. The man in the foreground is carrying a backpack, which suggests that he might be on an extended outdoor adventure."} +{"image_id": 152281, "caption": "The image depicts a large herd of sheep grazing in a grassy field. The sheep are spread out across the field, with some closer to the foreground and others further back towards the edge of the scene. The majority of the sheep have distinct blue markings on their backs, making them easily identifiable. A few sheep are lying down in the field, while others are standing and grazing on the lush green grass.\n\nIn addition to the sheep, there are two people visible in the field, likely observing or taking care of the flock. The overall scene conveys a sense of a peaceful countryside landscape."} +{"image_id": 41110, "caption": "The image captures a young child, possibly a toddler, in the midst of drinking a beverage from a cup. The child holds the cup up to their mouth, likely enjoying the taste of the drink.\n\nThe child is wearing a pink and white striped shirt, which adds a playful touch to the scene. A bed is also visible in the background of the image, indicating that the setting is likely a bedroom."} +{"image_id": 512985, "caption": "The image features a man wearing a black wetsuit and holding a white surfboard on a sandy beach. He is standing near the water, looking out towards the ocean as if preparing to go surfing. The surfboard is quite large, covering a significant portion of the sand around the man.\n\nThere are a few other people in the background, but they are farther away and not in focus. Additionally, there are some small objects scattered around the beach, such as a bottle and a backpack. The overall atmosphere appears to be that of a relaxed beach day, with people enjoying their time near the water."} +{"image_id": 414212, "caption": "The image features a man standing in a bathroom, holding a toothbrush in one hand and a tube of toothpaste in the other. He appears to be showing off his new toothbrush and toothpaste, with an excited expression on his face. The man is wearing glasses and a gray shirt.\n\nIn the bathroom, there is a sink visible in the background. Additionally, a bottle can be seen placed near the sink, likely containing mouthwash or other dental care products."} +{"image_id": 426578, "caption": "The image depicts a man walking along a sandy beach next to the ocean. He is dressed in a black jacket and swimming trunks, carrying a white surfboard under his arm. The man is walking towards the water, likely preparing to enjoy some time in the ocean.\n\nThere are a few other people in the scene, but they are farther away and not as prominent as the man with the surfboard."} +{"image_id": 291962, "caption": "In the image, a young boy wearing a striped shirt is flying a kite in a grassy field. The kite is colorful and can be seen soaring high in the sky. The boy appears to be enjoying the activity, and the field provides an open space for him to fly the kite without any obstructions. \n\nAlthough there are some houses in the background, they do not seem to be directly obstructing the boy's kite-flying activity. The focus of the scene is on the boy and the kite, capturing the joy of outdoor play."} +{"image_id": 460927, "caption": "The image is a black and white photograph of a large brown bear standing in a grassy field next to a rock. The bear is positioned on the left side of the scene and appears to be looking at the viewer. The grass in the field is quite tall, reaching up to the bear's chest, giving the scene a natural and serene atmosphere."} +{"image_id": 552186, "caption": "The image features a shirtless man riding a skateboard down the street, possibly performing a trick. He is surrounded by a large crowd of people who are watching his performance. Some of the spectators are standing close to the skateboarder, while others are further away, occupying various positions in the scene.\n\nIn addition to the skateboarder, there is another skateboard visible in the background, suggesting that this is a popular spot for skateboarders to practice and showcase their skills."} +{"image_id": 553852, "caption": "The image is a black and white photograph of a young boy riding a skateboard. He is positioned near the center of the frame, and his skateboard is visible beneath his feet. The boy appears to be enjoying his ride as he navigates the sidewalk.\n\nThere are a few other people in the scene, but they are farther away and not the main focus of the image. A bicycle can also be seen in the background towards the left side of the frame."} +{"image_id": 370337, "caption": "The scene features a harbor with two red and white boats docked next to a pier. The boats are positioned close to each other, with one on the left side and the other on the right side of the dock. \n\nIn addition to the boats, there are several people scattered around the area. Some of them are by the boats, possibly enjoying the view or attending to the boats, while others are located near the buildings, possibly residents or visitors to the nearby city."} +{"image_id": 18491, "caption": "The image captures an exciting moment during a baseball game. There are several players on the field, with some in various positions, both near and far. One player is sliding into a base, attempting to score a run, while an opposing player tries to tag them out. \n\nIn addition to the players, there are two baseball gloves visible in the scene. One is closer to the left side of the image, and the other is on the right side. A bench can also be seen in the background, likely for players to sit and rest when they are not actively participating in the game."} +{"image_id": 556000, "caption": "In the image, a group of young boys is gathered in a living room, playing a video game on a Nintendo Wii console. Two of the boys are standing up, each holding a remote in their hands, while another boy is sitting on the floor, also engaged in the game.\n\nThe living room has a few chairs and a couch placed around the area, creating a comfortable gaming environment. There is a clock on the wall, and a handbag is situated near one of the chairs. The boys appear to be enjoying their time together, fully immersed in the gameplay."} +{"image_id": 443351, "caption": "The image features two motorcycles parked next to each other on the cement. One motorcycle is green and the other is white. They are positioned fairly close to each other, with one located on the left side and the other on the right side of the scene.\n\nIn addition to the motorcycles, there are three people present in the image. Two of them are standing closer to the motorcycles, while the third person is located further back, closer to the center of the scene."} +{"image_id": 63965, "caption": "The image features a woman holding a plate with a delicious piece of cake on it. The cake is decorated with white icing and red hearts, giving it a festive appearance. The woman is proudly holding up the piece of cake in the scene.\n\nThere is a spoon placed on the left side of the image, suggesting that the cake was served as part of a meal or celebration. The woman appears to be enjoying the moment, and the overall scene conveys a sense of joy and indulgence."} +{"image_id": 405660, "caption": "The image depicts a serene outdoor scene with a bench situated on a hill, overlooking a beautiful view of mountains in the distance. The bench is covered in snow and is the main focal point in the picture. It is located at a scenic viewpoint, likely a park or a nature reserve.\n\nIn addition to the bench, there are several pine trees surrounding the area, enhancing the natural beauty of the scene. The view from the hilltop provides a sense of peace and tranquility, making it an ideal spot for relaxation and contemplation."} +{"image_id": 419144, "caption": "The image shows a group of people riding on the backs of several elephants. The elephants are arranged in a line and the riders are sitting on their backs, enjoying the experience. \n\nIn total, there are five elephants and five riders visible in the scene. The elephants are of various sizes and heights, ranging from smaller ones in the front to larger ones further back. The riders are positioned across the elephants, with some sitting closer to the front and others towards the back. The overall atmosphere of the image appears to be adventurous and exciting."} +{"image_id": 371004, "caption": "The image features a zebra standing in a grassy area, surrounded by a chain-link fence. The zebra appears to be behind the fence, possibly in an enclosure at a zoo. Its hair is blowing, possibly due to the wind or its movement. \n\nIn addition to the zebra, there are several birds scattered around the scene, adding a lively element to the image. Some of the birds are perched or flying near the zebra, while others are further away, creating a diverse and dynamic scene."} +{"image_id": 116861, "caption": "The image depicts a woman lying down on a couch, comfortably holding a teddy bear in her arms. She appears to be sleeping or resting while hugging the stuffed animal. The couch takes up the majority of the background, stretching from the left edge to the right edge of the frame.\n\nThere is a close-up view of the woman's face, showing that she is smiling and enjoying her time with the teddy bear. The overall scene conveys a sense of relaxation and comfort."} +{"image_id": 579664, "caption": "The image features a fruit stand with a wooden box displaying several bunches of bananas. The bananas are in various stages of ripeness, with both green and yellow bananas visible. They are arranged in different sections of the box, creating an appealing presentation for potential customers. The sunlight shining on the bananas adds to their vibrant appearance, making them look even more delicious. Overall, the fruit stand offers a variety of bananas for customers to choose from, catering to different tastes and preferences."} +{"image_id": 5600, "caption": "The image features a dining table with two metal bowls placed on it. The bowls contain various food items, including several pieces of meat and vegetables. One of the bowls is filled with what appears to be marinated food, giving it a distinctive look. \n\nIn addition to the bowls of food, there are a couple of spoons on the table, one of which is placed near the bowl with the marinated food, while the other is positioned closer to the edge of the table."} +{"image_id": 199389, "caption": "The image features a small, colorful fire hydrant positioned in the middle of a dirt road. The fire hydrant has a face painted on it, giving it a unique and playful appearance. In the background, there is a truck parked further down the road. \n\nAdditionally, there are several cars parked in the vicinity of the fire hydrant. One car is on the left side of the fire hydrant, two cars are behind the hydrant, and two more cars are located towards the right side of the scene."} +{"image_id": 568131, "caption": "The image features a large elephant walking through a grassy field with trees in the background on a clear day. The elephant appears to be enjoying the sunny weather as it makes its way through the grass. There are a few people in the scene as well, with one person standing near the left side of the elephant and two others further to the right. The people seem to be observing the elephant as it walks through the field."} +{"image_id": 35671, "caption": "The image depicts a rodeo event taking place in a small arena, with two horses walking around and pulling a bull. There are several spectators gathered around the arena, watching the exciting competition unfold. The bull is located near the left side of the arena, while the two horses are positioned at different parts of the arena, one on the right side and the other on the far right.\n\nIn total, there are thirteen people present in the scene, standing at various positions around the arena, observing and participating in the event. Some of the spectators are standing close to the horses and the bull, while others are positioned further away, providing a diverse view of the rodeo action."} +{"image_id": 76522, "caption": "The image depicts a black and white cat lying comfortably on a couch, alongside a remote control. The cat is occupying a significant portion of the couch, with its body covering a significant portion of the couch's surface. The remote control can be seen placed near the cat, indicating that the cat might have been using it as a playmate or companion while resting on the couch."} +{"image_id": 504167, "caption": "The image features a brown and white cat with striking blue eyes, sitting on a wooden floor. The cat appears to be looking upwards, possibly observing something that caught its attention.\n\nThe cat's long whiskers can be seen as it rests on the wooden surface, adding a touch of elegance to the scene. The overall atmosphere of the image is cozy and relaxed, as the cat seems to be in a comfortable environment."} +{"image_id": 21644, "caption": "The image depicts a busy bus terminal with several buses parked in a parking lot. There are five buses visible in the scene, with some positioned closer to the building, while others are parked farther away. \n\nIn addition to the buses, there are also two trucks present in the parking lot. One truck is located in the middle of the scene, while the other is on the far right side. The parking lot appears to be a part of a shopping center or transportation hub, as suggested by the presence of the buses and trucks."} +{"image_id": 483135, "caption": "The image shows a group of young people, including teens and young adults, gathered in a living room to enjoy a gaming session together. They are sitting on various furniture, such as couches and chairs, while playing video games on a Nintendo Wii console. \n\nThree Wii controllers can be seen in the scene, with one being held by a person in an orange dress and the other two by people sitting on the couch. The friends seem to be having a great time, bonding over the shared gaming experience."} +{"image_id": 271063, "caption": "The image features a modern kitchen with wooden cabinets and black appliances, including a microwave and an oven. The kitchen is well-equipped with various utensils, such as a knife and a spoon, placed neatly around the space.\n\nAn island is present in the kitchen, enhancing the functionality of the workspace. A sink can be seen towards the right side of the room, and a dining table is positioned in the far right corner, completing the well-thought-out layout of the kitchen."} +{"image_id": 36477, "caption": "The image features a large box filled with numerous ripe bananas. The bananas are displayed in various bunches, covering most of the box. They have a vibrant yellow color, indicating that they are ripe and ready to be eaten. The bananas are arranged in different positions within the box, with some overlapping others, creating an abundant and plentiful scene."} +{"image_id": 125375, "caption": "The image depicts a red, white, and blue train traveling down the tracks, approaching a station. There are several people standing near the train, waiting to board or disembark. They are spread out along the platform, with some closer to the edge and others further back. \n\nIn addition to the train and people, there are a few personal belongings visible in the scene. A handbag can be spotted near the center of the platform, while a backpack is located closer to the right side. These items likely belong to the passengers on the train."} +{"image_id": 362520, "caption": "The image features a young person, wearing a helmet, getting ready to perform a trick on a skateboard. They are riding the skateboard on a ramp, showcasing their skill and enthusiasm for the sport. \n\nThe skateboard is quite large, covering a significant portion of the image from the left to the right side. The young skateboarder is the main focus of the scene, displaying their talent and passion for skateboarding."} +{"image_id": 5412, "caption": "The image depicts a modern bathroom featuring a white toilet, a white sink, and a beige bathroom wall. The sink is located on the right side of the bathroom, while the toilet is situated on the left side. The bathroom appears clean and well-organized.\n\nIn addition to the main fixtures, the bathroom also has a toilet paper holder on the wall, a white toilet bowl brush on the left side, and a small shelf on the beige wall. The overall design and layout of the bathroom create a functional and aesthetically pleasing space."} +{"image_id": 757, "caption": "The image features a herd of elephants gathered around a watering hole. There are three elephants in total, with two of them standing close to the water's edge, interacting with each other, while the third elephant is positioned a bit further away. One of the elephants is spraying water with its trunk, possibly to cool off or to play.\n\nThe elephants appear to be enjoying their time in the muddy river, as they engage with each other and play around the watering hole."} +{"image_id": 396496, "caption": "The image depicts a group of people standing outside in the snow, with some of them holding umbrellas to shield themselves from the falling snowflakes. There are five umbrellas in total, with various shapes and sizes, providing coverage to the individuals underneath. \n\nIn addition to the umbrellas, there are five trains visible in the scene, lined up one after another. The trains occupy a significant portion of the background, extending from the left edge to the right edge of the image. The people are scattered throughout the scene, with some standing close to the trains and others positioned further away, closer to the viewer."} +{"image_id": 81761, "caption": "In the image, a woman is on a tennis court, preparing to hit a tennis ball with her racquet. She is wearing a black shirt and a white skirt, and is actively engaged in the game. There are multiple sports balls visible on the court, indicating that she has been practicing her swings and honing her skills.\n\nOutside the tennis court, a car can be seen parked nearby, possibly belonging to one of the players or a spectator. The overall atmosphere suggests that the woman is focused on her game and enjoying her time on the court."} +{"image_id": 130677, "caption": "The image features a tennis court at night, with a man and a woman playing a game of tennis against each other. The man is standing on one side of the net, while the woman is on the opposite side. Both players have tennis rackets in their hands, ready for action.\n\nThere is a sports ball visible on the court, possibly indicating that they are in the middle of a match. The scene is illuminated by spotlights, providing a well-lit environment for the players to see and enjoy the game."} +{"image_id": 318825, "caption": "The image features a man standing on a tennis court, holding a tennis racquet in his hand. He appears to be taking a swing at a tennis ball, possibly preparing to hit it back to his opponent. The man is wearing a white shirt and appears to be fully focused on the game.\n\nIn the background, there is a banner hanging on the wall, possibly indicating a tournament or event taking place at the tennis court."} +{"image_id": 48014, "caption": "The image depicts a man walking down a sidewalk with a dog on a leash. The dog is black and appears to be well-groomed. The man is holding onto the dog's leash as they walk together. \n\nIn the background, there are several cars parked along the sidewalk, as well as a few people scattered throughout the scene. One person is sitting on a bench nearby, while another person can be seen further in the background."} +{"image_id": 421028, "caption": "The image features a black cat lying comfortably on a rug, holding a toy carrot in its paw. The carrot appears to be a cat toy, and the cat is playing with it while relaxing on the floor.\n\nSurrounding the cat and the toy carrot, there are several books scattered in different areas of the scene. Some books are close to the cat, while others are further away. The variety of books suggests that this might be a cozy living space where the cat enjoys spending time."} +{"image_id": 479659, "caption": "The image features a man and a woman standing close together, engaged in conversation. They appear to be outdoors, possibly at a social gathering or event. The man is holding a wine glass, and both individuals are wearing sunglasses. \n\nIn the background, there is a dining table with a wine bottle on it. Two potted plants are placed around the area, adding some greenery to the setting. Two additional people can be seen further back in the scene, contributing to the lively atmosphere."} +{"image_id": 369826, "caption": "The image features a large flat-screen television mounted on the wall in the center of a room. The television displays a picture of a person on a surfboard, seemingly enjoying their time in the air. The room appears to be a waiting area, possibly at an airport, based on the presence of chairs arranged around the television.\n\nThere are several chairs of various sizes and positions in the room. Some chairs are close to the television, while others are located further away. The arrangement of chairs suggests that people can sit and wait for their flights or simply relax and watch the large TV screen."} +{"image_id": 406253, "caption": "The image depicts a city street scene with several vehicles parked on the side of the road. Two scooters, one blue and the other green, are parked next to each other, occupying a significant portion of the available parking space. \n\nIn addition to the scooters, there are also two cars parked on the street. One car is positioned behind the pair of scooters, while the other car can be seen further back near the edge of the scene. \n\nA person is visible in the background, possibly walking or standing near the parked vehicles."} +{"image_id": 548267, "caption": "The image depicts a picturesque scene of a herd of sheep grazing on a lush green hillside. There are nine sheep in total, spread out across the grassy area. Some of the sheep are lying down, while others are standing, enjoying the sunny day and the scenic surroundings. The landscape features mountains in the background, adding to the serene atmosphere of the scene."} +{"image_id": 335844, "caption": "The image features a stainless steel toaster oven placed on a countertop in a kitchen setting. The toaster oven is open, and it appears to be cooking some food inside. There are two slices of pizza visible inside the toaster oven, being heated and baked. \n\nIn addition to the toaster oven, there is a microwave situated above it on the countertop. The microwave is also turned on, implying that it is being used in conjunction with the toaster oven for a complete cooking experience."} +{"image_id": 299640, "caption": "The image features a table with various pieces of a disassembled remote control and a circuit board. The remote control can be identified as a Sony brand, and the circuit board appears to be from an electronic device, possibly a television.\n\nThere are different parts of the electronic device spread across the table, including the front, back, and middle sections. Some of the visible parts include the aforementioned remote control and circuit board, as well as potentially other components from the electronic device."} +{"image_id": 121812, "caption": "The scene depicts a busy city street filled with traffic on a cloudy day. Multiple cars are driving down the street, with some appearing closer to the foreground and others further in the background. There are several traffic lights placed at various intervals along the road, ensuring the smooth flow of traffic.\n\nIn addition to the cars and traffic lights, there is a billboard on the side of a building near the street, adding to the urban atmosphere. A person can be seen standing near the edge of the scene, possibly waiting to cross the road or just observing the passing traffic."} +{"image_id": 107234, "caption": "The image is a close-up of a bearded man wearing a suit and tie, holding a wine glass up to his mouth. He appears to be licking the glass as if he's savoring something. The man is dressed formally for a wedding, and his attire, along with the presence of the wine glass, gives off a sophisticated and elegant atmosphere."} +{"image_id": 153104, "caption": "The image depicts a man sitting in a stadium, enjoying a hot dog during an event. He is holding the hot dog in his hand, and there is a bun in his other hand. The man appears to be eating the hot dog while sitting among the audience.\n\nThere are several other people present in the stadium, occupying various seats. Some of them can be seen in the background, both near and far from the man with the hot dog. It seems like a lively scene, with spectators engaging in different activities during the event."} +{"image_id": 216417, "caption": "In the image, a man is standing in the snow with a small dog on his back, likely enjoying a winter walk. The man is wearing a backpack and holding ski poles in his hands. They seem to be prepared for a skiing adventure or an outdoor excursion during the winter season.\n\nThe dog is positioned close to the man and appears to be accompanying him on this snowy journey. The presence of the dog suggests a strong bond between the man and his pet, as they engage in outdoor activities together."} +{"image_id": 286708, "caption": "The image features a black and white cat wearing a pink knitted hat. The cat is sitting calmly, and the hat seems to be covering its eyes, creating a cute and amusing appearance. The hat is placed on top of the cat's head, and it is the main focus of the scene."} +{"image_id": 547041, "caption": "The image features two plastic containers filled with food, placed on a dining table. One container holds a salad with a variety of vegetables, including several broccoli pieces scattered throughout the dish. The other container appears to be a dessert, possibly a cake or a pasta salad.\n\nIn addition to the food, there are a couple of keyboards on the table, suggesting that the meal is meant to be enjoyed while working on a computer. A spoon can be seen resting near the edge of the table, ready to be used for the salad or the dessert."} +{"image_id": 293802, "caption": "The image captures a lively scene of a young man skillfully performing a trick on his skateboard. He is in the middle of the walkway, capturing the attention of several people who are watching his performance. \n\nThere are multiple people surrounding the skateboarder, some standing closer to him while others are further away. Two umbrellas can be spotted in the background, possibly providing shade for the people in the area. A bicycle is also visible near the edge of the scene.\n\nIn addition to the people and the skateboarder, there are a few chairs scattered throughout the scene, indicating that the area might be a public space where people can sit and relax."} +{"image_id": 252738, "caption": "In the image, a man wearing a black leather jacket is standing on a dirt road, talking on his cell phone. He appears to be engaged in a conversation as he surveys the dirt field around him. The man is located near the center of the scene, and the dirt road extends in various directions in the background."} +{"image_id": 43165, "caption": "The image features two zebras standing on a grass-covered field next to a pile of dirt, grass, and hay. The zebras appear to be grazing and enjoying their surroundings. One of the zebras is closer to the left side of the image, while the other is positioned more towards the right side. There is also a third zebra partially visible in the background near the right edge of the image."} +{"image_id": 218215, "caption": "The image features a large white polar bear swimming powerfully through the water. The bear is the main focus of the scene, occupying a significant portion of the frame from the left side to the right side of the image.\n\nThere are several water splashes around the bear, with some near the top left corner, top right corner, and around the middle of the image. The bear appears to be enjoying its time in the water, whether it is swimming or paddling."} +{"image_id": 299082, "caption": "The image features a giraffe standing on a lush green field, gracefully leaning over to eat grass. Its long neck is extended as it reaches down to graze on the greenery. The giraffe appears relaxed and content in its natural habitat.\n\nIn the background, there is a rock visible, adding to the serene environment of the scene."} +{"image_id": 152360, "caption": "The image features a street scene with several bunches of bananas hanging from poles or stands along the sidewalk. The bananas appear to be in various stages of ripeness, ranging from green to yellow. They are placed at different heights and positions, covering a significant portion of the visible area.\n\nCars are parked along the street, with some closer to the foreground and others further back in the scene. There are also a few people walking around, one near the left edge of the image and another on the right side, possibly browsing or attending to the bananas for sale."} +{"image_id": 205601, "caption": "The image features a woman in a blue shirt cooking a dish on a stovetop. She is using a frying pan to prepare a delicious-looking meal, which includes several pieces of meat and vegetables such as carrots and broccoli. \n\nThere are a few other people in the scene, with one person standing to the left of the woman and two more people on the right side of the image. The kitchen is well-equipped, featuring a microwave and an oven visible in the background. There are also a couple of bottles placed on the countertop near the stove."} +{"image_id": 174004, "caption": "The image features an old, rusty yellow dump truck parked in a grassy field. The truck is surrounded by tall grass, giving it a somewhat abandoned appearance. A tree can be seen in the background, adding a touch of nature to the scene. \n\nThere is another, smaller truck located towards the right side of the image, further away from the viewer's perspective. Additionally, two people can be spotted in the background, possibly observing the scene or attending to the truck."} +{"image_id": 31542, "caption": "The image features a person on a snowboard performing a stunt in the air. The snowboarder is up in the air, seemingly defying gravity, and grabbing the back of their board during the jump. The person is wearing a blue jacket, which adds a splash of color to the scene.\n\nIn the background, there is another person visible on the right side of the image, possibly observing the snowboarder's stunt."} +{"image_id": 305268, "caption": "The image features a woman playing tennis on a court, holding a tennis racket in her hand. She appears to be in the middle of a competitive game or practicing her tennis skills. The woman is wearing a black shirt and white shorts, accentuating her athletic appearance.\n\nThere are also several cars visible in the background, possibly parked near the tennis court or in a parking lot. This suggests that the tennis court might be located in a public area or near a busy street."} +{"image_id": 2867, "caption": "The image features a group of cross-country skiers stopping to take a break on a snow-covered trail. There are five people in the scene, standing close to each other and preparing for their skiing adventure. Each skier has their skis on, ready to continue their journey across the snow. \n\nSome of the skiers have backpacks, with one backpack visible on the left side of the group and another slightly to the right of the center. It appears that they are well-prepared for their skiing excursion, carrying essential items for their trip."} +{"image_id": 72428, "caption": "The image features a white toilet sitting in a small bathroom. The toilet has a tissue box placed on top of the tank, providing easy access to tissues. Additionally, there are two rolls of toilet paper placed next to the toilet, ready for use. The bathroom appears clean and well-maintained."} +{"image_id": 158494, "caption": "The image features three giraffes in a grassy, fenced enclosure on a sunny day. One of the giraffes is reaching up to eat grass, showcasing its long neck and natural feeding behavior. The other two giraffes are standing nearby, either observing the third giraffe or simply part of the enclosure's scenery.\n\nIn the background, there is a green building that might be related to the enclosure or a facility associated with the giraffes' care."} +{"image_id": 147629, "caption": "The image features a white cat lying on the ground, comfortably holding a stuffed toy elephant in its paws. The cat appears to be enjoying the company of the stuffed animal. \n\nBeside the cat and the stuffed toy, there are several books scattered throughout the scene. Some books are located near the cat, while others are further away, creating a cozy and relaxed atmosphere in the picture."} +{"image_id": 581899, "caption": "In the image, two blue passenger trains are parked next to each other on train tracks, creating a narrow gap between them. The trains occupy almost the entire width of the view, extending from the left side to the right side of the frame. \n\nThere is a person visible in the middle of the scene, seemingly peering out from one of the trains. A bench can be spotted on the left side of the tracks, close to the edge of the image. Additionally, a bird is flying above the trains, adding a lively element to the scene."} +{"image_id": 369345, "caption": "The image depicts a living room with a blue couch placed against a white wall. The couch is adorned with several red pillows, giving it a cozy appearance. In front of the couch, there is a wooden coffee table, featuring a laptop computer on top of it. To the side of the living room, a small bookshelf filled with books can be seen.\n\nAdditionally, there is a remote control on the coffee table, and a keyboard is visible next to it. The living room appears to be well-furnished and comfortable, providing a relaxing space for the inhabitants."} +{"image_id": 372246, "caption": "The image features a street sign for \"Hell Canon Road\" positioned above a stop sign. Both signs are attached to a metal pole, marking the intersection of two roads. The stop sign is placed on the right side of the pole, while the \"Hell Canon Road\" sign is located directly above it.\n\nIn the background, there are trees scattered throughout the scene, adding a touch of nature to the landscape. There are also several cars visible on the left side of the image, possibly approaching or parked near the intersection."} +{"image_id": 261563, "caption": "The image depicts two dogs playing together in a grassy field. One dog, which is brown and black, is holding a yellow Frisbee in its mouth, while the other dog watches and perhaps prepares to join the game. The dogs seem to be enjoying their time outside, engaged in a fun and energetic activity."} +{"image_id": 461802, "caption": "The image is a black and white photograph featuring a man standing on a platform at a train station. The man, who is wearing an orange and white uniform, is closely examining the side of a red passenger train that is parked on the tracks. \n\nAnother train can be seen further down the tracks in the background. There are clocks present in the scene, indicating the time for commuters and travelers. One clock is located near the top right corner of the image, while another clock is positioned slightly below it."} +{"image_id": 138175, "caption": "The image shows a man with glasses talking on a cell phone, engaged in a conversation. He is wearing a suit and tie, giving off a professional appearance. There are three other people in the scene, with one person standing close to the man on the phone, and the other two people in the background, at different distances from the man.\n\nAdditionally, there is a handbag placed near the person in the background on the right, possibly belonging to one of the individuals in the scene."} +{"image_id": 103488, "caption": "The image features a large, clean bathroom with sinks and mirrors. The bathroom appears to be a public one, as there are multiple sinks situated next to each other under bathroom mirrors. The flooring is covered in blue tiles, adding a touch of color to the predominantly white space.\n\nThere is a lone person in the scene, standing at the far end of the bathroom, seemingly observing the space. Additionally, there are a few hand dryers placed near the mirrors, providing convenience for users."} +{"image_id": 215901, "caption": "The image features a fruit bowl placed on a table, containing a variety of fruits such as apples, oranges, and bananas. There are several oranges and bananas in the bowl, as well as a few apples, creating a colorful and healthy display. The table is situated on top of a tiled counter, adding to the overall aesthetic of the scene."} +{"image_id": 514180, "caption": "The image features a dining table with a variety of pizzas on it. There are three pizzas in total, with one in the middle of the table and two others placed along the edges. One of the pizzas on the left side is a cheese pizza, and another pizza on the right side is a pepperoni pizza. The third pizza, located at the top right corner of the table, appears to be a different kind of pizza. \n\nThere is a pizza cutter on the table, indicating that the pizzas are being sliced and served. A person can also be seen in the background, possibly enjoying the delicious pizzas or preparing to serve one."} +{"image_id": 396338, "caption": "The image depicts a busy street scene filled with people, cars, and a truck. Several people are walking on the street, with some holding umbrellas to shield themselves from the rain. There are at least four umbrellas visible, with one in the center of the scene, another near the left side, and two more towards the right side of the frame. \n\nTwo cars are present in the scene, one on the left side and another on the far right side. A truck can be seen in the background towards the right side of the image. \n\nIn addition to the pedestrians, a bicycle and a motorcycle are also visible on the street. The bicycle is located in the middle of the scene, while the motorcycle is on the left side of the frame."} +{"image_id": 579362, "caption": "The image depicts a beach scene where a man is sitting on a blue bench near the water, looking out to the ocean where a large boat is visible. Several other people can be seen scattered across the beach, enjoying the sunny day. Some of them are closer to the water, while others are further back on the sand.\n\nIn addition to the people, there are two handbags in the scene. One is placed near the bench where the man is seated, and the other is situated closer to the water's edge. The overall atmosphere of the beach seems relaxed and leisurely, with people enjoying the view and the company of others."} +{"image_id": 289512, "caption": "In the image, a man wearing a hat is riding a brown horse. The man is sitting on the horse, holding the reins in his hands, and appears to be enjoying the ride. The horse and rider are the main focus of the scene.\n\nBesides the horse and rider, there are a few other people in the background, but they are not the main focus of the image. There is also a second horse visible in the background, but it is not being ridden by anyone."} +{"image_id": 306928, "caption": "The image features a large clock tower with a flock of birds perched on various parts of the tower. There are at least 15 birds visible, occupying different areas of the tower, such as the sides, top, and bottom. Some birds are sitting close to the clock, while others are spread out across different sections of the tower. The clock itself is situated in the middle of the tower, surrounded by the birds on all sides."} +{"image_id": 453009, "caption": "The image features a small stuffed teddy bear sitting on the back of a wooden bench. The teddy bear is positioned in such a way that it appears to be hugging a large stuffed animal, resembling a loon or a duck. The scene is set outdoors, with the bench situated on a street or in a public area. \n\nIn the background, there are a few cars parked along the street, as well as some people visible at a distance. The overall atmosphere appears to be casual and relaxed."} +{"image_id": 112581, "caption": "The image features a man standing in a store, wearing a white t-shirt and a cap. He appears to be a hockey fan, as evidenced by his choice of clothing and the fact that he is holding an umbrella. The man seems to be making a purchase at the store, possibly buying a hot dog.\n\nThere are several other people in the store, including one person in the background on the left and two more people on the right side of the image. A backpack can be seen placed near the man in the center, possibly belonging to him or someone else in the store."} +{"image_id": 504977, "caption": "The image depicts an older woman sitting on a wooden bench in a park-like setting. She appears to be dressed in a tan outfit, and she is holding a black purse next to her on the bench. The woman seems to be enjoying her time outdoors or possibly waiting for someone.\n\nThere are a few other people in the scene, but they are farther away and not the main focus of the image. The primary focus is the older woman sitting on the bench and holding her purse."} +{"image_id": 228764, "caption": "The image features a sandy beach setting where a dog and a cat are curiously looking at each other. The dog is positioned towards the left side of the scene, while the cat is on the right side. The cat appears to be watching the dog as it walks by, and the dog is in the process of walking across the sand.\n\nIn the background, there are several cars parked nearby, possibly indicating that this beach is easily accessible by vehicle."} +{"image_id": 151528, "caption": "The image features a man enjoying a sunny day outdoors with his black dog by his side. The man is standing on a grass-covered field, and both he and the dog appear to be relaxed and having a good time. \n\nIn the background, a stone wall is visible, adding a picturesque element to the scene. There is also a red kite in the sky, indicating that the man might be engaged in some kite-flying activity. The overall atmosphere of the scene is leisurely and enjoyable for both the man and his dog."} +{"image_id": 248919, "caption": "The image showcases a clean and well-organized kitchen featuring light wood cabinets, a white stove, and a wooden dining table. The stove is located on the left side of the kitchen, while the microwave is placed above it, towards the center of the scene. The oven can be seen just below the stove.\n\nOn the dining table, there is a bowl of fruit that includes apples and oranges. Several chairs are placed around the table, with two on the right side, one closer to the stove, and another further back in the kitchen. Additionally, a few bananas are visible on the countertop near the dining table.\n\nOverall, the kitchen appears ready for use, with a pleasant atmosphere and well-arranged furniture."} +{"image_id": 580607, "caption": "The image depicts a serene waterway with several boats lined up along the side of the river. The boats vary in size and are docked close to the riverbanks, with some appearing to be larger than others. \n\nIn addition to the boats, there are a number of people present in the scene. Some of them are standing near the boats, possibly enjoying the view or getting ready for a boat ride. There are also a few birds scattered around the area, adding to the natural atmosphere of the scene."} +{"image_id": 200291, "caption": "The image features a dining table with two blue plates placed on it. Each plate has different types of food, creating a varied meal. One plate has toast, while the other contains a delicious combination of tater tots, bread, and mustard. \n\nThere are several pieces of both bread and tater tots spread across the plates, adding to the colorful and appetizing presentation of the meal. A spoon is also visible on the table, ready to be used for enjoying the food."} +{"image_id": 296231, "caption": "The image depicts a cluttered living room with a TV turned on, serving as the primary source of entertainment in the space. The TV is located in the middle of the room, surrounded by three bookshelves filled with various books. Some books can be seen on the left and right sides of the shelves, while others are scattered throughout the room.\n\nThere are several clocks in the room, with one in the upper left area, another near the center, and a third one towards the right side. Additionally, the room features a vase, adding a decorative touch to the cluttered space.\n\nA person can be seen in the room, possibly watching the TV or admiring the collection of books and knick-knacks. The overall atmosphere of the room appears to be cozy and lived-in."} +{"image_id": 505663, "caption": "The image features a large clock mounted on the side of a brick wall. The clock is prominently displayed and easily visible for everyone to see. The clock's size and placement suggest that it serves as an important timekeeping device for the people in the area."} +{"image_id": 41572, "caption": "The image captures a baseball game in progress, with several players on the field. A batter is in the spotlight, getting ready to swing at an incoming pitch. Another player, wearing a baseball glove, is preparing to catch the ball or make a play. \n\nThere are two sports balls visible in the scene, with one positioned closer to the batter and the other slightly further away. The positions of the players and the balls suggest that they are engaged in an exciting moment during the game."} +{"image_id": 509589, "caption": "The image features a group of young people gathered on a street, with some of them riding skateboards and others standing or walking nearby. One of the skateboarders is wearing a blue tie-dye shirt and riding his skateboard down the sidewalk. Another skateboarder is holding his skateboard in front of a barricade.\n\nThere are several people standing or walking around the area, with some of them carrying backpacks or handbags. In addition to the skateboarders and pedestrians, there is a car and a truck parked nearby on the street."} +{"image_id": 357238, "caption": "In the image, a person is enjoying a day at the beach, flying a large, colorful kite. The kite can be seen soaring high in the sky above the water. The person is standing relatively close to the shoreline, controlling the kite from the ground.\n\nThere are a few birds present in the sky, adding to the lively atmosphere of the beach scene. The overall setting is a sunny and cloudy day, making it an ideal day for outdoor activities like kite flying."} +{"image_id": 466575, "caption": "The image features an old, worn, and dirty brown suitcase sitting on a black, speckled ground. The suitcase appears to be in poor condition, possibly due to age, water damage, or extensive use. It is sitting alone, with no other objects visible in the scene."} +{"image_id": 271970, "caption": "The image depicts a small white church with a tall clock tower in its center. The clock is prominently displayed on the tower, making it easily visible to the surrounding community. The church also features a steeple with a cross on top. \n\nThe scene is set in a residential area with several houses and apartment buildings nearby. Among the houses, there is one with a prominent dining table and chairs placed on the front porch. Additionally, there is a car parked in the foreground, close to the right side of the frame."} +{"image_id": 305540, "caption": "The image features a large silver pair of scissors prominently placed in front of a building. The scissors are opened towards the ground, drawing attention to their size and position. \n\nThere are a few people around the area, with one person standing to the left of the scissors and two others further to the right. Another person can be seen in the background, near the right edge of the image. The setting appears to be outdoors, with the building serving as a backdrop for the sculpture."} +{"image_id": 462928, "caption": "The image shows a man with glasses holding a cell phone up to his ear, as if he is talking on it. He is smiling and appears to be enjoying the conversation. The man is wearing a striped sweater, which adds a casual touch to the scene.\n\nIn the room, there is a couch in the background and a chair nearby. There are also two books visible, one on the couch and another close to the chair. Additionally, a cup can be seen placed on a surface in the room."} +{"image_id": 270544, "caption": "The image depicts a group of people enjoying themselves in a lake, with some of them in bikinis. One woman, wearing a bikini, is in the center of attention, with her arms in the air as she splashes around in the water. Two other women and a man can be seen playing around in the water as well.\n\nThere are several boats visible in the scene, both near the people and further away from them. One boat is located closer to the left side of the image, while another can be seen towards the right side. Additionally, a car is parked near the edge of the scene on the left side, adding to the recreational atmosphere."} +{"image_id": 134042, "caption": "In the image, an airplane is flying high in a cloudy blue sky. The plane appears to be a large jet, capturing attention as it soars through the sky. There are no other aircraft or objects visible in the scene, making the airplane the focal point of the image."} +{"image_id": 120340, "caption": "The image shows a man wearing a brown shirt and khaki pants, standing in front of a metro bus and fixing a bicycle. The bicycle has a broken wheel, and the man appears to be using a tool to fix it. \n\nThere are several other people in the scene, some of them sitting or standing near the metro bus. A bottle can be spotted in the image, likely belonging to the man fixing the bicycle. Additionally, a backpack is placed on the ground, close to the man and the metro bus."} +{"image_id": 418949, "caption": "The image captures a baseball game in progress, with several players on the field. At the center of the scene, a baseball player in a red and blue uniform stands holding a baseball bat, getting ready to take his turn at bat. Another player nearby is holding a baseball glove, likely preparing to catch the ball.\n\nThere are other players scattered across the field, both near and farther away from the main action. Some of these players are standing, while others are in various stages of movement, actively participating in the game. Overall, the scene showcases the dynamics of a baseball game with players engaged in the sport."} +{"image_id": 520109, "caption": "The image features a vibrant scene with a grassy field filled with many colorful umbrellas. These umbrellas are spread across the field in various sizes and orientations, creating a lively and playful atmosphere. Some umbrellas are open, while others are closed, providing shelter from the sun or rain.\n\nIn addition to the umbrellas, there are several benches placed throughout the field. These benches add to the recreational nature of the area, allowing people to sit, relax, and enjoy the surroundings. Surrounding the field, there are trees that provide a natural backdrop to the scene, completing the pleasant outdoor setting."} +{"image_id": 50753, "caption": "The image depicts a kitchen with wooden cabinets and white appliances, including a refrigerator, microwave, oven, and sink. The refrigerator is located on the left side of the kitchen, while the microwave is situated above the oven, close to the center area. The sink can be found towards the right side of the kitchen.\n\nVarious items are placed around the kitchen, such as a clock on the wall near the top left corner and a bowl on the countertop towards the right side. There are also two cups placed on the counter, one closer to the right edge and the other slightly further to the right. Additionally, a vase is present on the left side of the kitchen, near the refrigerator."} +{"image_id": 329939, "caption": "The image depicts a group of giraffes walking and grazing together in a grassy plain. There are five giraffes in total, with one large giraffe occupying the left side of the frame, two medium-sized giraffes in the center, and two smaller giraffes on the right side. They appear to be enjoying the sunny day and each other's company as they roam the open field.\n\nSome trees and bushes can be seen in the background, adding variety to the landscape. The giraffes are spread out across the field, with a few of them standing closer to the foreground while others are further back in the scene."} +{"image_id": 351345, "caption": "The image features a woman standing in a room, holding a Nintendo Wii game controller as she plays a video game. She appears to be enjoying herself, smiling slightly. There are a couple of other people in the room, one on the left and another on the right side, possibly watching her play or waiting for their turn to play.\n\nThe room is illuminated by a light in the background, creating a pleasant atmosphere for gaming and socializing."} +{"image_id": 25293, "caption": "The image is a painting of a woman holding a blue frisbee in a scene that appears to be set in a field. She is wearing a grass skirt and is in the process of throwing or catching the frisbee. The frisbee is located towards the left side of the image, and the woman is the main focus of the scene.\n\nThere are several other people in the background, though they do not seem to be directly involved with the woman and the frisbee. The presence of multiple people suggests that the scene might be a social gathering or a recreational activity involving frisbee."} +{"image_id": 543041, "caption": "The image shows a box filled with a variety of donuts, each covered in different types of glazes and powdered sugar. In total, there are seven donuts visible in the box. Some of the donuts have distinct toppings, while others are plain. The assortment of donuts makes for an inviting and tempting display in the box."} +{"image_id": 568265, "caption": "The image depicts a lively park scene with a group of people enjoying various activities. There is a large kite flying high in the sky, adding a sense of fun and excitement to the atmosphere. Several people are gathered near the kite, either flying it or watching the spectacle.\n\nIn addition to the kite flying, the park is adorned with blooming cherry blossoms, which create a beautiful and vibrant backdrop. Numerous people can be seen walking or standing throughout the park, taking in the sights and sounds of the blooming trees and the kite flying overhead."} +{"image_id": 467386, "caption": "The image depicts a scene outside a building with blue doors. One of the blue doors is closed, while the other one is slightly ajar. Underneath one of the blue doors, there is a lot of litter, including a bottle and a cup. A cat is sitting on the ground next to this mess, seemingly observing the scene.\n\nAdditionally, there is a potted plant located near the right side of the image, adding a touch of greenery to the surroundings."} +{"image_id": 242363, "caption": "The image depicts a bathroom undergoing a remodeling process. The toilet has been removed, and only the sink and bathtub remain in place. The bathroom features a white toilet and sink, as well as a white bathtub. \n\nIn addition to the bathroom elements, a pair of scissors can be seen in the scene, possibly being used for cutting materials during the remodeling process. The overall appearance of the bathroom suggests that it is being updated, with the aim of transforming it into a more modern and functional space."} +{"image_id": 554900, "caption": "The image features a white toilet in a small bathroom stall with a white toilet seat. The toilet bowl is clean and ready to be used. Near the toilet, there is a toilet brush and plunger, indicating that the bathroom is well-maintained.\n\nThe bathroom appears to be tiled, and there is a small trash can located at the side of the toilet. Overall, the scene shows a typical clean and functional bathroom environment."} +{"image_id": 115006, "caption": "The image captures a baseball game in progress with several players on the field. At the center of the scene, a batter is in the process of swinging a baseball bat, attempting to hit a pitched ball. A catcher can be seen behind the batter, wearing a baseball glove and positioned to catch the ball if the batter misses. \n\nAn umpire is also present on the field, closely observing the game to make calls and judgments on the play. Other players are scattered around the field, in various positions from the batter to the outfield, ready to react to the outcome of the batter's swing."} +{"image_id": 75375, "caption": "The image captures a lively scene on a body of water, where multiple people are enjoying water sports. There are at least 12 people in the water, engaging in activities such as kiteboarding, windsurfing, and parasailing. \n\nThe sky is filled with a multitude of colorful kites, varying in size and position. Some kites are flying high in the air, while others are closer to the water's surface. The people on the water are actively harnessing the power of the wind to propel themselves through the water using their kites. The overall atmosphere of the scene is energetic and fun."} +{"image_id": 419223, "caption": "The image captures a group of young boys playing soccer on a field. There are three boys in particular engaged in the game, with one boy kicking the soccer ball while the other two boys are chasing after him. The sports ball is positioned near the center of the field.\n\nAround the field, several cars are parked, likely belonging to the players or spectators. There is also a bench placed on the side of the field, providing a place for resting players or spectators to sit."} +{"image_id": 137578, "caption": "The image shows a public restroom featuring two toilets positioned next to each other. Both toilets have their lids down, indicating that they are clean and ready for use. \n\nIn addition to the toilets, there are two toilet paper rolls placed in the bathroom, one near the left toilet and the other near the right one. This suggests that the restroom is well-equipped and convenient for users."} +{"image_id": 408808, "caption": "The image features a white table with three different toothbrushes placed on it. The toothbrushes are in excellent condition, with their packaging still intact. One toothbrush is on the left side of the table, another one is in the middle, and the third one is on the right side. \n\nAdditionally, there is a toothpaste tube lying next to the toothbrushes, adding to the variety of dental care products displayed on the table. The overall scene conveys a well-maintained and organized dental care setup."} +{"image_id": 243773, "caption": "The image showcases a cluttered kitchen counter in a house. The counter is covered with various items, including numerous bottles, a wine glass, and a bowl. Some of the bottles are placed close to each other, while others are spread out across the counter. There is also a wine glass placed towards the left side of the counter. \n\nThe kitchen features an oven situated towards the right side of the room. In addition to the bottles and wine glass, there is a cup on the counter. The overall scene gives the impression of a disorganized space in need of some tidying up."} +{"image_id": 436492, "caption": "The image features a street scene with various signs posted on the side of the road. One prominent sign is advertising the American Recovery Investment Act, with another sign underneath announcing a pedestrian crossing. There is also a street sign on a pole in the foreground.\n\nSeveral people can be seen walking along the sidewalk, with one person closer to the left side of the scene, another near the center, and a third person on the right side. In addition to the pedestrians, a car is parked near the right edge of the image."} +{"image_id": 556648, "caption": "The image showcases a smartphone store with a variety of cell phones on display. One of the cell phones is white and prominently positioned in the center of the display, drawing attention. There are additional cell phones placed around the display, with some located in the top, bottom, and sides of the frame. These cell phones come in different shapes, sizes, and colors, giving customers a wide selection to choose from."} +{"image_id": 298924, "caption": "The image features a dining table with several bowls filled with various foods placed on it. One of the bowls contains a combination of noodles, meat, and vegetables, while another bowl appears to have a similar assortment of ingredients. There is also a large bowl placed on the table, filled with food, and a pair of chopsticks nearby. \n\nTwo cups can be seen in the background, possibly containing beverages to accompany the meal. The table setup and food presentation suggest a well-prepared and appetizing meal, ready to be enjoyed."} +{"image_id": 562030, "caption": "The image depicts a garden deck with several potted plants placed on it. There are a total of nine pots, containing various plants and flowers, spread across the deck. Some of the pots are placed near the center of the deck, while others are positioned towards the edges.\n\nAdditionally, there is a pair of scissors on the deck, possibly used for trimming and arranging the plants. The garden setup creates an inviting atmosphere, showcasing a variety of potted plants and flowers."} +{"image_id": 501315, "caption": "The image showcases a thrilling scene of a person riding a green motorcycle, possibly a racing motorcycle, on a curvy race track. The rider is leaning low to take a tight turn, with their body positioned to the left side of the motorcycle. \n\nIn addition to the main motorcycle rider, there are three other people visible in the scene. One person is standing to the right of the motorcycle, possibly observing the race, while the other two people are located in the background, possibly as spectators or officials."} +{"image_id": 436162, "caption": "The image features a large white passenger bus parked at the side of the road, with its doors open. The bus appears to be a city transit bus, and it may be waiting for passengers to board or disembark. \n\nThere are a few people in the vicinity of the bus, with one person standing closer to the front and two others situated near the middle and the rear of the bus. Additionally, a car can be seen in the background behind the bus."} +{"image_id": 323888, "caption": "The image features a large, illuminated clock mounted on the front of a building, which appears to be a train station. The clock is prominently displayed on the front of the building, drawing attention to the time. \n\nOutside the building, there are several cars parked in a row, with one car closer to the left edge of the frame and three more cars lined up further back. There is also a person visible on the left side of the scene, possibly a passenger or a passerby."} +{"image_id": 211476, "caption": "The image displays a dining table with two bowls placed on it. The bowls are filled with a variety of foods, making for a colorful and appetizing meal. One of the bowls contains broccoli and cheese, while the other has chicken and potatoes. \n\nIn addition to the bowls, there is a knife positioned on the table, possibly for cutting the food or opening the containers. The variety of ingredients and the presentation suggest that the meal is well-prepared and ready to be enjoyed."} +{"image_id": 473433, "caption": "The image features a suitcase placed on a table in a room. The suitcase contains several items, including a bowl, a bottle, and a picture of a person. The bowl and the bottle are positioned close to each other, while the picture of the person appears to be a black and white photo."} +{"image_id": 165752, "caption": "The image features a black dog standing on top of a grassy yard, playfully holding a frisbee in its mouth. The frisbee appears to be a yellow toy, and the dog seems to be enjoying playing with it. The dog's position suggests it might be ready to throw the frisbee or continue playing with it."} +{"image_id": 573756, "caption": "The image features a pair of giraffes standing together in a grassy area, surrounded by trees. One of the giraffes is partially hidden by a bush, while the other is more visible. They appear to be enjoying the shade and each other's company in their natural habitat.\n\nIn total, there are three giraffes in the scene: one is standing closer to the left side, while the other two are located more towards the center and the right side of the image."} +{"image_id": 187450, "caption": "The image features a blue and silver train parked on the tracks at a train station. The train appears to be a streamlined, modern design, and it takes up a significant portion of the scene. There are several people scattered around the train station, with some standing close to the train and others further away. \n\nAn orange safety cone is placed on the platform near the front of the train, possibly to alert passengers to maintain a safe distance from the train tracks. Overall, the scene captures a typical day at a train station with passengers going about their travels."} +{"image_id": 43266, "caption": "The image depicts two giraffes in a grassy, rock-covered hillside. One giraffe is standing close to a tree, possibly seeking shade or looking for food. The other giraffe is positioned further away, with its head up in the sky, possibly observing its surroundings or the nearby tree. The scene suggests a natural habitat for the giraffes, where they can coexist and interact with each other in their environment."} +{"image_id": 150080, "caption": "The image features a delicious pizza topped with various ingredients, including cheese, bacon, and shrimp. The pizza is placed on a white plate, which is resting on a dining table. \n\nThere are several pieces of broccoli spread across the pizza, adding a touch of color and texture to the dish. The combination of these toppings makes for a mouth-watering and appetizing meal."} +{"image_id": 453757, "caption": "The image features a group of young men playing soccer on a field. There are four players in action, with two of them falling to the ground after being fouled during the game. One of the players is in the process of kicking the soccer ball, which is positioned near the top left side of the field. \n\nIn addition to the players, there are several benches situated around the field's perimeter, providing seating for rest or team members who are not currently playing. The scene captures the energetic and competitive nature of soccer as the athletes showcase their skills on the field."} +{"image_id": 354460, "caption": "The image captures a moment where a group of people, including a man and a woman, are involved in a ribbon-cutting ceremony. The man is wearing a tie, while the woman is dressed in a floral dress. They are standing next to each other, holding a large pair of scissors that are used for the ribbon-cutting. \n\nOther people can be seen in the background observing the event. The atmosphere appears joyful and celebratory, with everyone gathered together for this special occasion."} +{"image_id": 221681, "caption": "The image features a small bathroom with a sink, toilet, and a blue tiled wall. The sink has a mirror above it, and a bottle of soap is placed on the counter next to the sink. There is also a towel rack in the bathroom, with towels hanging neatly on it.\n\nIn addition to the bathroom essentials, a few personal items can be seen in the room. There are two cups on the counter, and two toothbrushes can be spotted near the sink. A handbag is placed on the floor, adding a touch of personalization to the space."} +{"image_id": 349324, "caption": "The image presents a view of a train passing by another train on a train track. The train on the left side of the image appears blurry, while the train on the right side is more clear. There are multiple train tracks visible in the scene, with at least two sets of tracks running parallel to each other. \n\nA person can be seen near the center of the image, possibly observing the passing trains or waiting at a train station. The overall scene conveys a sense of movement and activity, as the trains continue to pass each other on the different tracks."} +{"image_id": 225133, "caption": "The image features a group of colorful umbrellas hanging in a tree, creating an eye-catching and vibrant display. There are 13 umbrellas of various sizes and colors suspended from the branches of the tree. The umbrellas are spread across the tree, with some closer to the trunk and others higher up in the branches. They are arranged in a way that makes the most of the available space and adds visual interest to the scene."} +{"image_id": 452566, "caption": "The image depicts a stop sign on the side of a road, with a beautiful mountain range in the background. The stop sign is clearly visible for all to see. The road on which the stop sign is placed appears to be a country road, adding a rustic charm to the scene.\n\nIn addition to the stop sign and the mountain range, there are several cars scattered along the road, indicating that it is a busy area. A person can also be seen in the distance, likely enjoying the view or attending to one of the cars."} +{"image_id": 124952, "caption": "The image depicts a busy city street with a large bus driving alongside a silver car. The bus is positioned on the left side of the scene, occupying a significant portion of the frame. The car is situated in the middle of the street, and both vehicles appear to be in motion.\n\nApart from the bus and car, there are several pedestrians visible in the scene. One person is located near the left edge of the image, another near the right edge, and a third person is standing closer to the middle of the scene. They seem to be navigating the bustling city environment as they move through the streets."} +{"image_id": 26697, "caption": "The image features a woman standing in a doorway with a toothbrush in her hand, brushing her teeth. She appears to be looking into the camera as she brushes her teeth. The scene takes place near a window, which allows natural light to enter the room.\n\nAdditionally, there are two bottles visible in the scene. One is placed on the window sill, and the other is located near the woman, possibly on the bathroom counter."} +{"image_id": 126064, "caption": "The image features a man in a red shirt surfing on a wave in the ocean. He is skillfully balancing on a surfboard, which is positioned towards the left side of the scene. The surfer appears to be in the middle of a thrilling ride as he cuts through the wave.\n\nAdditionally, there is another surfboard visible in the background on the right side, possibly belonging to another surfer or waiting to be used."} +{"image_id": 557190, "caption": "The image features two men standing together on a hill, overlooking a beautiful mountain view. One man is wearing a gray suit and a red tie, while the other man is wearing a black suit and a white shirt. They appear to be posing for a picture, likely enjoying the stunning scenery that surrounds them.\n\nThe landscape in the background consists of a mix of trees and bushes, creating a picturesque natural setting. Some of the trees are positioned closer to the men, while others are further away, providing a sense of depth to the scenery."} +{"image_id": 137612, "caption": "The image depicts a large, multi-level apartment building situated next to a roadway on a cloudy day. The building has a distinctive purple wall, making it stand out in the scene. There are several cars parked along the road in front of the apartment building, with one car closer to the left side, two in the center, and two more on the right side. \n\nA person can be seen walking along the sidewalk near the building, likely a resident or a visitor. Additionally, there is a bicycle parked on the left side of the image, close to the edge of the scene."} +{"image_id": 408480, "caption": "The image captures a picturesque harbor scene with a large red and white lighthouse in the background. Near the lighthouse, a boat is docked on the water, adding charm to the scene. In the foreground, various vehicles can be seen, including several cars and trucks, parked or moving along the edge of the water. \n\nThere are also a few people in the scene, with one person standing closer to the boat and two others located near the center of the image. Alongside the boats and vehicles, a handbag is placed on the ground, possibly belonging to one of the people in the scene."} +{"image_id": 277694, "caption": "In the image, a brown cow is lying down on a sidewalk, close to a motorcycle. The cow appears to be relaxed, occupying a large portion of the scene. The motorcycle is positioned to the right side of the cow, slightly further back in the scene.\n\nAdditionally, there is a chair located near the cow and the motorcycle, possibly part of an outdoor seating area for a nearby establishment."} +{"image_id": 74166, "caption": "The image features a man with tattoos on his arms and legs, performing a skateboard trick by jumping over a sidewalk. He is in mid-air, showcasing his impressive skateboarding skills. \n\nThere are a few other people in the scene, with one person standing in the background to the right of the skateboarder, another person further back to the right side, and a fourth person on the far right edge of the image. \n\nIn addition to the skateboarder, there are two cars visible in the scene. One car is parked on the left side of the image, while the other car is situated on the far right side."} +{"image_id": 102625, "caption": "The image depicts a small, nicely decorated kitchen with a warm and inviting atmosphere. The kitchen features a stove, oven, dishwasher, and a sink. There are several items placed on the countertops, such as cups, bottles, and a vase. \n\nIn addition to the dishware, there is a potted plant that adds a touch of greenery to the space, and a TV is also visible in the room. A dining table can be seen in the background, likely connected to the kitchen area, completing the cozy and functional layout of the space."} +{"image_id": 540694, "caption": "The image features a giraffe standing next to a car door, extending its head towards the car window. The curious giraffe appears to be looking inside the car, possibly observing the passengers or the interior of the vehicle. \n\nIn addition to the giraffe and the car, there are multiple other cars in the scene. Some are parked in the background, and others are situated closer to the foreground. Overall, the scene captures an interesting moment where the giraffe interacts with the car and its surroundings."} +{"image_id": 518586, "caption": "The image features an old steam train on the train tracks, with a man standing on one of the tracks close to the train. The train appears to be parked or temporarily stopped, as the man seems to be examining it or posing for a picture. \n\nIn addition to the train and the man, there are several other people in the scene. Some of them are standing near the train, while others are scattered further away, possibly observing the train or the surroundings."} +{"image_id": 81303, "caption": "The image shows a man skiing down a snow-covered slope on a bright day. He is wearing goggles and appears to be enjoying the activity. The skier is positioned near the center of the image, with his skis visible beneath him. The slope is covered in snow, providing a smooth surface for the skier to glide down."} +{"image_id": 383065, "caption": "The image features a green public toilet located on a street in France. The toilet is placed in a small building, which appears to be a kiosk or an outhouse. Near the toilet, there is a sign with the word \"Toilets\" written on it. Additionally, there is a wheelchair symbol on the door of the building, indicating accessibility for individuals with disabilities."} +{"image_id": 169602, "caption": "In the image, a woman is lying on a surfboard and riding a small wave in the ocean. She appears to be skillfully maintaining her balance on the surfboard, and she is wearing a wetsuit to keep warm in the water. \n\nThe surfboard is positioned with its front half above the water, and the woman's body can be seen stretched out across the board, providing a sense of her athleticism and control while surfing."} +{"image_id": 19890, "caption": "The image features two zebras standing side by side in a fenced-in area. They appear to be eating grass or hay, as they both bend down to reach the ground. Their snouts are close to the grazing surface, and they seem to be enjoying their meal.\n\nIn addition to the zebras, there are also a couple of birds present in the scene. These birds are perched near the top left side of the image, possibly observing the zebras or looking for a snack themselves."} +{"image_id": 236604, "caption": "The image showcases a beautifully decorated living room with light-colored furniture, giving it an elegant and inviting atmosphere. The room features two couches, one situated towards the left side and the other occupying the right side of the room. \n\nSeveral potted plants are placed throughout the space, adding a touch of greenery to the room. There are four plants of varying sizes, with two located near the left couch, one in the middle of the room, and another towards the right side. \n\nIn addition to the plants, a clock can be seen hanging on the wall near the right side of the room, complementing the overall design of the living area."} +{"image_id": 270753, "caption": "The image shows a close-up view of a deep dish pizza, fully covered in sauce, cheese, and a variety of toppings. The pizza is sliced, with one piece already missing, indicating that someone has already started eating it. The pizza is placed on a dining table, and a knife can be seen on the table, likely used for cutting and serving the pizza."} +{"image_id": 457178, "caption": "The image features a bustling street scene with a horse-drawn carriage riding down the road, passing by a large building with a decorative balcony. There are several people walking on the street, some closer to the carriage, while others are scattered throughout the scene.\n\nNumerous horses can be seen in the image, including a couple of horses pulling the carriage. In addition to the horse-drawn carriage, there are other carriages and horses in the scene, creating a vibrant and lively atmosphere.\n\nOverall, the scene captures the essence of an old-fashioned town with people and horses going about their daily activities."} +{"image_id": 577712, "caption": "The image features a group of people gathered around a giraffe enclosure at a zoo. There are five individuals in the scene, with three people standing closer to the giraffe and two others further back. The giraffe is leaning over the fence, allowing the people to get a close-up view of it. One of the people in the group is wearing a handbag. The atmosphere appears to be friendly and interactive, as the group enjoys their time observing the majestic animal."} +{"image_id": 414560, "caption": "The image depicts a group of cows with blue and white markings, resting in a pen filled with hay. There are six cows in total, spread across the pen. Some of the cows are lying down, while others are standing. They appear to be enjoying their time in the straw-filled pen."} +{"image_id": 388983, "caption": "The image features a delicious hot dog with a variety of toppings. The hot dog is placed inside a bun, and it is covered with a generous amount of ketchup and mustard, as well as a pickle slice. The combination of these condiments enhances the flavor of the hot dog, making it a tasty and indulgent treat. The hot dog takes up a significant portion of the image, indicating that it is the main focus of the scene."} +{"image_id": 245965, "caption": "In the image, a person is standing in a vast field, holding a blue umbrella to shield themselves from the sun. They are surrounded by a large number of umbrellas scattered throughout the field, creating a unique scene. Some of the umbrellas are open, while others are closed and placed on the ground. The person under the umbrella seems to be the main focus of the scene."} +{"image_id": 147590, "caption": "The image features a dining table set with a variety of food and drink items. In the center of the table, there is a glass of red wine, which appears to be the focal point of the spread. Surrounding the wine glass, there are several plates of food, suggesting a meal being enjoyed by the people at the table.\n\nAdditionally, there is a knife placed on the table, likely used for cutting and serving the food. A person can be seen in the background near the right edge of the image, possibly attending to the table or participating in the meal."} +{"image_id": 46882, "caption": "In this outdoor scene, a group of young people are playing a game of frisbee. One person, a man, is captured in mid-air as he jumps up to catch the frisbee, which is located towards the top part of the scene. There are a total of six people in the image, with some standing or walking around while others are engaged in the frisbee game.\n\nA bench is also visible in the background, providing a place for resting or observing the ongoing activities. The atmosphere appears to be lively and enjoyable, with everyone participating in or watching the frisbee game."} +{"image_id": 518719, "caption": "The image features a large black, white, and gold ceramic bowl placed on a table. The bowl has a decorative, striped design, and it sits elegantly on the table. Beside the bowl, there is a brown tablecloth that complements the overall setting."} +{"image_id": 176312, "caption": "The image depicts a woman standing in front of a Tour Stop sign, looking at her cell phone. She appears to be trying to get directions or information from her phone to navigate the area. She is wearing a black dress and has a handbag with her. \n\nThere are several other people in the scene, with one person standing close to the woman, another further to the right, and a fourth person in the background. The people in the scene seem to be interacting or waiting for their turn at the Tour Stop."} +{"image_id": 580746, "caption": "The image features a picturesque scene of a grassy field with a group of sheep grazing on the green grass. There are a total of six sheep spread throughout the field, with some closer to the foreground and others farther away. The sheep are peacefully eating their meal, creating a serene atmosphere in the pastoral setting."} +{"image_id": 541223, "caption": "The image features a large airplane, possibly a vintage one, situated in front of a building with a green covering on it. The plane is positioned on the right side of the scene, extending from the center to the top of the image. \n\nIn front of the building, there is a road with a car and a truck driving along it. The car is located on the left side of the road, while the truck is on the right side. Additionally, there are two people standing near the building, possibly admiring the airplane or the establishment."} +{"image_id": 22589, "caption": "The image features a green field with a herd of sheep grazing and resting within the area. There are at least five sheep visible in the scene. One sheep is looking through a barbed wire fence, possibly curious about its surroundings or trying to find a way out. The other four sheep are scattered throughout the field, enjoying the outdoor environment."} +{"image_id": 196815, "caption": "The image features a group of four young men sitting and playing a video game together, likely using a Nintendo Wii console. They are seated on chairs and enjoying the gaming session. Two of the boys are sitting closer to the front, while the other two are positioned a bit further back.\n\nIn the room, there is a dining table visible in the background, along with a few books placed on the table. Additionally, there are two backpacks placed near the chairs, possibly belonging to the boys or other people in the room."} diff --git a/OPERA/log/chair_eval_results/shikra/greedy.jsonl b/OPERA/log/chair_eval_results/shikra/greedy.jsonl new file mode 100644 index 0000000000000000000000000000000000000000..84a98ccd65d1fee3ae59ee92c871cacee48068ce --- /dev/null +++ b/OPERA/log/chair_eval_results/shikra/greedy.jsonl @@ -0,0 +1,500 @@ +{"image_id": 226988, "caption": "The image features a woman sitting at a dining table, taking a picture of two slices of pizza placed on a paper plate. She is using a digital camera to capture the delicious-looking pizza. The table has a few other items on it, including a cup and a knife.\n\nThere are a few other people in the scene, with one person standing near the top right corner and another person located in the top left corner. Another dining table and chair can be seen in the background, with a smaller pizza visible on the table. Additionally, a handbag is placed on the floor near the top right corner of the image."} +{"image_id": 337443, "caption": "The image features a street scene with an orange \"obstruction\" sign placed on the sidewalk. The sign is large and clearly indicates a roadblock or construction area ahead. \n\nIn the background, various vehicles can be seen, including cars and a truck. One car is positioned behind the obstruction sign, while another car is situated further back on the left side of the scene. There are also two trucks in the image, one located closer to the left edge and another near the center of the scene.\n\nAdditionally, a person can be spotted on the left side of the image, possibly walking or waiting for someone."} +{"image_id": 112022, "caption": "The image shows a large crowd of people standing in a hall, likely a busy travel area like an airport or train station. They are all carrying various types of luggage, including suitcases, backpacks, and handbags. The suitcases are lined up in a row, occupying a significant portion of the space in the hall. \n\nThere are at least 13 people visible in the scene, with some standing closer to the foreground and others further back. A few individuals are also using their cell phones, possibly checking for updates on their travel plans or communicating with others. The hallway appears to be filled with a mix of people from different age groups and backgrounds, all waiting or passing through the busy area."} +{"image_id": 394444, "caption": "A person is standing on a sidewalk, holding a skateboard with a graffiti design on it. The skateboarder is about to ride the skateboard, which is placed on the ground next to them. The design on the skateboard features neon lights and letters, giving it a colorful and artistic appearance."} +{"image_id": 481635, "caption": "The image features a woman sitting at a dining table, enjoying a deep dish pizza with a thick crust. She appears to be having a pizza pie, possibly at a restaurant. The table is set with various items, including a knife placed near the pizza, a fork on the right side of the table, and a cup towards the left.\n\nThere are also several other people present in the scene, with one person standing on the left side and another on the right side of the image. Another dining table is visible in the background, with a cup placed on it. The atmosphere suggests a casual gathering or a celebration around the delicious pizza."} +{"image_id": 285258, "caption": "The image depicts a playful interaction between two dogs in a fenced-in area, possibly a park or a backyard. One dog appears to be a brown, white, and black poodle, while the other dog is a black poodle. They seem to be wrestling or playing together on the grassy surface.\n\nThere are a few other dogs in the scene, but they are in the background and not involved in the main interaction between the two dogs. The fenced area suggests that they are in a controlled environment, such as a park or a pet-friendly yard, where dogs can safely play and interact with each other."} +{"image_id": 479057, "caption": "The image features a large, white polar bear walking or grazing on a lush green field. The bear appears to be enjoying the grass, possibly taking advantage of the abundant vegetation as a food source. \n\nIn the background, there are several fences that seem to enclose the field, providing a boundary for the bear's habitat. Overall, the scene depicts a peaceful and natural environment for the polar bear to roam and explore."} +{"image_id": 66238, "caption": "The image captures a thrilling moment of a snowboarder performing an impressive trick in the air. The snowboarder is soaring high, showcasing their skills and enjoying the exhilarating experience. The snowboarder is wearing a red jacket, making them easily noticeable against the snowy backdrop.\n\nThere are a few other people in the scene, possibly spectators or fellow snowboarders, adding to the lively atmosphere of the mountain-based activity. In the background, there is a ski lift, indicating that the location is a popular winter sports destination."} +{"image_id": 558458, "caption": "The image features a woman wearing a red and white shirt, holding up a plate of food containing spaghetti, a hot dog, and a sandwich. She appears to be enjoying the meal, giving a thumbs up gesture. The plate is filled with a variety of food items, including several hot dogs and a few pieces of chicken.\n\nIn the background, another woman is sitting at a table, possibly eating as well. There are also a few other people in the scene, adding to the social atmosphere. The dining table is located in the middle of the room, with a fork and a knife placed on it."} +{"image_id": 400596, "caption": "The image features a green bathroom sink with a wooden countertop. The sink is circular in shape and has a unique design, which gives it an interesting appearance. Near the sink, there is a large mirror that reflects the bathroom's interior.\n\nIn addition to the sink and mirror, the bathroom also contains a towel rack for hanging towels, a bottle, and a remote control. The scene suggests a well-maintained and functional bathroom space."} +{"image_id": 373266, "caption": "The image depicts a group of healthcare professionals, including doctors and nurses, gathered around a television in a hospital room. The TV is placed on a large black and silver piece of equipment, likely a medical device, which the professionals are attending to.\n\nThere are several people present in the scene, with some working near the equipment and others observing the TV. Some individuals are wearing headphones, which are likely being used to communicate with other healthcare providers or to listen to any instructions being broadcasted.\n\nIn addition to the main equipment being attended to by the professionals, there are various smaller items in the room, such as a bottle and a cup. The overall atmosphere appears to be that of a busy and collaborative medical environment."} +{"image_id": 38332, "caption": "The image features a large elephant with tusks walking through a grassy field. The elephant is the main subject of the scene, occupying a significant portion of the image from the left to the right side.\n\nSeveral smaller elephants can be seen in the background, mostly towards the right side of the image. Their presence adds context to the scene as a herd of elephants walking through the grassy terrain."} +{"image_id": 84533, "caption": "The image features a woman sitting on a black motorcycle, likely a Harley Davidson, parked in front of a garage. She is wearing a black leather jacket and appears to be smiling as she sits on the motorcycle. \n\nThere are also several other motorcycles in the scene, with one located to the left of the main motorcycle and another one further to the right. Additionally, a car can be seen in the background behind the main motorcycle, adding to the overall atmosphere of the scene."} +{"image_id": 449963, "caption": "The image depicts a classroom or meeting room with a large round table featuring several laptops placed on top. In total, there are six laptops on the table, with some of them powered on, ready for use. There is also a mouse next to each laptop for users to navigate and operate them.\n\nAround the table, there are numerous chairs positioned for participants to sit. The chairs are organized in various arrangements, some clustered along the sides of the table, while others are situated along the far end. The overall setting appears to be a collaborative workspace or a training environment, with laptops and chairs provided for users to engage in their tasks or activities."} +{"image_id": 128180, "caption": "The image features a white plate placed on a dining table, showcasing a delicious slice of pizza. A fork is positioned near the plate, ready to be used to enjoy the pizza. The dining table is quite large, occupying a significant portion of the scene. \n\nThere is a person's feet in the foreground, possibly in the process of sitting down to enjoy the pizza. A knife is also visible on the table, likely used for cutting the pizza into smaller, manageable slices. Overall, the scene captures a delightful moment of someone getting ready to indulge in a freshly served pizza."} +{"image_id": 204232, "caption": "The image captures a thrilling moment of a skateboarder performing a spectacular trick, soaring through the air over a construction barricade. The skateboarder is mid-air, displaying an impressive display of skill and balance. \n\nIn the background, there are two traffic lights visible, one on the left side and another on the right side. Additionally, a person can be seen standing near the left traffic light, possibly watching the skateboarder's performance."} +{"image_id": 477867, "caption": "The image features a man in a wetsuit surfing on a blue and yellow surfboard, skillfully navigating the rough water. There are several other surfers in the background, some of them also on surfboards, while others are standing and watching the action. The surfers are spread out across the scene, with some closer to the foreground and others further back. The focus of the image is on the man in the wetsuit actively riding the wave on his surfboard."} +{"image_id": 308128, "caption": "The image features a man riding a skateboard on a concrete surface at a skate park. He is skillfully performing a trick, grinding on a rail with his skateboard. There are a few other people in the background, likely watching and enjoying the skateboarder's performance.\n\nIn addition to the main skateboarder, there are four other skateboards scattered around the park. Some are resting on the ground, while others are being used by the people in the scene. The skate park appears to be a lively place for skateboard enthusiasts to practice their skills and perform tricks."} +{"image_id": 222407, "caption": "The image features a colorful bird perched on a tree branch, with a blue, yellow, and black color scheme. The bird is looking down while sitting on the branch, seemingly observing its surroundings.\n\nSeveral leaves can be seen on the tree, providing a lush green backdrop to the scene. The presence of these leaves and the vibrant colors of the bird create a striking and lively image."} +{"image_id": 469543, "caption": "The image features a bedroom with two double beds placed side by side. The beds have a striped blanket on them, giving the room a neat and organized appearance. There is a nightstand beside each bed with a green phone and a black lamp on it. The phone is set on a green shelf above the bed, while the lamp is mounted on the wall next to the phone.\n\nAdditionally, there is a chair in the room, situated near the foot of one of the beds. The overall setting appears to be a hotel room, with the two beds being made up identically and neatly arranged."} +{"image_id": 421564, "caption": "The image features a young child sitting in a high chair, intently looking at a pink and green cake placed on the tray in front of them. The child appears to be enjoying the cake, possibly even celebrating a birthday. \n\nIn the background, a sink can be seen, along with a knife and a pair of scissors placed nearby. There is also a refrigerator positioned against the wall, adding to the homey atmosphere of the scene."} +{"image_id": 177419, "caption": "The image features a blue fire hydrant adorned with colorful graffiti on its side. The fire hydrant is painted to resemble a train and adds a unique, artistic touch to the streetscape. The graffiti covers a significant portion of the hydrant, making it a prominent and noticeable feature in the scene."} +{"image_id": 86432, "caption": "The image captures a thrilling moment during a baseball game, with a young boy in a blue and white uniform swinging a baseball bat at an incoming sports ball. The ball is positioned near the center of the field, and the young boy is fully focused on hitting it. \n\nThere are several other people in the scene, including teammates, opponents, and possibly coaches, with a total of 11 people either participating in the game or watching from the sidelines. Some of them are standing while others are sitting, and they are all intently observing the ongoing play. A baseball glove can be seen in the scene, suggesting that the fielder is ready to catch the ball after the swing."} +{"image_id": 544590, "caption": "The image features an orange cat lying comfortably on a couch, occupying a significant portion of the couch's surface. The cat is relaxed and appears to be sleeping or resting. There are no other people or objects in the scene, giving the cat and the couch the focus of the image."} +{"image_id": 513060, "caption": "The image shows a person holding a donut with a bite taken out of it. The donut appears to be covered in sprinkles, adding a colorful touch to the scene. Another donut can be seen in the background, possibly the one being held by the person. \n\nThere is a bench visible in the scene, located near the person and the donuts. The bench is quite large, occupying a significant portion of the background. Additionally, a handbag is placed on the bench, suggesting that the person might have been sitting down while enjoying their snack."} +{"image_id": 140921, "caption": "The image features a white surfboard sitting on a sandy beach, with a variety of writing on it. The surfboard is placed near the center of the scene, and the sandy beach surrounds it. The writing on the surfboard is likely advertising a beach rental service, as it is placed in a prominent location on the sand."} +{"image_id": 361351, "caption": "The image features a large pizza with a few slices missing, placed in a pizza box. The pizza appears to be fully baked and ready to be enjoyed. It is accompanied by a bottle of beer, which is positioned near the top left corner of the scene. \n\nAdditionally, there is a cup on the top left side of the image, possibly containing a beverage to accompany the pizza. A knife can be seen resting on the pizza box, and a bowl is located near the top right corner of the scene."} +{"image_id": 202154, "caption": "The image features a large, long pizza with a variety of toppings on a wooden cutting board placed on a dining table. The pizza is covered in cheese and tomato sauce, and it is sliced into multiple pieces. There are several fresh basil leaves scattered across the pizza, adding a touch of herbs to the dish.\n\nApart from the pizza, there is a cup positioned near the top right corner of the table. The table itself covers most of the image, giving a clear view of the delicious pizza and its toppings."} +{"image_id": 94248, "caption": "The image features a large clock tower situated in the middle of a busy city street. The clock on the tower is blue in color and prominently displays the time. There are two clocks visible on the tower, one towards the upper left side and another in the upper middle part of the image.\n\nSeveral people can be seen walking along the sidewalk near the clock tower, with one person close to the left side of the street, another walking closer to the right side of the street, and two more individuals further back on the sidewalk. In addition to the pedestrians, a car and a bus are visible on the street, contributing to the bustling urban atmosphere surrounding the clock tower."} +{"image_id": 200681, "caption": "The image shows a man standing in a grassy field on a sunny day, watching two dogs play with a frisbee. The dogs are energetically jumping in the air, fighting over the frisbee, which is located towards the top part of the scene. The man appears to be enjoying the spectacle, standing behind the dogs and observing their actions.\n\nThere are also two cars parked in the background, possibly belonging to the man or someone else who is visiting the area. The overall atmosphere of the scene is lively and fun, as the dogs engage in their playful interaction with the frisbee."} +{"image_id": 532989, "caption": "The image features a large giraffe sitting in a grassy field, likely in a zoo enclosure. The giraffe is comfortably laying down on the green grass, occupying a significant portion of the scene. \n\nIn the background, there is a stack of wooden branches, adding a natural element to the enclosure. The overall scene conveys a sense of tranquility and peacefulness, as the giraffe enjoys its surroundings."} +{"image_id": 565989, "caption": "The image features a tall brick wall with a large clock prominently displayed on the side of it. Above the clock, there is a metal sculpture of two bears, adding a unique touch to the structure. The wall itself appears to be made of bricks, giving it a sturdy and classic appearance. \n\nIn the background, there are trees visible behind the wall, providing a pleasant natural touch to the scene. The combination of the clock, bears, and brick structure creates an interesting and visually appealing outdoor space."} +{"image_id": 67315, "caption": "The image features a man wearing a dress shirt, a tie, and a tie knot in his shirt. He is in the process of sitting down, with his tie still on his shirt. The man appears to be wearing dress clothes, suggesting that he might be dressing up for a formal event or a professional setting."} +{"image_id": 157170, "caption": "The image features a herd of five sheep standing on a grassy hill, overlooking a picturesque landscape. The sheep are scattered across the hill, with some standing close to each other and others a bit further apart. They appear to be enjoying the view, possibly of the surrounding hills or mountains. The idyllic setting with the sheep and the landscape creates a peaceful and serene atmosphere."} +{"image_id": 328786, "caption": "The image features a park with a sidewalk lined with numerous wooden and metal benches. These benches are arranged in a row, providing a welcoming and comfortable seating area for park visitors. Some of the benches have fallen leaves covering them, adding a touch of nature to the scene.\n\nThe park is situated near a cemetery, and the benches are arranged in front of a walkway with grass on both sides. A few people can be seen in the area, likely enjoying the park and the peaceful atmosphere. Additionally, a bicycle is parked nearby, perhaps belonging to one of the visitors to the park."} +{"image_id": 46011, "caption": "The image features a small white airplane parked on the tarmac at an airport. The airplane is positioned near a fence that separates the runway from the surrounding area. There are several trucks nearby, with one being a fuel truck and two others being service vehicles. One of the trucks is parked close to the airplane, while the other two are situated further away. The scene captures the everyday activities at an airport, with planes and vehicles attending to various needs."} +{"image_id": 384348, "caption": "The image depicts a person skiing down a snowy hill on a mountain. The skier is the main focus of the scene, with their skis visible beneath them as they make their way down the slope. \n\nIn the background, there are several chairs, likely part of a ski lift, which are essential for transporting skiers up the mountain. The chairs appear scattered across the image, with some closer to the foreground and others further back in the scene. The presence of multiple chairs suggests that this location is a popular skiing destination."} +{"image_id": 451798, "caption": "The image displays a wall with a large tie rack featuring a variety of ties. There are multiple ties of different colors, patterns, and sizes hanging on the rack, creating an interesting and diverse collection. In addition to the tie rack, a baseball cap can be seen resting on the wall near the bottom of the tie rack. This unique combination of accessories and clothing showcases an interesting men's wardrobe."} +{"image_id": 376545, "caption": "The image captures a thrilling moment of a skateboarder performing a jump in the air on a city street. The skateboarder is in the middle of the scene, with their skateboard beneath them while they are airborne. Another young man is standing on a skateboard, watching the skateboarder in action.\n\nIn the background, there are several other people on the street, adding to the lively atmosphere of the scene. The image is set during daytime, and the skateboarder's movement is the main focus of the scene."} +{"image_id": 11538, "caption": "The image features a person riding a motorcycle down a road. The rider is wearing a helmet and gloves, and they appear to be in the midst of an enjoyable ride. The motorcycle is in the midst of a turn, occupying a significant portion of the scene.\n\nIn addition to the motorcycle, there is a handbag attached to the back of the bike, likely containing personal belongings or essentials. The scene suggests a sense of adventure and freedom, as the rider takes on the open road and enjoys the journey."} +{"image_id": 346207, "caption": "The image features a large cat lying on a wooden desk, occupying a significant portion of the area. In the background, there is a laptop placed on the desk, accompanied by a monitor. A keyboard can be seen on the desk as well, positioned near the laptop.\n\nAdditionally, several books are scattered across the desk, some located near the laptop and others closer to the front. There is a cell phone placed on the desk, closer to the laptop. A computer mouse can be spotted on the right side of the desk. Lastly, a teddy bear is located towards the right side of the image, adding a touch of personality to the scene."} +{"image_id": 359238, "caption": "The image shows a man wearing a yellow shirt, sitting on a train. He is leaning back in his seat, with a suit jacket on, and appears to be relaxed during the journey. The man is looking to his left, possibly observing something outside the window.\n\nThere is a cup placed in front of him on the table, providing him with refreshment during the trip. The dining table is situated in the background, while the train occupies the majority of the scene, stretching from the left edge to the right edge of the image."} +{"image_id": 297610, "caption": "The image is a black and white photograph of a young man riding a skateboard, skillfully grinding on a rail. He appears to be at a skate park, performing an impressive trick. \n\nThere are multiple people in the background, likely watching the skateboarder or waiting for their turn to perform their own stunts. Some of these spectators are dispersed throughout the scene, while others are gathered in small groups. The image captures the excitement and energy of the skateboarder and the audience."} +{"image_id": 428447, "caption": "The image depicts an urban street scene with a traffic light sitting on the sidewalk. The traffic light is prominently positioned in the middle of the picture, with another one located further down the street on the right side. The street is lined with tall buildings, creating a sense of scale and context for the cityscape.\n\nThere are several cars parked along the street, with one closer to the left side, another near the center, and the third one on the right side of the image. Additionally, a person can be seen walking on the left side of the street, closer to the traffic light."} +{"image_id": 428769, "caption": "The image features a black car parked next to an old, rusted fire hydrant. The license plate on the car is visible, displaying the name \"Supaband.\" The car is parked in the background, while the fire hydrant is in the foreground."} +{"image_id": 452084, "caption": "The image features a brown dining table with two bowls of food on it. One of the bowls contains a delicious breakfast of sausage, eggs, and tomatoes, while the other bowl appears to have toast. A fork is placed in the middle of the table, ready to be used for enjoying the meal. \n\nAdditionally, there is a hot dog on the table, situated to the right of the main bowl. The table setting and food presentation give off a sense of a well-prepared and appetizing meal."} +{"image_id": 545363, "caption": "The image shows a damaged sidewalk with a portion of a bench lying in a puddle of water. The bench appears to be pushed down, likely due to strong winds or some other external force. The surrounding area features a few people scattered around, some of them are carrying handbags. \n\nAdditionally, there are two cars parked further away from the scene. One car is located near the left edge of the image, while the other car is situated towards the right side of the scene. The scene suggests that it might have been an outdoor public space before the accident occurred."} +{"image_id": 77963, "caption": "The image features a unique indoor setting that incorporates a cow theme. There are two large, fake cow sculptures hanging from the ceiling, creating an interesting and playful atmosphere. The room also includes a grassy carpet, which adds to the overall theme of the space.\n\nIn addition to the cow sculptures, there are several other items throughout the room. There are two umbrellas, one located in the center-left part of the room and the other on the right side. A TV is mounted on the wall, and a fire hydrant can be seen in the far right corner.\n\nA person is partially visible in the bottom right corner of the image, possibly browsing the store or enjoying the unique decorations."} +{"image_id": 78093, "caption": "The image features a woman skiing down a snow-covered slope on a snowy mountain. She is wearing a pink and white jacket and appears to be enjoying her time skiing. There are a couple of other people in the background, but they are farther away and not the main focus of the scene.\n\nThe woman is equipped with skis, which are visible as she makes her way down the slope. The surrounding area is covered in snow, creating a beautiful and serene winter landscape."} +{"image_id": 346334, "caption": "The image features a grassy field where two large brown bears are walking and grazing on the green grass. One bear is positioned closer to the left side of the field, while the other is located towards the right side. There are no other animals visible in the scene.\n\nThe field is quite spacious, with the bears taking up a significant portion of the area as they roam around and enjoy their time in the natural environment."} +{"image_id": 185633, "caption": "The image depicts a bathroom with a bathtub and a sink. The bathtub appears to be in a state of disrepair, with chipped paint on the walls. The sink is white and located in the right side of the bathroom.\n\nThere are several bottles of various bathroom products scattered around the sink area. Some of these bottles are placed near the edge of the sink, while others are found closer to the bathtub. Additionally, a towel is placed on the edge of the bathtub, which may be used to clean the area or protect it from water splashes."} +{"image_id": 327165, "caption": "The image shows a young child getting a haircut in a salon. The barber is cutting the boy's hair with a pair of scissors, focusing on providing a neat and precise hairstyle. Another person, possibly a woman, is sitting beside the child, offering support and supervision during the process.\n\nIn the room, there is a couch positioned behind the child, and a chair is placed on the left side of the scene. Additionally, there are several books scattered around the room, suggesting that the salon is a comfortable and inviting environment for the child and his parents to spend time in while getting the haircut."} +{"image_id": 410632, "caption": "The image features a group of four baseball players wearing red, blue, and gray uniforms standing on a grassy field. They appear to be watching the game from the sidelines and chatting with each other. Two of the players are closer to the left side of the field, while the other two are positioned towards the right side.\n\nIn the background, there are several benches where players are likely seated during the game. There is also a baseball glove visible near the center of the field, indicating that it is a baseball field."} +{"image_id": 468471, "caption": "The image features a man dressed in a shirt and tie, leaping into the air above a bed in a furniture store. The man appears to be a salesman showcasing a bed in the display. The bed is well-made and takes up a significant portion of the image.\n\nIn the background, there are several chairs placed around the room. Some of these chairs are near the bed, while others are positioned further back. Another person can be seen sitting on one of the chairs, likely observing the man's demonstration."} +{"image_id": 241317, "caption": "The image features a man standing next to a cart filled with various fruits. The cart is abundant with bananas, apples, and oranges, showcasing a diverse selection of fresh produce. There are several clusters of bananas, with some located in the middle and others spread out towards the right side of the cart. Apples can be seen in different sections of the cart, while oranges are dispersed across the cart as well.\n\nThe man appears to be managing the cart, possibly selling the fruits to a customer or transporting them to a nearby location. He is positioned on the left side of the cart, overseeing the entire scene."} +{"image_id": 444982, "caption": "The image features a grassy enclosure with three zebras grazing on the green grass. One zebra is located near the center of the enclosure, while the other two are positioned closer to the edges. The zebras are feeding at various spots within the grassy field, making for a peaceful scene. There is a tree in the foreground, adding a natural element to the environment."} +{"image_id": 117563, "caption": "The image shows two men standing in a living room, playing a video game together. They are both holding Wii remotes, actively engaging in a game that resembles Wii Tennis. The living room features a couch in the background and a chair nearby.\n\nAdditionally, there are a couple of clocks on the wall, providing a sense of time for the gaming session. The men are focused on the game, standing close to each other as they enjoy their time together."} +{"image_id": 206579, "caption": "The image features a man wearing a black shirt, leaning over a dining table to blow out candles on a cake. The cake is positioned in the center of the table, with the candles being lit from the bottom. \n\nThere are several chairs around the table, with one on the right side, another on the left side, and one further back on the right. Another person can be seen in the background, partially visible and likely attending the celebration."} +{"image_id": 221172, "caption": "The image features a man playing tennis on a green court. He is wearing a blue shirt and white shorts and is in the process of swinging his tennis racket to hit a tennis ball. Another person is visible in the background, attentively watching the game. \n\nIn addition to the two individuals, there is a chair placed near the edge of the tennis court, likely for players to rest during breaks or for spectators to watch the game more comfortably."} +{"image_id": 317969, "caption": "The image depicts a flock of sheep, likely a herd, running along a road in a mountainous area. There are at least 13 sheep visible in the scene, with some closer to the left side of the road and others near the center or right side. They are moving in a single direction, with some of them closer to the grassy field while others are near the paved road.\n\nA person can also be seen in the scene, standing closer to the left side of the road, possibly observing the sheep or accompanying them. The overall atmosphere of the image suggests a rural landscape where animals, such as sheep, roam freely and interact with human-made structures."} +{"image_id": 82150, "caption": "The image features a man sitting comfortably in a chair, holding a video game controller, specifically a Wii remote, in each hand. He is playfully holding the controllers up to his face, creating a fun and lighthearted atmosphere. \n\nIn the background, there is a TV, which is likely displaying the video game the man is playing. Additionally, there is a couch visible in the scene, which adds to the cozy and relaxed environment."} +{"image_id": 284064, "caption": "The image features an older man on a tennis court, swinging a tennis racket at a tennis ball. He is in the middle of a game, actively hitting the ball with his racket. Another person can be seen on the court, possibly a partner or an opponent, but their actions are not clear.\n\nThere are two tennis rackets visible in the scene, with one held by the man in the foreground and another one in the background. The sports ball, presumably the tennis ball, is also discernible within the scene."} +{"image_id": 372203, "caption": "The image depicts a serene and deserted area, with a bench placed next to a light pole on the side of a road. The bench is situated under a blue sky, and a fire hydrant is nearby. The overall atmosphere of the scene is calm and peaceful, as there are no people or vehicles in sight.\n\nIn the background, a sandy landscape extends to the horizon, with the light pole and bench marking the only visible human presence. A fire hydrant is also visible in the middle of the scene, adding an interesting touch to the otherwise quiet setting."} +{"image_id": 359136, "caption": "The image features a woman wearing a black shirt and boots, laying on the bathroom floor. She is propped up with her legs open, relaxing in the space. A sink and a bathtub are present in the room, with the sink situated to the left and the bathtub towards the right. \n\nThere is also a toilet visible in the background. The woman appears to be enjoying her time in the bathroom, possibly after a long day."} +{"image_id": 499281, "caption": "The image showcases a well-equipped kitchen with a modern stove top oven. The stove is accompanied by a microwave placed above it, making it convenient for cooking and heating food. The kitchen counter features various items, including a bag of groceries, a bowl, and a cup. \n\nAdditionally, the counter has an assortment of bottles, a knife, and a spoon arranged on it. A potted plant is placed on the counter, adding a touch of greenery to the space. The kitchen also features a sink to the left side, which helps in cleaning up the cooking area."} +{"image_id": 192233, "caption": "The image features a man wearing a blue shirt and white shorts playing tennis on a red tennis court. He is swinging a tennis racket, preparing to hit a tennis ball that is in the air. The man is the main focus of the scene, demonstrating his athleticism and skill as he plays the game."} +{"image_id": 11987, "caption": "The image depicts a unique and fancy bedroom with a warm ambiance. The room is filled with different types of furniture, including a large bed in the right corner, two dining tables, and three chairs. One of the tables has a white tablecloth, adding a touch of elegance to the setup. \n\nThere are several books scattered throughout the room, suggesting that the occupants enjoy reading. Additionally, a fireplace can be seen in the room, providing a cozy atmosphere for relaxation. The overall scene creates a welcoming and comfortable environment for the occupants."} +{"image_id": 406810, "caption": "The image depicts a room with a laptop computer placed on a surface. The laptop screen is filled with a large amount of people sitting in front of it, possibly attending a meeting or a presentation. They are wearing headphones, which can be inferred as a way to communicate or listen to the audio being presented. \n\nThe room is equipped with a television set mounted on the wall, which appears to be used for displaying slides or visual aids during the presentation. Several chairs are scattered around the room, providing seating for the attendees. The people are engaged in the event, some using the laptop's audio output to communicate with others or to follow the presentation's content."} +{"image_id": 99965, "caption": "The image shows a person holding a sandwich with potato chips on a plate, likely prepared for lunch. The sandwich appears to be a turkey sandwich, and the chips are served on the side. The person is not visible in the image, only their upper back and head can be seen as they pick up the sandwich from the plate.\n\nThere are a few other items in the scene, such as a knife placed on the plate and a green pepper laying next to it. Additionally, a handbag can be seen in the background near the person."} +{"image_id": 17328, "caption": "The image features a red train traveling down the tracks, with a striking red, white, and grey design. The train is captured in a close-up view, highlighting its vibrant color scheme. There are several other tracks visible in the background, suggesting a busy train station.\n\nA person can be seen standing near the middle of the scene, possibly waiting for the train or observing its journey. The presence of snow on the tracks adds a touch of wintery atmosphere to the scene."} +{"image_id": 393682, "caption": "The image features a delicious dessert scene with a fork and a slice of cake on a white plate. The fork is placed on the plate, ready to be used to enjoy the cheesecake. The cheesecake appears to be vanilla-flavored, and it is accompanied by a generous amount of whipped cream, adding to its tempting appearance. The overall presentation of the dessert looks mouth-watering and inviting."} +{"image_id": 540093, "caption": "The image features a city street with a large umbrella covering a parked motorcycle. The motorcycle is placed under the umbrella, likely to protect it from the elements or potential damage. In the background, there are a few cars parked along the street, with one car positioned further back and another closer to the center.\n\nA person can be seen standing on the sidewalk near the parked motorcycle, possibly observing the scene or waiting for their ride. Additionally, there are two potted plants in the area, one near the edge of the sidewalk and another further back on the street."} +{"image_id": 242400, "caption": "The image features a woman standing on a sidewalk, holding a clock that is wrapped in Christmas lights and ribbons. She appears to be posing beneath a large clock, possibly for a festive holiday photo. \n\nIn the background, there are several cars parked along the street, as well as a truck. Additionally, a traffic light can be seen near the top left of the scene. Two other people are present in the background, one of them closer to the right edge of the image, while the other is located further back on the right side."} +{"image_id": 409009, "caption": "The image features a white bullet train, which is stopped at a train station next to a platform. The train occupies a significant portion of the scene, extending from the left side of the image towards the right. \n\nThere are several people in the scene, with one person standing close to the train, another person further back on the platform, and two more individuals situated in the right-hand corner of the image. A clock can be seen in the background, likely providing information about the train schedule or train arrival time."} +{"image_id": 6091, "caption": "The image features a person, likely a woman, standing in front of a stop sign with their arms raised, holding the sign in a manner that makes it appear as if they are holding up the stop sign. The stop sign itself is illuminated, drawing attention to the person and the action they are performing. \n\nThere is also a hand visible near the bottom of the image, possibly belonging to the person holding the stop sign. The scene captures a unique moment where the individual is interacting with the stop sign in an unconventional way."} +{"image_id": 42834, "caption": "The image features a woman sitting at a dining table, preparing a plate of food. She is in the process of spreading meat onto two slices of bread, possibly making a sandwich. The woman is using a knife to spread the meat onto the bread, and there is a can of bread sitting on the table nearby. \n\nA white tablecloth covers the table, and several plastic forks are scattered across it. In addition to the woman's sandwich, there is another plate with a slice of cake placed on the table."} +{"image_id": 433554, "caption": "The image captures a group of people enjoying water sports on a sunny day at a waterfront area. They are standing on a green, grassy platform, watching another person riding a board in the water. There are several people present, both on the platform and near the water. \n\nIn addition to the people, there are a few water sports equipment visible in the scene. A surfboard can be seen near the center of the image, while another surfboard is located towards the left side of the platform. There are also two life jackets, one near the left edge of the image and another further to the right. The vibrant scene showcases a pleasant day spent by the water, with people engaged in various activities and enjoying the outdoors."} +{"image_id": 174987, "caption": "The image features a train covered in colorful graffiti, giving it a distinctive appearance. The graffiti is not only on the train's exterior but also on the windows, making the train's entire body covered in art. The train is parked at a station, and there is a person visible in the background, possibly waiting for the train or observing the artistic design."} +{"image_id": 116208, "caption": "The image features a delicious pizza placed on a dining table. The pizza is large and has a lot of toppings on it, including meat, cheese, and vegetables. There are several wine glasses surrounding the pizza, indicating that it might be a social gathering or a celebration. \n\nIn addition to the pizza and wine glasses, there are a few bottles of various beverages present on the table. There are chairs positioned around the table, suggesting that people can sit and enjoy the meal in a comfortable setting. A person is also visible in the background, possibly ready to join the gathering or just passing by."} +{"image_id": 80131, "caption": "The image features a couple sitting together at a dining table in a kitchen. They appear to be enjoying a meal and engaging in conversation. The table is covered with various items, including a bottle, a wine glass, and an oven. There are also some cups and a bowl on the table.\n\nAround the kitchen, there are three wine glasses, one placed near the couple and the other two placed farther away. In addition, there are several bottles in the kitchen, with one close to the couple and the other two placed farther away. A sink can be seen in the background, along with an oven beneath it."} +{"image_id": 310663, "caption": "The image features a train sitting on train tracks, with two people in the vicinity, possibly observing or waiting for it. The train appears to be an old model, with a mix of colors including orange, white, and blue. The scene suggests that it might be in a state of disrepair or has been out of service for quite some time. The overall atmosphere of the image evokes a sense of nostalgia and curiosity about the history of the train."} +{"image_id": 100138, "caption": "The image features a black motorcycle parked on a street. The motorcycle is sitting in front of a hedge, giving a sense of being surrounded by greenery. The street appears to be relatively quiet, with no other vehicles or people visible in the scene."} +{"image_id": 415613, "caption": "The image shows a man wearing a baseball cap, working in a commercial kitchen, preparing food. He is standing at a counter, slicing bread with a knife, and placing the slices on a platter. The man appears to be focused on his task, and he is using a cutting board to hold the bread.\n\nIn the background, there are several cars parked outside the kitchen, likely indicating that the kitchen is located in a public place or near a busy area. There are also a few bowls on the counter, one to the left and another to the right of the man, as well as a bottle close to the edge of the counter."} +{"image_id": 214737, "caption": "The image features the interior of a large, historic building with a grand architectural design. A prominent feature of the building is a massive clock mounted on the wall above a high arch. The clock is surrounded by several arched doorways, adding to the grandeur of the space.\n\nAdditionally, there are multiple people scattered throughout the scene, possibly admiring the architecture or attending an event at the venue. Some of them are standing closer to the arched doorways, while others are near the clock or further back in the room. The presence of these individuals adds life to the image and highlights the significance of the building."} +{"image_id": 172718, "caption": "The image is a black and white photograph of a young boy wearing a white shirt and tie, looking serious. He is positioned in the center of the frame, with a slightly tilted head. The boy appears to be of school age and is likely dressed up for a formal occasion or a portrait.\n\nAround the boy, there are five other people in the scene, although they are not the main focus of the image. They are spread throughout the photograph, with two on the left side, two on the right side, and one in the upper right corner. These individuals seem to be in the same room as the boy, suggesting a group photo or a larger portrait."} +{"image_id": 99186, "caption": "The image features a red stop sign placed on the side of a road, standing out against the backdrop of a blue, cloudless sky. The sign is positioned near a car, which is parked or stopped alongside the road. There are also some trucks visible in the distance, adding to the sense of a busy transportation hub."} +{"image_id": 3580, "caption": "The image shows a man sitting comfortably on a couch in a living room, holding a Wii remote in his hands. He appears to be playing a video game, possibly Wii boxing, as he is wearing headphones. \n\nThe living room is furnished with a dining table and several chairs. There are three chairs placed near the dining table, one closer to the man on the couch and the other two positioned farther away. Another chair is located near the right side of the room. Additionally, there is a third chair further back in the room."} +{"image_id": 526044, "caption": "The image features a brown and white cow standing on a beach near the ocean. The cow is positioned closer to the water, with its head near the edge of the shore. The beach appears to be a mix of sand and rocks, spread across the area.\n\nAdditionally, there are two people visible in the background, possibly enjoying the view or observing the cow. The scene is likely a combination of natural and coastal elements, creating a serene atmosphere."} +{"image_id": 105291, "caption": "The image displays a stop sign with a street sign for Main Street Schoolhouse located above it. The stop sign is positioned in front of a two-story house. \n\nAdditionally, there are two cars in the scene. One car is parked near the stop sign, while the other car is located further back on the street. Overall, the image captures a typical urban setting with traffic signs and parked vehicles."} +{"image_id": 577169, "caption": "The image features a group of people gathered around a large clock high in the sky. The clock is prominently displayed on a wall, capturing the attention of the onlookers. There are at least ten people visible in the scene, standing at various positions around the clock, with some closer to the foreground and others further back.\n\nThe people are observing the clock, possibly admiring its intricate design and historical significance. The scene captures a moment of shared interest and curiosity among the group."} +{"image_id": 181574, "caption": "The image shows a man sitting at a dining table with a pizza placed in front of him. He appears to be enjoying the pizza, and he has a smile on his face. Another person can be seen sitting next to him, likely sharing the meal.\n\nThe table is set with two pizza pies, one closer to the man and another one further away. There are also two wine glasses on the table, one near the man and the other one on the opposite side of the table. A fork is visible in the foreground, probably about to be used to cut or serve the pizza."} +{"image_id": 83441, "caption": "The image is a collage of two pictures showcasing a living room with black leather couches. In the room, there is a large black TV sitting on top of a wooden table. Multiple remotes are scattered around the room, with some placed on the table and others on a couch nearby. \n\nA chair can be seen in the room, positioned near the couches. In addition to the furniture, there is a laundry basket placed near the middle of the room, indicating that the living space also serves as a functional area for daily chores. Two clocks are present in the room, adding a decorative touch to the space."} +{"image_id": 130527, "caption": "The image depicts a picturesque scene of a herd of cows grazing in a lush green field. There are multiple cows scattered throughout the field, enjoying the fresh grass and the serene environment. A beautiful, blue sky can be seen in the background, adding to the idyllic scene.\n\nIn the background, there is a fence that separates the grazing area from the rest of the field. A group of cows can be seen standing near the fence, while others are spread out across the field. Overall, it is a peaceful and natural setting for the cows to graze and roam freely."} +{"image_id": 86471, "caption": "The image features a man on a tennis court, holding a tennis racket and preparing to serve a tennis ball. He is in the process of tossing the ball into the air, getting ready for a powerful hit. The man is wearing a blue shirt and white shorts, showcasing his athletic attire as he takes part in the sport. \n\nThere is a tennis ball in the air, located near the man, indicating the ongoing serve. The tennis court is a well-maintained space, with a net dividing the two halves of the court. The overall scene captures an exciting moment during a tennis match."} +{"image_id": 105737, "caption": "The image features a brown teddy bear sitting on a bookshelf in a room filled with books. The bookshelf is packed with a variety of books, arranged in different orientations, and occupying most of the frame. The teddy bear is placed in the middle of the shelf, drawing attention to its presence. The room has a cozy and homey atmosphere, with the teddy bear adding a touch of warmth and comfort."} +{"image_id": 212842, "caption": "The image features a large herd of zebras gathered in a grassy field. There are at least 13 zebras visible in the scene, with some standing close to each other and others spread out across the field. The zebras are of various sizes and orientations, indicating a diverse group.\n\nIn the background, there is a lone tree, possibly an acacia tree, which adds to the natural beauty of the scene. The open field and the presence of the tree create a serene atmosphere for the zebras as they graze and interact with each other."} +{"image_id": 105220, "caption": "The image depicts two people skiing down a snow-covered hill, both wearing skis and holding ski poles. They are standing close to each other, possibly posing for a picture, while they ski through a red gate on the snowy path. The gate is large, and the skiers are in the middle of it.\n\nAdditionally, there are several banners visible in the scene, suggesting that they might be at a skiing event or competition. One banner is located on the left side of the image, another on the far right, and a third one is placed between the two main skiers."} +{"image_id": 490701, "caption": "The image depicts a person sitting at a dining table, enjoying a delicious dessert. The dessert appears to be a chocolate lava cake, and the person is holding a fork, using it to eat the cake. A glass of tea is placed on the table next to the dessert, enhancing the treat's ambiance. \n\nThere is another fork on the table, possibly belonging to another person who is not visible in the image. Additionally, a spoon can be seen resting on the table near the dessert. The scene is set in a comfortable and relaxed environment, with the person enjoying their dessert and the warm beverage."} +{"image_id": 368961, "caption": "The image features two elephants standing close together in an outdoor enclosure. They are both connected to a wire, possibly as part of an exercise program or social interaction. One of the elephants appears to have a ball nearby, providing additional entertainment or stimulation for the animals.\n\nThere are a few people in the scene as well, with one person standing near the left side of the image and two others standing further back, one on the right and the other on the left side of the enclosure. The scene seems to depict a moment of interaction between the elephants and the people."} +{"image_id": 520892, "caption": "The image features a woman standing outside with a delicious hot dog in her hand. She is in the process of eating the hot dog, which is placed in a bun and wrapped in paper. The woman appears to be enjoying her meal, and she is wearing glasses.\n\nThere are several other people in the scene, though they are not as prominent as the woman and the hot dog. Some of them are standing further back, and others are located on the right side of the image. The overall atmosphere seems to be a casual outdoor gathering where people are enjoying food and company."} +{"image_id": 113354, "caption": "The image features a group of three zebras standing in a grassy area, surrounded by trees and plants. Two of the zebras are facing left while they eat grass, and the third one is situated closer to the center of the scene. The grass appears to be dry and brown, suggesting a possibly arid environment. \n\nAdditionally, there are several birds scattered throughout the scene, possibly attracted to the zebras or the surrounding greenery. The overall atmosphere of the image is that of a serene and peaceful moment in nature, with the zebras grazing and the birds co-existing in harmony."} +{"image_id": 33652, "caption": "The image displays a delicious pizza with a variety of toppings, including cheese, onions, and potentially some other ingredients, sitting on a pan. The pizza appears to be cooked, with the cheese and toppings melted and bubbling. It is placed on a dining table, ready to be served and enjoyed.\n\nThere is a cutting board located next to the pizza, possibly used for cutting and serving the dish. A knife can be seen on the cutting board, possibly used to cut the pizza into slices."} +{"image_id": 511153, "caption": "The image features a blue train traveling down the tracks, surrounded by a city environment. The train is positioned in the middle of the scene and appears to be moving forward. There are several other tracks visible in the background, creating a sense of complexity in the city's transportation system."} +{"image_id": 328957, "caption": "The image features a cat sitting on top of a multi-layered cat tree. The cat is comfortably perched on the top tier of the tree, looking down from its elevated position. \n\nIn the scene, there are several books scattered around the room, some of which are located near the cat tree, while others are placed on the floor or on surfaces nearby. The books are of various sizes and orientations, suggesting that they belong to different individuals or were recently used by the occupants of the space."} +{"image_id": 190015, "caption": "The image features a green truck parked in a field, with a large pile of dry grass or hay, possibly resembling a mound of dirt, behind it. The truck is positioned near the left side of the scene, occupying a significant portion of the image.\n\nThere are several trees scattered throughout the background, adding a natural element to the scene. Additionally, a person can be seen in the vicinity of the truck, possibly loading or unloading the hay."} +{"image_id": 244925, "caption": "The image features a man wearing a backpack with a banana sticking out of it. The backpack is located on his back, and the banana is positioned between the backpack and the man's back. The man appears to be carrying the camera in his backpack, completing the outdoor, adventurous look."} +{"image_id": 29406, "caption": "The image features a wooden park bench placed in a grassy area near a building. The bench is the central focus of the scene, and it is partially surrounded by green grass and flowers. A few people can be seen in the vicinity of the bench, possibly enjoying the view or spending time in the area.\n\nThere are multiple potted plants and bushes in the background, creating a lush and colorful garden environment. The overall scene appears to be vibrant and inviting, with the bench serving as a perfect spot for relaxation and taking in the natural beauty of the surroundings."} +{"image_id": 32570, "caption": "The image captures a man surfing on a surfboard in the ocean, riding a wave that is just breaking at the surface. The surfer is in the middle of the scene, with his body positioned in a way that shows he is skillfully navigating the wave. \n\nIn addition to the surfer, there are several other people in the background, likely enjoying the ocean and watching the surfer's performance. The scene conveys a sense of excitement and adventure, as everyone is experiencing the thrill of the ocean and its waves."} +{"image_id": 260608, "caption": "The image features a group of young girls playing soccer on a grassy field. They are actively chasing after a soccer ball, attempting to score goals for their respective teams. There are two soccer balls visible in the scene, one near the center of the field and another towards the bottom right area.\n\nThe girls are spread out across the field, with some closer to the goal and others further away. They are all engaged in the game, showcasing their athletic abilities and team spirit."} +{"image_id": 291286, "caption": "The image depicts a man riding a skateboard down a busy city street. He is skillfully navigating the narrow path between shops, with several pedestrians walking by in the background. In total, there are 11 people visible along the street, some of them carrying handbags or backpacks.\n\nIn addition to the skateboarder, there are two bicycles parked on the sidewalk, one closer to the left side of the street and the other near the center. The scene captures the hustle and bustle of an active urban environment with people going about their day."} +{"image_id": 375278, "caption": "The image features a person's hand gently petting a black cat, which is sitting inside a suitcase. The cat appears curious and is likely attracted to the person's hand. \n\nThe suitcase is open and occupies most of the image. In the background, there are two books placed on the floor, one to the right of the suitcase and the other further to the right. The scene suggests a cozy and comfortable environment where the cat enjoys being petted by its owner."} +{"image_id": 290684, "caption": "The image features a woman wearing a purple shirt, white pants, and glasses. She is sitting on a post and holding a pink teddy bear with fluffy fur. The teddy bear is quite large, taking up a significant portion of the woman's lap. \n\nThere are also several skateboards scattered around the scene, with one near the woman's feet, another further away, and another one further to the right. The skateboards all have a similar design, suggesting they are of a similar style."} +{"image_id": 29306, "caption": "The image features a brown dog sitting on a sandy beach, looking out at the ocean in the background. The dog appears to be enjoying the beautiful scenery and seems to be a well-behaved pet. \n\nThere are several other people scattered across the beach, but they are at a sufficient distance from the dog to indicate that they are not with the dog. The presence of other beachgoers adds to the lively atmosphere of the scene."} +{"image_id": 173375, "caption": "The image features a man snowboarding down a snow-covered hill during daytime. He is skillfully riding the snowboard down the slope, enjoying the winter sport. There are no other people visible in the scene, making it a solitary snowboarding experience.\n\nThe snowboarder is wearing a helmet for safety, and he appears to be geared up in warm clothing to handle the cold weather. There are several benches placed around the area, possibly for resting or observing the snowboarding action. The overall atmosphere of the scene is that of a winter sports enthusiast having a great time on the slopes."} +{"image_id": 198590, "caption": "The image features a brown truck parked in a parking lot, with another truck visible in the background. The focus of the image is on the driver's side window of the brown truck, which has a bird, possibly an orange one, perched on the side of the window. The bird appears to be curious about the surroundings or possibly looking for a ride. \n\nIn addition to the trucks, there are two cars in the scene as well \u2013 one parked next to the brown truck and another parked in the background. The parking lot seems to be a busy place for vehicles and wildlife to interact."} +{"image_id": 25747, "caption": "The image features a long red and yellow train traveling down the train tracks. The train is surrounded by a lush green forest, giving off a serene and peaceful atmosphere. \n\nThere are several people scattered throughout the scene, possibly enjoying the view of the train or engaging in other activities in the area. They are located at various points near the train tracks, with some closer to the foreground and others further away. \n\nIn addition to the train and people, there are traffic lights visible in the scene. They are positioned at different points along the train tracks, likely serving to control and manage the traffic flow."} +{"image_id": 346589, "caption": "The image depicts a snowy mountain slope with two people enjoying winter sports. One person is standing on skis, wearing a helmet for safety, while the other person is kneeling down on the snow with a snowboard. The skier and snowboarder are likely taking a break to rest and enjoy the view.\n\nThere are a few other people in the background, but they are not the main focus of the scene. The overall atmosphere appears to be lively and fun, as people engage in various winter activities."} +{"image_id": 121106, "caption": "The image depicts a busy airport scene where a large group of people is standing around the luggage claim area. They are waiting to collect their suitcases and bags from the conveyor belt. There are multiple suitcases of various sizes and colors placed on the belt, as well as a handbag.\n\nIn the vicinity, there are two benches for people to sit and rest while they wait. Several people can be seen throughout the scene, some standing close to the luggage belt, while others are a bit further away. Some passengers are interacting with each other, while others seem to be focused on their belongings."} +{"image_id": 392850, "caption": "The image features a table with a variety of fruits, including apples, oranges, and bananas. The apples are placed around the table, with one near the center and another closer to the right side. Oranges are scattered across the table, with some near the left edge and others in the middle. Bananas are positioned on the right side of the table, with one near the center and another two placed slightly to the left. \n\nA knife is visible on the table, likely used for cutting the fruits, placed near the middle of the table. Additionally, there is a bowl situated at the top edge of the table."} +{"image_id": 554241, "caption": "The image depicts a large crowd of people walking along a brick path in a park-like setting. Many individuals are holding umbrellas, suggesting that it might be a rainy day or they are protecting themselves from the sun. The people appear to be engaged in various activities, chatting, walking, or simply enjoying the outdoors.\n\nThere are at least two handbags visible in the scene, one near the center of the image and another towards the left side. A couple of people can be seen wearing backpacks, indicating that they could be tourists or out for a long walk. The overall atmosphere of the scene is lively and social, with people of different ages and backgrounds coming together in the outdoor space."} +{"image_id": 341017, "caption": "The image shows a man on a truck filled with various goats, both sitting and standing. The goats are of different sizes and seem to be piled on top of one another. The man is in the process of loading or unloading the goats from the truck, possibly for transportation or to be placed in a different location. \n\nIn addition to the man and the goats, there are two chairs within the scene, one near the truck and another further away. The presence of chairs suggests that the scene might be taking place in a more urban or residential area."} +{"image_id": 135497, "caption": "The image shows a man sitting at a dining table with his hands up, possibly about to eat or about to give a high-five. The table is covered with a pizza, and there are multiple bottles of wine present on the table, suggesting that he might be enjoying a nice meal with a friend or family member.\n\nIn the background, there are two cars parked, one on the left side and another on the right side of the scene. The setting appears to be a casual dining establishment, with a potted plant visible near the right edge of the image."} +{"image_id": 159260, "caption": "The image features a blue train traveling down the train tracks with a red and blue top. The train is moving down the tracks at a rapid pace, giving the impression of speed and motion. In the background, there are several buildings, which suggest that the train is passing through a town or an urban area. \n\nAdditionally, there are two people visible near the train, possibly observing or waiting for it to pass by. The scene captures the essence of the train's journey and the surroundings of the tracks."} +{"image_id": 417332, "caption": "The image captures a baseball game in progress, with a pitcher wearing an orange uniform standing on the mound and throwing a baseball towards home plate. The catcher, wearing a baseball glove, is positioned nearby, ready to catch the ball. \n\nThere are three other people in the scene, likely teammates or opponents, but their positions are not clear. A sports ball, presumably the baseball being thrown, can be seen in the air, while a baseball bat is visible in the far right corner of the image."} +{"image_id": 90520, "caption": "The image features two teddy bears dressed in a variety of clothing, reminiscent of a traditional Japanese outfit. The bears are sitting side by side, with one on the left and the other on the right. They appear to be wearing kimonos, the traditional Japanese garment. \n\nIn the background, there is a small dog visible, positioned behind the bears. Additionally, there are a couple of books placed on the floor, close to the teddy bears, possibly serving as decorative items or for reading."} +{"image_id": 318524, "caption": "The image features an old, rusty train car on a steel track. The train car appears to be in a state of disrepair, with rust covering its surface, and a variety of screwholes and bolts on the side. There are also some signs of wear and tear on the train car, indicating its age and the environment it has been exposed to.\n\nA window is present on the train car, which is located in the middle of the scene. The rusty train car sits on the tracks, occupying a significant portion of the image."} +{"image_id": 118406, "caption": "The image captures a group of men playing a game of soccer on a field. There are a total of nine players visible in the scene, with three of them in the middle of the field, and the others spread out around the soccer ball. \n\nThe soccer ball is in the air, with one player likely about to head it. The players are engaged in the game, showcasing their athletic abilities and competitive spirit. In the background, there is a car parked, possibly belonging to one of the players or spectators who have come to enjoy the game."} +{"image_id": 25748, "caption": "The image features a white boat named \"Blackberries\" docked in a marina, with the boat's name prominently displayed. The boat is tied to a dock, and there is another boat visible in the background. \n\nThere are a few people in the scene, likely enjoying their time at the docks or attending to their boats. One person can be seen near the center of the image, while two other people are located towards the right side of the scene."} +{"image_id": 365557, "caption": "The image features a snowboarder wearing a blue jacket, skillfully riding a snowboard down a snow-covered slope. The snowboarder is dressed in a winter jacket and is making their way down the hill with good control.\n\nThere are a few people in the background, but they are not the main focus of the scene. The primary focus is the snowboarder, showcasing their ability to navigate the snowy hill with expertise."} +{"image_id": 320978, "caption": "The image features a bustling outdoor market with a large display of fresh vegetables for sale. There are numerous types of vegetables, including broccoli, zucchini, and tomatoes, spread across the stand. \n\nIn addition to the variety of vegetables, there are several bottles placed on the counter, likely containing various sauces or beverages to complement the produce. A person can be seen in the background, possibly a customer or an employee attending to the stand.\n\nOverall, the scene conveys a lively atmosphere with a focus on offering fresh and high-quality produce to the customers."} +{"image_id": 315073, "caption": "The image features a gray cat sitting on a chair with its mouth open, possibly yawning or making a sound. The cat is positioned in the center of the frame, and the background includes a white heater below a window with a blue vase. \n\nThere is a bottle in the background, which is placed on a surface to the right of the cat. The cat seems to be relaxed and comfortable in its environment, and its facial expression adds a lively touch to the scene."} +{"image_id": 363927, "caption": "The image features a gray metro bus driving down a street, transporting passengers between stations. The bus is packed with people, as several individuals can be seen through the windows. There are at least 12 passengers visible inside the bus, occupying various seats and standing up, indicating a busy day for public transportation.\n\nAdditionally, there are two cars in the scene, one located in front of the bus and another one behind the bus on the right side. The presence of these cars suggests that the bus is operating in an urban environment with mixed traffic."} +{"image_id": 243355, "caption": "The image features a zebra walking across a grass-covered field, likely in a zoo enclosure. The zebra appears to be enjoying the outdoors and moving around in the field. There are two other zebras in the background, though they are farther away and not as prominent in the scene.\n\nIn addition to the zebras, there is a bench located towards the right side of the field, providing a place for visitors to sit and observe the animals."} +{"image_id": 373521, "caption": "The image features an old, rusted, and special bus parked on a grassy area. The bus displays a sign on the top that reads \" Special. \" The bus is parked in a yard next to a sidewalk. The overall scene gives off a vintage vibe. \n\nThere are a few people in the scene, one person standing near the left side of the bus, another person closer to the right side, and a third person in the background. The bus is parked in a way that it occupies a significant portion of the image, making the viewer focus on the old bus's unique characteristics."} +{"image_id": 76409, "caption": "The image depicts a cozy bedroom scene with a bed covered in a red blanket. The bed is positioned in the middle of the room and takes up a significant portion of the space. Next to the bed, there is a wooden bedside table with a painting on it. A small vase can be seen placed on the table, adding a decorative touch to the room.\n\nAdditionally, there is a couch in the bedroom, situated near the wooden bed. A person is visible in the room, possibly enjoying the view or getting ready for a nap. The room also features a potted plant, creating a pleasant atmosphere and adding a touch of greenery to the space."} +{"image_id": 485985, "caption": "The image features a young blonde boy with a cast on his arm, lying down and brushing his teeth. He is wearing blue clothing and appears to be enjoying the activity. There are a few other people in the background, but they are not the main focus of the scene.\n\nThe boy's arm is in a cast, and it is visible in the image, covering a significant portion of his arm. The toothbrush he is holding is positioned near the bottom of the arm, suggesting that the child is reaching for it to continue brushing."} +{"image_id": 27564, "caption": "The image features two young girls sitting side by side on a couch, with their feet resting on the floor. They are both comfortably seated, and one of them is holding a remote control. The girls appear to be watching TV or playing a video game, as suggested by the presence of the remote control. \n\nA dining table can be seen in the background, and a chair is positioned near the left side of the couch. There are a couple of cups placed on the table, possibly containing beverages for the girls to enjoy while they relax."} +{"image_id": 92749, "caption": "The image depicts a beautiful scene of three giraffes in a grassy, fenced-in area, which appears to be a zoo. The giraffes are standing near a tree and a body of water, possibly a pond. One of the giraffes is looking over the fence, seemingly intrigued by the visitors. \n\nIn addition to the giraffes, there are a few birds scattered around the scene, adding to the lively atmosphere. There is also a bench visible in the area, providing a place for visitors to sit and enjoy the view of the animals."} +{"image_id": 554958, "caption": "The image features a cat sitting in a pile of leaves, looking directly at the camera. The cat, which appears to be a tortoiseshell cat, is comfortably sitting among the leaves, possibly enjoying the warmth and protection provided by the pile.\n\nThere are several leaves scattered around the cat, creating a cozy environment for the feline. Some of the leaves are located near the top of the cat, while others are spread out across the scene. The cat seems to be the main focus of the image, with its gaze directed towards the viewer."} +{"image_id": 439971, "caption": "The image features a woman standing in a bathroom, taking a selfie using her bathroom mirror. She is wearing a striped shirt and a scarf as she holds the camera to capture her reflection. There is a bottle on the counter nearby, possibly for bathroom-related items.\n\nAdditionally, there is a cup placed on the counter, possibly containing a liquid for the woman to use during her selfie. The scene also includes a window, which might allow natural light to illuminate the bathroom space."} +{"image_id": 559006, "caption": "The image features a large brown bear standing in a body of water, likely a river. The bear appears to be walking or swimming through the water, taking a moment to cool off. The bear's head is poking out of the water, and it seems to be looking around, possibly observing its surroundings or searching for food. \n\nThere are a few fish visible in the water near the bear, adding a lively touch to the scene. Overall, the image captures a fascinating moment of the bear interacting with its environment in the water."} +{"image_id": 457262, "caption": "The image features a small wooden table with two bananas sitting on top of it. The bananas are yellow and slightly rotten, resembling miniature bananas. Next to the bananas, there is a penny placed on the table, providing a sense of scale to the size of the fruit. The scene creates a unique contrast between the small size of the bananas and the even smaller penny."} +{"image_id": 263881, "caption": "The image features a giraffe standing in a grassy field on a sunny day. The giraffe appears to be quite tall and is stretching its neck as it walks through the brush. There are several trees in the background, providing a natural backdrop to the scene. \n\nInterestingly, there are two birds perched on the giraffe's neck, possibly enjoying the warmth or taking advantage of the giraffe's height for a better vantage point. The overall atmosphere of the image is one of tranquility and natural beauty, as the giraffe and the birds coexist in their natural habitat."} +{"image_id": 322594, "caption": "The image features a small bathroom with a toilet, sink, and mirror. The sink is situated on the left side of the bathroom, while the toilet is positioned on the right side. There is a wooden seat on the toilet. The bathroom appears clean, and the lights are on.\n\nIn addition to the main bathroom furniture, there are several items scattered around the space. A bottle can be seen on the sink counter, while a bowl is placed nearby. Two cups are also present in the bathroom, one on the left side and the other on the right side. Two toothbrushes can be found near the sink, and a pair of scissors is located on the right side of the bathroom."} +{"image_id": 22423, "caption": "The image features a man and an elephant in a park-like setting, with the elephant holding a straw hat in its trunk. The man is standing nearby, either beside the elephant or slightly behind it. The elephant appears to be enjoying the moment, as it holds the hat in its trunk.\n\nIn the background, there is a body of water, possibly a pond, adding to the park-like atmosphere. A banana can also be seen in the scene, possibly being offered to the elephant by the man."} +{"image_id": 59000, "caption": "The image presents a cozy living room featuring a green couch and a brown sofa. The room is adorned with a Christmas tree, complete with decorations and lights. A glass coffee table sits in the center of the room, with a few books placed on its surface.\n\nAdditionally, the living room contains a TV set placed against the wall, and a collection of movies can be spotted nearby. There are a couple of vases in the room, one on the left side and another on the right side. A remote control can be found near the left couch, while a bowl is situated on the right side of the room."} +{"image_id": 119547, "caption": "The image features a group of people, with a man wearing a suit and tie standing in the center. He appears to be adjusting his tie, possibly straightening it. Behind him, there are two girls and a man, all dressed in business attire, suggesting a formal event or gathering. \n\nIn the scene, a microphone is visible, indicating that there might be an announcement or speech taking place. The people are gathered in a semi-circle formation, with some individuals standing closer to the man in the suit, while others are positioned further back. Overall, the image captures a moment of professional interaction or celebration."} +{"image_id": 432763, "caption": "The image captures a beautiful beach scene at sunset, with a large flock of birds spread across the shoreline. There are at least 14 birds in various positions, some standing close to the water, while others are in the process of flying. \n\nThe beach is located near the ocean, providing a serene and picturesque setting for the birds. The birds are scattered across the scene, with some in the middle of the beach, others near the water's edge, and a few flying in the sky. The blend of nature and wildlife creates a captivating and peaceful atmosphere."} +{"image_id": 125635, "caption": "The image features a black and white cat sitting on a window sill, looking out of the window. The cat appears curious and attentive as it observes the outside world. \n\nIn the background, blinds can be seen on the window, providing some context for the indoor environment. There is also a second, smaller cat partially visible in the scene, positioned to the left of the main cat on the window sill."} +{"image_id": 542549, "caption": "The image depicts an unmade bed with a blanket and a pillow. On the bed, there are three notebooks, two of which are laid out near the edge of the bed. The third notebook is placed slightly further away, closer to the right side of the bed. \n\nIn addition to the notebooks, there are two cell phones on the bed, one near the left side and the other towards the right. A pair of scissors can also be seen on the bed, positioned between the notebooks."} +{"image_id": 494759, "caption": "The image depicts a beach scene with two people enjoying a fun day out flying a large kite. The kite can be seen in the sky above the beach, with its vibrant colors and size making it a focal point of the scene. \n\nThe two individuals are standing close to each other, watching the kite soar gracefully through the air. The beach is also spacious enough for them to walk along the shoreline comfortably. In the background, a boat is visible near the water's edge, adding to the relaxing atmosphere of the beach."} +{"image_id": 5617, "caption": "The image depicts a bed with two cats lying on either side of it, comfortably resting on pillows. One cat is positioned slightly further back, while the other cat is closer to the front. \n\nThere are also a few items on the bed, including a laptop on the left side, a book near the center, and a handbag placed towards the right side. Additionally, a couple of potted plants can be seen in the background, adding a touch of greenery to the scene."} +{"image_id": 279774, "caption": "The image captures a lively baseball game taking place on a field, with several players and spectators present. A young boy wearing a baseball uniform is swinging a baseball bat, attempting to hit the ball. Other players can be seen on the field, both in the background and closer to the foreground.\n\nThere are a total of six people visible in the scene, including the young batter, and they are all engaged in the game or watching it unfold. A baseball bat is lying on the ground, possibly belonging to one of the players. In addition to the players, there are two benches in the background, which could be used for resting or spectating purposes."} +{"image_id": 323442, "caption": "The image features a group of people enjoying a meal together at an outdoor dining area. A man and a woman, possibly a couple, are sitting at a dining table with plates, glasses, and utensils in front of them. There are wine glasses on the table, suggesting they are having a drink along with their meal. \n\nAnother couple can be seen sitting at a different dining table nearby. In the background, there are more people in the outdoor dining area, some of them sitting on chairs and benches. A handbag is placed on the ground next to the couple sitting at the table, and a tie can be spotted hanging near the edge of the scene.\n\nThe overall atmosphere appears to be relaxed and social, with people enjoying their time together at the outdoor dining area."} +{"image_id": 109454, "caption": "The image features a man dressed in a blue shirt and blue tie, sitting down and drinking a beverage from a green glass. He appears to be enjoying the moment, possibly having a beer or a cocktail. \n\nIn the background, another person can be seen, but their presence is less prominent in the scene. There are a few chairs and dining tables scattered throughout the area, indicating that it might be a dining or social space. Additionally, a tie can be spotted hanging from one of the chairs, suggesting that the place might be a formal or semi-formal event venue."} +{"image_id": 370677, "caption": "The image features three women standing next to each other in a bakery or doughnut shop, likely a doughnut shop with a doughnut display in the background. They are all wearing the same colored uniforms, which appear to be red, yellow, and blue, and smiling at the camera.\n\nThe shop is well-stocked with an abundance of doughnuts displayed in various piles throughout the scene. There are at least 13 doughnuts of different sizes, shapes, and flavors, creating a mouth-watering display. The women are positioned in the front, showcasing the mouthwatering selection of doughnuts available for customers to choose from."} +{"image_id": 521509, "caption": "The image features a woman sitting on a bed, facing the camera with a video camera set up in front of her. She appears to be preparing for a video call or recording a selfie. The bed is well-made and covers a significant portion of the image.\n\nThere are two chairs in the room, one located to the left of the bed and the other on the right side. A potted plant can be seen in the upper left corner of the image, while a clock is present on the right side of the bed. Additionally, a remote control is placed near the left side of the bed."} +{"image_id": 236461, "caption": "The image captures a man in a wetsuit surfing a wave in the ocean on a surfboard. The surfer is skillfully balancing on the surfboard, concentrating on riding the wave. \n\nThere are several birds present in the sky, adding a lively touch to the scene. Some of the birds are flying high above the surfer, while others are closer to the water's surface. The birds' presence in the background highlights the connection between nature and the thrilling activity of surfing."} +{"image_id": 534845, "caption": "The image features a teddy bear hanging by its ears from a clothesline, situated outside a building. The teddy bear is accompanied by several clothes pins, which are holding the clothes. \n\nIn the background, there is a clothesline with various articles of clothing hanging on it. Some of the clothes hanging on the clothesline include a few socks, a shirt, and a pair of pants. The scene suggests that someone might be in the process of drying or re-hanging the clothes."} +{"image_id": 180580, "caption": "The image features a dining table adorned with a blue plate filled with various vegetables. The vegetables include multiple carrots and broccoli spears, making for a colorful and healthy meal. The carrots are found both on the left and right sides of the plate, while the broccoli covers the entire right half of the plate. \n\nIn addition to the plate of vegetables, there is a knife placed on the left side of the table, and a fork is situated at the top of the table. The overall setting creates an inviting atmosphere for a meal shared between two people."} +{"image_id": 484551, "caption": "The image features a woman wearing an orange shirt and hat sitting on the deck of a boat. She is positioned near the center of the boat, enjoying her time on the water. The boat's interior is visible, and it appears to be a small vessel. \n\nThere is another person slightly visible on the left side of the image, likely seated on the boat as well. In the background, an expansive body of water can be seen, stretching out to the horizon. A chair is also present on the boat, providing a place for passengers to relax."} +{"image_id": 456146, "caption": "The image features a herd of sheep walking down a road, with a total of 11 sheep visible. They are spread out along the road, with some closer to the left side, others in the center, and a few on the right side of the scene. The sheep are varying in size and distance from the camera, creating a lively and dynamic atmosphere. The overall scene is outdoors, with grass visible in the background, adding to the natural environment of the animals."} +{"image_id": 283131, "caption": "The image depicts a bathroom with a toilet, sink, and bathtub. The sink is located on the left side of the bathroom, while the toilet is situated on the right side. The bathtub is positioned in the background, covering the right side of the bathroom.\n\nA white and brown toilet bag is placed on the counter next to the toilet, and a plastic bag is placed on the counter near the sink. There is also a bottle on the counter, close to the sink. The floor of the bathroom appears to have a dark spot on it, possibly a stain."} +{"image_id": 23309, "caption": "The image features a delicious pasta salad with various ingredients. The pasta is a mixture of different sizes and shapes, including spiral noodles and miniature flat noodles. The salad includes a variety of vegetables, such as broccoli, onions, carrots, and celery. There are also several carrots and broccoli pieces scattered throughout the dish.\n\nAdditionally, there is a generous amount of cheese on top of the pasta, adding a creamy flavor to the dish. The colors and textures of the ingredients create a visually appealing and appetizing pasta salad."} +{"image_id": 547487, "caption": "The image features a young boy with a skateboard, performing a daring trick in mid-air. He appears to be flying through the air while riding the skateboard, displaying an impressive display of skill.\n\nThere are a few other people in the background who might be watching the boy or waiting for their turn to perform their own stunts. In total, there are eight people in the scene, including the boy on the skateboard."} +{"image_id": 34830, "caption": "The image features a bathroom with a white urinal mounted on a red tiled wall. The urinal is positioned at the bottom right of the scene. The wall is completely covered with red tiles, creating a visually striking backdrop. There is also a black and white tile pattern on the wall, adding to the overall design of the bathroom."} +{"image_id": 125997, "caption": "The image features a large blue brick wall with a white text painted on it, which says \"u are alive.\" The wall is located outside on a building, occupying a significant portion of the background. There is also a sign on the wall that reads \"u are alive,\" further emphasizing the message conveyed by the graffiti."} +{"image_id": 19916, "caption": "The image features a dining table with a white bowl placed on it. The bowl is filled with a variety of food items, including several apples and pieces of cinnamon. A fork is situated near the bowl on the table, ready to be used for enjoying the meal. \n\nThere is a laptop computer placed on the left side of the table, suggesting that someone might be working or browsing the internet while having their meal. The table itself appears to be made of wood, giving the scene a cozy atmosphere."} +{"image_id": 145019, "caption": "The image depicts a scene where a large white and blue airplane has been involved in an accident and is sitting on the side of a grassy hill. Several people are gathered around the wrecked plane, with some observing from a distance and others standing closer to the site. \n\nA couple of construction vehicles, including a backhoe, are parked nearby, likely assisting in the recovery and clean-up process. One person is using a cell phone, possibly to report the accident or to communicate with others. The overall mood of the scene seems to be that of concern and interest from the people gathered around the wrecked plane."} +{"image_id": 127161, "caption": "The image features a white plate with a delicious pizza on it. The pizza appears to be a tortilla or a crusty pizza crust, topped with cheese and a variety of vegetables. There are several slices of pizza on the plate, arranged in different positions, with some slices being larger than others.\n\nAdditionally, a fork is placed next to the plate, ready to be used to enjoy the tasty pizza. There is also a bowl in the background, possibly containing a side dish or other accompaniments for the meal."} +{"image_id": 543660, "caption": "The image presents a bathroom scene with two toilets placed in a small space. One toilet is positioned in the foreground, while the other is located in the background. The floor of the bathroom is covered with black and white checkered tile, which adds a unique and interesting design element to the space.\n\nThere are also two toilet paper rolls, one placed near the left toilet and the other closer to the right one. The bathroom appears to be small, as only the toilets and the tile floor are visible."} +{"image_id": 8333, "caption": "The image features a red and white passenger train traveling along the tracks, with a large building in the background. The train is positioned on the tracks between a series of buildings, and it appears to be a commuter train traveling through a city. \n\nThere are a few cars visible in the scene, with one car located near the middle of the image and another closer to the right side. In addition, there are two people in the scene, one standing closer to the left side of the image and another person on the right side. \n\nA bench can be seen near the middle of the image, providing a place for people to sit while waiting for the train."} +{"image_id": 482907, "caption": "The image features a small, vintage airplane flying through a clear, blue sky. The single-engine plane has a propeller on top of its head, and its distinctive design and color scheme consist of a white, black, and red color scheme. The airplane appears to be a World War I era fighter plane, indicating its historical significance.\n\nIn the background, there is a clear blue sky, making it an ideal day for aviation enthusiasts to appreciate the aircraft's flight."} +{"image_id": 290130, "caption": "The image features a lone surfer riding a large wave on a sunny day in the ocean. The surfer is skillfully balancing on a surfboard, navigating the wave with ease. The scene captures the energy and excitement of the sport.\n\nIn addition to the surfer, there are several birds scattered across the sky, adding a sense of liveliness to the atmosphere. The birds appear to be enjoying the sunny day as well, sharing the joy of the ocean and the waves with the surfer."} +{"image_id": 58225, "caption": "The image shows a person holding a hot dog with a bun in their hand, standing in a stadium. The person is enjoying their snack while watching a baseball game, as evidenced by the presence of a baseball field in the background. \n\nThe hot dog is loaded with toppings, making it a delicious and indulgent treat. There are several other people present in the stadium, likely fellow fans enjoying the game. The atmosphere appears to be lively, with everyone engaged in the event taking place in the stadium."} +{"image_id": 249550, "caption": "The image features a bedroom scene with a bed adorned with a beautiful floral bedspread. The bed is positioned against a wall, occupying a significant portion of the room. Next to the bed, there is a small table with a flower vase placed on it. The room is complemented by a rug on the floor, adding warmth and coziness to the space.\n\nOn the bed, there are four pillows arranged, contributing to a comfortable sleeping arrangement. In addition, a potted plant is placed on the bedside table, adding a touch of greenery and life to the room."} +{"image_id": 448765, "caption": "The image depicts a clean bathroom with a white toilet and a white sink. The sink is positioned on the left side of the toilet, and both fixtures are well-aligned and functional. There is also a toilet paper roll on the right side of the toilet, which is likely used for convenience.\n\nA small wooden box is placed on the floor beneath the sink, possibly for additional storage or as a tissue holder. The bathroom appears to be spotless and well-maintained, reflecting the neatness and tidiness of the space."} +{"image_id": 498439, "caption": "The image captures a lively baseball game taking place on a field with a crowd in the background. There are multiple players on the field, including a baseball player holding a bat and standing on the field, likely preparing for his turn at bat. Another player is visible wearing a baseball glove, likely playing the role of a fielder.\n\nSeveral other players are scattered across the field in various positions, indicating that they are actively participating in the game. A few players can be seen near the edges of the field, possibly waiting for their turn to join the game or taking a break.\n\nIn the background, a bench is visible, which could be used by the players during breaks in the game or by the team as a whole."} +{"image_id": 252403, "caption": "The image features a young woman with glasses, brushing her teeth with a blue and white toothbrush. She is standing in front of a door, and her long black hair is covering her shoulders and reaching down to her feet. She is wearing a green shirt, and her gaze is directed at the camera.\n\nIn the scene, there are also several toothbrushes, with the primary one being held by the woman and another one placed near the bottom right corner of the image. There are additional toothbrushes in the background, creating a sense that the woman is using the bathroom."} +{"image_id": 347995, "caption": "The image depicts a woman wearing a blue shirt lying in bed with her dog, who is comfortably resting on the bed next to her. The mother and her black dog are sharing a cozy moment together. The dog is a mix of black and gray, with a noticeable chest, and it appears to be a beloved pet of the woman.\n\nIn the background, there is a baby in a crib, adding to the family atmosphere. Multiple books are scattered around the room, suggesting that the woman enjoys reading. There is also a bottle nearby, possibly for the baby's feeding.\n\nAdditionally, a clock is visible on the wall, allowing the woman to keep track of time while tending to her baby and her dog."} +{"image_id": 544216, "caption": "The image features a dining table with a plate holding a delicious-looking sandwich made with a toasted bacon and tomato sandwich, along with a side of potato chips. The sandwich is cut in half, making it an appetizing meal. \n\nThe table also has various items, including a bowl, a cup, and a fork. Another bowl is placed on the opposite side of the table, and a knife can be seen nearby. There is a person seated on the left edge of the scene, likely enjoying the meal. A couple of cups are also visible in the scene, one near the person and another one further away from the main dish."} +{"image_id": 205729, "caption": "The image features a group of people on skis in a snowy mountain setting. There are a total of eight skiers, spread across the scene. Some of the skiers are standing, while others appear to be in motion. They are all wearing appropriate skiing gear and seem to be enjoying their time on the slopes.\n\nThe skis are visible underneath each person, with various pairs of skis belonging to the group. The skiers are scattered across the scene, with some closer to the left side, others in the center, and a few more towards the right side of the image. The atmosphere is lively and full of adventure as the group navigates the snowy terrain together."} +{"image_id": 350988, "caption": "The image shows an old wooden auditorium with several wooden benches arranged in rows. The benches are in different sizes and have steps leading to the front, indicating that they are part of an old theater or church setting. The wooden seating area covers the entire image, from the front to the back.\n\nThere is a small writing on the floor, possibly indicating the name or date when the space was last used. The overall atmosphere of the room appears to be empty, giving a sense of tranquility and history to the space."} +{"image_id": 288673, "caption": "The image depicts a beautiful beach scene with a group of people enjoying various activities. There are at least five people in the scene, with some standing closer to the water and others further back on the beach. \n\nA kite can be seen flying in the sky, adding a lively atmosphere to the scene. Additionally, there are two cars parked near the beach, possibly belonging to the people enjoying the beach or visitors passing by. The beach's palm trees and the ocean create a picturesque setting for the people to enjoy their time."} +{"image_id": 568690, "caption": "The image features a bathroom scene with a cat sitting on top of a white toilet seat. The toilet is located near a shower curtain, which is open, revealing a butterfly-themed shower curtain. In total, there are eleven butterflies of various sizes and colors on the shower curtain, creating a lively atmosphere in the bathroom."} +{"image_id": 504194, "caption": "The image features a large brown dog sitting on a brick sidewalk next to a long wooden bench. The dog appears to be looking at the camera, capturing a moment of interest. In the background, there are several bicycles parked nearby, adding to the outdoor atmosphere. Additionally, a car can be seen in the far right part of the scene. The overall scene gives a sense of a relaxed and pleasant environment, where the dog and the bench are the main focal points."} +{"image_id": 35368, "caption": "The image features a kitchen with a dining table that has a bowl of fruit sitting on it. The fruit bowl contains a variety of fruits, including bananas, which are prominently displayed in different positions. There are also some oranges and a lemon, creating a vibrant mix of colors.\n\nIn addition to the fruit bowl, there are a couple of cups placed on the table, one to the left and another to the right. A knife can be seen on the table, possibly used for cutting the fruits. The table is also adorned with a potted plant, adding a touch of greenery to the space."} +{"image_id": 307332, "caption": "In the image, a brown dog is standing near the water, capturing the attention of two people who are sitting on a bench. The dog appears to be enjoying the outdoors, just like the humans. The bench is located close to the water, providing a serene and relaxing environment for the couple.\n\nThe people are engaged in conversation, and the dog seems to be patiently waiting for its turn or for the next move. The scene portrays a leisurely moment shared between the dog, the couple, and the surrounding natural beauty."} +{"image_id": 490878, "caption": "The image features a man wearing a red jacket, skiing down a snowy hill on a mountain. He is standing on a pair of skis and holding two ski poles. The man appears to be enjoying the winter sport, and the outdoor environment is picturesque.\n\nAdditionally, there is a dog accompanying the man, positioned near the left side of the scene. The dog is likely accompanying the man on this skiing adventure, adding a sense of companionship to the winter outing."} +{"image_id": 507187, "caption": "The image features a gathering of people in a grassy area, with a green motorcycle prominently placed as the center of attention. Many individuals are standing and socializing near the motorcycle, some of them wearing hats. \n\nIn addition to the motorcycle, there are two bicycles in the scene. One bicycle is located near the left side of the image, while the other is positioned further back, closer to the right edge. There are also several people standing close to the motorcycle and the bicycles, indicating a shared interest in these vehicles.\n\nIn the background, there are multiple cars parked, further showcasing the various transportation options available at the gathering. Overall, the scene appears to be a social event or gathering where people come together to appreciate different types of vehicles."} +{"image_id": 254644, "caption": "The image features a kitchen with wooden cabinets and a tile countertop. The counter is cluttered with various items, including several bottles, cups, and bowls. There are at least 10 bottles and 2 cups placed on the counter, with some bottles grouped closer together and others spaced farther apart. Additionally, there are 2 bowls placed near the bottles, creating a somewhat disorganized yet visually interesting scene.\n\nA sink can be seen in the background, along with a potted plant placed near the upper cabinets, adding a touch of greenery to the space. The overall impression is of a cozy, well-used kitchen area with a mix of organization and lived-in charm."} +{"image_id": 400803, "caption": "The image features a large orange and white boat floating on top of a body of water. There are several people on the boat, with some working on the boat's deck and others inside. One person appears to be a pilot, as indicated by the presence of a flag on the boat. \n\nA few chairs are placed on the deck of the boat for the passengers to sit and enjoy the view or take a break from their work. The boat is out on the water, surrounded by a vast expanse of blue ocean."} +{"image_id": 574928, "caption": "The image depicts a large, grassy field where a herd of sheep is grazing. There are at least 14 sheep spread across the field, some closer to the foreground and others further back towards the horizon. The pastoral scene provides a sense of tranquility and natural beauty.\n\nIn addition to the sheep, there are two farm buildings visible in the background, possibly serving as a barn or other agricultural structure. The presence of these buildings suggests that the field is part of a farm or ranch property."} +{"image_id": 559247, "caption": "The image shows a group of people gathered around a dining table in a line, getting food from a buffet. The table is filled with various hot dogs covered in ketchup, mustard, and other condiments. The people are holding plates and using spoons to pick up the hot dogs and put them onto their plates.\n\nIn addition to the hot dogs, there are also a few bowls on the table, likely containing additional food items or condiments. The scene appears to be a social gathering or event where people are enjoying a meal together."} +{"image_id": 254625, "caption": "The image features a baseball player in the midst of swinging a bat during a game. The batter is wearing a gray shirt and is holding the baseball bat with both hands, providing a powerful and focused swing. There are several chairs visible in the background, possibly indicating a seating area for players or spectators."} +{"image_id": 374966, "caption": "The image captures a lively scene of several young people enjoying their time at a skate park. There are a total of nine people in the scene, with some of them riding skateboards and others watching the action. One boy, in particular, is riding a skateboard with enthusiasm, while his friends look on, likely waiting for their turn to perform their own stunts.\n\nThere are two skateboard ramps in the park, and a few people can be seen on the ramps, practicing their skateboarding skills. The overall atmosphere of the skate park appears to be vibrant and full of energy, as the young people spend time together engaging in their shared interest."} +{"image_id": 351967, "caption": "The image features a large clock, situated in the center of a busy urban area. The clock is visible through a store window, and a yellow taxi is passing by it. Numerous people can be seen walking around the street, going about their daily routines.\n\nThere are a total of 12 people in the scene, with some closer to the clock and others further away. A few of the individuals are carrying handbags, which can be seen in various positions throughout the image. The bustling atmosphere and the prominent clock make this a captivating urban setting."} +{"image_id": 172877, "caption": "The image features a man sitting comfortably in a chair with his hands crossed. He is wearing a shirt and tie, along with a tie that is loosened around his neck. The man is dressed in business attire, giving off a professional appearance. \n\nIn the room, there is a desk and a lamp providing light to the area. A clock can be seen on the desk, possibly indicating the time or serving as a decorative element. Another chair is visible in the background, creating a cozy and functional living space."} +{"image_id": 309237, "caption": "The image features a large, long-haired, and multi-colored cat sitting comfortably on a blue couch. The cat is resting on the couch cushion, and it appears to be looking at the camera. \n\nOn the couch, there is a remote control placed near the left side, and a cell phone positioned slightly further away. The cat seems relaxed and content in its cozy spot on the couch."} +{"image_id": 565877, "caption": "The image features a young woman sitting comfortably on a red couch. She is wearing a blue shirt and a cap, which is placed on her head. In front of her, there is a white laptop computer on the couch, with the screen facing towards the woman. She is smiling and appears to be using or browsing the laptop. \n\nAdditionally, there is a book placed on the couch next to the woman, likely belonging to her. The scene is cozy and relaxed, showcasing the woman enjoying her time on the couch with her laptop and book."} +{"image_id": 489924, "caption": "The image features a woman riding a skateboard down the middle of a street. She appears to be enjoying herself as she glides on the skateboard. The skateboard is a unique one, adding a different touch to the scene.\n\nThere are also several cars parked along the street, with one car on the right side of the image, two cars in the middle, and another car on the left side. The woman is skateboarding past these parked cars, indicating that she is skating in an urban environment."} +{"image_id": 125472, "caption": "The image captures a young man in the middle of an impressive trick, jumping up in the air on his skateboard. He is wearing a green shirt and is skillfully performing the trick high above the ground.\n\nThe skateboard is visible beneath him, emphasizing the height of the jump. In addition to the skateboard, there is a bicycle parked in the background on the ground, adding another element to the scene."} +{"image_id": 422706, "caption": "The image captures a breathtaking view of the ocean from a boat deck, with a large boat hanging in the distance. A woman, who appears to be the main subject of the scene, is standing on the boat deck, leaning over the side and holding on to a rope. Another person can be seen nearby, possibly enjoying the view or assisting with the boat.\n\nAdditionally, there is a smaller boat visible in the background, closer to the water's surface. The scene conveys a sense of adventure and excitement as people explore the beautiful blue ocean and its inhabitants."} +{"image_id": 290700, "caption": "The image captures a thrilling moment of a man surfing on a large wave in the ocean. He is skillfully balancing on a surfboard, soaring over the wave as it breaks. The surfer is in mid-air, displaying an impressive display of surfing talent.\n\nIn addition to the surfer, there are several other people in the scene, likely watching and enjoying the spectacle. Some of them are scattered around the ocean, while others are closer to the surfer. The presence of these people adds to the excitement of the scene and highlights the popularity of surfing as a recreational activity."} +{"image_id": 365177, "caption": "The image features a large, white bus parked on a city street. The bus is quite long, stretching from one side of the scene to the other, and occupying a significant portion of the street.\n\nThere are several people in the scene, some standing near the bus, while others are at various distances. One person can be seen closer to the front of the bus, another near the middle, and two more individuals standing further back.\n\nA building is visible in the background, providing an urban context for the scene. The presence of the bus and the building suggest that this could be a busy city area with public transportation being a common mode of transport."} +{"image_id": 398661, "caption": "The image features a well-equipped kitchen with a variety of utensils and appliances. A microwave is placed on the counter, along with an oven located nearby. A sink can be found in the kitchen as well. \n\nThe most striking feature of the kitchen is the collection of pots and pans hanging on the walls. There are at least six pots and pans of various sizes, adding a nice touch to the kitchen's decor. Additionally, there are a couple of bottles placed on the countertop, likely containing cooking ingredients or oils."} +{"image_id": 175611, "caption": "In the image, a person is using a pair of scissors to carefully cut a cigar out of a white object, possibly a block of tobacco. The individual is holding the cigar in their hands, and the scissors seem to be used for slicing the tobacco into smaller pieces. \n\nThe scene appears to be set in a workspace or a laboratory, as there are several books in the background. Some of these books are placed on the floor, while others are stacked up against a wall or a surface. The person cutting the cigar seems to be focusing on their task, and the presence of the books may suggest a focus on precision and attention to detail in their work."} +{"image_id": 477673, "caption": "The image features a small kitten sitting inside a backpack, looking up and out of it. The kitten appears curious and playful, occupying the majority of the backpack's space. \n\nThere are a few other items in the scene, including a bottle positioned near the top of the image, and two books located at the bottom. One of the books is on the left side of the backpack, while the other is further to the right. The backpack itself is located on the floor, with the kitten comfortably settled inside."} +{"image_id": 1270, "caption": "The image captures a lively baseball game taking place on a field with several players, including young boys, in action. The young boys are playing baseball, with one of them holding a bat, preparing to swing at an incoming ball. Other players are positioned around the field, ready to field the ball or run to the next base.\n\nSurrounding the field, there are a few people watching the game. Some are standing on the sidelines, while others are sitting on chairs, enjoying the sports event. There are also a couple of benches located near the spectators, providing a place for them to sit and relax.\n\nVarious personal items can be seen in the scene, including bottles and backpacks near the players and spectators, as well as a car parked in the background. Overall, the atmosphere is filled with excitement as the children participate in the baseball game."} +{"image_id": 224012, "caption": "The image features a white plate filled with a delicious meal. The main dish consists of ham, which is sliced and placed on the plate with a generous amount. In addition to the ham, the plate includes a variety of vegetables, including broccoli and potatoes. The broccoli pieces are scattered around the plate, with some near the center and others towards the edges. The potatoes are also distributed across the plate, accompanying the other ingredients in the meal. The plate is aesthetically pleasing, presenting a well-balanced and appetizing meal."} +{"image_id": 552510, "caption": "The image features a group of young boys playing soccer on a field. There are several players scattered across the field, actively participating in the game. A couple of players can be seen in the foreground, while others are positioned more towards the background. \n\nTwo sports balls are visible in the scene, one located in the middle of the field and another closer to the right side. There is also a handbag placed on the field, possibly belonging to one of the players. In the background, there is a small group of people watching the game, including a woman and a child."} +{"image_id": 272880, "caption": "The image features a person holding a piece of pizza from a pizza pan at a dining table. The pizza appears to be mostly eaten, with only a small slice remaining. A fork can be seen on the table, likely used to eat the pizza. \n\nIn addition to the pizza, there is a cup placed near the edge of the table. The table itself covers most of the scene, with only a bit of the table's surface visible at the top."} +{"image_id": 580540, "caption": "The image features a black dog sitting on a hardwood floor in a living room, attentively watching a flat-screen TV. The television displays a nature scene, possibly showing a stream or a similar outdoor setting. \n\nIn the room, there are several books scattered around, some placed near the dog and others situated near a corner. Additionally, a cup can be seen on a surface close to the TV, possibly belonging to the dog owner or someone else in the household."} +{"image_id": 242934, "caption": "The image features a cozy living room with a black leather couch placed in the center. Next to the couch, there is a wooden coffee table, and both furniture pieces sit on a rug. A clock can be seen hanging on the wall, adding to the homey atmosphere.\n\nAdditionally, there is a bookshelf in the room, filled with several books of various sizes. A vase is placed on the coffee table, and two remote controls are lying around, possibly for the TV or other electronic devices. A bottle can also be spotted on the table, adding to the lived-in feel of the space."} +{"image_id": 178807, "caption": "The image consists of two scenes featuring a person riding a skateboard. In both scenes, the skateboarder is captured at different stages of their ride. The first scene shows the skateboarder's feet positioned on the board, while the second scene displays the skateboarder mid-ride.\n\nIn both scenes, the skateboarder is wearing a pair of black shoes. One of the skateboards in the first scene is closer to the left, while the other skateboard is in the second scene and slightly to the right. The image provides a detailed view of the skateboarder's actions and the skateboards used during the ride."} +{"image_id": 135748, "caption": "The image features a small brown dog resting in a dog bed on the floor. The dog appears to be wearing a blanket and has a tongue out, giving it a playful look. Next to the dog bed, there is a bottle of orange juice, which may be for the dog's consumption. \n\nAdditionally, there is a chair in the background of the scene, and a television can be seen on the upper right side of the image. The arrangement suggests a cozy and comfortable environment for the dog to relax in."} +{"image_id": 255036, "caption": "The image depicts a large, red building with a distinctive blue fence next to it. The building appears to be a modern structure, possibly an office building or a large business center. There is a parking lot in front of the building, where several cars are parked. Among the vehicles, there are three cars and two trucks, occupying the available parking spaces.\n\nIn addition to the vehicles, a traffic light can be seen near the center of the scene, regulating the flow of traffic in the area. A street sign is also visible, providing guidance or information to drivers and pedestrians. Overall, the scene captures a typical day at a bustling business center."} +{"image_id": 3926, "caption": "The image shows two sheep standing in a snow-covered field. One of the sheep is positioned more towards the left side, while the other is on the right side of the scene. The sheep are both surrounded by a significant amount of snow, making it difficult to see their facial expressions or activities. One of the sheep is also rubbing the snow off its head, likely trying to stay warm and comfortable in the cold environment."} +{"image_id": 236762, "caption": "The image features a large group of people sitting together at a dining table in a restaurant. There are several chairs surrounding the table, and everyone appears to be enjoying a meal together. The table is filled with various plates of food, cups, wine glasses, forks, knives, and spoons. Additionally, there are multiple bottles placed on the table, likely containing drinks for the guests.\n\nThe people in the scene can be seen engaged in conversation, smiling, and enjoying their time together. Some of the individuals are using cell phones, possibly capturing memories or checking updates during the meal. Overall, it's a lively gathering of friends or family sharing a meal in a restaurant setting."} +{"image_id": 248314, "caption": "The image features a wooden dining table with a laptop computer placed on top of it. The laptop is positioned in the left portion of the table. There are several containers of food and a bowl of rice placed on the table, along with a spoon. A cup can be seen near the edge of the table.\n\nAdditionally, there is a chair situated close to the table, and a mouse can be spotted on the right side of the table. The table appears to be set up for a meal, with the laptop suggesting that someone is working or studying while eating."} +{"image_id": 559773, "caption": "The image captures a thrilling moment of a skier wearing a white shirt, black pants, and yellow shoes, flying through the air on a snow ski. They are in mid-jump, appearing as if they are going over a cliff or a similar obstacle. The skier is the main focus of the scene, with their skis and body prominently visible.\n\nThere are several other people in the background, possibly skiing or watching the main skier in action. Additionally, there are two benches or other seating areas visible in the scene, which could be for resting or observing the skiing activities."} +{"image_id": 340665, "caption": "The image features a woman standing under an umbrella, likely in the rain. She is wearing a blue jacket and glasses, and is holding a black umbrella over her head. A handbag can be seen next to her, placed on the ground.\n\nIn the background, there is a potted plant situated on the left side of the scene. A backpack is also visible on the ground, close to the left edge of the image. Another person is present in the scene, located on the right side, but their details are not clear."} +{"image_id": 388599, "caption": "The image features a person playing with a dog, holding out a frisbee for the dog to catch. The frisbee is located near the center of the scene, and the person is reaching their arm out from the left side of the image. The dog is positioned in the right half of the image, eagerly waiting for the frisbee to be thrown. They seem to be enjoying the playtime together, and the scene captures the essence of a fun and engaging outdoor activity for both the person and the dog."} +{"image_id": 163528, "caption": "The image features a delicious pizza with a generous amount of toppings. The pizza is covered in various ingredients, including meat, vegetables, and a creamy sauce. Some of the visible toppings on the pizza include lettuce, tomatoes, and meat. \n\nThe pizza is served on a white plate, placed on a dining table. A fork and a knife are placed on the table near the pizza, ready for use. The table occupies most of the image, providing a clear view of the pizza and the surrounding area."} +{"image_id": 481212, "caption": "The image features a man sitting comfortably on a red couch in a living room. He is accompanied by two dogs, one of which is lying on the left side of the couch and the other on the right side. The man appears to be enjoying his time with the company of the dogs.\n\nIn addition to the couch and dogs, there are several items scattered around the room. A cup is placed on the floor near the right side of the couch, while a remote control can be found on the left side. There are also two books in the scene, one located near the center of the couch and the other towards the right side. A bird is visible outside the window, adding a touch of nature to the atmosphere."} +{"image_id": 277533, "caption": "The image shows a man sitting on a red couch, holding a Nintendo Wii controller in his hands. He appears to be enjoying his time playing a video game on the Wii console. \n\nIn the room, there are two books placed close to the couch, one on the left side and another on the right side. Additionally, there is a cell phone located on the couch, slightly to the right of the man."} +{"image_id": 173383, "caption": "The image features a beautifully decorated wedding cake placed on a dining table. The cake has a white base with blue ribbon wrapped around it, creating a visually appealing color contrast. The table is set with several forks and a knife, indicating that the cake is ready to be served. \n\nIn addition to the main cake, there is another smaller cake visible on the table. A couple of candles are also present in the scene, adding to the ambiance of the celebration. The table is situated in a room with a wooden wall, giving the setting a warm and cozy atmosphere."} +{"image_id": 419624, "caption": "The image features a train with several white carts, moving along a track near a hillside. The train is passing by some trees, giving the scene a pleasant and natural atmosphere. \n\nIn addition to the train, there are several people in the area, likely enjoying the view or waiting for the train to pass by. They are scattered around the hillside, with some standing closer to the train and others further away. The presence of people suggests that the train is a popular and frequently used mode of transportation in the area."} +{"image_id": 130291, "caption": "The image features a man wearing a suit and red tie, standing next to a woman in a black dress. They are both working together to adjust the man's red tie, likely to ensure it is properly tied and looks neat. The woman is helping the man with the final adjustments, making the scene a friendly and collaborative moment.\n\nIn the background, there are a few other people, but their presence is not the main focus of the scene. Additionally, there is a cell phone placed on a surface, and a vase can be seen as well. These objects are not the main focus of the scene but add to the overall atmosphere of the moment."} +{"image_id": 193369, "caption": "The image features a bench with a distinctive black, rusty metal frame. The bench is situated on a cobblestone path in a park-like setting. The stone path surrounds the bench, providing a comfortable and inviting place to sit and relax. \n\nThere are several green bushes visible in the background, adding to the serene atmosphere of the scene. The combination of the metal bench and the natural surroundings creates a visually appealing contrast, making it an interesting spot to rest and enjoy the outdoors."} +{"image_id": 367804, "caption": "The image captures a beautiful beach scene where a young girl is the main focus, enthusiastically flying a kite high in the sky. She is holding the kite string while enjoying her time on the beach. The girl is positioned near the center of the image, with the kite stretching across the sky above her.\n\nThere are several other people in the background, likely enjoying their own beach activities. Some cars are parked on the sand, indicating that people have come to this beach for a relaxing day of fun and leisure."} +{"image_id": 84735, "caption": "The image captures a baseball game in progress, with a batter in a pinstripe baseball uniform swinging his bat with great intensity. The batter is surrounded by several other players on the field, some of whom are wearing baseball gloves. \n\nThe crowd is watching the game intently from the stands, filling up nearly half of the image. There are numerous people of different ages and heights, all focused on the ongoing match. The atmosphere is lively, and the audience is likely enjoying the thrilling moments of the game."} +{"image_id": 247285, "caption": "The image features a man and a woman standing together under a large, striped umbrella, holding a baby. The family is posing for a picture, with the baby positioned between the couple. The umbrella provides shade for the family, and the baby is comfortably held by the mother. \n\nAdditionally, there is a clock visible in the background, likely indicating the time of day or serving as a decorative element for the scene."} +{"image_id": 438432, "caption": "The image is a black and white photograph featuring a group of young women, all dressed in ties and skirts, posing together. They are part of a team, likely a cricket team, as indicated by the presence of cricket equipment such as a bat and a ball. There are a total of 12 people in the photograph, standing and sitting in various positions.\n\nThe ties worn by the women are of different styles and colors, adding to the overall diversity of the team. The skirts are also varied among the team members, showcasing their individual personalities and possibly reflecting the team's uniform. The composition of the photograph, with the women standing and sitting together, suggests a sense of unity and camaraderie within the team."} +{"image_id": 185479, "caption": "The image features a man sitting on the floor, using his laptop computer. He is wearing glasses and a jacket, and he seems to be intently working on the laptop. There is a backpack placed next to him on the floor, possibly containing his belongings. The scene appears to be a casual and comfortable setting for the man to work on his laptop."} +{"image_id": 570826, "caption": "The image features a blue and yellow electric train traveling down the tracks, with a few people visible on the train. One person is situated on the left side of the train, while two others are on the right side. They seem to be passengers on the train, possibly commuting to work or other destinations.\n\nThere are several traffic lights in the scene, with one near the left edge, one in the middle, and another on the right side of the train. These traffic lights suggest that the train is passing through a busy intersection or a well-regulated area."} +{"image_id": 127394, "caption": "The image features a group of people gathered around a dining table, enjoying a dinner together. The table is filled with a variety of foods, including a salad with carrots, an assortment of meats, and several different desserts. There are also plates and bowls of food, along with cups and bottles placed on the table.\n\nA woman is seated at the table, and the guests are engaged in conversation as they enjoy their meal. In addition to the table setup, there is a chair visible near the table and a spoon resting on the table's surface. The atmosphere appears to be warm and inviting, as everyone shares a pleasant dining experience together."} +{"image_id": 311081, "caption": "The image features a simple and clean bathroom scene with a white bathtub. A white shower curtain is drawn around the bathtub, creating a serene atmosphere. In addition, a toilet can be seen towards the left side of the bathroom, completing the basic bathroom layout."} +{"image_id": 376677, "caption": "The image features a large tow truck driving down a street, with its white towing bucket in the back. The truck is passing under an overpass, indicating that it might be navigating a route that requires additional clearance. \n\nThere are several cars in the scene, with one car following the tow truck and two other cars further back on the street. A traffic light can be seen in the background, suggesting that the street is part of a busy urban area."} +{"image_id": 269419, "caption": "The image features a large clock tower with a clock on its side, standing tall next to a tree. The tower is illuminated, visible against the backdrop of the sky and the tree. The light source is shining brightly, casting a shadow on the tower and tree, and highlighting their features. The scene appears to be set during the daytime, with clear skies and natural lighting."} +{"image_id": 210708, "caption": "The image features a baby elephant and an adult elephant standing together in a body of water. The baby elephant is swimming in the water, while the adult elephant stands nearby, watching its young companion. The scene captures a moment of bonding and care between the two elephants.\n\nAdditionally, there are several birds in the scene, possibly enjoying the water or the company of the elephants. Some of the birds are scattered around the larger elephant, while others are closer to the smaller elephant. The presence of birds adds a lively and dynamic atmosphere to the image."} +{"image_id": 472246, "caption": "The image features a white table on which three fruits are placed. The fruits include an apple, an orange, and a pear. The apple is positioned on the left side of the table, while the orange is situated in the middle, and the pear is located on the right side. All three fruits appear to be in good condition.\n\nAdditionally, there is a grasshopper on the right side of the table, seemingly curious about the fruits. The overall scene creates a vibrant and lively atmosphere."} +{"image_id": 187475, "caption": "The image features a person holding a hot dog with a variety of toppings on a paper plate. The hot dog appears to be a foot long and is loaded with several different condiments, making it a delicious and colorful meal. \n\nIn the background, there is another person partially visible, possibly enjoying their own meal. A can of soda is also present in the scene, adding to the casual dining atmosphere. The scene appears to be set in a social gathering or a fast-food establishment."} +{"image_id": 299457, "caption": "The image features a man with glasses sitting inside a room, enjoying a lollipop. He is positioned near the center of the room, and there is a TV in front of him on the left side. A laptop can be seen on a surface not far from the man, and a chair is located near the TV. \n\nAdditionally, there are two books in the room, one on the left side and another further to the right. A cell phone can also be spotted in the scene, placed near the right edge of the image."} +{"image_id": 2894, "caption": "The image features a train station with a train on the tracks. The train appears to be a black and yellow striped engine, possibly a train caboose. It is situated in the middle of the scene, with a second track running parallel to it. \n\nThere are several cars located in the vicinity of the train station, positioned both in front of and behind the locomotive. These cars might be passenger or freight cars, depending on the train's purpose. \n\nAdditionally, there are two people in the scene, with one person standing near the center of the image and another person closer to the train on the left side. They might be waiting for the train or observing its movement."} +{"image_id": 209733, "caption": "The image depicts a group of people enjoying a sunny day at a grassy field, with one person flying a large, purple kite in the sky. The kite is soaring high above the field, covering a significant portion of the sky. \n\nThere are several people standing around the field, likely watching the kite fly or taking turns to fly the kite themselves. Some of them are close to the person flying the kite, while others are spread out across the field. \n\nIn the background, there are some cars parked near the field, suggesting that the people have arrived here for a leisurely day of kite flying and enjoying the outdoors."} +{"image_id": 428231, "caption": "The image showcases a spacious living room with a variety of furniture, including a white couch, a dining table, and several chairs. The couch is positioned in the center of the room, facing a dining table with three chairs around it. The room appears to be well-lit, possibly by sunlight, with a large white wall.\n\nIn addition to the main furniture, there are decorative elements throughout the space. A potted plant is located on the left side of the room, while a vase can be seen on a surface near the dining table. A bowl is placed on the dining table, adding a touch of color and style to the room."} +{"image_id": 250619, "caption": "The image depicts a beautiful woman wearing a pink blouse and lying on a blanket on the beach. She is laying under a large, colorful striped umbrella, which provides shade and protection from the sun. The umbrella covers a significant portion of the scene, extending from the left to the right side of the image.\n\nThere are several other people visible in the background, enjoying the beach and the sunny weather. Some of them are closer to the water, while others are further back on the sand. In addition to the main woman, there are two handbags in the scene, one near the center and another towards the left side of the image."} +{"image_id": 434693, "caption": "The image features a white fire hydrant with a chain hanging from it, situated on a sidewalk in front of a pink building. The fire hydrant is prominently placed in the foreground, while the building with the white chain adds a touch of color to the scene.\n\nIn the background, there is a truck parked near the building, possibly indicating that it is a busy area. Additionally, a person can be seen further back in the scene, likely walking or standing near the building."} +{"image_id": 15596, "caption": "The image captures a thrilling moment on a racing track where two professional motorcyclists are racing neck and neck. Both riders are on a motorcycle, focused on maintaining their speed and positioning. \n\nThere are two motorcycles visible in the scene, one located closer to the left side and the other on the right side of the image. The two riders are on the road, clearly engaged in a competitive race. \n\nAdditionally, there are two chairs in the image, placed near the racing track, possibly for the riders to rest during breaks in the race or for their team members to observe the competition."} +{"image_id": 569415, "caption": "The image features a large elephant walking through a grassy field. The elephant is the focal point of the scene, occupying a significant portion of the frame. It appears to be walking across a dry, barren field with a sense of ease, creating a picturesque view of the wildlife.\n\nThere are also several birds scattered throughout the scene, adding life to the otherwise deserted landscape. The birds are dispersed across the field, some close to the elephant and others further away, providing a sense of depth to the image."} +{"image_id": 305004, "caption": "The image captures a young man surfing on a wave, skillfully riding on a white surfboard. He is wearing red and black trunks and is in the process of kicking up water while surfing. The man is the main focus of the scene, displaying his talent and enjoyment of the sport.\n\nThere are several other people in the background, likely watching or waiting to surf, but they are not as prominent in the image as the main surfer."} +{"image_id": 510527, "caption": "The image features a man sitting in the driver's seat of a car. He is wearing a dress shirt, a tie, and a sweater vest. His tie is dotted with neon green stains, making it stand out. The man is adjusting his tie while looking in the rear view mirror, likely making sure his appearance is as desired.\n\nThe car is surrounded by other cars, indicating that it is in a busy area or a parking lot."} +{"image_id": 581317, "caption": "The image features a woman standing on a hill, holding a cell phone in her hand and looking at it. She is in a beautiful outdoor setting with an open field and a stunning mountain view in the background. There is a handbag placed nearby, possibly belonging to the woman.\n\nIn the scene, there are also a few birds scattered around the sky, adding a sense of life and movement to the otherwise serene environment."} +{"image_id": 532071, "caption": "The image features a large brown bear resting in a grassy area, likely taking a break from searching for food. The bear is partially hidden by a fallen tree branch, which creates a sense of camouflage and provides a comfortable spot for the bear to lay down. \n\nIn the background, there are a few birds scattered around the scene, adding to the lively atmosphere of the forest. The overall scene depicts a peaceful moment in the life of the majestic bear."} +{"image_id": 467978, "caption": "The image features a black and white dog, likely a sheepdog, running in a field with a herd of sheep. The dog is running around the sheep, displaying an energetic and playful nature. The sheep are scattered throughout the field, some closer to the dog and others further away. The scene captures the dog's enthusiasm and excitement as it interacts with the sheep in their natural environment."} +{"image_id": 184972, "caption": "The image features an older man wearing a unique combination of a shirt, tie, and a kilt, standing out in a room full of people. He appears to be in the middle of a group of people, possibly giving a speech or addressing the crowd. \n\nThere are several other people in the room, some of whom are seated around dining tables. The tables are adorned with multiple wine glasses, suggesting that this gathering might be a social event or a celebration. One of the attendees is wearing a tie, adding a formal touch to their attire."} +{"image_id": 525568, "caption": "The image features a grassy field with a group of zebras standing and grazing together. There are three zebras in total: one zebra is in the foreground, while the other two zebras are positioned further back in the field. They appear to be enjoying the sunny day and each other's company.\n\nInterestingly, there is a bird resting on one of the zebras, adding a touch of wildlife diversity to the scene. The zebras are spread across the field, with some closer to the foreground and others towards the background, creating a sense of depth in the image."} +{"image_id": 165056, "caption": "The image features two large giraffes standing next to each other, both looking at the camera. They appear to be observing something together, possibly a person or an event. The giraffes are positioned close to each other, with one located on the left side and the other on the right side of the frame.\n\nThere are also two people in the image, one in the background and another closer to the camera. The background person appears to be out of focus, while the foreground person is near the giraffes, possibly observing them or taking the picture."} +{"image_id": 362240, "caption": "The image features a workshop or garage area with a variety of motorcycles parked inside. There are five motorcycles in total, with some positioned closer to the wall and others occupying the middle and back of the room. \n\nA dining table can be seen near the center of the room, and a clock is mounted on the wall above it. In addition to the motorcycles, there are several tools and items scattered around the workshop, such as a wrench, a screwdriver, and a pair of binoculars. There is also a handbag placed in the room, possibly belonging to one of the motorcyclists."} +{"image_id": 179558, "caption": "The image features three giraffes in a grassy field, interacting with each other. One giraffe is standing to the left of the scene, while the other two are situated closer to the center and right side. They appear to be neck to neck, grooming each other as they move around the tree branch.\n\nThere are also a few birds in the scene, with one located near the left side of the image, another in the center, and the third one positioned towards the right side of the frame. The birds seem to be engaging in a symbiotic relationship with the giraffes, possibly feeding on insects that come into contact with the animals."} +{"image_id": 120792, "caption": "The image depicts a man and a woman standing in a living room, playing a video game together. They are both holding Nintendo Wii game controllers and pointing them at a large TV screen in front of them. The TV screen displays a boxing game, which they are enthusiastically engaging with.\n\nThe living room has a comfortable atmosphere with a couch placed against the wall and a chair nearby. There are several Wii remotes scattered around the room, indicating that multiple people may have been playing or about to join the game. A cup can be seen on a surface close to the players, adding to the casual environment."} +{"image_id": 294865, "caption": "The image features a white train traveling down train tracks with an open window. Inside the train, there are multiple passengers visible through the window, enjoying the view and their journey. At least 12 people can be seen in various positions within the train car, with some standing up and others sitting down. \n\nOutside the train, there is a bench located near the tracks, and a truck can be spotted further away. The scene captures the excitement and camaraderie among the passengers as they ride the train together."} +{"image_id": 159662, "caption": "The image features a woman tennis player wearing a pink outfit, standing on a tennis court. She is holding a tennis racket in her hand, clearly preparing for a match or practice session. \n\nThere are several people in the background, either observing the woman or simply being in the vicinity of the tennis court. Some of these individuals can be seen standing or sitting around the court, while others are located further away. The scene appears to be a social gathering or event related to the sport."} +{"image_id": 176906, "caption": "The image depicts a man and a woman standing near a flock of sheep, with three of them eating from a bowl. There are a total of five sheep in the scene, with some closer to the couple and others a bit further away. \n\nIn addition to the sheep, there are three people visible in the background, and one person is holding a handbag. The people and animals are gathered in an outdoor setting, possibly a pen or a yard. A car can also be seen in the background, suggesting that this scene takes place in a rural or semi-urban area."} +{"image_id": 250608, "caption": "The image features a blue and white bus parked on the side of a road near a bus stop. The bus is situated close to the curb and appears to be picking up passengers. There are several people in the vicinity of the bus, with some standing closer to the bus stop sign and others scattered around the area. \n\nIn addition to the bus, there are multiple cars parked nearby. One car is located behind the bus, another is positioned slightly in front of the bus, and two more cars are situated further away from the bus stop."} +{"image_id": 33561, "caption": "The image features a vast, lush green field filled with a herd of cattle grazing on the grass. There are at least 14 cows scattered throughout the field, some closer to the foreground and others further back towards the edge of the scene. The field is surrounded by a barbed wire fence, indicating that it is a designated area for the cattle.\n\nIn the background, there is a house visible, overlooking the pastoral scene. The combination of the grassy field, barbed wire fence, and the house creates a serene, rural atmosphere."} +{"image_id": 274612, "caption": "The image features a group of bicycles parked next to each other on a sidewalk. There are two main umbrellas providing shade in the scene, one on the left side and another on the right side. The umbrellas are open and have different colors, adding a pop of color to the scene.\n\nIn addition to the umbrellas and bicycles, there are several people present in the background. One person can be seen on the left side, while two other people are located towards the right side of the image. There are also two handbags placed near the people on the right side, possibly belonging to them."} +{"image_id": 288714, "caption": "The image shows a close-up view of a pizza that appears to be cooked on an open grill. The pizza is topped with a variety of ingredients, including different types of vegetables and olives. The mix of ingredients on the pizza creates a visually appealing and delicious-looking dish. The pizza is placed on a pan, which is resting on top of a table."} +{"image_id": 284379, "caption": "The image features a young boy riding a wave on a surfboard, likely at a water park. He appears to be in the middle of a thrilling ride as he glides across the water with his hands out for balance. \n\nThe surfboard is situated in the center of the image, and the boy is positioned towards the left side of the frame. There are a few more people visible in the background, possibly watching or waiting for their turn to ride the waves."} +{"image_id": 205247, "caption": "The image features a white city bus parked on a paved street. The bus has a striking advertisement on its side, promoting a basketball game in Miami. There are various people scattered around the bus, with some standing closer to it, while others are further away. One person is standing closer to the front of the bus, and another is situated near the middle of the scene. \n\nTwo benches can be seen in the image, one located near the bus and the other in the background. The overall atmosphere appears to be that of a busy urban setting with people going about their daily activities."} +{"image_id": 200267, "caption": "The image features a woman playing tennis, bending down to pick up a tennis ball from the ground. She is holding a tennis racket in her hand, getting ready to hit the ball. There are multiple sports balls scattered around the tennis court, with a few near the player and others spread out in the background. \n\nA crowd of spectators is watching the woman play tennis, standing at various positions around the court. Some of the spectators are standing close to the player, while others are further away, taking up the entire width of the image. The scene captures the excitement of the onlookers as they observe the woman's performance."} +{"image_id": 296775, "caption": "The image depicts a large blue and green transit bus driving down a city street. The bus occupies most of the scene, covering a significant portion of the roadway. There are several people visible around the bus, with some standing near the curb, others walking along the street, and a few waiting at the bus stop.\n\nA bicycle can be seen parked on the side of the street, close to the bus stop. Additionally, a car is parked further down the road, sharing the street with the bus. Overall, the scene captures a typical day in a bustling city with people and vehicles moving around."} +{"image_id": 4265, "caption": "The image features a window sill with a variety of vases and potted plants on display. There are three vases, with one placed closer to the left side, another near the center, and the third one towards the right side of the sill. In addition to the vases, there are three potted plants, one on the left side, another on the right side, and the third one near the center of the sill. \n\nSome of the plants are positioned in bright blue vases, while others are placed in regular vases. There is also an orchid in one of the potted plants. The assortment of plants and vases creates an eye-catching and lively scene, with a nice balance of colors and textures."} +{"image_id": 104392, "caption": "The image showcases a beautifully designed kitchen with a modern stove top oven situated next to a microwave. The kitchen features wooden cabinets and drawers, enhancing the overall aesthetic of the space. The countertops appear to be made of granite, adding a touch of elegance to the kitchen.\n\nAdditionally, there is a refrigerator located towards the right side of the kitchen. Surrounding the appliances, a sink can be seen in the middle of the counter, and a toaster is placed on the counter to the left. The kitchen also includes a dining table, creating a cozy atmosphere for mealtime gatherings."} +{"image_id": 316658, "caption": "The image depicts a serene scene of a lake with several birds, including a tree, residing near the water's edge. A small island can be observed in the middle of the lake, providing a sense of tranquility and natural beauty. \n\nThere are multiple people in the scene, with one person sitting on a bench in the park, enjoying the view of the lake and birds. Another person is also visible walking near the water, likely appreciating the peaceful surroundings.\n\nA boat can be seen in the distance, possibly taking a leisurely trip around the lake or providing transportation for people in the area."} +{"image_id": 230993, "caption": "The image depicts a rainy night scene with two women walking down a street under the shelter of umbrellas. One woman is holding a red umbrella, while the other is holding a grey umbrella. Both women are walking side by side, navigating the wet conditions.\n\nThere are several handbags visible in the scene, with one close to the woman on the left, another further to the right, and the third one on the right side of the image. Additionally, a clock can be seen in the background, likely indicating the time for passersby in the city."} +{"image_id": 321035, "caption": "The image features a beautifully decorated cake, with a warm welcome message on it. The cake is adorned with red icing, which contrasts with the white frosting. The words \"Welcome Malachi\" are thoughtfully displayed in orange lettering, making the cake even more inviting. \n\nThe cake is placed on a dining table, and a knife can be seen in the background, likely for cutting and serving the delicious treat. The overall scene creates a warm and welcoming atmosphere, perfect for a celebration or special occasion."} +{"image_id": 571038, "caption": "The image features a woman standing in a kitchen, holding a large pan with an uncooked pizza on it. The pizza is topped with various ingredients, including basil leaves, mozzarella cheese, and tomatoes. The woman is proudly showing off her homemade pizza, and the kitchen is well-equipped with a sink and an oven in the background.\n\nThere are a few other people in the scene, with one person standing near the left side of the image and another person on the right side. A potted plant is placed near the top right corner of the kitchen, adding a touch of greenery to the space. Several knives are visible in the kitchen, likely used for preparing the pizza and other cooking tasks."} +{"image_id": 395978, "caption": "The image features a group of three people, two of whom are lying down in the snow, with their heads down and working on a snowy surface. The third person is standing behind the two, observing the snow-covered area. The scene appears to be set at an airport, with a large airplane visible in the background. \n\nThere are several vehicles in the area, including two cars and a truck. One of the cars is located near the airplane, while the other car is positioned closer to the two workers. The truck is situated near the left side of the image, closer to the airport. The airplane is situated on the right side of the image, with a fence running across the scene, possibly separating the tarmac from the surrounding area."} +{"image_id": 482917, "caption": "The image shows a person sitting on a couch with their dog, which is located on the floor between the person's legs. The dog appears to be watching TV, as it is looking at a television screen in the background. The person and the dog are sharing the couch, with the dog's head resting on the person's lap.\n\nIn the room, there are two TVs - one on the left side of the image, and another smaller one on the right side. There are also two remote controls visible in the scene, one near the left TV and the other closer to the right TV. Additionally, there are two cell phones placed on the couch, one closer to the person and the other further away from them."} +{"image_id": 207561, "caption": "The image captures a group of four surfers enjoying the ocean on their surfboards. They are spread out across the scene, with one person located in the middle of the frame, another close to the left edge, and two others positioned further to the left. Each surfer is riding a wave, showcasing their skills and making the most of the good waves.\n\nThe surfboards are visible beneath each surfer, gliding smoothly across the water. The overall atmosphere of the scene is energetic and adventurous, as the surfers navigate the ocean together."} +{"image_id": 369470, "caption": "The image depicts a busy city street with a row of parking meters alongside the sidewalk. There are several cars parked in the designated parking spaces along the street. In total, there are ten cars of various sizes, with some parked closer to the foreground and others further back. \n\nAdditionally, there are three people visible in the scene. One person is standing near the middle of the image, while the other two are located towards the right side of the frame. The street appears to be a lively location with a mixture of parked cars and pedestrians."} +{"image_id": 482210, "caption": "The image features a small, compact bathroom with a toilet, sink, and a mirror. The sink is located on the left side of the bathroom, while the toilet is situated on the right side. Above the toilet, there is a storage shelf, which is likely used for toiletries and other bathroom essentials. The mirror is positioned above the sink, reflecting the bathroom's interior.\n\nAdditionally, there are several bottles in the bathroom, possibly containing toiletries or cleaning supplies. Some of these bottles are placed near the sink, while others are located on the floor or on the shelves. The bathroom appears to be well-organized and functional, making efficient use of the limited space available."} +{"image_id": 525381, "caption": "The image captures a thrilling moment during a baseball game. The main focus is a baseball player, dressed in a black and white uniform, who has just hit the ball and is about to run. He is surrounded by several of his teammates, opponents, and other people on the field. Some of the players are near the base, while others are scattered across the field, either watching the play or preparing for the next move.\n\nA baseball glove can be seen in the air, likely caught by one of the players, and a sports ball is also visible in the air, indicating the intensity of the moment. In total, there are at least 12 people visible in the scene, including the baseball player who has just hit the ball."} +{"image_id": 156375, "caption": "The image features a woman wearing a pink jacket, standing on snow skis on a snowy slope. She is warmly dressed and appears to be enjoying the skiing experience. There are two other people in the background, possibly waiting for their turn or watching the woman ski. \n\nA fence can be seen in the scene, likely for safety or to mark the boundary of the skiing area. The snowy slope is well-covered, and the skis are upright, showing that the woman is prepared for skiing."} +{"image_id": 334399, "caption": "The image features a man standing next to a mechanical clock, which is placed on a table. The man is in the center of the scene, with the clock to his left. Behind him, there is a hat on the table, and a few books are scattered around the room.\n\nIn addition to the man and the clock, the room also contains a few other people. One person is standing to the right of the man in front of the clock, and two more individuals are located further to the right. Another person can be seen in the background on the left side of the scene."} +{"image_id": 322955, "caption": "The image features a picturesque beach scene with a white bird, likely a seagull, standing in the water. The bird is positioned near the center of the frame, with its reflection visible on the wet sand. The beach appears to be quite serene, as the bird is standing alone, undisturbed by its surroundings. The warm hues of the sunset create a peaceful atmosphere, emphasizing the beauty of the ocean and the tranquility of the moment."} +{"image_id": 312024, "caption": "The image features a small, black and blue bird with a white belly, standing gracefully on the grass. The bird is positioned in the center of the frame, drawing attention to its vibrant colors. It appears to be a pretty and colorful bird, enjoying the outdoor environment."} +{"image_id": 118715, "caption": "The image features a tall fire hydrant situated on a sidewalk next to a building. The hydrant is made of metal and is painted in a dark color, contrasting with its surroundings. It is positioned in a square on the sidewalk, with a concrete wall nearby. There is also a chain attached to the fire hydrant, possibly for security purposes or to prevent theft."} +{"image_id": 237318, "caption": "The image depicts a stop sign on the side of a road in a wooded area. The sign is visible behind a car, with its message partially obscured by the vehicle. The road appears to be a forest road, adding to the natural surroundings.\n\nThere are several trees in the background, creating a serene atmosphere. Additionally, a person can be seen in the distance, possibly walking or attending to the car. The presence of the person and the car suggest that this scene is taking place in an area where people and vehicles are likely to be encountered."} +{"image_id": 236865, "caption": "The image features a young girl dressed in a black dress, holding a red frisbee in her hand. She appears to be standing on a sidewalk, possibly getting ready to play or run with the frisbee. \n\nThere are several cars parked nearby, indicating that the sidewalk might be part of a residential area or a street where vehicles are parked. Additionally, there are two benches visible in the scene, which could provide a place for people to sit and relax or for the girl to play with her friends."} +{"image_id": 72096, "caption": "The image features a woman sitting at a dining table, which is set with various plates of food and cups of juice. The table is adorned with a floral tablecloth, giving the setting a warm and inviting atmosphere. \n\nThere are several dishes on the table, including a bowl of fruit and an assortment of cakes. Multiple cups are spread across the table, likely containing beverages for the woman and any other potential guests. Utensils such as forks and knives are also placed neatly on the table, ready for use. \n\nIn addition to the food and utensils, there are a couple of chairs near the dining table, one on the left and another on the right side. A vase can be seen on the table, adding a decorative touch to the scene."} +{"image_id": 450762, "caption": "The image features a group of teddy bears dressed in various military uniforms, including a group of four teddy bears wearing green outfits and a brown teddy bear as a soldier. They are posed on a boat, giving the appearance that they are on a military mission. The teddy bears are dressed in a mix of costumes and outfits that represent a diverse group of soldiers.\n\nIn addition to the teddy bears, there are a few other smaller figures of people in the scene, which adds to the overall sense of a lively and engaging display. The scene appears to be set in a room where the teddy bears and other toys are being showcased."} +{"image_id": 168974, "caption": "The image features a young child, likely a toddler, sitting on the floor and holding a cell phone in their hands. The child appears curious and is playing with the cell phone, possibly exploring its features and functions.\n\nIn the background, there is a wooden chest of drawers, which might be used for storing items or displaying decorative items. The room seems to be a cozy and safe environment for the child to play and interact with the cell phone."} +{"image_id": 559950, "caption": "The image features a small brown and black dog with a collar, looking out the window of a car. The dog is positioned on the center of the car seat, enjoying the view outside. The car seems to be in motion, as indicated by the blurry appearance of the surroundings.\n\nThere are a few other cars visible in the background, with one car on the left side of the image, another further back, and the third car on the right side. A stop sign can also be seen in the scene, adding context to the street environment."} +{"image_id": 575776, "caption": "The image features a fascinating scene of a zebra and a rhino in a barren, dry landscape. The zebra is standing close to the rhino, seemingly mocking or challenging it. In the background, there is a large field with some plants, adding a touch of nature to the scene.\n\nBoth animals appear to be in a resting state, with the rhino lying down and the zebra walking around in the foreground. There are also a few small birds scattered throughout the image, perched on various objects or simply flying by."} +{"image_id": 552352, "caption": "The image features a delicious piece of yellow cake placed on a dining table. The cake is cut into three equal slices, making it convenient for serving. A fork is positioned near the cake, ready to be used to enjoy the dessert. The table is set with a beautifully arranged fork, knife, and cake, creating an inviting scene for a delightful dessert experience."} +{"image_id": 490683, "caption": "The image features a group of people playing a game of frisbee in a grassy field. There are two main players, a man wearing a yellow jersey and a woman wearing a white jersey, both holding frisbees in their hands and actively participating in the game. Additional players can be seen in the background, standing at various distances from the frisbee players. The field is surrounded by trees, creating a pleasant and natural environment for the game."} +{"image_id": 76417, "caption": "The image features a white dog with its ears sticking up, hanging out of the back window of a car. The dog appears to be enjoying the car ride or observing the surroundings. \n\nIn the background, there are two traffic lights visible - one on the left side and another on the right side of the image. A building can be seen as well, stretching from the left edge to the right edge of the photo."} +{"image_id": 231153, "caption": "The image features a snowboarder in a blue jacket, who is in mid-air, performing a trick on a snowy mountain. The snowboarder is surrounded by a beautiful, snowy landscape, with a snow-covered tree in the background. \n\nThere is another person visible in the scene, standing on the ground near the snowboarder. The scene captures the excitement and thrill of snowboarding, showcasing the adventurous spirit of winter sports enthusiasts."} +{"image_id": 190497, "caption": "The image depicts a herd of cows in a rural setting, with a large number of them gathered near a barn or a building. The cows are standing in the dirt, and some are also lined up in a row. They are of various sizes and positions, with some closer to the building and others spread out in the dirt lot. The scene portrays a typical day on a farm, with the cows possibly preparing to be milked or having just been let out of the barn."} +{"image_id": 126065, "caption": "The image features a large clock mounted on the side of a brick building, with statues of two bell-men standing below it. The clock has a Roman numeral design, and the bell-men are also wearing Roman numerals on their outfits. The clock and the bell-men statues create an interesting and artistic detail on the building's facade."} +{"image_id": 375915, "caption": "The image features a dining table with a white tablecloth, on which a delicious pizza is placed. The pizza is topped with various vegetables, making it a colorful and appetizing meal. \n\nIn addition to the pizza, there are several items on the table, including a wine glass, a cup, a bowl, a fork, a knife, and a spoon. The table also has a vase positioned on the left side. The scene suggests that people are about to enjoy the pizza and the accompanying beverages."} +{"image_id": 95022, "caption": "The image features a bird with a blue body and red eyes perched on a tree branch. The bird is comfortably sitting on the branch, taking up a significant portion of the frame. The bird's colorful appearance and unique features make it an interesting and visually striking subject in the scene."} +{"image_id": 177935, "caption": "The image features a kitchen scene with a vintage-style stove prominently placed in the middle. The stove is a white gas range, and it is the main focus of the scene. \n\nIn addition to the stove, there are several kitchen utensils visible. A set of knives is located on the countertop, with four knives of different sizes neatly arranged next to each other. There are also two spoons placed nearby, adding to the assortment of kitchen tools in the scene."} +{"image_id": 380117, "caption": "The image features a table covered with a variety of potted plants. There is a cat sleeping on top of a potted plant, taking up a significant portion of the table's width. The cat appears to be comfortable and relaxed in its chosen spot. \n\nIn addition to the cat and plants, there are several vases placed around the table. Some of these vases are located at the top, bottom, and sides of the table, adding to the overall decorative elements of the scene."} +{"image_id": 132373, "caption": "The image features a large clock prominently displayed on a pole in the middle of a room. The clock has an American flag on one side, and a building's architecture can be seen in the background. The scene is dimly lit, giving the clock and the flag a black and white appearance.\n\nThere are several people scattered throughout the room, some of them standing near the clock and others further away. Some of the individuals appear to be wearing ties. Additionally, there are two chandeliers hanging in the room, adding a touch of elegance to the space."} +{"image_id": 284282, "caption": "The image features an old-fashioned kitchen counter with a blender and a toaster sitting side by side on a green countertop. The blender is positioned towards the left side of the counter, while the toaster is situated on the right side.\n\nAdditionally, there are a few cords visible in the scene. One set of cords is connected to the blender, and another set is attached to the toaster. This suggests that these appliances may have been used together in the past, and they might have been unplugged after use."} +{"image_id": 276707, "caption": "The image features a street sign prominently displayed on a wooden pole, with the sign prohibiting the use of motorcycles and bicycles in the area. The sign is based on the \"no bikes\" symbol, which is a creative way of conveying the message. \n\nThere are a few people in the scene, with one person standing near the center of the image and two others located on the left side. Additionally, a car can be seen in the background on the right side. The street sign is positioned close to some buildings, indicating that the scene takes place in an urban setting."} +{"image_id": 194704, "caption": "The image features a young girl, wearing a black winter coat, ski goggles, and a furry winter hat. She is holding up snow skis in the air with both hands, showcasing her excitement and pride. \n\nIn the background, there are several other people visible, some of them with backpacks and handbags. A couple of traffic lights can be seen in the scene, indicating that the location is likely an urban or suburban area."} +{"image_id": 430286, "caption": "The image features a bed with two white remote controls placed on top of the covers. These remote controls are positioned in a way that they are easily accessible for use. The bed is adorned with a thin mattress, giving it a sleek and modern appearance. The mattress itself is situated in the middle of the bed, with the covers surrounding it."} +{"image_id": 361171, "caption": "The image captures a snowboarder performing a daring trick high in the air. The snowboarder is at a significant height, almost as high as the top of a building. The snowboarder is mid-air, and their snowboard is visible beneath them.\n\nIn the background, another person can be seen on the left side of the image, likely observing the snowboarder's stunt. The scene captures the excitement and adrenaline rush of the snowboarder's daring jump, as well as the audience's attention to the snowboarder's impressive feat."} +{"image_id": 406451, "caption": "The image features a brown horse with a red bow, standing next to a red carriage on a cobblestone street. The horse is positioned in the middle of the scene, while the carriage is situated to the left of the horse. \n\nThere are several parked cars in the background, with one car on the left side, one near the center, and two more cars on the right side of the scene. A person can be seen in the background, possibly admiring the horse and carriage or just passing by."} +{"image_id": 57286, "caption": "The image captures a thrilling moment with a young man performing a skateboard trick, flying through the air on his skateboard. He is skillfully riding up the side of a ramp, displaying his impressive talent.\n\nThere are several other people in the scene, likely spectators or fellow skaters watching the skateboarder's performance. Some are standing closer to the ramp, while others are positioned further away. Two skateboards can be seen in the image, one being ridden by the man performing the trick and another one placed on the ground nearby."} +{"image_id": 535952, "caption": "The image features a wooden dining table with three delicious chocolate muffins placed on it. Each of the muffins is partially eaten, indicating that they are being enjoyed. A knife can be seen on the table, likely used for cutting the cupcakes. The close-up view of the cupcakes and the knife highlights the mouth-watering texture and the appetizing nature of these desserts."} +{"image_id": 455772, "caption": "The image depicts a man wearing a white shirt and blue shorts, who is playing Frisbee in a grassy yard. He is leaping into the air and about to catch the Frisbee with his right hand. The man is the only person in the scene.\n\nIn the background, there are two cars parked, one on the left side and another on the right side of the yard. The scene also features a wooden staircase, which goes up the yard, providing access to the house."} +{"image_id": 63617, "caption": "The image features a young boy, wearing glasses, throwing a baseball with a baseball glove. He is in the process of throwing the ball, which is captured mid-air. The boy appears to be wearing a baseball glove on his left hand.\n\nThere are three other people in the scene, with one person standing close to the boy, another person further back, and a third person on the right side of the image. Two dogs can be seen in the background, likely playing or waiting for their turn to interact with the boy and the ball."} +{"image_id": 90155, "caption": "The image features a yellow train traveling down the train tracks, surrounded by a beautiful landscape with a sky background and a lush green field. The train appears to be a long cargo or freight train, as it is pulling multiple cars behind it. There are also a few people in the scene, possibly observing the train or attending to their own activities. The overall atmosphere of the scene is peaceful and serene."} +{"image_id": 158127, "caption": "The image features a man wearing a pair of blue jeans and black shoes, standing next to a yellow cat lying on the ground. The cat is comfortably resting its head on the man's legs, creating a cozy scene between the two. The cat is positioned in the middle of the image, while the man is located on the left side."} +{"image_id": 248582, "caption": "The image features a lively street market bustling with people shopping for fruits and vegetables. There are several people in the scene, with some standing in front of a fruit stand, and others browsing the fruits on display. Among the shoppers, there are backpacks and a handbag, indicating that they might be carrying their belongings while shopping.\n\nVarious fruits, such as bananas, apples, and oranges, are visible in multiple locations throughout the market. Some of the bananas are hanging from the top of the stand, while others are placed on the counter. Apples and oranges are also showcased at the market. The people in the image are spread out, some closer to the foreground, while others are further in the background, emphasizing the busy atmosphere of the street market."} +{"image_id": 206560, "caption": "The image captures a snowboarder in the air, seemingly flying through the air with their colorful snowboard behind them. The view is from below, showcasing the snowboarder's impressive jump. Two other people are visible in the scene, likely watching or waiting for their turn to snowboard.\n\nAdditionally, there is a building in the background, providing context for the location of the snowboarding activity. The overall atmosphere of the image is exciting and action-packed, as the snowboarder soars through the air."} +{"image_id": 69009, "caption": "The image features two young boys wearing blue hats and jackets, standing close to a window near a black bear inside a habitat. They seem to be observing the bear at a zoo, enjoying the view of the animal. The boys are positioned at different locations in the scene, with one standing closer to the left side and the other slightly to the right. Their interest in the bear is apparent as they watch it in its enclosure."} +{"image_id": 322122, "caption": "The image features a clean toilet with a yellow toilet seat, which is closed. The seat is made of a yellow material and is kept clean by a yellow sponge. The toilet is situated in a bathroom with a white tile wall.\n\nIn the bathroom, there is a trash can located near the toilet, and a bottle can be seen on the floor next to the toilet. Additionally, there is a toilet brush placed near the toilet, which is typically used for cleaning purposes."} +{"image_id": 549930, "caption": "The image features a man and a woman walking together on a wet sidewalk, both holding umbrellas to protect themselves from the rain. The man is walking closer to the woman, and they seem to be in conversation as they navigate the wet conditions. \n\nIn the background, there are multiple beach umbrellas, indicating that the scene takes place near a beach. The beach umbrellas are scattered at various heights and distances, some closer to the couple and others further away. There are also several other people visible in the scene, walking or standing near the beach umbrellas, adding to the atmosphere of a rainy day by the shore."} +{"image_id": 33216, "caption": "The image features a large, freshly cooked pizza with a lot of sauce and cheese, sitting on a dining table. The pizza is placed on a pizza pan and is the main focus of the scene. \n\nThere are several people in the image, with one person on the left side, another close to the center, and two more individuals on the right side of the frame. Some of them appear to be sitting at the table where the pizza is placed. Additionally, there are two cups on the table, one located near the left side and the other one placed towards the right side. A fork can also be seen on the table, slightly to the right of the pizza."} +{"image_id": 434581, "caption": "The image features a man riding a motorcycle on a road. He is wearing a black leather jacket and a helmet for safety. The motorcycle is positioned near a stone wall, which adds an interesting element to the scene. \n\nIn addition to the man and the motorcycle, there are several other vehicles visible in the image. Specifically, two cars can be seen in the background, one closer to the motorcycle and the other further away. The presence of these vehicles suggests that the scene might be in an urban area or a busy street."} +{"image_id": 239509, "caption": "The image displays a street scene featuring a sign on a cobblestone walkway. The sign has a drawing of a man and a \"do not enter\" symbol, likely indicating a pedestrian crossing or warning about potential oncoming traffic. \n\nIn the background, there are multiple vehicles visible, including a car, a motorcycle, and two buses. A person can also be seen standing close to the edge of the sidewalk, possibly observing the street signs or waiting to cross the road."} +{"image_id": 88848, "caption": "The image consists of a collage of pictures featuring various elements, including a woman standing near a yellow and red fire hydrant. She is posing for a picture with three other people standing nearby. The collage also includes a group of four people standing close together in the background, possibly posing for a picture as well.\n\nIn addition to the fire hydrant and people, there are other elements in the collage, such as a traffic light, a bench, and a potted plant. The traffic light can be seen in the upper part of the image, while the bench is located near the center, and the potted plant is situated on the right side of the scene."} +{"image_id": 116182, "caption": "The image features a delicious meal in a blue bowl placed on a dining table. The bowl contains a variety of food items, including a large piece of meat, likely chicken, and several carrots. In addition to the main dish, there are broccoli pieces scattered around the bowl, adding color and nutritional value to the meal. \n\nThe dining table fills the majority of the scene, setting a clean and simple backdrop for the appetizing dish."} +{"image_id": 562345, "caption": "The image features a woman standing in a room, wearing a yellow raincoat and holding a cell phone. She appears to be using the phone, possibly texting or browsing, while leaning against the wall. The woman is the main focus of the scene, occupying a significant portion of the image.\n\nThere is a second person partially visible in the background, but their presence is less prominent in the scene. The room seems to be a location where the woman frequently spends her time, as she is comfortably dressed in her raincoat."} +{"image_id": 343410, "caption": "The image features a red plate placed on a dining table, filled with a delicious assortment of vegetables. The plate contains several pieces of broccoli, both on the top and the bottom of the plate. There are also a few carrot slices scattered around the plate, adding a touch of color and variety to the dish. The arrangement of the vegetables creates a visually appealing and appetizing meal."} +{"image_id": 490529, "caption": "The image shows a woman wearing glasses, a pink sweater, and a gold chain. She is looking down at her cell phone, which is held in her hands, and appears to be focused on the content displayed on the screen. \n\nIn the background, there are a few other people who are also present in the scene. One person is sitting on a chair towards the left side of the image, while two other people are standing on the right side. Another cell phone can be spotted in the scene, placed near the center. Additionally, a handbag is visible near the right edge of the image."} +{"image_id": 328818, "caption": "The image features a woman in a pink shirt, either sitting on or standing near a wooden bench. She is in the process of putting on her shoes, which are placed on the bench in front of her. There is a bicycle parked nearby, with the frame visible from the left side of the image. \n\nAdditionally, a bottle can be seen on the ground, close to the bench where the woman is sitting. The scene likely takes place in a park or a similar outdoor setting."} +{"image_id": 218947, "caption": "The image features a man walking across a snow-covered field with a backpack, a ski pole, and skis. He is dressed in dark clothes and appears to be a cross-country skier. The man is walking in the direction of a large mountain, which serves as a beautiful backdrop to the scene. \n\nIn addition to the main skier, there is another person visible in the background, possibly enjoying the snowy landscape as well."} +{"image_id": 152281, "caption": "The image features a large herd of sheep grazing in a grassy field. The sheep are spread across the field, with some closer to the foreground and others further back. They are all engaged in the process of eating the grass, and some of them have distinct blue markings on their backs. The sheep are of various sizes and positions, indicating a diverse group in the field."} +{"image_id": 41110, "caption": "The image shows a young child, possibly a toddler, standing in a room with white walls. The child is wearing a pink and white striped shirt, which indicates that they might be in their early years. They are drinking milk from a cup, which is held up to their mouth. \n\nIn the room, there is a bed situated towards the right side of the space, taking up a significant portion of the background. The child appears to be enjoying their drink, possibly having a meal or a snack."} +{"image_id": 512985, "caption": "The image features a man wearing a black wetsuit and carrying a white surfboard on a sandy beach. He is standing near the water, looking out towards the ocean as he prepares to go surfing. The surfboard is quite large, covering a significant portion of the beach area beside the man.\n\nThere are a few other people in the scene, but they are farther away and not the main focus of the image. One person can be seen near the center of the scene, while two others are located near the right edge of the image."} +{"image_id": 414212, "caption": "The image features a man in a bathroom, holding a toothbrush and a tube of toothpaste. He appears to be showing off his new toothbrush and toothpaste, possibly after using them. The man is wearing glasses and a black shirt.\n\nIn the bathroom, there is a sink visible to the right of the man. Additionally, a bottle can be seen on the countertop near the sink."} +{"image_id": 426578, "caption": "The image captures a man walking along a sandy beach next to the ocean. He is dressed in a black jacket and carrying a white bag. The man is walking in the middle of the beach, with his shadow visible in front of him. \n\nIn addition to the main person, there are a few other people scattered across the beach, likely enjoying the sunny day. One person can be seen in the far right side of the image, while two other people are closer to the center of the scene."} +{"image_id": 291962, "caption": "The image depicts a young boy flying a colorful kite in a grassy field, with the kite soaring high in the sky. The boy is holding the kite string, carefully controlling the kite's movement. The field is adjacent to a stone wall and a building, providing a picturesque backdrop for the boy's activity. There is also a bicycle parked nearby, suggesting that the boy might have ridden it to the field to fly the kite."} +{"image_id": 460927, "caption": "The image features a large brown bear standing in a grassy field next to a rock. The bear is looking at the camera with curiosity, creating a unique and interesting scene. The bear's fur appears to be wet, possibly from recent rain or a nearby water source.\n\nThere are a few other smaller bears in the scene, blending into the background, adding depth to the image. The overall atmosphere of the picture is serene and captivating, with the majestic bear as the main focus."} +{"image_id": 552186, "caption": "The image features a shirtless man riding a skateboard down the street, possibly performing a trick. He is surrounded by a large crowd of people who are watching his performance. Some of the spectators are standing close to the skateboarder, while others are at varying distances from him.\n\nIn the background, there are two cars parked along the street, and a backpack can be seen placed on the ground. The scene captures the excitement and interest of the onlookers as they enjoy the skateboarder's skillful performance."} +{"image_id": 553852, "caption": "The image features a young boy riding a skateboard on a cobblestone street. He is positioned towards the left side of the scene, and his skateboard is visible beneath him. The boy appears to be enjoying his ride as he navigates the brick walkway.\n\nThere are a few other people in the background, but they are farther away and not the main focus of the scene. A motorcycle can also be seen parked on the left side of the image."} +{"image_id": 370337, "caption": "The image features a harbor with two red and white boats docked next to a pier. The boats are positioned close to each other, with one on the left side and the other on the right side of the dock. \n\nIn the background, there are several buildings visible, adding to the urban atmosphere of the scene. The boats appear to be of a similar size and are likely used for recreational or commercial purposes."} +{"image_id": 18491, "caption": "The image captures an exciting moment during a baseball game, with several players on the field. One player is sliding into a base, attempting to score a run, while an opposing player tries to tag them out. In the background, some spectators are watching the game from benches.\n\nThere are a total of five people in the scene, including the players and the spectators. Additionally, there are four baseball gloves visible, with some players wearing them while others are not. A baseball bat can also be seen in the scene, held by one of the players."} +{"image_id": 556000, "caption": "The image shows a living room where a group of people, including two young boys, are playing a video game using Nintendo Wii controllers. One of the players is standing, while the other is in the middle of the room, both holding remotes.\n\nThere are three chairs in the room, with one on the left side and another on the right side. A third chair is placed in the middle of the room. A couch can be seen in the background, along with a clock on the wall. Additionally, a dog is present in the room, positioned near the left side of the scene."} +{"image_id": 443351, "caption": "The image features two motorcycles parked next to each other on the cement. One motorcycle is green and the other is white. They are positioned relatively close to each other, with one located on the left side and the other on the right side of the scene.\n\nIn addition to the motorcycles, there are three people present in the image. Two of them are standing closer to the motorcycles, while the third person is located further away, closer to the left edge of the image."} +{"image_id": 63965, "caption": "The image features a woman holding a plate with a delicious piece of cake on it. The cake is topped with white frosting and red hearts, making it an appealing and decorative dessert. The woman is holding the plate in her hands, showcasing the cake as the center of attention. \n\nThere is a spoon placed on the left side of the image, possibly used to eat the cake. The scene conveys a sense of enjoyment and indulgence as the woman presents the cake for everyone to share."} +{"image_id": 405660, "caption": "The image features a beautiful view of a grassy hill with a bench situated at the top. The bench is overlooking a picturesque landscape that includes mountains in the distance and a forest nearby. The serene surroundings make it an ideal spot for relaxation and enjoying nature. \n\nIn addition to the bench, there is a stone on the ground, possibly marking a path or a resting place for someone visiting the area. The landscape and the presence of the bench and stone invite visitors to sit, unwind, and appreciate the scenic view."} +{"image_id": 419144, "caption": "The image shows a group of people riding on the backs of several elephants, forming a line. The elephants are arranged in a line, with some closer to the front and others towards the back. The people are seated on the elephants' backs, with some of them riding comfortably, while others seem to be more challenging.\n\nThere are at least four elephants visible in the scene, each with a rider and a different position within the lineup. The arrangement of the elephants and riders creates an interesting perspective on the formation and the experience of riding these majestic animals."} +{"image_id": 371004, "caption": "The image features a zebra standing in a grassy area, surrounded by a chain-link fence. The zebra appears to be behind the fence, possibly in an enclosure at a zoo. Its head is tilted towards the fence, possibly trying to reach the grass or get a better view of the area. \n\nIn addition to the zebra, there are several birds scattered throughout the scene, both near the fence and further away from the zebra. Some of the birds are perched on the fence, while others are flying or hovering in the air."} +{"image_id": 116861, "caption": "The image depicts a woman lying down on a couch, comfortably holding a teddy bear. She appears to be sleeping or resting, as she is quite relaxed. The couch is situated in the background, and there is a pillow nearby. \n\nAdditionally, there are a few other objects in the scene. A cell phone can be seen on the couch, and a couple of remote controls are placed in a nearby location. A handbag is also present in the scene, placed on the floor near the woman."} +{"image_id": 579664, "caption": "The image features a large box filled with a variety of bananas. The bananas are in different stages of ripeness, with some being yellow and some green. They are piled together, creating a colorful and appetizing display. The box containing the bananas is situated under a tree, which provides a natural and rustic atmosphere to the scene."} +{"image_id": 5600, "caption": "The image features a dining table with two bowls placed on it. One bowl contains a variety of food items, including several pieces of fruit, most likely onions, and some meat. The other bowl appears to have a different type of food, possibly a vegetable dish. \n\nThere are a few carrots visible in the scene as well, adding to the assortment of vegetables and ingredients. The bowls are placed in a metal container, with one bowl placed towards the left side of the table and the other bowl placed towards the right side of the table. The table setting creates an appetizing and diverse meal experience."} +{"image_id": 199389, "caption": "The image features a colorful fire hydrant with a face painted on it, resembling a character from the Disney movie \"Pinocchio.\" The fire hydrant is situated in a field, with a chain-link fence in the background. \n\nIn addition to the main fire hydrant, there are two cars parked near the fence. One car is positioned towards the top right corner, while the other car is on the right side of the image. There are also a few bottles placed in the vicinity of the cars, with one close to the top right corner, another near the middle right side, and the third one closer to the middle left side of the image."} +{"image_id": 568131, "caption": "The image features a large elephant walking through a grassy field on a sunny day. The elephant appears to be enjoying the warm weather and the outdoor environment. In the background, there are trees providing a natural backdrop to the scene.\n\nBesides the elephant, there are several birds scattered throughout the image, flying and interacting with the surrounding environment. The presence of both the elephant and the birds creates a lively and dynamic atmosphere in the scene."} +{"image_id": 35671, "caption": "The image captures a lively scene of two men riding horses and trying to rope a small cow, likely during a rodeo or a bullfighting event. The horses are positioned on the left and right sides of the cow, with one of the horses being on the left side and the other on the right side. \n\nThere are several spectators in the background, watching the action unfold. Some of them are standing close to the horses and the cow, while others are positioned further away. The spectators are of various heights and spread across the scene, providing a diverse view of the event."} +{"image_id": 76522, "caption": "The image depicts a black and white cat comfortably sleeping on a couch, with its body curled up and resting its head on a remote control. The cat is occupying a significant portion of the couch, creating a cozy scene. The remote control can be seen near the cat's head, providing a sense of the cat's relaxation and the proximity of the pet to the object."} +{"image_id": 504167, "caption": "The image features a brown and white cat with striking blue eyes, sitting on a wooden floor. The cat is comfortably looking off to the left, possibly observing something that caught its attention.\n\nThe scene is complemented by a few subtle details, such as a clock in the background and a vase nearby. The overall setting creates a cozy and inviting atmosphere, highlighting the cat's relaxed and content position in the room."} +{"image_id": 21644, "caption": "The image depicts a busy bus station with several buses parked in a parking lot. There are five buses visible in the scene, with some positioned closer to the front and others located towards the back. A red and white bus can be seen in the middle of the parking lot, pulling away from the station.\n\nIn addition to the buses, there are two cars in the scene, one located on the left side and another on the right side of the parking lot. The station itself appears to be quite busy, as numerous people are present in the area, with some standing close to the buses and others dispersed throughout the scene."} +{"image_id": 483135, "caption": "The image shows a group of people, including both teens and adults, gathered in a living room to enjoy a gaming session together. They are playing video games using Nintendo Wii controllers. There are two Wii controllers visible in the scene, with one being actively used by a girl in an orange dress and the other lying on the floor. \n\nThe living room is furnished with a couch and a chair, providing a comfortable space for the gamers. There are multiple cushions on the couch and a few books scattered around the room, adding to the cozy atmosphere. The group appears to be having a great time bonding over the shared gaming experience."} +{"image_id": 271063, "caption": "The image features a kitchen with wooden cabinets and a black stainless steel microwave, which is mounted inside the cabinetry. The cabinets are made of dark wood, giving the kitchen a modern and sophisticated look. \n\nAn open area is visible in the kitchen, with the countertops appearing to have been recently prepared or installed. A dining table can be seen in the background, likely situated in the adjacent room. The kitchen is well-equipped, featuring a refrigerator, an oven, and a sink. A dining table is also present in the room, completing the layout of a modern, functional kitchen."} +{"image_id": 36477, "caption": "The image features a large box filled with numerous ripe bananas. The bananas are arranged in various bunches, covering most of the box. They appear to be yellow and green in color, indicating that they are ripe and ready to be eaten. The bananas are organized in different sections of the box, with some bunches overlapping others, creating an abundant and vibrant display within the box."} +{"image_id": 125375, "caption": "The image depicts a red, white, and blue train traveling down the tracks, passing by a group of people who are waiting at a train station. There are several individuals both standing and sitting near the train tracks, with some closer to the foreground and others further back. \n\nIn the scene, there are also two benches, one located in the middle of the image and another towards the right side. A handbag can be seen on the ground near one of the people, possibly belonging to one of them. The overall atmosphere suggests a busy train station with people waiting to board the train or just enjoying their surroundings."} +{"image_id": 362520, "caption": "The image features a young person, wearing a helmet and protective gear, performing a trick on a skateboard. They are in the process of jumping, with the skateboard positioned below them. The skateboard is quite large, extending from the lower-left part of the image to the top-right section.\n\nAdditionally, there are several cars visible in the background, likely parked near a skate park or a parking lot. The presence of these cars suggests that the skate park is located in an area with a lot of traffic or a busy location."} +{"image_id": 5412, "caption": "The image features a modern bathroom with beige and white color tones. The bathroom contains a toilet situated next to a sink on the left side, and another sink is visible towards the right side of the room. There is also a bathtub in the middle right part of the bathroom.\n\nAdditionally, there are three bottles placed on the countertop near the sink on the right side, and a cup is placed on the counter in the middle right corner of the bathroom. The overall design appears clean and functional, with a contemporary feel."} +{"image_id": 757, "caption": "The image features a herd of elephants gathered in a body of water, possibly a river. There are three elephants in total, with two of them standing close to each other and the third one a bit further away. They are enjoying their time in the water, possibly bathing and socializing with each other.\n\nTwo of the elephants are interacting with each other by the water, while the third elephant is situated near the edge of the water, closer to the left side of the image. The elephants appear to be of different ages, with one of the elephants being smaller and the other two appearing larger, suggesting a family dynamic in the herd."} +{"image_id": 396496, "caption": "The image depicts a group of people standing outside in the snow, with trains in the background. There are five trains visible in the scene, lined up one after another, creating a visually striking backdrop. Among the people, some are holding umbrellas to shield themselves from the falling snow.\n\nThe individuals are scattered across the scene, with some standing closer to the trains, others further away, and a few people in the foreground, closer to the viewer. The overall atmosphere of the image is that of a snowy day, with people braving the weather and waiting for their train."} +{"image_id": 81761, "caption": "The image depicts a woman playing tennis on a green court, wearing a black shirt. She is in the process of hitting a tennis ball with her racket, possibly preparing for an intense serve. The tennis ball is visible in the air, close to the woman's racket.\n\nIn the background, there are several cars parked nearby, which might belong to spectators or players at the tennis court."} +{"image_id": 130677, "caption": "The image features a tennis court at night, with two main players engaged in a game. One of the players is bending over to pick up a tennis ball, while the other person is standing on the opposite side of the court, likely watching the game or waiting for their turn to play.\n\nThere are several other sports balls scattered around the court, and a few bottles can be seen placed near the edges of the court. The scene captures the ambiance of a nighttime tennis match, with the players focused on the game and the darkness creating a unique atmosphere."} +{"image_id": 318825, "caption": "The image features a man standing on a tennis court, holding a tennis racket in his hand and preparing to swing at a tennis ball. The man appears to be a tennis player in the midst of a game or practice session.\n\nIn the background, there are branding boards, suggesting that the tennis court may be associated with a company or organization. Two chairs can be seen near the edge of the tennis court, possibly for players to rest during breaks or for coaches to observe the game."} +{"image_id": 48014, "caption": "The image depicts a man walking down a sidewalk with a dog on a leash. The dog is black and appears to be a long-haired breed. The man is wearing a green shirt and walking the dog in a park setting. \n\nIn the background, there are several cars parked along the sidewalk, as well as a few people scattered throughout the area. One person is sitting on a bench near the man walking the dog, while another person can be seen further in the background. There is also a handbag placed on the ground nearby the bench where the person is sitting."} +{"image_id": 421028, "caption": "The image features a black cat lying comfortably on a rug, holding a toy carrot in its paw. The cat appears to be enjoying its playtime, possibly using the carrot as a chew toy. The carrot is located towards the right side of the cat, occupying a significant portion of the scene.\n\nAdditionally, there are several books scattered around the room, both near the cat and further away. Some books are placed on the left side of the cat, while others can be found near the top right corner of the image. The presence of books suggests that this might be a cozy living space where the cat is allowed to relax and play."} +{"image_id": 479659, "caption": "The image features a man and a woman standing close to each other in an outdoor setting, having a conversation. They are both wearing sunglasses and appear to be enjoying their time together. The woman is holding a purse, and there is a wine glass visible in the scene.\n\nIn the background, there is a dining table with a white tablecloth, and several bottles are placed around the table. Two potted plants are located near the table, adding to the outdoor ambiance. Additionally, there is a chair positioned near the table, and a second person can be seen sitting in the background."} +{"image_id": 369826, "caption": "The image features a large flat screen TV mounted on the wall, displaying a picture of a person on a surfboard. The TV is located near the center of the wall, capturing the attention of anyone passing by.\n\nIn the surrounding area, there are several chairs arranged around the space. Some chairs are located on the left side of the TV, while others are positioned to the right and further back in the scene. Additionally, a handbag can be seen placed on the floor near one of the chairs."} +{"image_id": 406253, "caption": "The image depicts a city street scene with several vehicles parked on the side of the road. Two scooters, one blue and one green, are prominently placed in the middle of the scene, with a car parked behind them. Another car can be seen further down the street. \n\nThere are also two people in the scene, one standing near the center of the street and another person closer to the left side. They might be pedestrians or riders of the parked vehicles. Additionally, a traffic light is visible in the background, regulating the flow of traffic in the city."} +{"image_id": 548267, "caption": "The image features a picturesque scene of a grassy field with a herd of sheep grazing on the green grass. There are nine sheep in total, spread out across the field. The landscape includes a beautiful mountain in the background, adding to the serene atmosphere of the scene."} +{"image_id": 335844, "caption": "The image features a stainless steel toaster oven placed on a counter in a kitchen. The toaster oven is open, and inside it, there are several trays of food being heated. Specifically, there are two trays of food being heated, with one located closer to the front and the other situated towards the back. \n\nIn addition to the toaster oven and the heating trays, there is a microwave located on the counter, slightly behind the toaster oven. The microwave appears to be a part of the same kitchen appliance, indicating a well-equipped cooking space."} +{"image_id": 299640, "caption": "The image features a table with various electronic items, including a Sony remote control, a television remote, and a circuit board. The Sony remote is in the middle of the table, while the television remote is located towards the top right corner. The circuit board is prominently displayed in the lower half of the table.\n\nThe items are separated into different sections, showcasing the assortment of electronic devices. The table appears to be a workspace for studying or disassembling electronic devices."} +{"image_id": 121812, "caption": "The scene depicts a busy city street with several cars driving and stopping at a red traffic light. The view is captured through a windshield, possibly from a passenger car or another point of view. There are a few traffic lights in the scene, with the main one near the top center and others scattered along the street.\n\nNumerous cars can be seen in various positions, both near and far from the viewer. Some are stopped at the red light, while others are driving and navigating through the street. The image captures the hustle and bustle of city life, with vehicles and pedestrians going about their daily activities."} +{"image_id": 107234, "caption": "The image features a bearded man wearing a suit, tie, and a flower in his lapel. He is holding a wine glass up to his mouth, with his tongue out, as if tasting the wine. The man appears to be an alter boy, dressed for a formal event.\n\nIn the background, there are two cars parked, one closer to the left edge of the image and the other one occupying the right side. A person is also visible in the background, standing near the right edge of the frame."} +{"image_id": 153104, "caption": "The image depicts a man sitting in a stadium, enjoying a hot dog while eating it. He is holding the hot dog in his hand, and there is a bun in the scene. The man appears to be focused on the game happening around him.\n\nThere are several other people in the stadium as well, occupying various chairs and areas. Some of them can be seen in the background, both near and far from the man with the hot dog. The overall atmosphere seems to be that of a casual, social gathering where people come together to enjoy the game and the food."} +{"image_id": 216417, "caption": "The image features a man, wearing a backpack, standing in a snowy landscape with his dog on the backpack. He appears to be well-prepared for a journey in the cold, as the man is also equipped with ski poles, which are placed beside him. The dog seems to be enjoying its adventure on the man's back.\n\nIn the background, there is a bench visible, adding a touch of civilization to the otherwise snowy environment."} +{"image_id": 286708, "caption": "The image features a black and white cat sitting calmly wearing a pink knitted hat. The hat has a fluffy design, resembling a winter hat or a beanie. The cat is looking at the camera with a curious expression, possibly aware of the attention it is receiving.\n\nIn the background, there are several books scattered around, adding a touch of intellectual ambiance to the scene. The books are of various sizes and orientations, creating a diverse and interesting environment for the cat and the viewer."} +{"image_id": 547041, "caption": "The image features a dining table with two bowls filled with food. One bowl contains a salad with various vegetables, including lettuce, olives, and cheese, while the other bowl is filled with a dessert. The salad bowl also includes a lemon wedge and several toothpicks.\n\nThere are several carrots placed on the table, with some near the salad bowl and others spread across the table. Additionally, a spoon can be seen on the table, likely used for stirring or serving the food."} +{"image_id": 293802, "caption": "The image captures a lively scene of a young man skillfully performing a trick on his skateboard, with his feet in the air, while several other people watch the spectacle. In the background, there are dining tables and chairs, indicating that the location might be a public area, such as a mall or a park.\n\nThere are numerous people scattered throughout the scene, some close to the skateboarder, and others further away. A few bicycles can be spotted in the background, possibly belonging to some of the people present. The overall atmosphere of the image suggests excitement and entertainment, as people enjoy watching the man's talent unfold before their eyes."} +{"image_id": 252738, "caption": "The image features a man wearing a black leather jacket standing on a dirt field, talking on his cell phone. He appears to be engaged in a conversation as he looks out over the field. The field is quite large, extending to the horizon, and is surrounded by dirt. There are no other people visible in the scene.\n\nIn the background, there are mountains visible beyond the field, adding to the scenic view. A few cars can be seen scattered around the area, possibly indicating that the field is close to a road or parking lot."} +{"image_id": 43165, "caption": "The image features two zebras standing together on a grass-covered field. They appear to be grazing on the grass, with one zebra positioned closer to the left side of the frame and the other zebra on the right side. The scene is set against a backdrop of a grassy field, and there are some trees nearby, adding to the natural environment."} +{"image_id": 218215, "caption": "The image features a large, white polar bear swimming in a body of water. The bear is in the water with only its head above the surface, appearing to be enjoying the activity. Its mouth is open, possibly indicating that it is breathing or panting as it moves through the water. The scene captures the bear's excitement and energy as it takes a dip in the ocean."} +{"image_id": 299082, "caption": "The image features a giraffe standing in a grassy field next to a rocky hillside. The giraffe appears to be reaching out and eating grass from the ground. There are a few other smaller giraffes in the scene, with one located to the right of the main giraffe and another further away. The surrounding area is lush with green grass, providing a natural habitat for the giraffes."} +{"image_id": 152360, "caption": "The image features a lively street scene with a fruit stand displaying an abundance of bananas and oranges. Multiple bunches of green bananas hang from a metal pole, covering a wide area, while several oranges are spread across the stand. The bananas and oranges are arranged in an appealing manner, attracting the attention of passersby.\n\nThere are several people walking near the fruit stand, likely browsing through the fruits or considering a purchase. Some parked cars can be seen in the background, with one car on the left side of the image, another on the right side, and a third one further in the background.\n\nOverall, the scene captures a bustling street market at night, with people and cars going about their daily activities."} +{"image_id": 205601, "caption": "The image features a woman in a blue shirt cooking a delicious dish on a stovetop. She is using a frying pan to prepare a meal with various ingredients, including vegetables and meat. \n\nIn the scene, there are a few other people around the woman, possibly watching her cook or waiting for their meals. There are several bottles and a cup placed on the counter near the stovetop, likely containing ingredients or beverages. \n\nAdditionally, there are two ovens in the image, one below the stovetop and another on the left side of the scene. This suggests that the woman is cooking in a well-equipped kitchen, possibly in a restaurant or a well-maintained home."} +{"image_id": 174004, "caption": "The image features an old, rusty yellow dump truck parked in a grassy field. The truck is surrounded by tall weeds and is almost completely hidden by the overgrown plants. \n\nThere are trees in the background, giving a sense of the truck being in a wooded or rural area. The scene is a blend of nature and industrial elements, as the old work truck is parked in the midst of the wild."} +{"image_id": 31542, "caption": "The image features a man on a snowboard performing a stunt in the air. He is in mid-air, showcasing his impressive skills as he jumps over a striped pole. The snowboarder is in the center of the scene, with the snowboard clearly visible beneath him.\n\nThe snowboarder is wearing a winter coat, which covers his body and provides protection from the cold. He appears to be fully engaged in the exciting activity, enjoying the thrill of performing the jump."} +{"image_id": 305268, "caption": "The image features a woman playing tennis on a court, holding a tennis racket in her hand. She appears to be in an enclosed area, possibly a tennis park or an indoor court. She is wearing a short skirt and is focused on her game.\n\nThere are several benches placed around the court, with one close to the left side, one in the middle, and another on the right side. There is also a chair on the left side of the court, which may be used for resting between games or sets."} +{"image_id": 2867, "caption": "The image features a group of people on skis standing together on a snowy slope in the mountains. There are five individuals in the scene, all wearing skis and preparing for a skiing adventure. They are likely taking a break to chat or check their gear before continuing down the mountain.\n\nVarious skiing items are visible in the scene, including multiple sets of skis scattered around the group. There are also backpacks and a handbag present, indicating that the group is well-prepared for their skiing excursion."} +{"image_id": 72428, "caption": "The image features a white toilet sitting in a small bathroom. The toilet has a tissue box placed on top of it, which is a common arrangement in bathrooms for easy access to tissues. A box of tissues is also visible next to the toilet. Additionally, a roll of toilet paper can be seen on the edge of the toilet seat."} +{"image_id": 158494, "caption": "The image features three giraffes standing close to each other in an outdoor enclosure. One of the giraffes is reaching out with its tongue, possibly to eat grass or a branch. The giraffes seem to be of varying sizes, with one being larger than the others. They are standing in front of a green building, which is part of their pen. Another smaller giraffe can be seen further back in the scene, completing the trio of giraffes in the enclosure."} +{"image_id": 147629, "caption": "The image features a white cat lying on the ground, comfortably holding a stuffed toy in its paws. The cat's expression suggests that it is enjoying its playtime. The toy appears to be a stuffed animal, possibly resembling a donkey or an elephant. \n\nThere are several other objects in the scene, including another smaller stuffed animal on the right side of the image and two books located towards the top of the picture. Additionally, there are two ties, one on the left side and another further to the right, which might be worn by the cat's owner."} +{"image_id": 581899, "caption": "The image shows two trains parked next to each other, with one train situated on the left side and the other on the right side. They appear to be passenger trains, as they are not freight trains. The trains are parked parallel to each other, with one train extending towards the front of the other. \n\nAdditionally, there are two benches visible in the scene. One is located in the middle of the two trains, and the other is positioned on the right side of the image. A person can be seen standing close to the right-side train, possibly a passenger waiting to board or just observing the scene."} +{"image_id": 369345, "caption": "The image depicts a living room with a blue couch placed against the wall. The couch is adorned with several red pillows, giving it a cozy appearance. In front of the couch, there is a coffee table with a laptop computer on it. The room also features a wooden bookshelf filled with numerous books, showcasing a variety of subjects and interests.\n\nAdditionally, there is a remote control on the coffee table, indicating that the room is used for leisure and entertainment purposes. A person can be seen in the room, possibly using the laptop or browsing through the books on the shelf."} +{"image_id": 372246, "caption": "The image features a rural road with a stop sign positioned at the end of the street sign. The stop sign is red and clearly visible for all to see. The street sign, on the other hand, is slightly smaller and located above the stop sign. \n\nThere are several cars visible in the background, likely indicating that the road is used by vehicles. The cars are scattered along the length of the street, with some closer to the stop sign and others further away."} +{"image_id": 261563, "caption": "The image features two dogs playing together in a grassy field. One of the dogs, which is brown and black, has a yellow Frisbee in its mouth, while the other dog is actively participating in the game. The dogs appear to be enjoying their time outside, either tossing the frisbee or engaging in a tug of war.\n\nThe field is filled with green grass, providing an ideal environment for the dogs to run and play freely."} +{"image_id": 461802, "caption": "The image features a man standing on a train platform at a train station. The platform is located under a clock, which is positioned near the top right side of the scene. The man, who is wearing an orange and white uniform, is walking onto the train. \n\nThere are other elements present in the scene, such as a handbag placed on the ground close to the man, and several signs around the platform providing information about the train or the station. The train itself takes up a significant portion of the image, indicating its importance in transportation."} +{"image_id": 138175, "caption": "The image shows a man with glasses talking on a cell phone, wearing a suit jacket and white shirt. He appears to be in a restaurant, sitting at a table and engaged in a conversation. There are other people present in the scene, including one person standing near the left side of the image and another person on the right side. \n\nA handbag can be seen placed on the table next to the man in the suit. The dining table is located in the middle of the scene, with a chair positioned at the table. Overall, the atmosphere seems to be a casual yet professional setting, suitable for a business lunch or a meeting."} +{"image_id": 103488, "caption": "The image shows a large, clean bathroom with three sinks and a blue floor. The sinks are arranged in a row, and the room is well-lit, possibly by a large mirror or a skylight. There are soap dispensers near the sinks, and the restroom appears to be empty at the moment.\n\nThere are also several people in the bathroom, with one person visible in the left side and another person closer to the right side. The individuals seem to be either using the sinks or preparing to use them."} +{"image_id": 215901, "caption": "The image features a fruit bowl placed on a table, containing a variety of fruits such as bananas and oranges. There are multiple bananas in the bowl, some positioned closer to the right side, while others are scattered around. Oranges are also part of the fruit arrangement, with a few pieces visible in the bowl. The table is situated on top of a tiled counter, adding to the overall aesthetic of the scene."} +{"image_id": 514180, "caption": "The image features a pan with several pizzas on it, all in various stages of preparation. One pizza is being cooked on a pizza pan, while the others are placed on a countertop. There are three pizzas in total, with one on the left side of the pan, one in the middle, and another on the right side. \n\nAdditionally, there are two sets of pizza cutters present in the scene, one placed near the left pizza and the other near the middle pizza. These tools are likely being used to cut and serve the pizzas. The countertop also has a cup placed on it, possibly containing a beverage or sauce for the pizza-making process."} +{"image_id": 396338, "caption": "The image depicts a busy street scene with several people walking, some of whom are carrying umbrellas. There are at least five people visible in the scene, with one person crossing the street in the background. \n\nTwo cars are parked on the street, one on the left side and another on the right side. A truck is also present, located towards the right side of the scene. A bicycle can be seen parked near the center of the street, while a motorcycle is positioned further to the right. \n\nThe overall atmosphere suggests a bustling urban environment with people going about their daily activities."} +{"image_id": 579362, "caption": "The image depicts a man sitting on a blue bench near the beach, looking out at the ocean where a large boat is visible in the distance. The man appears to be enjoying the view and relaxing by the water. \n\nSeveral other people can be seen in the scene, some closer to the water and others further away. There are also multiple beach umbrellas providing shade in the background, as well as a handbag placed on the bench near the man sitting. The overall atmosphere of the beach seems to be leisurely and enjoyable."} +{"image_id": 289512, "caption": "The image features a man wearing a hat, riding a brown horse in a field. The man is positioned near the center of the scene, holding a rope in his hand while on the horse. The horse is off-center, extending from the left side of the image towards the right.\n\nThere are several other horses in the background, with one on the left side, two on the right side, and another in the middle. Additionally, there are two cars visible in the image, one on the left side and the other on the right side, both located relatively far from the main scene."} +{"image_id": 306928, "caption": "The image features a large tower clock situated at the top of a tower. The clock is prominently displayed on the tower, making it a central and eye-catching feature. \n\nThere is a flock of birds perched on various parts of the tower, creating a lively atmosphere. Some birds are situated near the clock, while others are scattered around the top of the tower, covering different angles and making the scene more dynamic."} +{"image_id": 453009, "caption": "The image features a teddy bear sitting on the back of a bench, positioned in a way that makes it appear as if the teddy bear is riding a toy duck. The bench is located on a road, and there are a few people in the scene, with one person standing near the left edge of the image and two others further back. \n\nAdditionally, there are two cars visible in the background, one on the right side of the image and the other on the left. A fire hydrant can also be seen in the middle of the scene, near the right edge."} +{"image_id": 112581, "caption": "The image features a man standing in a store, wearing a white shirt and a hat. He is holding an umbrella and appears to be making a funny face as he pretends to be a character from the New York Yankees, making a face and holding a hot dog in his hand. \n\nIn the background, there are several TVs displaying different items, such as a bottle and a cup. Other people can be seen in the store, one of whom is a fan wearing a baseball cap, and another person is a store employee. There is also a backpack placed on the floor near the man in the white shirt."} +{"image_id": 504977, "caption": "The image depicts an older woman sitting on a park bench, with a handbag placed beside her. She appears to be wearing a tan outfit, and she looks to be enjoying her time outdoors. The bench stretches across the scene, with a few more benches visible in the background. There is another bench located at the right side of the image, and a third bench can be seen further back, closer to the woman."} +{"image_id": 228764, "caption": "The image features a sandy beach setting where a dog and a cat are curiously looking at each other. The dog is positioned towards the left side of the scene, while the cat is on the right side. The cat appears to be watching the dog as it walks by, and the dog is in the process of walking across the sand.\n\nIn the background, there are several cars parked near the beach, indicating that this location may be close to a parking area. Additionally, there are two backpacks placed on the ground, possibly belonging to the dog and the cat or other beachgoers."} +{"image_id": 151528, "caption": "The image features a man standing on a rock wall, holding an umbrella. A black dog is walking by the man's side, keeping him company in the outdoor setting. There is also a second, smaller dog visible in the scene. The weather appears to be cloudy, giving the scene a somewhat overcast ambiance. The presence of the dogs and the umbrella suggests that the man may be enjoying a walk with his pets, protecting them from the elements with the umbrella."} +{"image_id": 248919, "caption": "The image features a clean and organized kitchen with a stove top oven located next to a wooden dining table. A microwave can be seen mounted above the oven, and there's a bowl of fruit placed on the countertop, which includes apples and oranges.\n\nThe kitchen is well-equipped with various kitchen appliances, such as a refrigerator on the left side and a sink situated near the counter. In addition, there are several cups and a knife on the countertop, indicating that it is a functional space for preparing and enjoying meals."} +{"image_id": 580607, "caption": "The image depicts a serene waterway with several boats lined up along the side of the river. The boats are docked, and people are walking nearby on the path, enjoying the view of the water and the boats. Some people are also standing close to the boats, possibly observing the boats or preparing to board one.\n\nIn total, there are at least 13 people in the scene, with some individuals near the boats and others scattered along the path. The boats are of various sizes, and they extend from the left side of the image to the right side, creating a picturesque scene of a river filled with boats and people enjoying the outdoors."} +{"image_id": 200291, "caption": "The image showcases a dining table with two plates of food on it. One plate contains toast, while the other has a combination of food items, including tater tots, bread, and a serving of mustard. There is also a side of mixed vegetables on the plate with the toast. \n\nIn addition to the food, there is a fork placed on the table, likely for eating the various dishes. The table takes up most of the scene, indicating that it is the central focus of the image."} +{"image_id": 296231, "caption": "The image depicts a cluttered living room with a TV turned on, serving as the primary source of entertainment in the space. The television is placed in the center of the room, surrounded by three bookshelves filled with various books. Some of the books can be seen on the left and right sides of the shelves.\n\nThere are several clocks in the room, with one in the upper left area, another near the center, and the third one towards the right side. Additionally, the room features a collection of action figures, including one in the upper right corner and another near the center of the room. A teddy bear is also visible, resting on a surface towards the right side of the room.\n\nThe room is decorated with a mix of different items, creating a cozy and personalized atmosphere."} +{"image_id": 505663, "caption": "The image features a large clock mounted on the side of a brick wall, above a doorway. The clock is prominently displayed in the center of the wall, drawing attention to the time. The clock appears to be a Roman numeral clock, adding a touch of classical style to the architecture. \n\nThe wall and doorway are part of a well-maintained building, emphasizing the clock as a significant element of the structure. The scene is further enhanced by the presence of a brick arch, which complements the overall design of the space."} +{"image_id": 41572, "caption": "The image captures a baseball practice session on a field. There are multiple players present, with one of the players getting ready to swing a bat at a baseball that is in the air. Other players are scattered across the field, either observing or preparing for their turn to practice.\n\nA few cars are parked near the field, with one car on the left side and another further back on the right side. Additionally, a sports ball, presumably a baseball, can be seen in the top part of the image, suggesting that the practice session is well underway."} +{"image_id": 509589, "caption": "The image features a group of young men standing around a public area, with some of them riding skateboards. One of the skateboarders is wearing a blue tie-dye shirt and riding his skateboard on a sidewalk. Another man is standing on a skateboard, holding a bottle, while other skateboarders are standing nearby.\n\nIn the scene, there are also several backpacks and handbags around the area, indicating that the skateboarders might have been carrying their belongings with them. A car is visible in the background, possibly parked near the public space."} +{"image_id": 357238, "caption": "The image features a person on a beach, enjoying a day of kite flying. The kite is flying high in the sky, above the ocean cove. The person appears to be engaged in flying the kite, which takes up a significant portion of the scene.\n\nThere are also a few birds present in the sky, adding to the lively atmosphere of the beach scene. The birds are dispersed across the sky, some closer to the water and others further away. Their presence suggests that the beach is a popular spot for both kite flying and wildlife watching."} +{"image_id": 466575, "caption": "The image features an old, worn, and dirty brown suitcase sitting on a black, speckled ground. The suitcase appears to be in a somewhat battered state, suggesting it has been through a lot. There are no handles visible on the suitcase, adding to its worn appearance. The suitcase's size is quite large, occupying a significant portion of the scene."} +{"image_id": 271970, "caption": "The image depicts a small white church with a tall clock tower, standing tall next to a road. The clock is positioned midway up the tower, making it easily visible to passersby. The church also features a steeple with a bell, situated above the clock.\n\nThe scene is set on a street with several houses nearby, both close and further away from the church. One such house can be seen at the right side of the image, while another is located closer to the center, and a third house can be found in the background. There is a bench placed on the sidewalk near the church, providing a seating area for visitors or passersby to rest."} +{"image_id": 305540, "caption": "The image features a large building with a white exterior and a courtyard. In the courtyard, there is a giant pair of scissors standing upright, appearing as if it's in front of the building. The scissors are positioned close to the center of the scene, capturing attention due to their size and placement.\n\nThere are several people walking around the building and the courtyard, going about their day. At least five individuals can be seen, with some closer to the building and others near the scissors. One person is carrying a handbag, which is visible close to one of the people walking by the building."} +{"image_id": 462928, "caption": "The image shows a man wearing glasses and smiling as he holds up an iPhone to his ear. He is sitting down, likely in a room or office, with a black chair visible in the background. There are multiple books in the scene, some of which are placed on the floor or a nearby surface. The man appears to be enjoying the conversation or content on his iPhone."} +{"image_id": 270544, "caption": "The image depicts a group of people enjoying themselves in a lake, with some of them in bikinis. One woman, in a blue bikini, is in the center of attention, with her arms in the air, possibly jumping off a surfboard. Two other women and a man are nearby, either swimming or splashing in the water.\n\nThere are two boats visible on the lake, one located towards the right side of the image and the other one on the left side. The people are scattered throughout the scene, with some closer to the boats and others further away, all having a good time in the water."} +{"image_id": 134042, "caption": "In the image, a large airplane is flying through a cloudy blue sky. The airplane is visible towards the upper part of the sky, and the clouds appear to be scattered around the plane. The scene captures the essence of the plane soaring high in the open sky, with no signs of land or other aircraft in sight."} +{"image_id": 120340, "caption": "The image shows a man standing next to a blue bike, which is parked in front of a metro bus. He is in the process of fixing the bicycle, possibly adjusting the seat or tightening the straps on the handlebars. \n\nThere are several other people in the scene, including one person near the top right corner, another person in the middle right, and two more individuals in the bottom left area of the image. The metro bus is quite large, occupying the majority of the background, and it is evident that the man with the bike is likely waiting for the bus to reach its next stop."} +{"image_id": 418949, "caption": "The image captures a baseball game in progress, with several players on the field. At the center of the scene, a baseball player in a red and blue uniform is holding a baseball bat, getting ready to take his turn at bat. Another player nearby is warming up with a baseball bat, preparing for his turn as well.\n\nThere are other players scattered across the field, both on the offensive and defensive teams, indicating an exciting game. A baseball glove can be seen on the field, likely belonging to one of the players. In the background, a bench is located near the edge of the field, serving as a resting spot for the players when they are not actively participating in the game."} +{"image_id": 520109, "caption": "The image features a vibrant and colorful scene with a grassy field filled with a variety of open umbrellas. These umbrellas are spread across the field, with some placed in a line and others set up individually. The field seems to be a popular outdoor gathering spot, as there are several people enjoying the area and some chairs placed nearby.\n\nIn addition to the umbrellas and people, there are a few cars parked around the field, indicating that visitors have come from different places to spend time in this picturesque setting. The presence of a forest nearby adds to the overall ambiance and offers a natural retreat for people to relax and unwind."} +{"image_id": 50753, "caption": "The image depicts a kitchen with wooden cabinets and white appliances, including a refrigerator, microwave, and oven. The refrigerator is located on the left side of the kitchen, while the microwave is situated above the oven, which is situated in the middle of the space. \n\nSeveral items can be found on the countertops, such as a sink and a bowl. There are two sinks in the kitchen, one closer to the left side and another one further to the right. Additionally, a bowl is placed on the countertop near the right sink. A clock is mounted on the wall, and a cup is located near the right side of the kitchen."} +{"image_id": 329939, "caption": "The image features a group of giraffes walking together in a grassy field. There are five giraffes in total, with one of them standing at the forefront of the scene, while the others are spread out in the background. The giraffes appear to be enjoying their time in the open plains, with a sense of freedom and connection to nature.\n\nThe field is filled with tall grass, providing a natural habitat for the giraffes. Some of the giraffes are facing different directions, indicating that they might be exploring the area or keeping an eye out for potential predators. Overall, the scene captures the beauty and serenity of wildlife in their natural environment."} +{"image_id": 351345, "caption": "The image features a woman in a white shirt standing in a room and holding a Nintendo Wii game controller. She appears to be enjoying a video gaming session. There are also a few other people in the room, though they are not the main focus of the scene.\n\nThe room is furnished with a dining table and a couple of chairs. On the dining table, there are two wine glasses and a cup, suggesting that the people in the room might be enjoying a meal or social gathering."} +{"image_id": 25293, "caption": "The image features a woman, possibly a Greek woman, holding a blue object in her hand. The blue object appears to be a frisbee, and the woman is reaching up as if to throw it. She is wearing a long dress, which adds to the classical aesthetic of the scene. \n\nIn the background, there is a mountain visible, providing a beautiful backdrop to the scene. The woman's hair is flowing, giving off an impression of grace and elegance."} +{"image_id": 543041, "caption": "The image shows a box filled with a variety of donuts, each covered in different toppings. There are six distinct donuts visible in the box, with some featuring glazes, and others having powdered or cinnamon toppings. The assortment of toppings and colors make the donuts look delicious and inviting. The box of donuts is placed on a dining table, suggesting that they are ready to be enjoyed by those who are present."} +{"image_id": 568265, "caption": "The image depicts a large park with a group of people gathered in the grassy field. There are at least 13 people spread across the field, enjoying their time outdoors. The park is set against a backdrop of a beautiful sunset, which includes a large kite flying high in the sky, adding to the serene atmosphere.\n\nAdditionally, there are several cars parked near the park, with one car closer to the left side and another car closer to the right side of the scene. A fire hydrant can be spotted in the middle of the grassy field, and a handbag is visible on the ground near one of the people."} +{"image_id": 467386, "caption": "The image depicts a scene outside a building with a blue door that has been closed. Next to the door, there is a bottle and a cat, seemingly enjoying each other's company. The cat is located near the bottom right corner of the image, while the bottle is a bit further to the left. The scene gives off a somewhat abandoned and neglected vibe, with the cat being particularly noticeable in the foreground."} +{"image_id": 242363, "caption": "The image features a small, unfinished bathroom with a white toilet placed in the middle of the space. Next to the toilet, there is a white bathtub, with the shower curtain drawn to the side. The sink is located to the left of the toilet.\n\nIn addition to the main bathroom fixtures, there are several items scattered around the room. A cup can be seen on the left side of the bathtub, while a bottle is placed near the toilet. Two knives are also present in the scene, with one close to the sink and the other near the toilet. Lastly, a toothbrush is visible in the lower right part of the image."} +{"image_id": 554900, "caption": "The image features a small bathroom with a white toilet seat and a white toilet bowl. The toilet appears to be clean and well-maintained. There is also a toilet brush placed in the corner of the bathroom, which indicates that it is a functional and organized space. The toilet is positioned towards the left side of the image, and there is a bottle placed nearby, possibly for bathroom supplies."} +{"image_id": 115006, "caption": "The image captures a baseball game in progress, with a batter in the middle of swinging at a pitch. The catcher and the umpire are positioned behind the batter, carefully observing the play. \n\nThere are several other people in the scene, including teammates and possibly coaches, with a few of them standing closer to the action and others positioned further away. In the background, there are a few chairs and benches scattered around the area.\n\nA baseball glove can be seen near the middle of the scene, likely belonging to the catcher. The atmosphere of the image suggests a high level of focus and intensity, as everyone is engaged in the game."} +{"image_id": 75375, "caption": "The image showcases a lively beach scene with several people enjoying water sports. There are at least 13 people visible in the water, engaging in activities such as kiteboarding and parasailing. The kites can be seen flying in the sky, with various colors and patterns adding to the vibrant atmosphere.\n\nIn addition to the kites and parasailers, a surfboard is also seen floating on the water, used by one of the participants in the water sports. The people are spread out across the scene, some closer to the shore while others venture further out into the ocean. The overall scene is a delightful display of people having fun and making the most of their day at the beach."} +{"image_id": 419223, "caption": "The image captures a group of young boys playing soccer on a field. There are three boys in particular engaged in the game, with one boy falling down while trying to kick the sports ball. The other two boys are seen nearby, actively participating in the match.\n\nThe soccer ball is located in the center of the scene, with the players surrounding it. There are two benches positioned along the side of the field, possibly for resting or spectating purposes. The children are energetic and focused, demonstrating their enthusiasm for the sport."} +{"image_id": 137578, "caption": "The image shows a public restroom with two toilets placed next to each other. These toilets have the lids removed, making them functional and ready for use. The toilet on the left is higher than the one on the right, which can make it more convenient for adults and children alike. The bathroom appears clean and well-maintained, ready for customers to use."} +{"image_id": 408808, "caption": "The image features a white table with three different toothbrushes placed on it. The toothbrushes are in excellent condition, with their packaging still intact. One toothbrush is on the left side of the table, another one is in the middle, and the third one is on the right side. \n\nAdditionally, there are a few extra toothbrushes visible on the table, with one on the left edge, another one in the upper right corner, and the third one in the upper left corner. The variety of toothbrushes and their well-maintained condition make this an interesting display."} +{"image_id": 243773, "caption": "The image showcases a cluttered kitchen counter in a house. The counter is covered with various items, including a bottle of wine, a wine glass, and an oven. There are several open cabinets, contributing to the disorganized appearance of the kitchen. \n\nNear the counter, there are multiple cups, bottles, and a bowl placed on the surface. Additionally, a knife and a spoon can be seen among the items. The kitchen features a brick wall, adding a rustic touch to the scene. Overall, the kitchen appears quite disordered and in need of cleaning and organizing."} +{"image_id": 436492, "caption": "The scene features a street with various street signs, including a large green highway sign sitting on the side of the road. Another sign is posted on the sidewalk, likely providing information about the American Recovery Investment Act. \n\nThere are multiple traffic lights dispersed throughout the scene, indicating that it is an intersection with significant vehicular and pedestrian traffic. A few cars are visible on the road, with one close to the foreground and another further down the street. \n\nIn addition to the street signs and traffic lights, there is a person standing near the edge of the sidewalk, possibly waiting to cross the road or just passing by. Overall, the image captures a busy urban environment with various elements of city life."} +{"image_id": 556648, "caption": "The image features a smartphone on display in a store, sitting on a glass shelf. The phone is white and appears to be an older model or a feature phone. It is placed in the center of the display, drawing attention from potential customers.\n\nIn addition to the main phone, there are several other electronic devices visible in the background. These devices are placed in various positions around the display, further emphasizing the store setting and showcasing a diverse selection of electronic gadgets for customers to choose from."} +{"image_id": 298924, "caption": "The image features a dining table with a delicious serving of Asian cuisine. There are several bowls placed on the table, each containing different dishes. One of the bowls contains noodles and chicken, while another bowl seems to have a combination of meat and noodles. There's also a bowl with what appears to be a vegetable meal, and another bowl filled with sauces. \n\nIn addition to the bowls, there are a few bottles on the table, possibly containing beverages or condiments. Chopsticks can be seen next to some of the bowls, which are a staple in many Asian cuisines. The overall scene conveys a variety of flavors and ingredients, ready to be enjoyed by those who partake in this meal."} +{"image_id": 562030, "caption": "The image shows a deck with a gardening process taking place. There are five potted plants on the ground, with various plants and dirt in them. The plants are spread out across the wooden floor, creating a diverse gardening scene. \n\nIn addition to the potted plants, there are also a few freshly pulled weeds in front of the deck, adding to the gardening atmosphere. A cup can be seen on the left side of the scene, possibly used for watering the plants or holding soil."} +{"image_id": 501315, "caption": "The image features a person riding a green motorcycle, possibly a racing motorcycle, on a race track. The rider is leaning into a curve, rounding a bend at high speed. The motorcycle is positioned near the center of the frame, and the rider is in the process of taking a tight turn. \n\nIn addition to the main motorcycle, there is another vehicle visible in the background, although it is not as prominent in the scene. The image captures the thrilling and intense nature of motorcycle racing, as the riders navigate the curves and compete against each other."} +{"image_id": 436162, "caption": "The image features a large white passenger bus parked on the side of the road, likely waiting for passengers to board. The bus occupies most of the scene, and its door is open, allowing us to see the interior.\n\nInside the bus, we can see a bench seat located near the middle of the vehicle. There are several people scattered around the scene, some standing close to the bus, while others are further away. One person is standing near the right side of the bus, another near the middle, and a third person closer to the left side of the image. Additionally, there is a handbag placed on the ground near the person standing on the left side of the bus."} +{"image_id": 323888, "caption": "The image features a large, illuminated clock mounted on the side of a building, drawing attention to the time. The building appears to be a prominent structure, possibly a train station or a building with a grand architectural design. \n\nThere are several people scattered around the scene, with some standing close to the building and others further away. One person is holding a handbag, adding to the atmosphere of a public space. Additionally, there is a car parked nearby, which could indicate that visitors or staff arrive at the building regularly."} +{"image_id": 211476, "caption": "The image displays a dining table with two bowls placed on it. Each bowl contains a different food item, presenting a meal with a variety of flavors. \n\nIn one bowl, there is a mix of food, including broccoli, which appears to be the dominant item. The other bowl contains a dish with a yellow sauce and several ingredients, adding a colorful and appetizing touch to the meal. \n\nA knife is also visible on the table, likely used for cutting the food items or preparing the meal."} +{"image_id": 473433, "caption": "The image features a suitcase placed on a table, with two photographs of a man inside the suitcase. The first photo is positioned in the center of the suitcase, while the second photo is on the right side. The suitcase appears to be open, revealing the contents to the viewer.\n\nIn addition to the suitcase, there are several personal items visible in the scene. A bowl can be seen on the left side of the table, while a cup is located near the center of the table. A bottle is also present in the middle of the scene, and a spoon is placed close to the cup."} +{"image_id": 165752, "caption": "The image features a black dog standing on a grassy yard, wearing a Frisbee on its head. The dog appears to be playing with the Frisbee or possibly attempting to catch it. The Frisbee is positioned near the center of the dog's head, and it seems to be a frisbee designed specifically for dogs to wear."} +{"image_id": 573756, "caption": "The image features a grassy field with three giraffes standing together in the brush. One giraffe is partially hidden by a tree, while the other two are standing in the open area. They appear to be enjoying the shade and grazing on the tree's foliage. The giraffes are spread out, with one on the left side, another in the center, and the third one on the right side of the frame. The overall scene depicts a peaceful moment shared by the three giraffes in their natural habitat."} +{"image_id": 187450, "caption": "The image features a blue and silver train parked on the tracks at a train station. The train appears to be a streamlined, modern design, and it takes up a significant portion of the scene. There are several people scattered around the train station, with some standing close to the train and others further away. \n\nAn orange safety cone is placed on the platform near the front of the train, possibly to indicate a caution area or to signal to people the presence of a train. Overall, the scene captures a typical day at a train station with passengers going about their travels."} +{"image_id": 43266, "caption": "The image features a grassy area with two giraffes, one of which is standing close to a tree, possibly seeking shade. The other giraffe is located further in the background, walking around the hillside. The scene appears to be set in a natural habitat with a hillside and a rocky area in the background. The presence of multiple giraffes suggests that this location is a common gathering spot for these animals."} +{"image_id": 150080, "caption": "The image features a large pizza with a variety of toppings, including shrimp, cheese, and green onions, placed on a white plate. The pizza is on a dining table, which also has a chair nearby. The close-up view of the pizza highlights its delicious appearance and the generous amount of toppings."} +{"image_id": 453757, "caption": "The image features a group of men playing soccer on a field. There are several players in action, with one man in an orange uniform in the center of the field, another man on the left side, and a third man on the right side of the field. A sports ball, presumably a soccer ball, can be seen in the air, closer to the middle of the scene.\n\nAdditionally, there are two bottles placed on the ground in front of the players. One bottle is on the left side of the field, while the other is on the right side. The players appear to be in various positions, indicating that they are actively participating in the game."} +{"image_id": 354460, "caption": "The image depicts a group of people, including a man and a woman, who are participating in a ribbon-cutting ceremony. The man is wearing a black shirt and a woman is dressed in a floral dress. They are both assisted by two other men, one of whom is wearing a tie. The group is gathered together, with the individuals holding a large pair of scissors that are about to cut the ribbon.\n\nIn the background, there is a wall that appears to be part of a building or a structure. The atmosphere suggests a sense of community and celebration, as the participants are likely marking a special occasion or event."} +{"image_id": 221681, "caption": "The image features a small bathroom with a sink, toilet, and a blue tiled wall. The sink has a mirror above it, and a towel rack is situated close to the sink, providing a convenient place to hang towels. There is also a bottle of soap placed on the sink's edge.\n\nIn addition to the bathroom essentials, there is a toilet brush and a plunger placed near the toilet, and a cup is visible on a surface in the room. The room is illuminated by natural light, with a window allowing sunlight to pour in, creating a bright and pleasant atmosphere."} +{"image_id": 349324, "caption": "The image presents a view of a train passing by another train on the tracks. The train on the left side is visible from the perspective of the train on the right. There are multiple train cars in the scene, with some appearing closer to the viewer and others further away. \n\nA person can be seen near the center of the image, possibly observing the passing trains or waiting at a station. Additionally, there are two traffic lights captured in the scene, one near the top left side and the other near the top right side, indicating the presence of a crossing or intersection on the tracks."} +{"image_id": 225133, "caption": "The image features a tree with a variety of colorful umbrellas hanging from it, creating a vibrant and eye-catching display. There are 13 umbrellas in total, each with different colors and patterns, suspended in the air at varying heights and positions around the tree. They appear to be placed in a park or an outdoor area where people can enjoy the unique and lively atmosphere."} +{"image_id": 452566, "caption": "The image features a stop sign on the side of a road in a rural area. The stop sign is positioned at the beginning of the road, providing clear directions for travelers. The surrounding landscape consists of a grassy field, a fence, and mountains in the distance. There is also a road leading to the stop sign, creating a sense of depth in the scene."} +{"image_id": 124952, "caption": "The image depicts a busy city street scene with a large bus driving down the street, occupying a significant portion of the scene. There are also several cars on the street, including one parked on the side of the road and another stopped at an intersection.\n\nA few pedestrians can be seen walking along the sidewalk, with one person close to the bus and two others further away. The street is equipped with traffic lights, one of which is at the intersection where the cars are stopped. Another traffic light can be seen further down the street. Trees and buildings provide a pleasant urban atmosphere."} +{"image_id": 26697, "caption": "The image features a woman standing in a doorway brushing her teeth. She is wearing a grey sweater and holding a toothbrush in her hand. The toothbrush is positioned near her mouth, and she appears to be fully engaged in her oral hygiene routine.\n\nAdditionally, there is a bottle located in the background, possibly containing toothpaste or other dental care products."} +{"image_id": 126064, "caption": "The image features a man in a red shirt surfing on a wave in the ocean. He is skillfully riding the wave on a surfboard, maintaining his balance as he glides across the water. The surfboard is positioned with the man towards the left side of the image.\n\nAdditionally, there are several other people in the scene, likely enjoying the ocean and watching the surfer in action. They are scattered around the right side of the image, with some closer to the wave and others further away. The presence of multiple people suggests that it might be a popular surfing spot."} +{"image_id": 557190, "caption": "The image features two men standing together in a lush green field, both dressed in suits and ties. One man is wearing a tie, while the other is wearing a suit and tie. They appear to be posing for a picture in the picturesque setting. The field is surrounded by a beautiful mountain landscape, which serves as a stunning backdrop for their photo.\n\nIn the background, there are several houses scattered around, adding to the serene atmosphere of the scene. Some of the houses are closer to the field, while others are further away, blending into the landscape."} +{"image_id": 137612, "caption": "The image depicts a large, multi-level apartment building situated next to a road. The building has a unique feature - a parking garage entrance, which is marked with a \"Vauxette\" sign. There is a red brick wall surrounding the building, and a road sign is standing on the corner near the building.\n\nSeveral cars are parked along the road near the apartment building. Two cars are located closer to the left side of the scene, while another two cars are on the right side. A fifth car is situated further back, near the top right corner of the image."} +{"image_id": 408480, "caption": "The image features a red and black boat docked next to a red lighthouse at a harbor. The boat is quite large, occupying a significant portion of the docking area. The lighthouse is situated to the left of the boat, near the railing.\n\nIn the background, there are several cars parked near the dock, both close to the boat and further away. A person can be seen standing near the middle of the scene, possibly admiring the boat and the surroundings. Additionally, a truck is parked near the right side of the dock, likely used for transporting goods or equipment."} +{"image_id": 277694, "caption": "The image depicts a brown cow lying down on the sidewalk, close to a parked motorcycle. The cow appears to be relaxed and comfortable, occupying a large portion of the scene. \n\nIn addition to the cow and motorcycle, there are other elements in the scene, such as a car and a bicycle. The car is located near the right side of the image, while the bicycle can be seen further back, towards the left edge of the scene."} +{"image_id": 74166, "caption": "The image features a man with tattoos on his arms and legs, performing a skateboard trick by jumping over a sidewalk. He is in mid-air, with his skateboard positioned underneath him. Another skateboard can be seen on the ground nearby.\n\nIn the background, there are several people in the vicinity, watching the skateboarder's performance. Some of them are standing closer to the skateboarder, while others are further away. There are also two cars in the scene, one parked closer to the skateboarder and the other on the right side of the image."} +{"image_id": 102625, "caption": "The image depicts a small, sunlit kitchen with white cabinets and a dining table. The kitchen features a white stove top oven, a sink, and a refrigerator. Various items can be seen on the countertops, such as a potted plant, a cup, and a vase. \n\nIn addition to the kitchen appliances, there is a TV placed in the living area, and a dining table with chairs can be seen in the background. On the table, there are several bottles and a bowl. The room also has a window that provides natural light, enhancing the overall ambiance."} +{"image_id": 540694, "caption": "The image features a giraffe standing next to a car, extending its head towards the car window. The curious giraffe appears to be looking inside the car, possibly observing the people sitting inside or reaching for a closer look at the vehicle.\n\nIn the scene, there are multiple cars, with one car positioned in front of the giraffe, another car to the right, and a third car further back. There are also several people present in the image, some of them near the giraffe and others closer to the cars."} +{"image_id": 518586, "caption": "The image features an old steam train on the tracks, with a man standing on one of the train tracks. The train is parked in the middle of the railroad, surrounded by a few other train tracks. The scene appears to be a vintage photograph, possibly from the 1940s, capturing the era of steam trains.\n\nThere are a few other people in the scene, one person near the train and three others further away, mostly towards the right side of the image. Additionally, there are two cars visible in the background, likely representing transportation or maintenance for the train."} +{"image_id": 81303, "caption": "The image shows a man skiing down a snowy hill with his skis. He is wearing goggles and appears to be enjoying the winter sport. The skier is positioned near the center of the image, and his skis are visible beneath his feet as he makes his way down the slope. The snow surrounding him creates a beautiful winter scene, perfect for skiing and snowboarding enthusiasts."} +{"image_id": 383065, "caption": "The image features a green public restroom in a city, with a noticeable sign above the door that says \"Toilets.\" The door is open, revealing the interior and providing a clear indication of the facility's purpose. Inside the restroom, there is a handicapped symbol visible, likely to accommodate individuals with disabilities."} +{"image_id": 169602, "caption": "The image features a woman riding a surfboard on a body of water, likely the ocean, and she appears to be in the process of laying on her stomach on a surfboard. She is wearing a wetsuit, which suggests that the water is cold and she is trying to stay warm while surfing. \n\nThere are several other people in the scene, with one person standing near the center and two more individuals located towards the right side of the image. The presence of multiple people in the scene implies that it might be a popular surfing spot or a beach where people gather to enjoy the ocean and its waves."} +{"image_id": 19890, "caption": "The image features two zebras standing side by side in a fenced-in area. They appear to be eating grass or hay, as they both bend down to reach the ground. Their feeding positioned close to each other, they seem to be enjoying their meal together in the confined space."} +{"image_id": 236604, "caption": "The image showcases a spacious and well-decorated living room with light-colored furniture. There are two couches in the room, one situated in the middle and another along the right side. A large coffee table is placed in front of the couches, with a potted plant on it, adding a touch of greenery to the space.\n\nThe room also features a dining table and several chairs surrounding it. A clock can be seen hanging on the wall, and multiple vases of varying sizes are displayed throughout the space, adding to the elegance of the room. There is a handbag resting on the floor next to one of the couches, further enhancing the room's cozy atmosphere."} +{"image_id": 270753, "caption": "The image features a large stuffed pizza on a plate, with a slice cut out using a spatula. The pizza is covered in sauce and cheese, and it appears to be very tasty-looking. The spatula is placed underneath the pizza, making it easy to grab a slice and enjoy the delicious meal."} +{"image_id": 457178, "caption": "The image features a bustling street scene with a large group of people walking down the road. The crowd is comprised of individuals of various ages and genders, all moving in different directions.\n\nThere are several horses and carriages present in the scene, adding to the old-fashioned atmosphere. The horses are of different sizes and are positioned at different points along the street, with some closer to the left side and others more towards the center.\n\nIn addition to the horses and carriages, there are a number of pedestrians carrying handbags, showcasing the vibrant street market. The overall scene exudes a sense of community and social interaction, reminiscent of the charm found in historical photographs."} +{"image_id": 577712, "caption": "The image features a group of people gathered around a giraffe enclosure at a zoo. One giraffe is leaning its head over the fence, drawing the attention of the people. There are five people in total, with some standing closer to the giraffe while others are a bit further away. \n\nAmong the people, two are carrying handbags. The scene captures a moment of interaction between the visitors and the giraffe, with the people possibly admiring or learning about the animal."} +{"image_id": 414560, "caption": "The image depicts a group of cows with blue and white markings, resting in a pen filled with hay. There are six cows in total, each lying down and occupying a section of the pen. They are all facing different directions, creating a peaceful scene. The pen appears to be a part of a farm or livestock area, where the cows can enjoy their time in the hay-filled enclosure."} +{"image_id": 388983, "caption": "The image features a delicious hot dog with a variety of toppings. The hot dog is placed inside a bun, and it is covered with a generous amount of ketchup, as well as some relish. The toppings create a flavorful and appetizing appearance.\n\nAdditionally, there is a pickle on the side, garnishing the hot dog and adding a touch of freshness to the dish. The hot dog takes up a significant portion of the image, and it is the main focus of the scene."} +{"image_id": 245965, "caption": "The image features a large, dry field with a blue umbrella providing shade to a person working on a farm. The person is sitting in the field under the blue umbrella, possibly taking a break or seeking shelter from the sun. \n\nIn the field, there are several bunches of plants, some of which are purple, indicating a diverse range of vegetation. Additionally, a few birds can be seen scattered around the field, adding to the lively atmosphere of the scene."} +{"image_id": 147590, "caption": "The image features a dining table with a glass of red wine and a bread basket. The wine glass is placed prominently on the table, and the bread basket is situated next to it. \n\nAdditionally, there are two people in the scene, one person on the left side and another on the right side of the frame. The table is set with a variety of items, including a knife placed on the right side of the table, and a bowl near the middle. \n\nFurthermore, there are two donuts visible on the table, one towards the right and the other towards the left. The overall atmosphere appears to be a pleasant dining experience with a focus on the wine and bread."} +{"image_id": 46882, "caption": "The image captures a group of young people playing a game of frisbee in a sandy field. There are five people in total, with one of them notably jumping up in an attempt to catch the frisbee. The frisbee can be seen in the air, close to the person leaping. \n\nA bench is placed in the background, providing a resting area for the players. The field also features a small soccer goal, indicating that the area might be used for multiple sports activities. The atmosphere in the image conveys a sense of fun and camaraderie among the participants."} +{"image_id": 518719, "caption": "The image features a large, black and white ceramic bowl placed on a table. The bowl is beautifully crafted, with a brown and cream color scheme, and it sits on top of a white tablecloth. The overall scene gives off a warm and inviting atmosphere."} +{"image_id": 176312, "caption": "The image shows a woman standing in front of a Tour Stop sign, looking at her cell phone. She appears to be using the phone to check her tour route or perhaps make a reservation. The woman is holding a handbag in her hand, which is located near the middle of the scene.\n\nThere are several other people in the background, possibly waiting for their turn to use the Tour Stop facility. Additionally, a handbag can be seen placed on the floor nearby, which might belong to one of the people in the scene."} +{"image_id": 580746, "caption": "The image features a picturesque scene of a grassy field with a group of sheep grazing on the green grass. There are a total of six sheep spread throughout the field, with some closer to the foreground and others farther away. The sheep are peacefully eating their meal, creating a serene atmosphere in the pastoral setting."} +{"image_id": 541223, "caption": "The image features a large airplane, likely a vintage or a model, positioned in front of a building with a green covering on it. The plane is in the center of the scene, with the rest of the building visible behind it. \n\nA pizza restaurant can be seen behind the plane, as indicated by a sign that reads \"Pizza & Ice.\" There are several people in the scene, possibly enjoying the outdoor area or waiting to be served. One person is standing near the front of the plane, while others are scattered around the scene, possibly engaged in various activities or conversations."} +{"image_id": 22589, "caption": "The image features a grassy area with two sheep standing near each other. One sheep is prominently visible in the foreground, while the other sheep is positioned further back. They appear to be looking at the camera, as if posing for a picture. \n\nAdditionally, there are several trees in the background, providing a natural and serene setting for the scene. The overall atmosphere of the image is peaceful and pastoral."} +{"image_id": 196815, "caption": "The image features a group of four young men sitting in a room, playing a video game together. They are seated on chairs and are engaged in a fun gaming session. Two of the boys are playing with a guitar, adding to the lively atmosphere. \n\nIn the background, there is a TV on the wall, likely displaying the video game they are playing. There are also a few books scattered around the room, indicating that the space might be used for various leisure activities. A donut can be seen on a surface close to the TV, serving as a snack for the kids during their gaming break."} diff --git a/OPERA/log/chair_eval_results/shikra/ours.jsonl b/OPERA/log/chair_eval_results/shikra/ours.jsonl new file mode 100644 index 0000000000000000000000000000000000000000..bd3aafd64e14678510e158572023fdf3db3e5581 --- /dev/null +++ b/OPERA/log/chair_eval_results/shikra/ours.jsonl @@ -0,0 +1,500 @@ +{"image_id": 226988, "caption": "The image features a woman sitting at a dining table, taking a picture of two slices of pizza placed on a paper plate. She is using a digital camera to capture the delicacies. Nearby, another person can be seen sitting across the table from the woman, potentially waiting for her share of the pizza."} +{"image_id": 337443, "caption": "The image features a street scene with a large, orange construction sign placed on the sidewalk. The sign is positioned close to a street where various vehicles, primarily cars, seem to be passing by. Some obstructions are visible on the road, which the sign is directing drivers to avoid.\n\nIn addition to the sign and vehicles, there are a few people scattered around the scene. One person can be seen walking close to the sign, while two other pedestrians are slightly distant, closer tot eh edge of the image."} +{"image_id": 112022, "caption": "The image features a large group of people standing in a hallway, presumable in an airport or a station. Numerous passengers appear as individuals in various travel attir, waiting with a piled luggage. They have handheld luggages and backed luggies\u0000"} +{"image_id": 394444, "caption": "In the image, a person is picking up a skateboard from the ground. The skateboard has a unique design featuring neon colors and graffiti on it. The person is holding the skateboard in their hand, possibly preparation to ride or just showing off the colorful design on the skateboard."} +{"image_id": 481635, "caption": "The image features a woman sitting at a dining table, enjoying a deep dish style piece of pizzas placed in front of her. There's another piece of pizza on the table, which appears to not be as loaded with toppings as the first piece. \n\nSeveral cups are present on the table, with one closer to the woman and others scattered around the table. Other people are also present in the scene, with one person sitting to the right of the woman and another person sitting in the background. \n\nA knife can be seen on the table, likely used for cutting the pizza. The atmosphere of the image suggests a casual and enjoyable meal shared among friends or family."} +{"image_id": 285258, "caption": "The image depicts a playful interaction between two dogs in a fenced-in area, which appears to be a grassy field at a park. One dog, which is brown, is playing with the other dog, which is black. They seem engaged, standing on their hind legs and appearing ready, willing, or possibly fighting for position or control. Alasda, an umbrella and a teddy benedictine on top of a fence in background."} +{"image_id": 479057, "caption": "The image features a large, white polar bear peacefully grazing in a lush green field. The bear is the main focus of the scene, covering a significant portion, if not the entire, of the field's lower part, while standing or sitting on the grass. \n \u0002"} +{"image_id": 66238, "caption": "The image captures a thrilling moment of a snowboarder performing an impressive trick in mid-air. The snowboarder is soaring high above the snow-covered hill, displaying their skills and expertise in snowboarding.\n \nIn the background, there are other people present in the vicinity, likely watching, enjoys the scene as well. A total, 13 onlookers can be spotted around the snowboarding action. Some snowmobility awaits onlookers nearby."} +{"image_id": 558458, "caption": "In the image, a woman is enjoying a plate of food at a dining table. She has a big smile on her face, indicating that she is happy with her meal. The dangler shaped sunglasses, which appear to be on the head of a fellow diner behind her with black sungalsses sunglasses, enhance her cheerful expression, as well, possibly indicating that they might be outdoors."} +{"image_id": 400596, "caption": "The image features a bathroom scene with a green sink and a wooden floor. On a side view of the sink, there is a large mirror that reflects the bathroom's interior. The bathroom appears to be clean and well-maintained.\n\nIn addition to the sink and mirror, there are several items placed around the bathroom. A bottle can be seen on the right side of the sink, while a cup is located near the left edge of the image. There is also a remote control placed on the left side of the sink."} +{"image_id": 373266, "caption": "The image depicts a group of healthcare professionals in front of some medical machinery in a hospital setting. There are three individuals, two of whom are wearing headphones and scrubs as they work with the equipment. The third person is also involved, aloof from the others in the foreground and focal. They are intimidation in an operation setting with a large suit cases."} +{"image_id": 38332, "caption": "The image features a large elephant walking through a grassy field. The elephant is the main subject of the scene, occupying the majority of the frame. It appears to be an older elephant with tusks, giving the impression of a majestic creature. \n\nIn total length of the image, there are 13.5 seconds of footage. The elephant's walking in tall green and lush, well-maintained grass creates a serene and natural atmosphere."} +{"image_id": 84533, "caption": "The image features a woman sitting on a motorcycle, likely posing for a picture. She is wearing tight leather clothing as she straddles and enjoys the bike. The motorcycle and the leatherman'sthe bikey\u0001p"} +{"image_id": 449963, "caption": "The image depicts a well-equipped computer lab with a large round table topped with numerous laptops. Around the table, there are chairs placed to accommodidde students or participants in the event they host, creating rows of seating space. \nIn total at the lab area or room in general and the image's perspective, there are 10 laptop PC'shanded down on tables along the perimiers of the large classrooam"} +{"image_id": 128180, "caption": "The image features a dining table with a white plate holding a slice of pizza. A person can be seen in the background, possibly enjoying a meal or waiting to eat. In addition to the pizza on the table, there is a fork and a knife placed near the slice, indicating that the person is ready to enjoy their mealtime."} +{"image_id": 204232, "caption": "The image captures a young man skillfully jumping over a construction barricade on his skateboard. He is in mid-air, showing off his impressive trick. The skateboarder is wearing casual clothes that accentou the action and his black skateboard is visible beneath him, emphasising the dared-devil stunt."} +{"image_id": 477867, "caption": "The image features a man in a black wetsuit surfing on a blue and yellow surfboard at an indoor wave pool. He is skillfully balancing on the surferboard, riding the artificial wave with determiration.\n \nIn addition to the main surfer, there are several other people in the scene. Some of them are standing near the edges of the pool, possibly watching or waiting for their turn to surf. There is also a surfboard located on the far left side of the image."} +{"image_id": 308128, "caption": "The image features a man on a skateboard, skillfully performing a trick by riding his skateboard on top of a cement block. There are a few other people in the background, likely watching the skateboarder's performance. \n\nIn addition to the skateboarder, there is a bicycle located near one end of the scene, possibly belonging to one of the spectators. The setting appears to be an outdoor area like the \"skate park,\" where people come to practice their skateboarding skills."} +{"image_id": 222407, "caption": "The image features a vibrant bird with a yellow tail perched on a tree branch. The bird has an orange beak and blue accents on the eye, which make for an eyeheartwarrantingly colored and captivate bird moment in this photo."} +{"image_id": 469543, "caption": "The image features a hotel room with two beds placed side by side. The bed on the left is a twin bed, while the bed on the right is a double bed. Both double-sized beds have green and beige striped bedspreads. There are three baggage baskets in the room, two of which are placed on the flood of the double bed and one is below a single bed. \n\nAdditionally, there is a chair in the room, positioned in a seating area near the foot of one of the beds."} +{"image_id": 421564, "caption": "The image features a young child sitting in a high chair in front of a birthday cake. The child appears to be curious about the cake, possibly trying to eat or touch it. The cake is placed in the middle of the high chair and seems to be the main focus of the scene."} +{"image_id": 177419, "caption": "The image features a blue fire hydrant adorned by colorful graffiti. The fire hydrant is situated on a brick sidewalk, adding a unique touch to the scene. There isn't anyone actively using it, as indicated in this image."} +{"image_id": 86432, "caption": "The image captures a baseball game in progress, with a young boy in a baseball uniform swinging a baseball bat at an incoming sports ball. He is focused and determined to hit the ball. \n\nThere are several other people in the scene, including teammates, opponents, and possibly coaches watching from various positions. Some are standing close to the batter, while others are farther away. A person wearing a baseball glove is visible in the field, likely preparing to catch the ball if necessary.\n\nOverall, the scene conveys the excitement and anticipation of a baseball game and the determination of the young baseball player."} +{"image_id": 544590, "caption": "The image features an orange cat lying comfortably on a couch, occupying a significant portion of the couch's surface. The cat's head and tail, as well as its paws, are visible in the\u0004"} +{"image_id": 513060, "caption": "The image shows a person sitting on a bench, peeling open a doughnut with a bite taken out of it. The doughnut is covered in a pink glaze and sprouts, making it quite unique and appetizing. Another handhled dounot, very sweet, occupants the background. A donutch with sprouting is also pictured. A dining table occupancy and two choclote-fleusted candy apples on a stick complete a lususcious scene in front and center."} +{"image_id": 140921, "caption": "The image features a white surfboard lying on a sandy beach, possibly near a body of water. The surfboard has a unique design and is placed on its side, with a variety of names, colors on it."} +{"image_id": 361351, "caption": "The image features a large pizza with a few slices missing, placed in a pizza box at a dining table. The pizza appears to be fully baked and ready to be enjoyed. Near the pizza, there is a bottle of beer placed on the table, likely to accompany the meal. \n\nIn addition to the pizza and beer, there is a knife on the table, possibly used for cutting the pizza or for other culinary purposes. The dining table occupies most of the scene, indicating that it is the central focus of the image."} +{"image_id": 202154, "caption": "The image features a square-shaped pizza placed on a wooden cutting board that rests on a dining table atop a wooden counter. The pizza appears to be a chees-covered tom-to-to-too with basil sprinkled on it and melted cheese on top. \nAdditionally. In addition. In front, two cups or bowls can be seen on the table nearer in front on the left and on top on the counter, respectively."} +{"image_id": 94248, "caption": "The image features a large clock tower situated in the middle of a busy city street. The clock on the tower is blue in color and prominently displays the time. There are two clocks visible on the tower, one towards the upper part and another lower part. \n\nSeveral people can be seen walking along the street, going about their daily activities. In addition to the pedestrians, there is a car parked close to the left side of the street, and a traffic light is visible on the right side of the scene."} +{"image_id": 200681, "caption": "The image shows a man standing in a grassy field on a sunny day, watching two dogs play with a blue frisbee. The dogs are energetically jumping in the air, fighting over the frisbee, which is located towards the top part of the scene. The man, position himself to enjoy and possibly have fun with the dogs as they engage in a game of frisky-catching."} +{"image_id": 532989, "caption": "The image features a large giraffe sitting comfortably on a grassy field. The giraffe is lounging in the green pasture, taking up most of the frame. It appears to be relaxed and content in its environment.\n\nIn the background, there is a stack of wooden logs, indicating the presence of an adjacent forest or an intent-desponsive enclosure."} +{"image_id": 565989, "caption": "The image features a tall brick wall with a large clock situated on top of it. Behind the clock and on both sides of it, there are metal figures, likely of two rats or other animals. A tree, a clocktower, trees in the background to the left, and some trees in a sun\u0003."} +{"image_id": 67315, "caption": "The image features a man wearing a dress shirt, tie, and pants, standing next to a wall. The man is in the process of removing his tie, giving off a casual vibra from work attire to his more relaxed posture. The overall scene conveys a sense of transition from work to relaxation."} +{"image_id": 157170, "caption": "The image features a picturesque scene of a herd of five sheep standing together on a lush green hillside. The sheep are positioned at various locations on the hill, some closer to the foreground, while others are further up the slope. They appear to be grazing on the grassy hillside, enjoying the sunny weather and the idyllic surroundings that the hill offers."} +{"image_id": 328786, "caption": "The image depicts a park with a paved walkway surrounded by a grassy area. Several wooden and metal benches are placed along the park walkway, providing seating for people. Some benches are lined up in a row.\n\nA few people can be seen in the park, with one person near the left edge and two individuals more centrally located. Additionally, a bicycle is parked at the right side of the image, near the center, indicating a recreation area or leisure spot."} +{"image_id": 46011, "caption": "The image features a small white propeller airplane parked on the tarmac at an airport. The airplane is stationary, and it is not in motion. There are several people around, seemingly preparing or attending the small aircraft, possibly for a flight or maintenance."} +{"image_id": 384348, "caption": "The image depicts a person skiing down a snowy hill on a mountain. The skier is the main focus of the scene, with their skis visible beneath them as they make their way down the slope. The person is dressed in a blue jacket, which helps them stand out against the snowy backdrop.\n\nIn addition to the skier, there are a few other people in the background, possibly observing the activity or waiting for their turn to enjoy the slopes. However, they are not the main focus of the image, as the skier takes center stage."} +{"image_id": 451798, "caption": "The image displays a wall with a large tie rack showcasing numerous tires on the racks. The ties come in various colors, patterns, and sizes, creating an interesting and diverse collection. In addition to the ties, there are three hats hanging above the tie rack, adding to the overall aesthetic of the wall. The arrangement of the ties and hats makes for an eye-catching display hanging on the wall."} +{"image_id": 376545, "caption": "The image captures a thrilling moment where a skateboarder is performing a jump in the air, flipping his skateboard with his feet while a man watch from nearby, either riding a skateboard or holding the skat"} +{"image_id": 11538, "caption": "The image features a man riding a motorcycle down a road. At first glance, the rider appears to be wearing a helmet, but it is not visible in this image where the helmet is located. The motorcyclists' jackknap-cover booted pant legs, along with their knee pads, gloves, knees, and shin guards on display."} +{"image_id": 346207, "caption": "The image features a large cat lying on a wooden desk, accompanied by a laptop and a monitor. The cat is comfortably occupying a significant amount of space in the middle of the desk. The laptop, along with an accompany cute note or a small toy on its left and a cell-phone on the left side of the deshop"} +{"image_id": 359238, "caption": "The image shows a man wearing a yellow shirt, sitting on a train. He is leaning back in a chair and looks to be in a dining car. There's a glass with clear liquid in it, located nearby him on one side of the table. Another dining car can be seen in the background of a train compartment."} +{"image_id": 297610, "caption": "The image is a black and white photograph of a young man riding a skateboard at a skateboard park. He is skateboarding off a set of stair rails, performing an impressive trick. The skateboarder is in the middle of the scene, with his skateboard below him as he grinds the rail.\n\nThere is a collection of shards of broken mirrors scattered around the skateboard park, likely a result of the railings' wear and tear. These shards can be seen in various sizes and positions in the background."} +{"image_id": 428447, "caption": "The image depicts an urban street scene featuring a tall black traffic light standing prominently on the sidewalk. The traffic light is accompanied by a sign warning drivers not to park in the vicinity. The street appears to be relatively quiet at this time of day.\n\nThere are several cars parked along the street, some closer to the traffic light and others farther back. Additionally, a person can be seen walking down the sidewalks between the traffic light and the adjacent buildings."} +{"image_id": 428769, "caption": "The image features a close-up view of the license plate on a black car, reflecting in the chrome surface of the car. The license plate reads \"Supababy.\""} +{"image_id": 452084, "caption": "The image features a brown dining table with two bowls placed on it. Inside the bowls, there is a variety of food items, including a plate of sausage, eggs, bread, and tomatoes. One of the bowls has a fork placed in it, while the other bowl appears to be empty. \n\nAdditionally, there is a fork on the table near the bowls, suggesting that the meal is ready to be eaten. The combination of food items and the table setting creates an inviting scene for a meal."} +{"image_id": 545363, "caption": "The image shows a damaged sidewalk with a portion of a bench lying in shallow water, likely due to a storm or vandalism. The bench, along with a handrail, can be seen in black\u0003"} +{"image_id": 77963, "caption": "The image features a cow sculpture hanging from the ceilings of a store, creating an interesting and captivating display. The store is likely a furnish-ings or toy store, with a variety of toys and objects on shelves and counters, some possibly connected in a playful, child's toy arrangement, such as a barnyard or a jungle."} +{"image_id": 78093, "caption": "The image features a smiling woman skiing down a snow-covered slope in the mountains. She is wearing a pink and white down jacket and appears to be enjoying her time on the slopelocke with the deep powdery shadows creating an enchanting atmosphere. Her skies are visible as the skies glide through a snow-covered path."} +{"image_id": 346334, "caption": "The image features a grassy field where two large brown bears are walking and roaming freely. They are the main focus of the scene and are comfortableness in captivity.\n\nIn addition to the bears, a number and small sheep can be seen scattered throughout the field. Some are grazy, while the beets stand on the grassy hill. Over the hill's edge, a small rock or a bouldering is visible near the beans."} +{"image_id": 185633, "caption": "The image depicts an old, run-down, and unfinished bathroom with a bathtub on the floor, likely in need of repair and maintenance, along the side-walls. The sink is white in color. There\u0004\u0004\u0005\u0005\u0004\u0005\u0005\u0005\u0005\u0005\u0005\u0005\u0005\u0005\u0005\u0005\u0004\u0006\u0006\u0005\u0005\u0005\u0005\u0006\u0005\u0006\u0006\u0005\u0006\u0005\u0006\u0005\u0006\u0006\u0007\u0005\u0006\u0007\u0006\u0006\u0007\u0006\u0006\u0007\u0005\u0006\u0007\u0006\u0007\u0006\u0007\u0006\u0007\u0006\u0007\u0006\u0007\u0006\u0007\u0006\u0007\u0006\u0007\u0006\u0007\u0006\u0007\u0006\u0007\u0006\u0006\u0007\u0006\u0006\u0007\u0006\u0006\u0007\u0006\u0006\u0007\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0005\u0006\u0006\u0006\u0006\u0005\u0006\u0006\u0006\u0006\u0005\u0006\u0006\u0006\u0006\u0005\u0005\u0006\u0006\u0006\u0005\u0006\u0006\u0006\u0006\u0005\u0005\u0005\u0005\u0005\u0005\u0005\u0005\u0005\u0006\u0007\u0006\u0006\u0007\u0006\u0007\u0006\u0007\u0005\u0005\u0005\u0006\u0007\u0005\u0005\u0006\u0007\u0006\u0007\u0007\u0006\u0007\u0007\u0006\u0006\u0007\u0006\u0007\u0006\u0007\u0006\u0007\u0006\u0007\u0005\u0006\u0006\u0007\u0006\u0006\u0007\u0007\u0007\u0006\u0007\u0007\u0006\u0007\u0007\u0007\u0007\u0007\u0007\u0007\u0007\u0007\u0007\u0007\u0007\u0007\u0007\u0007\u0007\u0007\u0007\u0007\u0007\u0007\u0007\u0007\u0007\u0006\u0006\u0006\u0005\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0006\u0005\u0006\u0006\u0006\u0005\u0006\u0006\u0005\u0006\u0005\u0006\u0005\u0006\u0005\u0005\u0006\u0005\u0005\u0005\u0005\u0005\u0005\u0005\u0005\u0005\u0005\u0005\u0005\u0005\u0005\u0006\u0006\u0005\u0005\u0006\u0006\u0006\u0006\u0006\u0006\u0007\u0005\u0007\u0005\u0006\u0005\u0005\u0006\u0006\u0005\u0006\u0006\u0005\u0006\u0006\u0006\u0005\u0006\u0006\u0005\u0006\u0006\u0005\u0006\u0006\u0005\u0006\u0006\u0005\u0006\u0006\u0005\u0006\u0005\u0006\u0005\u0006\u0005\u0006\u0005\u0006\u0006\u0005\u0006\u0006\u0005\u0006\u0005\u0006\u0005\u0006\u0006\u0005\u0006\u0006\u0005\u0006\u0006\u0005\u0006\u0005\u0006\u0005\u0006\u0005\u0006\u0005\u0006\u0005\u0006\u0006\u0005\u0006\u0005\u0006\u0005\u0006\u0006\u0005\u0006\u0005\u0006\u0005\u0006\u0005\u0006\u0005\u0006\u0005\u0006\u0005\u0006\u0006\u0005\u0006\u0005\u0006\u0005\u0006\u0005\u0006\u0005\u0006\u0005\u0006\u0005\u0006\u0005\u0006\u0005\u0006\u0005\u0005\u0005\u0005\u0005\u0005\u0005\u0005\u0005\u0005\u0005\u0005\u0005\u0006\u0005\u0005\u0006\u0005\u0006\u0006\u0006\u0006\u0005\u0006\u0005\u0005\u0006\u0006\u0005\u0006\u0005\u0006\u0006\u0005\u0006"} +{"image_id": 327165, "caption": "In the image, a young boy is getting a haircut at a barber shop. The barber is cutting the boy's wet hair with a pair of scissors. Another person, possibly a woman, is holding the boy in a comfortable chair while the haircuts are taking place. \n\nThe scene appears to be set in a living room, as there is a couch in the background. Near the haircut area, a bottle can be spotted on the floor. On the wall, there are two posters, adding a decorative touch to the space."} +{"image_id": 410632, "caption": "The image features a group of four baseball players wearing red, blue, and gray uniforms standing together on a green, grass-covered field. They appear to be watching the\u0000"} +{"image_id": 468471, "caption": "The image features a man dressed in a shirt and tie, leaped into mid-air above a bed in a furniture store. The man appears to be testing or showcasing the bed's comfort and durable characteristics.\n\nAround the room, there's a davenport-shoot-stylist's chair visible in front of the display bed as if the furniture items may change in the display or showcase environment of this furniture-focused store."} +{"image_id": 241317, "caption": "The image depicts a man standing next to a cart filled with various fruits. The cart is abundant with bananas, apples, and oranges, creating a colorful display. The man appears to be either selling the fruits or transporting them to a nearby market. \n\nIn addition to the main person and the cart, several other individuals can be seen in the background at a slight distance away in the picture't."} +{"image_id": 444982, "caption": "The image features a grassy enclosure with three zebras grazing on the green grass around the area. One zebra is located near the left side of the enclosure, while the other two zebras are positioned more towards the center and right side of the scene. The zebras appear to be enjoying their time in the grassy field."} +{"image_id": 117563, "caption": "The image shows two young men standing in a living room, playing a video game together. One man is positioned to the left side of the room, while another is standing closer to the right side. They both have Wii remotes in their hands, and they appear to be enjoying a boxing video game on a W2."} +{"image_id": 206579, "caption": "The image features a man wearing glasses, blowing out candles in a cake placed on a dining table. He leant his fore-head, focussing on his birthday candles. Another cak-shapped cake, with a single light, appears at a lower height nearby. A third smaller person, possibly another child in a smaller part, can also see the larger dining table with a chair nearby."} +{"image_id": 221172, "caption": "The image features a man in a blue shirt and white shorts playing tennis on a green and purple court. He is skillfully swinging a racket at an incoming tennis ball, preparing to make contact and hit it towards the right side of the court. Another person can be spotted in the background, attentively watching the ongoing game. \n\nIn the scene, there's a chair positioned on the tennis court's left side, possibly for the player's use during practice session and warm-up."} +{"image_id": 317969, "caption": "The image depicts a herd of sheep walking along the side of a road, with a beautiful mountain landscape in the background. There are numerous sheep visible in the scene, with some closer to the left side, others near the center, and a few on the right side of the road. They appear to be moving towards their destination, possibly being guided by a shepherd who is not in the frame.\n\nIn addition to the sheep, there are two cars visible in the image. One car is on the left side of the road, while the other car is on the right side, giving the impression that the sheep are sharing the road with vehicles."} +{"image_id": 82150, "caption": "The image features a man sitting comfortably on a couch, holding a video game controller sh shaped like a steering wheel. He is playfully holding the controller up in front of his face, making it seem like he is driving the game using the Wii remote. \n\nIn the background, there is a TV where the game is displayed. The TV occupies most of the lower portion on the right side of the screen. Additionally, a chair can be spotted in front of the man."} +{"image_id": 284064, "caption": "In the image, a man is on a tennis court, swinging a tennis racquet towards a tennis ball. He appears to be attempting to hit the ball during a game or a practice session. Another person can be seen on the court, possibly a teammate or an opponent.\n\nThe tennis court is enclosed within a fenced area, providing a controlled environment for the players. There are multiple sports balls visible in the scene, indicating that multiple shots have been taken during the ongoing game or practice."} +{"image_id": 372203, "caption": "The image presents a serene and deserted landscape, characterized by a bench situated on the side of the dirt-covered road in an open, dry area. Above the bench sits a light post, providing illumination to the scene. In addition, a hydrant can be sporadically seen nearby, adding to a mix and match collection."} +{"image_id": 359136, "caption": "The image features a woman wearing a black shirt and boots, laying on the bathroom floor. She is propping her feet up against the bathtub, giving the impression that she might be relaxing or enjoying a moment of leisure. \n\nIn the bathroom, there is a toilet visible on the right side, while another batHTub canbe noticed, this time with the woman laying down nearby it, enhancing the relaxed atmosphere."} +{"image_id": 499281, "caption": "The image showcases a well-equipped kitchen featuring a stove top oven, a microwave, and various cabinets. The countertops display several items, such as a bag of groceries, a water bottle, a potted plant, and a bowl. The kitchen is also adorned with a variety of knives placed near the stove.\n\nAdditionally, there is a sink situated in the kitchen area, and an array of bottles can be seen on the countertop as well. The kitchen is further complemented by a few oranges placed on the counter, adding a touch of color and freshness to the scene."} +{"image_id": 192233, "caption": "In the image, a man wearing a blue shirt and white shorts is playing tennis on a red tennis court. He is getting ready to hit a yellow tennis ball with his tennis racket, which is positioned near him. The man is focused and prepared to make a solid swing at the ball, displaying his athletesm."} +{"image_id": 11987, "caption": "The image depicts a unique and fancy bedroom with a warm, cozy atmosphere. The room is filled with different styles of furniture, including a large bed in the background, a dining table, and chairs scattered throughout the space. There are two dining tables, one closer to the left side of the room and the other on the right side.\n\nA notable feature of this bedroom is the presence of a fireplace, which adds to the room's ambiance and comfort. Additionally, there are several plates and a bowl placed on the dining table, suggesting that the room is used for both dining and relaxation."} +{"image_id": 406810, "caption": "The image features a room with a laptop open on a table, and several people sitting in chairs watching something on a big-sided projecting screen, possibly a presentation, workshop, or a video. A smaller, separate laptop, not in use, is visible nearby.\n\nIn total. In total. In addition."} +{"image_id": 99965, "caption": "The image shows a person holding a sandwich with potato chips on a dining plate. The sandwich appears to be made with meat, lettuce, and peppers, and it is cut in half. The individual is taking the sandwicj out and placing a baked potato slice on top of it."} +{"image_id": 17328, "caption": "In the image, a red train is traveling down the tracks, passing by a building. The train spans the majority of the scene, extending from the left to the right side of the image. There are several other tracks visible in the background, adding to the overall impression of a busy and well-maintained train station."} +{"image_id": 393682, "caption": "The image features a dining table with a white plate holding a delicious piece of cake. The cake appears to be vanilla-flavored and is accompanied by whipped cream. A fork is placed on the table, ready to be used to enjoy the dessert. \n\nIn the background, there is another piece of cake on the table, slightly out of focus. A person can be seen near the table, possibly enjoying the dessert or getting ready to eat it."} +{"image_id": 540093, "caption": "The image features a city street with a large umbrella covering a parked motorcycle on the sidewalk. The motorcycle is placed under the umbrella to protect it from the elements, such as rain or harsh sunlight. Several people can be seen walking around the area, going about their daily routines.\n\nIn addition to the motorcycle with the umbrella, there are a few cars parked along the street. One car is located in front of the parked motorcycle, while two other cars are positioned further down the street on the right side."} +{"image_id": 242400, "caption": "In the image, a woman is standing on a sidewalk holding a clock pole. The pole is adorned with a large clock and a Christmas wreath, giving it a festive appearance. There are a few other people nearby who appear to be browsing or enjoying the festive environment as well. Additionally, various vehicles, such as trucks and cars, can be seen in the vicinced parkin8d."} +{"image_id": 409009, "caption": "The image features a white bullet train parked at a platform in a train station. The train takes up the majority of the scene, stretching from the left to right side of the frame. \n\nSeveral chairs are placed throughout the platform, with some located near the front of the train. Additionally, a bench spanning the length at one end of the train platform to the opposite end can been spotted."} +{"image_id": 6091, "caption": "The image features a person, likely a woman, holding a stop sign in her hands, creating a visually striking and somewhat unusual scene. She stands out prominence, with a black background that emphasizes the brightness of the sign. It'."} +{"image_id": 42834, "caption": "In the image, a woman is sitting at a dining table, preparing a plate of food. She is in the process of spreading meat onto two slices of bread, possibly making a sandwich. The woman appears to use a knife to carefully slice the meat.\n\nOn the table, there is a camera placed close to the woman, along with a plate on which the prepared sandwich will be served. In addition, several forks are scattered across the table, likely to be used for eating the food."} +{"image_id": 433554, "caption": "The image depicts a group of people enjoying a fun-day out on the water. They are engaged in various water sports activities, such as water skiing and snowmobiling. The main focus is on a man skiing on a body of river, while others watch and wait for their turn. Several people can be seen wearing life jackets, indicating that they are taking safety precautions while participating in these activities.\n\nIn this lively scene, there are people on the left side of the image, a couple in the middle, and more individuals on the right side. Another water skiing rope is visible on the far right side of the scene, suggesting that this location is a popular spot for water sports enthusiasts."} +{"image_id": 174987, "caption": "The image features a train covered in colorful graffiti, giving it a distinctive appearance. The train's exterior wall and the number 3 and 2, painted onto, contribute to the artistic vibe."} +{"image_id": 116208, "caption": "The image shows a close-up view of a pizza placed on a dining table. The pizza appears to be freshly baked and sliced, ready to be enjoyed. It is surrounded by various tableware items, including a wine glass, multiple bottles, cups, and a bowl. Alongside the tableware, there are chairs positioned around the table, suggesting a gathering or mealtime.\n\nA person can be spotted at the edge-left side of the image, possibly ready to dive into enjoys a deliciuos fresh dish."} +{"image_id": 80131, "caption": "The image depicts a man and a woman sitting together in a kitchen. They seem to be having a good time, possibly enjoying a meal or socializing. The kitchen is well-stocked with various items, including an oven that dominated a significant portion of the space.\n\nThere are several bottles placed around the kitchen, with some located near the oven, and others scattered in different areas of the room. Additionally, there is a clock on the wall, a couple of cups, and a vase in the kitchen as well, further enhancing the cozy atmosphere."} +{"image_id": 310663, "caption": "The image features a train sitting on a train track in the middle of the woods. The train is quite long and extends from the left side to the right side of the scene. Another train can be seen further in the distance, on the right side of the image.\n\nIn addition to the trains, there are two people present in the scene. One person is located near the left side of the image, while the other person is closer to the right side. They might be observing or working on the train engines."} +{"image_id": 100138, "caption": "The image features a black motorcycle parked on a street. The motorcycle has a sleeveless design and is standing upright in the scene. In front of the motorcycle, there is a lush green bush, adding a touch of nature to the urban setting."} +{"image_id": 415613, "caption": "In the image, a man is standing in a commercial kitchen, preparing food. He is wearing a baseball cap and a green shirt, and appears to be focused on his task. Several sandwiches can be seen in various stages of preparation around the kitchen. \n\nThe kitchen is well-stocked with multiple bottles, bowls, and a spoon, which are likely being used for the food preparation process. There is also a sink in the background, which is an essential tool for cleaning and sanitizing the workspace."} +{"image_id": 214737, "caption": "The image features the interior of a large, historic building with a grand architectural design reminiscent of a church, museum, or government building. A prominent feature in center, above eye levels in the image, is a beautiful stare case or balconical with the building. In addition are a massive clock tower on display in front or a large statue inside the building."} +{"image_id": 172718, "caption": "The image is a black and white photograph of a young boy. He is wearing a white shirt and tie, and he appears to be posing for a portrait. The boy looks serious, staring directly at the camera with determination.\n\nIn the background, there is a chair visible on the left side of the photograph."} +{"image_id": 99186, "caption": "The image features a red stop sign prominently placed on the side of the road at an intersection. The sign is quite large and clearly visible for all to see. There are also some power lines in the background, adding to the rural feel of the scene.\n\nIn addition to the stop sign, there is a car parked nearby on the road, giving the impression of a quiet and peaceful setting. The car is positioned towards the left of the scene and appears somewhat blured."} +{"image_id": 3580, "caption": "The image shows a man sitting comfortably on a couch in a living room, playing a video game using a Nintendo Wii controller. He is wearing glasses and appears to be engaged in the game he is playing. \n\nThe living room has a dining table near the couch, with several chairs placed in front of it. There are multiple books scattered around the dialing pad on various chairs around him as well. In the background, a TV is mounted on the yellow-painted wall."} +{"image_id": 526044, "caption": "The image features a brown and white cow standing on a beach near the ocean. The cow appears to be looking at the water, possibly curious or considering entering it. The beach is quite sandy, and the cow is located near the water's edge and towards the center of the shoreline."} +{"image_id": 105291, "caption": "The image displays a stop sign with a street sign for Main Street School House placed on top of it. The stop sign is red, and the street sign beneath it has a red background as well. There'd be three street sign directions above: main and schoolhouse, as well as a car park."} +{"image_id": 577169, "caption": "The image features a group of people standing inside a large clock tower, looking out through the glass window. There are at least eight people visible in the scene, with some closer to the left side and others towards the right side of the tower. They seem to be admiring the view and the unique architecture of the clock.\n\nOutside the clock tower, it appears to be a cloudy day, which may contribute to the overall ambiance of the scene."} +{"image_id": 181574, "caption": "The image shows a man sitting at a dining table with a pizza placed in front of him. He appears to be enjoying the delicious pepperoni pizza, as he smiles while cutting into it using a fork and knive. \n\nThere are two other people in the scene, one on the left and another on the right, possibly sharing a meal together or waiting for their share of the pizza. The dining table is set with multiple cups, forks, and a wine glass, indicating a social gathering or mealtime."} +{"image_id": 83441, "caption": "The image showcases a well-furnished living room with a black leather couch occupancy, a flat widescreen TV positioned against a wall, a coffee lounge area, books scattered in the vicinity, as well as a variety dang near the TV.\n\nIn addition to the furniture, there's plenty on the table, such as cups, bottles, a wine glass, a bowl, a vase, and a pair of scissors. A remote control can also be seen placed on the couch.\n\nTwo people are present in the room, but they are not the main focus of the scene. Overall, the living room appears to be a comfortable space for relaxation and entertainment."} +{"image_id": 130527, "caption": "The image depicts a beautiful scene of a herd of cows grazing in a lush green field. There are multiple cows scattered throughout the field, with some closer to the foreground and others further in the background. The field is fenced in, providing a boundary for the cows to roam and graze. Alongside the field, there is a picturesque view of a body of water, making the scene even more serene and peaceful."} +{"image_id": 86471, "caption": "The image features a man on a tennis court, holding a tennis racket and preparing to serve a tennis ball. He is in the process of throwing the ball up in the air, getting ready to hit it with his racket. The man is wearing a blue shirt and white shorts, showcasing a typical outfit for a tennis player.\n\nThere is another person partially visible in the background, possibly waiting for their turn to play or merely enjoying the game at an unrelated location."} +{"image_id": 105737, "caption": "The image features a brown teddy bear sitting on top of a bookshelf in a home library. The bookshelf is filled with a variety of books, with some placed horizontally and others vertically. The teddy bear has a red bow around its neck, making it a charming and eye-catching element in the scene. The shelves are packed with books of different sizes and orientations, creating a cozy and intellectual atmosphere in the room."} +{"image_id": 212842, "caption": "The image features a large herd of zebras gathered in a grassy field. There are at least 14 zebras visible in the scene, with some standing close to each other and others spread out across the field. The zebra herd is spread across the entire frame, from the foreground to the background.\n\nIn the background, there is a lone tree without leaves, adding a sense of nature and beauty to the landscape. The combination of the zebras and the solitary tree makes a serendipitous scene."} +{"image_id": 105220, "caption": "The image depicts two people skiing down a snowy slope as they make their way across a finish line. Both individuals are wearing skis, with one person on the left and the other on the right side of the image. They appear to be in the process of competing in a race or a skiing event. \n\nIn the background, there are banners and flags visible, suggesting the event is well-organized and possibly an official skiing competition. There is also one backpack placed on the ground, likely belonging to one of competitors in their downpour, indicating the competitive nature of the event."} +{"image_id": 490701, "caption": "In the image, a person is sitting at a dining table, enjoying a delicious chocolate dessert served on a white plate. The dessert appears to be a browned, ice cream-covered cake or a chocolate lava cakb"} +{"image_id": 368961, "caption": "In the image, there are two elephants standing close together in an outdoor enclosure. One elephant is on the left side of the scene, while its companion is on the right side. They appear to be walking in a fenced area, possibly at a zoo, as they are not in their natural habitat.\n\nA third, hidden elehahat, can barelly be spotted in the far right corner on the top side"} +{"image_id": 520892, "caption": "The image features a woman standing outside with a delicious hot dog in her hand. She is in the process of eating the hot dog, which is placed in a bun and wrapped in paper. The woman appears to be enjoying her meal, possibly with a smile or grin on her face."} +{"image_id": 113354, "caption": "The image depicts a group of three zebras grazing on grass in a lush green environment. One of the zebras is located near the center of the scene, while two others can be seen closer to the left side. They are surrounded by a serene setting, with trees and shrubs in the background."} +{"image_id": 33652, "caption": "The image displays a home-cooked pizza with a variety of ingredients on a pan placed on a stove. The pizza is topped with generous amounts of cheese and several pieces of chicken, making it a delicious and mouth-watering meal. The cheese and chicken are spread evenly across the pizza, ensuring a nice combination and an appetizing appearance."} +{"image_id": 511153, "caption": "The image features a blue train traveling down the railroad tracks. The train is positioned in the middle of the scene and appears to be moving forward. There are several other train tracks visible in the background, creating a sense of openness in the train yard area."} +{"image_id": 328957, "caption": "The image features a cat sitting on top of a multifunctional cat tree. It appears that the cat is either observing its environment or preparing to jump down from the top of the tree, which has multiple platforms for the cat's amusement as well, possibly with windows nearby."} +{"image_id": 190015, "caption": "The image features a green truck parked next to a large pile of hay in a field. The truck appears to be a utility vehicle, and given its size, it may be used for transporting the hay.\n\nArriva behind truck and hay mash stack"} +{"image_id": 244925, "caption": "The image features a man wearing a backpack that has a banana sticking out of it. The man is standing in a grassy area, and the banana is positioned between the backpack's pockets and his back. The backpack has a shoulder strap attached and is holding a photograph hammola."} +{"image_id": 29406, "caption": "The image features a wooden park bench placed in a grassy, landscaped area at the bottom of a small hill. The bench offers a comfortable seating area for visitors to relax and enjoy the natural surroundings. Next to the bench, there is a neatly trimmed grassy area and a flower bed with colorful flowers, creating an inviting atmosphere.\n A building can be seen in front of the bench, highlighting the park's connection to the residential area. Overall, the scene conveys a sense of tranquility and leisure, perfect for a quiet moment or a gathering with friends and family."} +{"image_id": 32570, "caption": "In the image, a person is riding a surfboard on a wave in the ocean, skillfully navigating the wave as it breaks. The surfer is positioned in the center of the scene, and their surfboard is clearly visible under them, catching the energy of the wave. Alarming nearby inexperienced, as the wave appears to be crashing over them."} +{"image_id": 260608, "caption": "The image features a group of young girls playing soccer on a grassy field. They are actively running and chasing after the soccer ball, which is located towards the center of the scene. In total, there are five girls visible in the image, engaged in the game and displaying their athleticism.\n\nIn the background, there is a building visible, possibly associated with the field or the location where the soccer game is taking place."} +{"image_id": 291286, "caption": "The image depicts a man riding a skateboard down a busy city street. He is wearing a black shirt and jeans while skillfully navigating his skateboard. The street is bustling with people walking by, with at least 12 pedestrians visible in various positions along the sidewalk. \n\nSome of the pedestrians are carrying handbags, with three handbags visible in the scene. The street is also equipped with several traffic lights, indicating that it is a well-regulated area for both pedestrians and vehicles."} +{"image_id": 375278, "caption": "In the image, a person is gently petting a black cat that is sitting inside an open suitcase. The cat appears to be enjoying the attention as it comfortably occupies the suitcase. Beside the suitcase, there is a magazine on the floor. The scene suggests a warm and affectionate interaction between the person and the cat."} +{"image_id": 290684, "caption": "The image features a woman wearing a purple shirt, white pants, and glasses. She is sitting on a post and holding on to a pink teddy bear. The teddy bear is quite large, taking up a significant portion of the woman's lap. She appears to be enjoying her time with the stuffed animal.\n\nApart from the woman and the teddy bear, there are two benches visible in the scene. One is positioned to the left of the woman, and the other is located further to the left."} +{"image_id": 29306, "caption": "The image features a brown dog sitting on a sandy beach next to the ocean. The dog appears to be looking into the distance, possibly enjoying the beautiful scenery. In the background, the sky is cloudy, adding to the serene atmosphere of the beach. The dog is wearing a collar, indicating that it has an owner nearby."} +{"image_id": 173375, "caption": "In the image, a man is snowboarding down a snow-covered slope during daytime. He appears to be enjoying the activity, and he's wearing a helmet for safety while gliding down the hill. The man is the main focus of the photo, and his adventurously inclined stance showcases his skill and enthusiasmatory nature."} +{"image_id": 198590, "caption": "The image features a brown truck parked in a driveway, with an orange bird perched on the side-miral, looking inside from the passenger window. Another car is visible nearby, with another vehicle on an adobe-cased road in a separate parkinhage at some distanc"} +{"image_id": 25747, "caption": "The image features a long red and yellow train traveling down train tracks, surrounded by lush green countryside. The train, which is an old locomotve, is making its way through an open forested valley surrounded with lime-green follic and a forest in the upper half-century of the background."} +{"image_id": 346589, "caption": "The image depicts a snowy mountain slope with two people enjoying winter sports. One person is standing and wearing skis, while the other person is kneeling in skiboard gear. The skier and snowboarder appear to be taking a break and observing each other's gear before continuing their activities.\n\nIn addition to the two main subjects, there are a few other people present, which adds to the lively atmosphere on the sloped."} +{"image_id": 121106, "caption": "The image depicts a busy airport scene where numerous people are waiting in line. They are standing close to a luggage carousel, waiting for their suitcases to arrive on the conveyor belt. There are at least 13 people visible in the area, with some standing closer to the baggage claim while others are a bit further back in the line.\n\nSeveral suitcases of various sizes can be seen on the carousel, with some already near the people and others waiting to be picked up. Additionally, two handbags, presumably belonging to travelers, are visible in near-baggal area near where they've already unload."} +{"image_id": 392850, "caption": "The image features a dining table with a variety of fruit displayed on it. There are several apples, oranges, and bananas placed in different positions on the table. Among the fruits, some appear to be freshly cut, with a knife lying on the table next to them. A wine glass is also present on the table, adding to the assortment of items on display."} +{"image_id": 554241, "caption": "The image depicts a bustling city scene, where a large crowd of people is walking along a brick road, possibly participating in or attending an outdoor event. Many individuals are holding umbrellas to shield themselves and others from the sun or rain. Among them, a woman with an umbrella stands out from others in her group, walking on brick pavement and carrying a handbag. \n."} +{"image_id": 341017, "caption": "The image shows a man standing on the back of a blue truck, surrounded by several goats. The goats are in various positions on the truck, and some are even in the bed of the trUrcohup tricycylindricular cops car on the top of an open-box van in a large transport truck on a street."} +{"image_id": 135497, "caption": "A man is sitting at a dining table with his hands up, as if he is about to give the peace sign. He is in front of a large pizza, which covers most of the table. There is a close-up view of the pizza, and it appears to be half-eaten.\n\nIn the background of the scene, there are multiple cars parked, indicating that the location might be a busy area or a restaurant with a parking lot nearby."} +{"image_id": 159260, "caption": "The image features a blue train traveling down the railroad tracks at a fast speed. The train occupies most of the scene, stretching from the left to the right side of the frame. There are several other tracks visible in the background, both near and far from the train.\n\nAdditionally, there are a few people present in the scene. One person can be seen near the left side of the image, another closer to the center, and a third person on a bicycle on the right side of the frame."} +{"image_id": 417332, "caption": "The image depicts a baseball game in progress, with a pitcher wearing an orange and gray uniform standing on the mounds throwing out baseballs. In addition. there 'is at least one fielder nearby, ready to attempt to catch the ball or make a play on the ground, possibly in an in-field action with a gloved baseball gloom. Alcohold cartoonist, presumably representing an umpire, is observen on a nearby chair in close to an umphil. A base and base path, complete, is visible nearer to complete the scene."} +{"image_id": 90520, "caption": "The image features two teddy bears, one dressed in a red kimono and the second adorntained to resemble an orientent garment and both are wearing white hats. They are sitting or sitting, depending to be chosen, with a white dog nearby. The bears are posed next to each in the scene."} +{"image_id": 318524, "caption": "The image features an old, rusty train car on a steel track. The side of the train car is completely covered in rust, giving it a weather-beaten appearance. There are some black markings on the side of the car, which further emphasize its age and the presence of rust. A window, located on the left side of the train car, is visible on both inside."} +{"image_id": 118406, "caption": "The image captures a group of men playing a game of soccer on a grassy field. Two soccer players are in the middle of a collision as they both attempt to gain control of the ball. One of the players is jumping in the air with the soccer ball above his head, while the other player is pushing him during the game.\n\nAround the field, there are three cars parked in the background, possibly belonging to the players or spectators who have come to enjoy the game or watch the action unfold."} +{"image_id": 25748, "caption": "The image features a white boat docked at a pier, with the name \"Blackberries\" written on its side. The boat is tied securely, occupyiong almost its full space within the image, indicating the boat is well known, possibly associated wiht blackbelt technology and mariner's workshops in Blackberries."} +{"image_id": 365557, "caption": "The image features a snowboarder wearing a blue jacket and a black helmet, skillfully riding a snowboard down a snow-covered slope. The person is bending over as they descend the hill, maintaining balance and control. So the answer is snowboarder."} +{"image_id": 320978, "caption": "The image features a large produce market with a variety of fresh fruits and vegetables on display. There are numerous apples, oranges, and bananas spread across the scene, showering a deluged feeling upon shoppers.\n Allover the market area, there's a dense display of carrot varieties with at least twelve carrots dispersing throughout. In total of twelve appls and oregon's in the market scene as they appear in different colors and textural arrangements."} +{"image_id": 315073, "caption": "The image features a gray cat sitting on a table with its mouth open, possibly yawning or making a sound. The cat's body postural and the presence of the blue vase or bottle as a backdrop create a cozy and invigorated midday-afternoost atmosphere."} +{"image_id": 363927, "caption": "The image features a gray metro bus driving down a street, transporting passengers to their destinations. The bus is packed with people on board at this time of day. There are at least thirteen people visible in the image, occupying several rows inside the metropulance."} +{"image_id": 243355, "caption": "The image features a zebra walking across a grass-covered field, likely in a zoo enclosure or a field. The zebra appears to be enjoying the outdooors, taking a few steps in a straight line as it moves through grassy, fenced or gator-fleeway areas in the field, giving it a feeling that resembbles the confederacy at an ammunian'd aquatic plant or an enchanted field."} +{"image_id": 373521, "caption": "The image features an old, rusted, and special-looking bus parked on a grassy area next to the street curb. Aboarding the bus and clearly in good signs of wear are noticeable in the scene.\n\nThere is a person visible at one side in the grass, possibly observing or attending to the bus situation in front of them."} +{"image_id": 76409, "caption": "The image depicts a cozy bedroom scene, dominated by a large bed covered with a simple wooden sliding ladle-shaped headboard and red bedsp reads \"Don't get me started again, 'co-zines,'\u0003"} +{"image_id": 485985, "caption": "The image features a young blonde boy with a toothbrush in his mouth, happily brishing his teeth. He is wearing a cast on his arm, likely due to an injury. The boy is sitting on a chair, and there is a toothbrush at his disposal. A toothbrush can be seen on another chair nearby the little blond-haired boy'red"} +{"image_id": 27564, "caption": "The image features two young girls sitting side by side on a couch, each with their feet stretched out in front of them. They are both deeply immune as they relax during a gaming session on a Nintendo Wii console. \n\nEach girl has a Wii Remote and Nunchuk controller, enhancing their gaming experience. One Wii Remote is placed on the couch near the girl on the left, while the Nunchuk sits next to a second Wii Remote closer to the girl on the right."} +{"image_id": 92749, "caption": "The image depicts a tranquil scene of three giraffes in a grassy, fenced enclosure at the zoo. One giraffe is standing near the left side of the enclosure, while the other two are positioned closer to the center and right side of the area. The setting appears to be a grassy field surrounded by a body of water, creating a picturesque environment for the gentle animals as a small group."} +{"image_id": 554958, "caption": "The image features a black, brown, and white cat sitting comfortably in a pile of leaves. The cat's eyes are open, and it appears to be staring intently at the camera. Behind the cat, there is a pile of garbage, giving the scene a somewhat messy appearance."} +{"image_id": 439971, "caption": "The image features a woman standing in front of a bathroom mirror, holding a digital camera and taking a picture of herself. She is wearing a striped shirt, and there is a scarve around her neck. A bottle can be seen near the mirror's edge.\n\nAdditionally, two handhort pivotal hairbrushes, one positioned to the left and another to the bottom-brushes in between."} +{"image_id": 559006, "caption": "The image features a large brown bear standing in a body of water, likely a river. The bear appears to be walking or swimming through the water, taking a moment to cool off. The bear is positioned in the center of the frame, and its size and presence dominate the scene."} +{"image_id": 457262, "caption": "The image features a small wooden table with two bananas sitting on top of it. The bananas are in various stages of ripeness, with one being more yellow than the other. Next to the bananas, there is a small penny placed on the table. The combination of the bananas and the penny creates an interesting contrast in size between the fruit and the coin."} +{"image_id": 263881, "caption": "The image features a large giraffe standing in a grassy field on a sunny day. The giraffe appears to be gracefully walking, surrounded on all sides by green and brown brush. \nA second Gigantic Nubile giraffe can be seen behind the first one as well in close viciniculate"} +{"image_id": 322594, "caption": "The image features a before and after transformation of a bathroom. In the before image, the bathroom has a white toilet, sink, and vanity with a wooden seat cover, all in a white-and-black-themed design. In the after picture, the bathroom has a new white toilet, sink, and vanity with a modern black-and-white color palette. Various items can be seen on the vanity countr"} +{"image_id": 22423, "caption": "The image features a man and an elephant standing near a body of water. The elephant is holding a straw hat in its trunck, possibly taking it from the man. Both the man and the elephant appear to be enjoying the moment, as the elephant has its mouth open and seems engaged, possibly laughing with the hat on the ele'shand."} +{"image_id": 59000, "caption": "The image presents a well-decorated living room with a Christmas tree placed in the corner. Beige and brown furniture, such as a couch and chairs, are featured prominethe couch, chairs, and other furniture pieces are brown."} +{"image_id": 119547, "caption": "The image features a group of people, with a man wearing a suit and tie standing in the center. He appears to be adjusting his tie, possibly straightening it. Behind him, there is a young girl and three more individuals, including one person wearing glasses. The scene seems to be taking place outside at an event, with a microphone visible towards the right side of the image, possibly being held in front of the man adjusting his tie."} +{"image_id": 432763, "caption": "The image captures a picturesque beach scene at sunset, with a large flock of birds spread across the beach'shorizon and occupy various spots along the sandy waterside of the shore and the nearby"} +{"image_id": 125635, "caption": "The image features a black and white cat sitting on a window sill, looking out of the window with curiosity. The cat appears to be observing something outside, possibly a yard or a moving car, while perched on the ledge."} +{"image_id": 542549, "caption": "The image depicts an unmade bed with a couple of notebooks placed on it. The notebooks are the main focus of the scene, and they are positioned near the center and bottom of the bed. \n\nSeveral items can be seen on top, suchs assortmnethe pillipasid down one pillipasd at 2 p2"} +{"image_id": 494759, "caption": "The image depicts a beach scene where two people are enjoying a fun day flying a large kite. The kite can be seen soaring high in the sky, creating a lively atmosphere for the duo as they stand near the ocean's water's edge. \n\nAs for the people, one person is closer to the left-center of the beach while a pair is seen to fly to or from, each participating in flying the kite at their leisur"} +{"image_id": 5617, "caption": "The image features a bed with two cats lying on either side of the bed, each on a pillow. One cat is black and white, while the other cat is brown and white. They appear to be comfortable and relaxed, possibly sleeping or resting."} +{"image_id": 279774, "caption": "The image features a group of young boys playing a game of baseball on a field. One boy is standing near home plate, holding a baseball bat and preparing to swing at an incoming ball. Another boy is also present on the field, holding a baseball bat of his own. \n\nSeveral people, including spectators and other players, are scattered around the field. A bench can be seen in the background, likely for players to sit on when they are not participating in the game. There is also a sports ball visible on the field, indicating that the game is in progress."} +{"image_id": 323442, "caption": "The image features a group of people sitting outdoors at dining tables, enjoying a meal together. There are three people visible in the scene, with a man and a woman sitting at a table in the foreground, and another couple sitting at another nearby table. They seem to be engaged in conversation and having a good time.\n\nThe outdoor dining area is furnished with several chairs and dining tables, providing ample space for the guests. Various wine glasses and cups can be seen on the tables, along with a handbag placed near one of the guests. The setting appears to be a nice restaurant or patio caf\u00e9, with a pleasant atmosphere for the diners."} +{"image_id": 109454, "caption": "The image features a man dressed in a blue shirt and a blue tie, sitting down while drinking a beverage from a green glass bottle. The man appears to be enjoying the contents of the bottle, possibly a beer, and is holding the bottle close to his mouth, showing a sense of focus on it."} +{"image_id": 370677, "caption": "The image features three women standing next to each other in a bakery or donut shop setting. They are all wearing the same colored uniforms and smiling, likely posing for a picture. The shop is filled with a wide assorntm and several donuts can be spotted throughout the scene."} +{"image_id": 521509, "caption": "The image features a woman sitting on a bed in a room with a camera set in front of her. She appears to be preparing to take pictures or record a video using the camera. The room has a white bedspreading, giving it a clean and cozy appearance. A potted cactch, a framed picture, and a lamp are located nearby. Additionally."} +{"image_id": 236461, "caption": "In the image, a man wearing a wetsuit is surfing on a wave in the ocean, skillfully balancing on his surfboard. The wave appears to be strong enough to propel the surfer into the air. \n\nThere are several seagulls in the vicinicnce as well as an elephn on a beach near a shelf at a distance in a body of water with a sandy bottom."} +{"image_id": 534845, "caption": "The image features a teddy bear hanging by its ears from a clothesline in front of a building. The teddy bear is positioned towards the left side of the scene. The clothesline is located right below the teddy bear, with clothes pinned onto it at various heights. \n\nIn addition to the teddy bear and clothes, a person can barely be spotted at the far left of the image and appears to be observing the scene."} +{"image_id": 180580, "caption": "The image features a dining table adorned with a blue plate filled with various vegetables. The vegetables include multiple carrots and broccoli spear, which are arranged together on the plate. \n\nIn total on the dirt dish placed next, there are a total of six pieces, including carrots and broc."} +{"image_id": 484551, "caption": "In the image, a woman wearing sunglasses and a hat is sitting on the deck of a boat, enjoying her time on the water. The boat appears to be a small boat, and it seems to be a pleasant day for boating. \n\nThe woman is sitting in a chair, and she seems relaxed and content as she poses for the photo. There are a few other people on the water, but they are at a distance from the woman's boat."} +{"image_id": 456146, "caption": "The image features a flock of sheep walking down a dirt road next to a grassy hill. There are a total of 11 sheep visible in the scene, with some closer to the left side of the road, while others are more towards the center and right side. The sheep are closely packed together, indicating that they are traveling together as a group. The dirt road appears to be a suitable path for the sheep to follow."} +{"image_id": 283131, "caption": "The image depicts a white bathroom with a toilet, sink, and bathtub. The sink is situated on the left side of the bathroom, while the toilet and bathtub are located on the right side. There is a countertop between the sink and the toilet, and the bathtub sits underneath a tiled wall, contributings to the bath's design."} +{"image_id": 23309, "caption": "The image is a close-up view of a colorful pasta salad. The salad consists of pasta, broccoli, carrots, and onions, making it a healthy and delicious meal option. The pasta appears to be rotini (spiral noodle pasta), and the vegetables are fresh and vibrant.\n\nIn the background, a pizza with a variety of veggies toppings can be seen, adding to the overall dining atmosphere."} +{"image_id": 547487, "caption": "The image features a young boy dressed in a red shirt, brown pants, and sneakers skillfully performing a trick on a skateboard, soaring through the air. The boy is the focal point and demonstrates daring and expert skateboard control as a crowd watches his impressive manoeuver in delightment and amusement."} +{"image_id": 34830, "caption": "The image features a bathroom with a white urinal hanging on a red tiled wall, adding a splash of color to the space as well as the surrounding walls of orange and black."} +{"image_id": 125997, "caption": "The image features a large blue brick wall on the side of a building with a striking advertisement painted on it. The words on the wall form the phrase \"u are alive,\" creating an eye-catching advertisement. There is also a sentence on the wall that says \"and this is the voice of a lifetime opportunity.\""} +{"image_id": 19916, "caption": "The image features a dining table with a white bowl placed on it. The bowl contains a variety of food items, including several apples and a banana. Alongside the bowl, there is a fork and a knife placed on the table, likely to be used for enjoying the meal. \n\nA person is visible in the background, possibly getting ready or enjoying the meal. Additionally, a laptop, which can also contain an external keyboard are position nearer than one edge on top of the table."} +{"image_id": 145019, "caption": "The image depicts a scene where a large white air plane appears to have been involved in an accident. Several people, including a woman and two men, are standing on the edge of a dirt hill, looking at the wreckage. They seem to be observing the aftermath of the tragedy.\n\nIn addition to the airplane, a construction vehicle is also visible in the scene, likely assisting with the recovery and cleanup process. There are a total of 11 people present in the image, including the three main individuals focused on the plane."} +{"image_id": 127161, "caption": "The image features a dining table with a white tablecloth and a plate containing several slices of pizza. The pizza slices are arranged in a circular order, covering most of the plate. A fork is placed on the table next to the plate, ready for someone at the table to enjoy the meal."} +{"image_id": 543660, "caption": "The image is a black and white photograph of a bathroom featuring two toilets. One toilet is located towards the left side of the bathroom, and the other toilet is on the right side. The bathroom has a unique black and white checkered floor, which creates an interesting contrast with the white toilets.\n\nAdditionally, there are two toilet paper rolls in the bathroom, one placed near the left toilet and the other closer to the right toilet. A small sink can be seen on the right side of the bathroom."} +{"image_id": 8333, "caption": "The image features a red and white passenger train traveling down the tracks, passing by some buildings. The train occupies a significant portion of the scene, stretching from the left to the right side of the image.\n\nThere are a few people visible near the train, with one person located at about the center and two others standing closer to the right side of the train. Another person can be spotted a safe 1.8 inches away, near the train's middle, in the image."} +{"image_id": 482907, "caption": "The image features a small, vintage airplane flying through a clear, blue daytime sky. The single-engine plane has a propeller on its front and is adamantently flying upward in the sky. The scene captures the essence of an adventurous moment as the airborne plane defies the gravity and showcases the beauty of aviation."} +{"image_id": 290130, "caption": "The image captures a man in a wetsuit surfing on a large wave in the ocean. The surfer is skillfully balancing on his surfboard, riding the wave as it crests over him. The surfboard is clearly visible underneath the surfer's feet as they glide smoothly across an unbroken wave."} +{"image_id": 58225, "caption": "In the image, a person is at a baseball game, enjoying the event by eating a hot dog covered in mustards. The hot dog can be spotted in the center of the scene, and it appears to be half-eaten. The individual is standing in a crowded stadium, with several other people visible in various parts of the scene. \n\nThe hot dog is being held up to the camera, capturing the moment and the excitement of the game. The person is wearing a watch on their left wrist, which can be seen in the background of the image."} +{"image_id": 249550, "caption": "The image features a cozy bedroom scene with a bed adorned with a vibrant red and purple flower blanket, making it the centerpiece of the room'a \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nA bed with a floral bedspread atop it."} +{"image_id": 448765, "caption": "The image depicts a clean bathroom featuring a white toilet and a white sink. The sink is positioned at the end of the bathroom, while the toilet is situated towards the back-wall side and is placed directly opposite the sink. The toil and the washtight towel bar on one arm of to the toilett give off the bath area't feel to them"} +{"image_id": 498439, "caption": "The image depicts a baseball game in progress with several players on the field. In the center of the scene, a baseball player wearing a white uniform is standing with their hand on their hip, likely preparing to bat. Another baseball player can be seen on the left side of the field with a baseball glove, possibly waiting to catch the ball.\n\nSeveral other players are scattered across the field, both on the offensive and defensive sides. Some of these players are holding baseball bats, while others are wearing baseball gloves. The players on the field appear to be actively participating in the game and are in various positions, illustrating the dynamics of an ongoing baseball match."} +{"image_id": 252403, "caption": "The image features a young woman with long black hair, glasses, and a green shirt. She is brushing her teeth with a blue and white toothbrush, which she holds in her hand. The woman appears to be looking at the camera while she brushes her teeth, creating a lively atmosphere in the scene."} +{"image_id": 347995, "caption": "In the image, a woman is lying in bed with her dog, both of them resting comfortably. The mother, accompanied on the bed by her black dog, has taken center and has been wakened by a new mother'sherpajor."} +{"image_id": 544216, "caption": "The image depicts a dining table with various plates of food, including a sandwich with a tooth pick inserted in the middle of it. The sandwich takes a prominent position on the plate, with a portion of it visible on the left side. \n\nIn addition to the sandwich, there are multiple cuisines represented on the table, such as a bowl of chips and a plate of bacon. A knife can also be seen on the table, possibly used for cutting the sandwich. \n\nTwo people are present near the table, possibly enjoying the meal or waiting to be served. A cup is placed at the top right corner of the table, adding to the assortment of items on the dining table."} +{"image_id": 205729, "caption": "The image features a group of people skiing on a snow-covered mountain. There are eight skiers in total, spread across the scene. Some of them are standing at the base of a snowy mountain, while others are skiing up the slope. They are all wearing skis, which can be seen placed in various positions throughout the scene.\n\nThe skiers are dispersed throughout the image, with some closer to the left side, others in the center, and a few positioned towards the farthest part of the scene. With varying skiing positions and the presence of multiple skiers, it appears to be a lively and active day on the slopes."} +{"image_id": 350988, "caption": "The image depicts a room with six wooden benches arranged in rows. The benches are positioned at different heights and orientations, creating a visually interesting scene. The room appears to have an old-fashioned or historic vibe, as suggested by the presence of wooden benches and the overall design of the space."} +{"image_id": 288673, "caption": "The image depicts a beautiful beach scene with a group of people enjoying various activities. One person is flying a kite, which can be seen soaring in the sky above the sandy beach. The kite is colorful and stands out against the sky.\n\nThere are several people walking and standing on top of the sandy beach, some closer to the water and others farther away. A car is parked near the beach, possibly belonging to one of the beachgoers.\n\nOverall, it's a lively scene with people making the most of their time at the beach."} +{"image_id": 568690, "caption": "The image features a bathroom scene with a cat sitting on top of a white toilet seat. The toilet is located near the center of the room, with a shower curtain visible in the background. The small cat is comfortably perched on the toilet, looking at the viewer with an inquisitive expression."} +{"image_id": 504194, "caption": "The image features a large brown dog sitting on a brick side walk next to a long wooden bench. The dog appears to be looking at the camera, capturing a charming moment. In the background, there are several bicycles parked nearby, adding to the outdoors scene. Additionallyally, a potted shrub, reminiscent of a planter in black inlaide by one end and another one in blue inlaid by the other end."} +{"image_id": 35368, "caption": "The image features a kitchen with a dining table that has a bowl of fruit sitting on top of it. The fruit bowl contains a variety of fruits, including bananas, which are prominently displayed in different positions within and outside the bowl. \n\nThere are multiple bananas in the bowl and over its edge. Some of bananas in different stages, with some still green and others turning yellow. Additionally, an empty glass, a lemon, an empty bottle, and several cuppy bananas in the bowl, along a bowls and a pitchers of fruit on it as well to the side of the table."} +{"image_id": 307332, "caption": "In the image, there are three people sitting on a bench near the water. The bench is located on the grass, and the individuals appear to be enjoying their time outdoors. Behind the bench, a brown dog can be seen, likely accompanying the people on the bench or wandering around the vicinity."} +{"image_id": 490878, "caption": "In the image, a man wearing a red jacket and ski gear is standing on a snow-cushioned slope, enjoys cross counTRY (or Nordic) skiing, and is accompanied by his dog. The man and the small adrenAL-shower-clotHd, seem to be treks across the mountain together\u0004"} +{"image_id": 507187, "caption": "The image showcases a gathering of people in a grassy area with several vintage motorcycles on display. Among the motorcycles, there is an antique green motorcycle parked prominently, garnering attention from the crowd. \n\nIn total, there are at least thirteen people in the scene, admiring, conversing, and socializing around the motorcycles, some of them standing closer to the foreground, while others can\u0003"} +{"image_id": 254644, "caption": "The image features a kitchen with wooden cabinets and drawers, creating a warm and classic atmosphere. The countertops are covered in various items, such as bottles, bowls, and cups. Specifically, there are four bottles placed on the counter, and three bowls can be seen as well. Additionally, a cup is situated at edge, adding to the cluttered appearance of the kitchen."} +{"image_id": 400803, "caption": "The image features a large white and orange boat, possibly a lifeboat or coast guard vessel, floating on a vast blue ocean. There is a person on the left side of the boat, appearing to be working or tugging on something. \n\nAdditionally, there are several birds scattered across the sky, adding a lively touch. A backpack and a bottlestand, presumably belonging to the boat's passengers, are floating in some of this water."} +{"image_id": 574928, "caption": "The image depicts a large herd of sheep grazing on a lush, grassy field. The sheep are spread across the field, with some closer to the foreground and others further back towards the edge of the scene. The sun is shining brightly, creating a warm and inviting atmosphere for the animals. In general, the sheep appear relaxed and engaged in their natural grazing behavior."} +{"image_id": 559247, "caption": "The image depicts a group of people, including both teens and adults, gathered around a large dining table in a room. They are enjoying a meal together, with various sandwiches and hot dogs being served. The sandwiches and hot dogs are spread across the table, with multiple pieces of each type available for the guests. \n\nIn addition to the food, there are other items placed on the table, such an electric knife, a spoon, a fork, and a bowl. A cup can also be spotted on the tabletop. It's clear from the scene that everyone is engaged in conversation and having a good time as the attend a potluck or a similar gathering."} +{"image_id": 254625, "caption": "The image features a man wearing a gray shirt, who is holding a baseball bat in a swinging position. He appears to be practicing his baseball swing or preparing for a game at a batting cage. There are several chairs scattered around the room, indicating that it'."} +{"image_id": 374966, "caption": "The image depicts a lively skate park filled with several young people enjoying their time ridding skateboards. There are a total of nine skateboarders in various positions throughout the park, with some actively riding their boards and others watching or waiting for their turn.\n\nThe skate park is surrounded by trees, adding a pleasant touch to the environment. In addition to the people, there are four bicycles scattered around the vicintura"} +{"image_id": 351967, "caption": "The image features a large, illuminated clock mounted on the side of a building, prominently displaying the time, which is 10:21. Been the \"Tournenail,\" a prominent global event, and an icon, a yellow SUZABOOMING taxi cab passes by\u0000"} +{"image_id": 172877, "caption": "The image features a well-dressed man sitting comfortably in a chair. He is wearing a shirt and a tie, with a white dress shirt and a striped tie. His hands are clasped together, creating a sense of relaxation. \n\nIn front, the cuddly sofa he is sitting on is white in color. Beside it on the right and behind on another cushion on the couch's right-hand side, there'll likely more pillows for added comfort."} +{"image_id": 309237, "caption": "The image features a large black, white, and brown cat sitting comfortably on a blue couch. The cat is occupying a significant portion of the couch, stretching across it with relaxed posture."} +{"image_id": 565877, "caption": "The image features a young woman sitting comfortably on a red couch. She is wearing a blue shirt and a cap, which is placed on her head. In her lap, there is a laptop computer, which she appears to be using or browsing the internet. Alongside the laptop, there is a book placed on the couch next to it on her lap."} +{"image_id": 489924, "caption": "The image shows a woman riding a long wooden skateboard down the middle of a street. She is skillfully balancing on the skateboard as she glides smoothly along the asphalt. In the background, a car can be seen parked, and a traffic light is visible, indicating that the street is likely a public road."} +{"image_id": 125472, "caption": "The image is a close-up of a young man wearing a green shirt and jeans, skillfully performing a trick on a skateboard. He is in mid-air, showcasing his athleticism and talent. The skateboard can be seen beneath him, as he maintains his balance throughout the trick."} +{"image_id": 422706, "caption": "In the image, a person, possibly a woman, is leaning over the side of a boat, observing a smaller boat nearby in the water. The smaller boat is floating in a vast open water expense. So the answer is boat."} +{"image_id": 290700, "caption": "The image captures a thrilling moment of a man surfing on the ocean waves with a white surfboard. The surfer, wearing a white shirt, is skillfully riding the wave, soaring through the air with the surfboard firmly under his feet. The wave appears to be quite large, making the surfer's jump even more impressive.\n\nThroughout the scene, there are several other people in the water, either enjoying the ocean or engaging in their own water activities. Some of them are closer to the shoreline, while others venture further out into the ocean. The image portrays a vibrant and active atmosphere at the beach."} +{"image_id": 365177, "caption": "The image features a large, white bus parked on a city street next to a building. The tour bus has a pop star's name on it, making it the \"Biber\" tour bus. The bus takes up a significant portion of the scene as it occupies both horizontal parking spots, extending along a curbed in front of a large, sturdied\u0004"} +{"image_id": 398661, "caption": "The image shows a well-equipped kitchen with a variety of utensils and appliancassettea"} +{"image_id": 175611, "caption": "In the image, a person is using a pair of scissors to carefully cut and prepare cigarette tobacco. The individual is holding the scissors, focusing intently, while cutting. Algerian water pipter's tp"} +{"image_id": 477673, "caption": "The image features a cute kitten sitting inside a backpack. The kitten appears to be peeking out and enjoying its new nesting spot. Alarmingly close by in another back pack in view and slightly to the right of the kitten."} +{"image_id": 1270, "caption": "The image captures a lively scene at a youth baseball game, with several players on the field wearing helmets and holding baseball bats. There are three young players prominently positioned in the scene, one on the left side, another in the middle, and the third on the right side of the field. \n\nIn the background, a crowd of spectators is watching the game intently. They are seated on various chairs spread across the scene. Some of those chairs are placed close to the field, while others are further away. The spectators appear to be enjoying the game and supporting the young players."} +{"image_id": 224012, "caption": "The image showcases a white plate filled with a delicious meal consisting of various pieces of ham, potatoes, and vegetables. The vegetables on the plate include a significant amount of broccoli, spread across different areas of the plate. It appears to be a well-balanced and appetizing meal, offering a combination of protein, carbohydrates, and essential vitamins and minerals."} +{"image_id": 552510, "caption": "The image features a group of young children playing a game of soccer on a field. There are several children actively participating in the game, with one child in the center of the area, and other kids surrounding him. The children are wearing uniforms, indicating a cascual team play on a soccer field.\n\nA soccer ball and an umbrella are located on a benomishly shelters the soccer playing kiddie-pops"} +{"image_id": 272880, "caption": "The image features a person holding a piece of pizza from a pizza pan. The pizza appears to be mostly eaten, with only a small slice remaining. The person is positioning the pizza slice on a table, with the pizza pan placed nearby on a different part of the table. \n\nIn addition to the pizza, there are other items on the table, such as a cup, a fork, and a knife. The cup is situated near the edge of the table, while the fork and knife are placed on the right side of the table."} +{"image_id": 580540, "caption": "The image features a black dog sitting on a wooden floor in the living room, attentively watching a flat-screen TV. In the background, there is a TV with a nature scene displayed on the screen. The dog seems to be engrossed in the TV program.\n\nAdditionally, several books are scattered around the room, both on the floor and on surfaces, showcasing a cozy and lived-in atmosphere. The room'ssa floor, with various electronics nearby and a couch in the background."} +{"image_id": 242934, "caption": "The image showcases a cozy living room with black leather furniture, including both a couch and a chair that create a comfortable seating area. The room features a large bookshelf, filled with several books of differing thick. An interesting element on display among them is a clock hanging on the wall.\n\nAdditionally, there is a dining table situated near the room's corner and a potted plant placed next the couch. A vantage and several other decorative items, books included, make the room a well and lived atmosphere in which a man would enjoy reading or relaxation in."} +{"image_id": 178807, "caption": "The image consists of two scenes featuring a person riding a skateboard. In both scenes, the skateboarder is captured at different stages of their ride. The first scene shows the skateboarder's feet positioned steadily on the skateboard, while the second scene depicts the skateboarder appearing to be about to trip. \n\nA few cars and benches can be spotted at the outdoor location, adding to the lively atmosphere of the scene. In total, there'eig an assortment of cars and a couple of benches scattered around the area."} +{"image_id": 135748, "caption": "The image features a small brown dog lying down in a dog-bed or blanket on a carpeted floor. The dog appears to be resting comfortably and has its eyes open. Beside the dog, a bottle of orange juice is placed on the floor in front and another empty bottle to one side. The scene suggests that the owner of a small pet may have taken care while clean up after feedings."} +{"image_id": 255036, "caption": "The image depicts a large parking lot in front of a tall red building. The lot is nearly empty, with only a few cars parked in various spots. Among the cars, there is a mix of trucks and smaller vehicles. \n\nTwo traffic lights can be seen in the parking lot, contolling the vehican and parking area to facilitates smoother traffic flow. Additionally, the parking garag with a red brick facelib is adjacent."} +{"image_id": 3926, "caption": "The image shows two sheep standing in a snow-covered field. One of the sheep is positioned more towards the left side, while the other is on the right side of the scene. The sheep are both surrounded by a significant amount of white snow that covers the ground. One of the sheep is also smashing the snow with its head, creating a slightly more energetic atmosphere."} +{"image_id": 236762, "caption": "The image features a large group of people gathered around a wooden dining table, enjoying dinner together. There are several chairs placed around the table, accommodating everyone in the group. The table is filled with plates of food, cups, and utensils such as forks, knives, and spoons. Drumsticks can also be seen on the table, indicating that some people might be playing music during the meal.\n\nVarious items are placed on the table, including wine glasses, cups, bowls, forks, and spoons. A cell phone is visible on the left side of the table. At the top of the scene, a clock can be seen hanging on the wall. The atmosphere in the image appears to be lively and social, with everyone engaged in conversation and enjoying their time together."} +{"image_id": 248314, "caption": "The image features a wooden dining table with a laptop computer sitting on top of it. The meal on the table consists of a tray of food, including rice, and a bowl of soup. There is also a spoon placed near the bowl of soup. Another spoon can be seen closer to the edge of the descarging tuc"} +{"image_id": 559773, "caption": "The image captures a thrilling moment where a person on skis is soaring through the air over a snow-covered slope, jumping over a net. The skier is the main focus of the scene, with their skis and polka dot jacket visible as they fly through the air."} +{"image_id": 340665, "caption": "The image features a woman wearing glasses and holding an umbrella near a black tarp. She appears to be standing outside, possibly in the rain, as she is holding the umbrella to stay drench"} +{"image_id": 388599, "caption": "The image features a person's hand holding out a frisbee for a brown dog, who is attempting to take it from the person's outreched, handheld petitioner. The frisbeball, with good intent, hoopoe's through playfully reaches\u0004"} +{"image_id": 163528, "caption": "The image features a delicious pizza with a generous amount of toppings. It is served on a white plate, which is placed on a dining table. The pizza is cut into several pieces, making it easy to share. \n\nThere is a fork and a spade placed nearby on the table. Additionally, a knapkin and a bowl can be spots on or near the dining table. A vase and a cup, presumably containing a beverage, can also be in the vicinity."} +{"image_id": 481212, "caption": "The image depicts a man sitting comfortably on a red couch in a cozy living room. He is accompanied by two dogs, one of which is lying on the couch next to him, while the other dog is situated closer to the right side of the couch. \n\nThe man is holding a coffee cup in his hand, possibly enjoying a beverages and spa-time with his pets at hand in his lap-gieve position as well in one scene in one description."} +{"image_id": 277533, "caption": "The image captures a man sitting on a red couch, holding a Nintendo Wii controller and playing a game. He appears to be enjoying his time, possibly smiling and having a good gamenger. \n\nIn front of the couch, there is a cup and a pair of scissors. Additionally, several books are placed in the background, suggesting that they are for entertainement during downdimes as a game companion."} +{"image_id": 173383, "caption": "The image features a beautifully decorated wedding cake placed on a dining table. The cake is white and has a blue ribbon as its decoration. Alongside the cake, there is a small candle on one portion of the table. \n\nA knife can be spotted on another table near the cak"} +{"image_id": 419624, "caption": "The image depicts a train traveling down the railroad tracks with trees in the background. The train is white and red in color and appears to be a modern passenger train. There are several people near the train tracks, possibly waiting for the train or observing its passage through the trees."} +{"image_id": 130291, "caption": "In the image, a man wearing a suit and red tie is standing next to a woman. The woman is adjusting the man's red necktie for him, ensuring that it is properly placed and looking neat. They are both dressed in business attire, and the scene takes place in a room.\n\nThere are a few other people in the background, but they are not the main focus of the image. Additionally, there is a cell phone present in the scene, placed near the man."} +{"image_id": 193369, "caption": "The image depicts an old, rusted bench situated on a stone walkway in a park setting. The bench is made of wood and sits on a cobblestone path, surrounded by grass. In its entirety, the bench appears to be in a state of disrepair due to the weathering and the passage of time.\n\nA few green bushes can be spotted around the bench, providing a touch of nature to the scene. Also, a small puddle and a rock can be seen near the bench'smid-left."} +{"image_id": 367804, "caption": "In the image, a young girl is enjoying her time on the beach, flying her kite high in the sky. The kite can be seen in the air above her, giving a sense of her successful kite-flying activity on the sunny day. \n\nThe beach scene also includes several umbreillas dispersing in varying sizes throughout, offering some shades and aesthetics to the environment and creating a pleasant atmosphere for beachgoers."} +{"image_id": 84735, "caption": "The image captures a baseball game in progress, with a batter swinging his baseball bat on an outdoor field. The batter, dressed in a New York baseball uniform, is in the batter's box, ready to hit the ball. Several other baseball players are visible on the field, wearing their respective team uniforms, preparing for the next play, and anticipating the outcome of the batter's swing, as a total 22 other baseball-in-florin-pre-13-2 in attendace at a distance."} +{"image_id": 247285, "caption": "The image features a man and a woman standing together under a large, striped umbrella, protecting them from the sun and holding a small baby in their arms. The mother is tenderly caressuring a young boy while holding onto his dads lap, creating a loving atmosphere.\n\nAdditionally, there's another umbrll in the background, suggesting a family pic nicaroon. A clock and an handkerchiw present on top to complete a cozen atmosphere."} +{"image_id": 438432, "caption": "The image is a black and white photograph featuring a group of young women, all dressed in ties and holding baseball bats. They are posing for a team photo, showcasing their team unity. There are at ten people in total, with some of the women standing and a mix with others who are sitting or kneeling. The ties worn by the women are of various sizes and orientations and add a polo-chic touch to the overall scene as well."} +{"image_id": 185479, "caption": "The image features a man sitting on the floor, using his laptop computer. He is wears a tan jacket and appears to be focused on his work. The floor he is sitting on is covered with a blue carpet. There is also a backpack placed next to the man, possibly containing his belongings. \n\nA cell phone can be seen in the vicinity of the man, and a bottle sits near the edge."} +{"image_id": 570826, "caption": "The image depicts a blue and yellow electric train traveling down the tracks, likely in Japan or an East Asian country. In the scene, there are people visible through the train windows, with one person standing near the middle of the train and two others closer to the right side.\n\nThe train appears to be a part of a public transportation system, and its presence on the tracks suggests that it is in operation and serving its passengers."} +{"image_id": 127394, "caption": "The image features a group of people gathered around a dining table, enjoying a meal together. The table is filled with a variety of foods, including salad, pizza, and other items. There are several bowls of different sizes spread across the table, containing various dishes.\n\nIn addition to the food, there are numerous cups placed on the different parts of the table. Some cups are near the edge of the table, while others are closer to the center. There are also a few carrots visible on the table, adding a bit of color and nutrition to the spread.\n\nThe guests appear to be engaged in conversation and savoring the delicious food, making for a lively dining experience."} +{"image_id": 311081, "caption": "The image features a simple and clean bathroom scene with a white bathtub and a shower. The shower curtain is drawn around the bathtub, and there is a towel hanging on the left side, giving the bathroom an elegant look."} +{"image_id": 376677, "caption": "The image depicts a large blue and white tow truck driving down a road. The tow truck is the main focus of the picture, covering the majority of the frame from left to right across the image.\n\nThere are several cars in the background, with two cars positioned at both far- left ends of the towel-tron transpor. Additionally, there'sthree bridge-like constructions, possibly an elevate or under-car infrastruxture."} +{"image_id": 269419, "caption": "The image features a large clock tower with a clock on its side, standing tall next to a tree. The tower appears to be made of bricks, adding to its majestic appearance. There are two clocks visible on the tower, one towards the top and another lower down the side. A light can be seen in the background, possibly illuminating the tower or the surrounding area. The presence of the tree and the clock tower create a serene and picturesque scene."} +{"image_id": 210708, "caption": "The image features a baby elephant and an adult elephant standing together in a body of water. In the scene, the baby elephant is swimming or wading through the water, while the adult elephant stands nearby watching it from afield, ensuring its safety.\n\nBoth elephants have large bodies in comparison and can easily subside from viewing, as the water level seems calm and shallow at the time being."} +{"image_id": 472246, "caption": "The image features a white surface on which three fruits are placed side by side. There is an apple located on the left side, an orange in the center, and a pear to the right side of the surface. All three fruits appear to be in good condition and are neatly arranged."} +{"image_id": 187475, "caption": "In the image, a person is holding a large hot dog with a variety of toppings on it. The hot dog appears to be a foot long and is placed in a bun. The toppings on the hot dog include mustard, relish, and onions, giving it a delicious appearance. \n\nAdditionally, there is a can of soda, possibly a soda can, situated near the person's hand, as well a cup that is partially filled, likely from the soda can."} +{"image_id": 299457, "caption": "The image features a man with glasses sitting down, enjoying his lollipop. He is wearing a black shirt and appears to be a teenager. The lollipop has a red strip on it, adding a pop of color that contrasts with the man's outfit. \n\nIn the background, a laptop and an easel can be seen. The laptop has its display turned towards an Asian art easet that is positioned in front of it, and the laptop appears to be in use."} +{"image_id": 2894, "caption": "The image features a train station with a train on the tracks. The train has a yellow and black striped rear and is situated near the middle of the scene. Another train can be seen in the background on the left side of the image. \n \nIn the station, there are two benches and a potted plant located close to the train tracks. A traffic light is also visible in front if some sticks that are labeled \"danger.\" Additionally, several automobiles and two people seem in close proximity to the train tracks as well."} +{"image_id": 209733, "caption": "The image depicts a group of people enjoying a sunny day at a grassy public park. Among them, two individuals are flying a large, purplish kite, with the kite visible high in the sky. \n\nIn total in addition to one kite, there are at least six different vehicles parking in the vicinced. A couple of people with a backpack and a handbag can be observed at the bottom right side, seemingly participating in kite or parachuting. Overhead showy ballet kites with colorful outfits and a small parachute can be spotted in a tree nearby as well."} +{"image_id": 428231, "caption": "The image showcases a spacious living room with a variety of furniture, including a white couch, a coffee table, and several chairs. The couch is positioned centrally and occupies a large portion of the room's right-middle side and left-middle, and is facing both the dining and a large open-space.\u0000"} +{"image_id": 250619, "caption": "The image depicts a beautiful woman wearing a pink blouse and blue jean shorts, lying on a white beach towel and enjoying shade beneath a large, colorfully striped umbrellaboone in sandy beach area, giving off a sense of relaxation and comfort."} +{"image_id": 434693, "caption": "The image features a white fire hydrant sitting on a sidewalk in front of a pink building. The hydrant is positioned near the center of the scene and appears to be the main focus of the picture. \n\nIn addition to the fire hydrant, there is a truck parked further down the street, towards the right side of the image. A person can also be seen in the background, closer to the middle of the scene, likely walking by or attending to the fire hydrant."} +{"image_id": 15596, "caption": "The image captures a thrilling scene of two motorcyclists racing along the edge of a roadway on a sunny day. Both riders are wearing helmets, with one of them sporting a red, white, and blue helmet and another rider donning a white and red helmet."} +{"image_id": 569415, "caption": "The image features a large adult elephant walking through a dry brass field. The elephant is the focal point in front of other elephant elephant. The elephance can comfortably walk on top if an arrid plain."} +{"image_id": 305004, "caption": "The image captures a young man surfing on a surfboard in the ocean, kicking up a spray of water as he rides the wave. He appears to be skillful and focused on maintaining his balance while enjoying the thrill of the sport. The surfboard is positioned towards the left side of the image."} +{"image_id": 510527, "caption": "The image shows a man sitting in the driver's seat of a car. He is wearing a dress shirt, tie, and sweater vest that matches the car's interior. The man is adjusting his tie while looking out the windshield, possibly straightening his appearance for a meeting or a formal event. \n\nIn the background, there are other cars visible, indicating that the man might be in a busy area or near a parking lot."} +{"image_id": 581317, "caption": "In the image, a woman is standing on a hill, using a cell phone. She is holding the handhydabnd and appears to be focused on the device as well. \nIn addition and unusual aspect of the scene could suggest, there may not have actually be an \"eleventh eleuther.\" Instead, the elephant in question is the eleuthandaband itself."} +{"image_id": 532071, "caption": "The image depicts a large brown bear laying down in a grassy, wooded area. It appears to be relaxed, possibly taking a nap under a tree. There are a handful black and yellow tire streusel in the foreground and a couple of branches near the bear. A small branch and an additional tire streuselfil in an additional forground branch in the scene."} +{"image_id": 467978, "caption": "The image features a black and white dog, likely a sheepdog, running around a herd of sheep in a fenced area. There are 9 sheep in total, spread across the scene. Some sheep are closer to the foreground, while others are further back. The dog is positioned in the middle of the scene, attentively herding the sheep. The dog's presence and interaction with the sheep create a dynamic and lively atmosphere in the image."} +{"image_id": 184972, "caption": "The image features an older man wearing a checkered shirt and glasses, along with a unique tie that says \"I'm a little bit country.\" He is standing in the middle of a room, drawing attention amidst a group of people. \n\nThere are several dingy chairs scattered throughout, indicating that the scene might be taking place inside a small gather space, with people sitting and socializing. The older gentleman's outlandish tie adds an amusing, heartwitling touch to the otherwise mundain-looking room setting and the people around him."} +{"image_id": 525568, "caption": "The image features a grassy field with two zebras standing close to each other. One zebra is positioned to the left of the other, creating the appearance of a small herd. The zebras appear to be relaxed and enjoying the sunny day in the field.\n\nAdditionally, there is a tree visible in the background, adding to the natural beauty of the scene."} +{"image_id": 165056, "caption": "The image features two large giraffes standing next to each other in what appears to be a zoo setting. They are separated by a fence, and there is a person visible in the background. The giraffes are facing the same exact direction and are quite active. One of the gaffe'turfing giraffee'shad a patch on its forehead."} +{"image_id": 362240, "caption": "The image features a workshop or garage area with a variety of motorcycles parked inside. There are at least five bicycle-mounted motorcyclist, including one on the left side of the frame, two in the center, and two towards the back-center, offering multiple rows of viewpoints. Additionally, a dirt bi-plane and some tool-wheels are visible in the scene."} +{"image_id": 179558, "caption": "The image depicts three giraffes in a grassy field, interacting with each other near a tree branch. One giraffe is on top of the branch, while the other two are standing on the ground beside it. The giraffee on the top of the branch appears to be licking or nibblenib on a tender part of the tree, possibly seeking food. The other two giraffee'm nibbling the tree branch in a friendly nature as well"} +{"image_id": 120792, "caption": "The image depicts a lively scene in a basement, where two men are playing a video game together on Ninteno Wii console. One of players is actively swing a Wii remote, while both of these men stand and focus intently in front to the big TV, immortally enjoying the boxing simulated in Wintage video."} +{"image_id": 294865, "caption": "The image features a white train traveling down train tracks with multiple passengers visible in one of the windows. There are at least ten people in the window, enjoying the view and the train ride. Some of the passengers are standing up, while others are seated in various positions within the train car. The train appears to be a popular mode of transportation for the people in the image."} +{"image_id": 159662, "caption": "The image features a woman tennis player wearing a pink outfit, standing on a tennis court. She is holding a tennis racket in her hand, likely getting ready to play or practice. The woman is the main focal point, occupying most of the image."} +{"image_id": 176906, "caption": "The image depicts a man and a woman standing in a grassy area with a herd of sheep surrounding them. There are a total of six sheep, some of which are eating from a bowl placed in the middle of the scene. In addition to the sheep, there are two goats present, adding to the diversity of animals in the pen or pen. \n."} +{"image_id": 250608, "caption": "The image features a blue and white bus parked on the side of a road, near trees and in the grass, close to a sidewalk. It appears to be picketing a stop, possibly at a bus stop. \n\nThere'renumeral to a stop and an adjacent stop on an asphalt pizza-backed by shrut up"} +{"image_id": 33561, "caption": "The image depicts a large, lush green field filled with a herd of cattle grazing on the grass. There are at least 14 cows scattered throughout the field, enjoying their time in the open pasture. Some of the cows are closer to the foreground, while others are further away, creating a sense of depth in the field.\n\nIn the background, there is a white house, possibly a farmhouse, surrounded by a well-maintained yard. The field and the house are separated by a wire fence, providing a clear boundary between the two areas. Overall, the scene is serene and picturesque, showcasing the beauty of rural life."} +{"image_id": 274612, "caption": "The image features a group of bicycles parked next to each other on a sidewalk. Some of the bicycles have umbrellas attached to them, providing shade. Two distinct umberall-covered bicycles, specifically a yellow and a red one, are locked to a bike-sharing bike mounting device in two separate rows. Another bike is visible in the background under a separate sunshader."} +{"image_id": 288714, "caption": "The image shows a close-up view of a pizza that has been cooked, with a variety of toppings on it. The pizza appears to be fresh and has been sliced into several pieces. The toppings include a generosit sandwich-styler mixture and several pieces from the edges, as well as other areas, indicating a flavoringly gourmet combination and an evenly cooked crust."} +{"image_id": 284379, "caption": "The image features a young boy riding a surfboard on a body of water. He appears to be having the time of his life as a wave propels him forward. The boy is lying on his stomach on the surfboard, skillfully navigating the water. \n\nThere are several smaller objects in the scene, such as a bottle near the left side of the image and a second smaller surfboard closer to the center. The primary focus of the scene is the young boy enjoying the thrill of riding the wave on his surfboard."} +{"image_id": 205247, "caption": "The image features a white city bus parked on a paved street. The bus has a striking advertisement on its side for a basketball game, specifically promasing a basketball tournament. There are various people scattered around the scene, some standing near the bus, while others may be passersby or participants in the advertised basketball game."} +{"image_id": 200267, "caption": "The image features a woman playing tennis on a court while a crowd of spectators watches her intently. She is holding a tennis racket in her hand, and there are multiple sports balls scattered around the court. Some of the balls are on the ground, while others are in various positions.\n\nThere are several people in the crowd, with some standing closer to the court, others near the middle, and a few further away from a player, observing from a distance and possibly even filming or photographing the event."} +{"image_id": 296775, "caption": "The image features a large blue and green transit bus driving down a city street. The bus occupies a significant space in the scene, stretching from the left to the right side and occupying almost the entire height of the image horizontALL"} +{"image_id": 4265, "caption": "The image features a window sill with an assortment of vases and potted plants on display. There are three vases, one placed towards the left side, another in the center, and the third on the right side of the sills. Each vase has a unique design, adding visual variety to the scene. \n\nIn addition to the vases, there are three potted plants in the scene, with one located near the left vase, another close to the center vase, and the third potted plant situated to the right of the vases. The plants are arranged in such a way that they create a pleasant atmosphere and provide a touch of greenery to the space."} +{"image_id": 104392, "caption": "The image showcases a beautifully designed kitchen with modern features. The kitchen is adornded almost entirely in wood, giving it a warm and inviting charm. The stainless steel appliances, such as the refrigerator, microwave, and oven, complement the wooden cabinets perfectly and enhance the overall aesthetic in a shelf-to-table look in some portrayments in kitchen layouts with marbled countertop and stovetop."} +{"image_id": 316658, "caption": "The image depicts a serene lakeside scene with a man sitting on a park bench under a tree. Surrounding the area, there are several birds, likely duck or geese, swimming in the water or enjoying the shoreline. The man's relaxing posture and surronding scen scenicness eases up a pleasant atmosphere in the park."} +{"image_id": 230993, "caption": "The image depicts two women walking down a street, each holding an umbrell, while crossing a street at night. One woman, carrying her belongings, is on the right side of frame and is using her cell phone, possibly checking for transport, as is walking behind her companion, on the left side in front of the other woman."} +{"image_id": 321035, "caption": "The image features a large, beautifully decorated cake with red icing, sitting on a dining table. The cake has \"Welcome Malachii\" written on it, signified with curling ribbed wire. The words \"Welcom\" occupy a large\u0000"} +{"image_id": 571038, "caption": "In the image, a woman is standing in a kitchen, holding a large pan with an open pizza on it. The pizza is topped with various ingredients such as basil, melted cheese, and sliced tomatoes. The woman proudly displays her culinary creation, likely excited to serve the pizza to others.\n\nThe kitchen is well-equipped with a sink, an oven, and various utensils like knives and a spoon. Additionally, a potted cactus can be seen in the background, adding a touch of greenery to space."} +{"image_id": 395978, "caption": "The image features a group of three people, two of whom are lying on the ground while the second person is standing, working on a snowy runway. They appear focused in cleanlin. \n\nThe run way in focus, is adjacent to a large airplane, which is the main subject of the scene for comparison and context to be determined."} +{"image_id": 482917, "caption": "The image depicts a person sitting on a couch with their legs stretched out in front of them, watching television. A black and white dog, possibly a bulldog, is sitting on the couch next to the person, appearing curious about the activity in front of them.\n\nThere'S another remote on and around them; it's presumably being used for controlling the television. Furthermore, another smaller corgil in an entertain position appears to observe what'd been staged as the scene unfolds before them."} +{"image_id": 207561, "caption": "The image depicts a group of four people enjoying a day of surfing in the ocean. Three of the surfers are actively riding their surfboards, while another surfer is paddling out to catch the next wave. The scene shows a total of five surfboards in the water, with one surfer in the process of standing up on his board. \n\nNumerous seagulls and a couple of boats can be spotted in the background of this ocean image as well"} +{"image_id": 369470, "caption": "The image depicts a city street with a parking lot full of cars parked along the curb. There are a variety of vehicles, including SUVs and mid-sized cars, occupying the available parking spaces. The cars are lined up neat and orderly, indicating a well-maintained parking area.\n\nAdditionally, there are a couple in the vicinity, possibly attending to their vehicles in front, or admiring a parking lot in general."} +{"image_id": 482210, "caption": "The image features a white two-piece bathroom with a toilet and a sink. The sink is located on the left side of the bathroom, while the toilet is situated on the right side. A mirror can be seen hanging in the room, reflecting its contents.\n\nIn addition to the sink's placement, there is a cabinet in the room, which contributes to the tidy appearance of the bathroom. There are also a couple of cups placed near the sink, adding to the lived-in atmosphere of the space."} +{"image_id": 525381, "caption": "The image captures a thrilling moment during a baseball game. The main focus is a baseball player wearing a white uniform, who has just hit the ball and is about to run. He is at the center of the scene, with other players in various positions around him.\n\nThere are several people watching the game, both on and off the field. Some are spectators seated in the stands, while others are standing nearby. One person is holding a baseball glove, ready to catch the ball if it comes their way.\n\nOverall, the scene conveys the excitement and energy one would expect to see during a competitive baseball game."} +{"image_id": 156375, "caption": "The image features a woman in a pink jacket standing on snow skis on a snow-covered slope. She is wearing a warm, fur-lined coat and is smiling as she poses for a picture on her skis. There are a few other people in the background, possibly at the beginning of a snowy ski slope near a fence."} +{"image_id": 334399, "caption": "In the image, a man is standing next to a small clock tower on a desk. He is leaning on the clock, looking at it with a smile on his face. Nearby and at a distance, there are two umbrellas open against each wall and a large bicyclist riding a bicycle on the left side and an interesting arrangement with books on the right, creating a visually engaging and vaguely quixotically-arrested atmosphere."} +{"image_id": 322955, "caption": "The image captures a picturesque beach scene with a white bird prominently standing in the shallow water at the edge of the shore. The bird appears to be walking on the beach, possibly searching for food or exploration. \n\nThere are several other birds in the background, both in the water and on the sand, indicating a lively beach environment. The presence of multiple birds adds to the serene and tranquil atmosphere of the scene."} +{"image_id": 312024, "caption": "The image features a small, black and blue bird with a white belly, standing gracefully on the grass. The bird is positioned in the center of the frame, drawing attention to its vibrant colors. It appears to be a fascinating and beautiful creature, enjoying its time in the outdoors."} +{"image_id": 118715, "caption": "The image features a black and white photo of a fire hydrant situated on a sidewalk next to a building. The fire hydrant stands tall, occupying a significant portion of the scene. There are no other objects or elements, such as a car or a traffic light in black- whites. Overhead in black-whie"} +{"image_id": 237318, "caption": "The image captures a stop sign on the side of a road in a wooded area. From behind the vehicle'sterectile, a large pile of leaves can be seen underneath the Stop signsheetf"} +{"image_id": 236865, "caption": "The image features a young girl wearing a black dress and holding an orange fr Frisbee in her right hand. She is standing on a sidewalk that appears to either be in an outskirttown or residentianthe girl holds an orange frisbee."} +{"image_id": 72096, "caption": "The image depicts a woman sitting at a dining room table, enjoying a meal with a plate of food in front of her. The table is set with a variety of breakfast items like fruits, cereal, and cheese. There are multiple bowls, cups, and utensils such as knives and forks arranged on the table, suggesting a well thought-out mealtime. \n\nA knife and a spoon are placed near the woman, ready for her to use while eating. The table is also decorated with a potted plant and a vase, adding a touch of greenery and sophistication to the scene."} +{"image_id": 450762, "caption": "The image features a group of teddy bears dressed in various costumes, including a group of men wearing green outfits. These teddy bears are posed on a boat, giving the appearance that they are soldiers on a mission. There are at least five teddy bears visible within the scene.\n\nSome beer bottles can also be spotted near the teddy bears, with one located in the middle and another towards the right side of the scene. The beer bottles appear to be scattered among the teddy bears and the boat, adding a playful touch to the arrangement."} +{"image_id": 168974, "caption": "The image features a young child, likely a toddler, who is sitting on the floor and playing with a cell phone. The child is holding the cell phone closely and appears to be examining it with curiosity. Alas daemon'82"} +{"image_id": 559950, "caption": "The image features a small brown and black dog with a collar, looking out the window of a car. The dog has placed its foreleg on an open window in a moving car, enjoying and enjoying the view.\n\nOutside of the car, there is a stop sign visible at some distance away from it as well as some people nearby walking, which suggests that it're outside of town."} +{"image_id": 575776, "caption": "In the image, a zebra and a rhino are standing next to each other in a dirt field. The zebra appears to be mockering at the rhino, who is lying down nearby. They are both surrounded by a barren landscape, giving the scene a sense of being in the wildery. \n\nThere are a few birds scattered throughout the sky, enhancing to atmosphere in which animals share space together."} +{"image_id": 552352, "caption": "The image features a delicious slice of cheesecaked placed on a dining table. The cheesecake appears to be freshly baked, and it is accompanied by a fork on top of it, indicating that it's ready to be enjoyed. The fork is positioned towards us in the foreground and extends towards the right side of the cheesecake."} +{"image_id": 490683, "caption": "The image depicts a group of people playing a game of frisbee in a grassy field. There are two main players, a man wearing an orange jersey and a woman wearing a white jersey, both actively engaged in the game. They are holding frisbees in their hands, with the man's frisbee located in front of him and the woman's frisbee on the right side of her torse. \n\nApart from the main players, there are three other people on the periphery of the grassy expanse appearing in the background of an intensetly engagement in a recreations and leisurymust setting."} +{"image_id": 76417, "caption": "The image features a white dog with its ears sticking up, hanging out of the back window of a car. The dog appears to be enjoying the ride, and the car seems to be in motion, as evincerto a trough-shoe shape in a building's rear window."} +{"image_id": 231153, "caption": "The image features a snowboarder in a blue jacket and orange pants, skillfully performing an aerial trick on his snowboard. The snowboarder is captured in mid-air, showing off his impressive snowboarding abilities.\n\nIn the background, there are several snow-covered pines, providing a beautiful wintery backdrop to the snowboarder's daring manoeuvrab. There's also another person visible in the scene, likely observing the snowboarder's jump."} +{"image_id": 190497, "caption": "The image depicts a herd of black and white cows in a rural setting, with a significant number of them gathered near a barn. The cows can also be described in the plural, \"a bunch of cows.\" There'renarrating the image, they seem to be waiting for feed and drink in the alleyway of a building. The herded black-spotted steered and white-spotted cattle appear attentively in various sizes."} +{"image_id": 126065, "caption": "The image features a large clock mounted on the side of a brick building. The clock is positioned high up, over the two bell statues. The building appears to be made of stone or brick, giving it an old, historic appearance in an urban setting."} +{"image_id": 375915, "caption": "The image features a dining table with a white tablecloth, on which a delicious-looking pizza with various toppings is placed. The pizza is cut into slices and takes up a substantial portion of the table. \n\nSurrounding the pizza, there are plates, forks, and a knife laid out on the table. Additionally, a glass of wine is positioned near the pizza, making for a delightfully refreshoring bevegetable feast."} +{"image_id": 95022, "caption": "The image features a colorful bird with a blue body, red feet, and an orange beak perched on a tree branch in a zoo. The bird is comfortably sitting on the branch, enjoying its surroundings. There is another bird visible in the background, adding to the lively atmosphere of the scene."} +{"image_id": 177935, "caption": "The image features a clean and well-maintained kitchen scene with a focus on the stove. The old-fashioned white stove is the centerpiece of the room and appears a tad rusty. \n\nIn the kitchen, there are several knives of various sizes placed neatly on the counter. A bowl, spoon, fork, scissors, and a vintage toaster adorn a counter top. Additionally or in front on a chair near a table. A sink and a cup, possibly with utters inside it, complete the setup."} +{"image_id": 380117, "caption": "The image features a cat peacefully napping on a dining table covered with a tablecloth. The cat is curled up and sleeping comfortably on the table amidst several potted plants. There are a total of five vibrzebra plants dispersed throughout the scene, providing company as the sleeping cat enjoys its resting spot on the dining table."} +{"image_id": 132373, "caption": "The scene features an information booth with a large clock in the center, likely at a train station. Beside the booth, a US flag is prominently displayed, adding a patriotic touch to the space. Two people can be seen in the area, likely visitors or staff at the venue. Additionally, there are a couple of chandeliers hanging below the American flag, providing a decorative element to the ceiling."} +{"image_id": 284282, "caption": "The image features an old-fashioned kitchen counter with two appliances: a blender and a toaster. The blender is positioned towards the left side of the counter, taking up a significant portion of the space. The toaster is situated on the right side of the counter, occupying a relatively smaller surface area.\n\nA dining table can be seen in the background, stretching horizontall across an electromagneticthe image, indicating that the counter is part of a kitchen setup."} +{"image_id": 276707, "caption": "The image captures a street scene with a red and white sign prominately displayed next to a building. The sign prohibits both motorcycles and bicycles, seemingly indicating that no bikes and motorcycles are allowed in the area. The surrounding structures, suchsas a restaurant on the right, can further enhance the urban atmosphere in the scene."} +{"image_id": 194704, "caption": "The image features a young girl in a black jacket, goggles, and gloves, holding up snow skis at an indoor ski rink. She is proudly posing for the camera while other kits and adults are skiing behind her, enjoying winter fun at a resort.\n\nThere are a total 14 individuals in view around her in various locations in the image, including children, adults, and skiing enthusiasts."} +{"image_id": 430286, "caption": "The image features an unmade bed with two remote controls placed on top of the covers. One of the remotes is positioned closer to the left side of the bed, while the other is closer to the right side. The bed has white sheets and a white comforter, giving it a clean and inviting appearance. The close-up view of the mattress highlights the bed's details and texture."} +{"image_id": 361171, "caption": "The image captures a snowboarder performing a daring trick high in the air. The snowboarder is at the center of the frame, and their snowboard is visible beneath them. The snowboarder appears to ride on the side of a building, showcasing an impressive display of skill and athleticism.\n\nAdditionally, there are several other people in the scene, likely observing the snowboarder's feat. They are scattered across various locations in the image, with some near the top, middle, and bottom parts of the scene."} +{"image_id": 406451, "caption": "The image features a small brown horse with a red bow, standing next to a red carriage. The horse is attached to the carriage, pulling it along the city street. There is another horse visible in the background, but it is not connected to the carriage in the scene.\n\nSeveral parked cars can be spies up in the vicinity of the scene. Additionally, numerous potted plants and two traffic lights adorne some urban structures nearby the scene and the small horse-drawn carriage."} +{"image_id": 57286, "caption": "The image captures a thrilling moment where a young man is performing a skateboard trick, flying through the atmosphere on a ramp. He is skillfully riding his skateboard up the side of the ramp, displaying his impressive talent.\n\nThere are several other people in the scene, likely friends or spectators of the skateboarder. Some are standing nearby on the ramp, while others are positioned further away, possibly watching the action or waiting for their turn to perform their own tricks at the skate park."} +{"image_id": 535952, "caption": "The image features a wooden dining table with three chocolate muffins placed on it. Each muffin is partially eaten, indicating that someone has been enjoying them. A knife can be seen on the table near the muffins. Additionally a spoon and a bowl of chocolate frosting or icing are present at the far end of the table in the foreground."} +{"image_id": 455772, "caption": "The image depicts a man wearing a white shirt and blue shorts, who is playing Frisbee in a grassy yard. He is energetically jumping into the air to catch the Frisbee, located near the center of the scene. \n\nIn the background, a car and a truck can be seen parked, possibly indicating that the Frisbee-frogged back to a drive or a garage nearby."} +{"image_id": 63617, "caption": "The image features a young boy wearing glasses and a baseball glove, who is in the process of throwing a baseball. The boy appears to be excited about catching the ball. There are two other people in the scene, with one person standing to the right behind the boy and another person further to the right.\n\nAdditionally, there are two dogs present in the image. One dog is located near the bottom right corner, while the other dog is situated more towards the right side of the scene. The dogs seem to be accompanying their respective owners as they engage in a friendly game of baseball."} +{"image_id": 90155, "caption": "The image features a yellow train traveling down the train tracks. The train is quite long, stretching across the majority of the scene. There are several train cars visible in the background, giving the impression of a well-connected rail system.\n \nA person can be seen near the train, possibly observing or waiting for it. Additionally, two small towers in the vicinity of the rail tracks suggest a nearby crossing or intersection in town on another cloudy day."} +{"image_id": 158127, "caption": "The image features a man wearing a pair of blue jeans and black sneakers standing next to a yellow cat lying on the ground. The cat is comfortably resting against the man's legs, creating a warm and cozy atmosphere. The scene appears to be taking place outdoors, possibly in a park or a gravel area."} +{"image_id": 248582, "caption": "The image depicts a lively outdoor fruit market with several people shopping for fruits and vegetables. There are five people in the scene, four of whom are standing in front of the fruit stand, while the fifth person is partially visible on the left edge of the image. Among their bags, some of the people are carrying backpacks.\n\nVarious fruits, such as bananas, apples, and oranges, are on display at a fruit stall. Bananas are located towards the center and right side of the image, while apples can be found on the left side of the market, and oranges are spread across the right half of the scene. The shoppers appear to be examining the fruits and vegetables available for purchase."} +{"image_id": 206560, "caption": "The image captures a snowboarder in yellow pant, soaring through the air on a vibrant pink mult- colored, graphed, and striped snowboard. The snowboarder's impressive jump showcases an interesting and skillful display of their talent. In the foreboding image, there is also an unnoticably large object visible on top-ground."} +{"image_id": 69009, "caption": "The image features two young boys wearing blue hats and jackets, standing close to a glass window near a black bear inside. The boys seem fascinated by the bear, as they watch it intently. The bear is situated toward the left side of the glass window, and both boys are captivated by its presence."} +{"image_id": 322122, "caption": "The image depicts a clean white toilet in a bathroom, with a yellow toilet seat and a toliet brushtail, or bideterbrush head, placed right over a white towel on the seat's edge to absorb excess water."} +{"image_id": 549930, "caption": "The image shows a man and a woman walking together on a wet sidewalk, with the man holding a blue umbrella to protect them from an overabundance of precipice. Behind them, two other people can be seen in the distance, also in the rain at a beach area. Additionally on this rainfall-covered sidewalk near a curb in a populated area, a handbag can be spotted."} +{"image_id": 33216, "caption": "The image features a large, freshly cooked pizza resting on a pizza pan atop red-check tablecloth at a pizzeria. The pizzeria is bustling with people, as there are at least nine other individual diners visible throughout the scene. Some diners are sitting close to the table, while others are standing or walking around the pizzeria.\n\nThe pizza itself is covered with various toppings, including sausage, mushrooms, and green peppers, making it an appetizing sight atop the red and white checkered tablecloth."} +{"image_id": 434581, "caption": "The image shows a man riding a motorcycle on a road. He is wearing a black leather jacket and a helmet for safety, indicating that he is a motorcyclist in the action zone, likely enjoying a thrilling ride."} +{"image_id": 239509, "caption": "The image displays a street scene featuring a sign on a cobblestone sidewalk. The sign has a drawing of a man and a \"do not enter\" symbol. In the background, there is a motorcycle and a few cars parked along the street. \n\nThere are also multiple people present in the scene. One person can be seen walking on the left side of the image, while another person is walking towards the right side. A few more individuals are also visible in the background, likely going about their daily routines."} +{"image_id": 88848, "caption": "The image is a collage of pictures featuring various elements, including a woman standing near a yellow and red fires extinguishes, a family posing with a unique green, blue, and yellow fire hydrant, and a group of friends on vacant street corners in front to an aquatic-themmed boat and greenery in backdrop to the sky or trees and bushy surrond park- type area with benvescent memorial."} +{"image_id": 116182, "caption": "The image features a delicious meal in a blue bowl placed on a dining table. The bowl contains a variety of food items, including several pieces of chicken, broccoli, and carrots. The dish appears to be a combination of a chicken fried steak and a stir-fry, with the vegetables mixed in as well. It looks appetizing and inviting."} +{"image_id": 562345, "caption": "The image features a woman wearing a yellow raincoat, standing against a wall and holding a cell phone in her hand. She appears to be engaged and focused on her phone, possibly texting, as well, as there seems to be a cell p"} +{"image_id": 343410, "caption": "The image features a red plate placed on a dining table, loaded with a delicious and nutritious assortment of vegetables. There are several pieces of broccoli on the plate, in various sizes and positions. Alongside the broccoli, there are sliced carbohydrates, specifically onions, adding color and flavor, creating a delight full plate that could be a perfect addition to\u0004"} +{"image_id": 490529, "caption": "In the image, a woman wearing a pink sweater is sitting down, looking at her cell phone. She appears to be focused on the device, possibly texting or browsing. The scene takes place in a public area, as there are several chairs and a dining table visible in the background. \n\nAdditionally and interestingly, there is another person present in the background, behind the focuses in close viewing of the woman's phone use."} +{"image_id": 328818, "caption": "The image features a woman in a pink shirt, either sitting on or standing near a bamboo and wood bench. A black bike can be spotted in the scene, positioned close to the bench where the woman is. She appears as a woman in the midst of tying her sneaker, possibly taking a break from her bike ride. Another woman'smobile visible on or around a bencchi"} +{"image_id": 218947, "caption": "The image features a man walking across a snow-covered field, wearing skis and a backpack. He is the main focus of the scene, with his skis visibly attached to his feet. In the background, another skier is partially visible, possibly enjoying the view or preparing to ski down the slope. The setting appears to be a snowy mountainous area, with a sense of adventure and outdoor activity."} +{"image_id": 152281, "caption": "The image depicts a large herd of sheep grazings in a grassy field. The sheep are spread out across the field, with some closer to the foreground and others further back. They are all focused on eating the grass, and some of the sheep have distinct blue markings on them. The sheer number of sheep creates a lively and active atmosphere in the field."} +{"image_id": 41110, "caption": "The image captures a young child, possibly a toddler, in the midst of drinking a beverage from a cup. The child holds the cup up to their mouth, likely enjoying the taste of the drink.\n\nThe child is wearing a pink and white striped shirt, which adds a playful touch to the scene. A bed is also visible in the background of the image, indicating that the setting is likely a bedroom."} +{"image_id": 512985, "caption": "The image features a man wearing a black wetsuit and holding a white surfboard on a sandy beach. He is looking out to the ocean and appears to be preparing for a surf session in the sea, possibly seeking adventure and excitement."} +{"image_id": 414212, "caption": "The image features a man standing in a bathroom, holding a toothbrush in one hand and a tube of toothpaste in the other. He appears to be showing off his new toothbrush and toothpaste, and he is wearing glasses. \n\nSeverall in bathroom scene"} +{"image_id": 426578, "caption": "The image depicts a man walking along a sandy beach next to the ocean. He is dressed in a black jacket and swimming trunks, carrying a surfboard under his arm. The man appears to be headed towards the waves for a surfing session. \n\nIn addition to the main subject, there are a few other people in the background at various distances, likely enjoying their time on the beach as well."} +{"image_id": 291962, "caption": "In the image, a young boy wearing a striped shirt is flying a colorful kite in a grassy field. The kite is up in the sky and being controlled by the boy. The field is lush and green, providing an ideal open space in a park for the boy to enjoy his kite-flying hobby."} +{"image_id": 460927, "caption": "The image is a black and white photograph of a large brown bear standing in the grass. It's positioned near a rock formation, giving prominence to the bear in the foreground with the field behind."} +{"image_id": 552186, "caption": "The image features a shirtless young man riding a skateboard down the street, possibly performing a trick as a crowd of people watch. There are 12 other onlookers in the scene, spread out along the street, with some standing closer to the skateboarder and others further away.\n\nIn addition to the skateboarder, there is a bicycle parked on the left side of the street. The spectators are enjoying the display of skill and talent demonstrated by the skateboarder."} +{"image_id": 553852, "caption": "The image features a young boy riding a skateboard on top of a cobblestone street. He appears to be skillfully navigating the skateboard, possibly performing a trick, while his shadow is cast on the gounds."} +{"image_id": 370337, "caption": "The image features a harbor with two red and white boats docked next to a pier. The boats are positioned close to each other, with one situated closer to the left of the scene and the other towards the right. \n\nIn addition to the boats, there are several people scattered around the area, possibly enjoying the view, attending to their boats, or conversing with others. Some of these individuals can be seen close to the boats and others further away, near the edge of the water."} +{"image_id": 18491, "caption": "The image captures an exciting moment during a baseball game. There are several players on the field, with some in various positions, both near and further away from the camera. In the midst of the action, a baseball player is sliding into a base, trying to beat the ball. \n\nAnother player, wearing a baseball glove, is attempting to tag the sliding player out. There are a few chairs scattered around near the field edges, possibly for team members or spectators to sit and watch the game. Overall, the scene showcases the intensity and action typical of a competitive baseball game."} +{"image_id": 556000, "caption": "In the image, a group of young boys is gathered in a living room, playing a video game on a Nintendo Wii console. Two of the boys are standing up, each holding a remote in their hands, while another boy is sitting on the floor, also engaged in the game.\n\nThe living room has a few chairs, one of which is placed near a couch. An umrelate dart, possibly used as decoration, is found hunkum ber in a central location of an open room in a dotted chair position."} +{"image_id": 443351, "caption": "The image features a parking lot with two motorcycles parked next to each other. One motorcycle is green and black, while the other is white and gray. They are positioned parallel to each other, taking most of the available space in the parking spot.\n\nIn total, there are only two motorcycles visible in the image."} +{"image_id": 63965, "caption": "The image features a woman holding a piece of cake on a plate. The cake is decorated with white frosting and red hearts, giving it a festive appearance. The woman is holding the plate out in front of her, and the cake takes up a significant portion of its visual real-estimony in a vertical arrangement from the middle to the edges of the plate."} +{"image_id": 405660, "caption": "The image features a serene outdoor scene with a bench situated on a hill, overlooking a beautiful view of mountains in the distance. The bench is positioned under a tree, providing shade and enhhancing the natural surroundings. So the answer is mountains."} +{"image_id": 419144, "caption": "The image shows a group of people riding on the backs of several elephants. The elephants are arranged in a line, forming a small herd. Some of the people are seated on the elephants' backs, while others are standing nearby or riding them, demonstrating a sense of adventure and excitement. The eleventhetical picture is a classic black, white photograph, giving it a historical appeal."} +{"image_id": 371004, "caption": "The image features a zebra standing in a grassy area, surrounded by a chain-link fence. The zebra appears to be behind the fence, possibly in an enclosure at a zoo. Its head is tilted towards the fence, possibly trying to reach something on the other side. \n\nIn addition to the zebra, there are several birds scattered throughout the scene, both on the ground and in the air. Some of the birds are close to the zebra, while others are further away, creating a lively atmosphere in the scene."} +{"image_id": 116861, "caption": "The image depicts a woman lying down on a couch, comfortably holding a teddy bear. She appears to be sleeping or relaxing while hugging the plush toy. The couch takes up a majority or a major portion of the scene in the room."} +{"image_id": 579664, "caption": "The image features a fruit stand with a wooden box displaying several bunches of bananas. The bananas are in various stages of ripeness, with both green and yellow bananas visible. They are arranged in different sections of the box, creating an appealing presentation for potential customers or visitors. The sunlight shining on the bananas adds to the fresh atmosphere."} +{"image_id": 5600, "caption": "The image features a dining table with two metal bowls placed on it. The bowls contain various food items, including several pieces of meat and vegetables. One of the bowls is filled with what look likes marinated food, and the other bowl has an assortment or dessert. Allegorand fruit salad can also be inferred to exist on the dining table."} +{"image_id": 199389, "caption": "The image features a fire hydrant with a face painted on it, resembiling a character. The fire hydrant is located in the middle of a dirt road, surrounded on all sides by a fenced area. In the background, a car can be seen parked further down the road."} +{"image_id": 568131, "caption": "The image features a large elephant walking through a grassy field with tall grass and trees in the background. The elephant appears to be enjoying the sunny day outdoors. There are a few other smaller elephants or animals in the scene, dispersed at various distances from the vieWright's"} +{"image_id": 35671, "caption": "The image depicts a rodeo event taking place in a small arboretum, with several spectators gathered around to watch the action. Two horses are present in the scene, with one on the left side and the other more towards the center. A bull is pulling a cow towards the bottom of the arena, creating an exciting display for the audience.\n\nThere is a variety of people present in the scene, with some standing close to the arena's fence and others dispersed throughout the area. The spectators are attentively observing the bull and the cow's performance, likely enjoying the thrilling show."} +{"image_id": 76522, "caption": "The image depicts a black and white cat lying comfortably on a couch, alongside a remote control. The cat is occupying a significant portion of the couch's width as well, indicating that it is a cozy spot. 1"} +{"image_id": 504167, "caption": "The image features a brown and white cat with striking blue eyes that are captivating the viewer up close. The cat is lying down on a wooden floor and has long whiskers sticking up around its facials features as well a slightly long hair-covere (possibly brown and white) on its body."} +{"image_id": 21644, "caption": "The image depicts a busy bus station with several buses parked in a parking lot. There are five buses visible in the scene, with some positioned closer to the front of a building and others located in the middle and back of the parking lot. \n\nIn addition to the buses, there are three people in the scene. One person is standing near the left side of the parking lot, another person is in the middle, and the third person is on the right side. An airport-like control tower can be seen in the background, adding to the bustling atmosphere of the bus station."} +{"image_id": 483135, "caption": "The image shows a group of young people, including teens and young adults, gathered in a living room to enjoy a gaming session together. They are sitting on various furniture, such as couches and chairs, while playing video games on a Nintendo Wii console. \n\nThree Wii controllers can be seen in the scene, with one being held by a person in an orange dress and the other two by people sitting on the couch. The friends seem to be having a great time, bonding over the game and sharing a fun experience."} +{"image_id": 271063, "caption": "The image features a modern kitchen with wooden cabinets and black appliances, including a microware and an oven. The kitchen is well-equipped with various utensils, such as knives, placed conveniently on top or inside the cabinets.\n\nAn island can be seen on top of an empty cupboard in the kitchen as a counter-topped surface or a small dining area. A single bowl sits in a drawer in the kitchen.\n\nIn summary: A stylish wooden-themed kitchen with black-and-silver appliances."} +{"image_id": 36477, "caption": "The image features a large box filled with numerous ripe bananas. The banana bunches are arranged in various positions within the box, with some overlapping others. The bananas have a vibrant yellow color, indicating that they are ripe and ready to be eaten. The box is overflowing with bananas, giving the impression of a abundant supply."} +{"image_id": 125375, "caption": "The image depicts a red, white, and blue train traveling down the tracks, approaching a station. There are several people standing near the train, waiting to board or disembark. They are spread out along the platform, with some individuals closer to the edge andothers a safe distance back in the middle of the platform.\n\nIn addition to the train passengers, the station is equippped to accommodating their hand bagging and personal possisition in hand baggage compartment."} +{"image_id": 362520, "caption": "The image features a young child, wearing a helmet, getting ready to perform a trick on a skatebaord at an indoor skate park. The young skateborder, appearing full of energy and enthusiasm, is holding the edge, getting ready of jumping up and executing a trick in mid, air with his board in control and stability at hand for an impressive display."} +{"image_id": 5412, "caption": "The image features a modern bathroom with beige tiles on the walls and white fixtures, including a toilet and a sink. The toilet is located on the left side of the bathroom, while the sink is situated on the right side. The bathroom appears clean and well-organized, with a white toilet and sink as the main focal points."} +{"image_id": 757, "caption": "The image features a herd of elephants gathered around a watering hole. There are three elephants in total, with two of them standing close to the water's edge, appearing to drink. The third elephant is positioned further away from the water and is interacting with the other two. Algeria, the eleventeen elephant caldle deals"} +{"image_id": 396496, "caption": "The image depicts a group of people standing outside in the snow, with some of them holding umbrellas to shield themselves from the falling snowflakes. There are five umbrellas in total, with various shapes and sizes, held by different individuals in the crowd.\n\nIn total, there are at least 25 pedrize person, including an elderly man with a hat and an umbiathrow"} +{"image_id": 81761, "caption": "In the image, a woman is on a tennis court, preparing to hit a tennis ball with her racquet. She is wearing a black shirt and a white skirt, and is actively engaged in the game. There are multiple sports balls visible on the court, indicating that she has been practicing her swings. A car can also be seen in the background, possibly belonging to one of the players or spectator."} +{"image_id": 130677, "caption": "The image captures a nighttime tennis match between two players, a man and a woman, who are both wears black clothes. They are standing on opposing sides of the sports court, actively participating in the game. \n\nThe tennis court is illuminated by bright street lights, emphasizing the ongoing match. There are multiple sports balls scattered across the court; some are in play, while others are possibly waiting to be used. A water bottle can be seen on the side of the court, ready for the players to take a break and hydrate themselves."} +{"image_id": 318825, "caption": "The image features a man standing on a tennis court, holding a tennis racket in his hand. He appears to be preparing to swing the racket, possibly during a game or practice session. The man is wearing a white shirt and shorts, which are appropriate attire for playing tennis, and he seems focused on the task at hand."} +{"image_id": 48014, "caption": "The image depicts a man walking down a sidewalk with a dog on a leash at his side. The man is wearing a green shit, and the dog appears to be a black, fluffy poodle-like bredequ. There are other pedestrians on and around them. \n\nIn the background, there are several cars park, including a couple near each\u0003"} +{"image_id": 421028, "caption": "The image features a black cat lying comfortably on a rug, holding a toy carrot in its paw. The carrot appears to be a cat toy, and the cat is playing with it while laying down on the rug. The scene is cozy and inviting, with the carnivorous cat and cuddly toy creating a warm atmosphere."} +{"image_id": 479659, "caption": "The image features a man and a woman standing close together, engaged in conversation. They appear to be outdoors, possibly at a social gathering or an outdoor event. The man seems to be drinking from a wine glass, likely enjoying a glass of wine while having caste-like discussions or observed by a potted flower on his left. There is also an apple nearby."} +{"image_id": 369826, "caption": "The image features a large flat-screen TV prominently placed in a public area, likely an airport. The TV displays an advertisement for a surfboard, with a picture of a person skillfully surfing a wave in a billboard-type setting, catching the attention of those who pass by, possibly travelers or airport visitors."} +{"image_id": 406253, "caption": "The image depicts a city street scene with several vehicles parked on the side of the road. Two scooters, one blue and the other green, are prominently placed in the middle of the scene. They appear to be the main focus of the picture. \n\nIn addition to the scooters, there are also two cars parked nearby. One car is located at the far left of the image, while the other car is situated closer to the center of the scene. A traffic light can be seen in the background, indicating that the street is likely within a busy urban area."} +{"image_id": 548267, "caption": "The image depicts a picturesque scene of a herd of sheep grazing on a lush green hillside. There are nine sheep in total, with some spread out across the field and others clustered together. The landscape features beautiful mountains in the background, adding to the serene atmosphere of the scene.\n\nThe field is surrounded by a fence, indicating that it is a designated area for the sheep to graze and roam freely. The combination of the green grass, the sheep, and the majestic mountains in the background paints an idyllic and peaceful image."} +{"image_id": 335844, "caption": "The image features a stainless steel toaster oven placed on a counter in a kitchen. The toaster oven is open, and it appears to be cooking some food inside. Several food items can already be seen inside the toaster oven, including five pieces of popcorn, likely being prepared for a meal or a gathering."} +{"image_id": 299640, "caption": "The image features a table with various pieces of a disassembled remote control and a circuit board placed next to each other. The remote control can be identified as a Sony brand, and the circuit board appears to be partially disassembled as well. \n\nIn addition to the remote control and circuit board, there are three other objects on the table: a bottle, a cup, and a cell phone. The bottle and cup are placed near the remote control, while the cell phone is situated near the circuit board."} +{"image_id": 121812, "caption": "The scene depicts a busy city street filled with traffic on this foggy day. Numerous cars are driving down the street, with some appearing closer to the foreground and others further in the background. There are several traffic lights interspersed at various intervals along the street, ensuring the smooth flow of traffic.\n \nIn addition to the cars and traffic lights, there is a billboard on the side of a building near the street, adding to the urban atmosphere. The foggy weather and green hill in the background give the impression of a typical day in the city."} +{"image_id": 107234, "caption": "The image is a close-up of a bearded man dressed in formal attire, wearing a suit and a tie. He is holding a wine glass up to his mouth, with his tongue licking the glass. The man appears to be in a joyful and celebratory mood.\n\nIn the background, there are two cars parked, one closer to the left edge of the image and the other behind and slightly to the right of the man."} +{"image_id": 153104, "caption": "The image features a man sitting in a crowd at a sports event, enjoying a hot dog in a bun. He is the main focus of the scene, with the hot dog placed in front of him as he eats it. \n\nAround him, numerous other at-tendees can be seen in various positions throughout the stadium seas, creating liveness to atmosphere. Some individuals sit near him and some stand, engaging on a conversation and bond as fans of a popular sports venge"} +{"image_id": 216417, "caption": "The image is an old black and white photo of a man skiing in the snow. The skier is wearing a hat and has a small dog on his back, strapped in a backpack. He is using ski poles to help navigate the snow-covered sLOP. In addition, there is an umbrella present in the scene.\n Alldog on man'smust's back"} +{"image_id": 286708, "caption": "The image features a black and white cat sitting wearing a pink knitted hat. The cat is relaxingly enjoying the coziness and whimy of the woolen toy. The overall atmosphere in a black bookshel with several teddy-bear-themed towars."} +{"image_id": 547041, "caption": "The image features a dining table with two bowls filled with food. One salad bowl contains a salad with various vegetables, such as lettuce, olives, and cheese, while the additional bowl is filled with a dessert, possibly a cake or a pasta meal. \n\nThere is a spoon placed near the salad bowl, ready to be used for serving the salad. Additionally, a keyboard can be seen on the table, possibly connected to a computer or entertainment system."} +{"image_id": 293802, "caption": "The image captures a lively scene of a man doing a skateboard trick in the middle of a crowded walkway. He appears to be losing control of his skateboards while jumping through its side, drawing attention from the people around him."} +{"image_id": 252738, "caption": "The image features a man wearing a black leather jacket standing on a dirt hill, talking on his cell phone. He appears to be an old gray hacket talks intently as the man walkips in a dirt field."} +{"image_id": 43165, "caption": "The image features two zebras standing together on a grass-covered field. They appear to be grazing on dried grass, as they are surrounded by a pile of the green stuff and a small amount of debris. The zebras are facing different positions while feeding and are likely enjoyming a quiet mealtime moment together outdoors."} +{"image_id": 218215, "caption": "The image features a large white polar bear swimming powerfully through the water. The bear is the main focus of the scene, occupying a significant portion of the frame. It appears to be enjoying the swim, whether it is cooling off or simply moving through the paddling area in a zoo or wildlife enclosing environment with artificial water."} +{"image_id": 299082, "caption": "The image features a giraffe standing on a lush green field, gracefully leaning over to eat grass. The giraffe is positioned near a rocky ledge, and it appears to be using its tongue to reach out and lounge at the grass-covered field's bottom edge in the wildlife habitat."} +{"image_id": 152360, "caption": "The image features a lively street scene with several bunches of bananas hanging from a wire at an outdoor fruit market. The bananas are hung in various positions, covering most of the visible area. There are also a few oranges placed among the bananas. \n\nSurrounding the fruit stand, there are multiple cars parked on the street, indicating the presence of a busy marketplace. Two people can be seen in the background, possibly shopping or managing the fruit stand, contributing to the bustling atmosphere."} +{"image_id": 205601, "caption": "The image features a woman in a blue shirt cooking a meal in a skillet on a stovetop. She is adding ingredients to the dish, which appears to have a mix of meat and vegetables. There are a few carrots visible in the scene, possibly being used as part of the cooking technique. \n\nAn oven can be seen in the background, indicating that the cooking process is taking place in a kitchen environment. Another person is also present in the scene, standing to the left of the woman, possibly observing the cooking process or offering assistance."} +{"image_id": 174004, "caption": "The image features an old, rusty yellow dump truck parked in a grassy field. The truck is surrounded by lush green grass, with trees in the vicinity. There is another, smaller truck located in the background on the right side of the scene.\n A person can be seen in the vicinity of the trucks, possibly observing or attending to them."} +{"image_id": 31542, "caption": "The image features a person on a snowboard performing a stunt in the air. The snowboarder is up in the air, having jumped from a snowy platform, and is in the process of turning upside down. They appear to have a boarder's jacket on, which is visible as they ride through the air. \n\nThe scene captures the excitement and adrenaline rush of the snowboarder as they execute their daring maneuver."} +{"image_id": 305268, "caption": "The image features a woman playing tennis on an outdoor tennis court. She is wearing a black shirt and white shorts and is holding a tennis racket in her hand. She appears to have just hit the tennis ball back to her opponent during an intense match.\n\nThere are several benches placed around the tennis court, with one close to the left side, another at the back, and the most prominently visible one to the right side in the foreground of the court, which is currently unoccupied."} +{"image_id": 2867, "caption": "The image depicts a group of five cross-country skiers standing together on a snow-clothed trail. They all\u0004"} +{"image_id": 72428, "caption": "The image features a white toilet sitting in a small bathroom. It has a tissue box placed on top of the toilet tank, which is a common arrangement in bathrooms. The tissue box is embellished with a flower, giving it a decorative touch. \n\nA box or roll toilet paper can be seen next to the white t.j."} +{"image_id": 158494, "caption": "The image features a group of three giraffes standing close to each other in an outdoor enclosure. One of the giraffes is eating grass, which is visible in the scene. There's a building nearby, and a fence can be seen separating the enclosure from the surrounding area, indicating a controlled environment for the giraffes, likely at the farm, possibly in Africa or the UK."} +{"image_id": 147629, "caption": "The image features a white cat lying on the floor, comfortably holding a stuffed toy in its paws. The cat's expression suggests a sense or relaxation as it rests with its favorite toy."} +{"image_id": 581899, "caption": "In the image, two blue passenger trains are parked next to each other on the tracks, creating a narrow gap between them. The first train occupying the left side of the image extends from the front to the middle of the scene, while the second train spans the entire width of the image, extending from the middle to the back.\n\nA tree is noticeable on a platform outside of the window area, adding some greenery to the scene."} +{"image_id": 369345, "caption": "The image depicts a living room with a blue couch placed against a white wall. The couch is adorned with several red pillows, giving it a cozy and inviting appearance. In addition to the couch, there is a wooden coffee table situated in front of it, featuring a laptop computer on top of it. A remote control can also be spotted on the coffee table.\n\nA tall bookshelf filled with numerous books of various sizes and colors occupies the background, creating an intellectually stimulating atmosphere in the room by adding character to space."} +{"image_id": 372246, "caption": "The image features a rural road with a stop sign position at the end of it. A pole with two street signs is located on top of the stop sign, marking the intersection of two streets - a street called \"Hell Cabin Road.\" The stop sign is red, while the street signs have a combination green/ Hell Cabin Rd, signifying their respective destinations."} +{"image_id": 261563, "caption": "The image depicts two dogs playing together in a grassy field. One dog, which is brown and black, is holding a yellow Frisbee in its mouth, while the other dog watches and waits for its turn to join the activity with the Frisbee. The dogs seem to be enjoying their playtime out in the yard."} +{"image_id": 461802, "caption": "The image is a black and white photograph featuring a man standing on a platform at a train stop. The man is wearing an orange and white uniform, and he is closely examining the side of a red passenger train that is parked on the tracks. Along with the train, there are other elements in the scene such as clocks, benches, and a handbag.\n\nThere's another clock placed on top and to the right in the image, as well as a bench located in the middle of the scene. Additionally there'll always benched chafed in front of train station."} +{"image_id": 138175, "caption": "The image shows a man with glasses talking on a cell phone while wearing a suit. He is standing in a room with other people who appear to be engaged in various activities. One of the individuals is a woman carrying a handbag. The man in glasses is holding the cell phone up to his ear, possibly engaged in a conversation or preparing to make one."} +{"image_id": 103488, "caption": "The image features a large, clean bathroom with sinks and paper towel dispensers. The bathroom appears to be a public one, as there are multiple sinks situated next to each other under mirrors, and a few people are present in the scene. The sinks, which dominate the right side of the image'tile wall in blue and dark-honed colors and black and white marblestone flooreside."} +{"image_id": 215901, "caption": "The image features a fruit bowl placed on a dining room table. The bowl is filled with various fruits, including several bananas, apples, and oranges. Some of the bananas are scattered around the bowl, while the apples and oranges are more clustered together in the bowl. The arrangement of the fruits creates a colorful and appetizing display on the table."} +{"image_id": 514180, "caption": "The image features a dining table with a variety of pizzas on it. There are three pizzas in total, with one in the middle of the table and two others positioned at different sides. One of the pizzas on one side is a single slice, while the other two are whole pizzas. \n\nAdditionally, a pizza cutter can be seen on the table, indicating that the pizzas are ready to be sliced and served. The close-up view of the pizzas highlights the deliciousness of the freshly made pizza feast."} +{"image_id": 396338, "caption": "The image captures a busy street scene filled with people, cars and various modes of transportation. There are several pedestrians in a poor-looking area, walking along the street and interacting with their surroundings. \n\nTwo men can be seen walking in the middle of the street, with one of them carrying a book. Cars and motorcycles are also present in the scene, with one car visible on the left side and another on the right side of the image. A truck is located in the background towards the right side, adding to the bustling atmosphere of the street."} +{"image_id": 579362, "caption": "The image depicts a picturesque beach scene with a man sitting on a blue bench near the water, looking out at the ocean and enjoying the view. Behind this man on the left, there're several bikinied-clothed babes frolicki."} +{"image_id": 289512, "caption": "In the image, a man wearing a hat is riding a brown horse on a sunny day. The man is positioned more towards the left side of the horse. The horse appears quite large, covering a significant portion of the image from left to right.\n\nAdditionally, there are several birds scattered across the sky in the background, adding a lively touch to the scene. The man on the horse seems to be enjoying the outdoor activity, surrounded by the beauty of nature."} +{"image_id": 306928, "caption": "The image features a large clock tower with a flock of birds perched on various parts of the tower. There are at least 15 birds visible, occupying different areas of the tower, such as the sides, top, and bottom. Some birds are sitting close to the clock, while others are spread out across the tower.\n\nThe clock on the tower is prominently visible, standing out in the middle of the structure. The birds and the clock together create a lively and dynamic scene."} +{"image_id": 453009, "caption": "The image features a small stuffed teddy bear sitting on the back of a bench. The teddy bear is positioned in such a way that it appears to be hugging a large stuffed animal, resembling a loon or a duck. The teddy bear-loon combo makes a unique, amicably quirky display."} +{"image_id": 112581, "caption": "The image shows a man standing in a store, wearing a white shirt and a hat. He is in the clam-bearing position, making an expression like a surprised or excited customer as a new Broadway show, \"Hamilton the play,\" has just ended, possibly at Madison Square Garden, where the game took place."} +{"image_id": 504977, "caption": "The image depicts an older woman sitting on a wooden benched in a park-like setting. Her purse is placed beside her on the bench, and she appears to be looking off into the distance. The outdoorsy scenenerys, freshly cut grass, trees, and greenery in close viciniculate to her."} +{"image_id": 228764, "caption": "The image features a sandy beach setting where a dog and a cat are curiously looking at each other. The dog is positioned towards the left side of the scene, while the cat is on the right side. The cat appears to be watching the dog as it walks on the beach nearby.\n\nIn the background, there are several cars parked along the beach, which suggests that this location may be a popular spot for visitors. Additionally, there are two chairs placed on the beach, one on the left side and the other further up in middle-right of the scene."} +{"image_id": 151528, "caption": "The image features a man enjoying a sunny day outdoors with his black dog by his side. The man is standing on a grassy field, holding a red kite in his hand, while the dog is nearby, walking on the grass. They seem to be engaged in flying a ballooning, with one balloon visible in the sky.\n\nIn addition, an umbrela, and potentially an old rock wall, can be spots around them, indicating that they are perhaps at a beach setting, enjoying the outdoor environment."} +{"image_id": 248919, "caption": "The image showcases a clean and well-organized kitchen featuring light wood cabinets and a white stove top oven. A wooden dining table is situated in the room, surrounded by chairs. A bowl of fruit, including apples and oranges, is placed on the counter, adding a touch of color to the scene. \n\nIn terms of kitchenware, there are multiple knives and spoons visible. Four spoontes, in various sizes and shapes, are arranged nearer on top, while three for knifewhench or cutting boad. Additionally.\u0003"} +{"image_id": 580607, "caption": "The image depicts a serene river scene with several boats lined up along the water's edge. The boats vary in size and are docked close to the riverbank near a walkway. Some people can be spots along the riverbank, possibly enjoying the view or taking a walk. \n\nIn addition to the boats and people, a car is visible on the left side of the scene, likely parked near the walkway and offering a mode of transpiration for those visiting a city park nearby with waterways of the river."} +{"image_id": 200291, "caption": "The image features a dining table with two blue plates placed on it. Each plate has different types of food, creating a varied meal. One plate has toast and tater tots, while the other has a piece and half of a loaf of bread on it. There is also a spat with the toast and titor"} +{"image_id": 296231, "caption": "The image depicts a cluttered living room with a TV turned on, serving as the primary source of entertainment in the space. The television is situated in the middle of the room, attracting attention with its small-screen size. \n\nSurrounding the TV, there are numerous books scattered about, adding to the messy atmosphere of the room. Several people can be seen in the room, engaged in various activities, possibly enjoying the company of others or the entertainment provided by the TV. Additionally, a clock is visible in the room, positioned at an inconspicuous location."} +{"image_id": 505663, "caption": "The image features a large clock mounted on the side of a brick wall. The clock is prominently displayed and easily visible for everyone to see the current time."} +{"image_id": 41572, "caption": "In this black and white photograph, a baseball player is captured in the process of swinging his bat at an incoming sportsball. Several other players are present on the diamond-shaped field, wearing uniforms and engaged in various activities related to the game.\n\nThere are a few cars parked outside the field, possibly belonging to the players or spectator. Two cars are situated on the right side of the field, while another car is located further back on the left side. Additionally, a sports ball can be spotted in the air, just ahead of the batter, adding an element of action to the scene."} +{"image_id": 509589, "caption": "The image features a group of young men standing in a public area, with some of them riding skateboards. One of the skateboarders is wearing a blue tie-dye shirt and riding on a skateboard. In total, there are four skateboards visible in the scene, with one being riden by the skateboarder in the blue shirt.\n\nThere are also three bicycles in the scene, with one located near the center of the image and the other two positioned closer to the right side of the frame. Additionally, there are four people in the scene, with some standing in the background and others closer to the foreground, creating a lively atmosphere."} +{"image_id": 357238, "caption": "In the image, a person is enjoying a day at the beach, flying a large, colorful blue and black kite. The kite is soaring high above the water's surface, catching a good breeze. The person appears to be having a great time, as they watch the kite glide through the air.\n\nAdditionally, there are a few birds scattered across the sky, adding to the lively atmosphere of the beach scene."} +{"image_id": 466575, "caption": "The image features an old, worn, and dirty brown suitcase sitting on a black, speckled pavement. The suitcase appears to be empty and abandoned-looking in its condition."} +{"image_id": 271970, "caption": "The image captures a picturesque street scene with a large white church steeple in the background. The steeple is adorned with a clock, making it easily visible for those passing by. The clock is positioned towards the top of the steeple, drawing attention to the time it displays.\n\nThe street is lined with various houses and apartment buildings, creating a cozy and residential atmosphere. A car can be seen on the right side of the scene, adding to the overall charm of the town."} +{"image_id": 305540, "caption": "The image features a large building with a white exterior and a courtyard. In the courtyard, there is a metal sculpture of a pair of scissors. The scissors are positioned upright in the middle of the space, drawing attention to their unique art."} +{"image_id": 462928, "caption": "The image shows a man with glasses holding a cell phone up to his ear, as if he is talking on it. He is smiling and appears to be enjoying the conversation or event. The man is wearing glasses and a jacket and seems well-dismantled in the scene."} +{"image_id": 270544, "caption": "The image depicts a group of people enjoying their time in a lake together. They are all wearing bathing suits and are either in the water, standing, or jumping in the lake, creating a sense on fun activity. \n \nFifty percivalty of a man's life"} +{"image_id": 134042, "caption": "In the image, an airplane is flying high in a cloudy blue sky. The plane appears to be a large jetliners and is position towards one of the center areas of the sky as well-flying through the clouds. The sky's background is a blue color."} +{"image_id": 120340, "caption": "The image features a man standing next to a blue bike, which is parked in front of a metro bus. He is in the process of fixing the bike with a tool kit and hand tools. There are several other bicycles in the scene, including one on top-middle and top-right, but they are farther from the focal point of the image. Additionally to this scene'taker advantage in fixing bikes."} +{"image_id": 418949, "caption": "The image captures a baseball game in progress, with several players on the field. At the center of the scene, a baseball player in a red and blue uniform stands holding a baseball bat, getting ready to take his turn at bat. Another player nearby is holding a baseball glove, likely preparing to catch the ball.\n\nThere are other players scattered across the field, both near and farther away from the batter. Some of these players are standing, while others are in various stages of movement, actively participating in the game. The scene conveys the excitement and anticipation of a live baseball game."} +{"image_id": 520109, "caption": "The image features a vibrant scene with a grassy field filled with many colorful umbrellas. These umbrellas are scattered throughout the field, with some close to each other and others more spread out. The bright colors of the umbrella stands out against the green grass, creating a lively atmosphere in the park.\n\nIn addition to the umbrellas, there are several benches placed across the field. Some of the benches are near the umbrellas, while others are further away, providing a relaxing space for visitors to sit and enjoy the outdoors. The field appears to be well-maintained and offers a pleasant environment for people to gather and unwind."} +{"image_id": 50753, "caption": "The image features a kitchen with wooden cabinets and white appliances, including a refrigerator, microwave, and oven. The refrigerator is located on the left side of the kitchen, while the microwave is situated above the oven, which is situated in the center of the space. \n\nAdditionally, there is a sink on the right-hand side in front on cabinets and a dish dry. A dish washed and a bottl of cooking spaghetch on one of counter towars. A vase and a bowl of fresh broom are visible on a surface in the background."} +{"image_id": 329939, "caption": "The image depicts a group of giraffes walking and standing in a grassy field. There are a total four tall, slendriff giraffes in the herb of tall grass, with one giraffe walking behind them in a savvy landscape in an outdoor natural reserve or wildlife area, presumably a safari game reserve."} +{"image_id": 351345, "caption": "The image features a woman standing in a room, holding a Nintendo Wii game controller as she plays a video game on a TV. She is wearing a white shirt and appears to be enjoying herself. Another person can be seen in the room, possibly watching her play or waiting for their turn to play.\n\nThe room is furnished with a couple of chairs and a dining table. There is a book placed on the dining table, indicating it might be a space for both gaming and leisurely reading."} +{"image_id": 25293, "caption": "The image is a painting of a woman holding a blue frise. Her hair is blowing in the wind, and she appears to be looking up at the frise in the sky. The woman is the main subject of the painting; there'RE not many secondary objects within it"} +{"image_id": 543041, "caption": "The image displays a box filled with a variety of donuts, giving the impression of a delicious assortment of pastries. There are seven donuts in total, with different shapes, sizes, and flavors, making for an appetizing collection."} +{"image_id": 568265, "caption": "The image depicts a group of people gathered in a park, enjoying a sunny day outdoors. There, they watch a kite flying in the sky with a large wing size as the center, possibly taking up a significant portion of the scene, and a tree nearby with open leaves. 12 on the number in \"The Silent Group Game\""} +{"image_id": 467386, "caption": "The image depicts a scene outside a building with two blue doors. One of the doors is closed, while the other one is slightly open or ajar. Underneath one of the blue doors, a pantyhose can be spotted by the street, along"} +{"image_id": 242363, "caption": "The image features a small, unfinished bathroom with a white toilet placed in the middle next to a bathtub. Beside the toile, a bid to the tooth and a show fauce occupy one of the bathroom fixtures, completeness with the bathtub and a small sink on the left side of the scene.\n A white van basics in the bathroom"} +{"image_id": 554900, "caption": "The image features a clean bathroom with a white toilet bowl and a white toilet seat. The toilet appears to be freshly cleaned and ready for use. Next to the toilet, there is a toilet brush and a plunger, both essential items for maintaining a hygienic bathroom. The overall scene showcases a well-maintained and tidy restroom."} +{"image_id": 115006, "caption": "The image captures a baseball game in progress, with a batter in the middle of swinging at a pitch. The catcher is positioned behind the batter, wearing a baseball glove, ready to catch the ball in case the batter misses. The umpire is also standing behind the batter and catcher, closely observing the game.\n\nThere are several other people in the scene, including teammates and other players on the field. Some are closer to the action, while others are further away, possibly waiting for their turn to play. A bench can be seen in the background, providing a place for players to sit when they are not on the field."} +{"image_id": 75375, "caption": "The image showcases a lively beach scene with multiple people enjoying water sports. There are at least 13 people visible on a body of water, engaging in activities such as kiteboarding, windsurfing, and parasailing. \n\nNumerous colorful kites can be seen flying in the sky, ranging from the left side to the right side of the scene. Some kites are flying higher, while others are closer to the water's surface, accompanying the windsurfers and parasailers on their thrilling adventures."} +{"image_id": 419223, "caption": "The image captures a group of young boys playing soccer on a field. There are three boys in particular engaged in the game, with one boy kicking the soccer ball while the other two boys are chasing after him, eager to gain control of the ball."} +{"image_id": 137578, "caption": "The image shows a public restroom featuring two toilets positioned next to each other. Both toilets have their lids left up. The bathroom appears clean and well-maintained, with a tiled wall behind the toilets. \n\nAdditionally, there is a toiletry visible in the scene, possibly placed on a counter or a shelf. The presence of two toilets side by side indicates that the restroom is designed to accommodate multiple users at once."} +{"image_id": 408808, "caption": "The image features a white table with three different toothbrushes placed on it. The toothbrushes are in excellent condition, with their packaging still intact. One toothbrush is on the left side of the table, another one is in the middle, and the third one is on the right side. \n\nAdditionally, there are a few extra toothbrushes of various sizes visible in the image. These toothbrushes are not in their packages, indicating that they might have been recently purchased, or they are being prepared for use."} +{"image_id": 243773, "caption": "The image showcases a cluttered kitchen counter in a house. The counter is covered with various items, including a number of bottles, a wine glass, and a cup. There are several open cabinets, contriburing to the messy appearance of the kitchen. A bowling pictorial bottle is placed at the far end of a counter, adding an unkempt element of decoration in the space that also features an oversight in organizing items."} +{"image_id": 436492, "caption": "The scene features a street with various street signs, including a prominent one that is advertising the American Recovery Investment Act. There are also two pedestrians, with one walking behind a sign and close-up in the forepath of the scene as well as an unnoticked street and city roadway with a green Trolley going through the city street."} +{"image_id": 556648, "caption": "The image features a smartphone on display in a store. The phone is white and appears to be an older model or featuring a retro design. It is placed in a glass case, likely to showcase its features and protect it from potential damage.\n\nAround the phone, there are books placed in various positions, possibly for customers to browse or for sales purposes. Some books are located on a table nearby and are visible on the left, right, and upper side of the frame of this image."} +{"image_id": 298924, "caption": "The image features a dining table with a delicious serving of Asian cuisine. The main dish is a bowl filled with noodles, meat, and vegetables, placed in the center of the table. There are several pieces of chicken visible in the bowl, making it a meal with a combination of textures and flavors. \n\nAdditionally, there are two cups placed nearby, possibly filled to accompany the meal. Chopsticks can be spotted on the left-hand part, ready use to dig in to the food."} +{"image_id": 562030, "caption": "The image shows a garden deck with several potted plants placed on it. There is a variety of plants, including a potted plant on the left side of the deck and another one on the right side. Additionally, there are five small potted plants scattered across the deck, with some placed near the plants on both the front and back sides. \n\nSome of the plants look dead or unhealthy, possibly due to a lack of proper care, such as insufficient watering or inadequate exposure. There is no soil present in any container."} +{"image_id": 501315, "caption": "The image showcases a thrilling scene of a person riding a green motorcycle, possibly a racing motorcycle, on a curvy race track. The rider is leaning into a turn, with the motorcycle angled close to the ground. So the answer is racing."} +{"image_id": 436162, "caption": "The image features a large white passenger bus parked at the side of the road, with its doors open. The bus appears to be a city transit bus, and it may be waiting for passengers to board or disembark. There is also a benbath located in proximity, which offers securable and accessible parkin."} +{"image_id": 323888, "caption": "The image features a large, illuminated clock mounted on the side of a building, drawings attention to the time. The building appears to be a prominent landmark, possibly an architect's creation or part of a historic place like Union Station or the old high school. \n\nA car, resembling a small jeep, is visible on\u0004"} +{"image_id": 211476, "caption": "The image displays a dining table with two bowls placed on it. The bowls are filled with a variety of foods, making for a colorful and appetizing meal. One of the bowls contains broccoli and cheese, while the other bowl features chili and broccoli. Alongside the bowls, there are a couple of pieces of broccoli and a banana on the table. \n\nAdditionally, there is a knife on the table, likely used for cutting or spreading the food in the bowls. The presentation of the meal is visually appealing and inviting."} +{"image_id": 473433, "caption": "The image features an open suitcase on a wooden table. Inside the suitcase, various items can be seen, including a bowl, a cup, and a picture of a person. The picture of the person appears to be a black and white photo, and it is placed in the center of the suitcase. The bowl and cup are positioned near the edge of the table in front."} +{"image_id": 165752, "caption": "The image features a black dog standing on a grassy yard, wearing a yellow frisbee on its head. The dog appears to be playing with the frisbee, possibly preparation or just finished engagement in an energetic activity with a flying dog disc or Frisbeen."} +{"image_id": 573756, "caption": "The image features two giraffes standing together in a grassy field, surrounded by a wooded area. One giraffe is positioned to the front and the other a bit further back, creating a harmoniously intrecous display as a group in the wild. The giraffes appear to be enjoying the shade provided by the trees in their natural habitat."} +{"image_id": 187450, "caption": "The image features a blue and silver train parked on the tracks at a train station. The train occupies most of the view, extending from left to right across the scene. There are no people in the vicinity of the train, creating a sense of tranquility in the otherwise empty station."} +{"image_id": 43266, "caption": "The image depicts a scene with two giraffes in their natural habitat. One giraffe is standing close to a tree and possibly reaching for a leaf, while the other giraffe stands further away in the background. The giraffes co exists harmoneously, sharing the same space without any signs of conflict."} +{"image_id": 150080, "caption": "The image features a large pizza with various toppings on a white plate, placed on a dining table. The pizza is the main focus of the scene, covering a significant portion of the plate from top to bottom.\n \nIn addition to the pizza, there are several green onions scattered around the plate, likely serving as a garnish. The table itself appears to be a dining table, with a chair visible at the top left corner of the image."} +{"image_id": 453757, "caption": "The image features a group of young men playing soccer on a field. There are four players in action, with two of them falling to the ground after being knocked off balance by an oncoming soccer ball. One of the players is in the process of kicking the ball, while the others are actively participating in the game. \n\nThe soccer ball can be seen in the air, just above the ground, as the players attempt to gain control of the ball. The players are wearing uniforms, indicating that they are part of an organized team or league."} +{"image_id": 354460, "caption": "The image captures a moment where a group of people, including a man and a woman, are involved in a ribbon-cutting ceremony. The man is wearing a tie, while the woman is dressed in a floral dress. They are standing next to each other, holding a large ribbon that they are preparing to cut. \n\nOther people can be seen in the background, with one person on the left and another on the right side of the image. A handbag is visible on the left side of the scene, held by one of the attendees. The atmosphere appears joyful and celebratory, as everyone gathers together for this special event."} +{"image_id": 221681, "caption": "The image features a small bathroom with a white sink sitting next to a toilet. The sink has a mirror above it, reflecting the bathroom's elements. There are several towels placed on the sink's rack, as well-coordinated towels hanging on a towel holder below the sink. A bottle can be spelled in two cups in the scene."} +{"image_id": 349324, "caption": "The image presents a view of a train passing by another train on a train track. The train on the left side appears to be a cargo or freight train, while the train on the right is a passenger train. The cargo or freight train is located closer to the viewer, occupying a larger portion of the image.\n\nBeyond the train tracks on the viewer's left side, a white car and a traffic light are also present near some teleostar polygons, which are likely a feature of traffic control systems."} +{"image_id": 225133, "caption": "The image features a group of colorful umbrellas hanging in a tree, creating a vibrant and lively atmosphere. There are 13 umbrellas of various sizes and colors suspended from the branches of the tree. The umbrellas are arranged in such a manner, that they catch the attention of passersby, who might be curious and interested in the unique display."} +{"image_id": 452566, "caption": "The image depicts a stop sign on the side of a road, with a beautiful mountain range in the background. The stop sign is positioned near a fence that stretches across the scene, enhancing the overall landscape. The combination of the stop sign and the stunning mountain backdrop creates a captivating and serene atmosphere."} +{"image_id": 124952, "caption": "The image depicts a busy street scene with a large city bus driving alongside a black luxury sedan. The bus is positioned on the left side of the scene, and several pedestrians can be seen walking along and interacting with the vehicles.\n\nIn total in front and behind the buses in the scene, there are at least five pedastrians visible at the street cross. The pedal box on the right-corporate building, pedals can be spotted as an accessibility feature in case pedests need extra mobility to reach crosswalkians or other pedestrians."} +{"image_id": 26697, "caption": "The image features a woman standing in a doorway with a toothbrush in her hand, brushing her teeth. She appears to be looking into the camera as she brushing her teeth. The scene takes place near a window, which allows natural light to enter the room. \n\nAdditionally, there are two butterfly decorations on the window, adding a playful touch to the bathroom's atmosphere while in the woman'shand."} +{"image_id": 126064, "caption": "In the image, a man wearing a red shirt is surfing on a wave in the ocean, skillfully riding a surfboard. He appears to be in control of the surfboard, which is positioned to the left of the scene. The man is the main focal points and captures the essence of the sport's energy, excitement as he navigates a wave towards shore."} +{"image_id": 557190, "caption": "The image features two men standing next to each other in an outdoor setting. One man is wearing a gray suit and a red tie, while the other man is wearing a black suit and a white shirt. They appear to be posing for a picture, with one man having his arm around the other.\n\nArrival of autumn is evident in the scene. Behnd the two men in suits, there is a beautiful backdrop formed by trees, bushberas, or vegetative ground with vibriant red, pinnacle yellow-autumn hues."} +{"image_id": 137612, "caption": "The image depicts a large, multi-level apartment building situated next to a road. The building has a unique feature - a parking garage entrance. A red \"no parking\" sign is prominently displayed on top of the pole in front of the building. \n\nThere are several cars parked along the road near the apartment building in a city setting. A person can be seen walking on the sidewalk near the building, likely a resident or a visitor."} +{"image_id": 408480, "caption": "The image captures a picturesque harbor scene with a large red and black boat docked near the pier. The boat is positioned in the center of the dock, grabbing the viewer's attention. Behind the boat, there is a red and black lighthouse that serves as an important navigational landmark, guiding ships in and out of the harbor, ensembler to sailors in the area."} +{"image_id": 277694, "caption": "In the image, a brown cow is lying down on a sidewalk, close to a motorcycle. The cow appears tired outdoors and takes up a significant portion of the scene as a result in the middle part of the image from left to the top. There is also a motorcy\u0000"} +{"image_id": 74166, "caption": "The image features a man with tattoos on his arms and legs, performing a skateboard trick on a sidewalk. He is in a mid-air jump, showcasing his skills with the skateboard. Another person is visible nearby, likely watching the skateboarder's performance.\n\nIn addition to the skateboarders, several cars are parked along the sidewalk, adding to the urban atmosphere of the scene. There is also a backpack placed on the ground, possibly belonging to one of the people in the area."} +{"image_id": 102625, "caption": "The image depicts a small, nicely decorated kitchen with a warm and inviting atmosphere. The kitchen features a stove, oven, dishes on the counter, and a sink. There are several cups and bottles placed around the countertops, adding to the homey feel of the space. \n\nA chair can be seen near the dining table in the kitchen. The table itself has a vase on it, enhancing the aesthetics of the area. The room also includes a TV, which is located on the left side of the image."} +{"image_id": 540694, "caption": "The image features a giraffe standing in the middle of a parking lot, extending its head and neck through a car window. The giraffe appears to be poking its head into the car to get a closer look, possibly at the people inside the vehicle or the car's surrounound sound, including the mirror and the brake lights.\n\nSeveral cars surround a fence and a stop sign on which another picture appears, further enhancing a unique atmosphere within a zoo."} +{"image_id": 518586, "caption": "The image features a train traveling down the train tracks in a black and white photograph. There are several people present in the scene, with some standing close to the train and others further away from it. The individuals near the train seem to be workers, while the others are simply bystanders."} +{"image_id": 81303, "caption": "The image shows a man skiing down a snowy mountain slope, enjoying the winter sport. He is wears sled attired with ski attache and appears focused and in control. The man is the main subject of the scene."} +{"image_id": 383065, "caption": "The image features a green public toilet located on a city sidewalk. The toilet is placed in a small wooden structure that has the words \"Toilettes\" written on it. There is a map posted on the side of the structure, likely providing directions or directions to the restrooms in the area."} +{"image_id": 169602, "caption": "In the image, a woman is lying on a surfboard in a body of water, riding a wave towards the shore. She appears to be wearing a wetsuit, providing her with warmth and buoyancy while surfing in the ocean. Another surfboard can be seen floating nearby in the water as well ."} +{"image_id": 19890, "caption": "The image depicts two zebras standing side by sides in a fenced-in area. They appear to be eating grass or hay, as they both bend their heads down to reach the ground in front of a bench. Their behavior suggests that they have a tasty snack nearby."} +{"image_id": 236604, "caption": "The image features a spacious living room with elegant furniture. There are two couches in the room, one situated on the left side and the other on the right side near each other. A large coffee table is placed centrally on the left side, surrounded by the couches."} +{"image_id": 270753, "caption": "A deep dish pizza with sauce, cheese, and vegetables is displayed on a table. The pizza takes over almost half of the image as it'reversed on top of a knife. The knife's surface reflects the pizza's toppings and textures, enhancing and emphasizing the delicious meal inside. The pizza appears to be fully baked and ready to be enjoyed."} +{"image_id": 457178, "caption": "The image features a bustling street scene with a horse-drawn carriage riding down the road, passing by a large building with a decorative balcony. There are several people walking on the street, some close to the carriage and some further away, creating a lively atmosphere.\n\nNumerous horses are visible in the scene, with some in the background and others more prominently featured. In addition to the horse-drawer carriage, there are other carriages and horses, showcasing the variety of transportation methods used by pedriot and ridlers alike in a city with a long history."} +{"image_id": 577712, "caption": "The image depicts a group of people gathered around a giraffe enclosure at a zoo or wildlife park. One giraffe is leaning its head over the fence, drawing the attention of the people. There are five people in total, with three on the left and another two on the right side of the enclosur e"} +{"image_id": 414560, "caption": "The image depicts a group of cows with number tags, laying down in a straw-filled pen, presumably in a farm setting. Three of the animals, which appear similar in appearance, are resting on the\u0000"} +{"image_id": 388983, "caption": "The image features a delicious foot-long hot dog with a variety of condiments on a bun. The hot dog is served in a paper tray, which is placed on a dining table. Along with the hot dog sandwich, a pickle spear can be seen on the table, adding a touch or crunch to its gourmet."} +{"image_id": 245965, "caption": "The image depicts a beautiful scene of a person sitting in a vast field, under a large blue umbrella that provides shade. The umbrella and a basket, filled with berries, are placed nearby. The person is likely pick berry- Pick the berry from the bush while enjoying under cover, shield, from sunlight."} +{"image_id": 147590, "caption": "The image features a dining table with a glass of red wine and a plate of food. The wine glass is placed prominently on the table, taking a significant portion of the frame, and appears to be the main focus of the scene, possibly accompanied or shared with someone else nearby, like an \"old friend.\""} +{"image_id": 46882, "caption": "The image captures a group of young people playing a game of Frisbee in an open field. There are a total of five people in the scene, with one person notably jumping up in the air to catch the Frisbee, which is located near the center of the image, slightly above the ground. \n\nThe Fresheness and other details are visible, making a pleasant and luscious\u0004"} +{"image_id": 518719, "caption": "The image features a large black, white, and gold ceramic bowl placed on a table. The bowl has a decorative, striped design with black and white accents. It stands out on the table and catches the viewer\u2019s attention."} +{"image_id": 176312, "caption": "The image features a woman standing in front of a Tour Stop sign, checking her cell phone. She appears to be looking at the device and potentially using it for directions or information. The Tour Bus stand, in front and to the left of the woman, is well promounced in a strip-color"} +{"image_id": 580746, "caption": "The image features a picturesque scene of a grassy field with a group of sheep grazing on the green grass. There are a total of six sheep spread throughout the field, with some closer to the foreground and others farther away. The sheep appear calm and engaged in their grazing activity, contributing to the serene atmosphere of the scene."} +{"image_id": 541223, "caption": "The image features a large airplane, possibly a vintage one, situated in front of and above a Pizzorama Grottery. The building is covered with glass and a tarp as well, indicating that a storm is approaching, possibly damaging to its structural integrity or the tarmac itself under its roof or wings."} +{"image_id": 22589, "caption": "The image features a green field with a herd of sheep grazing and resting on the grass. There are at least five sheep visible in the scene, some standing close to each other while others have a bit more distance between them. One of the sheep appears to be looking at the camera. The field is fenced in, providing a safe environment for the sheep to roam and graze."} +{"image_id": 196815, "caption": "The image features a group of four teenage boys sitting in a living space, playing a video game together. They are seated on chairs that are scattered around the room. Two of the boys are sitting close to each other, playing the game, while the other two are sitting a bit further apart in a more sparring arrangement, yet still engaged and enjoying the game."} diff --git a/OPERA/minigpt4/__init__.py b/OPERA/minigpt4/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..3bcca4d35a3bd701f03d0018e7bddf0e78bd030e --- /dev/null +++ b/OPERA/minigpt4/__init__.py @@ -0,0 +1,31 @@ +""" + Copyright (c) 2022, salesforce.com, inc. + All rights reserved. + SPDX-License-Identifier: BSD-3-Clause + For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause +""" + +import os +import sys + +from omegaconf import OmegaConf + +from minigpt4.common.registry import registry + +from minigpt4.datasets.builders import * +from minigpt4.models import * +from minigpt4.processors import * +from minigpt4.tasks import * + + +root_dir = os.path.dirname(os.path.abspath(__file__)) +default_cfg = OmegaConf.load(os.path.join(root_dir, "configs/default.yaml")) + +registry.register_path("library_root", root_dir) +repo_root = os.path.join(root_dir, "..") +registry.register_path("repo_root", repo_root) +cache_root = os.path.join(repo_root, default_cfg.env.cache_root) +registry.register_path("cache_root", cache_root) + +registry.register("MAX_INT", sys.maxsize) +registry.register("SPLIT_NAMES", ["train", "val", "test"]) diff --git a/OPERA/minigpt4/common/__init__.py b/OPERA/minigpt4/common/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/OPERA/minigpt4/common/config.py b/OPERA/minigpt4/common/config.py new file mode 100644 index 0000000000000000000000000000000000000000..4a624a1e5023b4d2172dbbebf2495389208bc736 --- /dev/null +++ b/OPERA/minigpt4/common/config.py @@ -0,0 +1,468 @@ +""" + Copyright (c) 2022, salesforce.com, inc. + All rights reserved. + SPDX-License-Identifier: BSD-3-Clause + For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause +""" + +import logging +import json +from typing import Dict + +from omegaconf import OmegaConf +from minigpt4.common.registry import registry + + +class Config: + def __init__(self, args): + self.config = {} + + self.args = args + + # Register the config and configuration for setup + registry.register("configuration", self) + + user_config = self._build_opt_list(self.args.options) + + config = OmegaConf.load(self.args.cfg_path) + + runner_config = self.build_runner_config(config) + model_config = self.build_model_config(config, **user_config) + dataset_config = self.build_dataset_config(config) + + # Validate the user-provided runner configuration + # model and dataset configuration are supposed to be validated by the respective classes + # [TODO] validate the model/dataset configuration + # self._validate_runner_config(runner_config) + + # Override the default configuration with user options. + self.config = OmegaConf.merge( + runner_config, model_config, dataset_config, user_config + ) + + def _validate_runner_config(self, runner_config): + """ + This method validates the configuration, such that + 1) all the user specified options are valid; + 2) no type mismatches between the user specified options and the config. + """ + runner_config_validator = create_runner_config_validator() + runner_config_validator.validate(runner_config) + + def _build_opt_list(self, opts): + opts_dot_list = self._convert_to_dot_list(opts) + return OmegaConf.from_dotlist(opts_dot_list) + + @staticmethod + def build_model_config(config, **kwargs): + model = config.get("model", None) + assert model is not None, "Missing model configuration file." + + model_cls = registry.get_model_class(model.arch) + assert model_cls is not None, f"Model '{model.arch}' has not been registered." + + model_type = kwargs.get("model.model_type", None) + if not model_type: + model_type = model.get("model_type", None) + # else use the model type selected by user. + + assert model_type is not None, "Missing model_type." + + model_config_path = model_cls.default_config_path(model_type=model_type) + + model_config = OmegaConf.create() + # hierarchy override, customized config > default config + model_config = OmegaConf.merge( + model_config, + OmegaConf.load(model_config_path), + {"model": config["model"]}, + ) + + return model_config + + @staticmethod + def build_runner_config(config): + return {"run": config.run} + + @staticmethod + def build_dataset_config(config): + datasets = config.get("datasets", None) + if datasets is None: + raise KeyError( + "Expecting 'datasets' as the root key for dataset configuration." + ) + + dataset_config = OmegaConf.create() + + for dataset_name in datasets: + builder_cls = registry.get_builder_class(dataset_name) + + dataset_config_type = datasets[dataset_name].get("type", "default") + dataset_config_path = builder_cls.default_config_path( + type=dataset_config_type + ) + + # hierarchy override, customized config > default config + dataset_config = OmegaConf.merge( + dataset_config, + OmegaConf.load(dataset_config_path), + {"datasets": {dataset_name: config["datasets"][dataset_name]}}, + ) + + return dataset_config + + def _convert_to_dot_list(self, opts): + if opts is None: + opts = [] + + if len(opts) == 0: + return opts + + has_equal = opts[0].find("=") != -1 + + if has_equal: + return opts + + return [(opt + "=" + value) for opt, value in zip(opts[0::2], opts[1::2])] + + def get_config(self): + return self.config + + @property + def run_cfg(self): + return self.config.run + + @property + def datasets_cfg(self): + return self.config.datasets + + @property + def model_cfg(self): + return self.config.model + + def pretty_print(self): + logging.info("\n===== Running Parameters =====") + logging.info(self._convert_node_to_json(self.config.run)) + + logging.info("\n====== Dataset Attributes ======") + datasets = self.config.datasets + + for dataset in datasets: + if dataset in self.config.datasets: + logging.info(f"\n======== {dataset} =======") + dataset_config = self.config.datasets[dataset] + logging.info(self._convert_node_to_json(dataset_config)) + else: + logging.warning(f"No dataset named '{dataset}' in config. Skipping") + + logging.info(f"\n====== Model Attributes ======") + logging.info(self._convert_node_to_json(self.config.model)) + + def _convert_node_to_json(self, node): + container = OmegaConf.to_container(node, resolve=True) + return json.dumps(container, indent=4, sort_keys=True) + + def to_dict(self): + return OmegaConf.to_container(self.config) + + +def node_to_dict(node): + return OmegaConf.to_container(node) + + +class ConfigValidator: + """ + This is a preliminary implementation to centralize and validate the configuration. + May be altered in the future. + + A helper class to validate configurations from yaml file. + + This serves the following purposes: + 1. Ensure all the options in the yaml are defined, raise error if not. + 2. when type mismatches are found, the validator will raise an error. + 3. a central place to store and display helpful messages for supported configurations. + + """ + + class _Argument: + def __init__(self, name, choices=None, type=None, help=None): + self.name = name + self.val = None + self.choices = choices + self.type = type + self.help = help + + def __str__(self): + s = f"{self.name}={self.val}" + if self.type is not None: + s += f", ({self.type})" + if self.choices is not None: + s += f", choices: {self.choices}" + if self.help is not None: + s += f", ({self.help})" + return s + + def __init__(self, description): + self.description = description + + self.arguments = dict() + + self.parsed_args = None + + def __getitem__(self, key): + assert self.parsed_args is not None, "No arguments parsed yet." + + return self.parsed_args[key] + + def __str__(self) -> str: + return self.format_help() + + def add_argument(self, *args, **kwargs): + """ + Assume the first argument is the name of the argument. + """ + self.arguments[args[0]] = self._Argument(*args, **kwargs) + + def validate(self, config=None): + """ + Convert yaml config (dict-like) to list, required by argparse. + """ + for k, v in config.items(): + assert ( + k in self.arguments + ), f"""{k} is not a valid argument. Support arguments are {self.format_arguments()}.""" + + if self.arguments[k].type is not None: + try: + self.arguments[k].val = self.arguments[k].type(v) + except ValueError: + raise ValueError(f"{k} is not a valid {self.arguments[k].type}.") + + if self.arguments[k].choices is not None: + assert ( + v in self.arguments[k].choices + ), f"""{k} must be one of {self.arguments[k].choices}.""" + + return config + + def format_arguments(self): + return str([f"{k}" for k in sorted(self.arguments.keys())]) + + def format_help(self): + # description + key-value pair string for each argument + help_msg = str(self.description) + return help_msg + ", available arguments: " + self.format_arguments() + + def print_help(self): + # display help message + print(self.format_help()) + + +def create_runner_config_validator(): + validator = ConfigValidator(description="Runner configurations") + + validator.add_argument( + "runner", + type=str, + choices=["runner_base", "runner_iter"], + help="""Runner to use. The "runner_base" uses epoch-based training while iter-based + runner runs based on iters. Default: runner_base""", + ) + # add argumetns for training dataset ratios + validator.add_argument( + "train_dataset_ratios", + type=Dict[str, float], + help="""Ratios of training dataset. This is used in iteration-based runner. + Do not support for epoch-based runner because how to define an epoch becomes tricky. + Default: None""", + ) + validator.add_argument( + "max_iters", + type=float, + help="Maximum number of iterations to run.", + ) + validator.add_argument( + "max_epoch", + type=int, + help="Maximum number of epochs to run.", + ) + # add arguments for iters_per_inner_epoch + validator.add_argument( + "iters_per_inner_epoch", + type=float, + help="Number of iterations per inner epoch. This is required when runner is runner_iter.", + ) + lr_scheds_choices = registry.list_lr_schedulers() + validator.add_argument( + "lr_sched", + type=str, + choices=lr_scheds_choices, + help="Learning rate scheduler to use, from {}".format(lr_scheds_choices), + ) + task_choices = registry.list_tasks() + validator.add_argument( + "task", + type=str, + choices=task_choices, + help="Task to use, from {}".format(task_choices), + ) + # add arguments for init_lr + validator.add_argument( + "init_lr", + type=float, + help="Initial learning rate. This will be the learning rate after warmup and before decay.", + ) + # add arguments for min_lr + validator.add_argument( + "min_lr", + type=float, + help="Minimum learning rate (after decay).", + ) + # add arguments for warmup_lr + validator.add_argument( + "warmup_lr", + type=float, + help="Starting learning rate for warmup.", + ) + # add arguments for learning rate decay rate + validator.add_argument( + "lr_decay_rate", + type=float, + help="Learning rate decay rate. Required if using a decaying learning rate scheduler.", + ) + # add arguments for weight decay + validator.add_argument( + "weight_decay", + type=float, + help="Weight decay rate.", + ) + # add arguments for training batch size + validator.add_argument( + "batch_size_train", + type=int, + help="Training batch size.", + ) + # add arguments for evaluation batch size + validator.add_argument( + "batch_size_eval", + type=int, + help="Evaluation batch size, including validation and testing.", + ) + # add arguments for number of workers for data loading + validator.add_argument( + "num_workers", + help="Number of workers for data loading.", + ) + # add arguments for warm up steps + validator.add_argument( + "warmup_steps", + type=int, + help="Number of warmup steps. Required if a warmup schedule is used.", + ) + # add arguments for random seed + validator.add_argument( + "seed", + type=int, + help="Random seed.", + ) + # add arguments for output directory + validator.add_argument( + "output_dir", + type=str, + help="Output directory to save checkpoints and logs.", + ) + # add arguments for whether only use evaluation + validator.add_argument( + "evaluate", + help="Whether to only evaluate the model. If true, training will not be performed.", + ) + # add arguments for splits used for training, e.g. ["train", "val"] + validator.add_argument( + "train_splits", + type=list, + help="Splits to use for training.", + ) + # add arguments for splits used for validation, e.g. ["val"] + validator.add_argument( + "valid_splits", + type=list, + help="Splits to use for validation. If not provided, will skip the validation.", + ) + # add arguments for splits used for testing, e.g. ["test"] + validator.add_argument( + "test_splits", + type=list, + help="Splits to use for testing. If not provided, will skip the testing.", + ) + # add arguments for accumulating gradient for iterations + validator.add_argument( + "accum_grad_iters", + type=int, + help="Number of iterations to accumulate gradient for.", + ) + + # ====== distributed training ====== + validator.add_argument( + "device", + type=str, + choices=["cpu", "cuda"], + help="Device to use. Support 'cuda' or 'cpu' as for now.", + ) + validator.add_argument( + "world_size", + type=int, + help="Number of processes participating in the job.", + ) + validator.add_argument("dist_url", type=str) + validator.add_argument("distributed", type=bool) + # add arguments to opt using distributed sampler during evaluation or not + validator.add_argument( + "use_dist_eval_sampler", + type=bool, + help="Whether to use distributed sampler during evaluation or not.", + ) + + # ====== task specific ====== + # generation task specific arguments + # add arguments for maximal length of text output + validator.add_argument( + "max_len", + type=int, + help="Maximal length of text output.", + ) + # add arguments for minimal length of text output + validator.add_argument( + "min_len", + type=int, + help="Minimal length of text output.", + ) + # add arguments number of beams + validator.add_argument( + "num_beams", + type=int, + help="Number of beams used for beam search.", + ) + + # vqa task specific arguments + # add arguments for number of answer candidates + validator.add_argument( + "num_ans_candidates", + type=int, + help="""For ALBEF and BLIP, these models first rank answers according to likelihood to select answer candidates.""", + ) + # add arguments for inference method + validator.add_argument( + "inference_method", + type=str, + choices=["genearte", "rank"], + help="""Inference method to use for question answering. If rank, requires a answer list.""", + ) + + # ====== model specific ====== + validator.add_argument( + "k_test", + type=int, + help="Number of top k most similar samples from ITC/VTC selection to be tested.", + ) + + return validator diff --git a/OPERA/minigpt4/common/dist_utils.py b/OPERA/minigpt4/common/dist_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..1bfd6f425f053fee9f204e4b9f82854ef427b0b1 --- /dev/null +++ b/OPERA/minigpt4/common/dist_utils.py @@ -0,0 +1,151 @@ +""" + Copyright (c) 2022, salesforce.com, inc. + All rights reserved. + SPDX-License-Identifier: BSD-3-Clause + For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause +""" + +import datetime +import functools +import os + +import torch +import torch.distributed as dist +import timm.models.hub as timm_hub + + +def setup_for_distributed(is_master): + """ + This function disables printing when not in master process + """ + import builtins as __builtin__ + + builtin_print = __builtin__.print + + def print(*args, **kwargs): + force = kwargs.pop("force", False) + if is_master or force: + builtin_print(*args, **kwargs) + + __builtin__.print = print + + +def is_dist_avail_and_initialized(): + if not dist.is_available(): + return False + if not dist.is_initialized(): + return False + return True + + +def get_world_size(): + if not is_dist_avail_and_initialized(): + return 1 + return dist.get_world_size() + + +def get_rank(): + if not is_dist_avail_and_initialized(): + return 0 + return dist.get_rank() + + +def is_main_process(): + return get_rank() == 0 + + +def init_distributed_mode(args): + if args.distributed is False: + print("Not using distributed mode") + return + elif "RANK" in os.environ and "WORLD_SIZE" in os.environ: + args.rank = int(os.environ["RANK"]) + args.world_size = int(os.environ["WORLD_SIZE"]) + args.gpu = int(os.environ["LOCAL_RANK"]) + elif "SLURM_PROCID" in os.environ: + args.rank = int(os.environ["SLURM_PROCID"]) + args.gpu = args.rank % torch.cuda.device_count() + else: + print("Not using distributed mode") + args.distributed = False + return + + args.distributed = True + + torch.cuda.set_device(args.gpu) + args.dist_backend = "nccl" + print( + "| distributed init (rank {}, world {}): {}".format( + args.rank, args.world_size, args.dist_url + ), + flush=True, + ) + torch.distributed.init_process_group( + backend=args.dist_backend, + init_method=args.dist_url, + world_size=args.world_size, + rank=args.rank, + timeout=datetime.timedelta( + days=365 + ), # allow auto-downloading and de-compressing + ) + torch.distributed.barrier() + setup_for_distributed(args.rank == 0) + + +def get_dist_info(): + if torch.__version__ < "1.0": + initialized = dist._initialized + else: + initialized = dist.is_initialized() + if initialized: + rank = dist.get_rank() + world_size = dist.get_world_size() + else: # non-distributed training + rank = 0 + world_size = 1 + return rank, world_size + + +def main_process(func): + @functools.wraps(func) + def wrapper(*args, **kwargs): + rank, _ = get_dist_info() + if rank == 0: + return func(*args, **kwargs) + + return wrapper + + +def download_cached_file(url, check_hash=True, progress=False): + """ + Download a file from a URL and cache it locally. If the file already exists, it is not downloaded again. + If distributed, only the main process downloads the file, and the other processes wait for the file to be downloaded. + """ + + def get_cached_file_path(): + # a hack to sync the file path across processes + parts = torch.hub.urlparse(url) + filename = os.path.basename(parts.path) + cached_file = os.path.join(timm_hub.get_cache_dir(), filename) + + return cached_file + + if is_main_process(): + timm_hub.download_cached_file(url, check_hash, progress) + + if is_dist_avail_and_initialized(): + dist.barrier() + + return get_cached_file_path() + + +def all_reduce_mean(x): + world_size = get_world_size() + if world_size > 1: + x_reduce = torch.tensor(x).cuda() + dist.all_reduce(x_reduce) + x_reduce /= world_size + return x_reduce.item() + else: + return x diff --git a/OPERA/minigpt4/common/gradcam.py b/OPERA/minigpt4/common/gradcam.py new file mode 100644 index 0000000000000000000000000000000000000000..5aefb53571438991da7aa164317d26f2d735cac9 --- /dev/null +++ b/OPERA/minigpt4/common/gradcam.py @@ -0,0 +1,24 @@ +import numpy as np +from matplotlib import pyplot as plt +from scipy.ndimage import filters +from skimage import transform as skimage_transform + + +def getAttMap(img, attMap, blur=True, overlap=True): + attMap -= attMap.min() + if attMap.max() > 0: + attMap /= attMap.max() + attMap = skimage_transform.resize(attMap, (img.shape[:2]), order=3, mode="constant") + if blur: + attMap = filters.gaussian_filter(attMap, 0.02 * max(img.shape[:2])) + attMap -= attMap.min() + attMap /= attMap.max() + cmap = plt.get_cmap("jet") + attMapV = cmap(attMap) + attMapV = np.delete(attMapV, 3, 2) + if overlap: + attMap = ( + 1 * (1 - attMap**0.7).reshape(attMap.shape + (1,)) * img + + (attMap**0.7).reshape(attMap.shape + (1,)) * attMapV + ) + return attMap diff --git a/OPERA/minigpt4/common/logger.py b/OPERA/minigpt4/common/logger.py new file mode 100644 index 0000000000000000000000000000000000000000..9d351045b2b56cb1d26202bc7f37c59d4ec58f88 --- /dev/null +++ b/OPERA/minigpt4/common/logger.py @@ -0,0 +1,195 @@ +""" + Copyright (c) 2022, salesforce.com, inc. + All rights reserved. + SPDX-License-Identifier: BSD-3-Clause + For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause +""" + +import datetime +import logging +import time +from collections import defaultdict, deque + +import torch +import torch.distributed as dist + +from minigpt4.common import dist_utils + + +class SmoothedValue(object): + """Track a series of values and provide access to smoothed values over a + window or the global series average. + """ + + def __init__(self, window_size=20, fmt=None): + if fmt is None: + fmt = "{median:.4f} ({global_avg:.4f})" + self.deque = deque(maxlen=window_size) + self.total = 0.0 + self.count = 0 + self.fmt = fmt + + def update(self, value, n=1): + self.deque.append(value) + self.count += n + self.total += value * n + + def synchronize_between_processes(self): + """ + Warning: does not synchronize the deque! + """ + if not dist_utils.is_dist_avail_and_initialized(): + return + t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda") + dist.barrier() + dist.all_reduce(t) + t = t.tolist() + self.count = int(t[0]) + self.total = t[1] + + @property + def median(self): + d = torch.tensor(list(self.deque)) + return d.median().item() + + @property + def avg(self): + d = torch.tensor(list(self.deque), dtype=torch.float32) + return d.mean().item() + + @property + def global_avg(self): + return self.total / self.count + + @property + def max(self): + return max(self.deque) + + @property + def value(self): + return self.deque[-1] + + def __str__(self): + return self.fmt.format( + median=self.median, + avg=self.avg, + global_avg=self.global_avg, + max=self.max, + value=self.value, + ) + + +class MetricLogger(object): + def __init__(self, delimiter="\t"): + self.meters = defaultdict(SmoothedValue) + self.delimiter = delimiter + + def update(self, **kwargs): + for k, v in kwargs.items(): + if isinstance(v, torch.Tensor): + v = v.item() + assert isinstance(v, (float, int)) + self.meters[k].update(v) + + def __getattr__(self, attr): + if attr in self.meters: + return self.meters[attr] + if attr in self.__dict__: + return self.__dict__[attr] + raise AttributeError( + "'{}' object has no attribute '{}'".format(type(self).__name__, attr) + ) + + def __str__(self): + loss_str = [] + for name, meter in self.meters.items(): + loss_str.append("{}: {}".format(name, str(meter))) + return self.delimiter.join(loss_str) + + def global_avg(self): + loss_str = [] + for name, meter in self.meters.items(): + loss_str.append("{}: {:.4f}".format(name, meter.global_avg)) + return self.delimiter.join(loss_str) + + def synchronize_between_processes(self): + for meter in self.meters.values(): + meter.synchronize_between_processes() + + def add_meter(self, name, meter): + self.meters[name] = meter + + def log_every(self, iterable, print_freq, header=None): + i = 0 + if not header: + header = "" + start_time = time.time() + end = time.time() + iter_time = SmoothedValue(fmt="{avg:.4f}") + data_time = SmoothedValue(fmt="{avg:.4f}") + space_fmt = ":" + str(len(str(len(iterable)))) + "d" + log_msg = [ + header, + "[{0" + space_fmt + "}/{1}]", + "eta: {eta}", + "{meters}", + "time: {time}", + "data: {data}", + ] + if torch.cuda.is_available(): + log_msg.append("max mem: {memory:.0f}") + log_msg = self.delimiter.join(log_msg) + MB = 1024.0 * 1024.0 + for obj in iterable: + data_time.update(time.time() - end) + yield obj + iter_time.update(time.time() - end) + if i % print_freq == 0 or i == len(iterable) - 1: + eta_seconds = iter_time.global_avg * (len(iterable) - i) + eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) + if torch.cuda.is_available(): + print( + log_msg.format( + i, + len(iterable), + eta=eta_string, + meters=str(self), + time=str(iter_time), + data=str(data_time), + memory=torch.cuda.max_memory_allocated() / MB, + ) + ) + else: + print( + log_msg.format( + i, + len(iterable), + eta=eta_string, + meters=str(self), + time=str(iter_time), + data=str(data_time), + ) + ) + i += 1 + end = time.time() + total_time = time.time() - start_time + total_time_str = str(datetime.timedelta(seconds=int(total_time))) + print( + "{} Total time: {} ({:.4f} s / it)".format( + header, total_time_str, total_time / len(iterable) + ) + ) + + +class AttrDict(dict): + def __init__(self, *args, **kwargs): + super(AttrDict, self).__init__(*args, **kwargs) + self.__dict__ = self + + +def setup_logger(): + logging.basicConfig( + level=logging.INFO if dist_utils.is_main_process() else logging.WARN, + format="%(asctime)s [%(levelname)s] %(message)s", + handlers=[logging.StreamHandler()], + ) diff --git a/OPERA/minigpt4/common/optims.py b/OPERA/minigpt4/common/optims.py new file mode 100644 index 0000000000000000000000000000000000000000..b736d627a2e76cde496c9841d937b5be9ccb1c65 --- /dev/null +++ b/OPERA/minigpt4/common/optims.py @@ -0,0 +1,119 @@ +""" + Copyright (c) 2022, salesforce.com, inc. + All rights reserved. + SPDX-License-Identifier: BSD-3-Clause + For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause +""" + +import math + +from minigpt4.common.registry import registry + + +@registry.register_lr_scheduler("linear_warmup_step_lr") +class LinearWarmupStepLRScheduler: + def __init__( + self, + optimizer, + max_epoch, + min_lr, + init_lr, + decay_rate=1, + warmup_start_lr=-1, + warmup_steps=0, + **kwargs + ): + self.optimizer = optimizer + + self.max_epoch = max_epoch + self.min_lr = min_lr + + self.decay_rate = decay_rate + + self.init_lr = init_lr + self.warmup_steps = warmup_steps + self.warmup_start_lr = warmup_start_lr if warmup_start_lr >= 0 else init_lr + + def step(self, cur_epoch, cur_step): + if cur_epoch == 0: + warmup_lr_schedule( + step=cur_step, + optimizer=self.optimizer, + max_step=self.warmup_steps, + init_lr=self.warmup_start_lr, + max_lr=self.init_lr, + ) + else: + step_lr_schedule( + epoch=cur_epoch, + optimizer=self.optimizer, + init_lr=self.init_lr, + min_lr=self.min_lr, + decay_rate=self.decay_rate, + ) + + +@registry.register_lr_scheduler("linear_warmup_cosine_lr") +class LinearWarmupCosineLRScheduler: + def __init__( + self, + optimizer, + max_epoch, + iters_per_epoch, + min_lr, + init_lr, + warmup_steps=0, + warmup_start_lr=-1, + **kwargs + ): + self.optimizer = optimizer + + self.max_epoch = max_epoch + self.iters_per_epoch = iters_per_epoch + self.min_lr = min_lr + + self.init_lr = init_lr + self.warmup_steps = warmup_steps + self.warmup_start_lr = warmup_start_lr if warmup_start_lr >= 0 else init_lr + + def step(self, cur_epoch, cur_step): + total_cur_step = cur_epoch * self.iters_per_epoch + cur_step + if total_cur_step < self.warmup_steps: + warmup_lr_schedule( + step=cur_step, + optimizer=self.optimizer, + max_step=self.warmup_steps, + init_lr=self.warmup_start_lr, + max_lr=self.init_lr, + ) + else: + cosine_lr_schedule( + epoch=total_cur_step, + optimizer=self.optimizer, + max_epoch=self.max_epoch * self.iters_per_epoch, + init_lr=self.init_lr, + min_lr=self.min_lr, + ) + + +def cosine_lr_schedule(optimizer, epoch, max_epoch, init_lr, min_lr): + """Decay the learning rate""" + lr = (init_lr - min_lr) * 0.5 * ( + 1.0 + math.cos(math.pi * epoch / max_epoch) + ) + min_lr + for param_group in optimizer.param_groups: + param_group["lr"] = lr + + +def warmup_lr_schedule(optimizer, step, max_step, init_lr, max_lr): + """Warmup the learning rate""" + lr = min(max_lr, init_lr + (max_lr - init_lr) * step / max(max_step, 1)) + for param_group in optimizer.param_groups: + param_group["lr"] = lr + + +def step_lr_schedule(optimizer, epoch, init_lr, min_lr, decay_rate): + """Decay the learning rate""" + lr = max(min_lr, init_lr * (decay_rate**epoch)) + for param_group in optimizer.param_groups: + param_group["lr"] = lr diff --git a/OPERA/minigpt4/common/registry.py b/OPERA/minigpt4/common/registry.py new file mode 100644 index 0000000000000000000000000000000000000000..ec7f26e263266683b935ffa30637591ad0832430 --- /dev/null +++ b/OPERA/minigpt4/common/registry.py @@ -0,0 +1,329 @@ +""" + Copyright (c) 2022, salesforce.com, inc. + All rights reserved. + SPDX-License-Identifier: BSD-3-Clause + For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause +""" + + +class Registry: + mapping = { + "builder_name_mapping": {}, + "task_name_mapping": {}, + "processor_name_mapping": {}, + "model_name_mapping": {}, + "lr_scheduler_name_mapping": {}, + "runner_name_mapping": {}, + "state": {}, + "paths": {}, + } + + @classmethod + def register_builder(cls, name): + r"""Register a dataset builder to registry with key 'name' + + Args: + name: Key with which the builder will be registered. + + Usage: + + from minigpt4.common.registry import registry + from minigpt4.datasets.base_dataset_builder import BaseDatasetBuilder + """ + + def wrap(builder_cls): + from minigpt4.datasets.builders.base_dataset_builder import BaseDatasetBuilder + + assert issubclass( + builder_cls, BaseDatasetBuilder + ), "All builders must inherit BaseDatasetBuilder class, found {}".format( + builder_cls + ) + if name in cls.mapping["builder_name_mapping"]: + raise KeyError( + "Name '{}' already registered for {}.".format( + name, cls.mapping["builder_name_mapping"][name] + ) + ) + cls.mapping["builder_name_mapping"][name] = builder_cls + return builder_cls + + return wrap + + @classmethod + def register_task(cls, name): + r"""Register a task to registry with key 'name' + + Args: + name: Key with which the task will be registered. + + Usage: + + from minigpt4.common.registry import registry + """ + + def wrap(task_cls): + from minigpt4.tasks.base_task import BaseTask + + assert issubclass( + task_cls, BaseTask + ), "All tasks must inherit BaseTask class" + if name in cls.mapping["task_name_mapping"]: + raise KeyError( + "Name '{}' already registered for {}.".format( + name, cls.mapping["task_name_mapping"][name] + ) + ) + cls.mapping["task_name_mapping"][name] = task_cls + return task_cls + + return wrap + + @classmethod + def register_model(cls, name): + r"""Register a task to registry with key 'name' + + Args: + name: Key with which the task will be registered. + + Usage: + + from minigpt4.common.registry import registry + """ + + def wrap(model_cls): + from minigpt4.models import BaseModel + + assert issubclass( + model_cls, BaseModel + ), "All models must inherit BaseModel class" + if name in cls.mapping["model_name_mapping"]: + raise KeyError( + "Name '{}' already registered for {}.".format( + name, cls.mapping["model_name_mapping"][name] + ) + ) + cls.mapping["model_name_mapping"][name] = model_cls + return model_cls + + return wrap + + @classmethod + def register_processor(cls, name): + r"""Register a processor to registry with key 'name' + + Args: + name: Key with which the task will be registered. + + Usage: + + from minigpt4.common.registry import registry + """ + + def wrap(processor_cls): + from minigpt4.processors import BaseProcessor + + assert issubclass( + processor_cls, BaseProcessor + ), "All processors must inherit BaseProcessor class" + if name in cls.mapping["processor_name_mapping"]: + raise KeyError( + "Name '{}' already registered for {}.".format( + name, cls.mapping["processor_name_mapping"][name] + ) + ) + cls.mapping["processor_name_mapping"][name] = processor_cls + return processor_cls + + return wrap + + @classmethod + def register_lr_scheduler(cls, name): + r"""Register a model to registry with key 'name' + + Args: + name: Key with which the task will be registered. + + Usage: + + from minigpt4.common.registry import registry + """ + + def wrap(lr_sched_cls): + if name in cls.mapping["lr_scheduler_name_mapping"]: + raise KeyError( + "Name '{}' already registered for {}.".format( + name, cls.mapping["lr_scheduler_name_mapping"][name] + ) + ) + cls.mapping["lr_scheduler_name_mapping"][name] = lr_sched_cls + return lr_sched_cls + + return wrap + + @classmethod + def register_runner(cls, name): + r"""Register a model to registry with key 'name' + + Args: + name: Key with which the task will be registered. + + Usage: + + from minigpt4.common.registry import registry + """ + + def wrap(runner_cls): + if name in cls.mapping["runner_name_mapping"]: + raise KeyError( + "Name '{}' already registered for {}.".format( + name, cls.mapping["runner_name_mapping"][name] + ) + ) + cls.mapping["runner_name_mapping"][name] = runner_cls + return runner_cls + + return wrap + + @classmethod + def register_path(cls, name, path): + r"""Register a path to registry with key 'name' + + Args: + name: Key with which the path will be registered. + + Usage: + + from minigpt4.common.registry import registry + """ + assert isinstance(path, str), "All path must be str." + if name in cls.mapping["paths"]: + raise KeyError("Name '{}' already registered.".format(name)) + cls.mapping["paths"][name] = path + + @classmethod + def register(cls, name, obj): + r"""Register an item to registry with key 'name' + + Args: + name: Key with which the item will be registered. + + Usage:: + + from minigpt4.common.registry import registry + + registry.register("config", {}) + """ + path = name.split(".") + current = cls.mapping["state"] + + for part in path[:-1]: + if part not in current: + current[part] = {} + current = current[part] + + current[path[-1]] = obj + + # @classmethod + # def get_trainer_class(cls, name): + # return cls.mapping["trainer_name_mapping"].get(name, None) + + @classmethod + def get_builder_class(cls, name): + return cls.mapping["builder_name_mapping"].get(name, None) + + @classmethod + def get_model_class(cls, name): + return cls.mapping["model_name_mapping"].get(name, None) + + @classmethod + def get_task_class(cls, name): + return cls.mapping["task_name_mapping"].get(name, None) + + @classmethod + def get_processor_class(cls, name): + return cls.mapping["processor_name_mapping"].get(name, None) + + @classmethod + def get_lr_scheduler_class(cls, name): + return cls.mapping["lr_scheduler_name_mapping"].get(name, None) + + @classmethod + def get_runner_class(cls, name): + return cls.mapping["runner_name_mapping"].get(name, None) + + @classmethod + def list_runners(cls): + return sorted(cls.mapping["runner_name_mapping"].keys()) + + @classmethod + def list_models(cls): + return sorted(cls.mapping["model_name_mapping"].keys()) + + @classmethod + def list_tasks(cls): + return sorted(cls.mapping["task_name_mapping"].keys()) + + @classmethod + def list_processors(cls): + return sorted(cls.mapping["processor_name_mapping"].keys()) + + @classmethod + def list_lr_schedulers(cls): + return sorted(cls.mapping["lr_scheduler_name_mapping"].keys()) + + @classmethod + def list_datasets(cls): + return sorted(cls.mapping["builder_name_mapping"].keys()) + + @classmethod + def get_path(cls, name): + return cls.mapping["paths"].get(name, None) + + @classmethod + def get(cls, name, default=None, no_warning=False): + r"""Get an item from registry with key 'name' + + Args: + name (string): Key whose value needs to be retrieved. + default: If passed and key is not in registry, default value will + be returned with a warning. Default: None + no_warning (bool): If passed as True, warning when key doesn't exist + will not be generated. Useful for MMF's + internal operations. Default: False + """ + original_name = name + name = name.split(".") + value = cls.mapping["state"] + for subname in name: + value = value.get(subname, default) + if value is default: + break + + if ( + "writer" in cls.mapping["state"] + and value == default + and no_warning is False + ): + cls.mapping["state"]["writer"].warning( + "Key {} is not present in registry, returning default value " + "of {}".format(original_name, default) + ) + return value + + @classmethod + def unregister(cls, name): + r"""Remove an item from registry with key 'name' + + Args: + name: Key which needs to be removed. + Usage:: + + from mmf.common.registry import registry + + config = registry.unregister("config") + """ + return cls.mapping["state"].pop(name, None) + + +registry = Registry() diff --git a/OPERA/minigpt4/common/utils.py b/OPERA/minigpt4/common/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..74c658b4593a73eaeea72c2a5c4eb5a2d445dd1e --- /dev/null +++ b/OPERA/minigpt4/common/utils.py @@ -0,0 +1,424 @@ +""" + Copyright (c) 2022, salesforce.com, inc. + All rights reserved. + SPDX-License-Identifier: BSD-3-Clause + For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause +""" + +import io +import json +import logging +import os +import pickle +import re +import shutil +import urllib +import urllib.error +import urllib.request +from typing import Optional +from urllib.parse import urlparse + +import numpy as np +import pandas as pd +import yaml +from iopath.common.download import download +from iopath.common.file_io import file_lock, g_pathmgr +from minigpt4.common.registry import registry +from torch.utils.model_zoo import tqdm +from torchvision.datasets.utils import ( + check_integrity, + download_file_from_google_drive, + extract_archive, +) + + +def now(): + from datetime import datetime + + return datetime.now().strftime("%Y%m%d%H%M")[:-1] + + +def is_url(url_or_filename): + parsed = urlparse(url_or_filename) + return parsed.scheme in ("http", "https") + + +def get_cache_path(rel_path): + return os.path.expanduser(os.path.join(registry.get_path("cache_root"), rel_path)) + + +def get_abs_path(rel_path): + return os.path.join(registry.get_path("library_root"), rel_path) + + +def load_json(filename): + with open(filename, "r") as f: + return json.load(f) + + +# The following are adapted from torchvision and vissl +# torchvision: https://github.com/pytorch/vision +# vissl: https://github.com/facebookresearch/vissl/blob/main/vissl/utils/download.py + + +def makedir(dir_path): + """ + Create the directory if it does not exist. + """ + is_success = False + try: + if not g_pathmgr.exists(dir_path): + g_pathmgr.mkdirs(dir_path) + is_success = True + except BaseException: + print(f"Error creating directory: {dir_path}") + return is_success + + +def get_redirected_url(url: str): + """ + Given a URL, returns the URL it redirects to or the + original URL in case of no indirection + """ + import requests + + with requests.Session() as session: + with session.get(url, stream=True, allow_redirects=True) as response: + if response.history: + return response.url + else: + return url + + +def to_google_drive_download_url(view_url: str) -> str: + """ + Utility function to transform a view URL of google drive + to a download URL for google drive + Example input: + https://drive.google.com/file/d/137RyRjvTBkBiIfeYBNZBtViDHQ6_Ewsp/view + Example output: + https://drive.google.com/uc?export=download&id=137RyRjvTBkBiIfeYBNZBtViDHQ6_Ewsp + """ + splits = view_url.split("/") + assert splits[-1] == "view" + file_id = splits[-2] + return f"https://drive.google.com/uc?export=download&id={file_id}" + + +def download_google_drive_url(url: str, output_path: str, output_file_name: str): + """ + Download a file from google drive + Downloading an URL from google drive requires confirmation when + the file of the size is too big (google drive notifies that + anti-viral checks cannot be performed on such files) + """ + import requests + + with requests.Session() as session: + + # First get the confirmation token and append it to the URL + with session.get(url, stream=True, allow_redirects=True) as response: + for k, v in response.cookies.items(): + if k.startswith("download_warning"): + url = url + "&confirm=" + v + + # Then download the content of the file + with session.get(url, stream=True, verify=True) as response: + makedir(output_path) + path = os.path.join(output_path, output_file_name) + total_size = int(response.headers.get("Content-length", 0)) + with open(path, "wb") as file: + from tqdm import tqdm + + with tqdm(total=total_size) as progress_bar: + for block in response.iter_content( + chunk_size=io.DEFAULT_BUFFER_SIZE + ): + file.write(block) + progress_bar.update(len(block)) + + +def _get_google_drive_file_id(url: str) -> Optional[str]: + parts = urlparse(url) + + if re.match(r"(drive|docs)[.]google[.]com", parts.netloc) is None: + return None + + match = re.match(r"/file/d/(?P[^/]*)", parts.path) + if match is None: + return None + + return match.group("id") + + +def _urlretrieve(url: str, filename: str, chunk_size: int = 1024) -> None: + with open(filename, "wb") as fh: + with urllib.request.urlopen( + urllib.request.Request(url, headers={"User-Agent": "vissl"}) + ) as response: + with tqdm(total=response.length) as pbar: + for chunk in iter(lambda: response.read(chunk_size), ""): + if not chunk: + break + pbar.update(chunk_size) + fh.write(chunk) + + +def download_url( + url: str, + root: str, + filename: Optional[str] = None, + md5: Optional[str] = None, +) -> None: + """Download a file from a url and place it in root. + Args: + url (str): URL to download file from + root (str): Directory to place downloaded file in + filename (str, optional): Name to save the file under. + If None, use the basename of the URL. + md5 (str, optional): MD5 checksum of the download. If None, do not check + """ + root = os.path.expanduser(root) + if not filename: + filename = os.path.basename(url) + fpath = os.path.join(root, filename) + + makedir(root) + + # check if file is already present locally + if check_integrity(fpath, md5): + print("Using downloaded and verified file: " + fpath) + return + + # expand redirect chain if needed + url = get_redirected_url(url) + + # check if file is located on Google Drive + file_id = _get_google_drive_file_id(url) + if file_id is not None: + return download_file_from_google_drive(file_id, root, filename, md5) + + # download the file + try: + print("Downloading " + url + " to " + fpath) + _urlretrieve(url, fpath) + except (urllib.error.URLError, IOError) as e: # type: ignore[attr-defined] + if url[:5] == "https": + url = url.replace("https:", "http:") + print( + "Failed download. Trying https -> http instead." + " Downloading " + url + " to " + fpath + ) + _urlretrieve(url, fpath) + else: + raise e + + # check integrity of downloaded file + if not check_integrity(fpath, md5): + raise RuntimeError("File not found or corrupted.") + + +def download_and_extract_archive( + url: str, + download_root: str, + extract_root: Optional[str] = None, + filename: Optional[str] = None, + md5: Optional[str] = None, + remove_finished: bool = False, +) -> None: + download_root = os.path.expanduser(download_root) + if extract_root is None: + extract_root = download_root + if not filename: + filename = os.path.basename(url) + + download_url(url, download_root, filename, md5) + + archive = os.path.join(download_root, filename) + print("Extracting {} to {}".format(archive, extract_root)) + extract_archive(archive, extract_root, remove_finished) + + +def cache_url(url: str, cache_dir: str) -> str: + """ + This implementation downloads the remote resource and caches it locally. + The resource will only be downloaded if not previously requested. + """ + parsed_url = urlparse(url) + dirname = os.path.join(cache_dir, os.path.dirname(parsed_url.path.lstrip("/"))) + makedir(dirname) + filename = url.split("/")[-1] + cached = os.path.join(dirname, filename) + with file_lock(cached): + if not os.path.isfile(cached): + logging.info(f"Downloading {url} to {cached} ...") + cached = download(url, dirname, filename=filename) + logging.info(f"URL {url} cached in {cached}") + return cached + + +# TODO (prigoyal): convert this into RAII-style API +def create_file_symlink(file1, file2): + """ + Simply create the symlinks for a given file1 to file2. + Useful during model checkpointing to symlinks to the + latest successful checkpoint. + """ + try: + if g_pathmgr.exists(file2): + g_pathmgr.rm(file2) + g_pathmgr.symlink(file1, file2) + except Exception as e: + logging.info(f"Could NOT create symlink. Error: {e}") + + +def save_file(data, filename, append_to_json=True, verbose=True): + """ + Common i/o utility to handle saving data to various file formats. + Supported: + .pkl, .pickle, .npy, .json + Specifically for .json, users have the option to either append (default) + or rewrite by passing in Boolean value to append_to_json. + """ + if verbose: + logging.info(f"Saving data to file: {filename}") + file_ext = os.path.splitext(filename)[1] + if file_ext in [".pkl", ".pickle"]: + with g_pathmgr.open(filename, "wb") as fopen: + pickle.dump(data, fopen, pickle.HIGHEST_PROTOCOL) + elif file_ext == ".npy": + with g_pathmgr.open(filename, "wb") as fopen: + np.save(fopen, data) + elif file_ext == ".json": + if append_to_json: + with g_pathmgr.open(filename, "a") as fopen: + fopen.write(json.dumps(data, sort_keys=True) + "\n") + fopen.flush() + else: + with g_pathmgr.open(filename, "w") as fopen: + fopen.write(json.dumps(data, sort_keys=True) + "\n") + fopen.flush() + elif file_ext == ".yaml": + with g_pathmgr.open(filename, "w") as fopen: + dump = yaml.dump(data) + fopen.write(dump) + fopen.flush() + else: + raise Exception(f"Saving {file_ext} is not supported yet") + + if verbose: + logging.info(f"Saved data to file: {filename}") + + +def load_file(filename, mmap_mode=None, verbose=True, allow_pickle=False): + """ + Common i/o utility to handle loading data from various file formats. + Supported: + .pkl, .pickle, .npy, .json + For the npy files, we support reading the files in mmap_mode. + If the mmap_mode of reading is not successful, we load data without the + mmap_mode. + """ + if verbose: + logging.info(f"Loading data from file: {filename}") + + file_ext = os.path.splitext(filename)[1] + if file_ext == ".txt": + with g_pathmgr.open(filename, "r") as fopen: + data = fopen.readlines() + elif file_ext in [".pkl", ".pickle"]: + with g_pathmgr.open(filename, "rb") as fopen: + data = pickle.load(fopen, encoding="latin1") + elif file_ext == ".npy": + if mmap_mode: + try: + with g_pathmgr.open(filename, "rb") as fopen: + data = np.load( + fopen, + allow_pickle=allow_pickle, + encoding="latin1", + mmap_mode=mmap_mode, + ) + except ValueError as e: + logging.info( + f"Could not mmap {filename}: {e}. Trying without g_pathmgr" + ) + data = np.load( + filename, + allow_pickle=allow_pickle, + encoding="latin1", + mmap_mode=mmap_mode, + ) + logging.info("Successfully loaded without g_pathmgr") + except Exception: + logging.info("Could not mmap without g_pathmgr. Trying without mmap") + with g_pathmgr.open(filename, "rb") as fopen: + data = np.load(fopen, allow_pickle=allow_pickle, encoding="latin1") + else: + with g_pathmgr.open(filename, "rb") as fopen: + data = np.load(fopen, allow_pickle=allow_pickle, encoding="latin1") + elif file_ext == ".json": + with g_pathmgr.open(filename, "r") as fopen: + data = json.load(fopen) + elif file_ext == ".yaml": + with g_pathmgr.open(filename, "r") as fopen: + data = yaml.load(fopen, Loader=yaml.FullLoader) + elif file_ext == ".csv": + with g_pathmgr.open(filename, "r") as fopen: + data = pd.read_csv(fopen) + else: + raise Exception(f"Reading from {file_ext} is not supported yet") + return data + + +def abspath(resource_path: str): + """ + Make a path absolute, but take into account prefixes like + "http://" or "manifold://" + """ + regex = re.compile(r"^\w+://") + if regex.match(resource_path) is None: + return os.path.abspath(resource_path) + else: + return resource_path + + +def makedir(dir_path): + """ + Create the directory if it does not exist. + """ + is_success = False + try: + if not g_pathmgr.exists(dir_path): + g_pathmgr.mkdirs(dir_path) + is_success = True + except BaseException: + logging.info(f"Error creating directory: {dir_path}") + return is_success + + +def is_url(input_url): + """ + Check if an input string is a url. look for http(s):// and ignoring the case + """ + is_url = re.match(r"^(?:http)s?://", input_url, re.IGNORECASE) is not None + return is_url + + +def cleanup_dir(dir): + """ + Utility for deleting a directory. Useful for cleaning the storage space + that contains various training artifacts like checkpoints, data etc. + """ + if os.path.exists(dir): + logging.info(f"Deleting directory: {dir}") + shutil.rmtree(dir) + logging.info(f"Deleted contents of directory: {dir}") + + +def get_file_size(filename): + """ + Given a file, get the size of file in MB + """ + size_in_mb = os.path.getsize(filename) / float(1024**2) + return size_in_mb diff --git a/OPERA/minigpt4/configs/datasets/cc_sbu/align.yaml b/OPERA/minigpt4/configs/datasets/cc_sbu/align.yaml new file mode 100644 index 0000000000000000000000000000000000000000..eda44fb162366a526978a9a4aa625d0ce13e0840 --- /dev/null +++ b/OPERA/minigpt4/configs/datasets/cc_sbu/align.yaml @@ -0,0 +1,5 @@ +datasets: + cc_sbu_align: + data_type: images + build_info: + storage: /path/to/cc_sbu_align/ diff --git a/OPERA/minigpt4/configs/datasets/cc_sbu/defaults.yaml b/OPERA/minigpt4/configs/datasets/cc_sbu/defaults.yaml new file mode 100644 index 0000000000000000000000000000000000000000..031a062c75f50ee391ea47041f769919ffc8ec78 --- /dev/null +++ b/OPERA/minigpt4/configs/datasets/cc_sbu/defaults.yaml @@ -0,0 +1,5 @@ +datasets: + cc_sbu: + data_type: images + build_info: + storage: /path/to/cc_sbu_dataset/{00000..01255}.tar diff --git a/OPERA/minigpt4/configs/datasets/laion/defaults.yaml b/OPERA/minigpt4/configs/datasets/laion/defaults.yaml new file mode 100644 index 0000000000000000000000000000000000000000..11cae599ca3e5bc46b46b2619f285205f418ad78 --- /dev/null +++ b/OPERA/minigpt4/configs/datasets/laion/defaults.yaml @@ -0,0 +1,5 @@ +datasets: + laion: + data_type: images + build_info: + storage: /path/to/laion_dataset/{00000..10488}.tar diff --git a/OPERA/minigpt4/configs/default.yaml b/OPERA/minigpt4/configs/default.yaml new file mode 100644 index 0000000000000000000000000000000000000000..e5ae97c99143cd31070dc9a505a65a3a286eae8e --- /dev/null +++ b/OPERA/minigpt4/configs/default.yaml @@ -0,0 +1,5 @@ +env: + # For default users + # cache_root: "cache" + # For internal use with persistent storage + cache_root: "/export/home/.cache/minigpt4" diff --git a/OPERA/minigpt4/configs/models/blip2_instruct_vicuna13b.yaml b/OPERA/minigpt4/configs/models/blip2_instruct_vicuna13b.yaml new file mode 100644 index 0000000000000000000000000000000000000000..efaae3f85c9048dad79a831df3579425d80f1b49 --- /dev/null +++ b/OPERA/minigpt4/configs/models/blip2_instruct_vicuna13b.yaml @@ -0,0 +1,43 @@ + # Copyright (c) 2022, salesforce.com, inc. + # All rights reserved. + # SPDX-License-Identifier: BSD-3-Clause + # For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause + +model: + arch: instruct_vicuna13b + load_finetuned: False + load_pretrained: True + + pretrained: "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/InstructBLIP/instruct_blip_vicuna13b_trimmed.pth" + finetuned: "" + + # vit encoder + image_size: 224 + drop_path_rate: 0 + use_grad_checkpoint: False + vit_precision: "fp16" + freeze_vit: True + + # Q-Former + num_query_token: 32 + + # path to Vicuna checkpoint + llm_model: "/mnt/petrelfs/share_data/wangbin/mllm/minigpt4/vicuna-13b-v1-1" + + # generation configs + prompt: "" + + +preprocess: + vis_processor: + train: + name: "blip2_image_train" + image_size: 224 + eval: + name: "blip_image_eval" + image_size: 224 + text_processor: + train: + name: "blip_caption" + eval: + name: "blip_caption" diff --git a/OPERA/minigpt4/configs/models/blip2_instruct_vicuna7b.yaml b/OPERA/minigpt4/configs/models/blip2_instruct_vicuna7b.yaml new file mode 100644 index 0000000000000000000000000000000000000000..cbc10b5952cbc0e8fedf76edac856dacd821d433 --- /dev/null +++ b/OPERA/minigpt4/configs/models/blip2_instruct_vicuna7b.yaml @@ -0,0 +1,43 @@ + # Copyright (c) 2022, salesforce.com, inc. + # All rights reserved. + # SPDX-License-Identifier: BSD-3-Clause + # For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause + +model: + arch: instruct_vicuna7b + load_finetuned: False + load_pretrained: True + + pretrained: "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/InstructBLIP/instruct_blip_vicuna7b_trimmed.pth" + finetuned: "" + + # vit encoder + image_size: 224 + drop_path_rate: 0 + use_grad_checkpoint: False + vit_precision: "fp16" + freeze_vit: True + + # Q-Former + num_query_token: 32 + + # path to Vicuna checkpoint + llm_model: "/mnt/petrelfs/share_data/wangbin/mllm/minigpt4/vicuna-7b-v1-1" + + # generation configs + prompt: "" + + +preprocess: + vis_processor: + train: + name: "blip2_image_train" + image_size: 224 + eval: + name: "blip_image_eval" + image_size: 224 + text_processor: + train: + name: "blip_caption" + eval: + name: "blip_caption" diff --git a/OPERA/minigpt4/configs/models/llava-1.5_vicuna7b.yaml b/OPERA/minigpt4/configs/models/llava-1.5_vicuna7b.yaml new file mode 100644 index 0000000000000000000000000000000000000000..8a4c06992dd2b4bdc0f3bb59c7f28026058abbcd --- /dev/null +++ b/OPERA/minigpt4/configs/models/llava-1.5_vicuna7b.yaml @@ -0,0 +1,40 @@ +model: + arch: llava-1.5 + version: 'v1.5' + + # vit encoder + cache_dir: None + vit_model: "openai/clip-vit-large-patch14" + freeze_vit: True + + # finetune config + freeze_backbone: False + tune_mm_mlp_adapter: False + freeze_mm_mlp_adapter: False + + # model config + mm_vision_select_layer: -2 + model_max_length: 2048 + + # data process config + image_token_len: 576 + mm_use_im_start_end: True + + # training config + bf16: False + fp16: True + + +preprocess: + vis_processor: + train: + name: "clip_image_train_336" + proc_type: "openai/clip-vit-large-patch14-336" + eval: + name: "clip_image_eval_336" + proc_type: "openai/clip-vit-large-patch14-336" + text_processor: + train: + name: "blip_caption" + eval: + name: "blip_caption" diff --git a/OPERA/minigpt4/configs/models/minigpt4_llama2.yaml b/OPERA/minigpt4/configs/models/minigpt4_llama2.yaml new file mode 100644 index 0000000000000000000000000000000000000000..2e7b1b7ce62bb86c18221bfc1ac32640be8ed919 --- /dev/null +++ b/OPERA/minigpt4/configs/models/minigpt4_llama2.yaml @@ -0,0 +1,29 @@ +model: + arch: mini_gpt4 + + # vit encoder + image_size: 224 + drop_path_rate: 0 + use_grad_checkpoint: False + vit_precision: "fp16" + freeze_vit: True + has_qformer: False + + # generation configs + prompt: "" + + llama_model: "/path/to/llama2/weight" + +preprocess: + vis_processor: + train: + name: "blip2_image_train" + image_size: 224 + eval: + name: "blip2_image_eval" + image_size: 224 + text_processor: + train: + name: "blip_caption" + eval: + name: "blip_caption" diff --git a/OPERA/minigpt4/configs/models/minigpt4_vicuna0.yaml b/OPERA/minigpt4/configs/models/minigpt4_vicuna0.yaml new file mode 100644 index 0000000000000000000000000000000000000000..8b798ed51dbd4c63cf8e1d139e9e03be47f2e4da --- /dev/null +++ b/OPERA/minigpt4/configs/models/minigpt4_vicuna0.yaml @@ -0,0 +1,32 @@ +model: + arch: mini_gpt4 + + # vit encoder + image_size: 224 + drop_path_rate: 0 + use_grad_checkpoint: False + vit_precision: "fp16" + freeze_vit: True + freeze_qformer: True + + # Q-Former + num_query_token: 32 + + # generation configs + prompt: "" + + llama_model: "/mnt/petrelfs/share_data/wangbin/mllm/minigpt4/vicuna-7b-v0" + +preprocess: + vis_processor: + train: + name: "blip2_image_train" + image_size: 224 + eval: + name: "blip2_image_eval" + image_size: 224 + text_processor: + train: + name: "blip_caption" + eval: + name: "blip_caption" diff --git a/OPERA/minigpt4/configs/models/shikra_vicuna7b.yaml b/OPERA/minigpt4/configs/models/shikra_vicuna7b.yaml new file mode 100644 index 0000000000000000000000000000000000000000..095342a0b0c03d6e633b7234071d6ef2408777aa --- /dev/null +++ b/OPERA/minigpt4/configs/models/shikra_vicuna7b.yaml @@ -0,0 +1,40 @@ +model: + arch: shikra + version: 'v1' + + # vit encoder + cache_dir: None + vit_model: "openai/clip-vit-large-patch14" + freeze_vit: True + + # finetune config + freeze_backbone: False + tune_mm_mlp_adapter: False + freeze_mm_mlp_adapter: False + + # model config + mm_vision_select_layer: -2 + model_max_length: 2048 + + # data process config + image_token_len: 256 + mm_use_im_start_end: True + + # training config + bf16: False + fp16: True + + +preprocess: + vis_processor: + train: + name: "clip_image_train" + proc_type: "openai/clip-vit-large-patch14" + eval: + name: "clip_image_eval" + proc_type: "openai/clip-vit-large-patch14" + text_processor: + train: + name: "blip_caption" + eval: + name: "blip_caption" diff --git a/OPERA/minigpt4/conversation/__init__.py b/OPERA/minigpt4/conversation/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/OPERA/minigpt4/conversation/conversation.py b/OPERA/minigpt4/conversation/conversation.py new file mode 100644 index 0000000000000000000000000000000000000000..86846f9e0c38f4536e13d887784fb242fe266f55 --- /dev/null +++ b/OPERA/minigpt4/conversation/conversation.py @@ -0,0 +1,217 @@ +import argparse +import time +from PIL import Image + +import torch +from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaTokenizer +from transformers import StoppingCriteria, StoppingCriteriaList + +import dataclasses +from enum import auto, Enum +from typing import List, Tuple, Any + +from minigpt4.common.registry import registry + + +class SeparatorStyle(Enum): + """Different separator style.""" + SINGLE = auto() + TWO = auto() + + +@dataclasses.dataclass +class Conversation: + """A class that keeps all conversation history.""" + system: str + roles: List[str] + messages: List[List[str]] + offset: int + # system_img: List[Image.Image] = [] + sep_style: SeparatorStyle = SeparatorStyle.SINGLE + sep: str = "###" + sep2: str = None + + skip_next: bool = False + conv_id: Any = None + + def get_prompt(self): + if self.sep_style == SeparatorStyle.SINGLE: + ret = self.system + self.sep + for role, message in self.messages: + if message: + ret += role + message + self.sep + else: + ret += role + return ret + elif self.sep_style == SeparatorStyle.TWO: + seps = [self.sep, self.sep2] + ret = self.system + seps[0] + for i, (role, message) in enumerate(self.messages): + if message: + ret += role + message + seps[i % 2] + else: + ret += role + return ret + else: + raise ValueError(f"Invalid style: {self.sep_style}") + + def append_message(self, role, message): + self.messages.append([role, message]) + + def to_gradio_chatbot(self): + ret = [] + for i, (role, msg) in enumerate(self.messages[self.offset:]): + if i % 2 == 0: + ret.append([msg, None]) + else: + ret[-1][-1] = msg + return ret + + def copy(self): + return Conversation( + system=self.system, + # system_img=self.system_img, + roles=self.roles, + messages=[[x, y] for x, y in self.messages], + offset=self.offset, + sep_style=self.sep_style, + sep=self.sep, + sep2=self.sep2, + conv_id=self.conv_id) + + def dict(self): + return { + "system": self.system, + # "system_img": self.system_img, + "roles": self.roles, + "messages": self.messages, + "offset": self.offset, + "sep": self.sep, + "sep2": self.sep2, + "conv_id": self.conv_id, + } + + +class StoppingCriteriaSub(StoppingCriteria): + + def __init__(self, stops=[], encounters=1): + super().__init__() + self.stops = stops + + def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor): + for stop in self.stops: + if torch.all((stop == input_ids[0][-len(stop):])).item(): + return True + + return False + + +CONV_VISION_Vicuna0 = Conversation( + system="Give the following image: ImageContent. " + "You will be able to see the image once I provide it to you. Please answer my questions.", + roles=("Human: ", "Assistant: "), + messages=[], + offset=2, + sep_style=SeparatorStyle.SINGLE, + sep="###", +) + +CONV_VISION_LLama2 = Conversation( + system="Give the following image: ImageContent. " + "You will be able to see the image once I provide it to you. Please answer my questions.", + roles=("[INST] ", " [/INST] "), + messages=[], + offset=2, + sep_style=SeparatorStyle.SINGLE, + sep="", +) + + + +class Chat: + def __init__(self, model, vis_processor, device='cuda:0'): + self.device = device + self.model = model + self.vis_processor = vis_processor + stop_words_ids = [torch.tensor([835]).to(self.device), + torch.tensor([2277, 29937]).to(self.device)] # '###' can be encoded in two different ways. + self.stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)]) + + def ask(self, text, conv): + if len(conv.messages) > 0 and conv.messages[-1][0] == conv.roles[0] \ + and conv.messages[-1][1][-6:] == '': # last message is image. + conv.messages[-1][1] = ' '.join([conv.messages[-1][1], text]) + else: + conv.append_message(conv.roles[0], text) + + def answer(self, conv, img_list, max_new_tokens=300, num_beams=1, min_length=1, top_p=0.9, + repetition_penalty=1.0, length_penalty=1, temperature=1.0, max_length=2000): + conv.append_message(conv.roles[1], None) + embs = self.get_context_emb(conv, img_list) + + current_max_len = embs.shape[1] + max_new_tokens + if current_max_len - max_length > 0: + print('Warning: The number of tokens in current conversation exceeds the max length. ' + 'The model will not see the contexts outside the range.') + begin_idx = max(0, current_max_len - max_length) + + embs = embs[:, begin_idx:] + + outputs = self.model.llama_model.generate( + inputs_embeds=embs, + max_new_tokens=max_new_tokens, + stopping_criteria=self.stopping_criteria, + num_beams=num_beams, + do_sample=True, + min_length=min_length, + top_p=top_p, + repetition_penalty=repetition_penalty, + length_penalty=length_penalty, + temperature=temperature, + ) + output_token = outputs[0] + if output_token[0] == 0: # the model might output a unknow token at the beginning. remove it + output_token = output_token[1:] + if output_token[0] == 1: # some users find that there is a start token at the beginning. remove it + output_token = output_token[1:] + output_text = self.model.llama_tokenizer.decode(output_token, add_special_tokens=False) + output_text = output_text.split('###')[0] # remove the stop sign '###' + output_text = output_text.split('Assistant:')[-1].strip() + conv.messages[-1][1] = output_text + return output_text, output_token.cpu().numpy() + + def upload_img(self, image, conv, img_list): + if isinstance(image, str): # is a image path + raw_image = Image.open(image).convert('RGB') + image = self.vis_processor(raw_image).unsqueeze(0).to(self.device) + elif isinstance(image, Image.Image): + raw_image = image + image = self.vis_processor(raw_image).unsqueeze(0).to(self.device) + elif isinstance(image, torch.Tensor): + if len(image.shape) == 3: + image = image.unsqueeze(0) + image = image.to(self.device) + + image_emb, _ = self.model.encode_img(image) + img_list.append(image_emb) + conv.append_message(conv.roles[0], "") + msg = "Received." + # self.conv.append_message(self.conv.roles[1], msg) + return msg + + def get_context_emb(self, conv, img_list): + prompt = conv.get_prompt() + prompt_segs = prompt.split('') + assert len(prompt_segs) == len(img_list) + 1, "Unmatched numbers of image placeholders and images." + seg_tokens = [ + self.model.llama_tokenizer( + seg, return_tensors="pt", add_special_tokens=i == 0).to(self.device).input_ids + # only add bos to the first seg + for i, seg in enumerate(prompt_segs) + ] + seg_embs = [self.model.llama_model.model.embed_tokens(seg_t) for seg_t in seg_tokens] + mixed_embs = [emb for pair in zip(seg_embs[:-1], img_list) for emb in pair] + [seg_embs[-1]] + mixed_embs = torch.cat(mixed_embs, dim=1) + return mixed_embs + + diff --git a/OPERA/minigpt4/datasets/__init__.py b/OPERA/minigpt4/datasets/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/OPERA/minigpt4/datasets/builders/__init__.py b/OPERA/minigpt4/datasets/builders/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e58465facd7eea39bf1c4f1421e2fa602ca48e31 --- /dev/null +++ b/OPERA/minigpt4/datasets/builders/__init__.py @@ -0,0 +1,72 @@ +""" + Copyright (c) 2022, salesforce.com, inc. + All rights reserved. + SPDX-License-Identifier: BSD-3-Clause + For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause +""" + +from minigpt4.datasets.builders.base_dataset_builder import load_dataset_config +from minigpt4.datasets.builders.image_text_pair_builder import ( + CCSBUBuilder, + LaionBuilder, + CCSBUAlignBuilder +) +from minigpt4.common.registry import registry + +__all__ = [ + "CCSBUBuilder", + "LaionBuilder", + "CCSBUAlignBuilder" +] + + +def load_dataset(name, cfg_path=None, vis_path=None, data_type=None): + """ + Example + + >>> dataset = load_dataset("coco_caption", cfg=None) + >>> splits = dataset.keys() + >>> print([len(dataset[split]) for split in splits]) + + """ + if cfg_path is None: + cfg = None + else: + cfg = load_dataset_config(cfg_path) + + try: + builder = registry.get_builder_class(name)(cfg) + except TypeError: + print( + f"Dataset {name} not found. Available datasets:\n" + + ", ".join([str(k) for k in dataset_zoo.get_names()]) + ) + exit(1) + + if vis_path is not None: + if data_type is None: + # use default data type in the config + data_type = builder.config.data_type + + assert ( + data_type in builder.config.build_info + ), f"Invalid data_type {data_type} for {name}." + + builder.config.build_info.get(data_type).storage = vis_path + + dataset = builder.build_datasets() + return dataset + + +class DatasetZoo: + def __init__(self) -> None: + self.dataset_zoo = { + k: list(v.DATASET_CONFIG_DICT.keys()) + for k, v in sorted(registry.mapping["builder_name_mapping"].items()) + } + + def get_names(self): + return list(self.dataset_zoo.keys()) + + +dataset_zoo = DatasetZoo() diff --git a/OPERA/minigpt4/datasets/builders/base_dataset_builder.py b/OPERA/minigpt4/datasets/builders/base_dataset_builder.py new file mode 100644 index 0000000000000000000000000000000000000000..9252e6208f6561adf20693d2892f9ed77b6a034f --- /dev/null +++ b/OPERA/minigpt4/datasets/builders/base_dataset_builder.py @@ -0,0 +1,236 @@ +""" + This file is from + Copyright (c) 2022, salesforce.com, inc. + All rights reserved. + SPDX-License-Identifier: BSD-3-Clause + For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause +""" + +import logging +import os +import shutil +import warnings + +from omegaconf import OmegaConf +import torch.distributed as dist +from torchvision.datasets.utils import download_url + +import minigpt4.common.utils as utils +from minigpt4.common.dist_utils import is_dist_avail_and_initialized, is_main_process +from minigpt4.common.registry import registry +from minigpt4.processors.base_processor import BaseProcessor + + + +class BaseDatasetBuilder: + train_dataset_cls, eval_dataset_cls = None, None + + def __init__(self, cfg=None): + super().__init__() + + if cfg is None: + # help to create datasets from default config. + self.config = load_dataset_config(self.default_config_path()) + elif isinstance(cfg, str): + self.config = load_dataset_config(cfg) + else: + # when called from task.build_dataset() + self.config = cfg + + self.data_type = self.config.data_type + + self.vis_processors = {"train": BaseProcessor(), "eval": BaseProcessor()} + self.text_processors = {"train": BaseProcessor(), "eval": BaseProcessor()} + + def build_datasets(self): + # download, split, etc... + # only called on 1 GPU/TPU in distributed + + if is_main_process(): + self._download_data() + + if is_dist_avail_and_initialized(): + dist.barrier() + + # at this point, all the annotations and image/videos should be all downloaded to the specified locations. + logging.info("Building datasets...") + datasets = self.build() # dataset['train'/'val'/'test'] + + return datasets + + def build_processors(self): + vis_proc_cfg = self.config.get("vis_processor") + txt_proc_cfg = self.config.get("text_processor") + + if vis_proc_cfg is not None: + vis_train_cfg = vis_proc_cfg.get("train") + vis_eval_cfg = vis_proc_cfg.get("eval") + + self.vis_processors["train"] = self._build_proc_from_cfg(vis_train_cfg) + self.vis_processors["eval"] = self._build_proc_from_cfg(vis_eval_cfg) + + if txt_proc_cfg is not None: + txt_train_cfg = txt_proc_cfg.get("train") + txt_eval_cfg = txt_proc_cfg.get("eval") + + self.text_processors["train"] = self._build_proc_from_cfg(txt_train_cfg) + self.text_processors["eval"] = self._build_proc_from_cfg(txt_eval_cfg) + + @staticmethod + def _build_proc_from_cfg(cfg): + return ( + registry.get_processor_class(cfg.name).from_config(cfg) + if cfg is not None + else None + ) + + @classmethod + def default_config_path(cls, type="default"): + return utils.get_abs_path(cls.DATASET_CONFIG_DICT[type]) + + def _download_data(self): + self._download_ann() + self._download_vis() + + def _download_ann(self): + """ + Download annotation files if necessary. + All the vision-language datasets should have annotations of unified format. + + storage_path can be: + (1) relative/absolute: will be prefixed with env.cache_root to make full path if relative. + (2) basename/dirname: will be suffixed with base name of URL if dirname is provided. + + Local annotation paths should be relative. + """ + anns = self.config.build_info.annotations + + splits = anns.keys() + + cache_root = registry.get_path("cache_root") + + for split in splits: + info = anns[split] + + urls, storage_paths = info.get("url", None), info.storage + + if isinstance(urls, str): + urls = [urls] + if isinstance(storage_paths, str): + storage_paths = [storage_paths] + + assert len(urls) == len(storage_paths) + + for url_or_filename, storage_path in zip(urls, storage_paths): + # if storage_path is relative, make it full by prefixing with cache_root. + if not os.path.isabs(storage_path): + storage_path = os.path.join(cache_root, storage_path) + + dirname = os.path.dirname(storage_path) + if not os.path.exists(dirname): + os.makedirs(dirname) + + if os.path.isfile(url_or_filename): + src, dst = url_or_filename, storage_path + if not os.path.exists(dst): + shutil.copyfile(src=src, dst=dst) + else: + logging.info("Using existing file {}.".format(dst)) + else: + if os.path.isdir(storage_path): + # if only dirname is provided, suffix with basename of URL. + raise ValueError( + "Expecting storage_path to be a file path, got directory {}".format( + storage_path + ) + ) + else: + filename = os.path.basename(storage_path) + + download_url(url=url_or_filename, root=dirname, filename=filename) + + def _download_vis(self): + + storage_path = self.config.build_info.get(self.data_type).storage + storage_path = utils.get_cache_path(storage_path) + + if not os.path.exists(storage_path): + warnings.warn( + f""" + The specified path {storage_path} for visual inputs does not exist. + Please provide a correct path to the visual inputs or + refer to datasets/download_scripts/README.md for downloading instructions. + """ + ) + + def build(self): + """ + Create by split datasets inheriting torch.utils.data.Datasets. + + # build() can be dataset-specific. Overwrite to customize. + """ + self.build_processors() + + build_info = self.config.build_info + + ann_info = build_info.annotations + vis_info = build_info.get(self.data_type) + + datasets = dict() + for split in ann_info.keys(): + if split not in ["train", "val", "test"]: + continue + + is_train = split == "train" + + # processors + vis_processor = ( + self.vis_processors["train"] + if is_train + else self.vis_processors["eval"] + ) + text_processor = ( + self.text_processors["train"] + if is_train + else self.text_processors["eval"] + ) + + # annotation path + ann_paths = ann_info.get(split).storage + if isinstance(ann_paths, str): + ann_paths = [ann_paths] + + abs_ann_paths = [] + for ann_path in ann_paths: + if not os.path.isabs(ann_path): + ann_path = utils.get_cache_path(ann_path) + abs_ann_paths.append(ann_path) + ann_paths = abs_ann_paths + + # visual data storage path + vis_path = os.path.join(vis_info.storage, split) + + if not os.path.isabs(vis_path): + # vis_path = os.path.join(utils.get_cache_path(), vis_path) + vis_path = utils.get_cache_path(vis_path) + + if not os.path.exists(vis_path): + warnings.warn("storage path {} does not exist.".format(vis_path)) + + # create datasets + dataset_cls = self.train_dataset_cls if is_train else self.eval_dataset_cls + datasets[split] = dataset_cls( + vis_processor=vis_processor, + text_processor=text_processor, + ann_paths=ann_paths, + vis_root=vis_path, + ) + + return datasets + + +def load_dataset_config(cfg_path): + cfg = OmegaConf.load(cfg_path).datasets + cfg = cfg[list(cfg.keys())[0]] + + return cfg diff --git a/OPERA/minigpt4/datasets/builders/image_text_pair_builder.py b/OPERA/minigpt4/datasets/builders/image_text_pair_builder.py new file mode 100644 index 0000000000000000000000000000000000000000..8e9cb42754bad83b9f82862841fa7592d346b1e9 --- /dev/null +++ b/OPERA/minigpt4/datasets/builders/image_text_pair_builder.py @@ -0,0 +1,105 @@ +import os +import logging +import warnings + +from minigpt4.common.registry import registry +from minigpt4.datasets.builders.base_dataset_builder import BaseDatasetBuilder +from minigpt4.datasets.datasets.laion_dataset import LaionDataset +from minigpt4.datasets.datasets.cc_sbu_dataset import CCSBUDataset, CCSBUAlignDataset + + +@registry.register_builder("cc_sbu") +class CCSBUBuilder(BaseDatasetBuilder): + train_dataset_cls = CCSBUDataset + + DATASET_CONFIG_DICT = {"default": "configs/datasets/cc_sbu/defaults.yaml"} + + def _download_ann(self): + pass + + def _download_vis(self): + pass + + def build(self): + self.build_processors() + + build_info = self.config.build_info + + datasets = dict() + split = "train" + + # create datasets + # [NOTE] return inner_datasets (wds.DataPipeline) + dataset_cls = self.train_dataset_cls + datasets[split] = dataset_cls( + vis_processor=self.vis_processors[split], + text_processor=self.text_processors[split], + location=build_info.storage, + ).inner_dataset + + return datasets + + +@registry.register_builder("laion") +class LaionBuilder(BaseDatasetBuilder): + train_dataset_cls = LaionDataset + + DATASET_CONFIG_DICT = {"default": "configs/datasets/laion/defaults.yaml"} + + def _download_ann(self): + pass + + def _download_vis(self): + pass + + def build(self): + self.build_processors() + + build_info = self.config.build_info + + datasets = dict() + split = "train" + + # create datasets + # [NOTE] return inner_datasets (wds.DataPipeline) + dataset_cls = self.train_dataset_cls + datasets[split] = dataset_cls( + vis_processor=self.vis_processors[split], + text_processor=self.text_processors[split], + location=build_info.storage, + ).inner_dataset + + return datasets + + +@registry.register_builder("cc_sbu_align") +class CCSBUAlignBuilder(BaseDatasetBuilder): + train_dataset_cls = CCSBUAlignDataset + + DATASET_CONFIG_DICT = { + "default": "configs/datasets/cc_sbu/align.yaml", + } + + def build_datasets(self): + # at this point, all the annotations and image/videos should be all downloaded to the specified locations. + logging.info("Building datasets...") + self.build_processors() + + build_info = self.config.build_info + storage_path = build_info.storage + + datasets = dict() + + if not os.path.exists(storage_path): + warnings.warn("storage path {} does not exist.".format(storage_path)) + + # create datasets + dataset_cls = self.train_dataset_cls + datasets['train'] = dataset_cls( + vis_processor=self.vis_processors["train"], + text_processor=self.text_processors["train"], + ann_paths=[os.path.join(storage_path, 'filter_cap.json')], + vis_root=os.path.join(storage_path, 'image'), + ) + + return datasets diff --git a/OPERA/minigpt4/datasets/data_utils.py b/OPERA/minigpt4/datasets/data_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..324c56f812dcd234d1db4e1f613cab8adb85fed5 --- /dev/null +++ b/OPERA/minigpt4/datasets/data_utils.py @@ -0,0 +1,196 @@ +""" + Copyright (c) 2022, salesforce.com, inc. + All rights reserved. + SPDX-License-Identifier: BSD-3-Clause + For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause +""" + +import gzip +import logging +import os +import random as rnd +import tarfile +import zipfile +import random +from typing import List +from tqdm import tqdm + +import decord +from decord import VideoReader +import webdataset as wds +import numpy as np +import torch +from torch.utils.data.dataset import IterableDataset + +from minigpt4.common.registry import registry +from minigpt4.datasets.datasets.base_dataset import ConcatDataset + + +decord.bridge.set_bridge("torch") +MAX_INT = registry.get("MAX_INT") + + +class ChainDataset(wds.DataPipeline): + r"""Dataset for chaining multiple :class:`DataPipeline` s. + + This class is useful to assemble different existing dataset streams. The + chaining operation is done on-the-fly, so concatenating large-scale + datasets with this class will be efficient. + + Args: + datasets (iterable of IterableDataset): datasets to be chained together + """ + def __init__(self, datasets: List[wds.DataPipeline]) -> None: + super().__init__() + self.datasets = datasets + self.prob = [] + self.names = [] + for dataset in self.datasets: + if hasattr(dataset, 'name'): + self.names.append(dataset.name) + else: + self.names.append('Unknown') + if hasattr(dataset, 'sample_ratio'): + self.prob.append(dataset.sample_ratio) + else: + self.prob.append(1) + logging.info("One of the datapipeline doesn't define ratio and set to 1 automatically.") + + def __iter__(self): + datastreams = [iter(dataset) for dataset in self.datasets] + while True: + select_datastream = random.choices(datastreams, weights=self.prob, k=1)[0] + yield next(select_datastream) + + +def apply_to_sample(f, sample): + if len(sample) == 0: + return {} + + def _apply(x): + if torch.is_tensor(x): + return f(x) + elif isinstance(x, dict): + return {key: _apply(value) for key, value in x.items()} + elif isinstance(x, list): + return [_apply(x) for x in x] + else: + return x + + return _apply(sample) + + +def move_to_cuda(sample): + def _move_to_cuda(tensor): + return tensor.cuda() + + return apply_to_sample(_move_to_cuda, sample) + + +def prepare_sample(samples, cuda_enabled=True): + if cuda_enabled: + samples = move_to_cuda(samples) + + # TODO fp16 support + + return samples + + +def reorg_datasets_by_split(datasets): + """ + Organizes datasets by split. + + Args: + datasets: dict of torch.utils.data.Dataset objects by name. + + Returns: + Dict of datasets by split {split_name: List[Datasets]}. + """ + # if len(datasets) == 1: + # return datasets[list(datasets.keys())[0]] + # else: + reorg_datasets = dict() + + # reorganize by split + for _, dataset in datasets.items(): + for split_name, dataset_split in dataset.items(): + if split_name not in reorg_datasets: + reorg_datasets[split_name] = [dataset_split] + else: + reorg_datasets[split_name].append(dataset_split) + + return reorg_datasets + + +def concat_datasets(datasets): + """ + Concatenates multiple datasets into a single dataset. + + It supports may-style datasets and DataPipeline from WebDataset. Currently, does not support + generic IterableDataset because it requires creating separate samplers. + + Now only supports conctenating training datasets and assuming validation and testing + have only a single dataset. This is because metrics should not be computed on the concatenated + datasets. + + Args: + datasets: dict of torch.utils.data.Dataset objects by split. + + Returns: + Dict of concatenated datasets by split, "train" is the concatenation of multiple datasets, + "val" and "test" remain the same. + + If the input training datasets contain both map-style and DataPipeline datasets, returns + a tuple, where the first element is a concatenated map-style dataset and the second + element is a chained DataPipeline dataset. + + """ + # concatenate datasets in the same split + for split_name in datasets: + if split_name != "train": + assert ( + len(datasets[split_name]) == 1 + ), "Do not support multiple {} datasets.".format(split_name) + datasets[split_name] = datasets[split_name][0] + else: + iterable_datasets, map_datasets = [], [] + for dataset in datasets[split_name]: + if isinstance(dataset, wds.DataPipeline): + logging.info( + "Dataset {} is IterableDataset, can't be concatenated.".format( + dataset + ) + ) + iterable_datasets.append(dataset) + elif isinstance(dataset, IterableDataset): + raise NotImplementedError( + "Do not support concatenation of generic IterableDataset." + ) + else: + map_datasets.append(dataset) + + # if len(iterable_datasets) > 0: + # concatenate map-style datasets and iterable-style datasets separately + if len(iterable_datasets) > 1: + chained_datasets = ( + ChainDataset(iterable_datasets) + ) + elif len(iterable_datasets) == 1: + chained_datasets = iterable_datasets[0] + else: + chained_datasets = None + + concat_datasets = ( + ConcatDataset(map_datasets) if len(map_datasets) > 0 else None + ) + + train_datasets = concat_datasets, chained_datasets + train_datasets = tuple([x for x in train_datasets if x is not None]) + train_datasets = ( + train_datasets[0] if len(train_datasets) == 1 else train_datasets + ) + + datasets[split_name] = train_datasets + + return datasets + diff --git a/OPERA/minigpt4/datasets/datasets/__init__.py b/OPERA/minigpt4/datasets/datasets/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/OPERA/minigpt4/datasets/datasets/base_dataset.py b/OPERA/minigpt4/datasets/datasets/base_dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..959484ea088ce98add4b74a9f6f4722b5366821c --- /dev/null +++ b/OPERA/minigpt4/datasets/datasets/base_dataset.py @@ -0,0 +1,68 @@ +""" + Copyright (c) 2022, salesforce.com, inc. + All rights reserved. + SPDX-License-Identifier: BSD-3-Clause + For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause +""" + +import json +from typing import Iterable + +from torch.utils.data import Dataset, ConcatDataset +from torch.utils.data.dataloader import default_collate + + +class BaseDataset(Dataset): + def __init__( + self, vis_processor=None, text_processor=None, vis_root=None, ann_paths=[] + ): + """ + vis_root (string): Root directory of images (e.g. coco/images/) + ann_root (string): directory to store the annotation file + """ + self.vis_root = vis_root + + self.annotation = [] + for ann_path in ann_paths: + self.annotation.extend(json.load(open(ann_path, "r"))['annotations']) + + self.vis_processor = vis_processor + self.text_processor = text_processor + + self._add_instance_ids() + + def __len__(self): + return len(self.annotation) + + def collater(self, samples): + return default_collate(samples) + + def set_processors(self, vis_processor, text_processor): + self.vis_processor = vis_processor + self.text_processor = text_processor + + def _add_instance_ids(self, key="instance_id"): + for idx, ann in enumerate(self.annotation): + ann[key] = str(idx) + + +class ConcatDataset(ConcatDataset): + def __init__(self, datasets: Iterable[Dataset]) -> None: + super().__init__(datasets) + + def collater(self, samples): + # TODO For now only supports datasets with same underlying collater implementations + + all_keys = set() + for s in samples: + all_keys.update(s) + + shared_keys = all_keys + for s in samples: + shared_keys = shared_keys & set(s.keys()) + + samples_shared_keys = [] + for s in samples: + samples_shared_keys.append({k: s[k] for k in s.keys() if k in shared_keys}) + + return self.datasets[0].collater(samples_shared_keys) diff --git a/OPERA/minigpt4/datasets/datasets/caption_datasets.py b/OPERA/minigpt4/datasets/datasets/caption_datasets.py new file mode 100644 index 0000000000000000000000000000000000000000..a3954133815381c60a08845909e2aa0bfd5d0a8a --- /dev/null +++ b/OPERA/minigpt4/datasets/datasets/caption_datasets.py @@ -0,0 +1,85 @@ +""" + Copyright (c) 2022, salesforce.com, inc. + All rights reserved. + SPDX-License-Identifier: BSD-3-Clause + For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause +""" + +import os +from collections import OrderedDict + +from minigpt4.datasets.datasets.base_dataset import BaseDataset +from PIL import Image + + +class __DisplMixin: + def displ_item(self, index): + sample, ann = self.__getitem__(index), self.annotation[index] + + return OrderedDict( + { + "file": ann["image"], + "caption": ann["caption"], + "image": sample["image"], + } + ) + + +class CaptionDataset(BaseDataset, __DisplMixin): + def __init__(self, vis_processor, text_processor, vis_root, ann_paths): + """ + vis_root (string): Root directory of images (e.g. coco/images/) + ann_root (string): directory to store the annotation file + """ + super().__init__(vis_processor, text_processor, vis_root, ann_paths) + + self.img_ids = {} + n = 0 + for ann in self.annotation: + img_id = ann["image_id"] + if img_id not in self.img_ids.keys(): + self.img_ids[img_id] = n + n += 1 + + def __getitem__(self, index): + + # TODO this assumes image input, not general enough + ann = self.annotation[index] + + img_file = '{:0>12}.jpg'.format(ann["image_id"]) + image_path = os.path.join(self.vis_root, img_file) + image = Image.open(image_path).convert("RGB") + + image = self.vis_processor(image) + caption = self.text_processor(ann["caption"]) + + return { + "image": image, + "text_input": caption, + "image_id": self.img_ids[ann["image_id"]], + } + + +class CaptionEvalDataset(BaseDataset, __DisplMixin): + def __init__(self, vis_processor, text_processor, vis_root, ann_paths): + """ + vis_root (string): Root directory of images (e.g. coco/images/) + ann_root (string): directory to store the annotation file + split (string): val or test + """ + super().__init__(vis_processor, text_processor, vis_root, ann_paths) + + def __getitem__(self, index): + + ann = self.annotation[index] + + image_path = os.path.join(self.vis_root, ann["image"]) + image = Image.open(image_path).convert("RGB") + + image = self.vis_processor(image) + + return { + "image": image, + "image_id": ann["image_id"], + "instance_id": ann["instance_id"], + } diff --git a/OPERA/minigpt4/datasets/datasets/cc_sbu_dataset.py b/OPERA/minigpt4/datasets/datasets/cc_sbu_dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..dcb74e6c833288af520ba662dc3b3b92a5dc0ddc --- /dev/null +++ b/OPERA/minigpt4/datasets/datasets/cc_sbu_dataset.py @@ -0,0 +1,47 @@ +import os +from PIL import Image +import webdataset as wds +from minigpt4.datasets.datasets.base_dataset import BaseDataset +from minigpt4.datasets.datasets.caption_datasets import CaptionDataset + + +class CCSBUDataset(BaseDataset): + def __init__(self, vis_processor, text_processor, location): + super().__init__(vis_processor=vis_processor, text_processor=text_processor) + + self.inner_dataset = wds.DataPipeline( + wds.ResampledShards(location), + wds.tarfile_to_samples(handler=wds.warn_and_continue), + wds.shuffle(1000, handler=wds.warn_and_continue), + wds.decode("pilrgb", handler=wds.warn_and_continue), + wds.to_tuple("jpg", "json", handler=wds.warn_and_continue), + wds.map_tuple(self.vis_processor, handler=wds.warn_and_continue), + wds.map(self.to_dict, handler=wds.warn_and_continue), + ) + + def to_dict(self, sample): + return { + "image": sample[0], + "answer": self.text_processor(sample[1]["caption"]), + } + + +class CCSBUAlignDataset(CaptionDataset): + + def __getitem__(self, index): + + # TODO this assumes image input, not general enough + ann = self.annotation[index] + + img_file = '{}.jpg'.format(ann["image_id"]) + image_path = os.path.join(self.vis_root, img_file) + image = Image.open(image_path).convert("RGB") + + image = self.vis_processor(image) + caption = ann["caption"] + + return { + "image": image, + "answer": caption, + "image_id": self.img_ids[ann["image_id"]], + } \ No newline at end of file diff --git a/OPERA/minigpt4/datasets/datasets/dataloader_utils.py b/OPERA/minigpt4/datasets/datasets/dataloader_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..f373c734f08f8b797ba8985b5da931efb27e5883 --- /dev/null +++ b/OPERA/minigpt4/datasets/datasets/dataloader_utils.py @@ -0,0 +1,162 @@ +""" + Copyright (c) 2022, salesforce.com, inc. + All rights reserved. + SPDX-License-Identifier: BSD-3-Clause + For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause +""" + +import time +import random +import torch +from minigpt4.datasets.data_utils import move_to_cuda +from torch.utils.data import DataLoader + + +class MultiIterLoader: + """ + A simple wrapper for iterating over multiple iterators. + + Args: + loaders (List[Loader]): List of Iterator loaders. + ratios (List[float]): List of ratios to sample from each loader. If None, all loaders are sampled uniformly. + """ + + def __init__(self, loaders, ratios=None): + # assert all loaders has __next__ method + for loader in loaders: + assert hasattr( + loader, "__next__" + ), "Loader {} has no __next__ method.".format(loader) + + if ratios is None: + ratios = [1.0] * len(loaders) + else: + assert len(ratios) == len(loaders) + ratios = [float(ratio) / sum(ratios) for ratio in ratios] + + self.loaders = loaders + self.ratios = ratios + + def __next__(self): + # random sample from each loader by ratio + loader_idx = random.choices(range(len(self.loaders)), self.ratios, k=1)[0] + return next(self.loaders[loader_idx]) + + +class PrefetchLoader(object): + """ + Modified from https://github.com/ChenRocks/UNITER. + + overlap compute and cuda data transfer + (copied and then modified from nvidia apex) + """ + + def __init__(self, loader): + self.loader = loader + self.stream = torch.cuda.Stream() + + def __iter__(self): + loader_it = iter(self.loader) + self.preload(loader_it) + batch = self.next(loader_it) + while batch is not None: + is_tuple = isinstance(batch, tuple) + if is_tuple: + task, batch = batch + + if is_tuple: + yield task, batch + else: + yield batch + batch = self.next(loader_it) + + def __len__(self): + return len(self.loader) + + def preload(self, it): + try: + self.batch = next(it) + except StopIteration: + self.batch = None + return + # if record_stream() doesn't work, another option is to make sure + # device inputs are created on the main stream. + # self.next_input_gpu = torch.empty_like(self.next_input, + # device='cuda') + # self.next_target_gpu = torch.empty_like(self.next_target, + # device='cuda') + # Need to make sure the memory allocated for next_* is not still in use + # by the main stream at the time we start copying to next_*: + # self.stream.wait_stream(torch.cuda.current_stream()) + with torch.cuda.stream(self.stream): + self.batch = move_to_cuda(self.batch) + # more code for the alternative if record_stream() doesn't work: + # copy_ will record the use of the pinned source tensor in this + # side stream. + # self.next_input_gpu.copy_(self.next_input, non_blocking=True) + # self.next_target_gpu.copy_(self.next_target, non_blocking=True) + # self.next_input = self.next_input_gpu + # self.next_target = self.next_target_gpu + + def next(self, it): + torch.cuda.current_stream().wait_stream(self.stream) + batch = self.batch + if batch is not None: + record_cuda_stream(batch) + self.preload(it) + return batch + + def __getattr__(self, name): + method = self.loader.__getattribute__(name) + return method + + +def record_cuda_stream(batch): + if isinstance(batch, torch.Tensor): + batch.record_stream(torch.cuda.current_stream()) + elif isinstance(batch, list) or isinstance(batch, tuple): + for t in batch: + record_cuda_stream(t) + elif isinstance(batch, dict): + for t in batch.values(): + record_cuda_stream(t) + else: + pass + + +class IterLoader: + """ + A wrapper to convert DataLoader as an infinite iterator. + + Modified from: + https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/iter_based_runner.py + """ + + def __init__(self, dataloader: DataLoader, use_distributed: bool = False): + self._dataloader = dataloader + self.iter_loader = iter(self._dataloader) + self._use_distributed = use_distributed + self._epoch = 0 + + @property + def epoch(self) -> int: + return self._epoch + + def __next__(self): + try: + data = next(self.iter_loader) + except StopIteration: + self._epoch += 1 + if hasattr(self._dataloader.sampler, "set_epoch") and self._use_distributed: + self._dataloader.sampler.set_epoch(self._epoch) + time.sleep(2) # Prevent possible deadlock during epoch transition + self.iter_loader = iter(self._dataloader) + data = next(self.iter_loader) + + return data + + def __iter__(self): + return self + + def __len__(self): + return len(self._dataloader) diff --git a/OPERA/minigpt4/datasets/datasets/laion_dataset.py b/OPERA/minigpt4/datasets/datasets/laion_dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..c480dcfc3b93ca70677a319467171a08557c2e30 --- /dev/null +++ b/OPERA/minigpt4/datasets/datasets/laion_dataset.py @@ -0,0 +1,31 @@ +""" + Copyright (c) 2022, salesforce.com, inc. + All rights reserved. + SPDX-License-Identifier: BSD-3-Clause + For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause +""" + +import webdataset as wds +from minigpt4.datasets.datasets.base_dataset import BaseDataset + + +class LaionDataset(BaseDataset): + def __init__(self, vis_processor, text_processor, location): + super().__init__(vis_processor=vis_processor, text_processor=text_processor) + + self.inner_dataset = wds.DataPipeline( + wds.ResampledShards(location), + wds.tarfile_to_samples(handler=wds.warn_and_continue), + wds.shuffle(1000, handler=wds.warn_and_continue), + wds.decode("pilrgb", handler=wds.warn_and_continue), + wds.to_tuple("jpg", "json", handler=wds.warn_and_continue), + wds.map_tuple(self.vis_processor, handler=wds.warn_and_continue), + wds.map(self.to_dict, handler=wds.warn_and_continue), + ) + + def to_dict(self, sample): + return { + "image": sample[0], + "answer": self.text_processor(sample[1]["caption"]), + } + diff --git a/OPERA/minigpt4/models/Qformer.py b/OPERA/minigpt4/models/Qformer.py new file mode 100644 index 0000000000000000000000000000000000000000..827f5d38034620b9b75390a66f70280ba5f254ed --- /dev/null +++ b/OPERA/minigpt4/models/Qformer.py @@ -0,0 +1,1216 @@ +""" + * Copyright (c) 2023, salesforce.com, inc. + * All rights reserved. + * SPDX-License-Identifier: BSD-3-Clause + * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause + * By Junnan Li + * Based on huggingface code base + * https://github.com/huggingface/transformers/blob/v4.15.0/src/transformers/models/bert +""" + +import math +import os +import warnings +from dataclasses import dataclass +from typing import Optional, Tuple, Dict, Any + +import torch +from torch import Tensor, device, dtype, nn +import torch.utils.checkpoint +from torch import nn +from torch.nn import CrossEntropyLoss +import torch.nn.functional as F + +from transformers.activations import ACT2FN +from transformers.file_utils import ( + ModelOutput, +) +from transformers.modeling_outputs import ( + BaseModelOutputWithPastAndCrossAttentions, + BaseModelOutputWithPoolingAndCrossAttentions, + CausalLMOutputWithCrossAttentions, + MaskedLMOutput, + MultipleChoiceModelOutput, + NextSentencePredictorOutput, + QuestionAnsweringModelOutput, + SequenceClassifierOutput, + TokenClassifierOutput, +) +from transformers.modeling_utils import ( + PreTrainedModel, + apply_chunking_to_forward, + find_pruneable_heads_and_indices, + prune_linear_layer, +) +from transformers.utils import logging +from transformers.models.bert.configuration_bert import BertConfig + +logger = logging.get_logger(__name__) + + +class BertEmbeddings(nn.Module): + """Construct the embeddings from word and position embeddings.""" + + def __init__(self, config): + super().__init__() + self.word_embeddings = nn.Embedding( + config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id + ) + self.position_embeddings = nn.Embedding( + config.max_position_embeddings, config.hidden_size + ) + + # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load + # any TensorFlow checkpoint file + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + # position_ids (1, len position emb) is contiguous in memory and exported when serialized + self.register_buffer( + "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)) + ) + self.position_embedding_type = getattr( + config, "position_embedding_type", "absolute" + ) + + self.config = config + + def forward( + self, + input_ids=None, + position_ids=None, + query_embeds=None, + past_key_values_length=0, + ): + if input_ids is not None: + seq_length = input_ids.size()[1] + else: + seq_length = 0 + + if position_ids is None: + position_ids = self.position_ids[ + :, past_key_values_length : seq_length + past_key_values_length + ].clone() + + if input_ids is not None: + embeddings = self.word_embeddings(input_ids) + if self.position_embedding_type == "absolute": + position_embeddings = self.position_embeddings(position_ids) + embeddings = embeddings + position_embeddings + + if query_embeds is not None: + embeddings = torch.cat((query_embeds, embeddings), dim=1) + else: + embeddings = query_embeds + + embeddings = self.LayerNorm(embeddings) + embeddings = self.dropout(embeddings) + return embeddings + + +class BertSelfAttention(nn.Module): + def __init__(self, config, is_cross_attention): + super().__init__() + self.config = config + if config.hidden_size % config.num_attention_heads != 0 and not hasattr( + config, "embedding_size" + ): + raise ValueError( + "The hidden size (%d) is not a multiple of the number of attention " + "heads (%d)" % (config.hidden_size, config.num_attention_heads) + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.hidden_size, self.all_head_size) + if is_cross_attention: + self.key = nn.Linear(config.encoder_width, self.all_head_size) + self.value = nn.Linear(config.encoder_width, self.all_head_size) + else: + self.key = nn.Linear(config.hidden_size, self.all_head_size) + self.value = nn.Linear(config.hidden_size, self.all_head_size) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + self.position_embedding_type = getattr( + config, "position_embedding_type", "absolute" + ) + if ( + self.position_embedding_type == "relative_key" + or self.position_embedding_type == "relative_key_query" + ): + self.max_position_embeddings = config.max_position_embeddings + self.distance_embedding = nn.Embedding( + 2 * config.max_position_embeddings - 1, self.attention_head_size + ) + self.save_attention = False + + def save_attn_gradients(self, attn_gradients): + self.attn_gradients = attn_gradients + + def get_attn_gradients(self): + return self.attn_gradients + + def save_attention_map(self, attention_map): + self.attention_map = attention_map + + def get_attention_map(self): + return self.attention_map + + def transpose_for_scores(self, x): + new_x_shape = x.size()[:-1] + ( + self.num_attention_heads, + self.attention_head_size, + ) + x = x.view(*new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_value=None, + output_attentions=False, + ): + + # If this is instantiated as a cross-attention module, the keys + # and values come from an encoder; the attention mask needs to be + # such that the encoder's padding tokens are not attended to. + is_cross_attention = encoder_hidden_states is not None + + if is_cross_attention: + key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) + value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) + attention_mask = encoder_attention_mask + elif past_key_value is not None: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + key_layer = torch.cat([past_key_value[0], key_layer], dim=2) + value_layer = torch.cat([past_key_value[1], value_layer], dim=2) + else: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + + mixed_query_layer = self.query(hidden_states) + + query_layer = self.transpose_for_scores(mixed_query_layer) + + past_key_value = (key_layer, value_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + + if ( + self.position_embedding_type == "relative_key" + or self.position_embedding_type == "relative_key_query" + ): + seq_length = hidden_states.size()[1] + position_ids_l = torch.arange( + seq_length, dtype=torch.long, device=hidden_states.device + ).view(-1, 1) + position_ids_r = torch.arange( + seq_length, dtype=torch.long, device=hidden_states.device + ).view(1, -1) + distance = position_ids_l - position_ids_r + positional_embedding = self.distance_embedding( + distance + self.max_position_embeddings - 1 + ) + positional_embedding = positional_embedding.to( + dtype=query_layer.dtype + ) # fp16 compatibility + + if self.position_embedding_type == "relative_key": + relative_position_scores = torch.einsum( + "bhld,lrd->bhlr", query_layer, positional_embedding + ) + attention_scores = attention_scores + relative_position_scores + elif self.position_embedding_type == "relative_key_query": + relative_position_scores_query = torch.einsum( + "bhld,lrd->bhlr", query_layer, positional_embedding + ) + relative_position_scores_key = torch.einsum( + "bhrd,lrd->bhlr", key_layer, positional_embedding + ) + attention_scores = ( + attention_scores + + relative_position_scores_query + + relative_position_scores_key + ) + + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in BertModel forward() function) + attention_scores = attention_scores + attention_mask + + # Normalize the attention scores to probabilities. + attention_probs = nn.Softmax(dim=-1)(attention_scores) + + if is_cross_attention and self.save_attention: + self.save_attention_map(attention_probs) + attention_probs.register_hook(self.save_attn_gradients) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs_dropped = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs_dropped = attention_probs_dropped * head_mask + + context_layer = torch.matmul(attention_probs_dropped, value_layer) + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(*new_context_layer_shape) + + outputs = ( + (context_layer, attention_probs) if output_attentions else (context_layer,) + ) + + outputs = outputs + (past_key_value,) + return outputs + + +class BertSelfOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states, input_tensor): + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +class BertAttention(nn.Module): + def __init__(self, config, is_cross_attention=False): + super().__init__() + self.self = BertSelfAttention(config, is_cross_attention) + self.output = BertSelfOutput(config) + self.pruned_heads = set() + + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, + self.self.num_attention_heads, + self.self.attention_head_size, + self.pruned_heads, + ) + + # Prune linear layers + self.self.query = prune_linear_layer(self.self.query, index) + self.self.key = prune_linear_layer(self.self.key, index) + self.self.value = prune_linear_layer(self.self.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.self.num_attention_heads = self.self.num_attention_heads - len(heads) + self.self.all_head_size = ( + self.self.attention_head_size * self.self.num_attention_heads + ) + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_value=None, + output_attentions=False, + ): + self_outputs = self.self( + hidden_states, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + attention_output = self.output(self_outputs[0], hidden_states) + + outputs = (attention_output,) + self_outputs[ + 1: + ] # add attentions if we output them + return outputs + + +class BertIntermediate(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states): + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + return hidden_states + + +class BertOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states, input_tensor): + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +class BertLayer(nn.Module): + def __init__(self, config, layer_num): + super().__init__() + self.config = config + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.attention = BertAttention(config) + self.layer_num = layer_num + if ( + self.config.add_cross_attention + and layer_num % self.config.cross_attention_freq == 0 + ): + self.crossattention = BertAttention( + config, is_cross_attention=self.config.add_cross_attention + ) + self.has_cross_attention = True + else: + self.has_cross_attention = False + self.intermediate = BertIntermediate(config) + self.output = BertOutput(config) + + self.intermediate_query = BertIntermediate(config) + self.output_query = BertOutput(config) + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_value=None, + output_attentions=False, + query_length=0, + ): + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = ( + past_key_value[:2] if past_key_value is not None else None + ) + self_attention_outputs = self.attention( + hidden_states, + attention_mask, + head_mask, + output_attentions=output_attentions, + past_key_value=self_attn_past_key_value, + ) + attention_output = self_attention_outputs[0] + outputs = self_attention_outputs[1:-1] + + present_key_value = self_attention_outputs[-1] + + if query_length > 0: + query_attention_output = attention_output[:, :query_length, :] + + if self.has_cross_attention: + assert ( + encoder_hidden_states is not None + ), "encoder_hidden_states must be given for cross-attention layers" + cross_attention_outputs = self.crossattention( + query_attention_output, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + output_attentions=output_attentions, + ) + query_attention_output = cross_attention_outputs[0] + outputs = ( + outputs + cross_attention_outputs[1:-1] + ) # add cross attentions if we output attention weights + + layer_output = apply_chunking_to_forward( + self.feed_forward_chunk_query, + self.chunk_size_feed_forward, + self.seq_len_dim, + query_attention_output, + ) + if attention_output.shape[1] > query_length: + layer_output_text = apply_chunking_to_forward( + self.feed_forward_chunk, + self.chunk_size_feed_forward, + self.seq_len_dim, + attention_output[:, query_length:, :], + ) + layer_output = torch.cat([layer_output, layer_output_text], dim=1) + else: + layer_output = apply_chunking_to_forward( + self.feed_forward_chunk, + self.chunk_size_feed_forward, + self.seq_len_dim, + attention_output, + ) + outputs = (layer_output,) + outputs + + outputs = outputs + (present_key_value,) + + return outputs + + def feed_forward_chunk(self, attention_output): + intermediate_output = self.intermediate(attention_output) + layer_output = self.output(intermediate_output, attention_output) + return layer_output + + def feed_forward_chunk_query(self, attention_output): + intermediate_output = self.intermediate_query(attention_output) + layer_output = self.output_query(intermediate_output, attention_output) + return layer_output + + +class BertEncoder(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.layer = nn.ModuleList( + [BertLayer(config, i) for i in range(config.num_hidden_layers)] + ) + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_values=None, + use_cache=None, + output_attentions=False, + output_hidden_states=False, + return_dict=True, + query_length=0, + ): + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + all_cross_attentions = ( + () if output_attentions and self.config.add_cross_attention else None + ) + + next_decoder_cache = () if use_cache else None + + for i in range(self.config.num_hidden_layers): + layer_module = self.layer[i] + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + past_key_value = past_key_values[i] if past_key_values is not None else None + + if getattr(self.config, "gradient_checkpointing", False) and self.training: + + if use_cache: + logger.warn( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + def create_custom_forward(module): + def custom_forward(*inputs): + return module( + *inputs, past_key_value, output_attentions, query_length + ) + + return custom_forward + + layer_outputs = torch.utils.checkpoint.checkpoint( + create_custom_forward(layer_module), + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + ) + else: + layer_outputs = layer_module( + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + query_length, + ) + + hidden_states = layer_outputs[0] + if use_cache: + next_decoder_cache += (layer_outputs[-1],) + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + all_cross_attentions = all_cross_attentions + (layer_outputs[2],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple( + v + for v in [ + hidden_states, + next_decoder_cache, + all_hidden_states, + all_self_attentions, + all_cross_attentions, + ] + if v is not None + ) + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_decoder_cache, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + cross_attentions=all_cross_attentions, + ) + + +class BertPooler(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.activation = nn.Tanh() + + def forward(self, hidden_states): + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(first_token_tensor) + pooled_output = self.activation(pooled_output) + return pooled_output + + +class BertPredictionHeadTransform(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + if isinstance(config.hidden_act, str): + self.transform_act_fn = ACT2FN[config.hidden_act] + else: + self.transform_act_fn = config.hidden_act + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + def forward(self, hidden_states): + hidden_states = self.dense(hidden_states) + hidden_states = self.transform_act_fn(hidden_states) + hidden_states = self.LayerNorm(hidden_states) + return hidden_states + + +class BertLMPredictionHead(nn.Module): + def __init__(self, config): + super().__init__() + self.transform = BertPredictionHeadTransform(config) + + # The output weights are the same as the input embeddings, but there is + # an output-only bias for each token. + self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + self.bias = nn.Parameter(torch.zeros(config.vocab_size)) + + # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` + self.decoder.bias = self.bias + + def forward(self, hidden_states): + hidden_states = self.transform(hidden_states) + hidden_states = self.decoder(hidden_states) + return hidden_states + + +class BertOnlyMLMHead(nn.Module): + def __init__(self, config): + super().__init__() + self.predictions = BertLMPredictionHead(config) + + def forward(self, sequence_output): + prediction_scores = self.predictions(sequence_output) + return prediction_scores + + +class BertPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = BertConfig + base_model_prefix = "bert" + _keys_to_ignore_on_load_missing = [r"position_ids"] + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, (nn.Linear, nn.Embedding)): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + if isinstance(module, nn.Linear) and module.bias is not None: + module.bias.data.zero_() + + +class BertModel(BertPreTrainedModel): + """ + The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of + cross-attention is added between the self-attention layers, following the architecture described in `Attention is + all you need `__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, + Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. + argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an + input to the forward pass. + """ + + def __init__(self, config, add_pooling_layer=False): + super().__init__(config) + self.config = config + + self.embeddings = BertEmbeddings(config) + + self.encoder = BertEncoder(config) + + self.pooler = BertPooler(config) if add_pooling_layer else None + + self.init_weights() + + def get_input_embeddings(self): + return self.embeddings.word_embeddings + + def set_input_embeddings(self, value): + self.embeddings.word_embeddings = value + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + def get_extended_attention_mask( + self, + attention_mask: Tensor, + input_shape: Tuple[int], + device: device, + is_decoder: bool, + has_query: bool = False, + ) -> Tensor: + """ + Makes broadcastable attention and causal masks so that future and masked tokens are ignored. + + Arguments: + attention_mask (:obj:`torch.Tensor`): + Mask with ones indicating tokens to attend to, zeros for tokens to ignore. + input_shape (:obj:`Tuple[int]`): + The shape of the input to the model. + device: (:obj:`torch.device`): + The device of the input to the model. + + Returns: + :obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`. + """ + # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] + # ourselves in which case we just need to make it broadcastable to all heads. + if attention_mask.dim() == 3: + extended_attention_mask = attention_mask[:, None, :, :] + elif attention_mask.dim() == 2: + # Provided a padding mask of dimensions [batch_size, seq_length] + # - if the model is a decoder, apply a causal mask in addition to the padding mask + # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] + if is_decoder: + batch_size, seq_length = input_shape + + seq_ids = torch.arange(seq_length, device=device) + causal_mask = ( + seq_ids[None, None, :].repeat(batch_size, seq_length, 1) + <= seq_ids[None, :, None] + ) + + # add a prefix ones mask to the causal mask + # causal and attention masks must have same type with pytorch version < 1.3 + causal_mask = causal_mask.to(attention_mask.dtype) + + if causal_mask.shape[1] < attention_mask.shape[1]: + prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1] + if has_query: # UniLM style attention mask + causal_mask = torch.cat( + [ + torch.zeros( + (batch_size, prefix_seq_len, seq_length), + device=device, + dtype=causal_mask.dtype, + ), + causal_mask, + ], + axis=1, + ) + causal_mask = torch.cat( + [ + torch.ones( + (batch_size, causal_mask.shape[1], prefix_seq_len), + device=device, + dtype=causal_mask.dtype, + ), + causal_mask, + ], + axis=-1, + ) + extended_attention_mask = ( + causal_mask[:, None, :, :] * attention_mask[:, None, None, :] + ) + else: + extended_attention_mask = attention_mask[:, None, None, :] + else: + raise ValueError( + "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format( + input_shape, attention_mask.shape + ) + ) + + # Since attention_mask is 1.0 for positions we want to attend and 0.0 for + # masked positions, this operation will create a tensor which is 0.0 for + # positions we want to attend and -10000.0 for masked positions. + # Since we are adding it to the raw scores before the softmax, this is + # effectively the same as removing these entirely. + extended_attention_mask = extended_attention_mask.to( + dtype=self.dtype + ) # fp16 compatibility + extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 + return extended_attention_mask + + def forward( + self, + input_ids=None, + attention_mask=None, + position_ids=None, + head_mask=None, + query_embeds=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_values=None, + use_cache=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + is_decoder=False, + ): + r""" + encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` + (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` + instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. + use_cache (:obj:`bool`, `optional`): + If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up + decoding (see :obj:`past_key_values`). + """ + output_attentions = ( + output_attentions + if output_attentions is not None + else self.config.output_attentions + ) + output_hidden_states = ( + output_hidden_states + if output_hidden_states is not None + else self.config.output_hidden_states + ) + return_dict = ( + return_dict if return_dict is not None else self.config.use_return_dict + ) + + # use_cache = use_cache if use_cache is not None else self.config.use_cache + + if input_ids is None: + assert ( + query_embeds is not None + ), "You have to specify query_embeds when input_ids is None" + + # past_key_values_length + past_key_values_length = ( + past_key_values[0][0].shape[2] - self.config.query_length + if past_key_values is not None + else 0 + ) + + query_length = query_embeds.shape[1] if query_embeds is not None else 0 + + embedding_output = self.embeddings( + input_ids=input_ids, + position_ids=position_ids, + query_embeds=query_embeds, + past_key_values_length=past_key_values_length, + ) + + input_shape = embedding_output.size()[:-1] + batch_size, seq_length = input_shape + device = embedding_output.device + + if attention_mask is None: + attention_mask = torch.ones( + ((batch_size, seq_length + past_key_values_length)), device=device + ) + + # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] + # ourselves in which case we just need to make it broadcastable to all heads. + if is_decoder: + extended_attention_mask = self.get_extended_attention_mask( + attention_mask, + input_ids.shape, + device, + is_decoder, + has_query=(query_embeds is not None), + ) + else: + extended_attention_mask = self.get_extended_attention_mask( + attention_mask, input_shape, device, is_decoder + ) + + # If a 2D or 3D attention mask is provided for the cross-attention + # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] + if encoder_hidden_states is not None: + if type(encoder_hidden_states) == list: + encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[ + 0 + ].size() + else: + ( + encoder_batch_size, + encoder_sequence_length, + _, + ) = encoder_hidden_states.size() + encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) + + if type(encoder_attention_mask) == list: + encoder_extended_attention_mask = [ + self.invert_attention_mask(mask) for mask in encoder_attention_mask + ] + elif encoder_attention_mask is None: + encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) + encoder_extended_attention_mask = self.invert_attention_mask( + encoder_attention_mask + ) + else: + encoder_extended_attention_mask = self.invert_attention_mask( + encoder_attention_mask + ) + else: + encoder_extended_attention_mask = None + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + encoder_outputs = self.encoder( + embedding_output, + attention_mask=extended_attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_extended_attention_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + query_length=query_length, + ) + sequence_output = encoder_outputs[0] + pooled_output = ( + self.pooler(sequence_output) if self.pooler is not None else None + ) + + if not return_dict: + return (sequence_output, pooled_output) + encoder_outputs[1:] + + return BaseModelOutputWithPoolingAndCrossAttentions( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + past_key_values=encoder_outputs.past_key_values, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + cross_attentions=encoder_outputs.cross_attentions, + ) + + +class BertLMHeadModel(BertPreTrainedModel): + + _keys_to_ignore_on_load_unexpected = [r"pooler"] + _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"] + + def __init__(self, config): + super().__init__(config) + + self.bert = BertModel(config, add_pooling_layer=False) + self.cls = BertOnlyMLMHead(config) + + self.init_weights() + + def get_output_embeddings(self): + return self.cls.predictions.decoder + + def set_output_embeddings(self, new_embeddings): + self.cls.predictions.decoder = new_embeddings + + def forward( + self, + input_ids=None, + attention_mask=None, + position_ids=None, + head_mask=None, + query_embeds=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + labels=None, + past_key_values=None, + use_cache=True, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + return_logits=False, + is_decoder=True, + reduction="mean", + ): + r""" + encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): + Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in + ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are + ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]`` + past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` + (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` + instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. + use_cache (:obj:`bool`, `optional`): + If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up + decoding (see :obj:`past_key_values`). + Returns: + Example:: + >>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig + >>> import torch + >>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased') + >>> config = BertConfig.from_pretrained("bert-base-cased") + >>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config) + >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") + >>> outputs = model(**inputs) + >>> prediction_logits = outputs.logits + """ + return_dict = ( + return_dict if return_dict is not None else self.config.use_return_dict + ) + if labels is not None: + use_cache = False + if past_key_values is not None: + query_embeds = None + + outputs = self.bert( + input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + head_mask=head_mask, + query_embeds=query_embeds, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + is_decoder=is_decoder, + ) + + sequence_output = outputs[0] + if query_embeds is not None: + sequence_output = outputs[0][:, query_embeds.shape[1] :, :] + + prediction_scores = self.cls(sequence_output) + + if return_logits: + return prediction_scores[:, :-1, :].contiguous() + + lm_loss = None + if labels is not None: + # we are doing next-token prediction; shift prediction scores and input ids by one + shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() + labels = labels[:, 1:].contiguous() + loss_fct = CrossEntropyLoss(reduction=reduction, label_smoothing=0.1) + lm_loss = loss_fct( + shifted_prediction_scores.view(-1, self.config.vocab_size), + labels.view(-1), + ) + if reduction == "none": + lm_loss = lm_loss.view(prediction_scores.size(0), -1).sum(1) + + if not return_dict: + output = (prediction_scores,) + outputs[2:] + return ((lm_loss,) + output) if lm_loss is not None else output + + return CausalLMOutputWithCrossAttentions( + loss=lm_loss, + logits=prediction_scores, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + def prepare_inputs_for_generation( + self, input_ids, query_embeds, past=None, attention_mask=None, **model_kwargs + ): + # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly + if attention_mask is None: + attention_mask = input_ids.new_ones(input_ids.shape) + query_mask = input_ids.new_ones(query_embeds.shape[:-1]) + attention_mask = torch.cat([query_mask, attention_mask], dim=-1) + + # cut decoder_input_ids if past is used + if past is not None: + input_ids = input_ids[:, -1:] + + return { + "input_ids": input_ids, + "query_embeds": query_embeds, + "attention_mask": attention_mask, + "past_key_values": past, + "encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None), + "encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None), + "is_decoder": True, + } + + def _reorder_cache(self, past, beam_idx): + reordered_past = () + for layer_past in past: + reordered_past += ( + tuple( + past_state.index_select(0, beam_idx) for past_state in layer_past + ), + ) + return reordered_past + + +class BertForMaskedLM(BertPreTrainedModel): + + _keys_to_ignore_on_load_unexpected = [r"pooler"] + _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"] + + def __init__(self, config): + super().__init__(config) + + self.bert = BertModel(config, add_pooling_layer=False) + self.cls = BertOnlyMLMHead(config) + + self.init_weights() + + def get_output_embeddings(self): + return self.cls.predictions.decoder + + def set_output_embeddings(self, new_embeddings): + self.cls.predictions.decoder = new_embeddings + + def forward( + self, + input_ids=None, + attention_mask=None, + position_ids=None, + head_mask=None, + query_embeds=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + labels=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + return_logits=False, + is_decoder=False, + ): + r""" + labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): + Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., + config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored + (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` + """ + + return_dict = ( + return_dict if return_dict is not None else self.config.use_return_dict + ) + + outputs = self.bert( + input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + head_mask=head_mask, + query_embeds=query_embeds, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + is_decoder=is_decoder, + ) + + if query_embeds is not None: + sequence_output = outputs[0][:, query_embeds.shape[1] :, :] + prediction_scores = self.cls(sequence_output) + + if return_logits: + return prediction_scores + + masked_lm_loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() # -100 index = padding token + masked_lm_loss = loss_fct( + prediction_scores.view(-1, self.config.vocab_size), labels.view(-1) + ) + + if not return_dict: + output = (prediction_scores,) + outputs[2:] + return ( + ((masked_lm_loss,) + output) if masked_lm_loss is not None else output + ) + + return MaskedLMOutput( + loss=masked_lm_loss, + logits=prediction_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) diff --git a/OPERA/minigpt4/models/__init__.py b/OPERA/minigpt4/models/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..f7a659f9978b71d39b4e3fb47ab02863eedb9f30 --- /dev/null +++ b/OPERA/minigpt4/models/__init__.py @@ -0,0 +1,206 @@ +""" + Copyright (c) 2022, salesforce.com, inc. + All rights reserved. + SPDX-License-Identifier: BSD-3-Clause + For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause +""" + +import logging +import torch +from omegaconf import OmegaConf + +from minigpt4.common.registry import registry +from minigpt4.models.base_model import BaseModel +from minigpt4.models.blip2 import Blip2Base +from minigpt4.models.mini_gpt4 import MiniGPT4 +from minigpt4.models.blip2_vicuna_instruct import Blip2VicunaInstruct +from minigpt4.models.shikra import Shikra +from minigpt4.models.llava import LLaVa +from minigpt4.processors.base_processor import BaseProcessor + + +__all__ = [ + "load_model", + "BaseModel", + "Blip2Base", + "MiniGPT4", + "Blip2VicunaInstruct", + "Shikra", + "LLaVa", +] + + +def load_model(name, model_type, is_eval=False, device="cpu", checkpoint=None): + """ + Load supported models. + + To list all available models and types in registry: + >>> from minigpt4.models import model_zoo + >>> print(model_zoo) + + Args: + name (str): name of the model. + model_type (str): type of the model. + is_eval (bool): whether the model is in eval mode. Default: False. + device (str): device to use. Default: "cpu". + checkpoint (str): path or to checkpoint. Default: None. + Note that expecting the checkpoint to have the same keys in state_dict as the model. + + Returns: + model (torch.nn.Module): model. + """ + + model = registry.get_model_class(name).from_pretrained(model_type=model_type) + + if checkpoint is not None: + model.load_checkpoint(checkpoint) + + if is_eval: + model.eval() + + if device == "cpu": + model = model.float() + + return model.to(device) + + +def load_preprocess(config): + """ + Load preprocessor configs and construct preprocessors. + + If no preprocessor is specified, return BaseProcessor, which does not do any preprocessing. + + Args: + config (dict): preprocessor configs. + + Returns: + vis_processors (dict): preprocessors for visual inputs. + txt_processors (dict): preprocessors for text inputs. + + Key is "train" or "eval" for processors used in training and evaluation respectively. + """ + + def _build_proc_from_cfg(cfg): + return ( + registry.get_processor_class(cfg.name).from_config(cfg) + if cfg is not None + else BaseProcessor() + ) + + vis_processors = dict() + txt_processors = dict() + + vis_proc_cfg = config.get("vis_processor") + txt_proc_cfg = config.get("text_processor") + + if vis_proc_cfg is not None: + vis_train_cfg = vis_proc_cfg.get("train") + vis_eval_cfg = vis_proc_cfg.get("eval") + else: + vis_train_cfg = None + vis_eval_cfg = None + + vis_processors["train"] = _build_proc_from_cfg(vis_train_cfg) + vis_processors["eval"] = _build_proc_from_cfg(vis_eval_cfg) + + if txt_proc_cfg is not None: + txt_train_cfg = txt_proc_cfg.get("train") + txt_eval_cfg = txt_proc_cfg.get("eval") + else: + txt_train_cfg = None + txt_eval_cfg = None + + txt_processors["train"] = _build_proc_from_cfg(txt_train_cfg) + txt_processors["eval"] = _build_proc_from_cfg(txt_eval_cfg) + + return vis_processors, txt_processors + + +def load_model_and_preprocess(name, model_type, is_eval=False, device="cpu"): + """ + Load model and its related preprocessors. + + List all available models and types in registry: + >>> from minigpt4.models import model_zoo + >>> print(model_zoo) + + Args: + name (str): name of the model. + model_type (str): type of the model. + is_eval (bool): whether the model is in eval mode. Default: False. + device (str): device to use. Default: "cpu". + + Returns: + model (torch.nn.Module): model. + vis_processors (dict): preprocessors for visual inputs. + txt_processors (dict): preprocessors for text inputs. + """ + model_cls = registry.get_model_class(name) + + # load model + model = model_cls.from_pretrained(model_type=model_type) + + if is_eval: + model.eval() + + # load preprocess + cfg = OmegaConf.load(model_cls.default_config_path(model_type)) + if cfg is not None: + preprocess_cfg = cfg.preprocess + + vis_processors, txt_processors = load_preprocess(preprocess_cfg) + else: + vis_processors, txt_processors = None, None + logging.info( + f"""No default preprocess for model {name} ({model_type}). + This can happen if the model is not finetuned on downstream datasets, + or it is not intended for direct use without finetuning. + """ + ) + + if device == "cpu" or device == torch.device("cpu"): + model = model.float() + + return model.to(device), vis_processors, txt_processors + + +class ModelZoo: + """ + A utility class to create string representation of available model architectures and types. + + >>> from minigpt4.models import model_zoo + >>> # list all available models + >>> print(model_zoo) + >>> # show total number of models + >>> print(len(model_zoo)) + """ + + def __init__(self) -> None: + self.model_zoo = { + k: list(v.PRETRAINED_MODEL_CONFIG_DICT.keys()) + for k, v in registry.mapping["model_name_mapping"].items() + } + + def __str__(self) -> str: + return ( + "=" * 50 + + "\n" + + f"{'Architectures':<30} {'Types'}\n" + + "=" * 50 + + "\n" + + "\n".join( + [ + f"{name:<30} {', '.join(types)}" + for name, types in self.model_zoo.items() + ] + ) + ) + + def __iter__(self): + return iter(self.model_zoo.items()) + + def __len__(self): + return sum([len(v) for v in self.model_zoo.values()]) + + +model_zoo = ModelZoo() diff --git a/OPERA/minigpt4/models/base_model.py b/OPERA/minigpt4/models/base_model.py new file mode 100644 index 0000000000000000000000000000000000000000..ea20bff23fa08cf7192d67c23e771b6d97f5d642 --- /dev/null +++ b/OPERA/minigpt4/models/base_model.py @@ -0,0 +1,247 @@ +""" + Copyright (c) 2022, salesforce.com, inc. + All rights reserved. + SPDX-License-Identifier: BSD-3-Clause + For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause +""" + +import logging +import os + +import numpy as np +import torch +import torch.nn as nn +from minigpt4.common.dist_utils import download_cached_file, is_dist_avail_and_initialized +from minigpt4.common.utils import get_abs_path, is_url +from omegaconf import OmegaConf + + +class BaseModel(nn.Module): + """Base class for models.""" + + def __init__(self): + super().__init__() + + @property + def device(self): + return list(self.parameters())[-1].device + + def load_checkpoint(self, url_or_filename): + """ + Load from a finetuned checkpoint. + + This should expect no mismatch in the model keys and the checkpoint keys. + """ + + if is_url(url_or_filename): + cached_file = download_cached_file( + url_or_filename, check_hash=False, progress=True + ) + checkpoint = torch.load(cached_file, map_location="cpu") + elif os.path.isfile(url_or_filename): + checkpoint = torch.load(url_or_filename, map_location="cpu") + else: + raise RuntimeError("checkpoint url or path is invalid") + + if "model" in checkpoint.keys(): + state_dict = checkpoint["model"] + else: + state_dict = checkpoint + + msg = self.load_state_dict(state_dict, strict=False) + + logging.info("Missing keys {}".format(msg.missing_keys)) + logging.info("load checkpoint from %s" % url_or_filename) + + return msg + + @classmethod + def from_pretrained(cls, model_type): + """ + Build a pretrained model from default configuration file, specified by model_type. + + Args: + - model_type (str): model type, specifying architecture and checkpoints. + + Returns: + - model (nn.Module): pretrained or finetuned model, depending on the configuration. + """ + model_cfg = OmegaConf.load(cls.default_config_path(model_type)).model + model = cls.from_config(model_cfg) + + return model + + @classmethod + def default_config_path(cls, model_type): + assert ( + model_type in cls.PRETRAINED_MODEL_CONFIG_DICT + ), "Unknown model type {}".format(model_type) + return get_abs_path(cls.PRETRAINED_MODEL_CONFIG_DICT[model_type]) + + def load_checkpoint_from_config(self, cfg, **kwargs): + """ + Load checkpoint as specified in the config file. + + If load_finetuned is True, load the finetuned model; otherwise, load the pretrained model. + When loading the pretrained model, each task-specific architecture may define their + own load_from_pretrained() method. + """ + load_finetuned = cfg.get("load_finetuned", True) + if load_finetuned: + finetune_path = cfg.get("finetuned", None) + assert ( + finetune_path is not None + ), "Found load_finetuned is True, but finetune_path is None." + self.load_checkpoint(url_or_filename=finetune_path) + else: + # load pre-trained weights + pretrain_path = cfg.get("pretrained", None) + assert "Found load_finetuned is False, but pretrain_path is None." + self.load_from_pretrained(url_or_filename=pretrain_path, **kwargs) + + def before_evaluation(self, **kwargs): + pass + + def show_n_params(self, return_str=True): + tot = 0 + for p in self.parameters(): + w = 1 + for x in p.shape: + w *= x + tot += w + if return_str: + if tot >= 1e6: + return "{:.1f}M".format(tot / 1e6) + else: + return "{:.1f}K".format(tot / 1e3) + else: + return tot + + +class BaseEncoder(nn.Module): + """ + Base class for primitive encoders, such as ViT, TimeSformer, etc. + """ + + def __init__(self): + super().__init__() + + def forward_features(self, samples, **kwargs): + raise NotImplementedError + + @property + def device(self): + return list(self.parameters())[0].device + + +class SharedQueueMixin: + @torch.no_grad() + def _dequeue_and_enqueue(self, image_feat, text_feat, idxs=None): + # gather keys before updating queue + image_feats = concat_all_gather(image_feat) + text_feats = concat_all_gather(text_feat) + + batch_size = image_feats.shape[0] + + ptr = int(self.queue_ptr) + assert self.queue_size % batch_size == 0 # for simplicity + + # replace the keys at ptr (dequeue and enqueue) + self.image_queue[:, ptr : ptr + batch_size] = image_feats.T + self.text_queue[:, ptr : ptr + batch_size] = text_feats.T + + if idxs is not None: + idxs = concat_all_gather(idxs) + self.idx_queue[:, ptr : ptr + batch_size] = idxs.T + + ptr = (ptr + batch_size) % self.queue_size # move pointer + self.queue_ptr[0] = ptr + + +class MomentumDistilationMixin: + @torch.no_grad() + def copy_params(self): + for model_pair in self.model_pairs: + for param, param_m in zip( + model_pair[0].parameters(), model_pair[1].parameters() + ): + param_m.data.copy_(param.data) # initialize + param_m.requires_grad = False # not update by gradient + + @torch.no_grad() + def _momentum_update(self): + for model_pair in self.model_pairs: + for param, param_m in zip( + model_pair[0].parameters(), model_pair[1].parameters() + ): + param_m.data = param_m.data * self.momentum + param.data * ( + 1.0 - self.momentum + ) + + +class GatherLayer(torch.autograd.Function): + """ + Gather tensors from all workers with support for backward propagation: + This implementation does not cut the gradients as torch.distributed.all_gather does. + """ + + @staticmethod + def forward(ctx, x): + output = [ + torch.zeros_like(x) for _ in range(torch.distributed.get_world_size()) + ] + torch.distributed.all_gather(output, x) + return tuple(output) + + @staticmethod + def backward(ctx, *grads): + all_gradients = torch.stack(grads) + torch.distributed.all_reduce(all_gradients) + return all_gradients[torch.distributed.get_rank()] + + +def all_gather_with_grad(tensors): + """ + Performs all_gather operation on the provided tensors. + Graph remains connected for backward grad computation. + """ + # Queue the gathered tensors + world_size = torch.distributed.get_world_size() + # There is no need for reduction in the single-proc case + if world_size == 1: + return tensors + + # tensor_all = GatherLayer.apply(tensors) + tensor_all = GatherLayer.apply(tensors) + + return torch.cat(tensor_all, dim=0) + + +@torch.no_grad() +def concat_all_gather(tensor): + """ + Performs all_gather operation on the provided tensors. + *** Warning ***: torch.distributed.all_gather has no gradient. + """ + # if use distributed training + if not is_dist_avail_and_initialized(): + return tensor + + tensors_gather = [ + torch.ones_like(tensor) for _ in range(torch.distributed.get_world_size()) + ] + torch.distributed.all_gather(tensors_gather, tensor, async_op=False) + + output = torch.cat(tensors_gather, dim=0) + return output + + +def tile(x, dim, n_tile): + init_dim = x.size(dim) + repeat_idx = [1] * x.dim() + repeat_idx[dim] = n_tile + x = x.repeat(*(repeat_idx)) + order_index = torch.LongTensor( + np.concatenate([init_dim * np.arange(n_tile) + i for i in range(init_dim)]) + ) + return torch.index_select(x, dim, order_index.to(x.device)) diff --git a/OPERA/minigpt4/models/blip2.py b/OPERA/minigpt4/models/blip2.py new file mode 100644 index 0000000000000000000000000000000000000000..1d45a57720356c87ea82c1a9abfbf9cd77153828 --- /dev/null +++ b/OPERA/minigpt4/models/blip2.py @@ -0,0 +1,221 @@ +""" + Copyright (c) 2023, salesforce.com, inc. + All rights reserved. + SPDX-License-Identifier: BSD-3-Clause + For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause +""" +import contextlib +import logging +import os +import time +import datetime + +import torch +import torch.nn as nn +import torch.distributed as dist +import torch.nn.functional as F + +import minigpt4.common.dist_utils as dist_utils +from minigpt4.common.dist_utils import download_cached_file +from minigpt4.common.utils import is_url +from minigpt4.common.logger import MetricLogger +from minigpt4.models.base_model import BaseModel +from minigpt4.models.Qformer import BertConfig, BertLMHeadModel +from minigpt4.models.eva_vit import create_eva_vit_g +from transformers import BertTokenizer + + +class Blip2Base(BaseModel): + @classmethod + def init_tokenizer(cls, truncation_side="right"): + tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", truncation_side=truncation_side) + tokenizer.add_special_tokens({"bos_token": "[DEC]"}) + return tokenizer + + def maybe_autocast(self, dtype=torch.float16): + # if on cpu, don't use autocast + # if on gpu, use autocast with dtype if provided, otherwise use torch.float16 + enable_autocast = self.device != torch.device("cpu") + + if enable_autocast: + return torch.cuda.amp.autocast(dtype=dtype) + else: + return contextlib.nullcontext() + + @classmethod + def init_Qformer(cls, num_query_token, vision_width, cross_attention_freq=2): + encoder_config = BertConfig.from_pretrained("bert-base-uncased") + encoder_config.encoder_width = vision_width + # insert cross-attention layer every other block + encoder_config.add_cross_attention = True + encoder_config.cross_attention_freq = cross_attention_freq + encoder_config.query_length = num_query_token + Qformer = BertLMHeadModel(config=encoder_config) + query_tokens = nn.Parameter( + torch.zeros(1, num_query_token, encoder_config.hidden_size) + ) + query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range) + return Qformer, query_tokens + + @classmethod + def init_vision_encoder( + cls, model_name, img_size, drop_path_rate, use_grad_checkpoint, precision + ): + assert model_name == "eva_clip_g", "vit model must be eva_clip_g for current version of MiniGPT-4 or InstructBLIP" + visual_encoder = create_eva_vit_g( + img_size, drop_path_rate, use_grad_checkpoint, precision + ) + + ln_vision = LayerNorm(visual_encoder.num_features) + return visual_encoder, ln_vision + + def load_from_pretrained(self, url_or_filename): + if is_url(url_or_filename): + cached_file = download_cached_file( + url_or_filename, check_hash=False, progress=True + ) + checkpoint = torch.load(cached_file, map_location="cpu") + elif os.path.isfile(url_or_filename): + checkpoint = torch.load(url_or_filename, map_location="cpu") + else: + raise RuntimeError("checkpoint url or path is invalid") + + state_dict = checkpoint["model"] + + msg = self.load_state_dict(state_dict, strict=False) + + # logging.info("Missing keys {}".format(msg.missing_keys)) + logging.info("load checkpoint from %s" % url_or_filename) + + return msg + + +def disabled_train(self, mode=True): + """Overwrite model.train with this function to make sure train/eval mode + does not change anymore.""" + return self + + +class LayerNorm(nn.LayerNorm): + """Subclass torch's LayerNorm to handle fp16.""" + + def forward(self, x: torch.Tensor): + orig_type = x.dtype + ret = super().forward(x.type(torch.float32)) + return ret.type(orig_type) + + +def compute_sim_matrix(model, data_loader, **kwargs): + k_test = kwargs.pop("k_test") + + metric_logger = MetricLogger(delimiter=" ") + header = "Evaluation:" + + logging.info("Computing features for evaluation...") + start_time = time.time() + + texts = data_loader.dataset.text + num_text = len(texts) + text_bs = 256 + text_ids = [] + text_embeds = [] + text_atts = [] + for i in range(0, num_text, text_bs): + text = texts[i : min(num_text, i + text_bs)] + text_input = model.tokenizer( + text, + padding="max_length", + truncation=True, + max_length=35, + return_tensors="pt", + ).to(model.device) + text_feat = model.forward_text(text_input) + text_embed = F.normalize(model.text_proj(text_feat)) + text_embeds.append(text_embed) + text_ids.append(text_input.input_ids) + text_atts.append(text_input.attention_mask) + + text_embeds = torch.cat(text_embeds, dim=0) + text_ids = torch.cat(text_ids, dim=0) + text_atts = torch.cat(text_atts, dim=0) + + vit_feats = [] + image_embeds = [] + for samples in data_loader: + image = samples["image"] + + image = image.to(model.device) + image_feat, vit_feat = model.forward_image(image) + image_embed = model.vision_proj(image_feat) + image_embed = F.normalize(image_embed, dim=-1) + + vit_feats.append(vit_feat.cpu()) + image_embeds.append(image_embed) + + vit_feats = torch.cat(vit_feats, dim=0) + image_embeds = torch.cat(image_embeds, dim=0) + + sims_matrix = [] + for image_embed in image_embeds: + sim_q2t = image_embed @ text_embeds.t() + sim_i2t, _ = sim_q2t.max(0) + sims_matrix.append(sim_i2t) + sims_matrix = torch.stack(sims_matrix, dim=0) + + score_matrix_i2t = torch.full( + (len(data_loader.dataset.image), len(texts)), -100.0 + ).to(model.device) + + num_tasks = dist_utils.get_world_size() + rank = dist_utils.get_rank() + step = sims_matrix.size(0) // num_tasks + 1 + start = rank * step + end = min(sims_matrix.size(0), start + step) + + for i, sims in enumerate( + metric_logger.log_every(sims_matrix[start:end], 50, header) + ): + topk_sim, topk_idx = sims.topk(k=k_test, dim=0) + image_inputs = vit_feats[start + i].repeat(k_test, 1, 1).to(model.device) + score = model.compute_itm( + image_inputs=image_inputs, + text_ids=text_ids[topk_idx], + text_atts=text_atts[topk_idx], + ).float() + score_matrix_i2t[start + i, topk_idx] = score + topk_sim + + sims_matrix = sims_matrix.t() + score_matrix_t2i = torch.full( + (len(texts), len(data_loader.dataset.image)), -100.0 + ).to(model.device) + + step = sims_matrix.size(0) // num_tasks + 1 + start = rank * step + end = min(sims_matrix.size(0), start + step) + + for i, sims in enumerate( + metric_logger.log_every(sims_matrix[start:end], 50, header) + ): + topk_sim, topk_idx = sims.topk(k=k_test, dim=0) + image_inputs = vit_feats[topk_idx.cpu()].to(model.device) + score = model.compute_itm( + image_inputs=image_inputs, + text_ids=text_ids[start + i].repeat(k_test, 1), + text_atts=text_atts[start + i].repeat(k_test, 1), + ).float() + score_matrix_t2i[start + i, topk_idx] = score + topk_sim + + if dist_utils.is_dist_avail_and_initialized(): + dist.barrier() + torch.distributed.all_reduce( + score_matrix_i2t, op=torch.distributed.ReduceOp.SUM + ) + torch.distributed.all_reduce( + score_matrix_t2i, op=torch.distributed.ReduceOp.SUM + ) + + total_time = time.time() - start_time + total_time_str = str(datetime.timedelta(seconds=int(total_time))) + logging.info("Evaluation time {}".format(total_time_str)) + + return score_matrix_i2t.cpu().numpy(), score_matrix_t2i.cpu().numpy() diff --git a/OPERA/minigpt4/models/blip2_outputs.py b/OPERA/minigpt4/models/blip2_outputs.py new file mode 100644 index 0000000000000000000000000000000000000000..8586cfcdab0552048d21e1c2eb41bdbe2bb57151 --- /dev/null +++ b/OPERA/minigpt4/models/blip2_outputs.py @@ -0,0 +1,110 @@ +""" + Copyright (c) 2022, salesforce.com, inc. + All rights reserved. + SPDX-License-Identifier: BSD-3-Clause + For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause +""" + +from dataclasses import dataclass +from typing import Optional + +import torch +from transformers.modeling_outputs import ( + ModelOutput, + BaseModelOutputWithPoolingAndCrossAttentions, + CausalLMOutputWithCrossAttentions, +) + + +@dataclass +class BlipSimilarity(ModelOutput): + sim_i2t: torch.FloatTensor = None + sim_t2i: torch.FloatTensor = None + + sim_i2t_m: Optional[torch.FloatTensor] = None + sim_t2i_m: Optional[torch.FloatTensor] = None + + sim_i2t_targets: Optional[torch.FloatTensor] = None + sim_t2i_targets: Optional[torch.FloatTensor] = None + + +@dataclass +class BlipIntermediateOutput(ModelOutput): + """ + Data class for intermediate outputs of BLIP models. + + image_embeds (torch.FloatTensor): Image embeddings, shape (batch_size, num_patches, embed_dim). + text_embeds (torch.FloatTensor): Text embeddings, shape (batch_size, seq_len, embed_dim). + + image_embeds_m (torch.FloatTensor): Image embeddings from momentum visual encoder, shape (batch_size, num_patches, embed_dim). + text_embeds_m (torch.FloatTensor): Text embeddings from momentum text encoder, shape (batch_size, seq_len, embed_dim). + + encoder_output (BaseModelOutputWithPoolingAndCrossAttentions): output from the image-grounded text encoder. + encoder_output_neg (BaseModelOutputWithPoolingAndCrossAttentions): output from the image-grounded text encoder for negative pairs. + + decoder_output (CausalLMOutputWithCrossAttentions): output from the image-grounded text decoder. + decoder_labels (torch.LongTensor): labels for the captioning loss. + + itm_logits (torch.FloatTensor): logits for the image-text matching loss, shape (batch_size * 3, 2). + itm_labels (torch.LongTensor): labels for the image-text matching loss, shape (batch_size * 3,) + + """ + + # uni-modal features + image_embeds: torch.FloatTensor = None + text_embeds: Optional[torch.FloatTensor] = None + + image_embeds_m: Optional[torch.FloatTensor] = None + text_embeds_m: Optional[torch.FloatTensor] = None + + # intermediate outputs of multimodal encoder + encoder_output: Optional[BaseModelOutputWithPoolingAndCrossAttentions] = None + encoder_output_neg: Optional[BaseModelOutputWithPoolingAndCrossAttentions] = None + + itm_logits: Optional[torch.FloatTensor] = None + itm_labels: Optional[torch.LongTensor] = None + + # intermediate outputs of multimodal decoder + decoder_output: Optional[CausalLMOutputWithCrossAttentions] = None + decoder_labels: Optional[torch.LongTensor] = None + + +@dataclass +class BlipOutput(ModelOutput): + # some finetuned models (e.g. BlipVQA) do not compute similarity, thus optional. + sims: Optional[BlipSimilarity] = None + + intermediate_output: BlipIntermediateOutput = None + + loss: Optional[torch.FloatTensor] = None + + loss_itc: Optional[torch.FloatTensor] = None + + loss_itm: Optional[torch.FloatTensor] = None + + loss_lm: Optional[torch.FloatTensor] = None + + +@dataclass +class BlipOutputFeatures(ModelOutput): + """ + Data class of features from BlipFeatureExtractor. + + Args: + image_embeds: (torch.FloatTensor) of shape (batch_size, num_patches+1, embed_dim), optional + image_features: (torch.FloatTensor) of shape (batch_size, num_patches+1, feature_dim), optional + text_embeds: (torch.FloatTensor) of shape (batch_size, sequence_length+1, embed_dim), optional + text_features: (torch.FloatTensor) of shape (batch_size, sequence_length+1, feature_dim), optional + + The first embedding or feature is for the [CLS] token. + + Features are obtained by projecting the corresponding embedding into a normalized low-dimensional space. + """ + + image_embeds: Optional[torch.FloatTensor] = None + image_embeds_proj: Optional[torch.FloatTensor] = None + + text_embeds: Optional[torch.FloatTensor] = None + text_embeds_proj: Optional[torch.FloatTensor] = None + + multimodal_embeds: Optional[torch.FloatTensor] = None diff --git a/OPERA/minigpt4/models/blip2_vicuna_instruct.py b/OPERA/minigpt4/models/blip2_vicuna_instruct.py new file mode 100644 index 0000000000000000000000000000000000000000..82032b02f00f1e702ee6d68b22ce443c3248cc98 --- /dev/null +++ b/OPERA/minigpt4/models/blip2_vicuna_instruct.py @@ -0,0 +1,763 @@ +""" +Requires Transformer 4.28 and above, implementation may change according the Llama implementation +""" +import logging +import string +from packaging import version + +import torch +from torch.cuda.amp import autocast as autocast +import torch.nn as nn + +import transformers + +from minigpt4.common.registry import registry +from minigpt4.models.blip2 import Blip2Base, disabled_train + +transformers_version = version.parse(transformers.__version__) +assert transformers_version >= version.parse("4.28"), "BLIP-2 Vicuna requires transformers>=4.28" +from minigpt4.models.modeling_llama import LlamaForCausalLM +from transformers import LlamaTokenizer + + +@registry.register_model("blip2_vicuna_instruct") +class Blip2VicunaInstruct(Blip2Base): + """ + BLIP2 Vicuna model. + Supported model types: + - vicuna7b + - vicuna13b + Usage: + >>> from minigpt4.models import load_model + >>> model = load_model("blip2_vicuna_instruct", "vicuna7b") + """ + + PRETRAINED_MODEL_CONFIG_DICT = { + "vicuna7b": "configs/models/blip2_instruct_vicuna7b.yaml", + "vicuna13b": "configs/models/blip2_instruct_vicuna13b.yaml", + } + + def __init__( + self, + vit_model="eva_clip_g", + img_size=224, + drop_path_rate=0, + use_grad_checkpoint=False, + vit_precision="fp16", + freeze_vit=True, + num_query_token=32, + llm_model="", + prompt="", + max_txt_len=128, + max_output_txt_len=256, + apply_lemmatizer=False, + qformer_text_input=True, + ): + super().__init__() + + self.tokenizer = self.init_tokenizer(truncation_side="left") + + self.visual_encoder, self.ln_vision = self.init_vision_encoder( + vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision + ) + if freeze_vit: + for name, param in self.visual_encoder.named_parameters(): + param.requires_grad = False + self.visual_encoder = self.visual_encoder.eval() + self.visual_encoder.train = disabled_train + logging.info("freeze vision encoder") + + self.Qformer, self.query_tokens = self.init_Qformer( + num_query_token, self.visual_encoder.num_features + ) + + if not qformer_text_input: + self.Qformer.bert.embeddings.word_embeddings = None + self.Qformer.bert.embeddings.position_embeddings = None + for layer in self.Qformer.bert.encoder.layer: + layer.output = None + layer.intermediate = None + else: + self.Qformer.resize_token_embeddings(len(self.tokenizer)) + self.Qformer.cls = None + + self.llm_tokenizer = LlamaTokenizer.from_pretrained(llm_model, use_fast=False, truncation_side="left") + self.llm_model = LlamaForCausalLM.from_pretrained( + llm_model, torch_dtype=torch.float16 + ) + self.llm_tokenizer.add_special_tokens({'pad_token': '[PAD]'}) + self.llm_tokenizer.add_special_tokens({'bos_token': ''}) + self.llm_tokenizer.add_special_tokens({'eos_token': ''}) + self.llm_tokenizer.add_special_tokens({'unk_token': ''}) + # self.llm_tokenizer.pad_token = self.llm_tokenizer.unk_token + + self.llm_model.resize_token_embeddings(len(self.llm_tokenizer)) + + # self.eos_token_id = self.llm_tokenizer( + # self.llm_tokenizer.eos_token, add_special_tokens=False + # ).input_ids[0] + + for name, param in self.llm_model.named_parameters(): + param.requires_grad = False + + self.llm_proj = nn.Linear( + self.Qformer.config.hidden_size, self.llm_model.config.hidden_size + ) + + self.max_txt_len = max_txt_len + self.max_output_txt_len = max_output_txt_len + self.prompt = prompt + prompt_tokens = self.llm_tokenizer(self.prompt, return_tensors="pt") + self.prompt_length = prompt_tokens.attention_mask.sum(1) + + self._lemmatizer = None + + self.qformer_text_input = qformer_text_input + + def concat_text_input_output(self, input_ids, input_atts, output_ids, output_atts): + input_part_targets_len = [] + llm_tokens = {"input_ids": [], "attention_mask": []} + for i in range(input_ids.size(0)): + this_input_ones = input_atts[i].sum() + input_part_targets_len.append(this_input_ones) + llm_tokens['input_ids'].append( + torch.cat([ + input_ids[i][:this_input_ones], + output_ids[i][1:], + input_ids[i][this_input_ones:] + ]) + ) + llm_tokens['attention_mask'].append( + torch.cat([ + input_atts[i][:this_input_ones], + output_atts[i][1:], + input_atts[i][this_input_ones:] + ]) + ) + llm_tokens['input_ids'] = torch.stack(llm_tokens['input_ids']) + llm_tokens['attention_mask'] = torch.stack(llm_tokens['attention_mask']) + return llm_tokens, input_part_targets_len + + def forward(self, samples): + # print('-----------------') + # print(samples["text_input"]) + # print(samples["text_output"]) + # print('-----------------') + + image = samples["image"] + with self.maybe_autocast(): + image_embeds = self.ln_vision(self.visual_encoder(image)) + image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device) + + bs = image.size(0) + + query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1) + if self.qformer_text_input: + text_Qformer = self.tokenizer( + samples["text_input"], + padding='longest', + truncation=True, + max_length=self.max_txt_len, + return_tensors="pt", + ).to(image.device) + query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(image.device) + Qformer_atts = torch.cat([query_atts, text_Qformer.attention_mask],dim=1) + + query_output = self.Qformer.bert( + text_Qformer.input_ids, + attention_mask=Qformer_atts, + query_embeds=query_tokens, + encoder_hidden_states=image_embeds, + encoder_attention_mask=image_atts, + return_dict=True, + ) + else: + query_output = self.Qformer.bert( + query_embeds=query_tokens, + encoder_hidden_states=image_embeds, + encoder_attention_mask=image_atts, + return_dict=True, + ) + + inputs_llm = self.llm_proj(query_output.last_hidden_state[:,:query_tokens.size(1),:]) + atts_llm = torch.ones(inputs_llm.size()[:-1], dtype=torch.long).to(image.device) + + self.llm_tokenizer.padding_side = "right" + self.llm_tokenizer.truncation_side = 'left' + text_input_tokens = self.llm_tokenizer( + samples['text_input'], + return_tensors="pt", + padding="longest", + truncation=True, + max_length=self.max_txt_len, + ).to(image.device) + + self.llm_tokenizer.truncation_side = 'right' + text_output_tokens = self.llm_tokenizer( + [t + self.llm_tokenizer.eos_token for t in samples['text_output']], + return_tensors="pt", + padding="longest", + truncation=True, + max_length=self.max_output_txt_len, + ).to(image.device) + + llm_tokens, input_part_targets_len = self.concat_text_input_output( + text_input_tokens.input_ids, + text_input_tokens.attention_mask, + text_output_tokens.input_ids, + text_output_tokens.attention_mask, + ) + + # do not apply loss to the padding + targets = llm_tokens['input_ids'].masked_fill( + llm_tokens['input_ids'] == self.llm_tokenizer.pad_token_id, -100 + ) + + # do not apply loss to the text input (i.e., instruction) + for i, l in enumerate(input_part_targets_len): + targets[i][:l] = -100 + + # do not apply loss to the query tokens + empty_targets = ( + torch.ones(atts_llm.size(), dtype=torch.long).to(image.device).fill_(-100) + ) + targets = torch.cat([empty_targets, targets], dim=1) + + inputs_embeds = self.llm_model.get_input_embeddings()(llm_tokens['input_ids']) + inputs_embeds = torch.cat([inputs_llm, inputs_embeds], dim=1) + attention_mask = torch.cat([atts_llm, llm_tokens['attention_mask']], dim=1) + + with self.maybe_autocast(): + outputs = self.llm_model( + inputs_embeds=inputs_embeds, + attention_mask=attention_mask, + return_dict=True, + labels=targets, + ) + + loss = outputs.loss + + return {"loss": loss} + + @torch.no_grad() + def generate( + self, + samples, + use_nucleus_sampling=False, + num_beams=5, + max_length=256, + min_length=1, + max_new_tokens=300, + top_p=0.9, + repetition_penalty=1.5, + length_penalty=1, + num_captions=1, + temperature=1, + output_attentions=False, + return_dict_in_generate=False, + # ours + opera_decoding=False, + key_position=None, + scale_factor=1.0, + threshold=1, + num_attn_candidates=5, + penalty_weights=1.0, + ): + self.llm_tokenizer.padding_side = "left" + + if "prompt" in samples.keys(): + prompt = samples["prompt"] + else: + prompt = self.prompt + + image = samples["image"] + + bs = image.size(0) + + if isinstance(prompt, str): + prompt = prompt.split("")[-1] + prompt = [prompt] * bs + else: + prompt = [p.split("")[-1] for p in prompt] + assert len(prompt) == bs, "The number of prompts must be equal to the batch size." + + # For TextCaps + if "ocr_tokens" in samples.keys() and "{}" in prompt[0]: + prompt = [p.format(', '.join(samples['ocr_tokens'][i][:30])) for i, p in enumerate(prompt)] + + query_tokens = self.query_tokens.expand(bs, -1, -1) + if self.qformer_text_input: + # remove ocr tokens in q_former (for eval textvqa) + # qformer_prompt = prompt + # qformer_prompt = ['Question: ' + qp.split(' Question: ')[1] for qp in qformer_prompt] + + text_Qformer = self.tokenizer( + prompt, + padding='longest', + truncation=True, + max_length=self.max_txt_len, + return_tensors="pt", + ).to(image.device) + query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(image.device) + Qformer_atts = torch.cat([query_atts, text_Qformer.attention_mask], dim=1) + + # For video data + if image.dim() == 5: + inputs_llm, atts_llm = [], [] + for j in range(image.size(2)): + this_frame = image[:,:,j,:,:] + with self.maybe_autocast(): + frame_embeds = self.ln_vision(self.visual_encoder(this_frame)) + frame_atts = torch.ones(frame_embeds.size()[:-1], dtype=torch.long).to(image.device) + + if self.qformer_text_input: + frame_query_output = self.Qformer.bert( + text_Qformer.input_ids, + attention_mask=Qformer_atts, + query_embeds=query_tokens, + encoder_hidden_states=frame_embeds, + encoder_attention_mask=frame_atts, + return_dict=True, + ) + else: + frame_query_output = self.Qformer.bert( + query_embeds=query_tokens, + encoder_hidden_states=frame_embeds, + encoder_attention_mask=frame_atts, + return_dict=True, + ) + frame_inputs_llm = self.llm_proj(frame_query_output.last_hidden_state[:,:query_tokens.size(1),:]) + frame_atts_llm = torch.ones(frame_inputs_llm.size()[:-1], dtype=torch.long).to(image.device) + inputs_llm.append(frame_inputs_llm) + atts_llm.append(frame_atts_llm) + inputs_llm = torch.cat(inputs_llm, dim=1) + atts_llm = torch.cat(atts_llm, dim=1) + else: + with self.maybe_autocast(): + image_embeds = self.ln_vision(self.visual_encoder(image)) + image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device) + + if self.qformer_text_input: + query_output = self.Qformer.bert( + text_Qformer.input_ids, + attention_mask=Qformer_atts, + query_embeds=query_tokens, + encoder_hidden_states=image_embeds, + encoder_attention_mask=image_atts, + return_dict=True, + ) + else: + query_output = self.Qformer.bert( + query_embeds=query_tokens, + encoder_hidden_states=image_embeds, + encoder_attention_mask=image_atts, + return_dict=True, + ) + + inputs_llm = self.llm_proj(query_output.last_hidden_state[:,:query_tokens.size(1),:])#.index_select(dim=1, index=torch.tensor([4,31]).to(image.device)) + # inputs_llm = torch.cat([inputs_llm[:,-i,:].unsqueeze(1) for i in range(inputs_llm.shape[1])], dim=1) + atts_llm = torch.ones(inputs_llm.size()[:-1], dtype=torch.long).to(image.device) + + llm_tokens = self.llm_tokenizer( + prompt, + padding="longest", + return_tensors="pt" + ).to(image.device) + + with self.maybe_autocast(): + inputs_embeds = self.llm_model.get_input_embeddings()(llm_tokens.input_ids) + inputs_embeds = torch.cat([inputs_llm, inputs_embeds], dim=1) + attention_mask = torch.cat([atts_llm, llm_tokens.attention_mask], dim=1) + + if key_position is None: + key_position = { + "image_start": 1, + "image_end": inputs_llm.shape[1], + "response_start": inputs_embeds.shape[1] + } + + outputs = self.llm_model.generate( + inputs_embeds=inputs_embeds, + attention_mask=attention_mask, + do_sample=use_nucleus_sampling, + top_p=top_p, + temperature=temperature, + num_beams=num_beams, + # max_length=max_length, + min_length=min_length, + max_new_tokens=max_new_tokens, + # eos_token_id=self.eos_token_id, + repetition_penalty=repetition_penalty, + length_penalty=length_penalty, + num_return_sequences=num_captions, + output_attentions=output_attentions, + return_dict_in_generate=return_dict_in_generate, + # opera + opera_decoding=opera_decoding, + key_position=key_position, + scale_factor=scale_factor, + threshold=threshold, + num_attn_candidates=num_attn_candidates, + penalty_weights=penalty_weights, + ) + + outputs[outputs == 0] = 2 # convert output id 0 to 2 (eos_token_id) + output_text = self.llm_tokenizer.batch_decode(outputs, skip_special_tokens=True) + output_text = [text.strip() for text in output_text] + + return output_text + + def predict_answers( + self, + samples, + num_beams=5, + inference_method="generate", + max_len=10, + min_len=1, + num_ans_candidates=128, + answer_list=None, + prompt="", + length_penalty=0, + **kwargs + ): + if isinstance(samples["text_input"], str): + samples["text_input"] = [samples["text_input"]] + + if prompt: + if prompt.count("{}") == 2: + if 'ocr_tokens' in samples: + text_input = [ + prompt.format(', '.join(samples['ocr_tokens'][i][:30]), samples["text_input"][i]) + for i in range(len(samples["text_input"]))] + elif 'choices' in samples: + text_input = [] + for i in range(len(samples["text_input"])): + this_choices = [f"({string.ascii_lowercase[j]}) {ch}" for j, ch in enumerate(samples["choices"][i])] + this_choices = " ".join(this_choices) + text_input.append(prompt.format(samples["text_input"][i], this_choices)) + else: + text_input = [prompt.format(question) for question in samples["text_input"]] + else: + text_input = samples["text_input"] + + samples["prompt"] = text_input + + output_text = self.generate( + samples, + num_beams=num_beams, + max_length=max_len, + min_length=min_len, + length_penalty=length_penalty + ) + + if "apply_lemmatizer" in samples.keys() and samples["apply_lemmatizer"]: + output_text = self._lemmatize(output_text) + + return output_text + + def predict_class( + self, + samples, + candidates, + n_segments=1, + ): + self.llm_tokenizer.padding_side = "left" + + # If candidates is a list of lists, each sample has its candidates, then we need to iterate one by one + if type(candidates[0]) == list: + results = [] + + for i in range(samples["image"].size(0)): + this_sample = { + "image": samples["image"][i].unsqueeze(0), + "prompt": samples["prompt"], + } + + if "text_input" in samples.keys(): + this_sample["text_input"] = [samples["text_input"][i]] + + if 'context' in samples.keys(): + this_sample['context'] = [samples["context"][i]] + + if 'history' in samples.keys(): + this_sample['history'] = [samples["history"][i]] + + if 'caption' in samples.keys(): + this_sample['caption'] = [samples["caption"][i]] + + this_result = self._predict_class(this_sample, candidates[i], n_segments) + results.append(this_result) + + try: + results = torch.cat(results, dim=0) + except: + results = [res.tolist()[0] for res in results] + + return results + + return self._predict_class(samples, candidates, n_segments) + + def _predict_class( + self, + samples, + candidates, + n_segments=1, + ): + image = samples["image"] + prompt = samples["prompt"] + + bs = image.size(0) + + if isinstance(prompt, str): + prompt = [prompt] * bs + else: + assert len(prompt) == bs, "The number of prompts must be equal to the batch size." + + if "text_input" in samples.keys(): + if type(samples["text_input"][0]) == list: + prompt = [prompt[i].format(*samples["text_input"][i]) for i in range(len(prompt))] + else: + prompt = [prompt[i].format(samples["text_input"][i]) for i in range(len(prompt))] + + # scienceqa + if 'context' in samples.keys() and samples['context'] != '': + prompt = [f'context: {samples["context"][i]}. {prompt[i]}' for i in range(len(prompt))] + + # visual dialog + if 'history' in samples.keys() and samples['history'][0] != '': + prompt = [f'dialog history: {samples["history"][i]}\n{prompt[i]}' for i in range(len(prompt))] + + if 'caption' in samples.keys() and samples['caption'][0] != '': + prompt = [f'This image has the caption "{samples["caption"][i]}". {prompt[i]}' for i in range(len(prompt))] + + query_tokens = self.query_tokens.expand(bs, -1, -1) + if self.qformer_text_input: + text_Qformer = self.tokenizer( + prompt, + padding='longest', + truncation=True, + max_length=self.max_txt_len, + return_tensors="pt" + ).to(image.device) + query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(image.device) + Qformer_atts = torch.cat([query_atts, text_Qformer.attention_mask], dim=1) + + if image.dim() == 5: + inputs_llm, atts_llm = [], [] + for j in range(image.size(2)): + this_frame = image[:,:,j,:,:] + with self.maybe_autocast(): + frame_embeds = self.ln_vision(self.visual_encoder(this_frame)) + frame_atts = torch.ones(frame_embeds.size()[:-1], dtype=torch.long).to(image.device) + + if self.qformer_text_input: + frame_query_output = self.Qformer.bert( + text_Qformer.input_ids, + attention_mask=Qformer_atts, + query_embeds=query_tokens, + encoder_hidden_states=frame_embeds, + encoder_attention_mask=frame_atts, + return_dict=True, + ) + else: + frame_query_output = self.Qformer.bert( + query_embeds=query_tokens, + encoder_hidden_states=frame_embeds, + encoder_attention_mask=frame_atts, + return_dict=True, + ) + + frame_inputs_llm = self.llm_proj(frame_query_output.last_hidden_state[:,:query_tokens.size(1),:]) + frame_atts_llm = torch.ones(frame_inputs_llm.size()[:-1], dtype=torch.long).to(image.device) + inputs_llm.append(frame_inputs_llm) + atts_llm.append(frame_atts_llm) + inputs_llm = torch.cat(inputs_llm, dim=1) + atts_llm = torch.cat(atts_llm, dim=1) + else: + with self.maybe_autocast(): + image_embeds = self.ln_vision(self.visual_encoder(image)) + image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device) + + if self.qformer_text_input: + query_output = self.Qformer.bert( + text_Qformer.input_ids, + attention_mask=Qformer_atts, + query_embeds=query_tokens, + encoder_hidden_states=image_embeds, + encoder_attention_mask=image_atts, + return_dict=True, + ) + else: + query_output = self.Qformer.bert( + query_embeds=query_tokens, + encoder_hidden_states=image_embeds, + encoder_attention_mask=image_atts, + return_dict=True, + ) + + inputs_llm = self.llm_proj(query_output.last_hidden_state[:,:query_tokens.size(1),:]) + atts_llm = torch.ones(inputs_llm.size()[:-1], dtype=torch.long).to(image.device) + + self.llm_tokenizer.padding_side = "right" + self.llm_tokenizer.truncation_side = 'left' + text_input_tokens = self.llm_tokenizer( + prompt, + return_tensors="pt", + padding="longest", + # truncation=True, + # max_length=self.max_txt_len, + ).to(image.device) + + empty_targets = torch.ones(atts_llm.size(), dtype=torch.long).to(image.device).fill_(-100) + + # self.llm_tokenizer.padding_side = "right" + self.llm_tokenizer.truncation_side = 'right' + n_cands = len(candidates) + with self.maybe_autocast(dtype=torch.bfloat16): + all_losses = [] + for n in range(n_segments): + seg_len = n_cands // n_segments + if n == (n_segments - 1): + seg_len = n_cands - seg_len * (n_segments - 1) + + start_i = n * (n_cands // n_segments) + end_i = start_i + seg_len + + this_output_tokens = self.llm_tokenizer( + candidates[start_i:end_i], + return_tensors="pt", + padding="longest", + # truncation=True, + # max_length=self.max_output_txt_len, + ).to(image.device) + + this_input_tokens_ids = text_input_tokens.input_ids.repeat_interleave(seg_len, dim=0) + this_input_tokens_atts = text_input_tokens.attention_mask.repeat_interleave(seg_len, dim=0) + + this_output_tokens_ids = this_output_tokens.input_ids.repeat(bs, 1) + this_output_tokens_atts = this_output_tokens.attention_mask.repeat(bs, 1) + + this_llm_tokens, this_input_targets_len = self.concat_text_input_output( + this_input_tokens_ids, + this_input_tokens_atts, + this_output_tokens_ids, + this_output_tokens_atts + ) + + this_llm_input_ids = this_llm_tokens['input_ids'] + this_llm_atts = this_llm_tokens['attention_mask'] + # this_llm_input_ids = torch.cat([this_input_tokens_ids, this_output_tokens_ids], dim=1) + # this_llm_atts = torch.cat([this_input_tokens_atts, this_output_tokens_atts], dim=1) + + inputs_embeds = self.llm_model.get_input_embeddings()(this_llm_input_ids) + inputs_embeds = torch.cat([inputs_llm.repeat_interleave(seg_len, dim=0), inputs_embeds], dim=1) + attention_mask = torch.cat([atts_llm.repeat_interleave(seg_len, dim=0), this_llm_atts], dim=1) + + this_targets = this_llm_input_ids.masked_fill(this_llm_input_ids == self.llm_tokenizer.pad_token_id, -100) + # this_targets[:, :this_input_tokens_ids.size(1)] = -100 + for i, l in enumerate(this_input_targets_len): + this_targets[i][:l] = -100 + + this_targets = torch.cat([empty_targets.repeat_interleave(seg_len, dim=0), this_targets], dim=1) + + outputs = self.llm_model( + inputs_embeds=inputs_embeds, + attention_mask=attention_mask, + return_dict=True, + labels=this_targets, + reduction="none", + ) + + loss = outputs.loss + + loss = loss.reshape(bs, seg_len) + # output_class_ranks = torch.argsort(loss, dim=-1) + all_losses.append(loss) + + all_losses = torch.cat(all_losses, dim=-1) + output_class_ranks = torch.argsort(all_losses, dim=-1) + + return output_class_ranks + + def _lemmatize(self, answers): + def apply(answer): + doc = self.lemmatizer(answer) + + words = [] + for token in doc: + if token.pos_ in ["NOUN", "VERB"]: + words.append(token.lemma_) + else: + words.append(token.text) + answer = " ".join(words) + + return answer + + return [apply(answer) for answer in answers] + + @property + def lemmatizer(self): + if self._lemmatizer is None: + try: + import spacy + + self._lemmatizer = spacy.load("en_core_web_sm") + except ImportError: + logging.error( + """ + Please install spacy and en_core_web_sm model to apply lemmatization. + python -m spacy download en_core_web_sm + OR + import spacy.cli + spacy.cli.download("en_core_web_sm") + """ + ) + exit(1) + + return self._lemmatizer + + @classmethod + def from_config(cls, cfg): + vit_model = cfg.get("vit_model", "eva_clip_g") + img_size = cfg.get("image_size") + num_query_token = cfg.get("num_query_token") + llm_model = cfg.get("llm_model") + + drop_path_rate = cfg.get("drop_path_rate", 0) + use_grad_checkpoint = cfg.get("use_grad_checkpoint", False) + vit_precision = cfg.get("vit_precision", "fp16") + freeze_vit = cfg.get("freeze_vit", True) + + prompt = cfg.get("prompt", "") + max_txt_len = cfg.get("max_txt_len", 128) + max_output_txt_len = cfg.get("max_output_txt_len", 256) + + apply_lemmatizer = cfg.get("apply_lemmatizer", False) + + qformer_text_input = cfg.get("qformer_text_input", True) + + model = cls( + vit_model=vit_model, + img_size=img_size, + drop_path_rate=drop_path_rate, + use_grad_checkpoint=use_grad_checkpoint, + vit_precision=vit_precision, + freeze_vit=freeze_vit, + num_query_token=num_query_token, + llm_model=llm_model, + prompt=prompt, + max_txt_len=max_txt_len, + max_output_txt_len=max_output_txt_len, + apply_lemmatizer=apply_lemmatizer, + qformer_text_input=qformer_text_input, + ) + + # if qformer_text_input: + # # Hard-coded to load from BLIP-2 stage-1 pre-trained model (not ideal) + # model.load_from_pretrained( + # url_or_filename="https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained.pth" + # ) + + model.load_checkpoint_from_config(cfg) + + return model diff --git a/OPERA/minigpt4/models/eva_vit.py b/OPERA/minigpt4/models/eva_vit.py new file mode 100644 index 0000000000000000000000000000000000000000..9cb0eddf0fbe8729bebd2e042e923bca8b2bf795 --- /dev/null +++ b/OPERA/minigpt4/models/eva_vit.py @@ -0,0 +1,442 @@ +# Based on EVA, BEIT, timm and DeiT code bases +# https://github.com/baaivision/EVA +# https://github.com/rwightman/pytorch-image-models/tree/master/timm +# https://github.com/microsoft/unilm/tree/master/beit +# https://github.com/facebookresearch/deit/ +# https://github.com/facebookresearch/dino +# --------------------------------------------------------' +import math +from functools import partial + +import torch +import torch.nn as nn +import torch.nn.functional as F +import torch.utils.checkpoint as checkpoint +from timm.models.layers import drop_path, to_2tuple, trunc_normal_ +from timm.models.registry import register_model + +from minigpt4.common.dist_utils import download_cached_file + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, + 'crop_pct': .9, 'interpolation': 'bicubic', + 'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), + **kwargs + } + + +class DropPath(nn.Module): + """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). + """ + def __init__(self, drop_prob=None): + super(DropPath, self).__init__() + self.drop_prob = drop_prob + + def forward(self, x): + return drop_path(x, self.drop_prob, self.training) + + def extra_repr(self) -> str: + return 'p={}'.format(self.drop_prob) + + +class Mlp(nn.Module): + def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + self.fc1 = nn.Linear(in_features, hidden_features) + self.act = act_layer() + self.fc2 = nn.Linear(hidden_features, out_features) + self.drop = nn.Dropout(drop) + + def forward(self, x): + x = self.fc1(x) + x = self.act(x) + # x = self.drop(x) + # commit this for the orignal BERT implement + x = self.fc2(x) + x = self.drop(x) + return x + + +class Attention(nn.Module): + def __init__( + self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., + proj_drop=0., window_size=None, attn_head_dim=None): + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + if attn_head_dim is not None: + head_dim = attn_head_dim + all_head_dim = head_dim * self.num_heads + self.scale = qk_scale or head_dim ** -0.5 + + self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) + if qkv_bias: + self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) + self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) + else: + self.q_bias = None + self.v_bias = None + + if window_size: + self.window_size = window_size + self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 + self.relative_position_bias_table = nn.Parameter( + torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH + # cls to token & token 2 cls & cls to cls + + # get pair-wise relative position index for each token inside the window + coords_h = torch.arange(window_size[0]) + coords_w = torch.arange(window_size[1]) + coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww + coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww + relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww + relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 + relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 + relative_coords[:, :, 1] += window_size[1] - 1 + relative_coords[:, :, 0] *= 2 * window_size[1] - 1 + relative_position_index = \ + torch.zeros(size=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype) + relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww + relative_position_index[0, 0:] = self.num_relative_distance - 3 + relative_position_index[0:, 0] = self.num_relative_distance - 2 + relative_position_index[0, 0] = self.num_relative_distance - 1 + + self.register_buffer("relative_position_index", relative_position_index) + else: + self.window_size = None + self.relative_position_bias_table = None + self.relative_position_index = None + + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(all_head_dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x, rel_pos_bias=None): + B, N, C = x.shape + qkv_bias = None + if self.q_bias is not None: + qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) + # qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) + qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) + qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) + q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) + + q = q * self.scale + attn = (q @ k.transpose(-2, -1)) + + if self.relative_position_bias_table is not None: + relative_position_bias = \ + self.relative_position_bias_table[self.relative_position_index.view(-1)].view( + self.window_size[0] * self.window_size[1] + 1, + self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH + relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww + attn = attn + relative_position_bias.unsqueeze(0) + + if rel_pos_bias is not None: + attn = attn + rel_pos_bias + + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + + x = (attn @ v).transpose(1, 2).reshape(B, N, -1) + x = self.proj(x) + x = self.proj_drop(x) + return x + + +class Block(nn.Module): + + def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., + drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm, + window_size=None, attn_head_dim=None): + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = Attention( + dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, + attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim) + # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + self.norm2 = norm_layer(dim) + mlp_hidden_dim = int(dim * mlp_ratio) + self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) + + if init_values is not None and init_values > 0: + self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) + self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) + else: + self.gamma_1, self.gamma_2 = None, None + + def forward(self, x, rel_pos_bias=None): + if self.gamma_1 is None: + x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias)) + x = x + self.drop_path(self.mlp(self.norm2(x))) + else: + x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias)) + x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) + return x + + +class PatchEmbed(nn.Module): + """ Image to Patch Embedding + """ + def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): + super().__init__() + img_size = to_2tuple(img_size) + patch_size = to_2tuple(patch_size) + num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) + self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) + self.img_size = img_size + self.patch_size = patch_size + self.num_patches = num_patches + + self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) + + def forward(self, x, **kwargs): + B, C, H, W = x.shape + # FIXME look at relaxing size constraints + assert H == self.img_size[0] and W == self.img_size[1], \ + f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." + x = self.proj(x).flatten(2).transpose(1, 2) + return x + + +class RelativePositionBias(nn.Module): + + def __init__(self, window_size, num_heads): + super().__init__() + self.window_size = window_size + self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 + self.relative_position_bias_table = nn.Parameter( + torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH + # cls to token & token 2 cls & cls to cls + + # get pair-wise relative position index for each token inside the window + coords_h = torch.arange(window_size[0]) + coords_w = torch.arange(window_size[1]) + coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww + coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww + relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww + relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 + relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 + relative_coords[:, :, 1] += window_size[1] - 1 + relative_coords[:, :, 0] *= 2 * window_size[1] - 1 + relative_position_index = \ + torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype) + relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww + relative_position_index[0, 0:] = self.num_relative_distance - 3 + relative_position_index[0:, 0] = self.num_relative_distance - 2 + relative_position_index[0, 0] = self.num_relative_distance - 1 + + self.register_buffer("relative_position_index", relative_position_index) + + # trunc_normal_(self.relative_position_bias_table, std=.02) + + def forward(self): + relative_position_bias = \ + self.relative_position_bias_table[self.relative_position_index.view(-1)].view( + self.window_size[0] * self.window_size[1] + 1, + self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH + return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww + + +class VisionTransformer(nn.Module): + """ Vision Transformer with support for patch or hybrid CNN input stage + """ + def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, + num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., + drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, + use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, + use_mean_pooling=True, init_scale=0.001, use_checkpoint=False): + super().__init__() + self.image_size = img_size + self.num_classes = num_classes + self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models + + self.patch_embed = PatchEmbed( + img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) + num_patches = self.patch_embed.num_patches + + self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) + if use_abs_pos_emb: + self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) + else: + self.pos_embed = None + self.pos_drop = nn.Dropout(p=drop_rate) + + if use_shared_rel_pos_bias: + self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads) + else: + self.rel_pos_bias = None + self.use_checkpoint = use_checkpoint + + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule + self.use_rel_pos_bias = use_rel_pos_bias + self.blocks = nn.ModuleList([ + Block( + dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, + drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, + init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None) + for i in range(depth)]) +# self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim) +# self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None +# self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() + + if self.pos_embed is not None: + trunc_normal_(self.pos_embed, std=.02) + trunc_normal_(self.cls_token, std=.02) + # trunc_normal_(self.mask_token, std=.02) +# if isinstance(self.head, nn.Linear): +# trunc_normal_(self.head.weight, std=.02) + self.apply(self._init_weights) + self.fix_init_weight() +# if isinstance(self.head, nn.Linear): +# self.head.weight.data.mul_(init_scale) +# self.head.bias.data.mul_(init_scale) + + def fix_init_weight(self): + def rescale(param, layer_id): + param.div_(math.sqrt(2.0 * layer_id)) + + for layer_id, layer in enumerate(self.blocks): + rescale(layer.attn.proj.weight.data, layer_id + 1) + rescale(layer.mlp.fc2.weight.data, layer_id + 1) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.LayerNorm): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) + + def get_classifier(self): + return self.head + + def reset_classifier(self, num_classes, global_pool=''): + self.num_classes = num_classes + self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() + + def forward_features(self, x): + x = self.patch_embed(x) + batch_size, seq_len, _ = x.size() + + cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks + x = torch.cat((cls_tokens, x), dim=1) + if self.pos_embed is not None: + x = x + self.pos_embed + x = self.pos_drop(x) + + rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None + for blk in self.blocks: + if self.use_checkpoint: + x = checkpoint.checkpoint(blk, x, rel_pos_bias) + else: + x = blk(x, rel_pos_bias) + return x +# x = self.norm(x) + +# if self.fc_norm is not None: +# t = x[:, 1:, :] +# return self.fc_norm(t.mean(1)) +# else: +# return x[:, 0] + + def forward(self, x): + x = self.forward_features(x) +# x = self.head(x) + return x + + def get_intermediate_layers(self, x): + x = self.patch_embed(x) + batch_size, seq_len, _ = x.size() + + cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks + x = torch.cat((cls_tokens, x), dim=1) + if self.pos_embed is not None: + x = x + self.pos_embed + x = self.pos_drop(x) + + features = [] + rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None + for blk in self.blocks: + x = blk(x, rel_pos_bias) + features.append(x) + + return features + + +def interpolate_pos_embed(model, checkpoint_model): + if 'pos_embed' in checkpoint_model: + pos_embed_checkpoint = checkpoint_model['pos_embed'].float() + embedding_size = pos_embed_checkpoint.shape[-1] + num_patches = model.patch_embed.num_patches + num_extra_tokens = model.pos_embed.shape[-2] - num_patches + # height (== width) for the checkpoint position embedding + orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) + # height (== width) for the new position embedding + new_size = int(num_patches ** 0.5) + # class_token and dist_token are kept unchanged + if orig_size != new_size: + print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) + extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] + # only the position tokens are interpolated + pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] + pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) + pos_tokens = torch.nn.functional.interpolate( + pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) + pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) + new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) + checkpoint_model['pos_embed'] = new_pos_embed + + +def convert_weights_to_fp16(model: nn.Module): + """Convert applicable model parameters to fp16""" + + def _convert_weights_to_fp16(l): + if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)): + l.weight.data = l.weight.data.half() + if l.bias is not None: + l.bias.data = l.bias.data.half() + +# if isinstance(l, (nn.MultiheadAttention, Attention)): +# for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]: +# tensor = getattr(l, attr) +# if tensor is not None: +# tensor.data = tensor.data.half() + + model.apply(_convert_weights_to_fp16) + + +def create_eva_vit_g(img_size=224,drop_path_rate=0.4,use_checkpoint=False,precision="fp16"): + model = VisionTransformer( + img_size=img_size, + patch_size=14, + use_mean_pooling=False, + embed_dim=1408, + depth=39, + num_heads=1408//88, + mlp_ratio=4.3637, + qkv_bias=True, + drop_path_rate=drop_path_rate, + norm_layer=partial(nn.LayerNorm, eps=1e-6), + use_checkpoint=use_checkpoint, + ) + url = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/eva_vit_g.pth" + cached_file = download_cached_file( + url, check_hash=False, progress=True + ) + state_dict = torch.load(cached_file, map_location="cpu") + interpolate_pos_embed(model,state_dict) + + incompatible_keys = model.load_state_dict(state_dict, strict=False) +# print(incompatible_keys) + + if precision == "fp16": +# model.to("cuda") + convert_weights_to_fp16(model) + return model \ No newline at end of file diff --git a/OPERA/minigpt4/models/llava.py b/OPERA/minigpt4/models/llava.py new file mode 100644 index 0000000000000000000000000000000000000000..3113969ce84155d3f48463f7ffc694b96908ffbf --- /dev/null +++ b/OPERA/minigpt4/models/llava.py @@ -0,0 +1,297 @@ +import logging +import random + +import torch +from torch.cuda.amp import autocast as autocast +import torch.nn as nn + +from minigpt4.common.registry import registry +from minigpt4.models.llava_llama import LlavaLlamaForCausalLM +from minigpt4.models.base_model import BaseModel + +from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig + + +# Model Constants +IGNORE_INDEX = -100 +IMAGE_TOKEN_INDEX = -200 +DEFAULT_IMAGE_TOKEN = "" +DEFAULT_IMAGE_PATCH_TOKEN = "" +DEFAULT_IM_START_TOKEN = "" +DEFAULT_IM_END_TOKEN = "" +NUM_IMAGE_TOKENS = 576 + + +@registry.register_model("llava-1.5") +class LLaVa(BaseModel): + """ + LLaVa-1.5 model. + """ + + PRETRAINED_MODEL_CONFIG_DICT = { + "vicuna7b": "configs/models/llava-1.5_vicuna7b.yaml", + } + + def __init__( + self, + vision_tower=r'openai/clip-vit-large-patch14', + mm_vision_select_layer=-2, + merged_ckpt="", + cache_dir=None, + model_max_length=2048, + shikra_version="v1", + freeze_backbone=False, + mm_use_im_start_end=True, + pretrain_mm_mlp_adapter=None, + tune_mm_mlp_adapter=False, + freeze_mm_mlp_adapter=False, + apply_fsdp=None, + max_txt_len=128, + max_output_txt_len=256, + low_resource=False, # use 8 bit and put vit in cpu + bf16=False, + fp16=True, + system_message="", + load_8bit=False, + load_4bit=False, + device_map="auto", + device="cuda", + ): + super().__init__() + + kwargs = {"device_map": device_map} + self.system_message = system_message + + if load_8bit: + kwargs['load_in_8bit'] = True + elif load_4bit: + kwargs['load_in_4bit'] = True + kwargs['quantization_config'] = BitsAndBytesConfig( + load_in_4bit=True, + bnb_4bit_compute_dtype=torch.float16, + bnb_4bit_use_double_quant=True, + bnb_4bit_quant_type='nf4' + ) + else: + kwargs['torch_dtype'] = torch.float16 + + self.llama_tokenizer = AutoTokenizer.from_pretrained(merged_ckpt, use_fast=False) + self.llama_model = LlavaLlamaForCausalLM.from_pretrained( + merged_ckpt, low_cpu_mem_usage=True, **kwargs) + + mm_use_im_start_end = getattr(self.llama_model.config, "mm_use_im_start_end", False) + mm_use_im_patch_token = getattr(self.llama_model.config, "mm_use_im_patch_token", True) + if mm_use_im_patch_token: + self.llama_tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) + if mm_use_im_start_end: + self.llama_tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) + self.llama_model.resize_token_embeddings(len(self.llama_tokenizer)) + + vision_tower = self.llama_model.get_vision_tower() + if not vision_tower.is_loaded: + vision_tower.load_model() + vision_tower.to(device=device, dtype=torch.float16) + + def maybe_autocast(self, dtype=torch.float16): + # if on cpu, don't use autocast + # if on gpu, use autocast with dtype if provided, otherwise use torch.float16 + enable_autocast = self.device != torch.device("cpu") + + if enable_autocast: + return torch.cuda.amp.autocast(dtype=dtype) + else: + return contextlib.nullcontext() + + def forward(self, samples): + image = samples["image"] + + instruction = samples["prompt"] if "prompt" in samples else None + + bs = image.size(0) + + if isinstance(instruction, str): + instruction = [instruction] * bs + else: + assert len(instruction) == bs, "The number of prompts must be equal to the batch size." + + instruction = [p.replace('', '') for p in instruction] + instruction = [self.system_message + p for p in instruction] + + input_ids = self.tokenizer_image_token(instruction, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() + + ###TODO: targets, attention_mask + with self.maybe_autocast(): + outputs = self.llm_model( + inputs_ids=inputs_ids, + attention_mask=attention_mask, + return_dict=True, + labels=targets, + ) + + loss = outputs.loss + + return {"loss": loss} + + @torch.no_grad() + def generate( + self, + samples, + use_nucleus_sampling=False, + num_beams=5, + max_length=256, + min_length=1, + max_new_tokens=300, + top_p=0.9, + repetition_penalty=1.0, + length_penalty=1, + num_captions=1, + temperature=1, + output_attentions=False, + return_dict_in_generate=False, + # ours + opera_decoding=False, + key_position=None, + scale_factor=1.0, + threshold=1, + num_attn_candidates=5, + penalty_weights=1.0, + ): + self.llama_tokenizer.padding_side = "left" + + image = samples["image"] + + instruction = samples["prompt"] if "prompt" in samples else None + + bs = image.size(0) + + if isinstance(instruction, str): + instruction = [instruction] * bs + else: + assert len(instruction) == bs, "The number of prompts must be equal to the batch size." + + instruction = [self.system_message + p for p in instruction] + + chunks_before, chunks_after = [], [] + for p in instruction: + chunk_before, chunk_after = p.split('') + chunks_before.append(chunk_before) + chunks_after.append(chunk_after) + + tokens_before = self.llama_tokenizer( + chunks_before, + return_tensors="pt", + padding="longest", + add_special_tokens=False + ).to(image.device).input_ids + + tokens_after = self.llama_tokenizer( + chunks_after, + return_tensors="pt", + padding="longest", + add_special_tokens=False + ).to(image.device).input_ids + + bos = torch.ones([bs, 1], + dtype=torch.int64, + device=image.device) * self.llama_tokenizer.bos_token_id + + image_token = torch.ones([bs, 1], + dtype=torch.int64, + device=image.device) * IMAGE_TOKEN_INDEX + + with self.maybe_autocast(): + input_ids = torch.cat([bos, tokens_before, image_token, tokens_after], dim=1) + + if key_position is None: + key_position = { + "image_start": tokens_before.shape[1]+1, + "image_end": tokens_before.shape[1]+NUM_IMAGE_TOKENS, + "response_start": input_ids.shape[1]+NUM_IMAGE_TOKENS-1, + } + + output_ids = self.llama_model.generate( + input_ids=input_ids, + use_cache=True, + do_sample=use_nucleus_sampling, + top_p=top_p, + temperature=temperature, + num_beams=num_beams, + max_new_tokens=max_new_tokens, + # max_length=512, + pad_token_id=self.llama_tokenizer.pad_token_id, + bos_token_id=self.llama_tokenizer.bos_token_id, + eos_token_id=self.llama_tokenizer.eos_token_id, + # repetition_penalty=repetition_penalty, + # length_penalty=length_penalty, + # num_return_sequences=num_captions, + images=image, + output_attentions=output_attentions, + return_dict_in_generate=return_dict_in_generate, + # opera + opera_decoding=opera_decoding, + key_position=key_position, + scale_factor=scale_factor, + threshold=threshold, + num_attn_candidates=num_attn_candidates, + penalty_weights=penalty_weights, + ) + + input_token_len = input_ids.shape[1] + n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item() + if n_diff_input_output > 0: + print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids') + output_text = self.llama_tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True) + output_text = [text.split('###')[0].strip() for text in output_text] + return output_text + + + def embed_tokens(self, token_ids): + if hasattr(self.llama_model.base_model, 'model'): ## lora wrapped model + embeds = self.llama_model.base_model.model.model.embed_tokens(token_ids) + else: + embeds = self.llama_model.base_model.embed_tokens(token_ids) + return embeds + + + @classmethod + def from_config(cls, cfg): + vision_tower = cfg.get("vit_model", r'openai/clip-vit-large-patch14') + mm_vision_select_layer = cfg.get("mm_vision_select_layer", -2) + merged_ckpt = cfg.get("merged_ckpt", "") + cache_dir = cfg.get("cache_dir", None) + model_max_length = cfg.get("model_max_length", 2048) + shikra_version = cfg.get("version", "v1") + freeze_backbone = cfg.get("freeze_backbone", False) + mm_use_im_start_end = cfg.get("mm_use_im_start_end", True) + pretrain_mm_mlp_adapter = cfg.get("pretrain_mm_mlp_adapter", None) + tune_mm_mlp_adapter = cfg.get("tune_mm_mlp_adapter", False) + freeze_mm_mlp_adapter = cfg.get("freeze_mm_mlp_adapter", False) + apply_fsdp = cfg.get("apply_fsdp", None) + max_txt_len = cfg.get("max_txt_len", 128) + max_output_txt_len = cfg.get("max_output_txt_len", 256) + low_resource = cfg.get("low_resource", False) + bf16 = cfg.get("bf16", False) + fp16 = cfg.get("fp16", False) + system_message = cfg.get("system_message", "") + + model = cls( + vision_tower=vision_tower, + mm_vision_select_layer=mm_vision_select_layer, + merged_ckpt=merged_ckpt, + cache_dir=cache_dir, + model_max_length=model_max_length, + shikra_version=shikra_version, + freeze_backbone=freeze_backbone, + mm_use_im_start_end=mm_use_im_start_end, + pretrain_mm_mlp_adapter=pretrain_mm_mlp_adapter, + tune_mm_mlp_adapter=tune_mm_mlp_adapter, + freeze_mm_mlp_adapter=freeze_mm_mlp_adapter, + apply_fsdp=apply_fsdp, + max_txt_len=max_txt_len, + max_output_txt_len=max_output_txt_len, + low_resource=low_resource, # use 8 bit and put vit in cpu + bf16=bf16, fp16=fp16, + system_message=system_message, + ) + + return model diff --git a/OPERA/minigpt4/models/llava_arch.py b/OPERA/minigpt4/models/llava_arch.py new file mode 100644 index 0000000000000000000000000000000000000000..3ba48bcc01e892fe21eee99b1af48fdf858b0bfa --- /dev/null +++ b/OPERA/minigpt4/models/llava_arch.py @@ -0,0 +1,404 @@ +# Copyright 2023 Haotian Liu +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +from abc import ABC, abstractmethod + +import torch +import torch.nn as nn +import re +import os + + + +# Model Constants +IGNORE_INDEX = -100 +IMAGE_TOKEN_INDEX = -200 +DEFAULT_IMAGE_TOKEN = "" +DEFAULT_IMAGE_PATCH_TOKEN = "" +DEFAULT_IM_START_TOKEN = "" +DEFAULT_IM_END_TOKEN = "" + + + + +from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig + + +class CLIPVisionTower(nn.Module): + def __init__(self, vision_tower, args, delay_load=False): + super().__init__() + + self.is_loaded = False + + self.vision_tower_name = vision_tower + self.select_layer = args.mm_vision_select_layer + self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch') + + if not delay_load: + self.load_model() + else: + self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name) + + def load_model(self): + self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name) + self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name) + self.vision_tower.requires_grad_(False) + + self.is_loaded = True + + def feature_select(self, image_forward_outs): + image_features = image_forward_outs.hidden_states[self.select_layer] + if self.select_feature == 'patch': + image_features = image_features[:, 1:] + elif self.select_feature == 'cls_patch': + image_features = image_features + else: + raise ValueError(f'Unexpected select feature: {self.select_feature}') + return image_features + + @torch.no_grad() + def forward(self, images): + if type(images) is list: + image_features = [] + for image in images: + image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True) + image_feature = self.feature_select(image_forward_out).to(image.dtype) + image_features.append(image_feature) + else: + image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True) + image_features = self.feature_select(image_forward_outs).to(images.dtype) + + return image_features + + @property + def dummy_feature(self): + return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) + + @property + def dtype(self): + return self.vision_tower.dtype + + @property + def device(self): + return self.vision_tower.device + + @property + def config(self): + if self.is_loaded: + return self.vision_tower.config + else: + return self.cfg_only + + @property + def hidden_size(self): + return self.config.hidden_size + + @property + def num_patches(self): + return (self.config.image_size // self.config.patch_size) ** 2 + + + +def build_vision_tower(vision_tower_cfg, **kwargs): + vision_tower = getattr(vision_tower_cfg, 'mm_vision_tower', getattr(vision_tower_cfg, 'vision_tower', None)) + is_absolute_path_exists = os.path.exists(vision_tower) + if is_absolute_path_exists or vision_tower.startswith("openai") or vision_tower.startswith("laion"): + return CLIPVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) + + raise ValueError(f'Unknown vision tower: {vision_tower}') + + + + + +class IdentityMap(nn.Module): + def __init__(self): + super().__init__() + + def forward(self, x, *args, **kwargs): + return x + + @property + def config(self): + return {"mm_projector_type": 'identity'} + + +class SimpleResBlock(nn.Module): + def __init__(self, channels): + super().__init__() + self.pre_norm = nn.LayerNorm(channels) + + self.proj = nn.Sequential( + nn.Linear(channels, channels), + nn.GELU(), + nn.Linear(channels, channels) + ) + def forward(self, x): + x = self.pre_norm(x) + return x + self.proj(x) + + +def build_vision_projector(config, delay_load=False, **kwargs): + projector_type = getattr(config, 'mm_projector_type', 'linear') + + if projector_type == 'linear': + return nn.Linear(config.mm_hidden_size, config.hidden_size) + + mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type) + if mlp_gelu_match: + mlp_depth = int(mlp_gelu_match.group(1)) + modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)] + for _ in range(1, mlp_depth): + modules.append(nn.GELU()) + modules.append(nn.Linear(config.hidden_size, config.hidden_size)) + return nn.Sequential(*modules) + + if projector_type == 'identity': + return IdentityMap() + + raise ValueError(f'Unknown projector type: {projector_type}') + + + +class LlavaMetaModel: + + def __init__(self, config): + super(LlavaMetaModel, self).__init__(config) + + if hasattr(config, "mm_vision_tower"): + self.vision_tower = build_vision_tower(config, delay_load=True) + self.mm_projector = build_vision_projector(config) + + def get_vision_tower(self): + vision_tower = getattr(self, 'vision_tower', None) + if type(vision_tower) is list: + vision_tower = vision_tower[0] + return vision_tower + + def initialize_vision_modules(self, model_args, fsdp=None): + vision_tower = model_args.vision_tower + mm_vision_select_layer = model_args.mm_vision_select_layer + mm_vision_select_feature = model_args.mm_vision_select_feature + pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter + + self.config.mm_vision_tower = vision_tower + + if self.get_vision_tower() is None: + vision_tower = build_vision_tower(model_args) + + if fsdp is not None and len(fsdp) > 0: + self.vision_tower = [vision_tower] + else: + self.vision_tower = vision_tower + else: + if fsdp is not None and len(fsdp) > 0: + vision_tower = self.vision_tower[0] + else: + vision_tower = self.vision_tower + vision_tower.load_model() + + self.config.use_mm_proj = True + self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear') + self.config.mm_hidden_size = vision_tower.hidden_size + self.config.mm_vision_select_layer = mm_vision_select_layer + self.config.mm_vision_select_feature = mm_vision_select_feature + + if getattr(self, 'mm_projector', None) is None: + self.mm_projector = build_vision_projector(self.config) + + if pretrain_mm_mlp_adapter is not None: + mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu') + def get_w(weights, keyword): + return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k} + + self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector')) + + +class LlavaMetaForCausalLM(ABC): + + @abstractmethod + def get_model(self): + pass + + def get_vision_tower(self): + return self.get_model().get_vision_tower() + + def encode_images(self, images): + image_features = self.get_model().get_vision_tower()(images) + image_features = self.get_model().mm_projector(image_features) + return image_features + + def prepare_inputs_labels_for_multimodal( + self, input_ids, attention_mask, past_key_values, labels, images + ): + vision_tower = self.get_vision_tower() + if vision_tower is None or images is None or input_ids.shape[1] == 1: + if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1: + attention_mask = torch.ones((attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), dtype=attention_mask.dtype, device=attention_mask.device) + return input_ids, attention_mask, past_key_values, None, labels + + if type(images) is list or images.ndim == 5: + concat_images = torch.cat([image for image in images], dim=0) + image_features = self.encode_images(concat_images) + split_sizes = [image.shape[0] for image in images] + image_features = torch.split(image_features, split_sizes, dim=0) + image_features = [x.flatten(0, 1) for x in image_features] + else: + image_features = self.encode_images(images) + + new_input_embeds = [] + new_labels = [] if labels is not None else None + cur_image_idx = 0 + for batch_idx, cur_input_ids in enumerate(input_ids): + if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0: + # multimodal LLM, but the current sample is not multimodal + # FIXME: this is a hacky fix, for deepspeed zero3 to work + half_len = cur_input_ids.shape[0] // 2 + cur_image_features = image_features[cur_image_idx] + cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids[:half_len]) + cur_input_embeds_2 = self.get_model().embed_tokens(cur_input_ids[half_len:]) + cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0], cur_input_embeds_2], dim=0) + new_input_embeds.append(cur_input_embeds) + if labels is not None: + new_labels.append(labels[batch_idx]) + cur_image_idx += 1 + continue + image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] + cur_new_input_embeds = [] + if labels is not None: + cur_labels = labels[batch_idx] + cur_new_labels = [] + assert cur_labels.shape == cur_input_ids.shape + while image_token_indices.numel() > 0: + cur_image_features = image_features[cur_image_idx] + image_token_start = image_token_indices[0] + if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): + cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start-1]).detach()) + cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_start-1:image_token_start])) + cur_new_input_embeds.append(cur_image_features) + cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_start+1:image_token_start+2])) + if labels is not None: + cur_new_labels.append(cur_labels[:image_token_start]) + cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)) + cur_new_labels.append(cur_labels[image_token_start:image_token_start+1]) + cur_labels = cur_labels[image_token_start+2:] + else: + cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start])) + cur_new_input_embeds.append(cur_image_features) + if labels is not None: + cur_new_labels.append(cur_labels[:image_token_start]) + cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)) + cur_labels = cur_labels[image_token_start+1:] + cur_image_idx += 1 + if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): + cur_input_ids = cur_input_ids[image_token_start+2:] + else: + cur_input_ids = cur_input_ids[image_token_start+1:] + image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] + if cur_input_ids.numel() > 0: + if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): + cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids).detach()) + else: + cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids)) + if labels is not None: + cur_new_labels.append(cur_labels) + cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds] + cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0) + new_input_embeds.append(cur_new_input_embeds) + if labels is not None: + cur_new_labels = torch.cat(cur_new_labels, dim=0) + new_labels.append(cur_new_labels) + + if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds): + max_len = max(x.shape[0] for x in new_input_embeds) + + new_input_embeds_align = [] + for cur_new_embed in new_input_embeds: + cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0) + new_input_embeds_align.append(cur_new_embed) + new_input_embeds = torch.stack(new_input_embeds_align, dim=0) + + if labels is not None: + new_labels_align = [] + _new_labels = new_labels + for cur_new_label in new_labels: + cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0) + new_labels_align.append(cur_new_label) + new_labels = torch.stack(new_labels_align, dim=0) + + if attention_mask is not None: + new_attention_mask = [] + for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, new_labels): + new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device) + new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device) + cur_new_attention_mask = torch.cat((new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0) + new_attention_mask.append(cur_new_attention_mask) + attention_mask = torch.stack(new_attention_mask, dim=0) + assert attention_mask.shape == new_labels.shape + else: + new_input_embeds = torch.stack(new_input_embeds, dim=0) + if labels is not None: + new_labels = torch.stack(new_labels, dim=0) + + if attention_mask is not None: + new_attn_mask_pad_left = torch.full((attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, dtype=attention_mask.dtype, device=attention_mask.device) + attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1) + assert attention_mask.shape == new_input_embeds.shape[:2] + + return None, attention_mask, past_key_values, new_input_embeds, new_labels + + def initialize_vision_tokenizer(self, model_args, tokenizer): + if model_args.mm_use_im_patch_token: + tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) + self.resize_token_embeddings(len(tokenizer)) + + if model_args.mm_use_im_start_end: + num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) + self.resize_token_embeddings(len(tokenizer)) + + if num_new_tokens > 0: + input_embeddings = self.get_input_embeddings().weight.data + output_embeddings = self.get_output_embeddings().weight.data + + input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( + dim=0, keepdim=True) + output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( + dim=0, keepdim=True) + + input_embeddings[-num_new_tokens:] = input_embeddings_avg + output_embeddings[-num_new_tokens:] = output_embeddings_avg + + if model_args.tune_mm_mlp_adapter: + for p in self.get_input_embeddings().parameters(): + p.requires_grad = True + for p in self.get_output_embeddings().parameters(): + p.requires_grad = False + + if model_args.pretrain_mm_mlp_adapter: + mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu') + embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight'] + assert num_new_tokens == 2 + if input_embeddings.shape == embed_tokens_weight.shape: + input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:] + elif embed_tokens_weight.shape[0] == num_new_tokens: + input_embeddings[-num_new_tokens:] = embed_tokens_weight + else: + raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.") + elif model_args.mm_use_im_patch_token: + if model_args.tune_mm_mlp_adapter: + for p in self.get_input_embeddings().parameters(): + p.requires_grad = False + for p in self.get_output_embeddings().parameters(): + p.requires_grad = False diff --git a/OPERA/minigpt4/models/llava_llama.py b/OPERA/minigpt4/models/llava_llama.py new file mode 100644 index 0000000000000000000000000000000000000000..280598a91b76b482242119071271bd86133df531 --- /dev/null +++ b/OPERA/minigpt4/models/llava_llama.py @@ -0,0 +1,140 @@ +# Copyright 2023 Haotian Liu +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +from typing import List, Optional, Tuple, Union + +import torch +import torch.nn as nn +from torch.nn import CrossEntropyLoss + +from transformers import AutoConfig, AutoModelForCausalLM, \ + LlamaConfig, LlamaModel, LlamaForCausalLM + +from transformers.modeling_outputs import CausalLMOutputWithPast + +from minigpt4.models.llava_arch import LlavaMetaModel, LlavaMetaForCausalLM + + +class LlavaConfig(LlamaConfig): + model_type = "llava" + + +class LlavaLlamaModel(LlavaMetaModel, LlamaModel): + config_class = LlavaConfig + + def __init__(self, config: LlamaConfig): + super(LlavaLlamaModel, self).__init__(config) + + +class LlavaLlamaForCausalLM(LlamaForCausalLM, LlavaMetaForCausalLM): + config_class = LlavaConfig + + def __init__(self, config): + super(LlamaForCausalLM, self).__init__(config) + self.model = LlavaLlamaModel(config) + + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_model(self): + return self.model + + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + images: Optional[torch.FloatTensor] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CausalLMOutputWithPast]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + input_ids, attention_mask, past_key_values, inputs_embeds, labels = self.prepare_inputs_labels_for_multimodal(input_ids, attention_mask, past_key_values, labels, images) + + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + outputs = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict + ) + + hidden_states = outputs[0] + logits = self.lm_head(hidden_states) + + loss = None + if labels is not None: + # Shift so that tokens < n predict n + shift_logits = logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss() + shift_logits = shift_logits.view(-1, self.config.vocab_size) + shift_labels = shift_labels.view(-1) + # Enable model/pipeline parallelism + shift_labels = shift_labels.to(shift_logits.device) + loss = loss_fct(shift_logits, shift_labels) + + if not return_dict: + output = (logits,) + outputs[1:] + return (loss,) + output if loss is not None else output + + return CausalLMOutputWithPast( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def prepare_inputs_for_generation( + self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs + ): + if past_key_values: + input_ids = input_ids[:, -1:] + + # if `inputs_embeds` are passed, we only want to use them in the 1st generation step + if inputs_embeds is not None and past_key_values is None: + model_inputs = {"inputs_embeds": inputs_embeds} + else: + model_inputs = {"input_ids": input_ids} + + model_inputs.update( + { + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache"), + "attention_mask": attention_mask, + "images": kwargs.get("images", None), + } + ) + return model_inputs + +AutoConfig.register("llava", LlavaConfig) +AutoModelForCausalLM.register(LlavaConfig, LlavaLlamaForCausalLM) diff --git a/OPERA/minigpt4/models/mini_gpt4.py b/OPERA/minigpt4/models/mini_gpt4.py new file mode 100644 index 0000000000000000000000000000000000000000..9784926085aae4dc3075cc4083e00148188faac9 --- /dev/null +++ b/OPERA/minigpt4/models/mini_gpt4.py @@ -0,0 +1,474 @@ +import logging +import random + +import torch +from torch.cuda.amp import autocast as autocast +import torch.nn as nn + +from minigpt4.common.registry import registry +from minigpt4.models.blip2 import Blip2Base, disabled_train +from minigpt4.models.modeling_llama import LlamaForCausalLM +from transformers import LlamaTokenizer + +# from peft import ( +# LoraConfig, +# get_peft_model, +# get_peft_model_state_dict, +# prepare_model_for_int8_training, +# set_peft_model_state_dict, +# ) + + +@registry.register_model("mini_gpt4") +class MiniGPT4(Blip2Base): + """ + BLIP2 GPT-LLAMA model. + """ + + PRETRAINED_MODEL_CONFIG_DICT = { + "pretrain_vicuna0": "configs/models/minigpt4_vicuna0.yaml", + "pretrain_llama2": "configs/models/minigpt4_llama2.yaml", + } + + def __init__( + self, + vit_model="eva_clip_g", + q_former_model="https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth", + img_size=224, + drop_path_rate=0, + use_grad_checkpoint=False, + vit_precision="fp16", + freeze_vit=True, + has_qformer=True, + freeze_qformer=True, + num_query_token=32, + llama_model="", + prompt_path="", + prompt_template="", + max_txt_len=32, + end_sym='\n', + low_resource=False, # use 8 bit and put vit in cpu + device_8bit=0, # the device of 8bit model should be set when loading and cannot be changed anymore. + lora_r=0, + lora_target_modules=["q_proj", "v_proj"], + lora_alpha=16, + lora_dropout=0.05, + ): + super().__init__() + + self.tokenizer = self.init_tokenizer() + self.low_resource = low_resource + + print('Loading VIT') + self.visual_encoder, self.ln_vision = self.init_vision_encoder( + vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision + ) + if freeze_vit: + for name, param in self.visual_encoder.named_parameters(): + param.requires_grad = False + self.visual_encoder = self.visual_encoder.eval() + self.visual_encoder.train = disabled_train + for name, param in self.ln_vision.named_parameters(): + param.requires_grad = False + self.ln_vision = self.ln_vision.eval() + self.ln_vision.train = disabled_train + logging.info("freeze vision encoder") + print('Loading VIT Done') + + self.has_qformer = has_qformer + if self.has_qformer: + print('Loading Q-Former') + self.Qformer, self.query_tokens = self.init_Qformer( + num_query_token, self.visual_encoder.num_features + ) + self.Qformer.cls = None + self.Qformer.bert.embeddings.word_embeddings = None + self.Qformer.bert.embeddings.position_embeddings = None + for layer in self.Qformer.bert.encoder.layer: + layer.output = None + layer.intermediate = None + self.load_from_pretrained(url_or_filename=q_former_model) + + if freeze_qformer: + for name, param in self.Qformer.named_parameters(): + param.requires_grad = False + self.Qformer = self.Qformer.eval() + self.Qformer.train = disabled_train + self.query_tokens.requires_grad = False + logging.info("freeze Qformer") + + img_f_dim = self.Qformer.config.hidden_size + print('Loading Q-Former Done') + else: + img_f_dim = self.visual_encoder.num_features * 4 + print('Do not use Q-Former here.') + + print('Loading LLAMA') + self.llama_tokenizer = LlamaTokenizer.from_pretrained(llama_model, use_fast=False) + self.llama_tokenizer.pad_token = "$$" + + if self.low_resource: + self.llama_model = LlamaForCausalLM.from_pretrained( + llama_model, + torch_dtype=torch.float16, + load_in_8bit=True, + device_map={'': device_8bit} + ) + else: + self.llama_model = LlamaForCausalLM.from_pretrained( + llama_model, + torch_dtype=torch.float16, + ) + + if lora_r > 0: + self.llama_model = prepare_model_for_int8_training(self.llama_model) + loraconfig = LoraConfig( + r=lora_r, + lora_alpha=lora_alpha, + target_modules=lora_target_modules, + lora_dropout=lora_dropout, + bias="none", + task_type="CAUSAL_LM" + ) + self.llama_model = get_peft_model(self.llama_model, loraconfig) + + # if ckpt_path: + # print('load the llm under lora') + # ckpt = torch.load(ckpt_path) + # set_peft_model_state_dict(self.llama_model,ckpt) + self.llama_model.print_trainable_parameters() + + else: + for name, param in self.llama_model.named_parameters(): + param.requires_grad = False + print('Loading LLAMA Done') + + self.llama_proj = nn.Linear( + img_f_dim, self.llama_model.config.hidden_size + ) + self.max_txt_len = max_txt_len + self.end_sym = end_sym + + if prompt_path: + with open(prompt_path, 'r') as f: + raw_prompts = f.read().splitlines() + filted_prompts = [raw_prompt for raw_prompt in raw_prompts if "" in raw_prompt] + self.prompt_list = [prompt_template.format(p) for p in filted_prompts] + print('Load {} training prompts'.format(len(self.prompt_list))) + print('Prompt Example \n{}'.format(random.choice(self.prompt_list))) + else: + self.prompt_list = [] + + def vit_to_cpu(self): + self.ln_vision.to("cpu") + self.ln_vision.float() + self.visual_encoder.to("cpu") + self.visual_encoder.float() + + def encode_img(self, image): + device = image.device + if self.low_resource: + self.vit_to_cpu() + image = image.to("cpu") + + with self.maybe_autocast(): + image_embeds = self.ln_vision(self.visual_encoder(image)).to(device) + if self.has_qformer: + image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(device) + + query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1) + query_output = self.Qformer.bert( + query_embeds=query_tokens, + encoder_hidden_states=image_embeds, + encoder_attention_mask=image_atts, + return_dict=True, + ) + + inputs_llama = self.llama_proj(query_output.last_hidden_state) + else: + image_embeds = image_embeds[:, 1:, :] + bs, pn, hs = image_embeds.shape + image_embeds = image_embeds.view(bs, int(pn / 4), int(hs * 4)) + + inputs_llama = self.llama_proj(image_embeds) + atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(image.device) + return inputs_llama, atts_llama + + def get_context_emb(self, prompt, img_list): + device = img_list[0].device + prompt_segs = prompt.split('') + assert len(prompt_segs) == len(img_list) + 1, "Unmatched numbers of image placeholders and images." + seg_tokens = [ + self.llama_tokenizer( + seg, return_tensors="pt", add_special_tokens=i == 0).to(device).input_ids + # only add bos to the first seg + for i, seg in enumerate(prompt_segs) + ] + seg_embs = [self.embed_tokens(seg_t) for seg_t in seg_tokens] + + mixed_embs = [emb for pair in zip(seg_embs[:-1], img_list) for emb in pair] + [seg_embs[-1]] + mixed_embs = torch.cat(mixed_embs, dim=1) + return mixed_embs + + def prompt_wrap(self, img_embeds, atts_img, prompts): + if prompts: + emb_lists = [] + if isinstance(prompts, str): + prompts = [prompts] * len(img_embeds) + + for each_img_embed, each_prompt in zip(img_embeds, prompts): + p_before, p_after = each_prompt.split('') + + p_before_tokens = self.llama_tokenizer( + p_before, return_tensors="pt", add_special_tokens=False).to(img_embeds.device) + p_after_tokens = self.llama_tokenizer( + p_after, return_tensors="pt", add_special_tokens=False).to(img_embeds.device) + p_before_embed = self.embed_tokens(p_before_tokens.input_ids) + p_after_embed = self.embed_tokens(p_after_tokens.input_ids) + wrapped_emb = torch.cat([p_before_embed, each_img_embed[None], p_after_embed], dim=1) + emb_lists.append(wrapped_emb) + emb_lens = [emb.shape[1] for emb in emb_lists] + pad_emb = self.embed_tokens(torch.tensor(self.llama_tokenizer.pad_token_id, device=img_embeds.device)) + wrapped_embs = pad_emb.expand(len(emb_lens), max(emb_lens), -1).clone() + wrapped_atts = torch.zeros([len(emb_lens), max(emb_lens)], dtype=torch.int, device=img_embeds.device) + if self.llama_tokenizer.padding_side == "right": + for i, emb in enumerate(emb_lists): + wrapped_embs[i, :emb_lens[i]] = emb + wrapped_atts[i, :emb_lens[i]] = 1 + else: + for i, emb in enumerate(emb_lists): + wrapped_embs[i, -emb_lens[i]:] = emb + wrapped_atts[i, -emb_lens[i]:] = 1 + return wrapped_embs, wrapped_atts, p_before_embed.shape[1] + else: + return img_embeds, atts_img, 1 + + def concat_emb_input_output(self, input_embs, input_atts, output_embs, output_atts): + input_lens = [] + cat_embs = [] + cat_atts = [] + for i in range(input_embs.size(0)): + input_len = input_atts[i].sum() + input_lens.append(input_len) + cat_embs.append( + torch.cat([ + input_embs[i][:input_len], + output_embs[i], + input_embs[i][input_len:] + ]) + ) + cat_atts.append( + torch.cat([ + input_atts[i][:input_len], + output_atts[i], + input_atts[i][input_len:] + ]) + ) + cat_embs = torch.stack(cat_embs) + cat_atts = torch.stack(cat_atts) + return cat_embs, cat_atts, input_lens + + def forward(self, samples): + image = samples["image"] + img_embeds, atts_img = self.encode_img(image) + + if self.prompt_list: + instruction = random.choice(self.prompt_list) + else: + instruction = samples["instruction_input"] if "instruction_input" in samples else None + + img_embeds, atts_img = self.prompt_wrap(img_embeds, atts_img, instruction) + + self.llama_tokenizer.padding_side = "right" + text = [t + self.end_sym for t in samples["answer"]] + + to_regress_tokens = self.llama_tokenizer( + text, + return_tensors="pt", + padding="longest", + truncation=True, + max_length=self.max_txt_len, + add_special_tokens=False + ).to(image.device) + + batch_size = img_embeds.shape[0] + bos = torch.ones([batch_size, 1], + dtype=to_regress_tokens.input_ids.dtype, + device=to_regress_tokens.input_ids.device) * self.llama_tokenizer.bos_token_id + bos_embeds = self.embed_tokens(bos) + atts_bos = atts_img[:, :1] + + to_regress_embeds = self.embed_tokens(to_regress_tokens.input_ids) + inputs_embeds, attention_mask, input_lens = \ + self.concat_emb_input_output(img_embeds, atts_img, to_regress_embeds, to_regress_tokens.attention_mask) + inputs_embeds = torch.cat([bos_embeds, inputs_embeds], dim=1) + attention_mask = torch.cat([atts_bos, attention_mask], dim=1) + + part_targets = to_regress_tokens.input_ids.masked_fill( + to_regress_tokens.input_ids == self.llama_tokenizer.pad_token_id, -100 + ) + targets = ( + torch.ones([inputs_embeds.shape[0], inputs_embeds.shape[1]], + dtype=torch.long).to(image.device).fill_(-100) + ) + + for i, target in enumerate(part_targets): + targets[i, input_lens[i] + 1:input_lens[i] + len(target) + 1] = target # plus 1 for bos + + with self.maybe_autocast(): + outputs = self.llama_model( + inputs_embeds=inputs_embeds, + attention_mask=attention_mask, + return_dict=True, + labels=targets, + ) + loss = outputs.loss + + return {"loss": loss} + + @torch.no_grad() + def generate( + self, + samples, + use_nucleus_sampling=False, + num_beams=5, + max_length=256, + min_length=1, + max_new_tokens=300, + top_p=0.9, + repetition_penalty=1.0, + length_penalty=1, + num_captions=1, + temperature=1, + output_attentions=False, + return_dict_in_generate=False, + # ours + opera_decoding=False, + key_position=None, + scale_factor=1.0, + threshold=1, + num_attn_candidates=5, + penalty_weights=1.0, + ): + self.llama_tokenizer.padding_side = "left" + + image = samples["image"] + img_embeds, atts_img = self.encode_img(image) + + if self.prompt_list: + instruction = random.choice(self.prompt_list) + else: + instruction = samples["prompt"] if "prompt" in samples else None # e.g., prompt = [" Is there a dog?", " Is there a cat?", ...] + + inputs_embeds, attention_mask, img_start_pos = self.prompt_wrap(img_embeds, atts_img, instruction) + + batch_size = img_embeds.shape[0] + bos = torch.ones([batch_size, 1], + dtype=torch.int64, + device=inputs_embeds.device) * self.llama_tokenizer.bos_token_id + bos_embeds = self.embed_tokens(bos) + atts_bos = attention_mask[:, :1] + + with self.maybe_autocast(): + inputs_embeds = torch.cat([bos_embeds, inputs_embeds], dim=1) + attention_mask = torch.cat([atts_bos, attention_mask], dim=1) + + if key_position is None: + key_position = { + "image_start": img_start_pos+1, + "image_end": img_start_pos+img_embeds.shape[1], + "response_start": inputs_embeds.shape[1] + } + + outputs = self.llama_model.generate( + inputs_embeds=inputs_embeds, + attention_mask=attention_mask, + do_sample=use_nucleus_sampling, + top_p=top_p, + temperature=temperature, + num_beams=num_beams, + # max_length=max_length, + max_new_tokens=max_new_tokens, + min_length=min_length, + # eos_token_id=self.eos_token_id, + repetition_penalty=repetition_penalty, + length_penalty=length_penalty, + num_return_sequences=num_captions, + output_attentions=output_attentions, + return_dict_in_generate=return_dict_in_generate, + # opera + opera_decoding=opera_decoding, + key_position=key_position, + scale_factor=scale_factor, + threshold=threshold, + num_attn_candidates=num_attn_candidates, + penalty_weights=penalty_weights, + ) + + outputs[outputs == 0] = 2 # convert output id 0 to 2 (eos_token_id) + outputs[outputs == 1] = 2 # convert output id 1 to 2 (eos_token_id) + output_text = self.llama_tokenizer.batch_decode(outputs, skip_special_tokens=True) + output_text = [text.split('###')[0].split('Assistant:')[-1].strip() for text in output_text] + return output_text + + def embed_tokens(self, token_ids): + if hasattr(self.llama_model.base_model, 'model'): ## lora wrapped model + embeds = self.llama_model.base_model.model.model.embed_tokens(token_ids) + else: + embeds = self.llama_model.base_model.embed_tokens(token_ids) + return embeds + + @classmethod + def from_config(cls, cfg): + vit_model = cfg.get("vit_model", "eva_clip_g") + q_former_model = cfg.get("q_former_model", "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth") + img_size = cfg.get("image_size") + num_query_token = cfg.get("num_query_token") + llama_model = cfg.get("llama_model") + + drop_path_rate = cfg.get("drop_path_rate", 0) + use_grad_checkpoint = cfg.get("use_grad_checkpoint", False) + vit_precision = cfg.get("vit_precision", "fp16") + freeze_vit = cfg.get("freeze_vit", True) + has_qformer = cfg.get("has_qformer", True) + freeze_qformer = cfg.get("freeze_qformer", True) + low_resource = cfg.get("low_resource", False) + device_8bit = cfg.get("device_8bit", 0) + + prompt_path = cfg.get("prompt_path", "") + prompt_template = cfg.get("prompt_template", "") + max_txt_len = cfg.get("max_txt_len", 32) + end_sym = cfg.get("end_sym", '\n') + + lora_r = cfg.get("lora_r", 0) + lora_alpha = cfg.get("lora_alpha", 32) + + model = cls( + vit_model=vit_model, + q_former_model=q_former_model, + img_size=img_size, + drop_path_rate=drop_path_rate, + use_grad_checkpoint=use_grad_checkpoint, + vit_precision=vit_precision, + freeze_vit=freeze_vit, + has_qformer=has_qformer, + freeze_qformer=freeze_qformer, + num_query_token=num_query_token, + llama_model=llama_model, + prompt_path=prompt_path, + prompt_template=prompt_template, + max_txt_len=max_txt_len, + end_sym=end_sym, + low_resource=low_resource, + device_8bit=device_8bit, + lora_r=lora_r, + lora_alpha=lora_alpha, + ) + + ckpt_path = cfg.get("ckpt", "") # load weights of MiniGPT-4 + if ckpt_path: + print("Load BLIP2-LLM Checkpoint: {}".format(ckpt_path)) + ckpt = torch.load(ckpt_path, map_location="cpu") + msg = model.load_state_dict(ckpt['model'], strict=False) + + return model diff --git a/OPERA/minigpt4/models/modeling_llama.py b/OPERA/minigpt4/models/modeling_llama.py new file mode 100644 index 0000000000000000000000000000000000000000..bb01cb41e1a9559c111876ba7ff0772b6f6b7a24 --- /dev/null +++ b/OPERA/minigpt4/models/modeling_llama.py @@ -0,0 +1,758 @@ +# This script is based on https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py + +""" PyTorch LLaMA model.""" +import math +from typing import List, Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from transformers.activations import ACT2FN +from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast +from transformers.modeling_utils import PreTrainedModel +from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings +from transformers.models.llama.configuration_llama import LlamaConfig + + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "LlamaConfig" + + +# Copied from transformers.models.bart.modeling_bart._make_causal_mask +def _make_causal_mask( + input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 +): + """ + Make causal mask used for bi-directional self-attention. + """ + bsz, tgt_len = input_ids_shape + mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device) + mask_cond = torch.arange(mask.size(-1), device=device) + mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) + mask = mask.to(dtype) + + if past_key_values_length > 0: + mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) + return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) + + +# Copied from transformers.models.bart.modeling_bart._expand_mask +def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): + """ + Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. + """ + bsz, src_len = mask.size() + tgt_len = tgt_len if tgt_len is not None else src_len + + expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) + + inverted_mask = 1.0 - expanded_mask + + return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) + + +class LlamaRMSNorm(nn.Module): + def __init__(self, hidden_size, eps=1e-6): + """ + LlamaRMSNorm is equivalent to T5LayerNorm + """ + super().__init__() + self.weight = nn.Parameter(torch.ones(hidden_size)) + self.variance_epsilon = eps + + def forward(self, hidden_states): + variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) + hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) + + # convert into half-precision if necessary + if self.weight.dtype in [torch.float16, torch.bfloat16]: + hidden_states = hidden_states.to(self.weight.dtype) + + return self.weight * hidden_states + + +class LlamaRotaryEmbedding(torch.nn.Module): + def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): + super().__init__() + inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim)) + self.register_buffer("inv_freq", inv_freq) + + # Build here to make `torch.jit.trace` work. + self.max_seq_len_cached = max_position_embeddings + t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype) + freqs = torch.einsum("i,j->ij", t, self.inv_freq) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False) + self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False) + + def forward(self, x, seq_len=None): + # x: [bs, num_attention_heads, seq_len, head_size] + # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case. + if seq_len > self.max_seq_len_cached: + self.max_seq_len_cached = seq_len + t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype) + freqs = torch.einsum("i,j->ij", t, self.inv_freq) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1).to(x.device) + self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False) + self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False) + return ( + self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), + self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype), + ) + + +def rotate_half(x): + """Rotates half the hidden dims of the input.""" + x1 = x[..., : x.shape[-1] // 2] + x2 = x[..., x.shape[-1] // 2 :] + return torch.cat((-x2, x1), dim=-1) + + +def apply_rotary_pos_emb(q, k, cos, sin, position_ids): + gather_indices = position_ids[:, None, :, None] # [bs, 1, seq_len, 1] + gather_indices = gather_indices.repeat(1, cos.shape[1], 1, cos.shape[3]) + cos = torch.gather(cos.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices) + sin = torch.gather(sin.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices) + q_embed = (q * cos) + (rotate_half(q) * sin) + k_embed = (k * cos) + (rotate_half(k) * sin) + return q_embed, k_embed + + +class LlamaMLP(nn.Module): + def __init__( + self, + hidden_size: int, + intermediate_size: int, + hidden_act: str, + ): + super().__init__() + self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False) + self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False) + self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False) + self.act_fn = ACT2FN[hidden_act] + + def forward(self, x): + return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) + + +class LlamaAttention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__(self, config: LlamaConfig): + super().__init__() + self.config = config + self.hidden_size = config.hidden_size + self.num_heads = config.num_attention_heads + self.head_dim = self.hidden_size // self.num_heads + self.max_position_embeddings = config.max_position_embeddings + + if (self.head_dim * self.num_heads) != self.hidden_size: + raise ValueError( + f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" + f" and `num_heads`: {self.num_heads})." + ) + self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) + self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) + self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) + self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) + self.rotary_emb = LlamaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings) + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: bool = False, + use_cache: bool = False, + layer_idx: int = -1, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + bsz, q_len, _ = hidden_states.size() + + query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) + key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) + value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) + + kv_seq_len = key_states.shape[-2] + if past_key_value is not None: + kv_seq_len += past_key_value[0].shape[-2] + cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) + query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) + # [bsz, nh, t, hd] + + if past_key_value is not None: + # reuse k, v, self_attention + key_states = torch.cat([past_key_value[0], key_states], dim=2) + value_states = torch.cat([past_key_value[1], value_states], dim=2) + + past_key_value = (key_states, value_states) if use_cache else None + + attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) + + if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): + raise ValueError( + f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is" + f" {attn_weights.size()}" + ) + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" + ) + attn_weights = attn_weights + attention_mask + attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)) + + attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) + attn_output = torch.matmul(attn_weights, value_states) + + if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.transpose(1, 2) + attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) + + attn_output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value + + +class LlamaDecoderLayer(nn.Module): + def __init__(self, config: LlamaConfig): + super().__init__() + self.hidden_size = config.hidden_size + self.self_attn = LlamaAttention(config=config) + self.mlp = LlamaMLP( + hidden_size=self.hidden_size, + intermediate_size=config.intermediate_size, + hidden_act=config.hidden_act, + ) + self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: Optional[bool] = False, + use_cache: Optional[bool] = False, + layer_idx: Optional[int] = -1, + ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`, *optional*): attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding + (see `past_key_values`). + past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states + """ + + residual = hidden_states + + hidden_states = self.input_layernorm(hidden_states) + + # Self Attention + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + layer_idx=layer_idx, + ) + hidden_states = residual + hidden_states + + # Fully Connected + residual = hidden_states + hidden_states = self.post_attention_layernorm(hidden_states) + hidden_states = self.mlp(hidden_states) + hidden_states = residual + hidden_states + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights,) + + if use_cache: + outputs += (present_key_value,) + + return outputs + + +LLAMA_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`LlamaConfig`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +@add_start_docstrings( + "The bare LLaMA Model outputting raw hidden-states without any specific head on top.", + LLAMA_START_DOCSTRING, +) +class LlamaPreTrainedModel(PreTrainedModel): + config_class = LlamaConfig + base_model_prefix = "model" + supports_gradient_checkpointing = True + _no_split_modules = ["LlamaDecoderLayer"] + _keys_to_ignore_on_load_unexpected = [r"decoder\.version"] + + def _init_weights(self, module): + std = self.config.initializer_range + if isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + def _set_gradient_checkpointing(self, module, value=False): + if isinstance(module, LlamaModel): + module.gradient_checkpointing = value + + +LLAMA_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see + `past_key_values`). + + If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] + and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more + information on the default strategy. + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.n_positions - 1]`. + + [What are position IDs?](../glossary#position-ids) + past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape + `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape + `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. + + Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention + blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare LLaMA Model outputting raw hidden-states without any specific head on top.", + LLAMA_START_DOCSTRING, +) +class LlamaModel(LlamaPreTrainedModel): + """ + Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`] +layer_idx + Args: + config: LlamaConfig + """ + + def __init__(self, config: LlamaConfig): + super().__init__(config) + self.padding_idx = config.pad_token_id + self.vocab_size = config.vocab_size + + self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) + self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)]) + self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + + self.gradient_checkpointing = False + # Initialize weights and apply final procesquery_embedssing + self.post_init() + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, value): + self.embed_tokens = value + + # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask + def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): + # create causal mask + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + combined_attention_mask = None + if input_shape[-1] > 1: + combined_attention_mask = _make_causal_mask( + input_shape, + inputs_embeds.dtype, + device=inputs_embeds.device, + past_key_values_length=past_key_values_length, + ) + + if attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to( + inputs_embeds.device + ) + combined_attention_mask = ( + expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask + ) + + return combined_attention_mask + + @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + query_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPast]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # retrieve input_ids and inputs_embeds + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") + elif input_ids is not None: + batch_size, seq_length = input_ids.shape + elif inputs_embeds is not None: + batch_size, seq_length, _ = inputs_embeds.shape + else: + raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) + if query_embeds is not None: + inputs_embeds = torch.cat([query_embeds, inputs_embeds], dim=1) + batch_size, seq_length, _ = inputs_embeds.shape + + seq_length_with_past = seq_length + past_key_values_length = 0 + + if past_key_values is not None: + past_key_values_length = past_key_values[0][0].shape[2] + seq_length_with_past = seq_length_with_past + past_key_values_length + + if position_ids is None: + device = input_ids.device if input_ids is not None else inputs_embeds.device + position_ids = torch.arange( + past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device + ) + position_ids = position_ids.unsqueeze(0).view(-1, seq_length) + else: + position_ids = position_ids.view(-1, seq_length).long() + + # embed positions + if attention_mask is None: + attention_mask = torch.ones( + (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device + ) + attention_mask = self._prepare_decoder_attention_mask( + attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length + ) + + hidden_states = inputs_embeds + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + next_decoder_cache = () if use_cache else None + + for idx, decoder_layer in enumerate(self.layers): + if output_hidden_states: + all_hidden_states += (hidden_states,) + + past_key_value = past_key_values[idx] if past_key_values is not None else None + + if self.gradient_checkpointing and self.training: + + def create_custom_forward(module): + def custom_forward(*inputs): + # None for past_key_value + return module(*inputs, output_attentions, None) + + return custom_forward + + layer_outputs = torch.utils.checkpoint.checkpoint( + create_custom_forward(decoder_layer), + hidden_states, + attention_mask, + position_ids, + None, + ) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + layer_idx=idx, + ) + + hidden_states = layer_outputs[0] + + if use_cache: + next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) + + if output_attentions: + all_self_attns += (layer_outputs[1],) + + hidden_states = self.norm(hidden_states) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + next_cache = next_decoder_cache if use_cache else None + if not return_dict: + return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) + return BaseModelOutputWithPast( + last_hidden_state=hidden_states, + past_key_values=next_cache, + hidden_states=all_hidden_states, + attentions=all_self_attns, + ) + + +class LlamaForCausalLM(LlamaPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.model = LlamaModel(config) + + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.embed_tokens + + def set_input_embeddings(self, value): + self.model.embed_tokens = value + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def set_decoder(self, decoder): + self.model = decoder + + def get_decoder(self): + return self.model + + @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + query_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CausalLMOutputWithPast]: + r""" + Args: + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, LlamaForCausalLM + + >>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) + >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) + + >>> prompt = "Hey, are you consciours? Can you talk to me?" + >>> inputs = tokenizer(prompt, return_tensors="pt") + + >>> # Generate + >>> generate_ids = model.generate(inputs.input_ids, max_length=30) + >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] + "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you." + ```""" + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + outputs = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + query_embeds=query_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + logits = self.lm_head(hidden_states) + + loss = None + if labels is not None: + # Shift so that tokens < n predict n + shift_logits = logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss() + shift_logits = shift_logits.view(-1, self.config.vocab_size) + shift_labels = shift_labels.view(-1) + # Enable model parallelism + shift_labels = shift_labels.to(shift_logits.device) + loss = loss_fct(shift_logits, shift_labels) + + if not return_dict: + output = (logits,) + outputs[1:] + return (loss,) + output if loss is not None else output + + return CausalLMOutputWithPast( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def prepare_inputs_for_generation( + self, input_ids, query_embeds=None, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs + ): + if past_key_values: + input_ids = input_ids[:, -1:] + + position_ids = kwargs.get("position_ids", None) + if attention_mask is not None and position_ids is None: + # create position_ids on the fly for batch generation + position_ids = attention_mask.long().cumsum(-1) - 1 + position_ids.masked_fill_(attention_mask == 0, 1) + if past_key_values: + position_ids = position_ids[:, -1].unsqueeze(-1) + query_embeds = None + + # if `inputs_embeds` are passed, we only want to use them in the 1st generation step + if inputs_embeds is not None and past_key_values is None: + model_inputs = {"inputs_embeds": inputs_embeds} + else: + model_inputs = {"input_ids": input_ids} + + model_inputs.update( + { + "position_ids": position_ids, + "query_embeds": query_embeds, + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache"), + "attention_mask": attention_mask, + } + ) + return model_inputs + + @staticmethod + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) + return reordered_past + diff --git a/OPERA/minigpt4/models/modeling_shikra.py b/OPERA/minigpt4/models/modeling_shikra.py new file mode 100644 index 0000000000000000000000000000000000000000..83574624eb71474b2242d151512a5f1b6edca7d6 --- /dev/null +++ b/OPERA/minigpt4/models/modeling_shikra.py @@ -0,0 +1,429 @@ +from typing import List, Optional, Tuple, Union + +import torch +import torch.nn as nn +from torch.nn import CrossEntropyLoss + +from transformers import LlamaConfig, LlamaModel, LlamaForCausalLM, CLIPVisionModel, CLIPImageProcessor + +from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast + +from minigpt4.models.base_model import BaseModel + + + + +IGNORE_INDEX = -100 +# DEFAULT_IMAGE_TOKEN = IMAGE_PLACEHOLDER +DEFAULT_IMAGE_PATCH_TOKEN = "" +DEFAULT_IM_START_TOKEN = "" +DEFAULT_IM_END_TOKEN = "" + +DEFAULT_PAD_TOKEN = "[PAD]" +DEFAULT_EOS_TOKEN = "" +DEFAULT_BOS_TOKEN = "" +DEFAULT_UNK_TOKEN = "" + + + + +class ShikraConfig(LlamaConfig): + model_type = "shikra" + + +class ShikraLlamaModel(LlamaModel): + config_class = ShikraConfig + + def __init__(self, config: LlamaConfig, mm_vision_tower=None, mm_hidden_size=None): + super(ShikraLlamaModel, self).__init__(config) + + if hasattr(config, "mm_vision_tower"): + # HACK: for FSDP + self.vision_tower = [CLIPVisionModel.from_pretrained(config.mm_vision_tower)] + # self.vision_tower = CLIPVisionModel.from_pretrained(config.mm_vision_tower) + + if hasattr(config, "use_mm_proj"): + self.mm_projector = nn.Linear(config.mm_hidden_size, config.hidden_size) + + def initialize_vision_modules(self, vision_tower, mm_vision_select_layer, + pretrain_mm_mlp_adapter=None, tune_mm_mlp_adapter=False): + self.config.mm_vision_tower = vision_tower + + # image_processor = CLIPImageProcessor.from_pretrained(vision_tower) + + if not hasattr(self, 'vision_tower'): + vision_tower = CLIPVisionModel.from_pretrained(vision_tower) + else: + vision_tower = self.vision_tower[0] + vision_tower.requires_grad_(False) + vision_tower = vision_tower.to(torch.float16) + self.vision_tower = [vision_tower] + + vision_config = vision_tower.config + num_patches = (vision_config.image_size // vision_config.patch_size) ** 2 + + self.config.use_mm_proj = True + self.config.mm_hidden_size = vision_config.hidden_size + self.config.mm_vision_select_layer = mm_vision_select_layer + + if not hasattr(self, 'mm_projector'): + self.mm_projector = nn.Linear(vision_config.hidden_size, self.config.hidden_size) + + if pretrain_mm_mlp_adapter is not None: + mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu') + self.mm_projector.load_state_dict({k.split('.')[-1]: v for k, v in mm_projector_weights.items()}) + + return dict( + # image_processor=image_processor, + image_token_len=num_patches, + vision_config=vision_config + ) + + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + images: Optional[torch.FloatTensor] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPast]: + + orig_embeds_params = getattr(self, 'orig_embeds_params', None) + # if orig_embeds_params is not None: + # orig_embeds_params = orig_embeds_params[0] + # with torch.no_grad(): + # self.get_input_embeddings().weight.data[:-2] = orig_embeds_params[:-2].data + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) + + vision_tower = getattr(self, 'vision_tower', None) + if vision_tower is not None and (input_ids.shape[1] != 1 or self.training) and images is not None: + # TODO: this is a modified multimodal LLM -- Haotian Liu + vision_tower = vision_tower[0] # HACK: for FSDP + # with torch.no_grad(): + with torch.enable_grad(): + if type(images) is list: + # variable length images + image_features = [] + for image in images: + image_forward_out = vision_tower(image.unsqueeze(0), output_hidden_states=True) + select_hidden_state_layer = getattr(self.config, "mm_vision_select_layer", -1) + select_hidden_state = image_forward_out.hidden_states[select_hidden_state_layer] + image_feature = select_hidden_state[:, 1:] + image_features.append(image_feature) + else: + image_forward_outs = vision_tower(images, output_hidden_states=True) + select_hidden_state_layer = getattr(self.config, "mm_vision_select_layer", -1) + select_hidden_state = image_forward_outs.hidden_states[select_hidden_state_layer] + image_features = select_hidden_state[:, 1:] + # rand_idx = torch.randperm(image_features.shape[0]) + # image_features = image_features[rand_idx].view(image_features.size()) + # print("xxx") + if type(images) is list: + image_features = [self.mm_projector(image_feature)[0] for image_feature in image_features] + else: + image_features = self.mm_projector(image_features) + dummy_image_features = torch.zeros(256, 1024, device=inputs_embeds.device, dtype=inputs_embeds.dtype) + dummy_image_features = self.mm_projector(dummy_image_features) + + new_input_embeds = [] + cur_image_idx = 0 + for cur_input_ids, cur_input_embeds in zip(input_ids, inputs_embeds): + if (cur_input_ids == vision_tower.config.im_patch_token).sum() == 0: + # multimodal LLM, but the current sample is not multimodal + cur_input_embeds = cur_input_embeds + (0. * dummy_image_features).sum() + new_input_embeds.append(cur_input_embeds) + continue + if vision_tower.config.use_im_start_end: + cur_image_features = image_features[cur_image_idx] + num_patches = cur_image_features.shape[0] + if (cur_input_ids == vision_tower.config.im_start_token).sum() != ( + cur_input_ids == vision_tower.config.im_end_token).sum(): + raise ValueError("The number of image start tokens and image end tokens should be the same.") + image_start_tokens = torch.where(cur_input_ids == vision_tower.config.im_start_token)[0] + for image_start_token_pos in image_start_tokens: + cur_image_features = image_features[cur_image_idx].to(device=cur_input_embeds.device) + num_patches = cur_image_features.shape[0] + # cur_image_features = torch.cat([cur_image_features[-i].unsqueeze(0) for i in range(num_patches)], dim=0) + # rand_idx = torch.randperm(cur_image_features.shape[0]) + # cur_image_features = cur_image_features[rand_idx].view(cur_image_features.size()) + # print("xxx") + if cur_input_ids[image_start_token_pos + num_patches + 1] != vision_tower.config.im_end_token: + raise ValueError("The image end token should follow the image start token.") + if orig_embeds_params is not None: + cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos].detach(), + cur_input_embeds[image_start_token_pos:image_start_token_pos + 1], + cur_image_features, cur_input_embeds[ + image_start_token_pos + num_patches + 1:image_start_token_pos + num_patches + 2], + cur_input_embeds[image_start_token_pos + num_patches + 2:].detach()), dim=0) + else: + cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos + 1], cur_image_features, + cur_input_embeds[image_start_token_pos + num_patches + 1:]), dim=0) + cur_image_idx += 1 + new_input_embeds.append(cur_new_input_embeds) + else: + cur_image_features = image_features[cur_image_idx] + num_patches = cur_image_features.shape[0] + if (cur_input_ids == vision_tower.config.im_patch_token).sum() != num_patches: + raise ValueError("The number of image patch tokens should be the same as the number of image patches.") + masked_indices = torch.where(cur_input_ids == vision_tower.config.im_patch_token)[0] + mask_index_start = masked_indices[0] + if (masked_indices != torch.arange(mask_index_start, mask_index_start + num_patches, device=masked_indices.device, + dtype=masked_indices.dtype)).any(): + raise ValueError("The image patch tokens should be consecutive.") + if orig_embeds_params is not None: + cur_new_input_embeds = torch.cat((cur_input_embeds[:mask_index_start].detach(), cur_image_features, + cur_input_embeds[mask_index_start + num_patches:].detach()), dim=0) + else: + cur_new_input_embeds = torch.cat( + (cur_input_embeds[:mask_index_start], cur_image_features, cur_input_embeds[mask_index_start + num_patches:]), + dim=0) + new_input_embeds.append(cur_new_input_embeds) + inputs_embeds = torch.stack(new_input_embeds, dim=0) + + return super(ShikraLlamaModel, self).forward( + input_ids=None, attention_mask=attention_mask, past_key_values=past_key_values, + inputs_embeds=inputs_embeds, use_cache=use_cache, + output_attentions=output_attentions, output_hidden_states=output_hidden_states, + return_dict=return_dict + ) + + +class ShikraLlamaForCausalLM(LlamaForCausalLM): + config_class = ShikraConfig + + def __init__(self, config: ShikraConfig): + super(LlamaForCausalLM, self).__init__(config) + self.model = ShikraLlamaModel(config) + + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + images: Optional[torch.FloatTensor] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CausalLMOutputWithPast]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + outputs = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + images=images + ) + + hidden_states = outputs[0] + logits = self.lm_head(hidden_states) + + loss = None + if labels is not None: + # Shift so that tokens < n predict n + shift_logits = logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss() + shift_logits = shift_logits.view(-1, self.config.vocab_size) + shift_labels = shift_labels.view(-1) + # Enable model/pipeline parallelism + shift_labels = shift_labels.to(shift_logits.device) + loss = loss_fct(shift_logits, shift_labels) + + if not return_dict: + output = (logits,) + outputs[1:] + return (loss,) + output if loss is not None else output + + return CausalLMOutputWithPast( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def prepare_inputs_for_generation( + self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs + ): + if past_key_values: + input_ids = input_ids[:, -1:] + + # if `inputs_embeds` are passed, we only want to use them in the 1st generation step + if inputs_embeds is not None and past_key_values is None: + model_inputs = {"inputs_embeds": inputs_embeds} + else: + model_inputs = {"input_ids": input_ids} + + model_inputs.update( + { + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache"), + "attention_mask": attention_mask, + "images": kwargs.get("images", None), + } + ) + return model_inputs + + def initialize_vision_tokenizer(self, mm_use_im_start_end, tokenizer, device, + tune_mm_mlp_adapter=False, pretrain_mm_mlp_adapter=None): + vision_config = self.model.vision_tower[0].config + vision_config.use_im_start_end = mm_use_im_start_end + tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) + self.resize_token_embeddings(len(tokenizer)) + + if mm_use_im_start_end: + num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) + self.resize_token_embeddings(len(tokenizer)) + vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids( + [DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN]) + + if num_new_tokens > 0: + input_embeddings = self.get_input_embeddings().weight.data + output_embeddings = self.get_output_embeddings().weight.data + + input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( + dim=0, keepdim=True) + output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( + dim=0, keepdim=True) + + input_embeddings[-num_new_tokens:] = input_embeddings_avg + output_embeddings[-num_new_tokens:] = output_embeddings_avg + + if tune_mm_mlp_adapter: + self.model.orig_embeds_params = [self.get_input_embeddings().weight.data.clone().to(device=device)] + for p in self.get_input_embeddings().parameters(): + p.requires_grad = True + for p in self.get_output_embeddings().parameters(): + p.requires_grad = False + + if pretrain_mm_mlp_adapter: + mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu') + embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight'] + assert num_new_tokens == 2 + if input_embeddings.shape == embed_tokens_weight.shape: + input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:] + elif embed_tokens_weight.shape[0] == num_new_tokens: + input_embeddings[-num_new_tokens:] = embed_tokens_weight + else: + raise ValueError( + f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.") + + vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0] + + + + + + +class ShikraBase(BaseModel): + + def maybe_autocast(self, dtype=torch.float16): + # if on cpu, don't use autocast + # if on gpu, use autocast with dtype if provided, otherwise use torch.float16 + enable_autocast = self.device != torch.device("cpu") + + if enable_autocast: + return torch.cuda.amp.autocast(dtype=dtype) + else: + return contextlib.nullcontext() + + @classmethod + def version_check( + cls, llama_model, tokenizer, shikra_version: str, merged_ckpt: str + ): + assert shikra_version == 'v1' + if shikra_version == "v0": + if tokenizer.pad_token is None: + ### Resize tokenizer and embedding. + ### Note: This is the unoptimized version that may make your embedding size not be divisible by 64. + special_tokens_dict = dict(pad_token=DEFAULT_PAD_TOKEN) + num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict) + llama_model.resize_token_embeddings(len(tokenizer)) + + if num_new_tokens > 0: + input_embeddings = llama_model.get_input_embeddings().weight.data + output_embeddings = llama_model.get_output_embeddings().weight.data + + input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True) + output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True) + + input_embeddings[-num_new_tokens:] = input_embeddings_avg + output_embeddings[-num_new_tokens:] = output_embeddings_avg + + if "llama" in merged_ckpt: + tokenizer.add_special_tokens({ + "eos_token": DEFAULT_EOS_TOKEN, + "bos_token": DEFAULT_BOS_TOKEN, + "unk_token": DEFAULT_UNK_TOKEN, + }) + else: + tokenizer.pad_token = tokenizer.unk_token + + @classmethod + def quantization_check( + cls, llama_model, vision_tower, fp16=True, bf16=False + ): + dtype = torch.float32 + if fp16: + dtype = torch.float16 + if bf16: + dtype = torch.bfloat16 + # HACK for quantization + if llama_model.model.vision_tower[0].device != torch.device('meta'): + llama_model.model.vision_tower[0].to(dtype=dtype, device="cuda") + else: + from transformers import CLIPVisionModel + llama_model.model.vision_tower[0] = CLIPVisionModel.from_pretrained(vision_tower) # not quantize clip + # model.model.vision_tower[0] = CLIPVisionModel.from_pretrained(model_args.vision_tower, **kwargs) # quantize clip、 + + @classmethod + def fsdp_check( + cls, llama_model, fsdp=None + ): + params_no_grad = [n for n, p in llama_model.model.named_parameters() if not p.requires_grad] + if len(params_no_grad) > 0: + if fsdp is not None and len(fsdp) > 0: + if len(params_no_grad) < 10: + print('[WARNING] Attempting to use FSDP while {} parameters do not require gradients: {}'.format(len(params_no_grad), + params_no_grad)) + else: + print('[WARNING] Attempting to use FSDP while {} parameters do not require gradients: {}...(omitted)'.format( + len(params_no_grad), ', '.join(params_no_grad[:10]))) + print("[WARNING] Attempting to use FSDP with partially frozen parameters, this is experimental.") + print( + "[WARNING] As of 4/30/23, this feature requires PyTorch-nightly build. See here for details: https://github.com/haotian-liu/LLaVA#experimental-use-fsdp-to-save-memory-in-pretraining") + + from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP + + def patch_FSDP_use_orig_params(func): + def wrap_func(*args, **kwargs): + use_orig_params = kwargs.pop('use_orig_params', True) + return func(*args, **kwargs, use_orig_params=use_orig_params) + + return wrap_func + + FSDP.__init__ = patch_FSDP_use_orig_params(FSDP.__init__) \ No newline at end of file diff --git a/OPERA/minigpt4/models/shikra.py b/OPERA/minigpt4/models/shikra.py new file mode 100644 index 0000000000000000000000000000000000000000..06fc543c9ac6a8bdd919f63fd0997fdfb3029ea3 --- /dev/null +++ b/OPERA/minigpt4/models/shikra.py @@ -0,0 +1,323 @@ +import logging +import string +from packaging import version + +from typing import List, Optional, Tuple, Union + +import torch +import torch.nn as nn +from torch.nn import CrossEntropyLoss + +from transformers import AutoTokenizer +from transformers import BitsAndBytesConfig +from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast + +from minigpt4.common.registry import registry +from minigpt4.models.blip2 import disabled_train +from minigpt4.models.modeling_shikra import ShikraBase, ShikraLlamaForCausalLM + + + +IGNORE_INDEX = -100 +# DEFAULT_IMAGE_TOKEN = IMAGE_PLACEHOLDER +DEFAULT_IMAGE_PATCH_TOKEN = "" +DEFAULT_IM_START_TOKEN = "" +DEFAULT_IM_END_TOKEN = "" + +DEFAULT_PAD_TOKEN = "[PAD]" +DEFAULT_EOS_TOKEN = "" +DEFAULT_BOS_TOKEN = "" +DEFAULT_UNK_TOKEN = "" + + + +@registry.register_model("shikra") +class Shikra(ShikraBase): + """ + Shikra Vicuna model. + """ + + PRETRAINED_MODEL_CONFIG_DICT = { + "vicuna7b": "configs/models/shikra_vicuna7b.yaml", + } + + def __init__( + self, + vision_tower=r'openai/clip-vit-large-patch14', + mm_vision_select_layer=-2, + merged_ckpt="", + cache_dir=None, + model_max_length=2048, + shikra_version="v1", + freeze_backbone=False, + mm_use_im_start_end=True, + pretrain_mm_mlp_adapter=None, + tune_mm_mlp_adapter=False, + freeze_mm_mlp_adapter=False, + apply_fsdp=None, + max_txt_len=128, + max_output_txt_len=256, + low_resource=False, # use 8 bit and put vit in cpu + bf16=False, + fp16=True, + system_message="", + ): + super().__init__() + + self.low_resource = low_resource + self.system_message = system_message + if self.low_resource: + quantization_kwargs = dict( + quantization_config=BitsAndBytesConfig( + load_in_8bit=True, + ) + ) + else: + quantization_kwargs = dict() + + self.llama_model = ShikraLlamaForCausalLM.from_pretrained( + merged_ckpt, + cache_dir=cache_dir, + **quantization_kwargs + ) + self.llama_model.config.use_cache = False + if freeze_backbone: + self.llama_model.model.requires_grad_(False) + + self.llama_tokenizer = AutoTokenizer.from_pretrained( + merged_ckpt, + cache_dir=cache_dir, + model_max_length=model_max_length, + padding_side="right", + use_fast=False, + ) + + self.version_check( + self.llama_model, self.llama_tokenizer, shikra_version, merged_ckpt + ) + + self.model_vision_dict = self.llama_model.model.initialize_vision_modules( + vision_tower=vision_tower, + mm_vision_select_layer=mm_vision_select_layer, + pretrain_mm_mlp_adapter=pretrain_mm_mlp_adapter, + ) + vision_config = self.model_vision_dict['vision_config'] + self.quantization_check( + self.llama_model, vision_tower, fp16, bf16 + ) + + self.llama_model.config.tune_mm_mlp_adapter = tune_mm_mlp_adapter + if tune_mm_mlp_adapter: + self.llama_model.requires_grad_(False) + for p in self.llama_model.model.mm_projector.parameters(): + p.requires_grad = True + + self.llama_model.config.freeze_mm_mlp_adapter = freeze_mm_mlp_adapter + if freeze_mm_mlp_adapter: + for p in self.llama_model.model.mm_projector.parameters(): + p.requires_grad = False + + self.llama_model.config.mm_use_im_start_end = mm_use_im_start_end + vision_config.use_im_start_end = mm_use_im_start_end + + self.llama_model.initialize_vision_tokenizer( + mm_use_im_start_end=mm_use_im_start_end, + tokenizer=self.llama_tokenizer, + device="cuda", + tune_mm_mlp_adapter=tune_mm_mlp_adapter, + pretrain_mm_mlp_adapter=pretrain_mm_mlp_adapter + ) + + self.max_txt_len = max_txt_len + self.max_output_txt_len = max_output_txt_len + self.fsdp_check( + self.llama_model, apply_fsdp + ) + + def forward(self, samples): + image = samples["image"] + instruction = samples["instruction_input"] if "instruction_input" in samples else None + + replace_token = DEFAULT_IMAGE_PATCH_TOKEN * self.model_vision_dict['image_token_len'] + instruction = instruction.replace(DEFAULT_IMAGE_PATCH_TOKEN, replace_token) + + input_ids = self.llama_tokenizer( + instruction, + return_tensors="pt", + padding="longest", + truncation=True, + max_length=self.max_txt_len, + add_special_tokens=False + ).to(image.device) + + ###TODO: targets, attention_mask + with self.maybe_autocast(): + outputs = self.llm_model( + inputs_embeds=inputs_embeds, + attention_mask=attention_mask, + return_dict=True, + labels=targets, + ) + + loss = outputs.loss + + return {"loss": loss} + + @torch.no_grad() + def generate( + self, + samples, + use_nucleus_sampling=False, + num_beams=5, + max_length=256, + min_length=1, + max_new_tokens=300, + top_p=0.9, + repetition_penalty=1.0, + length_penalty=1, + num_captions=1, + temperature=1, + output_attentions=False, + return_dict_in_generate=False, + # ours + opera_decoding=False, + key_position=None, + scale_factor=1.0, + threshold=1, + num_attn_candidates=5, + penalty_weights=1.0, + ): + self.llama_tokenizer.padding_side = "left" + + image = samples["image"] + + instruction = samples["prompt"] if "prompt" in samples else None + + bs = image.size(0) + + if isinstance(instruction, str): + instruction = [instruction] * bs + else: + assert len(instruction) == bs, "The number of prompts must be equal to the batch size." + + replace_token = DEFAULT_IMAGE_PATCH_TOKEN * self.model_vision_dict['image_token_len'] + instruction = [p.replace('', replace_token) for p in instruction] + instruction = [self.system_message + p for p in instruction] + + input_tokens = self.llama_tokenizer( + instruction, + return_tensors="pt", + padding="longest", + # truncation=True, + # max_length=self.max_txt_len+self.model_vision_dict['image_token_len'], + add_special_tokens=False + ).to(image.device) + # print(input_tokens.input_ids.shape) + + # with self.maybe_autocast(): + # inputs_embeds = self.llama_model.get_input_embeddings()(input_tokens.input_ids) + + bos = torch.ones([bs, 1], + dtype=torch.int64, + device=image.device) * self.llama_tokenizer.bos_token_id + # bos_embeds = self.embed_tokens(bos) + # atts_bos = input_tokens.attention_mask[:, :1] + + with self.maybe_autocast(): + # print(bos_embeds.shape, inputs_embeds.shape) + input_ids = torch.cat([bos, input_tokens.input_ids], dim=1) + # inputs_embeds = torch.cat([bos_embeds, inputs_embeds], dim=1) + # attention_mask = torch.cat([atts_bos, input_tokens.attention_mask], dim=1) + if key_position is None: + image_start_pos = torch.where(input_ids == 32001)[1][0].item() + image_end_pos = torch.where(input_ids == 32002)[1][0].item() + key_position = { + "image_start": image_start_pos, + "image_end": image_end_pos, + "response_start": input_ids.shape[1] + } + + outputs = self.llama_model.generate( + input_ids=input_ids, + use_cache=True, + do_sample=use_nucleus_sampling, + top_p=top_p, + temperature=temperature, + num_beams=num_beams, + max_new_tokens=max_new_tokens, + # max_length=512, + pad_token_id=self.llama_tokenizer.pad_token_id, + bos_token_id=self.llama_tokenizer.bos_token_id, + eos_token_id=self.llama_tokenizer.eos_token_id, + # repetition_penalty=repetition_penalty, + # length_penalty=length_penalty, + # num_return_sequences=num_captions, + images=image, + output_attentions=output_attentions, + return_dict_in_generate=return_dict_in_generate, + # opera + opera_decoding=opera_decoding, + key_position=key_position, + scale_factor=scale_factor, + threshold=threshold, + num_attn_candidates=num_attn_candidates, + penalty_weights=penalty_weights, + ) + + outputs[outputs == 0] = 2 # convert output id 0 to 2 (eos_token_id) + outputs[outputs == 1] = 2 # convert output id 1 to 2 (eos_token_id) + output_text = self.llama_tokenizer.batch_decode(outputs, skip_special_tokens=True) + output_text = [text.split('ASSISTANT:')[-1].strip() for text in output_text] + return output_text + + + def embed_tokens(self, token_ids): + if hasattr(self.llama_model.base_model, 'model'): ## lora wrapped model + embeds = self.llama_model.base_model.model.model.embed_tokens(token_ids) + else: + embeds = self.llama_model.base_model.embed_tokens(token_ids) + return embeds + + + @classmethod + def from_config(cls, cfg): + vision_tower = cfg.get("vit_model", r'openai/clip-vit-large-patch14') + mm_vision_select_layer = cfg.get("mm_vision_select_layer", -2) + merged_ckpt = cfg.get("merged_ckpt", "") + cache_dir = cfg.get("cache_dir", None) + model_max_length = cfg.get("model_max_length", 2048) + shikra_version = cfg.get("version", "v1") + freeze_backbone = cfg.get("freeze_backbone", False) + mm_use_im_start_end = cfg.get("mm_use_im_start_end", True) + pretrain_mm_mlp_adapter = cfg.get("pretrain_mm_mlp_adapter", None) + tune_mm_mlp_adapter = cfg.get("tune_mm_mlp_adapter", False) + freeze_mm_mlp_adapter = cfg.get("freeze_mm_mlp_adapter", False) + apply_fsdp = cfg.get("apply_fsdp", None) + max_txt_len = cfg.get("max_txt_len", 128) + max_output_txt_len = cfg.get("max_output_txt_len", 256) + low_resource = cfg.get("low_resource", False) + bf16 = cfg.get("bf16", False) + fp16 = cfg.get("fp16", False) + system_message = cfg.get("system_message", "") + + model = cls( + vision_tower=vision_tower, + mm_vision_select_layer=mm_vision_select_layer, + merged_ckpt=merged_ckpt, + cache_dir=cache_dir, + model_max_length=model_max_length, + shikra_version=shikra_version, + freeze_backbone=freeze_backbone, + mm_use_im_start_end=mm_use_im_start_end, + pretrain_mm_mlp_adapter=pretrain_mm_mlp_adapter, + tune_mm_mlp_adapter=tune_mm_mlp_adapter, + freeze_mm_mlp_adapter=freeze_mm_mlp_adapter, + apply_fsdp=apply_fsdp, + max_txt_len=max_txt_len, + max_output_txt_len=max_output_txt_len, + low_resource=low_resource, # use 8 bit and put vit in cpu + bf16=bf16, fp16=fp16, + system_message=system_message, + ) + + return model diff --git a/OPERA/minigpt4/processors/__init__.py b/OPERA/minigpt4/processors/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..36f6efebb52c33459f4cb08651933a3556607695 --- /dev/null +++ b/OPERA/minigpt4/processors/__init__.py @@ -0,0 +1,39 @@ +""" + Copyright (c) 2022, salesforce.com, inc. + All rights reserved. + SPDX-License-Identifier: BSD-3-Clause + For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause +""" + +from minigpt4.processors.base_processor import BaseProcessor +from minigpt4.processors.blip_processors import ( + Blip2ImageTrainProcessor, + Blip2ImageEvalProcessor, + BlipCaptionProcessor, +) +from minigpt4.processors.clip_processors import ( + ClipImageTrainProcessor, + ClipImageEvalProcessor, +) + +from minigpt4.common.registry import registry + +__all__ = [ + "BaseProcessor", + "Blip2ImageTrainProcessor", + "Blip2ImageEvalProcessor", + "BlipCaptionProcessor", + "ClipImageTrainProcessor", + "ClipImageEvalProcessor", +] + + +def load_processor(name, cfg=None): + """ + Example + + >>> processor = load_processor("alpro_video_train", cfg=None) + """ + processor = registry.get_processor_class(name).from_config(cfg) + + return processor diff --git a/OPERA/minigpt4/processors/base_processor.py b/OPERA/minigpt4/processors/base_processor.py new file mode 100644 index 0000000000000000000000000000000000000000..d1b51f44b476c1a40d817e5104c1ba9fd15fd773 --- /dev/null +++ b/OPERA/minigpt4/processors/base_processor.py @@ -0,0 +1,26 @@ +""" + Copyright (c) 2022, salesforce.com, inc. + All rights reserved. + SPDX-License-Identifier: BSD-3-Clause + For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause +""" + +from omegaconf import OmegaConf + + +class BaseProcessor: + def __init__(self): + self.transform = lambda x: x + return + + def __call__(self, item): + return self.transform(item) + + @classmethod + def from_config(cls, cfg=None): + return cls() + + def build(self, **kwargs): + cfg = OmegaConf.create(kwargs) + + return self.from_config(cfg) diff --git a/OPERA/minigpt4/processors/blip_processors.py b/OPERA/minigpt4/processors/blip_processors.py new file mode 100644 index 0000000000000000000000000000000000000000..da7b2fa0efc9e9b169cc232832e27f88f9f6b7e5 --- /dev/null +++ b/OPERA/minigpt4/processors/blip_processors.py @@ -0,0 +1,247 @@ +""" + Copyright (c) 2022, salesforce.com, inc. + All rights reserved. + SPDX-License-Identifier: BSD-3-Clause + For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause +""" + +import re + +from minigpt4.common.registry import registry +from minigpt4.processors.base_processor import BaseProcessor +from minigpt4.processors.randaugment import RandomAugment +from omegaconf import OmegaConf +from torchvision import transforms +from torchvision.transforms.functional import InterpolationMode + + +class BlipImageBaseProcessor(BaseProcessor): + def __init__(self, mean=None, std=None, do_normalize=True): + if mean is None: + mean = (0.48145466, 0.4578275, 0.40821073) + if std is None: + std = (0.26862954, 0.26130258, 0.27577711) + + if do_normalize: + self.normalize = transforms.Normalize(mean, std) + else: + self.normalize = transforms.Lambda(lambda img: img) + + +@registry.register_processor("blip_caption") +class BlipCaptionProcessor(BaseProcessor): + def __init__(self, prompt="", max_words=50): + self.prompt = prompt + self.max_words = max_words + + def __call__(self, caption): + caption = self.prompt + self.pre_caption(caption) + + return caption + + @classmethod + def from_config(cls, cfg=None): + if cfg is None: + cfg = OmegaConf.create() + + prompt = cfg.get("prompt", "") + max_words = cfg.get("max_words", 50) + + return cls(prompt=prompt, max_words=max_words) + + def pre_caption(self, caption): + caption = re.sub( + r"([.!\"()*#:;~])", + " ", + caption.lower(), + ) + caption = re.sub( + r"\s{2,}", + " ", + caption, + ) + caption = caption.rstrip("\n") + caption = caption.strip(" ") + + # truncate caption + caption_words = caption.split(" ") + if len(caption_words) > self.max_words: + caption = " ".join(caption_words[: self.max_words]) + + return caption + + +@registry.register_processor("blip_image_train") +class BlipImageTrainProcessor(BlipImageBaseProcessor): + def __init__( + self, image_size=384, mean=None, std=None, min_scale=0.5, max_scale=1.0, do_normalize=True + ): + super().__init__(mean=mean, std=std, do_normalize=do_normalize) + + self.transform = transforms.Compose( + [ + transforms.RandomResizedCrop( + image_size, + scale=(min_scale, max_scale), + interpolation=InterpolationMode.BICUBIC, + ), + transforms.RandomHorizontalFlip(), + RandomAugment( + 2, + 5, + isPIL=True, + augs=[ + "Identity", + "AutoContrast", + "Brightness", + "Sharpness", + "Equalize", + "ShearX", + "ShearY", + "TranslateX", + "TranslateY", + "Rotate", + ], + ), + transforms.ToTensor(), + self.normalize, + ] + ) + + def __call__(self, item): + return self.transform(item) + + @classmethod + def from_config(cls, cfg=None): + if cfg is None: + cfg = OmegaConf.create() + + image_size = cfg.get("image_size", 384) + + mean = cfg.get("mean", None) + std = cfg.get("std", None) + + min_scale = cfg.get("min_scale", 0.5) + max_scale = cfg.get("max_scale", 1.0) + + do_normalize = cfg.get("do_normalize", True) + + return cls( + image_size=image_size, + mean=mean, + std=std, + min_scale=min_scale, + max_scale=max_scale, + do_normalize=do_normalize, + ) + + +@registry.register_processor("blip_image_eval") +class BlipImageEvalProcessor(BlipImageBaseProcessor): + def __init__(self, image_size=384, mean=None, std=None, do_normalize=True): + super().__init__(mean=mean, std=std, do_normalize=do_normalize) + + self.transform = transforms.Compose( + [ + transforms.Resize( + (image_size, image_size), interpolation=InterpolationMode.BICUBIC + ), + transforms.ToTensor(), + self.normalize, + ] + ) + + def __call__(self, item): + return self.transform(item) + + @classmethod + def from_config(cls, cfg=None): + if cfg is None: + cfg = OmegaConf.create() + + image_size = cfg.get("image_size", 384) + + mean = cfg.get("mean", None) + std = cfg.get("std", None) + + do_normalize = cfg.get("do_normalize", True) + + return cls(image_size=image_size, mean=mean, std=std, do_normalize=do_normalize) + + +@registry.register_processor("blip2_image_train") +class Blip2ImageTrainProcessor(BlipImageBaseProcessor): + def __init__(self, image_size=224, mean=None, std=None, min_scale=0.5, max_scale=1.0, do_normalize=True): + super().__init__(mean=mean, std=std, do_normalize=do_normalize) + + self.transform = transforms.Compose( + [ + transforms.RandomResizedCrop( + image_size, + scale=(min_scale, max_scale), + interpolation=InterpolationMode.BICUBIC, + ), + transforms.ToTensor(), + self.normalize, + ] + ) + + def __call__(self, item): + return self.transform(item) + + @classmethod + def from_config(cls, cfg=None): + if cfg is None: + cfg = OmegaConf.create() + + image_size = cfg.get("image_size", 224) + + mean = cfg.get("mean", None) + std = cfg.get("std", None) + + min_scale = cfg.get("min_scale", 0.5) + max_scale = cfg.get("max_scale", 1.0) + + do_normalize = cfg.get("do_normalize", True) + + return cls( + image_size=image_size, + mean=mean, + std=std, + min_scale=min_scale, + max_scale=max_scale, + do_normalize=do_normalize, + ) + + +@registry.register_processor("blip2_image_eval") +class Blip2ImageEvalProcessor(BlipImageBaseProcessor): + def __init__(self, image_size=224, mean=None, std=None, do_normalize=True): + super().__init__(mean=mean, std=std, do_normalize=do_normalize) + + self.transform = transforms.Compose( + [ + transforms.Resize( + (image_size, image_size), interpolation=InterpolationMode.BICUBIC + ), + transforms.ToTensor(), + self.normalize, + ] + ) + + def __call__(self, item): + return self.transform(item) + + @classmethod + def from_config(cls, cfg=None): + if cfg is None: + cfg = OmegaConf.create() + + image_size = cfg.get("image_size", 224) + + mean = cfg.get("mean", None) + std = cfg.get("std", None) + + do_normalize = cfg.get("do_normalize", True) + + return cls(image_size=image_size, mean=mean, std=std, do_normalize=do_normalize) \ No newline at end of file diff --git a/OPERA/minigpt4/processors/clip_processors.py b/OPERA/minigpt4/processors/clip_processors.py new file mode 100644 index 0000000000000000000000000000000000000000..c0ddd95f30a9b6a278b1c1593e630c261e33a844 --- /dev/null +++ b/OPERA/minigpt4/processors/clip_processors.py @@ -0,0 +1,108 @@ +""" + Copyright (c) 2022, salesforce.com, inc. + All rights reserved. + SPDX-License-Identifier: BSD-3-Clause + For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause +""" + +import re + +from minigpt4.common.registry import registry +from minigpt4.processors.base_processor import BaseProcessor +from minigpt4.processors.randaugment import RandomAugment +from omegaconf import OmegaConf +from torchvision import transforms +from torchvision.transforms.functional import InterpolationMode +from transformers import CLIPImageProcessor + + + +@registry.register_processor("clip_image_train") +class ClipImageTrainProcessor(BaseProcessor): + def __init__(self, proc_type, do_normalize=True): + super().__init__() + + self.transform = CLIPImageProcessor.from_pretrained(proc_type) + self.transform.do_normalize = True if do_normalize else False + + def __call__(self, item): + return self.transform.preprocess(item, return_tensors='pt')['pixel_values'][0] + + @classmethod + def from_config(cls, cfg=None): + if cfg is None: + cfg = OmegaConf.create() + + proc_type = cfg.get("proc_type", r'openai/clip-vit-large-patch14') + + do_normalize = cfg.get("do_normalize", True) + + return cls(proc_type=proc_type, do_normalize=do_normalize) + + +@registry.register_processor("clip_image_eval") +class ClipImageEvalProcessor(BaseProcessor): + def __init__(self, proc_type, do_normalize=True): + super().__init__() + + self.transform = CLIPImageProcessor.from_pretrained(proc_type) + self.transform.do_normalize = True if do_normalize else False + + def __call__(self, item): + return self.transform.preprocess(item, return_tensors='pt')['pixel_values'][0] + + @classmethod + def from_config(cls, cfg=None): + if cfg is None: + cfg = OmegaConf.create() + + proc_type = cfg.get("proc_type", r'openai/clip-vit-large-patch14') + + do_normalize = cfg.get("do_normalize", True) + + return cls(proc_type=proc_type, do_normalize=do_normalize) + +@registry.register_processor("clip_image_train_336") +class ClipImageTrainProcessor(BaseProcessor): + def __init__(self, proc_type, do_normalize=True): + super().__init__() + + self.transform = CLIPImageProcessor.from_pretrained(proc_type) + self.transform.do_normalize = True if do_normalize else False + + def __call__(self, item): + return self.transform.preprocess(item, return_tensors='pt')['pixel_values'][0] + + @classmethod + def from_config(cls, cfg=None): + if cfg is None: + cfg = OmegaConf.create() + + proc_type = cfg.get("proc_type", r'openai/clip-vit-large-patch14-336') + + do_normalize = cfg.get("do_normalize", True) + + return cls(proc_type=proc_type, do_normalize=do_normalize) + + +@registry.register_processor("clip_image_eval_336") +class ClipImageEvalProcessor(BaseProcessor): + def __init__(self, proc_type, do_normalize=True): + super().__init__() + + self.transform = CLIPImageProcessor.from_pretrained(proc_type) + self.transform.do_normalize = True if do_normalize else False + + def __call__(self, item): + return self.transform.preprocess(item, return_tensors='pt')['pixel_values'][0] + + @classmethod + def from_config(cls, cfg=None): + if cfg is None: + cfg = OmegaConf.create() + + proc_type = cfg.get("proc_type", r'openai/clip-vit-large-patch14-336') + + do_normalize = cfg.get("do_normalize", True) + + return cls(proc_type=proc_type, do_normalize=do_normalize) \ No newline at end of file diff --git a/OPERA/minigpt4/processors/randaugment.py b/OPERA/minigpt4/processors/randaugment.py new file mode 100644 index 0000000000000000000000000000000000000000..b1464050767462a21e27302d25a8bdf2b011317e --- /dev/null +++ b/OPERA/minigpt4/processors/randaugment.py @@ -0,0 +1,398 @@ +""" + Copyright (c) 2022, salesforce.com, inc. + All rights reserved. + SPDX-License-Identifier: BSD-3-Clause + For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause +""" + +import cv2 +import numpy as np + +import torch + + +## aug functions +def identity_func(img): + return img + + +def autocontrast_func(img, cutoff=0): + """ + same output as PIL.ImageOps.autocontrast + """ + n_bins = 256 + + def tune_channel(ch): + n = ch.size + cut = cutoff * n // 100 + if cut == 0: + high, low = ch.max(), ch.min() + else: + hist = cv2.calcHist([ch], [0], None, [n_bins], [0, n_bins]) + low = np.argwhere(np.cumsum(hist) > cut) + low = 0 if low.shape[0] == 0 else low[0] + high = np.argwhere(np.cumsum(hist[::-1]) > cut) + high = n_bins - 1 if high.shape[0] == 0 else n_bins - 1 - high[0] + if high <= low: + table = np.arange(n_bins) + else: + scale = (n_bins - 1) / (high - low) + offset = -low * scale + table = np.arange(n_bins) * scale + offset + table[table < 0] = 0 + table[table > n_bins - 1] = n_bins - 1 + table = table.clip(0, 255).astype(np.uint8) + return table[ch] + + channels = [tune_channel(ch) for ch in cv2.split(img)] + out = cv2.merge(channels) + return out + + +def equalize_func(img): + """ + same output as PIL.ImageOps.equalize + PIL's implementation is different from cv2.equalize + """ + n_bins = 256 + + def tune_channel(ch): + hist = cv2.calcHist([ch], [0], None, [n_bins], [0, n_bins]) + non_zero_hist = hist[hist != 0].reshape(-1) + step = np.sum(non_zero_hist[:-1]) // (n_bins - 1) + if step == 0: + return ch + n = np.empty_like(hist) + n[0] = step // 2 + n[1:] = hist[:-1] + table = (np.cumsum(n) // step).clip(0, 255).astype(np.uint8) + return table[ch] + + channels = [tune_channel(ch) for ch in cv2.split(img)] + out = cv2.merge(channels) + return out + + +def rotate_func(img, degree, fill=(0, 0, 0)): + """ + like PIL, rotate by degree, not radians + """ + H, W = img.shape[0], img.shape[1] + center = W / 2, H / 2 + M = cv2.getRotationMatrix2D(center, degree, 1) + out = cv2.warpAffine(img, M, (W, H), borderValue=fill) + return out + + +def solarize_func(img, thresh=128): + """ + same output as PIL.ImageOps.posterize + """ + table = np.array([el if el < thresh else 255 - el for el in range(256)]) + table = table.clip(0, 255).astype(np.uint8) + out = table[img] + return out + + +def color_func(img, factor): + """ + same output as PIL.ImageEnhance.Color + """ + ## implementation according to PIL definition, quite slow + # degenerate = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)[:, :, np.newaxis] + # out = blend(degenerate, img, factor) + # M = ( + # np.eye(3) * factor + # + np.float32([0.114, 0.587, 0.299]).reshape(3, 1) * (1. - factor) + # )[np.newaxis, np.newaxis, :] + M = np.float32( + [[0.886, -0.114, -0.114], [-0.587, 0.413, -0.587], [-0.299, -0.299, 0.701]] + ) * factor + np.float32([[0.114], [0.587], [0.299]]) + out = np.matmul(img, M).clip(0, 255).astype(np.uint8) + return out + + +def contrast_func(img, factor): + """ + same output as PIL.ImageEnhance.Contrast + """ + mean = np.sum(np.mean(img, axis=(0, 1)) * np.array([0.114, 0.587, 0.299])) + table = ( + np.array([(el - mean) * factor + mean for el in range(256)]) + .clip(0, 255) + .astype(np.uint8) + ) + out = table[img] + return out + + +def brightness_func(img, factor): + """ + same output as PIL.ImageEnhance.Contrast + """ + table = (np.arange(256, dtype=np.float32) * factor).clip(0, 255).astype(np.uint8) + out = table[img] + return out + + +def sharpness_func(img, factor): + """ + The differences the this result and PIL are all on the 4 boundaries, the center + areas are same + """ + kernel = np.ones((3, 3), dtype=np.float32) + kernel[1][1] = 5 + kernel /= 13 + degenerate = cv2.filter2D(img, -1, kernel) + if factor == 0.0: + out = degenerate + elif factor == 1.0: + out = img + else: + out = img.astype(np.float32) + degenerate = degenerate.astype(np.float32)[1:-1, 1:-1, :] + out[1:-1, 1:-1, :] = degenerate + factor * (out[1:-1, 1:-1, :] - degenerate) + out = out.astype(np.uint8) + return out + + +def shear_x_func(img, factor, fill=(0, 0, 0)): + H, W = img.shape[0], img.shape[1] + M = np.float32([[1, factor, 0], [0, 1, 0]]) + out = cv2.warpAffine( + img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR + ).astype(np.uint8) + return out + + +def translate_x_func(img, offset, fill=(0, 0, 0)): + """ + same output as PIL.Image.transform + """ + H, W = img.shape[0], img.shape[1] + M = np.float32([[1, 0, -offset], [0, 1, 0]]) + out = cv2.warpAffine( + img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR + ).astype(np.uint8) + return out + + +def translate_y_func(img, offset, fill=(0, 0, 0)): + """ + same output as PIL.Image.transform + """ + H, W = img.shape[0], img.shape[1] + M = np.float32([[1, 0, 0], [0, 1, -offset]]) + out = cv2.warpAffine( + img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR + ).astype(np.uint8) + return out + + +def posterize_func(img, bits): + """ + same output as PIL.ImageOps.posterize + """ + out = np.bitwise_and(img, np.uint8(255 << (8 - bits))) + return out + + +def shear_y_func(img, factor, fill=(0, 0, 0)): + H, W = img.shape[0], img.shape[1] + M = np.float32([[1, 0, 0], [factor, 1, 0]]) + out = cv2.warpAffine( + img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR + ).astype(np.uint8) + return out + + +def cutout_func(img, pad_size, replace=(0, 0, 0)): + replace = np.array(replace, dtype=np.uint8) + H, W = img.shape[0], img.shape[1] + rh, rw = np.random.random(2) + pad_size = pad_size // 2 + ch, cw = int(rh * H), int(rw * W) + x1, x2 = max(ch - pad_size, 0), min(ch + pad_size, H) + y1, y2 = max(cw - pad_size, 0), min(cw + pad_size, W) + out = img.copy() + out[x1:x2, y1:y2, :] = replace + return out + + +### level to args +def enhance_level_to_args(MAX_LEVEL): + def level_to_args(level): + return ((level / MAX_LEVEL) * 1.8 + 0.1,) + + return level_to_args + + +def shear_level_to_args(MAX_LEVEL, replace_value): + def level_to_args(level): + level = (level / MAX_LEVEL) * 0.3 + if np.random.random() > 0.5: + level = -level + return (level, replace_value) + + return level_to_args + + +def translate_level_to_args(translate_const, MAX_LEVEL, replace_value): + def level_to_args(level): + level = (level / MAX_LEVEL) * float(translate_const) + if np.random.random() > 0.5: + level = -level + return (level, replace_value) + + return level_to_args + + +def cutout_level_to_args(cutout_const, MAX_LEVEL, replace_value): + def level_to_args(level): + level = int((level / MAX_LEVEL) * cutout_const) + return (level, replace_value) + + return level_to_args + + +def solarize_level_to_args(MAX_LEVEL): + def level_to_args(level): + level = int((level / MAX_LEVEL) * 256) + return (level,) + + return level_to_args + + +def none_level_to_args(level): + return () + + +def posterize_level_to_args(MAX_LEVEL): + def level_to_args(level): + level = int((level / MAX_LEVEL) * 4) + return (level,) + + return level_to_args + + +def rotate_level_to_args(MAX_LEVEL, replace_value): + def level_to_args(level): + level = (level / MAX_LEVEL) * 30 + if np.random.random() < 0.5: + level = -level + return (level, replace_value) + + return level_to_args + + +func_dict = { + "Identity": identity_func, + "AutoContrast": autocontrast_func, + "Equalize": equalize_func, + "Rotate": rotate_func, + "Solarize": solarize_func, + "Color": color_func, + "Contrast": contrast_func, + "Brightness": brightness_func, + "Sharpness": sharpness_func, + "ShearX": shear_x_func, + "TranslateX": translate_x_func, + "TranslateY": translate_y_func, + "Posterize": posterize_func, + "ShearY": shear_y_func, +} + +translate_const = 10 +MAX_LEVEL = 10 +replace_value = (128, 128, 128) +arg_dict = { + "Identity": none_level_to_args, + "AutoContrast": none_level_to_args, + "Equalize": none_level_to_args, + "Rotate": rotate_level_to_args(MAX_LEVEL, replace_value), + "Solarize": solarize_level_to_args(MAX_LEVEL), + "Color": enhance_level_to_args(MAX_LEVEL), + "Contrast": enhance_level_to_args(MAX_LEVEL), + "Brightness": enhance_level_to_args(MAX_LEVEL), + "Sharpness": enhance_level_to_args(MAX_LEVEL), + "ShearX": shear_level_to_args(MAX_LEVEL, replace_value), + "TranslateX": translate_level_to_args(translate_const, MAX_LEVEL, replace_value), + "TranslateY": translate_level_to_args(translate_const, MAX_LEVEL, replace_value), + "Posterize": posterize_level_to_args(MAX_LEVEL), + "ShearY": shear_level_to_args(MAX_LEVEL, replace_value), +} + + +class RandomAugment(object): + def __init__(self, N=2, M=10, isPIL=False, augs=[]): + self.N = N + self.M = M + self.isPIL = isPIL + if augs: + self.augs = augs + else: + self.augs = list(arg_dict.keys()) + + def get_random_ops(self): + sampled_ops = np.random.choice(self.augs, self.N) + return [(op, 0.5, self.M) for op in sampled_ops] + + def __call__(self, img): + if self.isPIL: + img = np.array(img) + ops = self.get_random_ops() + for name, prob, level in ops: + if np.random.random() > prob: + continue + args = arg_dict[name](level) + img = func_dict[name](img, *args) + return img + + +class VideoRandomAugment(object): + def __init__(self, N=2, M=10, p=0.0, tensor_in_tensor_out=True, augs=[]): + self.N = N + self.M = M + self.p = p + self.tensor_in_tensor_out = tensor_in_tensor_out + if augs: + self.augs = augs + else: + self.augs = list(arg_dict.keys()) + + def get_random_ops(self): + sampled_ops = np.random.choice(self.augs, self.N, replace=False) + return [(op, self.M) for op in sampled_ops] + + def __call__(self, frames): + assert ( + frames.shape[-1] == 3 + ), "Expecting last dimension for 3-channels RGB (b, h, w, c)." + + if self.tensor_in_tensor_out: + frames = frames.numpy().astype(np.uint8) + + num_frames = frames.shape[0] + + ops = num_frames * [self.get_random_ops()] + apply_or_not = num_frames * [np.random.random(size=self.N) > self.p] + + frames = torch.stack( + list(map(self._aug, frames, ops, apply_or_not)), dim=0 + ).float() + + return frames + + def _aug(self, img, ops, apply_or_not): + for i, (name, level) in enumerate(ops): + if not apply_or_not[i]: + continue + args = arg_dict[name](level) + img = func_dict[name](img, *args) + return torch.from_numpy(img) + + +if __name__ == "__main__": + a = RandomAugment() + img = np.random.randn(32, 32, 3) + a(img) diff --git a/OPERA/minigpt4/runners/__init__.py b/OPERA/minigpt4/runners/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..0f04e2e024fa56c8cc9a758bf63947de862b54e7 --- /dev/null +++ b/OPERA/minigpt4/runners/__init__.py @@ -0,0 +1,10 @@ +""" + Copyright (c) 2022, salesforce.com, inc. + All rights reserved. + SPDX-License-Identifier: BSD-3-Clause + For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause +""" + +from minigpt4.runners.runner_base import RunnerBase + +__all__ = ["RunnerBase"] diff --git a/OPERA/minigpt4/runners/runner_base.py b/OPERA/minigpt4/runners/runner_base.py new file mode 100644 index 0000000000000000000000000000000000000000..05d9ff0f3c5834ae5bbe245a0b4a4fd5eae16f95 --- /dev/null +++ b/OPERA/minigpt4/runners/runner_base.py @@ -0,0 +1,658 @@ +""" + Copyright (c) 2022, salesforce.com, inc. + All rights reserved. + SPDX-License-Identifier: BSD-3-Clause + For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause +""" + +import datetime +import json +import logging +import os +import time +from pathlib import Path + +import torch +import torch.distributed as dist +import webdataset as wds +from minigpt4.common.dist_utils import ( + download_cached_file, + get_rank, + get_world_size, + is_main_process, + main_process, +) +from minigpt4.common.registry import registry +from minigpt4.common.utils import is_url +from minigpt4.datasets.data_utils import concat_datasets, reorg_datasets_by_split, ChainDataset +from minigpt4.datasets.datasets.dataloader_utils import ( + IterLoader, + MultiIterLoader, + PrefetchLoader, +) +from torch.nn.parallel import DistributedDataParallel as DDP +from torch.utils.data import DataLoader, DistributedSampler + + +@registry.register_runner("runner_base") +class RunnerBase: + """ + A runner class to train and evaluate a model given a task and datasets. + + The runner uses pytorch distributed data parallel by default. Future release + will support other distributed frameworks. + """ + + def __init__(self, cfg, task, model, datasets, job_id): + self.config = cfg + self.job_id = job_id + + self.task = task + self.datasets = datasets + + self._model = model + + self._wrapped_model = None + self._device = None + self._optimizer = None + self._scaler = None + self._dataloaders = None + self._lr_sched = None + + self.start_epoch = 0 + + # self.setup_seeds() + self.setup_output_dir() + + @property + def device(self): + if self._device is None: + self._device = torch.device(self.config.run_cfg.device) + + return self._device + + @property + def use_distributed(self): + return self.config.run_cfg.distributed + + @property + def model(self): + """ + A property to get the DDP-wrapped model on the device. + """ + # move model to device + if self._model.device != self.device: + self._model = self._model.to(self.device) + + # distributed training wrapper + if self.use_distributed: + if self._wrapped_model is None: + self._wrapped_model = DDP( + self._model, device_ids=[self.config.run_cfg.gpu] + ) + else: + self._wrapped_model = self._model + + return self._wrapped_model + + @property + def optimizer(self): + # TODO make optimizer class and configurations + if self._optimizer is None: + num_parameters = 0 + p_wd, p_non_wd = [], [] + for n, p in self.model.named_parameters(): + if not p.requires_grad: + continue # frozen weights + print(n) + if p.ndim < 2 or "bias" in n or "ln" in n or "bn" in n: + p_non_wd.append(p) + else: + p_wd.append(p) + num_parameters += p.data.nelement() + logging.info("number of trainable parameters: %d" % num_parameters) + optim_params = [ + { + "params": p_wd, + "weight_decay": float(self.config.run_cfg.weight_decay), + }, + {"params": p_non_wd, "weight_decay": 0}, + ] + beta2 = self.config.run_cfg.get("beta2", 0.999) + self._optimizer = torch.optim.AdamW( + optim_params, + lr=float(self.config.run_cfg.init_lr), + weight_decay=float(self.config.run_cfg.weight_decay), + betas=(0.9, beta2), + ) + + return self._optimizer + + @property + def scaler(self): + amp = self.config.run_cfg.get("amp", False) + + if amp: + if self._scaler is None: + self._scaler = torch.cuda.amp.GradScaler() + + return self._scaler + + @property + def lr_scheduler(self): + """ + A property to get and create learning rate scheduler by split just in need. + """ + if self._lr_sched is None: + lr_sched_cls = registry.get_lr_scheduler_class(self.config.run_cfg.lr_sched) + + # max_epoch = self.config.run_cfg.max_epoch + max_epoch = self.max_epoch + # min_lr = self.config.run_cfg.min_lr + min_lr = self.min_lr + # init_lr = self.config.run_cfg.init_lr + init_lr = self.init_lr + + # optional parameters + decay_rate = self.config.run_cfg.get("lr_decay_rate", None) + warmup_start_lr = self.config.run_cfg.get("warmup_lr", -1) + warmup_steps = self.config.run_cfg.get("warmup_steps", 0) + iters_per_epoch = self.config.run_cfg.get("iters_per_epoch", None) + + if iters_per_epoch is None: + try: + iters_per_epoch = len(self.dataloaders['train']) + except (AttributeError, TypeError): + iters_per_epoch = 10000 + + self._lr_sched = lr_sched_cls( + optimizer=self.optimizer, + max_epoch=max_epoch, + iters_per_epoch=iters_per_epoch, + min_lr=min_lr, + init_lr=init_lr, + decay_rate=decay_rate, + warmup_start_lr=warmup_start_lr, + warmup_steps=warmup_steps, + ) + + return self._lr_sched + + @property + def dataloaders(self) -> dict: + """ + A property to get and create dataloaders by split just in need. + + If no train_dataset_ratio is provided, concatenate map-style datasets and + chain wds.DataPipe datasets separately. Training set becomes a tuple + (ConcatDataset, ChainDataset), both are optional but at least one of them is + required. The resultant ConcatDataset and ChainDataset will be sampled evenly. + + If train_dataset_ratio is provided, create a MultiIterLoader to sample + each dataset by ratios during training. + + Currently do not support multiple datasets for validation and test. + + Returns: + dict: {split_name: (tuples of) dataloader} + """ + if self._dataloaders is None: + + # concatenate map-style datasets and chain wds.DataPipe datasets separately + # training set becomes a tuple (ConcatDataset, ChainDataset), both are + # optional but at least one of them is required. The resultant ConcatDataset + # and ChainDataset will be sampled evenly. + logging.info( + "dataset_ratios not specified, datasets will be concatenated (map-style datasets) or chained (webdataset.DataPipeline)." + ) + + datasets = reorg_datasets_by_split(self.datasets) + self.datasets = datasets + # self.datasets = concat_datasets(datasets) + + # print dataset statistics after concatenation/chaining + for split_name in self.datasets: + if isinstance(self.datasets[split_name], tuple) or isinstance( + self.datasets[split_name], list + ): + # mixed wds.DataPipeline and torch.utils.data.Dataset + num_records = sum( + [ + len(d) + if not type(d) in [wds.DataPipeline, ChainDataset] + else 0 + for d in self.datasets[split_name] + ] + ) + + else: + if hasattr(self.datasets[split_name], "__len__"): + # a single map-style dataset + num_records = len(self.datasets[split_name]) + else: + # a single wds.DataPipeline + num_records = -1 + logging.info( + "Only a single wds.DataPipeline dataset, no __len__ attribute." + ) + + if num_records >= 0: + logging.info( + "Loaded {} records for {} split from the dataset.".format( + num_records, split_name + ) + ) + + # create dataloaders + split_names = sorted(self.datasets.keys()) + + datasets = [self.datasets[split] for split in split_names] + is_trains = [split in self.train_splits for split in split_names] + + batch_sizes = [ + self.config.run_cfg.batch_size_train + if split == "train" + else self.config.run_cfg.batch_size_eval + for split in split_names + ] + + collate_fns = [] + for dataset in datasets: + if isinstance(dataset, tuple) or isinstance(dataset, list): + collate_fns.append([getattr(d, "collater", None) for d in dataset]) + else: + collate_fns.append(getattr(dataset, "collater", None)) + + dataloaders = self.create_loaders( + datasets=datasets, + num_workers=self.config.run_cfg.num_workers, + batch_sizes=batch_sizes, + is_trains=is_trains, + collate_fns=collate_fns, + ) + + self._dataloaders = {k: v for k, v in zip(split_names, dataloaders)} + + return self._dataloaders + + @property + def cuda_enabled(self): + return self.device.type == "cuda" + + @property + def max_epoch(self): + return int(self.config.run_cfg.max_epoch) + + @property + def log_freq(self): + log_freq = self.config.run_cfg.get("log_freq", 50) + return int(log_freq) + + @property + def init_lr(self): + return float(self.config.run_cfg.init_lr) + + @property + def min_lr(self): + return float(self.config.run_cfg.min_lr) + + @property + def accum_grad_iters(self): + return int(self.config.run_cfg.get("accum_grad_iters", 1)) + + @property + def valid_splits(self): + valid_splits = self.config.run_cfg.get("valid_splits", []) + + if len(valid_splits) == 0: + logging.info("No validation splits found.") + + return valid_splits + + @property + def test_splits(self): + test_splits = self.config.run_cfg.get("test_splits", []) + + return test_splits + + @property + def train_splits(self): + train_splits = self.config.run_cfg.get("train_splits", []) + + if len(train_splits) == 0: + logging.info("Empty train splits.") + + return train_splits + + @property + def evaluate_only(self): + """ + Set to True to skip training. + """ + return self.config.run_cfg.evaluate + + @property + def use_dist_eval_sampler(self): + return self.config.run_cfg.get("use_dist_eval_sampler", True) + + @property + def resume_ckpt_path(self): + return self.config.run_cfg.get("resume_ckpt_path", None) + + @property + def train_loader(self): + train_dataloader = self.dataloaders["train"] + + return train_dataloader + + def setup_output_dir(self): + lib_root = Path(registry.get_path("library_root")) + + output_dir = lib_root / self.config.run_cfg.output_dir / self.job_id + result_dir = output_dir / "result" + + output_dir.mkdir(parents=True, exist_ok=True) + result_dir.mkdir(parents=True, exist_ok=True) + + registry.register_path("result_dir", str(result_dir)) + registry.register_path("output_dir", str(output_dir)) + + self.result_dir = result_dir + self.output_dir = output_dir + + def train(self): + start_time = time.time() + best_agg_metric = 0 + best_epoch = 0 + + self.log_config() + + # resume from checkpoint if specified + if not self.evaluate_only and self.resume_ckpt_path is not None: + self._load_checkpoint(self.resume_ckpt_path) + + for cur_epoch in range(self.start_epoch, self.max_epoch): + # training phase + if not self.evaluate_only: + logging.info("Start training") + train_stats = self.train_epoch(cur_epoch) + self.log_stats(split_name="train", stats=train_stats) + + # evaluation phase + if len(self.valid_splits) > 0: + for split_name in self.valid_splits: + logging.info("Evaluating on {}.".format(split_name)) + + val_log = self.eval_epoch( + split_name=split_name, cur_epoch=cur_epoch + ) + if val_log is not None: + if is_main_process(): + assert ( + "agg_metrics" in val_log + ), "No agg_metrics found in validation log." + + agg_metrics = val_log["agg_metrics"] + if agg_metrics > best_agg_metric and split_name == "val": + best_epoch, best_agg_metric = cur_epoch, agg_metrics + + self._save_checkpoint(cur_epoch, is_best=True) + + val_log.update({"best_epoch": best_epoch}) + self.log_stats(val_log, split_name) + + else: + # if no validation split is provided, we just save the checkpoint at the end of each epoch. + if not self.evaluate_only: + self._save_checkpoint(cur_epoch, is_best=False) + + if self.evaluate_only: + break + + if self.config.run_cfg.distributed: + dist.barrier() + + # testing phase + test_epoch = "best" if len(self.valid_splits) > 0 else cur_epoch + self.evaluate(cur_epoch=test_epoch, skip_reload=self.evaluate_only) + + total_time = time.time() - start_time + total_time_str = str(datetime.timedelta(seconds=int(total_time))) + logging.info("Training time {}".format(total_time_str)) + + def evaluate(self, cur_epoch="best", skip_reload=False): + test_logs = dict() + + if len(self.test_splits) > 0: + for split_name in self.test_splits: + test_logs[split_name] = self.eval_epoch( + split_name=split_name, cur_epoch=cur_epoch, skip_reload=skip_reload + ) + + return test_logs + + def train_epoch(self, epoch): + # train + self.model.train() + + return self.task.train_epoch( + epoch=epoch, + model=self.model, + data_loader=self.train_loader, + optimizer=self.optimizer, + scaler=self.scaler, + lr_scheduler=self.lr_scheduler, + cuda_enabled=self.cuda_enabled, + log_freq=self.log_freq, + accum_grad_iters=self.accum_grad_iters, + ) + + @torch.no_grad() + def eval_epoch(self, split_name, cur_epoch, skip_reload=False): + """ + Evaluate the model on a given split. + + Args: + split_name (str): name of the split to evaluate on. + cur_epoch (int): current epoch. + skip_reload_best (bool): whether to skip reloading the best checkpoint. + During training, we will reload the best checkpoint for validation. + During testing, we will use provided weights and skip reloading the best checkpoint . + """ + data_loader = self.dataloaders.get(split_name, None) + assert data_loader, "data_loader for split {} is None.".format(split_name) + + # TODO In validation, you need to compute loss as well as metrics + # TODO consider moving to model.before_evaluation() + model = self.unwrap_dist_model(self.model) + if not skip_reload and cur_epoch == "best": + model = self._reload_best_model(model) + model.eval() + + self.task.before_evaluation( + model=model, + dataset=self.datasets[split_name], + ) + results = self.task.evaluation(model, data_loader) + + if results is not None: + return self.task.after_evaluation( + val_result=results, + split_name=split_name, + epoch=cur_epoch, + ) + + def unwrap_dist_model(self, model): + if self.use_distributed: + return model.module + else: + return model + + def create_loaders( + self, + datasets, + num_workers, + batch_sizes, + is_trains, + collate_fns, + dataset_ratios=None, + ): + """ + Create dataloaders for training and validation. + """ + + def _create_loader(dataset, num_workers, bsz, is_train, collate_fn): + # create a single dataloader for each split + if isinstance(dataset, ChainDataset) or isinstance( + dataset, wds.DataPipeline + ): + # wds.WebdDataset instance are chained together + # webdataset.DataPipeline has its own sampler and collate_fn + loader = iter( + DataLoader( + dataset, + batch_size=bsz, + num_workers=num_workers, + pin_memory=True, + ) + ) + else: + # map-style dataset are concatenated together + # setup distributed sampler + if self.use_distributed: + sampler = DistributedSampler( + dataset, + shuffle=is_train, + num_replicas=get_world_size(), + rank=get_rank(), + ) + if not self.use_dist_eval_sampler: + # e.g. retrieval evaluation + sampler = sampler if is_train else None + else: + sampler = None + + loader = DataLoader( + dataset, + batch_size=bsz, + num_workers=num_workers, + pin_memory=True, + sampler=sampler, + shuffle=sampler is None and is_train, + collate_fn=collate_fn, + drop_last=True if is_train else False, + ) + loader = PrefetchLoader(loader) + + if is_train: + loader = IterLoader(loader, use_distributed=self.use_distributed) + + return loader + + loaders = [] + + for dataset, bsz, is_train, collate_fn in zip( + datasets, batch_sizes, is_trains, collate_fns + ): + if isinstance(dataset, list) or isinstance(dataset, tuple): + if hasattr(dataset[0], 'sample_ratio') and dataset_ratios is None: + dataset_ratios = [d.sample_ratio for d in dataset] + loader = MultiIterLoader( + loaders=[ + _create_loader(d, num_workers, bsz, is_train, collate_fn[i]) + for i, d in enumerate(dataset) + ], + ratios=dataset_ratios, + ) + else: + loader = _create_loader(dataset, num_workers, bsz, is_train, collate_fn) + + loaders.append(loader) + + return loaders + + @main_process + def _save_checkpoint(self, cur_epoch, is_best=False): + """ + Save the checkpoint at the current epoch. + """ + model_no_ddp = self.unwrap_dist_model(self.model) + param_grad_dic = { + k: v.requires_grad for (k, v) in model_no_ddp.named_parameters() + } + state_dict = model_no_ddp.state_dict() + for k in list(state_dict.keys()): + if k in param_grad_dic.keys() and not param_grad_dic[k]: + # delete parameters that do not require gradient + del state_dict[k] + save_obj = { + "model": state_dict, + "optimizer": self.optimizer.state_dict(), + "config": self.config.to_dict(), + "scaler": self.scaler.state_dict() if self.scaler else None, + "epoch": cur_epoch, + } + save_to = os.path.join( + self.output_dir, + "checkpoint_{}.pth".format("best" if is_best else cur_epoch), + ) + logging.info("Saving checkpoint at epoch {} to {}.".format(cur_epoch, save_to)) + torch.save(save_obj, save_to) + + def _reload_best_model(self, model): + """ + Load the best checkpoint for evaluation. + """ + checkpoint_path = os.path.join(self.output_dir, "checkpoint_best.pth") + + logging.info("Loading checkpoint from {}.".format(checkpoint_path)) + checkpoint = torch.load(checkpoint_path, map_location="cpu") + try: + model.load_state_dict(checkpoint["model"]) + except RuntimeError as e: + logging.warning( + """ + Key mismatch when loading checkpoint. This is expected if only part of the model is saved. + Trying to load the model with strict=False. + """ + ) + model.load_state_dict(checkpoint["model"], strict=False) + return model + + def _load_checkpoint(self, url_or_filename): + """ + Resume from a checkpoint. + """ + if is_url(url_or_filename): + cached_file = download_cached_file( + url_or_filename, check_hash=False, progress=True + ) + checkpoint = torch.load(cached_file, map_location=self.device) + elif os.path.isfile(url_or_filename): + checkpoint = torch.load(url_or_filename, map_location=self.device) + else: + raise RuntimeError("checkpoint url or path is invalid") + + state_dict = checkpoint["model"] + self.unwrap_dist_model(self.model).load_state_dict(state_dict,strict=False) + + self.optimizer.load_state_dict(checkpoint["optimizer"]) + if self.scaler and "scaler" in checkpoint: + self.scaler.load_state_dict(checkpoint["scaler"]) + + self.start_epoch = checkpoint["epoch"] + 1 + logging.info("Resume checkpoint from {}".format(url_or_filename)) + + @main_process + def log_stats(self, stats, split_name): + if isinstance(stats, dict): + log_stats = {**{f"{split_name}_{k}": v for k, v in stats.items()}} + with open(os.path.join(self.output_dir, "log.txt"), "a") as f: + f.write(json.dumps(log_stats) + "\n") + elif isinstance(stats, list): + pass + + @main_process + def log_config(self): + with open(os.path.join(self.output_dir, "log.txt"), "a") as f: + f.write(json.dumps(self.config.to_dict(), indent=4) + "\n") diff --git a/OPERA/minigpt4/tasks/__init__.py b/OPERA/minigpt4/tasks/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..b2dc0475a021a3ee944a8731a30764331d30aef0 --- /dev/null +++ b/OPERA/minigpt4/tasks/__init__.py @@ -0,0 +1,26 @@ +""" + Copyright (c) 2022, salesforce.com, inc. + All rights reserved. + SPDX-License-Identifier: BSD-3-Clause + For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause +""" + +from minigpt4.common.registry import registry +from minigpt4.tasks.base_task import BaseTask +from minigpt4.tasks.image_text_pretrain import ImageTextPretrainTask + + +def setup_task(cfg): + assert "task" in cfg.run_cfg, "Task name must be provided." + + task_name = cfg.run_cfg.task + task = registry.get_task_class(task_name).setup_task(cfg=cfg) + assert task is not None, "Task {} not properly registered.".format(task_name) + + return task + + +__all__ = [ + "BaseTask", + "ImageTextPretrainTask", +] diff --git a/OPERA/minigpt4/tasks/base_task.py b/OPERA/minigpt4/tasks/base_task.py new file mode 100644 index 0000000000000000000000000000000000000000..dff7093605ae7c78e411a137c6e2296c426f08c2 --- /dev/null +++ b/OPERA/minigpt4/tasks/base_task.py @@ -0,0 +1,286 @@ +""" + Copyright (c) 2022, salesforce.com, inc. + All rights reserved. + SPDX-License-Identifier: BSD-3-Clause + For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause +""" + +import logging +import os + +import torch +import torch.distributed as dist +from minigpt4.common.dist_utils import get_rank, get_world_size, is_main_process, is_dist_avail_and_initialized +from minigpt4.common.logger import MetricLogger, SmoothedValue +from minigpt4.common.registry import registry +from minigpt4.datasets.data_utils import prepare_sample + + +class BaseTask: + def __init__(self, **kwargs): + super().__init__() + + self.inst_id_key = "instance_id" + + @classmethod + def setup_task(cls, **kwargs): + return cls() + + def build_model(self, cfg): + model_config = cfg.model_cfg + + model_cls = registry.get_model_class(model_config.arch) + return model_cls.from_config(model_config) + + def build_datasets(self, cfg): + """ + Build a dictionary of datasets, keyed by split 'train', 'valid', 'test'. + Download dataset and annotations automatically if not exist. + + Args: + cfg (common.config.Config): _description_ + + Returns: + dict: Dictionary of torch.utils.data.Dataset objects by split. + """ + + datasets = dict() + + datasets_config = cfg.datasets_cfg + + assert len(datasets_config) > 0, "At least one dataset has to be specified." + + for name in datasets_config: + dataset_config = datasets_config[name] + + builder = registry.get_builder_class(name)(dataset_config) + dataset = builder.build_datasets() + + dataset['train'].name = name + if 'sample_ratio' in dataset_config: + dataset['train'].sample_ratio = dataset_config.sample_ratio + + datasets[name] = dataset + + return datasets + + def train_step(self, model, samples): + loss = model(samples)["loss"] + return loss + + def valid_step(self, model, samples): + raise NotImplementedError + + def before_evaluation(self, model, dataset, **kwargs): + model.before_evaluation(dataset=dataset, task_type=type(self)) + + def after_evaluation(self, **kwargs): + pass + + def inference_step(self): + raise NotImplementedError + + def evaluation(self, model, data_loader, cuda_enabled=True): + metric_logger = MetricLogger(delimiter=" ") + header = "Evaluation" + # TODO make it configurable + print_freq = 10 + + results = [] + + for samples in metric_logger.log_every(data_loader, print_freq, header): + samples = prepare_sample(samples, cuda_enabled=cuda_enabled) + + eval_output = self.valid_step(model=model, samples=samples) + results.extend(eval_output) + + if is_dist_avail_and_initialized(): + dist.barrier() + + return results + + def train_epoch( + self, + epoch, + model, + data_loader, + optimizer, + lr_scheduler, + scaler=None, + cuda_enabled=False, + log_freq=50, + accum_grad_iters=1, + ): + return self._train_inner_loop( + epoch=epoch, + iters_per_epoch=lr_scheduler.iters_per_epoch, + model=model, + data_loader=data_loader, + optimizer=optimizer, + scaler=scaler, + lr_scheduler=lr_scheduler, + log_freq=log_freq, + cuda_enabled=cuda_enabled, + accum_grad_iters=accum_grad_iters, + ) + + def train_iters( + self, + epoch, + start_iters, + iters_per_inner_epoch, + model, + data_loader, + optimizer, + lr_scheduler, + scaler=None, + cuda_enabled=False, + log_freq=50, + accum_grad_iters=1, + ): + return self._train_inner_loop( + epoch=epoch, + start_iters=start_iters, + iters_per_epoch=iters_per_inner_epoch, + model=model, + data_loader=data_loader, + optimizer=optimizer, + scaler=scaler, + lr_scheduler=lr_scheduler, + log_freq=log_freq, + cuda_enabled=cuda_enabled, + accum_grad_iters=accum_grad_iters, + ) + + def _train_inner_loop( + self, + epoch, + iters_per_epoch, + model, + data_loader, + optimizer, + lr_scheduler, + scaler=None, + start_iters=None, + log_freq=50, + cuda_enabled=False, + accum_grad_iters=1, + ): + """ + An inner training loop compatible with both epoch-based and iter-based training. + + When using epoch-based, training stops after one epoch; when using iter-based, + training stops after #iters_per_epoch iterations. + """ + use_amp = scaler is not None + + if not hasattr(data_loader, "__next__"): + # convert to iterator if not already + data_loader = iter(data_loader) + + metric_logger = MetricLogger(delimiter=" ") + metric_logger.add_meter("lr", SmoothedValue(window_size=1, fmt="{value:.6f}")) + metric_logger.add_meter("loss", SmoothedValue(window_size=1, fmt="{value:.4f}")) + + # if iter-based runner, schedule lr based on inner epoch. + logging.info( + "Start training epoch {}, {} iters per inner epoch.".format( + epoch, iters_per_epoch + ) + ) + header = "Train: data epoch: [{}]".format(epoch) + if start_iters is None: + # epoch-based runner + inner_epoch = epoch + else: + # In iter-based runner, we schedule the learning rate based on iterations. + inner_epoch = start_iters // iters_per_epoch + header = header + "; inner epoch [{}]".format(inner_epoch) + + for i in metric_logger.log_every(range(iters_per_epoch), log_freq, header): + # if using iter-based runner, we stop after iters_per_epoch iterations. + if i >= iters_per_epoch: + break + + samples = next(data_loader) + + samples = prepare_sample(samples, cuda_enabled=cuda_enabled) + samples.update( + { + "epoch": inner_epoch, + "num_iters_per_epoch": iters_per_epoch, + "iters": i, + } + ) + + lr_scheduler.step(cur_epoch=inner_epoch, cur_step=i) + + with torch.cuda.amp.autocast(enabled=use_amp): + loss = self.train_step(model=model, samples=samples) + + # after_train_step() + if use_amp: + scaler.scale(loss).backward() + else: + loss.backward() + + # update gradients every accum_grad_iters iterations + if (i + 1) % accum_grad_iters == 0: + if use_amp: + scaler.step(optimizer) + scaler.update() + else: + optimizer.step() + optimizer.zero_grad() + + metric_logger.update(loss=loss.item()) + metric_logger.update(lr=optimizer.param_groups[0]["lr"]) + + # after train_epoch() + # gather the stats from all processes + metric_logger.synchronize_between_processes() + logging.info("Averaged stats: " + str(metric_logger.global_avg())) + return { + k: "{:.3f}".format(meter.global_avg) + for k, meter in metric_logger.meters.items() + } + + @staticmethod + def save_result(result, result_dir, filename, remove_duplicate=""): + import json + + result_file = os.path.join( + result_dir, "%s_rank%d.json" % (filename, get_rank()) + ) + final_result_file = os.path.join(result_dir, "%s.json" % filename) + + json.dump(result, open(result_file, "w")) + + if is_dist_avail_and_initialized(): + dist.barrier() + + if is_main_process(): + logging.warning("rank %d starts merging results." % get_rank()) + # combine results from all processes + result = [] + + for rank in range(get_world_size()): + result_file = os.path.join( + result_dir, "%s_rank%d.json" % (filename, rank) + ) + res = json.load(open(result_file, "r")) + result += res + + if remove_duplicate: + result_new = [] + id_list = [] + for res in result: + if res[remove_duplicate] not in id_list: + id_list.append(res[remove_duplicate]) + result_new.append(res) + result = result_new + + json.dump(result, open(final_result_file, "w")) + print("result file saved to %s" % final_result_file) + + return final_result_file diff --git a/OPERA/minigpt4/tasks/image_text_pretrain.py b/OPERA/minigpt4/tasks/image_text_pretrain.py new file mode 100644 index 0000000000000000000000000000000000000000..d7ae02944a87046b0808b804682386777b31c0c3 --- /dev/null +++ b/OPERA/minigpt4/tasks/image_text_pretrain.py @@ -0,0 +1,18 @@ +""" + Copyright (c) 2022, salesforce.com, inc. + All rights reserved. + SPDX-License-Identifier: BSD-3-Clause + For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause +""" + +from minigpt4.common.registry import registry +from minigpt4.tasks.base_task import BaseTask + + +@registry.register_task("image_text_pretrain") +class ImageTextPretrainTask(BaseTask): + def __init__(self): + super().__init__() + + def evaluation(self, model, data_loader, cuda_enabled=True): + pass diff --git a/OPERA/pope_coco/coco_pope_adversarial.json b/OPERA/pope_coco/coco_pope_adversarial.json new file mode 100644 index 0000000000000000000000000000000000000000..65ccf25e16370b4145ba507be45fa085c0763490 --- /dev/null +++ b/OPERA/pope_coco/coco_pope_adversarial.json @@ -0,0 +1,3000 @@ +{"question_id": 1, "image": "COCO_val2014_000000310196.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 2, "image": "COCO_val2014_000000310196.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 3, "image": "COCO_val2014_000000310196.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 4, "image": "COCO_val2014_000000310196.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 5, "image": "COCO_val2014_000000310196.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 6, "image": "COCO_val2014_000000310196.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 7, "image": "COCO_val2014_000000210789.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 8, "image": "COCO_val2014_000000210789.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 9, "image": "COCO_val2014_000000210789.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 10, "image": "COCO_val2014_000000210789.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 11, "image": "COCO_val2014_000000210789.jpg", "text": "Is there an umbrella in the imange?", "label": "yes"} +{"question_id": 12, "image": "COCO_val2014_000000210789.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 13, "image": "COCO_val2014_000000429109.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 14, "image": "COCO_val2014_000000429109.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 15, "image": "COCO_val2014_000000429109.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 16, "image": "COCO_val2014_000000429109.jpg", "text": "Is there a motorcycle in the image?", "label": "no"} +{"question_id": 17, "image": "COCO_val2014_000000429109.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 18, "image": "COCO_val2014_000000429109.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 19, "image": "COCO_val2014_000000211674.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 20, "image": "COCO_val2014_000000211674.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 21, "image": "COCO_val2014_000000211674.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 22, "image": "COCO_val2014_000000211674.jpg", "text": "Is there a vase in the image?", "label": "no"} +{"question_id": 23, "image": "COCO_val2014_000000211674.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 24, "image": "COCO_val2014_000000211674.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 25, "image": "COCO_val2014_000000458338.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 26, "image": "COCO_val2014_000000458338.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 27, "image": "COCO_val2014_000000458338.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 28, "image": "COCO_val2014_000000458338.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 29, "image": "COCO_val2014_000000458338.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 30, "image": "COCO_val2014_000000458338.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 31, "image": "COCO_val2014_000000283412.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 32, "image": "COCO_val2014_000000283412.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 33, "image": "COCO_val2014_000000283412.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 34, "image": "COCO_val2014_000000283412.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 35, "image": "COCO_val2014_000000283412.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 36, "image": "COCO_val2014_000000283412.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 37, "image": "COCO_val2014_000000265719.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 38, "image": "COCO_val2014_000000265719.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 39, "image": "COCO_val2014_000000265719.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 40, "image": "COCO_val2014_000000265719.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 41, "image": "COCO_val2014_000000265719.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 42, "image": "COCO_val2014_000000265719.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 43, "image": "COCO_val2014_000000461331.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 44, "image": "COCO_val2014_000000461331.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 45, "image": "COCO_val2014_000000461331.jpg", "text": "Is there a toaster in the image?", "label": "yes"} +{"question_id": 46, "image": "COCO_val2014_000000461331.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 47, "image": "COCO_val2014_000000461331.jpg", "text": "Is there a microwave in the image?", "label": "yes"} +{"question_id": 48, "image": "COCO_val2014_000000461331.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 49, "image": "COCO_val2014_000000544456.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 50, "image": "COCO_val2014_000000544456.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 51, "image": "COCO_val2014_000000544456.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 52, "image": "COCO_val2014_000000544456.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 53, "image": "COCO_val2014_000000544456.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 54, "image": "COCO_val2014_000000544456.jpg", "text": "Is there a snowboard in the image?", "label": "no"} +{"question_id": 55, "image": "COCO_val2014_000000017708.jpg", "text": "Is there a bird in the image?", "label": "yes"} +{"question_id": 56, "image": "COCO_val2014_000000017708.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 57, "image": "COCO_val2014_000000017708.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 58, "image": "COCO_val2014_000000017708.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 59, "image": "COCO_val2014_000000017708.jpg", "text": "Is there a boat in the image?", "label": "yes"} +{"question_id": 60, "image": "COCO_val2014_000000017708.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 61, "image": "COCO_val2014_000000574692.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 62, "image": "COCO_val2014_000000574692.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 63, "image": "COCO_val2014_000000574692.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 64, "image": "COCO_val2014_000000574692.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 65, "image": "COCO_val2014_000000574692.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 66, "image": "COCO_val2014_000000574692.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 67, "image": "COCO_val2014_000000353180.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 68, "image": "COCO_val2014_000000353180.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 69, "image": "COCO_val2014_000000353180.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 70, "image": "COCO_val2014_000000353180.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 71, "image": "COCO_val2014_000000353180.jpg", "text": "Is there a bus in the image?", "label": "yes"} +{"question_id": 72, "image": "COCO_val2014_000000353180.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 73, "image": "COCO_val2014_000000239444.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 74, "image": "COCO_val2014_000000239444.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 75, "image": "COCO_val2014_000000239444.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 76, "image": "COCO_val2014_000000239444.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 77, "image": "COCO_val2014_000000239444.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 78, "image": "COCO_val2014_000000239444.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 79, "image": "COCO_val2014_000000569839.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 80, "image": "COCO_val2014_000000569839.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 81, "image": "COCO_val2014_000000569839.jpg", "text": "Is there a sandwich in the image?", "label": "yes"} +{"question_id": 82, "image": "COCO_val2014_000000569839.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 83, "image": "COCO_val2014_000000569839.jpg", "text": "Is there a hot dog in the image?", "label": "yes"} +{"question_id": 84, "image": "COCO_val2014_000000569839.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 85, "image": "COCO_val2014_000000219622.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 86, "image": "COCO_val2014_000000219622.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 87, "image": "COCO_val2014_000000219622.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 88, "image": "COCO_val2014_000000219622.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 89, "image": "COCO_val2014_000000219622.jpg", "text": "Is there a frisbee in the image?", "label": "yes"} +{"question_id": 90, "image": "COCO_val2014_000000219622.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 91, "image": "COCO_val2014_000000300368.jpg", "text": "Is there a knife in the image?", "label": "yes"} +{"question_id": 92, "image": "COCO_val2014_000000300368.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 93, "image": "COCO_val2014_000000300368.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 94, "image": "COCO_val2014_000000300368.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 95, "image": "COCO_val2014_000000300368.jpg", "text": "Is there a cake in the image?", "label": "yes"} +{"question_id": 96, "image": "COCO_val2014_000000300368.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 97, "image": "COCO_val2014_000000482476.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 98, "image": "COCO_val2014_000000482476.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 99, "image": "COCO_val2014_000000482476.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 100, "image": "COCO_val2014_000000482476.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 101, "image": "COCO_val2014_000000482476.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 102, "image": "COCO_val2014_000000482476.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 103, "image": "COCO_val2014_000000131115.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 104, "image": "COCO_val2014_000000131115.jpg", "text": "Is there a sports ball in the image?", "label": "no"} +{"question_id": 105, "image": "COCO_val2014_000000131115.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 106, "image": "COCO_val2014_000000131115.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 107, "image": "COCO_val2014_000000131115.jpg", "text": "Is there a baseball bat in the image?", "label": "yes"} +{"question_id": 108, "image": "COCO_val2014_000000131115.jpg", "text": "Is there a bench in the image?", "label": "no"} +{"question_id": 109, "image": "COCO_val2014_000000157084.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 110, "image": "COCO_val2014_000000157084.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 111, "image": "COCO_val2014_000000157084.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 112, "image": "COCO_val2014_000000157084.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 113, "image": "COCO_val2014_000000157084.jpg", "text": "Is there a toilet in the image?", "label": "yes"} +{"question_id": 114, "image": "COCO_val2014_000000157084.jpg", "text": "Is there a vase in the image?", "label": "no"} +{"question_id": 115, "image": "COCO_val2014_000000381895.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 116, "image": "COCO_val2014_000000381895.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 117, "image": "COCO_val2014_000000381895.jpg", "text": "Is there a teddy bear in the image?", "label": "yes"} +{"question_id": 118, "image": "COCO_val2014_000000381895.jpg", "text": "Is there a bed in the image?", "label": "no"} +{"question_id": 119, "image": "COCO_val2014_000000381895.jpg", "text": "Is there a bear in the image?", "label": "yes"} +{"question_id": 120, "image": "COCO_val2014_000000381895.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 121, "image": "COCO_val2014_000000336872.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 122, "image": "COCO_val2014_000000336872.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 123, "image": "COCO_val2014_000000336872.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 124, "image": "COCO_val2014_000000336872.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 125, "image": "COCO_val2014_000000336872.jpg", "text": "Is there a sandwich in the image?", "label": "yes"} +{"question_id": 126, "image": "COCO_val2014_000000336872.jpg", "text": "Is there a fork in the image?", "label": "no"} +{"question_id": 127, "image": "COCO_val2014_000000075591.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 128, "image": "COCO_val2014_000000075591.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 129, "image": "COCO_val2014_000000075591.jpg", "text": "Is there a cat in the image?", "label": "yes"} +{"question_id": 130, "image": "COCO_val2014_000000075591.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 131, "image": "COCO_val2014_000000075591.jpg", "text": "Is there a book in the image?", "label": "yes"} +{"question_id": 132, "image": "COCO_val2014_000000075591.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 133, "image": "COCO_val2014_000000516916.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 134, "image": "COCO_val2014_000000516916.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 135, "image": "COCO_val2014_000000516916.jpg", "text": "Is there a mouse in the image?", "label": "yes"} +{"question_id": 136, "image": "COCO_val2014_000000516916.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 137, "image": "COCO_val2014_000000516916.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 138, "image": "COCO_val2014_000000516916.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 139, "image": "COCO_val2014_000000542145.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 140, "image": "COCO_val2014_000000542145.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 141, "image": "COCO_val2014_000000542145.jpg", "text": "Is there a toothbrush in the image?", "label": "yes"} +{"question_id": 142, "image": "COCO_val2014_000000542145.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 143, "image": "COCO_val2014_000000542145.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 144, "image": "COCO_val2014_000000542145.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 145, "image": "COCO_val2014_000000218224.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 146, "image": "COCO_val2014_000000218224.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 147, "image": "COCO_val2014_000000218224.jpg", "text": "Is there an airplane in the imange?", "label": "yes"} +{"question_id": 148, "image": "COCO_val2014_000000218224.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 149, "image": "COCO_val2014_000000218224.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 150, "image": "COCO_val2014_000000218224.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 151, "image": "COCO_val2014_000000297078.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 152, "image": "COCO_val2014_000000297078.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 153, "image": "COCO_val2014_000000297078.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 154, "image": "COCO_val2014_000000297078.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 155, "image": "COCO_val2014_000000297078.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 156, "image": "COCO_val2014_000000297078.jpg", "text": "Is there a snowboard in the image?", "label": "no"} +{"question_id": 157, "image": "COCO_val2014_000000033270.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 158, "image": "COCO_val2014_000000033270.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 159, "image": "COCO_val2014_000000033270.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 160, "image": "COCO_val2014_000000033270.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 161, "image": "COCO_val2014_000000033270.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 162, "image": "COCO_val2014_000000033270.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 163, "image": "COCO_val2014_000000140583.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 164, "image": "COCO_val2014_000000140583.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 165, "image": "COCO_val2014_000000140583.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 166, "image": "COCO_val2014_000000140583.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 167, "image": "COCO_val2014_000000140583.jpg", "text": "Is there a cow in the image?", "label": "yes"} +{"question_id": 168, "image": "COCO_val2014_000000140583.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 169, "image": "COCO_val2014_000000421455.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 170, "image": "COCO_val2014_000000421455.jpg", "text": "Is there a frisbee in the image?", "label": "no"} +{"question_id": 171, "image": "COCO_val2014_000000421455.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 172, "image": "COCO_val2014_000000421455.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 173, "image": "COCO_val2014_000000421455.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 174, "image": "COCO_val2014_000000421455.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 175, "image": "COCO_val2014_000000288639.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 176, "image": "COCO_val2014_000000288639.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 177, "image": "COCO_val2014_000000288639.jpg", "text": "Is there a toothbrush in the image?", "label": "yes"} +{"question_id": 178, "image": "COCO_val2014_000000288639.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 179, "image": "COCO_val2014_000000288639.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 180, "image": "COCO_val2014_000000288639.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 181, "image": "COCO_val2014_000000291936.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 182, "image": "COCO_val2014_000000291936.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 183, "image": "COCO_val2014_000000291936.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 184, "image": "COCO_val2014_000000291936.jpg", "text": "Is there a motorcycle in the image?", "label": "no"} +{"question_id": 185, "image": "COCO_val2014_000000291936.jpg", "text": "Is there an umbrella in the imange?", "label": "yes"} +{"question_id": 186, "image": "COCO_val2014_000000291936.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 187, "image": "COCO_val2014_000000063953.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 188, "image": "COCO_val2014_000000063953.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 189, "image": "COCO_val2014_000000063953.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 190, "image": "COCO_val2014_000000063953.jpg", "text": "Is there a motorcycle in the image?", "label": "no"} +{"question_id": 191, "image": "COCO_val2014_000000063953.jpg", "text": "Is there a skateboard in the image?", "label": "yes"} +{"question_id": 192, "image": "COCO_val2014_000000063953.jpg", "text": "Is there a bench in the image?", "label": "no"} +{"question_id": 193, "image": "COCO_val2014_000000526321.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 194, "image": "COCO_val2014_000000526321.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 195, "image": "COCO_val2014_000000526321.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 196, "image": "COCO_val2014_000000526321.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 197, "image": "COCO_val2014_000000526321.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 198, "image": "COCO_val2014_000000526321.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 199, "image": "COCO_val2014_000000042190.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 200, "image": "COCO_val2014_000000042190.jpg", "text": "Is there a skis in the image?", "label": "no"} +{"question_id": 201, "image": "COCO_val2014_000000042190.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 202, "image": "COCO_val2014_000000042190.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 203, "image": "COCO_val2014_000000042190.jpg", "text": "Is there a surfboard in the image?", "label": "yes"} +{"question_id": 204, "image": "COCO_val2014_000000042190.jpg", "text": "Is there an umbrella in the imange?", "label": "no"} +{"question_id": 205, "image": "COCO_val2014_000000553165.jpg", "text": "Is there a bird in the image?", "label": "yes"} +{"question_id": 206, "image": "COCO_val2014_000000553165.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 207, "image": "COCO_val2014_000000553165.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 208, "image": "COCO_val2014_000000553165.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 209, "image": "COCO_val2014_000000553165.jpg", "text": "Is there a boat in the image?", "label": "yes"} +{"question_id": 210, "image": "COCO_val2014_000000553165.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 211, "image": "COCO_val2014_000000170517.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 212, "image": "COCO_val2014_000000170517.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 213, "image": "COCO_val2014_000000170517.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 214, "image": "COCO_val2014_000000170517.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 215, "image": "COCO_val2014_000000170517.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 216, "image": "COCO_val2014_000000170517.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 217, "image": "COCO_val2014_000000498759.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 218, "image": "COCO_val2014_000000498759.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 219, "image": "COCO_val2014_000000498759.jpg", "text": "Is there a skateboard in the image?", "label": "yes"} +{"question_id": 220, "image": "COCO_val2014_000000498759.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 221, "image": "COCO_val2014_000000498759.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 222, "image": "COCO_val2014_000000498759.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 223, "image": "COCO_val2014_000000360600.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 224, "image": "COCO_val2014_000000360600.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 225, "image": "COCO_val2014_000000360600.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 226, "image": "COCO_val2014_000000360600.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 227, "image": "COCO_val2014_000000360600.jpg", "text": "Is there a knife in the image?", "label": "yes"} +{"question_id": 228, "image": "COCO_val2014_000000360600.jpg", "text": "Is there a spoon in the image?", "label": "no"} +{"question_id": 229, "image": "COCO_val2014_000000031773.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 230, "image": "COCO_val2014_000000031773.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 231, "image": "COCO_val2014_000000031773.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 232, "image": "COCO_val2014_000000031773.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 233, "image": "COCO_val2014_000000031773.jpg", "text": "Is there a mouse in the image?", "label": "yes"} +{"question_id": 234, "image": "COCO_val2014_000000031773.jpg", "text": "Is there a cell phone in the image?", "label": "no"} +{"question_id": 235, "image": "COCO_val2014_000000500257.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 236, "image": "COCO_val2014_000000500257.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 237, "image": "COCO_val2014_000000500257.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 238, "image": "COCO_val2014_000000500257.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 239, "image": "COCO_val2014_000000500257.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 240, "image": "COCO_val2014_000000500257.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 241, "image": "COCO_val2014_000000574057.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 242, "image": "COCO_val2014_000000574057.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 243, "image": "COCO_val2014_000000574057.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 244, "image": "COCO_val2014_000000574057.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 245, "image": "COCO_val2014_000000574057.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 246, "image": "COCO_val2014_000000574057.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 247, "image": "COCO_val2014_000000456178.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 248, "image": "COCO_val2014_000000456178.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 249, "image": "COCO_val2014_000000456178.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 250, "image": "COCO_val2014_000000456178.jpg", "text": "Is there a motorcycle in the image?", "label": "no"} +{"question_id": 251, "image": "COCO_val2014_000000456178.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 252, "image": "COCO_val2014_000000456178.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 253, "image": "COCO_val2014_000000565941.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 254, "image": "COCO_val2014_000000565941.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 255, "image": "COCO_val2014_000000565941.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 256, "image": "COCO_val2014_000000565941.jpg", "text": "Is there a spoon in the image?", "label": "no"} +{"question_id": 257, "image": "COCO_val2014_000000565941.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 258, "image": "COCO_val2014_000000565941.jpg", "text": "Is there a laptop in the image?", "label": "no"} +{"question_id": 259, "image": "COCO_val2014_000000485564.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 260, "image": "COCO_val2014_000000485564.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 261, "image": "COCO_val2014_000000485564.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 262, "image": "COCO_val2014_000000485564.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 263, "image": "COCO_val2014_000000485564.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 264, "image": "COCO_val2014_000000485564.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 265, "image": "COCO_val2014_000000454642.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 266, "image": "COCO_val2014_000000454642.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 267, "image": "COCO_val2014_000000454642.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 268, "image": "COCO_val2014_000000454642.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 269, "image": "COCO_val2014_000000454642.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 270, "image": "COCO_val2014_000000454642.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 271, "image": "COCO_val2014_000000205729.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 272, "image": "COCO_val2014_000000205729.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 273, "image": "COCO_val2014_000000205729.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 274, "image": "COCO_val2014_000000205729.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 275, "image": "COCO_val2014_000000205729.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 276, "image": "COCO_val2014_000000205729.jpg", "text": "Is there a snowboard in the image?", "label": "no"} +{"question_id": 277, "image": "COCO_val2014_000000424792.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 278, "image": "COCO_val2014_000000424792.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 279, "image": "COCO_val2014_000000424792.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 280, "image": "COCO_val2014_000000424792.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 281, "image": "COCO_val2014_000000424792.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 282, "image": "COCO_val2014_000000424792.jpg", "text": "Is there a potted plant in the image?", "label": "no"} +{"question_id": 283, "image": "COCO_val2014_000000329717.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 284, "image": "COCO_val2014_000000329717.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 285, "image": "COCO_val2014_000000329717.jpg", "text": "Is there a suitcase in the image?", "label": "yes"} +{"question_id": 286, "image": "COCO_val2014_000000329717.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 287, "image": "COCO_val2014_000000329717.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 288, "image": "COCO_val2014_000000329717.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 289, "image": "COCO_val2014_000000012333.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 290, "image": "COCO_val2014_000000012333.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 291, "image": "COCO_val2014_000000012333.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 292, "image": "COCO_val2014_000000012333.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 293, "image": "COCO_val2014_000000012333.jpg", "text": "Is there a horse in the image?", "label": "yes"} +{"question_id": 294, "image": "COCO_val2014_000000012333.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 295, "image": "COCO_val2014_000000480122.jpg", "text": "Is there a banana in the image?", "label": "yes"} +{"question_id": 296, "image": "COCO_val2014_000000480122.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 297, "image": "COCO_val2014_000000480122.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 298, "image": "COCO_val2014_000000480122.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 299, "image": "COCO_val2014_000000480122.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 300, "image": "COCO_val2014_000000480122.jpg", "text": "Is there a sandwich in the image?", "label": "no"} +{"question_id": 301, "image": "COCO_val2014_000000515904.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 302, "image": "COCO_val2014_000000515904.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 303, "image": "COCO_val2014_000000515904.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 304, "image": "COCO_val2014_000000515904.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 305, "image": "COCO_val2014_000000515904.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 306, "image": "COCO_val2014_000000515904.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 307, "image": "COCO_val2014_000000437347.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 308, "image": "COCO_val2014_000000437347.jpg", "text": "Is there a baseball bat in the image?", "label": "no"} +{"question_id": 309, "image": "COCO_val2014_000000437347.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 310, "image": "COCO_val2014_000000437347.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 311, "image": "COCO_val2014_000000437347.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 312, "image": "COCO_val2014_000000437347.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 313, "image": "COCO_val2014_000000354229.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 314, "image": "COCO_val2014_000000354229.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 315, "image": "COCO_val2014_000000354229.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 316, "image": "COCO_val2014_000000354229.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 317, "image": "COCO_val2014_000000354229.jpg", "text": "Is there a bus in the image?", "label": "yes"} +{"question_id": 318, "image": "COCO_val2014_000000354229.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 319, "image": "COCO_val2014_000000538236.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 320, "image": "COCO_val2014_000000538236.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 321, "image": "COCO_val2014_000000538236.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 322, "image": "COCO_val2014_000000538236.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 323, "image": "COCO_val2014_000000538236.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 324, "image": "COCO_val2014_000000538236.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 325, "image": "COCO_val2014_000000236865.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 326, "image": "COCO_val2014_000000236865.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 327, "image": "COCO_val2014_000000236865.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 328, "image": "COCO_val2014_000000236865.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 329, "image": "COCO_val2014_000000236865.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 330, "image": "COCO_val2014_000000236865.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 331, "image": "COCO_val2014_000000217397.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 332, "image": "COCO_val2014_000000217397.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 333, "image": "COCO_val2014_000000217397.jpg", "text": "Is there a wine glass in the image?", "label": "yes"} +{"question_id": 334, "image": "COCO_val2014_000000217397.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 335, "image": "COCO_val2014_000000217397.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 336, "image": "COCO_val2014_000000217397.jpg", "text": "Is there a spoon in the image?", "label": "no"} +{"question_id": 337, "image": "COCO_val2014_000000060213.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 338, "image": "COCO_val2014_000000060213.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 339, "image": "COCO_val2014_000000060213.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 340, "image": "COCO_val2014_000000060213.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 341, "image": "COCO_val2014_000000060213.jpg", "text": "Is there a book in the image?", "label": "yes"} +{"question_id": 342, "image": "COCO_val2014_000000060213.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 343, "image": "COCO_val2014_000000054025.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 344, "image": "COCO_val2014_000000054025.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 345, "image": "COCO_val2014_000000054025.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 346, "image": "COCO_val2014_000000054025.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 347, "image": "COCO_val2014_000000054025.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 348, "image": "COCO_val2014_000000054025.jpg", "text": "Is there a skis in the image?", "label": "no"} +{"question_id": 349, "image": "COCO_val2014_000000084447.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 350, "image": "COCO_val2014_000000084447.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 351, "image": "COCO_val2014_000000084447.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 352, "image": "COCO_val2014_000000084447.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 353, "image": "COCO_val2014_000000084447.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 354, "image": "COCO_val2014_000000084447.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 355, "image": "COCO_val2014_000000192660.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 356, "image": "COCO_val2014_000000192660.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 357, "image": "COCO_val2014_000000192660.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 358, "image": "COCO_val2014_000000192660.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 359, "image": "COCO_val2014_000000192660.jpg", "text": "Is there a refrigerator in the image?", "label": "yes"} +{"question_id": 360, "image": "COCO_val2014_000000192660.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 361, "image": "COCO_val2014_000000575755.jpg", "text": "Is there a sandwich in the image?", "label": "yes"} +{"question_id": 362, "image": "COCO_val2014_000000575755.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 363, "image": "COCO_val2014_000000575755.jpg", "text": "Is there a carrot in the image?", "label": "yes"} +{"question_id": 364, "image": "COCO_val2014_000000575755.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 365, "image": "COCO_val2014_000000575755.jpg", "text": "Is there a broccoli in the image?", "label": "yes"} +{"question_id": 366, "image": "COCO_val2014_000000575755.jpg", "text": "Is there a knife in the image?", "label": "no"} +{"question_id": 367, "image": "COCO_val2014_000000354088.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 368, "image": "COCO_val2014_000000354088.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 369, "image": "COCO_val2014_000000354088.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 370, "image": "COCO_val2014_000000354088.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 371, "image": "COCO_val2014_000000354088.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 372, "image": "COCO_val2014_000000354088.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 373, "image": "COCO_val2014_000000311327.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 374, "image": "COCO_val2014_000000311327.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 375, "image": "COCO_val2014_000000311327.jpg", "text": "Is there a boat in the image?", "label": "yes"} +{"question_id": 376, "image": "COCO_val2014_000000311327.jpg", "text": "Is there a bird in the image?", "label": "no"} +{"question_id": 377, "image": "COCO_val2014_000000311327.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 378, "image": "COCO_val2014_000000311327.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 379, "image": "COCO_val2014_000000456552.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 380, "image": "COCO_val2014_000000456552.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 381, "image": "COCO_val2014_000000456552.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 382, "image": "COCO_val2014_000000456552.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 383, "image": "COCO_val2014_000000456552.jpg", "text": "Is there a skateboard in the image?", "label": "yes"} +{"question_id": 384, "image": "COCO_val2014_000000456552.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 385, "image": "COCO_val2014_000000350898.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 386, "image": "COCO_val2014_000000350898.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 387, "image": "COCO_val2014_000000350898.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 388, "image": "COCO_val2014_000000350898.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 389, "image": "COCO_val2014_000000350898.jpg", "text": "Is there a refrigerator in the image?", "label": "yes"} +{"question_id": 390, "image": "COCO_val2014_000000350898.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 391, "image": "COCO_val2014_000000170365.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 392, "image": "COCO_val2014_000000170365.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 393, "image": "COCO_val2014_000000170365.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 394, "image": "COCO_val2014_000000170365.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 395, "image": "COCO_val2014_000000170365.jpg", "text": "Is there a toilet in the image?", "label": "yes"} +{"question_id": 396, "image": "COCO_val2014_000000170365.jpg", "text": "Is there a vase in the image?", "label": "no"} +{"question_id": 397, "image": "COCO_val2014_000000021645.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 398, "image": "COCO_val2014_000000021645.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 399, "image": "COCO_val2014_000000021645.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 400, "image": "COCO_val2014_000000021645.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 401, "image": "COCO_val2014_000000021645.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 402, "image": "COCO_val2014_000000021645.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 403, "image": "COCO_val2014_000000528905.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 404, "image": "COCO_val2014_000000528905.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 405, "image": "COCO_val2014_000000528905.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 406, "image": "COCO_val2014_000000528905.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 407, "image": "COCO_val2014_000000528905.jpg", "text": "Is there a frisbee in the image?", "label": "yes"} +{"question_id": 408, "image": "COCO_val2014_000000528905.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 409, "image": "COCO_val2014_000000239347.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 410, "image": "COCO_val2014_000000239347.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 411, "image": "COCO_val2014_000000239347.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 412, "image": "COCO_val2014_000000239347.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 413, "image": "COCO_val2014_000000239347.jpg", "text": "Is there a tie in the image?", "label": "yes"} +{"question_id": 414, "image": "COCO_val2014_000000239347.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 415, "image": "COCO_val2014_000000007320.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 416, "image": "COCO_val2014_000000007320.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 417, "image": "COCO_val2014_000000007320.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 418, "image": "COCO_val2014_000000007320.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 419, "image": "COCO_val2014_000000007320.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 420, "image": "COCO_val2014_000000007320.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 421, "image": "COCO_val2014_000000249715.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 422, "image": "COCO_val2014_000000249715.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 423, "image": "COCO_val2014_000000249715.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 424, "image": "COCO_val2014_000000249715.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 425, "image": "COCO_val2014_000000249715.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 426, "image": "COCO_val2014_000000249715.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 427, "image": "COCO_val2014_000000080022.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 428, "image": "COCO_val2014_000000080022.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 429, "image": "COCO_val2014_000000080022.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 430, "image": "COCO_val2014_000000080022.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 431, "image": "COCO_val2014_000000080022.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 432, "image": "COCO_val2014_000000080022.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 433, "image": "COCO_val2014_000000564336.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 434, "image": "COCO_val2014_000000564336.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 435, "image": "COCO_val2014_000000564336.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 436, "image": "COCO_val2014_000000564336.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 437, "image": "COCO_val2014_000000564336.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 438, "image": "COCO_val2014_000000564336.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 439, "image": "COCO_val2014_000000231589.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 440, "image": "COCO_val2014_000000231589.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 441, "image": "COCO_val2014_000000231589.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 442, "image": "COCO_val2014_000000231589.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 443, "image": "COCO_val2014_000000231589.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 444, "image": "COCO_val2014_000000231589.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 445, "image": "COCO_val2014_000000465275.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 446, "image": "COCO_val2014_000000465275.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 447, "image": "COCO_val2014_000000465275.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 448, "image": "COCO_val2014_000000465275.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 449, "image": "COCO_val2014_000000465275.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 450, "image": "COCO_val2014_000000465275.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 451, "image": "COCO_val2014_000000083275.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 452, "image": "COCO_val2014_000000083275.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 453, "image": "COCO_val2014_000000083275.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 454, "image": "COCO_val2014_000000083275.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 455, "image": "COCO_val2014_000000083275.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 456, "image": "COCO_val2014_000000083275.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 457, "image": "COCO_val2014_000000406403.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 458, "image": "COCO_val2014_000000406403.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 459, "image": "COCO_val2014_000000406403.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 460, "image": "COCO_val2014_000000406403.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 461, "image": "COCO_val2014_000000406403.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 462, "image": "COCO_val2014_000000406403.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 463, "image": "COCO_val2014_000000131018.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 464, "image": "COCO_val2014_000000131018.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 465, "image": "COCO_val2014_000000131018.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 466, "image": "COCO_val2014_000000131018.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 467, "image": "COCO_val2014_000000131018.jpg", "text": "Is there a scissors in the image?", "label": "yes"} +{"question_id": 468, "image": "COCO_val2014_000000131018.jpg", "text": "Is there a sandwich in the image?", "label": "no"} +{"question_id": 469, "image": "COCO_val2014_000000332625.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 470, "image": "COCO_val2014_000000332625.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 471, "image": "COCO_val2014_000000332625.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 472, "image": "COCO_val2014_000000332625.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 473, "image": "COCO_val2014_000000332625.jpg", "text": "Is there an airplane in the imange?", "label": "yes"} +{"question_id": 474, "image": "COCO_val2014_000000332625.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 475, "image": "COCO_val2014_000000332025.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 476, "image": "COCO_val2014_000000332025.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 477, "image": "COCO_val2014_000000332025.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 478, "image": "COCO_val2014_000000332025.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 479, "image": "COCO_val2014_000000332025.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 480, "image": "COCO_val2014_000000332025.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 481, "image": "COCO_val2014_000000318204.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 482, "image": "COCO_val2014_000000318204.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 483, "image": "COCO_val2014_000000318204.jpg", "text": "Is there a horse in the image?", "label": "yes"} +{"question_id": 484, "image": "COCO_val2014_000000318204.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 485, "image": "COCO_val2014_000000318204.jpg", "text": "Is there a sheep in the image?", "label": "yes"} +{"question_id": 486, "image": "COCO_val2014_000000318204.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 487, "image": "COCO_val2014_000000455157.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 488, "image": "COCO_val2014_000000455157.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 489, "image": "COCO_val2014_000000455157.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 490, "image": "COCO_val2014_000000455157.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 491, "image": "COCO_val2014_000000455157.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 492, "image": "COCO_val2014_000000455157.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 493, "image": "COCO_val2014_000000069189.jpg", "text": "Is there a bird in the image?", "label": "yes"} +{"question_id": 494, "image": "COCO_val2014_000000069189.jpg", "text": "Is there a boat in the image?", "label": "no"} +{"question_id": 495, "image": "COCO_val2014_000000069189.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 496, "image": "COCO_val2014_000000069189.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 497, "image": "COCO_val2014_000000069189.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 498, "image": "COCO_val2014_000000069189.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 499, "image": "COCO_val2014_000000199764.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 500, "image": "COCO_val2014_000000199764.jpg", "text": "Is there a skis in the image?", "label": "no"} +{"question_id": 501, "image": "COCO_val2014_000000199764.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 502, "image": "COCO_val2014_000000199764.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 503, "image": "COCO_val2014_000000199764.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 504, "image": "COCO_val2014_000000199764.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 505, "image": "COCO_val2014_000000148766.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 506, "image": "COCO_val2014_000000148766.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 507, "image": "COCO_val2014_000000148766.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 508, "image": "COCO_val2014_000000148766.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 509, "image": "COCO_val2014_000000148766.jpg", "text": "Is there a toilet in the image?", "label": "yes"} +{"question_id": 510, "image": "COCO_val2014_000000148766.jpg", "text": "Is there a sink in the image?", "label": "no"} +{"question_id": 511, "image": "COCO_val2014_000000175506.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 512, "image": "COCO_val2014_000000175506.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 513, "image": "COCO_val2014_000000175506.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 514, "image": "COCO_val2014_000000175506.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 515, "image": "COCO_val2014_000000175506.jpg", "text": "Is there a frisbee in the image?", "label": "yes"} +{"question_id": 516, "image": "COCO_val2014_000000175506.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 517, "image": "COCO_val2014_000000353096.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 518, "image": "COCO_val2014_000000353096.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 519, "image": "COCO_val2014_000000353096.jpg", "text": "Is there a mouse in the image?", "label": "yes"} +{"question_id": 520, "image": "COCO_val2014_000000353096.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 521, "image": "COCO_val2014_000000353096.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 522, "image": "COCO_val2014_000000353096.jpg", "text": "Is there a cell phone in the image?", "label": "no"} +{"question_id": 523, "image": "COCO_val2014_000000207205.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 524, "image": "COCO_val2014_000000207205.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 525, "image": "COCO_val2014_000000207205.jpg", "text": "Is there a broccoli in the image?", "label": "yes"} +{"question_id": 526, "image": "COCO_val2014_000000207205.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 527, "image": "COCO_val2014_000000207205.jpg", "text": "Is there a carrot in the image?", "label": "yes"} +{"question_id": 528, "image": "COCO_val2014_000000207205.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 529, "image": "COCO_val2014_000000427113.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 530, "image": "COCO_val2014_000000427113.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 531, "image": "COCO_val2014_000000427113.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 532, "image": "COCO_val2014_000000427113.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 533, "image": "COCO_val2014_000000427113.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 534, "image": "COCO_val2014_000000427113.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 535, "image": "COCO_val2014_000000498374.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 536, "image": "COCO_val2014_000000498374.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 537, "image": "COCO_val2014_000000498374.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 538, "image": "COCO_val2014_000000498374.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 539, "image": "COCO_val2014_000000498374.jpg", "text": "Is there a toilet in the image?", "label": "yes"} +{"question_id": 540, "image": "COCO_val2014_000000498374.jpg", "text": "Is there a vase in the image?", "label": "no"} +{"question_id": 541, "image": "COCO_val2014_000000013348.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 542, "image": "COCO_val2014_000000013348.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 543, "image": "COCO_val2014_000000013348.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 544, "image": "COCO_val2014_000000013348.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 545, "image": "COCO_val2014_000000013348.jpg", "text": "Is there an airplane in the imange?", "label": "yes"} +{"question_id": 546, "image": "COCO_val2014_000000013348.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 547, "image": "COCO_val2014_000000081336.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 548, "image": "COCO_val2014_000000081336.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 549, "image": "COCO_val2014_000000081336.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 550, "image": "COCO_val2014_000000081336.jpg", "text": "Is there a motorcycle in the image?", "label": "no"} +{"question_id": 551, "image": "COCO_val2014_000000081336.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 552, "image": "COCO_val2014_000000081336.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 553, "image": "COCO_val2014_000000190185.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 554, "image": "COCO_val2014_000000190185.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 555, "image": "COCO_val2014_000000190185.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 556, "image": "COCO_val2014_000000190185.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 557, "image": "COCO_val2014_000000190185.jpg", "text": "Is there a sandwich in the image?", "label": "yes"} +{"question_id": 558, "image": "COCO_val2014_000000190185.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 559, "image": "COCO_val2014_000000209755.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 560, "image": "COCO_val2014_000000209755.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 561, "image": "COCO_val2014_000000209755.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 562, "image": "COCO_val2014_000000209755.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 563, "image": "COCO_val2014_000000209755.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 564, "image": "COCO_val2014_000000209755.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 565, "image": "COCO_val2014_000000227227.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 566, "image": "COCO_val2014_000000227227.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 567, "image": "COCO_val2014_000000227227.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 568, "image": "COCO_val2014_000000227227.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 569, "image": "COCO_val2014_000000227227.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 570, "image": "COCO_val2014_000000227227.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 571, "image": "COCO_val2014_000000397705.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 572, "image": "COCO_val2014_000000397705.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 573, "image": "COCO_val2014_000000397705.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 574, "image": "COCO_val2014_000000397705.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 575, "image": "COCO_val2014_000000397705.jpg", "text": "Is there a cat in the image?", "label": "yes"} +{"question_id": 576, "image": "COCO_val2014_000000397705.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 577, "image": "COCO_val2014_000000287305.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 578, "image": "COCO_val2014_000000287305.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 579, "image": "COCO_val2014_000000287305.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 580, "image": "COCO_val2014_000000287305.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 581, "image": "COCO_val2014_000000287305.jpg", "text": "Is there a bus in the image?", "label": "yes"} +{"question_id": 582, "image": "COCO_val2014_000000287305.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 583, "image": "COCO_val2014_000000257327.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 584, "image": "COCO_val2014_000000257327.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 585, "image": "COCO_val2014_000000257327.jpg", "text": "Is there a toilet in the image?", "label": "yes"} +{"question_id": 586, "image": "COCO_val2014_000000257327.jpg", "text": "Is there a vase in the image?", "label": "no"} +{"question_id": 587, "image": "COCO_val2014_000000257327.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 588, "image": "COCO_val2014_000000257327.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 589, "image": "COCO_val2014_000000557016.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 590, "image": "COCO_val2014_000000557016.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 591, "image": "COCO_val2014_000000557016.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 592, "image": "COCO_val2014_000000557016.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 593, "image": "COCO_val2014_000000557016.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 594, "image": "COCO_val2014_000000557016.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 595, "image": "COCO_val2014_000000105732.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 596, "image": "COCO_val2014_000000105732.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 597, "image": "COCO_val2014_000000105732.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 598, "image": "COCO_val2014_000000105732.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 599, "image": "COCO_val2014_000000105732.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 600, "image": "COCO_val2014_000000105732.jpg", "text": "Is there a snowboard in the image?", "label": "no"} +{"question_id": 601, "image": "COCO_val2014_000000534121.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 602, "image": "COCO_val2014_000000534121.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 603, "image": "COCO_val2014_000000534121.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 604, "image": "COCO_val2014_000000534121.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 605, "image": "COCO_val2014_000000534121.jpg", "text": "Is there a boat in the image?", "label": "yes"} +{"question_id": 606, "image": "COCO_val2014_000000534121.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 607, "image": "COCO_val2014_000000520524.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 608, "image": "COCO_val2014_000000520524.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 609, "image": "COCO_val2014_000000520524.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 610, "image": "COCO_val2014_000000520524.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 611, "image": "COCO_val2014_000000520524.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 612, "image": "COCO_val2014_000000520524.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 613, "image": "COCO_val2014_000000580294.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 614, "image": "COCO_val2014_000000580294.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 615, "image": "COCO_val2014_000000580294.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 616, "image": "COCO_val2014_000000580294.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 617, "image": "COCO_val2014_000000580294.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 618, "image": "COCO_val2014_000000580294.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 619, "image": "COCO_val2014_000000374061.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 620, "image": "COCO_val2014_000000374061.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 621, "image": "COCO_val2014_000000374061.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 622, "image": "COCO_val2014_000000374061.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 623, "image": "COCO_val2014_000000374061.jpg", "text": "Is there a cat in the image?", "label": "yes"} +{"question_id": 624, "image": "COCO_val2014_000000374061.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 625, "image": "COCO_val2014_000000094944.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 626, "image": "COCO_val2014_000000094944.jpg", "text": "Is there a surfboard in the image?", "label": "no"} +{"question_id": 627, "image": "COCO_val2014_000000094944.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 628, "image": "COCO_val2014_000000094944.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 629, "image": "COCO_val2014_000000094944.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 630, "image": "COCO_val2014_000000094944.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 631, "image": "COCO_val2014_000000572075.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 632, "image": "COCO_val2014_000000572075.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 633, "image": "COCO_val2014_000000572075.jpg", "text": "Is there a toilet in the image?", "label": "yes"} +{"question_id": 634, "image": "COCO_val2014_000000572075.jpg", "text": "Is there a sink in the image?", "label": "no"} +{"question_id": 635, "image": "COCO_val2014_000000572075.jpg", "text": "Is there a cat in the image?", "label": "yes"} +{"question_id": 636, "image": "COCO_val2014_000000572075.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 637, "image": "COCO_val2014_000000387098.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 638, "image": "COCO_val2014_000000387098.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 639, "image": "COCO_val2014_000000387098.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 640, "image": "COCO_val2014_000000387098.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 641, "image": "COCO_val2014_000000387098.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 642, "image": "COCO_val2014_000000387098.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 643, "image": "COCO_val2014_000000382670.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 644, "image": "COCO_val2014_000000382670.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 645, "image": "COCO_val2014_000000382670.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 646, "image": "COCO_val2014_000000382670.jpg", "text": "Is there a motorcycle in the image?", "label": "no"} +{"question_id": 647, "image": "COCO_val2014_000000382670.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 648, "image": "COCO_val2014_000000382670.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 649, "image": "COCO_val2014_000000414516.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 650, "image": "COCO_val2014_000000414516.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 651, "image": "COCO_val2014_000000414516.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 652, "image": "COCO_val2014_000000414516.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 653, "image": "COCO_val2014_000000414516.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 654, "image": "COCO_val2014_000000414516.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 655, "image": "COCO_val2014_000000204360.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 656, "image": "COCO_val2014_000000204360.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 657, "image": "COCO_val2014_000000204360.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 658, "image": "COCO_val2014_000000204360.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 659, "image": "COCO_val2014_000000204360.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 660, "image": "COCO_val2014_000000204360.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 661, "image": "COCO_val2014_000000245642.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 662, "image": "COCO_val2014_000000245642.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 663, "image": "COCO_val2014_000000245642.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 664, "image": "COCO_val2014_000000245642.jpg", "text": "Is there a motorcycle in the image?", "label": "no"} +{"question_id": 665, "image": "COCO_val2014_000000245642.jpg", "text": "Is there a sheep in the image?", "label": "yes"} +{"question_id": 666, "image": "COCO_val2014_000000245642.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 667, "image": "COCO_val2014_000000237767.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 668, "image": "COCO_val2014_000000237767.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 669, "image": "COCO_val2014_000000237767.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 670, "image": "COCO_val2014_000000237767.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 671, "image": "COCO_val2014_000000237767.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 672, "image": "COCO_val2014_000000237767.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 673, "image": "COCO_val2014_000000370900.jpg", "text": "Is there a tie in the image?", "label": "yes"} +{"question_id": 674, "image": "COCO_val2014_000000370900.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 675, "image": "COCO_val2014_000000370900.jpg", "text": "Is there a bear in the image?", "label": "yes"} +{"question_id": 676, "image": "COCO_val2014_000000370900.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 677, "image": "COCO_val2014_000000370900.jpg", "text": "Is there a teddy bear in the image?", "label": "yes"} +{"question_id": 678, "image": "COCO_val2014_000000370900.jpg", "text": "Is there a bed in the image?", "label": "no"} +{"question_id": 679, "image": "COCO_val2014_000000094501.jpg", "text": "Is there a cake in the image?", "label": "yes"} +{"question_id": 680, "image": "COCO_val2014_000000094501.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 681, "image": "COCO_val2014_000000094501.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 682, "image": "COCO_val2014_000000094501.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 683, "image": "COCO_val2014_000000094501.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 684, "image": "COCO_val2014_000000094501.jpg", "text": "Is there a knife in the image?", "label": "no"} +{"question_id": 685, "image": "COCO_val2014_000000069196.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 686, "image": "COCO_val2014_000000069196.jpg", "text": "Is there a skis in the image?", "label": "no"} +{"question_id": 687, "image": "COCO_val2014_000000069196.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 688, "image": "COCO_val2014_000000069196.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 689, "image": "COCO_val2014_000000069196.jpg", "text": "Is there an airplane in the imange?", "label": "yes"} +{"question_id": 690, "image": "COCO_val2014_000000069196.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 691, "image": "COCO_val2014_000000366141.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 692, "image": "COCO_val2014_000000366141.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 693, "image": "COCO_val2014_000000366141.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 694, "image": "COCO_val2014_000000366141.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 695, "image": "COCO_val2014_000000366141.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 696, "image": "COCO_val2014_000000366141.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 697, "image": "COCO_val2014_000000093946.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 698, "image": "COCO_val2014_000000093946.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 699, "image": "COCO_val2014_000000093946.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 700, "image": "COCO_val2014_000000093946.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 701, "image": "COCO_val2014_000000093946.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 702, "image": "COCO_val2014_000000093946.jpg", "text": "Is there a knife in the image?", "label": "no"} +{"question_id": 703, "image": "COCO_val2014_000000032610.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 704, "image": "COCO_val2014_000000032610.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 705, "image": "COCO_val2014_000000032610.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 706, "image": "COCO_val2014_000000032610.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 707, "image": "COCO_val2014_000000032610.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 708, "image": "COCO_val2014_000000032610.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 709, "image": "COCO_val2014_000000239130.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 710, "image": "COCO_val2014_000000239130.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 711, "image": "COCO_val2014_000000239130.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 712, "image": "COCO_val2014_000000239130.jpg", "text": "Is there a motorcycle in the image?", "label": "no"} +{"question_id": 713, "image": "COCO_val2014_000000239130.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 714, "image": "COCO_val2014_000000239130.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 715, "image": "COCO_val2014_000000226097.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 716, "image": "COCO_val2014_000000226097.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 717, "image": "COCO_val2014_000000226097.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 718, "image": "COCO_val2014_000000226097.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 719, "image": "COCO_val2014_000000226097.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 720, "image": "COCO_val2014_000000226097.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 721, "image": "COCO_val2014_000000538054.jpg", "text": "Is there a banana in the image?", "label": "yes"} +{"question_id": 722, "image": "COCO_val2014_000000538054.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 723, "image": "COCO_val2014_000000538054.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 724, "image": "COCO_val2014_000000538054.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 725, "image": "COCO_val2014_000000538054.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 726, "image": "COCO_val2014_000000538054.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 727, "image": "COCO_val2014_000000114710.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 728, "image": "COCO_val2014_000000114710.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 729, "image": "COCO_val2014_000000114710.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 730, "image": "COCO_val2014_000000114710.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 731, "image": "COCO_val2014_000000114710.jpg", "text": "Is there a sheep in the image?", "label": "yes"} +{"question_id": 732, "image": "COCO_val2014_000000114710.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 733, "image": "COCO_val2014_000000113701.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 734, "image": "COCO_val2014_000000113701.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 735, "image": "COCO_val2014_000000113701.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 736, "image": "COCO_val2014_000000113701.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 737, "image": "COCO_val2014_000000113701.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 738, "image": "COCO_val2014_000000113701.jpg", "text": "Is there a cat in the image?", "label": "no"} +{"question_id": 739, "image": "COCO_val2014_000000065001.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 740, "image": "COCO_val2014_000000065001.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 741, "image": "COCO_val2014_000000065001.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 742, "image": "COCO_val2014_000000065001.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 743, "image": "COCO_val2014_000000065001.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 744, "image": "COCO_val2014_000000065001.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 745, "image": "COCO_val2014_000000482275.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 746, "image": "COCO_val2014_000000482275.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 747, "image": "COCO_val2014_000000482275.jpg", "text": "Is there a knife in the image?", "label": "yes"} +{"question_id": 748, "image": "COCO_val2014_000000482275.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 749, "image": "COCO_val2014_000000482275.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 750, "image": "COCO_val2014_000000482275.jpg", "text": "Is there a potted plant in the image?", "label": "no"} +{"question_id": 751, "image": "COCO_val2014_000000140983.jpg", "text": "Is there a toothbrush in the image?", "label": "yes"} +{"question_id": 752, "image": "COCO_val2014_000000140983.jpg", "text": "Is there a sink in the image?", "label": "no"} +{"question_id": 753, "image": "COCO_val2014_000000140983.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 754, "image": "COCO_val2014_000000140983.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 755, "image": "COCO_val2014_000000140983.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 756, "image": "COCO_val2014_000000140983.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 757, "image": "COCO_val2014_000000044520.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 758, "image": "COCO_val2014_000000044520.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 759, "image": "COCO_val2014_000000044520.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 760, "image": "COCO_val2014_000000044520.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 761, "image": "COCO_val2014_000000044520.jpg", "text": "Is there a stop sign in the image?", "label": "yes"} +{"question_id": 762, "image": "COCO_val2014_000000044520.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 763, "image": "COCO_val2014_000000518177.jpg", "text": "Is there a toaster in the image?", "label": "yes"} +{"question_id": 764, "image": "COCO_val2014_000000518177.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 765, "image": "COCO_val2014_000000518177.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 766, "image": "COCO_val2014_000000518177.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 767, "image": "COCO_val2014_000000518177.jpg", "text": "Is there a microwave in the image?", "label": "yes"} +{"question_id": 768, "image": "COCO_val2014_000000518177.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 769, "image": "COCO_val2014_000000203479.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 770, "image": "COCO_val2014_000000203479.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 771, "image": "COCO_val2014_000000203479.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 772, "image": "COCO_val2014_000000203479.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 773, "image": "COCO_val2014_000000203479.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 774, "image": "COCO_val2014_000000203479.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 775, "image": "COCO_val2014_000000551881.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 776, "image": "COCO_val2014_000000551881.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 777, "image": "COCO_val2014_000000551881.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 778, "image": "COCO_val2014_000000551881.jpg", "text": "Is there a vase in the image?", "label": "no"} +{"question_id": 779, "image": "COCO_val2014_000000551881.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 780, "image": "COCO_val2014_000000551881.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 781, "image": "COCO_val2014_000000369541.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 782, "image": "COCO_val2014_000000369541.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 783, "image": "COCO_val2014_000000369541.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 784, "image": "COCO_val2014_000000369541.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 785, "image": "COCO_val2014_000000369541.jpg", "text": "Is there a frisbee in the image?", "label": "yes"} +{"question_id": 786, "image": "COCO_val2014_000000369541.jpg", "text": "Is there an orange in the imange?", "label": "no"} +{"question_id": 787, "image": "COCO_val2014_000000007795.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 788, "image": "COCO_val2014_000000007795.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 789, "image": "COCO_val2014_000000007795.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 790, "image": "COCO_val2014_000000007795.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 791, "image": "COCO_val2014_000000007795.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 792, "image": "COCO_val2014_000000007795.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 793, "image": "COCO_val2014_000000303099.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 794, "image": "COCO_val2014_000000303099.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 795, "image": "COCO_val2014_000000303099.jpg", "text": "Is there a cat in the image?", "label": "yes"} +{"question_id": 796, "image": "COCO_val2014_000000303099.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 797, "image": "COCO_val2014_000000303099.jpg", "text": "Is there a toilet in the image?", "label": "yes"} +{"question_id": 798, "image": "COCO_val2014_000000303099.jpg", "text": "Is there a sink in the image?", "label": "no"} +{"question_id": 799, "image": "COCO_val2014_000000147289.jpg", "text": "Is there a fire hydrant in the image?", "label": "yes"} +{"question_id": 800, "image": "COCO_val2014_000000147289.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 801, "image": "COCO_val2014_000000147289.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 802, "image": "COCO_val2014_000000147289.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 803, "image": "COCO_val2014_000000147289.jpg", "text": "Is there a stop sign in the image?", "label": "yes"} +{"question_id": 804, "image": "COCO_val2014_000000147289.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 805, "image": "COCO_val2014_000000102439.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 806, "image": "COCO_val2014_000000102439.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 807, "image": "COCO_val2014_000000102439.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 808, "image": "COCO_val2014_000000102439.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 809, "image": "COCO_val2014_000000102439.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 810, "image": "COCO_val2014_000000102439.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 811, "image": "COCO_val2014_000000183757.jpg", "text": "Is there a boat in the image?", "label": "yes"} +{"question_id": 812, "image": "COCO_val2014_000000183757.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 813, "image": "COCO_val2014_000000183757.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 814, "image": "COCO_val2014_000000183757.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 815, "image": "COCO_val2014_000000183757.jpg", "text": "Is there a cat in the image?", "label": "yes"} +{"question_id": 816, "image": "COCO_val2014_000000183757.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 817, "image": "COCO_val2014_000000500473.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 818, "image": "COCO_val2014_000000500473.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 819, "image": "COCO_val2014_000000500473.jpg", "text": "Is there a broccoli in the image?", "label": "yes"} +{"question_id": 820, "image": "COCO_val2014_000000500473.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 821, "image": "COCO_val2014_000000500473.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 822, "image": "COCO_val2014_000000500473.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 823, "image": "COCO_val2014_000000327532.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 824, "image": "COCO_val2014_000000327532.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 825, "image": "COCO_val2014_000000327532.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 826, "image": "COCO_val2014_000000327532.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 827, "image": "COCO_val2014_000000327532.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 828, "image": "COCO_val2014_000000327532.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 829, "image": "COCO_val2014_000000167110.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 830, "image": "COCO_val2014_000000167110.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 831, "image": "COCO_val2014_000000167110.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 832, "image": "COCO_val2014_000000167110.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 833, "image": "COCO_val2014_000000167110.jpg", "text": "Is there a skateboard in the image?", "label": "yes"} +{"question_id": 834, "image": "COCO_val2014_000000167110.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 835, "image": "COCO_val2014_000000300876.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 836, "image": "COCO_val2014_000000300876.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 837, "image": "COCO_val2014_000000300876.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 838, "image": "COCO_val2014_000000300876.jpg", "text": "Is there an oven in the imange?", "label": "no"} +{"question_id": 839, "image": "COCO_val2014_000000300876.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 840, "image": "COCO_val2014_000000300876.jpg", "text": "Is there a banana in the image?", "label": "no"} +{"question_id": 841, "image": "COCO_val2014_000000443240.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 842, "image": "COCO_val2014_000000443240.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 843, "image": "COCO_val2014_000000443240.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 844, "image": "COCO_val2014_000000443240.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 845, "image": "COCO_val2014_000000443240.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 846, "image": "COCO_val2014_000000443240.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 847, "image": "COCO_val2014_000000288042.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 848, "image": "COCO_val2014_000000288042.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 849, "image": "COCO_val2014_000000288042.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 850, "image": "COCO_val2014_000000288042.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 851, "image": "COCO_val2014_000000288042.jpg", "text": "Is there an umbrella in the imange?", "label": "yes"} +{"question_id": 852, "image": "COCO_val2014_000000288042.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 853, "image": "COCO_val2014_000000270609.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 854, "image": "COCO_val2014_000000270609.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 855, "image": "COCO_val2014_000000270609.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 856, "image": "COCO_val2014_000000270609.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 857, "image": "COCO_val2014_000000270609.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 858, "image": "COCO_val2014_000000270609.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 859, "image": "COCO_val2014_000000208028.jpg", "text": "Is there a keyboard in the image?", "label": "yes"} +{"question_id": 860, "image": "COCO_val2014_000000208028.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 861, "image": "COCO_val2014_000000208028.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 862, "image": "COCO_val2014_000000208028.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 863, "image": "COCO_val2014_000000208028.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 864, "image": "COCO_val2014_000000208028.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 865, "image": "COCO_val2014_000000314992.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 866, "image": "COCO_val2014_000000314992.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 867, "image": "COCO_val2014_000000314992.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 868, "image": "COCO_val2014_000000314992.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 869, "image": "COCO_val2014_000000314992.jpg", "text": "Is there a cell phone in the image?", "label": "yes"} +{"question_id": 870, "image": "COCO_val2014_000000314992.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 871, "image": "COCO_val2014_000000424642.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 872, "image": "COCO_val2014_000000424642.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 873, "image": "COCO_val2014_000000424642.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 874, "image": "COCO_val2014_000000424642.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 875, "image": "COCO_val2014_000000424642.jpg", "text": "Is there a frisbee in the image?", "label": "yes"} +{"question_id": 876, "image": "COCO_val2014_000000424642.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 877, "image": "COCO_val2014_000000467176.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 878, "image": "COCO_val2014_000000467176.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 879, "image": "COCO_val2014_000000467176.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 880, "image": "COCO_val2014_000000467176.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 881, "image": "COCO_val2014_000000467176.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 882, "image": "COCO_val2014_000000467176.jpg", "text": "Is there a vase in the image?", "label": "no"} +{"question_id": 883, "image": "COCO_val2014_000000087435.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 884, "image": "COCO_val2014_000000087435.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 885, "image": "COCO_val2014_000000087435.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 886, "image": "COCO_val2014_000000087435.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 887, "image": "COCO_val2014_000000087435.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 888, "image": "COCO_val2014_000000087435.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 889, "image": "COCO_val2014_000000079446.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 890, "image": "COCO_val2014_000000079446.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 891, "image": "COCO_val2014_000000079446.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 892, "image": "COCO_val2014_000000079446.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 893, "image": "COCO_val2014_000000079446.jpg", "text": "Is there a toilet in the image?", "label": "yes"} +{"question_id": 894, "image": "COCO_val2014_000000079446.jpg", "text": "Is there a vase in the image?", "label": "no"} +{"question_id": 895, "image": "COCO_val2014_000000354398.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 896, "image": "COCO_val2014_000000354398.jpg", "text": "Is there a frisbee in the image?", "label": "no"} +{"question_id": 897, "image": "COCO_val2014_000000354398.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 898, "image": "COCO_val2014_000000354398.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 899, "image": "COCO_val2014_000000354398.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 900, "image": "COCO_val2014_000000354398.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 901, "image": "COCO_val2014_000000430052.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 902, "image": "COCO_val2014_000000430052.jpg", "text": "Is there a potted plant in the image?", "label": "no"} +{"question_id": 903, "image": "COCO_val2014_000000430052.jpg", "text": "Is there a bird in the image?", "label": "yes"} +{"question_id": 904, "image": "COCO_val2014_000000430052.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 905, "image": "COCO_val2014_000000430052.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 906, "image": "COCO_val2014_000000430052.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 907, "image": "COCO_val2014_000000567886.jpg", "text": "Is there a teddy bear in the image?", "label": "yes"} +{"question_id": 908, "image": "COCO_val2014_000000567886.jpg", "text": "Is there a bear in the image?", "label": "no"} +{"question_id": 909, "image": "COCO_val2014_000000567886.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 910, "image": "COCO_val2014_000000567886.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 911, "image": "COCO_val2014_000000567886.jpg", "text": "Is there a book in the image?", "label": "yes"} +{"question_id": 912, "image": "COCO_val2014_000000567886.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 913, "image": "COCO_val2014_000000539251.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 914, "image": "COCO_val2014_000000539251.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 915, "image": "COCO_val2014_000000539251.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 916, "image": "COCO_val2014_000000539251.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 917, "image": "COCO_val2014_000000539251.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 918, "image": "COCO_val2014_000000539251.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 919, "image": "COCO_val2014_000000551908.jpg", "text": "Is there a broccoli in the image?", "label": "yes"} +{"question_id": 920, "image": "COCO_val2014_000000551908.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 921, "image": "COCO_val2014_000000551908.jpg", "text": "Is there a carrot in the image?", "label": "yes"} +{"question_id": 922, "image": "COCO_val2014_000000551908.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 923, "image": "COCO_val2014_000000551908.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 924, "image": "COCO_val2014_000000551908.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 925, "image": "COCO_val2014_000000102906.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 926, "image": "COCO_val2014_000000102906.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 927, "image": "COCO_val2014_000000102906.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 928, "image": "COCO_val2014_000000102906.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 929, "image": "COCO_val2014_000000102906.jpg", "text": "Is there a fire hydrant in the image?", "label": "yes"} +{"question_id": 930, "image": "COCO_val2014_000000102906.jpg", "text": "Is there a stop sign in the image?", "label": "no"} +{"question_id": 931, "image": "COCO_val2014_000000327771.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 932, "image": "COCO_val2014_000000327771.jpg", "text": "Is there a potted plant in the image?", "label": "no"} +{"question_id": 933, "image": "COCO_val2014_000000327771.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 934, "image": "COCO_val2014_000000327771.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 935, "image": "COCO_val2014_000000327771.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 936, "image": "COCO_val2014_000000327771.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 937, "image": "COCO_val2014_000000280734.jpg", "text": "Is there a pizza in the image?", "label": "yes"} +{"question_id": 938, "image": "COCO_val2014_000000280734.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 939, "image": "COCO_val2014_000000280734.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 940, "image": "COCO_val2014_000000280734.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 941, "image": "COCO_val2014_000000280734.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 942, "image": "COCO_val2014_000000280734.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 943, "image": "COCO_val2014_000000111817.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 944, "image": "COCO_val2014_000000111817.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 945, "image": "COCO_val2014_000000111817.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 946, "image": "COCO_val2014_000000111817.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 947, "image": "COCO_val2014_000000111817.jpg", "text": "Is there a cake in the image?", "label": "yes"} +{"question_id": 948, "image": "COCO_val2014_000000111817.jpg", "text": "Is there a spoon in the image?", "label": "no"} +{"question_id": 949, "image": "COCO_val2014_000000379162.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 950, "image": "COCO_val2014_000000379162.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 951, "image": "COCO_val2014_000000379162.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 952, "image": "COCO_val2014_000000379162.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 953, "image": "COCO_val2014_000000379162.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 954, "image": "COCO_val2014_000000379162.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 955, "image": "COCO_val2014_000000489728.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 956, "image": "COCO_val2014_000000489728.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 957, "image": "COCO_val2014_000000489728.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 958, "image": "COCO_val2014_000000489728.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 959, "image": "COCO_val2014_000000489728.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 960, "image": "COCO_val2014_000000489728.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 961, "image": "COCO_val2014_000000419453.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 962, "image": "COCO_val2014_000000419453.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 963, "image": "COCO_val2014_000000419453.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 964, "image": "COCO_val2014_000000419453.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 965, "image": "COCO_val2014_000000419453.jpg", "text": "Is there an umbrella in the imange?", "label": "yes"} +{"question_id": 966, "image": "COCO_val2014_000000419453.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 967, "image": "COCO_val2014_000000358255.jpg", "text": "Is there a teddy bear in the image?", "label": "yes"} +{"question_id": 968, "image": "COCO_val2014_000000358255.jpg", "text": "Is there a bear in the image?", "label": "no"} +{"question_id": 969, "image": "COCO_val2014_000000358255.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 970, "image": "COCO_val2014_000000358255.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 971, "image": "COCO_val2014_000000358255.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 972, "image": "COCO_val2014_000000358255.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 973, "image": "COCO_val2014_000000178078.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 974, "image": "COCO_val2014_000000178078.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 975, "image": "COCO_val2014_000000178078.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 976, "image": "COCO_val2014_000000178078.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 977, "image": "COCO_val2014_000000178078.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 978, "image": "COCO_val2014_000000178078.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 979, "image": "COCO_val2014_000000197219.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 980, "image": "COCO_val2014_000000197219.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 981, "image": "COCO_val2014_000000197219.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 982, "image": "COCO_val2014_000000197219.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 983, "image": "COCO_val2014_000000197219.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 984, "image": "COCO_val2014_000000197219.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 985, "image": "COCO_val2014_000000460931.jpg", "text": "Is there a donut in the image?", "label": "yes"} +{"question_id": 986, "image": "COCO_val2014_000000460931.jpg", "text": "Is there a spoon in the image?", "label": "no"} +{"question_id": 987, "image": "COCO_val2014_000000460931.jpg", "text": "Is there a cake in the image?", "label": "yes"} +{"question_id": 988, "image": "COCO_val2014_000000460931.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 989, "image": "COCO_val2014_000000460931.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 990, "image": "COCO_val2014_000000460931.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 991, "image": "COCO_val2014_000000506483.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 992, "image": "COCO_val2014_000000506483.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 993, "image": "COCO_val2014_000000506483.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 994, "image": "COCO_val2014_000000506483.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 995, "image": "COCO_val2014_000000506483.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 996, "image": "COCO_val2014_000000506483.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 997, "image": "COCO_val2014_000000468934.jpg", "text": "Is there a banana in the image?", "label": "yes"} +{"question_id": 998, "image": "COCO_val2014_000000468934.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 999, "image": "COCO_val2014_000000468934.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1000, "image": "COCO_val2014_000000468934.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1001, "image": "COCO_val2014_000000468934.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 1002, "image": "COCO_val2014_000000468934.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1003, "image": "COCO_val2014_000000189694.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 1004, "image": "COCO_val2014_000000189694.jpg", "text": "Is there a toilet in the image?", "label": "no"} +{"question_id": 1005, "image": "COCO_val2014_000000189694.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1006, "image": "COCO_val2014_000000189694.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1007, "image": "COCO_val2014_000000189694.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1008, "image": "COCO_val2014_000000189694.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1009, "image": "COCO_val2014_000000273450.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1010, "image": "COCO_val2014_000000273450.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1011, "image": "COCO_val2014_000000273450.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 1012, "image": "COCO_val2014_000000273450.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 1013, "image": "COCO_val2014_000000273450.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1014, "image": "COCO_val2014_000000273450.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 1015, "image": "COCO_val2014_000000278226.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1016, "image": "COCO_val2014_000000278226.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1017, "image": "COCO_val2014_000000278226.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 1018, "image": "COCO_val2014_000000278226.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1019, "image": "COCO_val2014_000000278226.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 1020, "image": "COCO_val2014_000000278226.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1021, "image": "COCO_val2014_000000449432.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1022, "image": "COCO_val2014_000000449432.jpg", "text": "Is there a skis in the image?", "label": "no"} +{"question_id": 1023, "image": "COCO_val2014_000000449432.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1024, "image": "COCO_val2014_000000449432.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1025, "image": "COCO_val2014_000000449432.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 1026, "image": "COCO_val2014_000000449432.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1027, "image": "COCO_val2014_000000153300.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 1028, "image": "COCO_val2014_000000153300.jpg", "text": "Is there an oven in the imange?", "label": "no"} +{"question_id": 1029, "image": "COCO_val2014_000000153300.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1030, "image": "COCO_val2014_000000153300.jpg", "text": "Is there a banana in the image?", "label": "no"} +{"question_id": 1031, "image": "COCO_val2014_000000153300.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1032, "image": "COCO_val2014_000000153300.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1033, "image": "COCO_val2014_000000506178.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1034, "image": "COCO_val2014_000000506178.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1035, "image": "COCO_val2014_000000506178.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 1036, "image": "COCO_val2014_000000506178.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 1037, "image": "COCO_val2014_000000506178.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 1038, "image": "COCO_val2014_000000506178.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 1039, "image": "COCO_val2014_000000249720.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1040, "image": "COCO_val2014_000000249720.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 1041, "image": "COCO_val2014_000000249720.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1042, "image": "COCO_val2014_000000249720.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1043, "image": "COCO_val2014_000000249720.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 1044, "image": "COCO_val2014_000000249720.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 1045, "image": "COCO_val2014_000000205206.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 1046, "image": "COCO_val2014_000000205206.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1047, "image": "COCO_val2014_000000205206.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 1048, "image": "COCO_val2014_000000205206.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 1049, "image": "COCO_val2014_000000205206.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1050, "image": "COCO_val2014_000000205206.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 1051, "image": "COCO_val2014_000000018150.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1052, "image": "COCO_val2014_000000018150.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 1053, "image": "COCO_val2014_000000018150.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1054, "image": "COCO_val2014_000000018150.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1055, "image": "COCO_val2014_000000018150.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 1056, "image": "COCO_val2014_000000018150.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1057, "image": "COCO_val2014_000000303534.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 1058, "image": "COCO_val2014_000000303534.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1059, "image": "COCO_val2014_000000303534.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1060, "image": "COCO_val2014_000000303534.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 1061, "image": "COCO_val2014_000000303534.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1062, "image": "COCO_val2014_000000303534.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1063, "image": "COCO_val2014_000000278771.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1064, "image": "COCO_val2014_000000278771.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1065, "image": "COCO_val2014_000000278771.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1066, "image": "COCO_val2014_000000278771.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 1067, "image": "COCO_val2014_000000278771.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1068, "image": "COCO_val2014_000000278771.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1069, "image": "COCO_val2014_000000134075.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 1070, "image": "COCO_val2014_000000134075.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 1071, "image": "COCO_val2014_000000134075.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1072, "image": "COCO_val2014_000000134075.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1073, "image": "COCO_val2014_000000134075.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1074, "image": "COCO_val2014_000000134075.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1075, "image": "COCO_val2014_000000227204.jpg", "text": "Is there a banana in the image?", "label": "yes"} +{"question_id": 1076, "image": "COCO_val2014_000000227204.jpg", "text": "Is there an orange in the imange?", "label": "no"} +{"question_id": 1077, "image": "COCO_val2014_000000227204.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1078, "image": "COCO_val2014_000000227204.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1079, "image": "COCO_val2014_000000227204.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 1080, "image": "COCO_val2014_000000227204.jpg", "text": "Is there an oven in the imange?", "label": "no"} +{"question_id": 1081, "image": "COCO_val2014_000000124629.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1082, "image": "COCO_val2014_000000124629.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1083, "image": "COCO_val2014_000000124629.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1084, "image": "COCO_val2014_000000124629.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 1085, "image": "COCO_val2014_000000124629.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 1086, "image": "COCO_val2014_000000124629.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1087, "image": "COCO_val2014_000000142774.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1088, "image": "COCO_val2014_000000142774.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1089, "image": "COCO_val2014_000000142774.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 1090, "image": "COCO_val2014_000000142774.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 1091, "image": "COCO_val2014_000000142774.jpg", "text": "Is there a bus in the image?", "label": "yes"} +{"question_id": 1092, "image": "COCO_val2014_000000142774.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 1093, "image": "COCO_val2014_000000199959.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1094, "image": "COCO_val2014_000000199959.jpg", "text": "Is there a skis in the image?", "label": "no"} +{"question_id": 1095, "image": "COCO_val2014_000000199959.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1096, "image": "COCO_val2014_000000199959.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1097, "image": "COCO_val2014_000000199959.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 1098, "image": "COCO_val2014_000000199959.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 1099, "image": "COCO_val2014_000000316700.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1100, "image": "COCO_val2014_000000316700.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1101, "image": "COCO_val2014_000000316700.jpg", "text": "Is there a broccoli in the image?", "label": "yes"} +{"question_id": 1102, "image": "COCO_val2014_000000316700.jpg", "text": "Is there a carrot in the image?", "label": "no"} +{"question_id": 1103, "image": "COCO_val2014_000000316700.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1104, "image": "COCO_val2014_000000316700.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1105, "image": "COCO_val2014_000000040361.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1106, "image": "COCO_val2014_000000040361.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1107, "image": "COCO_val2014_000000040361.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1108, "image": "COCO_val2014_000000040361.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 1109, "image": "COCO_val2014_000000040361.jpg", "text": "Is there a baseball bat in the image?", "label": "yes"} +{"question_id": 1110, "image": "COCO_val2014_000000040361.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 1111, "image": "COCO_val2014_000000378873.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1112, "image": "COCO_val2014_000000378873.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1113, "image": "COCO_val2014_000000378873.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1114, "image": "COCO_val2014_000000378873.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1115, "image": "COCO_val2014_000000378873.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1116, "image": "COCO_val2014_000000378873.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1117, "image": "COCO_val2014_000000574790.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 1118, "image": "COCO_val2014_000000574790.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1119, "image": "COCO_val2014_000000574790.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1120, "image": "COCO_val2014_000000574790.jpg", "text": "Is there a motorcycle in the image?", "label": "no"} +{"question_id": 1121, "image": "COCO_val2014_000000574790.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1122, "image": "COCO_val2014_000000574790.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 1123, "image": "COCO_val2014_000000011241.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1124, "image": "COCO_val2014_000000011241.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1125, "image": "COCO_val2014_000000011241.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 1126, "image": "COCO_val2014_000000011241.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1127, "image": "COCO_val2014_000000011241.jpg", "text": "Is there a sandwich in the image?", "label": "yes"} +{"question_id": 1128, "image": "COCO_val2014_000000011241.jpg", "text": "Is there a fork in the image?", "label": "no"} +{"question_id": 1129, "image": "COCO_val2014_000000525667.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1130, "image": "COCO_val2014_000000525667.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1131, "image": "COCO_val2014_000000525667.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 1132, "image": "COCO_val2014_000000525667.jpg", "text": "Is there a motorcycle in the image?", "label": "no"} +{"question_id": 1133, "image": "COCO_val2014_000000525667.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1134, "image": "COCO_val2014_000000525667.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1135, "image": "COCO_val2014_000000246145.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1136, "image": "COCO_val2014_000000246145.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1137, "image": "COCO_val2014_000000246145.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 1138, "image": "COCO_val2014_000000246145.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1139, "image": "COCO_val2014_000000246145.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1140, "image": "COCO_val2014_000000246145.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1141, "image": "COCO_val2014_000000313162.jpg", "text": "Is there a pizza in the image?", "label": "yes"} +{"question_id": 1142, "image": "COCO_val2014_000000313162.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1143, "image": "COCO_val2014_000000313162.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 1144, "image": "COCO_val2014_000000313162.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 1145, "image": "COCO_val2014_000000313162.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1146, "image": "COCO_val2014_000000313162.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1147, "image": "COCO_val2014_000000529668.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1148, "image": "COCO_val2014_000000529668.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1149, "image": "COCO_val2014_000000529668.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 1150, "image": "COCO_val2014_000000529668.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 1151, "image": "COCO_val2014_000000529668.jpg", "text": "Is there a cell phone in the image?", "label": "yes"} +{"question_id": 1152, "image": "COCO_val2014_000000529668.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1153, "image": "COCO_val2014_000000376959.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1154, "image": "COCO_val2014_000000376959.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 1155, "image": "COCO_val2014_000000376959.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1156, "image": "COCO_val2014_000000376959.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1157, "image": "COCO_val2014_000000376959.jpg", "text": "Is there a cell phone in the image?", "label": "yes"} +{"question_id": 1158, "image": "COCO_val2014_000000376959.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 1159, "image": "COCO_val2014_000000275863.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1160, "image": "COCO_val2014_000000275863.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1161, "image": "COCO_val2014_000000275863.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1162, "image": "COCO_val2014_000000275863.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1163, "image": "COCO_val2014_000000275863.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 1164, "image": "COCO_val2014_000000275863.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 1165, "image": "COCO_val2014_000000327038.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1166, "image": "COCO_val2014_000000327038.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1167, "image": "COCO_val2014_000000327038.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 1168, "image": "COCO_val2014_000000327038.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1169, "image": "COCO_val2014_000000327038.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1170, "image": "COCO_val2014_000000327038.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1171, "image": "COCO_val2014_000000513136.jpg", "text": "Is there a pizza in the image?", "label": "yes"} +{"question_id": 1172, "image": "COCO_val2014_000000513136.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1173, "image": "COCO_val2014_000000513136.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 1174, "image": "COCO_val2014_000000513136.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 1175, "image": "COCO_val2014_000000513136.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1176, "image": "COCO_val2014_000000513136.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1177, "image": "COCO_val2014_000000184338.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1178, "image": "COCO_val2014_000000184338.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1179, "image": "COCO_val2014_000000184338.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 1180, "image": "COCO_val2014_000000184338.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 1181, "image": "COCO_val2014_000000184338.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1182, "image": "COCO_val2014_000000184338.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1183, "image": "COCO_val2014_000000175437.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1184, "image": "COCO_val2014_000000175437.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1185, "image": "COCO_val2014_000000175437.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1186, "image": "COCO_val2014_000000175437.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1187, "image": "COCO_val2014_000000175437.jpg", "text": "Is there a donut in the image?", "label": "yes"} +{"question_id": 1188, "image": "COCO_val2014_000000175437.jpg", "text": "Is there a spoon in the image?", "label": "no"} +{"question_id": 1189, "image": "COCO_val2014_000000498100.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 1190, "image": "COCO_val2014_000000498100.jpg", "text": "Is there a potted plant in the image?", "label": "no"} +{"question_id": 1191, "image": "COCO_val2014_000000498100.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1192, "image": "COCO_val2014_000000498100.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1193, "image": "COCO_val2014_000000498100.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1194, "image": "COCO_val2014_000000498100.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1195, "image": "COCO_val2014_000000375909.jpg", "text": "Is there a refrigerator in the image?", "label": "yes"} +{"question_id": 1196, "image": "COCO_val2014_000000375909.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 1197, "image": "COCO_val2014_000000375909.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 1198, "image": "COCO_val2014_000000375909.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1199, "image": "COCO_val2014_000000375909.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 1200, "image": "COCO_val2014_000000375909.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 1201, "image": "COCO_val2014_000000396338.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1202, "image": "COCO_val2014_000000396338.jpg", "text": "Is there a skis in the image?", "label": "no"} +{"question_id": 1203, "image": "COCO_val2014_000000396338.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1204, "image": "COCO_val2014_000000396338.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 1205, "image": "COCO_val2014_000000396338.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1206, "image": "COCO_val2014_000000396338.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1207, "image": "COCO_val2014_000000124930.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1208, "image": "COCO_val2014_000000124930.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1209, "image": "COCO_val2014_000000124930.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1210, "image": "COCO_val2014_000000124930.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1211, "image": "COCO_val2014_000000124930.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 1212, "image": "COCO_val2014_000000124930.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 1213, "image": "COCO_val2014_000000112664.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1214, "image": "COCO_val2014_000000112664.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1215, "image": "COCO_val2014_000000112664.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 1216, "image": "COCO_val2014_000000112664.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 1217, "image": "COCO_val2014_000000112664.jpg", "text": "Is there a suitcase in the image?", "label": "yes"} +{"question_id": 1218, "image": "COCO_val2014_000000112664.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 1219, "image": "COCO_val2014_000000377879.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1220, "image": "COCO_val2014_000000377879.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1221, "image": "COCO_val2014_000000377879.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 1222, "image": "COCO_val2014_000000377879.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1223, "image": "COCO_val2014_000000377879.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 1224, "image": "COCO_val2014_000000377879.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 1225, "image": "COCO_val2014_000000377401.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1226, "image": "COCO_val2014_000000377401.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1227, "image": "COCO_val2014_000000377401.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 1228, "image": "COCO_val2014_000000377401.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1229, "image": "COCO_val2014_000000377401.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1230, "image": "COCO_val2014_000000377401.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 1231, "image": "COCO_val2014_000000049473.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 1232, "image": "COCO_val2014_000000049473.jpg", "text": "Is there a potted plant in the image?", "label": "no"} +{"question_id": 1233, "image": "COCO_val2014_000000049473.jpg", "text": "Is there a book in the image?", "label": "yes"} +{"question_id": 1234, "image": "COCO_val2014_000000049473.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1235, "image": "COCO_val2014_000000049473.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1236, "image": "COCO_val2014_000000049473.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1237, "image": "COCO_val2014_000000153865.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1238, "image": "COCO_val2014_000000153865.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1239, "image": "COCO_val2014_000000153865.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1240, "image": "COCO_val2014_000000153865.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 1241, "image": "COCO_val2014_000000153865.jpg", "text": "Is there a kite in the image?", "label": "yes"} +{"question_id": 1242, "image": "COCO_val2014_000000153865.jpg", "text": "Is there an umbrella in the imange?", "label": "no"} +{"question_id": 1243, "image": "COCO_val2014_000000383185.jpg", "text": "Is there a banana in the image?", "label": "yes"} +{"question_id": 1244, "image": "COCO_val2014_000000383185.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1245, "image": "COCO_val2014_000000383185.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 1246, "image": "COCO_val2014_000000383185.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1247, "image": "COCO_val2014_000000383185.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1248, "image": "COCO_val2014_000000383185.jpg", "text": "Is there a knife in the image?", "label": "no"} +{"question_id": 1249, "image": "COCO_val2014_000000388983.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1250, "image": "COCO_val2014_000000388983.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1251, "image": "COCO_val2014_000000388983.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1252, "image": "COCO_val2014_000000388983.jpg", "text": "Is there a spoon in the image?", "label": "no"} +{"question_id": 1253, "image": "COCO_val2014_000000388983.jpg", "text": "Is there a sandwich in the image?", "label": "yes"} +{"question_id": 1254, "image": "COCO_val2014_000000388983.jpg", "text": "Is there a fork in the image?", "label": "no"} +{"question_id": 1255, "image": "COCO_val2014_000000295377.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1256, "image": "COCO_val2014_000000295377.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 1257, "image": "COCO_val2014_000000295377.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1258, "image": "COCO_val2014_000000295377.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1259, "image": "COCO_val2014_000000295377.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 1260, "image": "COCO_val2014_000000295377.jpg", "text": "Is there a snowboard in the image?", "label": "no"} +{"question_id": 1261, "image": "COCO_val2014_000000034773.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1262, "image": "COCO_val2014_000000034773.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1263, "image": "COCO_val2014_000000034773.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 1264, "image": "COCO_val2014_000000034773.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1265, "image": "COCO_val2014_000000034773.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 1266, "image": "COCO_val2014_000000034773.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 1267, "image": "COCO_val2014_000000244455.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1268, "image": "COCO_val2014_000000244455.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 1269, "image": "COCO_val2014_000000244455.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1270, "image": "COCO_val2014_000000244455.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1271, "image": "COCO_val2014_000000244455.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 1272, "image": "COCO_val2014_000000244455.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 1273, "image": "COCO_val2014_000000303652.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 1274, "image": "COCO_val2014_000000303652.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 1275, "image": "COCO_val2014_000000303652.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1276, "image": "COCO_val2014_000000303652.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1277, "image": "COCO_val2014_000000303652.jpg", "text": "Is there a knife in the image?", "label": "yes"} +{"question_id": 1278, "image": "COCO_val2014_000000303652.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 1279, "image": "COCO_val2014_000000098493.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1280, "image": "COCO_val2014_000000098493.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 1281, "image": "COCO_val2014_000000098493.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 1282, "image": "COCO_val2014_000000098493.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1283, "image": "COCO_val2014_000000098493.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1284, "image": "COCO_val2014_000000098493.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 1285, "image": "COCO_val2014_000000201148.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 1286, "image": "COCO_val2014_000000201148.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1287, "image": "COCO_val2014_000000201148.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1288, "image": "COCO_val2014_000000201148.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1289, "image": "COCO_val2014_000000201148.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 1290, "image": "COCO_val2014_000000201148.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 1291, "image": "COCO_val2014_000000307166.jpg", "text": "Is there a pizza in the image?", "label": "yes"} +{"question_id": 1292, "image": "COCO_val2014_000000307166.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1293, "image": "COCO_val2014_000000307166.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1294, "image": "COCO_val2014_000000307166.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1295, "image": "COCO_val2014_000000307166.jpg", "text": "Is there an oven in the imange?", "label": "yes"} +{"question_id": 1296, "image": "COCO_val2014_000000307166.jpg", "text": "Is there a spoon in the image?", "label": "no"} +{"question_id": 1297, "image": "COCO_val2014_000000313034.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 1298, "image": "COCO_val2014_000000313034.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1299, "image": "COCO_val2014_000000313034.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1300, "image": "COCO_val2014_000000313034.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1301, "image": "COCO_val2014_000000313034.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1302, "image": "COCO_val2014_000000313034.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1303, "image": "COCO_val2014_000000355342.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1304, "image": "COCO_val2014_000000355342.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1305, "image": "COCO_val2014_000000355342.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 1306, "image": "COCO_val2014_000000355342.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1307, "image": "COCO_val2014_000000355342.jpg", "text": "Is there an umbrella in the imange?", "label": "yes"} +{"question_id": 1308, "image": "COCO_val2014_000000355342.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 1309, "image": "COCO_val2014_000000333237.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1310, "image": "COCO_val2014_000000333237.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1311, "image": "COCO_val2014_000000333237.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 1312, "image": "COCO_val2014_000000333237.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 1313, "image": "COCO_val2014_000000333237.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1314, "image": "COCO_val2014_000000333237.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1315, "image": "COCO_val2014_000000526368.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 1316, "image": "COCO_val2014_000000526368.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 1317, "image": "COCO_val2014_000000526368.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1318, "image": "COCO_val2014_000000526368.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1319, "image": "COCO_val2014_000000526368.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1320, "image": "COCO_val2014_000000526368.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 1321, "image": "COCO_val2014_000000429033.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1322, "image": "COCO_val2014_000000429033.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1323, "image": "COCO_val2014_000000429033.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1324, "image": "COCO_val2014_000000429033.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1325, "image": "COCO_val2014_000000429033.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 1326, "image": "COCO_val2014_000000429033.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 1327, "image": "COCO_val2014_000000287035.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 1328, "image": "COCO_val2014_000000287035.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1329, "image": "COCO_val2014_000000287035.jpg", "text": "Is there a mouse in the image?", "label": "yes"} +{"question_id": 1330, "image": "COCO_val2014_000000287035.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 1331, "image": "COCO_val2014_000000287035.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 1332, "image": "COCO_val2014_000000287035.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 1333, "image": "COCO_val2014_000000299074.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1334, "image": "COCO_val2014_000000299074.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1335, "image": "COCO_val2014_000000299074.jpg", "text": "Is there a cell phone in the image?", "label": "yes"} +{"question_id": 1336, "image": "COCO_val2014_000000299074.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1337, "image": "COCO_val2014_000000299074.jpg", "text": "Is there a bus in the image?", "label": "yes"} +{"question_id": 1338, "image": "COCO_val2014_000000299074.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 1339, "image": "COCO_val2014_000000120648.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 1340, "image": "COCO_val2014_000000120648.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1341, "image": "COCO_val2014_000000120648.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1342, "image": "COCO_val2014_000000120648.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1343, "image": "COCO_val2014_000000120648.jpg", "text": "Is there a suitcase in the image?", "label": "yes"} +{"question_id": 1344, "image": "COCO_val2014_000000120648.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 1345, "image": "COCO_val2014_000000186709.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1346, "image": "COCO_val2014_000000186709.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1347, "image": "COCO_val2014_000000186709.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1348, "image": "COCO_val2014_000000186709.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 1349, "image": "COCO_val2014_000000186709.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 1350, "image": "COCO_val2014_000000186709.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1351, "image": "COCO_val2014_000000025972.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1352, "image": "COCO_val2014_000000025972.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1353, "image": "COCO_val2014_000000025972.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 1354, "image": "COCO_val2014_000000025972.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 1355, "image": "COCO_val2014_000000025972.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1356, "image": "COCO_val2014_000000025972.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 1357, "image": "COCO_val2014_000000505542.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1358, "image": "COCO_val2014_000000505542.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1359, "image": "COCO_val2014_000000505542.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 1360, "image": "COCO_val2014_000000505542.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 1361, "image": "COCO_val2014_000000505542.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1362, "image": "COCO_val2014_000000505542.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 1363, "image": "COCO_val2014_000000115636.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1364, "image": "COCO_val2014_000000115636.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1365, "image": "COCO_val2014_000000115636.jpg", "text": "Is there a horse in the image?", "label": "yes"} +{"question_id": 1366, "image": "COCO_val2014_000000115636.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 1367, "image": "COCO_val2014_000000115636.jpg", "text": "Is there a cow in the image?", "label": "yes"} +{"question_id": 1368, "image": "COCO_val2014_000000115636.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 1369, "image": "COCO_val2014_000000280810.jpg", "text": "Is there a broccoli in the image?", "label": "yes"} +{"question_id": 1370, "image": "COCO_val2014_000000280810.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 1371, "image": "COCO_val2014_000000280810.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 1372, "image": "COCO_val2014_000000280810.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1373, "image": "COCO_val2014_000000280810.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 1374, "image": "COCO_val2014_000000280810.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 1375, "image": "COCO_val2014_000000037900.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1376, "image": "COCO_val2014_000000037900.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1377, "image": "COCO_val2014_000000037900.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 1378, "image": "COCO_val2014_000000037900.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1379, "image": "COCO_val2014_000000037900.jpg", "text": "Is there a knife in the image?", "label": "yes"} +{"question_id": 1380, "image": "COCO_val2014_000000037900.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1381, "image": "COCO_val2014_000000534516.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 1382, "image": "COCO_val2014_000000534516.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1383, "image": "COCO_val2014_000000534516.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1384, "image": "COCO_val2014_000000534516.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1385, "image": "COCO_val2014_000000534516.jpg", "text": "Is there a tie in the image?", "label": "yes"} +{"question_id": 1386, "image": "COCO_val2014_000000534516.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1387, "image": "COCO_val2014_000000123017.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1388, "image": "COCO_val2014_000000123017.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1389, "image": "COCO_val2014_000000123017.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1390, "image": "COCO_val2014_000000123017.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1391, "image": "COCO_val2014_000000123017.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1392, "image": "COCO_val2014_000000123017.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 1393, "image": "COCO_val2014_000000316237.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1394, "image": "COCO_val2014_000000316237.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1395, "image": "COCO_val2014_000000316237.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 1396, "image": "COCO_val2014_000000316237.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 1397, "image": "COCO_val2014_000000316237.jpg", "text": "Is there a cell phone in the image?", "label": "yes"} +{"question_id": 1398, "image": "COCO_val2014_000000316237.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1399, "image": "COCO_val2014_000000463522.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1400, "image": "COCO_val2014_000000463522.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 1401, "image": "COCO_val2014_000000463522.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1402, "image": "COCO_val2014_000000463522.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1403, "image": "COCO_val2014_000000463522.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 1404, "image": "COCO_val2014_000000463522.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 1405, "image": "COCO_val2014_000000511341.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1406, "image": "COCO_val2014_000000511341.jpg", "text": "Is there a skis in the image?", "label": "no"} +{"question_id": 1407, "image": "COCO_val2014_000000511341.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1408, "image": "COCO_val2014_000000511341.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1409, "image": "COCO_val2014_000000511341.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 1410, "image": "COCO_val2014_000000511341.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1411, "image": "COCO_val2014_000000200583.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1412, "image": "COCO_val2014_000000200583.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1413, "image": "COCO_val2014_000000200583.jpg", "text": "Is there a boat in the image?", "label": "yes"} +{"question_id": 1414, "image": "COCO_val2014_000000200583.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1415, "image": "COCO_val2014_000000200583.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 1416, "image": "COCO_val2014_000000200583.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 1417, "image": "COCO_val2014_000000424585.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1418, "image": "COCO_val2014_000000424585.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 1419, "image": "COCO_val2014_000000424585.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1420, "image": "COCO_val2014_000000424585.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 1421, "image": "COCO_val2014_000000424585.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1422, "image": "COCO_val2014_000000424585.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1423, "image": "COCO_val2014_000000100215.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 1424, "image": "COCO_val2014_000000100215.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1425, "image": "COCO_val2014_000000100215.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 1426, "image": "COCO_val2014_000000100215.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 1427, "image": "COCO_val2014_000000100215.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1428, "image": "COCO_val2014_000000100215.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1429, "image": "COCO_val2014_000000017379.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 1430, "image": "COCO_val2014_000000017379.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1431, "image": "COCO_val2014_000000017379.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 1432, "image": "COCO_val2014_000000017379.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 1433, "image": "COCO_val2014_000000017379.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1434, "image": "COCO_val2014_000000017379.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1435, "image": "COCO_val2014_000000511622.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1436, "image": "COCO_val2014_000000511622.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1437, "image": "COCO_val2014_000000511622.jpg", "text": "Is there a scissors in the image?", "label": "yes"} +{"question_id": 1438, "image": "COCO_val2014_000000511622.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 1439, "image": "COCO_val2014_000000511622.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1440, "image": "COCO_val2014_000000511622.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1441, "image": "COCO_val2014_000000407386.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 1442, "image": "COCO_val2014_000000407386.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1443, "image": "COCO_val2014_000000407386.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 1444, "image": "COCO_val2014_000000407386.jpg", "text": "Is there a mouse in the image?", "label": "no"} +{"question_id": 1445, "image": "COCO_val2014_000000407386.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1446, "image": "COCO_val2014_000000407386.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1447, "image": "COCO_val2014_000000039516.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 1448, "image": "COCO_val2014_000000039516.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1449, "image": "COCO_val2014_000000039516.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 1450, "image": "COCO_val2014_000000039516.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1451, "image": "COCO_val2014_000000039516.jpg", "text": "Is there a cake in the image?", "label": "yes"} +{"question_id": 1452, "image": "COCO_val2014_000000039516.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1453, "image": "COCO_val2014_000000018918.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 1454, "image": "COCO_val2014_000000018918.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 1455, "image": "COCO_val2014_000000018918.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1456, "image": "COCO_val2014_000000018918.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1457, "image": "COCO_val2014_000000018918.jpg", "text": "Is there an oven in the imange?", "label": "yes"} +{"question_id": 1458, "image": "COCO_val2014_000000018918.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1459, "image": "COCO_val2014_000000115626.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1460, "image": "COCO_val2014_000000115626.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1461, "image": "COCO_val2014_000000115626.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 1462, "image": "COCO_val2014_000000115626.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 1463, "image": "COCO_val2014_000000115626.jpg", "text": "Is there a parking meter in the image?", "label": "yes"} +{"question_id": 1464, "image": "COCO_val2014_000000115626.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 1465, "image": "COCO_val2014_000000391735.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 1466, "image": "COCO_val2014_000000391735.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1467, "image": "COCO_val2014_000000391735.jpg", "text": "Is there a toothbrush in the image?", "label": "yes"} +{"question_id": 1468, "image": "COCO_val2014_000000391735.jpg", "text": "Is there a sink in the image?", "label": "no"} +{"question_id": 1469, "image": "COCO_val2014_000000391735.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1470, "image": "COCO_val2014_000000391735.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1471, "image": "COCO_val2014_000000236370.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1472, "image": "COCO_val2014_000000236370.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1473, "image": "COCO_val2014_000000236370.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1474, "image": "COCO_val2014_000000236370.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1475, "image": "COCO_val2014_000000236370.jpg", "text": "Is there a book in the image?", "label": "yes"} +{"question_id": 1476, "image": "COCO_val2014_000000236370.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 1477, "image": "COCO_val2014_000000463542.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 1478, "image": "COCO_val2014_000000463542.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 1479, "image": "COCO_val2014_000000463542.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 1480, "image": "COCO_val2014_000000463542.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 1481, "image": "COCO_val2014_000000463542.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1482, "image": "COCO_val2014_000000463542.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1483, "image": "COCO_val2014_000000377352.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1484, "image": "COCO_val2014_000000377352.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1485, "image": "COCO_val2014_000000377352.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 1486, "image": "COCO_val2014_000000377352.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 1487, "image": "COCO_val2014_000000377352.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1488, "image": "COCO_val2014_000000377352.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 1489, "image": "COCO_val2014_000000302405.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 1490, "image": "COCO_val2014_000000302405.jpg", "text": "Is there a skis in the image?", "label": "no"} +{"question_id": 1491, "image": "COCO_val2014_000000302405.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1492, "image": "COCO_val2014_000000302405.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 1493, "image": "COCO_val2014_000000302405.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1494, "image": "COCO_val2014_000000302405.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1495, "image": "COCO_val2014_000000554328.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 1496, "image": "COCO_val2014_000000554328.jpg", "text": "Is there a baseball bat in the image?", "label": "no"} +{"question_id": 1497, "image": "COCO_val2014_000000554328.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1498, "image": "COCO_val2014_000000554328.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1499, "image": "COCO_val2014_000000554328.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1500, "image": "COCO_val2014_000000554328.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 1501, "image": "COCO_val2014_000000384040.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 1502, "image": "COCO_val2014_000000384040.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 1503, "image": "COCO_val2014_000000384040.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1504, "image": "COCO_val2014_000000384040.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1505, "image": "COCO_val2014_000000384040.jpg", "text": "Is there a knife in the image?", "label": "yes"} +{"question_id": 1506, "image": "COCO_val2014_000000384040.jpg", "text": "Is there a cake in the image?", "label": "no"} +{"question_id": 1507, "image": "COCO_val2014_000000023731.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 1508, "image": "COCO_val2014_000000023731.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1509, "image": "COCO_val2014_000000023731.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1510, "image": "COCO_val2014_000000023731.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1511, "image": "COCO_val2014_000000023731.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1512, "image": "COCO_val2014_000000023731.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 1513, "image": "COCO_val2014_000000463640.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1514, "image": "COCO_val2014_000000463640.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1515, "image": "COCO_val2014_000000463640.jpg", "text": "Is there a wine glass in the image?", "label": "yes"} +{"question_id": 1516, "image": "COCO_val2014_000000463640.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1517, "image": "COCO_val2014_000000463640.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1518, "image": "COCO_val2014_000000463640.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1519, "image": "COCO_val2014_000000365822.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 1520, "image": "COCO_val2014_000000365822.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1521, "image": "COCO_val2014_000000365822.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1522, "image": "COCO_val2014_000000365822.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1523, "image": "COCO_val2014_000000365822.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1524, "image": "COCO_val2014_000000365822.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 1525, "image": "COCO_val2014_000000524979.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 1526, "image": "COCO_val2014_000000524979.jpg", "text": "Is there a baseball bat in the image?", "label": "no"} +{"question_id": 1527, "image": "COCO_val2014_000000524979.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1528, "image": "COCO_val2014_000000524979.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1529, "image": "COCO_val2014_000000524979.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1530, "image": "COCO_val2014_000000524979.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 1531, "image": "COCO_val2014_000000070813.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 1532, "image": "COCO_val2014_000000070813.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1533, "image": "COCO_val2014_000000070813.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 1534, "image": "COCO_val2014_000000070813.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 1535, "image": "COCO_val2014_000000070813.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1536, "image": "COCO_val2014_000000070813.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1537, "image": "COCO_val2014_000000318209.jpg", "text": "Is there a sandwich in the image?", "label": "yes"} +{"question_id": 1538, "image": "COCO_val2014_000000318209.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1539, "image": "COCO_val2014_000000318209.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 1540, "image": "COCO_val2014_000000318209.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1541, "image": "COCO_val2014_000000318209.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1542, "image": "COCO_val2014_000000318209.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1543, "image": "COCO_val2014_000000016775.jpg", "text": "Is there a bird in the image?", "label": "yes"} +{"question_id": 1544, "image": "COCO_val2014_000000016775.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1545, "image": "COCO_val2014_000000016775.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1546, "image": "COCO_val2014_000000016775.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 1547, "image": "COCO_val2014_000000016775.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1548, "image": "COCO_val2014_000000016775.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1549, "image": "COCO_val2014_000000015338.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1550, "image": "COCO_val2014_000000015338.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 1551, "image": "COCO_val2014_000000015338.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1552, "image": "COCO_val2014_000000015338.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1553, "image": "COCO_val2014_000000015338.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1554, "image": "COCO_val2014_000000015338.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 1555, "image": "COCO_val2014_000000441156.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1556, "image": "COCO_val2014_000000441156.jpg", "text": "Is there a skis in the image?", "label": "no"} +{"question_id": 1557, "image": "COCO_val2014_000000441156.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1558, "image": "COCO_val2014_000000441156.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1559, "image": "COCO_val2014_000000441156.jpg", "text": "Is there an elephant in the imange?", "label": "yes"} +{"question_id": 1560, "image": "COCO_val2014_000000441156.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1561, "image": "COCO_val2014_000000408757.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1562, "image": "COCO_val2014_000000408757.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1563, "image": "COCO_val2014_000000408757.jpg", "text": "Is there a kite in the image?", "label": "yes"} +{"question_id": 1564, "image": "COCO_val2014_000000408757.jpg", "text": "Is there a surfboard in the image?", "label": "no"} +{"question_id": 1565, "image": "COCO_val2014_000000408757.jpg", "text": "Is there an umbrella in the imange?", "label": "yes"} +{"question_id": 1566, "image": "COCO_val2014_000000408757.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 1567, "image": "COCO_val2014_000000550691.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1568, "image": "COCO_val2014_000000550691.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1569, "image": "COCO_val2014_000000550691.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1570, "image": "COCO_val2014_000000550691.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 1571, "image": "COCO_val2014_000000550691.jpg", "text": "Is there a bus in the image?", "label": "yes"} +{"question_id": 1572, "image": "COCO_val2014_000000550691.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 1573, "image": "COCO_val2014_000000204100.jpg", "text": "Is there a banana in the image?", "label": "yes"} +{"question_id": 1574, "image": "COCO_val2014_000000204100.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1575, "image": "COCO_val2014_000000204100.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1576, "image": "COCO_val2014_000000204100.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1577, "image": "COCO_val2014_000000204100.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1578, "image": "COCO_val2014_000000204100.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1579, "image": "COCO_val2014_000000468169.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1580, "image": "COCO_val2014_000000468169.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1581, "image": "COCO_val2014_000000468169.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 1582, "image": "COCO_val2014_000000468169.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1583, "image": "COCO_val2014_000000468169.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1584, "image": "COCO_val2014_000000468169.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 1585, "image": "COCO_val2014_000000198312.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1586, "image": "COCO_val2014_000000198312.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1587, "image": "COCO_val2014_000000198312.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 1588, "image": "COCO_val2014_000000198312.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1589, "image": "COCO_val2014_000000198312.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 1590, "image": "COCO_val2014_000000198312.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 1591, "image": "COCO_val2014_000000485485.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1592, "image": "COCO_val2014_000000485485.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1593, "image": "COCO_val2014_000000485485.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1594, "image": "COCO_val2014_000000485485.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 1595, "image": "COCO_val2014_000000485485.jpg", "text": "Is there an elephant in the imange?", "label": "yes"} +{"question_id": 1596, "image": "COCO_val2014_000000485485.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1597, "image": "COCO_val2014_000000309371.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1598, "image": "COCO_val2014_000000309371.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 1599, "image": "COCO_val2014_000000309371.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1600, "image": "COCO_val2014_000000309371.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1601, "image": "COCO_val2014_000000309371.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 1602, "image": "COCO_val2014_000000309371.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1603, "image": "COCO_val2014_000000472143.jpg", "text": "Is there a bird in the image?", "label": "yes"} +{"question_id": 1604, "image": "COCO_val2014_000000472143.jpg", "text": "Is there a boat in the image?", "label": "no"} +{"question_id": 1605, "image": "COCO_val2014_000000472143.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1606, "image": "COCO_val2014_000000472143.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1607, "image": "COCO_val2014_000000472143.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1608, "image": "COCO_val2014_000000472143.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 1609, "image": "COCO_val2014_000000236023.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1610, "image": "COCO_val2014_000000236023.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1611, "image": "COCO_val2014_000000236023.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 1612, "image": "COCO_val2014_000000236023.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1613, "image": "COCO_val2014_000000236023.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1614, "image": "COCO_val2014_000000236023.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1615, "image": "COCO_val2014_000000214244.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 1616, "image": "COCO_val2014_000000214244.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 1617, "image": "COCO_val2014_000000214244.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1618, "image": "COCO_val2014_000000214244.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1619, "image": "COCO_val2014_000000214244.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 1620, "image": "COCO_val2014_000000214244.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 1621, "image": "COCO_val2014_000000397665.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 1622, "image": "COCO_val2014_000000397665.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 1623, "image": "COCO_val2014_000000397665.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1624, "image": "COCO_val2014_000000397665.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1625, "image": "COCO_val2014_000000397665.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 1626, "image": "COCO_val2014_000000397665.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 1627, "image": "COCO_val2014_000000183965.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1628, "image": "COCO_val2014_000000183965.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1629, "image": "COCO_val2014_000000183965.jpg", "text": "Is there a sandwich in the image?", "label": "yes"} +{"question_id": 1630, "image": "COCO_val2014_000000183965.jpg", "text": "Is there a fork in the image?", "label": "no"} +{"question_id": 1631, "image": "COCO_val2014_000000183965.jpg", "text": "Is there a hot dog in the image?", "label": "yes"} +{"question_id": 1632, "image": "COCO_val2014_000000183965.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1633, "image": "COCO_val2014_000000499105.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1634, "image": "COCO_val2014_000000499105.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1635, "image": "COCO_val2014_000000499105.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1636, "image": "COCO_val2014_000000499105.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 1637, "image": "COCO_val2014_000000499105.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 1638, "image": "COCO_val2014_000000499105.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1639, "image": "COCO_val2014_000000259755.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 1640, "image": "COCO_val2014_000000259755.jpg", "text": "Is there a baseball bat in the image?", "label": "no"} +{"question_id": 1641, "image": "COCO_val2014_000000259755.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1642, "image": "COCO_val2014_000000259755.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1643, "image": "COCO_val2014_000000259755.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1644, "image": "COCO_val2014_000000259755.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 1645, "image": "COCO_val2014_000000281028.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1646, "image": "COCO_val2014_000000281028.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1647, "image": "COCO_val2014_000000281028.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1648, "image": "COCO_val2014_000000281028.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 1649, "image": "COCO_val2014_000000281028.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 1650, "image": "COCO_val2014_000000281028.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 1651, "image": "COCO_val2014_000000199122.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 1652, "image": "COCO_val2014_000000199122.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 1653, "image": "COCO_val2014_000000199122.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1654, "image": "COCO_val2014_000000199122.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1655, "image": "COCO_val2014_000000199122.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1656, "image": "COCO_val2014_000000199122.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 1657, "image": "COCO_val2014_000000442809.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1658, "image": "COCO_val2014_000000442809.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1659, "image": "COCO_val2014_000000442809.jpg", "text": "Is there a cake in the image?", "label": "yes"} +{"question_id": 1660, "image": "COCO_val2014_000000442809.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1661, "image": "COCO_val2014_000000442809.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 1662, "image": "COCO_val2014_000000442809.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 1663, "image": "COCO_val2014_000000482829.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1664, "image": "COCO_val2014_000000482829.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1665, "image": "COCO_val2014_000000482829.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1666, "image": "COCO_val2014_000000482829.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 1667, "image": "COCO_val2014_000000482829.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 1668, "image": "COCO_val2014_000000482829.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1669, "image": "COCO_val2014_000000097994.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 1670, "image": "COCO_val2014_000000097994.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1671, "image": "COCO_val2014_000000097994.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 1672, "image": "COCO_val2014_000000097994.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1673, "image": "COCO_val2014_000000097994.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1674, "image": "COCO_val2014_000000097994.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 1675, "image": "COCO_val2014_000000246999.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 1676, "image": "COCO_val2014_000000246999.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1677, "image": "COCO_val2014_000000246999.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 1678, "image": "COCO_val2014_000000246999.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1679, "image": "COCO_val2014_000000246999.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 1680, "image": "COCO_val2014_000000246999.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 1681, "image": "COCO_val2014_000000338291.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 1682, "image": "COCO_val2014_000000338291.jpg", "text": "Is there a skis in the image?", "label": "no"} +{"question_id": 1683, "image": "COCO_val2014_000000338291.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1684, "image": "COCO_val2014_000000338291.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 1685, "image": "COCO_val2014_000000338291.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1686, "image": "COCO_val2014_000000338291.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1687, "image": "COCO_val2014_000000331366.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1688, "image": "COCO_val2014_000000331366.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 1689, "image": "COCO_val2014_000000331366.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1690, "image": "COCO_val2014_000000331366.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1691, "image": "COCO_val2014_000000331366.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 1692, "image": "COCO_val2014_000000331366.jpg", "text": "Is there a motorcycle in the image?", "label": "no"} +{"question_id": 1693, "image": "COCO_val2014_000000348524.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 1694, "image": "COCO_val2014_000000348524.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 1695, "image": "COCO_val2014_000000348524.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1696, "image": "COCO_val2014_000000348524.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1697, "image": "COCO_val2014_000000348524.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 1698, "image": "COCO_val2014_000000348524.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 1699, "image": "COCO_val2014_000000108189.jpg", "text": "Is there a sandwich in the image?", "label": "yes"} +{"question_id": 1700, "image": "COCO_val2014_000000108189.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 1701, "image": "COCO_val2014_000000108189.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 1702, "image": "COCO_val2014_000000108189.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1703, "image": "COCO_val2014_000000108189.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1704, "image": "COCO_val2014_000000108189.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1705, "image": "COCO_val2014_000000301575.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 1706, "image": "COCO_val2014_000000301575.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1707, "image": "COCO_val2014_000000301575.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1708, "image": "COCO_val2014_000000301575.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1709, "image": "COCO_val2014_000000301575.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 1710, "image": "COCO_val2014_000000301575.jpg", "text": "Is there a remote in the image?", "label": "no"} +{"question_id": 1711, "image": "COCO_val2014_000000239773.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 1712, "image": "COCO_val2014_000000239773.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 1713, "image": "COCO_val2014_000000239773.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1714, "image": "COCO_val2014_000000239773.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1715, "image": "COCO_val2014_000000239773.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1716, "image": "COCO_val2014_000000239773.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 1717, "image": "COCO_val2014_000000354976.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1718, "image": "COCO_val2014_000000354976.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1719, "image": "COCO_val2014_000000354976.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 1720, "image": "COCO_val2014_000000354976.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 1721, "image": "COCO_val2014_000000354976.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 1722, "image": "COCO_val2014_000000354976.jpg", "text": "Is there a keyboard in the image?", "label": "no"} +{"question_id": 1723, "image": "COCO_val2014_000000473199.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1724, "image": "COCO_val2014_000000473199.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1725, "image": "COCO_val2014_000000473199.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 1726, "image": "COCO_val2014_000000473199.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 1727, "image": "COCO_val2014_000000473199.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 1728, "image": "COCO_val2014_000000473199.jpg", "text": "Is there a vase in the image?", "label": "no"} +{"question_id": 1729, "image": "COCO_val2014_000000311759.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1730, "image": "COCO_val2014_000000311759.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1731, "image": "COCO_val2014_000000311759.jpg", "text": "Is there a teddy bear in the image?", "label": "yes"} +{"question_id": 1732, "image": "COCO_val2014_000000311759.jpg", "text": "Is there a bed in the image?", "label": "no"} +{"question_id": 1733, "image": "COCO_val2014_000000311759.jpg", "text": "Is there a bear in the image?", "label": "yes"} +{"question_id": 1734, "image": "COCO_val2014_000000311759.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 1735, "image": "COCO_val2014_000000431615.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 1736, "image": "COCO_val2014_000000431615.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1737, "image": "COCO_val2014_000000431615.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1738, "image": "COCO_val2014_000000431615.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1739, "image": "COCO_val2014_000000431615.jpg", "text": "Is there a boat in the image?", "label": "yes"} +{"question_id": 1740, "image": "COCO_val2014_000000431615.jpg", "text": "Is there a bird in the image?", "label": "no"} +{"question_id": 1741, "image": "COCO_val2014_000000343401.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1742, "image": "COCO_val2014_000000343401.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 1743, "image": "COCO_val2014_000000343401.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 1744, "image": "COCO_val2014_000000343401.jpg", "text": "Is there a frisbee in the image?", "label": "no"} +{"question_id": 1745, "image": "COCO_val2014_000000343401.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1746, "image": "COCO_val2014_000000343401.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1747, "image": "COCO_val2014_000000246199.jpg", "text": "Is there a banana in the image?", "label": "yes"} +{"question_id": 1748, "image": "COCO_val2014_000000246199.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 1749, "image": "COCO_val2014_000000246199.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 1750, "image": "COCO_val2014_000000246199.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1751, "image": "COCO_val2014_000000246199.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1752, "image": "COCO_val2014_000000246199.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1753, "image": "COCO_val2014_000000372009.jpg", "text": "Is there a bird in the image?", "label": "yes"} +{"question_id": 1754, "image": "COCO_val2014_000000372009.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1755, "image": "COCO_val2014_000000372009.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 1756, "image": "COCO_val2014_000000372009.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 1757, "image": "COCO_val2014_000000372009.jpg", "text": "Is there a teddy bear in the image?", "label": "yes"} +{"question_id": 1758, "image": "COCO_val2014_000000372009.jpg", "text": "Is there a bear in the image?", "label": "no"} +{"question_id": 1759, "image": "COCO_val2014_000000346707.jpg", "text": "Is there a banana in the image?", "label": "yes"} +{"question_id": 1760, "image": "COCO_val2014_000000346707.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1761, "image": "COCO_val2014_000000346707.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1762, "image": "COCO_val2014_000000346707.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1763, "image": "COCO_val2014_000000346707.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1764, "image": "COCO_val2014_000000346707.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1765, "image": "COCO_val2014_000000501898.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1766, "image": "COCO_val2014_000000501898.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1767, "image": "COCO_val2014_000000501898.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1768, "image": "COCO_val2014_000000501898.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 1769, "image": "COCO_val2014_000000501898.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 1770, "image": "COCO_val2014_000000501898.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1771, "image": "COCO_val2014_000000281766.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1772, "image": "COCO_val2014_000000281766.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1773, "image": "COCO_val2014_000000281766.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 1774, "image": "COCO_val2014_000000281766.jpg", "text": "Is there a motorcycle in the image?", "label": "no"} +{"question_id": 1775, "image": "COCO_val2014_000000281766.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 1776, "image": "COCO_val2014_000000281766.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 1777, "image": "COCO_val2014_000000245448.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1778, "image": "COCO_val2014_000000245448.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1779, "image": "COCO_val2014_000000245448.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1780, "image": "COCO_val2014_000000245448.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1781, "image": "COCO_val2014_000000245448.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 1782, "image": "COCO_val2014_000000245448.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 1783, "image": "COCO_val2014_000000510138.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1784, "image": "COCO_val2014_000000510138.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1785, "image": "COCO_val2014_000000510138.jpg", "text": "Is there a wine glass in the image?", "label": "yes"} +{"question_id": 1786, "image": "COCO_val2014_000000510138.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1787, "image": "COCO_val2014_000000510138.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 1788, "image": "COCO_val2014_000000510138.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1789, "image": "COCO_val2014_000000001171.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1790, "image": "COCO_val2014_000000001171.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1791, "image": "COCO_val2014_000000001171.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 1792, "image": "COCO_val2014_000000001171.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 1793, "image": "COCO_val2014_000000001171.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1794, "image": "COCO_val2014_000000001171.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 1795, "image": "COCO_val2014_000000100238.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1796, "image": "COCO_val2014_000000100238.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1797, "image": "COCO_val2014_000000100238.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1798, "image": "COCO_val2014_000000100238.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1799, "image": "COCO_val2014_000000100238.jpg", "text": "Is there a frisbee in the image?", "label": "yes"} +{"question_id": 1800, "image": "COCO_val2014_000000100238.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 1801, "image": "COCO_val2014_000000465418.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 1802, "image": "COCO_val2014_000000465418.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1803, "image": "COCO_val2014_000000465418.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1804, "image": "COCO_val2014_000000465418.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1805, "image": "COCO_val2014_000000465418.jpg", "text": "Is there a bus in the image?", "label": "yes"} +{"question_id": 1806, "image": "COCO_val2014_000000465418.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 1807, "image": "COCO_val2014_000000392364.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1808, "image": "COCO_val2014_000000392364.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 1809, "image": "COCO_val2014_000000392364.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 1810, "image": "COCO_val2014_000000392364.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 1811, "image": "COCO_val2014_000000392364.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1812, "image": "COCO_val2014_000000392364.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1813, "image": "COCO_val2014_000000188958.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 1814, "image": "COCO_val2014_000000188958.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 1815, "image": "COCO_val2014_000000188958.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1816, "image": "COCO_val2014_000000188958.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1817, "image": "COCO_val2014_000000188958.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 1818, "image": "COCO_val2014_000000188958.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 1819, "image": "COCO_val2014_000000436127.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 1820, "image": "COCO_val2014_000000436127.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1821, "image": "COCO_val2014_000000436127.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1822, "image": "COCO_val2014_000000436127.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1823, "image": "COCO_val2014_000000436127.jpg", "text": "Is there a horse in the image?", "label": "yes"} +{"question_id": 1824, "image": "COCO_val2014_000000436127.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 1825, "image": "COCO_val2014_000000198397.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1826, "image": "COCO_val2014_000000198397.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1827, "image": "COCO_val2014_000000198397.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1828, "image": "COCO_val2014_000000198397.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1829, "image": "COCO_val2014_000000198397.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1830, "image": "COCO_val2014_000000198397.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 1831, "image": "COCO_val2014_000000349936.jpg", "text": "Is there an oven in the imange?", "label": "yes"} +{"question_id": 1832, "image": "COCO_val2014_000000349936.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 1833, "image": "COCO_val2014_000000349936.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1834, "image": "COCO_val2014_000000349936.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1835, "image": "COCO_val2014_000000349936.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1836, "image": "COCO_val2014_000000349936.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 1837, "image": "COCO_val2014_000000333756.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1838, "image": "COCO_val2014_000000333756.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1839, "image": "COCO_val2014_000000333756.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1840, "image": "COCO_val2014_000000333756.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 1841, "image": "COCO_val2014_000000333756.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 1842, "image": "COCO_val2014_000000333756.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1843, "image": "COCO_val2014_000000474741.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1844, "image": "COCO_val2014_000000474741.jpg", "text": "Is there a skis in the image?", "label": "no"} +{"question_id": 1845, "image": "COCO_val2014_000000474741.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 1846, "image": "COCO_val2014_000000474741.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1847, "image": "COCO_val2014_000000474741.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1848, "image": "COCO_val2014_000000474741.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1849, "image": "COCO_val2014_000000286342.jpg", "text": "Is there a keyboard in the image?", "label": "yes"} +{"question_id": 1850, "image": "COCO_val2014_000000286342.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 1851, "image": "COCO_val2014_000000286342.jpg", "text": "Is there a mouse in the image?", "label": "yes"} +{"question_id": 1852, "image": "COCO_val2014_000000286342.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1853, "image": "COCO_val2014_000000286342.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 1854, "image": "COCO_val2014_000000286342.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1855, "image": "COCO_val2014_000000093948.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 1856, "image": "COCO_val2014_000000093948.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1857, "image": "COCO_val2014_000000093948.jpg", "text": "Is there a mouse in the image?", "label": "yes"} +{"question_id": 1858, "image": "COCO_val2014_000000093948.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1859, "image": "COCO_val2014_000000093948.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 1860, "image": "COCO_val2014_000000093948.jpg", "text": "Is there a cell phone in the image?", "label": "no"} +{"question_id": 1861, "image": "COCO_val2014_000000405740.jpg", "text": "Is there a wine glass in the image?", "label": "yes"} +{"question_id": 1862, "image": "COCO_val2014_000000405740.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1863, "image": "COCO_val2014_000000405740.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1864, "image": "COCO_val2014_000000405740.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1865, "image": "COCO_val2014_000000405740.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 1866, "image": "COCO_val2014_000000405740.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 1867, "image": "COCO_val2014_000000304387.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1868, "image": "COCO_val2014_000000304387.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1869, "image": "COCO_val2014_000000304387.jpg", "text": "Is there a surfboard in the image?", "label": "yes"} +{"question_id": 1870, "image": "COCO_val2014_000000304387.jpg", "text": "Is there an umbrella in the imange?", "label": "no"} +{"question_id": 1871, "image": "COCO_val2014_000000304387.jpg", "text": "Is there a kite in the image?", "label": "yes"} +{"question_id": 1872, "image": "COCO_val2014_000000304387.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 1873, "image": "COCO_val2014_000000147165.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 1874, "image": "COCO_val2014_000000147165.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 1875, "image": "COCO_val2014_000000147165.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1876, "image": "COCO_val2014_000000147165.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1877, "image": "COCO_val2014_000000147165.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 1878, "image": "COCO_val2014_000000147165.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1879, "image": "COCO_val2014_000000495311.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1880, "image": "COCO_val2014_000000495311.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1881, "image": "COCO_val2014_000000495311.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1882, "image": "COCO_val2014_000000495311.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1883, "image": "COCO_val2014_000000495311.jpg", "text": "Is there an airplane in the imange?", "label": "yes"} +{"question_id": 1884, "image": "COCO_val2014_000000495311.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 1885, "image": "COCO_val2014_000000312406.jpg", "text": "Is there a banana in the image?", "label": "yes"} +{"question_id": 1886, "image": "COCO_val2014_000000312406.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1887, "image": "COCO_val2014_000000312406.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1888, "image": "COCO_val2014_000000312406.jpg", "text": "Is there a spoon in the image?", "label": "no"} +{"question_id": 1889, "image": "COCO_val2014_000000312406.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 1890, "image": "COCO_val2014_000000312406.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 1891, "image": "COCO_val2014_000000515820.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 1892, "image": "COCO_val2014_000000515820.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1893, "image": "COCO_val2014_000000515820.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 1894, "image": "COCO_val2014_000000515820.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1895, "image": "COCO_val2014_000000515820.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1896, "image": "COCO_val2014_000000515820.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1897, "image": "COCO_val2014_000000031971.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 1898, "image": "COCO_val2014_000000031971.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1899, "image": "COCO_val2014_000000031971.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 1900, "image": "COCO_val2014_000000031971.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1901, "image": "COCO_val2014_000000031971.jpg", "text": "Is there a book in the image?", "label": "yes"} +{"question_id": 1902, "image": "COCO_val2014_000000031971.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 1903, "image": "COCO_val2014_000000418680.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 1904, "image": "COCO_val2014_000000418680.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 1905, "image": "COCO_val2014_000000418680.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1906, "image": "COCO_val2014_000000418680.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1907, "image": "COCO_val2014_000000418680.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 1908, "image": "COCO_val2014_000000418680.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 1909, "image": "COCO_val2014_000000459680.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1910, "image": "COCO_val2014_000000459680.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1911, "image": "COCO_val2014_000000459680.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 1912, "image": "COCO_val2014_000000459680.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1913, "image": "COCO_val2014_000000459680.jpg", "text": "Is there an umbrella in the imange?", "label": "yes"} +{"question_id": 1914, "image": "COCO_val2014_000000459680.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 1915, "image": "COCO_val2014_000000196462.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1916, "image": "COCO_val2014_000000196462.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1917, "image": "COCO_val2014_000000196462.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 1918, "image": "COCO_val2014_000000196462.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1919, "image": "COCO_val2014_000000196462.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 1920, "image": "COCO_val2014_000000196462.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 1921, "image": "COCO_val2014_000000276693.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 1922, "image": "COCO_val2014_000000276693.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1923, "image": "COCO_val2014_000000276693.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1924, "image": "COCO_val2014_000000276693.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1925, "image": "COCO_val2014_000000276693.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 1926, "image": "COCO_val2014_000000276693.jpg", "text": "Is there a snowboard in the image?", "label": "no"} +{"question_id": 1927, "image": "COCO_val2014_000000356424.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1928, "image": "COCO_val2014_000000356424.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 1929, "image": "COCO_val2014_000000356424.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1930, "image": "COCO_val2014_000000356424.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 1931, "image": "COCO_val2014_000000356424.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1932, "image": "COCO_val2014_000000356424.jpg", "text": "Is there a spoon in the image?", "label": "no"} +{"question_id": 1933, "image": "COCO_val2014_000000505335.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1934, "image": "COCO_val2014_000000505335.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1935, "image": "COCO_val2014_000000505335.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1936, "image": "COCO_val2014_000000505335.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1937, "image": "COCO_val2014_000000505335.jpg", "text": "Is there an umbrella in the imange?", "label": "yes"} +{"question_id": 1938, "image": "COCO_val2014_000000505335.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 1939, "image": "COCO_val2014_000000172342.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1940, "image": "COCO_val2014_000000172342.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1941, "image": "COCO_val2014_000000172342.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 1942, "image": "COCO_val2014_000000172342.jpg", "text": "Is there a knife in the image?", "label": "no"} +{"question_id": 1943, "image": "COCO_val2014_000000172342.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1944, "image": "COCO_val2014_000000172342.jpg", "text": "Is there a banana in the image?", "label": "no"} +{"question_id": 1945, "image": "COCO_val2014_000000384970.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1946, "image": "COCO_val2014_000000384970.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 1947, "image": "COCO_val2014_000000384970.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1948, "image": "COCO_val2014_000000384970.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1949, "image": "COCO_val2014_000000384970.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1950, "image": "COCO_val2014_000000384970.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 1951, "image": "COCO_val2014_000000572260.jpg", "text": "Is there a wine glass in the image?", "label": "yes"} +{"question_id": 1952, "image": "COCO_val2014_000000572260.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1953, "image": "COCO_val2014_000000572260.jpg", "text": "Is there a teddy bear in the image?", "label": "yes"} +{"question_id": 1954, "image": "COCO_val2014_000000572260.jpg", "text": "Is there a bear in the image?", "label": "no"} +{"question_id": 1955, "image": "COCO_val2014_000000572260.jpg", "text": "Is there an apple in the imange?", "label": "yes"} +{"question_id": 1956, "image": "COCO_val2014_000000572260.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1957, "image": "COCO_val2014_000000418471.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1958, "image": "COCO_val2014_000000418471.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1959, "image": "COCO_val2014_000000418471.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1960, "image": "COCO_val2014_000000418471.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 1961, "image": "COCO_val2014_000000418471.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1962, "image": "COCO_val2014_000000418471.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 1963, "image": "COCO_val2014_000000379404.jpg", "text": "Is there a banana in the image?", "label": "yes"} +{"question_id": 1964, "image": "COCO_val2014_000000379404.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 1965, "image": "COCO_val2014_000000379404.jpg", "text": "Is there a sandwich in the image?", "label": "yes"} +{"question_id": 1966, "image": "COCO_val2014_000000379404.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1967, "image": "COCO_val2014_000000379404.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1968, "image": "COCO_val2014_000000379404.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1969, "image": "COCO_val2014_000000044801.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 1970, "image": "COCO_val2014_000000044801.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 1971, "image": "COCO_val2014_000000044801.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1972, "image": "COCO_val2014_000000044801.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1973, "image": "COCO_val2014_000000044801.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1974, "image": "COCO_val2014_000000044801.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 1975, "image": "COCO_val2014_000000293564.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1976, "image": "COCO_val2014_000000293564.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1977, "image": "COCO_val2014_000000293564.jpg", "text": "Is there a surfboard in the image?", "label": "yes"} +{"question_id": 1978, "image": "COCO_val2014_000000293564.jpg", "text": "Is there a kite in the image?", "label": "no"} +{"question_id": 1979, "image": "COCO_val2014_000000293564.jpg", "text": "Is there an umbrella in the imange?", "label": "yes"} +{"question_id": 1980, "image": "COCO_val2014_000000293564.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 1981, "image": "COCO_val2014_000000452297.jpg", "text": "Is there a banana in the image?", "label": "yes"} +{"question_id": 1982, "image": "COCO_val2014_000000452297.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1983, "image": "COCO_val2014_000000452297.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 1984, "image": "COCO_val2014_000000452297.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 1985, "image": "COCO_val2014_000000452297.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1986, "image": "COCO_val2014_000000452297.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1987, "image": "COCO_val2014_000000543393.jpg", "text": "Is there a fire hydrant in the image?", "label": "yes"} +{"question_id": 1988, "image": "COCO_val2014_000000543393.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1989, "image": "COCO_val2014_000000543393.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1990, "image": "COCO_val2014_000000543393.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 1991, "image": "COCO_val2014_000000543393.jpg", "text": "Is there a stop sign in the image?", "label": "yes"} +{"question_id": 1992, "image": "COCO_val2014_000000543393.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 1993, "image": "COCO_val2014_000000172648.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1994, "image": "COCO_val2014_000000172648.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 1995, "image": "COCO_val2014_000000172648.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1996, "image": "COCO_val2014_000000172648.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 1997, "image": "COCO_val2014_000000172648.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1998, "image": "COCO_val2014_000000172648.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1999, "image": "COCO_val2014_000000308907.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 2000, "image": "COCO_val2014_000000308907.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2001, "image": "COCO_val2014_000000308907.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2002, "image": "COCO_val2014_000000308907.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2003, "image": "COCO_val2014_000000308907.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 2004, "image": "COCO_val2014_000000308907.jpg", "text": "Is there a motorcycle in the image?", "label": "no"} +{"question_id": 2005, "image": "COCO_val2014_000000263594.jpg", "text": "Is there a bird in the image?", "label": "yes"} +{"question_id": 2006, "image": "COCO_val2014_000000263594.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2007, "image": "COCO_val2014_000000263594.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 2008, "image": "COCO_val2014_000000263594.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 2009, "image": "COCO_val2014_000000263594.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2010, "image": "COCO_val2014_000000263594.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 2011, "image": "COCO_val2014_000000501294.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 2012, "image": "COCO_val2014_000000501294.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2013, "image": "COCO_val2014_000000501294.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2014, "image": "COCO_val2014_000000501294.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2015, "image": "COCO_val2014_000000501294.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 2016, "image": "COCO_val2014_000000501294.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2017, "image": "COCO_val2014_000000500680.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2018, "image": "COCO_val2014_000000500680.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2019, "image": "COCO_val2014_000000500680.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 2020, "image": "COCO_val2014_000000500680.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 2021, "image": "COCO_val2014_000000500680.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2022, "image": "COCO_val2014_000000500680.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2023, "image": "COCO_val2014_000000091954.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 2024, "image": "COCO_val2014_000000091954.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2025, "image": "COCO_val2014_000000091954.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 2026, "image": "COCO_val2014_000000091954.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 2027, "image": "COCO_val2014_000000091954.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2028, "image": "COCO_val2014_000000091954.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 2029, "image": "COCO_val2014_000000454607.jpg", "text": "Is there a book in the image?", "label": "yes"} +{"question_id": 2030, "image": "COCO_val2014_000000454607.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 2031, "image": "COCO_val2014_000000454607.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2032, "image": "COCO_val2014_000000454607.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2033, "image": "COCO_val2014_000000454607.jpg", "text": "Is there a cell phone in the image?", "label": "yes"} +{"question_id": 2034, "image": "COCO_val2014_000000454607.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2035, "image": "COCO_val2014_000000363908.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 2036, "image": "COCO_val2014_000000363908.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 2037, "image": "COCO_val2014_000000363908.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2038, "image": "COCO_val2014_000000363908.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2039, "image": "COCO_val2014_000000363908.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2040, "image": "COCO_val2014_000000363908.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 2041, "image": "COCO_val2014_000000560064.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2042, "image": "COCO_val2014_000000560064.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2043, "image": "COCO_val2014_000000560064.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 2044, "image": "COCO_val2014_000000560064.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2045, "image": "COCO_val2014_000000560064.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 2046, "image": "COCO_val2014_000000560064.jpg", "text": "Is there a vase in the image?", "label": "no"} +{"question_id": 2047, "image": "COCO_val2014_000000348469.jpg", "text": "Is there a bird in the image?", "label": "yes"} +{"question_id": 2048, "image": "COCO_val2014_000000348469.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 2049, "image": "COCO_val2014_000000348469.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2050, "image": "COCO_val2014_000000348469.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2051, "image": "COCO_val2014_000000348469.jpg", "text": "Is there a baseball bat in the image?", "label": "yes"} +{"question_id": 2052, "image": "COCO_val2014_000000348469.jpg", "text": "Is there a sports ball in the image?", "label": "no"} +{"question_id": 2053, "image": "COCO_val2014_000000167724.jpg", "text": "Is there an oven in the imange?", "label": "yes"} +{"question_id": 2054, "image": "COCO_val2014_000000167724.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 2055, "image": "COCO_val2014_000000167724.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 2056, "image": "COCO_val2014_000000167724.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2057, "image": "COCO_val2014_000000167724.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2058, "image": "COCO_val2014_000000167724.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2059, "image": "COCO_val2014_000000262736.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 2060, "image": "COCO_val2014_000000262736.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2061, "image": "COCO_val2014_000000262736.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 2062, "image": "COCO_val2014_000000262736.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 2063, "image": "COCO_val2014_000000262736.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2064, "image": "COCO_val2014_000000262736.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 2065, "image": "COCO_val2014_000000076416.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2066, "image": "COCO_val2014_000000076416.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2067, "image": "COCO_val2014_000000076416.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 2068, "image": "COCO_val2014_000000076416.jpg", "text": "Is there a motorcycle in the image?", "label": "no"} +{"question_id": 2069, "image": "COCO_val2014_000000076416.jpg", "text": "Is there a cell phone in the image?", "label": "yes"} +{"question_id": 2070, "image": "COCO_val2014_000000076416.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2071, "image": "COCO_val2014_000000541783.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2072, "image": "COCO_val2014_000000541783.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 2073, "image": "COCO_val2014_000000541783.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2074, "image": "COCO_val2014_000000541783.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2075, "image": "COCO_val2014_000000541783.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 2076, "image": "COCO_val2014_000000541783.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 2077, "image": "COCO_val2014_000000445200.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2078, "image": "COCO_val2014_000000445200.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2079, "image": "COCO_val2014_000000445200.jpg", "text": "Is there a broccoli in the image?", "label": "yes"} +{"question_id": 2080, "image": "COCO_val2014_000000445200.jpg", "text": "Is there a fork in the image?", "label": "no"} +{"question_id": 2081, "image": "COCO_val2014_000000445200.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2082, "image": "COCO_val2014_000000445200.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2083, "image": "COCO_val2014_000000433574.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2084, "image": "COCO_val2014_000000433574.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2085, "image": "COCO_val2014_000000433574.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 2086, "image": "COCO_val2014_000000433574.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 2087, "image": "COCO_val2014_000000433574.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2088, "image": "COCO_val2014_000000433574.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2089, "image": "COCO_val2014_000000212241.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 2090, "image": "COCO_val2014_000000212241.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 2091, "image": "COCO_val2014_000000212241.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2092, "image": "COCO_val2014_000000212241.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2093, "image": "COCO_val2014_000000212241.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 2094, "image": "COCO_val2014_000000212241.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 2095, "image": "COCO_val2014_000000114941.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2096, "image": "COCO_val2014_000000114941.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2097, "image": "COCO_val2014_000000114941.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 2098, "image": "COCO_val2014_000000114941.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 2099, "image": "COCO_val2014_000000114941.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2100, "image": "COCO_val2014_000000114941.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 2101, "image": "COCO_val2014_000000493753.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 2102, "image": "COCO_val2014_000000493753.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2103, "image": "COCO_val2014_000000493753.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 2104, "image": "COCO_val2014_000000493753.jpg", "text": "Is there a cell phone in the image?", "label": "no"} +{"question_id": 2105, "image": "COCO_val2014_000000493753.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2106, "image": "COCO_val2014_000000493753.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 2107, "image": "COCO_val2014_000000410597.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2108, "image": "COCO_val2014_000000410597.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2109, "image": "COCO_val2014_000000410597.jpg", "text": "Is there a wine glass in the image?", "label": "yes"} +{"question_id": 2110, "image": "COCO_val2014_000000410597.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 2111, "image": "COCO_val2014_000000410597.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2112, "image": "COCO_val2014_000000410597.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2113, "image": "COCO_val2014_000000382617.jpg", "text": "Is there a mouse in the image?", "label": "yes"} +{"question_id": 2114, "image": "COCO_val2014_000000382617.jpg", "text": "Is there a laptop in the image?", "label": "no"} +{"question_id": 2115, "image": "COCO_val2014_000000382617.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2116, "image": "COCO_val2014_000000382617.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2117, "image": "COCO_val2014_000000382617.jpg", "text": "Is there a book in the image?", "label": "yes"} +{"question_id": 2118, "image": "COCO_val2014_000000382617.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 2119, "image": "COCO_val2014_000000467887.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2120, "image": "COCO_val2014_000000467887.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2121, "image": "COCO_val2014_000000467887.jpg", "text": "Is there a mouse in the image?", "label": "yes"} +{"question_id": 2122, "image": "COCO_val2014_000000467887.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 2123, "image": "COCO_val2014_000000467887.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 2124, "image": "COCO_val2014_000000467887.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 2125, "image": "COCO_val2014_000000120792.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2126, "image": "COCO_val2014_000000120792.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2127, "image": "COCO_val2014_000000120792.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 2128, "image": "COCO_val2014_000000120792.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2129, "image": "COCO_val2014_000000120792.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2130, "image": "COCO_val2014_000000120792.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 2131, "image": "COCO_val2014_000000125524.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2132, "image": "COCO_val2014_000000125524.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2133, "image": "COCO_val2014_000000125524.jpg", "text": "Is there a bus in the image?", "label": "yes"} +{"question_id": 2134, "image": "COCO_val2014_000000125524.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 2135, "image": "COCO_val2014_000000125524.jpg", "text": "Is there a fire hydrant in the image?", "label": "yes"} +{"question_id": 2136, "image": "COCO_val2014_000000125524.jpg", "text": "Is there a stop sign in the image?", "label": "no"} +{"question_id": 2137, "image": "COCO_val2014_000000196053.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2138, "image": "COCO_val2014_000000196053.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2139, "image": "COCO_val2014_000000196053.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2140, "image": "COCO_val2014_000000196053.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 2141, "image": "COCO_val2014_000000196053.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 2142, "image": "COCO_val2014_000000196053.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2143, "image": "COCO_val2014_000000156704.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2144, "image": "COCO_val2014_000000156704.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2145, "image": "COCO_val2014_000000156704.jpg", "text": "Is there a surfboard in the image?", "label": "yes"} +{"question_id": 2146, "image": "COCO_val2014_000000156704.jpg", "text": "Is there a kite in the image?", "label": "no"} +{"question_id": 2147, "image": "COCO_val2014_000000156704.jpg", "text": "Is there an umbrella in the imange?", "label": "yes"} +{"question_id": 2148, "image": "COCO_val2014_000000156704.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 2149, "image": "COCO_val2014_000000088507.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2150, "image": "COCO_val2014_000000088507.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 2151, "image": "COCO_val2014_000000088507.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2152, "image": "COCO_val2014_000000088507.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2153, "image": "COCO_val2014_000000088507.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 2154, "image": "COCO_val2014_000000088507.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2155, "image": "COCO_val2014_000000279499.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2156, "image": "COCO_val2014_000000279499.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2157, "image": "COCO_val2014_000000279499.jpg", "text": "Is there a bus in the image?", "label": "yes"} +{"question_id": 2158, "image": "COCO_val2014_000000279499.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 2159, "image": "COCO_val2014_000000279499.jpg", "text": "Is there an umbrella in the imange?", "label": "yes"} +{"question_id": 2160, "image": "COCO_val2014_000000279499.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 2161, "image": "COCO_val2014_000000155131.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2162, "image": "COCO_val2014_000000155131.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2163, "image": "COCO_val2014_000000155131.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2164, "image": "COCO_val2014_000000155131.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 2165, "image": "COCO_val2014_000000155131.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 2166, "image": "COCO_val2014_000000155131.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2167, "image": "COCO_val2014_000000252135.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2168, "image": "COCO_val2014_000000252135.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2169, "image": "COCO_val2014_000000252135.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2170, "image": "COCO_val2014_000000252135.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2171, "image": "COCO_val2014_000000252135.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 2172, "image": "COCO_val2014_000000252135.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 2173, "image": "COCO_val2014_000000501652.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2174, "image": "COCO_val2014_000000501652.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2175, "image": "COCO_val2014_000000501652.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2176, "image": "COCO_val2014_000000501652.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 2177, "image": "COCO_val2014_000000501652.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2178, "image": "COCO_val2014_000000501652.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 2179, "image": "COCO_val2014_000000238691.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2180, "image": "COCO_val2014_000000238691.jpg", "text": "Is there a skis in the image?", "label": "no"} +{"question_id": 2181, "image": "COCO_val2014_000000238691.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2182, "image": "COCO_val2014_000000238691.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2183, "image": "COCO_val2014_000000238691.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 2184, "image": "COCO_val2014_000000238691.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2185, "image": "COCO_val2014_000000332908.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2186, "image": "COCO_val2014_000000332908.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2187, "image": "COCO_val2014_000000332908.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2188, "image": "COCO_val2014_000000332908.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2189, "image": "COCO_val2014_000000332908.jpg", "text": "Is there an oven in the imange?", "label": "yes"} +{"question_id": 2190, "image": "COCO_val2014_000000332908.jpg", "text": "Is there a spoon in the image?", "label": "no"} +{"question_id": 2191, "image": "COCO_val2014_000000372819.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 2192, "image": "COCO_val2014_000000372819.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2193, "image": "COCO_val2014_000000372819.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2194, "image": "COCO_val2014_000000372819.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2195, "image": "COCO_val2014_000000372819.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 2196, "image": "COCO_val2014_000000372819.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 2197, "image": "COCO_val2014_000000470699.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 2198, "image": "COCO_val2014_000000470699.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2199, "image": "COCO_val2014_000000470699.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2200, "image": "COCO_val2014_000000470699.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2201, "image": "COCO_val2014_000000470699.jpg", "text": "Is there a surfboard in the image?", "label": "yes"} +{"question_id": 2202, "image": "COCO_val2014_000000470699.jpg", "text": "Is there an umbrella in the imange?", "label": "no"} +{"question_id": 2203, "image": "COCO_val2014_000000023084.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2204, "image": "COCO_val2014_000000023084.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2205, "image": "COCO_val2014_000000023084.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2206, "image": "COCO_val2014_000000023084.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 2207, "image": "COCO_val2014_000000023084.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 2208, "image": "COCO_val2014_000000023084.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2209, "image": "COCO_val2014_000000545353.jpg", "text": "Is there a pizza in the image?", "label": "yes"} +{"question_id": 2210, "image": "COCO_val2014_000000545353.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2211, "image": "COCO_val2014_000000545353.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2212, "image": "COCO_val2014_000000545353.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2213, "image": "COCO_val2014_000000545353.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 2214, "image": "COCO_val2014_000000545353.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 2215, "image": "COCO_val2014_000000394535.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2216, "image": "COCO_val2014_000000394535.jpg", "text": "Is there a skis in the image?", "label": "no"} +{"question_id": 2217, "image": "COCO_val2014_000000394535.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2218, "image": "COCO_val2014_000000394535.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2219, "image": "COCO_val2014_000000394535.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 2220, "image": "COCO_val2014_000000394535.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2221, "image": "COCO_val2014_000000579415.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 2222, "image": "COCO_val2014_000000579415.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2223, "image": "COCO_val2014_000000579415.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2224, "image": "COCO_val2014_000000579415.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2225, "image": "COCO_val2014_000000579415.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 2226, "image": "COCO_val2014_000000579415.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 2227, "image": "COCO_val2014_000000233521.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2228, "image": "COCO_val2014_000000233521.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2229, "image": "COCO_val2014_000000233521.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 2230, "image": "COCO_val2014_000000233521.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2231, "image": "COCO_val2014_000000233521.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2232, "image": "COCO_val2014_000000233521.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2233, "image": "COCO_val2014_000000355256.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2234, "image": "COCO_val2014_000000355256.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2235, "image": "COCO_val2014_000000355256.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2236, "image": "COCO_val2014_000000355256.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2237, "image": "COCO_val2014_000000355256.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2238, "image": "COCO_val2014_000000355256.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 2239, "image": "COCO_val2014_000000304819.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 2240, "image": "COCO_val2014_000000304819.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2241, "image": "COCO_val2014_000000304819.jpg", "text": "Is there a cat in the image?", "label": "yes"} +{"question_id": 2242, "image": "COCO_val2014_000000304819.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 2243, "image": "COCO_val2014_000000304819.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 2244, "image": "COCO_val2014_000000304819.jpg", "text": "Is there a keyboard in the image?", "label": "no"} +{"question_id": 2245, "image": "COCO_val2014_000000240434.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 2246, "image": "COCO_val2014_000000240434.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2247, "image": "COCO_val2014_000000240434.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2248, "image": "COCO_val2014_000000240434.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2249, "image": "COCO_val2014_000000240434.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 2250, "image": "COCO_val2014_000000240434.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2251, "image": "COCO_val2014_000000199940.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2252, "image": "COCO_val2014_000000199940.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2253, "image": "COCO_val2014_000000199940.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2254, "image": "COCO_val2014_000000199940.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2255, "image": "COCO_val2014_000000199940.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2256, "image": "COCO_val2014_000000199940.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2257, "image": "COCO_val2014_000000549390.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2258, "image": "COCO_val2014_000000549390.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 2259, "image": "COCO_val2014_000000549390.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2260, "image": "COCO_val2014_000000549390.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2261, "image": "COCO_val2014_000000549390.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 2262, "image": "COCO_val2014_000000549390.jpg", "text": "Is there a motorcycle in the image?", "label": "no"} +{"question_id": 2263, "image": "COCO_val2014_000000235541.jpg", "text": "Is there a giraffe in the image?", "label": "yes"} +{"question_id": 2264, "image": "COCO_val2014_000000235541.jpg", "text": "Is there a cow in the image?", "label": "no"} +{"question_id": 2265, "image": "COCO_val2014_000000235541.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2266, "image": "COCO_val2014_000000235541.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2267, "image": "COCO_val2014_000000235541.jpg", "text": "Is there a tie in the image?", "label": "yes"} +{"question_id": 2268, "image": "COCO_val2014_000000235541.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2269, "image": "COCO_val2014_000000068418.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 2270, "image": "COCO_val2014_000000068418.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2271, "image": "COCO_val2014_000000068418.jpg", "text": "Is there a mouse in the image?", "label": "yes"} +{"question_id": 2272, "image": "COCO_val2014_000000068418.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2273, "image": "COCO_val2014_000000068418.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 2274, "image": "COCO_val2014_000000068418.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2275, "image": "COCO_val2014_000000368541.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2276, "image": "COCO_val2014_000000368541.jpg", "text": "Is there a skis in the image?", "label": "no"} +{"question_id": 2277, "image": "COCO_val2014_000000368541.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 2278, "image": "COCO_val2014_000000368541.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2279, "image": "COCO_val2014_000000368541.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2280, "image": "COCO_val2014_000000368541.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2281, "image": "COCO_val2014_000000006033.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2282, "image": "COCO_val2014_000000006033.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2283, "image": "COCO_val2014_000000006033.jpg", "text": "Is there a suitcase in the image?", "label": "yes"} +{"question_id": 2284, "image": "COCO_val2014_000000006033.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 2285, "image": "COCO_val2014_000000006033.jpg", "text": "Is there a bus in the image?", "label": "yes"} +{"question_id": 2286, "image": "COCO_val2014_000000006033.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 2287, "image": "COCO_val2014_000000021327.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 2288, "image": "COCO_val2014_000000021327.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2289, "image": "COCO_val2014_000000021327.jpg", "text": "Is there a pizza in the image?", "label": "yes"} +{"question_id": 2290, "image": "COCO_val2014_000000021327.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 2291, "image": "COCO_val2014_000000021327.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2292, "image": "COCO_val2014_000000021327.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2293, "image": "COCO_val2014_000000390157.jpg", "text": "Is there a wine glass in the image?", "label": "yes"} +{"question_id": 2294, "image": "COCO_val2014_000000390157.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2295, "image": "COCO_val2014_000000390157.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2296, "image": "COCO_val2014_000000390157.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2297, "image": "COCO_val2014_000000390157.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2298, "image": "COCO_val2014_000000390157.jpg", "text": "Is there a spoon in the image?", "label": "no"} +{"question_id": 2299, "image": "COCO_val2014_000000298633.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2300, "image": "COCO_val2014_000000298633.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2301, "image": "COCO_val2014_000000298633.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2302, "image": "COCO_val2014_000000298633.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 2303, "image": "COCO_val2014_000000298633.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 2304, "image": "COCO_val2014_000000298633.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2305, "image": "COCO_val2014_000000579277.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2306, "image": "COCO_val2014_000000579277.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2307, "image": "COCO_val2014_000000579277.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 2308, "image": "COCO_val2014_000000579277.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 2309, "image": "COCO_val2014_000000579277.jpg", "text": "Is there a carrot in the image?", "label": "yes"} +{"question_id": 2310, "image": "COCO_val2014_000000579277.jpg", "text": "Is there a broccoli in the image?", "label": "no"} +{"question_id": 2311, "image": "COCO_val2014_000000042685.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2312, "image": "COCO_val2014_000000042685.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2313, "image": "COCO_val2014_000000042685.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2314, "image": "COCO_val2014_000000042685.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2315, "image": "COCO_val2014_000000042685.jpg", "text": "Is there a pizza in the image?", "label": "yes"} +{"question_id": 2316, "image": "COCO_val2014_000000042685.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 2317, "image": "COCO_val2014_000000553992.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 2318, "image": "COCO_val2014_000000553992.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2319, "image": "COCO_val2014_000000553992.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2320, "image": "COCO_val2014_000000553992.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2321, "image": "COCO_val2014_000000553992.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 2322, "image": "COCO_val2014_000000553992.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 2323, "image": "COCO_val2014_000000243158.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 2324, "image": "COCO_val2014_000000243158.jpg", "text": "Is there a potted plant in the image?", "label": "no"} +{"question_id": 2325, "image": "COCO_val2014_000000243158.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 2326, "image": "COCO_val2014_000000243158.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2327, "image": "COCO_val2014_000000243158.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2328, "image": "COCO_val2014_000000243158.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2329, "image": "COCO_val2014_000000303971.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 2330, "image": "COCO_val2014_000000303971.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2331, "image": "COCO_val2014_000000303971.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2332, "image": "COCO_val2014_000000303971.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2333, "image": "COCO_val2014_000000303971.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 2334, "image": "COCO_val2014_000000303971.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 2335, "image": "COCO_val2014_000000405762.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2336, "image": "COCO_val2014_000000405762.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 2337, "image": "COCO_val2014_000000405762.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 2338, "image": "COCO_val2014_000000405762.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 2339, "image": "COCO_val2014_000000405762.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2340, "image": "COCO_val2014_000000405762.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 2341, "image": "COCO_val2014_000000343967.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 2342, "image": "COCO_val2014_000000343967.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2343, "image": "COCO_val2014_000000343967.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 2344, "image": "COCO_val2014_000000343967.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 2345, "image": "COCO_val2014_000000343967.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 2346, "image": "COCO_val2014_000000343967.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2347, "image": "COCO_val2014_000000477598.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 2348, "image": "COCO_val2014_000000477598.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2349, "image": "COCO_val2014_000000477598.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2350, "image": "COCO_val2014_000000477598.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2351, "image": "COCO_val2014_000000477598.jpg", "text": "Is there a frisbee in the image?", "label": "yes"} +{"question_id": 2352, "image": "COCO_val2014_000000477598.jpg", "text": "Is there an orange in the imange?", "label": "no"} +{"question_id": 2353, "image": "COCO_val2014_000000044993.jpg", "text": "Is there a banana in the image?", "label": "yes"} +{"question_id": 2354, "image": "COCO_val2014_000000044993.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2355, "image": "COCO_val2014_000000044993.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2356, "image": "COCO_val2014_000000044993.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2357, "image": "COCO_val2014_000000044993.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 2358, "image": "COCO_val2014_000000044993.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2359, "image": "COCO_val2014_000000381195.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2360, "image": "COCO_val2014_000000381195.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2361, "image": "COCO_val2014_000000381195.jpg", "text": "Is there a broccoli in the image?", "label": "yes"} +{"question_id": 2362, "image": "COCO_val2014_000000381195.jpg", "text": "Is there a carrot in the image?", "label": "no"} +{"question_id": 2363, "image": "COCO_val2014_000000381195.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2364, "image": "COCO_val2014_000000381195.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2365, "image": "COCO_val2014_000000337502.jpg", "text": "Is there a pizza in the image?", "label": "yes"} +{"question_id": 2366, "image": "COCO_val2014_000000337502.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2367, "image": "COCO_val2014_000000337502.jpg", "text": "Is there a broccoli in the image?", "label": "yes"} +{"question_id": 2368, "image": "COCO_val2014_000000337502.jpg", "text": "Is there a carrot in the image?", "label": "no"} +{"question_id": 2369, "image": "COCO_val2014_000000337502.jpg", "text": "Is there an oven in the imange?", "label": "yes"} +{"question_id": 2370, "image": "COCO_val2014_000000337502.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 2371, "image": "COCO_val2014_000000325347.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2372, "image": "COCO_val2014_000000325347.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 2373, "image": "COCO_val2014_000000325347.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2374, "image": "COCO_val2014_000000325347.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2375, "image": "COCO_val2014_000000325347.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2376, "image": "COCO_val2014_000000325347.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 2377, "image": "COCO_val2014_000000256906.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 2378, "image": "COCO_val2014_000000256906.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 2379, "image": "COCO_val2014_000000256906.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2380, "image": "COCO_val2014_000000256906.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2381, "image": "COCO_val2014_000000256906.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 2382, "image": "COCO_val2014_000000256906.jpg", "text": "Is there a motorcycle in the image?", "label": "no"} +{"question_id": 2383, "image": "COCO_val2014_000000061507.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2384, "image": "COCO_val2014_000000061507.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2385, "image": "COCO_val2014_000000061507.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 2386, "image": "COCO_val2014_000000061507.jpg", "text": "Is there a motorcycle in the image?", "label": "no"} +{"question_id": 2387, "image": "COCO_val2014_000000061507.jpg", "text": "Is there a suitcase in the image?", "label": "yes"} +{"question_id": 2388, "image": "COCO_val2014_000000061507.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 2389, "image": "COCO_val2014_000000084410.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 2390, "image": "COCO_val2014_000000084410.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2391, "image": "COCO_val2014_000000084410.jpg", "text": "Is there a wine glass in the image?", "label": "yes"} +{"question_id": 2392, "image": "COCO_val2014_000000084410.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2393, "image": "COCO_val2014_000000084410.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 2394, "image": "COCO_val2014_000000084410.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 2395, "image": "COCO_val2014_000000288576.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2396, "image": "COCO_val2014_000000288576.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2397, "image": "COCO_val2014_000000288576.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 2398, "image": "COCO_val2014_000000288576.jpg", "text": "Is there a motorcycle in the image?", "label": "no"} +{"question_id": 2399, "image": "COCO_val2014_000000288576.jpg", "text": "Is there a frisbee in the image?", "label": "yes"} +{"question_id": 2400, "image": "COCO_val2014_000000288576.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 2401, "image": "COCO_val2014_000000328301.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2402, "image": "COCO_val2014_000000328301.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2403, "image": "COCO_val2014_000000328301.jpg", "text": "Is there a boat in the image?", "label": "yes"} +{"question_id": 2404, "image": "COCO_val2014_000000328301.jpg", "text": "Is there a bird in the image?", "label": "no"} +{"question_id": 2405, "image": "COCO_val2014_000000328301.jpg", "text": "Is there a fire hydrant in the image?", "label": "yes"} +{"question_id": 2406, "image": "COCO_val2014_000000328301.jpg", "text": "Is there a stop sign in the image?", "label": "no"} +{"question_id": 2407, "image": "COCO_val2014_000000307262.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2408, "image": "COCO_val2014_000000307262.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2409, "image": "COCO_val2014_000000307262.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 2410, "image": "COCO_val2014_000000307262.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2411, "image": "COCO_val2014_000000307262.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2412, "image": "COCO_val2014_000000307262.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2413, "image": "COCO_val2014_000000573796.jpg", "text": "Is there a knife in the image?", "label": "yes"} +{"question_id": 2414, "image": "COCO_val2014_000000573796.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2415, "image": "COCO_val2014_000000573796.jpg", "text": "Is there an apple in the imange?", "label": "yes"} +{"question_id": 2416, "image": "COCO_val2014_000000573796.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2417, "image": "COCO_val2014_000000573796.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2418, "image": "COCO_val2014_000000573796.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2419, "image": "COCO_val2014_000000154846.jpg", "text": "Is there a pizza in the image?", "label": "yes"} +{"question_id": 2420, "image": "COCO_val2014_000000154846.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2421, "image": "COCO_val2014_000000154846.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2422, "image": "COCO_val2014_000000154846.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2423, "image": "COCO_val2014_000000154846.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2424, "image": "COCO_val2014_000000154846.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2425, "image": "COCO_val2014_000000472375.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 2426, "image": "COCO_val2014_000000472375.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2427, "image": "COCO_val2014_000000472375.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 2428, "image": "COCO_val2014_000000472375.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2429, "image": "COCO_val2014_000000472375.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 2430, "image": "COCO_val2014_000000472375.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2431, "image": "COCO_val2014_000000446651.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2432, "image": "COCO_val2014_000000446651.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2433, "image": "COCO_val2014_000000446651.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 2434, "image": "COCO_val2014_000000446651.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 2435, "image": "COCO_val2014_000000446651.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2436, "image": "COCO_val2014_000000446651.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 2437, "image": "COCO_val2014_000000267684.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2438, "image": "COCO_val2014_000000267684.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 2439, "image": "COCO_val2014_000000267684.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2440, "image": "COCO_val2014_000000267684.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2441, "image": "COCO_val2014_000000267684.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 2442, "image": "COCO_val2014_000000267684.jpg", "text": "Is there a snowboard in the image?", "label": "no"} +{"question_id": 2443, "image": "COCO_val2014_000000238029.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2444, "image": "COCO_val2014_000000238029.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2445, "image": "COCO_val2014_000000238029.jpg", "text": "Is there a wine glass in the image?", "label": "yes"} +{"question_id": 2446, "image": "COCO_val2014_000000238029.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2447, "image": "COCO_val2014_000000238029.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 2448, "image": "COCO_val2014_000000238029.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 2449, "image": "COCO_val2014_000000294475.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 2450, "image": "COCO_val2014_000000294475.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2451, "image": "COCO_val2014_000000294475.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2452, "image": "COCO_val2014_000000294475.jpg", "text": "Is there a spoon in the image?", "label": "no"} +{"question_id": 2453, "image": "COCO_val2014_000000294475.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2454, "image": "COCO_val2014_000000294475.jpg", "text": "Is there a laptop in the image?", "label": "no"} +{"question_id": 2455, "image": "COCO_val2014_000000149592.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2456, "image": "COCO_val2014_000000149592.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2457, "image": "COCO_val2014_000000149592.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 2458, "image": "COCO_val2014_000000149592.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2459, "image": "COCO_val2014_000000149592.jpg", "text": "Is there a boat in the image?", "label": "yes"} +{"question_id": 2460, "image": "COCO_val2014_000000149592.jpg", "text": "Is there a bird in the image?", "label": "no"} +{"question_id": 2461, "image": "COCO_val2014_000000447787.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2462, "image": "COCO_val2014_000000447787.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2463, "image": "COCO_val2014_000000447787.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2464, "image": "COCO_val2014_000000447787.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2465, "image": "COCO_val2014_000000447787.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2466, "image": "COCO_val2014_000000447787.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2467, "image": "COCO_val2014_000000458325.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2468, "image": "COCO_val2014_000000458325.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 2469, "image": "COCO_val2014_000000458325.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 2470, "image": "COCO_val2014_000000458325.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 2471, "image": "COCO_val2014_000000458325.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2472, "image": "COCO_val2014_000000458325.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2473, "image": "COCO_val2014_000000388237.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2474, "image": "COCO_val2014_000000388237.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2475, "image": "COCO_val2014_000000388237.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2476, "image": "COCO_val2014_000000388237.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2477, "image": "COCO_val2014_000000388237.jpg", "text": "Is there a skateboard in the image?", "label": "yes"} +{"question_id": 2478, "image": "COCO_val2014_000000388237.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 2479, "image": "COCO_val2014_000000038645.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2480, "image": "COCO_val2014_000000038645.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2481, "image": "COCO_val2014_000000038645.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 2482, "image": "COCO_val2014_000000038645.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2483, "image": "COCO_val2014_000000038645.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 2484, "image": "COCO_val2014_000000038645.jpg", "text": "Is there a vase in the image?", "label": "no"} +{"question_id": 2485, "image": "COCO_val2014_000000071738.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2486, "image": "COCO_val2014_000000071738.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2487, "image": "COCO_val2014_000000071738.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2488, "image": "COCO_val2014_000000071738.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2489, "image": "COCO_val2014_000000071738.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 2490, "image": "COCO_val2014_000000071738.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 2491, "image": "COCO_val2014_000000170077.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2492, "image": "COCO_val2014_000000170077.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2493, "image": "COCO_val2014_000000170077.jpg", "text": "Is there a wine glass in the image?", "label": "yes"} +{"question_id": 2494, "image": "COCO_val2014_000000170077.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2495, "image": "COCO_val2014_000000170077.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 2496, "image": "COCO_val2014_000000170077.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 2497, "image": "COCO_val2014_000000378751.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 2498, "image": "COCO_val2014_000000378751.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2499, "image": "COCO_val2014_000000378751.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 2500, "image": "COCO_val2014_000000378751.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 2501, "image": "COCO_val2014_000000378751.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 2502, "image": "COCO_val2014_000000378751.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2503, "image": "COCO_val2014_000000073182.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2504, "image": "COCO_val2014_000000073182.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2505, "image": "COCO_val2014_000000073182.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 2506, "image": "COCO_val2014_000000073182.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 2507, "image": "COCO_val2014_000000073182.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 2508, "image": "COCO_val2014_000000073182.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 2509, "image": "COCO_val2014_000000246928.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2510, "image": "COCO_val2014_000000246928.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2511, "image": "COCO_val2014_000000246928.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2512, "image": "COCO_val2014_000000246928.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 2513, "image": "COCO_val2014_000000246928.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 2514, "image": "COCO_val2014_000000246928.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 2515, "image": "COCO_val2014_000000528136.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 2516, "image": "COCO_val2014_000000528136.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 2517, "image": "COCO_val2014_000000528136.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2518, "image": "COCO_val2014_000000528136.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2519, "image": "COCO_val2014_000000528136.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2520, "image": "COCO_val2014_000000528136.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 2521, "image": "COCO_val2014_000000209290.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2522, "image": "COCO_val2014_000000209290.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2523, "image": "COCO_val2014_000000209290.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 2524, "image": "COCO_val2014_000000209290.jpg", "text": "Is there a knife in the image?", "label": "no"} +{"question_id": 2525, "image": "COCO_val2014_000000209290.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2526, "image": "COCO_val2014_000000209290.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 2527, "image": "COCO_val2014_000000564511.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2528, "image": "COCO_val2014_000000564511.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2529, "image": "COCO_val2014_000000564511.jpg", "text": "Is there a wine glass in the image?", "label": "yes"} +{"question_id": 2530, "image": "COCO_val2014_000000564511.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2531, "image": "COCO_val2014_000000564511.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2532, "image": "COCO_val2014_000000564511.jpg", "text": "Is there a spoon in the image?", "label": "no"} +{"question_id": 2533, "image": "COCO_val2014_000000200739.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 2534, "image": "COCO_val2014_000000200739.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 2535, "image": "COCO_val2014_000000200739.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2536, "image": "COCO_val2014_000000200739.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2537, "image": "COCO_val2014_000000200739.jpg", "text": "Is there a horse in the image?", "label": "yes"} +{"question_id": 2538, "image": "COCO_val2014_000000200739.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 2539, "image": "COCO_val2014_000000462805.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 2540, "image": "COCO_val2014_000000462805.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 2541, "image": "COCO_val2014_000000462805.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2542, "image": "COCO_val2014_000000462805.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2543, "image": "COCO_val2014_000000462805.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 2544, "image": "COCO_val2014_000000462805.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 2545, "image": "COCO_val2014_000000163575.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 2546, "image": "COCO_val2014_000000163575.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2547, "image": "COCO_val2014_000000163575.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2548, "image": "COCO_val2014_000000163575.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2549, "image": "COCO_val2014_000000163575.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 2550, "image": "COCO_val2014_000000163575.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 2551, "image": "COCO_val2014_000000059383.jpg", "text": "Is there an oven in the imange?", "label": "yes"} +{"question_id": 2552, "image": "COCO_val2014_000000059383.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2553, "image": "COCO_val2014_000000059383.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2554, "image": "COCO_val2014_000000059383.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2555, "image": "COCO_val2014_000000059383.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 2556, "image": "COCO_val2014_000000059383.jpg", "text": "Is there a toilet in the image?", "label": "no"} +{"question_id": 2557, "image": "COCO_val2014_000000478736.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 2558, "image": "COCO_val2014_000000478736.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2559, "image": "COCO_val2014_000000478736.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2560, "image": "COCO_val2014_000000478736.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 2561, "image": "COCO_val2014_000000478736.jpg", "text": "Is there a stop sign in the image?", "label": "yes"} +{"question_id": 2562, "image": "COCO_val2014_000000478736.jpg", "text": "Is there a fire hydrant in the image?", "label": "no"} +{"question_id": 2563, "image": "COCO_val2014_000000156282.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2564, "image": "COCO_val2014_000000156282.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2565, "image": "COCO_val2014_000000156282.jpg", "text": "Is there a kite in the image?", "label": "yes"} +{"question_id": 2566, "image": "COCO_val2014_000000156282.jpg", "text": "Is there a surfboard in the image?", "label": "no"} +{"question_id": 2567, "image": "COCO_val2014_000000156282.jpg", "text": "Is there an umbrella in the imange?", "label": "yes"} +{"question_id": 2568, "image": "COCO_val2014_000000156282.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 2569, "image": "COCO_val2014_000000052689.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2570, "image": "COCO_val2014_000000052689.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2571, "image": "COCO_val2014_000000052689.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 2572, "image": "COCO_val2014_000000052689.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2573, "image": "COCO_val2014_000000052689.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 2574, "image": "COCO_val2014_000000052689.jpg", "text": "Is there a snowboard in the image?", "label": "no"} +{"question_id": 2575, "image": "COCO_val2014_000000516601.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 2576, "image": "COCO_val2014_000000516601.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 2577, "image": "COCO_val2014_000000516601.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2578, "image": "COCO_val2014_000000516601.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2579, "image": "COCO_val2014_000000516601.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 2580, "image": "COCO_val2014_000000516601.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 2581, "image": "COCO_val2014_000000562155.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2582, "image": "COCO_val2014_000000562155.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2583, "image": "COCO_val2014_000000562155.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2584, "image": "COCO_val2014_000000562155.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 2585, "image": "COCO_val2014_000000562155.jpg", "text": "Is there a tie in the image?", "label": "yes"} +{"question_id": 2586, "image": "COCO_val2014_000000562155.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2587, "image": "COCO_val2014_000000142056.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2588, "image": "COCO_val2014_000000142056.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2589, "image": "COCO_val2014_000000142056.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2590, "image": "COCO_val2014_000000142056.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 2591, "image": "COCO_val2014_000000142056.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 2592, "image": "COCO_val2014_000000142056.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2593, "image": "COCO_val2014_000000299986.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2594, "image": "COCO_val2014_000000299986.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2595, "image": "COCO_val2014_000000299986.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 2596, "image": "COCO_val2014_000000299986.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2597, "image": "COCO_val2014_000000299986.jpg", "text": "Is there a cell phone in the image?", "label": "yes"} +{"question_id": 2598, "image": "COCO_val2014_000000299986.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2599, "image": "COCO_val2014_000000521643.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 2600, "image": "COCO_val2014_000000521643.jpg", "text": "Is there a potted plant in the image?", "label": "no"} +{"question_id": 2601, "image": "COCO_val2014_000000521643.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2602, "image": "COCO_val2014_000000521643.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2603, "image": "COCO_val2014_000000521643.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2604, "image": "COCO_val2014_000000521643.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2605, "image": "COCO_val2014_000000574454.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2606, "image": "COCO_val2014_000000574454.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2607, "image": "COCO_val2014_000000574454.jpg", "text": "Is there a surfboard in the image?", "label": "yes"} +{"question_id": 2608, "image": "COCO_val2014_000000574454.jpg", "text": "Is there an umbrella in the imange?", "label": "no"} +{"question_id": 2609, "image": "COCO_val2014_000000574454.jpg", "text": "Is there a kite in the image?", "label": "yes"} +{"question_id": 2610, "image": "COCO_val2014_000000574454.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 2611, "image": "COCO_val2014_000000415727.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2612, "image": "COCO_val2014_000000415727.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 2613, "image": "COCO_val2014_000000415727.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2614, "image": "COCO_val2014_000000415727.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2615, "image": "COCO_val2014_000000415727.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 2616, "image": "COCO_val2014_000000415727.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2617, "image": "COCO_val2014_000000222118.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2618, "image": "COCO_val2014_000000222118.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2619, "image": "COCO_val2014_000000222118.jpg", "text": "Is there a suitcase in the image?", "label": "yes"} +{"question_id": 2620, "image": "COCO_val2014_000000222118.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 2621, "image": "COCO_val2014_000000222118.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 2622, "image": "COCO_val2014_000000222118.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2623, "image": "COCO_val2014_000000514292.jpg", "text": "Is there a book in the image?", "label": "yes"} +{"question_id": 2624, "image": "COCO_val2014_000000514292.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2625, "image": "COCO_val2014_000000514292.jpg", "text": "Is there a teddy bear in the image?", "label": "yes"} +{"question_id": 2626, "image": "COCO_val2014_000000514292.jpg", "text": "Is there a bed in the image?", "label": "no"} +{"question_id": 2627, "image": "COCO_val2014_000000514292.jpg", "text": "Is there a bear in the image?", "label": "yes"} +{"question_id": 2628, "image": "COCO_val2014_000000514292.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 2629, "image": "COCO_val2014_000000117527.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2630, "image": "COCO_val2014_000000117527.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2631, "image": "COCO_val2014_000000117527.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2632, "image": "COCO_val2014_000000117527.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2633, "image": "COCO_val2014_000000117527.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2634, "image": "COCO_val2014_000000117527.jpg", "text": "Is there a spoon in the image?", "label": "no"} +{"question_id": 2635, "image": "COCO_val2014_000000016451.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2636, "image": "COCO_val2014_000000016451.jpg", "text": "Is there a skis in the image?", "label": "no"} +{"question_id": 2637, "image": "COCO_val2014_000000016451.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2638, "image": "COCO_val2014_000000016451.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2639, "image": "COCO_val2014_000000016451.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 2640, "image": "COCO_val2014_000000016451.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2641, "image": "COCO_val2014_000000429706.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 2642, "image": "COCO_val2014_000000429706.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2643, "image": "COCO_val2014_000000429706.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2644, "image": "COCO_val2014_000000429706.jpg", "text": "Is there a skis in the image?", "label": "no"} +{"question_id": 2645, "image": "COCO_val2014_000000429706.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2646, "image": "COCO_val2014_000000429706.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2647, "image": "COCO_val2014_000000429580.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 2648, "image": "COCO_val2014_000000429580.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2649, "image": "COCO_val2014_000000429580.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2650, "image": "COCO_val2014_000000429580.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2651, "image": "COCO_val2014_000000429580.jpg", "text": "Is there a frisbee in the image?", "label": "yes"} +{"question_id": 2652, "image": "COCO_val2014_000000429580.jpg", "text": "Is there an orange in the imange?", "label": "no"} +{"question_id": 2653, "image": "COCO_val2014_000000283168.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2654, "image": "COCO_val2014_000000283168.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2655, "image": "COCO_val2014_000000283168.jpg", "text": "Is there a sandwich in the image?", "label": "yes"} +{"question_id": 2656, "image": "COCO_val2014_000000283168.jpg", "text": "Is there a knife in the image?", "label": "no"} +{"question_id": 2657, "image": "COCO_val2014_000000283168.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 2658, "image": "COCO_val2014_000000283168.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2659, "image": "COCO_val2014_000000405205.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 2660, "image": "COCO_val2014_000000405205.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2661, "image": "COCO_val2014_000000405205.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2662, "image": "COCO_val2014_000000405205.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2663, "image": "COCO_val2014_000000405205.jpg", "text": "Is there a bus in the image?", "label": "yes"} +{"question_id": 2664, "image": "COCO_val2014_000000405205.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 2665, "image": "COCO_val2014_000000123570.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2666, "image": "COCO_val2014_000000123570.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2667, "image": "COCO_val2014_000000123570.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2668, "image": "COCO_val2014_000000123570.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 2669, "image": "COCO_val2014_000000123570.jpg", "text": "Is there an umbrella in the imange?", "label": "yes"} +{"question_id": 2670, "image": "COCO_val2014_000000123570.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 2671, "image": "COCO_val2014_000000365317.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2672, "image": "COCO_val2014_000000365317.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2673, "image": "COCO_val2014_000000365317.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2674, "image": "COCO_val2014_000000365317.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 2675, "image": "COCO_val2014_000000365317.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 2676, "image": "COCO_val2014_000000365317.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2677, "image": "COCO_val2014_000000224155.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2678, "image": "COCO_val2014_000000224155.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2679, "image": "COCO_val2014_000000224155.jpg", "text": "Is there a toilet in the image?", "label": "yes"} +{"question_id": 2680, "image": "COCO_val2014_000000224155.jpg", "text": "Is there a sink in the image?", "label": "no"} +{"question_id": 2681, "image": "COCO_val2014_000000224155.jpg", "text": "Is there a cell phone in the image?", "label": "yes"} +{"question_id": 2682, "image": "COCO_val2014_000000224155.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2683, "image": "COCO_val2014_000000191964.jpg", "text": "Is there a keyboard in the image?", "label": "yes"} +{"question_id": 2684, "image": "COCO_val2014_000000191964.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2685, "image": "COCO_val2014_000000191964.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 2686, "image": "COCO_val2014_000000191964.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2687, "image": "COCO_val2014_000000191964.jpg", "text": "Is there a cat in the image?", "label": "yes"} +{"question_id": 2688, "image": "COCO_val2014_000000191964.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 2689, "image": "COCO_val2014_000000265472.jpg", "text": "Is there a banana in the image?", "label": "yes"} +{"question_id": 2690, "image": "COCO_val2014_000000265472.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2691, "image": "COCO_val2014_000000265472.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2692, "image": "COCO_val2014_000000265472.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2693, "image": "COCO_val2014_000000265472.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 2694, "image": "COCO_val2014_000000265472.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2695, "image": "COCO_val2014_000000550514.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 2696, "image": "COCO_val2014_000000550514.jpg", "text": "Is there a surfboard in the image?", "label": "no"} +{"question_id": 2697, "image": "COCO_val2014_000000550514.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2698, "image": "COCO_val2014_000000550514.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 2699, "image": "COCO_val2014_000000550514.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2700, "image": "COCO_val2014_000000550514.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2701, "image": "COCO_val2014_000000163814.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2702, "image": "COCO_val2014_000000163814.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2703, "image": "COCO_val2014_000000163814.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 2704, "image": "COCO_val2014_000000163814.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 2705, "image": "COCO_val2014_000000163814.jpg", "text": "Is there a skateboard in the image?", "label": "yes"} +{"question_id": 2706, "image": "COCO_val2014_000000163814.jpg", "text": "Is there a bench in the image?", "label": "no"} +{"question_id": 2707, "image": "COCO_val2014_000000505933.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 2708, "image": "COCO_val2014_000000505933.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2709, "image": "COCO_val2014_000000505933.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 2710, "image": "COCO_val2014_000000505933.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 2711, "image": "COCO_val2014_000000505933.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2712, "image": "COCO_val2014_000000505933.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 2713, "image": "COCO_val2014_000000318550.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 2714, "image": "COCO_val2014_000000318550.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2715, "image": "COCO_val2014_000000318550.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 2716, "image": "COCO_val2014_000000318550.jpg", "text": "Is there a motorcycle in the image?", "label": "no"} +{"question_id": 2717, "image": "COCO_val2014_000000318550.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 2718, "image": "COCO_val2014_000000318550.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 2719, "image": "COCO_val2014_000000367528.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2720, "image": "COCO_val2014_000000367528.jpg", "text": "Is there a spoon in the image?", "label": "no"} +{"question_id": 2721, "image": "COCO_val2014_000000367528.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2722, "image": "COCO_val2014_000000367528.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2723, "image": "COCO_val2014_000000367528.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 2724, "image": "COCO_val2014_000000367528.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 2725, "image": "COCO_val2014_000000252911.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2726, "image": "COCO_val2014_000000252911.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2727, "image": "COCO_val2014_000000252911.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2728, "image": "COCO_val2014_000000252911.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 2729, "image": "COCO_val2014_000000252911.jpg", "text": "Is there a boat in the image?", "label": "yes"} +{"question_id": 2730, "image": "COCO_val2014_000000252911.jpg", "text": "Is there a bird in the image?", "label": "no"} +{"question_id": 2731, "image": "COCO_val2014_000000214421.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 2732, "image": "COCO_val2014_000000214421.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2733, "image": "COCO_val2014_000000214421.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2734, "image": "COCO_val2014_000000214421.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2735, "image": "COCO_val2014_000000214421.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 2736, "image": "COCO_val2014_000000214421.jpg", "text": "Is there a vase in the image?", "label": "no"} +{"question_id": 2737, "image": "COCO_val2014_000000050627.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 2738, "image": "COCO_val2014_000000050627.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 2739, "image": "COCO_val2014_000000050627.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2740, "image": "COCO_val2014_000000050627.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2741, "image": "COCO_val2014_000000050627.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2742, "image": "COCO_val2014_000000050627.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 2743, "image": "COCO_val2014_000000233426.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 2744, "image": "COCO_val2014_000000233426.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 2745, "image": "COCO_val2014_000000233426.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 2746, "image": "COCO_val2014_000000233426.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2747, "image": "COCO_val2014_000000233426.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2748, "image": "COCO_val2014_000000233426.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2749, "image": "COCO_val2014_000000372817.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2750, "image": "COCO_val2014_000000372817.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2751, "image": "COCO_val2014_000000372817.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2752, "image": "COCO_val2014_000000372817.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 2753, "image": "COCO_val2014_000000372817.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 2754, "image": "COCO_val2014_000000372817.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 2755, "image": "COCO_val2014_000000536073.jpg", "text": "Is there a knife in the image?", "label": "yes"} +{"question_id": 2756, "image": "COCO_val2014_000000536073.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2757, "image": "COCO_val2014_000000536073.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2758, "image": "COCO_val2014_000000536073.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2759, "image": "COCO_val2014_000000536073.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 2760, "image": "COCO_val2014_000000536073.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 2761, "image": "COCO_val2014_000000579231.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 2762, "image": "COCO_val2014_000000579231.jpg", "text": "Is there a sports ball in the image?", "label": "no"} +{"question_id": 2763, "image": "COCO_val2014_000000579231.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2764, "image": "COCO_val2014_000000579231.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2765, "image": "COCO_val2014_000000579231.jpg", "text": "Is there a baseball bat in the image?", "label": "yes"} +{"question_id": 2766, "image": "COCO_val2014_000000579231.jpg", "text": "Is there a bench in the image?", "label": "no"} +{"question_id": 2767, "image": "COCO_val2014_000000092624.jpg", "text": "Is there a giraffe in the image?", "label": "yes"} +{"question_id": 2768, "image": "COCO_val2014_000000092624.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2769, "image": "COCO_val2014_000000092624.jpg", "text": "Is there a cow in the image?", "label": "yes"} +{"question_id": 2770, "image": "COCO_val2014_000000092624.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 2771, "image": "COCO_val2014_000000092624.jpg", "text": "Is there a zebra in the image?", "label": "yes"} +{"question_id": 2772, "image": "COCO_val2014_000000092624.jpg", "text": "Is there an airplane in the imange?", "label": "no"} +{"question_id": 2773, "image": "COCO_val2014_000000390184.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 2774, "image": "COCO_val2014_000000390184.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2775, "image": "COCO_val2014_000000390184.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2776, "image": "COCO_val2014_000000390184.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2777, "image": "COCO_val2014_000000390184.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2778, "image": "COCO_val2014_000000390184.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 2779, "image": "COCO_val2014_000000079213.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2780, "image": "COCO_val2014_000000079213.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2781, "image": "COCO_val2014_000000079213.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 2782, "image": "COCO_val2014_000000079213.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2783, "image": "COCO_val2014_000000079213.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 2784, "image": "COCO_val2014_000000079213.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 2785, "image": "COCO_val2014_000000465346.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 2786, "image": "COCO_val2014_000000465346.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2787, "image": "COCO_val2014_000000465346.jpg", "text": "Is there a sandwich in the image?", "label": "yes"} +{"question_id": 2788, "image": "COCO_val2014_000000465346.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 2789, "image": "COCO_val2014_000000465346.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 2790, "image": "COCO_val2014_000000465346.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2791, "image": "COCO_val2014_000000514248.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2792, "image": "COCO_val2014_000000514248.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 2793, "image": "COCO_val2014_000000514248.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2794, "image": "COCO_val2014_000000514248.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2795, "image": "COCO_val2014_000000514248.jpg", "text": "Is there a horse in the image?", "label": "yes"} +{"question_id": 2796, "image": "COCO_val2014_000000514248.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 2797, "image": "COCO_val2014_000000355776.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2798, "image": "COCO_val2014_000000355776.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2799, "image": "COCO_val2014_000000355776.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2800, "image": "COCO_val2014_000000355776.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2801, "image": "COCO_val2014_000000355776.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 2802, "image": "COCO_val2014_000000355776.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 2803, "image": "COCO_val2014_000000575355.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2804, "image": "COCO_val2014_000000575355.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2805, "image": "COCO_val2014_000000575355.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 2806, "image": "COCO_val2014_000000575355.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 2807, "image": "COCO_val2014_000000575355.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2808, "image": "COCO_val2014_000000575355.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2809, "image": "COCO_val2014_000000396068.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 2810, "image": "COCO_val2014_000000396068.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2811, "image": "COCO_val2014_000000396068.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2812, "image": "COCO_val2014_000000396068.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2813, "image": "COCO_val2014_000000396068.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 2814, "image": "COCO_val2014_000000396068.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 2815, "image": "COCO_val2014_000000559547.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 2816, "image": "COCO_val2014_000000559547.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 2817, "image": "COCO_val2014_000000559547.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2818, "image": "COCO_val2014_000000559547.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2819, "image": "COCO_val2014_000000559547.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2820, "image": "COCO_val2014_000000559547.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 2821, "image": "COCO_val2014_000000230175.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2822, "image": "COCO_val2014_000000230175.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2823, "image": "COCO_val2014_000000230175.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 2824, "image": "COCO_val2014_000000230175.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2825, "image": "COCO_val2014_000000230175.jpg", "text": "Is there a tie in the image?", "label": "yes"} +{"question_id": 2826, "image": "COCO_val2014_000000230175.jpg", "text": "Is there a cake in the image?", "label": "no"} +{"question_id": 2827, "image": "COCO_val2014_000000159969.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2828, "image": "COCO_val2014_000000159969.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 2829, "image": "COCO_val2014_000000159969.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2830, "image": "COCO_val2014_000000159969.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2831, "image": "COCO_val2014_000000159969.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 2832, "image": "COCO_val2014_000000159969.jpg", "text": "Is there a snowboard in the image?", "label": "no"} +{"question_id": 2833, "image": "COCO_val2014_000000399702.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2834, "image": "COCO_val2014_000000399702.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2835, "image": "COCO_val2014_000000399702.jpg", "text": "Is there a sandwich in the image?", "label": "yes"} +{"question_id": 2836, "image": "COCO_val2014_000000399702.jpg", "text": "Is there a fork in the image?", "label": "no"} +{"question_id": 2837, "image": "COCO_val2014_000000399702.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 2838, "image": "COCO_val2014_000000399702.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 2839, "image": "COCO_val2014_000000555538.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 2840, "image": "COCO_val2014_000000555538.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 2841, "image": "COCO_val2014_000000555538.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2842, "image": "COCO_val2014_000000555538.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2843, "image": "COCO_val2014_000000555538.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2844, "image": "COCO_val2014_000000555538.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 2845, "image": "COCO_val2014_000000264155.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2846, "image": "COCO_val2014_000000264155.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2847, "image": "COCO_val2014_000000264155.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2848, "image": "COCO_val2014_000000264155.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2849, "image": "COCO_val2014_000000264155.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 2850, "image": "COCO_val2014_000000264155.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 2851, "image": "COCO_val2014_000000125572.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 2852, "image": "COCO_val2014_000000125572.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2853, "image": "COCO_val2014_000000125572.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 2854, "image": "COCO_val2014_000000125572.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2855, "image": "COCO_val2014_000000125572.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2856, "image": "COCO_val2014_000000125572.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2857, "image": "COCO_val2014_000000560744.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2858, "image": "COCO_val2014_000000560744.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2859, "image": "COCO_val2014_000000560744.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 2860, "image": "COCO_val2014_000000560744.jpg", "text": "Is there an oven in the imange?", "label": "no"} +{"question_id": 2861, "image": "COCO_val2014_000000560744.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2862, "image": "COCO_val2014_000000560744.jpg", "text": "Is there a banana in the image?", "label": "no"} +{"question_id": 2863, "image": "COCO_val2014_000000045685.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2864, "image": "COCO_val2014_000000045685.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2865, "image": "COCO_val2014_000000045685.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2866, "image": "COCO_val2014_000000045685.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 2867, "image": "COCO_val2014_000000045685.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 2868, "image": "COCO_val2014_000000045685.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2869, "image": "COCO_val2014_000000434179.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2870, "image": "COCO_val2014_000000434179.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2871, "image": "COCO_val2014_000000434179.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 2872, "image": "COCO_val2014_000000434179.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 2873, "image": "COCO_val2014_000000434179.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 2874, "image": "COCO_val2014_000000434179.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 2875, "image": "COCO_val2014_000000008749.jpg", "text": "Is there a pizza in the image?", "label": "yes"} +{"question_id": 2876, "image": "COCO_val2014_000000008749.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2877, "image": "COCO_val2014_000000008749.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 2878, "image": "COCO_val2014_000000008749.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 2879, "image": "COCO_val2014_000000008749.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2880, "image": "COCO_val2014_000000008749.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2881, "image": "COCO_val2014_000000069863.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2882, "image": "COCO_val2014_000000069863.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2883, "image": "COCO_val2014_000000069863.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 2884, "image": "COCO_val2014_000000069863.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 2885, "image": "COCO_val2014_000000069863.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 2886, "image": "COCO_val2014_000000069863.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2887, "image": "COCO_val2014_000000041180.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2888, "image": "COCO_val2014_000000041180.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 2889, "image": "COCO_val2014_000000041180.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2890, "image": "COCO_val2014_000000041180.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2891, "image": "COCO_val2014_000000041180.jpg", "text": "Is there a cow in the image?", "label": "yes"} +{"question_id": 2892, "image": "COCO_val2014_000000041180.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 2893, "image": "COCO_val2014_000000429913.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 2894, "image": "COCO_val2014_000000429913.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 2895, "image": "COCO_val2014_000000429913.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2896, "image": "COCO_val2014_000000429913.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2897, "image": "COCO_val2014_000000429913.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2898, "image": "COCO_val2014_000000429913.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 2899, "image": "COCO_val2014_000000554002.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2900, "image": "COCO_val2014_000000554002.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2901, "image": "COCO_val2014_000000554002.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 2902, "image": "COCO_val2014_000000554002.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2903, "image": "COCO_val2014_000000554002.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2904, "image": "COCO_val2014_000000554002.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 2905, "image": "COCO_val2014_000000141278.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 2906, "image": "COCO_val2014_000000141278.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2907, "image": "COCO_val2014_000000141278.jpg", "text": "Is there a mouse in the image?", "label": "yes"} +{"question_id": 2908, "image": "COCO_val2014_000000141278.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 2909, "image": "COCO_val2014_000000141278.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 2910, "image": "COCO_val2014_000000141278.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 2911, "image": "COCO_val2014_000000190788.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2912, "image": "COCO_val2014_000000190788.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2913, "image": "COCO_val2014_000000190788.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2914, "image": "COCO_val2014_000000190788.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2915, "image": "COCO_val2014_000000190788.jpg", "text": "Is there a knife in the image?", "label": "yes"} +{"question_id": 2916, "image": "COCO_val2014_000000190788.jpg", "text": "Is there a spoon in the image?", "label": "no"} +{"question_id": 2917, "image": "COCO_val2014_000000534942.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 2918, "image": "COCO_val2014_000000534942.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2919, "image": "COCO_val2014_000000534942.jpg", "text": "Is there a cat in the image?", "label": "yes"} +{"question_id": 2920, "image": "COCO_val2014_000000534942.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 2921, "image": "COCO_val2014_000000534942.jpg", "text": "Is there a tie in the image?", "label": "yes"} +{"question_id": 2922, "image": "COCO_val2014_000000534942.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2923, "image": "COCO_val2014_000000377951.jpg", "text": "Is there a pizza in the image?", "label": "yes"} +{"question_id": 2924, "image": "COCO_val2014_000000377951.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 2925, "image": "COCO_val2014_000000377951.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2926, "image": "COCO_val2014_000000377951.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2927, "image": "COCO_val2014_000000377951.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2928, "image": "COCO_val2014_000000377951.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2929, "image": "COCO_val2014_000000533201.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 2930, "image": "COCO_val2014_000000533201.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2931, "image": "COCO_val2014_000000533201.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2932, "image": "COCO_val2014_000000533201.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2933, "image": "COCO_val2014_000000533201.jpg", "text": "Is there an airplane in the imange?", "label": "yes"} +{"question_id": 2934, "image": "COCO_val2014_000000533201.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 2935, "image": "COCO_val2014_000000235203.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2936, "image": "COCO_val2014_000000235203.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2937, "image": "COCO_val2014_000000235203.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 2938, "image": "COCO_val2014_000000235203.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 2939, "image": "COCO_val2014_000000235203.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 2940, "image": "COCO_val2014_000000235203.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 2941, "image": "COCO_val2014_000000468997.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 2942, "image": "COCO_val2014_000000468997.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 2943, "image": "COCO_val2014_000000468997.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2944, "image": "COCO_val2014_000000468997.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2945, "image": "COCO_val2014_000000468997.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2946, "image": "COCO_val2014_000000468997.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 2947, "image": "COCO_val2014_000000401398.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2948, "image": "COCO_val2014_000000401398.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2949, "image": "COCO_val2014_000000401398.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 2950, "image": "COCO_val2014_000000401398.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2951, "image": "COCO_val2014_000000401398.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 2952, "image": "COCO_val2014_000000401398.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 2953, "image": "COCO_val2014_000000323752.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2954, "image": "COCO_val2014_000000323752.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2955, "image": "COCO_val2014_000000323752.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2956, "image": "COCO_val2014_000000323752.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 2957, "image": "COCO_val2014_000000323752.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 2958, "image": "COCO_val2014_000000323752.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2959, "image": "COCO_val2014_000000003845.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 2960, "image": "COCO_val2014_000000003845.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 2961, "image": "COCO_val2014_000000003845.jpg", "text": "Is there a broccoli in the image?", "label": "yes"} +{"question_id": 2962, "image": "COCO_val2014_000000003845.jpg", "text": "Is there a knife in the image?", "label": "no"} +{"question_id": 2963, "image": "COCO_val2014_000000003845.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 2964, "image": "COCO_val2014_000000003845.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2965, "image": "COCO_val2014_000000122962.jpg", "text": "Is there a pizza in the image?", "label": "yes"} +{"question_id": 2966, "image": "COCO_val2014_000000122962.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2967, "image": "COCO_val2014_000000122962.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2968, "image": "COCO_val2014_000000122962.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2969, "image": "COCO_val2014_000000122962.jpg", "text": "Is there a cell phone in the image?", "label": "yes"} +{"question_id": 2970, "image": "COCO_val2014_000000122962.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2971, "image": "COCO_val2014_000000015738.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2972, "image": "COCO_val2014_000000015738.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2973, "image": "COCO_val2014_000000015738.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2974, "image": "COCO_val2014_000000015738.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 2975, "image": "COCO_val2014_000000015738.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 2976, "image": "COCO_val2014_000000015738.jpg", "text": "Is there a bench in the image?", "label": "no"} +{"question_id": 2977, "image": "COCO_val2014_000000497599.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2978, "image": "COCO_val2014_000000497599.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 2979, "image": "COCO_val2014_000000497599.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2980, "image": "COCO_val2014_000000497599.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2981, "image": "COCO_val2014_000000497599.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 2982, "image": "COCO_val2014_000000497599.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 2983, "image": "COCO_val2014_000000121959.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2984, "image": "COCO_val2014_000000121959.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2985, "image": "COCO_val2014_000000121959.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2986, "image": "COCO_val2014_000000121959.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2987, "image": "COCO_val2014_000000121959.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 2988, "image": "COCO_val2014_000000121959.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 2989, "image": "COCO_val2014_000000361430.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2990, "image": "COCO_val2014_000000361430.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2991, "image": "COCO_val2014_000000361430.jpg", "text": "Is there a broccoli in the image?", "label": "yes"} +{"question_id": 2992, "image": "COCO_val2014_000000361430.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2993, "image": "COCO_val2014_000000361430.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 2994, "image": "COCO_val2014_000000361430.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 2995, "image": "COCO_val2014_000000277289.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 2996, "image": "COCO_val2014_000000277289.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2997, "image": "COCO_val2014_000000277289.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2998, "image": "COCO_val2014_000000277289.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2999, "image": "COCO_val2014_000000277289.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 3000, "image": "COCO_val2014_000000277289.jpg", "text": "Is there a chair in the image?", "label": "no"} diff --git a/OPERA/pope_coco/coco_pope_popular.json b/OPERA/pope_coco/coco_pope_popular.json new file mode 100644 index 0000000000000000000000000000000000000000..97ebfd7a3cd5d43ec0f1d604635a1fe96b3c936a --- /dev/null +++ b/OPERA/pope_coco/coco_pope_popular.json @@ -0,0 +1,3000 @@ +{"question_id": 1, "image": "COCO_val2014_000000310196.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 2, "image": "COCO_val2014_000000310196.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 3, "image": "COCO_val2014_000000310196.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 4, "image": "COCO_val2014_000000310196.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 5, "image": "COCO_val2014_000000310196.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 6, "image": "COCO_val2014_000000310196.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 7, "image": "COCO_val2014_000000210789.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 8, "image": "COCO_val2014_000000210789.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 9, "image": "COCO_val2014_000000210789.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 10, "image": "COCO_val2014_000000210789.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 11, "image": "COCO_val2014_000000210789.jpg", "text": "Is there an umbrella in the imange?", "label": "yes"} +{"question_id": 12, "image": "COCO_val2014_000000210789.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 13, "image": "COCO_val2014_000000429109.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 14, "image": "COCO_val2014_000000429109.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 15, "image": "COCO_val2014_000000429109.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 16, "image": "COCO_val2014_000000429109.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 17, "image": "COCO_val2014_000000429109.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 18, "image": "COCO_val2014_000000429109.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 19, "image": "COCO_val2014_000000211674.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 20, "image": "COCO_val2014_000000211674.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 21, "image": "COCO_val2014_000000211674.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 22, "image": "COCO_val2014_000000211674.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 23, "image": "COCO_val2014_000000211674.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 24, "image": "COCO_val2014_000000211674.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 25, "image": "COCO_val2014_000000458338.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 26, "image": "COCO_val2014_000000458338.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 27, "image": "COCO_val2014_000000458338.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 28, "image": "COCO_val2014_000000458338.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 29, "image": "COCO_val2014_000000458338.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 30, "image": "COCO_val2014_000000458338.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 31, "image": "COCO_val2014_000000283412.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 32, "image": "COCO_val2014_000000283412.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 33, "image": "COCO_val2014_000000283412.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 34, "image": "COCO_val2014_000000283412.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 35, "image": "COCO_val2014_000000283412.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 36, "image": "COCO_val2014_000000283412.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 37, "image": "COCO_val2014_000000265719.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 38, "image": "COCO_val2014_000000265719.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 39, "image": "COCO_val2014_000000265719.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 40, "image": "COCO_val2014_000000265719.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 41, "image": "COCO_val2014_000000265719.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 42, "image": "COCO_val2014_000000265719.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 43, "image": "COCO_val2014_000000461331.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 44, "image": "COCO_val2014_000000461331.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 45, "image": "COCO_val2014_000000461331.jpg", "text": "Is there a toaster in the image?", "label": "yes"} +{"question_id": 46, "image": "COCO_val2014_000000461331.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 47, "image": "COCO_val2014_000000461331.jpg", "text": "Is there a microwave in the image?", "label": "yes"} +{"question_id": 48, "image": "COCO_val2014_000000461331.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 49, "image": "COCO_val2014_000000544456.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 50, "image": "COCO_val2014_000000544456.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 51, "image": "COCO_val2014_000000544456.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 52, "image": "COCO_val2014_000000544456.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 53, "image": "COCO_val2014_000000544456.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 54, "image": "COCO_val2014_000000544456.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 55, "image": "COCO_val2014_000000017708.jpg", "text": "Is there a bird in the image?", "label": "yes"} +{"question_id": 56, "image": "COCO_val2014_000000017708.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 57, "image": "COCO_val2014_000000017708.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 58, "image": "COCO_val2014_000000017708.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 59, "image": "COCO_val2014_000000017708.jpg", "text": "Is there a boat in the image?", "label": "yes"} +{"question_id": 60, "image": "COCO_val2014_000000017708.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 61, "image": "COCO_val2014_000000574692.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 62, "image": "COCO_val2014_000000574692.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 63, "image": "COCO_val2014_000000574692.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 64, "image": "COCO_val2014_000000574692.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 65, "image": "COCO_val2014_000000574692.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 66, "image": "COCO_val2014_000000574692.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 67, "image": "COCO_val2014_000000353180.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 68, "image": "COCO_val2014_000000353180.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 69, "image": "COCO_val2014_000000353180.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 70, "image": "COCO_val2014_000000353180.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 71, "image": "COCO_val2014_000000353180.jpg", "text": "Is there a bus in the image?", "label": "yes"} +{"question_id": 72, "image": "COCO_val2014_000000353180.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 73, "image": "COCO_val2014_000000239444.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 74, "image": "COCO_val2014_000000239444.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 75, "image": "COCO_val2014_000000239444.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 76, "image": "COCO_val2014_000000239444.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 77, "image": "COCO_val2014_000000239444.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 78, "image": "COCO_val2014_000000239444.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 79, "image": "COCO_val2014_000000569839.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 80, "image": "COCO_val2014_000000569839.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 81, "image": "COCO_val2014_000000569839.jpg", "text": "Is there a sandwich in the image?", "label": "yes"} +{"question_id": 82, "image": "COCO_val2014_000000569839.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 83, "image": "COCO_val2014_000000569839.jpg", "text": "Is there a hot dog in the image?", "label": "yes"} +{"question_id": 84, "image": "COCO_val2014_000000569839.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 85, "image": "COCO_val2014_000000219622.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 86, "image": "COCO_val2014_000000219622.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 87, "image": "COCO_val2014_000000219622.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 88, "image": "COCO_val2014_000000219622.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 89, "image": "COCO_val2014_000000219622.jpg", "text": "Is there a frisbee in the image?", "label": "yes"} +{"question_id": 90, "image": "COCO_val2014_000000219622.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 91, "image": "COCO_val2014_000000300368.jpg", "text": "Is there a knife in the image?", "label": "yes"} +{"question_id": 92, "image": "COCO_val2014_000000300368.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 93, "image": "COCO_val2014_000000300368.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 94, "image": "COCO_val2014_000000300368.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 95, "image": "COCO_val2014_000000300368.jpg", "text": "Is there a cake in the image?", "label": "yes"} +{"question_id": 96, "image": "COCO_val2014_000000300368.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 97, "image": "COCO_val2014_000000482476.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 98, "image": "COCO_val2014_000000482476.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 99, "image": "COCO_val2014_000000482476.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 100, "image": "COCO_val2014_000000482476.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 101, "image": "COCO_val2014_000000482476.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 102, "image": "COCO_val2014_000000482476.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 103, "image": "COCO_val2014_000000131115.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 104, "image": "COCO_val2014_000000131115.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 105, "image": "COCO_val2014_000000131115.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 106, "image": "COCO_val2014_000000131115.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 107, "image": "COCO_val2014_000000131115.jpg", "text": "Is there a baseball bat in the image?", "label": "yes"} +{"question_id": 108, "image": "COCO_val2014_000000131115.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 109, "image": "COCO_val2014_000000157084.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 110, "image": "COCO_val2014_000000157084.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 111, "image": "COCO_val2014_000000157084.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 112, "image": "COCO_val2014_000000157084.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 113, "image": "COCO_val2014_000000157084.jpg", "text": "Is there a toilet in the image?", "label": "yes"} +{"question_id": 114, "image": "COCO_val2014_000000157084.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 115, "image": "COCO_val2014_000000381895.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 116, "image": "COCO_val2014_000000381895.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 117, "image": "COCO_val2014_000000381895.jpg", "text": "Is there a teddy bear in the image?", "label": "yes"} +{"question_id": 118, "image": "COCO_val2014_000000381895.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 119, "image": "COCO_val2014_000000381895.jpg", "text": "Is there a bear in the image?", "label": "yes"} +{"question_id": 120, "image": "COCO_val2014_000000381895.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 121, "image": "COCO_val2014_000000336872.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 122, "image": "COCO_val2014_000000336872.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 123, "image": "COCO_val2014_000000336872.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 124, "image": "COCO_val2014_000000336872.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 125, "image": "COCO_val2014_000000336872.jpg", "text": "Is there a sandwich in the image?", "label": "yes"} +{"question_id": 126, "image": "COCO_val2014_000000336872.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 127, "image": "COCO_val2014_000000075591.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 128, "image": "COCO_val2014_000000075591.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 129, "image": "COCO_val2014_000000075591.jpg", "text": "Is there a cat in the image?", "label": "yes"} +{"question_id": 130, "image": "COCO_val2014_000000075591.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 131, "image": "COCO_val2014_000000075591.jpg", "text": "Is there a book in the image?", "label": "yes"} +{"question_id": 132, "image": "COCO_val2014_000000075591.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 133, "image": "COCO_val2014_000000516916.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 134, "image": "COCO_val2014_000000516916.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 135, "image": "COCO_val2014_000000516916.jpg", "text": "Is there a mouse in the image?", "label": "yes"} +{"question_id": 136, "image": "COCO_val2014_000000516916.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 137, "image": "COCO_val2014_000000516916.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 138, "image": "COCO_val2014_000000516916.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 139, "image": "COCO_val2014_000000542145.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 140, "image": "COCO_val2014_000000542145.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 141, "image": "COCO_val2014_000000542145.jpg", "text": "Is there a toothbrush in the image?", "label": "yes"} +{"question_id": 142, "image": "COCO_val2014_000000542145.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 143, "image": "COCO_val2014_000000542145.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 144, "image": "COCO_val2014_000000542145.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 145, "image": "COCO_val2014_000000218224.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 146, "image": "COCO_val2014_000000218224.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 147, "image": "COCO_val2014_000000218224.jpg", "text": "Is there an airplane in the imange?", "label": "yes"} +{"question_id": 148, "image": "COCO_val2014_000000218224.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 149, "image": "COCO_val2014_000000218224.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 150, "image": "COCO_val2014_000000218224.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 151, "image": "COCO_val2014_000000297078.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 152, "image": "COCO_val2014_000000297078.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 153, "image": "COCO_val2014_000000297078.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 154, "image": "COCO_val2014_000000297078.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 155, "image": "COCO_val2014_000000297078.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 156, "image": "COCO_val2014_000000297078.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 157, "image": "COCO_val2014_000000033270.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 158, "image": "COCO_val2014_000000033270.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 159, "image": "COCO_val2014_000000033270.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 160, "image": "COCO_val2014_000000033270.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 161, "image": "COCO_val2014_000000033270.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 162, "image": "COCO_val2014_000000033270.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 163, "image": "COCO_val2014_000000140583.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 164, "image": "COCO_val2014_000000140583.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 165, "image": "COCO_val2014_000000140583.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 166, "image": "COCO_val2014_000000140583.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 167, "image": "COCO_val2014_000000140583.jpg", "text": "Is there a cow in the image?", "label": "yes"} +{"question_id": 168, "image": "COCO_val2014_000000140583.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 169, "image": "COCO_val2014_000000421455.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 170, "image": "COCO_val2014_000000421455.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 171, "image": "COCO_val2014_000000421455.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 172, "image": "COCO_val2014_000000421455.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 173, "image": "COCO_val2014_000000421455.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 174, "image": "COCO_val2014_000000421455.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 175, "image": "COCO_val2014_000000288639.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 176, "image": "COCO_val2014_000000288639.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 177, "image": "COCO_val2014_000000288639.jpg", "text": "Is there a toothbrush in the image?", "label": "yes"} +{"question_id": 178, "image": "COCO_val2014_000000288639.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 179, "image": "COCO_val2014_000000288639.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 180, "image": "COCO_val2014_000000288639.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 181, "image": "COCO_val2014_000000291936.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 182, "image": "COCO_val2014_000000291936.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 183, "image": "COCO_val2014_000000291936.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 184, "image": "COCO_val2014_000000291936.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 185, "image": "COCO_val2014_000000291936.jpg", "text": "Is there an umbrella in the imange?", "label": "yes"} +{"question_id": 186, "image": "COCO_val2014_000000291936.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 187, "image": "COCO_val2014_000000063953.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 188, "image": "COCO_val2014_000000063953.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 189, "image": "COCO_val2014_000000063953.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 190, "image": "COCO_val2014_000000063953.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 191, "image": "COCO_val2014_000000063953.jpg", "text": "Is there a skateboard in the image?", "label": "yes"} +{"question_id": 192, "image": "COCO_val2014_000000063953.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 193, "image": "COCO_val2014_000000526321.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 194, "image": "COCO_val2014_000000526321.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 195, "image": "COCO_val2014_000000526321.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 196, "image": "COCO_val2014_000000526321.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 197, "image": "COCO_val2014_000000526321.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 198, "image": "COCO_val2014_000000526321.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 199, "image": "COCO_val2014_000000042190.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 200, "image": "COCO_val2014_000000042190.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 201, "image": "COCO_val2014_000000042190.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 202, "image": "COCO_val2014_000000042190.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 203, "image": "COCO_val2014_000000042190.jpg", "text": "Is there a surfboard in the image?", "label": "yes"} +{"question_id": 204, "image": "COCO_val2014_000000042190.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 205, "image": "COCO_val2014_000000553165.jpg", "text": "Is there a bird in the image?", "label": "yes"} +{"question_id": 206, "image": "COCO_val2014_000000553165.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 207, "image": "COCO_val2014_000000553165.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 208, "image": "COCO_val2014_000000553165.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 209, "image": "COCO_val2014_000000553165.jpg", "text": "Is there a boat in the image?", "label": "yes"} +{"question_id": 210, "image": "COCO_val2014_000000553165.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 211, "image": "COCO_val2014_000000170517.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 212, "image": "COCO_val2014_000000170517.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 213, "image": "COCO_val2014_000000170517.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 214, "image": "COCO_val2014_000000170517.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 215, "image": "COCO_val2014_000000170517.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 216, "image": "COCO_val2014_000000170517.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 217, "image": "COCO_val2014_000000498759.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 218, "image": "COCO_val2014_000000498759.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 219, "image": "COCO_val2014_000000498759.jpg", "text": "Is there a skateboard in the image?", "label": "yes"} +{"question_id": 220, "image": "COCO_val2014_000000498759.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 221, "image": "COCO_val2014_000000498759.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 222, "image": "COCO_val2014_000000498759.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 223, "image": "COCO_val2014_000000360600.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 224, "image": "COCO_val2014_000000360600.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 225, "image": "COCO_val2014_000000360600.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 226, "image": "COCO_val2014_000000360600.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 227, "image": "COCO_val2014_000000360600.jpg", "text": "Is there a knife in the image?", "label": "yes"} +{"question_id": 228, "image": "COCO_val2014_000000360600.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 229, "image": "COCO_val2014_000000031773.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 230, "image": "COCO_val2014_000000031773.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 231, "image": "COCO_val2014_000000031773.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 232, "image": "COCO_val2014_000000031773.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 233, "image": "COCO_val2014_000000031773.jpg", "text": "Is there a mouse in the image?", "label": "yes"} +{"question_id": 234, "image": "COCO_val2014_000000031773.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 235, "image": "COCO_val2014_000000500257.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 236, "image": "COCO_val2014_000000500257.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 237, "image": "COCO_val2014_000000500257.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 238, "image": "COCO_val2014_000000500257.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 239, "image": "COCO_val2014_000000500257.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 240, "image": "COCO_val2014_000000500257.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 241, "image": "COCO_val2014_000000574057.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 242, "image": "COCO_val2014_000000574057.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 243, "image": "COCO_val2014_000000574057.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 244, "image": "COCO_val2014_000000574057.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 245, "image": "COCO_val2014_000000574057.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 246, "image": "COCO_val2014_000000574057.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 247, "image": "COCO_val2014_000000456178.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 248, "image": "COCO_val2014_000000456178.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 249, "image": "COCO_val2014_000000456178.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 250, "image": "COCO_val2014_000000456178.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 251, "image": "COCO_val2014_000000456178.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 252, "image": "COCO_val2014_000000456178.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 253, "image": "COCO_val2014_000000565941.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 254, "image": "COCO_val2014_000000565941.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 255, "image": "COCO_val2014_000000565941.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 256, "image": "COCO_val2014_000000565941.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 257, "image": "COCO_val2014_000000565941.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 258, "image": "COCO_val2014_000000565941.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 259, "image": "COCO_val2014_000000485564.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 260, "image": "COCO_val2014_000000485564.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 261, "image": "COCO_val2014_000000485564.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 262, "image": "COCO_val2014_000000485564.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 263, "image": "COCO_val2014_000000485564.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 264, "image": "COCO_val2014_000000485564.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 265, "image": "COCO_val2014_000000454642.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 266, "image": "COCO_val2014_000000454642.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 267, "image": "COCO_val2014_000000454642.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 268, "image": "COCO_val2014_000000454642.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 269, "image": "COCO_val2014_000000454642.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 270, "image": "COCO_val2014_000000454642.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 271, "image": "COCO_val2014_000000205729.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 272, "image": "COCO_val2014_000000205729.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 273, "image": "COCO_val2014_000000205729.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 274, "image": "COCO_val2014_000000205729.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 275, "image": "COCO_val2014_000000205729.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 276, "image": "COCO_val2014_000000205729.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 277, "image": "COCO_val2014_000000424792.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 278, "image": "COCO_val2014_000000424792.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 279, "image": "COCO_val2014_000000424792.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 280, "image": "COCO_val2014_000000424792.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 281, "image": "COCO_val2014_000000424792.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 282, "image": "COCO_val2014_000000424792.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 283, "image": "COCO_val2014_000000329717.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 284, "image": "COCO_val2014_000000329717.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 285, "image": "COCO_val2014_000000329717.jpg", "text": "Is there a suitcase in the image?", "label": "yes"} +{"question_id": 286, "image": "COCO_val2014_000000329717.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 287, "image": "COCO_val2014_000000329717.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 288, "image": "COCO_val2014_000000329717.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 289, "image": "COCO_val2014_000000012333.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 290, "image": "COCO_val2014_000000012333.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 291, "image": "COCO_val2014_000000012333.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 292, "image": "COCO_val2014_000000012333.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 293, "image": "COCO_val2014_000000012333.jpg", "text": "Is there a horse in the image?", "label": "yes"} +{"question_id": 294, "image": "COCO_val2014_000000012333.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 295, "image": "COCO_val2014_000000480122.jpg", "text": "Is there a banana in the image?", "label": "yes"} +{"question_id": 296, "image": "COCO_val2014_000000480122.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 297, "image": "COCO_val2014_000000480122.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 298, "image": "COCO_val2014_000000480122.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 299, "image": "COCO_val2014_000000480122.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 300, "image": "COCO_val2014_000000480122.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 301, "image": "COCO_val2014_000000515904.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 302, "image": "COCO_val2014_000000515904.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 303, "image": "COCO_val2014_000000515904.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 304, "image": "COCO_val2014_000000515904.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 305, "image": "COCO_val2014_000000515904.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 306, "image": "COCO_val2014_000000515904.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 307, "image": "COCO_val2014_000000437347.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 308, "image": "COCO_val2014_000000437347.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 309, "image": "COCO_val2014_000000437347.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 310, "image": "COCO_val2014_000000437347.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 311, "image": "COCO_val2014_000000437347.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 312, "image": "COCO_val2014_000000437347.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 313, "image": "COCO_val2014_000000354229.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 314, "image": "COCO_val2014_000000354229.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 315, "image": "COCO_val2014_000000354229.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 316, "image": "COCO_val2014_000000354229.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 317, "image": "COCO_val2014_000000354229.jpg", "text": "Is there a bus in the image?", "label": "yes"} +{"question_id": 318, "image": "COCO_val2014_000000354229.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 319, "image": "COCO_val2014_000000538236.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 320, "image": "COCO_val2014_000000538236.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 321, "image": "COCO_val2014_000000538236.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 322, "image": "COCO_val2014_000000538236.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 323, "image": "COCO_val2014_000000538236.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 324, "image": "COCO_val2014_000000538236.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 325, "image": "COCO_val2014_000000236865.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 326, "image": "COCO_val2014_000000236865.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 327, "image": "COCO_val2014_000000236865.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 328, "image": "COCO_val2014_000000236865.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 329, "image": "COCO_val2014_000000236865.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 330, "image": "COCO_val2014_000000236865.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 331, "image": "COCO_val2014_000000217397.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 332, "image": "COCO_val2014_000000217397.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 333, "image": "COCO_val2014_000000217397.jpg", "text": "Is there a wine glass in the image?", "label": "yes"} +{"question_id": 334, "image": "COCO_val2014_000000217397.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 335, "image": "COCO_val2014_000000217397.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 336, "image": "COCO_val2014_000000217397.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 337, "image": "COCO_val2014_000000060213.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 338, "image": "COCO_val2014_000000060213.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 339, "image": "COCO_val2014_000000060213.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 340, "image": "COCO_val2014_000000060213.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 341, "image": "COCO_val2014_000000060213.jpg", "text": "Is there a book in the image?", "label": "yes"} +{"question_id": 342, "image": "COCO_val2014_000000060213.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 343, "image": "COCO_val2014_000000054025.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 344, "image": "COCO_val2014_000000054025.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 345, "image": "COCO_val2014_000000054025.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 346, "image": "COCO_val2014_000000054025.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 347, "image": "COCO_val2014_000000054025.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 348, "image": "COCO_val2014_000000054025.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 349, "image": "COCO_val2014_000000084447.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 350, "image": "COCO_val2014_000000084447.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 351, "image": "COCO_val2014_000000084447.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 352, "image": "COCO_val2014_000000084447.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 353, "image": "COCO_val2014_000000084447.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 354, "image": "COCO_val2014_000000084447.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 355, "image": "COCO_val2014_000000192660.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 356, "image": "COCO_val2014_000000192660.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 357, "image": "COCO_val2014_000000192660.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 358, "image": "COCO_val2014_000000192660.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 359, "image": "COCO_val2014_000000192660.jpg", "text": "Is there a refrigerator in the image?", "label": "yes"} +{"question_id": 360, "image": "COCO_val2014_000000192660.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 361, "image": "COCO_val2014_000000575755.jpg", "text": "Is there a sandwich in the image?", "label": "yes"} +{"question_id": 362, "image": "COCO_val2014_000000575755.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 363, "image": "COCO_val2014_000000575755.jpg", "text": "Is there a carrot in the image?", "label": "yes"} +{"question_id": 364, "image": "COCO_val2014_000000575755.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 365, "image": "COCO_val2014_000000575755.jpg", "text": "Is there a broccoli in the image?", "label": "yes"} +{"question_id": 366, "image": "COCO_val2014_000000575755.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 367, "image": "COCO_val2014_000000354088.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 368, "image": "COCO_val2014_000000354088.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 369, "image": "COCO_val2014_000000354088.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 370, "image": "COCO_val2014_000000354088.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 371, "image": "COCO_val2014_000000354088.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 372, "image": "COCO_val2014_000000354088.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 373, "image": "COCO_val2014_000000311327.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 374, "image": "COCO_val2014_000000311327.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 375, "image": "COCO_val2014_000000311327.jpg", "text": "Is there a boat in the image?", "label": "yes"} +{"question_id": 376, "image": "COCO_val2014_000000311327.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 377, "image": "COCO_val2014_000000311327.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 378, "image": "COCO_val2014_000000311327.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 379, "image": "COCO_val2014_000000456552.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 380, "image": "COCO_val2014_000000456552.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 381, "image": "COCO_val2014_000000456552.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 382, "image": "COCO_val2014_000000456552.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 383, "image": "COCO_val2014_000000456552.jpg", "text": "Is there a skateboard in the image?", "label": "yes"} +{"question_id": 384, "image": "COCO_val2014_000000456552.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 385, "image": "COCO_val2014_000000350898.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 386, "image": "COCO_val2014_000000350898.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 387, "image": "COCO_val2014_000000350898.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 388, "image": "COCO_val2014_000000350898.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 389, "image": "COCO_val2014_000000350898.jpg", "text": "Is there a refrigerator in the image?", "label": "yes"} +{"question_id": 390, "image": "COCO_val2014_000000350898.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 391, "image": "COCO_val2014_000000170365.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 392, "image": "COCO_val2014_000000170365.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 393, "image": "COCO_val2014_000000170365.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 394, "image": "COCO_val2014_000000170365.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 395, "image": "COCO_val2014_000000170365.jpg", "text": "Is there a toilet in the image?", "label": "yes"} +{"question_id": 396, "image": "COCO_val2014_000000170365.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 397, "image": "COCO_val2014_000000021645.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 398, "image": "COCO_val2014_000000021645.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 399, "image": "COCO_val2014_000000021645.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 400, "image": "COCO_val2014_000000021645.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 401, "image": "COCO_val2014_000000021645.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 402, "image": "COCO_val2014_000000021645.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 403, "image": "COCO_val2014_000000528905.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 404, "image": "COCO_val2014_000000528905.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 405, "image": "COCO_val2014_000000528905.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 406, "image": "COCO_val2014_000000528905.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 407, "image": "COCO_val2014_000000528905.jpg", "text": "Is there a frisbee in the image?", "label": "yes"} +{"question_id": 408, "image": "COCO_val2014_000000528905.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 409, "image": "COCO_val2014_000000239347.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 410, "image": "COCO_val2014_000000239347.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 411, "image": "COCO_val2014_000000239347.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 412, "image": "COCO_val2014_000000239347.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 413, "image": "COCO_val2014_000000239347.jpg", "text": "Is there a tie in the image?", "label": "yes"} +{"question_id": 414, "image": "COCO_val2014_000000239347.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 415, "image": "COCO_val2014_000000007320.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 416, "image": "COCO_val2014_000000007320.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 417, "image": "COCO_val2014_000000007320.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 418, "image": "COCO_val2014_000000007320.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 419, "image": "COCO_val2014_000000007320.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 420, "image": "COCO_val2014_000000007320.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 421, "image": "COCO_val2014_000000249715.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 422, "image": "COCO_val2014_000000249715.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 423, "image": "COCO_val2014_000000249715.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 424, "image": "COCO_val2014_000000249715.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 425, "image": "COCO_val2014_000000249715.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 426, "image": "COCO_val2014_000000249715.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 427, "image": "COCO_val2014_000000080022.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 428, "image": "COCO_val2014_000000080022.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 429, "image": "COCO_val2014_000000080022.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 430, "image": "COCO_val2014_000000080022.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 431, "image": "COCO_val2014_000000080022.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 432, "image": "COCO_val2014_000000080022.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 433, "image": "COCO_val2014_000000564336.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 434, "image": "COCO_val2014_000000564336.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 435, "image": "COCO_val2014_000000564336.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 436, "image": "COCO_val2014_000000564336.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 437, "image": "COCO_val2014_000000564336.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 438, "image": "COCO_val2014_000000564336.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 439, "image": "COCO_val2014_000000231589.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 440, "image": "COCO_val2014_000000231589.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 441, "image": "COCO_val2014_000000231589.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 442, "image": "COCO_val2014_000000231589.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 443, "image": "COCO_val2014_000000231589.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 444, "image": "COCO_val2014_000000231589.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 445, "image": "COCO_val2014_000000465275.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 446, "image": "COCO_val2014_000000465275.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 447, "image": "COCO_val2014_000000465275.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 448, "image": "COCO_val2014_000000465275.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 449, "image": "COCO_val2014_000000465275.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 450, "image": "COCO_val2014_000000465275.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 451, "image": "COCO_val2014_000000083275.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 452, "image": "COCO_val2014_000000083275.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 453, "image": "COCO_val2014_000000083275.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 454, "image": "COCO_val2014_000000083275.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 455, "image": "COCO_val2014_000000083275.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 456, "image": "COCO_val2014_000000083275.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 457, "image": "COCO_val2014_000000406403.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 458, "image": "COCO_val2014_000000406403.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 459, "image": "COCO_val2014_000000406403.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 460, "image": "COCO_val2014_000000406403.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 461, "image": "COCO_val2014_000000406403.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 462, "image": "COCO_val2014_000000406403.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 463, "image": "COCO_val2014_000000131018.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 464, "image": "COCO_val2014_000000131018.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 465, "image": "COCO_val2014_000000131018.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 466, "image": "COCO_val2014_000000131018.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 467, "image": "COCO_val2014_000000131018.jpg", "text": "Is there a scissors in the image?", "label": "yes"} +{"question_id": 468, "image": "COCO_val2014_000000131018.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 469, "image": "COCO_val2014_000000332625.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 470, "image": "COCO_val2014_000000332625.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 471, "image": "COCO_val2014_000000332625.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 472, "image": "COCO_val2014_000000332625.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 473, "image": "COCO_val2014_000000332625.jpg", "text": "Is there an airplane in the imange?", "label": "yes"} +{"question_id": 474, "image": "COCO_val2014_000000332625.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 475, "image": "COCO_val2014_000000332025.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 476, "image": "COCO_val2014_000000332025.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 477, "image": "COCO_val2014_000000332025.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 478, "image": "COCO_val2014_000000332025.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 479, "image": "COCO_val2014_000000332025.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 480, "image": "COCO_val2014_000000332025.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 481, "image": "COCO_val2014_000000318204.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 482, "image": "COCO_val2014_000000318204.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 483, "image": "COCO_val2014_000000318204.jpg", "text": "Is there a horse in the image?", "label": "yes"} +{"question_id": 484, "image": "COCO_val2014_000000318204.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 485, "image": "COCO_val2014_000000318204.jpg", "text": "Is there a sheep in the image?", "label": "yes"} +{"question_id": 486, "image": "COCO_val2014_000000318204.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 487, "image": "COCO_val2014_000000455157.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 488, "image": "COCO_val2014_000000455157.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 489, "image": "COCO_val2014_000000455157.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 490, "image": "COCO_val2014_000000455157.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 491, "image": "COCO_val2014_000000455157.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 492, "image": "COCO_val2014_000000455157.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 493, "image": "COCO_val2014_000000069189.jpg", "text": "Is there a bird in the image?", "label": "yes"} +{"question_id": 494, "image": "COCO_val2014_000000069189.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 495, "image": "COCO_val2014_000000069189.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 496, "image": "COCO_val2014_000000069189.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 497, "image": "COCO_val2014_000000069189.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 498, "image": "COCO_val2014_000000069189.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 499, "image": "COCO_val2014_000000199764.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 500, "image": "COCO_val2014_000000199764.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 501, "image": "COCO_val2014_000000199764.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 502, "image": "COCO_val2014_000000199764.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 503, "image": "COCO_val2014_000000199764.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 504, "image": "COCO_val2014_000000199764.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 505, "image": "COCO_val2014_000000148766.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 506, "image": "COCO_val2014_000000148766.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 507, "image": "COCO_val2014_000000148766.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 508, "image": "COCO_val2014_000000148766.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 509, "image": "COCO_val2014_000000148766.jpg", "text": "Is there a toilet in the image?", "label": "yes"} +{"question_id": 510, "image": "COCO_val2014_000000148766.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 511, "image": "COCO_val2014_000000175506.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 512, "image": "COCO_val2014_000000175506.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 513, "image": "COCO_val2014_000000175506.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 514, "image": "COCO_val2014_000000175506.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 515, "image": "COCO_val2014_000000175506.jpg", "text": "Is there a frisbee in the image?", "label": "yes"} +{"question_id": 516, "image": "COCO_val2014_000000175506.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 517, "image": "COCO_val2014_000000353096.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 518, "image": "COCO_val2014_000000353096.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 519, "image": "COCO_val2014_000000353096.jpg", "text": "Is there a mouse in the image?", "label": "yes"} +{"question_id": 520, "image": "COCO_val2014_000000353096.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 521, "image": "COCO_val2014_000000353096.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 522, "image": "COCO_val2014_000000353096.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 523, "image": "COCO_val2014_000000207205.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 524, "image": "COCO_val2014_000000207205.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 525, "image": "COCO_val2014_000000207205.jpg", "text": "Is there a broccoli in the image?", "label": "yes"} +{"question_id": 526, "image": "COCO_val2014_000000207205.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 527, "image": "COCO_val2014_000000207205.jpg", "text": "Is there a carrot in the image?", "label": "yes"} +{"question_id": 528, "image": "COCO_val2014_000000207205.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 529, "image": "COCO_val2014_000000427113.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 530, "image": "COCO_val2014_000000427113.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 531, "image": "COCO_val2014_000000427113.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 532, "image": "COCO_val2014_000000427113.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 533, "image": "COCO_val2014_000000427113.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 534, "image": "COCO_val2014_000000427113.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 535, "image": "COCO_val2014_000000498374.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 536, "image": "COCO_val2014_000000498374.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 537, "image": "COCO_val2014_000000498374.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 538, "image": "COCO_val2014_000000498374.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 539, "image": "COCO_val2014_000000498374.jpg", "text": "Is there a toilet in the image?", "label": "yes"} +{"question_id": 540, "image": "COCO_val2014_000000498374.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 541, "image": "COCO_val2014_000000013348.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 542, "image": "COCO_val2014_000000013348.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 543, "image": "COCO_val2014_000000013348.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 544, "image": "COCO_val2014_000000013348.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 545, "image": "COCO_val2014_000000013348.jpg", "text": "Is there an airplane in the imange?", "label": "yes"} +{"question_id": 546, "image": "COCO_val2014_000000013348.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 547, "image": "COCO_val2014_000000081336.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 548, "image": "COCO_val2014_000000081336.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 549, "image": "COCO_val2014_000000081336.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 550, "image": "COCO_val2014_000000081336.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 551, "image": "COCO_val2014_000000081336.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 552, "image": "COCO_val2014_000000081336.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 553, "image": "COCO_val2014_000000190185.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 554, "image": "COCO_val2014_000000190185.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 555, "image": "COCO_val2014_000000190185.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 556, "image": "COCO_val2014_000000190185.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 557, "image": "COCO_val2014_000000190185.jpg", "text": "Is there a sandwich in the image?", "label": "yes"} +{"question_id": 558, "image": "COCO_val2014_000000190185.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 559, "image": "COCO_val2014_000000209755.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 560, "image": "COCO_val2014_000000209755.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 561, "image": "COCO_val2014_000000209755.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 562, "image": "COCO_val2014_000000209755.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 563, "image": "COCO_val2014_000000209755.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 564, "image": "COCO_val2014_000000209755.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 565, "image": "COCO_val2014_000000227227.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 566, "image": "COCO_val2014_000000227227.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 567, "image": "COCO_val2014_000000227227.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 568, "image": "COCO_val2014_000000227227.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 569, "image": "COCO_val2014_000000227227.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 570, "image": "COCO_val2014_000000227227.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 571, "image": "COCO_val2014_000000397705.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 572, "image": "COCO_val2014_000000397705.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 573, "image": "COCO_val2014_000000397705.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 574, "image": "COCO_val2014_000000397705.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 575, "image": "COCO_val2014_000000397705.jpg", "text": "Is there a cat in the image?", "label": "yes"} +{"question_id": 576, "image": "COCO_val2014_000000397705.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 577, "image": "COCO_val2014_000000287305.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 578, "image": "COCO_val2014_000000287305.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 579, "image": "COCO_val2014_000000287305.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 580, "image": "COCO_val2014_000000287305.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 581, "image": "COCO_val2014_000000287305.jpg", "text": "Is there a bus in the image?", "label": "yes"} +{"question_id": 582, "image": "COCO_val2014_000000287305.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 583, "image": "COCO_val2014_000000257327.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 584, "image": "COCO_val2014_000000257327.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 585, "image": "COCO_val2014_000000257327.jpg", "text": "Is there a toilet in the image?", "label": "yes"} +{"question_id": 586, "image": "COCO_val2014_000000257327.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 587, "image": "COCO_val2014_000000257327.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 588, "image": "COCO_val2014_000000257327.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 589, "image": "COCO_val2014_000000557016.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 590, "image": "COCO_val2014_000000557016.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 591, "image": "COCO_val2014_000000557016.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 592, "image": "COCO_val2014_000000557016.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 593, "image": "COCO_val2014_000000557016.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 594, "image": "COCO_val2014_000000557016.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 595, "image": "COCO_val2014_000000105732.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 596, "image": "COCO_val2014_000000105732.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 597, "image": "COCO_val2014_000000105732.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 598, "image": "COCO_val2014_000000105732.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 599, "image": "COCO_val2014_000000105732.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 600, "image": "COCO_val2014_000000105732.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 601, "image": "COCO_val2014_000000534121.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 602, "image": "COCO_val2014_000000534121.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 603, "image": "COCO_val2014_000000534121.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 604, "image": "COCO_val2014_000000534121.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 605, "image": "COCO_val2014_000000534121.jpg", "text": "Is there a boat in the image?", "label": "yes"} +{"question_id": 606, "image": "COCO_val2014_000000534121.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 607, "image": "COCO_val2014_000000520524.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 608, "image": "COCO_val2014_000000520524.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 609, "image": "COCO_val2014_000000520524.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 610, "image": "COCO_val2014_000000520524.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 611, "image": "COCO_val2014_000000520524.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 612, "image": "COCO_val2014_000000520524.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 613, "image": "COCO_val2014_000000580294.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 614, "image": "COCO_val2014_000000580294.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 615, "image": "COCO_val2014_000000580294.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 616, "image": "COCO_val2014_000000580294.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 617, "image": "COCO_val2014_000000580294.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 618, "image": "COCO_val2014_000000580294.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 619, "image": "COCO_val2014_000000374061.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 620, "image": "COCO_val2014_000000374061.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 621, "image": "COCO_val2014_000000374061.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 622, "image": "COCO_val2014_000000374061.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 623, "image": "COCO_val2014_000000374061.jpg", "text": "Is there a cat in the image?", "label": "yes"} +{"question_id": 624, "image": "COCO_val2014_000000374061.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 625, "image": "COCO_val2014_000000094944.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 626, "image": "COCO_val2014_000000094944.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 627, "image": "COCO_val2014_000000094944.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 628, "image": "COCO_val2014_000000094944.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 629, "image": "COCO_val2014_000000094944.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 630, "image": "COCO_val2014_000000094944.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 631, "image": "COCO_val2014_000000572075.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 632, "image": "COCO_val2014_000000572075.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 633, "image": "COCO_val2014_000000572075.jpg", "text": "Is there a toilet in the image?", "label": "yes"} +{"question_id": 634, "image": "COCO_val2014_000000572075.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 635, "image": "COCO_val2014_000000572075.jpg", "text": "Is there a cat in the image?", "label": "yes"} +{"question_id": 636, "image": "COCO_val2014_000000572075.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 637, "image": "COCO_val2014_000000387098.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 638, "image": "COCO_val2014_000000387098.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 639, "image": "COCO_val2014_000000387098.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 640, "image": "COCO_val2014_000000387098.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 641, "image": "COCO_val2014_000000387098.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 642, "image": "COCO_val2014_000000387098.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 643, "image": "COCO_val2014_000000382670.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 644, "image": "COCO_val2014_000000382670.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 645, "image": "COCO_val2014_000000382670.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 646, "image": "COCO_val2014_000000382670.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 647, "image": "COCO_val2014_000000382670.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 648, "image": "COCO_val2014_000000382670.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 649, "image": "COCO_val2014_000000414516.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 650, "image": "COCO_val2014_000000414516.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 651, "image": "COCO_val2014_000000414516.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 652, "image": "COCO_val2014_000000414516.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 653, "image": "COCO_val2014_000000414516.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 654, "image": "COCO_val2014_000000414516.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 655, "image": "COCO_val2014_000000204360.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 656, "image": "COCO_val2014_000000204360.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 657, "image": "COCO_val2014_000000204360.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 658, "image": "COCO_val2014_000000204360.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 659, "image": "COCO_val2014_000000204360.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 660, "image": "COCO_val2014_000000204360.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 661, "image": "COCO_val2014_000000245642.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 662, "image": "COCO_val2014_000000245642.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 663, "image": "COCO_val2014_000000245642.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 664, "image": "COCO_val2014_000000245642.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 665, "image": "COCO_val2014_000000245642.jpg", "text": "Is there a sheep in the image?", "label": "yes"} +{"question_id": 666, "image": "COCO_val2014_000000245642.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 667, "image": "COCO_val2014_000000237767.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 668, "image": "COCO_val2014_000000237767.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 669, "image": "COCO_val2014_000000237767.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 670, "image": "COCO_val2014_000000237767.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 671, "image": "COCO_val2014_000000237767.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 672, "image": "COCO_val2014_000000237767.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 673, "image": "COCO_val2014_000000370900.jpg", "text": "Is there a tie in the image?", "label": "yes"} +{"question_id": 674, "image": "COCO_val2014_000000370900.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 675, "image": "COCO_val2014_000000370900.jpg", "text": "Is there a bear in the image?", "label": "yes"} +{"question_id": 676, "image": "COCO_val2014_000000370900.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 677, "image": "COCO_val2014_000000370900.jpg", "text": "Is there a teddy bear in the image?", "label": "yes"} +{"question_id": 678, "image": "COCO_val2014_000000370900.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 679, "image": "COCO_val2014_000000094501.jpg", "text": "Is there a cake in the image?", "label": "yes"} +{"question_id": 680, "image": "COCO_val2014_000000094501.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 681, "image": "COCO_val2014_000000094501.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 682, "image": "COCO_val2014_000000094501.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 683, "image": "COCO_val2014_000000094501.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 684, "image": "COCO_val2014_000000094501.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 685, "image": "COCO_val2014_000000069196.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 686, "image": "COCO_val2014_000000069196.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 687, "image": "COCO_val2014_000000069196.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 688, "image": "COCO_val2014_000000069196.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 689, "image": "COCO_val2014_000000069196.jpg", "text": "Is there an airplane in the imange?", "label": "yes"} +{"question_id": 690, "image": "COCO_val2014_000000069196.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 691, "image": "COCO_val2014_000000366141.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 692, "image": "COCO_val2014_000000366141.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 693, "image": "COCO_val2014_000000366141.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 694, "image": "COCO_val2014_000000366141.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 695, "image": "COCO_val2014_000000366141.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 696, "image": "COCO_val2014_000000366141.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 697, "image": "COCO_val2014_000000093946.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 698, "image": "COCO_val2014_000000093946.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 699, "image": "COCO_val2014_000000093946.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 700, "image": "COCO_val2014_000000093946.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 701, "image": "COCO_val2014_000000093946.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 702, "image": "COCO_val2014_000000093946.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 703, "image": "COCO_val2014_000000032610.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 704, "image": "COCO_val2014_000000032610.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 705, "image": "COCO_val2014_000000032610.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 706, "image": "COCO_val2014_000000032610.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 707, "image": "COCO_val2014_000000032610.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 708, "image": "COCO_val2014_000000032610.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 709, "image": "COCO_val2014_000000239130.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 710, "image": "COCO_val2014_000000239130.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 711, "image": "COCO_val2014_000000239130.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 712, "image": "COCO_val2014_000000239130.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 713, "image": "COCO_val2014_000000239130.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 714, "image": "COCO_val2014_000000239130.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 715, "image": "COCO_val2014_000000226097.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 716, "image": "COCO_val2014_000000226097.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 717, "image": "COCO_val2014_000000226097.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 718, "image": "COCO_val2014_000000226097.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 719, "image": "COCO_val2014_000000226097.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 720, "image": "COCO_val2014_000000226097.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 721, "image": "COCO_val2014_000000538054.jpg", "text": "Is there a banana in the image?", "label": "yes"} +{"question_id": 722, "image": "COCO_val2014_000000538054.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 723, "image": "COCO_val2014_000000538054.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 724, "image": "COCO_val2014_000000538054.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 725, "image": "COCO_val2014_000000538054.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 726, "image": "COCO_val2014_000000538054.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 727, "image": "COCO_val2014_000000114710.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 728, "image": "COCO_val2014_000000114710.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 729, "image": "COCO_val2014_000000114710.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 730, "image": "COCO_val2014_000000114710.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 731, "image": "COCO_val2014_000000114710.jpg", "text": "Is there a sheep in the image?", "label": "yes"} +{"question_id": 732, "image": "COCO_val2014_000000114710.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 733, "image": "COCO_val2014_000000113701.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 734, "image": "COCO_val2014_000000113701.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 735, "image": "COCO_val2014_000000113701.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 736, "image": "COCO_val2014_000000113701.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 737, "image": "COCO_val2014_000000113701.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 738, "image": "COCO_val2014_000000113701.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 739, "image": "COCO_val2014_000000065001.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 740, "image": "COCO_val2014_000000065001.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 741, "image": "COCO_val2014_000000065001.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 742, "image": "COCO_val2014_000000065001.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 743, "image": "COCO_val2014_000000065001.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 744, "image": "COCO_val2014_000000065001.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 745, "image": "COCO_val2014_000000482275.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 746, "image": "COCO_val2014_000000482275.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 747, "image": "COCO_val2014_000000482275.jpg", "text": "Is there a knife in the image?", "label": "yes"} +{"question_id": 748, "image": "COCO_val2014_000000482275.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 749, "image": "COCO_val2014_000000482275.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 750, "image": "COCO_val2014_000000482275.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 751, "image": "COCO_val2014_000000140983.jpg", "text": "Is there a toothbrush in the image?", "label": "yes"} +{"question_id": 752, "image": "COCO_val2014_000000140983.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 753, "image": "COCO_val2014_000000140983.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 754, "image": "COCO_val2014_000000140983.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 755, "image": "COCO_val2014_000000140983.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 756, "image": "COCO_val2014_000000140983.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 757, "image": "COCO_val2014_000000044520.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 758, "image": "COCO_val2014_000000044520.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 759, "image": "COCO_val2014_000000044520.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 760, "image": "COCO_val2014_000000044520.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 761, "image": "COCO_val2014_000000044520.jpg", "text": "Is there a stop sign in the image?", "label": "yes"} +{"question_id": 762, "image": "COCO_val2014_000000044520.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 763, "image": "COCO_val2014_000000518177.jpg", "text": "Is there a toaster in the image?", "label": "yes"} +{"question_id": 764, "image": "COCO_val2014_000000518177.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 765, "image": "COCO_val2014_000000518177.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 766, "image": "COCO_val2014_000000518177.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 767, "image": "COCO_val2014_000000518177.jpg", "text": "Is there a microwave in the image?", "label": "yes"} +{"question_id": 768, "image": "COCO_val2014_000000518177.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 769, "image": "COCO_val2014_000000203479.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 770, "image": "COCO_val2014_000000203479.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 771, "image": "COCO_val2014_000000203479.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 772, "image": "COCO_val2014_000000203479.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 773, "image": "COCO_val2014_000000203479.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 774, "image": "COCO_val2014_000000203479.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 775, "image": "COCO_val2014_000000551881.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 776, "image": "COCO_val2014_000000551881.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 777, "image": "COCO_val2014_000000551881.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 778, "image": "COCO_val2014_000000551881.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 779, "image": "COCO_val2014_000000551881.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 780, "image": "COCO_val2014_000000551881.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 781, "image": "COCO_val2014_000000369541.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 782, "image": "COCO_val2014_000000369541.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 783, "image": "COCO_val2014_000000369541.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 784, "image": "COCO_val2014_000000369541.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 785, "image": "COCO_val2014_000000369541.jpg", "text": "Is there a frisbee in the image?", "label": "yes"} +{"question_id": 786, "image": "COCO_val2014_000000369541.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 787, "image": "COCO_val2014_000000007795.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 788, "image": "COCO_val2014_000000007795.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 789, "image": "COCO_val2014_000000007795.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 790, "image": "COCO_val2014_000000007795.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 791, "image": "COCO_val2014_000000007795.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 792, "image": "COCO_val2014_000000007795.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 793, "image": "COCO_val2014_000000303099.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 794, "image": "COCO_val2014_000000303099.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 795, "image": "COCO_val2014_000000303099.jpg", "text": "Is there a cat in the image?", "label": "yes"} +{"question_id": 796, "image": "COCO_val2014_000000303099.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 797, "image": "COCO_val2014_000000303099.jpg", "text": "Is there a toilet in the image?", "label": "yes"} +{"question_id": 798, "image": "COCO_val2014_000000303099.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 799, "image": "COCO_val2014_000000147289.jpg", "text": "Is there a fire hydrant in the image?", "label": "yes"} +{"question_id": 800, "image": "COCO_val2014_000000147289.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 801, "image": "COCO_val2014_000000147289.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 802, "image": "COCO_val2014_000000147289.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 803, "image": "COCO_val2014_000000147289.jpg", "text": "Is there a stop sign in the image?", "label": "yes"} +{"question_id": 804, "image": "COCO_val2014_000000147289.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 805, "image": "COCO_val2014_000000102439.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 806, "image": "COCO_val2014_000000102439.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 807, "image": "COCO_val2014_000000102439.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 808, "image": "COCO_val2014_000000102439.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 809, "image": "COCO_val2014_000000102439.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 810, "image": "COCO_val2014_000000102439.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 811, "image": "COCO_val2014_000000183757.jpg", "text": "Is there a boat in the image?", "label": "yes"} +{"question_id": 812, "image": "COCO_val2014_000000183757.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 813, "image": "COCO_val2014_000000183757.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 814, "image": "COCO_val2014_000000183757.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 815, "image": "COCO_val2014_000000183757.jpg", "text": "Is there a cat in the image?", "label": "yes"} +{"question_id": 816, "image": "COCO_val2014_000000183757.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 817, "image": "COCO_val2014_000000500473.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 818, "image": "COCO_val2014_000000500473.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 819, "image": "COCO_val2014_000000500473.jpg", "text": "Is there a broccoli in the image?", "label": "yes"} +{"question_id": 820, "image": "COCO_val2014_000000500473.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 821, "image": "COCO_val2014_000000500473.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 822, "image": "COCO_val2014_000000500473.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 823, "image": "COCO_val2014_000000327532.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 824, "image": "COCO_val2014_000000327532.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 825, "image": "COCO_val2014_000000327532.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 826, "image": "COCO_val2014_000000327532.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 827, "image": "COCO_val2014_000000327532.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 828, "image": "COCO_val2014_000000327532.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 829, "image": "COCO_val2014_000000167110.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 830, "image": "COCO_val2014_000000167110.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 831, "image": "COCO_val2014_000000167110.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 832, "image": "COCO_val2014_000000167110.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 833, "image": "COCO_val2014_000000167110.jpg", "text": "Is there a skateboard in the image?", "label": "yes"} +{"question_id": 834, "image": "COCO_val2014_000000167110.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 835, "image": "COCO_val2014_000000300876.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 836, "image": "COCO_val2014_000000300876.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 837, "image": "COCO_val2014_000000300876.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 838, "image": "COCO_val2014_000000300876.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 839, "image": "COCO_val2014_000000300876.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 840, "image": "COCO_val2014_000000300876.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 841, "image": "COCO_val2014_000000443240.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 842, "image": "COCO_val2014_000000443240.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 843, "image": "COCO_val2014_000000443240.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 844, "image": "COCO_val2014_000000443240.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 845, "image": "COCO_val2014_000000443240.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 846, "image": "COCO_val2014_000000443240.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 847, "image": "COCO_val2014_000000288042.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 848, "image": "COCO_val2014_000000288042.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 849, "image": "COCO_val2014_000000288042.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 850, "image": "COCO_val2014_000000288042.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 851, "image": "COCO_val2014_000000288042.jpg", "text": "Is there an umbrella in the imange?", "label": "yes"} +{"question_id": 852, "image": "COCO_val2014_000000288042.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 853, "image": "COCO_val2014_000000270609.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 854, "image": "COCO_val2014_000000270609.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 855, "image": "COCO_val2014_000000270609.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 856, "image": "COCO_val2014_000000270609.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 857, "image": "COCO_val2014_000000270609.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 858, "image": "COCO_val2014_000000270609.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 859, "image": "COCO_val2014_000000208028.jpg", "text": "Is there a keyboard in the image?", "label": "yes"} +{"question_id": 860, "image": "COCO_val2014_000000208028.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 861, "image": "COCO_val2014_000000208028.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 862, "image": "COCO_val2014_000000208028.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 863, "image": "COCO_val2014_000000208028.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 864, "image": "COCO_val2014_000000208028.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 865, "image": "COCO_val2014_000000314992.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 866, "image": "COCO_val2014_000000314992.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 867, "image": "COCO_val2014_000000314992.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 868, "image": "COCO_val2014_000000314992.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 869, "image": "COCO_val2014_000000314992.jpg", "text": "Is there a cell phone in the image?", "label": "yes"} +{"question_id": 870, "image": "COCO_val2014_000000314992.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 871, "image": "COCO_val2014_000000424642.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 872, "image": "COCO_val2014_000000424642.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 873, "image": "COCO_val2014_000000424642.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 874, "image": "COCO_val2014_000000424642.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 875, "image": "COCO_val2014_000000424642.jpg", "text": "Is there a frisbee in the image?", "label": "yes"} +{"question_id": 876, "image": "COCO_val2014_000000424642.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 877, "image": "COCO_val2014_000000467176.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 878, "image": "COCO_val2014_000000467176.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 879, "image": "COCO_val2014_000000467176.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 880, "image": "COCO_val2014_000000467176.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 881, "image": "COCO_val2014_000000467176.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 882, "image": "COCO_val2014_000000467176.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 883, "image": "COCO_val2014_000000087435.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 884, "image": "COCO_val2014_000000087435.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 885, "image": "COCO_val2014_000000087435.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 886, "image": "COCO_val2014_000000087435.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 887, "image": "COCO_val2014_000000087435.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 888, "image": "COCO_val2014_000000087435.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 889, "image": "COCO_val2014_000000079446.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 890, "image": "COCO_val2014_000000079446.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 891, "image": "COCO_val2014_000000079446.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 892, "image": "COCO_val2014_000000079446.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 893, "image": "COCO_val2014_000000079446.jpg", "text": "Is there a toilet in the image?", "label": "yes"} +{"question_id": 894, "image": "COCO_val2014_000000079446.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 895, "image": "COCO_val2014_000000354398.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 896, "image": "COCO_val2014_000000354398.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 897, "image": "COCO_val2014_000000354398.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 898, "image": "COCO_val2014_000000354398.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 899, "image": "COCO_val2014_000000354398.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 900, "image": "COCO_val2014_000000354398.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 901, "image": "COCO_val2014_000000430052.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 902, "image": "COCO_val2014_000000430052.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 903, "image": "COCO_val2014_000000430052.jpg", "text": "Is there a bird in the image?", "label": "yes"} +{"question_id": 904, "image": "COCO_val2014_000000430052.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 905, "image": "COCO_val2014_000000430052.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 906, "image": "COCO_val2014_000000430052.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 907, "image": "COCO_val2014_000000567886.jpg", "text": "Is there a teddy bear in the image?", "label": "yes"} +{"question_id": 908, "image": "COCO_val2014_000000567886.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 909, "image": "COCO_val2014_000000567886.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 910, "image": "COCO_val2014_000000567886.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 911, "image": "COCO_val2014_000000567886.jpg", "text": "Is there a book in the image?", "label": "yes"} +{"question_id": 912, "image": "COCO_val2014_000000567886.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 913, "image": "COCO_val2014_000000539251.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 914, "image": "COCO_val2014_000000539251.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 915, "image": "COCO_val2014_000000539251.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 916, "image": "COCO_val2014_000000539251.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 917, "image": "COCO_val2014_000000539251.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 918, "image": "COCO_val2014_000000539251.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 919, "image": "COCO_val2014_000000551908.jpg", "text": "Is there a broccoli in the image?", "label": "yes"} +{"question_id": 920, "image": "COCO_val2014_000000551908.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 921, "image": "COCO_val2014_000000551908.jpg", "text": "Is there a carrot in the image?", "label": "yes"} +{"question_id": 922, "image": "COCO_val2014_000000551908.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 923, "image": "COCO_val2014_000000551908.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 924, "image": "COCO_val2014_000000551908.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 925, "image": "COCO_val2014_000000102906.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 926, "image": "COCO_val2014_000000102906.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 927, "image": "COCO_val2014_000000102906.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 928, "image": "COCO_val2014_000000102906.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 929, "image": "COCO_val2014_000000102906.jpg", "text": "Is there a fire hydrant in the image?", "label": "yes"} +{"question_id": 930, "image": "COCO_val2014_000000102906.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 931, "image": "COCO_val2014_000000327771.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 932, "image": "COCO_val2014_000000327771.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 933, "image": "COCO_val2014_000000327771.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 934, "image": "COCO_val2014_000000327771.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 935, "image": "COCO_val2014_000000327771.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 936, "image": "COCO_val2014_000000327771.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 937, "image": "COCO_val2014_000000280734.jpg", "text": "Is there a pizza in the image?", "label": "yes"} +{"question_id": 938, "image": "COCO_val2014_000000280734.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 939, "image": "COCO_val2014_000000280734.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 940, "image": "COCO_val2014_000000280734.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 941, "image": "COCO_val2014_000000280734.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 942, "image": "COCO_val2014_000000280734.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 943, "image": "COCO_val2014_000000111817.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 944, "image": "COCO_val2014_000000111817.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 945, "image": "COCO_val2014_000000111817.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 946, "image": "COCO_val2014_000000111817.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 947, "image": "COCO_val2014_000000111817.jpg", "text": "Is there a cake in the image?", "label": "yes"} +{"question_id": 948, "image": "COCO_val2014_000000111817.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 949, "image": "COCO_val2014_000000379162.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 950, "image": "COCO_val2014_000000379162.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 951, "image": "COCO_val2014_000000379162.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 952, "image": "COCO_val2014_000000379162.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 953, "image": "COCO_val2014_000000379162.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 954, "image": "COCO_val2014_000000379162.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 955, "image": "COCO_val2014_000000489728.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 956, "image": "COCO_val2014_000000489728.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 957, "image": "COCO_val2014_000000489728.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 958, "image": "COCO_val2014_000000489728.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 959, "image": "COCO_val2014_000000489728.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 960, "image": "COCO_val2014_000000489728.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 961, "image": "COCO_val2014_000000419453.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 962, "image": "COCO_val2014_000000419453.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 963, "image": "COCO_val2014_000000419453.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 964, "image": "COCO_val2014_000000419453.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 965, "image": "COCO_val2014_000000419453.jpg", "text": "Is there an umbrella in the imange?", "label": "yes"} +{"question_id": 966, "image": "COCO_val2014_000000419453.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 967, "image": "COCO_val2014_000000358255.jpg", "text": "Is there a teddy bear in the image?", "label": "yes"} +{"question_id": 968, "image": "COCO_val2014_000000358255.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 969, "image": "COCO_val2014_000000358255.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 970, "image": "COCO_val2014_000000358255.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 971, "image": "COCO_val2014_000000358255.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 972, "image": "COCO_val2014_000000358255.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 973, "image": "COCO_val2014_000000178078.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 974, "image": "COCO_val2014_000000178078.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 975, "image": "COCO_val2014_000000178078.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 976, "image": "COCO_val2014_000000178078.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 977, "image": "COCO_val2014_000000178078.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 978, "image": "COCO_val2014_000000178078.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 979, "image": "COCO_val2014_000000197219.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 980, "image": "COCO_val2014_000000197219.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 981, "image": "COCO_val2014_000000197219.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 982, "image": "COCO_val2014_000000197219.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 983, "image": "COCO_val2014_000000197219.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 984, "image": "COCO_val2014_000000197219.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 985, "image": "COCO_val2014_000000460931.jpg", "text": "Is there a donut in the image?", "label": "yes"} +{"question_id": 986, "image": "COCO_val2014_000000460931.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 987, "image": "COCO_val2014_000000460931.jpg", "text": "Is there a cake in the image?", "label": "yes"} +{"question_id": 988, "image": "COCO_val2014_000000460931.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 989, "image": "COCO_val2014_000000460931.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 990, "image": "COCO_val2014_000000460931.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 991, "image": "COCO_val2014_000000506483.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 992, "image": "COCO_val2014_000000506483.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 993, "image": "COCO_val2014_000000506483.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 994, "image": "COCO_val2014_000000506483.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 995, "image": "COCO_val2014_000000506483.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 996, "image": "COCO_val2014_000000506483.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 997, "image": "COCO_val2014_000000468934.jpg", "text": "Is there a banana in the image?", "label": "yes"} +{"question_id": 998, "image": "COCO_val2014_000000468934.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 999, "image": "COCO_val2014_000000468934.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1000, "image": "COCO_val2014_000000468934.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1001, "image": "COCO_val2014_000000468934.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 1002, "image": "COCO_val2014_000000468934.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1003, "image": "COCO_val2014_000000189694.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 1004, "image": "COCO_val2014_000000189694.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1005, "image": "COCO_val2014_000000189694.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1006, "image": "COCO_val2014_000000189694.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1007, "image": "COCO_val2014_000000189694.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1008, "image": "COCO_val2014_000000189694.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1009, "image": "COCO_val2014_000000273450.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1010, "image": "COCO_val2014_000000273450.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1011, "image": "COCO_val2014_000000273450.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 1012, "image": "COCO_val2014_000000273450.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1013, "image": "COCO_val2014_000000273450.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1014, "image": "COCO_val2014_000000273450.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1015, "image": "COCO_val2014_000000278226.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1016, "image": "COCO_val2014_000000278226.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1017, "image": "COCO_val2014_000000278226.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 1018, "image": "COCO_val2014_000000278226.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1019, "image": "COCO_val2014_000000278226.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 1020, "image": "COCO_val2014_000000278226.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1021, "image": "COCO_val2014_000000449432.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1022, "image": "COCO_val2014_000000449432.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1023, "image": "COCO_val2014_000000449432.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1024, "image": "COCO_val2014_000000449432.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1025, "image": "COCO_val2014_000000449432.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 1026, "image": "COCO_val2014_000000449432.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1027, "image": "COCO_val2014_000000153300.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 1028, "image": "COCO_val2014_000000153300.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1029, "image": "COCO_val2014_000000153300.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1030, "image": "COCO_val2014_000000153300.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1031, "image": "COCO_val2014_000000153300.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1032, "image": "COCO_val2014_000000153300.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 1033, "image": "COCO_val2014_000000506178.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1034, "image": "COCO_val2014_000000506178.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1035, "image": "COCO_val2014_000000506178.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 1036, "image": "COCO_val2014_000000506178.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1037, "image": "COCO_val2014_000000506178.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 1038, "image": "COCO_val2014_000000506178.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1039, "image": "COCO_val2014_000000249720.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1040, "image": "COCO_val2014_000000249720.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1041, "image": "COCO_val2014_000000249720.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1042, "image": "COCO_val2014_000000249720.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1043, "image": "COCO_val2014_000000249720.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 1044, "image": "COCO_val2014_000000249720.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1045, "image": "COCO_val2014_000000205206.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 1046, "image": "COCO_val2014_000000205206.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1047, "image": "COCO_val2014_000000205206.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 1048, "image": "COCO_val2014_000000205206.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1049, "image": "COCO_val2014_000000205206.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1050, "image": "COCO_val2014_000000205206.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1051, "image": "COCO_val2014_000000018150.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1052, "image": "COCO_val2014_000000018150.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1053, "image": "COCO_val2014_000000018150.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1054, "image": "COCO_val2014_000000018150.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1055, "image": "COCO_val2014_000000018150.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 1056, "image": "COCO_val2014_000000018150.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1057, "image": "COCO_val2014_000000303534.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 1058, "image": "COCO_val2014_000000303534.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1059, "image": "COCO_val2014_000000303534.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1060, "image": "COCO_val2014_000000303534.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1061, "image": "COCO_val2014_000000303534.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1062, "image": "COCO_val2014_000000303534.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1063, "image": "COCO_val2014_000000278771.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1064, "image": "COCO_val2014_000000278771.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1065, "image": "COCO_val2014_000000278771.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1066, "image": "COCO_val2014_000000278771.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1067, "image": "COCO_val2014_000000278771.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1068, "image": "COCO_val2014_000000278771.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1069, "image": "COCO_val2014_000000134075.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 1070, "image": "COCO_val2014_000000134075.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1071, "image": "COCO_val2014_000000134075.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1072, "image": "COCO_val2014_000000134075.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1073, "image": "COCO_val2014_000000134075.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1074, "image": "COCO_val2014_000000134075.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 1075, "image": "COCO_val2014_000000227204.jpg", "text": "Is there a banana in the image?", "label": "yes"} +{"question_id": 1076, "image": "COCO_val2014_000000227204.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1077, "image": "COCO_val2014_000000227204.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1078, "image": "COCO_val2014_000000227204.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1079, "image": "COCO_val2014_000000227204.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 1080, "image": "COCO_val2014_000000227204.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 1081, "image": "COCO_val2014_000000124629.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1082, "image": "COCO_val2014_000000124629.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1083, "image": "COCO_val2014_000000124629.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1084, "image": "COCO_val2014_000000124629.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1085, "image": "COCO_val2014_000000124629.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 1086, "image": "COCO_val2014_000000124629.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1087, "image": "COCO_val2014_000000142774.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1088, "image": "COCO_val2014_000000142774.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1089, "image": "COCO_val2014_000000142774.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 1090, "image": "COCO_val2014_000000142774.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1091, "image": "COCO_val2014_000000142774.jpg", "text": "Is there a bus in the image?", "label": "yes"} +{"question_id": 1092, "image": "COCO_val2014_000000142774.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1093, "image": "COCO_val2014_000000199959.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1094, "image": "COCO_val2014_000000199959.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1095, "image": "COCO_val2014_000000199959.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1096, "image": "COCO_val2014_000000199959.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1097, "image": "COCO_val2014_000000199959.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 1098, "image": "COCO_val2014_000000199959.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1099, "image": "COCO_val2014_000000316700.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1100, "image": "COCO_val2014_000000316700.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1101, "image": "COCO_val2014_000000316700.jpg", "text": "Is there a broccoli in the image?", "label": "yes"} +{"question_id": 1102, "image": "COCO_val2014_000000316700.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1103, "image": "COCO_val2014_000000316700.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1104, "image": "COCO_val2014_000000316700.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1105, "image": "COCO_val2014_000000040361.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1106, "image": "COCO_val2014_000000040361.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1107, "image": "COCO_val2014_000000040361.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1108, "image": "COCO_val2014_000000040361.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1109, "image": "COCO_val2014_000000040361.jpg", "text": "Is there a baseball bat in the image?", "label": "yes"} +{"question_id": 1110, "image": "COCO_val2014_000000040361.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1111, "image": "COCO_val2014_000000378873.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1112, "image": "COCO_val2014_000000378873.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1113, "image": "COCO_val2014_000000378873.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1114, "image": "COCO_val2014_000000378873.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1115, "image": "COCO_val2014_000000378873.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1116, "image": "COCO_val2014_000000378873.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1117, "image": "COCO_val2014_000000574790.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 1118, "image": "COCO_val2014_000000574790.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1119, "image": "COCO_val2014_000000574790.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1120, "image": "COCO_val2014_000000574790.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1121, "image": "COCO_val2014_000000574790.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1122, "image": "COCO_val2014_000000574790.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1123, "image": "COCO_val2014_000000011241.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1124, "image": "COCO_val2014_000000011241.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1125, "image": "COCO_val2014_000000011241.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 1126, "image": "COCO_val2014_000000011241.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1127, "image": "COCO_val2014_000000011241.jpg", "text": "Is there a sandwich in the image?", "label": "yes"} +{"question_id": 1128, "image": "COCO_val2014_000000011241.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1129, "image": "COCO_val2014_000000525667.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1130, "image": "COCO_val2014_000000525667.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1131, "image": "COCO_val2014_000000525667.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 1132, "image": "COCO_val2014_000000525667.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1133, "image": "COCO_val2014_000000525667.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1134, "image": "COCO_val2014_000000525667.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 1135, "image": "COCO_val2014_000000246145.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1136, "image": "COCO_val2014_000000246145.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1137, "image": "COCO_val2014_000000246145.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 1138, "image": "COCO_val2014_000000246145.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1139, "image": "COCO_val2014_000000246145.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1140, "image": "COCO_val2014_000000246145.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1141, "image": "COCO_val2014_000000313162.jpg", "text": "Is there a pizza in the image?", "label": "yes"} +{"question_id": 1142, "image": "COCO_val2014_000000313162.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1143, "image": "COCO_val2014_000000313162.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 1144, "image": "COCO_val2014_000000313162.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1145, "image": "COCO_val2014_000000313162.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1146, "image": "COCO_val2014_000000313162.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1147, "image": "COCO_val2014_000000529668.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1148, "image": "COCO_val2014_000000529668.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1149, "image": "COCO_val2014_000000529668.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 1150, "image": "COCO_val2014_000000529668.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1151, "image": "COCO_val2014_000000529668.jpg", "text": "Is there a cell phone in the image?", "label": "yes"} +{"question_id": 1152, "image": "COCO_val2014_000000529668.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1153, "image": "COCO_val2014_000000376959.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1154, "image": "COCO_val2014_000000376959.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1155, "image": "COCO_val2014_000000376959.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1156, "image": "COCO_val2014_000000376959.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1157, "image": "COCO_val2014_000000376959.jpg", "text": "Is there a cell phone in the image?", "label": "yes"} +{"question_id": 1158, "image": "COCO_val2014_000000376959.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 1159, "image": "COCO_val2014_000000275863.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1160, "image": "COCO_val2014_000000275863.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1161, "image": "COCO_val2014_000000275863.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1162, "image": "COCO_val2014_000000275863.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1163, "image": "COCO_val2014_000000275863.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 1164, "image": "COCO_val2014_000000275863.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1165, "image": "COCO_val2014_000000327038.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1166, "image": "COCO_val2014_000000327038.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1167, "image": "COCO_val2014_000000327038.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 1168, "image": "COCO_val2014_000000327038.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1169, "image": "COCO_val2014_000000327038.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1170, "image": "COCO_val2014_000000327038.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1171, "image": "COCO_val2014_000000513136.jpg", "text": "Is there a pizza in the image?", "label": "yes"} +{"question_id": 1172, "image": "COCO_val2014_000000513136.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1173, "image": "COCO_val2014_000000513136.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 1174, "image": "COCO_val2014_000000513136.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1175, "image": "COCO_val2014_000000513136.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1176, "image": "COCO_val2014_000000513136.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1177, "image": "COCO_val2014_000000184338.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1178, "image": "COCO_val2014_000000184338.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1179, "image": "COCO_val2014_000000184338.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 1180, "image": "COCO_val2014_000000184338.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1181, "image": "COCO_val2014_000000184338.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1182, "image": "COCO_val2014_000000184338.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1183, "image": "COCO_val2014_000000175437.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1184, "image": "COCO_val2014_000000175437.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1185, "image": "COCO_val2014_000000175437.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1186, "image": "COCO_val2014_000000175437.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1187, "image": "COCO_val2014_000000175437.jpg", "text": "Is there a donut in the image?", "label": "yes"} +{"question_id": 1188, "image": "COCO_val2014_000000175437.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1189, "image": "COCO_val2014_000000498100.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 1190, "image": "COCO_val2014_000000498100.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1191, "image": "COCO_val2014_000000498100.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1192, "image": "COCO_val2014_000000498100.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1193, "image": "COCO_val2014_000000498100.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1194, "image": "COCO_val2014_000000498100.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1195, "image": "COCO_val2014_000000375909.jpg", "text": "Is there a refrigerator in the image?", "label": "yes"} +{"question_id": 1196, "image": "COCO_val2014_000000375909.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1197, "image": "COCO_val2014_000000375909.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 1198, "image": "COCO_val2014_000000375909.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1199, "image": "COCO_val2014_000000375909.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 1200, "image": "COCO_val2014_000000375909.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1201, "image": "COCO_val2014_000000396338.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1202, "image": "COCO_val2014_000000396338.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1203, "image": "COCO_val2014_000000396338.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1204, "image": "COCO_val2014_000000396338.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1205, "image": "COCO_val2014_000000396338.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1206, "image": "COCO_val2014_000000396338.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1207, "image": "COCO_val2014_000000124930.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1208, "image": "COCO_val2014_000000124930.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1209, "image": "COCO_val2014_000000124930.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1210, "image": "COCO_val2014_000000124930.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1211, "image": "COCO_val2014_000000124930.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 1212, "image": "COCO_val2014_000000124930.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1213, "image": "COCO_val2014_000000112664.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1214, "image": "COCO_val2014_000000112664.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1215, "image": "COCO_val2014_000000112664.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 1216, "image": "COCO_val2014_000000112664.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1217, "image": "COCO_val2014_000000112664.jpg", "text": "Is there a suitcase in the image?", "label": "yes"} +{"question_id": 1218, "image": "COCO_val2014_000000112664.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1219, "image": "COCO_val2014_000000377879.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1220, "image": "COCO_val2014_000000377879.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1221, "image": "COCO_val2014_000000377879.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 1222, "image": "COCO_val2014_000000377879.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1223, "image": "COCO_val2014_000000377879.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 1224, "image": "COCO_val2014_000000377879.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1225, "image": "COCO_val2014_000000377401.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1226, "image": "COCO_val2014_000000377401.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1227, "image": "COCO_val2014_000000377401.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 1228, "image": "COCO_val2014_000000377401.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1229, "image": "COCO_val2014_000000377401.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1230, "image": "COCO_val2014_000000377401.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1231, "image": "COCO_val2014_000000049473.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 1232, "image": "COCO_val2014_000000049473.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1233, "image": "COCO_val2014_000000049473.jpg", "text": "Is there a book in the image?", "label": "yes"} +{"question_id": 1234, "image": "COCO_val2014_000000049473.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1235, "image": "COCO_val2014_000000049473.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1236, "image": "COCO_val2014_000000049473.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1237, "image": "COCO_val2014_000000153865.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1238, "image": "COCO_val2014_000000153865.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1239, "image": "COCO_val2014_000000153865.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1240, "image": "COCO_val2014_000000153865.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1241, "image": "COCO_val2014_000000153865.jpg", "text": "Is there a kite in the image?", "label": "yes"} +{"question_id": 1242, "image": "COCO_val2014_000000153865.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1243, "image": "COCO_val2014_000000383185.jpg", "text": "Is there a banana in the image?", "label": "yes"} +{"question_id": 1244, "image": "COCO_val2014_000000383185.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1245, "image": "COCO_val2014_000000383185.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 1246, "image": "COCO_val2014_000000383185.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1247, "image": "COCO_val2014_000000383185.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1248, "image": "COCO_val2014_000000383185.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1249, "image": "COCO_val2014_000000388983.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1250, "image": "COCO_val2014_000000388983.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1251, "image": "COCO_val2014_000000388983.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1252, "image": "COCO_val2014_000000388983.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1253, "image": "COCO_val2014_000000388983.jpg", "text": "Is there a sandwich in the image?", "label": "yes"} +{"question_id": 1254, "image": "COCO_val2014_000000388983.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 1255, "image": "COCO_val2014_000000295377.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1256, "image": "COCO_val2014_000000295377.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1257, "image": "COCO_val2014_000000295377.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1258, "image": "COCO_val2014_000000295377.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1259, "image": "COCO_val2014_000000295377.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 1260, "image": "COCO_val2014_000000295377.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1261, "image": "COCO_val2014_000000034773.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1262, "image": "COCO_val2014_000000034773.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1263, "image": "COCO_val2014_000000034773.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 1264, "image": "COCO_val2014_000000034773.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1265, "image": "COCO_val2014_000000034773.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 1266, "image": "COCO_val2014_000000034773.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1267, "image": "COCO_val2014_000000244455.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1268, "image": "COCO_val2014_000000244455.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1269, "image": "COCO_val2014_000000244455.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1270, "image": "COCO_val2014_000000244455.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1271, "image": "COCO_val2014_000000244455.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 1272, "image": "COCO_val2014_000000244455.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1273, "image": "COCO_val2014_000000303652.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 1274, "image": "COCO_val2014_000000303652.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1275, "image": "COCO_val2014_000000303652.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1276, "image": "COCO_val2014_000000303652.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1277, "image": "COCO_val2014_000000303652.jpg", "text": "Is there a knife in the image?", "label": "yes"} +{"question_id": 1278, "image": "COCO_val2014_000000303652.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1279, "image": "COCO_val2014_000000098493.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1280, "image": "COCO_val2014_000000098493.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1281, "image": "COCO_val2014_000000098493.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 1282, "image": "COCO_val2014_000000098493.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1283, "image": "COCO_val2014_000000098493.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1284, "image": "COCO_val2014_000000098493.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 1285, "image": "COCO_val2014_000000201148.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 1286, "image": "COCO_val2014_000000201148.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1287, "image": "COCO_val2014_000000201148.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1288, "image": "COCO_val2014_000000201148.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1289, "image": "COCO_val2014_000000201148.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 1290, "image": "COCO_val2014_000000201148.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1291, "image": "COCO_val2014_000000307166.jpg", "text": "Is there a pizza in the image?", "label": "yes"} +{"question_id": 1292, "image": "COCO_val2014_000000307166.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1293, "image": "COCO_val2014_000000307166.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1294, "image": "COCO_val2014_000000307166.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1295, "image": "COCO_val2014_000000307166.jpg", "text": "Is there an oven in the imange?", "label": "yes"} +{"question_id": 1296, "image": "COCO_val2014_000000307166.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1297, "image": "COCO_val2014_000000313034.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 1298, "image": "COCO_val2014_000000313034.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1299, "image": "COCO_val2014_000000313034.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1300, "image": "COCO_val2014_000000313034.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1301, "image": "COCO_val2014_000000313034.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1302, "image": "COCO_val2014_000000313034.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1303, "image": "COCO_val2014_000000355342.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1304, "image": "COCO_val2014_000000355342.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1305, "image": "COCO_val2014_000000355342.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 1306, "image": "COCO_val2014_000000355342.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1307, "image": "COCO_val2014_000000355342.jpg", "text": "Is there an umbrella in the imange?", "label": "yes"} +{"question_id": 1308, "image": "COCO_val2014_000000355342.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1309, "image": "COCO_val2014_000000333237.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1310, "image": "COCO_val2014_000000333237.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1311, "image": "COCO_val2014_000000333237.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 1312, "image": "COCO_val2014_000000333237.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1313, "image": "COCO_val2014_000000333237.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1314, "image": "COCO_val2014_000000333237.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1315, "image": "COCO_val2014_000000526368.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 1316, "image": "COCO_val2014_000000526368.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1317, "image": "COCO_val2014_000000526368.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1318, "image": "COCO_val2014_000000526368.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1319, "image": "COCO_val2014_000000526368.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1320, "image": "COCO_val2014_000000526368.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1321, "image": "COCO_val2014_000000429033.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1322, "image": "COCO_val2014_000000429033.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1323, "image": "COCO_val2014_000000429033.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1324, "image": "COCO_val2014_000000429033.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1325, "image": "COCO_val2014_000000429033.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 1326, "image": "COCO_val2014_000000429033.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1327, "image": "COCO_val2014_000000287035.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 1328, "image": "COCO_val2014_000000287035.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1329, "image": "COCO_val2014_000000287035.jpg", "text": "Is there a mouse in the image?", "label": "yes"} +{"question_id": 1330, "image": "COCO_val2014_000000287035.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1331, "image": "COCO_val2014_000000287035.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 1332, "image": "COCO_val2014_000000287035.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1333, "image": "COCO_val2014_000000299074.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1334, "image": "COCO_val2014_000000299074.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1335, "image": "COCO_val2014_000000299074.jpg", "text": "Is there a cell phone in the image?", "label": "yes"} +{"question_id": 1336, "image": "COCO_val2014_000000299074.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1337, "image": "COCO_val2014_000000299074.jpg", "text": "Is there a bus in the image?", "label": "yes"} +{"question_id": 1338, "image": "COCO_val2014_000000299074.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1339, "image": "COCO_val2014_000000120648.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 1340, "image": "COCO_val2014_000000120648.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1341, "image": "COCO_val2014_000000120648.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1342, "image": "COCO_val2014_000000120648.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1343, "image": "COCO_val2014_000000120648.jpg", "text": "Is there a suitcase in the image?", "label": "yes"} +{"question_id": 1344, "image": "COCO_val2014_000000120648.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1345, "image": "COCO_val2014_000000186709.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1346, "image": "COCO_val2014_000000186709.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1347, "image": "COCO_val2014_000000186709.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1348, "image": "COCO_val2014_000000186709.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1349, "image": "COCO_val2014_000000186709.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 1350, "image": "COCO_val2014_000000186709.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1351, "image": "COCO_val2014_000000025972.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1352, "image": "COCO_val2014_000000025972.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1353, "image": "COCO_val2014_000000025972.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 1354, "image": "COCO_val2014_000000025972.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1355, "image": "COCO_val2014_000000025972.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1356, "image": "COCO_val2014_000000025972.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1357, "image": "COCO_val2014_000000505542.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1358, "image": "COCO_val2014_000000505542.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1359, "image": "COCO_val2014_000000505542.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 1360, "image": "COCO_val2014_000000505542.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1361, "image": "COCO_val2014_000000505542.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1362, "image": "COCO_val2014_000000505542.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1363, "image": "COCO_val2014_000000115636.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1364, "image": "COCO_val2014_000000115636.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1365, "image": "COCO_val2014_000000115636.jpg", "text": "Is there a horse in the image?", "label": "yes"} +{"question_id": 1366, "image": "COCO_val2014_000000115636.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1367, "image": "COCO_val2014_000000115636.jpg", "text": "Is there a cow in the image?", "label": "yes"} +{"question_id": 1368, "image": "COCO_val2014_000000115636.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1369, "image": "COCO_val2014_000000280810.jpg", "text": "Is there a broccoli in the image?", "label": "yes"} +{"question_id": 1370, "image": "COCO_val2014_000000280810.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1371, "image": "COCO_val2014_000000280810.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 1372, "image": "COCO_val2014_000000280810.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1373, "image": "COCO_val2014_000000280810.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 1374, "image": "COCO_val2014_000000280810.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1375, "image": "COCO_val2014_000000037900.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1376, "image": "COCO_val2014_000000037900.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1377, "image": "COCO_val2014_000000037900.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 1378, "image": "COCO_val2014_000000037900.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1379, "image": "COCO_val2014_000000037900.jpg", "text": "Is there a knife in the image?", "label": "yes"} +{"question_id": 1380, "image": "COCO_val2014_000000037900.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1381, "image": "COCO_val2014_000000534516.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 1382, "image": "COCO_val2014_000000534516.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1383, "image": "COCO_val2014_000000534516.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1384, "image": "COCO_val2014_000000534516.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1385, "image": "COCO_val2014_000000534516.jpg", "text": "Is there a tie in the image?", "label": "yes"} +{"question_id": 1386, "image": "COCO_val2014_000000534516.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1387, "image": "COCO_val2014_000000123017.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1388, "image": "COCO_val2014_000000123017.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1389, "image": "COCO_val2014_000000123017.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1390, "image": "COCO_val2014_000000123017.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1391, "image": "COCO_val2014_000000123017.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1392, "image": "COCO_val2014_000000123017.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1393, "image": "COCO_val2014_000000316237.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1394, "image": "COCO_val2014_000000316237.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1395, "image": "COCO_val2014_000000316237.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 1396, "image": "COCO_val2014_000000316237.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1397, "image": "COCO_val2014_000000316237.jpg", "text": "Is there a cell phone in the image?", "label": "yes"} +{"question_id": 1398, "image": "COCO_val2014_000000316237.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1399, "image": "COCO_val2014_000000463522.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1400, "image": "COCO_val2014_000000463522.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1401, "image": "COCO_val2014_000000463522.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1402, "image": "COCO_val2014_000000463522.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1403, "image": "COCO_val2014_000000463522.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 1404, "image": "COCO_val2014_000000463522.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1405, "image": "COCO_val2014_000000511341.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1406, "image": "COCO_val2014_000000511341.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1407, "image": "COCO_val2014_000000511341.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1408, "image": "COCO_val2014_000000511341.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1409, "image": "COCO_val2014_000000511341.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 1410, "image": "COCO_val2014_000000511341.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1411, "image": "COCO_val2014_000000200583.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1412, "image": "COCO_val2014_000000200583.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1413, "image": "COCO_val2014_000000200583.jpg", "text": "Is there a boat in the image?", "label": "yes"} +{"question_id": 1414, "image": "COCO_val2014_000000200583.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1415, "image": "COCO_val2014_000000200583.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 1416, "image": "COCO_val2014_000000200583.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1417, "image": "COCO_val2014_000000424585.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1418, "image": "COCO_val2014_000000424585.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1419, "image": "COCO_val2014_000000424585.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1420, "image": "COCO_val2014_000000424585.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1421, "image": "COCO_val2014_000000424585.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1422, "image": "COCO_val2014_000000424585.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1423, "image": "COCO_val2014_000000100215.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 1424, "image": "COCO_val2014_000000100215.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1425, "image": "COCO_val2014_000000100215.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 1426, "image": "COCO_val2014_000000100215.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1427, "image": "COCO_val2014_000000100215.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1428, "image": "COCO_val2014_000000100215.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1429, "image": "COCO_val2014_000000017379.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 1430, "image": "COCO_val2014_000000017379.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1431, "image": "COCO_val2014_000000017379.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 1432, "image": "COCO_val2014_000000017379.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1433, "image": "COCO_val2014_000000017379.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1434, "image": "COCO_val2014_000000017379.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1435, "image": "COCO_val2014_000000511622.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1436, "image": "COCO_val2014_000000511622.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1437, "image": "COCO_val2014_000000511622.jpg", "text": "Is there a scissors in the image?", "label": "yes"} +{"question_id": 1438, "image": "COCO_val2014_000000511622.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1439, "image": "COCO_val2014_000000511622.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1440, "image": "COCO_val2014_000000511622.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1441, "image": "COCO_val2014_000000407386.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 1442, "image": "COCO_val2014_000000407386.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1443, "image": "COCO_val2014_000000407386.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 1444, "image": "COCO_val2014_000000407386.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1445, "image": "COCO_val2014_000000407386.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1446, "image": "COCO_val2014_000000407386.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1447, "image": "COCO_val2014_000000039516.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 1448, "image": "COCO_val2014_000000039516.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1449, "image": "COCO_val2014_000000039516.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 1450, "image": "COCO_val2014_000000039516.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1451, "image": "COCO_val2014_000000039516.jpg", "text": "Is there a cake in the image?", "label": "yes"} +{"question_id": 1452, "image": "COCO_val2014_000000039516.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1453, "image": "COCO_val2014_000000018918.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 1454, "image": "COCO_val2014_000000018918.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1455, "image": "COCO_val2014_000000018918.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1456, "image": "COCO_val2014_000000018918.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1457, "image": "COCO_val2014_000000018918.jpg", "text": "Is there an oven in the imange?", "label": "yes"} +{"question_id": 1458, "image": "COCO_val2014_000000018918.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1459, "image": "COCO_val2014_000000115626.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1460, "image": "COCO_val2014_000000115626.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1461, "image": "COCO_val2014_000000115626.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 1462, "image": "COCO_val2014_000000115626.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1463, "image": "COCO_val2014_000000115626.jpg", "text": "Is there a parking meter in the image?", "label": "yes"} +{"question_id": 1464, "image": "COCO_val2014_000000115626.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1465, "image": "COCO_val2014_000000391735.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 1466, "image": "COCO_val2014_000000391735.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1467, "image": "COCO_val2014_000000391735.jpg", "text": "Is there a toothbrush in the image?", "label": "yes"} +{"question_id": 1468, "image": "COCO_val2014_000000391735.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1469, "image": "COCO_val2014_000000391735.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1470, "image": "COCO_val2014_000000391735.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1471, "image": "COCO_val2014_000000236370.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1472, "image": "COCO_val2014_000000236370.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1473, "image": "COCO_val2014_000000236370.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1474, "image": "COCO_val2014_000000236370.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1475, "image": "COCO_val2014_000000236370.jpg", "text": "Is there a book in the image?", "label": "yes"} +{"question_id": 1476, "image": "COCO_val2014_000000236370.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1477, "image": "COCO_val2014_000000463542.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 1478, "image": "COCO_val2014_000000463542.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1479, "image": "COCO_val2014_000000463542.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 1480, "image": "COCO_val2014_000000463542.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1481, "image": "COCO_val2014_000000463542.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1482, "image": "COCO_val2014_000000463542.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1483, "image": "COCO_val2014_000000377352.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1484, "image": "COCO_val2014_000000377352.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1485, "image": "COCO_val2014_000000377352.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 1486, "image": "COCO_val2014_000000377352.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1487, "image": "COCO_val2014_000000377352.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1488, "image": "COCO_val2014_000000377352.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1489, "image": "COCO_val2014_000000302405.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 1490, "image": "COCO_val2014_000000302405.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1491, "image": "COCO_val2014_000000302405.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1492, "image": "COCO_val2014_000000302405.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1493, "image": "COCO_val2014_000000302405.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1494, "image": "COCO_val2014_000000302405.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1495, "image": "COCO_val2014_000000554328.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 1496, "image": "COCO_val2014_000000554328.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1497, "image": "COCO_val2014_000000554328.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1498, "image": "COCO_val2014_000000554328.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1499, "image": "COCO_val2014_000000554328.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1500, "image": "COCO_val2014_000000554328.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1501, "image": "COCO_val2014_000000384040.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 1502, "image": "COCO_val2014_000000384040.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1503, "image": "COCO_val2014_000000384040.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1504, "image": "COCO_val2014_000000384040.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1505, "image": "COCO_val2014_000000384040.jpg", "text": "Is there a knife in the image?", "label": "yes"} +{"question_id": 1506, "image": "COCO_val2014_000000384040.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1507, "image": "COCO_val2014_000000023731.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 1508, "image": "COCO_val2014_000000023731.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1509, "image": "COCO_val2014_000000023731.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1510, "image": "COCO_val2014_000000023731.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1511, "image": "COCO_val2014_000000023731.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1512, "image": "COCO_val2014_000000023731.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1513, "image": "COCO_val2014_000000463640.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1514, "image": "COCO_val2014_000000463640.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1515, "image": "COCO_val2014_000000463640.jpg", "text": "Is there a wine glass in the image?", "label": "yes"} +{"question_id": 1516, "image": "COCO_val2014_000000463640.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1517, "image": "COCO_val2014_000000463640.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1518, "image": "COCO_val2014_000000463640.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1519, "image": "COCO_val2014_000000365822.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 1520, "image": "COCO_val2014_000000365822.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1521, "image": "COCO_val2014_000000365822.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1522, "image": "COCO_val2014_000000365822.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1523, "image": "COCO_val2014_000000365822.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1524, "image": "COCO_val2014_000000365822.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1525, "image": "COCO_val2014_000000524979.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 1526, "image": "COCO_val2014_000000524979.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1527, "image": "COCO_val2014_000000524979.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1528, "image": "COCO_val2014_000000524979.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1529, "image": "COCO_val2014_000000524979.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1530, "image": "COCO_val2014_000000524979.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1531, "image": "COCO_val2014_000000070813.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 1532, "image": "COCO_val2014_000000070813.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1533, "image": "COCO_val2014_000000070813.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 1534, "image": "COCO_val2014_000000070813.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1535, "image": "COCO_val2014_000000070813.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1536, "image": "COCO_val2014_000000070813.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1537, "image": "COCO_val2014_000000318209.jpg", "text": "Is there a sandwich in the image?", "label": "yes"} +{"question_id": 1538, "image": "COCO_val2014_000000318209.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1539, "image": "COCO_val2014_000000318209.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 1540, "image": "COCO_val2014_000000318209.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1541, "image": "COCO_val2014_000000318209.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1542, "image": "COCO_val2014_000000318209.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1543, "image": "COCO_val2014_000000016775.jpg", "text": "Is there a bird in the image?", "label": "yes"} +{"question_id": 1544, "image": "COCO_val2014_000000016775.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1545, "image": "COCO_val2014_000000016775.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1546, "image": "COCO_val2014_000000016775.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1547, "image": "COCO_val2014_000000016775.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1548, "image": "COCO_val2014_000000016775.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1549, "image": "COCO_val2014_000000015338.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1550, "image": "COCO_val2014_000000015338.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1551, "image": "COCO_val2014_000000015338.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1552, "image": "COCO_val2014_000000015338.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1553, "image": "COCO_val2014_000000015338.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1554, "image": "COCO_val2014_000000015338.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1555, "image": "COCO_val2014_000000441156.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1556, "image": "COCO_val2014_000000441156.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1557, "image": "COCO_val2014_000000441156.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1558, "image": "COCO_val2014_000000441156.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1559, "image": "COCO_val2014_000000441156.jpg", "text": "Is there an elephant in the imange?", "label": "yes"} +{"question_id": 1560, "image": "COCO_val2014_000000441156.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1561, "image": "COCO_val2014_000000408757.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1562, "image": "COCO_val2014_000000408757.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1563, "image": "COCO_val2014_000000408757.jpg", "text": "Is there a kite in the image?", "label": "yes"} +{"question_id": 1564, "image": "COCO_val2014_000000408757.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1565, "image": "COCO_val2014_000000408757.jpg", "text": "Is there an umbrella in the imange?", "label": "yes"} +{"question_id": 1566, "image": "COCO_val2014_000000408757.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1567, "image": "COCO_val2014_000000550691.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1568, "image": "COCO_val2014_000000550691.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1569, "image": "COCO_val2014_000000550691.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1570, "image": "COCO_val2014_000000550691.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1571, "image": "COCO_val2014_000000550691.jpg", "text": "Is there a bus in the image?", "label": "yes"} +{"question_id": 1572, "image": "COCO_val2014_000000550691.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1573, "image": "COCO_val2014_000000204100.jpg", "text": "Is there a banana in the image?", "label": "yes"} +{"question_id": 1574, "image": "COCO_val2014_000000204100.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1575, "image": "COCO_val2014_000000204100.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1576, "image": "COCO_val2014_000000204100.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1577, "image": "COCO_val2014_000000204100.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1578, "image": "COCO_val2014_000000204100.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1579, "image": "COCO_val2014_000000468169.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1580, "image": "COCO_val2014_000000468169.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1581, "image": "COCO_val2014_000000468169.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 1582, "image": "COCO_val2014_000000468169.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1583, "image": "COCO_val2014_000000468169.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1584, "image": "COCO_val2014_000000468169.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1585, "image": "COCO_val2014_000000198312.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1586, "image": "COCO_val2014_000000198312.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1587, "image": "COCO_val2014_000000198312.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 1588, "image": "COCO_val2014_000000198312.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1589, "image": "COCO_val2014_000000198312.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 1590, "image": "COCO_val2014_000000198312.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1591, "image": "COCO_val2014_000000485485.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1592, "image": "COCO_val2014_000000485485.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1593, "image": "COCO_val2014_000000485485.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1594, "image": "COCO_val2014_000000485485.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1595, "image": "COCO_val2014_000000485485.jpg", "text": "Is there an elephant in the imange?", "label": "yes"} +{"question_id": 1596, "image": "COCO_val2014_000000485485.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1597, "image": "COCO_val2014_000000309371.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1598, "image": "COCO_val2014_000000309371.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1599, "image": "COCO_val2014_000000309371.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1600, "image": "COCO_val2014_000000309371.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1601, "image": "COCO_val2014_000000309371.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 1602, "image": "COCO_val2014_000000309371.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1603, "image": "COCO_val2014_000000472143.jpg", "text": "Is there a bird in the image?", "label": "yes"} +{"question_id": 1604, "image": "COCO_val2014_000000472143.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1605, "image": "COCO_val2014_000000472143.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1606, "image": "COCO_val2014_000000472143.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 1607, "image": "COCO_val2014_000000472143.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1608, "image": "COCO_val2014_000000472143.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 1609, "image": "COCO_val2014_000000236023.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1610, "image": "COCO_val2014_000000236023.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1611, "image": "COCO_val2014_000000236023.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 1612, "image": "COCO_val2014_000000236023.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1613, "image": "COCO_val2014_000000236023.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1614, "image": "COCO_val2014_000000236023.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1615, "image": "COCO_val2014_000000214244.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 1616, "image": "COCO_val2014_000000214244.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1617, "image": "COCO_val2014_000000214244.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1618, "image": "COCO_val2014_000000214244.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1619, "image": "COCO_val2014_000000214244.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 1620, "image": "COCO_val2014_000000214244.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1621, "image": "COCO_val2014_000000397665.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 1622, "image": "COCO_val2014_000000397665.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1623, "image": "COCO_val2014_000000397665.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1624, "image": "COCO_val2014_000000397665.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1625, "image": "COCO_val2014_000000397665.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 1626, "image": "COCO_val2014_000000397665.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1627, "image": "COCO_val2014_000000183965.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1628, "image": "COCO_val2014_000000183965.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1629, "image": "COCO_val2014_000000183965.jpg", "text": "Is there a sandwich in the image?", "label": "yes"} +{"question_id": 1630, "image": "COCO_val2014_000000183965.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1631, "image": "COCO_val2014_000000183965.jpg", "text": "Is there a hot dog in the image?", "label": "yes"} +{"question_id": 1632, "image": "COCO_val2014_000000183965.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1633, "image": "COCO_val2014_000000499105.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1634, "image": "COCO_val2014_000000499105.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1635, "image": "COCO_val2014_000000499105.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1636, "image": "COCO_val2014_000000499105.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1637, "image": "COCO_val2014_000000499105.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 1638, "image": "COCO_val2014_000000499105.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1639, "image": "COCO_val2014_000000259755.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 1640, "image": "COCO_val2014_000000259755.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1641, "image": "COCO_val2014_000000259755.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1642, "image": "COCO_val2014_000000259755.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1643, "image": "COCO_val2014_000000259755.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1644, "image": "COCO_val2014_000000259755.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1645, "image": "COCO_val2014_000000281028.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1646, "image": "COCO_val2014_000000281028.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1647, "image": "COCO_val2014_000000281028.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1648, "image": "COCO_val2014_000000281028.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1649, "image": "COCO_val2014_000000281028.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 1650, "image": "COCO_val2014_000000281028.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 1651, "image": "COCO_val2014_000000199122.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 1652, "image": "COCO_val2014_000000199122.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1653, "image": "COCO_val2014_000000199122.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1654, "image": "COCO_val2014_000000199122.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1655, "image": "COCO_val2014_000000199122.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1656, "image": "COCO_val2014_000000199122.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1657, "image": "COCO_val2014_000000442809.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1658, "image": "COCO_val2014_000000442809.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1659, "image": "COCO_val2014_000000442809.jpg", "text": "Is there a cake in the image?", "label": "yes"} +{"question_id": 1660, "image": "COCO_val2014_000000442809.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1661, "image": "COCO_val2014_000000442809.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 1662, "image": "COCO_val2014_000000442809.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1663, "image": "COCO_val2014_000000482829.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1664, "image": "COCO_val2014_000000482829.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1665, "image": "COCO_val2014_000000482829.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1666, "image": "COCO_val2014_000000482829.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1667, "image": "COCO_val2014_000000482829.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 1668, "image": "COCO_val2014_000000482829.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1669, "image": "COCO_val2014_000000097994.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 1670, "image": "COCO_val2014_000000097994.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1671, "image": "COCO_val2014_000000097994.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 1672, "image": "COCO_val2014_000000097994.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1673, "image": "COCO_val2014_000000097994.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1674, "image": "COCO_val2014_000000097994.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1675, "image": "COCO_val2014_000000246999.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 1676, "image": "COCO_val2014_000000246999.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1677, "image": "COCO_val2014_000000246999.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 1678, "image": "COCO_val2014_000000246999.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1679, "image": "COCO_val2014_000000246999.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 1680, "image": "COCO_val2014_000000246999.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1681, "image": "COCO_val2014_000000338291.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 1682, "image": "COCO_val2014_000000338291.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1683, "image": "COCO_val2014_000000338291.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1684, "image": "COCO_val2014_000000338291.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1685, "image": "COCO_val2014_000000338291.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1686, "image": "COCO_val2014_000000338291.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1687, "image": "COCO_val2014_000000331366.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1688, "image": "COCO_val2014_000000331366.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1689, "image": "COCO_val2014_000000331366.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1690, "image": "COCO_val2014_000000331366.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1691, "image": "COCO_val2014_000000331366.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 1692, "image": "COCO_val2014_000000331366.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1693, "image": "COCO_val2014_000000348524.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 1694, "image": "COCO_val2014_000000348524.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1695, "image": "COCO_val2014_000000348524.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1696, "image": "COCO_val2014_000000348524.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1697, "image": "COCO_val2014_000000348524.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 1698, "image": "COCO_val2014_000000348524.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1699, "image": "COCO_val2014_000000108189.jpg", "text": "Is there a sandwich in the image?", "label": "yes"} +{"question_id": 1700, "image": "COCO_val2014_000000108189.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1701, "image": "COCO_val2014_000000108189.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 1702, "image": "COCO_val2014_000000108189.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1703, "image": "COCO_val2014_000000108189.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1704, "image": "COCO_val2014_000000108189.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1705, "image": "COCO_val2014_000000301575.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 1706, "image": "COCO_val2014_000000301575.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1707, "image": "COCO_val2014_000000301575.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1708, "image": "COCO_val2014_000000301575.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1709, "image": "COCO_val2014_000000301575.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 1710, "image": "COCO_val2014_000000301575.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1711, "image": "COCO_val2014_000000239773.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 1712, "image": "COCO_val2014_000000239773.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1713, "image": "COCO_val2014_000000239773.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1714, "image": "COCO_val2014_000000239773.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1715, "image": "COCO_val2014_000000239773.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1716, "image": "COCO_val2014_000000239773.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1717, "image": "COCO_val2014_000000354976.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1718, "image": "COCO_val2014_000000354976.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1719, "image": "COCO_val2014_000000354976.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 1720, "image": "COCO_val2014_000000354976.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1721, "image": "COCO_val2014_000000354976.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 1722, "image": "COCO_val2014_000000354976.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 1723, "image": "COCO_val2014_000000473199.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1724, "image": "COCO_val2014_000000473199.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1725, "image": "COCO_val2014_000000473199.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 1726, "image": "COCO_val2014_000000473199.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1727, "image": "COCO_val2014_000000473199.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 1728, "image": "COCO_val2014_000000473199.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 1729, "image": "COCO_val2014_000000311759.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1730, "image": "COCO_val2014_000000311759.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1731, "image": "COCO_val2014_000000311759.jpg", "text": "Is there a teddy bear in the image?", "label": "yes"} +{"question_id": 1732, "image": "COCO_val2014_000000311759.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1733, "image": "COCO_val2014_000000311759.jpg", "text": "Is there a bear in the image?", "label": "yes"} +{"question_id": 1734, "image": "COCO_val2014_000000311759.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1735, "image": "COCO_val2014_000000431615.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 1736, "image": "COCO_val2014_000000431615.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1737, "image": "COCO_val2014_000000431615.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1738, "image": "COCO_val2014_000000431615.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1739, "image": "COCO_val2014_000000431615.jpg", "text": "Is there a boat in the image?", "label": "yes"} +{"question_id": 1740, "image": "COCO_val2014_000000431615.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1741, "image": "COCO_val2014_000000343401.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1742, "image": "COCO_val2014_000000343401.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1743, "image": "COCO_val2014_000000343401.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 1744, "image": "COCO_val2014_000000343401.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1745, "image": "COCO_val2014_000000343401.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1746, "image": "COCO_val2014_000000343401.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1747, "image": "COCO_val2014_000000246199.jpg", "text": "Is there a banana in the image?", "label": "yes"} +{"question_id": 1748, "image": "COCO_val2014_000000246199.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1749, "image": "COCO_val2014_000000246199.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 1750, "image": "COCO_val2014_000000246199.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1751, "image": "COCO_val2014_000000246199.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1752, "image": "COCO_val2014_000000246199.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1753, "image": "COCO_val2014_000000372009.jpg", "text": "Is there a bird in the image?", "label": "yes"} +{"question_id": 1754, "image": "COCO_val2014_000000372009.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1755, "image": "COCO_val2014_000000372009.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 1756, "image": "COCO_val2014_000000372009.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1757, "image": "COCO_val2014_000000372009.jpg", "text": "Is there a teddy bear in the image?", "label": "yes"} +{"question_id": 1758, "image": "COCO_val2014_000000372009.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1759, "image": "COCO_val2014_000000346707.jpg", "text": "Is there a banana in the image?", "label": "yes"} +{"question_id": 1760, "image": "COCO_val2014_000000346707.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1761, "image": "COCO_val2014_000000346707.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1762, "image": "COCO_val2014_000000346707.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1763, "image": "COCO_val2014_000000346707.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1764, "image": "COCO_val2014_000000346707.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1765, "image": "COCO_val2014_000000501898.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1766, "image": "COCO_val2014_000000501898.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1767, "image": "COCO_val2014_000000501898.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1768, "image": "COCO_val2014_000000501898.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1769, "image": "COCO_val2014_000000501898.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 1770, "image": "COCO_val2014_000000501898.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1771, "image": "COCO_val2014_000000281766.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1772, "image": "COCO_val2014_000000281766.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1773, "image": "COCO_val2014_000000281766.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 1774, "image": "COCO_val2014_000000281766.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1775, "image": "COCO_val2014_000000281766.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 1776, "image": "COCO_val2014_000000281766.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1777, "image": "COCO_val2014_000000245448.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1778, "image": "COCO_val2014_000000245448.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1779, "image": "COCO_val2014_000000245448.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1780, "image": "COCO_val2014_000000245448.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1781, "image": "COCO_val2014_000000245448.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 1782, "image": "COCO_val2014_000000245448.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1783, "image": "COCO_val2014_000000510138.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1784, "image": "COCO_val2014_000000510138.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1785, "image": "COCO_val2014_000000510138.jpg", "text": "Is there a wine glass in the image?", "label": "yes"} +{"question_id": 1786, "image": "COCO_val2014_000000510138.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1787, "image": "COCO_val2014_000000510138.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 1788, "image": "COCO_val2014_000000510138.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1789, "image": "COCO_val2014_000000001171.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1790, "image": "COCO_val2014_000000001171.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1791, "image": "COCO_val2014_000000001171.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 1792, "image": "COCO_val2014_000000001171.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1793, "image": "COCO_val2014_000000001171.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1794, "image": "COCO_val2014_000000001171.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1795, "image": "COCO_val2014_000000100238.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1796, "image": "COCO_val2014_000000100238.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1797, "image": "COCO_val2014_000000100238.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1798, "image": "COCO_val2014_000000100238.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1799, "image": "COCO_val2014_000000100238.jpg", "text": "Is there a frisbee in the image?", "label": "yes"} +{"question_id": 1800, "image": "COCO_val2014_000000100238.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1801, "image": "COCO_val2014_000000465418.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 1802, "image": "COCO_val2014_000000465418.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1803, "image": "COCO_val2014_000000465418.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1804, "image": "COCO_val2014_000000465418.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1805, "image": "COCO_val2014_000000465418.jpg", "text": "Is there a bus in the image?", "label": "yes"} +{"question_id": 1806, "image": "COCO_val2014_000000465418.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1807, "image": "COCO_val2014_000000392364.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1808, "image": "COCO_val2014_000000392364.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1809, "image": "COCO_val2014_000000392364.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 1810, "image": "COCO_val2014_000000392364.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1811, "image": "COCO_val2014_000000392364.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1812, "image": "COCO_val2014_000000392364.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1813, "image": "COCO_val2014_000000188958.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 1814, "image": "COCO_val2014_000000188958.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1815, "image": "COCO_val2014_000000188958.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1816, "image": "COCO_val2014_000000188958.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1817, "image": "COCO_val2014_000000188958.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 1818, "image": "COCO_val2014_000000188958.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1819, "image": "COCO_val2014_000000436127.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 1820, "image": "COCO_val2014_000000436127.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1821, "image": "COCO_val2014_000000436127.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1822, "image": "COCO_val2014_000000436127.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1823, "image": "COCO_val2014_000000436127.jpg", "text": "Is there a horse in the image?", "label": "yes"} +{"question_id": 1824, "image": "COCO_val2014_000000436127.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1825, "image": "COCO_val2014_000000198397.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1826, "image": "COCO_val2014_000000198397.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1827, "image": "COCO_val2014_000000198397.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1828, "image": "COCO_val2014_000000198397.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1829, "image": "COCO_val2014_000000198397.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1830, "image": "COCO_val2014_000000198397.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1831, "image": "COCO_val2014_000000349936.jpg", "text": "Is there an oven in the imange?", "label": "yes"} +{"question_id": 1832, "image": "COCO_val2014_000000349936.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1833, "image": "COCO_val2014_000000349936.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1834, "image": "COCO_val2014_000000349936.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1835, "image": "COCO_val2014_000000349936.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1836, "image": "COCO_val2014_000000349936.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 1837, "image": "COCO_val2014_000000333756.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1838, "image": "COCO_val2014_000000333756.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1839, "image": "COCO_val2014_000000333756.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1840, "image": "COCO_val2014_000000333756.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1841, "image": "COCO_val2014_000000333756.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 1842, "image": "COCO_val2014_000000333756.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1843, "image": "COCO_val2014_000000474741.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1844, "image": "COCO_val2014_000000474741.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1845, "image": "COCO_val2014_000000474741.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 1846, "image": "COCO_val2014_000000474741.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1847, "image": "COCO_val2014_000000474741.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1848, "image": "COCO_val2014_000000474741.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1849, "image": "COCO_val2014_000000286342.jpg", "text": "Is there a keyboard in the image?", "label": "yes"} +{"question_id": 1850, "image": "COCO_val2014_000000286342.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1851, "image": "COCO_val2014_000000286342.jpg", "text": "Is there a mouse in the image?", "label": "yes"} +{"question_id": 1852, "image": "COCO_val2014_000000286342.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1853, "image": "COCO_val2014_000000286342.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 1854, "image": "COCO_val2014_000000286342.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1855, "image": "COCO_val2014_000000093948.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 1856, "image": "COCO_val2014_000000093948.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1857, "image": "COCO_val2014_000000093948.jpg", "text": "Is there a mouse in the image?", "label": "yes"} +{"question_id": 1858, "image": "COCO_val2014_000000093948.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1859, "image": "COCO_val2014_000000093948.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 1860, "image": "COCO_val2014_000000093948.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1861, "image": "COCO_val2014_000000405740.jpg", "text": "Is there a wine glass in the image?", "label": "yes"} +{"question_id": 1862, "image": "COCO_val2014_000000405740.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1863, "image": "COCO_val2014_000000405740.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1864, "image": "COCO_val2014_000000405740.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1865, "image": "COCO_val2014_000000405740.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 1866, "image": "COCO_val2014_000000405740.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1867, "image": "COCO_val2014_000000304387.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1868, "image": "COCO_val2014_000000304387.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1869, "image": "COCO_val2014_000000304387.jpg", "text": "Is there a surfboard in the image?", "label": "yes"} +{"question_id": 1870, "image": "COCO_val2014_000000304387.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1871, "image": "COCO_val2014_000000304387.jpg", "text": "Is there a kite in the image?", "label": "yes"} +{"question_id": 1872, "image": "COCO_val2014_000000304387.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1873, "image": "COCO_val2014_000000147165.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 1874, "image": "COCO_val2014_000000147165.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1875, "image": "COCO_val2014_000000147165.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1876, "image": "COCO_val2014_000000147165.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1877, "image": "COCO_val2014_000000147165.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 1878, "image": "COCO_val2014_000000147165.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1879, "image": "COCO_val2014_000000495311.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1880, "image": "COCO_val2014_000000495311.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1881, "image": "COCO_val2014_000000495311.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1882, "image": "COCO_val2014_000000495311.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1883, "image": "COCO_val2014_000000495311.jpg", "text": "Is there an airplane in the imange?", "label": "yes"} +{"question_id": 1884, "image": "COCO_val2014_000000495311.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1885, "image": "COCO_val2014_000000312406.jpg", "text": "Is there a banana in the image?", "label": "yes"} +{"question_id": 1886, "image": "COCO_val2014_000000312406.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1887, "image": "COCO_val2014_000000312406.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1888, "image": "COCO_val2014_000000312406.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1889, "image": "COCO_val2014_000000312406.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 1890, "image": "COCO_val2014_000000312406.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1891, "image": "COCO_val2014_000000515820.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 1892, "image": "COCO_val2014_000000515820.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1893, "image": "COCO_val2014_000000515820.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 1894, "image": "COCO_val2014_000000515820.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1895, "image": "COCO_val2014_000000515820.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1896, "image": "COCO_val2014_000000515820.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1897, "image": "COCO_val2014_000000031971.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 1898, "image": "COCO_val2014_000000031971.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1899, "image": "COCO_val2014_000000031971.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 1900, "image": "COCO_val2014_000000031971.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1901, "image": "COCO_val2014_000000031971.jpg", "text": "Is there a book in the image?", "label": "yes"} +{"question_id": 1902, "image": "COCO_val2014_000000031971.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1903, "image": "COCO_val2014_000000418680.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 1904, "image": "COCO_val2014_000000418680.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1905, "image": "COCO_val2014_000000418680.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1906, "image": "COCO_val2014_000000418680.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1907, "image": "COCO_val2014_000000418680.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 1908, "image": "COCO_val2014_000000418680.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1909, "image": "COCO_val2014_000000459680.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1910, "image": "COCO_val2014_000000459680.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1911, "image": "COCO_val2014_000000459680.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 1912, "image": "COCO_val2014_000000459680.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1913, "image": "COCO_val2014_000000459680.jpg", "text": "Is there an umbrella in the imange?", "label": "yes"} +{"question_id": 1914, "image": "COCO_val2014_000000459680.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1915, "image": "COCO_val2014_000000196462.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1916, "image": "COCO_val2014_000000196462.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1917, "image": "COCO_val2014_000000196462.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 1918, "image": "COCO_val2014_000000196462.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1919, "image": "COCO_val2014_000000196462.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 1920, "image": "COCO_val2014_000000196462.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1921, "image": "COCO_val2014_000000276693.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 1922, "image": "COCO_val2014_000000276693.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1923, "image": "COCO_val2014_000000276693.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1924, "image": "COCO_val2014_000000276693.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1925, "image": "COCO_val2014_000000276693.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 1926, "image": "COCO_val2014_000000276693.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1927, "image": "COCO_val2014_000000356424.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1928, "image": "COCO_val2014_000000356424.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 1929, "image": "COCO_val2014_000000356424.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1930, "image": "COCO_val2014_000000356424.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 1931, "image": "COCO_val2014_000000356424.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1932, "image": "COCO_val2014_000000356424.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 1933, "image": "COCO_val2014_000000505335.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1934, "image": "COCO_val2014_000000505335.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1935, "image": "COCO_val2014_000000505335.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1936, "image": "COCO_val2014_000000505335.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1937, "image": "COCO_val2014_000000505335.jpg", "text": "Is there an umbrella in the imange?", "label": "yes"} +{"question_id": 1938, "image": "COCO_val2014_000000505335.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1939, "image": "COCO_val2014_000000172342.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1940, "image": "COCO_val2014_000000172342.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1941, "image": "COCO_val2014_000000172342.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 1942, "image": "COCO_val2014_000000172342.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1943, "image": "COCO_val2014_000000172342.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1944, "image": "COCO_val2014_000000172342.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 1945, "image": "COCO_val2014_000000384970.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1946, "image": "COCO_val2014_000000384970.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1947, "image": "COCO_val2014_000000384970.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1948, "image": "COCO_val2014_000000384970.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1949, "image": "COCO_val2014_000000384970.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1950, "image": "COCO_val2014_000000384970.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1951, "image": "COCO_val2014_000000572260.jpg", "text": "Is there a wine glass in the image?", "label": "yes"} +{"question_id": 1952, "image": "COCO_val2014_000000572260.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1953, "image": "COCO_val2014_000000572260.jpg", "text": "Is there a teddy bear in the image?", "label": "yes"} +{"question_id": 1954, "image": "COCO_val2014_000000572260.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1955, "image": "COCO_val2014_000000572260.jpg", "text": "Is there an apple in the imange?", "label": "yes"} +{"question_id": 1956, "image": "COCO_val2014_000000572260.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1957, "image": "COCO_val2014_000000418471.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1958, "image": "COCO_val2014_000000418471.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1959, "image": "COCO_val2014_000000418471.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1960, "image": "COCO_val2014_000000418471.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 1961, "image": "COCO_val2014_000000418471.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1962, "image": "COCO_val2014_000000418471.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 1963, "image": "COCO_val2014_000000379404.jpg", "text": "Is there a banana in the image?", "label": "yes"} +{"question_id": 1964, "image": "COCO_val2014_000000379404.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1965, "image": "COCO_val2014_000000379404.jpg", "text": "Is there a sandwich in the image?", "label": "yes"} +{"question_id": 1966, "image": "COCO_val2014_000000379404.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1967, "image": "COCO_val2014_000000379404.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1968, "image": "COCO_val2014_000000379404.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1969, "image": "COCO_val2014_000000044801.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 1970, "image": "COCO_val2014_000000044801.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1971, "image": "COCO_val2014_000000044801.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1972, "image": "COCO_val2014_000000044801.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1973, "image": "COCO_val2014_000000044801.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1974, "image": "COCO_val2014_000000044801.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1975, "image": "COCO_val2014_000000293564.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1976, "image": "COCO_val2014_000000293564.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1977, "image": "COCO_val2014_000000293564.jpg", "text": "Is there a surfboard in the image?", "label": "yes"} +{"question_id": 1978, "image": "COCO_val2014_000000293564.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1979, "image": "COCO_val2014_000000293564.jpg", "text": "Is there an umbrella in the imange?", "label": "yes"} +{"question_id": 1980, "image": "COCO_val2014_000000293564.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1981, "image": "COCO_val2014_000000452297.jpg", "text": "Is there a banana in the image?", "label": "yes"} +{"question_id": 1982, "image": "COCO_val2014_000000452297.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1983, "image": "COCO_val2014_000000452297.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 1984, "image": "COCO_val2014_000000452297.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1985, "image": "COCO_val2014_000000452297.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1986, "image": "COCO_val2014_000000452297.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1987, "image": "COCO_val2014_000000543393.jpg", "text": "Is there a fire hydrant in the image?", "label": "yes"} +{"question_id": 1988, "image": "COCO_val2014_000000543393.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 1989, "image": "COCO_val2014_000000543393.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1990, "image": "COCO_val2014_000000543393.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1991, "image": "COCO_val2014_000000543393.jpg", "text": "Is there a stop sign in the image?", "label": "yes"} +{"question_id": 1992, "image": "COCO_val2014_000000543393.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1993, "image": "COCO_val2014_000000172648.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1994, "image": "COCO_val2014_000000172648.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1995, "image": "COCO_val2014_000000172648.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1996, "image": "COCO_val2014_000000172648.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1997, "image": "COCO_val2014_000000172648.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1998, "image": "COCO_val2014_000000172648.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1999, "image": "COCO_val2014_000000308907.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 2000, "image": "COCO_val2014_000000308907.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2001, "image": "COCO_val2014_000000308907.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2002, "image": "COCO_val2014_000000308907.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2003, "image": "COCO_val2014_000000308907.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 2004, "image": "COCO_val2014_000000308907.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2005, "image": "COCO_val2014_000000263594.jpg", "text": "Is there a bird in the image?", "label": "yes"} +{"question_id": 2006, "image": "COCO_val2014_000000263594.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2007, "image": "COCO_val2014_000000263594.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 2008, "image": "COCO_val2014_000000263594.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2009, "image": "COCO_val2014_000000263594.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2010, "image": "COCO_val2014_000000263594.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2011, "image": "COCO_val2014_000000501294.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 2012, "image": "COCO_val2014_000000501294.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2013, "image": "COCO_val2014_000000501294.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2014, "image": "COCO_val2014_000000501294.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2015, "image": "COCO_val2014_000000501294.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 2016, "image": "COCO_val2014_000000501294.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2017, "image": "COCO_val2014_000000500680.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2018, "image": "COCO_val2014_000000500680.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2019, "image": "COCO_val2014_000000500680.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 2020, "image": "COCO_val2014_000000500680.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2021, "image": "COCO_val2014_000000500680.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2022, "image": "COCO_val2014_000000500680.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2023, "image": "COCO_val2014_000000091954.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 2024, "image": "COCO_val2014_000000091954.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2025, "image": "COCO_val2014_000000091954.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 2026, "image": "COCO_val2014_000000091954.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2027, "image": "COCO_val2014_000000091954.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2028, "image": "COCO_val2014_000000091954.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2029, "image": "COCO_val2014_000000454607.jpg", "text": "Is there a book in the image?", "label": "yes"} +{"question_id": 2030, "image": "COCO_val2014_000000454607.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2031, "image": "COCO_val2014_000000454607.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2032, "image": "COCO_val2014_000000454607.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2033, "image": "COCO_val2014_000000454607.jpg", "text": "Is there a cell phone in the image?", "label": "yes"} +{"question_id": 2034, "image": "COCO_val2014_000000454607.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2035, "image": "COCO_val2014_000000363908.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 2036, "image": "COCO_val2014_000000363908.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2037, "image": "COCO_val2014_000000363908.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2038, "image": "COCO_val2014_000000363908.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2039, "image": "COCO_val2014_000000363908.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2040, "image": "COCO_val2014_000000363908.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2041, "image": "COCO_val2014_000000560064.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2042, "image": "COCO_val2014_000000560064.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2043, "image": "COCO_val2014_000000560064.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 2044, "image": "COCO_val2014_000000560064.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2045, "image": "COCO_val2014_000000560064.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 2046, "image": "COCO_val2014_000000560064.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2047, "image": "COCO_val2014_000000348469.jpg", "text": "Is there a bird in the image?", "label": "yes"} +{"question_id": 2048, "image": "COCO_val2014_000000348469.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2049, "image": "COCO_val2014_000000348469.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2050, "image": "COCO_val2014_000000348469.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2051, "image": "COCO_val2014_000000348469.jpg", "text": "Is there a baseball bat in the image?", "label": "yes"} +{"question_id": 2052, "image": "COCO_val2014_000000348469.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2053, "image": "COCO_val2014_000000167724.jpg", "text": "Is there an oven in the imange?", "label": "yes"} +{"question_id": 2054, "image": "COCO_val2014_000000167724.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2055, "image": "COCO_val2014_000000167724.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 2056, "image": "COCO_val2014_000000167724.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2057, "image": "COCO_val2014_000000167724.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2058, "image": "COCO_val2014_000000167724.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2059, "image": "COCO_val2014_000000262736.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 2060, "image": "COCO_val2014_000000262736.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2061, "image": "COCO_val2014_000000262736.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 2062, "image": "COCO_val2014_000000262736.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2063, "image": "COCO_val2014_000000262736.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2064, "image": "COCO_val2014_000000262736.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2065, "image": "COCO_val2014_000000076416.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2066, "image": "COCO_val2014_000000076416.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2067, "image": "COCO_val2014_000000076416.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 2068, "image": "COCO_val2014_000000076416.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2069, "image": "COCO_val2014_000000076416.jpg", "text": "Is there a cell phone in the image?", "label": "yes"} +{"question_id": 2070, "image": "COCO_val2014_000000076416.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2071, "image": "COCO_val2014_000000541783.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2072, "image": "COCO_val2014_000000541783.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2073, "image": "COCO_val2014_000000541783.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2074, "image": "COCO_val2014_000000541783.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2075, "image": "COCO_val2014_000000541783.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 2076, "image": "COCO_val2014_000000541783.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2077, "image": "COCO_val2014_000000445200.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2078, "image": "COCO_val2014_000000445200.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2079, "image": "COCO_val2014_000000445200.jpg", "text": "Is there a broccoli in the image?", "label": "yes"} +{"question_id": 2080, "image": "COCO_val2014_000000445200.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2081, "image": "COCO_val2014_000000445200.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2082, "image": "COCO_val2014_000000445200.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2083, "image": "COCO_val2014_000000433574.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2084, "image": "COCO_val2014_000000433574.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2085, "image": "COCO_val2014_000000433574.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 2086, "image": "COCO_val2014_000000433574.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2087, "image": "COCO_val2014_000000433574.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2088, "image": "COCO_val2014_000000433574.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 2089, "image": "COCO_val2014_000000212241.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 2090, "image": "COCO_val2014_000000212241.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2091, "image": "COCO_val2014_000000212241.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2092, "image": "COCO_val2014_000000212241.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2093, "image": "COCO_val2014_000000212241.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 2094, "image": "COCO_val2014_000000212241.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2095, "image": "COCO_val2014_000000114941.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2096, "image": "COCO_val2014_000000114941.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2097, "image": "COCO_val2014_000000114941.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 2098, "image": "COCO_val2014_000000114941.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2099, "image": "COCO_val2014_000000114941.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2100, "image": "COCO_val2014_000000114941.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2101, "image": "COCO_val2014_000000493753.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 2102, "image": "COCO_val2014_000000493753.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2103, "image": "COCO_val2014_000000493753.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 2104, "image": "COCO_val2014_000000493753.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2105, "image": "COCO_val2014_000000493753.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2106, "image": "COCO_val2014_000000493753.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 2107, "image": "COCO_val2014_000000410597.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2108, "image": "COCO_val2014_000000410597.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2109, "image": "COCO_val2014_000000410597.jpg", "text": "Is there a wine glass in the image?", "label": "yes"} +{"question_id": 2110, "image": "COCO_val2014_000000410597.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2111, "image": "COCO_val2014_000000410597.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2112, "image": "COCO_val2014_000000410597.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 2113, "image": "COCO_val2014_000000382617.jpg", "text": "Is there a mouse in the image?", "label": "yes"} +{"question_id": 2114, "image": "COCO_val2014_000000382617.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2115, "image": "COCO_val2014_000000382617.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2116, "image": "COCO_val2014_000000382617.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2117, "image": "COCO_val2014_000000382617.jpg", "text": "Is there a book in the image?", "label": "yes"} +{"question_id": 2118, "image": "COCO_val2014_000000382617.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2119, "image": "COCO_val2014_000000467887.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2120, "image": "COCO_val2014_000000467887.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2121, "image": "COCO_val2014_000000467887.jpg", "text": "Is there a mouse in the image?", "label": "yes"} +{"question_id": 2122, "image": "COCO_val2014_000000467887.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2123, "image": "COCO_val2014_000000467887.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 2124, "image": "COCO_val2014_000000467887.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 2125, "image": "COCO_val2014_000000120792.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2126, "image": "COCO_val2014_000000120792.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2127, "image": "COCO_val2014_000000120792.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 2128, "image": "COCO_val2014_000000120792.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2129, "image": "COCO_val2014_000000120792.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2130, "image": "COCO_val2014_000000120792.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 2131, "image": "COCO_val2014_000000125524.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2132, "image": "COCO_val2014_000000125524.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2133, "image": "COCO_val2014_000000125524.jpg", "text": "Is there a bus in the image?", "label": "yes"} +{"question_id": 2134, "image": "COCO_val2014_000000125524.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2135, "image": "COCO_val2014_000000125524.jpg", "text": "Is there a fire hydrant in the image?", "label": "yes"} +{"question_id": 2136, "image": "COCO_val2014_000000125524.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2137, "image": "COCO_val2014_000000196053.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2138, "image": "COCO_val2014_000000196053.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2139, "image": "COCO_val2014_000000196053.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2140, "image": "COCO_val2014_000000196053.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2141, "image": "COCO_val2014_000000196053.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 2142, "image": "COCO_val2014_000000196053.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2143, "image": "COCO_val2014_000000156704.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2144, "image": "COCO_val2014_000000156704.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2145, "image": "COCO_val2014_000000156704.jpg", "text": "Is there a surfboard in the image?", "label": "yes"} +{"question_id": 2146, "image": "COCO_val2014_000000156704.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2147, "image": "COCO_val2014_000000156704.jpg", "text": "Is there an umbrella in the imange?", "label": "yes"} +{"question_id": 2148, "image": "COCO_val2014_000000156704.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2149, "image": "COCO_val2014_000000088507.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2150, "image": "COCO_val2014_000000088507.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2151, "image": "COCO_val2014_000000088507.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2152, "image": "COCO_val2014_000000088507.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2153, "image": "COCO_val2014_000000088507.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 2154, "image": "COCO_val2014_000000088507.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2155, "image": "COCO_val2014_000000279499.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2156, "image": "COCO_val2014_000000279499.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2157, "image": "COCO_val2014_000000279499.jpg", "text": "Is there a bus in the image?", "label": "yes"} +{"question_id": 2158, "image": "COCO_val2014_000000279499.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2159, "image": "COCO_val2014_000000279499.jpg", "text": "Is there an umbrella in the imange?", "label": "yes"} +{"question_id": 2160, "image": "COCO_val2014_000000279499.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2161, "image": "COCO_val2014_000000155131.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2162, "image": "COCO_val2014_000000155131.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2163, "image": "COCO_val2014_000000155131.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2164, "image": "COCO_val2014_000000155131.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2165, "image": "COCO_val2014_000000155131.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 2166, "image": "COCO_val2014_000000155131.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2167, "image": "COCO_val2014_000000252135.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2168, "image": "COCO_val2014_000000252135.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2169, "image": "COCO_val2014_000000252135.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2170, "image": "COCO_val2014_000000252135.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2171, "image": "COCO_val2014_000000252135.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 2172, "image": "COCO_val2014_000000252135.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2173, "image": "COCO_val2014_000000501652.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2174, "image": "COCO_val2014_000000501652.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2175, "image": "COCO_val2014_000000501652.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2176, "image": "COCO_val2014_000000501652.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2177, "image": "COCO_val2014_000000501652.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2178, "image": "COCO_val2014_000000501652.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 2179, "image": "COCO_val2014_000000238691.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2180, "image": "COCO_val2014_000000238691.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2181, "image": "COCO_val2014_000000238691.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2182, "image": "COCO_val2014_000000238691.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2183, "image": "COCO_val2014_000000238691.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 2184, "image": "COCO_val2014_000000238691.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2185, "image": "COCO_val2014_000000332908.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2186, "image": "COCO_val2014_000000332908.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2187, "image": "COCO_val2014_000000332908.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2188, "image": "COCO_val2014_000000332908.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2189, "image": "COCO_val2014_000000332908.jpg", "text": "Is there an oven in the imange?", "label": "yes"} +{"question_id": 2190, "image": "COCO_val2014_000000332908.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2191, "image": "COCO_val2014_000000372819.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 2192, "image": "COCO_val2014_000000372819.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2193, "image": "COCO_val2014_000000372819.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2194, "image": "COCO_val2014_000000372819.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2195, "image": "COCO_val2014_000000372819.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 2196, "image": "COCO_val2014_000000372819.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2197, "image": "COCO_val2014_000000470699.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 2198, "image": "COCO_val2014_000000470699.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2199, "image": "COCO_val2014_000000470699.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2200, "image": "COCO_val2014_000000470699.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2201, "image": "COCO_val2014_000000470699.jpg", "text": "Is there a surfboard in the image?", "label": "yes"} +{"question_id": 2202, "image": "COCO_val2014_000000470699.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2203, "image": "COCO_val2014_000000023084.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2204, "image": "COCO_val2014_000000023084.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2205, "image": "COCO_val2014_000000023084.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2206, "image": "COCO_val2014_000000023084.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2207, "image": "COCO_val2014_000000023084.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 2208, "image": "COCO_val2014_000000023084.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2209, "image": "COCO_val2014_000000545353.jpg", "text": "Is there a pizza in the image?", "label": "yes"} +{"question_id": 2210, "image": "COCO_val2014_000000545353.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2211, "image": "COCO_val2014_000000545353.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2212, "image": "COCO_val2014_000000545353.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2213, "image": "COCO_val2014_000000545353.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 2214, "image": "COCO_val2014_000000545353.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2215, "image": "COCO_val2014_000000394535.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2216, "image": "COCO_val2014_000000394535.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2217, "image": "COCO_val2014_000000394535.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2218, "image": "COCO_val2014_000000394535.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2219, "image": "COCO_val2014_000000394535.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 2220, "image": "COCO_val2014_000000394535.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2221, "image": "COCO_val2014_000000579415.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 2222, "image": "COCO_val2014_000000579415.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2223, "image": "COCO_val2014_000000579415.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2224, "image": "COCO_val2014_000000579415.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2225, "image": "COCO_val2014_000000579415.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 2226, "image": "COCO_val2014_000000579415.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2227, "image": "COCO_val2014_000000233521.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2228, "image": "COCO_val2014_000000233521.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2229, "image": "COCO_val2014_000000233521.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 2230, "image": "COCO_val2014_000000233521.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2231, "image": "COCO_val2014_000000233521.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2232, "image": "COCO_val2014_000000233521.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2233, "image": "COCO_val2014_000000355256.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2234, "image": "COCO_val2014_000000355256.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2235, "image": "COCO_val2014_000000355256.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2236, "image": "COCO_val2014_000000355256.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2237, "image": "COCO_val2014_000000355256.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2238, "image": "COCO_val2014_000000355256.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2239, "image": "COCO_val2014_000000304819.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 2240, "image": "COCO_val2014_000000304819.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2241, "image": "COCO_val2014_000000304819.jpg", "text": "Is there a cat in the image?", "label": "yes"} +{"question_id": 2242, "image": "COCO_val2014_000000304819.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2243, "image": "COCO_val2014_000000304819.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 2244, "image": "COCO_val2014_000000304819.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2245, "image": "COCO_val2014_000000240434.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 2246, "image": "COCO_val2014_000000240434.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2247, "image": "COCO_val2014_000000240434.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2248, "image": "COCO_val2014_000000240434.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2249, "image": "COCO_val2014_000000240434.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 2250, "image": "COCO_val2014_000000240434.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2251, "image": "COCO_val2014_000000199940.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2252, "image": "COCO_val2014_000000199940.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2253, "image": "COCO_val2014_000000199940.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2254, "image": "COCO_val2014_000000199940.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2255, "image": "COCO_val2014_000000199940.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2256, "image": "COCO_val2014_000000199940.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2257, "image": "COCO_val2014_000000549390.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2258, "image": "COCO_val2014_000000549390.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2259, "image": "COCO_val2014_000000549390.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2260, "image": "COCO_val2014_000000549390.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2261, "image": "COCO_val2014_000000549390.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 2262, "image": "COCO_val2014_000000549390.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2263, "image": "COCO_val2014_000000235541.jpg", "text": "Is there a giraffe in the image?", "label": "yes"} +{"question_id": 2264, "image": "COCO_val2014_000000235541.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2265, "image": "COCO_val2014_000000235541.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2266, "image": "COCO_val2014_000000235541.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2267, "image": "COCO_val2014_000000235541.jpg", "text": "Is there a tie in the image?", "label": "yes"} +{"question_id": 2268, "image": "COCO_val2014_000000235541.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2269, "image": "COCO_val2014_000000068418.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 2270, "image": "COCO_val2014_000000068418.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2271, "image": "COCO_val2014_000000068418.jpg", "text": "Is there a mouse in the image?", "label": "yes"} +{"question_id": 2272, "image": "COCO_val2014_000000068418.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2273, "image": "COCO_val2014_000000068418.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 2274, "image": "COCO_val2014_000000068418.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2275, "image": "COCO_val2014_000000368541.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2276, "image": "COCO_val2014_000000368541.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2277, "image": "COCO_val2014_000000368541.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 2278, "image": "COCO_val2014_000000368541.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2279, "image": "COCO_val2014_000000368541.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2280, "image": "COCO_val2014_000000368541.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2281, "image": "COCO_val2014_000000006033.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2282, "image": "COCO_val2014_000000006033.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2283, "image": "COCO_val2014_000000006033.jpg", "text": "Is there a suitcase in the image?", "label": "yes"} +{"question_id": 2284, "image": "COCO_val2014_000000006033.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2285, "image": "COCO_val2014_000000006033.jpg", "text": "Is there a bus in the image?", "label": "yes"} +{"question_id": 2286, "image": "COCO_val2014_000000006033.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2287, "image": "COCO_val2014_000000021327.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 2288, "image": "COCO_val2014_000000021327.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2289, "image": "COCO_val2014_000000021327.jpg", "text": "Is there a pizza in the image?", "label": "yes"} +{"question_id": 2290, "image": "COCO_val2014_000000021327.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2291, "image": "COCO_val2014_000000021327.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2292, "image": "COCO_val2014_000000021327.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2293, "image": "COCO_val2014_000000390157.jpg", "text": "Is there a wine glass in the image?", "label": "yes"} +{"question_id": 2294, "image": "COCO_val2014_000000390157.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2295, "image": "COCO_val2014_000000390157.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2296, "image": "COCO_val2014_000000390157.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2297, "image": "COCO_val2014_000000390157.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2298, "image": "COCO_val2014_000000390157.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2299, "image": "COCO_val2014_000000298633.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2300, "image": "COCO_val2014_000000298633.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2301, "image": "COCO_val2014_000000298633.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2302, "image": "COCO_val2014_000000298633.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2303, "image": "COCO_val2014_000000298633.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 2304, "image": "COCO_val2014_000000298633.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2305, "image": "COCO_val2014_000000579277.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2306, "image": "COCO_val2014_000000579277.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2307, "image": "COCO_val2014_000000579277.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 2308, "image": "COCO_val2014_000000579277.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2309, "image": "COCO_val2014_000000579277.jpg", "text": "Is there a carrot in the image?", "label": "yes"} +{"question_id": 2310, "image": "COCO_val2014_000000579277.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2311, "image": "COCO_val2014_000000042685.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2312, "image": "COCO_val2014_000000042685.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2313, "image": "COCO_val2014_000000042685.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2314, "image": "COCO_val2014_000000042685.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2315, "image": "COCO_val2014_000000042685.jpg", "text": "Is there a pizza in the image?", "label": "yes"} +{"question_id": 2316, "image": "COCO_val2014_000000042685.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2317, "image": "COCO_val2014_000000553992.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 2318, "image": "COCO_val2014_000000553992.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2319, "image": "COCO_val2014_000000553992.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2320, "image": "COCO_val2014_000000553992.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2321, "image": "COCO_val2014_000000553992.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 2322, "image": "COCO_val2014_000000553992.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2323, "image": "COCO_val2014_000000243158.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 2324, "image": "COCO_val2014_000000243158.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2325, "image": "COCO_val2014_000000243158.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 2326, "image": "COCO_val2014_000000243158.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2327, "image": "COCO_val2014_000000243158.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2328, "image": "COCO_val2014_000000243158.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2329, "image": "COCO_val2014_000000303971.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 2330, "image": "COCO_val2014_000000303971.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2331, "image": "COCO_val2014_000000303971.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2332, "image": "COCO_val2014_000000303971.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2333, "image": "COCO_val2014_000000303971.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 2334, "image": "COCO_val2014_000000303971.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2335, "image": "COCO_val2014_000000405762.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2336, "image": "COCO_val2014_000000405762.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2337, "image": "COCO_val2014_000000405762.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 2338, "image": "COCO_val2014_000000405762.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2339, "image": "COCO_val2014_000000405762.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2340, "image": "COCO_val2014_000000405762.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2341, "image": "COCO_val2014_000000343967.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 2342, "image": "COCO_val2014_000000343967.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2343, "image": "COCO_val2014_000000343967.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 2344, "image": "COCO_val2014_000000343967.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2345, "image": "COCO_val2014_000000343967.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 2346, "image": "COCO_val2014_000000343967.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2347, "image": "COCO_val2014_000000477598.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 2348, "image": "COCO_val2014_000000477598.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2349, "image": "COCO_val2014_000000477598.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2350, "image": "COCO_val2014_000000477598.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2351, "image": "COCO_val2014_000000477598.jpg", "text": "Is there a frisbee in the image?", "label": "yes"} +{"question_id": 2352, "image": "COCO_val2014_000000477598.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2353, "image": "COCO_val2014_000000044993.jpg", "text": "Is there a banana in the image?", "label": "yes"} +{"question_id": 2354, "image": "COCO_val2014_000000044993.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2355, "image": "COCO_val2014_000000044993.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2356, "image": "COCO_val2014_000000044993.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2357, "image": "COCO_val2014_000000044993.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 2358, "image": "COCO_val2014_000000044993.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2359, "image": "COCO_val2014_000000381195.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2360, "image": "COCO_val2014_000000381195.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2361, "image": "COCO_val2014_000000381195.jpg", "text": "Is there a broccoli in the image?", "label": "yes"} +{"question_id": 2362, "image": "COCO_val2014_000000381195.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2363, "image": "COCO_val2014_000000381195.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2364, "image": "COCO_val2014_000000381195.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2365, "image": "COCO_val2014_000000337502.jpg", "text": "Is there a pizza in the image?", "label": "yes"} +{"question_id": 2366, "image": "COCO_val2014_000000337502.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2367, "image": "COCO_val2014_000000337502.jpg", "text": "Is there a broccoli in the image?", "label": "yes"} +{"question_id": 2368, "image": "COCO_val2014_000000337502.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2369, "image": "COCO_val2014_000000337502.jpg", "text": "Is there an oven in the imange?", "label": "yes"} +{"question_id": 2370, "image": "COCO_val2014_000000337502.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2371, "image": "COCO_val2014_000000325347.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2372, "image": "COCO_val2014_000000325347.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2373, "image": "COCO_val2014_000000325347.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2374, "image": "COCO_val2014_000000325347.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2375, "image": "COCO_val2014_000000325347.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2376, "image": "COCO_val2014_000000325347.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2377, "image": "COCO_val2014_000000256906.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 2378, "image": "COCO_val2014_000000256906.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2379, "image": "COCO_val2014_000000256906.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2380, "image": "COCO_val2014_000000256906.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2381, "image": "COCO_val2014_000000256906.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 2382, "image": "COCO_val2014_000000256906.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2383, "image": "COCO_val2014_000000061507.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2384, "image": "COCO_val2014_000000061507.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2385, "image": "COCO_val2014_000000061507.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 2386, "image": "COCO_val2014_000000061507.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2387, "image": "COCO_val2014_000000061507.jpg", "text": "Is there a suitcase in the image?", "label": "yes"} +{"question_id": 2388, "image": "COCO_val2014_000000061507.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2389, "image": "COCO_val2014_000000084410.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 2390, "image": "COCO_val2014_000000084410.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2391, "image": "COCO_val2014_000000084410.jpg", "text": "Is there a wine glass in the image?", "label": "yes"} +{"question_id": 2392, "image": "COCO_val2014_000000084410.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2393, "image": "COCO_val2014_000000084410.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 2394, "image": "COCO_val2014_000000084410.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2395, "image": "COCO_val2014_000000288576.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2396, "image": "COCO_val2014_000000288576.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2397, "image": "COCO_val2014_000000288576.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 2398, "image": "COCO_val2014_000000288576.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2399, "image": "COCO_val2014_000000288576.jpg", "text": "Is there a frisbee in the image?", "label": "yes"} +{"question_id": 2400, "image": "COCO_val2014_000000288576.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2401, "image": "COCO_val2014_000000328301.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2402, "image": "COCO_val2014_000000328301.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2403, "image": "COCO_val2014_000000328301.jpg", "text": "Is there a boat in the image?", "label": "yes"} +{"question_id": 2404, "image": "COCO_val2014_000000328301.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2405, "image": "COCO_val2014_000000328301.jpg", "text": "Is there a fire hydrant in the image?", "label": "yes"} +{"question_id": 2406, "image": "COCO_val2014_000000328301.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2407, "image": "COCO_val2014_000000307262.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2408, "image": "COCO_val2014_000000307262.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2409, "image": "COCO_val2014_000000307262.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 2410, "image": "COCO_val2014_000000307262.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2411, "image": "COCO_val2014_000000307262.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2412, "image": "COCO_val2014_000000307262.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2413, "image": "COCO_val2014_000000573796.jpg", "text": "Is there a knife in the image?", "label": "yes"} +{"question_id": 2414, "image": "COCO_val2014_000000573796.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2415, "image": "COCO_val2014_000000573796.jpg", "text": "Is there an apple in the imange?", "label": "yes"} +{"question_id": 2416, "image": "COCO_val2014_000000573796.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2417, "image": "COCO_val2014_000000573796.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2418, "image": "COCO_val2014_000000573796.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2419, "image": "COCO_val2014_000000154846.jpg", "text": "Is there a pizza in the image?", "label": "yes"} +{"question_id": 2420, "image": "COCO_val2014_000000154846.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2421, "image": "COCO_val2014_000000154846.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2422, "image": "COCO_val2014_000000154846.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2423, "image": "COCO_val2014_000000154846.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2424, "image": "COCO_val2014_000000154846.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2425, "image": "COCO_val2014_000000472375.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 2426, "image": "COCO_val2014_000000472375.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2427, "image": "COCO_val2014_000000472375.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 2428, "image": "COCO_val2014_000000472375.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2429, "image": "COCO_val2014_000000472375.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 2430, "image": "COCO_val2014_000000472375.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2431, "image": "COCO_val2014_000000446651.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2432, "image": "COCO_val2014_000000446651.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2433, "image": "COCO_val2014_000000446651.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 2434, "image": "COCO_val2014_000000446651.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2435, "image": "COCO_val2014_000000446651.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2436, "image": "COCO_val2014_000000446651.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2437, "image": "COCO_val2014_000000267684.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2438, "image": "COCO_val2014_000000267684.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2439, "image": "COCO_val2014_000000267684.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2440, "image": "COCO_val2014_000000267684.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2441, "image": "COCO_val2014_000000267684.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 2442, "image": "COCO_val2014_000000267684.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2443, "image": "COCO_val2014_000000238029.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2444, "image": "COCO_val2014_000000238029.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2445, "image": "COCO_val2014_000000238029.jpg", "text": "Is there a wine glass in the image?", "label": "yes"} +{"question_id": 2446, "image": "COCO_val2014_000000238029.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2447, "image": "COCO_val2014_000000238029.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 2448, "image": "COCO_val2014_000000238029.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2449, "image": "COCO_val2014_000000294475.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 2450, "image": "COCO_val2014_000000294475.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2451, "image": "COCO_val2014_000000294475.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2452, "image": "COCO_val2014_000000294475.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2453, "image": "COCO_val2014_000000294475.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2454, "image": "COCO_val2014_000000294475.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 2455, "image": "COCO_val2014_000000149592.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2456, "image": "COCO_val2014_000000149592.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2457, "image": "COCO_val2014_000000149592.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 2458, "image": "COCO_val2014_000000149592.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2459, "image": "COCO_val2014_000000149592.jpg", "text": "Is there a boat in the image?", "label": "yes"} +{"question_id": 2460, "image": "COCO_val2014_000000149592.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2461, "image": "COCO_val2014_000000447787.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2462, "image": "COCO_val2014_000000447787.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2463, "image": "COCO_val2014_000000447787.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2464, "image": "COCO_val2014_000000447787.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2465, "image": "COCO_val2014_000000447787.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2466, "image": "COCO_val2014_000000447787.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2467, "image": "COCO_val2014_000000458325.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2468, "image": "COCO_val2014_000000458325.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2469, "image": "COCO_val2014_000000458325.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 2470, "image": "COCO_val2014_000000458325.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2471, "image": "COCO_val2014_000000458325.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2472, "image": "COCO_val2014_000000458325.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2473, "image": "COCO_val2014_000000388237.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2474, "image": "COCO_val2014_000000388237.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2475, "image": "COCO_val2014_000000388237.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2476, "image": "COCO_val2014_000000388237.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2477, "image": "COCO_val2014_000000388237.jpg", "text": "Is there a skateboard in the image?", "label": "yes"} +{"question_id": 2478, "image": "COCO_val2014_000000388237.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2479, "image": "COCO_val2014_000000038645.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2480, "image": "COCO_val2014_000000038645.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2481, "image": "COCO_val2014_000000038645.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 2482, "image": "COCO_val2014_000000038645.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2483, "image": "COCO_val2014_000000038645.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 2484, "image": "COCO_val2014_000000038645.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2485, "image": "COCO_val2014_000000071738.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2486, "image": "COCO_val2014_000000071738.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2487, "image": "COCO_val2014_000000071738.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2488, "image": "COCO_val2014_000000071738.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2489, "image": "COCO_val2014_000000071738.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 2490, "image": "COCO_val2014_000000071738.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2491, "image": "COCO_val2014_000000170077.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2492, "image": "COCO_val2014_000000170077.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2493, "image": "COCO_val2014_000000170077.jpg", "text": "Is there a wine glass in the image?", "label": "yes"} +{"question_id": 2494, "image": "COCO_val2014_000000170077.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2495, "image": "COCO_val2014_000000170077.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 2496, "image": "COCO_val2014_000000170077.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 2497, "image": "COCO_val2014_000000378751.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 2498, "image": "COCO_val2014_000000378751.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2499, "image": "COCO_val2014_000000378751.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 2500, "image": "COCO_val2014_000000378751.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2501, "image": "COCO_val2014_000000378751.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 2502, "image": "COCO_val2014_000000378751.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2503, "image": "COCO_val2014_000000073182.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2504, "image": "COCO_val2014_000000073182.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2505, "image": "COCO_val2014_000000073182.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 2506, "image": "COCO_val2014_000000073182.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2507, "image": "COCO_val2014_000000073182.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 2508, "image": "COCO_val2014_000000073182.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2509, "image": "COCO_val2014_000000246928.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2510, "image": "COCO_val2014_000000246928.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2511, "image": "COCO_val2014_000000246928.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2512, "image": "COCO_val2014_000000246928.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2513, "image": "COCO_val2014_000000246928.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 2514, "image": "COCO_val2014_000000246928.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2515, "image": "COCO_val2014_000000528136.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 2516, "image": "COCO_val2014_000000528136.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2517, "image": "COCO_val2014_000000528136.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2518, "image": "COCO_val2014_000000528136.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2519, "image": "COCO_val2014_000000528136.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2520, "image": "COCO_val2014_000000528136.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2521, "image": "COCO_val2014_000000209290.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2522, "image": "COCO_val2014_000000209290.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2523, "image": "COCO_val2014_000000209290.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 2524, "image": "COCO_val2014_000000209290.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 2525, "image": "COCO_val2014_000000209290.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2526, "image": "COCO_val2014_000000209290.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 2527, "image": "COCO_val2014_000000564511.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2528, "image": "COCO_val2014_000000564511.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2529, "image": "COCO_val2014_000000564511.jpg", "text": "Is there a wine glass in the image?", "label": "yes"} +{"question_id": 2530, "image": "COCO_val2014_000000564511.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2531, "image": "COCO_val2014_000000564511.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2532, "image": "COCO_val2014_000000564511.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2533, "image": "COCO_val2014_000000200739.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 2534, "image": "COCO_val2014_000000200739.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2535, "image": "COCO_val2014_000000200739.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2536, "image": "COCO_val2014_000000200739.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2537, "image": "COCO_val2014_000000200739.jpg", "text": "Is there a horse in the image?", "label": "yes"} +{"question_id": 2538, "image": "COCO_val2014_000000200739.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2539, "image": "COCO_val2014_000000462805.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 2540, "image": "COCO_val2014_000000462805.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2541, "image": "COCO_val2014_000000462805.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2542, "image": "COCO_val2014_000000462805.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2543, "image": "COCO_val2014_000000462805.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 2544, "image": "COCO_val2014_000000462805.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2545, "image": "COCO_val2014_000000163575.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 2546, "image": "COCO_val2014_000000163575.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2547, "image": "COCO_val2014_000000163575.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2548, "image": "COCO_val2014_000000163575.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2549, "image": "COCO_val2014_000000163575.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 2550, "image": "COCO_val2014_000000163575.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2551, "image": "COCO_val2014_000000059383.jpg", "text": "Is there an oven in the imange?", "label": "yes"} +{"question_id": 2552, "image": "COCO_val2014_000000059383.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2553, "image": "COCO_val2014_000000059383.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2554, "image": "COCO_val2014_000000059383.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2555, "image": "COCO_val2014_000000059383.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 2556, "image": "COCO_val2014_000000059383.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2557, "image": "COCO_val2014_000000478736.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 2558, "image": "COCO_val2014_000000478736.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2559, "image": "COCO_val2014_000000478736.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2560, "image": "COCO_val2014_000000478736.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2561, "image": "COCO_val2014_000000478736.jpg", "text": "Is there a stop sign in the image?", "label": "yes"} +{"question_id": 2562, "image": "COCO_val2014_000000478736.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2563, "image": "COCO_val2014_000000156282.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2564, "image": "COCO_val2014_000000156282.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2565, "image": "COCO_val2014_000000156282.jpg", "text": "Is there a kite in the image?", "label": "yes"} +{"question_id": 2566, "image": "COCO_val2014_000000156282.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2567, "image": "COCO_val2014_000000156282.jpg", "text": "Is there an umbrella in the imange?", "label": "yes"} +{"question_id": 2568, "image": "COCO_val2014_000000156282.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2569, "image": "COCO_val2014_000000052689.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2570, "image": "COCO_val2014_000000052689.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2571, "image": "COCO_val2014_000000052689.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 2572, "image": "COCO_val2014_000000052689.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2573, "image": "COCO_val2014_000000052689.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 2574, "image": "COCO_val2014_000000052689.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2575, "image": "COCO_val2014_000000516601.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 2576, "image": "COCO_val2014_000000516601.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2577, "image": "COCO_val2014_000000516601.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2578, "image": "COCO_val2014_000000516601.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2579, "image": "COCO_val2014_000000516601.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 2580, "image": "COCO_val2014_000000516601.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2581, "image": "COCO_val2014_000000562155.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2582, "image": "COCO_val2014_000000562155.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2583, "image": "COCO_val2014_000000562155.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2584, "image": "COCO_val2014_000000562155.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2585, "image": "COCO_val2014_000000562155.jpg", "text": "Is there a tie in the image?", "label": "yes"} +{"question_id": 2586, "image": "COCO_val2014_000000562155.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2587, "image": "COCO_val2014_000000142056.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2588, "image": "COCO_val2014_000000142056.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2589, "image": "COCO_val2014_000000142056.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2590, "image": "COCO_val2014_000000142056.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2591, "image": "COCO_val2014_000000142056.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 2592, "image": "COCO_val2014_000000142056.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2593, "image": "COCO_val2014_000000299986.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2594, "image": "COCO_val2014_000000299986.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2595, "image": "COCO_val2014_000000299986.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 2596, "image": "COCO_val2014_000000299986.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2597, "image": "COCO_val2014_000000299986.jpg", "text": "Is there a cell phone in the image?", "label": "yes"} +{"question_id": 2598, "image": "COCO_val2014_000000299986.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2599, "image": "COCO_val2014_000000521643.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 2600, "image": "COCO_val2014_000000521643.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2601, "image": "COCO_val2014_000000521643.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2602, "image": "COCO_val2014_000000521643.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2603, "image": "COCO_val2014_000000521643.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2604, "image": "COCO_val2014_000000521643.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2605, "image": "COCO_val2014_000000574454.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2606, "image": "COCO_val2014_000000574454.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2607, "image": "COCO_val2014_000000574454.jpg", "text": "Is there a surfboard in the image?", "label": "yes"} +{"question_id": 2608, "image": "COCO_val2014_000000574454.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2609, "image": "COCO_val2014_000000574454.jpg", "text": "Is there a kite in the image?", "label": "yes"} +{"question_id": 2610, "image": "COCO_val2014_000000574454.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2611, "image": "COCO_val2014_000000415727.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2612, "image": "COCO_val2014_000000415727.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2613, "image": "COCO_val2014_000000415727.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2614, "image": "COCO_val2014_000000415727.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2615, "image": "COCO_val2014_000000415727.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 2616, "image": "COCO_val2014_000000415727.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2617, "image": "COCO_val2014_000000222118.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2618, "image": "COCO_val2014_000000222118.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2619, "image": "COCO_val2014_000000222118.jpg", "text": "Is there a suitcase in the image?", "label": "yes"} +{"question_id": 2620, "image": "COCO_val2014_000000222118.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2621, "image": "COCO_val2014_000000222118.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 2622, "image": "COCO_val2014_000000222118.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2623, "image": "COCO_val2014_000000514292.jpg", "text": "Is there a book in the image?", "label": "yes"} +{"question_id": 2624, "image": "COCO_val2014_000000514292.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2625, "image": "COCO_val2014_000000514292.jpg", "text": "Is there a teddy bear in the image?", "label": "yes"} +{"question_id": 2626, "image": "COCO_val2014_000000514292.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2627, "image": "COCO_val2014_000000514292.jpg", "text": "Is there a bear in the image?", "label": "yes"} +{"question_id": 2628, "image": "COCO_val2014_000000514292.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2629, "image": "COCO_val2014_000000117527.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2630, "image": "COCO_val2014_000000117527.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2631, "image": "COCO_val2014_000000117527.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2632, "image": "COCO_val2014_000000117527.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2633, "image": "COCO_val2014_000000117527.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2634, "image": "COCO_val2014_000000117527.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 2635, "image": "COCO_val2014_000000016451.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2636, "image": "COCO_val2014_000000016451.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2637, "image": "COCO_val2014_000000016451.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2638, "image": "COCO_val2014_000000016451.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2639, "image": "COCO_val2014_000000016451.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 2640, "image": "COCO_val2014_000000016451.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2641, "image": "COCO_val2014_000000429706.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 2642, "image": "COCO_val2014_000000429706.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2643, "image": "COCO_val2014_000000429706.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2644, "image": "COCO_val2014_000000429706.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2645, "image": "COCO_val2014_000000429706.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2646, "image": "COCO_val2014_000000429706.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2647, "image": "COCO_val2014_000000429580.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 2648, "image": "COCO_val2014_000000429580.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2649, "image": "COCO_val2014_000000429580.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2650, "image": "COCO_val2014_000000429580.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2651, "image": "COCO_val2014_000000429580.jpg", "text": "Is there a frisbee in the image?", "label": "yes"} +{"question_id": 2652, "image": "COCO_val2014_000000429580.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2653, "image": "COCO_val2014_000000283168.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2654, "image": "COCO_val2014_000000283168.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2655, "image": "COCO_val2014_000000283168.jpg", "text": "Is there a sandwich in the image?", "label": "yes"} +{"question_id": 2656, "image": "COCO_val2014_000000283168.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2657, "image": "COCO_val2014_000000283168.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 2658, "image": "COCO_val2014_000000283168.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2659, "image": "COCO_val2014_000000405205.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 2660, "image": "COCO_val2014_000000405205.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2661, "image": "COCO_val2014_000000405205.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2662, "image": "COCO_val2014_000000405205.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2663, "image": "COCO_val2014_000000405205.jpg", "text": "Is there a bus in the image?", "label": "yes"} +{"question_id": 2664, "image": "COCO_val2014_000000405205.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2665, "image": "COCO_val2014_000000123570.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2666, "image": "COCO_val2014_000000123570.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2667, "image": "COCO_val2014_000000123570.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2668, "image": "COCO_val2014_000000123570.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2669, "image": "COCO_val2014_000000123570.jpg", "text": "Is there an umbrella in the imange?", "label": "yes"} +{"question_id": 2670, "image": "COCO_val2014_000000123570.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2671, "image": "COCO_val2014_000000365317.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2672, "image": "COCO_val2014_000000365317.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2673, "image": "COCO_val2014_000000365317.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2674, "image": "COCO_val2014_000000365317.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2675, "image": "COCO_val2014_000000365317.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 2676, "image": "COCO_val2014_000000365317.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2677, "image": "COCO_val2014_000000224155.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2678, "image": "COCO_val2014_000000224155.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2679, "image": "COCO_val2014_000000224155.jpg", "text": "Is there a toilet in the image?", "label": "yes"} +{"question_id": 2680, "image": "COCO_val2014_000000224155.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2681, "image": "COCO_val2014_000000224155.jpg", "text": "Is there a cell phone in the image?", "label": "yes"} +{"question_id": 2682, "image": "COCO_val2014_000000224155.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2683, "image": "COCO_val2014_000000191964.jpg", "text": "Is there a keyboard in the image?", "label": "yes"} +{"question_id": 2684, "image": "COCO_val2014_000000191964.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2685, "image": "COCO_val2014_000000191964.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 2686, "image": "COCO_val2014_000000191964.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2687, "image": "COCO_val2014_000000191964.jpg", "text": "Is there a cat in the image?", "label": "yes"} +{"question_id": 2688, "image": "COCO_val2014_000000191964.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2689, "image": "COCO_val2014_000000265472.jpg", "text": "Is there a banana in the image?", "label": "yes"} +{"question_id": 2690, "image": "COCO_val2014_000000265472.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2691, "image": "COCO_val2014_000000265472.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2692, "image": "COCO_val2014_000000265472.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2693, "image": "COCO_val2014_000000265472.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 2694, "image": "COCO_val2014_000000265472.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2695, "image": "COCO_val2014_000000550514.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 2696, "image": "COCO_val2014_000000550514.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2697, "image": "COCO_val2014_000000550514.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2698, "image": "COCO_val2014_000000550514.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2699, "image": "COCO_val2014_000000550514.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2700, "image": "COCO_val2014_000000550514.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2701, "image": "COCO_val2014_000000163814.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2702, "image": "COCO_val2014_000000163814.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2703, "image": "COCO_val2014_000000163814.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 2704, "image": "COCO_val2014_000000163814.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2705, "image": "COCO_val2014_000000163814.jpg", "text": "Is there a skateboard in the image?", "label": "yes"} +{"question_id": 2706, "image": "COCO_val2014_000000163814.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2707, "image": "COCO_val2014_000000505933.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 2708, "image": "COCO_val2014_000000505933.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2709, "image": "COCO_val2014_000000505933.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 2710, "image": "COCO_val2014_000000505933.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2711, "image": "COCO_val2014_000000505933.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2712, "image": "COCO_val2014_000000505933.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2713, "image": "COCO_val2014_000000318550.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 2714, "image": "COCO_val2014_000000318550.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2715, "image": "COCO_val2014_000000318550.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 2716, "image": "COCO_val2014_000000318550.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2717, "image": "COCO_val2014_000000318550.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 2718, "image": "COCO_val2014_000000318550.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2719, "image": "COCO_val2014_000000367528.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2720, "image": "COCO_val2014_000000367528.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2721, "image": "COCO_val2014_000000367528.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2722, "image": "COCO_val2014_000000367528.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2723, "image": "COCO_val2014_000000367528.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 2724, "image": "COCO_val2014_000000367528.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 2725, "image": "COCO_val2014_000000252911.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2726, "image": "COCO_val2014_000000252911.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2727, "image": "COCO_val2014_000000252911.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2728, "image": "COCO_val2014_000000252911.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2729, "image": "COCO_val2014_000000252911.jpg", "text": "Is there a boat in the image?", "label": "yes"} +{"question_id": 2730, "image": "COCO_val2014_000000252911.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2731, "image": "COCO_val2014_000000214421.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 2732, "image": "COCO_val2014_000000214421.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2733, "image": "COCO_val2014_000000214421.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2734, "image": "COCO_val2014_000000214421.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2735, "image": "COCO_val2014_000000214421.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 2736, "image": "COCO_val2014_000000214421.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 2737, "image": "COCO_val2014_000000050627.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 2738, "image": "COCO_val2014_000000050627.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2739, "image": "COCO_val2014_000000050627.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2740, "image": "COCO_val2014_000000050627.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2741, "image": "COCO_val2014_000000050627.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2742, "image": "COCO_val2014_000000050627.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2743, "image": "COCO_val2014_000000233426.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 2744, "image": "COCO_val2014_000000233426.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2745, "image": "COCO_val2014_000000233426.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 2746, "image": "COCO_val2014_000000233426.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2747, "image": "COCO_val2014_000000233426.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2748, "image": "COCO_val2014_000000233426.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2749, "image": "COCO_val2014_000000372817.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2750, "image": "COCO_val2014_000000372817.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2751, "image": "COCO_val2014_000000372817.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2752, "image": "COCO_val2014_000000372817.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2753, "image": "COCO_val2014_000000372817.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 2754, "image": "COCO_val2014_000000372817.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2755, "image": "COCO_val2014_000000536073.jpg", "text": "Is there a knife in the image?", "label": "yes"} +{"question_id": 2756, "image": "COCO_val2014_000000536073.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2757, "image": "COCO_val2014_000000536073.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2758, "image": "COCO_val2014_000000536073.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2759, "image": "COCO_val2014_000000536073.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 2760, "image": "COCO_val2014_000000536073.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2761, "image": "COCO_val2014_000000579231.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 2762, "image": "COCO_val2014_000000579231.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2763, "image": "COCO_val2014_000000579231.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2764, "image": "COCO_val2014_000000579231.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2765, "image": "COCO_val2014_000000579231.jpg", "text": "Is there a baseball bat in the image?", "label": "yes"} +{"question_id": 2766, "image": "COCO_val2014_000000579231.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2767, "image": "COCO_val2014_000000092624.jpg", "text": "Is there a giraffe in the image?", "label": "yes"} +{"question_id": 2768, "image": "COCO_val2014_000000092624.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2769, "image": "COCO_val2014_000000092624.jpg", "text": "Is there a cow in the image?", "label": "yes"} +{"question_id": 2770, "image": "COCO_val2014_000000092624.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2771, "image": "COCO_val2014_000000092624.jpg", "text": "Is there a zebra in the image?", "label": "yes"} +{"question_id": 2772, "image": "COCO_val2014_000000092624.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2773, "image": "COCO_val2014_000000390184.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 2774, "image": "COCO_val2014_000000390184.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2775, "image": "COCO_val2014_000000390184.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2776, "image": "COCO_val2014_000000390184.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2777, "image": "COCO_val2014_000000390184.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2778, "image": "COCO_val2014_000000390184.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2779, "image": "COCO_val2014_000000079213.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2780, "image": "COCO_val2014_000000079213.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2781, "image": "COCO_val2014_000000079213.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 2782, "image": "COCO_val2014_000000079213.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2783, "image": "COCO_val2014_000000079213.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 2784, "image": "COCO_val2014_000000079213.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2785, "image": "COCO_val2014_000000465346.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 2786, "image": "COCO_val2014_000000465346.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2787, "image": "COCO_val2014_000000465346.jpg", "text": "Is there a sandwich in the image?", "label": "yes"} +{"question_id": 2788, "image": "COCO_val2014_000000465346.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2789, "image": "COCO_val2014_000000465346.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 2790, "image": "COCO_val2014_000000465346.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2791, "image": "COCO_val2014_000000514248.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2792, "image": "COCO_val2014_000000514248.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2793, "image": "COCO_val2014_000000514248.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2794, "image": "COCO_val2014_000000514248.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2795, "image": "COCO_val2014_000000514248.jpg", "text": "Is there a horse in the image?", "label": "yes"} +{"question_id": 2796, "image": "COCO_val2014_000000514248.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2797, "image": "COCO_val2014_000000355776.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2798, "image": "COCO_val2014_000000355776.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2799, "image": "COCO_val2014_000000355776.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2800, "image": "COCO_val2014_000000355776.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2801, "image": "COCO_val2014_000000355776.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 2802, "image": "COCO_val2014_000000355776.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 2803, "image": "COCO_val2014_000000575355.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2804, "image": "COCO_val2014_000000575355.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2805, "image": "COCO_val2014_000000575355.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 2806, "image": "COCO_val2014_000000575355.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2807, "image": "COCO_val2014_000000575355.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2808, "image": "COCO_val2014_000000575355.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2809, "image": "COCO_val2014_000000396068.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 2810, "image": "COCO_val2014_000000396068.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2811, "image": "COCO_val2014_000000396068.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2812, "image": "COCO_val2014_000000396068.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2813, "image": "COCO_val2014_000000396068.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 2814, "image": "COCO_val2014_000000396068.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2815, "image": "COCO_val2014_000000559547.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 2816, "image": "COCO_val2014_000000559547.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2817, "image": "COCO_val2014_000000559547.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2818, "image": "COCO_val2014_000000559547.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2819, "image": "COCO_val2014_000000559547.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2820, "image": "COCO_val2014_000000559547.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2821, "image": "COCO_val2014_000000230175.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2822, "image": "COCO_val2014_000000230175.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2823, "image": "COCO_val2014_000000230175.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 2824, "image": "COCO_val2014_000000230175.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2825, "image": "COCO_val2014_000000230175.jpg", "text": "Is there a tie in the image?", "label": "yes"} +{"question_id": 2826, "image": "COCO_val2014_000000230175.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2827, "image": "COCO_val2014_000000159969.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2828, "image": "COCO_val2014_000000159969.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2829, "image": "COCO_val2014_000000159969.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2830, "image": "COCO_val2014_000000159969.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2831, "image": "COCO_val2014_000000159969.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 2832, "image": "COCO_val2014_000000159969.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2833, "image": "COCO_val2014_000000399702.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2834, "image": "COCO_val2014_000000399702.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2835, "image": "COCO_val2014_000000399702.jpg", "text": "Is there a sandwich in the image?", "label": "yes"} +{"question_id": 2836, "image": "COCO_val2014_000000399702.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2837, "image": "COCO_val2014_000000399702.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 2838, "image": "COCO_val2014_000000399702.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2839, "image": "COCO_val2014_000000555538.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 2840, "image": "COCO_val2014_000000555538.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2841, "image": "COCO_val2014_000000555538.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2842, "image": "COCO_val2014_000000555538.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2843, "image": "COCO_val2014_000000555538.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2844, "image": "COCO_val2014_000000555538.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2845, "image": "COCO_val2014_000000264155.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2846, "image": "COCO_val2014_000000264155.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2847, "image": "COCO_val2014_000000264155.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2848, "image": "COCO_val2014_000000264155.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2849, "image": "COCO_val2014_000000264155.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 2850, "image": "COCO_val2014_000000264155.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2851, "image": "COCO_val2014_000000125572.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 2852, "image": "COCO_val2014_000000125572.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2853, "image": "COCO_val2014_000000125572.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 2854, "image": "COCO_val2014_000000125572.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2855, "image": "COCO_val2014_000000125572.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2856, "image": "COCO_val2014_000000125572.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2857, "image": "COCO_val2014_000000560744.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2858, "image": "COCO_val2014_000000560744.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2859, "image": "COCO_val2014_000000560744.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 2860, "image": "COCO_val2014_000000560744.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 2861, "image": "COCO_val2014_000000560744.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2862, "image": "COCO_val2014_000000560744.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 2863, "image": "COCO_val2014_000000045685.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2864, "image": "COCO_val2014_000000045685.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2865, "image": "COCO_val2014_000000045685.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2866, "image": "COCO_val2014_000000045685.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2867, "image": "COCO_val2014_000000045685.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 2868, "image": "COCO_val2014_000000045685.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2869, "image": "COCO_val2014_000000434179.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2870, "image": "COCO_val2014_000000434179.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2871, "image": "COCO_val2014_000000434179.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 2872, "image": "COCO_val2014_000000434179.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2873, "image": "COCO_val2014_000000434179.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 2874, "image": "COCO_val2014_000000434179.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 2875, "image": "COCO_val2014_000000008749.jpg", "text": "Is there a pizza in the image?", "label": "yes"} +{"question_id": 2876, "image": "COCO_val2014_000000008749.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2877, "image": "COCO_val2014_000000008749.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 2878, "image": "COCO_val2014_000000008749.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2879, "image": "COCO_val2014_000000008749.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2880, "image": "COCO_val2014_000000008749.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2881, "image": "COCO_val2014_000000069863.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2882, "image": "COCO_val2014_000000069863.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2883, "image": "COCO_val2014_000000069863.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 2884, "image": "COCO_val2014_000000069863.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2885, "image": "COCO_val2014_000000069863.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 2886, "image": "COCO_val2014_000000069863.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2887, "image": "COCO_val2014_000000041180.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2888, "image": "COCO_val2014_000000041180.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2889, "image": "COCO_val2014_000000041180.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2890, "image": "COCO_val2014_000000041180.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2891, "image": "COCO_val2014_000000041180.jpg", "text": "Is there a cow in the image?", "label": "yes"} +{"question_id": 2892, "image": "COCO_val2014_000000041180.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2893, "image": "COCO_val2014_000000429913.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 2894, "image": "COCO_val2014_000000429913.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2895, "image": "COCO_val2014_000000429913.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2896, "image": "COCO_val2014_000000429913.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2897, "image": "COCO_val2014_000000429913.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2898, "image": "COCO_val2014_000000429913.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2899, "image": "COCO_val2014_000000554002.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2900, "image": "COCO_val2014_000000554002.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2901, "image": "COCO_val2014_000000554002.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 2902, "image": "COCO_val2014_000000554002.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2903, "image": "COCO_val2014_000000554002.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2904, "image": "COCO_val2014_000000554002.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2905, "image": "COCO_val2014_000000141278.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 2906, "image": "COCO_val2014_000000141278.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2907, "image": "COCO_val2014_000000141278.jpg", "text": "Is there a mouse in the image?", "label": "yes"} +{"question_id": 2908, "image": "COCO_val2014_000000141278.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2909, "image": "COCO_val2014_000000141278.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 2910, "image": "COCO_val2014_000000141278.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2911, "image": "COCO_val2014_000000190788.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2912, "image": "COCO_val2014_000000190788.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2913, "image": "COCO_val2014_000000190788.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2914, "image": "COCO_val2014_000000190788.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2915, "image": "COCO_val2014_000000190788.jpg", "text": "Is there a knife in the image?", "label": "yes"} +{"question_id": 2916, "image": "COCO_val2014_000000190788.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 2917, "image": "COCO_val2014_000000534942.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 2918, "image": "COCO_val2014_000000534942.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2919, "image": "COCO_val2014_000000534942.jpg", "text": "Is there a cat in the image?", "label": "yes"} +{"question_id": 2920, "image": "COCO_val2014_000000534942.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2921, "image": "COCO_val2014_000000534942.jpg", "text": "Is there a tie in the image?", "label": "yes"} +{"question_id": 2922, "image": "COCO_val2014_000000534942.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2923, "image": "COCO_val2014_000000377951.jpg", "text": "Is there a pizza in the image?", "label": "yes"} +{"question_id": 2924, "image": "COCO_val2014_000000377951.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2925, "image": "COCO_val2014_000000377951.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2926, "image": "COCO_val2014_000000377951.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2927, "image": "COCO_val2014_000000377951.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2928, "image": "COCO_val2014_000000377951.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 2929, "image": "COCO_val2014_000000533201.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 2930, "image": "COCO_val2014_000000533201.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2931, "image": "COCO_val2014_000000533201.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2932, "image": "COCO_val2014_000000533201.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2933, "image": "COCO_val2014_000000533201.jpg", "text": "Is there an airplane in the imange?", "label": "yes"} +{"question_id": 2934, "image": "COCO_val2014_000000533201.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2935, "image": "COCO_val2014_000000235203.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2936, "image": "COCO_val2014_000000235203.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2937, "image": "COCO_val2014_000000235203.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 2938, "image": "COCO_val2014_000000235203.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2939, "image": "COCO_val2014_000000235203.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 2940, "image": "COCO_val2014_000000235203.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2941, "image": "COCO_val2014_000000468997.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 2942, "image": "COCO_val2014_000000468997.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2943, "image": "COCO_val2014_000000468997.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2944, "image": "COCO_val2014_000000468997.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2945, "image": "COCO_val2014_000000468997.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2946, "image": "COCO_val2014_000000468997.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2947, "image": "COCO_val2014_000000401398.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2948, "image": "COCO_val2014_000000401398.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2949, "image": "COCO_val2014_000000401398.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 2950, "image": "COCO_val2014_000000401398.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2951, "image": "COCO_val2014_000000401398.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 2952, "image": "COCO_val2014_000000401398.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2953, "image": "COCO_val2014_000000323752.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2954, "image": "COCO_val2014_000000323752.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2955, "image": "COCO_val2014_000000323752.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2956, "image": "COCO_val2014_000000323752.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2957, "image": "COCO_val2014_000000323752.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 2958, "image": "COCO_val2014_000000323752.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2959, "image": "COCO_val2014_000000003845.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 2960, "image": "COCO_val2014_000000003845.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2961, "image": "COCO_val2014_000000003845.jpg", "text": "Is there a broccoli in the image?", "label": "yes"} +{"question_id": 2962, "image": "COCO_val2014_000000003845.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2963, "image": "COCO_val2014_000000003845.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 2964, "image": "COCO_val2014_000000003845.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2965, "image": "COCO_val2014_000000122962.jpg", "text": "Is there a pizza in the image?", "label": "yes"} +{"question_id": 2966, "image": "COCO_val2014_000000122962.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2967, "image": "COCO_val2014_000000122962.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2968, "image": "COCO_val2014_000000122962.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2969, "image": "COCO_val2014_000000122962.jpg", "text": "Is there a cell phone in the image?", "label": "yes"} +{"question_id": 2970, "image": "COCO_val2014_000000122962.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2971, "image": "COCO_val2014_000000015738.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2972, "image": "COCO_val2014_000000015738.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2973, "image": "COCO_val2014_000000015738.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2974, "image": "COCO_val2014_000000015738.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2975, "image": "COCO_val2014_000000015738.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 2976, "image": "COCO_val2014_000000015738.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2977, "image": "COCO_val2014_000000497599.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2978, "image": "COCO_val2014_000000497599.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2979, "image": "COCO_val2014_000000497599.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2980, "image": "COCO_val2014_000000497599.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2981, "image": "COCO_val2014_000000497599.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 2982, "image": "COCO_val2014_000000497599.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 2983, "image": "COCO_val2014_000000121959.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2984, "image": "COCO_val2014_000000121959.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2985, "image": "COCO_val2014_000000121959.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2986, "image": "COCO_val2014_000000121959.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2987, "image": "COCO_val2014_000000121959.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 2988, "image": "COCO_val2014_000000121959.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2989, "image": "COCO_val2014_000000361430.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2990, "image": "COCO_val2014_000000361430.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2991, "image": "COCO_val2014_000000361430.jpg", "text": "Is there a broccoli in the image?", "label": "yes"} +{"question_id": 2992, "image": "COCO_val2014_000000361430.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2993, "image": "COCO_val2014_000000361430.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 2994, "image": "COCO_val2014_000000361430.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2995, "image": "COCO_val2014_000000277289.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 2996, "image": "COCO_val2014_000000277289.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2997, "image": "COCO_val2014_000000277289.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2998, "image": "COCO_val2014_000000277289.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2999, "image": "COCO_val2014_000000277289.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 3000, "image": "COCO_val2014_000000277289.jpg", "text": "Is there a chair in the image?", "label": "no"} diff --git a/OPERA/pope_coco/coco_pope_random.json b/OPERA/pope_coco/coco_pope_random.json new file mode 100644 index 0000000000000000000000000000000000000000..a8dd9bbc2fb4c424d9902b89612128801b104ac2 --- /dev/null +++ b/OPERA/pope_coco/coco_pope_random.json @@ -0,0 +1,2910 @@ +{"question_id": 1, "image": "COCO_val2014_000000310196.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 2, "image": "COCO_val2014_000000310196.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 3, "image": "COCO_val2014_000000310196.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 4, "image": "COCO_val2014_000000310196.jpg", "text": "Is there a sandwich in the image?", "label": "no"} +{"question_id": 5, "image": "COCO_val2014_000000310196.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 6, "image": "COCO_val2014_000000310196.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 7, "image": "COCO_val2014_000000210789.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 8, "image": "COCO_val2014_000000210789.jpg", "text": "Is there a pizza in the image?", "label": "no"} +{"question_id": 9, "image": "COCO_val2014_000000210789.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 10, "image": "COCO_val2014_000000210789.jpg", "text": "Is there a sink in the image?", "label": "no"} +{"question_id": 11, "image": "COCO_val2014_000000210789.jpg", "text": "Is there an umbrella in the imange?", "label": "yes"} +{"question_id": 12, "image": "COCO_val2014_000000210789.jpg", "text": "Is there a cell phone in the image?", "label": "no"} +{"question_id": 13, "image": "COCO_val2014_000000429109.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 14, "image": "COCO_val2014_000000429109.jpg", "text": "Is there a sheep in the image?", "label": "no"} +{"question_id": 15, "image": "COCO_val2014_000000429109.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 16, "image": "COCO_val2014_000000429109.jpg", "text": "Is there a broccoli in the image?", "label": "no"} +{"question_id": 17, "image": "COCO_val2014_000000429109.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 18, "image": "COCO_val2014_000000211674.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 19, "image": "COCO_val2014_000000211674.jpg", "text": "Is there a teddy bear in the image?", "label": "no"} +{"question_id": 20, "image": "COCO_val2014_000000211674.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 21, "image": "COCO_val2014_000000211674.jpg", "text": "Is there a broccoli in the image?", "label": "no"} +{"question_id": 22, "image": "COCO_val2014_000000211674.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 23, "image": "COCO_val2014_000000211674.jpg", "text": "Is there an orange in the imange?", "label": "no"} +{"question_id": 24, "image": "COCO_val2014_000000458338.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 25, "image": "COCO_val2014_000000458338.jpg", "text": "Is there a train in the image?", "label": "no"} +{"question_id": 26, "image": "COCO_val2014_000000458338.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 27, "image": "COCO_val2014_000000458338.jpg", "text": "Is there a surfboard in the image?", "label": "no"} +{"question_id": 28, "image": "COCO_val2014_000000458338.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 29, "image": "COCO_val2014_000000458338.jpg", "text": "Is there a kite in the image?", "label": "no"} +{"question_id": 30, "image": "COCO_val2014_000000283412.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 31, "image": "COCO_val2014_000000283412.jpg", "text": "Is there a toaster in the image?", "label": "no"} +{"question_id": 32, "image": "COCO_val2014_000000283412.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 33, "image": "COCO_val2014_000000283412.jpg", "text": "Is there a sports ball in the image?", "label": "no"} +{"question_id": 34, "image": "COCO_val2014_000000283412.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 35, "image": "COCO_val2014_000000283412.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 36, "image": "COCO_val2014_000000265719.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 37, "image": "COCO_val2014_000000265719.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 38, "image": "COCO_val2014_000000265719.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 39, "image": "COCO_val2014_000000265719.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 40, "image": "COCO_val2014_000000265719.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 41, "image": "COCO_val2014_000000461331.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 42, "image": "COCO_val2014_000000461331.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 43, "image": "COCO_val2014_000000461331.jpg", "text": "Is there a toaster in the image?", "label": "yes"} +{"question_id": 44, "image": "COCO_val2014_000000461331.jpg", "text": "Is there a cow in the image?", "label": "no"} +{"question_id": 45, "image": "COCO_val2014_000000461331.jpg", "text": "Is there a microwave in the image?", "label": "yes"} +{"question_id": 46, "image": "COCO_val2014_000000461331.jpg", "text": "Is there a laptop in the image?", "label": "no"} +{"question_id": 47, "image": "COCO_val2014_000000544456.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 48, "image": "COCO_val2014_000000544456.jpg", "text": "Is there a cell phone in the image?", "label": "no"} +{"question_id": 49, "image": "COCO_val2014_000000544456.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 50, "image": "COCO_val2014_000000544456.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 51, "image": "COCO_val2014_000000544456.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 52, "image": "COCO_val2014_000000544456.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 53, "image": "COCO_val2014_000000017708.jpg", "text": "Is there a bird in the image?", "label": "yes"} +{"question_id": 54, "image": "COCO_val2014_000000017708.jpg", "text": "Is there a fire hydrant in the image?", "label": "no"} +{"question_id": 55, "image": "COCO_val2014_000000017708.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 56, "image": "COCO_val2014_000000017708.jpg", "text": "Is there a bed in the image?", "label": "no"} +{"question_id": 57, "image": "COCO_val2014_000000017708.jpg", "text": "Is there a boat in the image?", "label": "yes"} +{"question_id": 58, "image": "COCO_val2014_000000017708.jpg", "text": "Is there a bench in the image?", "label": "no"} +{"question_id": 59, "image": "COCO_val2014_000000574692.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 60, "image": "COCO_val2014_000000574692.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 61, "image": "COCO_val2014_000000574692.jpg", "text": "Is there a cow in the image?", "label": "no"} +{"question_id": 62, "image": "COCO_val2014_000000574692.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 63, "image": "COCO_val2014_000000574692.jpg", "text": "Is there a bed in the image?", "label": "no"} +{"question_id": 64, "image": "COCO_val2014_000000353180.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 65, "image": "COCO_val2014_000000353180.jpg", "text": "Is there a potted plant in the image?", "label": "no"} +{"question_id": 66, "image": "COCO_val2014_000000353180.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 67, "image": "COCO_val2014_000000353180.jpg", "text": "Is there a bus in the image?", "label": "yes"} +{"question_id": 68, "image": "COCO_val2014_000000239444.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 69, "image": "COCO_val2014_000000239444.jpg", "text": "Is there an airplane in the imange?", "label": "no"} +{"question_id": 70, "image": "COCO_val2014_000000239444.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 71, "image": "COCO_val2014_000000239444.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 72, "image": "COCO_val2014_000000239444.jpg", "text": "Is there a horse in the image?", "label": "no"} +{"question_id": 73, "image": "COCO_val2014_000000569839.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 74, "image": "COCO_val2014_000000569839.jpg", "text": "Is there a zebra in the image?", "label": "no"} +{"question_id": 75, "image": "COCO_val2014_000000569839.jpg", "text": "Is there a sandwich in the image?", "label": "yes"} +{"question_id": 76, "image": "COCO_val2014_000000569839.jpg", "text": "Is there a tie in the image?", "label": "no"} +{"question_id": 77, "image": "COCO_val2014_000000569839.jpg", "text": "Is there a hot dog in the image?", "label": "yes"} +{"question_id": 78, "image": "COCO_val2014_000000569839.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 79, "image": "COCO_val2014_000000219622.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 80, "image": "COCO_val2014_000000219622.jpg", "text": "Is there a carrot in the image?", "label": "no"} +{"question_id": 81, "image": "COCO_val2014_000000219622.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 82, "image": "COCO_val2014_000000219622.jpg", "text": "Is there a potted plant in the image?", "label": "no"} +{"question_id": 83, "image": "COCO_val2014_000000219622.jpg", "text": "Is there a frisbee in the image?", "label": "yes"} +{"question_id": 84, "image": "COCO_val2014_000000219622.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 85, "image": "COCO_val2014_000000300368.jpg", "text": "Is there a knife in the image?", "label": "yes"} +{"question_id": 86, "image": "COCO_val2014_000000300368.jpg", "text": "Is there a teddy bear in the image?", "label": "no"} +{"question_id": 87, "image": "COCO_val2014_000000300368.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 88, "image": "COCO_val2014_000000300368.jpg", "text": "Is there a hot dog in the image?", "label": "no"} +{"question_id": 89, "image": "COCO_val2014_000000300368.jpg", "text": "Is there a cake in the image?", "label": "yes"} +{"question_id": 90, "image": "COCO_val2014_000000300368.jpg", "text": "Is there a tie in the image?", "label": "no"} +{"question_id": 91, "image": "COCO_val2014_000000482476.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 92, "image": "COCO_val2014_000000482476.jpg", "text": "Is there a keyboard in the image?", "label": "no"} +{"question_id": 93, "image": "COCO_val2014_000000482476.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 94, "image": "COCO_val2014_000000482476.jpg", "text": "Is there a frisbee in the image?", "label": "no"} +{"question_id": 95, "image": "COCO_val2014_000000482476.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 96, "image": "COCO_val2014_000000482476.jpg", "text": "Is there an elephant in the imange?", "label": "no"} +{"question_id": 97, "image": "COCO_val2014_000000131115.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 98, "image": "COCO_val2014_000000131115.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 99, "image": "COCO_val2014_000000131115.jpg", "text": "Is there a sheep in the image?", "label": "no"} +{"question_id": 100, "image": "COCO_val2014_000000131115.jpg", "text": "Is there a baseball bat in the image?", "label": "yes"} +{"question_id": 101, "image": "COCO_val2014_000000131115.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 102, "image": "COCO_val2014_000000157084.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 103, "image": "COCO_val2014_000000157084.jpg", "text": "Is there a cow in the image?", "label": "no"} +{"question_id": 104, "image": "COCO_val2014_000000157084.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 105, "image": "COCO_val2014_000000157084.jpg", "text": "Is there a scissors in the image?", "label": "no"} +{"question_id": 106, "image": "COCO_val2014_000000157084.jpg", "text": "Is there a toilet in the image?", "label": "yes"} +{"question_id": 107, "image": "COCO_val2014_000000381895.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 108, "image": "COCO_val2014_000000381895.jpg", "text": "Is there a carrot in the image?", "label": "no"} +{"question_id": 109, "image": "COCO_val2014_000000381895.jpg", "text": "Is there a teddy bear in the image?", "label": "yes"} +{"question_id": 110, "image": "COCO_val2014_000000381895.jpg", "text": "Is there a bird in the image?", "label": "no"} +{"question_id": 111, "image": "COCO_val2014_000000381895.jpg", "text": "Is there a bear in the image?", "label": "yes"} +{"question_id": 112, "image": "COCO_val2014_000000381895.jpg", "text": "Is there a mouse in the image?", "label": "no"} +{"question_id": 113, "image": "COCO_val2014_000000336872.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 114, "image": "COCO_val2014_000000336872.jpg", "text": "Is there a skis in the image?", "label": "no"} +{"question_id": 115, "image": "COCO_val2014_000000336872.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 116, "image": "COCO_val2014_000000336872.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 117, "image": "COCO_val2014_000000336872.jpg", "text": "Is there a sandwich in the image?", "label": "yes"} +{"question_id": 118, "image": "COCO_val2014_000000075591.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 119, "image": "COCO_val2014_000000075591.jpg", "text": "Is there a scissors in the image?", "label": "no"} +{"question_id": 120, "image": "COCO_val2014_000000075591.jpg", "text": "Is there a cat in the image?", "label": "yes"} +{"question_id": 121, "image": "COCO_val2014_000000075591.jpg", "text": "Is there a clock in the image?", "label": "no"} +{"question_id": 122, "image": "COCO_val2014_000000075591.jpg", "text": "Is there a book in the image?", "label": "yes"} +{"question_id": 123, "image": "COCO_val2014_000000075591.jpg", "text": "Is there an elephant in the imange?", "label": "no"} +{"question_id": 124, "image": "COCO_val2014_000000516916.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 125, "image": "COCO_val2014_000000516916.jpg", "text": "Is there a bed in the image?", "label": "no"} +{"question_id": 126, "image": "COCO_val2014_000000516916.jpg", "text": "Is there a mouse in the image?", "label": "yes"} +{"question_id": 127, "image": "COCO_val2014_000000516916.jpg", "text": "Is there a bench in the image?", "label": "no"} +{"question_id": 128, "image": "COCO_val2014_000000516916.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 129, "image": "COCO_val2014_000000516916.jpg", "text": "Is there a skateboard in the image?", "label": "no"} +{"question_id": 130, "image": "COCO_val2014_000000542145.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 131, "image": "COCO_val2014_000000542145.jpg", "text": "Is there a giraffe in the image?", "label": "no"} +{"question_id": 132, "image": "COCO_val2014_000000542145.jpg", "text": "Is there a toothbrush in the image?", "label": "yes"} +{"question_id": 133, "image": "COCO_val2014_000000542145.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 134, "image": "COCO_val2014_000000542145.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 135, "image": "COCO_val2014_000000542145.jpg", "text": "Is there an umbrella in the imange?", "label": "no"} +{"question_id": 136, "image": "COCO_val2014_000000218224.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 137, "image": "COCO_val2014_000000218224.jpg", "text": "Is there an elephant in the imange?", "label": "no"} +{"question_id": 138, "image": "COCO_val2014_000000218224.jpg", "text": "Is there an airplane in the imange?", "label": "yes"} +{"question_id": 139, "image": "COCO_val2014_000000218224.jpg", "text": "Is there a potted plant in the image?", "label": "no"} +{"question_id": 140, "image": "COCO_val2014_000000218224.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 141, "image": "COCO_val2014_000000218224.jpg", "text": "Is there a microwave in the image?", "label": "no"} +{"question_id": 142, "image": "COCO_val2014_000000297078.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 143, "image": "COCO_val2014_000000297078.jpg", "text": "Is there a bear in the image?", "label": "no"} +{"question_id": 144, "image": "COCO_val2014_000000297078.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 145, "image": "COCO_val2014_000000297078.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 146, "image": "COCO_val2014_000000297078.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 147, "image": "COCO_val2014_000000297078.jpg", "text": "Is there a sink in the image?", "label": "no"} +{"question_id": 148, "image": "COCO_val2014_000000033270.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 149, "image": "COCO_val2014_000000033270.jpg", "text": "Is there a cat in the image?", "label": "no"} +{"question_id": 150, "image": "COCO_val2014_000000033270.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 151, "image": "COCO_val2014_000000033270.jpg", "text": "Is there a donut in the image?", "label": "no"} +{"question_id": 152, "image": "COCO_val2014_000000033270.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 153, "image": "COCO_val2014_000000033270.jpg", "text": "Is there a teddy bear in the image?", "label": "no"} +{"question_id": 154, "image": "COCO_val2014_000000140583.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 155, "image": "COCO_val2014_000000140583.jpg", "text": "Is there a carrot in the image?", "label": "no"} +{"question_id": 156, "image": "COCO_val2014_000000140583.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 157, "image": "COCO_val2014_000000140583.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 158, "image": "COCO_val2014_000000140583.jpg", "text": "Is there a cow in the image?", "label": "yes"} +{"question_id": 159, "image": "COCO_val2014_000000140583.jpg", "text": "Is there a potted plant in the image?", "label": "no"} +{"question_id": 160, "image": "COCO_val2014_000000421455.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 161, "image": "COCO_val2014_000000421455.jpg", "text": "Is there an elephant in the imange?", "label": "no"} +{"question_id": 162, "image": "COCO_val2014_000000421455.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 163, "image": "COCO_val2014_000000421455.jpg", "text": "Is there a stop sign in the image?", "label": "no"} +{"question_id": 164, "image": "COCO_val2014_000000421455.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 165, "image": "COCO_val2014_000000421455.jpg", "text": "Is there a skis in the image?", "label": "no"} +{"question_id": 166, "image": "COCO_val2014_000000288639.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 167, "image": "COCO_val2014_000000288639.jpg", "text": "Is there a sheep in the image?", "label": "no"} +{"question_id": 168, "image": "COCO_val2014_000000288639.jpg", "text": "Is there a toothbrush in the image?", "label": "yes"} +{"question_id": 169, "image": "COCO_val2014_000000288639.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 170, "image": "COCO_val2014_000000288639.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 171, "image": "COCO_val2014_000000291936.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 172, "image": "COCO_val2014_000000291936.jpg", "text": "Is there a toilet in the image?", "label": "no"} +{"question_id": 173, "image": "COCO_val2014_000000291936.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 174, "image": "COCO_val2014_000000291936.jpg", "text": "Is there a spoon in the image?", "label": "no"} +{"question_id": 175, "image": "COCO_val2014_000000291936.jpg", "text": "Is there an umbrella in the imange?", "label": "yes"} +{"question_id": 176, "image": "COCO_val2014_000000291936.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 177, "image": "COCO_val2014_000000063953.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 178, "image": "COCO_val2014_000000063953.jpg", "text": "Is there a skis in the image?", "label": "no"} +{"question_id": 179, "image": "COCO_val2014_000000063953.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 180, "image": "COCO_val2014_000000063953.jpg", "text": "Is there a horse in the image?", "label": "no"} +{"question_id": 181, "image": "COCO_val2014_000000063953.jpg", "text": "Is there a skateboard in the image?", "label": "yes"} +{"question_id": 182, "image": "COCO_val2014_000000526321.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 183, "image": "COCO_val2014_000000526321.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 184, "image": "COCO_val2014_000000526321.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 185, "image": "COCO_val2014_000000526321.jpg", "text": "Is there a hot dog in the image?", "label": "no"} +{"question_id": 186, "image": "COCO_val2014_000000526321.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 187, "image": "COCO_val2014_000000526321.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 188, "image": "COCO_val2014_000000042190.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 189, "image": "COCO_val2014_000000042190.jpg", "text": "Is there a stop sign in the image?", "label": "no"} +{"question_id": 190, "image": "COCO_val2014_000000042190.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 191, "image": "COCO_val2014_000000042190.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 192, "image": "COCO_val2014_000000042190.jpg", "text": "Is there a surfboard in the image?", "label": "yes"} +{"question_id": 193, "image": "COCO_val2014_000000042190.jpg", "text": "Is there a wine glass in the image?", "label": "no"} +{"question_id": 194, "image": "COCO_val2014_000000553165.jpg", "text": "Is there a bird in the image?", "label": "yes"} +{"question_id": 195, "image": "COCO_val2014_000000553165.jpg", "text": "Is there a cow in the image?", "label": "no"} +{"question_id": 196, "image": "COCO_val2014_000000553165.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 197, "image": "COCO_val2014_000000553165.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 198, "image": "COCO_val2014_000000553165.jpg", "text": "Is there a boat in the image?", "label": "yes"} +{"question_id": 199, "image": "COCO_val2014_000000553165.jpg", "text": "Is there a wine glass in the image?", "label": "no"} +{"question_id": 200, "image": "COCO_val2014_000000170517.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 201, "image": "COCO_val2014_000000170517.jpg", "text": "Is there a carrot in the image?", "label": "no"} +{"question_id": 202, "image": "COCO_val2014_000000170517.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 203, "image": "COCO_val2014_000000170517.jpg", "text": "Is there a bird in the image?", "label": "no"} +{"question_id": 204, "image": "COCO_val2014_000000170517.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 205, "image": "COCO_val2014_000000170517.jpg", "text": "Is there a spoon in the image?", "label": "no"} +{"question_id": 206, "image": "COCO_val2014_000000498759.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 207, "image": "COCO_val2014_000000498759.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 208, "image": "COCO_val2014_000000498759.jpg", "text": "Is there a skateboard in the image?", "label": "yes"} +{"question_id": 209, "image": "COCO_val2014_000000498759.jpg", "text": "Is there a cell phone in the image?", "label": "no"} +{"question_id": 210, "image": "COCO_val2014_000000498759.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 211, "image": "COCO_val2014_000000498759.jpg", "text": "Is there a donut in the image?", "label": "no"} +{"question_id": 212, "image": "COCO_val2014_000000360600.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 213, "image": "COCO_val2014_000000360600.jpg", "text": "Is there a mouse in the image?", "label": "no"} +{"question_id": 214, "image": "COCO_val2014_000000360600.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 215, "image": "COCO_val2014_000000360600.jpg", "text": "Is there a bed in the image?", "label": "no"} +{"question_id": 216, "image": "COCO_val2014_000000360600.jpg", "text": "Is there a knife in the image?", "label": "yes"} +{"question_id": 217, "image": "COCO_val2014_000000360600.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 218, "image": "COCO_val2014_000000031773.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 219, "image": "COCO_val2014_000000031773.jpg", "text": "Is there a surfboard in the image?", "label": "no"} +{"question_id": 220, "image": "COCO_val2014_000000031773.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 221, "image": "COCO_val2014_000000031773.jpg", "text": "Is there a zebra in the image?", "label": "no"} +{"question_id": 222, "image": "COCO_val2014_000000031773.jpg", "text": "Is there a mouse in the image?", "label": "yes"} +{"question_id": 223, "image": "COCO_val2014_000000500257.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 224, "image": "COCO_val2014_000000500257.jpg", "text": "Is there a stop sign in the image?", "label": "no"} +{"question_id": 225, "image": "COCO_val2014_000000500257.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 226, "image": "COCO_val2014_000000500257.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 227, "image": "COCO_val2014_000000500257.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 228, "image": "COCO_val2014_000000500257.jpg", "text": "Is there an apple in the imange?", "label": "no"} +{"question_id": 229, "image": "COCO_val2014_000000574057.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 230, "image": "COCO_val2014_000000574057.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 231, "image": "COCO_val2014_000000574057.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 232, "image": "COCO_val2014_000000574057.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 233, "image": "COCO_val2014_000000574057.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 234, "image": "COCO_val2014_000000574057.jpg", "text": "Is there a sports ball in the image?", "label": "no"} +{"question_id": 235, "image": "COCO_val2014_000000456178.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 236, "image": "COCO_val2014_000000456178.jpg", "text": "Is there a sandwich in the image?", "label": "no"} +{"question_id": 237, "image": "COCO_val2014_000000456178.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 238, "image": "COCO_val2014_000000456178.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 239, "image": "COCO_val2014_000000456178.jpg", "text": "Is there a bear in the image?", "label": "no"} +{"question_id": 240, "image": "COCO_val2014_000000565941.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 241, "image": "COCO_val2014_000000565941.jpg", "text": "Is there a cat in the image?", "label": "no"} +{"question_id": 242, "image": "COCO_val2014_000000565941.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 243, "image": "COCO_val2014_000000565941.jpg", "text": "Is there a wine glass in the image?", "label": "no"} +{"question_id": 244, "image": "COCO_val2014_000000565941.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 245, "image": "COCO_val2014_000000565941.jpg", "text": "Is there a snowboard in the image?", "label": "no"} +{"question_id": 246, "image": "COCO_val2014_000000485564.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 247, "image": "COCO_val2014_000000485564.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 248, "image": "COCO_val2014_000000485564.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 249, "image": "COCO_val2014_000000485564.jpg", "text": "Is there a microwave in the image?", "label": "no"} +{"question_id": 250, "image": "COCO_val2014_000000485564.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 251, "image": "COCO_val2014_000000485564.jpg", "text": "Is there a giraffe in the image?", "label": "no"} +{"question_id": 252, "image": "COCO_val2014_000000454642.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 253, "image": "COCO_val2014_000000454642.jpg", "text": "Is there a banana in the image?", "label": "no"} +{"question_id": 254, "image": "COCO_val2014_000000454642.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 255, "image": "COCO_val2014_000000454642.jpg", "text": "Is there an airplane in the imange?", "label": "no"} +{"question_id": 256, "image": "COCO_val2014_000000454642.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 257, "image": "COCO_val2014_000000454642.jpg", "text": "Is there a vase in the image?", "label": "no"} +{"question_id": 258, "image": "COCO_val2014_000000205729.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 259, "image": "COCO_val2014_000000205729.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 260, "image": "COCO_val2014_000000205729.jpg", "text": "Is there a snowboard in the image?", "label": "no"} +{"question_id": 261, "image": "COCO_val2014_000000205729.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 262, "image": "COCO_val2014_000000424792.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 263, "image": "COCO_val2014_000000424792.jpg", "text": "Is there a boat in the image?", "label": "no"} +{"question_id": 264, "image": "COCO_val2014_000000424792.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 265, "image": "COCO_val2014_000000424792.jpg", "text": "Is there a sports ball in the image?", "label": "no"} +{"question_id": 266, "image": "COCO_val2014_000000424792.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 267, "image": "COCO_val2014_000000424792.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 268, "image": "COCO_val2014_000000329717.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 269, "image": "COCO_val2014_000000329717.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 270, "image": "COCO_val2014_000000329717.jpg", "text": "Is there a suitcase in the image?", "label": "yes"} +{"question_id": 271, "image": "COCO_val2014_000000329717.jpg", "text": "Is there a bird in the image?", "label": "no"} +{"question_id": 272, "image": "COCO_val2014_000000329717.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 273, "image": "COCO_val2014_000000329717.jpg", "text": "Is there a toaster in the image?", "label": "no"} +{"question_id": 274, "image": "COCO_val2014_000000012333.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 275, "image": "COCO_val2014_000000012333.jpg", "text": "Is there a refrigerator in the image?", "label": "no"} +{"question_id": 276, "image": "COCO_val2014_000000012333.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 277, "image": "COCO_val2014_000000012333.jpg", "text": "Is there a skis in the image?", "label": "no"} +{"question_id": 278, "image": "COCO_val2014_000000012333.jpg", "text": "Is there a horse in the image?", "label": "yes"} +{"question_id": 279, "image": "COCO_val2014_000000012333.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 280, "image": "COCO_val2014_000000480122.jpg", "text": "Is there a banana in the image?", "label": "yes"} +{"question_id": 281, "image": "COCO_val2014_000000480122.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 282, "image": "COCO_val2014_000000480122.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 283, "image": "COCO_val2014_000000480122.jpg", "text": "Is there a fire hydrant in the image?", "label": "no"} +{"question_id": 284, "image": "COCO_val2014_000000480122.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 285, "image": "COCO_val2014_000000480122.jpg", "text": "Is there a remote in the image?", "label": "no"} +{"question_id": 286, "image": "COCO_val2014_000000515904.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 287, "image": "COCO_val2014_000000515904.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 288, "image": "COCO_val2014_000000515904.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 289, "image": "COCO_val2014_000000515904.jpg", "text": "Is there a baseball bat in the image?", "label": "no"} +{"question_id": 290, "image": "COCO_val2014_000000515904.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 291, "image": "COCO_val2014_000000515904.jpg", "text": "Is there a spoon in the image?", "label": "no"} +{"question_id": 292, "image": "COCO_val2014_000000437347.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 293, "image": "COCO_val2014_000000437347.jpg", "text": "Is there a refrigerator in the image?", "label": "no"} +{"question_id": 294, "image": "COCO_val2014_000000437347.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 295, "image": "COCO_val2014_000000437347.jpg", "text": "Is there a broccoli in the image?", "label": "no"} +{"question_id": 296, "image": "COCO_val2014_000000437347.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 297, "image": "COCO_val2014_000000437347.jpg", "text": "Is there a wine glass in the image?", "label": "no"} +{"question_id": 298, "image": "COCO_val2014_000000354229.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 299, "image": "COCO_val2014_000000354229.jpg", "text": "Is there an airplane in the imange?", "label": "no"} +{"question_id": 300, "image": "COCO_val2014_000000354229.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 301, "image": "COCO_val2014_000000354229.jpg", "text": "Is there a sandwich in the image?", "label": "no"} +{"question_id": 302, "image": "COCO_val2014_000000354229.jpg", "text": "Is there a bus in the image?", "label": "yes"} +{"question_id": 303, "image": "COCO_val2014_000000354229.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 304, "image": "COCO_val2014_000000538236.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 305, "image": "COCO_val2014_000000538236.jpg", "text": "Is there a kite in the image?", "label": "no"} +{"question_id": 306, "image": "COCO_val2014_000000538236.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 307, "image": "COCO_val2014_000000538236.jpg", "text": "Is there a sports ball in the image?", "label": "no"} +{"question_id": 308, "image": "COCO_val2014_000000538236.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 309, "image": "COCO_val2014_000000538236.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 310, "image": "COCO_val2014_000000236865.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 311, "image": "COCO_val2014_000000236865.jpg", "text": "Is there a skis in the image?", "label": "no"} +{"question_id": 312, "image": "COCO_val2014_000000236865.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 313, "image": "COCO_val2014_000000236865.jpg", "text": "Is there a toaster in the image?", "label": "no"} +{"question_id": 314, "image": "COCO_val2014_000000236865.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 315, "image": "COCO_val2014_000000236865.jpg", "text": "Is there a refrigerator in the image?", "label": "no"} +{"question_id": 316, "image": "COCO_val2014_000000217397.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 317, "image": "COCO_val2014_000000217397.jpg", "text": "Is there a wine glass in the image?", "label": "yes"} +{"question_id": 318, "image": "COCO_val2014_000000217397.jpg", "text": "Is there a bench in the image?", "label": "no"} +{"question_id": 319, "image": "COCO_val2014_000000217397.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 320, "image": "COCO_val2014_000000217397.jpg", "text": "Is there a snowboard in the image?", "label": "no"} +{"question_id": 321, "image": "COCO_val2014_000000060213.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 322, "image": "COCO_val2014_000000060213.jpg", "text": "Is there a horse in the image?", "label": "no"} +{"question_id": 323, "image": "COCO_val2014_000000060213.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 324, "image": "COCO_val2014_000000060213.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 325, "image": "COCO_val2014_000000060213.jpg", "text": "Is there a book in the image?", "label": "yes"} +{"question_id": 326, "image": "COCO_val2014_000000060213.jpg", "text": "Is there a sports ball in the image?", "label": "no"} +{"question_id": 327, "image": "COCO_val2014_000000054025.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 328, "image": "COCO_val2014_000000054025.jpg", "text": "Is there a pizza in the image?", "label": "no"} +{"question_id": 329, "image": "COCO_val2014_000000054025.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 330, "image": "COCO_val2014_000000054025.jpg", "text": "Is there a toaster in the image?", "label": "no"} +{"question_id": 331, "image": "COCO_val2014_000000054025.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 332, "image": "COCO_val2014_000000054025.jpg", "text": "Is there an airplane in the imange?", "label": "no"} +{"question_id": 333, "image": "COCO_val2014_000000084447.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 334, "image": "COCO_val2014_000000084447.jpg", "text": "Is there a toothbrush in the image?", "label": "no"} +{"question_id": 335, "image": "COCO_val2014_000000084447.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 336, "image": "COCO_val2014_000000084447.jpg", "text": "Is there a carrot in the image?", "label": "no"} +{"question_id": 337, "image": "COCO_val2014_000000084447.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 338, "image": "COCO_val2014_000000084447.jpg", "text": "Is there a parking meter in the image?", "label": "no"} +{"question_id": 339, "image": "COCO_val2014_000000192660.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 340, "image": "COCO_val2014_000000192660.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 341, "image": "COCO_val2014_000000192660.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 342, "image": "COCO_val2014_000000192660.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 343, "image": "COCO_val2014_000000192660.jpg", "text": "Is there a refrigerator in the image?", "label": "yes"} +{"question_id": 344, "image": "COCO_val2014_000000192660.jpg", "text": "Is there a teddy bear in the image?", "label": "no"} +{"question_id": 345, "image": "COCO_val2014_000000575755.jpg", "text": "Is there a sandwich in the image?", "label": "yes"} +{"question_id": 346, "image": "COCO_val2014_000000575755.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 347, "image": "COCO_val2014_000000575755.jpg", "text": "Is there a carrot in the image?", "label": "yes"} +{"question_id": 348, "image": "COCO_val2014_000000575755.jpg", "text": "Is there a sink in the image?", "label": "no"} +{"question_id": 349, "image": "COCO_val2014_000000575755.jpg", "text": "Is there a broccoli in the image?", "label": "yes"} +{"question_id": 350, "image": "COCO_val2014_000000354088.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 351, "image": "COCO_val2014_000000354088.jpg", "text": "Is there a toaster in the image?", "label": "no"} +{"question_id": 352, "image": "COCO_val2014_000000354088.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 353, "image": "COCO_val2014_000000354088.jpg", "text": "Is there a cat in the image?", "label": "no"} +{"question_id": 354, "image": "COCO_val2014_000000354088.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 355, "image": "COCO_val2014_000000311327.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 356, "image": "COCO_val2014_000000311327.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 357, "image": "COCO_val2014_000000311327.jpg", "text": "Is there a boat in the image?", "label": "yes"} +{"question_id": 358, "image": "COCO_val2014_000000311327.jpg", "text": "Is there a refrigerator in the image?", "label": "no"} +{"question_id": 359, "image": "COCO_val2014_000000311327.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 360, "image": "COCO_val2014_000000311327.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 361, "image": "COCO_val2014_000000456552.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 362, "image": "COCO_val2014_000000456552.jpg", "text": "Is there a sandwich in the image?", "label": "no"} +{"question_id": 363, "image": "COCO_val2014_000000456552.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 364, "image": "COCO_val2014_000000456552.jpg", "text": "Is there a microwave in the image?", "label": "no"} +{"question_id": 365, "image": "COCO_val2014_000000456552.jpg", "text": "Is there a skateboard in the image?", "label": "yes"} +{"question_id": 366, "image": "COCO_val2014_000000456552.jpg", "text": "Is there an apple in the imange?", "label": "no"} +{"question_id": 367, "image": "COCO_val2014_000000350898.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 368, "image": "COCO_val2014_000000350898.jpg", "text": "Is there a suitcase in the image?", "label": "no"} +{"question_id": 369, "image": "COCO_val2014_000000350898.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 370, "image": "COCO_val2014_000000350898.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 371, "image": "COCO_val2014_000000350898.jpg", "text": "Is there a refrigerator in the image?", "label": "yes"} +{"question_id": 372, "image": "COCO_val2014_000000350898.jpg", "text": "Is there a remote in the image?", "label": "no"} +{"question_id": 373, "image": "COCO_val2014_000000170365.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 374, "image": "COCO_val2014_000000170365.jpg", "text": "Is there a bird in the image?", "label": "no"} +{"question_id": 375, "image": "COCO_val2014_000000170365.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 376, "image": "COCO_val2014_000000170365.jpg", "text": "Is there a cow in the image?", "label": "no"} +{"question_id": 377, "image": "COCO_val2014_000000170365.jpg", "text": "Is there a toilet in the image?", "label": "yes"} +{"question_id": 378, "image": "COCO_val2014_000000170365.jpg", "text": "Is there a banana in the image?", "label": "no"} +{"question_id": 379, "image": "COCO_val2014_000000021645.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 380, "image": "COCO_val2014_000000021645.jpg", "text": "Is there a cow in the image?", "label": "no"} +{"question_id": 381, "image": "COCO_val2014_000000021645.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 382, "image": "COCO_val2014_000000021645.jpg", "text": "Is there a frisbee in the image?", "label": "no"} +{"question_id": 383, "image": "COCO_val2014_000000021645.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 384, "image": "COCO_val2014_000000021645.jpg", "text": "Is there a bird in the image?", "label": "no"} +{"question_id": 385, "image": "COCO_val2014_000000528905.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 386, "image": "COCO_val2014_000000528905.jpg", "text": "Is there a remote in the image?", "label": "no"} +{"question_id": 387, "image": "COCO_val2014_000000528905.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 388, "image": "COCO_val2014_000000528905.jpg", "text": "Is there a sandwich in the image?", "label": "no"} +{"question_id": 389, "image": "COCO_val2014_000000528905.jpg", "text": "Is there a frisbee in the image?", "label": "yes"} +{"question_id": 390, "image": "COCO_val2014_000000528905.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 391, "image": "COCO_val2014_000000239347.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 392, "image": "COCO_val2014_000000239347.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 393, "image": "COCO_val2014_000000239347.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 394, "image": "COCO_val2014_000000239347.jpg", "text": "Is there a bench in the image?", "label": "no"} +{"question_id": 395, "image": "COCO_val2014_000000239347.jpg", "text": "Is there a tie in the image?", "label": "yes"} +{"question_id": 396, "image": "COCO_val2014_000000239347.jpg", "text": "Is there a bird in the image?", "label": "no"} +{"question_id": 397, "image": "COCO_val2014_000000007320.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 398, "image": "COCO_val2014_000000007320.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 399, "image": "COCO_val2014_000000007320.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 400, "image": "COCO_val2014_000000007320.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 401, "image": "COCO_val2014_000000007320.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 402, "image": "COCO_val2014_000000007320.jpg", "text": "Is there a kite in the image?", "label": "no"} +{"question_id": 403, "image": "COCO_val2014_000000249715.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 404, "image": "COCO_val2014_000000249715.jpg", "text": "Is there a cell phone in the image?", "label": "no"} +{"question_id": 405, "image": "COCO_val2014_000000249715.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 406, "image": "COCO_val2014_000000249715.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 407, "image": "COCO_val2014_000000249715.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 408, "image": "COCO_val2014_000000249715.jpg", "text": "Is there a scissors in the image?", "label": "no"} +{"question_id": 409, "image": "COCO_val2014_000000080022.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 410, "image": "COCO_val2014_000000080022.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 411, "image": "COCO_val2014_000000080022.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 412, "image": "COCO_val2014_000000080022.jpg", "text": "Is there a carrot in the image?", "label": "no"} +{"question_id": 413, "image": "COCO_val2014_000000080022.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 414, "image": "COCO_val2014_000000080022.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 415, "image": "COCO_val2014_000000564336.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 416, "image": "COCO_val2014_000000564336.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 417, "image": "COCO_val2014_000000564336.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 418, "image": "COCO_val2014_000000564336.jpg", "text": "Is there a skateboard in the image?", "label": "no"} +{"question_id": 419, "image": "COCO_val2014_000000564336.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 420, "image": "COCO_val2014_000000564336.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 421, "image": "COCO_val2014_000000231589.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 422, "image": "COCO_val2014_000000231589.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 423, "image": "COCO_val2014_000000231589.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 424, "image": "COCO_val2014_000000231589.jpg", "text": "Is there a toothbrush in the image?", "label": "no"} +{"question_id": 425, "image": "COCO_val2014_000000231589.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 426, "image": "COCO_val2014_000000231589.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 427, "image": "COCO_val2014_000000465275.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 428, "image": "COCO_val2014_000000465275.jpg", "text": "Is there a bird in the image?", "label": "no"} +{"question_id": 429, "image": "COCO_val2014_000000465275.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 430, "image": "COCO_val2014_000000465275.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 431, "image": "COCO_val2014_000000465275.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 432, "image": "COCO_val2014_000000465275.jpg", "text": "Is there a keyboard in the image?", "label": "no"} +{"question_id": 433, "image": "COCO_val2014_000000083275.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 434, "image": "COCO_val2014_000000083275.jpg", "text": "Is there a spoon in the image?", "label": "no"} +{"question_id": 435, "image": "COCO_val2014_000000083275.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 436, "image": "COCO_val2014_000000083275.jpg", "text": "Is there a teddy bear in the image?", "label": "no"} +{"question_id": 437, "image": "COCO_val2014_000000083275.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 438, "image": "COCO_val2014_000000083275.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 439, "image": "COCO_val2014_000000406403.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 440, "image": "COCO_val2014_000000406403.jpg", "text": "Is there an oven in the imange?", "label": "no"} +{"question_id": 441, "image": "COCO_val2014_000000406403.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 442, "image": "COCO_val2014_000000406403.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 443, "image": "COCO_val2014_000000406403.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 444, "image": "COCO_val2014_000000406403.jpg", "text": "Is there a broccoli in the image?", "label": "no"} +{"question_id": 445, "image": "COCO_val2014_000000131018.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 446, "image": "COCO_val2014_000000131018.jpg", "text": "Is there a clock in the image?", "label": "no"} +{"question_id": 447, "image": "COCO_val2014_000000131018.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 448, "image": "COCO_val2014_000000131018.jpg", "text": "Is there an elephant in the imange?", "label": "no"} +{"question_id": 449, "image": "COCO_val2014_000000131018.jpg", "text": "Is there a scissors in the image?", "label": "yes"} +{"question_id": 450, "image": "COCO_val2014_000000131018.jpg", "text": "Is there a giraffe in the image?", "label": "no"} +{"question_id": 451, "image": "COCO_val2014_000000332625.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 452, "image": "COCO_val2014_000000332625.jpg", "text": "Is there a potted plant in the image?", "label": "no"} +{"question_id": 453, "image": "COCO_val2014_000000332625.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 454, "image": "COCO_val2014_000000332625.jpg", "text": "Is there a motorcycle in the image?", "label": "no"} +{"question_id": 455, "image": "COCO_val2014_000000332625.jpg", "text": "Is there an airplane in the imange?", "label": "yes"} +{"question_id": 456, "image": "COCO_val2014_000000332625.jpg", "text": "Is there a frisbee in the image?", "label": "no"} +{"question_id": 457, "image": "COCO_val2014_000000332025.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 458, "image": "COCO_val2014_000000332025.jpg", "text": "Is there a sports ball in the image?", "label": "no"} +{"question_id": 459, "image": "COCO_val2014_000000332025.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 460, "image": "COCO_val2014_000000332025.jpg", "text": "Is there an oven in the imange?", "label": "no"} +{"question_id": 461, "image": "COCO_val2014_000000332025.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 462, "image": "COCO_val2014_000000332025.jpg", "text": "Is there a clock in the image?", "label": "no"} +{"question_id": 463, "image": "COCO_val2014_000000318204.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 464, "image": "COCO_val2014_000000318204.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 465, "image": "COCO_val2014_000000318204.jpg", "text": "Is there a horse in the image?", "label": "yes"} +{"question_id": 466, "image": "COCO_val2014_000000318204.jpg", "text": "Is there a knife in the image?", "label": "no"} +{"question_id": 467, "image": "COCO_val2014_000000318204.jpg", "text": "Is there a sheep in the image?", "label": "yes"} +{"question_id": 468, "image": "COCO_val2014_000000318204.jpg", "text": "Is there a tie in the image?", "label": "no"} +{"question_id": 469, "image": "COCO_val2014_000000455157.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 470, "image": "COCO_val2014_000000455157.jpg", "text": "Is there a cow in the image?", "label": "no"} +{"question_id": 471, "image": "COCO_val2014_000000455157.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 472, "image": "COCO_val2014_000000455157.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 473, "image": "COCO_val2014_000000455157.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 474, "image": "COCO_val2014_000000455157.jpg", "text": "Is there a pizza in the image?", "label": "no"} +{"question_id": 475, "image": "COCO_val2014_000000069189.jpg", "text": "Is there a bird in the image?", "label": "yes"} +{"question_id": 476, "image": "COCO_val2014_000000069189.jpg", "text": "Is there a refrigerator in the image?", "label": "no"} +{"question_id": 477, "image": "COCO_val2014_000000069189.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 478, "image": "COCO_val2014_000000069189.jpg", "text": "Is there a clock in the image?", "label": "no"} +{"question_id": 479, "image": "COCO_val2014_000000069189.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 480, "image": "COCO_val2014_000000199764.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 481, "image": "COCO_val2014_000000199764.jpg", "text": "Is there a cat in the image?", "label": "no"} +{"question_id": 482, "image": "COCO_val2014_000000199764.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 483, "image": "COCO_val2014_000000199764.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 484, "image": "COCO_val2014_000000199764.jpg", "text": "Is there an apple in the imange?", "label": "no"} +{"question_id": 485, "image": "COCO_val2014_000000148766.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 486, "image": "COCO_val2014_000000148766.jpg", "text": "Is there a cake in the image?", "label": "no"} +{"question_id": 487, "image": "COCO_val2014_000000148766.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 488, "image": "COCO_val2014_000000148766.jpg", "text": "Is there a cell phone in the image?", "label": "no"} +{"question_id": 489, "image": "COCO_val2014_000000148766.jpg", "text": "Is there a toilet in the image?", "label": "yes"} +{"question_id": 490, "image": "COCO_val2014_000000148766.jpg", "text": "Is there a skis in the image?", "label": "no"} +{"question_id": 491, "image": "COCO_val2014_000000175506.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 492, "image": "COCO_val2014_000000175506.jpg", "text": "Is there a hot dog in the image?", "label": "no"} +{"question_id": 493, "image": "COCO_val2014_000000175506.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 494, "image": "COCO_val2014_000000175506.jpg", "text": "Is there a tie in the image?", "label": "no"} +{"question_id": 495, "image": "COCO_val2014_000000175506.jpg", "text": "Is there a frisbee in the image?", "label": "yes"} +{"question_id": 496, "image": "COCO_val2014_000000175506.jpg", "text": "Is there an oven in the imange?", "label": "no"} +{"question_id": 497, "image": "COCO_val2014_000000353096.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 498, "image": "COCO_val2014_000000353096.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 499, "image": "COCO_val2014_000000353096.jpg", "text": "Is there a mouse in the image?", "label": "yes"} +{"question_id": 500, "image": "COCO_val2014_000000353096.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 501, "image": "COCO_val2014_000000353096.jpg", "text": "Is there a vase in the image?", "label": "no"} +{"question_id": 502, "image": "COCO_val2014_000000207205.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 503, "image": "COCO_val2014_000000207205.jpg", "text": "Is there an apple in the imange?", "label": "no"} +{"question_id": 504, "image": "COCO_val2014_000000207205.jpg", "text": "Is there a broccoli in the image?", "label": "yes"} +{"question_id": 505, "image": "COCO_val2014_000000207205.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 506, "image": "COCO_val2014_000000207205.jpg", "text": "Is there a carrot in the image?", "label": "yes"} +{"question_id": 507, "image": "COCO_val2014_000000207205.jpg", "text": "Is there a kite in the image?", "label": "no"} +{"question_id": 508, "image": "COCO_val2014_000000427113.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 509, "image": "COCO_val2014_000000427113.jpg", "text": "Is there an elephant in the imange?", "label": "no"} +{"question_id": 510, "image": "COCO_val2014_000000427113.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 511, "image": "COCO_val2014_000000427113.jpg", "text": "Is there a donut in the image?", "label": "no"} +{"question_id": 512, "image": "COCO_val2014_000000427113.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 513, "image": "COCO_val2014_000000427113.jpg", "text": "Is there a hot dog in the image?", "label": "no"} +{"question_id": 514, "image": "COCO_val2014_000000498374.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 515, "image": "COCO_val2014_000000498374.jpg", "text": "Is there a broccoli in the image?", "label": "no"} +{"question_id": 516, "image": "COCO_val2014_000000498374.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 517, "image": "COCO_val2014_000000498374.jpg", "text": "Is there a remote in the image?", "label": "no"} +{"question_id": 518, "image": "COCO_val2014_000000498374.jpg", "text": "Is there a toilet in the image?", "label": "yes"} +{"question_id": 519, "image": "COCO_val2014_000000498374.jpg", "text": "Is there a fire hydrant in the image?", "label": "no"} +{"question_id": 520, "image": "COCO_val2014_000000013348.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 521, "image": "COCO_val2014_000000013348.jpg", "text": "Is there a suitcase in the image?", "label": "no"} +{"question_id": 522, "image": "COCO_val2014_000000013348.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 523, "image": "COCO_val2014_000000013348.jpg", "text": "Is there a toilet in the image?", "label": "no"} +{"question_id": 524, "image": "COCO_val2014_000000013348.jpg", "text": "Is there an airplane in the imange?", "label": "yes"} +{"question_id": 525, "image": "COCO_val2014_000000013348.jpg", "text": "Is there a bird in the image?", "label": "no"} +{"question_id": 526, "image": "COCO_val2014_000000081336.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 527, "image": "COCO_val2014_000000081336.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 528, "image": "COCO_val2014_000000081336.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 529, "image": "COCO_val2014_000000081336.jpg", "text": "Is there a train in the image?", "label": "no"} +{"question_id": 530, "image": "COCO_val2014_000000081336.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 531, "image": "COCO_val2014_000000081336.jpg", "text": "Is there a pizza in the image?", "label": "no"} +{"question_id": 532, "image": "COCO_val2014_000000190185.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 533, "image": "COCO_val2014_000000190185.jpg", "text": "Is there a donut in the image?", "label": "no"} +{"question_id": 534, "image": "COCO_val2014_000000190185.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 535, "image": "COCO_val2014_000000190185.jpg", "text": "Is there a sink in the image?", "label": "no"} +{"question_id": 536, "image": "COCO_val2014_000000190185.jpg", "text": "Is there a sandwich in the image?", "label": "yes"} +{"question_id": 537, "image": "COCO_val2014_000000190185.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 538, "image": "COCO_val2014_000000209755.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 539, "image": "COCO_val2014_000000209755.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 540, "image": "COCO_val2014_000000209755.jpg", "text": "Is there a knife in the image?", "label": "no"} +{"question_id": 541, "image": "COCO_val2014_000000209755.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 542, "image": "COCO_val2014_000000209755.jpg", "text": "Is there a wine glass in the image?", "label": "no"} +{"question_id": 543, "image": "COCO_val2014_000000227227.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 544, "image": "COCO_val2014_000000227227.jpg", "text": "Is there a sports ball in the image?", "label": "no"} +{"question_id": 545, "image": "COCO_val2014_000000227227.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 546, "image": "COCO_val2014_000000227227.jpg", "text": "Is there a skis in the image?", "label": "no"} +{"question_id": 547, "image": "COCO_val2014_000000227227.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 548, "image": "COCO_val2014_000000397705.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 549, "image": "COCO_val2014_000000397705.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 550, "image": "COCO_val2014_000000397705.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 551, "image": "COCO_val2014_000000397705.jpg", "text": "Is there a cat in the image?", "label": "yes"} +{"question_id": 552, "image": "COCO_val2014_000000397705.jpg", "text": "Is there a banana in the image?", "label": "no"} +{"question_id": 553, "image": "COCO_val2014_000000287305.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 554, "image": "COCO_val2014_000000287305.jpg", "text": "Is there a knife in the image?", "label": "no"} +{"question_id": 555, "image": "COCO_val2014_000000287305.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 556, "image": "COCO_val2014_000000287305.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 557, "image": "COCO_val2014_000000287305.jpg", "text": "Is there a bus in the image?", "label": "yes"} +{"question_id": 558, "image": "COCO_val2014_000000287305.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 559, "image": "COCO_val2014_000000257327.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 560, "image": "COCO_val2014_000000257327.jpg", "text": "Is there a wine glass in the image?", "label": "no"} +{"question_id": 561, "image": "COCO_val2014_000000257327.jpg", "text": "Is there a toilet in the image?", "label": "yes"} +{"question_id": 562, "image": "COCO_val2014_000000257327.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 563, "image": "COCO_val2014_000000257327.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 564, "image": "COCO_val2014_000000257327.jpg", "text": "Is there a vase in the image?", "label": "no"} +{"question_id": 565, "image": "COCO_val2014_000000557016.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 566, "image": "COCO_val2014_000000557016.jpg", "text": "Is there a refrigerator in the image?", "label": "no"} +{"question_id": 567, "image": "COCO_val2014_000000557016.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 568, "image": "COCO_val2014_000000557016.jpg", "text": "Is there a tie in the image?", "label": "no"} +{"question_id": 569, "image": "COCO_val2014_000000557016.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 570, "image": "COCO_val2014_000000557016.jpg", "text": "Is there a broccoli in the image?", "label": "no"} +{"question_id": 571, "image": "COCO_val2014_000000105732.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 572, "image": "COCO_val2014_000000105732.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 573, "image": "COCO_val2014_000000105732.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 574, "image": "COCO_val2014_000000105732.jpg", "text": "Is there a snowboard in the image?", "label": "no"} +{"question_id": 575, "image": "COCO_val2014_000000105732.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 576, "image": "COCO_val2014_000000105732.jpg", "text": "Is there an apple in the imange?", "label": "no"} +{"question_id": 577, "image": "COCO_val2014_000000534121.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 578, "image": "COCO_val2014_000000534121.jpg", "text": "Is there a cat in the image?", "label": "no"} +{"question_id": 579, "image": "COCO_val2014_000000534121.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 580, "image": "COCO_val2014_000000534121.jpg", "text": "Is there an orange in the imange?", "label": "no"} +{"question_id": 581, "image": "COCO_val2014_000000534121.jpg", "text": "Is there a boat in the image?", "label": "yes"} +{"question_id": 582, "image": "COCO_val2014_000000534121.jpg", "text": "Is there an umbrella in the imange?", "label": "no"} +{"question_id": 583, "image": "COCO_val2014_000000520524.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 584, "image": "COCO_val2014_000000520524.jpg", "text": "Is there a sandwich in the image?", "label": "no"} +{"question_id": 585, "image": "COCO_val2014_000000520524.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 586, "image": "COCO_val2014_000000520524.jpg", "text": "Is there a remote in the image?", "label": "no"} +{"question_id": 587, "image": "COCO_val2014_000000520524.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 588, "image": "COCO_val2014_000000520524.jpg", "text": "Is there a scissors in the image?", "label": "no"} +{"question_id": 589, "image": "COCO_val2014_000000580294.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 590, "image": "COCO_val2014_000000580294.jpg", "text": "Is there a vase in the image?", "label": "no"} +{"question_id": 591, "image": "COCO_val2014_000000580294.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 592, "image": "COCO_val2014_000000580294.jpg", "text": "Is there a bed in the image?", "label": "no"} +{"question_id": 593, "image": "COCO_val2014_000000580294.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 594, "image": "COCO_val2014_000000580294.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 595, "image": "COCO_val2014_000000374061.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 596, "image": "COCO_val2014_000000374061.jpg", "text": "Is there a zebra in the image?", "label": "no"} +{"question_id": 597, "image": "COCO_val2014_000000374061.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 598, "image": "COCO_val2014_000000374061.jpg", "text": "Is there a mouse in the image?", "label": "no"} +{"question_id": 599, "image": "COCO_val2014_000000374061.jpg", "text": "Is there a cat in the image?", "label": "yes"} +{"question_id": 600, "image": "COCO_val2014_000000374061.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 601, "image": "COCO_val2014_000000094944.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 602, "image": "COCO_val2014_000000094944.jpg", "text": "Is there a broccoli in the image?", "label": "no"} +{"question_id": 603, "image": "COCO_val2014_000000094944.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 604, "image": "COCO_val2014_000000094944.jpg", "text": "Is there a bed in the image?", "label": "no"} +{"question_id": 605, "image": "COCO_val2014_000000094944.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 606, "image": "COCO_val2014_000000094944.jpg", "text": "Is there a sheep in the image?", "label": "no"} +{"question_id": 607, "image": "COCO_val2014_000000572075.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 608, "image": "COCO_val2014_000000572075.jpg", "text": "Is there a toilet in the image?", "label": "yes"} +{"question_id": 609, "image": "COCO_val2014_000000572075.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 610, "image": "COCO_val2014_000000572075.jpg", "text": "Is there a cat in the image?", "label": "yes"} +{"question_id": 611, "image": "COCO_val2014_000000572075.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 612, "image": "COCO_val2014_000000387098.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 613, "image": "COCO_val2014_000000387098.jpg", "text": "Is there a sports ball in the image?", "label": "no"} +{"question_id": 614, "image": "COCO_val2014_000000387098.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 615, "image": "COCO_val2014_000000387098.jpg", "text": "Is there a snowboard in the image?", "label": "no"} +{"question_id": 616, "image": "COCO_val2014_000000387098.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 617, "image": "COCO_val2014_000000387098.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 618, "image": "COCO_val2014_000000382670.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 619, "image": "COCO_val2014_000000382670.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 620, "image": "COCO_val2014_000000382670.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 621, "image": "COCO_val2014_000000382670.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 622, "image": "COCO_val2014_000000382670.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 623, "image": "COCO_val2014_000000382670.jpg", "text": "Is there a banana in the image?", "label": "no"} +{"question_id": 624, "image": "COCO_val2014_000000414516.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 625, "image": "COCO_val2014_000000414516.jpg", "text": "Is there a bear in the image?", "label": "no"} +{"question_id": 626, "image": "COCO_val2014_000000414516.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 627, "image": "COCO_val2014_000000414516.jpg", "text": "Is there a keyboard in the image?", "label": "no"} +{"question_id": 628, "image": "COCO_val2014_000000414516.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 629, "image": "COCO_val2014_000000414516.jpg", "text": "Is there a giraffe in the image?", "label": "no"} +{"question_id": 630, "image": "COCO_val2014_000000204360.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 631, "image": "COCO_val2014_000000204360.jpg", "text": "Is there a horse in the image?", "label": "no"} +{"question_id": 632, "image": "COCO_val2014_000000204360.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 633, "image": "COCO_val2014_000000204360.jpg", "text": "Is there a suitcase in the image?", "label": "no"} +{"question_id": 634, "image": "COCO_val2014_000000204360.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 635, "image": "COCO_val2014_000000204360.jpg", "text": "Is there an apple in the imange?", "label": "no"} +{"question_id": 636, "image": "COCO_val2014_000000245642.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 637, "image": "COCO_val2014_000000245642.jpg", "text": "Is there a refrigerator in the image?", "label": "no"} +{"question_id": 638, "image": "COCO_val2014_000000245642.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 639, "image": "COCO_val2014_000000245642.jpg", "text": "Is there a sheep in the image?", "label": "yes"} +{"question_id": 640, "image": "COCO_val2014_000000245642.jpg", "text": "Is there a clock in the image?", "label": "no"} +{"question_id": 641, "image": "COCO_val2014_000000237767.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 642, "image": "COCO_val2014_000000237767.jpg", "text": "Is there a skateboard in the image?", "label": "no"} +{"question_id": 643, "image": "COCO_val2014_000000237767.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 644, "image": "COCO_val2014_000000237767.jpg", "text": "Is there a train in the image?", "label": "no"} +{"question_id": 645, "image": "COCO_val2014_000000237767.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 646, "image": "COCO_val2014_000000237767.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 647, "image": "COCO_val2014_000000370900.jpg", "text": "Is there a tie in the image?", "label": "yes"} +{"question_id": 648, "image": "COCO_val2014_000000370900.jpg", "text": "Is there a donut in the image?", "label": "no"} +{"question_id": 649, "image": "COCO_val2014_000000370900.jpg", "text": "Is there a bear in the image?", "label": "yes"} +{"question_id": 650, "image": "COCO_val2014_000000370900.jpg", "text": "Is there a mouse in the image?", "label": "no"} +{"question_id": 651, "image": "COCO_val2014_000000370900.jpg", "text": "Is there a teddy bear in the image?", "label": "yes"} +{"question_id": 652, "image": "COCO_val2014_000000370900.jpg", "text": "Is there a cell phone in the image?", "label": "no"} +{"question_id": 653, "image": "COCO_val2014_000000094501.jpg", "text": "Is there a cake in the image?", "label": "yes"} +{"question_id": 654, "image": "COCO_val2014_000000094501.jpg", "text": "Is there a microwave in the image?", "label": "no"} +{"question_id": 655, "image": "COCO_val2014_000000094501.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 656, "image": "COCO_val2014_000000094501.jpg", "text": "Is there a banana in the image?", "label": "no"} +{"question_id": 657, "image": "COCO_val2014_000000094501.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 658, "image": "COCO_val2014_000000094501.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 659, "image": "COCO_val2014_000000069196.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 660, "image": "COCO_val2014_000000069196.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 661, "image": "COCO_val2014_000000069196.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 662, "image": "COCO_val2014_000000069196.jpg", "text": "Is there a bench in the image?", "label": "no"} +{"question_id": 663, "image": "COCO_val2014_000000069196.jpg", "text": "Is there an airplane in the imange?", "label": "yes"} +{"question_id": 664, "image": "COCO_val2014_000000069196.jpg", "text": "Is there a potted plant in the image?", "label": "no"} +{"question_id": 665, "image": "COCO_val2014_000000366141.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 666, "image": "COCO_val2014_000000366141.jpg", "text": "Is there an elephant in the imange?", "label": "no"} +{"question_id": 667, "image": "COCO_val2014_000000366141.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 668, "image": "COCO_val2014_000000366141.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 669, "image": "COCO_val2014_000000366141.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 670, "image": "COCO_val2014_000000366141.jpg", "text": "Is there a hot dog in the image?", "label": "no"} +{"question_id": 671, "image": "COCO_val2014_000000093946.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 672, "image": "COCO_val2014_000000093946.jpg", "text": "Is there an apple in the imange?", "label": "no"} +{"question_id": 673, "image": "COCO_val2014_000000093946.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 674, "image": "COCO_val2014_000000093946.jpg", "text": "Is there a remote in the image?", "label": "no"} +{"question_id": 675, "image": "COCO_val2014_000000093946.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 676, "image": "COCO_val2014_000000093946.jpg", "text": "Is there a hot dog in the image?", "label": "no"} +{"question_id": 677, "image": "COCO_val2014_000000032610.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 678, "image": "COCO_val2014_000000032610.jpg", "text": "Is there a carrot in the image?", "label": "no"} +{"question_id": 679, "image": "COCO_val2014_000000032610.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 680, "image": "COCO_val2014_000000032610.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 681, "image": "COCO_val2014_000000032610.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 682, "image": "COCO_val2014_000000032610.jpg", "text": "Is there a knife in the image?", "label": "no"} +{"question_id": 683, "image": "COCO_val2014_000000239130.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 684, "image": "COCO_val2014_000000239130.jpg", "text": "Is there a vase in the image?", "label": "no"} +{"question_id": 685, "image": "COCO_val2014_000000239130.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 686, "image": "COCO_val2014_000000239130.jpg", "text": "Is there a toilet in the image?", "label": "no"} +{"question_id": 687, "image": "COCO_val2014_000000239130.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 688, "image": "COCO_val2014_000000239130.jpg", "text": "Is there a skis in the image?", "label": "no"} +{"question_id": 689, "image": "COCO_val2014_000000226097.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 690, "image": "COCO_val2014_000000226097.jpg", "text": "Is there a cake in the image?", "label": "no"} +{"question_id": 691, "image": "COCO_val2014_000000226097.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 692, "image": "COCO_val2014_000000226097.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 693, "image": "COCO_val2014_000000226097.jpg", "text": "Is there a sports ball in the image?", "label": "no"} +{"question_id": 694, "image": "COCO_val2014_000000538054.jpg", "text": "Is there a banana in the image?", "label": "yes"} +{"question_id": 695, "image": "COCO_val2014_000000538054.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 696, "image": "COCO_val2014_000000538054.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 697, "image": "COCO_val2014_000000538054.jpg", "text": "Is there a tie in the image?", "label": "no"} +{"question_id": 698, "image": "COCO_val2014_000000114710.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 699, "image": "COCO_val2014_000000114710.jpg", "text": "Is there a bear in the image?", "label": "no"} +{"question_id": 700, "image": "COCO_val2014_000000114710.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 701, "image": "COCO_val2014_000000114710.jpg", "text": "Is there an umbrella in the imange?", "label": "no"} +{"question_id": 702, "image": "COCO_val2014_000000114710.jpg", "text": "Is there a sheep in the image?", "label": "yes"} +{"question_id": 703, "image": "COCO_val2014_000000114710.jpg", "text": "Is there a surfboard in the image?", "label": "no"} +{"question_id": 704, "image": "COCO_val2014_000000113701.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 705, "image": "COCO_val2014_000000113701.jpg", "text": "Is there a baseball bat in the image?", "label": "no"} +{"question_id": 706, "image": "COCO_val2014_000000113701.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 707, "image": "COCO_val2014_000000113701.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 708, "image": "COCO_val2014_000000113701.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 709, "image": "COCO_val2014_000000113701.jpg", "text": "Is there a train in the image?", "label": "no"} +{"question_id": 710, "image": "COCO_val2014_000000065001.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 711, "image": "COCO_val2014_000000065001.jpg", "text": "Is there a bench in the image?", "label": "no"} +{"question_id": 712, "image": "COCO_val2014_000000065001.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 713, "image": "COCO_val2014_000000065001.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 714, "image": "COCO_val2014_000000065001.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 715, "image": "COCO_val2014_000000065001.jpg", "text": "Is there a stop sign in the image?", "label": "no"} +{"question_id": 716, "image": "COCO_val2014_000000482275.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 717, "image": "COCO_val2014_000000482275.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 718, "image": "COCO_val2014_000000482275.jpg", "text": "Is there a knife in the image?", "label": "yes"} +{"question_id": 719, "image": "COCO_val2014_000000482275.jpg", "text": "Is there a baseball bat in the image?", "label": "no"} +{"question_id": 720, "image": "COCO_val2014_000000482275.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 721, "image": "COCO_val2014_000000482275.jpg", "text": "Is there a pizza in the image?", "label": "no"} +{"question_id": 722, "image": "COCO_val2014_000000140983.jpg", "text": "Is there a toothbrush in the image?", "label": "yes"} +{"question_id": 723, "image": "COCO_val2014_000000140983.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 724, "image": "COCO_val2014_000000140983.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 725, "image": "COCO_val2014_000000140983.jpg", "text": "Is there a bed in the image?", "label": "no"} +{"question_id": 726, "image": "COCO_val2014_000000140983.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 727, "image": "COCO_val2014_000000140983.jpg", "text": "Is there a bear in the image?", "label": "no"} +{"question_id": 728, "image": "COCO_val2014_000000044520.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 729, "image": "COCO_val2014_000000044520.jpg", "text": "Is there a pizza in the image?", "label": "no"} +{"question_id": 730, "image": "COCO_val2014_000000044520.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 731, "image": "COCO_val2014_000000044520.jpg", "text": "Is there a keyboard in the image?", "label": "no"} +{"question_id": 732, "image": "COCO_val2014_000000044520.jpg", "text": "Is there a stop sign in the image?", "label": "yes"} +{"question_id": 733, "image": "COCO_val2014_000000044520.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 734, "image": "COCO_val2014_000000518177.jpg", "text": "Is there a toaster in the image?", "label": "yes"} +{"question_id": 735, "image": "COCO_val2014_000000518177.jpg", "text": "Is there a kite in the image?", "label": "no"} +{"question_id": 736, "image": "COCO_val2014_000000518177.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 737, "image": "COCO_val2014_000000518177.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 738, "image": "COCO_val2014_000000518177.jpg", "text": "Is there a microwave in the image?", "label": "yes"} +{"question_id": 739, "image": "COCO_val2014_000000518177.jpg", "text": "Is there a boat in the image?", "label": "no"} +{"question_id": 740, "image": "COCO_val2014_000000203479.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 741, "image": "COCO_val2014_000000203479.jpg", "text": "Is there a scissors in the image?", "label": "no"} +{"question_id": 742, "image": "COCO_val2014_000000203479.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 743, "image": "COCO_val2014_000000203479.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 744, "image": "COCO_val2014_000000203479.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 745, "image": "COCO_val2014_000000203479.jpg", "text": "Is there an orange in the imange?", "label": "no"} +{"question_id": 746, "image": "COCO_val2014_000000551881.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 747, "image": "COCO_val2014_000000551881.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 748, "image": "COCO_val2014_000000551881.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 749, "image": "COCO_val2014_000000551881.jpg", "text": "Is there a cow in the image?", "label": "no"} +{"question_id": 750, "image": "COCO_val2014_000000551881.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 751, "image": "COCO_val2014_000000551881.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 752, "image": "COCO_val2014_000000369541.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 753, "image": "COCO_val2014_000000369541.jpg", "text": "Is there a cat in the image?", "label": "no"} +{"question_id": 754, "image": "COCO_val2014_000000369541.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 755, "image": "COCO_val2014_000000369541.jpg", "text": "Is there a baseball bat in the image?", "label": "no"} +{"question_id": 756, "image": "COCO_val2014_000000369541.jpg", "text": "Is there a frisbee in the image?", "label": "yes"} +{"question_id": 757, "image": "COCO_val2014_000000369541.jpg", "text": "Is there a skateboard in the image?", "label": "no"} +{"question_id": 758, "image": "COCO_val2014_000000007795.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 759, "image": "COCO_val2014_000000007795.jpg", "text": "Is there a train in the image?", "label": "no"} +{"question_id": 760, "image": "COCO_val2014_000000007795.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 761, "image": "COCO_val2014_000000007795.jpg", "text": "Is there a skateboard in the image?", "label": "no"} +{"question_id": 762, "image": "COCO_val2014_000000007795.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 763, "image": "COCO_val2014_000000007795.jpg", "text": "Is there a fork in the image?", "label": "no"} +{"question_id": 764, "image": "COCO_val2014_000000303099.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 765, "image": "COCO_val2014_000000303099.jpg", "text": "Is there a toaster in the image?", "label": "no"} +{"question_id": 766, "image": "COCO_val2014_000000303099.jpg", "text": "Is there a cat in the image?", "label": "yes"} +{"question_id": 767, "image": "COCO_val2014_000000303099.jpg", "text": "Is there a spoon in the image?", "label": "no"} +{"question_id": 768, "image": "COCO_val2014_000000303099.jpg", "text": "Is there a toilet in the image?", "label": "yes"} +{"question_id": 769, "image": "COCO_val2014_000000303099.jpg", "text": "Is there a bed in the image?", "label": "no"} +{"question_id": 770, "image": "COCO_val2014_000000147289.jpg", "text": "Is there a fire hydrant in the image?", "label": "yes"} +{"question_id": 771, "image": "COCO_val2014_000000147289.jpg", "text": "Is there a boat in the image?", "label": "no"} +{"question_id": 772, "image": "COCO_val2014_000000147289.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 773, "image": "COCO_val2014_000000147289.jpg", "text": "Is there a toothbrush in the image?", "label": "no"} +{"question_id": 774, "image": "COCO_val2014_000000147289.jpg", "text": "Is there a stop sign in the image?", "label": "yes"} +{"question_id": 775, "image": "COCO_val2014_000000147289.jpg", "text": "Is there a baseball bat in the image?", "label": "no"} +{"question_id": 776, "image": "COCO_val2014_000000102439.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 777, "image": "COCO_val2014_000000102439.jpg", "text": "Is there a spoon in the image?", "label": "no"} +{"question_id": 778, "image": "COCO_val2014_000000102439.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 779, "image": "COCO_val2014_000000102439.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 780, "image": "COCO_val2014_000000102439.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 781, "image": "COCO_val2014_000000102439.jpg", "text": "Is there a sink in the image?", "label": "no"} +{"question_id": 782, "image": "COCO_val2014_000000183757.jpg", "text": "Is there a boat in the image?", "label": "yes"} +{"question_id": 783, "image": "COCO_val2014_000000183757.jpg", "text": "Is there a remote in the image?", "label": "no"} +{"question_id": 784, "image": "COCO_val2014_000000183757.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 785, "image": "COCO_val2014_000000183757.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 786, "image": "COCO_val2014_000000183757.jpg", "text": "Is there a cat in the image?", "label": "yes"} +{"question_id": 787, "image": "COCO_val2014_000000183757.jpg", "text": "Is there a hot dog in the image?", "label": "no"} +{"question_id": 788, "image": "COCO_val2014_000000500473.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 789, "image": "COCO_val2014_000000500473.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 790, "image": "COCO_val2014_000000500473.jpg", "text": "Is there a broccoli in the image?", "label": "yes"} +{"question_id": 791, "image": "COCO_val2014_000000500473.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 792, "image": "COCO_val2014_000000500473.jpg", "text": "Is there a horse in the image?", "label": "no"} +{"question_id": 793, "image": "COCO_val2014_000000327532.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 794, "image": "COCO_val2014_000000327532.jpg", "text": "Is there a spoon in the image?", "label": "no"} +{"question_id": 795, "image": "COCO_val2014_000000327532.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 796, "image": "COCO_val2014_000000327532.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 797, "image": "COCO_val2014_000000327532.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 798, "image": "COCO_val2014_000000327532.jpg", "text": "Is there a knife in the image?", "label": "no"} +{"question_id": 799, "image": "COCO_val2014_000000167110.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 800, "image": "COCO_val2014_000000167110.jpg", "text": "Is there a banana in the image?", "label": "no"} +{"question_id": 801, "image": "COCO_val2014_000000167110.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 802, "image": "COCO_val2014_000000167110.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 803, "image": "COCO_val2014_000000167110.jpg", "text": "Is there a skateboard in the image?", "label": "yes"} +{"question_id": 804, "image": "COCO_val2014_000000167110.jpg", "text": "Is there a mouse in the image?", "label": "no"} +{"question_id": 805, "image": "COCO_val2014_000000300876.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 806, "image": "COCO_val2014_000000300876.jpg", "text": "Is there an apple in the imange?", "label": "no"} +{"question_id": 807, "image": "COCO_val2014_000000300876.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 808, "image": "COCO_val2014_000000300876.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 809, "image": "COCO_val2014_000000300876.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 810, "image": "COCO_val2014_000000300876.jpg", "text": "Is there a potted plant in the image?", "label": "no"} +{"question_id": 811, "image": "COCO_val2014_000000443240.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 812, "image": "COCO_val2014_000000443240.jpg", "text": "Is there a keyboard in the image?", "label": "no"} +{"question_id": 813, "image": "COCO_val2014_000000443240.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 814, "image": "COCO_val2014_000000443240.jpg", "text": "Is there a refrigerator in the image?", "label": "no"} +{"question_id": 815, "image": "COCO_val2014_000000443240.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 816, "image": "COCO_val2014_000000443240.jpg", "text": "Is there an apple in the imange?", "label": "no"} +{"question_id": 817, "image": "COCO_val2014_000000288042.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 818, "image": "COCO_val2014_000000288042.jpg", "text": "Is there a scissors in the image?", "label": "no"} +{"question_id": 819, "image": "COCO_val2014_000000288042.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 820, "image": "COCO_val2014_000000288042.jpg", "text": "Is there a pizza in the image?", "label": "no"} +{"question_id": 821, "image": "COCO_val2014_000000288042.jpg", "text": "Is there an umbrella in the imange?", "label": "yes"} +{"question_id": 822, "image": "COCO_val2014_000000288042.jpg", "text": "Is there a train in the image?", "label": "no"} +{"question_id": 823, "image": "COCO_val2014_000000270609.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 824, "image": "COCO_val2014_000000270609.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 825, "image": "COCO_val2014_000000270609.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 826, "image": "COCO_val2014_000000270609.jpg", "text": "Is there a laptop in the image?", "label": "no"} +{"question_id": 827, "image": "COCO_val2014_000000270609.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 828, "image": "COCO_val2014_000000270609.jpg", "text": "Is there a cat in the image?", "label": "no"} +{"question_id": 829, "image": "COCO_val2014_000000208028.jpg", "text": "Is there a keyboard in the image?", "label": "yes"} +{"question_id": 830, "image": "COCO_val2014_000000208028.jpg", "text": "Is there a zebra in the image?", "label": "no"} +{"question_id": 831, "image": "COCO_val2014_000000208028.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 832, "image": "COCO_val2014_000000208028.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 833, "image": "COCO_val2014_000000208028.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 834, "image": "COCO_val2014_000000208028.jpg", "text": "Is there a clock in the image?", "label": "no"} +{"question_id": 835, "image": "COCO_val2014_000000314992.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 836, "image": "COCO_val2014_000000314992.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 837, "image": "COCO_val2014_000000314992.jpg", "text": "Is there a parking meter in the image?", "label": "no"} +{"question_id": 838, "image": "COCO_val2014_000000314992.jpg", "text": "Is there a cell phone in the image?", "label": "yes"} +{"question_id": 839, "image": "COCO_val2014_000000314992.jpg", "text": "Is there a stop sign in the image?", "label": "no"} +{"question_id": 840, "image": "COCO_val2014_000000424642.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 841, "image": "COCO_val2014_000000424642.jpg", "text": "Is there a bed in the image?", "label": "no"} +{"question_id": 842, "image": "COCO_val2014_000000424642.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 843, "image": "COCO_val2014_000000424642.jpg", "text": "Is there a remote in the image?", "label": "no"} +{"question_id": 844, "image": "COCO_val2014_000000424642.jpg", "text": "Is there a frisbee in the image?", "label": "yes"} +{"question_id": 845, "image": "COCO_val2014_000000424642.jpg", "text": "Is there a hot dog in the image?", "label": "no"} +{"question_id": 846, "image": "COCO_val2014_000000467176.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 847, "image": "COCO_val2014_000000467176.jpg", "text": "Is there a donut in the image?", "label": "no"} +{"question_id": 848, "image": "COCO_val2014_000000467176.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 849, "image": "COCO_val2014_000000467176.jpg", "text": "Is there a sink in the image?", "label": "no"} +{"question_id": 850, "image": "COCO_val2014_000000467176.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 851, "image": "COCO_val2014_000000467176.jpg", "text": "Is there a zebra in the image?", "label": "no"} +{"question_id": 852, "image": "COCO_val2014_000000087435.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 853, "image": "COCO_val2014_000000087435.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 854, "image": "COCO_val2014_000000087435.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 855, "image": "COCO_val2014_000000087435.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 856, "image": "COCO_val2014_000000087435.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 857, "image": "COCO_val2014_000000087435.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 858, "image": "COCO_val2014_000000079446.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 859, "image": "COCO_val2014_000000079446.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 860, "image": "COCO_val2014_000000079446.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 861, "image": "COCO_val2014_000000079446.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 862, "image": "COCO_val2014_000000079446.jpg", "text": "Is there a toilet in the image?", "label": "yes"} +{"question_id": 863, "image": "COCO_val2014_000000079446.jpg", "text": "Is there a suitcase in the image?", "label": "no"} +{"question_id": 864, "image": "COCO_val2014_000000354398.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 865, "image": "COCO_val2014_000000354398.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 866, "image": "COCO_val2014_000000354398.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 867, "image": "COCO_val2014_000000354398.jpg", "text": "Is there a frisbee in the image?", "label": "no"} +{"question_id": 868, "image": "COCO_val2014_000000354398.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 869, "image": "COCO_val2014_000000354398.jpg", "text": "Is there a suitcase in the image?", "label": "no"} +{"question_id": 870, "image": "COCO_val2014_000000430052.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 871, "image": "COCO_val2014_000000430052.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 872, "image": "COCO_val2014_000000430052.jpg", "text": "Is there a bird in the image?", "label": "yes"} +{"question_id": 873, "image": "COCO_val2014_000000430052.jpg", "text": "Is there a surfboard in the image?", "label": "no"} +{"question_id": 874, "image": "COCO_val2014_000000430052.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 875, "image": "COCO_val2014_000000430052.jpg", "text": "Is there a cow in the image?", "label": "no"} +{"question_id": 876, "image": "COCO_val2014_000000567886.jpg", "text": "Is there a teddy bear in the image?", "label": "yes"} +{"question_id": 877, "image": "COCO_val2014_000000567886.jpg", "text": "Is there a sink in the image?", "label": "no"} +{"question_id": 878, "image": "COCO_val2014_000000567886.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 879, "image": "COCO_val2014_000000567886.jpg", "text": "Is there a sports ball in the image?", "label": "no"} +{"question_id": 880, "image": "COCO_val2014_000000567886.jpg", "text": "Is there a book in the image?", "label": "yes"} +{"question_id": 881, "image": "COCO_val2014_000000567886.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 882, "image": "COCO_val2014_000000539251.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 883, "image": "COCO_val2014_000000539251.jpg", "text": "Is there a kite in the image?", "label": "no"} +{"question_id": 884, "image": "COCO_val2014_000000539251.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 885, "image": "COCO_val2014_000000539251.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 886, "image": "COCO_val2014_000000539251.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 887, "image": "COCO_val2014_000000539251.jpg", "text": "Is there a train in the image?", "label": "no"} +{"question_id": 888, "image": "COCO_val2014_000000551908.jpg", "text": "Is there a broccoli in the image?", "label": "yes"} +{"question_id": 889, "image": "COCO_val2014_000000551908.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 890, "image": "COCO_val2014_000000551908.jpg", "text": "Is there a carrot in the image?", "label": "yes"} +{"question_id": 891, "image": "COCO_val2014_000000551908.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 892, "image": "COCO_val2014_000000551908.jpg", "text": "Is there a giraffe in the image?", "label": "no"} +{"question_id": 893, "image": "COCO_val2014_000000102906.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 894, "image": "COCO_val2014_000000102906.jpg", "text": "Is there a zebra in the image?", "label": "no"} +{"question_id": 895, "image": "COCO_val2014_000000102906.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 896, "image": "COCO_val2014_000000102906.jpg", "text": "Is there a fork in the image?", "label": "no"} +{"question_id": 897, "image": "COCO_val2014_000000102906.jpg", "text": "Is there a fire hydrant in the image?", "label": "yes"} +{"question_id": 898, "image": "COCO_val2014_000000102906.jpg", "text": "Is there an oven in the imange?", "label": "no"} +{"question_id": 899, "image": "COCO_val2014_000000327771.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 900, "image": "COCO_val2014_000000327771.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 901, "image": "COCO_val2014_000000327771.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 902, "image": "COCO_val2014_000000327771.jpg", "text": "Is there an apple in the imange?", "label": "no"} +{"question_id": 903, "image": "COCO_val2014_000000327771.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 904, "image": "COCO_val2014_000000327771.jpg", "text": "Is there a cow in the image?", "label": "no"} +{"question_id": 905, "image": "COCO_val2014_000000280734.jpg", "text": "Is there a pizza in the image?", "label": "yes"} +{"question_id": 906, "image": "COCO_val2014_000000280734.jpg", "text": "Is there an umbrella in the imange?", "label": "no"} +{"question_id": 907, "image": "COCO_val2014_000000280734.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 908, "image": "COCO_val2014_000000280734.jpg", "text": "Is there a fork in the image?", "label": "no"} +{"question_id": 909, "image": "COCO_val2014_000000280734.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 910, "image": "COCO_val2014_000000280734.jpg", "text": "Is there a sandwich in the image?", "label": "no"} +{"question_id": 911, "image": "COCO_val2014_000000111817.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 912, "image": "COCO_val2014_000000111817.jpg", "text": "Is there an orange in the imange?", "label": "no"} +{"question_id": 913, "image": "COCO_val2014_000000111817.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 914, "image": "COCO_val2014_000000111817.jpg", "text": "Is there a bench in the image?", "label": "no"} +{"question_id": 915, "image": "COCO_val2014_000000111817.jpg", "text": "Is there a cake in the image?", "label": "yes"} +{"question_id": 916, "image": "COCO_val2014_000000111817.jpg", "text": "Is there a sheep in the image?", "label": "no"} +{"question_id": 917, "image": "COCO_val2014_000000379162.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 918, "image": "COCO_val2014_000000379162.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 919, "image": "COCO_val2014_000000379162.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 920, "image": "COCO_val2014_000000379162.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 921, "image": "COCO_val2014_000000379162.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 922, "image": "COCO_val2014_000000379162.jpg", "text": "Is there a bed in the image?", "label": "no"} +{"question_id": 923, "image": "COCO_val2014_000000489728.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 924, "image": "COCO_val2014_000000489728.jpg", "text": "Is there a wine glass in the image?", "label": "no"} +{"question_id": 925, "image": "COCO_val2014_000000489728.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 926, "image": "COCO_val2014_000000489728.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 927, "image": "COCO_val2014_000000489728.jpg", "text": "Is there a boat in the image?", "label": "no"} +{"question_id": 928, "image": "COCO_val2014_000000419453.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 929, "image": "COCO_val2014_000000419453.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 930, "image": "COCO_val2014_000000419453.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 931, "image": "COCO_val2014_000000419453.jpg", "text": "Is there a pizza in the image?", "label": "no"} +{"question_id": 932, "image": "COCO_val2014_000000419453.jpg", "text": "Is there an umbrella in the imange?", "label": "yes"} +{"question_id": 933, "image": "COCO_val2014_000000419453.jpg", "text": "Is there a sandwich in the image?", "label": "no"} +{"question_id": 934, "image": "COCO_val2014_000000358255.jpg", "text": "Is there a teddy bear in the image?", "label": "yes"} +{"question_id": 935, "image": "COCO_val2014_000000358255.jpg", "text": "Is there a carrot in the image?", "label": "no"} +{"question_id": 936, "image": "COCO_val2014_000000358255.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 937, "image": "COCO_val2014_000000358255.jpg", "text": "Is there a cake in the image?", "label": "no"} +{"question_id": 938, "image": "COCO_val2014_000000358255.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 939, "image": "COCO_val2014_000000358255.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 940, "image": "COCO_val2014_000000178078.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 941, "image": "COCO_val2014_000000178078.jpg", "text": "Is there a kite in the image?", "label": "no"} +{"question_id": 942, "image": "COCO_val2014_000000178078.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 943, "image": "COCO_val2014_000000178078.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 944, "image": "COCO_val2014_000000178078.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 945, "image": "COCO_val2014_000000178078.jpg", "text": "Is there a laptop in the image?", "label": "no"} +{"question_id": 946, "image": "COCO_val2014_000000197219.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 947, "image": "COCO_val2014_000000197219.jpg", "text": "Is there a scissors in the image?", "label": "no"} +{"question_id": 948, "image": "COCO_val2014_000000197219.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 949, "image": "COCO_val2014_000000197219.jpg", "text": "Is there a snowboard in the image?", "label": "no"} +{"question_id": 950, "image": "COCO_val2014_000000197219.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 951, "image": "COCO_val2014_000000197219.jpg", "text": "Is there a bear in the image?", "label": "no"} +{"question_id": 952, "image": "COCO_val2014_000000460931.jpg", "text": "Is there a donut in the image?", "label": "yes"} +{"question_id": 953, "image": "COCO_val2014_000000460931.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 954, "image": "COCO_val2014_000000460931.jpg", "text": "Is there a cake in the image?", "label": "yes"} +{"question_id": 955, "image": "COCO_val2014_000000460931.jpg", "text": "Is there a cow in the image?", "label": "no"} +{"question_id": 956, "image": "COCO_val2014_000000460931.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 957, "image": "COCO_val2014_000000460931.jpg", "text": "Is there a motorcycle in the image?", "label": "no"} +{"question_id": 958, "image": "COCO_val2014_000000506483.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 959, "image": "COCO_val2014_000000506483.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 960, "image": "COCO_val2014_000000506483.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 961, "image": "COCO_val2014_000000506483.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 962, "image": "COCO_val2014_000000506483.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 963, "image": "COCO_val2014_000000506483.jpg", "text": "Is there a motorcycle in the image?", "label": "no"} +{"question_id": 964, "image": "COCO_val2014_000000468934.jpg", "text": "Is there a banana in the image?", "label": "yes"} +{"question_id": 965, "image": "COCO_val2014_000000468934.jpg", "text": "Is there a remote in the image?", "label": "no"} +{"question_id": 966, "image": "COCO_val2014_000000468934.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 967, "image": "COCO_val2014_000000468934.jpg", "text": "Is there a bird in the image?", "label": "no"} +{"question_id": 968, "image": "COCO_val2014_000000468934.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 969, "image": "COCO_val2014_000000468934.jpg", "text": "Is there an elephant in the imange?", "label": "no"} +{"question_id": 970, "image": "COCO_val2014_000000189694.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 971, "image": "COCO_val2014_000000189694.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 972, "image": "COCO_val2014_000000189694.jpg", "text": "Is there a banana in the image?", "label": "no"} +{"question_id": 973, "image": "COCO_val2014_000000189694.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 974, "image": "COCO_val2014_000000189694.jpg", "text": "Is there a bear in the image?", "label": "no"} +{"question_id": 975, "image": "COCO_val2014_000000273450.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 976, "image": "COCO_val2014_000000273450.jpg", "text": "Is there a keyboard in the image?", "label": "no"} +{"question_id": 977, "image": "COCO_val2014_000000273450.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 978, "image": "COCO_val2014_000000273450.jpg", "text": "Is there a train in the image?", "label": "no"} +{"question_id": 979, "image": "COCO_val2014_000000273450.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 980, "image": "COCO_val2014_000000278226.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 981, "image": "COCO_val2014_000000278226.jpg", "text": "Is there a toilet in the image?", "label": "no"} +{"question_id": 982, "image": "COCO_val2014_000000278226.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 983, "image": "COCO_val2014_000000278226.jpg", "text": "Is there a train in the image?", "label": "no"} +{"question_id": 984, "image": "COCO_val2014_000000278226.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 985, "image": "COCO_val2014_000000278226.jpg", "text": "Is there a bird in the image?", "label": "no"} +{"question_id": 986, "image": "COCO_val2014_000000449432.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 987, "image": "COCO_val2014_000000449432.jpg", "text": "Is there an orange in the imange?", "label": "no"} +{"question_id": 988, "image": "COCO_val2014_000000449432.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 989, "image": "COCO_val2014_000000449432.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 990, "image": "COCO_val2014_000000449432.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 991, "image": "COCO_val2014_000000449432.jpg", "text": "Is there a refrigerator in the image?", "label": "no"} +{"question_id": 992, "image": "COCO_val2014_000000153300.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 993, "image": "COCO_val2014_000000153300.jpg", "text": "Is there a toaster in the image?", "label": "no"} +{"question_id": 994, "image": "COCO_val2014_000000153300.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 995, "image": "COCO_val2014_000000153300.jpg", "text": "Is there a kite in the image?", "label": "no"} +{"question_id": 996, "image": "COCO_val2014_000000153300.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 997, "image": "COCO_val2014_000000153300.jpg", "text": "Is there a laptop in the image?", "label": "no"} +{"question_id": 998, "image": "COCO_val2014_000000506178.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 999, "image": "COCO_val2014_000000506178.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 1000, "image": "COCO_val2014_000000506178.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 1001, "image": "COCO_val2014_000000506178.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 1002, "image": "COCO_val2014_000000506178.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 1003, "image": "COCO_val2014_000000506178.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1004, "image": "COCO_val2014_000000249720.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1005, "image": "COCO_val2014_000000249720.jpg", "text": "Is there a bear in the image?", "label": "no"} +{"question_id": 1006, "image": "COCO_val2014_000000249720.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1007, "image": "COCO_val2014_000000249720.jpg", "text": "Is there a wine glass in the image?", "label": "no"} +{"question_id": 1008, "image": "COCO_val2014_000000249720.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 1009, "image": "COCO_val2014_000000249720.jpg", "text": "Is there a zebra in the image?", "label": "no"} +{"question_id": 1010, "image": "COCO_val2014_000000205206.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 1011, "image": "COCO_val2014_000000205206.jpg", "text": "Is there a skateboard in the image?", "label": "no"} +{"question_id": 1012, "image": "COCO_val2014_000000205206.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 1013, "image": "COCO_val2014_000000205206.jpg", "text": "Is there a cake in the image?", "label": "no"} +{"question_id": 1014, "image": "COCO_val2014_000000205206.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1015, "image": "COCO_val2014_000000205206.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1016, "image": "COCO_val2014_000000018150.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1017, "image": "COCO_val2014_000000018150.jpg", "text": "Is there a frisbee in the image?", "label": "no"} +{"question_id": 1018, "image": "COCO_val2014_000000018150.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1019, "image": "COCO_val2014_000000018150.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 1020, "image": "COCO_val2014_000000018150.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 1021, "image": "COCO_val2014_000000018150.jpg", "text": "Is there a stop sign in the image?", "label": "no"} +{"question_id": 1022, "image": "COCO_val2014_000000303534.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 1023, "image": "COCO_val2014_000000303534.jpg", "text": "Is there an airplane in the imange?", "label": "no"} +{"question_id": 1024, "image": "COCO_val2014_000000303534.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1025, "image": "COCO_val2014_000000303534.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1026, "image": "COCO_val2014_000000303534.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 1027, "image": "COCO_val2014_000000278771.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1028, "image": "COCO_val2014_000000278771.jpg", "text": "Is there a train in the image?", "label": "no"} +{"question_id": 1029, "image": "COCO_val2014_000000278771.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1030, "image": "COCO_val2014_000000278771.jpg", "text": "Is there an apple in the imange?", "label": "no"} +{"question_id": 1031, "image": "COCO_val2014_000000278771.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1032, "image": "COCO_val2014_000000278771.jpg", "text": "Is there a spoon in the image?", "label": "no"} +{"question_id": 1033, "image": "COCO_val2014_000000134075.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 1034, "image": "COCO_val2014_000000134075.jpg", "text": "Is there an elephant in the imange?", "label": "no"} +{"question_id": 1035, "image": "COCO_val2014_000000134075.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1036, "image": "COCO_val2014_000000134075.jpg", "text": "Is there a boat in the image?", "label": "no"} +{"question_id": 1037, "image": "COCO_val2014_000000134075.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1038, "image": "COCO_val2014_000000134075.jpg", "text": "Is there a suitcase in the image?", "label": "no"} +{"question_id": 1039, "image": "COCO_val2014_000000227204.jpg", "text": "Is there a banana in the image?", "label": "yes"} +{"question_id": 1040, "image": "COCO_val2014_000000227204.jpg", "text": "Is there an airplane in the imange?", "label": "no"} +{"question_id": 1041, "image": "COCO_val2014_000000227204.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1042, "image": "COCO_val2014_000000227204.jpg", "text": "Is there a cake in the image?", "label": "no"} +{"question_id": 1043, "image": "COCO_val2014_000000227204.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 1044, "image": "COCO_val2014_000000227204.jpg", "text": "Is there a cat in the image?", "label": "no"} +{"question_id": 1045, "image": "COCO_val2014_000000124629.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1046, "image": "COCO_val2014_000000124629.jpg", "text": "Is there a refrigerator in the image?", "label": "no"} +{"question_id": 1047, "image": "COCO_val2014_000000124629.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1048, "image": "COCO_val2014_000000124629.jpg", "text": "Is there a surfboard in the image?", "label": "no"} +{"question_id": 1049, "image": "COCO_val2014_000000124629.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 1050, "image": "COCO_val2014_000000124629.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 1051, "image": "COCO_val2014_000000142774.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1052, "image": "COCO_val2014_000000142774.jpg", "text": "Is there a boat in the image?", "label": "no"} +{"question_id": 1053, "image": "COCO_val2014_000000142774.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 1054, "image": "COCO_val2014_000000142774.jpg", "text": "Is there a kite in the image?", "label": "no"} +{"question_id": 1055, "image": "COCO_val2014_000000142774.jpg", "text": "Is there a bus in the image?", "label": "yes"} +{"question_id": 1056, "image": "COCO_val2014_000000142774.jpg", "text": "Is there a train in the image?", "label": "no"} +{"question_id": 1057, "image": "COCO_val2014_000000199959.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1058, "image": "COCO_val2014_000000199959.jpg", "text": "Is there a bed in the image?", "label": "no"} +{"question_id": 1059, "image": "COCO_val2014_000000199959.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1060, "image": "COCO_val2014_000000199959.jpg", "text": "Is there a laptop in the image?", "label": "no"} +{"question_id": 1061, "image": "COCO_val2014_000000199959.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 1062, "image": "COCO_val2014_000000199959.jpg", "text": "Is there a toilet in the image?", "label": "no"} +{"question_id": 1063, "image": "COCO_val2014_000000316700.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1064, "image": "COCO_val2014_000000316700.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 1065, "image": "COCO_val2014_000000316700.jpg", "text": "Is there a broccoli in the image?", "label": "yes"} +{"question_id": 1066, "image": "COCO_val2014_000000316700.jpg", "text": "Is there a laptop in the image?", "label": "no"} +{"question_id": 1067, "image": "COCO_val2014_000000316700.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1068, "image": "COCO_val2014_000000316700.jpg", "text": "Is there a hot dog in the image?", "label": "no"} +{"question_id": 1069, "image": "COCO_val2014_000000040361.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1070, "image": "COCO_val2014_000000040361.jpg", "text": "Is there a knife in the image?", "label": "no"} +{"question_id": 1071, "image": "COCO_val2014_000000040361.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1072, "image": "COCO_val2014_000000040361.jpg", "text": "Is there a skis in the image?", "label": "no"} +{"question_id": 1073, "image": "COCO_val2014_000000040361.jpg", "text": "Is there a baseball bat in the image?", "label": "yes"} +{"question_id": 1074, "image": "COCO_val2014_000000040361.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 1075, "image": "COCO_val2014_000000378873.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1076, "image": "COCO_val2014_000000378873.jpg", "text": "Is there a horse in the image?", "label": "no"} +{"question_id": 1077, "image": "COCO_val2014_000000378873.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1078, "image": "COCO_val2014_000000378873.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 1079, "image": "COCO_val2014_000000378873.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1080, "image": "COCO_val2014_000000378873.jpg", "text": "Is there a laptop in the image?", "label": "no"} +{"question_id": 1081, "image": "COCO_val2014_000000574790.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 1082, "image": "COCO_val2014_000000574790.jpg", "text": "Is there a teddy bear in the image?", "label": "no"} +{"question_id": 1083, "image": "COCO_val2014_000000574790.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1084, "image": "COCO_val2014_000000574790.jpg", "text": "Is there a snowboard in the image?", "label": "no"} +{"question_id": 1085, "image": "COCO_val2014_000000574790.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1086, "image": "COCO_val2014_000000574790.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 1087, "image": "COCO_val2014_000000011241.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1088, "image": "COCO_val2014_000000011241.jpg", "text": "Is there an apple in the imange?", "label": "no"} +{"question_id": 1089, "image": "COCO_val2014_000000011241.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 1090, "image": "COCO_val2014_000000011241.jpg", "text": "Is there a skateboard in the image?", "label": "no"} +{"question_id": 1091, "image": "COCO_val2014_000000011241.jpg", "text": "Is there a sandwich in the image?", "label": "yes"} +{"question_id": 1092, "image": "COCO_val2014_000000011241.jpg", "text": "Is there a cow in the image?", "label": "no"} +{"question_id": 1093, "image": "COCO_val2014_000000525667.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1094, "image": "COCO_val2014_000000525667.jpg", "text": "Is there a zebra in the image?", "label": "no"} +{"question_id": 1095, "image": "COCO_val2014_000000525667.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 1096, "image": "COCO_val2014_000000525667.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1097, "image": "COCO_val2014_000000525667.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1098, "image": "COCO_val2014_000000525667.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 1099, "image": "COCO_val2014_000000246145.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1100, "image": "COCO_val2014_000000246145.jpg", "text": "Is there a parking meter in the image?", "label": "no"} +{"question_id": 1101, "image": "COCO_val2014_000000246145.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 1102, "image": "COCO_val2014_000000246145.jpg", "text": "Is there a broccoli in the image?", "label": "no"} +{"question_id": 1103, "image": "COCO_val2014_000000246145.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1104, "image": "COCO_val2014_000000246145.jpg", "text": "Is there a hot dog in the image?", "label": "no"} +{"question_id": 1105, "image": "COCO_val2014_000000313162.jpg", "text": "Is there a pizza in the image?", "label": "yes"} +{"question_id": 1106, "image": "COCO_val2014_000000313162.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 1107, "image": "COCO_val2014_000000313162.jpg", "text": "Is there a stop sign in the image?", "label": "no"} +{"question_id": 1108, "image": "COCO_val2014_000000313162.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1109, "image": "COCO_val2014_000000313162.jpg", "text": "Is there a remote in the image?", "label": "no"} +{"question_id": 1110, "image": "COCO_val2014_000000529668.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1111, "image": "COCO_val2014_000000529668.jpg", "text": "Is there a broccoli in the image?", "label": "no"} +{"question_id": 1112, "image": "COCO_val2014_000000529668.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 1113, "image": "COCO_val2014_000000529668.jpg", "text": "Is there an airplane in the imange?", "label": "no"} +{"question_id": 1114, "image": "COCO_val2014_000000529668.jpg", "text": "Is there a cell phone in the image?", "label": "yes"} +{"question_id": 1115, "image": "COCO_val2014_000000529668.jpg", "text": "Is there a scissors in the image?", "label": "no"} +{"question_id": 1116, "image": "COCO_val2014_000000376959.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1117, "image": "COCO_val2014_000000376959.jpg", "text": "Is there a broccoli in the image?", "label": "no"} +{"question_id": 1118, "image": "COCO_val2014_000000376959.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1119, "image": "COCO_val2014_000000376959.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 1120, "image": "COCO_val2014_000000376959.jpg", "text": "Is there a cell phone in the image?", "label": "yes"} +{"question_id": 1121, "image": "COCO_val2014_000000376959.jpg", "text": "Is there a bench in the image?", "label": "no"} +{"question_id": 1122, "image": "COCO_val2014_000000275863.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1123, "image": "COCO_val2014_000000275863.jpg", "text": "Is there a pizza in the image?", "label": "no"} +{"question_id": 1124, "image": "COCO_val2014_000000275863.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1125, "image": "COCO_val2014_000000275863.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 1126, "image": "COCO_val2014_000000275863.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 1127, "image": "COCO_val2014_000000275863.jpg", "text": "Is there a kite in the image?", "label": "no"} +{"question_id": 1128, "image": "COCO_val2014_000000327038.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1129, "image": "COCO_val2014_000000327038.jpg", "text": "Is there a keyboard in the image?", "label": "no"} +{"question_id": 1130, "image": "COCO_val2014_000000327038.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 1131, "image": "COCO_val2014_000000327038.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 1132, "image": "COCO_val2014_000000327038.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1133, "image": "COCO_val2014_000000327038.jpg", "text": "Is there an orange in the imange?", "label": "no"} +{"question_id": 1134, "image": "COCO_val2014_000000513136.jpg", "text": "Is there a pizza in the image?", "label": "yes"} +{"question_id": 1135, "image": "COCO_val2014_000000513136.jpg", "text": "Is there an orange in the imange?", "label": "no"} +{"question_id": 1136, "image": "COCO_val2014_000000513136.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 1137, "image": "COCO_val2014_000000513136.jpg", "text": "Is there a stop sign in the image?", "label": "no"} +{"question_id": 1138, "image": "COCO_val2014_000000513136.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1139, "image": "COCO_val2014_000000513136.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 1140, "image": "COCO_val2014_000000184338.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1141, "image": "COCO_val2014_000000184338.jpg", "text": "Is there a wine glass in the image?", "label": "no"} +{"question_id": 1142, "image": "COCO_val2014_000000184338.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 1143, "image": "COCO_val2014_000000184338.jpg", "text": "Is there a mouse in the image?", "label": "no"} +{"question_id": 1144, "image": "COCO_val2014_000000184338.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1145, "image": "COCO_val2014_000000184338.jpg", "text": "Is there a banana in the image?", "label": "no"} +{"question_id": 1146, "image": "COCO_val2014_000000175437.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1147, "image": "COCO_val2014_000000175437.jpg", "text": "Is there a teddy bear in the image?", "label": "no"} +{"question_id": 1148, "image": "COCO_val2014_000000175437.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1149, "image": "COCO_val2014_000000175437.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 1150, "image": "COCO_val2014_000000175437.jpg", "text": "Is there a donut in the image?", "label": "yes"} +{"question_id": 1151, "image": "COCO_val2014_000000175437.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 1152, "image": "COCO_val2014_000000498100.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 1153, "image": "COCO_val2014_000000498100.jpg", "text": "Is there a mouse in the image?", "label": "no"} +{"question_id": 1154, "image": "COCO_val2014_000000498100.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1155, "image": "COCO_val2014_000000498100.jpg", "text": "Is there a skis in the image?", "label": "no"} +{"question_id": 1156, "image": "COCO_val2014_000000498100.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1157, "image": "COCO_val2014_000000375909.jpg", "text": "Is there a refrigerator in the image?", "label": "yes"} +{"question_id": 1158, "image": "COCO_val2014_000000375909.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1159, "image": "COCO_val2014_000000375909.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 1160, "image": "COCO_val2014_000000375909.jpg", "text": "Is there a giraffe in the image?", "label": "no"} +{"question_id": 1161, "image": "COCO_val2014_000000375909.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 1162, "image": "COCO_val2014_000000375909.jpg", "text": "Is there a train in the image?", "label": "no"} +{"question_id": 1163, "image": "COCO_val2014_000000396338.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1164, "image": "COCO_val2014_000000396338.jpg", "text": "Is there a cat in the image?", "label": "no"} +{"question_id": 1165, "image": "COCO_val2014_000000396338.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1166, "image": "COCO_val2014_000000396338.jpg", "text": "Is there a boat in the image?", "label": "no"} +{"question_id": 1167, "image": "COCO_val2014_000000396338.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1168, "image": "COCO_val2014_000000396338.jpg", "text": "Is there a tie in the image?", "label": "no"} +{"question_id": 1169, "image": "COCO_val2014_000000124930.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1170, "image": "COCO_val2014_000000124930.jpg", "text": "Is there a suitcase in the image?", "label": "no"} +{"question_id": 1171, "image": "COCO_val2014_000000124930.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1172, "image": "COCO_val2014_000000124930.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 1173, "image": "COCO_val2014_000000124930.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 1174, "image": "COCO_val2014_000000124930.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 1175, "image": "COCO_val2014_000000112664.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1176, "image": "COCO_val2014_000000112664.jpg", "text": "Is there a microwave in the image?", "label": "no"} +{"question_id": 1177, "image": "COCO_val2014_000000112664.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 1178, "image": "COCO_val2014_000000112664.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 1179, "image": "COCO_val2014_000000112664.jpg", "text": "Is there a suitcase in the image?", "label": "yes"} +{"question_id": 1180, "image": "COCO_val2014_000000112664.jpg", "text": "Is there a spoon in the image?", "label": "no"} +{"question_id": 1181, "image": "COCO_val2014_000000377879.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1182, "image": "COCO_val2014_000000377879.jpg", "text": "Is there a teddy bear in the image?", "label": "no"} +{"question_id": 1183, "image": "COCO_val2014_000000377879.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 1184, "image": "COCO_val2014_000000377879.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 1185, "image": "COCO_val2014_000000377879.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 1186, "image": "COCO_val2014_000000377879.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 1187, "image": "COCO_val2014_000000377401.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1188, "image": "COCO_val2014_000000377401.jpg", "text": "Is there a frisbee in the image?", "label": "no"} +{"question_id": 1189, "image": "COCO_val2014_000000377401.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 1190, "image": "COCO_val2014_000000377401.jpg", "text": "Is there a wine glass in the image?", "label": "no"} +{"question_id": 1191, "image": "COCO_val2014_000000377401.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1192, "image": "COCO_val2014_000000377401.jpg", "text": "Is there a keyboard in the image?", "label": "no"} +{"question_id": 1193, "image": "COCO_val2014_000000049473.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 1194, "image": "COCO_val2014_000000049473.jpg", "text": "Is there a remote in the image?", "label": "no"} +{"question_id": 1195, "image": "COCO_val2014_000000049473.jpg", "text": "Is there a book in the image?", "label": "yes"} +{"question_id": 1196, "image": "COCO_val2014_000000049473.jpg", "text": "Is there a bed in the image?", "label": "no"} +{"question_id": 1197, "image": "COCO_val2014_000000049473.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1198, "image": "COCO_val2014_000000049473.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 1199, "image": "COCO_val2014_000000153865.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1200, "image": "COCO_val2014_000000153865.jpg", "text": "Is there a banana in the image?", "label": "no"} +{"question_id": 1201, "image": "COCO_val2014_000000153865.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1202, "image": "COCO_val2014_000000153865.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 1203, "image": "COCO_val2014_000000153865.jpg", "text": "Is there a kite in the image?", "label": "yes"} +{"question_id": 1204, "image": "COCO_val2014_000000153865.jpg", "text": "Is there a sink in the image?", "label": "no"} +{"question_id": 1205, "image": "COCO_val2014_000000383185.jpg", "text": "Is there a banana in the image?", "label": "yes"} +{"question_id": 1206, "image": "COCO_val2014_000000383185.jpg", "text": "Is there a vase in the image?", "label": "no"} +{"question_id": 1207, "image": "COCO_val2014_000000383185.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 1208, "image": "COCO_val2014_000000383185.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 1209, "image": "COCO_val2014_000000383185.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1210, "image": "COCO_val2014_000000388983.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1211, "image": "COCO_val2014_000000388983.jpg", "text": "Is there a snowboard in the image?", "label": "no"} +{"question_id": 1212, "image": "COCO_val2014_000000388983.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1213, "image": "COCO_val2014_000000388983.jpg", "text": "Is there a boat in the image?", "label": "no"} +{"question_id": 1214, "image": "COCO_val2014_000000388983.jpg", "text": "Is there a sandwich in the image?", "label": "yes"} +{"question_id": 1215, "image": "COCO_val2014_000000388983.jpg", "text": "Is there a skateboard in the image?", "label": "no"} +{"question_id": 1216, "image": "COCO_val2014_000000295377.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1217, "image": "COCO_val2014_000000295377.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 1218, "image": "COCO_val2014_000000295377.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1219, "image": "COCO_val2014_000000295377.jpg", "text": "Is there a bird in the image?", "label": "no"} +{"question_id": 1220, "image": "COCO_val2014_000000295377.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 1221, "image": "COCO_val2014_000000295377.jpg", "text": "Is there a clock in the image?", "label": "no"} +{"question_id": 1222, "image": "COCO_val2014_000000034773.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1223, "image": "COCO_val2014_000000034773.jpg", "text": "Is there a bird in the image?", "label": "no"} +{"question_id": 1224, "image": "COCO_val2014_000000034773.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 1225, "image": "COCO_val2014_000000034773.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 1226, "image": "COCO_val2014_000000034773.jpg", "text": "Is there a broccoli in the image?", "label": "no"} +{"question_id": 1227, "image": "COCO_val2014_000000244455.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1228, "image": "COCO_val2014_000000244455.jpg", "text": "Is there a vase in the image?", "label": "no"} +{"question_id": 1229, "image": "COCO_val2014_000000244455.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1230, "image": "COCO_val2014_000000244455.jpg", "text": "Is there a bed in the image?", "label": "no"} +{"question_id": 1231, "image": "COCO_val2014_000000244455.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 1232, "image": "COCO_val2014_000000244455.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1233, "image": "COCO_val2014_000000303652.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 1234, "image": "COCO_val2014_000000303652.jpg", "text": "Is there a refrigerator in the image?", "label": "no"} +{"question_id": 1235, "image": "COCO_val2014_000000303652.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1236, "image": "COCO_val2014_000000303652.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1237, "image": "COCO_val2014_000000303652.jpg", "text": "Is there a knife in the image?", "label": "yes"} +{"question_id": 1238, "image": "COCO_val2014_000000303652.jpg", "text": "Is there a teddy bear in the image?", "label": "no"} +{"question_id": 1239, "image": "COCO_val2014_000000098493.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1240, "image": "COCO_val2014_000000098493.jpg", "text": "Is there a kite in the image?", "label": "no"} +{"question_id": 1241, "image": "COCO_val2014_000000098493.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 1242, "image": "COCO_val2014_000000098493.jpg", "text": "Is there a potted plant in the image?", "label": "no"} +{"question_id": 1243, "image": "COCO_val2014_000000098493.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1244, "image": "COCO_val2014_000000098493.jpg", "text": "Is there a cow in the image?", "label": "no"} +{"question_id": 1245, "image": "COCO_val2014_000000201148.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 1246, "image": "COCO_val2014_000000201148.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 1247, "image": "COCO_val2014_000000201148.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1248, "image": "COCO_val2014_000000201148.jpg", "text": "Is there a sports ball in the image?", "label": "no"} +{"question_id": 1249, "image": "COCO_val2014_000000201148.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 1250, "image": "COCO_val2014_000000201148.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 1251, "image": "COCO_val2014_000000307166.jpg", "text": "Is there a pizza in the image?", "label": "yes"} +{"question_id": 1252, "image": "COCO_val2014_000000307166.jpg", "text": "Is there a sink in the image?", "label": "no"} +{"question_id": 1253, "image": "COCO_val2014_000000307166.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1254, "image": "COCO_val2014_000000307166.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 1255, "image": "COCO_val2014_000000307166.jpg", "text": "Is there an oven in the imange?", "label": "yes"} +{"question_id": 1256, "image": "COCO_val2014_000000307166.jpg", "text": "Is there a parking meter in the image?", "label": "no"} +{"question_id": 1257, "image": "COCO_val2014_000000313034.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 1258, "image": "COCO_val2014_000000313034.jpg", "text": "Is there a horse in the image?", "label": "no"} +{"question_id": 1259, "image": "COCO_val2014_000000313034.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1260, "image": "COCO_val2014_000000313034.jpg", "text": "Is there a baseball bat in the image?", "label": "no"} +{"question_id": 1261, "image": "COCO_val2014_000000313034.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1262, "image": "COCO_val2014_000000313034.jpg", "text": "Is there a giraffe in the image?", "label": "no"} +{"question_id": 1263, "image": "COCO_val2014_000000355342.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1264, "image": "COCO_val2014_000000355342.jpg", "text": "Is there a surfboard in the image?", "label": "no"} +{"question_id": 1265, "image": "COCO_val2014_000000355342.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 1266, "image": "COCO_val2014_000000355342.jpg", "text": "Is there a stop sign in the image?", "label": "no"} +{"question_id": 1267, "image": "COCO_val2014_000000355342.jpg", "text": "Is there an umbrella in the imange?", "label": "yes"} +{"question_id": 1268, "image": "COCO_val2014_000000355342.jpg", "text": "Is there a cat in the image?", "label": "no"} +{"question_id": 1269, "image": "COCO_val2014_000000333237.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1270, "image": "COCO_val2014_000000333237.jpg", "text": "Is there a bird in the image?", "label": "no"} +{"question_id": 1271, "image": "COCO_val2014_000000333237.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 1272, "image": "COCO_val2014_000000333237.jpg", "text": "Is there a tie in the image?", "label": "no"} +{"question_id": 1273, "image": "COCO_val2014_000000333237.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1274, "image": "COCO_val2014_000000333237.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 1275, "image": "COCO_val2014_000000526368.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 1276, "image": "COCO_val2014_000000526368.jpg", "text": "Is there a train in the image?", "label": "no"} +{"question_id": 1277, "image": "COCO_val2014_000000526368.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1278, "image": "COCO_val2014_000000526368.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1279, "image": "COCO_val2014_000000526368.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 1280, "image": "COCO_val2014_000000429033.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1281, "image": "COCO_val2014_000000429033.jpg", "text": "Is there a stop sign in the image?", "label": "no"} +{"question_id": 1282, "image": "COCO_val2014_000000429033.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1283, "image": "COCO_val2014_000000429033.jpg", "text": "Is there an umbrella in the imange?", "label": "no"} +{"question_id": 1284, "image": "COCO_val2014_000000429033.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 1285, "image": "COCO_val2014_000000429033.jpg", "text": "Is there a train in the image?", "label": "no"} +{"question_id": 1286, "image": "COCO_val2014_000000287035.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 1287, "image": "COCO_val2014_000000287035.jpg", "text": "Is there a horse in the image?", "label": "no"} +{"question_id": 1288, "image": "COCO_val2014_000000287035.jpg", "text": "Is there a mouse in the image?", "label": "yes"} +{"question_id": 1289, "image": "COCO_val2014_000000287035.jpg", "text": "Is there a clock in the image?", "label": "no"} +{"question_id": 1290, "image": "COCO_val2014_000000287035.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 1291, "image": "COCO_val2014_000000287035.jpg", "text": "Is there a knife in the image?", "label": "no"} +{"question_id": 1292, "image": "COCO_val2014_000000299074.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1293, "image": "COCO_val2014_000000299074.jpg", "text": "Is there a refrigerator in the image?", "label": "no"} +{"question_id": 1294, "image": "COCO_val2014_000000299074.jpg", "text": "Is there a cell phone in the image?", "label": "yes"} +{"question_id": 1295, "image": "COCO_val2014_000000299074.jpg", "text": "Is there an airplane in the imange?", "label": "no"} +{"question_id": 1296, "image": "COCO_val2014_000000299074.jpg", "text": "Is there a bus in the image?", "label": "yes"} +{"question_id": 1297, "image": "COCO_val2014_000000299074.jpg", "text": "Is there a boat in the image?", "label": "no"} +{"question_id": 1298, "image": "COCO_val2014_000000120648.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 1299, "image": "COCO_val2014_000000120648.jpg", "text": "Is there a bear in the image?", "label": "no"} +{"question_id": 1300, "image": "COCO_val2014_000000120648.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1301, "image": "COCO_val2014_000000120648.jpg", "text": "Is there a suitcase in the image?", "label": "yes"} +{"question_id": 1302, "image": "COCO_val2014_000000120648.jpg", "text": "Is there a snowboard in the image?", "label": "no"} +{"question_id": 1303, "image": "COCO_val2014_000000186709.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1304, "image": "COCO_val2014_000000186709.jpg", "text": "Is there a microwave in the image?", "label": "no"} +{"question_id": 1305, "image": "COCO_val2014_000000186709.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1306, "image": "COCO_val2014_000000186709.jpg", "text": "Is there a cow in the image?", "label": "no"} +{"question_id": 1307, "image": "COCO_val2014_000000186709.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 1308, "image": "COCO_val2014_000000186709.jpg", "text": "Is there a train in the image?", "label": "no"} +{"question_id": 1309, "image": "COCO_val2014_000000025972.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1310, "image": "COCO_val2014_000000025972.jpg", "text": "Is there a cell phone in the image?", "label": "no"} +{"question_id": 1311, "image": "COCO_val2014_000000025972.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 1312, "image": "COCO_val2014_000000025972.jpg", "text": "Is there a sheep in the image?", "label": "no"} +{"question_id": 1313, "image": "COCO_val2014_000000025972.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1314, "image": "COCO_val2014_000000025972.jpg", "text": "Is there a keyboard in the image?", "label": "no"} +{"question_id": 1315, "image": "COCO_val2014_000000505542.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1316, "image": "COCO_val2014_000000505542.jpg", "text": "Is there a boat in the image?", "label": "no"} +{"question_id": 1317, "image": "COCO_val2014_000000505542.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 1318, "image": "COCO_val2014_000000505542.jpg", "text": "Is there a skateboard in the image?", "label": "no"} +{"question_id": 1319, "image": "COCO_val2014_000000505542.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1320, "image": "COCO_val2014_000000505542.jpg", "text": "Is there a refrigerator in the image?", "label": "no"} +{"question_id": 1321, "image": "COCO_val2014_000000115636.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1322, "image": "COCO_val2014_000000115636.jpg", "text": "Is there a motorcycle in the image?", "label": "no"} +{"question_id": 1323, "image": "COCO_val2014_000000115636.jpg", "text": "Is there a horse in the image?", "label": "yes"} +{"question_id": 1324, "image": "COCO_val2014_000000115636.jpg", "text": "Is there a toilet in the image?", "label": "no"} +{"question_id": 1325, "image": "COCO_val2014_000000115636.jpg", "text": "Is there a cow in the image?", "label": "yes"} +{"question_id": 1326, "image": "COCO_val2014_000000115636.jpg", "text": "Is there a cake in the image?", "label": "no"} +{"question_id": 1327, "image": "COCO_val2014_000000280810.jpg", "text": "Is there a broccoli in the image?", "label": "yes"} +{"question_id": 1328, "image": "COCO_val2014_000000280810.jpg", "text": "Is there a parking meter in the image?", "label": "no"} +{"question_id": 1329, "image": "COCO_val2014_000000280810.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 1330, "image": "COCO_val2014_000000280810.jpg", "text": "Is there a frisbee in the image?", "label": "no"} +{"question_id": 1331, "image": "COCO_val2014_000000280810.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 1332, "image": "COCO_val2014_000000280810.jpg", "text": "Is there a scissors in the image?", "label": "no"} +{"question_id": 1333, "image": "COCO_val2014_000000037900.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1334, "image": "COCO_val2014_000000037900.jpg", "text": "Is there a banana in the image?", "label": "no"} +{"question_id": 1335, "image": "COCO_val2014_000000037900.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 1336, "image": "COCO_val2014_000000037900.jpg", "text": "Is there a cake in the image?", "label": "no"} +{"question_id": 1337, "image": "COCO_val2014_000000037900.jpg", "text": "Is there a knife in the image?", "label": "yes"} +{"question_id": 1338, "image": "COCO_val2014_000000037900.jpg", "text": "Is there a vase in the image?", "label": "no"} +{"question_id": 1339, "image": "COCO_val2014_000000534516.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 1340, "image": "COCO_val2014_000000534516.jpg", "text": "Is there a bench in the image?", "label": "no"} +{"question_id": 1341, "image": "COCO_val2014_000000534516.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1342, "image": "COCO_val2014_000000534516.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 1343, "image": "COCO_val2014_000000534516.jpg", "text": "Is there a tie in the image?", "label": "yes"} +{"question_id": 1344, "image": "COCO_val2014_000000534516.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1345, "image": "COCO_val2014_000000123017.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1346, "image": "COCO_val2014_000000123017.jpg", "text": "Is there a scissors in the image?", "label": "no"} +{"question_id": 1347, "image": "COCO_val2014_000000123017.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1348, "image": "COCO_val2014_000000123017.jpg", "text": "Is there an elephant in the imange?", "label": "no"} +{"question_id": 1349, "image": "COCO_val2014_000000123017.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1350, "image": "COCO_val2014_000000123017.jpg", "text": "Is there a toilet in the image?", "label": "no"} +{"question_id": 1351, "image": "COCO_val2014_000000316237.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1352, "image": "COCO_val2014_000000316237.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1353, "image": "COCO_val2014_000000316237.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 1354, "image": "COCO_val2014_000000316237.jpg", "text": "Is there a wine glass in the image?", "label": "no"} +{"question_id": 1355, "image": "COCO_val2014_000000316237.jpg", "text": "Is there a cell phone in the image?", "label": "yes"} +{"question_id": 1356, "image": "COCO_val2014_000000463522.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1357, "image": "COCO_val2014_000000463522.jpg", "text": "Is there a clock in the image?", "label": "no"} +{"question_id": 1358, "image": "COCO_val2014_000000463522.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1359, "image": "COCO_val2014_000000463522.jpg", "text": "Is there a teddy bear in the image?", "label": "no"} +{"question_id": 1360, "image": "COCO_val2014_000000463522.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 1361, "image": "COCO_val2014_000000463522.jpg", "text": "Is there a bed in the image?", "label": "no"} +{"question_id": 1362, "image": "COCO_val2014_000000511341.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1363, "image": "COCO_val2014_000000511341.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1364, "image": "COCO_val2014_000000511341.jpg", "text": "Is there a laptop in the image?", "label": "no"} +{"question_id": 1365, "image": "COCO_val2014_000000511341.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 1366, "image": "COCO_val2014_000000511341.jpg", "text": "Is there a sports ball in the image?", "label": "no"} +{"question_id": 1367, "image": "COCO_val2014_000000200583.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1368, "image": "COCO_val2014_000000200583.jpg", "text": "Is there a train in the image?", "label": "no"} +{"question_id": 1369, "image": "COCO_val2014_000000200583.jpg", "text": "Is there a boat in the image?", "label": "yes"} +{"question_id": 1370, "image": "COCO_val2014_000000200583.jpg", "text": "Is there a frisbee in the image?", "label": "no"} +{"question_id": 1371, "image": "COCO_val2014_000000200583.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 1372, "image": "COCO_val2014_000000200583.jpg", "text": "Is there a carrot in the image?", "label": "no"} +{"question_id": 1373, "image": "COCO_val2014_000000424585.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1374, "image": "COCO_val2014_000000424585.jpg", "text": "Is there a scissors in the image?", "label": "no"} +{"question_id": 1375, "image": "COCO_val2014_000000424585.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1376, "image": "COCO_val2014_000000424585.jpg", "text": "Is there a toaster in the image?", "label": "no"} +{"question_id": 1377, "image": "COCO_val2014_000000424585.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1378, "image": "COCO_val2014_000000424585.jpg", "text": "Is there a snowboard in the image?", "label": "no"} +{"question_id": 1379, "image": "COCO_val2014_000000100215.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 1380, "image": "COCO_val2014_000000100215.jpg", "text": "Is there a cake in the image?", "label": "no"} +{"question_id": 1381, "image": "COCO_val2014_000000100215.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 1382, "image": "COCO_val2014_000000100215.jpg", "text": "Is there a hot dog in the image?", "label": "no"} +{"question_id": 1383, "image": "COCO_val2014_000000100215.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1384, "image": "COCO_val2014_000000100215.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 1385, "image": "COCO_val2014_000000017379.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 1386, "image": "COCO_val2014_000000017379.jpg", "text": "Is there an apple in the imange?", "label": "no"} +{"question_id": 1387, "image": "COCO_val2014_000000017379.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 1388, "image": "COCO_val2014_000000017379.jpg", "text": "Is there a fork in the image?", "label": "no"} +{"question_id": 1389, "image": "COCO_val2014_000000017379.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1390, "image": "COCO_val2014_000000017379.jpg", "text": "Is there a tie in the image?", "label": "no"} +{"question_id": 1391, "image": "COCO_val2014_000000511622.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1392, "image": "COCO_val2014_000000511622.jpg", "text": "Is there an oven in the imange?", "label": "no"} +{"question_id": 1393, "image": "COCO_val2014_000000511622.jpg", "text": "Is there a scissors in the image?", "label": "yes"} +{"question_id": 1394, "image": "COCO_val2014_000000511622.jpg", "text": "Is there a refrigerator in the image?", "label": "no"} +{"question_id": 1395, "image": "COCO_val2014_000000511622.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1396, "image": "COCO_val2014_000000511622.jpg", "text": "Is there a wine glass in the image?", "label": "no"} +{"question_id": 1397, "image": "COCO_val2014_000000407386.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 1398, "image": "COCO_val2014_000000407386.jpg", "text": "Is there a bear in the image?", "label": "no"} +{"question_id": 1399, "image": "COCO_val2014_000000407386.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 1400, "image": "COCO_val2014_000000407386.jpg", "text": "Is there a scissors in the image?", "label": "no"} +{"question_id": 1401, "image": "COCO_val2014_000000407386.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1402, "image": "COCO_val2014_000000407386.jpg", "text": "Is there a toilet in the image?", "label": "no"} +{"question_id": 1403, "image": "COCO_val2014_000000039516.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 1404, "image": "COCO_val2014_000000039516.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 1405, "image": "COCO_val2014_000000039516.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 1406, "image": "COCO_val2014_000000039516.jpg", "text": "Is there a parking meter in the image?", "label": "no"} +{"question_id": 1407, "image": "COCO_val2014_000000039516.jpg", "text": "Is there a cake in the image?", "label": "yes"} +{"question_id": 1408, "image": "COCO_val2014_000000039516.jpg", "text": "Is there a refrigerator in the image?", "label": "no"} +{"question_id": 1409, "image": "COCO_val2014_000000018918.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 1410, "image": "COCO_val2014_000000018918.jpg", "text": "Is there a laptop in the image?", "label": "no"} +{"question_id": 1411, "image": "COCO_val2014_000000018918.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1412, "image": "COCO_val2014_000000018918.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1413, "image": "COCO_val2014_000000018918.jpg", "text": "Is there an oven in the imange?", "label": "yes"} +{"question_id": 1414, "image": "COCO_val2014_000000018918.jpg", "text": "Is there a cow in the image?", "label": "no"} +{"question_id": 1415, "image": "COCO_val2014_000000115626.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1416, "image": "COCO_val2014_000000115626.jpg", "text": "Is there a toothbrush in the image?", "label": "no"} +{"question_id": 1417, "image": "COCO_val2014_000000115626.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 1418, "image": "COCO_val2014_000000115626.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 1419, "image": "COCO_val2014_000000115626.jpg", "text": "Is there a parking meter in the image?", "label": "yes"} +{"question_id": 1420, "image": "COCO_val2014_000000115626.jpg", "text": "Is there a pizza in the image?", "label": "no"} +{"question_id": 1421, "image": "COCO_val2014_000000391735.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 1422, "image": "COCO_val2014_000000391735.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 1423, "image": "COCO_val2014_000000391735.jpg", "text": "Is there a toothbrush in the image?", "label": "yes"} +{"question_id": 1424, "image": "COCO_val2014_000000391735.jpg", "text": "Is there a stop sign in the image?", "label": "no"} +{"question_id": 1425, "image": "COCO_val2014_000000391735.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1426, "image": "COCO_val2014_000000391735.jpg", "text": "Is there a skateboard in the image?", "label": "no"} +{"question_id": 1427, "image": "COCO_val2014_000000236370.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1428, "image": "COCO_val2014_000000236370.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1429, "image": "COCO_val2014_000000236370.jpg", "text": "Is there a book in the image?", "label": "yes"} +{"question_id": 1430, "image": "COCO_val2014_000000236370.jpg", "text": "Is there an apple in the imange?", "label": "no"} +{"question_id": 1431, "image": "COCO_val2014_000000463542.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 1432, "image": "COCO_val2014_000000463542.jpg", "text": "Is there a broccoli in the image?", "label": "no"} +{"question_id": 1433, "image": "COCO_val2014_000000463542.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 1434, "image": "COCO_val2014_000000463542.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 1435, "image": "COCO_val2014_000000463542.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1436, "image": "COCO_val2014_000000463542.jpg", "text": "Is there a microwave in the image?", "label": "no"} +{"question_id": 1437, "image": "COCO_val2014_000000377352.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1438, "image": "COCO_val2014_000000377352.jpg", "text": "Is there a knife in the image?", "label": "no"} +{"question_id": 1439, "image": "COCO_val2014_000000377352.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 1440, "image": "COCO_val2014_000000377352.jpg", "text": "Is there a suitcase in the image?", "label": "no"} +{"question_id": 1441, "image": "COCO_val2014_000000377352.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1442, "image": "COCO_val2014_000000377352.jpg", "text": "Is there a donut in the image?", "label": "no"} +{"question_id": 1443, "image": "COCO_val2014_000000302405.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 1444, "image": "COCO_val2014_000000302405.jpg", "text": "Is there a cake in the image?", "label": "no"} +{"question_id": 1445, "image": "COCO_val2014_000000302405.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1446, "image": "COCO_val2014_000000302405.jpg", "text": "Is there a scissors in the image?", "label": "no"} +{"question_id": 1447, "image": "COCO_val2014_000000302405.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1448, "image": "COCO_val2014_000000302405.jpg", "text": "Is there a skateboard in the image?", "label": "no"} +{"question_id": 1449, "image": "COCO_val2014_000000554328.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 1450, "image": "COCO_val2014_000000554328.jpg", "text": "Is there a bear in the image?", "label": "no"} +{"question_id": 1451, "image": "COCO_val2014_000000554328.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1452, "image": "COCO_val2014_000000554328.jpg", "text": "Is there a carrot in the image?", "label": "no"} +{"question_id": 1453, "image": "COCO_val2014_000000554328.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1454, "image": "COCO_val2014_000000554328.jpg", "text": "Is there a broccoli in the image?", "label": "no"} +{"question_id": 1455, "image": "COCO_val2014_000000384040.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 1456, "image": "COCO_val2014_000000384040.jpg", "text": "Is there a giraffe in the image?", "label": "no"} +{"question_id": 1457, "image": "COCO_val2014_000000384040.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1458, "image": "COCO_val2014_000000384040.jpg", "text": "Is there a sports ball in the image?", "label": "no"} +{"question_id": 1459, "image": "COCO_val2014_000000384040.jpg", "text": "Is there a knife in the image?", "label": "yes"} +{"question_id": 1460, "image": "COCO_val2014_000000384040.jpg", "text": "Is there an oven in the imange?", "label": "no"} +{"question_id": 1461, "image": "COCO_val2014_000000023731.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 1462, "image": "COCO_val2014_000000023731.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1463, "image": "COCO_val2014_000000023731.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 1464, "image": "COCO_val2014_000000023731.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1465, "image": "COCO_val2014_000000023731.jpg", "text": "Is there a donut in the image?", "label": "no"} +{"question_id": 1466, "image": "COCO_val2014_000000463640.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1467, "image": "COCO_val2014_000000463640.jpg", "text": "Is there an airplane in the imange?", "label": "no"} +{"question_id": 1468, "image": "COCO_val2014_000000463640.jpg", "text": "Is there a wine glass in the image?", "label": "yes"} +{"question_id": 1469, "image": "COCO_val2014_000000463640.jpg", "text": "Is there a skis in the image?", "label": "no"} +{"question_id": 1470, "image": "COCO_val2014_000000463640.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1471, "image": "COCO_val2014_000000463640.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 1472, "image": "COCO_val2014_000000365822.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 1473, "image": "COCO_val2014_000000365822.jpg", "text": "Is there a cell phone in the image?", "label": "no"} +{"question_id": 1474, "image": "COCO_val2014_000000365822.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1475, "image": "COCO_val2014_000000365822.jpg", "text": "Is there a tie in the image?", "label": "no"} +{"question_id": 1476, "image": "COCO_val2014_000000365822.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1477, "image": "COCO_val2014_000000365822.jpg", "text": "Is there a horse in the image?", "label": "no"} +{"question_id": 1478, "image": "COCO_val2014_000000524979.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 1479, "image": "COCO_val2014_000000524979.jpg", "text": "Is there a banana in the image?", "label": "no"} +{"question_id": 1480, "image": "COCO_val2014_000000524979.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1481, "image": "COCO_val2014_000000524979.jpg", "text": "Is there a suitcase in the image?", "label": "no"} +{"question_id": 1482, "image": "COCO_val2014_000000524979.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1483, "image": "COCO_val2014_000000524979.jpg", "text": "Is there a donut in the image?", "label": "no"} +{"question_id": 1484, "image": "COCO_val2014_000000070813.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 1485, "image": "COCO_val2014_000000070813.jpg", "text": "Is there a zebra in the image?", "label": "no"} +{"question_id": 1486, "image": "COCO_val2014_000000070813.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 1487, "image": "COCO_val2014_000000070813.jpg", "text": "Is there a kite in the image?", "label": "no"} +{"question_id": 1488, "image": "COCO_val2014_000000070813.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1489, "image": "COCO_val2014_000000070813.jpg", "text": "Is there a cell phone in the image?", "label": "no"} +{"question_id": 1490, "image": "COCO_val2014_000000318209.jpg", "text": "Is there a sandwich in the image?", "label": "yes"} +{"question_id": 1491, "image": "COCO_val2014_000000318209.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 1492, "image": "COCO_val2014_000000318209.jpg", "text": "Is there a toothbrush in the image?", "label": "no"} +{"question_id": 1493, "image": "COCO_val2014_000000318209.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1494, "image": "COCO_val2014_000000318209.jpg", "text": "Is there an orange in the imange?", "label": "no"} +{"question_id": 1495, "image": "COCO_val2014_000000016775.jpg", "text": "Is there a bird in the image?", "label": "yes"} +{"question_id": 1496, "image": "COCO_val2014_000000016775.jpg", "text": "Is there a toilet in the image?", "label": "no"} +{"question_id": 1497, "image": "COCO_val2014_000000016775.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1498, "image": "COCO_val2014_000000016775.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 1499, "image": "COCO_val2014_000000016775.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1500, "image": "COCO_val2014_000000016775.jpg", "text": "Is there a cell phone in the image?", "label": "no"} +{"question_id": 1501, "image": "COCO_val2014_000000015338.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1502, "image": "COCO_val2014_000000015338.jpg", "text": "Is there a microwave in the image?", "label": "no"} +{"question_id": 1503, "image": "COCO_val2014_000000015338.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1504, "image": "COCO_val2014_000000015338.jpg", "text": "Is there a remote in the image?", "label": "no"} +{"question_id": 1505, "image": "COCO_val2014_000000015338.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1506, "image": "COCO_val2014_000000015338.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 1507, "image": "COCO_val2014_000000441156.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1508, "image": "COCO_val2014_000000441156.jpg", "text": "Is there an airplane in the imange?", "label": "no"} +{"question_id": 1509, "image": "COCO_val2014_000000441156.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1510, "image": "COCO_val2014_000000441156.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 1511, "image": "COCO_val2014_000000441156.jpg", "text": "Is there an elephant in the imange?", "label": "yes"} +{"question_id": 1512, "image": "COCO_val2014_000000441156.jpg", "text": "Is there a toaster in the image?", "label": "no"} +{"question_id": 1513, "image": "COCO_val2014_000000408757.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1514, "image": "COCO_val2014_000000408757.jpg", "text": "Is there a donut in the image?", "label": "no"} +{"question_id": 1515, "image": "COCO_val2014_000000408757.jpg", "text": "Is there a kite in the image?", "label": "yes"} +{"question_id": 1516, "image": "COCO_val2014_000000408757.jpg", "text": "Is there a remote in the image?", "label": "no"} +{"question_id": 1517, "image": "COCO_val2014_000000408757.jpg", "text": "Is there an umbrella in the imange?", "label": "yes"} +{"question_id": 1518, "image": "COCO_val2014_000000408757.jpg", "text": "Is there a suitcase in the image?", "label": "no"} +{"question_id": 1519, "image": "COCO_val2014_000000550691.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1520, "image": "COCO_val2014_000000550691.jpg", "text": "Is there an orange in the imange?", "label": "no"} +{"question_id": 1521, "image": "COCO_val2014_000000550691.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1522, "image": "COCO_val2014_000000550691.jpg", "text": "Is there a suitcase in the image?", "label": "no"} +{"question_id": 1523, "image": "COCO_val2014_000000550691.jpg", "text": "Is there a bus in the image?", "label": "yes"} +{"question_id": 1524, "image": "COCO_val2014_000000550691.jpg", "text": "Is there a frisbee in the image?", "label": "no"} +{"question_id": 1525, "image": "COCO_val2014_000000204100.jpg", "text": "Is there a banana in the image?", "label": "yes"} +{"question_id": 1526, "image": "COCO_val2014_000000204100.jpg", "text": "Is there a fire hydrant in the image?", "label": "no"} +{"question_id": 1527, "image": "COCO_val2014_000000204100.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1528, "image": "COCO_val2014_000000204100.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 1529, "image": "COCO_val2014_000000204100.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1530, "image": "COCO_val2014_000000204100.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 1531, "image": "COCO_val2014_000000468169.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1532, "image": "COCO_val2014_000000468169.jpg", "text": "Is there an oven in the imange?", "label": "no"} +{"question_id": 1533, "image": "COCO_val2014_000000468169.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 1534, "image": "COCO_val2014_000000468169.jpg", "text": "Is there a parking meter in the image?", "label": "no"} +{"question_id": 1535, "image": "COCO_val2014_000000468169.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1536, "image": "COCO_val2014_000000468169.jpg", "text": "Is there a donut in the image?", "label": "no"} +{"question_id": 1537, "image": "COCO_val2014_000000198312.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1538, "image": "COCO_val2014_000000198312.jpg", "text": "Is there a mouse in the image?", "label": "no"} +{"question_id": 1539, "image": "COCO_val2014_000000198312.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 1540, "image": "COCO_val2014_000000198312.jpg", "text": "Is there a cell phone in the image?", "label": "no"} +{"question_id": 1541, "image": "COCO_val2014_000000198312.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 1542, "image": "COCO_val2014_000000198312.jpg", "text": "Is there a toilet in the image?", "label": "no"} +{"question_id": 1543, "image": "COCO_val2014_000000485485.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1544, "image": "COCO_val2014_000000485485.jpg", "text": "Is there a sports ball in the image?", "label": "no"} +{"question_id": 1545, "image": "COCO_val2014_000000485485.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1546, "image": "COCO_val2014_000000485485.jpg", "text": "Is there a horse in the image?", "label": "no"} +{"question_id": 1547, "image": "COCO_val2014_000000485485.jpg", "text": "Is there an elephant in the imange?", "label": "yes"} +{"question_id": 1548, "image": "COCO_val2014_000000485485.jpg", "text": "Is there a clock in the image?", "label": "no"} +{"question_id": 1549, "image": "COCO_val2014_000000309371.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1550, "image": "COCO_val2014_000000309371.jpg", "text": "Is there a giraffe in the image?", "label": "no"} +{"question_id": 1551, "image": "COCO_val2014_000000309371.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1552, "image": "COCO_val2014_000000309371.jpg", "text": "Is there a potted plant in the image?", "label": "no"} +{"question_id": 1553, "image": "COCO_val2014_000000309371.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 1554, "image": "COCO_val2014_000000309371.jpg", "text": "Is there a snowboard in the image?", "label": "no"} +{"question_id": 1555, "image": "COCO_val2014_000000472143.jpg", "text": "Is there a bird in the image?", "label": "yes"} +{"question_id": 1556, "image": "COCO_val2014_000000472143.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 1557, "image": "COCO_val2014_000000472143.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1558, "image": "COCO_val2014_000000472143.jpg", "text": "Is there a potted plant in the image?", "label": "no"} +{"question_id": 1559, "image": "COCO_val2014_000000472143.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1560, "image": "COCO_val2014_000000472143.jpg", "text": "Is there a frisbee in the image?", "label": "no"} +{"question_id": 1561, "image": "COCO_val2014_000000236023.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1562, "image": "COCO_val2014_000000236023.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1563, "image": "COCO_val2014_000000236023.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 1564, "image": "COCO_val2014_000000236023.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 1565, "image": "COCO_val2014_000000236023.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1566, "image": "COCO_val2014_000000236023.jpg", "text": "Is there a bird in the image?", "label": "no"} +{"question_id": 1567, "image": "COCO_val2014_000000214244.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 1568, "image": "COCO_val2014_000000214244.jpg", "text": "Is there a fork in the image?", "label": "no"} +{"question_id": 1569, "image": "COCO_val2014_000000214244.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1570, "image": "COCO_val2014_000000214244.jpg", "text": "Is there a sandwich in the image?", "label": "no"} +{"question_id": 1571, "image": "COCO_val2014_000000214244.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 1572, "image": "COCO_val2014_000000214244.jpg", "text": "Is there a spoon in the image?", "label": "no"} +{"question_id": 1573, "image": "COCO_val2014_000000397665.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 1574, "image": "COCO_val2014_000000397665.jpg", "text": "Is there a baseball bat in the image?", "label": "no"} +{"question_id": 1575, "image": "COCO_val2014_000000397665.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1576, "image": "COCO_val2014_000000397665.jpg", "text": "Is there a toilet in the image?", "label": "no"} +{"question_id": 1577, "image": "COCO_val2014_000000397665.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 1578, "image": "COCO_val2014_000000397665.jpg", "text": "Is there a toothbrush in the image?", "label": "no"} +{"question_id": 1579, "image": "COCO_val2014_000000183965.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1580, "image": "COCO_val2014_000000183965.jpg", "text": "Is there a broccoli in the image?", "label": "no"} +{"question_id": 1581, "image": "COCO_val2014_000000183965.jpg", "text": "Is there a sandwich in the image?", "label": "yes"} +{"question_id": 1582, "image": "COCO_val2014_000000183965.jpg", "text": "Is there a hot dog in the image?", "label": "yes"} +{"question_id": 1583, "image": "COCO_val2014_000000183965.jpg", "text": "Is there a suitcase in the image?", "label": "no"} +{"question_id": 1584, "image": "COCO_val2014_000000499105.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1585, "image": "COCO_val2014_000000499105.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 1586, "image": "COCO_val2014_000000499105.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1587, "image": "COCO_val2014_000000499105.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 1588, "image": "COCO_val2014_000000499105.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 1589, "image": "COCO_val2014_000000499105.jpg", "text": "Is there a hot dog in the image?", "label": "no"} +{"question_id": 1590, "image": "COCO_val2014_000000259755.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 1591, "image": "COCO_val2014_000000259755.jpg", "text": "Is there a skateboard in the image?", "label": "no"} +{"question_id": 1592, "image": "COCO_val2014_000000259755.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1593, "image": "COCO_val2014_000000259755.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1594, "image": "COCO_val2014_000000259755.jpg", "text": "Is there a knife in the image?", "label": "no"} +{"question_id": 1595, "image": "COCO_val2014_000000281028.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1596, "image": "COCO_val2014_000000281028.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 1597, "image": "COCO_val2014_000000281028.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1598, "image": "COCO_val2014_000000281028.jpg", "text": "Is there a wine glass in the image?", "label": "no"} +{"question_id": 1599, "image": "COCO_val2014_000000281028.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 1600, "image": "COCO_val2014_000000281028.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 1601, "image": "COCO_val2014_000000199122.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 1602, "image": "COCO_val2014_000000199122.jpg", "text": "Is there a cake in the image?", "label": "no"} +{"question_id": 1603, "image": "COCO_val2014_000000199122.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1604, "image": "COCO_val2014_000000199122.jpg", "text": "Is there a refrigerator in the image?", "label": "no"} +{"question_id": 1605, "image": "COCO_val2014_000000199122.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1606, "image": "COCO_val2014_000000199122.jpg", "text": "Is there a cat in the image?", "label": "no"} +{"question_id": 1607, "image": "COCO_val2014_000000442809.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1608, "image": "COCO_val2014_000000442809.jpg", "text": "Is there a kite in the image?", "label": "no"} +{"question_id": 1609, "image": "COCO_val2014_000000442809.jpg", "text": "Is there a cake in the image?", "label": "yes"} +{"question_id": 1610, "image": "COCO_val2014_000000442809.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 1611, "image": "COCO_val2014_000000442809.jpg", "text": "Is there a toilet in the image?", "label": "no"} +{"question_id": 1612, "image": "COCO_val2014_000000482829.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1613, "image": "COCO_val2014_000000482829.jpg", "text": "Is there a suitcase in the image?", "label": "no"} +{"question_id": 1614, "image": "COCO_val2014_000000482829.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1615, "image": "COCO_val2014_000000482829.jpg", "text": "Is there a skis in the image?", "label": "no"} +{"question_id": 1616, "image": "COCO_val2014_000000482829.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 1617, "image": "COCO_val2014_000000482829.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 1618, "image": "COCO_val2014_000000097994.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 1619, "image": "COCO_val2014_000000097994.jpg", "text": "Is there a toothbrush in the image?", "label": "no"} +{"question_id": 1620, "image": "COCO_val2014_000000097994.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 1621, "image": "COCO_val2014_000000097994.jpg", "text": "Is there a kite in the image?", "label": "no"} +{"question_id": 1622, "image": "COCO_val2014_000000097994.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1623, "image": "COCO_val2014_000000097994.jpg", "text": "Is there a skateboard in the image?", "label": "no"} +{"question_id": 1624, "image": "COCO_val2014_000000246999.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 1625, "image": "COCO_val2014_000000246999.jpg", "text": "Is there a hot dog in the image?", "label": "no"} +{"question_id": 1626, "image": "COCO_val2014_000000246999.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 1627, "image": "COCO_val2014_000000246999.jpg", "text": "Is there a suitcase in the image?", "label": "no"} +{"question_id": 1628, "image": "COCO_val2014_000000246999.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 1629, "image": "COCO_val2014_000000246999.jpg", "text": "Is there a surfboard in the image?", "label": "no"} +{"question_id": 1630, "image": "COCO_val2014_000000338291.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 1631, "image": "COCO_val2014_000000338291.jpg", "text": "Is there a carrot in the image?", "label": "no"} +{"question_id": 1632, "image": "COCO_val2014_000000338291.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1633, "image": "COCO_val2014_000000338291.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 1634, "image": "COCO_val2014_000000338291.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1635, "image": "COCO_val2014_000000338291.jpg", "text": "Is there a cell phone in the image?", "label": "no"} +{"question_id": 1636, "image": "COCO_val2014_000000331366.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1637, "image": "COCO_val2014_000000331366.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 1638, "image": "COCO_val2014_000000331366.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1639, "image": "COCO_val2014_000000331366.jpg", "text": "Is there a banana in the image?", "label": "no"} +{"question_id": 1640, "image": "COCO_val2014_000000331366.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 1641, "image": "COCO_val2014_000000331366.jpg", "text": "Is there a boat in the image?", "label": "no"} +{"question_id": 1642, "image": "COCO_val2014_000000348524.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 1643, "image": "COCO_val2014_000000348524.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 1644, "image": "COCO_val2014_000000348524.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1645, "image": "COCO_val2014_000000348524.jpg", "text": "Is there a cat in the image?", "label": "no"} +{"question_id": 1646, "image": "COCO_val2014_000000348524.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 1647, "image": "COCO_val2014_000000348524.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 1648, "image": "COCO_val2014_000000108189.jpg", "text": "Is there a sandwich in the image?", "label": "yes"} +{"question_id": 1649, "image": "COCO_val2014_000000108189.jpg", "text": "Is there a clock in the image?", "label": "no"} +{"question_id": 1650, "image": "COCO_val2014_000000108189.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 1651, "image": "COCO_val2014_000000108189.jpg", "text": "Is there a refrigerator in the image?", "label": "no"} +{"question_id": 1652, "image": "COCO_val2014_000000108189.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1653, "image": "COCO_val2014_000000301575.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 1654, "image": "COCO_val2014_000000301575.jpg", "text": "Is there a toilet in the image?", "label": "no"} +{"question_id": 1655, "image": "COCO_val2014_000000301575.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1656, "image": "COCO_val2014_000000301575.jpg", "text": "Is there a toothbrush in the image?", "label": "no"} +{"question_id": 1657, "image": "COCO_val2014_000000301575.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 1658, "image": "COCO_val2014_000000301575.jpg", "text": "Is there a cow in the image?", "label": "no"} +{"question_id": 1659, "image": "COCO_val2014_000000239773.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 1660, "image": "COCO_val2014_000000239773.jpg", "text": "Is there a skis in the image?", "label": "no"} +{"question_id": 1661, "image": "COCO_val2014_000000239773.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1662, "image": "COCO_val2014_000000239773.jpg", "text": "Is there a train in the image?", "label": "no"} +{"question_id": 1663, "image": "COCO_val2014_000000239773.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1664, "image": "COCO_val2014_000000239773.jpg", "text": "Is there a spoon in the image?", "label": "no"} +{"question_id": 1665, "image": "COCO_val2014_000000354976.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1666, "image": "COCO_val2014_000000354976.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 1667, "image": "COCO_val2014_000000354976.jpg", "text": "Is there a tie in the image?", "label": "no"} +{"question_id": 1668, "image": "COCO_val2014_000000354976.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 1669, "image": "COCO_val2014_000000354976.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 1670, "image": "COCO_val2014_000000473199.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1671, "image": "COCO_val2014_000000473199.jpg", "text": "Is there a knife in the image?", "label": "no"} +{"question_id": 1672, "image": "COCO_val2014_000000473199.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 1673, "image": "COCO_val2014_000000473199.jpg", "text": "Is there a sports ball in the image?", "label": "no"} +{"question_id": 1674, "image": "COCO_val2014_000000473199.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 1675, "image": "COCO_val2014_000000473199.jpg", "text": "Is there a bench in the image?", "label": "no"} +{"question_id": 1676, "image": "COCO_val2014_000000311759.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1677, "image": "COCO_val2014_000000311759.jpg", "text": "Is there an orange in the imange?", "label": "no"} +{"question_id": 1678, "image": "COCO_val2014_000000311759.jpg", "text": "Is there a teddy bear in the image?", "label": "yes"} +{"question_id": 1679, "image": "COCO_val2014_000000311759.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 1680, "image": "COCO_val2014_000000311759.jpg", "text": "Is there a bear in the image?", "label": "yes"} +{"question_id": 1681, "image": "COCO_val2014_000000311759.jpg", "text": "Is there a sheep in the image?", "label": "no"} +{"question_id": 1682, "image": "COCO_val2014_000000431615.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 1683, "image": "COCO_val2014_000000431615.jpg", "text": "Is there a bed in the image?", "label": "no"} +{"question_id": 1684, "image": "COCO_val2014_000000431615.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1685, "image": "COCO_val2014_000000431615.jpg", "text": "Is there a motorcycle in the image?", "label": "no"} +{"question_id": 1686, "image": "COCO_val2014_000000431615.jpg", "text": "Is there a boat in the image?", "label": "yes"} +{"question_id": 1687, "image": "COCO_val2014_000000431615.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 1688, "image": "COCO_val2014_000000343401.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1689, "image": "COCO_val2014_000000343401.jpg", "text": "Is there a pizza in the image?", "label": "no"} +{"question_id": 1690, "image": "COCO_val2014_000000343401.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 1691, "image": "COCO_val2014_000000343401.jpg", "text": "Is there a sink in the image?", "label": "no"} +{"question_id": 1692, "image": "COCO_val2014_000000343401.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1693, "image": "COCO_val2014_000000343401.jpg", "text": "Is there a stop sign in the image?", "label": "no"} +{"question_id": 1694, "image": "COCO_val2014_000000246199.jpg", "text": "Is there a banana in the image?", "label": "yes"} +{"question_id": 1695, "image": "COCO_val2014_000000246199.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 1696, "image": "COCO_val2014_000000246199.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 1697, "image": "COCO_val2014_000000246199.jpg", "text": "Is there a snowboard in the image?", "label": "no"} +{"question_id": 1698, "image": "COCO_val2014_000000246199.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1699, "image": "COCO_val2014_000000246199.jpg", "text": "Is there a keyboard in the image?", "label": "no"} +{"question_id": 1700, "image": "COCO_val2014_000000372009.jpg", "text": "Is there a bird in the image?", "label": "yes"} +{"question_id": 1701, "image": "COCO_val2014_000000372009.jpg", "text": "Is there a horse in the image?", "label": "no"} +{"question_id": 1702, "image": "COCO_val2014_000000372009.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 1703, "image": "COCO_val2014_000000372009.jpg", "text": "Is there a toilet in the image?", "label": "no"} +{"question_id": 1704, "image": "COCO_val2014_000000372009.jpg", "text": "Is there a teddy bear in the image?", "label": "yes"} +{"question_id": 1705, "image": "COCO_val2014_000000372009.jpg", "text": "Is there a suitcase in the image?", "label": "no"} +{"question_id": 1706, "image": "COCO_val2014_000000346707.jpg", "text": "Is there a banana in the image?", "label": "yes"} +{"question_id": 1707, "image": "COCO_val2014_000000346707.jpg", "text": "Is there a kite in the image?", "label": "no"} +{"question_id": 1708, "image": "COCO_val2014_000000346707.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1709, "image": "COCO_val2014_000000346707.jpg", "text": "Is there a horse in the image?", "label": "no"} +{"question_id": 1710, "image": "COCO_val2014_000000346707.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1711, "image": "COCO_val2014_000000346707.jpg", "text": "Is there a toothbrush in the image?", "label": "no"} +{"question_id": 1712, "image": "COCO_val2014_000000501898.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1713, "image": "COCO_val2014_000000501898.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 1714, "image": "COCO_val2014_000000501898.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1715, "image": "COCO_val2014_000000501898.jpg", "text": "Is there a broccoli in the image?", "label": "no"} +{"question_id": 1716, "image": "COCO_val2014_000000501898.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 1717, "image": "COCO_val2014_000000501898.jpg", "text": "Is there a vase in the image?", "label": "no"} +{"question_id": 1718, "image": "COCO_val2014_000000281766.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1719, "image": "COCO_val2014_000000281766.jpg", "text": "Is there an umbrella in the imange?", "label": "no"} +{"question_id": 1720, "image": "COCO_val2014_000000281766.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 1721, "image": "COCO_val2014_000000281766.jpg", "text": "Is there a train in the image?", "label": "no"} +{"question_id": 1722, "image": "COCO_val2014_000000281766.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 1723, "image": "COCO_val2014_000000281766.jpg", "text": "Is there a bed in the image?", "label": "no"} +{"question_id": 1724, "image": "COCO_val2014_000000245448.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1725, "image": "COCO_val2014_000000245448.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 1726, "image": "COCO_val2014_000000245448.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1727, "image": "COCO_val2014_000000245448.jpg", "text": "Is there a donut in the image?", "label": "no"} +{"question_id": 1728, "image": "COCO_val2014_000000245448.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 1729, "image": "COCO_val2014_000000245448.jpg", "text": "Is there a scissors in the image?", "label": "no"} +{"question_id": 1730, "image": "COCO_val2014_000000510138.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1731, "image": "COCO_val2014_000000510138.jpg", "text": "Is there an oven in the imange?", "label": "no"} +{"question_id": 1732, "image": "COCO_val2014_000000510138.jpg", "text": "Is there a wine glass in the image?", "label": "yes"} +{"question_id": 1733, "image": "COCO_val2014_000000510138.jpg", "text": "Is there a horse in the image?", "label": "no"} +{"question_id": 1734, "image": "COCO_val2014_000000510138.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 1735, "image": "COCO_val2014_000000510138.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 1736, "image": "COCO_val2014_000000001171.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1737, "image": "COCO_val2014_000000001171.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 1738, "image": "COCO_val2014_000000001171.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 1739, "image": "COCO_val2014_000000001171.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 1740, "image": "COCO_val2014_000000001171.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1741, "image": "COCO_val2014_000000100238.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1742, "image": "COCO_val2014_000000100238.jpg", "text": "Is there a skis in the image?", "label": "no"} +{"question_id": 1743, "image": "COCO_val2014_000000100238.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1744, "image": "COCO_val2014_000000100238.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 1745, "image": "COCO_val2014_000000100238.jpg", "text": "Is there a frisbee in the image?", "label": "yes"} +{"question_id": 1746, "image": "COCO_val2014_000000100238.jpg", "text": "Is there a carrot in the image?", "label": "no"} +{"question_id": 1747, "image": "COCO_val2014_000000465418.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 1748, "image": "COCO_val2014_000000465418.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1749, "image": "COCO_val2014_000000465418.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1750, "image": "COCO_val2014_000000465418.jpg", "text": "Is there a bird in the image?", "label": "no"} +{"question_id": 1751, "image": "COCO_val2014_000000465418.jpg", "text": "Is there a bus in the image?", "label": "yes"} +{"question_id": 1752, "image": "COCO_val2014_000000465418.jpg", "text": "Is there a knife in the image?", "label": "no"} +{"question_id": 1753, "image": "COCO_val2014_000000392364.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1754, "image": "COCO_val2014_000000392364.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1755, "image": "COCO_val2014_000000392364.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 1756, "image": "COCO_val2014_000000392364.jpg", "text": "Is there a scissors in the image?", "label": "no"} +{"question_id": 1757, "image": "COCO_val2014_000000392364.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1758, "image": "COCO_val2014_000000392364.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 1759, "image": "COCO_val2014_000000188958.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 1760, "image": "COCO_val2014_000000188958.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 1761, "image": "COCO_val2014_000000188958.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1762, "image": "COCO_val2014_000000188958.jpg", "text": "Is there a vase in the image?", "label": "no"} +{"question_id": 1763, "image": "COCO_val2014_000000188958.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 1764, "image": "COCO_val2014_000000436127.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 1765, "image": "COCO_val2014_000000436127.jpg", "text": "Is there a knife in the image?", "label": "no"} +{"question_id": 1766, "image": "COCO_val2014_000000436127.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1767, "image": "COCO_val2014_000000436127.jpg", "text": "Is there a wine glass in the image?", "label": "no"} +{"question_id": 1768, "image": "COCO_val2014_000000436127.jpg", "text": "Is there a horse in the image?", "label": "yes"} +{"question_id": 1769, "image": "COCO_val2014_000000436127.jpg", "text": "Is there an elephant in the imange?", "label": "no"} +{"question_id": 1770, "image": "COCO_val2014_000000198397.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1771, "image": "COCO_val2014_000000198397.jpg", "text": "Is there a potted plant in the image?", "label": "no"} +{"question_id": 1772, "image": "COCO_val2014_000000198397.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1773, "image": "COCO_val2014_000000198397.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1774, "image": "COCO_val2014_000000198397.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1775, "image": "COCO_val2014_000000198397.jpg", "text": "Is there an apple in the imange?", "label": "no"} +{"question_id": 1776, "image": "COCO_val2014_000000349936.jpg", "text": "Is there an oven in the imange?", "label": "yes"} +{"question_id": 1777, "image": "COCO_val2014_000000349936.jpg", "text": "Is there a kite in the image?", "label": "no"} +{"question_id": 1778, "image": "COCO_val2014_000000349936.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1779, "image": "COCO_val2014_000000349936.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 1780, "image": "COCO_val2014_000000349936.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1781, "image": "COCO_val2014_000000349936.jpg", "text": "Is there a giraffe in the image?", "label": "no"} +{"question_id": 1782, "image": "COCO_val2014_000000333756.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1783, "image": "COCO_val2014_000000333756.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 1784, "image": "COCO_val2014_000000333756.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1785, "image": "COCO_val2014_000000333756.jpg", "text": "Is there a refrigerator in the image?", "label": "no"} +{"question_id": 1786, "image": "COCO_val2014_000000333756.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 1787, "image": "COCO_val2014_000000333756.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 1788, "image": "COCO_val2014_000000474741.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 1789, "image": "COCO_val2014_000000474741.jpg", "text": "Is there a carrot in the image?", "label": "no"} +{"question_id": 1790, "image": "COCO_val2014_000000474741.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 1791, "image": "COCO_val2014_000000474741.jpg", "text": "Is there a donut in the image?", "label": "no"} +{"question_id": 1792, "image": "COCO_val2014_000000474741.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1793, "image": "COCO_val2014_000000474741.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 1794, "image": "COCO_val2014_000000286342.jpg", "text": "Is there a keyboard in the image?", "label": "yes"} +{"question_id": 1795, "image": "COCO_val2014_000000286342.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 1796, "image": "COCO_val2014_000000286342.jpg", "text": "Is there a mouse in the image?", "label": "yes"} +{"question_id": 1797, "image": "COCO_val2014_000000286342.jpg", "text": "Is there a bird in the image?", "label": "no"} +{"question_id": 1798, "image": "COCO_val2014_000000286342.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 1799, "image": "COCO_val2014_000000286342.jpg", "text": "Is there a baseball bat in the image?", "label": "no"} +{"question_id": 1800, "image": "COCO_val2014_000000093948.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 1801, "image": "COCO_val2014_000000093948.jpg", "text": "Is there a parking meter in the image?", "label": "no"} +{"question_id": 1802, "image": "COCO_val2014_000000093948.jpg", "text": "Is there a mouse in the image?", "label": "yes"} +{"question_id": 1803, "image": "COCO_val2014_000000093948.jpg", "text": "Is there a zebra in the image?", "label": "no"} +{"question_id": 1804, "image": "COCO_val2014_000000093948.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 1805, "image": "COCO_val2014_000000093948.jpg", "text": "Is there a cell phone in the image?", "label": "no"} +{"question_id": 1806, "image": "COCO_val2014_000000405740.jpg", "text": "Is there a wine glass in the image?", "label": "yes"} +{"question_id": 1807, "image": "COCO_val2014_000000405740.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 1808, "image": "COCO_val2014_000000405740.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1809, "image": "COCO_val2014_000000405740.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 1810, "image": "COCO_val2014_000000405740.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 1811, "image": "COCO_val2014_000000304387.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1812, "image": "COCO_val2014_000000304387.jpg", "text": "Is there a broccoli in the image?", "label": "no"} +{"question_id": 1813, "image": "COCO_val2014_000000304387.jpg", "text": "Is there a surfboard in the image?", "label": "yes"} +{"question_id": 1814, "image": "COCO_val2014_000000304387.jpg", "text": "Is there a cell phone in the image?", "label": "no"} +{"question_id": 1815, "image": "COCO_val2014_000000304387.jpg", "text": "Is there a kite in the image?", "label": "yes"} +{"question_id": 1816, "image": "COCO_val2014_000000304387.jpg", "text": "Is there a microwave in the image?", "label": "no"} +{"question_id": 1817, "image": "COCO_val2014_000000147165.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 1818, "image": "COCO_val2014_000000147165.jpg", "text": "Is there a toaster in the image?", "label": "no"} +{"question_id": 1819, "image": "COCO_val2014_000000147165.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1820, "image": "COCO_val2014_000000147165.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1821, "image": "COCO_val2014_000000147165.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 1822, "image": "COCO_val2014_000000147165.jpg", "text": "Is there a skateboard in the image?", "label": "no"} +{"question_id": 1823, "image": "COCO_val2014_000000495311.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1824, "image": "COCO_val2014_000000495311.jpg", "text": "Is there a wine glass in the image?", "label": "no"} +{"question_id": 1825, "image": "COCO_val2014_000000495311.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1826, "image": "COCO_val2014_000000495311.jpg", "text": "Is there a cake in the image?", "label": "no"} +{"question_id": 1827, "image": "COCO_val2014_000000495311.jpg", "text": "Is there an airplane in the imange?", "label": "yes"} +{"question_id": 1828, "image": "COCO_val2014_000000495311.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 1829, "image": "COCO_val2014_000000312406.jpg", "text": "Is there a banana in the image?", "label": "yes"} +{"question_id": 1830, "image": "COCO_val2014_000000312406.jpg", "text": "Is there a snowboard in the image?", "label": "no"} +{"question_id": 1831, "image": "COCO_val2014_000000312406.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1832, "image": "COCO_val2014_000000312406.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 1833, "image": "COCO_val2014_000000312406.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 1834, "image": "COCO_val2014_000000515820.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 1835, "image": "COCO_val2014_000000515820.jpg", "text": "Is there a skateboard in the image?", "label": "no"} +{"question_id": 1836, "image": "COCO_val2014_000000515820.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 1837, "image": "COCO_val2014_000000515820.jpg", "text": "Is there a laptop in the image?", "label": "no"} +{"question_id": 1838, "image": "COCO_val2014_000000515820.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1839, "image": "COCO_val2014_000000515820.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1840, "image": "COCO_val2014_000000031971.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 1841, "image": "COCO_val2014_000000031971.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 1842, "image": "COCO_val2014_000000031971.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 1843, "image": "COCO_val2014_000000031971.jpg", "text": "Is there a giraffe in the image?", "label": "no"} +{"question_id": 1844, "image": "COCO_val2014_000000031971.jpg", "text": "Is there a book in the image?", "label": "yes"} +{"question_id": 1845, "image": "COCO_val2014_000000031971.jpg", "text": "Is there a pizza in the image?", "label": "no"} +{"question_id": 1846, "image": "COCO_val2014_000000418680.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 1847, "image": "COCO_val2014_000000418680.jpg", "text": "Is there a cell phone in the image?", "label": "no"} +{"question_id": 1848, "image": "COCO_val2014_000000418680.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1849, "image": "COCO_val2014_000000418680.jpg", "text": "Is there a boat in the image?", "label": "no"} +{"question_id": 1850, "image": "COCO_val2014_000000418680.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 1851, "image": "COCO_val2014_000000418680.jpg", "text": "Is there a mouse in the image?", "label": "no"} +{"question_id": 1852, "image": "COCO_val2014_000000459680.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1853, "image": "COCO_val2014_000000459680.jpg", "text": "Is there a vase in the image?", "label": "no"} +{"question_id": 1854, "image": "COCO_val2014_000000459680.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 1855, "image": "COCO_val2014_000000459680.jpg", "text": "Is there a broccoli in the image?", "label": "no"} +{"question_id": 1856, "image": "COCO_val2014_000000459680.jpg", "text": "Is there an umbrella in the imange?", "label": "yes"} +{"question_id": 1857, "image": "COCO_val2014_000000459680.jpg", "text": "Is there a sports ball in the image?", "label": "no"} +{"question_id": 1858, "image": "COCO_val2014_000000196462.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1859, "image": "COCO_val2014_000000196462.jpg", "text": "Is there a frisbee in the image?", "label": "no"} +{"question_id": 1860, "image": "COCO_val2014_000000196462.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 1861, "image": "COCO_val2014_000000196462.jpg", "text": "Is there a cake in the image?", "label": "no"} +{"question_id": 1862, "image": "COCO_val2014_000000196462.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 1863, "image": "COCO_val2014_000000196462.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 1864, "image": "COCO_val2014_000000276693.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 1865, "image": "COCO_val2014_000000276693.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1866, "image": "COCO_val2014_000000276693.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1867, "image": "COCO_val2014_000000276693.jpg", "text": "Is there a sandwich in the image?", "label": "no"} +{"question_id": 1868, "image": "COCO_val2014_000000276693.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 1869, "image": "COCO_val2014_000000276693.jpg", "text": "Is there a keyboard in the image?", "label": "no"} +{"question_id": 1870, "image": "COCO_val2014_000000356424.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1871, "image": "COCO_val2014_000000356424.jpg", "text": "Is there an oven in the imange?", "label": "no"} +{"question_id": 1872, "image": "COCO_val2014_000000356424.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1873, "image": "COCO_val2014_000000356424.jpg", "text": "Is there a bird in the image?", "label": "no"} +{"question_id": 1874, "image": "COCO_val2014_000000356424.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1875, "image": "COCO_val2014_000000505335.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1876, "image": "COCO_val2014_000000505335.jpg", "text": "Is there a microwave in the image?", "label": "no"} +{"question_id": 1877, "image": "COCO_val2014_000000505335.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1878, "image": "COCO_val2014_000000505335.jpg", "text": "Is there a carrot in the image?", "label": "no"} +{"question_id": 1879, "image": "COCO_val2014_000000505335.jpg", "text": "Is there an umbrella in the imange?", "label": "yes"} +{"question_id": 1880, "image": "COCO_val2014_000000505335.jpg", "text": "Is there a skateboard in the image?", "label": "no"} +{"question_id": 1881, "image": "COCO_val2014_000000172342.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1882, "image": "COCO_val2014_000000172342.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 1883, "image": "COCO_val2014_000000172342.jpg", "text": "Is there a surfboard in the image?", "label": "no"} +{"question_id": 1884, "image": "COCO_val2014_000000172342.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1885, "image": "COCO_val2014_000000384970.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1886, "image": "COCO_val2014_000000384970.jpg", "text": "Is there a mouse in the image?", "label": "no"} +{"question_id": 1887, "image": "COCO_val2014_000000384970.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1888, "image": "COCO_val2014_000000384970.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 1889, "image": "COCO_val2014_000000384970.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1890, "image": "COCO_val2014_000000384970.jpg", "text": "Is there a microwave in the image?", "label": "no"} +{"question_id": 1891, "image": "COCO_val2014_000000572260.jpg", "text": "Is there a wine glass in the image?", "label": "yes"} +{"question_id": 1892, "image": "COCO_val2014_000000572260.jpg", "text": "Is there a vase in the image?", "label": "no"} +{"question_id": 1893, "image": "COCO_val2014_000000572260.jpg", "text": "Is there a teddy bear in the image?", "label": "yes"} +{"question_id": 1894, "image": "COCO_val2014_000000572260.jpg", "text": "Is there a train in the image?", "label": "no"} +{"question_id": 1895, "image": "COCO_val2014_000000572260.jpg", "text": "Is there an apple in the imange?", "label": "yes"} +{"question_id": 1896, "image": "COCO_val2014_000000572260.jpg", "text": "Is there a zebra in the image?", "label": "no"} +{"question_id": 1897, "image": "COCO_val2014_000000418471.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1898, "image": "COCO_val2014_000000418471.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 1899, "image": "COCO_val2014_000000418471.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1900, "image": "COCO_val2014_000000418471.jpg", "text": "Is there a suitcase in the image?", "label": "no"} +{"question_id": 1901, "image": "COCO_val2014_000000418471.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 1902, "image": "COCO_val2014_000000418471.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 1903, "image": "COCO_val2014_000000379404.jpg", "text": "Is there a banana in the image?", "label": "yes"} +{"question_id": 1904, "image": "COCO_val2014_000000379404.jpg", "text": "Is there a stop sign in the image?", "label": "no"} +{"question_id": 1905, "image": "COCO_val2014_000000379404.jpg", "text": "Is there a sandwich in the image?", "label": "yes"} +{"question_id": 1906, "image": "COCO_val2014_000000379404.jpg", "text": "Is there an orange in the imange?", "label": "no"} +{"question_id": 1907, "image": "COCO_val2014_000000379404.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1908, "image": "COCO_val2014_000000044801.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 1909, "image": "COCO_val2014_000000044801.jpg", "text": "Is there a remote in the image?", "label": "no"} +{"question_id": 1910, "image": "COCO_val2014_000000044801.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1911, "image": "COCO_val2014_000000044801.jpg", "text": "Is there a giraffe in the image?", "label": "no"} +{"question_id": 1912, "image": "COCO_val2014_000000044801.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1913, "image": "COCO_val2014_000000044801.jpg", "text": "Is there a banana in the image?", "label": "no"} +{"question_id": 1914, "image": "COCO_val2014_000000293564.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1915, "image": "COCO_val2014_000000293564.jpg", "text": "Is there a knife in the image?", "label": "no"} +{"question_id": 1916, "image": "COCO_val2014_000000293564.jpg", "text": "Is there a surfboard in the image?", "label": "yes"} +{"question_id": 1917, "image": "COCO_val2014_000000293564.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 1918, "image": "COCO_val2014_000000293564.jpg", "text": "Is there an umbrella in the imange?", "label": "yes"} +{"question_id": 1919, "image": "COCO_val2014_000000293564.jpg", "text": "Is there a sink in the image?", "label": "no"} +{"question_id": 1920, "image": "COCO_val2014_000000452297.jpg", "text": "Is there a banana in the image?", "label": "yes"} +{"question_id": 1921, "image": "COCO_val2014_000000452297.jpg", "text": "Is there a broccoli in the image?", "label": "no"} +{"question_id": 1922, "image": "COCO_val2014_000000452297.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 1923, "image": "COCO_val2014_000000452297.jpg", "text": "Is there an orange in the imange?", "label": "no"} +{"question_id": 1924, "image": "COCO_val2014_000000452297.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 1925, "image": "COCO_val2014_000000452297.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 1926, "image": "COCO_val2014_000000543393.jpg", "text": "Is there a fire hydrant in the image?", "label": "yes"} +{"question_id": 1927, "image": "COCO_val2014_000000543393.jpg", "text": "Is there a zebra in the image?", "label": "no"} +{"question_id": 1928, "image": "COCO_val2014_000000543393.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1929, "image": "COCO_val2014_000000543393.jpg", "text": "Is there a scissors in the image?", "label": "no"} +{"question_id": 1930, "image": "COCO_val2014_000000543393.jpg", "text": "Is there a stop sign in the image?", "label": "yes"} +{"question_id": 1931, "image": "COCO_val2014_000000543393.jpg", "text": "Is there a hot dog in the image?", "label": "no"} +{"question_id": 1932, "image": "COCO_val2014_000000172648.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1933, "image": "COCO_val2014_000000172648.jpg", "text": "Is there a skateboard in the image?", "label": "no"} +{"question_id": 1934, "image": "COCO_val2014_000000172648.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1935, "image": "COCO_val2014_000000172648.jpg", "text": "Is there a bird in the image?", "label": "no"} +{"question_id": 1936, "image": "COCO_val2014_000000172648.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1937, "image": "COCO_val2014_000000172648.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1938, "image": "COCO_val2014_000000308907.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 1939, "image": "COCO_val2014_000000308907.jpg", "text": "Is there a stop sign in the image?", "label": "no"} +{"question_id": 1940, "image": "COCO_val2014_000000308907.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1941, "image": "COCO_val2014_000000308907.jpg", "text": "Is there a parking meter in the image?", "label": "no"} +{"question_id": 1942, "image": "COCO_val2014_000000308907.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 1943, "image": "COCO_val2014_000000308907.jpg", "text": "Is there a suitcase in the image?", "label": "no"} +{"question_id": 1944, "image": "COCO_val2014_000000263594.jpg", "text": "Is there a bird in the image?", "label": "yes"} +{"question_id": 1945, "image": "COCO_val2014_000000263594.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 1946, "image": "COCO_val2014_000000263594.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1947, "image": "COCO_val2014_000000263594.jpg", "text": "Is there a kite in the image?", "label": "no"} +{"question_id": 1948, "image": "COCO_val2014_000000263594.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1949, "image": "COCO_val2014_000000501294.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 1950, "image": "COCO_val2014_000000501294.jpg", "text": "Is there a fork in the image?", "label": "no"} +{"question_id": 1951, "image": "COCO_val2014_000000501294.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1952, "image": "COCO_val2014_000000501294.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1953, "image": "COCO_val2014_000000501294.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 1954, "image": "COCO_val2014_000000501294.jpg", "text": "Is there a frisbee in the image?", "label": "no"} +{"question_id": 1955, "image": "COCO_val2014_000000500680.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1956, "image": "COCO_val2014_000000500680.jpg", "text": "Is there an orange in the imange?", "label": "no"} +{"question_id": 1957, "image": "COCO_val2014_000000500680.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 1958, "image": "COCO_val2014_000000500680.jpg", "text": "Is there a sink in the image?", "label": "no"} +{"question_id": 1959, "image": "COCO_val2014_000000500680.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 1960, "image": "COCO_val2014_000000500680.jpg", "text": "Is there a sheep in the image?", "label": "no"} +{"question_id": 1961, "image": "COCO_val2014_000000091954.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1962, "image": "COCO_val2014_000000091954.jpg", "text": "Is there an apple in the imange?", "label": "no"} +{"question_id": 1963, "image": "COCO_val2014_000000091954.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 1964, "image": "COCO_val2014_000000091954.jpg", "text": "Is there a potted plant in the image?", "label": "no"} +{"question_id": 1965, "image": "COCO_val2014_000000091954.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 1966, "image": "COCO_val2014_000000454607.jpg", "text": "Is there a book in the image?", "label": "yes"} +{"question_id": 1967, "image": "COCO_val2014_000000454607.jpg", "text": "Is there a kite in the image?", "label": "no"} +{"question_id": 1968, "image": "COCO_val2014_000000454607.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1969, "image": "COCO_val2014_000000454607.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 1970, "image": "COCO_val2014_000000454607.jpg", "text": "Is there a cell phone in the image?", "label": "yes"} +{"question_id": 1971, "image": "COCO_val2014_000000454607.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 1972, "image": "COCO_val2014_000000363908.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 1973, "image": "COCO_val2014_000000363908.jpg", "text": "Is there a knife in the image?", "label": "no"} +{"question_id": 1974, "image": "COCO_val2014_000000363908.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1975, "image": "COCO_val2014_000000363908.jpg", "text": "Is there a bird in the image?", "label": "no"} +{"question_id": 1976, "image": "COCO_val2014_000000363908.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 1977, "image": "COCO_val2014_000000363908.jpg", "text": "Is there a giraffe in the image?", "label": "no"} +{"question_id": 1978, "image": "COCO_val2014_000000560064.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1979, "image": "COCO_val2014_000000560064.jpg", "text": "Is there a motorcycle in the image?", "label": "no"} +{"question_id": 1980, "image": "COCO_val2014_000000560064.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 1981, "image": "COCO_val2014_000000560064.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 1982, "image": "COCO_val2014_000000560064.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 1983, "image": "COCO_val2014_000000560064.jpg", "text": "Is there a parking meter in the image?", "label": "no"} +{"question_id": 1984, "image": "COCO_val2014_000000348469.jpg", "text": "Is there a bird in the image?", "label": "yes"} +{"question_id": 1985, "image": "COCO_val2014_000000348469.jpg", "text": "Is there a skis in the image?", "label": "no"} +{"question_id": 1986, "image": "COCO_val2014_000000348469.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 1987, "image": "COCO_val2014_000000348469.jpg", "text": "Is there a sheep in the image?", "label": "no"} +{"question_id": 1988, "image": "COCO_val2014_000000348469.jpg", "text": "Is there a baseball bat in the image?", "label": "yes"} +{"question_id": 1989, "image": "COCO_val2014_000000348469.jpg", "text": "Is there a frisbee in the image?", "label": "no"} +{"question_id": 1990, "image": "COCO_val2014_000000167724.jpg", "text": "Is there an oven in the imange?", "label": "yes"} +{"question_id": 1991, "image": "COCO_val2014_000000167724.jpg", "text": "Is there a clock in the image?", "label": "no"} +{"question_id": 1992, "image": "COCO_val2014_000000167724.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 1993, "image": "COCO_val2014_000000167724.jpg", "text": "Is there an apple in the imange?", "label": "no"} +{"question_id": 1994, "image": "COCO_val2014_000000167724.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 1995, "image": "COCO_val2014_000000167724.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 1996, "image": "COCO_val2014_000000262736.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 1997, "image": "COCO_val2014_000000262736.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 1998, "image": "COCO_val2014_000000262736.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 1999, "image": "COCO_val2014_000000262736.jpg", "text": "Is there a potted plant in the image?", "label": "no"} +{"question_id": 2000, "image": "COCO_val2014_000000262736.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2001, "image": "COCO_val2014_000000262736.jpg", "text": "Is there a sandwich in the image?", "label": "no"} +{"question_id": 2002, "image": "COCO_val2014_000000076416.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2003, "image": "COCO_val2014_000000076416.jpg", "text": "Is there an orange in the imange?", "label": "no"} +{"question_id": 2004, "image": "COCO_val2014_000000076416.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 2005, "image": "COCO_val2014_000000076416.jpg", "text": "Is there a sink in the image?", "label": "no"} +{"question_id": 2006, "image": "COCO_val2014_000000076416.jpg", "text": "Is there a cell phone in the image?", "label": "yes"} +{"question_id": 2007, "image": "COCO_val2014_000000076416.jpg", "text": "Is there a potted plant in the image?", "label": "no"} +{"question_id": 2008, "image": "COCO_val2014_000000541783.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2009, "image": "COCO_val2014_000000541783.jpg", "text": "Is there a bench in the image?", "label": "no"} +{"question_id": 2010, "image": "COCO_val2014_000000541783.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2011, "image": "COCO_val2014_000000541783.jpg", "text": "Is there a keyboard in the image?", "label": "no"} +{"question_id": 2012, "image": "COCO_val2014_000000541783.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 2013, "image": "COCO_val2014_000000541783.jpg", "text": "Is there a banana in the image?", "label": "no"} +{"question_id": 2014, "image": "COCO_val2014_000000445200.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2015, "image": "COCO_val2014_000000445200.jpg", "text": "Is there a toothbrush in the image?", "label": "no"} +{"question_id": 2016, "image": "COCO_val2014_000000445200.jpg", "text": "Is there a broccoli in the image?", "label": "yes"} +{"question_id": 2017, "image": "COCO_val2014_000000445200.jpg", "text": "Is there a pizza in the image?", "label": "no"} +{"question_id": 2018, "image": "COCO_val2014_000000445200.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2019, "image": "COCO_val2014_000000445200.jpg", "text": "Is there a toilet in the image?", "label": "no"} +{"question_id": 2020, "image": "COCO_val2014_000000433574.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2021, "image": "COCO_val2014_000000433574.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 2022, "image": "COCO_val2014_000000433574.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 2023, "image": "COCO_val2014_000000433574.jpg", "text": "Is there a stop sign in the image?", "label": "no"} +{"question_id": 2024, "image": "COCO_val2014_000000433574.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2025, "image": "COCO_val2014_000000433574.jpg", "text": "Is there a cat in the image?", "label": "no"} +{"question_id": 2026, "image": "COCO_val2014_000000212241.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 2027, "image": "COCO_val2014_000000212241.jpg", "text": "Is there a spoon in the image?", "label": "no"} +{"question_id": 2028, "image": "COCO_val2014_000000212241.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2029, "image": "COCO_val2014_000000212241.jpg", "text": "Is there an orange in the imange?", "label": "no"} +{"question_id": 2030, "image": "COCO_val2014_000000212241.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 2031, "image": "COCO_val2014_000000212241.jpg", "text": "Is there a banana in the image?", "label": "no"} +{"question_id": 2032, "image": "COCO_val2014_000000114941.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2033, "image": "COCO_val2014_000000114941.jpg", "text": "Is there a potted plant in the image?", "label": "no"} +{"question_id": 2034, "image": "COCO_val2014_000000114941.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 2035, "image": "COCO_val2014_000000114941.jpg", "text": "Is there a bear in the image?", "label": "no"} +{"question_id": 2036, "image": "COCO_val2014_000000114941.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2037, "image": "COCO_val2014_000000114941.jpg", "text": "Is there a tie in the image?", "label": "no"} +{"question_id": 2038, "image": "COCO_val2014_000000493753.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 2039, "image": "COCO_val2014_000000493753.jpg", "text": "Is there a zebra in the image?", "label": "no"} +{"question_id": 2040, "image": "COCO_val2014_000000493753.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 2041, "image": "COCO_val2014_000000493753.jpg", "text": "Is there a toilet in the image?", "label": "no"} +{"question_id": 2042, "image": "COCO_val2014_000000493753.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2043, "image": "COCO_val2014_000000493753.jpg", "text": "Is there a horse in the image?", "label": "no"} +{"question_id": 2044, "image": "COCO_val2014_000000410597.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2045, "image": "COCO_val2014_000000410597.jpg", "text": "Is there a potted plant in the image?", "label": "no"} +{"question_id": 2046, "image": "COCO_val2014_000000410597.jpg", "text": "Is there a wine glass in the image?", "label": "yes"} +{"question_id": 2047, "image": "COCO_val2014_000000410597.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2048, "image": "COCO_val2014_000000410597.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2049, "image": "COCO_val2014_000000410597.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 2050, "image": "COCO_val2014_000000382617.jpg", "text": "Is there a mouse in the image?", "label": "yes"} +{"question_id": 2051, "image": "COCO_val2014_000000382617.jpg", "text": "Is there a microwave in the image?", "label": "no"} +{"question_id": 2052, "image": "COCO_val2014_000000382617.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2053, "image": "COCO_val2014_000000382617.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2054, "image": "COCO_val2014_000000382617.jpg", "text": "Is there a book in the image?", "label": "yes"} +{"question_id": 2055, "image": "COCO_val2014_000000382617.jpg", "text": "Is there a giraffe in the image?", "label": "no"} +{"question_id": 2056, "image": "COCO_val2014_000000467887.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2057, "image": "COCO_val2014_000000467887.jpg", "text": "Is there a zebra in the image?", "label": "no"} +{"question_id": 2058, "image": "COCO_val2014_000000467887.jpg", "text": "Is there a mouse in the image?", "label": "yes"} +{"question_id": 2059, "image": "COCO_val2014_000000467887.jpg", "text": "Is there a stop sign in the image?", "label": "no"} +{"question_id": 2060, "image": "COCO_val2014_000000467887.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 2061, "image": "COCO_val2014_000000467887.jpg", "text": "Is there a cat in the image?", "label": "no"} +{"question_id": 2062, "image": "COCO_val2014_000000120792.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2063, "image": "COCO_val2014_000000120792.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 2064, "image": "COCO_val2014_000000120792.jpg", "text": "Is there a potted plant in the image?", "label": "no"} +{"question_id": 2065, "image": "COCO_val2014_000000120792.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2066, "image": "COCO_val2014_000000125524.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2067, "image": "COCO_val2014_000000125524.jpg", "text": "Is there a refrigerator in the image?", "label": "no"} +{"question_id": 2068, "image": "COCO_val2014_000000125524.jpg", "text": "Is there a bus in the image?", "label": "yes"} +{"question_id": 2069, "image": "COCO_val2014_000000125524.jpg", "text": "Is there a zebra in the image?", "label": "no"} +{"question_id": 2070, "image": "COCO_val2014_000000125524.jpg", "text": "Is there a fire hydrant in the image?", "label": "yes"} +{"question_id": 2071, "image": "COCO_val2014_000000125524.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 2072, "image": "COCO_val2014_000000196053.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2073, "image": "COCO_val2014_000000196053.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 2074, "image": "COCO_val2014_000000196053.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2075, "image": "COCO_val2014_000000196053.jpg", "text": "Is there a train in the image?", "label": "no"} +{"question_id": 2076, "image": "COCO_val2014_000000196053.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 2077, "image": "COCO_val2014_000000196053.jpg", "text": "Is there a skis in the image?", "label": "no"} +{"question_id": 2078, "image": "COCO_val2014_000000156704.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2079, "image": "COCO_val2014_000000156704.jpg", "text": "Is there a teddy bear in the image?", "label": "no"} +{"question_id": 2080, "image": "COCO_val2014_000000156704.jpg", "text": "Is there a surfboard in the image?", "label": "yes"} +{"question_id": 2081, "image": "COCO_val2014_000000156704.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 2082, "image": "COCO_val2014_000000156704.jpg", "text": "Is there an umbrella in the imange?", "label": "yes"} +{"question_id": 2083, "image": "COCO_val2014_000000156704.jpg", "text": "Is there a broccoli in the image?", "label": "no"} +{"question_id": 2084, "image": "COCO_val2014_000000088507.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2085, "image": "COCO_val2014_000000088507.jpg", "text": "Is there a clock in the image?", "label": "no"} +{"question_id": 2086, "image": "COCO_val2014_000000088507.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2087, "image": "COCO_val2014_000000088507.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 2088, "image": "COCO_val2014_000000088507.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 2089, "image": "COCO_val2014_000000279499.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2090, "image": "COCO_val2014_000000279499.jpg", "text": "Is there a giraffe in the image?", "label": "no"} +{"question_id": 2091, "image": "COCO_val2014_000000279499.jpg", "text": "Is there a bus in the image?", "label": "yes"} +{"question_id": 2092, "image": "COCO_val2014_000000279499.jpg", "text": "Is there a teddy bear in the image?", "label": "no"} +{"question_id": 2093, "image": "COCO_val2014_000000279499.jpg", "text": "Is there an umbrella in the imange?", "label": "yes"} +{"question_id": 2094, "image": "COCO_val2014_000000279499.jpg", "text": "Is there a scissors in the image?", "label": "no"} +{"question_id": 2095, "image": "COCO_val2014_000000155131.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2096, "image": "COCO_val2014_000000155131.jpg", "text": "Is there a spoon in the image?", "label": "no"} +{"question_id": 2097, "image": "COCO_val2014_000000155131.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2098, "image": "COCO_val2014_000000155131.jpg", "text": "Is there a toothbrush in the image?", "label": "no"} +{"question_id": 2099, "image": "COCO_val2014_000000155131.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 2100, "image": "COCO_val2014_000000155131.jpg", "text": "Is there a hot dog in the image?", "label": "no"} +{"question_id": 2101, "image": "COCO_val2014_000000252135.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2102, "image": "COCO_val2014_000000252135.jpg", "text": "Is there a potted plant in the image?", "label": "no"} +{"question_id": 2103, "image": "COCO_val2014_000000252135.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2104, "image": "COCO_val2014_000000252135.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 2105, "image": "COCO_val2014_000000252135.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 2106, "image": "COCO_val2014_000000252135.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 2107, "image": "COCO_val2014_000000501652.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2108, "image": "COCO_val2014_000000501652.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 2109, "image": "COCO_val2014_000000501652.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2110, "image": "COCO_val2014_000000501652.jpg", "text": "Is there a keyboard in the image?", "label": "no"} +{"question_id": 2111, "image": "COCO_val2014_000000501652.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2112, "image": "COCO_val2014_000000501652.jpg", "text": "Is there a clock in the image?", "label": "no"} +{"question_id": 2113, "image": "COCO_val2014_000000238691.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2114, "image": "COCO_val2014_000000238691.jpg", "text": "Is there a kite in the image?", "label": "no"} +{"question_id": 2115, "image": "COCO_val2014_000000238691.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2116, "image": "COCO_val2014_000000238691.jpg", "text": "Is there an elephant in the imange?", "label": "no"} +{"question_id": 2117, "image": "COCO_val2014_000000238691.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 2118, "image": "COCO_val2014_000000238691.jpg", "text": "Is there a fork in the image?", "label": "no"} +{"question_id": 2119, "image": "COCO_val2014_000000332908.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2120, "image": "COCO_val2014_000000332908.jpg", "text": "Is there a sheep in the image?", "label": "no"} +{"question_id": 2121, "image": "COCO_val2014_000000332908.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2122, "image": "COCO_val2014_000000332908.jpg", "text": "Is there a stop sign in the image?", "label": "no"} +{"question_id": 2123, "image": "COCO_val2014_000000332908.jpg", "text": "Is there an oven in the imange?", "label": "yes"} +{"question_id": 2124, "image": "COCO_val2014_000000332908.jpg", "text": "Is there a train in the image?", "label": "no"} +{"question_id": 2125, "image": "COCO_val2014_000000372819.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 2126, "image": "COCO_val2014_000000372819.jpg", "text": "Is there a cat in the image?", "label": "no"} +{"question_id": 2127, "image": "COCO_val2014_000000372819.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2128, "image": "COCO_val2014_000000372819.jpg", "text": "Is there an oven in the imange?", "label": "no"} +{"question_id": 2129, "image": "COCO_val2014_000000372819.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 2130, "image": "COCO_val2014_000000372819.jpg", "text": "Is there a keyboard in the image?", "label": "no"} +{"question_id": 2131, "image": "COCO_val2014_000000470699.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 2132, "image": "COCO_val2014_000000470699.jpg", "text": "Is there an orange in the imange?", "label": "no"} +{"question_id": 2133, "image": "COCO_val2014_000000470699.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2134, "image": "COCO_val2014_000000470699.jpg", "text": "Is there an airplane in the imange?", "label": "no"} +{"question_id": 2135, "image": "COCO_val2014_000000470699.jpg", "text": "Is there a surfboard in the image?", "label": "yes"} +{"question_id": 2136, "image": "COCO_val2014_000000470699.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 2137, "image": "COCO_val2014_000000023084.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2138, "image": "COCO_val2014_000000023084.jpg", "text": "Is there a wine glass in the image?", "label": "no"} +{"question_id": 2139, "image": "COCO_val2014_000000023084.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2140, "image": "COCO_val2014_000000023084.jpg", "text": "Is there a horse in the image?", "label": "no"} +{"question_id": 2141, "image": "COCO_val2014_000000023084.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 2142, "image": "COCO_val2014_000000023084.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 2143, "image": "COCO_val2014_000000545353.jpg", "text": "Is there a pizza in the image?", "label": "yes"} +{"question_id": 2144, "image": "COCO_val2014_000000545353.jpg", "text": "Is there a toilet in the image?", "label": "no"} +{"question_id": 2145, "image": "COCO_val2014_000000545353.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2146, "image": "COCO_val2014_000000545353.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2147, "image": "COCO_val2014_000000545353.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 2148, "image": "COCO_val2014_000000545353.jpg", "text": "Is there a stop sign in the image?", "label": "no"} +{"question_id": 2149, "image": "COCO_val2014_000000394535.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2150, "image": "COCO_val2014_000000394535.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2151, "image": "COCO_val2014_000000394535.jpg", "text": "Is there a wine glass in the image?", "label": "no"} +{"question_id": 2152, "image": "COCO_val2014_000000394535.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 2153, "image": "COCO_val2014_000000394535.jpg", "text": "Is there a donut in the image?", "label": "no"} +{"question_id": 2154, "image": "COCO_val2014_000000579415.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 2155, "image": "COCO_val2014_000000579415.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2156, "image": "COCO_val2014_000000579415.jpg", "text": "Is there a kite in the image?", "label": "no"} +{"question_id": 2157, "image": "COCO_val2014_000000579415.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 2158, "image": "COCO_val2014_000000579415.jpg", "text": "Is there a teddy bear in the image?", "label": "no"} +{"question_id": 2159, "image": "COCO_val2014_000000233521.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2160, "image": "COCO_val2014_000000233521.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 2161, "image": "COCO_val2014_000000233521.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 2162, "image": "COCO_val2014_000000233521.jpg", "text": "Is there a sheep in the image?", "label": "no"} +{"question_id": 2163, "image": "COCO_val2014_000000233521.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2164, "image": "COCO_val2014_000000233521.jpg", "text": "Is there a tie in the image?", "label": "no"} +{"question_id": 2165, "image": "COCO_val2014_000000355256.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2166, "image": "COCO_val2014_000000355256.jpg", "text": "Is there a wine glass in the image?", "label": "no"} +{"question_id": 2167, "image": "COCO_val2014_000000355256.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2168, "image": "COCO_val2014_000000355256.jpg", "text": "Is there a knife in the image?", "label": "no"} +{"question_id": 2169, "image": "COCO_val2014_000000355256.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2170, "image": "COCO_val2014_000000355256.jpg", "text": "Is there a clock in the image?", "label": "no"} +{"question_id": 2171, "image": "COCO_val2014_000000304819.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 2172, "image": "COCO_val2014_000000304819.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2173, "image": "COCO_val2014_000000304819.jpg", "text": "Is there a cat in the image?", "label": "yes"} +{"question_id": 2174, "image": "COCO_val2014_000000304819.jpg", "text": "Is there a skis in the image?", "label": "no"} +{"question_id": 2175, "image": "COCO_val2014_000000304819.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 2176, "image": "COCO_val2014_000000304819.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 2177, "image": "COCO_val2014_000000240434.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 2178, "image": "COCO_val2014_000000240434.jpg", "text": "Is there a spoon in the image?", "label": "no"} +{"question_id": 2179, "image": "COCO_val2014_000000240434.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2180, "image": "COCO_val2014_000000240434.jpg", "text": "Is there a sports ball in the image?", "label": "no"} +{"question_id": 2181, "image": "COCO_val2014_000000240434.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 2182, "image": "COCO_val2014_000000240434.jpg", "text": "Is there a fork in the image?", "label": "no"} +{"question_id": 2183, "image": "COCO_val2014_000000199940.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2184, "image": "COCO_val2014_000000199940.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 2185, "image": "COCO_val2014_000000199940.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2186, "image": "COCO_val2014_000000199940.jpg", "text": "Is there a frisbee in the image?", "label": "no"} +{"question_id": 2187, "image": "COCO_val2014_000000199940.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2188, "image": "COCO_val2014_000000549390.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2189, "image": "COCO_val2014_000000549390.jpg", "text": "Is there a sheep in the image?", "label": "no"} +{"question_id": 2190, "image": "COCO_val2014_000000549390.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2191, "image": "COCO_val2014_000000549390.jpg", "text": "Is there a motorcycle in the image?", "label": "no"} +{"question_id": 2192, "image": "COCO_val2014_000000549390.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 2193, "image": "COCO_val2014_000000235541.jpg", "text": "Is there a giraffe in the image?", "label": "yes"} +{"question_id": 2194, "image": "COCO_val2014_000000235541.jpg", "text": "Is there a toilet in the image?", "label": "no"} +{"question_id": 2195, "image": "COCO_val2014_000000235541.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2196, "image": "COCO_val2014_000000235541.jpg", "text": "Is there a baseball bat in the image?", "label": "no"} +{"question_id": 2197, "image": "COCO_val2014_000000235541.jpg", "text": "Is there a tie in the image?", "label": "yes"} +{"question_id": 2198, "image": "COCO_val2014_000000235541.jpg", "text": "Is there a bed in the image?", "label": "no"} +{"question_id": 2199, "image": "COCO_val2014_000000068418.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 2200, "image": "COCO_val2014_000000068418.jpg", "text": "Is there a parking meter in the image?", "label": "no"} +{"question_id": 2201, "image": "COCO_val2014_000000068418.jpg", "text": "Is there a mouse in the image?", "label": "yes"} +{"question_id": 2202, "image": "COCO_val2014_000000068418.jpg", "text": "Is there a skateboard in the image?", "label": "no"} +{"question_id": 2203, "image": "COCO_val2014_000000068418.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 2204, "image": "COCO_val2014_000000068418.jpg", "text": "Is there an umbrella in the imange?", "label": "no"} +{"question_id": 2205, "image": "COCO_val2014_000000368541.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2206, "image": "COCO_val2014_000000368541.jpg", "text": "Is there a fork in the image?", "label": "no"} +{"question_id": 2207, "image": "COCO_val2014_000000368541.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 2208, "image": "COCO_val2014_000000368541.jpg", "text": "Is there a spoon in the image?", "label": "no"} +{"question_id": 2209, "image": "COCO_val2014_000000368541.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2210, "image": "COCO_val2014_000000368541.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2211, "image": "COCO_val2014_000000006033.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2212, "image": "COCO_val2014_000000006033.jpg", "text": "Is there a bear in the image?", "label": "no"} +{"question_id": 2213, "image": "COCO_val2014_000000006033.jpg", "text": "Is there a suitcase in the image?", "label": "yes"} +{"question_id": 2214, "image": "COCO_val2014_000000006033.jpg", "text": "Is there a cake in the image?", "label": "no"} +{"question_id": 2215, "image": "COCO_val2014_000000006033.jpg", "text": "Is there a bus in the image?", "label": "yes"} +{"question_id": 2216, "image": "COCO_val2014_000000006033.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2217, "image": "COCO_val2014_000000021327.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 2218, "image": "COCO_val2014_000000021327.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 2219, "image": "COCO_val2014_000000021327.jpg", "text": "Is there a pizza in the image?", "label": "yes"} +{"question_id": 2220, "image": "COCO_val2014_000000021327.jpg", "text": "Is there a banana in the image?", "label": "no"} +{"question_id": 2221, "image": "COCO_val2014_000000021327.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2222, "image": "COCO_val2014_000000021327.jpg", "text": "Is there a boat in the image?", "label": "no"} +{"question_id": 2223, "image": "COCO_val2014_000000390157.jpg", "text": "Is there a wine glass in the image?", "label": "yes"} +{"question_id": 2224, "image": "COCO_val2014_000000390157.jpg", "text": "Is there a toothbrush in the image?", "label": "no"} +{"question_id": 2225, "image": "COCO_val2014_000000390157.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2226, "image": "COCO_val2014_000000390157.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 2227, "image": "COCO_val2014_000000390157.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2228, "image": "COCO_val2014_000000390157.jpg", "text": "Is there a fire hydrant in the image?", "label": "no"} +{"question_id": 2229, "image": "COCO_val2014_000000298633.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2230, "image": "COCO_val2014_000000298633.jpg", "text": "Is there a bench in the image?", "label": "no"} +{"question_id": 2231, "image": "COCO_val2014_000000298633.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2232, "image": "COCO_val2014_000000298633.jpg", "text": "Is there a sink in the image?", "label": "no"} +{"question_id": 2233, "image": "COCO_val2014_000000298633.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 2234, "image": "COCO_val2014_000000298633.jpg", "text": "Is there a toothbrush in the image?", "label": "no"} +{"question_id": 2235, "image": "COCO_val2014_000000579277.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2236, "image": "COCO_val2014_000000579277.jpg", "text": "Is there a clock in the image?", "label": "no"} +{"question_id": 2237, "image": "COCO_val2014_000000579277.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 2238, "image": "COCO_val2014_000000579277.jpg", "text": "Is there a cell phone in the image?", "label": "no"} +{"question_id": 2239, "image": "COCO_val2014_000000579277.jpg", "text": "Is there a carrot in the image?", "label": "yes"} +{"question_id": 2240, "image": "COCO_val2014_000000579277.jpg", "text": "Is there a surfboard in the image?", "label": "no"} +{"question_id": 2241, "image": "COCO_val2014_000000042685.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2242, "image": "COCO_val2014_000000042685.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 2243, "image": "COCO_val2014_000000042685.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2244, "image": "COCO_val2014_000000042685.jpg", "text": "Is there a baseball bat in the image?", "label": "no"} +{"question_id": 2245, "image": "COCO_val2014_000000042685.jpg", "text": "Is there a pizza in the image?", "label": "yes"} +{"question_id": 2246, "image": "COCO_val2014_000000042685.jpg", "text": "Is there a teddy bear in the image?", "label": "no"} +{"question_id": 2247, "image": "COCO_val2014_000000553992.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 2248, "image": "COCO_val2014_000000553992.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 2249, "image": "COCO_val2014_000000553992.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2250, "image": "COCO_val2014_000000553992.jpg", "text": "Is there a mouse in the image?", "label": "no"} +{"question_id": 2251, "image": "COCO_val2014_000000553992.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 2252, "image": "COCO_val2014_000000243158.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 2253, "image": "COCO_val2014_000000243158.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 2254, "image": "COCO_val2014_000000243158.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 2255, "image": "COCO_val2014_000000243158.jpg", "text": "Is there a wine glass in the image?", "label": "no"} +{"question_id": 2256, "image": "COCO_val2014_000000243158.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2257, "image": "COCO_val2014_000000243158.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 2258, "image": "COCO_val2014_000000303971.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 2259, "image": "COCO_val2014_000000303971.jpg", "text": "Is there a knife in the image?", "label": "no"} +{"question_id": 2260, "image": "COCO_val2014_000000303971.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2261, "image": "COCO_val2014_000000303971.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 2262, "image": "COCO_val2014_000000303971.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 2263, "image": "COCO_val2014_000000303971.jpg", "text": "Is there a sports ball in the image?", "label": "no"} +{"question_id": 2264, "image": "COCO_val2014_000000405762.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2265, "image": "COCO_val2014_000000405762.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 2266, "image": "COCO_val2014_000000405762.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 2267, "image": "COCO_val2014_000000405762.jpg", "text": "Is there a snowboard in the image?", "label": "no"} +{"question_id": 2268, "image": "COCO_val2014_000000405762.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2269, "image": "COCO_val2014_000000405762.jpg", "text": "Is there a refrigerator in the image?", "label": "no"} +{"question_id": 2270, "image": "COCO_val2014_000000343967.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 2271, "image": "COCO_val2014_000000343967.jpg", "text": "Is there a kite in the image?", "label": "no"} +{"question_id": 2272, "image": "COCO_val2014_000000343967.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 2273, "image": "COCO_val2014_000000343967.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 2274, "image": "COCO_val2014_000000343967.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 2275, "image": "COCO_val2014_000000343967.jpg", "text": "Is there a scissors in the image?", "label": "no"} +{"question_id": 2276, "image": "COCO_val2014_000000477598.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 2277, "image": "COCO_val2014_000000477598.jpg", "text": "Is there a zebra in the image?", "label": "no"} +{"question_id": 2278, "image": "COCO_val2014_000000477598.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2279, "image": "COCO_val2014_000000477598.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 2280, "image": "COCO_val2014_000000477598.jpg", "text": "Is there a frisbee in the image?", "label": "yes"} +{"question_id": 2281, "image": "COCO_val2014_000000477598.jpg", "text": "Is there a toothbrush in the image?", "label": "no"} +{"question_id": 2282, "image": "COCO_val2014_000000044993.jpg", "text": "Is there a banana in the image?", "label": "yes"} +{"question_id": 2283, "image": "COCO_val2014_000000044993.jpg", "text": "Is there an umbrella in the imange?", "label": "no"} +{"question_id": 2284, "image": "COCO_val2014_000000044993.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2285, "image": "COCO_val2014_000000044993.jpg", "text": "Is there a spoon in the image?", "label": "no"} +{"question_id": 2286, "image": "COCO_val2014_000000044993.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 2287, "image": "COCO_val2014_000000381195.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2288, "image": "COCO_val2014_000000381195.jpg", "text": "Is there a stop sign in the image?", "label": "no"} +{"question_id": 2289, "image": "COCO_val2014_000000381195.jpg", "text": "Is there a broccoli in the image?", "label": "yes"} +{"question_id": 2290, "image": "COCO_val2014_000000381195.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 2291, "image": "COCO_val2014_000000381195.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2292, "image": "COCO_val2014_000000381195.jpg", "text": "Is there a fire hydrant in the image?", "label": "no"} +{"question_id": 2293, "image": "COCO_val2014_000000337502.jpg", "text": "Is there a pizza in the image?", "label": "yes"} +{"question_id": 2294, "image": "COCO_val2014_000000337502.jpg", "text": "Is there a motorcycle in the image?", "label": "no"} +{"question_id": 2295, "image": "COCO_val2014_000000337502.jpg", "text": "Is there a broccoli in the image?", "label": "yes"} +{"question_id": 2296, "image": "COCO_val2014_000000337502.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 2297, "image": "COCO_val2014_000000337502.jpg", "text": "Is there an oven in the imange?", "label": "yes"} +{"question_id": 2298, "image": "COCO_val2014_000000337502.jpg", "text": "Is there a sink in the image?", "label": "no"} +{"question_id": 2299, "image": "COCO_val2014_000000325347.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2300, "image": "COCO_val2014_000000325347.jpg", "text": "Is there a microwave in the image?", "label": "no"} +{"question_id": 2301, "image": "COCO_val2014_000000325347.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2302, "image": "COCO_val2014_000000325347.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 2303, "image": "COCO_val2014_000000325347.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2304, "image": "COCO_val2014_000000325347.jpg", "text": "Is there a toilet in the image?", "label": "no"} +{"question_id": 2305, "image": "COCO_val2014_000000256906.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 2306, "image": "COCO_val2014_000000256906.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 2307, "image": "COCO_val2014_000000256906.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2308, "image": "COCO_val2014_000000256906.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 2309, "image": "COCO_val2014_000000256906.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 2310, "image": "COCO_val2014_000000256906.jpg", "text": "Is there a cell phone in the image?", "label": "no"} +{"question_id": 2311, "image": "COCO_val2014_000000061507.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2312, "image": "COCO_val2014_000000061507.jpg", "text": "Is there a fork in the image?", "label": "no"} +{"question_id": 2313, "image": "COCO_val2014_000000061507.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 2314, "image": "COCO_val2014_000000061507.jpg", "text": "Is there a laptop in the image?", "label": "no"} +{"question_id": 2315, "image": "COCO_val2014_000000061507.jpg", "text": "Is there a suitcase in the image?", "label": "yes"} +{"question_id": 2316, "image": "COCO_val2014_000000061507.jpg", "text": "Is there a carrot in the image?", "label": "no"} +{"question_id": 2317, "image": "COCO_val2014_000000084410.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 2318, "image": "COCO_val2014_000000084410.jpg", "text": "Is there a cell phone in the image?", "label": "no"} +{"question_id": 2319, "image": "COCO_val2014_000000084410.jpg", "text": "Is there a wine glass in the image?", "label": "yes"} +{"question_id": 2320, "image": "COCO_val2014_000000084410.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 2321, "image": "COCO_val2014_000000084410.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 2322, "image": "COCO_val2014_000000084410.jpg", "text": "Is there a toaster in the image?", "label": "no"} +{"question_id": 2323, "image": "COCO_val2014_000000288576.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2324, "image": "COCO_val2014_000000288576.jpg", "text": "Is there a spoon in the image?", "label": "no"} +{"question_id": 2325, "image": "COCO_val2014_000000288576.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 2326, "image": "COCO_val2014_000000288576.jpg", "text": "Is there a parking meter in the image?", "label": "no"} +{"question_id": 2327, "image": "COCO_val2014_000000288576.jpg", "text": "Is there a frisbee in the image?", "label": "yes"} +{"question_id": 2328, "image": "COCO_val2014_000000288576.jpg", "text": "Is there a skateboard in the image?", "label": "no"} +{"question_id": 2329, "image": "COCO_val2014_000000328301.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2330, "image": "COCO_val2014_000000328301.jpg", "text": "Is there a baseball bat in the image?", "label": "no"} +{"question_id": 2331, "image": "COCO_val2014_000000328301.jpg", "text": "Is there a boat in the image?", "label": "yes"} +{"question_id": 2332, "image": "COCO_val2014_000000328301.jpg", "text": "Is there a bird in the image?", "label": "no"} +{"question_id": 2333, "image": "COCO_val2014_000000328301.jpg", "text": "Is there a fire hydrant in the image?", "label": "yes"} +{"question_id": 2334, "image": "COCO_val2014_000000328301.jpg", "text": "Is there a toaster in the image?", "label": "no"} +{"question_id": 2335, "image": "COCO_val2014_000000307262.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2336, "image": "COCO_val2014_000000307262.jpg", "text": "Is there a carrot in the image?", "label": "no"} +{"question_id": 2337, "image": "COCO_val2014_000000307262.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 2338, "image": "COCO_val2014_000000307262.jpg", "text": "Is there a train in the image?", "label": "no"} +{"question_id": 2339, "image": "COCO_val2014_000000307262.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2340, "image": "COCO_val2014_000000573796.jpg", "text": "Is there a knife in the image?", "label": "yes"} +{"question_id": 2341, "image": "COCO_val2014_000000573796.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 2342, "image": "COCO_val2014_000000573796.jpg", "text": "Is there an apple in the imange?", "label": "yes"} +{"question_id": 2343, "image": "COCO_val2014_000000573796.jpg", "text": "Is there a cat in the image?", "label": "no"} +{"question_id": 2344, "image": "COCO_val2014_000000573796.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2345, "image": "COCO_val2014_000000573796.jpg", "text": "Is there an elephant in the imange?", "label": "no"} +{"question_id": 2346, "image": "COCO_val2014_000000154846.jpg", "text": "Is there a pizza in the image?", "label": "yes"} +{"question_id": 2347, "image": "COCO_val2014_000000154846.jpg", "text": "Is there a skis in the image?", "label": "no"} +{"question_id": 2348, "image": "COCO_val2014_000000154846.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2349, "image": "COCO_val2014_000000154846.jpg", "text": "Is there a bed in the image?", "label": "no"} +{"question_id": 2350, "image": "COCO_val2014_000000154846.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2351, "image": "COCO_val2014_000000154846.jpg", "text": "Is there a wine glass in the image?", "label": "no"} +{"question_id": 2352, "image": "COCO_val2014_000000472375.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 2353, "image": "COCO_val2014_000000472375.jpg", "text": "Is there a giraffe in the image?", "label": "no"} +{"question_id": 2354, "image": "COCO_val2014_000000472375.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 2355, "image": "COCO_val2014_000000472375.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 2356, "image": "COCO_val2014_000000472375.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 2357, "image": "COCO_val2014_000000472375.jpg", "text": "Is there an oven in the imange?", "label": "no"} +{"question_id": 2358, "image": "COCO_val2014_000000446651.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2359, "image": "COCO_val2014_000000446651.jpg", "text": "Is there a parking meter in the image?", "label": "no"} +{"question_id": 2360, "image": "COCO_val2014_000000446651.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 2361, "image": "COCO_val2014_000000446651.jpg", "text": "Is there a snowboard in the image?", "label": "no"} +{"question_id": 2362, "image": "COCO_val2014_000000446651.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2363, "image": "COCO_val2014_000000446651.jpg", "text": "Is there a zebra in the image?", "label": "no"} +{"question_id": 2364, "image": "COCO_val2014_000000267684.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2365, "image": "COCO_val2014_000000267684.jpg", "text": "Is there a baseball bat in the image?", "label": "no"} +{"question_id": 2366, "image": "COCO_val2014_000000267684.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2367, "image": "COCO_val2014_000000267684.jpg", "text": "Is there a mouse in the image?", "label": "no"} +{"question_id": 2368, "image": "COCO_val2014_000000267684.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 2369, "image": "COCO_val2014_000000267684.jpg", "text": "Is there a carrot in the image?", "label": "no"} +{"question_id": 2370, "image": "COCO_val2014_000000238029.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2371, "image": "COCO_val2014_000000238029.jpg", "text": "Is there a refrigerator in the image?", "label": "no"} +{"question_id": 2372, "image": "COCO_val2014_000000238029.jpg", "text": "Is there a wine glass in the image?", "label": "yes"} +{"question_id": 2373, "image": "COCO_val2014_000000238029.jpg", "text": "Is there an orange in the imange?", "label": "no"} +{"question_id": 2374, "image": "COCO_val2014_000000238029.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 2375, "image": "COCO_val2014_000000238029.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 2376, "image": "COCO_val2014_000000294475.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 2377, "image": "COCO_val2014_000000294475.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2378, "image": "COCO_val2014_000000294475.jpg", "text": "Is there a baseball bat in the image?", "label": "no"} +{"question_id": 2379, "image": "COCO_val2014_000000294475.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2380, "image": "COCO_val2014_000000294475.jpg", "text": "Is there a broccoli in the image?", "label": "no"} +{"question_id": 2381, "image": "COCO_val2014_000000149592.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2382, "image": "COCO_val2014_000000149592.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2383, "image": "COCO_val2014_000000149592.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 2384, "image": "COCO_val2014_000000149592.jpg", "text": "Is there a toilet in the image?", "label": "no"} +{"question_id": 2385, "image": "COCO_val2014_000000149592.jpg", "text": "Is there a boat in the image?", "label": "yes"} +{"question_id": 2386, "image": "COCO_val2014_000000149592.jpg", "text": "Is there a bed in the image?", "label": "no"} +{"question_id": 2387, "image": "COCO_val2014_000000447787.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2388, "image": "COCO_val2014_000000447787.jpg", "text": "Is there a scissors in the image?", "label": "no"} +{"question_id": 2389, "image": "COCO_val2014_000000447787.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2390, "image": "COCO_val2014_000000447787.jpg", "text": "Is there a banana in the image?", "label": "no"} +{"question_id": 2391, "image": "COCO_val2014_000000447787.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2392, "image": "COCO_val2014_000000447787.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 2393, "image": "COCO_val2014_000000458325.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2394, "image": "COCO_val2014_000000458325.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2395, "image": "COCO_val2014_000000458325.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 2396, "image": "COCO_val2014_000000458325.jpg", "text": "Is there a surfboard in the image?", "label": "no"} +{"question_id": 2397, "image": "COCO_val2014_000000458325.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2398, "image": "COCO_val2014_000000458325.jpg", "text": "Is there a fork in the image?", "label": "no"} +{"question_id": 2399, "image": "COCO_val2014_000000388237.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2400, "image": "COCO_val2014_000000388237.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2401, "image": "COCO_val2014_000000388237.jpg", "text": "Is there a skis in the image?", "label": "no"} +{"question_id": 2402, "image": "COCO_val2014_000000388237.jpg", "text": "Is there a skateboard in the image?", "label": "yes"} +{"question_id": 2403, "image": "COCO_val2014_000000388237.jpg", "text": "Is there an apple in the imange?", "label": "no"} +{"question_id": 2404, "image": "COCO_val2014_000000038645.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2405, "image": "COCO_val2014_000000038645.jpg", "text": "Is there a fork in the image?", "label": "no"} +{"question_id": 2406, "image": "COCO_val2014_000000038645.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 2407, "image": "COCO_val2014_000000038645.jpg", "text": "Is there a skis in the image?", "label": "no"} +{"question_id": 2408, "image": "COCO_val2014_000000038645.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 2409, "image": "COCO_val2014_000000038645.jpg", "text": "Is there a cow in the image?", "label": "no"} +{"question_id": 2410, "image": "COCO_val2014_000000071738.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2411, "image": "COCO_val2014_000000071738.jpg", "text": "Is there a fire hydrant in the image?", "label": "no"} +{"question_id": 2412, "image": "COCO_val2014_000000071738.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2413, "image": "COCO_val2014_000000071738.jpg", "text": "Is there a fork in the image?", "label": "no"} +{"question_id": 2414, "image": "COCO_val2014_000000071738.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 2415, "image": "COCO_val2014_000000071738.jpg", "text": "Is there a handbag in the image?", "label": "no"} +{"question_id": 2416, "image": "COCO_val2014_000000170077.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2417, "image": "COCO_val2014_000000170077.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 2418, "image": "COCO_val2014_000000170077.jpg", "text": "Is there a wine glass in the image?", "label": "yes"} +{"question_id": 2419, "image": "COCO_val2014_000000170077.jpg", "text": "Is there a train in the image?", "label": "no"} +{"question_id": 2420, "image": "COCO_val2014_000000170077.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 2421, "image": "COCO_val2014_000000170077.jpg", "text": "Is there a banana in the image?", "label": "no"} +{"question_id": 2422, "image": "COCO_val2014_000000378751.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 2423, "image": "COCO_val2014_000000378751.jpg", "text": "Is there a hot dog in the image?", "label": "no"} +{"question_id": 2424, "image": "COCO_val2014_000000378751.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 2425, "image": "COCO_val2014_000000378751.jpg", "text": "Is there a sheep in the image?", "label": "no"} +{"question_id": 2426, "image": "COCO_val2014_000000378751.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 2427, "image": "COCO_val2014_000000378751.jpg", "text": "Is there a wine glass in the image?", "label": "no"} +{"question_id": 2428, "image": "COCO_val2014_000000073182.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2429, "image": "COCO_val2014_000000073182.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 2430, "image": "COCO_val2014_000000073182.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 2431, "image": "COCO_val2014_000000073182.jpg", "text": "Is there a stop sign in the image?", "label": "no"} +{"question_id": 2432, "image": "COCO_val2014_000000073182.jpg", "text": "Is there a bicycle in the image?", "label": "yes"} +{"question_id": 2433, "image": "COCO_val2014_000000073182.jpg", "text": "Is there a spoon in the image?", "label": "no"} +{"question_id": 2434, "image": "COCO_val2014_000000246928.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2435, "image": "COCO_val2014_000000246928.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 2436, "image": "COCO_val2014_000000246928.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2437, "image": "COCO_val2014_000000246928.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 2438, "image": "COCO_val2014_000000246928.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 2439, "image": "COCO_val2014_000000246928.jpg", "text": "Is there an apple in the imange?", "label": "no"} +{"question_id": 2440, "image": "COCO_val2014_000000528136.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 2441, "image": "COCO_val2014_000000528136.jpg", "text": "Is there a banana in the image?", "label": "no"} +{"question_id": 2442, "image": "COCO_val2014_000000528136.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2443, "image": "COCO_val2014_000000528136.jpg", "text": "Is there a refrigerator in the image?", "label": "no"} +{"question_id": 2444, "image": "COCO_val2014_000000528136.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2445, "image": "COCO_val2014_000000528136.jpg", "text": "Is there a scissors in the image?", "label": "no"} +{"question_id": 2446, "image": "COCO_val2014_000000209290.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2447, "image": "COCO_val2014_000000209290.jpg", "text": "Is there an orange in the imange?", "label": "no"} +{"question_id": 2448, "image": "COCO_val2014_000000209290.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 2449, "image": "COCO_val2014_000000209290.jpg", "text": "Is there a vase in the image?", "label": "no"} +{"question_id": 2450, "image": "COCO_val2014_000000209290.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2451, "image": "COCO_val2014_000000209290.jpg", "text": "Is there a toilet in the image?", "label": "no"} +{"question_id": 2452, "image": "COCO_val2014_000000564511.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2453, "image": "COCO_val2014_000000564511.jpg", "text": "Is there a knife in the image?", "label": "no"} +{"question_id": 2454, "image": "COCO_val2014_000000564511.jpg", "text": "Is there a wine glass in the image?", "label": "yes"} +{"question_id": 2455, "image": "COCO_val2014_000000564511.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2456, "image": "COCO_val2014_000000564511.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2457, "image": "COCO_val2014_000000564511.jpg", "text": "Is there a stop sign in the image?", "label": "no"} +{"question_id": 2458, "image": "COCO_val2014_000000200739.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 2459, "image": "COCO_val2014_000000200739.jpg", "text": "Is there a refrigerator in the image?", "label": "no"} +{"question_id": 2460, "image": "COCO_val2014_000000200739.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2461, "image": "COCO_val2014_000000200739.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2462, "image": "COCO_val2014_000000200739.jpg", "text": "Is there a horse in the image?", "label": "yes"} +{"question_id": 2463, "image": "COCO_val2014_000000200739.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 2464, "image": "COCO_val2014_000000462805.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 2465, "image": "COCO_val2014_000000462805.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 2466, "image": "COCO_val2014_000000462805.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2467, "image": "COCO_val2014_000000462805.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 2468, "image": "COCO_val2014_000000462805.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 2469, "image": "COCO_val2014_000000462805.jpg", "text": "Is there a remote in the image?", "label": "no"} +{"question_id": 2470, "image": "COCO_val2014_000000163575.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 2471, "image": "COCO_val2014_000000163575.jpg", "text": "Is there a bench in the image?", "label": "no"} +{"question_id": 2472, "image": "COCO_val2014_000000163575.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2473, "image": "COCO_val2014_000000163575.jpg", "text": "Is there a bird in the image?", "label": "no"} +{"question_id": 2474, "image": "COCO_val2014_000000163575.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 2475, "image": "COCO_val2014_000000163575.jpg", "text": "Is there a carrot in the image?", "label": "no"} +{"question_id": 2476, "image": "COCO_val2014_000000059383.jpg", "text": "Is there an oven in the imange?", "label": "yes"} +{"question_id": 2477, "image": "COCO_val2014_000000059383.jpg", "text": "Is there a toaster in the image?", "label": "no"} +{"question_id": 2478, "image": "COCO_val2014_000000059383.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2479, "image": "COCO_val2014_000000059383.jpg", "text": "Is there a vase in the image?", "label": "no"} +{"question_id": 2480, "image": "COCO_val2014_000000059383.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 2481, "image": "COCO_val2014_000000059383.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 2482, "image": "COCO_val2014_000000478736.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 2483, "image": "COCO_val2014_000000478736.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2484, "image": "COCO_val2014_000000478736.jpg", "text": "Is there a frisbee in the image?", "label": "no"} +{"question_id": 2485, "image": "COCO_val2014_000000478736.jpg", "text": "Is there a stop sign in the image?", "label": "yes"} +{"question_id": 2486, "image": "COCO_val2014_000000478736.jpg", "text": "Is there a parking meter in the image?", "label": "no"} +{"question_id": 2487, "image": "COCO_val2014_000000156282.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2488, "image": "COCO_val2014_000000156282.jpg", "text": "Is there an oven in the imange?", "label": "no"} +{"question_id": 2489, "image": "COCO_val2014_000000156282.jpg", "text": "Is there a kite in the image?", "label": "yes"} +{"question_id": 2490, "image": "COCO_val2014_000000156282.jpg", "text": "Is there an apple in the imange?", "label": "no"} +{"question_id": 2491, "image": "COCO_val2014_000000156282.jpg", "text": "Is there an umbrella in the imange?", "label": "yes"} +{"question_id": 2492, "image": "COCO_val2014_000000156282.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 2493, "image": "COCO_val2014_000000052689.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2494, "image": "COCO_val2014_000000052689.jpg", "text": "Is there a knife in the image?", "label": "no"} +{"question_id": 2495, "image": "COCO_val2014_000000052689.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 2496, "image": "COCO_val2014_000000052689.jpg", "text": "Is there an umbrella in the imange?", "label": "no"} +{"question_id": 2497, "image": "COCO_val2014_000000052689.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 2498, "image": "COCO_val2014_000000052689.jpg", "text": "Is there a laptop in the image?", "label": "no"} +{"question_id": 2499, "image": "COCO_val2014_000000516601.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 2500, "image": "COCO_val2014_000000516601.jpg", "text": "Is there a vase in the image?", "label": "no"} +{"question_id": 2501, "image": "COCO_val2014_000000516601.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2502, "image": "COCO_val2014_000000516601.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 2503, "image": "COCO_val2014_000000516601.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 2504, "image": "COCO_val2014_000000516601.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 2505, "image": "COCO_val2014_000000562155.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2506, "image": "COCO_val2014_000000562155.jpg", "text": "Is there a suitcase in the image?", "label": "no"} +{"question_id": 2507, "image": "COCO_val2014_000000562155.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2508, "image": "COCO_val2014_000000562155.jpg", "text": "Is there a sports ball in the image?", "label": "no"} +{"question_id": 2509, "image": "COCO_val2014_000000562155.jpg", "text": "Is there a tie in the image?", "label": "yes"} +{"question_id": 2510, "image": "COCO_val2014_000000562155.jpg", "text": "Is there a bed in the image?", "label": "no"} +{"question_id": 2511, "image": "COCO_val2014_000000142056.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2512, "image": "COCO_val2014_000000142056.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 2513, "image": "COCO_val2014_000000142056.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2514, "image": "COCO_val2014_000000142056.jpg", "text": "Is there an umbrella in the imange?", "label": "no"} +{"question_id": 2515, "image": "COCO_val2014_000000142056.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 2516, "image": "COCO_val2014_000000142056.jpg", "text": "Is there a baseball bat in the image?", "label": "no"} +{"question_id": 2517, "image": "COCO_val2014_000000299986.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2518, "image": "COCO_val2014_000000299986.jpg", "text": "Is there a sandwich in the image?", "label": "no"} +{"question_id": 2519, "image": "COCO_val2014_000000299986.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 2520, "image": "COCO_val2014_000000299986.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 2521, "image": "COCO_val2014_000000299986.jpg", "text": "Is there a cell phone in the image?", "label": "yes"} +{"question_id": 2522, "image": "COCO_val2014_000000299986.jpg", "text": "Is there a baseball bat in the image?", "label": "no"} +{"question_id": 2523, "image": "COCO_val2014_000000521643.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 2524, "image": "COCO_val2014_000000521643.jpg", "text": "Is there a bed in the image?", "label": "no"} +{"question_id": 2525, "image": "COCO_val2014_000000521643.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2526, "image": "COCO_val2014_000000521643.jpg", "text": "Is there a tie in the image?", "label": "no"} +{"question_id": 2527, "image": "COCO_val2014_000000521643.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2528, "image": "COCO_val2014_000000521643.jpg", "text": "Is there a cat in the image?", "label": "no"} +{"question_id": 2529, "image": "COCO_val2014_000000574454.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2530, "image": "COCO_val2014_000000574454.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 2531, "image": "COCO_val2014_000000574454.jpg", "text": "Is there a surfboard in the image?", "label": "yes"} +{"question_id": 2532, "image": "COCO_val2014_000000574454.jpg", "text": "Is there a bed in the image?", "label": "no"} +{"question_id": 2533, "image": "COCO_val2014_000000574454.jpg", "text": "Is there a kite in the image?", "label": "yes"} +{"question_id": 2534, "image": "COCO_val2014_000000574454.jpg", "text": "Is there a toaster in the image?", "label": "no"} +{"question_id": 2535, "image": "COCO_val2014_000000415727.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2536, "image": "COCO_val2014_000000415727.jpg", "text": "Is there a couch in the image?", "label": "no"} +{"question_id": 2537, "image": "COCO_val2014_000000415727.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2538, "image": "COCO_val2014_000000415727.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2539, "image": "COCO_val2014_000000415727.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 2540, "image": "COCO_val2014_000000222118.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2541, "image": "COCO_val2014_000000222118.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2542, "image": "COCO_val2014_000000222118.jpg", "text": "Is there a suitcase in the image?", "label": "yes"} +{"question_id": 2543, "image": "COCO_val2014_000000222118.jpg", "text": "Is there a toaster in the image?", "label": "no"} +{"question_id": 2544, "image": "COCO_val2014_000000222118.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 2545, "image": "COCO_val2014_000000222118.jpg", "text": "Is there a giraffe in the image?", "label": "no"} +{"question_id": 2546, "image": "COCO_val2014_000000514292.jpg", "text": "Is there a book in the image?", "label": "yes"} +{"question_id": 2547, "image": "COCO_val2014_000000514292.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2548, "image": "COCO_val2014_000000514292.jpg", "text": "Is there a teddy bear in the image?", "label": "yes"} +{"question_id": 2549, "image": "COCO_val2014_000000514292.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 2550, "image": "COCO_val2014_000000514292.jpg", "text": "Is there a bear in the image?", "label": "yes"} +{"question_id": 2551, "image": "COCO_val2014_000000514292.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 2552, "image": "COCO_val2014_000000117527.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2553, "image": "COCO_val2014_000000117527.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 2554, "image": "COCO_val2014_000000117527.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2555, "image": "COCO_val2014_000000117527.jpg", "text": "Is there a banana in the image?", "label": "no"} +{"question_id": 2556, "image": "COCO_val2014_000000117527.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2557, "image": "COCO_val2014_000000117527.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 2558, "image": "COCO_val2014_000000016451.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2559, "image": "COCO_val2014_000000016451.jpg", "text": "Is there an oven in the imange?", "label": "no"} +{"question_id": 2560, "image": "COCO_val2014_000000016451.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2561, "image": "COCO_val2014_000000016451.jpg", "text": "Is there an apple in the imange?", "label": "no"} +{"question_id": 2562, "image": "COCO_val2014_000000016451.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 2563, "image": "COCO_val2014_000000016451.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2564, "image": "COCO_val2014_000000429706.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 2565, "image": "COCO_val2014_000000429706.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 2566, "image": "COCO_val2014_000000429706.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2567, "image": "COCO_val2014_000000429706.jpg", "text": "Is there an elephant in the imange?", "label": "no"} +{"question_id": 2568, "image": "COCO_val2014_000000429706.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2569, "image": "COCO_val2014_000000429706.jpg", "text": "Is there a chair in the image?", "label": "no"} +{"question_id": 2570, "image": "COCO_val2014_000000429580.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 2571, "image": "COCO_val2014_000000429580.jpg", "text": "Is there a refrigerator in the image?", "label": "no"} +{"question_id": 2572, "image": "COCO_val2014_000000429580.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2573, "image": "COCO_val2014_000000429580.jpg", "text": "Is there a parking meter in the image?", "label": "no"} +{"question_id": 2574, "image": "COCO_val2014_000000429580.jpg", "text": "Is there a frisbee in the image?", "label": "yes"} +{"question_id": 2575, "image": "COCO_val2014_000000429580.jpg", "text": "Is there a baseball bat in the image?", "label": "no"} +{"question_id": 2576, "image": "COCO_val2014_000000283168.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2577, "image": "COCO_val2014_000000283168.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 2578, "image": "COCO_val2014_000000283168.jpg", "text": "Is there a sandwich in the image?", "label": "yes"} +{"question_id": 2579, "image": "COCO_val2014_000000283168.jpg", "text": "Is there a microwave in the image?", "label": "no"} +{"question_id": 2580, "image": "COCO_val2014_000000283168.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 2581, "image": "COCO_val2014_000000405205.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 2582, "image": "COCO_val2014_000000405205.jpg", "text": "Is there a motorcycle in the image?", "label": "no"} +{"question_id": 2583, "image": "COCO_val2014_000000405205.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2584, "image": "COCO_val2014_000000405205.jpg", "text": "Is there a keyboard in the image?", "label": "no"} +{"question_id": 2585, "image": "COCO_val2014_000000405205.jpg", "text": "Is there a bus in the image?", "label": "yes"} +{"question_id": 2586, "image": "COCO_val2014_000000405205.jpg", "text": "Is there an airplane in the imange?", "label": "no"} +{"question_id": 2587, "image": "COCO_val2014_000000123570.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2588, "image": "COCO_val2014_000000123570.jpg", "text": "Is there a zebra in the image?", "label": "no"} +{"question_id": 2589, "image": "COCO_val2014_000000123570.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2590, "image": "COCO_val2014_000000123570.jpg", "text": "Is there a book in the image?", "label": "no"} +{"question_id": 2591, "image": "COCO_val2014_000000123570.jpg", "text": "Is there an umbrella in the imange?", "label": "yes"} +{"question_id": 2592, "image": "COCO_val2014_000000123570.jpg", "text": "Is there a carrot in the image?", "label": "no"} +{"question_id": 2593, "image": "COCO_val2014_000000365317.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2594, "image": "COCO_val2014_000000365317.jpg", "text": "Is there a laptop in the image?", "label": "no"} +{"question_id": 2595, "image": "COCO_val2014_000000365317.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2596, "image": "COCO_val2014_000000365317.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 2597, "image": "COCO_val2014_000000365317.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 2598, "image": "COCO_val2014_000000365317.jpg", "text": "Is there a bear in the image?", "label": "no"} +{"question_id": 2599, "image": "COCO_val2014_000000224155.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2600, "image": "COCO_val2014_000000224155.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 2601, "image": "COCO_val2014_000000224155.jpg", "text": "Is there a toilet in the image?", "label": "yes"} +{"question_id": 2602, "image": "COCO_val2014_000000224155.jpg", "text": "Is there a broccoli in the image?", "label": "no"} +{"question_id": 2603, "image": "COCO_val2014_000000224155.jpg", "text": "Is there a cell phone in the image?", "label": "yes"} +{"question_id": 2604, "image": "COCO_val2014_000000224155.jpg", "text": "Is there a sports ball in the image?", "label": "no"} +{"question_id": 2605, "image": "COCO_val2014_000000191964.jpg", "text": "Is there a keyboard in the image?", "label": "yes"} +{"question_id": 2606, "image": "COCO_val2014_000000191964.jpg", "text": "Is there a fire hydrant in the image?", "label": "no"} +{"question_id": 2607, "image": "COCO_val2014_000000191964.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 2608, "image": "COCO_val2014_000000191964.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2609, "image": "COCO_val2014_000000191964.jpg", "text": "Is there a cat in the image?", "label": "yes"} +{"question_id": 2610, "image": "COCO_val2014_000000265472.jpg", "text": "Is there a banana in the image?", "label": "yes"} +{"question_id": 2611, "image": "COCO_val2014_000000265472.jpg", "text": "Is there a potted plant in the image?", "label": "no"} +{"question_id": 2612, "image": "COCO_val2014_000000265472.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2613, "image": "COCO_val2014_000000265472.jpg", "text": "Is there a kite in the image?", "label": "no"} +{"question_id": 2614, "image": "COCO_val2014_000000265472.jpg", "text": "Is there an orange in the imange?", "label": "yes"} +{"question_id": 2615, "image": "COCO_val2014_000000265472.jpg", "text": "Is there a spoon in the image?", "label": "no"} +{"question_id": 2616, "image": "COCO_val2014_000000550514.jpg", "text": "Is there a snowboard in the image?", "label": "yes"} +{"question_id": 2617, "image": "COCO_val2014_000000550514.jpg", "text": "Is there a stop sign in the image?", "label": "no"} +{"question_id": 2618, "image": "COCO_val2014_000000550514.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2619, "image": "COCO_val2014_000000550514.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2620, "image": "COCO_val2014_000000550514.jpg", "text": "Is there a fire hydrant in the image?", "label": "no"} +{"question_id": 2621, "image": "COCO_val2014_000000163814.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2622, "image": "COCO_val2014_000000163814.jpg", "text": "Is there a carrot in the image?", "label": "no"} +{"question_id": 2623, "image": "COCO_val2014_000000163814.jpg", "text": "Is there a motorcycle in the image?", "label": "yes"} +{"question_id": 2624, "image": "COCO_val2014_000000163814.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 2625, "image": "COCO_val2014_000000163814.jpg", "text": "Is there a skateboard in the image?", "label": "yes"} +{"question_id": 2626, "image": "COCO_val2014_000000163814.jpg", "text": "Is there a teddy bear in the image?", "label": "no"} +{"question_id": 2627, "image": "COCO_val2014_000000505933.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 2628, "image": "COCO_val2014_000000505933.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 2629, "image": "COCO_val2014_000000505933.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 2630, "image": "COCO_val2014_000000505933.jpg", "text": "Is there a frisbee in the image?", "label": "no"} +{"question_id": 2631, "image": "COCO_val2014_000000505933.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2632, "image": "COCO_val2014_000000505933.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 2633, "image": "COCO_val2014_000000318550.jpg", "text": "Is there a traffic light in the image?", "label": "yes"} +{"question_id": 2634, "image": "COCO_val2014_000000318550.jpg", "text": "Is there a cow in the image?", "label": "no"} +{"question_id": 2635, "image": "COCO_val2014_000000318550.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 2636, "image": "COCO_val2014_000000318550.jpg", "text": "Is there a refrigerator in the image?", "label": "no"} +{"question_id": 2637, "image": "COCO_val2014_000000318550.jpg", "text": "Is there a train in the image?", "label": "yes"} +{"question_id": 2638, "image": "COCO_val2014_000000318550.jpg", "text": "Is there a hot dog in the image?", "label": "no"} +{"question_id": 2639, "image": "COCO_val2014_000000367528.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2640, "image": "COCO_val2014_000000367528.jpg", "text": "Is there a sports ball in the image?", "label": "no"} +{"question_id": 2641, "image": "COCO_val2014_000000367528.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2642, "image": "COCO_val2014_000000367528.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 2643, "image": "COCO_val2014_000000367528.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 2644, "image": "COCO_val2014_000000367528.jpg", "text": "Is there a teddy bear in the image?", "label": "no"} +{"question_id": 2645, "image": "COCO_val2014_000000252911.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2646, "image": "COCO_val2014_000000252911.jpg", "text": "Is there a cow in the image?", "label": "no"} +{"question_id": 2647, "image": "COCO_val2014_000000252911.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2648, "image": "COCO_val2014_000000252911.jpg", "text": "Is there a cat in the image?", "label": "no"} +{"question_id": 2649, "image": "COCO_val2014_000000252911.jpg", "text": "Is there a boat in the image?", "label": "yes"} +{"question_id": 2650, "image": "COCO_val2014_000000252911.jpg", "text": "Is there a mouse in the image?", "label": "no"} +{"question_id": 2651, "image": "COCO_val2014_000000214421.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 2652, "image": "COCO_val2014_000000214421.jpg", "text": "Is there a mouse in the image?", "label": "no"} +{"question_id": 2653, "image": "COCO_val2014_000000214421.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2654, "image": "COCO_val2014_000000214421.jpg", "text": "Is there a horse in the image?", "label": "no"} +{"question_id": 2655, "image": "COCO_val2014_000000214421.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 2656, "image": "COCO_val2014_000000214421.jpg", "text": "Is there a remote in the image?", "label": "no"} +{"question_id": 2657, "image": "COCO_val2014_000000050627.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 2658, "image": "COCO_val2014_000000050627.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 2659, "image": "COCO_val2014_000000050627.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2660, "image": "COCO_val2014_000000050627.jpg", "text": "Is there a backpack in the image?", "label": "no"} +{"question_id": 2661, "image": "COCO_val2014_000000050627.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2662, "image": "COCO_val2014_000000050627.jpg", "text": "Is there an elephant in the imange?", "label": "no"} +{"question_id": 2663, "image": "COCO_val2014_000000233426.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 2664, "image": "COCO_val2014_000000233426.jpg", "text": "Is there an orange in the imange?", "label": "no"} +{"question_id": 2665, "image": "COCO_val2014_000000233426.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 2666, "image": "COCO_val2014_000000233426.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2667, "image": "COCO_val2014_000000233426.jpg", "text": "Is there a surfboard in the image?", "label": "no"} +{"question_id": 2668, "image": "COCO_val2014_000000372817.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2669, "image": "COCO_val2014_000000372817.jpg", "text": "Is there an oven in the imange?", "label": "no"} +{"question_id": 2670, "image": "COCO_val2014_000000372817.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2671, "image": "COCO_val2014_000000372817.jpg", "text": "Is there a giraffe in the image?", "label": "no"} +{"question_id": 2672, "image": "COCO_val2014_000000372817.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 2673, "image": "COCO_val2014_000000372817.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 2674, "image": "COCO_val2014_000000536073.jpg", "text": "Is there a knife in the image?", "label": "yes"} +{"question_id": 2675, "image": "COCO_val2014_000000536073.jpg", "text": "Is there an umbrella in the imange?", "label": "no"} +{"question_id": 2676, "image": "COCO_val2014_000000536073.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2677, "image": "COCO_val2014_000000536073.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 2678, "image": "COCO_val2014_000000536073.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 2679, "image": "COCO_val2014_000000536073.jpg", "text": "Is there a skis in the image?", "label": "no"} +{"question_id": 2680, "image": "COCO_val2014_000000579231.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 2681, "image": "COCO_val2014_000000579231.jpg", "text": "Is there a laptop in the image?", "label": "no"} +{"question_id": 2682, "image": "COCO_val2014_000000579231.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2683, "image": "COCO_val2014_000000579231.jpg", "text": "Is there a cat in the image?", "label": "no"} +{"question_id": 2684, "image": "COCO_val2014_000000579231.jpg", "text": "Is there a baseball bat in the image?", "label": "yes"} +{"question_id": 2685, "image": "COCO_val2014_000000579231.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 2686, "image": "COCO_val2014_000000092624.jpg", "text": "Is there a giraffe in the image?", "label": "yes"} +{"question_id": 2687, "image": "COCO_val2014_000000092624.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 2688, "image": "COCO_val2014_000000092624.jpg", "text": "Is there a cow in the image?", "label": "yes"} +{"question_id": 2689, "image": "COCO_val2014_000000092624.jpg", "text": "Is there a spoon in the image?", "label": "no"} +{"question_id": 2690, "image": "COCO_val2014_000000092624.jpg", "text": "Is there a zebra in the image?", "label": "yes"} +{"question_id": 2691, "image": "COCO_val2014_000000092624.jpg", "text": "Is there a broccoli in the image?", "label": "no"} +{"question_id": 2692, "image": "COCO_val2014_000000390184.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 2693, "image": "COCO_val2014_000000390184.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2694, "image": "COCO_val2014_000000390184.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2695, "image": "COCO_val2014_000000390184.jpg", "text": "Is there a tie in the image?", "label": "no"} +{"question_id": 2696, "image": "COCO_val2014_000000390184.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2697, "image": "COCO_val2014_000000079213.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2698, "image": "COCO_val2014_000000079213.jpg", "text": "Is there a parking meter in the image?", "label": "no"} +{"question_id": 2699, "image": "COCO_val2014_000000079213.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 2700, "image": "COCO_val2014_000000079213.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2701, "image": "COCO_val2014_000000079213.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 2702, "image": "COCO_val2014_000000079213.jpg", "text": "Is there a train in the image?", "label": "no"} +{"question_id": 2703, "image": "COCO_val2014_000000465346.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 2704, "image": "COCO_val2014_000000465346.jpg", "text": "Is there a sandwich in the image?", "label": "yes"} +{"question_id": 2705, "image": "COCO_val2014_000000465346.jpg", "text": "Is there an airplane in the imange?", "label": "no"} +{"question_id": 2706, "image": "COCO_val2014_000000465346.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 2707, "image": "COCO_val2014_000000465346.jpg", "text": "Is there an elephant in the imange?", "label": "no"} +{"question_id": 2708, "image": "COCO_val2014_000000514248.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2709, "image": "COCO_val2014_000000514248.jpg", "text": "Is there a fork in the image?", "label": "no"} +{"question_id": 2710, "image": "COCO_val2014_000000514248.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2711, "image": "COCO_val2014_000000514248.jpg", "text": "Is there a dining table in the image?", "label": "no"} +{"question_id": 2712, "image": "COCO_val2014_000000514248.jpg", "text": "Is there a horse in the image?", "label": "yes"} +{"question_id": 2713, "image": "COCO_val2014_000000514248.jpg", "text": "Is there a toaster in the image?", "label": "no"} +{"question_id": 2714, "image": "COCO_val2014_000000355776.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2715, "image": "COCO_val2014_000000355776.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 2716, "image": "COCO_val2014_000000355776.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2717, "image": "COCO_val2014_000000355776.jpg", "text": "Is there a bird in the image?", "label": "no"} +{"question_id": 2718, "image": "COCO_val2014_000000355776.jpg", "text": "Is there a sink in the image?", "label": "yes"} +{"question_id": 2719, "image": "COCO_val2014_000000355776.jpg", "text": "Is there a cell phone in the image?", "label": "no"} +{"question_id": 2720, "image": "COCO_val2014_000000575355.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2721, "image": "COCO_val2014_000000575355.jpg", "text": "Is there an airplane in the imange?", "label": "no"} +{"question_id": 2722, "image": "COCO_val2014_000000575355.jpg", "text": "Is there a bench in the image?", "label": "yes"} +{"question_id": 2723, "image": "COCO_val2014_000000575355.jpg", "text": "Is there a cat in the image?", "label": "no"} +{"question_id": 2724, "image": "COCO_val2014_000000575355.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2725, "image": "COCO_val2014_000000575355.jpg", "text": "Is there a cup in the image?", "label": "no"} +{"question_id": 2726, "image": "COCO_val2014_000000396068.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 2727, "image": "COCO_val2014_000000396068.jpg", "text": "Is there an orange in the imange?", "label": "no"} +{"question_id": 2728, "image": "COCO_val2014_000000396068.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2729, "image": "COCO_val2014_000000396068.jpg", "text": "Is there a sandwich in the image?", "label": "no"} +{"question_id": 2730, "image": "COCO_val2014_000000396068.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 2731, "image": "COCO_val2014_000000396068.jpg", "text": "Is there a bed in the image?", "label": "no"} +{"question_id": 2732, "image": "COCO_val2014_000000559547.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 2733, "image": "COCO_val2014_000000559547.jpg", "text": "Is there a banana in the image?", "label": "no"} +{"question_id": 2734, "image": "COCO_val2014_000000559547.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2735, "image": "COCO_val2014_000000559547.jpg", "text": "Is there a mouse in the image?", "label": "no"} +{"question_id": 2736, "image": "COCO_val2014_000000559547.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2737, "image": "COCO_val2014_000000559547.jpg", "text": "Is there an elephant in the imange?", "label": "no"} +{"question_id": 2738, "image": "COCO_val2014_000000230175.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2739, "image": "COCO_val2014_000000230175.jpg", "text": "Is there a wine glass in the image?", "label": "no"} +{"question_id": 2740, "image": "COCO_val2014_000000230175.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 2741, "image": "COCO_val2014_000000230175.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 2742, "image": "COCO_val2014_000000230175.jpg", "text": "Is there a tie in the image?", "label": "yes"} +{"question_id": 2743, "image": "COCO_val2014_000000230175.jpg", "text": "Is there a pizza in the image?", "label": "no"} +{"question_id": 2744, "image": "COCO_val2014_000000159969.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2745, "image": "COCO_val2014_000000159969.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2746, "image": "COCO_val2014_000000159969.jpg", "text": "Is there a fire hydrant in the image?", "label": "no"} +{"question_id": 2747, "image": "COCO_val2014_000000159969.jpg", "text": "Is there a skis in the image?", "label": "yes"} +{"question_id": 2748, "image": "COCO_val2014_000000159969.jpg", "text": "Is there a wine glass in the image?", "label": "no"} +{"question_id": 2749, "image": "COCO_val2014_000000399702.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2750, "image": "COCO_val2014_000000399702.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 2751, "image": "COCO_val2014_000000399702.jpg", "text": "Is there a sandwich in the image?", "label": "yes"} +{"question_id": 2752, "image": "COCO_val2014_000000399702.jpg", "text": "Is there a bear in the image?", "label": "no"} +{"question_id": 2753, "image": "COCO_val2014_000000399702.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 2754, "image": "COCO_val2014_000000399702.jpg", "text": "Is there a scissors in the image?", "label": "no"} +{"question_id": 2755, "image": "COCO_val2014_000000555538.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 2756, "image": "COCO_val2014_000000555538.jpg", "text": "Is there a scissors in the image?", "label": "no"} +{"question_id": 2757, "image": "COCO_val2014_000000555538.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2758, "image": "COCO_val2014_000000555538.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 2759, "image": "COCO_val2014_000000555538.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2760, "image": "COCO_val2014_000000264155.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2761, "image": "COCO_val2014_000000264155.jpg", "text": "Is there a toaster in the image?", "label": "no"} +{"question_id": 2762, "image": "COCO_val2014_000000264155.jpg", "text": "Is there a bottle in the image?", "label": "yes"} +{"question_id": 2763, "image": "COCO_val2014_000000264155.jpg", "text": "Is there a donut in the image?", "label": "no"} +{"question_id": 2764, "image": "COCO_val2014_000000264155.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 2765, "image": "COCO_val2014_000000264155.jpg", "text": "Is there a skis in the image?", "label": "no"} +{"question_id": 2766, "image": "COCO_val2014_000000125572.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 2767, "image": "COCO_val2014_000000125572.jpg", "text": "Is there a sink in the image?", "label": "no"} +{"question_id": 2768, "image": "COCO_val2014_000000125572.jpg", "text": "Is there a clock in the image?", "label": "yes"} +{"question_id": 2769, "image": "COCO_val2014_000000125572.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2770, "image": "COCO_val2014_000000125572.jpg", "text": "Is there a scissors in the image?", "label": "no"} +{"question_id": 2771, "image": "COCO_val2014_000000560744.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2772, "image": "COCO_val2014_000000560744.jpg", "text": "Is there a train in the image?", "label": "no"} +{"question_id": 2773, "image": "COCO_val2014_000000560744.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 2774, "image": "COCO_val2014_000000560744.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 2775, "image": "COCO_val2014_000000560744.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2776, "image": "COCO_val2014_000000560744.jpg", "text": "Is there a surfboard in the image?", "label": "no"} +{"question_id": 2777, "image": "COCO_val2014_000000045685.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2778, "image": "COCO_val2014_000000045685.jpg", "text": "Is there a hot dog in the image?", "label": "no"} +{"question_id": 2779, "image": "COCO_val2014_000000045685.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2780, "image": "COCO_val2014_000000045685.jpg", "text": "Is there a traffic light in the image?", "label": "no"} +{"question_id": 2781, "image": "COCO_val2014_000000045685.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 2782, "image": "COCO_val2014_000000045685.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 2783, "image": "COCO_val2014_000000434179.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2784, "image": "COCO_val2014_000000434179.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 2785, "image": "COCO_val2014_000000434179.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 2786, "image": "COCO_val2014_000000434179.jpg", "text": "Is there a refrigerator in the image?", "label": "no"} +{"question_id": 2787, "image": "COCO_val2014_000000434179.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 2788, "image": "COCO_val2014_000000434179.jpg", "text": "Is there an apple in the imange?", "label": "no"} +{"question_id": 2789, "image": "COCO_val2014_000000008749.jpg", "text": "Is there a pizza in the image?", "label": "yes"} +{"question_id": 2790, "image": "COCO_val2014_000000008749.jpg", "text": "Is there a stop sign in the image?", "label": "no"} +{"question_id": 2791, "image": "COCO_val2014_000000008749.jpg", "text": "Is there a cup in the image?", "label": "yes"} +{"question_id": 2792, "image": "COCO_val2014_000000008749.jpg", "text": "Is there a mouse in the image?", "label": "no"} +{"question_id": 2793, "image": "COCO_val2014_000000008749.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2794, "image": "COCO_val2014_000000069863.jpg", "text": "Is there a car in the image?", "label": "yes"} +{"question_id": 2795, "image": "COCO_val2014_000000069863.jpg", "text": "Is there a cat in the image?", "label": "no"} +{"question_id": 2796, "image": "COCO_val2014_000000069863.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 2797, "image": "COCO_val2014_000000069863.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 2798, "image": "COCO_val2014_000000069863.jpg", "text": "Is there a sports ball in the image?", "label": "no"} +{"question_id": 2799, "image": "COCO_val2014_000000041180.jpg", "text": "Is there a backpack in the image?", "label": "yes"} +{"question_id": 2800, "image": "COCO_val2014_000000041180.jpg", "text": "Is there a bear in the image?", "label": "no"} +{"question_id": 2801, "image": "COCO_val2014_000000041180.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2802, "image": "COCO_val2014_000000041180.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 2803, "image": "COCO_val2014_000000041180.jpg", "text": "Is there a cow in the image?", "label": "yes"} +{"question_id": 2804, "image": "COCO_val2014_000000041180.jpg", "text": "Is there a boat in the image?", "label": "no"} +{"question_id": 2805, "image": "COCO_val2014_000000429913.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 2806, "image": "COCO_val2014_000000429913.jpg", "text": "Is there a sandwich in the image?", "label": "no"} +{"question_id": 2807, "image": "COCO_val2014_000000429913.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2808, "image": "COCO_val2014_000000429913.jpg", "text": "Is there a toilet in the image?", "label": "no"} +{"question_id": 2809, "image": "COCO_val2014_000000429913.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2810, "image": "COCO_val2014_000000429913.jpg", "text": "Is there a bear in the image?", "label": "no"} +{"question_id": 2811, "image": "COCO_val2014_000000554002.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2812, "image": "COCO_val2014_000000554002.jpg", "text": "Is there a remote in the image?", "label": "no"} +{"question_id": 2813, "image": "COCO_val2014_000000554002.jpg", "text": "Is there a dog in the image?", "label": "yes"} +{"question_id": 2814, "image": "COCO_val2014_000000554002.jpg", "text": "Is there a tv in the image?", "label": "no"} +{"question_id": 2815, "image": "COCO_val2014_000000554002.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2816, "image": "COCO_val2014_000000554002.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 2817, "image": "COCO_val2014_000000141278.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 2818, "image": "COCO_val2014_000000141278.jpg", "text": "Is there a bear in the image?", "label": "no"} +{"question_id": 2819, "image": "COCO_val2014_000000141278.jpg", "text": "Is there a mouse in the image?", "label": "yes"} +{"question_id": 2820, "image": "COCO_val2014_000000141278.jpg", "text": "Is there a cow in the image?", "label": "no"} +{"question_id": 2821, "image": "COCO_val2014_000000141278.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 2822, "image": "COCO_val2014_000000141278.jpg", "text": "Is there a cake in the image?", "label": "no"} +{"question_id": 2823, "image": "COCO_val2014_000000190788.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2824, "image": "COCO_val2014_000000190788.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2825, "image": "COCO_val2014_000000190788.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 2826, "image": "COCO_val2014_000000190788.jpg", "text": "Is there a knife in the image?", "label": "yes"} +{"question_id": 2827, "image": "COCO_val2014_000000190788.jpg", "text": "Is there a tie in the image?", "label": "no"} +{"question_id": 2828, "image": "COCO_val2014_000000534942.jpg", "text": "Is there a bed in the image?", "label": "yes"} +{"question_id": 2829, "image": "COCO_val2014_000000534942.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 2830, "image": "COCO_val2014_000000534942.jpg", "text": "Is there a cat in the image?", "label": "yes"} +{"question_id": 2831, "image": "COCO_val2014_000000534942.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2832, "image": "COCO_val2014_000000534942.jpg", "text": "Is there a tie in the image?", "label": "yes"} +{"question_id": 2833, "image": "COCO_val2014_000000534942.jpg", "text": "Is there a surfboard in the image?", "label": "no"} +{"question_id": 2834, "image": "COCO_val2014_000000377951.jpg", "text": "Is there a pizza in the image?", "label": "yes"} +{"question_id": 2835, "image": "COCO_val2014_000000377951.jpg", "text": "Is there a laptop in the image?", "label": "no"} +{"question_id": 2836, "image": "COCO_val2014_000000377951.jpg", "text": "Is there a dining table in the image?", "label": "yes"} +{"question_id": 2837, "image": "COCO_val2014_000000377951.jpg", "text": "Is there a banana in the image?", "label": "no"} +{"question_id": 2838, "image": "COCO_val2014_000000377951.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2839, "image": "COCO_val2014_000000377951.jpg", "text": "Is there a car in the image?", "label": "no"} +{"question_id": 2840, "image": "COCO_val2014_000000533201.jpg", "text": "Is there a truck in the image?", "label": "yes"} +{"question_id": 2841, "image": "COCO_val2014_000000533201.jpg", "text": "Is there a remote in the image?", "label": "no"} +{"question_id": 2842, "image": "COCO_val2014_000000533201.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2843, "image": "COCO_val2014_000000533201.jpg", "text": "Is there a bowl in the image?", "label": "no"} +{"question_id": 2844, "image": "COCO_val2014_000000533201.jpg", "text": "Is there an airplane in the imange?", "label": "yes"} +{"question_id": 2845, "image": "COCO_val2014_000000533201.jpg", "text": "Is there a baseball glove in the image?", "label": "no"} +{"question_id": 2846, "image": "COCO_val2014_000000235203.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2847, "image": "COCO_val2014_000000235203.jpg", "text": "Is there a vase in the image?", "label": "no"} +{"question_id": 2848, "image": "COCO_val2014_000000235203.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 2849, "image": "COCO_val2014_000000235203.jpg", "text": "Is there a truck in the image?", "label": "no"} +{"question_id": 2850, "image": "COCO_val2014_000000235203.jpg", "text": "Is there a remote in the image?", "label": "yes"} +{"question_id": 2851, "image": "COCO_val2014_000000235203.jpg", "text": "Is there a surfboard in the image?", "label": "no"} +{"question_id": 2852, "image": "COCO_val2014_000000468997.jpg", "text": "Is there a baseball glove in the image?", "label": "yes"} +{"question_id": 2853, "image": "COCO_val2014_000000468997.jpg", "text": "Is there a skateboard in the image?", "label": "no"} +{"question_id": 2854, "image": "COCO_val2014_000000468997.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2855, "image": "COCO_val2014_000000468997.jpg", "text": "Is there a giraffe in the image?", "label": "no"} +{"question_id": 2856, "image": "COCO_val2014_000000468997.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2857, "image": "COCO_val2014_000000468997.jpg", "text": "Is there a bird in the image?", "label": "no"} +{"question_id": 2858, "image": "COCO_val2014_000000401398.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2859, "image": "COCO_val2014_000000401398.jpg", "text": "Is there a cake in the image?", "label": "no"} +{"question_id": 2860, "image": "COCO_val2014_000000401398.jpg", "text": "Is there a potted plant in the image?", "label": "yes"} +{"question_id": 2861, "image": "COCO_val2014_000000401398.jpg", "text": "Is there a bicycle in the image?", "label": "no"} +{"question_id": 2862, "image": "COCO_val2014_000000401398.jpg", "text": "Is there a vase in the image?", "label": "yes"} +{"question_id": 2863, "image": "COCO_val2014_000000401398.jpg", "text": "Is there a keyboard in the image?", "label": "no"} +{"question_id": 2864, "image": "COCO_val2014_000000323752.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2865, "image": "COCO_val2014_000000323752.jpg", "text": "Is there an umbrella in the imange?", "label": "no"} +{"question_id": 2866, "image": "COCO_val2014_000000323752.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2867, "image": "COCO_val2014_000000323752.jpg", "text": "Is there a bus in the image?", "label": "no"} +{"question_id": 2868, "image": "COCO_val2014_000000323752.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 2869, "image": "COCO_val2014_000000323752.jpg", "text": "Is there a skis in the image?", "label": "no"} +{"question_id": 2870, "image": "COCO_val2014_000000003845.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 2871, "image": "COCO_val2014_000000003845.jpg", "text": "Is there a potted plant in the image?", "label": "no"} +{"question_id": 2872, "image": "COCO_val2014_000000003845.jpg", "text": "Is there a broccoli in the image?", "label": "yes"} +{"question_id": 2873, "image": "COCO_val2014_000000003845.jpg", "text": "Is there a fire hydrant in the image?", "label": "no"} +{"question_id": 2874, "image": "COCO_val2014_000000003845.jpg", "text": "Is there a fork in the image?", "label": "yes"} +{"question_id": 2875, "image": "COCO_val2014_000000003845.jpg", "text": "Is there a bear in the image?", "label": "no"} +{"question_id": 2876, "image": "COCO_val2014_000000122962.jpg", "text": "Is there a pizza in the image?", "label": "yes"} +{"question_id": 2877, "image": "COCO_val2014_000000122962.jpg", "text": "Is there a carrot in the image?", "label": "no"} +{"question_id": 2878, "image": "COCO_val2014_000000122962.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2879, "image": "COCO_val2014_000000122962.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 2880, "image": "COCO_val2014_000000122962.jpg", "text": "Is there a cell phone in the image?", "label": "yes"} +{"question_id": 2881, "image": "COCO_val2014_000000122962.jpg", "text": "Is there a suitcase in the image?", "label": "no"} +{"question_id": 2882, "image": "COCO_val2014_000000015738.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2883, "image": "COCO_val2014_000000015738.jpg", "text": "Is there a suitcase in the image?", "label": "no"} +{"question_id": 2884, "image": "COCO_val2014_000000015738.jpg", "text": "Is there a sports ball in the image?", "label": "yes"} +{"question_id": 2885, "image": "COCO_val2014_000000015738.jpg", "text": "Is there an orange in the imange?", "label": "no"} +{"question_id": 2886, "image": "COCO_val2014_000000015738.jpg", "text": "Is there a tennis racket in the image?", "label": "yes"} +{"question_id": 2887, "image": "COCO_val2014_000000015738.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 2888, "image": "COCO_val2014_000000497599.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2889, "image": "COCO_val2014_000000497599.jpg", "text": "Is there a tennis racket in the image?", "label": "no"} +{"question_id": 2890, "image": "COCO_val2014_000000497599.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2891, "image": "COCO_val2014_000000497599.jpg", "text": "Is there a train in the image?", "label": "no"} +{"question_id": 2892, "image": "COCO_val2014_000000497599.jpg", "text": "Is there a laptop in the image?", "label": "yes"} +{"question_id": 2893, "image": "COCO_val2014_000000497599.jpg", "text": "Is there a dog in the image?", "label": "no"} +{"question_id": 2894, "image": "COCO_val2014_000000121959.jpg", "text": "Is there a chair in the image?", "label": "yes"} +{"question_id": 2895, "image": "COCO_val2014_000000121959.jpg", "text": "Is there a refrigerator in the image?", "label": "no"} +{"question_id": 2896, "image": "COCO_val2014_000000121959.jpg", "text": "Is there a person in the image?", "label": "yes"} +{"question_id": 2897, "image": "COCO_val2014_000000121959.jpg", "text": "Is there a giraffe in the image?", "label": "no"} +{"question_id": 2898, "image": "COCO_val2014_000000121959.jpg", "text": "Is there a handbag in the image?", "label": "yes"} +{"question_id": 2899, "image": "COCO_val2014_000000361430.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2900, "image": "COCO_val2014_000000361430.jpg", "text": "Is there a motorcycle in the image?", "label": "no"} +{"question_id": 2901, "image": "COCO_val2014_000000361430.jpg", "text": "Is there a broccoli in the image?", "label": "yes"} +{"question_id": 2902, "image": "COCO_val2014_000000361430.jpg", "text": "Is there a clock in the image?", "label": "no"} +{"question_id": 2903, "image": "COCO_val2014_000000361430.jpg", "text": "Is there a spoon in the image?", "label": "yes"} +{"question_id": 2904, "image": "COCO_val2014_000000361430.jpg", "text": "Is there a bottle in the image?", "label": "no"} +{"question_id": 2905, "image": "COCO_val2014_000000277289.jpg", "text": "Is there a tv in the image?", "label": "yes"} +{"question_id": 2906, "image": "COCO_val2014_000000277289.jpg", "text": "Is there a tie in the image?", "label": "no"} +{"question_id": 2907, "image": "COCO_val2014_000000277289.jpg", "text": "Is there a bowl in the image?", "label": "yes"} +{"question_id": 2908, "image": "COCO_val2014_000000277289.jpg", "text": "Is there a person in the image?", "label": "no"} +{"question_id": 2909, "image": "COCO_val2014_000000277289.jpg", "text": "Is there a couch in the image?", "label": "yes"} +{"question_id": 2910, "image": "COCO_val2014_000000277289.jpg", "text": "Is there a bus in the image?", "label": "no"} diff --git a/OPERA/pope_eval.py b/OPERA/pope_eval.py new file mode 100644 index 0000000000000000000000000000000000000000..eb89e3fb13192e219274a30144aad3e4b25d3495 --- /dev/null +++ b/OPERA/pope_eval.py @@ -0,0 +1,230 @@ +import argparse +import os +import random + +import numpy as np +import torch +import torch.backends.cudnn as cudnn +from tqdm import tqdm + +from torchvision import transforms +from torchvision.transforms.functional import InterpolationMode +from torchvision.utils import save_image + +from pope_loader import POPEDataSet +from minigpt4.common.dist_utils import get_rank +from minigpt4.models import load_preprocess + +from minigpt4.common.config import Config +from minigpt4.common.dist_utils import get_rank +from minigpt4.common.registry import registry + +# imports modules for registration +from minigpt4.datasets.builders import * +from minigpt4.models import * +from minigpt4.processors import * +from minigpt4.runners import * +from minigpt4.tasks import * + + + +MODEL_EVAL_CONFIG_PATH = { + "minigpt4": "eval_configs/minigpt4_eval.yaml", + "instructblip": "eval_configs/instructblip_eval.yaml", + "lrv_instruct": "eval_configs/lrv_instruct_eval.yaml", + "shikra": "eval_configs/shikra_eval.yaml", + "llava-1.5": "eval_configs/llava-1.5_eval.yaml", +} + +POPE_PATH = { + "random": "pope_coco/coco_pope_random.json", + "popular": "pope_coco/coco_pope_popular.json", + "adversarial": "pope_coco/coco_pope_adversarial.json", +} + +INSTRUCTION_TEMPLATE = { + "minigpt4": "###Human: ###Assistant:", + "instructblip": "", + "lrv_instruct": "###Human: ###Assistant:", + "shikra": "USER: ASSISTANT:", + "llava-1.5": "USER: ASSISTANT:" +} + + +def parse_args(): + parser = argparse.ArgumentParser(description="POPE-Adv evaluation on LVLMs.") + parser.add_argument("--model", type=str, help="model") + parser.add_argument("--pope-type", type=str, help="model") + # parser.add_argument("--cfg-path", required=True, help="path to configuration file.") + parser.add_argument("--gpu-id", type=int, default=0, help="specify the gpu to load the model.") + parser.add_argument( + "--options", + nargs="+", + help="override some settings in the used config, the key-value pair " + "in xxx=yyy format will be merged into config file (deprecate), " + "change to --cfg-options instead.", + ) + parser.add_argument("--data_path", type=str, default="COCO_2014/val2014/", help="data path") + parser.add_argument("--batch_size", type=int, default=1, help="batch size") + parser.add_argument("--num_workers", type=int, default=2, help="num workers") + + parser.add_argument("--beam", type=int) + parser.add_argument("--sample", action='store_true') + parser.add_argument("--scale_factor", type=float, default=50) + parser.add_argument("--threshold", type=int, default=15) + parser.add_argument("--num_attn_candidates", type=int, default=5) + parser.add_argument("--penalty_weights", type=float, default=1.0) + args = parser.parse_args() + return args + + +def setup_seeds(config): + seed = config.run_cfg.seed + get_rank() + + random.seed(seed) + np.random.seed(seed) + torch.manual_seed(seed) + + cudnn.benchmark = False + cudnn.deterministic = True + + +def print_acc(pred_list, label_list): + pos = 1 + neg = 0 + yes_ratio = pred_list.count(1) / len(pred_list) + # unknown_ratio = pred_list.count(2) / len(pred_list) + + TP, TN, FP, FN = 0, 0, 0, 0 + for pred, label in zip(pred_list, label_list): + if pred == pos and label == pos: + TP += 1 + elif pred == pos and label == neg: + FP += 1 + elif pred == neg and label == neg: + TN += 1 + elif pred == neg and label == pos: + FN += 1 + + print('TP\tFP\tTN\tFN\t') + print('{}\t{}\t{}\t{}'.format(TP, FP, TN, FN)) + + precision = float(TP) / float(TP + FP) + recall = float(TP) / float(TP + FN) + f1 = 2*precision*recall / (precision + recall) + acc = (TP + TN) / (TP + TN + FP + FN) + print('Accuracy: {}'.format(acc)) + print('Precision: {}'.format(precision)) + print('Recall: {}'.format(recall)) + print('F1 score: {}'.format(f1)) + print('Yes ratio: {}'.format(yes_ratio)) + + +def recorder(out, pred_list): + NEG_WORDS = ["No", "not", "no", "NO"] + for line in out: + + line = line.replace('.', '') + line = line.replace(',', '') + words = line.split(' ') + if any(word in NEG_WORDS for word in words) or any(word.endswith("n't") for word in words): + pred_list.append(0) + else: + pred_list.append(1) + + return pred_list + + + + +def main(): + + args = parse_args() + os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_id) + + args.cfg_path = MODEL_EVAL_CONFIG_PATH[args.model] + args.pope_path = POPE_PATH[args.pope_type] + cfg = Config(args) + + setup_seeds(cfg) + device = torch.device("cuda") if torch.cuda.is_available() else "cpu" + + # ======================================== + # Model Initialization + # ======================================== + print('Initializing Model') + + model_config = cfg.model_cfg + model_config.device_8bit = args.gpu_id + model_cls = registry.get_model_class(model_config.arch) + model = model_cls.from_config(model_config).to(device) + model.eval() + vis_processors, txt_processors = load_preprocess(cfg.get_config().preprocess) + # vis_processors.do_normalize = False + print(vis_processors["eval"].transform) + print("Done!") + + # load pope data + pope_dataset = POPEDataSet( + pope_path=args.pope_path, + data_path=args.data_path, + trans=vis_processors["eval"] + ) + pope_loader = torch.utils.data.DataLoader( + pope_dataset, + batch_size=args.batch_size, + shuffle=False, + num_workers=args.num_workers, + drop_last=False + ) + + print ("load data finished") + + + print("Start eval...") + pred_list, pred_list_s, label_list = [], [], [] + for batch_id, data in tqdm(enumerate(pope_loader), total=len(pope_loader)): + image = data["image"] + qu = data["query"] + label = data["label"] + label_list = label_list + list(label) + + template = INSTRUCTION_TEMPLATE[args.model] + qu = [template.replace("", q) for q in qu] + + image = image.to(device) + label = torch.Tensor(label).to(device) + + with torch.inference_mode(): + with torch.no_grad(): + out = model.generate( + {"image": image, "prompt":qu}, + use_nucleus_sampling=args.sample, + num_beams=args.beam, + max_new_tokens=10, + output_attentions=True, + opera_decoding=True, + scale_factor=args.scale_factor, + threshold=args.threshold, + num_attn_candidates=args.num_attn_candidates, + penalty_weights=args.penalty_weights, + ) + pred_list = recorder(out, pred_list) + for line in out: + print(line) + + print("[{}, {}]===============================================".format(args.scale_factor, args.num_attn_candidates)) + if len(pred_list) != 0: + print_acc(pred_list, label_list) + if len(pred_list_s) != 0: + print_acc(pred_list_s, label_list) + + + + + + + + +if __name__ == "__main__": + main() diff --git a/OPERA/pope_loader.py b/OPERA/pope_loader.py new file mode 100644 index 0000000000000000000000000000000000000000..4eff63dac698c8045e8bbc91cf98a0e4320c7a38 --- /dev/null +++ b/OPERA/pope_loader.py @@ -0,0 +1,47 @@ +import os +import json +import torch +import numpy as np +from torch.utils.data import Dataset +from PIL import Image + + + + +class POPEDataSet(Dataset): + def __init__(self, pope_path, data_path, trans): + self.pope_path = pope_path + self.data_path = data_path + self.trans = trans + + image_list, query_list, label_list = [], [], [] + for q in open(pope_path, 'r'): + line = json.loads(q) + image_list.append(line['image']) + query_list.append(line['text']) + label_list.append(line['label']) + + for i in range(len(label_list)): + if label_list[i] == 'no': + label_list[i] = 0 + else: + label_list[i] = 1 + + assert len(image_list) == len(query_list) + assert len(image_list) == len(label_list) + + self.image_list = image_list + self.query_list = query_list + self.label_list = label_list + + def __len__(self): + return len(self.label_list) + + def __getitem__(self, index): + image_path = os.path.join(self.data_path, self.image_list[index]) + raw_image = Image.open(image_path).convert("RGB") + image = self.trans(raw_image) + query = self.query_list[index] + label = self.label_list[index] + + return {"image": image, "query": query, "label": label} \ No newline at end of file diff --git a/OPERA/requirements.txt b/OPERA/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..51486cbfd10ebf33306a67cefc546fb558f4f831 --- /dev/null +++ b/OPERA/requirements.txt @@ -0,0 +1,265 @@ +accelerate==0.19.0 +aiofiles==23.1.0 +aiohttp==3.8.4 +aiosignal==1.3.1 +altair==4.2.2 +antlr4-python3-runtime==4.9.3 +anyio==3.6.2 +argon2-cffi==21.3.0 +argon2-cffi-bindings==21.2.0 +arrow==1.2.3 +asttokens==2.2.1 +async-lru==2.0.2 +async-timeout==4.0.2 +attrs==23.1.0 +Babel==2.12.1 +backcall==0.2.0 +beautifulsoup4==4.12.2 +bertviz==1.4.0 +bitsandbytes==0.39.0 +bleach==6.0.0 +blinker==1.6.2 +blis==0.7.9 +boto3==1.28.63 +botocore==1.31.63 +braceexpand==0.1.7 +brotlipy==0.7.0 +cachetools==5.3.0 +catalogue==2.0.8 +certifi==2022.12.7 +cffi==1.15.1 +cfgv==3.3.1 +charset-normalizer==2.0.4 +click==8.1.3 +cmake==3.26.3 +comm==0.1.3 +confection==0.0.4 +contexttimer==0.3.3 +contourpy==1.0.7 +cryptography==39.0.1 +curated-tokenizers==0.0.8 +curated-transformers==0.1.1 +cycler==0.11.0 +cymem==2.0.7 +debugpy==1.6.7 +decorator==5.1.1 +decord==0.6.0 +defusedxml==0.7.1 +distlib==0.3.6 +distro==1.8.0 +einops==0.6.1 +entrypoints==0.4 +et-xmlfile==1.1.0 +executing==1.2.0 +fairscale==0.4.4 +fastapi==0.95.2 +fastjsonschema==2.16.3 +ffmpy==0.3.0 +filelock==3.12.0 +fonttools==4.39.4 +fqdn==1.5.1 +frozenlist==1.3.3 +fsspec==2023.5.0 +ftfy==6.1.1 +gdown==4.7.1 +gitdb==4.0.10 +GitPython==3.1.31 +gradio==3.31.0 +gradio_client==0.2.5 +h11==0.14.0 +httpcore==0.17.1 +httpx==0.24.1 +huggingface-hub==0.14.1 +identify==2.5.24 +idna==3.4 +imageio==2.28.1 +importlib-metadata==6.6.0 +importlib-resources==5.12.0 +iopath==0.1.10 +ipykernel==6.23.1 +ipython==8.13.2 +ipython-genutils==0.2.0 +ipywidgets==8.0.6 +isoduration==20.11.0 +jedi==0.18.2 +Jinja2==3.1.2 +jmespath==1.0.1 +joblib==1.2.0 +json5==0.9.14 +jsonpointer==2.3 +jsonschema==4.17.3 +jupyter==1.0.0 +jupyter_client==8.2.0 +jupyter-console==6.6.3 +jupyter_core==5.3.0 +jupyter-events==0.6.3 +jupyter-lsp==2.1.0 +jupyter_server==2.5.0 +jupyter_server_terminals==0.4.4 +jupyterlab==4.0.7 +jupyterlab-pygments==0.2.2 +jupyterlab_server==2.22.1 +jupyterlab-widgets==3.0.7 +kaggle==1.5.13 +kiwisolver==1.4.4 +langcodes==3.3.0 +lazy_loader==0.2 +linkify-it-py==2.0.2 +lit==16.0.5 +markdown-it-py==2.2.0 +MarkupSafe==2.1.2 +matplotlib==3.7.1 +matplotlib-inline==0.1.6 +mdit-py-plugins==0.3.3 +mdurl==0.1.2 +mistune==2.0.5 +mkl-fft==1.3.6 +mkl-random==1.2.2 +mkl-service==2.4.0 +mpmath==1.3.0 +multidict==6.0.4 +murmurhash==1.0.9 +nbclassic==1.0.0 +nbclient==0.7.4 +nbconvert==7.4.0 +nbformat==5.8.0 +nest-asyncio==1.5.6 +networkx==3.1 +nltk==3.8.1 +nodeenv==1.8.0 +notebook==7.0.6 +notebook_shim==0.2.3 +numpy==1.24.3 +nvidia-cublas-cu11==11.10.3.66 +nvidia-cuda-cupti-cu11==11.7.101 +nvidia-cuda-nvrtc-cu11==11.7.99 +nvidia-cuda-runtime-cu11==11.7.99 +nvidia-cudnn-cu11==8.5.0.96 +nvidia-cufft-cu11==10.9.0.58 +nvidia-curand-cu11==10.2.10.91 +nvidia-cusolver-cu11==11.4.0.1 +nvidia-cusparse-cu11==11.7.4.91 +nvidia-nccl-cu11==2.14.3 +nvidia-nvtx-cu11==11.7.91 +omegaconf==2.3.0 +openai==0.28.1 +opencv-python==4.7.0.72 +opencv-python-headless==4.5.5.64 +opendatasets==0.1.22 +openpyxl==3.1.2 +orjson==3.8.12 +packaging==23.1 +pandas==2.0.1 +pandocfilters==1.5.0 +parso==0.8.3 +pathy==0.10.1 +pexpect==4.8.0 +pickleshare==0.7.5 +Pillow==9.4.0 +pip==23.0.1 +platformdirs==3.5.1 +plotly==5.14.1 +portalocker==2.7.0 +pre-commit==3.3.2 +preshed==3.0.8 +prometheus-client==0.16.0 +prompt-toolkit==3.0.38 +protobuf==3.20.3 +psutil==5.9.5 +ptyprocess==0.7.0 +pure-eval==0.2.2 +pyarrow==12.0.0 +pycocoevalcap==1.2 +pycocotools==2.0.6 +pycparser==2.21 +pydantic==1.10.7 +pydeck==0.8.1b0 +pydub==0.25.1 +Pygments==2.15.1 +Pympler==1.0.1 +pyOpenSSL==23.0.0 +pyparsing==3.0.9 +pyrsistent==0.19.3 +PySocks==1.7.1 +python-dateutil==2.8.2 +python-json-logger==2.0.7 +python-magic==0.4.27 +python-multipart==0.0.6 +python-slugify==8.0.1 +pytz==2023.3 +PyWavelets==1.4.1 +PyYAML==6.0 +pyzmq==25.0.2 +qtconsole==5.4.3 +QtPy==2.3.1 +regex==2023.5.5 +requests==2.29.0 +rfc3339-validator==0.1.4 +rfc3986-validator==0.1.1 +rich==13.3.5 +s3transfer==0.7.0 +safetensors==0.3.1 +scikit-image==0.20.0 +scikit-learn==1.2.2 +scipy==1.9.1 +seaborn==0.13.0 +semantic-version==2.10.0 +Send2Trash==1.8.2 +sentencepiece==0.1.99 +setuptools==66.0.0 +six==1.16.0 +sklearn==0.0.post5 +smart-open==6.3.0 +smmap==5.0.0 +sniffio==1.3.0 +soupsieve==2.4.1 +spacy==3.7.0.dev0 +spacy-curated-transformers==0.2.0 +spacy-legacy==3.0.12 +spacy-loggers==1.0.4 +srsly==2.4.6 +stack-data==0.6.2 +starlette==0.27.0 +streamlit==1.22.0 +sympy==1.12 +tenacity==8.2.2 +terminado==0.17.1 +text-unidecode==1.3 +thinc==8.1.10 +threadpoolctl==3.1.0 +tifffile==2023.4.12 +timm==0.4.12 +tinycss2==1.2.1 +tokenizers==0.13.3 +toml==0.10.2 +tomli==2.0.1 +toolz==0.12.0 +torch==2.0.1 +torchaudio==2.0.2 +torchvision==0.15.2 +tornado==6.3.2 +tqdm==4.65.0 +traitlets==5.9.0 +triton==2.0.0 +typer==0.7.0 +typing_extensions==4.5.0 +tzdata==2023.3 +tzlocal==5.0.1 +uc-micro-py==1.0.2 +uri-template==1.2.0 +urllib3==1.26.15 +uvicorn==0.22.0 +validators==0.20.0 +virtualenv==20.23.0 +wasabi==1.1.1 +watchdog==3.0.0 +wcwidth==0.2.6 +webcolors==1.13 +webdataset==0.2.48 +webencodings==0.5.1 +websocket-client==1.5.1 +websockets==11.0.3 +wheel==0.38.4 +widgetsnbextension==4.0.7 +yarl==1.9.2 +zipp==3.15.0 diff --git a/OPERA/teaser.png b/OPERA/teaser.png new file mode 100644 index 0000000000000000000000000000000000000000..ba6f29a8a0792556307de5f445de6b1df914722b --- /dev/null +++ b/OPERA/teaser.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d58b9aae6a5b75d70f97fe713eecf0b6c0a6d9c08f4ee31c9ec4bbb62688fa17 +size 5706068 diff --git a/OPERA/train_configs/minigpt4_llama2_stage1_pretrain.yaml b/OPERA/train_configs/minigpt4_llama2_stage1_pretrain.yaml new file mode 100644 index 0000000000000000000000000000000000000000..4f0cf4104c2b10e0b3732b55812cfc3a00d64959 --- /dev/null +++ b/OPERA/train_configs/minigpt4_llama2_stage1_pretrain.yaml @@ -0,0 +1,55 @@ +model: + arch: mini_gpt4 + model_type: pretrain_llama2 + + +datasets: + laion: + vis_processor: + train: + name: "blip2_image_train" + image_size: 224 + text_processor: + train: + name: "blip_caption" + sample_ratio: 115 + cc_sbu: + vis_processor: + train: + name: "blip2_image_train" + image_size: 224 + text_processor: + train: + name: "blip_caption" + sample_ratio: 14 + + +run: + task: image_text_pretrain + # optimizer + lr_sched: "linear_warmup_cosine_lr" + init_lr: 1e-4 + min_lr: 8e-5 + warmup_lr: 1e-6 + + weight_decay: 0.05 + max_epoch: 4 + batch_size_train: 64 + batch_size_eval: 64 + num_workers: 4 + warmup_steps: 5000 + iters_per_epoch: 5000 + + seed: 42 + output_dir: "output/minigpt4_stage1_pretrain" + + amp: True + resume_ckpt_path: null + + evaluate: False + train_splits: ["train"] + + device: "cuda" + world_size: 1 + dist_url: "env://" + distributed: True \ No newline at end of file diff --git a/OPERA/train_configs/minigpt4_llama2_stage2_finetune.yaml b/OPERA/train_configs/minigpt4_llama2_stage2_finetune.yaml new file mode 100644 index 0000000000000000000000000000000000000000..4778d5464ceb3544122c6604150e15476be1d5e2 --- /dev/null +++ b/OPERA/train_configs/minigpt4_llama2_stage2_finetune.yaml @@ -0,0 +1,50 @@ +model: + arch: mini_gpt4 + model_type: pretrain_llama2 + + max_txt_len: 160 + end_sym: "" + prompt_path: "prompts/alignment.txt" + prompt_template: '[INST] {} [/INST] ' + ckpt: '/path/to/stage1/checkpoint/' + + +datasets: + cc_sbu_align: + vis_processor: + train: + name: "blip2_image_train" + image_size: 224 + text_processor: + train: + name: "blip_caption" + +run: + task: image_text_pretrain + # optimizer + lr_sched: "linear_warmup_cosine_lr" + init_lr: 3e-5 + min_lr: 1e-5 + warmup_lr: 1e-6 + + weight_decay: 0.05 + max_epoch: 5 + iters_per_epoch: 200 + batch_size_train: 12 + batch_size_eval: 12 + num_workers: 4 + warmup_steps: 200 + + seed: 42 + output_dir: "output/minigpt4_stage2_finetune" + + amp: True + resume_ckpt_path: null + + evaluate: False + train_splits: ["train"] + + device: "cuda" + world_size: 1 + dist_url: "env://" + distributed: True \ No newline at end of file diff --git a/OPERA/train_configs/minigpt4_stage1_pretrain.yaml b/OPERA/train_configs/minigpt4_stage1_pretrain.yaml new file mode 100644 index 0000000000000000000000000000000000000000..d01873a8ec58e48099eb52f21a2cfef81c11b5ca --- /dev/null +++ b/OPERA/train_configs/minigpt4_stage1_pretrain.yaml @@ -0,0 +1,55 @@ +model: + arch: mini_gpt4 + model_type: pretrain_vicuna0 + + +datasets: + laion: + vis_processor: + train: + name: "blip2_image_train" + image_size: 224 + text_processor: + train: + name: "blip_caption" + sample_ratio: 115 + cc_sbu: + vis_processor: + train: + name: "blip2_image_train" + image_size: 224 + text_processor: + train: + name: "blip_caption" + sample_ratio: 14 + + +run: + task: image_text_pretrain + # optimizer + lr_sched: "linear_warmup_cosine_lr" + init_lr: 1e-4 + min_lr: 8e-5 + warmup_lr: 1e-6 + + weight_decay: 0.05 + max_epoch: 4 + batch_size_train: 64 + batch_size_eval: 64 + num_workers: 4 + warmup_steps: 5000 + iters_per_epoch: 5000 + + seed: 42 + output_dir: "output/minigpt4_stage1_pretrain" + + amp: True + resume_ckpt_path: null + + evaluate: False + train_splits: ["train"] + + device: "cuda" + world_size: 1 + dist_url: "env://" + distributed: True \ No newline at end of file diff --git a/OPERA/train_configs/minigpt4_stage2_finetune.yaml b/OPERA/train_configs/minigpt4_stage2_finetune.yaml new file mode 100644 index 0000000000000000000000000000000000000000..0cb2cd9cb313dcf78474e1db4418f5f2c216444a --- /dev/null +++ b/OPERA/train_configs/minigpt4_stage2_finetune.yaml @@ -0,0 +1,50 @@ +model: + arch: mini_gpt4 + model_type: pretrain_vicuna0 + + max_txt_len: 160 + end_sym: "###" + prompt_path: "prompts/alignment.txt" + prompt_template: '###Human: {} ###Assistant: ' + ckpt: '/path/to/stage1/checkpoint/' + + +datasets: + cc_sbu_align: + vis_processor: + train: + name: "blip2_image_train" + image_size: 224 + text_processor: + train: + name: "blip_caption" + +run: + task: image_text_pretrain + # optimizer + lr_sched: "linear_warmup_cosine_lr" + init_lr: 3e-5 + min_lr: 1e-5 + warmup_lr: 1e-6 + + weight_decay: 0.05 + max_epoch: 5 + iters_per_epoch: 200 + batch_size_train: 12 + batch_size_eval: 12 + num_workers: 4 + warmup_steps: 200 + + seed: 42 + output_dir: "output/minigpt4_stage2_finetune" + + amp: True + resume_ckpt_path: null + + evaluate: False + train_splits: ["train"] + + device: "cuda" + world_size: 1 + dist_url: "env://" + distributed: True \ No newline at end of file diff --git a/OPERA/transformers-4.29.2/.circleci/TROUBLESHOOT.md b/OPERA/transformers-4.29.2/.circleci/TROUBLESHOOT.md new file mode 100644 index 0000000000000000000000000000000000000000..c662a921ba56f31155b421236dad0eda014d8954 --- /dev/null +++ b/OPERA/transformers-4.29.2/.circleci/TROUBLESHOOT.md @@ -0,0 +1,7 @@ +# Troubleshooting + +This is a document explaining how to deal with various issues on Circle-CI. The entries may include actually solutions or pointers to Issues that cover those. + +## Circle CI + +* pytest worker runs out of resident RAM and gets killed by `cgroups`: https://github.com/huggingface/transformers/issues/11408 diff --git a/OPERA/transformers-4.29.2/.circleci/config.yml b/OPERA/transformers-4.29.2/.circleci/config.yml new file mode 100644 index 0000000000000000000000000000000000000000..6a3bf4b4b9ec85193ecfb8433aae4636c88006e5 --- /dev/null +++ b/OPERA/transformers-4.29.2/.circleci/config.yml @@ -0,0 +1,207 @@ +version: 2.1 +setup: true +orbs: + continuation: circleci/continuation@0.1.0 + +parameters: + nightly: + type: boolean + default: false + +jobs: + # Ensure running with CircleCI/huggingface + check_circleci_user: + docker: + - image: cimg/python:3.8.12 + parallelism: 1 + steps: + - run: echo $CIRCLE_PROJECT_USERNAME + - run: | + if [ "$CIRCLE_PROJECT_USERNAME" = "huggingface" ]; then + exit 0 + else + echo "The CI is running under $CIRCLE_PROJECT_USERNAME personal account. Please follow https://support.circleci.com/hc/en-us/articles/360008097173-Troubleshooting-why-pull-requests-are-not-triggering-jobs-on-my-organization- to fix it."; exit -1 + fi + # Fetch the tests to run + fetch_tests: + working_directory: ~/transformers + docker: + - image: cimg/python:3.8.12 + parallelism: 1 + steps: + - checkout + - run: pip install --upgrade pip + - run: pip install GitPython + - run: pip install . + - run: mkdir -p test_preparation + - run: python utils/tests_fetcher.py | tee tests_fetched_summary.txt + - store_artifacts: + path: ~/transformers/tests_fetched_summary.txt + - run: | + if [ -f test_list.txt ]; then + cp test_list.txt test_preparation/test_list.txt + else + touch test_preparation/test_list.txt + fi + - run: | + if [ -f test_repo_utils.txt ]; then + mv test_repo_utils.txt test_preparation/test_repo_utils.txt + else + touch test_preparation/test_repo_utils.txt + fi + - run: python utils/tests_fetcher.py --filter_tests + - run: | + if [ -f test_list.txt ]; then + mv test_list.txt test_preparation/filtered_test_list.txt + else + touch test_preparation/filtered_test_list.txt + fi + - run: python utils/tests_fetcher.py --filters tests examples | tee examples_tests_fetched_summary.txt + - run: | + if [ -f test_list.txt ]; then + mv test_list.txt test_preparation/examples_test_list.txt + else + touch test_preparation/examples_test_list.txt + fi + - run: | + if [ -f filtered_test_list_cross_tests.txt ]; then + mv filtered_test_list_cross_tests.txt test_preparation/filtered_test_list_cross_tests.txt + else + touch test_preparation/filtered_test_list_cross_tests.txt + fi + - store_artifacts: + path: test_preparation/test_list.txt + - store_artifacts: + path: ~/transformers/test_preparation/filtered_test_list.txt + - store_artifacts: + path: test_preparation/examples_test_list.txt + - run: python .circleci/create_circleci_config.py --fetcher_folder test_preparation + - run: | + if [ ! -s test_preparation/generated_config.yml ]; then + echo "No tests to run, exiting early!" + circleci-agent step halt + fi + - run: cp test_preparation/generated_config.yml test_preparation/generated_config.txt + - store_artifacts: + path: test_preparation/generated_config.txt + - store_artifacts: + path: test_preparation/filtered_test_list_cross_tests.txt + - continuation/continue: + configuration_path: test_preparation/generated_config.yml + + # To run all tests for the nightly build + fetch_all_tests: + working_directory: ~/transformers + docker: + - image: cimg/python:3.8.12 + parallelism: 1 + steps: + - checkout + - run: pip install --upgrade pip + - run: pip install GitPython + - run: pip install . + - run: | + mkdir test_preparation + echo -n "tests" > test_preparation/test_list.txt + echo -n "tests" > test_preparation/examples_test_list.txt + echo -n "tests/repo_utils" > test_preparation/test_repo_utils.txt + - run: | + echo -n "tests" > test_list.txt + python utils/tests_fetcher.py --filter_tests + mv test_list.txt test_preparation/filtered_test_list.txt + - run: python .circleci/create_circleci_config.py --fetcher_folder test_preparation + - run: cp test_preparation/generated_config.yml test_preparation/generated_config.txt + - store_artifacts: + path: test_preparation/generated_config.txt + - continuation/continue: + configuration_path: test_preparation/generated_config.yml + + check_code_quality: + working_directory: ~/transformers + docker: + - image: cimg/python:3.8.12 + resource_class: large + environment: + TRANSFORMERS_IS_CI: yes + PYTEST_TIMEOUT: 120 + parallelism: 1 + steps: + - checkout + - restore_cache: + keys: + - v0.6-code_quality-{{ checksum "setup.py" }} + - v0.6-code-quality + - run: pip install --upgrade pip + - run: pip install .[all,quality] + - save_cache: + key: v0.5-code_quality-{{ checksum "setup.py" }} + paths: + - '~/.cache/pip' + - run: + name: Show installed libraries and their versions + command: pip freeze | tee installed.txt + - store_artifacts: + path: ~/transformers/installed.txt + - run: black --check examples tests src utils + - run: ruff examples tests src utils + - run: python utils/custom_init_isort.py --check_only + - run: python utils/sort_auto_mappings.py --check_only + - run: doc-builder style src/transformers docs/source --max_len 119 --check_only --path_to_docs docs/source + - run: python utils/check_doc_toc.py + + check_repository_consistency: + working_directory: ~/transformers + docker: + - image: cimg/python:3.8.12 + resource_class: large + environment: + TRANSFORMERS_IS_CI: yes + PYTEST_TIMEOUT: 120 + parallelism: 1 + steps: + - checkout + - restore_cache: + keys: + - v0.6-repository_consistency-{{ checksum "setup.py" }} + - v0.6-repository_consistency + - run: pip install --upgrade pip + - run: pip install .[all,quality] + - save_cache: + key: v0.5-repository_consistency-{{ checksum "setup.py" }} + paths: + - '~/.cache/pip' + - run: + name: Show installed libraries and their versions + command: pip freeze | tee installed.txt + - store_artifacts: + path: ~/transformers/installed.txt + - run: python utils/check_copies.py + - run: python utils/check_table.py + - run: python utils/check_dummies.py + - run: python utils/check_repo.py + - run: python utils/check_inits.py + - run: python utils/check_config_docstrings.py + - run: python utils/check_config_attributes.py + - run: python utils/check_doctest_list.py + - run: make deps_table_check_updated + - run: python utils/update_metadata.py --check-only + - run: python utils/check_task_guides.py + +workflows: + version: 2 + setup_and_quality: + when: + not: <> + jobs: + - check_circleci_user + - check_code_quality + - check_repository_consistency + - fetch_tests + + nightly: + when: <> + jobs: + - check_circleci_user + - check_code_quality + - check_repository_consistency + - fetch_all_tests \ No newline at end of file diff --git a/OPERA/transformers-4.29.2/.circleci/create_circleci_config.py b/OPERA/transformers-4.29.2/.circleci/create_circleci_config.py new file mode 100644 index 0000000000000000000000000000000000000000..7208d876a97c3a91fd4ed12cb2be117b2780cdb8 --- /dev/null +++ b/OPERA/transformers-4.29.2/.circleci/create_circleci_config.py @@ -0,0 +1,506 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import argparse +import copy +import glob +import os +import random +from dataclasses import dataclass +from typing import Any, Dict, List, Optional + +import yaml + + +COMMON_ENV_VARIABLES = { + "OMP_NUM_THREADS": 1, + "TRANSFORMERS_IS_CI": True, + "PYTEST_TIMEOUT": 120, + "RUN_PIPELINE_TESTS": False, + "RUN_PT_TF_CROSS_TESTS": False, + "RUN_PT_FLAX_CROSS_TESTS": False, +} +COMMON_PYTEST_OPTIONS = {"max-worker-restart": 0, "dist": "loadfile", "s": None} +DEFAULT_DOCKER_IMAGE = [{"image": "cimg/python:3.8.12"}] + + +@dataclass +class CircleCIJob: + name: str + additional_env: Dict[str, Any] = None + cache_name: str = None + cache_version: str = "0.6" + docker_image: List[Dict[str, str]] = None + install_steps: List[str] = None + marker: Optional[str] = None + parallelism: Optional[int] = 1 + pytest_num_workers: int = 8 + pytest_options: Dict[str, Any] = None + resource_class: Optional[str] = "xlarge" + tests_to_run: Optional[List[str]] = None + working_directory: str = "~/transformers" + + def __post_init__(self): + # Deal with defaults for mutable attributes. + if self.additional_env is None: + self.additional_env = {} + if self.cache_name is None: + self.cache_name = self.name + if self.docker_image is None: + # Let's avoid changing the default list and make a copy. + self.docker_image = copy.deepcopy(DEFAULT_DOCKER_IMAGE) + if self.install_steps is None: + self.install_steps = [] + if self.pytest_options is None: + self.pytest_options = {} + if isinstance(self.tests_to_run, str): + self.tests_to_run = [self.tests_to_run] + if self.parallelism is None: + self.parallelism = 1 + + def to_dict(self): + env = COMMON_ENV_VARIABLES.copy() + env.update(self.additional_env) + job = { + "working_directory": self.working_directory, + "docker": self.docker_image, + "environment": env, + } + if self.resource_class is not None: + job["resource_class"] = self.resource_class + if self.parallelism is not None: + job["parallelism"] = self.parallelism + steps = [ + "checkout", + {"attach_workspace": {"at": "~/transformers/test_preparation"}}, + { + "restore_cache": { + "keys": [ + f"v{self.cache_version}-{self.cache_name}-" + '{{ checksum "setup.py" }}', + f"v{self.cache_version}-{self.cache_name}-", + ] + } + }, + ] + steps.extend([{"run": l} for l in self.install_steps]) + steps.append( + { + "save_cache": { + "key": f"v{self.cache_version}-{self.cache_name}-" + '{{ checksum "setup.py" }}', + "paths": ["~/.cache/pip"], + } + } + ) + steps.append({"run": {"name": "Show installed libraries and their versions", "command": "pip freeze | tee installed.txt"}}) + steps.append({"store_artifacts": {"path": "~/transformers/installed.txt"}}) + + all_options = {**COMMON_PYTEST_OPTIONS, **self.pytest_options} + pytest_flags = [f"--{key}={value}" if value is not None else f"-{key}" for key, value in all_options.items()] + pytest_flags.append( + f"--make-reports={self.name}" if "examples" in self.name else f"--make-reports=tests_{self.name}" + ) + test_command = f"python -m pytest -n {self.pytest_num_workers} " + " ".join(pytest_flags) + if self.parallelism == 1: + if self.tests_to_run is None: + test_command += " << pipeline.parameters.tests_to_run >>" + else: + test_command += " " + " ".join(self.tests_to_run) + else: + # We need explicit list instead of `pipeline.parameters.tests_to_run` (only available at job runtime) + tests = self.tests_to_run + if tests is None: + folder = os.environ["test_preparation_dir"] + test_file = os.path.join(folder, "filtered_test_list.txt") + if os.path.exists(test_file): + with open(test_file) as f: + tests = f.read().split(" ") + + # expand the test list + if tests == ["tests"]: + tests = [os.path.join("tests", x) for x in os.listdir("tests")] + expanded_tests = [] + for test in tests: + if test.endswith(".py"): + expanded_tests.append(test) + elif test == "tests/models": + expanded_tests.extend([os.path.join(test, x) for x in os.listdir(test)]) + elif test == "tests/pipelines": + expanded_tests.extend([os.path.join(test, x) for x in os.listdir(test)]) + else: + expanded_tests.append(test) + # Avoid long tests always being collected together + random.shuffle(expanded_tests) + tests = " ".join(expanded_tests) + + # Each executor to run ~10 tests + n_executors = max(len(tests) // 10, 1) + # Avoid empty test list on some executor(s) or launching too many executors + if n_executors > self.parallelism: + n_executors = self.parallelism + job["parallelism"] = n_executors + + # Need to be newline separated for the command `circleci tests split` below + command = f'echo {tests} | tr " " "\\n" >> tests.txt' + steps.append({"run": {"name": "Get tests", "command": command}}) + + command = 'TESTS=$(circleci tests split tests.txt) && echo $TESTS > splitted_tests.txt' + steps.append({"run": {"name": "Split tests", "command": command}}) + + steps.append({"store_artifacts": {"path": "~/transformers/tests.txt"}}) + steps.append({"store_artifacts": {"path": "~/transformers/splitted_tests.txt"}}) + + test_command = f"python -m pytest -n {self.pytest_num_workers} " + " ".join(pytest_flags) + test_command += " $(cat splitted_tests.txt)" + if self.marker is not None: + test_command += f" -m {self.marker}" + test_command += " | tee tests_output.txt" + steps.append({"run": {"name": "Run tests", "command": test_command}}) + steps.append({"store_artifacts": {"path": "~/transformers/tests_output.txt"}}) + steps.append({"store_artifacts": {"path": "~/transformers/reports"}}) + job["steps"] = steps + return job + + @property + def job_name(self): + return self.name if "examples" in self.name else f"tests_{self.name}" + + +# JOBS +torch_and_tf_job = CircleCIJob( + "torch_and_tf", + additional_env={"RUN_PT_TF_CROSS_TESTS": True}, + install_steps=[ + "sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng git-lfs cmake", + "git lfs install", + "pip install --upgrade pip", + "pip install .[sklearn,tf-cpu,torch,testing,sentencepiece,torch-speech,vision]", + 'pip install "tensorflow_probability<0.20"', + "pip install git+https://github.com/huggingface/accelerate", + ], + marker="is_pt_tf_cross_test", + pytest_options={"rA": None, "durations": 0}, +) + + +torch_and_flax_job = CircleCIJob( + "torch_and_flax", + additional_env={"RUN_PT_FLAX_CROSS_TESTS": True}, + install_steps=[ + "sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng", + "pip install --upgrade pip", + "pip install .[sklearn,flax,torch,testing,sentencepiece,torch-speech,vision]", + "pip install git+https://github.com/huggingface/accelerate", + ], + marker="is_pt_flax_cross_test", + pytest_options={"rA": None, "durations": 0}, +) + + +torch_job = CircleCIJob( + "torch", + install_steps=[ + "sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng time", + "pip install --upgrade pip", + "pip install .[sklearn,torch,testing,sentencepiece,torch-speech,vision,timm]", + "pip install git+https://github.com/huggingface/accelerate", + ], + parallelism=1, + pytest_num_workers=3, +) + + +tf_job = CircleCIJob( + "tf", + install_steps=[ + "sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng cmake", + "pip install --upgrade pip", + "pip install .[sklearn,tf-cpu,testing,sentencepiece,tf-speech,vision]", + 'pip install "tensorflow_probability<0.20"', + ], + parallelism=1, + pytest_options={"rA": None}, +) + + +flax_job = CircleCIJob( + "flax", + install_steps=[ + "sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng", + "pip install --upgrade pip", + "pip install .[flax,testing,sentencepiece,flax-speech,vision]", + ], + parallelism=1, + pytest_options={"rA": None}, +) + + +pipelines_torch_job = CircleCIJob( + "pipelines_torch", + additional_env={"RUN_PIPELINE_TESTS": True}, + install_steps=[ + "sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng", + "pip install --upgrade pip", + "pip install .[sklearn,torch,testing,sentencepiece,torch-speech,vision,timm,video]", + ], + pytest_options={"rA": None}, + marker="is_pipeline_test", +) + + +pipelines_tf_job = CircleCIJob( + "pipelines_tf", + additional_env={"RUN_PIPELINE_TESTS": True}, + install_steps=[ + "sudo apt-get -y update && sudo apt-get install -y cmake", + "pip install --upgrade pip", + "pip install .[sklearn,tf-cpu,testing,sentencepiece,vision]", + 'pip install "tensorflow_probability<0.20"', + ], + pytest_options={"rA": None}, + marker="is_pipeline_test", +) + + +custom_tokenizers_job = CircleCIJob( + "custom_tokenizers", + additional_env={"RUN_CUSTOM_TOKENIZERS": True}, + install_steps=[ + "sudo apt-get -y update && sudo apt-get install -y cmake", + { + "name": "install jumanpp", + "command": + "wget https://github.com/ku-nlp/jumanpp/releases/download/v2.0.0-rc3/jumanpp-2.0.0-rc3.tar.xz\n" + "tar xvf jumanpp-2.0.0-rc3.tar.xz\n" + "mkdir jumanpp-2.0.0-rc3/bld\n" + "cd jumanpp-2.0.0-rc3/bld\n" + "sudo cmake .. -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr/local\n" + "sudo make install\n", + }, + "pip install --upgrade pip", + "pip install .[ja,testing,sentencepiece,jieba,spacy,ftfy,rjieba]", + "python -m unidic download", + ], + parallelism=None, + resource_class=None, + tests_to_run=[ + "./tests/models/bert_japanese/test_tokenization_bert_japanese.py", + "./tests/models/openai/test_tokenization_openai.py", + "./tests/models/clip/test_tokenization_clip.py", + ], +) + + +examples_torch_job = CircleCIJob( + "examples_torch", + cache_name="torch_examples", + install_steps=[ + "sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng", + "pip install --upgrade pip", + "pip install .[sklearn,torch,sentencepiece,testing,torch-speech]", + "pip install -r examples/pytorch/_tests_requirements.txt", + ], + tests_to_run="./examples/pytorch/", +) + + +examples_tensorflow_job = CircleCIJob( + "examples_tensorflow", + cache_name="tensorflow_examples", + install_steps=[ + "sudo apt-get -y update && sudo apt-get install -y cmake", + "pip install --upgrade pip", + "pip install .[sklearn,tensorflow,sentencepiece,testing]", + "pip install -r examples/tensorflow/_tests_requirements.txt", + ], + tests_to_run="./examples/tensorflow/", +) + + +examples_flax_job = CircleCIJob( + "examples_flax", + cache_name="flax_examples", + install_steps=[ + "pip install --upgrade pip", + "pip install .[flax,testing,sentencepiece]", + "pip install -r examples/flax/_tests_requirements.txt", + ], + tests_to_run="./examples/flax/", +) + + +hub_job = CircleCIJob( + "hub", + install_steps=[ + "sudo apt-get -y update && sudo apt-get install git-lfs", + 'git config --global user.email "ci@dummy.com"', + 'git config --global user.name "ci"', + "pip install --upgrade pip", + "pip install .[torch,sentencepiece,testing]", + ], + marker="is_staging_test", + pytest_num_workers=1, +) + + +onnx_job = CircleCIJob( + "onnx", + install_steps=[ + "sudo apt-get -y update && sudo apt-get install -y cmake", + "pip install --upgrade pip", + "pip install .[torch,tf,testing,sentencepiece,onnxruntime,vision,rjieba]", + ], + pytest_options={"k onnx": None}, + pytest_num_workers=1, +) + + +exotic_models_job = CircleCIJob( + "exotic_models", + install_steps=[ + "sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev", + "pip install --upgrade pip", + "pip install .[torch,testing,vision]", + "pip install torchvision", + "pip install scipy", + "pip install 'git+https://github.com/facebookresearch/detectron2.git'", + "sudo apt install tesseract-ocr", + "pip install pytesseract", + "pip install natten", + ], + tests_to_run=[ + "tests/models/*layoutlmv*", + "tests/models/*nat", + "tests/models/deta", + ], + pytest_num_workers=1, + pytest_options={"durations": 100}, +) + + +repo_utils_job = CircleCIJob( + "repo_utils", + install_steps=[ + "pip install --upgrade pip", + "pip install .[quality,testing,torch]", + ], + parallelism=None, + pytest_num_workers=1, + resource_class="large", + tests_to_run="tests/repo_utils", +) + +REGULAR_TESTS = [ + torch_and_tf_job, + torch_and_flax_job, + torch_job, + tf_job, + flax_job, + custom_tokenizers_job, + hub_job, + onnx_job, + exotic_models_job, +] +EXAMPLES_TESTS = [ + examples_torch_job, + examples_tensorflow_job, + examples_flax_job, +] +PIPELINE_TESTS = [ + pipelines_torch_job, + pipelines_tf_job, +] +REPO_UTIL_TESTS = [repo_utils_job] + +def create_circleci_config(folder=None): + if folder is None: + folder = os.getcwd() + # Used in CircleCIJob.to_dict() to expand the test list (for using parallelism) + os.environ["test_preparation_dir"] = folder + jobs = [] + all_test_file = os.path.join(folder, "test_list.txt") + if os.path.exists(all_test_file): + with open(all_test_file) as f: + all_test_list = f.read() + else: + all_test_list = [] + if len(all_test_list) > 0: + jobs.extend(PIPELINE_TESTS) + + test_file = os.path.join(folder, "filtered_test_list.txt") + if os.path.exists(test_file): + with open(test_file) as f: + test_list = f.read() + else: + test_list = [] + if len(test_list) > 0: + jobs.extend(REGULAR_TESTS) + + extended_tests_to_run = set(test_list.split()) + # Extend the test files for cross test jobs + for job in jobs: + if job.job_name in ["tests_torch_and_tf", "tests_torch_and_flax"]: + for test_path in copy.copy(extended_tests_to_run): + dir_path, fn = os.path.split(test_path) + if fn.startswith("test_modeling_tf_"): + fn = fn.replace("test_modeling_tf_", "test_modeling_") + elif fn.startswith("test_modeling_flax_"): + fn = fn.replace("test_modeling_flax_", "test_modeling_") + else: + if job.job_name == "test_torch_and_tf": + fn = fn.replace("test_modeling_", "test_modeling_tf_") + elif job.job_name == "test_torch_and_flax": + fn = fn.replace("test_modeling_", "test_modeling_flax_") + new_test_file = str(os.path.join(dir_path, fn)) + if os.path.isfile(new_test_file): + if new_test_file not in extended_tests_to_run: + extended_tests_to_run.add(new_test_file) + extended_tests_to_run = sorted(extended_tests_to_run) + for job in jobs: + if job.job_name in ["tests_torch_and_tf", "tests_torch_and_flax"]: + job.tests_to_run = extended_tests_to_run + fn = "filtered_test_list_cross_tests.txt" + f_path = os.path.join(folder, fn) + with open(f_path, "w") as fp: + fp.write(" ".join(extended_tests_to_run)) + + example_file = os.path.join(folder, "examples_test_list.txt") + if os.path.exists(example_file) and os.path.getsize(example_file) > 0: + jobs.extend(EXAMPLES_TESTS) + + repo_util_file = os.path.join(folder, "test_repo_utils.txt") + if os.path.exists(repo_util_file) and os.path.getsize(repo_util_file) > 0: + jobs.extend(REPO_UTIL_TESTS) + + if len(jobs) > 0: + config = {"version": "2.1"} + config["parameters"] = { + # Only used to accept the parameters from the trigger + "nightly": {"type": "boolean", "default": False}, + "tests_to_run": {"type": "string", "default": test_list}, + } + config["jobs"] = {j.job_name: j.to_dict() for j in jobs} + config["workflows"] = {"version": 2, "run_tests": {"jobs": [j.job_name for j in jobs]}} + with open(os.path.join(folder, "generated_config.yml"), "w") as f: + f.write(yaml.dump(config, indent=2, width=1000000, sort_keys=False)) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument( + "--fetcher_folder", type=str, default=None, help="Only test that all tests and modules are accounted for." + ) + args = parser.parse_args() + + create_circleci_config(args.fetcher_folder) diff --git a/OPERA/transformers-4.29.2/.coveragerc b/OPERA/transformers-4.29.2/.coveragerc new file mode 100644 index 0000000000000000000000000000000000000000..a91bb58954881ad32909f9b996fe2d7da5fa201c --- /dev/null +++ b/OPERA/transformers-4.29.2/.coveragerc @@ -0,0 +1,12 @@ +[run] +source=transformers +omit = + # skip convertion scripts from testing for now + */convert_* + */__main__.py +[report] +exclude_lines = + pragma: no cover + raise + except + register_parameter \ No newline at end of file diff --git a/OPERA/transformers-4.29.2/.gitattributes b/OPERA/transformers-4.29.2/.gitattributes new file mode 100644 index 0000000000000000000000000000000000000000..daf374d695c4591e9d9fde8f027b6c944574956a --- /dev/null +++ b/OPERA/transformers-4.29.2/.gitattributes @@ -0,0 +1,4 @@ +*.py eol=lf +*.rst eol=lf +*.md eol=lf +*.mdx eol=lf \ No newline at end of file diff --git a/OPERA/transformers-4.29.2/.github/ISSUE_TEMPLATE/bug-report.yml b/OPERA/transformers-4.29.2/.github/ISSUE_TEMPLATE/bug-report.yml new file mode 100644 index 0000000000000000000000000000000000000000..e7cbc4f26ceca500817196c83bf1030071fa1dad --- /dev/null +++ b/OPERA/transformers-4.29.2/.github/ISSUE_TEMPLATE/bug-report.yml @@ -0,0 +1,115 @@ +name: "\U0001F41B Bug Report" +description: Submit a bug report to help us improve transformers +body: + - type: textarea + id: system-info + attributes: + label: System Info + description: Please share your system info with us. You can run the command `transformers-cli env` and copy-paste its output below. + placeholder: transformers version, platform, python version, ... + validations: + required: true + + - type: textarea + id: who-can-help + attributes: + label: Who can help? + description: | + Your issue will be replied to more quickly if you can figure out the right person to tag with @ + If you know how to use git blame, that is the easiest way, otherwise, here is a rough guide of **who to tag**. + + All issues are read by one of the core maintainers, so if you don't know who to tag, just leave this blank and + a core maintainer will ping the right person. + + Please tag fewer than 3 people. + + Models: + + - text models: @ArthurZucker and @younesbelkada + - vision models: @amyeroberts + - speech models: @sanchit-gandhi + - graph models: @clefourrier + + Library: + + - flax: @sanchit-gandhi + - generate: @gante + - pipelines: @Narsil + - tensorflow: @gante and @Rocketknight1 + - tokenizers: @ArthurZucker + - trainer: @sgugger + + Integrations: + + - deepspeed: HF Trainer: @stas00, Accelerate: @pacman100 + - ray/raytune: @richardliaw, @amogkam + - Big Model Inference: @sgugger @muellerzr + + Documentation: @sgugger, @stevhliu and @MKhalusova + + Model hub: + + - for issues with a model, report at https://discuss.huggingface.co/ and tag the model's creator. + + HF projects: + + - accelerate: [different repo](https://github.com/huggingface/accelerate) + - datasets: [different repo](https://github.com/huggingface/datasets) + - diffusers: [different repo](https://github.com/huggingface/diffusers) + - rust tokenizers: [different repo](https://github.com/huggingface/tokenizers) + + Maintained examples (not research project or legacy): + + - Flax: @sanchit-gandhi + - PyTorch: @sgugger + - TensorFlow: @Rocketknight1 + + Research projects are not maintained and should be taken as is. + + placeholder: "@Username ..." + + - type: checkboxes + id: information-scripts-examples + attributes: + label: Information + description: 'The problem arises when using:' + options: + - label: "The official example scripts" + - label: "My own modified scripts" + + - type: checkboxes + id: information-tasks + attributes: + label: Tasks + description: "The tasks I am working on are:" + options: + - label: "An officially supported task in the `examples` folder (such as GLUE/SQuAD, ...)" + - label: "My own task or dataset (give details below)" + + - type: textarea + id: reproduction + validations: + required: true + attributes: + label: Reproduction + description: | + Please provide a code sample that reproduces the problem you ran into. It can be a Colab link or just a code snippet. + If you have code snippets, error messages, stack traces please provide them here as well. + Important! Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting + Do not use screenshots, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code. + + placeholder: | + Steps to reproduce the behavior: + + 1. + 2. + 3. + + + - type: textarea + id: expected-behavior + validations: + required: true + attributes: + label: Expected behavior + description: "A clear and concise description of what you would expect to happen." diff --git a/OPERA/transformers-4.29.2/.github/ISSUE_TEMPLATE/config.yml b/OPERA/transformers-4.29.2/.github/ISSUE_TEMPLATE/config.yml new file mode 100644 index 0000000000000000000000000000000000000000..8e167589cb14ee37b3a80bdaa63d3208e8379054 --- /dev/null +++ b/OPERA/transformers-4.29.2/.github/ISSUE_TEMPLATE/config.yml @@ -0,0 +1,12 @@ +blank_issues_enabled: true +version: 2.1 +contact_links: + - name: Model checkpoints on the Hugging Face Hub + url: https://huggingface.co/models + about: Open a Pull request / Discussion related to a specific model checkpoint directly on the Hugging Face Hub + - name: Website Related + url: https://github.com/huggingface/hub-docs/issues + about: Feature requests and bug reports related to the website + - name: Forum + url: https://discuss.huggingface.co/ + about: General usage questions and community discussions diff --git a/OPERA/transformers-4.29.2/.github/ISSUE_TEMPLATE/feature-request.yml b/OPERA/transformers-4.29.2/.github/ISSUE_TEMPLATE/feature-request.yml new file mode 100644 index 0000000000000000000000000000000000000000..cf59f36eaff9e1afbc61f366b4c94f2b7254d0ea --- /dev/null +++ b/OPERA/transformers-4.29.2/.github/ISSUE_TEMPLATE/feature-request.yml @@ -0,0 +1,31 @@ +name: "\U0001F680 Feature request" +description: Submit a proposal/request for a new transformers feature +labels: [ "feature" ] +body: + - type: textarea + id: feature-request + validations: + required: true + attributes: + label: Feature request + description: | + A clear and concise description of the feature proposal. Please provide a link to the paper and code in case they exist. + + - type: textarea + id: motivation + validations: + required: true + attributes: + label: Motivation + description: | + Please outline the motivation for the proposal. Is your feature request related to a problem? e.g., I'm always frustrated when [...]. If this is related to another GitHub issue, please link here too. + + + - type: textarea + id: contribution + validations: + required: true + attributes: + label: Your contribution + description: | + Is there any way that you could help, e.g. by submitting a PR? Make sure to read the CONTRIBUTING.MD [readme](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) diff --git a/OPERA/transformers-4.29.2/.github/ISSUE_TEMPLATE/i18n.md b/OPERA/transformers-4.29.2/.github/ISSUE_TEMPLATE/i18n.md new file mode 100644 index 0000000000000000000000000000000000000000..39d369a25324e54e0afdedbb29437d6bc71ce456 --- /dev/null +++ b/OPERA/transformers-4.29.2/.github/ISSUE_TEMPLATE/i18n.md @@ -0,0 +1,46 @@ +--- +name: 🌐 Translating a new language? +about: Start a new translation effort in your language +title: '[i18n-] Translating docs to ' +labels: WIP +assignees: '' + +--- + + + +Hi! + +Let's bring the documentation to all the -speaking community 🌐 (currently 0 out of 267 complete) + +Who would want to translate? Please follow the 🤗 [TRANSLATING guide](https://github.com/huggingface/transformers/blob/main/docs/TRANSLATING.md). Here is a list of the files ready for translation. Let us know in this issue if you'd like to translate any, and we'll add your name to the list. + +Some notes: + +* Please translate using an informal tone (imagine you are talking with a friend about transformers 🤗). +* Please translate in a gender-neutral way. +* Add your translations to the folder called `` inside the [source folder](https://github.com/huggingface/transformers/tree/main/docs/source). +* Register your translation in `/_toctree.yml`; please follow the order of the [English version](https://github.com/huggingface/transformers/blob/main/docs/source/en/_toctree.yml). +* Once you're finished, open a pull request and tag this issue by including #issue-number in the description, where issue-number is the number of this issue. Please ping @ArthurZucker, @sgugger for review. +* 🙋 If you'd like others to help you with the translation, you can also post in the 🤗 [forums](https://discuss.huggingface.co/). + +## Get Started section + +- [ ] [index.mdx](https://github.com/huggingface/transformers/blob/main/docs/source/en/index.mdx) https://github.com/huggingface/transformers/pull/20180 +- [ ] [quicktour.mdx](https://github.com/huggingface/transformers/blob/main/docs/source/en/quicktour.mdx) (waiting for initial PR to go through) +- [ ] [installation.mdx](https://github.com/huggingface/transformers/blob/main/docs/source/en/installation.mdx). + +## Tutorial section +- [ ] [pipeline_tutorial.mdx](https://github.com/huggingface/transformers/blob/main/docs/source/en/pipeline_tutorial.mdx) +- [ ] [autoclass_tutorial.mdx](https://github.com/huggingface/transformers/blob/master/docs/source/autoclass_tutorial.mdx) +- [ ] [preprocessing.mdx](https://github.com/huggingface/transformers/blob/main/docs/source/en/preprocessing.mdx) +- [ ] [training.mdx](https://github.com/huggingface/transformers/blob/main/docs/source/en/training.mdx) +- [ ] [accelerate.mdx](https://github.com/huggingface/transformers/blob/main/docs/source/en/accelerate.mdx) +- [ ] [model_sharing.mdx](https://github.com/huggingface/transformers/blob/main/docs/source/en/model_sharing.mdx) +- [ ] [multilingual.mdx](https://github.com/huggingface/transformers/blob/main/docs/source/en/multilingual.mdx) + + diff --git a/OPERA/transformers-4.29.2/.github/ISSUE_TEMPLATE/migration.yml b/OPERA/transformers-4.29.2/.github/ISSUE_TEMPLATE/migration.yml new file mode 100644 index 0000000000000000000000000000000000000000..0e2efa3f17f6d5c3eef3a9a21727313b59b4a7fa --- /dev/null +++ b/OPERA/transformers-4.29.2/.github/ISSUE_TEMPLATE/migration.yml @@ -0,0 +1,72 @@ +name: "\U0001F4DA Migration from pytorch-pretrained-bert or pytorch-transformers" +description: Report a problem when migrating from pytorch-pretrained-bert or pytorch-transformers to transformers +labels: [ "migration" ] +body: + - type: textarea + id: system-info + attributes: + label: System Info + description: Please share your system info with us. You can run the command `transformers-cli env` and copy-paste its output below. + render: shell + placeholder: transformers version, platform, python version, ... + validations: + required: true + + - type: checkboxes + id: information-scripts-examples + attributes: + label: Information + description: 'The problem arises when using:' + options: + - label: "The official example scripts" + - label: "My own modified scripts" + + - type: checkboxes + id: information-tasks + attributes: + label: Tasks + description: "The tasks I am working on are:" + options: + - label: "An officially supported task in the `examples` folder (such as GLUE/SQuAD, ...)" + - label: "My own task or dataset (give details below)" + + - type: textarea + id: reproduction + validations: + required: true + attributes: + label: Reproduction + description: | + Please provide a code sample that reproduces the problem you ran into. It can be a Colab link or just a code snippet. + If you have code snippets, error messages, stack traces please provide them here as well. + Important! Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting + Do not use screenshots, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code. + + placeholder: | + Steps to reproduce the behavior: + + 1. + 2. + 3. + + + - type: textarea + id: expected-behavior + validations: + required: true + attributes: + label: Expected behavior + description: "A clear and concise description of what you would expect to happen." + render: shell + + - type: checkboxes + id: checklist + attributes: + label: Checklist + options: + - label: "I have read the migration guide in the readme. + ([pytorch-transformers](https://github.com/huggingface/transformers#migrating-from-pytorch-transformers-to-transformers); + [pytorch-pretrained-bert](https://github.com/huggingface/transformers#migrating-from-pytorch-pretrained-bert-to-transformers))" + required: true + - label: "I checked if a related official extension example runs on my machine." + required: true diff --git a/OPERA/transformers-4.29.2/.github/ISSUE_TEMPLATE/new-model-addition.yml b/OPERA/transformers-4.29.2/.github/ISSUE_TEMPLATE/new-model-addition.yml new file mode 100644 index 0000000000000000000000000000000000000000..f2a2e0004fbe513334440784678390a36b3b2f77 --- /dev/null +++ b/OPERA/transformers-4.29.2/.github/ISSUE_TEMPLATE/new-model-addition.yml @@ -0,0 +1,31 @@ +name: "\U0001F31F New model addition" +description: Submit a proposal/request to implement a new model +labels: [ "New model" ] + +body: + - type: textarea + id: description-request + validations: + required: true + attributes: + label: Model description + description: | + Put any and all important information relative to the model + + - type: checkboxes + id: information-tasks + attributes: + label: Open source status + description: | + Please note that if the model implementation isn't available or if the weights aren't open-source, we are less likely to implement it in `transformers`. + options: + - label: "The model implementation is available" + - label: "The model weights are available" + + - type: textarea + id: additional-info + attributes: + label: Provide useful links for the implementation + description: | + Please provide information regarding the implementation, the weights, and the authors. + Please mention the authors by @gh-username if you're aware of their usernames. diff --git a/OPERA/transformers-4.29.2/.github/PULL_REQUEST_TEMPLATE.md b/OPERA/transformers-4.29.2/.github/PULL_REQUEST_TEMPLATE.md new file mode 100644 index 0000000000000000000000000000000000000000..e38d5ac9242ea1ab8c21767fc1b611319969220a --- /dev/null +++ b/OPERA/transformers-4.29.2/.github/PULL_REQUEST_TEMPLATE.md @@ -0,0 +1,76 @@ +# What does this PR do? + + + + + +Fixes # (issue) + + +## Before submitting +- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). +- [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), + Pull Request section? +- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link + to it if that's the case. +- [ ] Did you make sure to update the documentation with your changes? Here are the + [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and + [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). +- [ ] Did you write any new necessary tests? + + +## Who can review? + +Anyone in the community is free to review the PR once the tests have passed. Feel free to tag +members/contributors who may be interested in your PR. + + diff --git a/OPERA/transformers-4.29.2/.github/conda/build.sh b/OPERA/transformers-4.29.2/.github/conda/build.sh new file mode 100644 index 0000000000000000000000000000000000000000..f94d5b48bf389f9f5670d609e68597038dfb8304 --- /dev/null +++ b/OPERA/transformers-4.29.2/.github/conda/build.sh @@ -0,0 +1 @@ +$PYTHON setup.py install # Python command to install the script. diff --git a/OPERA/transformers-4.29.2/.github/conda/meta.yaml b/OPERA/transformers-4.29.2/.github/conda/meta.yaml new file mode 100644 index 0000000000000000000000000000000000000000..411eb97b2efd3820b664d551eb86c3e192ce66f9 --- /dev/null +++ b/OPERA/transformers-4.29.2/.github/conda/meta.yaml @@ -0,0 +1,54 @@ +{% set name = "transformers" %} + +package: + name: "{{ name|lower }}" + version: "{{ TRANSFORMERS_VERSION }}" + +source: + path: ../../ + +build: + noarch: python + +requirements: + host: + - python + - pip + - numpy >=1.17 + - dataclasses + - importlib_metadata + - huggingface_hub + - packaging + - filelock + - requests + - tqdm >=4.27 + - sacremoses + - regex !=2019.12.17 + - protobuf + - tokenizers >=0.11.1,!=0.11.3,<0.13 + - pyyaml >=5.1 + run: + - python + - numpy >=1.17 + - dataclasses + - importlib_metadata + - huggingface_hub + - packaging + - filelock + - requests + - tqdm >=4.27 + - sacremoses + - regex !=2019.12.17 + - protobuf + - tokenizers >=0.11.1,!=0.11.3,<0.13 + - pyyaml >=5.1 + +test: + imports: + - transformers + +about: + home: https://huggingface.co + license: Apache License 2.0 + license_file: LICENSE + summary: "🤗Transformers: State-of-the-art Natural Language Processing for Pytorch and TensorFlow 2.0." diff --git a/OPERA/transformers-4.29.2/.github/workflows/TROUBLESHOOT.md b/OPERA/transformers-4.29.2/.github/workflows/TROUBLESHOOT.md new file mode 100644 index 0000000000000000000000000000000000000000..616ba8e55bd208ec7982d102b81db3303e26c704 --- /dev/null +++ b/OPERA/transformers-4.29.2/.github/workflows/TROUBLESHOOT.md @@ -0,0 +1,9 @@ +# Troubleshooting + +This is a document explaining how to deal with various issues on github-actions self-hosted CI. The entries may include actually solutions or pointers to Issues that cover those. + +## GitHub Actions (self-hosted CI) + +* Deepspeed + + - if jit build hangs, clear out `rm -rf ~/.cache/torch_extensions/` reference: https://github.com/huggingface/transformers/pull/12723 diff --git a/OPERA/transformers-4.29.2/.github/workflows/add-model-like.yml b/OPERA/transformers-4.29.2/.github/workflows/add-model-like.yml new file mode 100644 index 0000000000000000000000000000000000000000..896e0bf906f26393b80c3a29b53ef5603789a561 --- /dev/null +++ b/OPERA/transformers-4.29.2/.github/workflows/add-model-like.yml @@ -0,0 +1,80 @@ +name: Add model like runner + +on: + push: + branches: + - main + pull_request: + paths: + - "src/**" + - "tests/**" + - ".github/**" + types: [opened, synchronize, reopened] + +jobs: + run_tests_templates_like: + name: "Add new model like template tests" + runs-on: ubuntu-latest + steps: + - uses: actions/checkout@v3 + + - name: Install dependencies + run: | + sudo apt -y update && sudo apt install -y libsndfile1-dev + + - name: Load cached virtual environment + uses: actions/cache@v2 + id: cache + with: + path: ~/venv/ + key: v4-tests_model_like-${{ hashFiles('setup.py') }} + + - name: Create virtual environment on cache miss + if: steps.cache.outputs.cache-hit != 'true' + run: | + python -m venv ~/venv && . ~/venv/bin/activate + pip install --upgrade pip!=21.3 + pip install -e .[dev] + + - name: Check transformers location + # make `transformers` available as package (required since we use `-e` flag) and check it's indeed from the repo. + run: | + . ~/venv/bin/activate + python setup.py develop + transformers_install=$(pip list -e | grep transformers) + transformers_install_array=($transformers_install) + transformers_loc=${transformers_install_array[-1]} + transformers_repo_loc=$(pwd .) + if [ "$transformers_loc" != "$transformers_repo_loc" ]; then + echo "transformers is from $transformers_loc but it shoud be from $transformers_repo_loc/src." + echo "A fix is required. Stop testing." + exit 1 + fi + + - name: Create model files + run: | + . ~/venv/bin/activate + transformers-cli add-new-model-like --config_file tests/fixtures/add_distilbert_like_config.json --path_to_repo . + make style + make fix-copies + + - name: Run all PyTorch modeling test + run: | + . ~/venv/bin/activate + python -m pytest -n 2 --dist=loadfile -s --make-reports=tests_new_models tests/bert_new/test_modeling_bert_new.py + + - name: Run style changes + run: | + . ~/venv/bin/activate + make style && make quality && make repo-consistency + + - name: Failure short reports + if: ${{ always() }} + run: cat reports/tests_new_models/failures_short.txt + + - name: Test suite reports artifacts + if: ${{ always() }} + uses: actions/upload-artifact@v3 + with: + name: run_all_tests_new_models_test_reports + path: reports/tests_new_models diff --git a/OPERA/transformers-4.29.2/.github/workflows/build-docker-images.yml b/OPERA/transformers-4.29.2/.github/workflows/build-docker-images.yml new file mode 100644 index 0000000000000000000000000000000000000000..d2168a122e810334c020139a97c1dc81e3880087 --- /dev/null +++ b/OPERA/transformers-4.29.2/.github/workflows/build-docker-images.yml @@ -0,0 +1,207 @@ +name: Build docker images (scheduled) + +on: + push: + branches: + - build_ci_docker_image* + repository_dispatch: + workflow_call: + inputs: + image_postfix: + required: true + type: string + schedule: + - cron: "17 0 * * *" + +concurrency: + group: docker-images-builds + cancel-in-progress: false + +jobs: + latest-docker: + name: "Latest PyTorch + TensorFlow [dev]" + runs-on: ubuntu-latest + steps: + - name: Cleanup disk + run: | + sudo ls -l /usr/local/lib/ + sudo ls -l /usr/share/ + sudo du -sh /usr/local/lib/ + sudo du -sh /usr/share/ + sudo rm -rf /usr/local/lib/android + sudo rm -rf /usr/share/dotnet + sudo du -sh /usr/local/lib/ + sudo du -sh /usr/share/ + - + name: Set up Docker Buildx + uses: docker/setup-buildx-action@v2 + - + name: Check out code + uses: actions/checkout@v3 + - + name: Login to DockerHub + uses: docker/login-action@v2 + with: + username: ${{ secrets.DOCKERHUB_USERNAME }} + password: ${{ secrets.DOCKERHUB_PASSWORD }} + - + name: Build and push + uses: docker/build-push-action@v3 + with: + context: ./docker/transformers-all-latest-gpu + build-args: | + REF=main + push: true + tags: huggingface/transformers-all-latest-gpu${{ inputs.image_postfix }} + # Push CI images still need to be re-built daily + - + name: Build and push (for Push CI) in a daily basis + # This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`. + # The later case is useful for manual image building for debugging purpose. Use another tag in this case! + if: inputs.image_postfix != '-push-ci' + uses: docker/build-push-action@v3 + with: + context: ./docker/transformers-all-latest-gpu + build-args: | + REF=main + push: true + tags: huggingface/transformers-all-latest-gpu-push-ci + + latest-torch-deepspeed-docker: + name: "Latest PyTorch + DeepSpeed" + runs-on: ubuntu-latest + steps: + - + name: Set up Docker Buildx + uses: docker/setup-buildx-action@v2 + - + name: Check out code + uses: actions/checkout@v3 + - + name: Login to DockerHub + uses: docker/login-action@v2 + with: + username: ${{ secrets.DOCKERHUB_USERNAME }} + password: ${{ secrets.DOCKERHUB_PASSWORD }} + - + name: Build and push + uses: docker/build-push-action@v3 + with: + context: ./docker/transformers-pytorch-deepspeed-latest-gpu + build-args: | + REF=main + push: true + tags: huggingface/transformers-pytorch-deepspeed-latest-gpu${{ inputs.image_postfix }} + + # Can't build 2 images in a single job `latest-torch-deepspeed-docker` (for `nvcr.io/nvidia`) + latest-torch-deepspeed-docker-for-push-ci-daily-build: + name: "Latest PyTorch + DeepSpeed (Push CI - Daily Build)" + runs-on: ubuntu-latest + steps: + - + name: Set up Docker Buildx + uses: docker/setup-buildx-action@v2 + - + name: Check out code + uses: actions/checkout@v3 + - + name: Login to DockerHub + uses: docker/login-action@v2 + with: + username: ${{ secrets.DOCKERHUB_USERNAME }} + password: ${{ secrets.DOCKERHUB_PASSWORD }} + # Push CI images still need to be re-built daily + - + name: Build and push (for Push CI) in a daily basis + # This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`. + # The later case is useful for manual image building for debugging purpose. Use another tag in this case! + if: inputs.image_postfix != '-push-ci' + uses: docker/build-push-action@v3 + with: + context: ./docker/transformers-pytorch-deepspeed-latest-gpu + build-args: | + REF=main + push: true + tags: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci + + doc-builder: + name: "Doc builder" + # Push CI doesn't need this image + if: inputs.image_postfix != '-push-ci' + runs-on: ubuntu-latest + steps: + - + name: Set up Docker Buildx + uses: docker/setup-buildx-action@v2 + - + name: Check out code + uses: actions/checkout@v3 + - + name: Login to DockerHub + uses: docker/login-action@v2 + with: + username: ${{ secrets.DOCKERHUB_USERNAME }} + password: ${{ secrets.DOCKERHUB_PASSWORD }} + - + name: Build and push + uses: docker/build-push-action@v3 + with: + context: ./docker/transformers-doc-builder + push: true + tags: huggingface/transformers-doc-builder + + latest-pytorch: + name: "Latest PyTorch [dev]" + # Push CI doesn't need this image + if: inputs.image_postfix != '-push-ci' + runs-on: ubuntu-latest + steps: + - + name: Set up Docker Buildx + uses: docker/setup-buildx-action@v2 + - + name: Check out code + uses: actions/checkout@v3 + - + name: Login to DockerHub + uses: docker/login-action@v2 + with: + username: ${{ secrets.DOCKERHUB_USERNAME }} + password: ${{ secrets.DOCKERHUB_PASSWORD }} + - + name: Build and push + uses: docker/build-push-action@v3 + with: + context: ./docker/transformers-pytorch-gpu + build-args: | + REF=main + push: true + tags: huggingface/transformers-pytorch-gpu + + latest-tensorflow: + name: "Latest TensorFlow [dev]" + # Push CI doesn't need this image + if: inputs.image_postfix != '-push-ci' + runs-on: ubuntu-latest + steps: + - + name: Set up Docker Buildx + uses: docker/setup-buildx-action@v2 + - + name: Check out code + uses: actions/checkout@v3 + - + name: Login to DockerHub + uses: docker/login-action@v2 + with: + username: ${{ secrets.DOCKERHUB_USERNAME }} + password: ${{ secrets.DOCKERHUB_PASSWORD }} + - + name: Build and push + uses: docker/build-push-action@v3 + with: + context: ./docker/transformers-tensorflow-gpu + build-args: | + REF=main + push: true + tags: huggingface/transformers-tensorflow-gpu diff --git a/OPERA/transformers-4.29.2/.github/workflows/build-nightly-ci-docker-images.yml b/OPERA/transformers-4.29.2/.github/workflows/build-nightly-ci-docker-images.yml new file mode 100644 index 0000000000000000000000000000000000000000..25372d5155b58104c63038ebd40b8bb648269059 --- /dev/null +++ b/OPERA/transformers-4.29.2/.github/workflows/build-nightly-ci-docker-images.yml @@ -0,0 +1,75 @@ +name: Build docker images (Nightly CI) + +on: + workflow_call: + push: + branches: + - build_nightly_ci_docker_image* + +concurrency: + group: docker-images-builds + cancel-in-progress: false + +jobs: + latest-with-torch-nightly-docker: + name: "Nightly PyTorch + Stable TensorFlow" + runs-on: ubuntu-latest + steps: + - name: Cleanup disk + run: | + sudo ls -l /usr/local/lib/ + sudo ls -l /usr/share/ + sudo du -sh /usr/local/lib/ + sudo du -sh /usr/share/ + sudo rm -rf /usr/local/lib/android + sudo rm -rf /usr/share/dotnet + sudo du -sh /usr/local/lib/ + sudo du -sh /usr/share/ + - + name: Set up Docker Buildx + uses: docker/setup-buildx-action@v2 + - + name: Check out code + uses: actions/checkout@v3 + - + name: Login to DockerHub + uses: docker/login-action@v2 + with: + username: ${{ secrets.DOCKERHUB_USERNAME }} + password: ${{ secrets.DOCKERHUB_PASSWORD }} + - + name: Build and push + uses: docker/build-push-action@v3 + with: + context: ./docker/transformers-all-latest-gpu + build-args: | + REF=main + PYTORCH=pre + push: true + tags: huggingface/transformers-all-latest-torch-nightly-gpu + + nightly-torch-deepspeed-docker: + name: "Nightly PyTorch + DeepSpeed" + runs-on: ubuntu-latest + steps: + - + name: Set up Docker Buildx + uses: docker/setup-buildx-action@v2 + - + name: Check out code + uses: actions/checkout@v3 + - + name: Login to DockerHub + uses: docker/login-action@v2 + with: + username: ${{ secrets.DOCKERHUB_USERNAME }} + password: ${{ secrets.DOCKERHUB_PASSWORD }} + - + name: Build and push + uses: docker/build-push-action@v3 + with: + context: ./docker/transformers-pytorch-deepspeed-nightly-gpu + build-args: | + REF=main + push: true + tags: huggingface/transformers-pytorch-deepspeed-nightly-gpu \ No newline at end of file diff --git a/OPERA/transformers-4.29.2/.github/workflows/build-past-ci-docker-images.yml b/OPERA/transformers-4.29.2/.github/workflows/build-past-ci-docker-images.yml new file mode 100644 index 0000000000000000000000000000000000000000..e38ef61b5d81e0779c47d5031153775fbfb67c33 --- /dev/null +++ b/OPERA/transformers-4.29.2/.github/workflows/build-past-ci-docker-images.yml @@ -0,0 +1,99 @@ +name: Build docker images (Past CI) + +on: + push: + branches: + - build_past_ci_docker_image* + +concurrency: + group: docker-images-builds + cancel-in-progress: false + +jobs: + past-pytorch-docker: + name: "Past PyTorch Docker" + strategy: + fail-fast: false + matrix: + version: ["1.13", "1.12", "1.11", "1.10", "1.9"] + runs-on: ubuntu-latest + steps: + - + name: Set up Docker Buildx + uses: docker/setup-buildx-action@v2 + - + name: Check out code + uses: actions/checkout@v3 + - + id: get-base-image + name: Get Base Image + env: + framework_version: ${{ matrix.version }} + run: | + echo "base_image=$(python3 -c 'import os; from utils.past_ci_versions import past_versions_testing; base_image = past_versions_testing["pytorch"][os.environ["framework_version"]]["base_image"]; print(base_image)')" >> $GITHUB_OUTPUT + - + name: Print Base Image + run: | + echo ${{ steps.get-base-image.outputs.base_image }} + - + name: Login to DockerHub + uses: docker/login-action@v2 + with: + username: ${{ secrets.DOCKERHUB_USERNAME }} + password: ${{ secrets.DOCKERHUB_PASSWORD }} + - + name: Build and push + uses: docker/build-push-action@v3 + with: + context: ./docker/transformers-past-gpu + build-args: | + REF=main + BASE_DOCKER_IMAGE=${{ steps.get-base-image.outputs.base_image }} + FRAMEWORK=pytorch + VERSION=${{ matrix.version }} + push: true + tags: huggingface/transformers-pytorch-past-${{ matrix.version }}-gpu + + past-tensorflow-docker: + name: "Past TensorFlow Docker" + strategy: + fail-fast: false + matrix: + version: ["2.11", "2.10", "2.9", "2.8", "2.7", "2.6", "2.5"] + runs-on: ubuntu-latest + steps: + - + name: Set up Docker Buildx + uses: docker/setup-buildx-action@v2 + - + name: Check out code + uses: actions/checkout@v3 + - + id: get-base-image + name: Get Base Image + env: + framework_version: ${{ matrix.version }} + run: | + echo "base_image=$(python3 -c 'import os; from utils.past_ci_versions import past_versions_testing; base_image = past_versions_testing["tensorflow"][os.environ["framework_version"]]["base_image"]; print(base_image)')" >> $GITHUB_OUTPUT + - + name: Print Base Image + run: | + echo ${{ steps.get-base-image.outputs.base_image }} + - + name: Login to DockerHub + uses: docker/login-action@v2 + with: + username: ${{ secrets.DOCKERHUB_USERNAME }} + password: ${{ secrets.DOCKERHUB_PASSWORD }} + - + name: Build and push + uses: docker/build-push-action@v3 + with: + context: ./docker/transformers-past-gpu + build-args: | + REF=main + BASE_DOCKER_IMAGE=${{ steps.get-base-image.outputs.base_image }} + FRAMEWORK=tensorflow + VERSION=${{ matrix.version }} + push: true + tags: huggingface/transformers-tensorflow-past-${{ matrix.version }}-gpu diff --git a/OPERA/transformers-4.29.2/.github/workflows/build_documentation.yml b/OPERA/transformers-4.29.2/.github/workflows/build_documentation.yml new file mode 100644 index 0000000000000000000000000000000000000000..4efc24a556e69e611028ad1e56c8cde8974ec8d2 --- /dev/null +++ b/OPERA/transformers-4.29.2/.github/workflows/build_documentation.yml @@ -0,0 +1,20 @@ +name: Build documentation + +on: + push: + branches: + - main + - doc-builder* + - v*-release + - use_templates + +jobs: + build: + uses: huggingface/doc-builder/.github/workflows/build_main_documentation.yml@main + with: + commit_sha: ${{ github.sha }} + package: transformers + notebook_folder: transformers_doc + languages: de en es fr it ko pt zh + secrets: + token: ${{ secrets.HUGGINGFACE_PUSH }} diff --git a/OPERA/transformers-4.29.2/.github/workflows/build_pr_documentation.yml b/OPERA/transformers-4.29.2/.github/workflows/build_pr_documentation.yml new file mode 100644 index 0000000000000000000000000000000000000000..0ea96a4e9b568dbb25d606dc992a2c90fa32141b --- /dev/null +++ b/OPERA/transformers-4.29.2/.github/workflows/build_pr_documentation.yml @@ -0,0 +1,17 @@ +name: Build PR Documentation + +on: + pull_request: + +concurrency: + group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }} + cancel-in-progress: true + +jobs: + build: + uses: huggingface/doc-builder/.github/workflows/build_pr_documentation.yml@main + with: + commit_sha: ${{ github.event.pull_request.head.sha }} + pr_number: ${{ github.event.number }} + package: transformers + languages: de en es fr it ko pt zh diff --git a/OPERA/transformers-4.29.2/.github/workflows/check_runner_status.yml b/OPERA/transformers-4.29.2/.github/workflows/check_runner_status.yml new file mode 100644 index 0000000000000000000000000000000000000000..6021ef53e9d40769d4da36b0db111ff0e3f21f6a --- /dev/null +++ b/OPERA/transformers-4.29.2/.github/workflows/check_runner_status.yml @@ -0,0 +1,68 @@ +name: Self-hosted runner (check runner status) + +# Note that each job's dependencies go into a corresponding docker file. +# +# For example for `run_all_tests_torch_cuda_extensions_gpu` the docker image is +# `huggingface/transformers-pytorch-deepspeed-latest-gpu`, which can be found at +# `docker/transformers-pytorch-deepspeed-latest-gpu/Dockerfile` + +on: + repository_dispatch: + schedule: + # run per hour + - cron: "0 */1 * * *" + +env: + TRANSFORMERS_IS_CI: yes + +jobs: + check_runner_status: + name: Check Runner Status + runs-on: ubuntu-latest + outputs: + offline_runners: ${{ steps.set-offline_runners.outputs.offline_runners }} + steps: + - name: Checkout transformers + uses: actions/checkout@v3 + with: + fetch-depth: 2 + + - name: Check Runner Status + run: python utils/check_self_hosted_runner.py --target_runners single-gpu-ci-runner-docker,multi-gpu-ci-runner-docker,single-gpu-scheduled-ci-runner-docker,multi-scheduled-scheduled-ci-runner-docker,single-gpu-doctest-ci-runner-docker --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }} + + - id: set-offline_runners + name: Set output for offline runners + if: ${{ always() }} + run: | + offline_runners=$(python3 -c 'fp = open("offline_runners.txt"); failed = fp.read(); fp.close(); print(failed)') + echo "offline_runners=$offline_runners" >> $GITHUB_OUTPUT + + send_results: + name: Send results to webhook + runs-on: ubuntu-latest + needs: check_runner_status + if: ${{ failure() }} + steps: + - name: Preliminary job status + shell: bash + run: | + echo "Runner availability: ${{ needs.check_runner_status.result }}" + + - uses: actions/checkout@v3 + - uses: actions/download-artifact@v3 + - name: Send message to Slack + env: + CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }} + CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }} + CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }} + CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }} + CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }} + ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }} + CI_EVENT: runner status check + RUNNER_STATUS: ${{ needs.check_runner_status.result }} + OFFLINE_RUNNERS: ${{ needs.check_runner_status.outputs.offline_runners }} + # We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change + # `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`. + run: | + pip install slack_sdk + python utils/notification_service.py diff --git a/OPERA/transformers-4.29.2/.github/workflows/check_tiny_models.yml b/OPERA/transformers-4.29.2/.github/workflows/check_tiny_models.yml new file mode 100644 index 0000000000000000000000000000000000000000..5a4cb9622f06e799eafb9fc6f93a6a9834f51ad7 --- /dev/null +++ b/OPERA/transformers-4.29.2/.github/workflows/check_tiny_models.yml @@ -0,0 +1,82 @@ +name: Check Tiny Models + +on: + push: + branches: + - check_tiny_models* + repository_dispatch: + schedule: + - cron: "0 2 * * *" + +env: + TOKEN: ${{ secrets.TRANSFORMERS_HUB_BOT_HF_TOKEN }} + +jobs: + check_tiny_models: + name: Check tiny models + runs-on: ubuntu-latest + steps: + - name: Checkout transformers + uses: actions/checkout@v3 + with: + fetch-depth: 2 + + - uses: actions/checkout@v3 + - name: Set up Python 3.8 + uses: actions/setup-python@v4 + with: + # Semantic version range syntax or exact version of a Python version + python-version: '3.8' + # Optional - x64 or x86 architecture, defaults to x64 + architecture: 'x64' + + - name: Install + run: | + sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng cmake + pip install --upgrade pip + python -m pip install -U .[sklearn,torch,testing,sentencepiece,torch-speech,vision,timm,video,tf-cpu] + pip install tensorflow_probability + python -m pip install -U natten + + - name: Create all tiny models (locally) + run: | + python utils/create_dummy_models.py tiny_local_models --all --num_workers 2 + + - name: Local tiny model reports artifacts + if: ${{ always() }} + uses: actions/upload-artifact@v3 + with: + name: tiny_local_model_creation_reports + path: tiny_local_models/reports + + # GitHub-hosted runners have 2-core CPUs + - name: Run pipeline tests against all new (local) tiny models + run: | + OMP_NUM_THREADS=1 TRANSFORMERS_TINY_MODEL_PATH=tiny_local_models python -m pytest --max-worker-restart=0 -n 2 --dist=loadfile -s -rA --make-reports=tests_pipelines tests/models -m is_pipeline_test -k "test_pipeline_" | tee tests_output.txt + + - name: Test suite reports artifacts + if: ${{ always() }} + uses: actions/upload-artifact@v3 + with: + name: tiny_local_model_creation_reports + path: reports/tests_pipelines + + - name: Create + Upload tiny models for new model architecture(s) + run: | + python utils/update_tiny_models.py --num_workers 2 + + - name: Full report + run: cat tiny_models/reports/tiny_model_creation_report.json + + - name: Failure report + run: cat tiny_models/reports/simple_failed_report.txt + + - name: Summary report + run: cat tiny_models/reports/tiny_model_summary.json + + - name: New tiny model creation reports artifacts + if: ${{ always() }} + uses: actions/upload-artifact@v3 + with: + name: tiny_model_creation_reports + path: tiny_models/reports diff --git a/OPERA/transformers-4.29.2/.github/workflows/delete_doc_comment.yml b/OPERA/transformers-4.29.2/.github/workflows/delete_doc_comment.yml new file mode 100644 index 0000000000000000000000000000000000000000..907e1fceca4e9623c0fc2be84525a95d2d5c8815 --- /dev/null +++ b/OPERA/transformers-4.29.2/.github/workflows/delete_doc_comment.yml @@ -0,0 +1,13 @@ +name: Delete dev documentation + +on: + pull_request: + types: [ closed ] + + +jobs: + delete: + uses: huggingface/doc-builder/.github/workflows/delete_doc_comment.yml@main + with: + pr_number: ${{ github.event.number }} + package: transformers diff --git a/OPERA/transformers-4.29.2/.github/workflows/doctests.yml b/OPERA/transformers-4.29.2/.github/workflows/doctests.yml new file mode 100644 index 0000000000000000000000000000000000000000..0a90287b8cf1bbc90f8589cbbe50343bfcf8181b --- /dev/null +++ b/OPERA/transformers-4.29.2/.github/workflows/doctests.yml @@ -0,0 +1,81 @@ +name: Doctests + +on: + push: + branches: + - doctest* + repository_dispatch: + schedule: + - cron: "17 2 * * *" + + +env: + HF_HOME: /mnt/cache + TRANSFORMERS_IS_CI: yes + RUN_SLOW: yes + OMP_NUM_THREADS: 16 + MKL_NUM_THREADS: 16 + SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }} + TF_FORCE_GPU_ALLOW_GROWTH: true + +jobs: + run_doctests: + runs-on: [self-hosted, doc-tests-gpu] + container: + image: huggingface/transformers-all-latest-gpu + options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ + steps: + - uses: actions/checkout@v3 + - name: NVIDIA-SMI + run: | + nvidia-smi + + - name: GPU visibility + run: | + python3 utils/print_env.py + + - name: Show installed libraries and their versions + run: pip freeze + + - name: Prepare files for doctests + run: | + python3 utils/prepare_for_doc_test.py src docs + + - name: Run doctests + run: | + python3 -m pytest -v --make-reports doc_tests_gpu --doctest-modules $(cat utils/documentation_tests.txt) -sv --doctest-continue-on-failure --doctest-glob="*.mdx" + + - name: Clean files after doctests + run: | + python3 utils/prepare_for_doc_test.py src docs --remove_new_line + + - name: Failure short reports + if: ${{ failure() }} + continue-on-error: true + run: cat reports/doc_tests_gpu/failures_short.txt + + - name: Test suite reports artifacts + if: ${{ always() }} + uses: actions/upload-artifact@v3 + with: + name: doc_tests_gpu_test_reports + path: reports/doc_tests_gpu + + + send_results: + name: Send results to webhook + runs-on: ubuntu-latest + if: always() + needs: [run_doctests] + steps: + - uses: actions/checkout@v3 + - uses: actions/download-artifact@v3 + - name: Send message to Slack + env: + CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }} + CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY_DOCS }} + CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY_DOCS }} + CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }} + run: | + pip install slack_sdk + python utils/notification_service_doc_tests.py diff --git a/OPERA/transformers-4.29.2/.github/workflows/model-templates.yml b/OPERA/transformers-4.29.2/.github/workflows/model-templates.yml new file mode 100644 index 0000000000000000000000000000000000000000..8e7691c7ce24a650e875b9b95905bdd21d913a4b --- /dev/null +++ b/OPERA/transformers-4.29.2/.github/workflows/model-templates.yml @@ -0,0 +1,81 @@ +name: Model templates runner + +on: + repository_dispatch: + schedule: + - cron: "0 2 * * *" + +jobs: + run_tests_templates: + runs-on: ubuntu-latest + steps: + - name: Checkout repository + uses: actions/checkout@v3 + + - name: Install dependencies + run: | + sudo apt -y update && sudo apt install -y libsndfile1-dev + + - name: Load cached virtual environment + uses: actions/cache@v2 + id: cache + with: + path: ~/venv/ + key: v4-tests_templates-${{ hashFiles('setup.py') }} + + - name: Create virtual environment on cache miss + if: steps.cache.outputs.cache-hit != 'true' + run: | + python -m venv ~/venv && . ~/venv/bin/activate + pip install --upgrade pip!=21.3 + pip install -e .[dev] + + - name: Check transformers location + # make `transformers` available as package (required since we use `-e` flag) and check it's indeed from the repo. + run: | + . ~/venv/bin/activate + python setup.py develop + transformer_loc=$(pip show transformers | grep "Location: " | cut -c11-) + transformer_repo_loc=$(pwd .) + if [ "$transformer_loc" != "$transformer_repo_loc/src" ]; then + echo "transformers is from $transformer_loc but it shoud be from $transformer_repo_loc/src." + echo "A fix is required. Stop testing." + exit 1 + fi + + - name: Create model files + run: | + . ~/venv/bin/activate + transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/encoder-bert-tokenizer.json --path=templates/adding_a_new_model + transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/pt-encoder-bert-tokenizer.json --path=templates/adding_a_new_model + transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/standalone.json --path=templates/adding_a_new_model + transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/tf-encoder-bert-tokenizer.json --path=templates/adding_a_new_model + transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/tf-seq-2-seq-bart-tokenizer.json --path=templates/adding_a_new_model + transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/pt-seq-2-seq-bart-tokenizer.json --path=templates/adding_a_new_model + transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/flax-encoder-bert-tokenizer.json --path=templates/adding_a_new_model + transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/flax-seq-2-seq-bart-tokenizer.json --path=templates/adding_a_new_model + make style + python utils/check_table.py --fix_and_overwrite + python utils/check_dummies.py --fix_and_overwrite + python utils/check_copies.py --fix_and_overwrite + + - name: Run all non-slow tests + run: | + . ~/venv/bin/activate + python -m pytest -n 2 --dist=loadfile -s --make-reports=tests_templates tests/*template* + + - name: Run style changes + run: | + . ~/venv/bin/activate + make style && make quality && make repo-consistency + + - name: Failure short reports + if: ${{ always() }} + run: cat reports/tests_templates/failures_short.txt + + - name: Test suite reports artifacts + if: ${{ always() }} + uses: actions/upload-artifact@v3 + with: + name: run_all_tests_templates_test_reports + path: reports/tests_templates diff --git a/OPERA/transformers-4.29.2/.github/workflows/release-conda.yml b/OPERA/transformers-4.29.2/.github/workflows/release-conda.yml new file mode 100644 index 0000000000000000000000000000000000000000..7eb318b0f9cb279c522a2b00e145c5b5c6bf6bd2 --- /dev/null +++ b/OPERA/transformers-4.29.2/.github/workflows/release-conda.yml @@ -0,0 +1,47 @@ +name: Release - Conda + +on: + push: + tags: + - v* + branches: + - conda_* + +env: + ANACONDA_API_TOKEN: ${{ secrets.ANACONDA_API_TOKEN }} + +jobs: + build_and_package: + runs-on: ubuntu-latest + defaults: + run: + shell: bash -l {0} + + steps: + - name: Checkout repository + uses: actions/checkout@v1 + + - name: Install miniconda + uses: conda-incubator/setup-miniconda@v2 + with: + auto-update-conda: true + auto-activate-base: false + python-version: 3.8 + activate-environment: "build-transformers" + channels: huggingface + + - name: Setup conda env + run: | + conda install -c defaults anaconda-client conda-build + + - name: Extract version + run: echo "TRANSFORMERS_VERSION=`python setup.py --version`" >> $GITHUB_ENV + + - name: Build conda packages + run: | + conda info + conda list + conda-build .github/conda + + - name: Upload to Anaconda + run: anaconda upload `conda-build .github/conda --output` --force diff --git a/OPERA/transformers-4.29.2/.github/workflows/self-nightly-past-ci-caller.yml b/OPERA/transformers-4.29.2/.github/workflows/self-nightly-past-ci-caller.yml new file mode 100644 index 0000000000000000000000000000000000000000..25e711105fed2f75ee7e2679dfe0c385f309c631 --- /dev/null +++ b/OPERA/transformers-4.29.2/.github/workflows/self-nightly-past-ci-caller.yml @@ -0,0 +1,156 @@ +name: Self-hosted runner (nightly-past-ci-caller) + +on: + schedule: + # 2:17 am on each Sunday and Thursday + + - cron: "17 2 * * 0,4" + push: + branches: + - run_nightly_ci* + - run_past_ci* + +jobs: + build_nightly_ci_images: + name: Build Nightly CI Docker Images + if: (github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_nightly_ci')) + uses: ./.github/workflows/build-nightly-ci-docker-images.yml + secrets: inherit + + run_nightly_ci: + name: Nightly CI + needs: [build_nightly_ci_images] + uses: ./.github/workflows/self-nightly-scheduled.yml + secrets: inherit + + run_past_ci_pytorch_1-13: + name: PyTorch 1.13 + if: (cancelled() != true) && ((github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))) + needs: [run_nightly_ci] + uses: ./.github/workflows/self-past.yml + with: + framework: pytorch + version: "1.13" + sha: ${{ github.sha }} + secrets: inherit + + run_past_ci_pytorch_1-12: + name: PyTorch 1.12 + if: (cancelled() != true) && ((github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))) + needs: [run_past_ci_pytorch_1-13] + uses: ./.github/workflows/self-past.yml + with: + framework: pytorch + version: "1.12" + sha: ${{ github.sha }} + secrets: inherit + + run_past_ci_pytorch_1-11: + name: PyTorch 1.11 + if: (cancelled() != true) && ((github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))) + needs: [run_past_ci_pytorch_1-12] + uses: ./.github/workflows/self-past.yml + with: + framework: pytorch + version: "1.11" + sha: ${{ github.sha }} + secrets: inherit + + run_past_ci_pytorch_1-10: + name: PyTorch 1.10 + if: (cancelled() != true) && ((github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))) + needs: [run_past_ci_pytorch_1-11] + uses: ./.github/workflows/self-past.yml + with: + framework: pytorch + version: "1.10" + sha: ${{ github.sha }} + secrets: inherit + + run_past_ci_pytorch_1-9: + name: PyTorch 1.9 + if: (cancelled() != true) && ((github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))) + needs: [run_past_ci_pytorch_1-10] + uses: ./.github/workflows/self-past.yml + with: + framework: pytorch + version: "1.9" + sha: ${{ github.sha }} + secrets: inherit + + run_past_ci_tensorflow_2-11: + name: TensorFlow 2.11 + if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci')) + needs: [run_past_ci_pytorch_1-9] + uses: ./.github/workflows/self-past.yml + with: + framework: tensorflow + version: "2.11" + sha: ${{ github.sha }} + secrets: inherit + + run_past_ci_tensorflow_2-10: + name: TensorFlow 2.10 + if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci')) + needs: [run_past_ci_tensorflow_2-11] + uses: ./.github/workflows/self-past.yml + with: + framework: tensorflow + version: "2.10" + sha: ${{ github.sha }} + secrets: inherit + + run_past_ci_tensorflow_2-9: + name: TensorFlow 2.9 + if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci')) + needs: [run_past_ci_tensorflow_2-10] + uses: ./.github/workflows/self-past.yml + with: + framework: tensorflow + version: "2.9" + sha: ${{ github.sha }} + secrets: inherit + + run_past_ci_tensorflow_2-8: + name: TensorFlow 2.8 + if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci')) + needs: [run_past_ci_tensorflow_2-9] + uses: ./.github/workflows/self-past.yml + with: + framework: tensorflow + version: "2.8" + sha: ${{ github.sha }} + secrets: inherit + + run_past_ci_tensorflow_2-7: + name: TensorFlow 2.7 + if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci')) + needs: [run_past_ci_tensorflow_2-8] + uses: ./.github/workflows/self-past.yml + with: + framework: tensorflow + version: "2.7" + sha: ${{ github.sha }} + secrets: inherit + + run_past_ci_tensorflow_2-6: + name: TensorFlow 2.6 + if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci')) + needs: [run_past_ci_tensorflow_2-7] + uses: ./.github/workflows/self-past.yml + with: + framework: tensorflow + version: "2.6" + sha: ${{ github.sha }} + secrets: inherit + + run_past_ci_tensorflow_2-5: + name: TensorFlow 2.5 + if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci')) + needs: [run_past_ci_tensorflow_2-6] + uses: ./.github/workflows/self-past.yml + with: + framework: tensorflow + version: "2.5" + sha: ${{ github.sha }} + secrets: inherit diff --git a/OPERA/transformers-4.29.2/.github/workflows/self-nightly-scheduled.yml b/OPERA/transformers-4.29.2/.github/workflows/self-nightly-scheduled.yml new file mode 100644 index 0000000000000000000000000000000000000000..1af989cea523c80e6873f1866e1df6f79c72c198 --- /dev/null +++ b/OPERA/transformers-4.29.2/.github/workflows/self-nightly-scheduled.yml @@ -0,0 +1,310 @@ +name: Self-hosted runner (nightly-ci) + +# Note that each job's dependencies go into a corresponding docker file. +# +# For example for `run_all_tests_torch_cuda_extensions_gpu` the docker image is +# `huggingface/transformers-pytorch-deepspeed-latest-gpu`, which can be found at +# `docker/transformers-pytorch-deepspeed-latest-gpu/Dockerfile` + +on: + repository_dispatch: + workflow_call: + +env: + HF_HOME: /mnt/cache + TRANSFORMERS_IS_CI: yes + OMP_NUM_THREADS: 8 + MKL_NUM_THREADS: 8 + RUN_SLOW: yes + SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }} + TF_FORCE_GPU_ALLOW_GROWTH: true + RUN_PT_TF_CROSS_TESTS: 1 + +jobs: + check_runner_status: + name: Check Runner Status + runs-on: ubuntu-latest + steps: + - name: Checkout transformers + uses: actions/checkout@v3 + with: + fetch-depth: 2 + + - name: Check Runner Status + run: python utils/check_self_hosted_runner.py --target_runners single-gpu-past-ci-runner-docker,multi-gpu-past-ci-runner-docker --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }} + + check_runners: + name: Check Runners + needs: check_runner_status + strategy: + matrix: + machine_type: [single-gpu, multi-gpu] + runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }} + container: + image: huggingface/transformers-all-latest-torch-nightly-gpu + options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ + steps: + - name: NVIDIA-SMI + run: | + nvidia-smi + + setup: + name: Setup + needs: check_runners + strategy: + matrix: + machine_type: [single-gpu, multi-gpu] + runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }} + container: + image: huggingface/transformers-all-latest-torch-nightly-gpu + options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ + outputs: + matrix: ${{ steps.set-matrix.outputs.matrix }} + steps: + - name: Update clone + working-directory: /transformers + run: | + git fetch && git checkout ${{ github.sha }} + + - name: Cleanup + working-directory: /transformers + run: | + rm -rf tests/__pycache__ + rm -rf tests/models/__pycache__ + rm -rf reports + + - name: Show installed libraries and their versions + working-directory: /transformers + run: pip freeze + + - id: set-matrix + name: Identify models to test + working-directory: /transformers/tests + run: | + echo "matrix=$(python3 -c 'import os; tests = os.getcwd(); model_tests = os.listdir(os.path.join(tests, "models")); d1 = sorted(list(filter(os.path.isdir, os.listdir(tests)))); d2 = sorted(list(filter(os.path.isdir, [f"models/{x}" for x in model_tests]))); d1.remove("models"); d = d2 + d1; print(d)')" >> $GITHUB_OUTPUT + + - name: NVIDIA-SMI + run: | + nvidia-smi + + run_tests_single_gpu: + name: Model tests + strategy: + fail-fast: false + matrix: + folders: ${{ fromJson(needs.setup.outputs.matrix) }} + machine_type: [single-gpu] + runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }} + container: + image: huggingface/transformers-all-latest-torch-nightly-gpu + options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ + needs: setup + steps: + - name: Echo folder ${{ matrix.folders }} + shell: bash + # For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to + # set the artifact folder names (because the character `/` is not allowed). + run: | + echo "${{ matrix.folders }}" + matrix_folders=${{ matrix.folders }} + matrix_folders=${matrix_folders/'models/'/'models_'} + echo "$matrix_folders" + echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV + + - name: Update clone + working-directory: /transformers + run: git fetch && git checkout ${{ github.sha }} + + - name: NVIDIA-SMI + run: | + nvidia-smi + + - name: Environment + working-directory: /transformers + run: | + python3 utils/print_env.py + + - name: Show installed libraries and their versions + working-directory: /transformers + run: pip freeze + + - name: Run all tests on GPU + working-directory: /transformers + run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }} + + - name: Failure short reports + if: ${{ failure() }} + continue-on-error: true + run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt + + - name: Test suite reports artifacts + if: ${{ always() }} + uses: actions/upload-artifact@v3 + with: + name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports_postfix_nightly + path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} + + run_tests_multi_gpu: + name: Model tests + strategy: + fail-fast: false + matrix: + folders: ${{ fromJson(needs.setup.outputs.matrix) }} + machine_type: [multi-gpu] + runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }} + container: + image: huggingface/transformers-all-latest-torch-nightly-gpu + options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ + needs: setup + steps: + - name: Echo folder ${{ matrix.folders }} + shell: bash + # For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to + # set the artifact folder names (because the character `/` is not allowed). + run: | + echo "${{ matrix.folders }}" + matrix_folders=${{ matrix.folders }} + matrix_folders=${matrix_folders/'models/'/'models_'} + echo "$matrix_folders" + echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV + + - name: Update clone + working-directory: /transformers + run: git fetch && git checkout ${{ github.sha }} + + - name: NVIDIA-SMI + run: | + nvidia-smi + + - name: Environment + working-directory: /transformers + run: | + python3 utils/print_env.py + + - name: Show installed libraries and their versions + working-directory: /transformers + run: pip freeze + + - name: Run all tests on GPU + working-directory: /transformers + run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }} + + - name: Failure short reports + if: ${{ failure() }} + continue-on-error: true + run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt + + - name: Test suite reports artifacts + if: ${{ always() }} + uses: actions/upload-artifact@v3 + with: + name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports_postfix_nightly + path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} + + run_all_tests_torch_cuda_extensions_gpu: + name: Torch CUDA extension tests + strategy: + fail-fast: false + matrix: + machine_type: [single-gpu, multi-gpu] + runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }} + needs: setup + container: + image: huggingface/transformers-pytorch-deepspeed-nightly-gpu + options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ + steps: + - name: Update clone + working-directory: /workspace/transformers + run: git fetch && git checkout ${{ github.sha }} + + - name: Remove cached torch extensions + run: rm -rf /github/home/.cache/torch_extensions/ + + # To avoid unknown test failures + - name: Pre build DeepSpeed *again* + working-directory: /workspace + run: | + python3 -m pip uninstall -y deepspeed + rm -rf DeepSpeed + git clone https://github.com/microsoft/DeepSpeed && cd DeepSpeed && rm -rf build + DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_UTILS=1 python3 -m pip install . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check + + - name: NVIDIA-SMI + run: | + nvidia-smi + + - name: Environment + working-directory: /workspace/transformers + run: | + python utils/print_env.py + + - name: Show installed libraries and their versions + working-directory: /workspace/transformers + run: pip freeze + + - name: Run all tests on GPU + working-directory: /workspace/transformers + run: | + python -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended + + - name: Failure short reports + if: ${{ failure() }} + continue-on-error: true + run: cat /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu/failures_short.txt + + - name: Test suite reports artifacts + if: ${{ always() }} + uses: actions/upload-artifact@v3 + with: + name: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports_postfix_nightly + path: /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu + + send_results: + name: Send results to webhook + runs-on: ubuntu-latest + if: always() + needs: [ + check_runner_status, + check_runners, + setup, + run_tests_single_gpu, + run_tests_multi_gpu, + run_all_tests_torch_cuda_extensions_gpu + ] + steps: + - name: Preliminary job status + shell: bash + # For the meaning of these environment variables, see the job `Setup` + run: | + echo "Runner availability: ${{ needs.check_runner_status.result }}" + echo "Runner status: ${{ needs.check_runners.result }}" + echo "Setup status: ${{ needs.setup.result }}" + + - uses: actions/checkout@v3 + - uses: actions/download-artifact@v3 + - name: Send message to Slack + env: + CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }} + CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }} + CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }} + CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }} + CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_PAST_FUTURE }} + ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }} + CI_EVENT: Nightly CI + RUNNER_STATUS: ${{ needs.check_runner_status.result }} + RUNNER_ENV_STATUS: ${{ needs.check_runners.result }} + SETUP_STATUS: ${{ needs.setup.result }} + # We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change + # `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`. + run: | + pip install slack_sdk + pip show slack_sdk + python utils/notification_service.py "${{ needs.setup.outputs.matrix }}" + + + # delete-artifact + - uses: geekyeggo/delete-artifact@v2 + with: + name: | + single-* + multi-* \ No newline at end of file diff --git a/OPERA/transformers-4.29.2/.github/workflows/self-past.yml b/OPERA/transformers-4.29.2/.github/workflows/self-past.yml new file mode 100644 index 0000000000000000000000000000000000000000..1e82f3eec0a1bc0b5205edc89f74540ce6b4bfe3 --- /dev/null +++ b/OPERA/transformers-4.29.2/.github/workflows/self-past.yml @@ -0,0 +1,365 @@ +name: Self-hosted runner (past-ci) + +# Note that each job's dependencies go into a corresponding docker file. +# +# For example for `run_all_tests_torch_cuda_extensions_gpu` the docker image is +# `huggingface/transformers-pytorch-deepspeed-latest-gpu`, which can be found at +# `docker/transformers-pytorch-deepspeed-latest-gpu/Dockerfile` + +on: + workflow_call: + inputs: + framework: + required: true + type: string + version: + required: true + type: string + # Use this to control the commit to test against + sha: + default: 'main' + required: false + type: string + +env: + HF_HOME: /mnt/cache + TRANSFORMERS_IS_CI: yes + OMP_NUM_THREADS: 8 + MKL_NUM_THREADS: 8 + RUN_SLOW: yes + SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }} + TF_FORCE_GPU_ALLOW_GROWTH: true + RUN_PT_TF_CROSS_TESTS: 1 + +jobs: + check_runner_status: + name: Check Runner Status + runs-on: ubuntu-latest + steps: + - name: Checkout transformers + uses: actions/checkout@v3 + with: + fetch-depth: 2 + + - name: Check Runner Status + run: python utils/check_self_hosted_runner.py --target_runners single-gpu-past-ci-runner-docker,multi-gpu-past-ci-runner-docker --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }} + + check_runners: + name: Check Runners + needs: check_runner_status + strategy: + matrix: + machine_type: [single-gpu, multi-gpu] + runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }} + container: + image: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu + options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ + steps: + - name: NVIDIA-SMI + run: | + nvidia-smi + + setup: + name: Setup + needs: check_runners + strategy: + matrix: + machine_type: [single-gpu, multi-gpu] + runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }} + container: + image: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu + options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ + outputs: + matrix: ${{ steps.set-matrix.outputs.matrix }} + steps: + - name: Update clone + working-directory: /transformers + run: git fetch && git checkout ${{ inputs.sha }} + + - name: Cleanup + working-directory: /transformers + run: | + rm -rf tests/__pycache__ + rm -rf tests/models/__pycache__ + rm -rf reports + + - name: Show installed libraries and their versions + working-directory: /transformers + run: pip freeze + + - id: set-matrix + working-directory: /transformers + name: Identify models to test + run: | + cd tests + echo "matrix=$(python3 -c 'import os; tests = os.getcwd(); model_tests = os.listdir(os.path.join(tests, "models")); d1 = sorted(list(filter(os.path.isdir, os.listdir(tests)))); d2 = sorted(list(filter(os.path.isdir, [f"models/{x}" for x in model_tests]))); d1.remove("models"); d = d2 + d1; print(d)')" >> $GITHUB_OUTPUT + + run_tests_single_gpu: + name: Model tests + strategy: + fail-fast: false + matrix: + folders: ${{ fromJson(needs.setup.outputs.matrix) }} + machine_type: [single-gpu] + runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }} + container: + image: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu + options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ + needs: setup + steps: + - name: Update clone + working-directory: /transformers + run: git fetch && git checkout ${{ inputs.sha }} + + - name: Echo folder ${{ matrix.folders }} + shell: bash + # For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to + # set the artifact folder names (because the character `/` is not allowed). + run: | + echo "${{ matrix.folders }}" + matrix_folders=${{ matrix.folders }} + matrix_folders=${matrix_folders/'models/'/'models_'} + echo "$matrix_folders" + echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV + + - name: NVIDIA-SMI + run: | + nvidia-smi + + - name: Install + if: inputs.framework == 'pytorch' + working-directory: /transformers + run: | + python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate + + - name: Environment + working-directory: /transformers + run: | + python3 utils/print_env.py + + - name: Show installed libraries and their versions + working-directory: /transformers + run: pip freeze + + - name: Run all tests on GPU + working-directory: /transformers + run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }} + + - name: Failure short reports + if: ${{ failure() }} + continue-on-error: true + run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt + + - name: Save job name + if: ${{ always() }} + shell: bash + run: | + matrix_folders=${matrix_folders/'models_'/'models/'} + job_name="Model tests ($matrix_folders, ${{ matrix.machine_type }})" + echo "$job_name" + echo "$job_name" > /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/job_name.txt + + - name: Test suite reports artifacts + if: ${{ always() }} + uses: actions/upload-artifact@v3 + with: + name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports_postfix_${{ inputs.framework }}-${{ inputs.version }} + path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} + + run_tests_multi_gpu: + name: Model tests + strategy: + fail-fast: false + matrix: + folders: ${{ fromJson(needs.setup.outputs.matrix) }} + machine_type: [multi-gpu] + runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }} + container: + image: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu + options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ + needs: setup + steps: + - name: Update clone + working-directory: /transformers + run: git fetch && git checkout ${{ inputs.sha }} + + - name: Echo folder ${{ matrix.folders }} + shell: bash + # For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to + # set the artifact folder names (because the character `/` is not allowed). + run: | + echo "${{ matrix.folders }}" + matrix_folders=${{ matrix.folders }} + matrix_folders=${matrix_folders/'models/'/'models_'} + echo "$matrix_folders" + echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV + + - name: NVIDIA-SMI + run: | + nvidia-smi + + - name: Install + if: inputs.framework == 'pytorch' + working-directory: /transformers + run: | + python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate + + - name: Environment + working-directory: /transformers + run: | + python3 utils/print_env.py + + - name: Show installed libraries and their versions + working-directory: /transformers + run: pip freeze + + - name: Run all tests on GPU + working-directory: /transformers + run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }} + + - name: Failure short reports + if: ${{ failure() }} + continue-on-error: true + run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt + + - name: Save job name + if: ${{ always() }} + shell: bash + run: | + matrix_folders=${matrix_folders/'models_'/'models/'} + job_name="Model tests ($matrix_folders, ${{ matrix.machine_type }})" + echo "$job_name" + echo "$job_name" > /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/job_name.txt + + - name: Test suite reports artifacts + if: ${{ always() }} + uses: actions/upload-artifact@v3 + with: + name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports_postfix_${{ inputs.framework }}-${{ inputs.version }} + path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} + + run_all_tests_torch_cuda_extensions_gpu: + name: Torch CUDA extension tests + if: inputs.framework == 'pytorch' + strategy: + fail-fast: false + matrix: + machine_type: [single-gpu, multi-gpu] + runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }} + needs: setup + container: + image: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu + options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ + steps: + - name: Update clone + working-directory: /transformers + run: git fetch && git checkout ${{ github.sha }} + + - name: Install + working-directory: /transformers + run: | + python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate + + - name: Remove cached torch extensions + run: rm -rf /github/home/.cache/torch_extensions/ + + # To avoid unknown test failures + - name: Pre build DeepSpeed *again* + working-directory: / + run: | + python3 -m pip uninstall -y deepspeed + rm -rf DeepSpeed + git clone https://github.com/microsoft/DeepSpeed && cd DeepSpeed && rm -rf build + DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_UTILS=1 python3 -m pip install . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check + + - name: NVIDIA-SMI + run: | + nvidia-smi + + - name: Environment + working-directory: /transformers + run: | + python3 utils/print_env.py + + - name: Show installed libraries and their versions + working-directory: /transformers + run: pip freeze + + - name: Run all tests on GPU + working-directory: /transformers + run: | + python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended + + - name: Failure short reports + if: ${{ failure() }} + continue-on-error: true + run: cat /transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu/failures_short.txt + + - name: Test suite reports artifacts + if: ${{ always() }} + uses: actions/upload-artifact@v3 + with: + name: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports_postfix_${{ inputs.framework }}-${{ inputs.version }} + path: /transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu + + send_results: + name: Send results to webhook + runs-on: ubuntu-latest + if: always() + needs: [ + check_runner_status, + check_runners, + setup, + run_tests_single_gpu, + run_tests_multi_gpu, + run_all_tests_torch_cuda_extensions_gpu + ] + steps: + - name: Preliminary job status + shell: bash + # For the meaning of these environment variables, see the job `Setup` + run: | + echo "Runner availability: ${{ needs.check_runner_status.result }}" + echo "Runner status: ${{ needs.check_runners.result }}" + echo "Setup status: ${{ needs.setup.result }}" + + - uses: actions/checkout@v3 + - uses: actions/download-artifact@v3 + + # Create a directory to store test failure tables in the next step + - name: Create directory + run: mkdir test_failure_tables + + - name: Send message to Slack + env: + CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }} + CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }} + CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }} + CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }} + CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_PAST_FUTURE }} + ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }} + CI_EVENT: Past CI - ${{ inputs.framework }}-${{ inputs.version }} + RUNNER_STATUS: ${{ needs.check_runner_status.result }} + RUNNER_ENV_STATUS: ${{ needs.check_runners.result }} + SETUP_STATUS: ${{ needs.setup.result }} + # We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change + # `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`. + run: | + pip install slack_sdk + pip show slack_sdk + python utils/notification_service.py "${{ needs.setup.outputs.matrix }}" + + # Upload complete failure tables, as they might be big and only truncated versions could be sent to Slack. + - name: Failure table artifacts + if: ${{ always() }} + uses: actions/upload-artifact@v3 + with: + name: test_failure_tables_${{ inputs.framework }}-${{ inputs.version }} + path: test_failure_tables + + # delete-artifact + - uses: geekyeggo/delete-artifact@v2 + with: + name: | + single-* + multi-* \ No newline at end of file diff --git a/OPERA/transformers-4.29.2/.github/workflows/self-push-caller.yml b/OPERA/transformers-4.29.2/.github/workflows/self-push-caller.yml new file mode 100644 index 0000000000000000000000000000000000000000..f12079a7880a0c47668adb9e21bbb26a809e8d1d --- /dev/null +++ b/OPERA/transformers-4.29.2/.github/workflows/self-push-caller.yml @@ -0,0 +1,54 @@ +# Used to trigger self-push CI +name: Self-hosted runner (push-caller) + +on: + push: + branches: + - main + paths: + - "src/**" + - "tests/**" + - ".github/**" + - "templates/**" + - "utils/**" + +jobs: + check-for-setup: + runs-on: ubuntu-latest + name: Check if setup was changed + outputs: + changed: ${{ steps.was_changed.outputs.changed }} + steps: + - uses: actions/checkout@v3 + with: + fetch-depth: "2" + + - name: Get changed files + id: changed-files + uses: tj-actions/changed-files@v22.2 + + - name: Was setup changed + id: was_changed + run: | + for file in ${{ steps.changed-files.outputs.all_changed_files }}; do + if [ `basename "${file}"` = "setup.py" ]; then + echo "changed=1" >> $GITHUB_OUTPUT + fi + done + + build-docker-containers: + needs: check-for-setup + if: (github.event_name == 'push') && (needs.check-for-setup.outputs.changed == '1') + uses: ./.github/workflows/build-docker-images.yml + with: + image_postfix: "-push-ci" + secrets: inherit + + run_push_ci: + name: Trigger Push CI + runs-on: ubuntu-latest + if: ${{ always() }} + needs: build-docker-containers + steps: + - name: Trigger push CI via workflow_run + run: echo "Trigger push CI via workflow_run" \ No newline at end of file diff --git a/OPERA/transformers-4.29.2/.github/workflows/self-push.yml b/OPERA/transformers-4.29.2/.github/workflows/self-push.yml new file mode 100644 index 0000000000000000000000000000000000000000..2c5e8593a2e33d122fbca4e589fde4d742204191 --- /dev/null +++ b/OPERA/transformers-4.29.2/.github/workflows/self-push.yml @@ -0,0 +1,585 @@ +name: Self-hosted runner (push) + +on: + workflow_run: + workflows: ["Self-hosted runner (push-caller)"] + branches: ["main"] + types: [completed] + push: + branches: + - ci_* + - ci-* + paths: + - "src/**" + - "tests/**" + - ".github/**" + - "templates/**" + - "utils/**" + repository_dispatch: + +env: + HF_HOME: /mnt/cache + TRANSFORMERS_IS_CI: yes + OMP_NUM_THREADS: 8 + MKL_NUM_THREADS: 8 + PYTEST_TIMEOUT: 60 + TF_FORCE_GPU_ALLOW_GROWTH: true + RUN_PT_TF_CROSS_TESTS: 1 + +jobs: + check_runner_status: + name: Check Runner Status + runs-on: ubuntu-latest + steps: + - name: Checkout transformers + uses: actions/checkout@v3 + with: + fetch-depth: 2 + + - name: Check Runner Status + run: python utils/check_self_hosted_runner.py --target_runners single-gpu-ci-runner-docker,multi-gpu-ci-runner-docker --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }} + + check_runners: + name: Check Runners + needs: check_runner_status + strategy: + matrix: + machine_type: [single-gpu, multi-gpu] + runs-on: [self-hosted, docker-gpu, '${{ matrix.machine_type }}'] + container: + image: huggingface/transformers-all-latest-gpu-push-ci + options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ + steps: + - name: NVIDIA-SMI + run: | + nvidia-smi + + setup: + name: Setup + needs: check_runners + strategy: + matrix: + machine_type: [single-gpu, multi-gpu] + runs-on: [self-hosted, docker-gpu, '${{ matrix.machine_type }}'] + container: + image: huggingface/transformers-all-latest-gpu-push-ci + options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ + outputs: + matrix: ${{ steps.set-matrix.outputs.matrix }} + test_map: ${{ steps.set-matrix.outputs.test_map }} + steps: + # Necessary to get the correct branch name and commit SHA for `workflow_run` event + # We also take into account the `push` event (we might want to test some changes in a branch) + - name: Prepare custom environment variables + shell: bash + # `CI_BRANCH_PUSH`: The branch name from the push event + # `CI_BRANCH_WORKFLOW_RUN`: The name of the branch on which this workflow is triggered by `workflow_run` event + # `CI_BRANCH`: The non-empty branch name from the above two (one and only one of them is empty) + # `CI_SHA_PUSH`: The commit SHA from the push event + # `CI_SHA_WORKFLOW_RUN`: The commit SHA that triggers this workflow by `workflow_run` event + # `CI_SHA`: The non-empty commit SHA from the above two (one and only one of them is empty) + run: | + CI_BRANCH_PUSH=${{ github.event.ref }} + CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''} + CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }} + CI_SHA_PUSH=${{ github.event.head_commit.id }} + CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }} + echo $CI_BRANCH_PUSH + echo $CI_BRANCH_WORKFLOW_RUN + echo $CI_SHA_PUSH + echo $CI_SHA_WORKFLOW_RUN + [[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV + [[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV + + - name: print environment variables + run: | + echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}" + echo "env.CI_SHA = ${{ env.CI_SHA }}" + + - name: Update clone using environment variables + working-directory: /transformers + run: | + echo "original branch = $(git branch --show-current)" + git fetch && git checkout ${{ env.CI_BRANCH }} + echo "updated branch = $(git branch --show-current)" + git checkout ${{ env.CI_SHA }} + echo "log = $(git log -n 1)" + + - name: Cleanup + working-directory: /transformers + run: | + rm -rf tests/__pycache__ + rm -rf tests/models/__pycache__ + rm -rf reports + + - name: Show installed libraries and their versions + working-directory: /transformers + run: pip freeze + + - name: Fetch the tests to run + working-directory: /transformers + # TODO: add `git-python` in the docker images + run: | + pip install --upgrade git-python + python3 utils/tests_fetcher.py --diff_with_last_commit | tee test_preparation.txt + + - name: Report fetched tests + uses: actions/upload-artifact@v3 + with: + name: test_fetched + path: /transformers/test_preparation.txt + + - id: set-matrix + name: Organize tests into models + working-directory: /transformers + # The `keys` is used as GitHub actions matrix for jobs, i.e. `models/bert`, `tokenization`, `pipeline`, etc. + # The `test_map` is used to get the actual identified test files under each key. + # If no test to run (so no `test_map.json` file), create a dummy map (empty matrix will fail) + run: | + if [ -f test_map.json ]; then + keys=$(python3 -c 'import json; fp = open("test_map.json"); test_map = json.load(fp); fp.close(); d = list(test_map.keys()); print(d)') + test_map=$(python3 -c 'import json; fp = open("test_map.json"); test_map = json.load(fp); fp.close(); print(test_map)') + else + keys=$(python3 -c 'keys = ["dummy"]; print(keys)') + test_map=$(python3 -c 'test_map = {"dummy": []}; print(test_map)') + fi + echo $keys + echo $test_map + echo "matrix=$keys" >> $GITHUB_OUTPUT + echo "test_map=$test_map" >> $GITHUB_OUTPUT + + run_tests_single_gpu: + name: Model tests + needs: setup + # `dummy` means there is no test to run + if: contains(fromJson(needs.setup.outputs.matrix), 'dummy') != true + strategy: + fail-fast: false + matrix: + folders: ${{ fromJson(needs.setup.outputs.matrix) }} + machine_type: [single-gpu] + runs-on: [self-hosted, docker-gpu, '${{ matrix.machine_type }}'] + container: + image: huggingface/transformers-all-latest-gpu-push-ci + options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ + steps: + # Necessary to get the correct branch name and commit SHA for `workflow_run` event + # We also take into account the `push` event (we might want to test some changes in a branch) + - name: Prepare custom environment variables + shell: bash + # For the meaning of these environment variables, see the job `Setup` + run: | + CI_BRANCH_PUSH=${{ github.event.ref }} + CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''} + CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }} + CI_SHA_PUSH=${{ github.event.head_commit.id }} + CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }} + echo $CI_BRANCH_PUSH + echo $CI_BRANCH_WORKFLOW_RUN + echo $CI_SHA_PUSH + echo $CI_SHA_WORKFLOW_RUN + [[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV + [[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV + + - name: print environment variables + run: | + echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}" + echo "env.CI_SHA = ${{ env.CI_SHA }}" + + - name: Update clone using environment variables + working-directory: /transformers + run: | + echo "original branch = $(git branch --show-current)" + git fetch && git checkout ${{ env.CI_BRANCH }} + echo "updated branch = $(git branch --show-current)" + git checkout ${{ env.CI_SHA }} + echo "log = $(git log -n 1)" + + - name: Echo folder ${{ matrix.folders }} + shell: bash + # For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to + # set the artifact folder names (because the character `/` is not allowed). + run: | + echo "${{ matrix.folders }}" + echo "${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}" + matrix_folders=${{ matrix.folders }} + matrix_folders=${matrix_folders/'models/'/'models_'} + echo "$matrix_folders" + echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV + + - name: NVIDIA-SMI + run: | + nvidia-smi + + - name: Environment + working-directory: /transformers + run: | + python3 utils/print_env.py + + - name: Show installed libraries and their versions + working-directory: /transformers + run: pip freeze + + - name: Run all non-slow selected tests on GPU + working-directory: /transformers + run: | + python3 -m pytest -n 2 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} ${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }} + + - name: Failure short reports + if: ${{ failure() }} + continue-on-error: true + run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt + + - name: Test suite reports artifacts + if: ${{ always() }} + uses: actions/upload-artifact@v3 + with: + name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports + path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} + + run_tests_multi_gpu: + name: Model tests + needs: setup + # `dummy` means there is no test to run + if: contains(fromJson(needs.setup.outputs.matrix), 'dummy') != true + strategy: + fail-fast: false + matrix: + folders: ${{ fromJson(needs.setup.outputs.matrix) }} + machine_type: [multi-gpu] + runs-on: [self-hosted, docker-gpu, '${{ matrix.machine_type }}'] + container: + image: huggingface/transformers-all-latest-gpu-push-ci + options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ + steps: + # Necessary to get the correct branch name and commit SHA for `workflow_run` event + # We also take into account the `push` event (we might want to test some changes in a branch) + - name: Prepare custom environment variables + shell: bash + # For the meaning of these environment variables, see the job `Setup` + run: | + CI_BRANCH_PUSH=${{ github.event.ref }} + CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''} + CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }} + CI_SHA_PUSH=${{ github.event.head_commit.id }} + CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }} + echo $CI_BRANCH_PUSH + echo $CI_BRANCH_WORKFLOW_RUN + echo $CI_SHA_PUSH + echo $CI_SHA_WORKFLOW_RUN + [[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV + [[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV + + - name: print environment variables + run: | + echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}" + echo "env.CI_SHA = ${{ env.CI_SHA }}" + + - name: Update clone using environment variables + working-directory: /transformers + run: | + echo "original branch = $(git branch --show-current)" + git fetch && git checkout ${{ env.CI_BRANCH }} + echo "updated branch = $(git branch --show-current)" + git checkout ${{ env.CI_SHA }} + echo "log = $(git log -n 1)" + + - name: Echo folder ${{ matrix.folders }} + shell: bash + # For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to + # set the artifact folder names (because the character `/` is not allowed). + run: | + echo "${{ matrix.folders }}" + echo "${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}" + matrix_folders=${{ matrix.folders }} + matrix_folders=${matrix_folders/'models/'/'models_'} + echo "$matrix_folders" + echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV + + - name: NVIDIA-SMI + run: | + nvidia-smi + + - name: Environment + working-directory: /transformers + run: | + python3 utils/print_env.py + + - name: Show installed libraries and their versions + working-directory: /transformers + run: pip freeze + + - name: Run all non-slow selected tests on GPU + env: + MKL_SERVICE_FORCE_INTEL: 1 + working-directory: /transformers + run: | + python3 -m pytest -n 2 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} ${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }} + + - name: Failure short reports + if: ${{ failure() }} + continue-on-error: true + run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt + + - name: Test suite reports artifacts + if: ${{ always() }} + uses: actions/upload-artifact@v3 + with: + name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports + path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} + + run_tests_torch_cuda_extensions_single_gpu: + name: Torch CUDA extension tests + needs: setup + if: contains(fromJson(needs.setup.outputs.matrix), 'deepspeed') || contains(fromJson(needs.setup.outputs.matrix), 'extended') + strategy: + fail-fast: false + matrix: + machine_type: [single-gpu] + runs-on: [self-hosted, docker-gpu, '${{ matrix.machine_type }}'] + container: + image: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci + options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ + steps: + # Necessary to get the correct branch name and commit SHA for `workflow_run` event + # We also take into account the `push` event (we might want to test some changes in a branch) + - name: Prepare custom environment variables + shell: bash + # For the meaning of these environment variables, see the job `Setup` + run: | + CI_BRANCH_PUSH=${{ github.event.ref }} + CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''} + CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }} + CI_SHA_PUSH=${{ github.event.head_commit.id }} + CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }} + echo $CI_BRANCH_PUSH + echo $CI_BRANCH_WORKFLOW_RUN + echo $CI_SHA_PUSH + echo $CI_SHA_WORKFLOW_RUN + [[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV + [[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV + + - name: print environment variables + run: | + echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}" + echo "env.CI_SHA = ${{ env.CI_SHA }}" + + - name: Update clone using environment variables + working-directory: /workspace/transformers + run: | + echo "original branch = $(git branch --show-current)" + git fetch && git checkout ${{ env.CI_BRANCH }} + echo "updated branch = $(git branch --show-current)" + git checkout ${{ env.CI_SHA }} + echo "log = $(git log -n 1)" + + - name: Remove cached torch extensions + run: rm -rf /github/home/.cache/torch_extensions/ + + # To avoid unknown test failures + - name: Pre build DeepSpeed *again* + working-directory: /workspace + run: | + python3 -m pip uninstall -y deepspeed + DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_UTILS=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check + + - name: NVIDIA-SMI + run: | + nvidia-smi + + - name: Environment + working-directory: /workspace/transformers + run: | + python utils/print_env.py + + - name: Show installed libraries and their versions + working-directory: /workspace/transformers + run: pip freeze + + - name: Run all non-slow selected tests on GPU + working-directory: /workspace/transformers + # TODO: Here we pass all tests in the 2 folders for simplicity. It's better to pass only the identified tests. + run: | + python -m pytest -n 1 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended + + - name: Failure short reports + if: ${{ failure() }} + continue-on-error: true + run: cat /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu/failures_short.txt + + - name: Test suite reports artifacts + if: ${{ always() }} + uses: actions/upload-artifact@v3 + with: + name: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports + path: /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu + + run_tests_torch_cuda_extensions_multi_gpu: + name: Torch CUDA extension tests + needs: setup + if: contains(fromJson(needs.setup.outputs.matrix), 'deepspeed') || contains(fromJson(needs.setup.outputs.matrix), 'extended') + strategy: + fail-fast: false + matrix: + machine_type: [multi-gpu] + runs-on: [self-hosted, docker-gpu, '${{ matrix.machine_type }}'] + container: + image: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci + options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ + steps: + # Necessary to get the correct branch name and commit SHA for `workflow_run` event + # We also take into account the `push` event (we might want to test some changes in a branch) + - name: Prepare custom environment variables + shell: bash + # For the meaning of these environment variables, see the job `Setup` + run: | + CI_BRANCH_PUSH=${{ github.event.ref }} + CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''} + CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }} + CI_SHA_PUSH=${{ github.event.head_commit.id }} + CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }} + echo $CI_BRANCH_PUSH + echo $CI_BRANCH_WORKFLOW_RUN + echo $CI_SHA_PUSH + echo $CI_SHA_WORKFLOW_RUN + [[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV + [[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV + + - name: print environment variables + run: | + echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}" + echo "env.CI_SHA = ${{ env.CI_SHA }}" + + - name: Update clone using environment variables + working-directory: /workspace/transformers + run: | + echo "original branch = $(git branch --show-current)" + git fetch && git checkout ${{ env.CI_BRANCH }} + echo "updated branch = $(git branch --show-current)" + git checkout ${{ env.CI_SHA }} + echo "log = $(git log -n 1)" + + - name: Remove cached torch extensions + run: rm -rf /github/home/.cache/torch_extensions/ + + # To avoid unknown test failures + - name: Pre build DeepSpeed *again* + working-directory: /workspace + run: | + python3 -m pip uninstall -y deepspeed + DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_UTILS=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check + + - name: NVIDIA-SMI + run: | + nvidia-smi + + - name: Environment + working-directory: /workspace/transformers + run: | + python utils/print_env.py + + - name: Show installed libraries and their versions + working-directory: /workspace/transformers + run: pip freeze + + - name: Run all non-slow selected tests on GPU + working-directory: /workspace/transformers + # TODO: Here we pass all tests in the 2 folders for simplicity. It's better to pass only the identified tests. + run: | + python -m pytest -n 1 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended + + - name: Failure short reports + if: ${{ failure() }} + continue-on-error: true + run: cat /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu/failures_short.txt + + - name: Test suite reports artifacts + if: ${{ always() }} + uses: actions/upload-artifact@v3 + with: + name: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports + path: /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu + + send_results: + name: Send results to webhook + runs-on: ubuntu-latest + if: always() + needs: [ + check_runner_status, + check_runners, + setup, + run_tests_single_gpu, + run_tests_multi_gpu, + run_tests_torch_cuda_extensions_single_gpu, + run_tests_torch_cuda_extensions_multi_gpu + ] + steps: + - name: Preliminary job status + shell: bash + # For the meaning of these environment variables, see the job `Setup` + run: | + echo "Runner availability: ${{ needs.check_runner_status.result }}" + echo "Setup status: ${{ needs.setup.result }}" + echo "Runner status: ${{ needs.check_runners.result }}" + + # Necessary to get the correct branch name and commit SHA for `workflow_run` event + # We also take into account the `push` event (we might want to test some changes in a branch) + - name: Prepare custom environment variables + shell: bash + # For the meaning of these environment variables, see the job `Setup` + run: | + CI_BRANCH_PUSH=${{ github.event.ref }} + CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''} + CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }} + CI_SHA_PUSH=${{ github.event.head_commit.id }} + CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }} + echo $CI_BRANCH_PUSH + echo $CI_BRANCH_WORKFLOW_RUN + echo $CI_SHA_PUSH + echo $CI_SHA_WORKFLOW_RUN + [[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV + [[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV + + - name: print environment variables + run: | + echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}" + echo "env.CI_SHA = ${{ env.CI_SHA }}" + + - uses: actions/checkout@v3 + # To avoid failure when multiple commits are merged into `main` in a short period of time. + # Checking out to an old commit beyond the fetch depth will get an error `fatal: reference is not a tree: ... + # (Only required for `workflow_run` event, where we get the latest HEAD on `main` instead of the event commit) + with: + fetch-depth: 20 + + - name: Update clone using environment variables + run: | + echo "original branch = $(git branch --show-current)" + git fetch && git checkout ${{ env.CI_BRANCH }} + echo "updated branch = $(git branch --show-current)" + git checkout ${{ env.CI_SHA }} + echo "log = $(git log -n 1)" + + - uses: actions/download-artifact@v3 + - name: Send message to Slack + env: + CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }} + CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }} + CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }} + CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }} + CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }} + ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }} + CI_EVENT: push + CI_TITLE_PUSH: ${{ github.event.head_commit.message }} + CI_TITLE_WORKFLOW_RUN: ${{ github.event.workflow_run.head_commit.message }} + CI_SHA: ${{ env.CI_SHA }} + RUNNER_STATUS: ${{ needs.check_runner_status.result }} + RUNNER_ENV_STATUS: ${{ needs.check_runners.result }} + SETUP_STATUS: ${{ needs.setup.result }} + + # We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change + # `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`. + run: | + pip install slack_sdk + pip show slack_sdk + python utils/notification_service.py "${{ needs.setup.outputs.matrix }}" diff --git a/OPERA/transformers-4.29.2/.github/workflows/self-scheduled.yml b/OPERA/transformers-4.29.2/.github/workflows/self-scheduled.yml new file mode 100644 index 0000000000000000000000000000000000000000..7970a0df44af18cfc7a86ecc8533677ef82221eb --- /dev/null +++ b/OPERA/transformers-4.29.2/.github/workflows/self-scheduled.yml @@ -0,0 +1,509 @@ +name: Self-hosted runner (scheduled) + +# Note that each job's dependencies go into a corresponding docker file. +# +# For example for `run_all_tests_torch_cuda_extensions_gpu` the docker image is +# `huggingface/transformers-pytorch-deepspeed-latest-gpu`, which can be found at +# `docker/transformers-pytorch-deepspeed-latest-gpu/Dockerfile` + +on: + repository_dispatch: + schedule: + - cron: "17 2 * * *" + push: + branches: + - run_scheduled_ci* + +env: + HF_HOME: /mnt/cache + TRANSFORMERS_IS_CI: yes + OMP_NUM_THREADS: 8 + MKL_NUM_THREADS: 8 + RUN_SLOW: yes + SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }} + TF_FORCE_GPU_ALLOW_GROWTH: true + RUN_PT_TF_CROSS_TESTS: 1 + +jobs: + check_runner_status: + name: Check Runner Status + runs-on: ubuntu-latest + steps: + - name: Checkout transformers + uses: actions/checkout@v3 + with: + fetch-depth: 2 + + - name: Check Runner Status + run: python utils/check_self_hosted_runner.py --target_runners single-gpu-scheduled-ci-runner-docker,multi-gpu-scheduled-ci-runner-docker --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }} + + check_runners: + name: Check Runners + needs: check_runner_status + strategy: + matrix: + machine_type: [single-gpu, multi-gpu] + runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }} + container: + image: huggingface/transformers-all-latest-gpu + options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ + steps: + - name: NVIDIA-SMI + run: | + nvidia-smi + + setup: + name: Setup + needs: check_runners + strategy: + matrix: + machine_type: [single-gpu, multi-gpu] + runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }} + container: + image: huggingface/transformers-all-latest-gpu + options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ + outputs: + matrix: ${{ steps.set-matrix.outputs.matrix }} + steps: + - name: Update clone + working-directory: /transformers + run: | + git fetch && git checkout ${{ github.sha }} + + - name: Cleanup + working-directory: /transformers + run: | + rm -rf tests/__pycache__ + rm -rf tests/models/__pycache__ + rm -rf reports + + - name: Show installed libraries and their versions + working-directory: /transformers + run: pip freeze + + - id: set-matrix + name: Identify models to test + working-directory: /transformers/tests + run: | + echo "matrix=$(python3 -c 'import os; tests = os.getcwd(); model_tests = os.listdir(os.path.join(tests, "models")); d1 = sorted(list(filter(os.path.isdir, os.listdir(tests)))); d2 = sorted(list(filter(os.path.isdir, [f"models/{x}" for x in model_tests]))); d1.remove("models"); d = d2 + d1; print(d)')" >> $GITHUB_OUTPUT + + - name: NVIDIA-SMI + run: | + nvidia-smi + + run_tests_single_gpu: + name: Model tests + strategy: + fail-fast: false + matrix: + folders: ${{ fromJson(needs.setup.outputs.matrix) }} + machine_type: [single-gpu] + runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }} + container: + image: huggingface/transformers-all-latest-gpu + options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ + needs: setup + steps: + - name: Echo folder ${{ matrix.folders }} + shell: bash + # For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to + # set the artifact folder names (because the character `/` is not allowed). + run: | + echo "${{ matrix.folders }}" + matrix_folders=${{ matrix.folders }} + matrix_folders=${matrix_folders/'models/'/'models_'} + echo "$matrix_folders" + echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV + + - name: Update clone + working-directory: /transformers + run: git fetch && git checkout ${{ github.sha }} + + - name: NVIDIA-SMI + run: | + nvidia-smi + + - name: Environment + working-directory: /transformers + run: | + python3 utils/print_env.py + + - name: Show installed libraries and their versions + working-directory: /transformers + run: pip freeze + + - name: Run all tests on GPU + working-directory: /transformers + run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }} + + - name: Failure short reports + if: ${{ failure() }} + continue-on-error: true + run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt + + - name: Test suite reports artifacts + if: ${{ always() }} + uses: actions/upload-artifact@v3 + with: + name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports + path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} + + run_tests_multi_gpu: + name: Model tests + strategy: + fail-fast: false + matrix: + folders: ${{ fromJson(needs.setup.outputs.matrix) }} + machine_type: [multi-gpu] + runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }} + container: + image: huggingface/transformers-all-latest-gpu + options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ + needs: setup + steps: + - name: Echo folder ${{ matrix.folders }} + shell: bash + # For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to + # set the artifact folder names (because the character `/` is not allowed). + run: | + echo "${{ matrix.folders }}" + matrix_folders=${{ matrix.folders }} + matrix_folders=${matrix_folders/'models/'/'models_'} + echo "$matrix_folders" + echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV + + - name: Update clone + working-directory: /transformers + run: git fetch && git checkout ${{ github.sha }} + + - name: NVIDIA-SMI + run: | + nvidia-smi + + - name: Environment + working-directory: /transformers + run: | + python3 utils/print_env.py + + - name: Show installed libraries and their versions + working-directory: /transformers + run: pip freeze + + - name: Run all tests on GPU + working-directory: /transformers + run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }} + + - name: Failure short reports + if: ${{ failure() }} + continue-on-error: true + run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt + + - name: Test suite reports artifacts + if: ${{ always() }} + uses: actions/upload-artifact@v3 + with: + name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports + path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} + + run_examples_gpu: + name: Examples directory + strategy: + fail-fast: false + matrix: + machine_type: [single-gpu] + runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }} + container: + image: huggingface/transformers-all-latest-gpu + options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ + needs: setup + steps: + - name: Update clone + working-directory: /transformers + run: git fetch && git checkout ${{ github.sha }} + + - name: NVIDIA-SMI + run: | + nvidia-smi + + - name: Environment + working-directory: /transformers + run: | + python3 utils/print_env.py + + - name: Show installed libraries and their versions + working-directory: /transformers + run: pip freeze + + - name: Run examples tests on GPU + working-directory: /transformers + run: | + pip install -r examples/pytorch/_tests_requirements.txt + python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_examples_gpu examples/pytorch + + - name: Failure short reports + if: ${{ failure() }} + continue-on-error: true + run: cat /transformers/reports/${{ matrix.machine_type }}_examples_gpu/failures_short.txt + + - name: Test suite reports artifacts + if: ${{ always() }} + uses: actions/upload-artifact@v3 + with: + name: ${{ matrix.machine_type }}_run_examples_gpu + path: /transformers/reports/${{ matrix.machine_type }}_examples_gpu + + run_pipelines_torch_gpu: + name: PyTorch pipelines + strategy: + fail-fast: false + matrix: + machine_type: [single-gpu, multi-gpu] + runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }} + container: + image: huggingface/transformers-pytorch-gpu + options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ + needs: setup + steps: + - name: Update clone + working-directory: /transformers + run: git fetch && git checkout ${{ github.sha }} + + - name: NVIDIA-SMI + run: | + nvidia-smi + + - name: Environment + working-directory: /transformers + run: | + python3 utils/print_env.py + + - name: Show installed libraries and their versions + working-directory: /transformers + run: pip freeze + + - name: Run all pipeline tests on GPU + working-directory: /transformers + run: | + python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ matrix.machine_type }}_tests_torch_pipeline_gpu tests/pipelines + + - name: Failure short reports + if: ${{ failure() }} + continue-on-error: true + run: cat /transformers/reports/${{ matrix.machine_type }}_tests_torch_pipeline_gpu/failures_short.txt + + - name: Test suite reports artifacts + if: ${{ always() }} + uses: actions/upload-artifact@v3 + with: + name: ${{ matrix.machine_type }}_run_tests_torch_pipeline_gpu + path: /transformers/reports/${{ matrix.machine_type }}_tests_torch_pipeline_gpu + + run_pipelines_tf_gpu: + name: TensorFlow pipelines + strategy: + fail-fast: false + matrix: + machine_type: [single-gpu, multi-gpu] + runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }} + container: + image: huggingface/transformers-tensorflow-gpu + options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ + needs: setup + steps: + - name: Update clone + working-directory: /transformers + run: | + git fetch && git checkout ${{ github.sha }} + + - name: NVIDIA-SMI + run: | + nvidia-smi + + - name: Environment + working-directory: /transformers + run: | + python3 utils/print_env.py + + - name: Show installed libraries and their versions + working-directory: /transformers + run: pip freeze + + - name: Run all pipeline tests on GPU + working-directory: /transformers + run: | + python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ matrix.machine_type }}_tests_tf_pipeline_gpu tests/pipelines + + - name: Failure short reports + if: ${{ always() }} + run: | + cat /transformers/reports/${{ matrix.machine_type }}_tests_tf_pipeline_gpu/failures_short.txt + + - name: Test suite reports artifacts + if: ${{ always() }} + uses: actions/upload-artifact@v3 + with: + name: ${{ matrix.machine_type }}_run_tests_tf_pipeline_gpu + path: /transformers/reports/${{ matrix.machine_type }}_tests_tf_pipeline_gpu + + run_all_tests_torch_cuda_extensions_gpu: + name: Torch CUDA extension tests + strategy: + fail-fast: false + matrix: + machine_type: [single-gpu, multi-gpu] + runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }} + needs: setup + container: + image: huggingface/transformers-pytorch-deepspeed-latest-gpu + options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ + steps: + - name: Update clone + working-directory: /workspace/transformers + run: git fetch && git checkout ${{ github.sha }} + + - name: Remove cached torch extensions + run: rm -rf /github/home/.cache/torch_extensions/ + + # To avoid unknown test failures + - name: Pre build DeepSpeed *again* + working-directory: /workspace + run: | + python3 -m pip uninstall -y deepspeed + DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_UTILS=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check + + - name: NVIDIA-SMI + run: | + nvidia-smi + + - name: Environment + working-directory: /workspace/transformers + run: | + python utils/print_env.py + + - name: Show installed libraries and their versions + working-directory: /workspace/transformers + run: pip freeze + + - name: Run all tests on GPU + working-directory: /workspace/transformers + run: | + python -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended + + - name: Failure short reports + if: ${{ failure() }} + continue-on-error: true + run: cat /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu/failures_short.txt + + - name: Test suite reports artifacts + if: ${{ always() }} + uses: actions/upload-artifact@v3 + with: + name: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports + path: /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu + + run_extract_warnings: + name: Extract warnings in CI artifacts + runs-on: ubuntu-latest + if: always() + needs: [ + check_runner_status, + check_runners, + setup, + run_tests_single_gpu, + run_tests_multi_gpu, + run_examples_gpu, + run_pipelines_tf_gpu, + run_pipelines_torch_gpu, + run_all_tests_torch_cuda_extensions_gpu + ] + steps: + - name: Checkout transformers + uses: actions/checkout@v3 + with: + fetch-depth: 2 + + - name: Install transformers + run: pip install transformers + + - name: Show installed libraries and their versions + run: pip freeze + + - name: Create output directory + run: mkdir warnings_in_ci + + - uses: actions/download-artifact@v3 + with: + path: warnings_in_ci + + - name: Show artifacts + run: echo "$(python3 -c 'import os; d = os.listdir(); print(d)')" + working-directory: warnings_in_ci + + - name: Extract warnings in CI artifacts + run: | + python3 utils/extract_warnings.py --workflow_run_id ${{ github.run_id }} --output_dir warnings_in_ci --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }} --from_gh + echo "$(python3 -c 'import os; import json; fp = open("warnings_in_ci/selected_warnings.json"); d = json.load(fp); d = "\n".join(d) ;print(d)')" + + - name: Upload artifact + if: ${{ always() }} + uses: actions/upload-artifact@v3 + with: + name: warnings_in_ci + path: warnings_in_ci/selected_warnings.json + + send_results: + name: Send results to webhook + runs-on: ubuntu-latest + if: always() + needs: [ + check_runner_status, + check_runners, + setup, + run_tests_single_gpu, + run_tests_multi_gpu, + run_examples_gpu, + run_pipelines_tf_gpu, + run_pipelines_torch_gpu, + run_all_tests_torch_cuda_extensions_gpu, + run_extract_warnings + ] + steps: + - name: Preliminary job status + shell: bash + # For the meaning of these environment variables, see the job `Setup` + run: | + echo "Runner availability: ${{ needs.check_runner_status.result }}" + echo "Runner status: ${{ needs.check_runners.result }}" + echo "Setup status: ${{ needs.setup.result }}" + + - uses: actions/checkout@v3 + - uses: actions/download-artifact@v3 + - name: Send message to Slack + env: + CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }} + CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }} + CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }} + CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }} + CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }} + ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }} + CI_EVENT: scheduled + CI_SHA: ${{ github.sha }} + CI_WORKFLOW_REF: ${{ github.workflow_ref }} + RUNNER_STATUS: ${{ needs.check_runner_status.result }} + RUNNER_ENV_STATUS: ${{ needs.check_runners.result }} + SETUP_STATUS: ${{ needs.setup.result }} + # We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change + # `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`. + run: | + sudo apt-get install -y curl + pip install slack_sdk + pip show slack_sdk + python utils/notification_service.py "${{ needs.setup.outputs.matrix }}" + + # Upload complete failure tables, as they might be big and only truncated versions could be sent to Slack. + - name: Failure table artifacts + if: ${{ always() }} + uses: actions/upload-artifact@v3 + with: + name: test_failure_tables + path: test_failure_tables diff --git a/OPERA/transformers-4.29.2/.github/workflows/stale.yml b/OPERA/transformers-4.29.2/.github/workflows/stale.yml new file mode 100644 index 0000000000000000000000000000000000000000..efe7e1003146cf34167d9b072eb0b014671afed0 --- /dev/null +++ b/OPERA/transformers-4.29.2/.github/workflows/stale.yml @@ -0,0 +1,27 @@ +name: Stale Bot + +on: + schedule: + - cron: "0 15 * * *" + +jobs: + close_stale_issues: + name: Close Stale Issues + if: github.repository == 'huggingface/transformers' + runs-on: ubuntu-latest + env: + GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} + steps: + - uses: actions/checkout@v3 + + - name: Setup Python + uses: actions/setup-python@v4 + with: + python-version: 3.7 + + - name: Install requirements + run: | + pip install PyGithub + - name: Close stale issues + run: | + python scripts/stale.py diff --git a/OPERA/transformers-4.29.2/.github/workflows/update_metdata.yml b/OPERA/transformers-4.29.2/.github/workflows/update_metdata.yml new file mode 100644 index 0000000000000000000000000000000000000000..c1c71ff76bd218c778aef9340b93a05f442d8719 --- /dev/null +++ b/OPERA/transformers-4.29.2/.github/workflows/update_metdata.yml @@ -0,0 +1,27 @@ +name: Update Transformers metadata + +on: + push: + branches: + - main + - update_transformers_metadata* + +jobs: + build_and_package: + runs-on: ubuntu-latest + defaults: + run: + shell: bash -l {0} + + steps: + - uses: actions/checkout@v3 + + - name: Setup environment + run: | + pip install --upgrade pip + pip install datasets pandas + pip install .[torch,tf,flax] + + - name: Update metadata + run: | + python utils/update_metadata.py --token ${{ secrets.SYLVAIN_HF_TOKEN }} --commit_sha ${{ github.sha }} diff --git a/OPERA/transformers-4.29.2/.gitignore b/OPERA/transformers-4.29.2/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..2d3323a7d2c145fec3508d3e1ef5fbc8fbf5b43a --- /dev/null +++ b/OPERA/transformers-4.29.2/.gitignore @@ -0,0 +1,169 @@ +# Initially taken from Github's Python gitignore file + +# Byte-compiled / optimized / DLL files +__pycache__/ +*.py[cod] +*$py.class + +# C extensions +*.so + +# tests and logs +tests/fixtures/cached_*_text.txt +logs/ +lightning_logs/ +lang_code_data/ + +# Distribution / packaging +.Python +build/ +develop-eggs/ +dist/ +downloads/ +eggs/ +.eggs/ +lib/ +lib64/ +parts/ +sdist/ +var/ +wheels/ +*.egg-info/ +.installed.cfg +*.egg +MANIFEST + +# PyInstaller +# Usually these files are written by a python script from a template +# before PyInstaller builds the exe, so as to inject date/other infos into it. +*.manifest +*.spec + +# Installer logs +pip-log.txt +pip-delete-this-directory.txt + +# Unit test / coverage reports +htmlcov/ +.tox/ +.nox/ +.coverage +.coverage.* +.cache +nosetests.xml +coverage.xml +*.cover +.hypothesis/ +.pytest_cache/ + +# Translations +*.mo +*.pot + +# Django stuff: +*.log +local_settings.py +db.sqlite3 + +# Flask stuff: +instance/ +.webassets-cache + +# Scrapy stuff: +.scrapy + +# Sphinx documentation +docs/_build/ + +# PyBuilder +target/ + +# Jupyter Notebook +.ipynb_checkpoints + +# IPython +profile_default/ +ipython_config.py + +# pyenv +.python-version + +# celery beat schedule file +celerybeat-schedule + +# SageMath parsed files +*.sage.py + +# Environments +.env +.venv +env/ +venv/ +ENV/ +env.bak/ +venv.bak/ + +# Spyder project settings +.spyderproject +.spyproject + +# Rope project settings +.ropeproject + +# mkdocs documentation +/site + +# mypy +.mypy_cache/ +.dmypy.json +dmypy.json + +# Pyre type checker +.pyre/ + +# vscode +.vs +.vscode + +# Pycharm +.idea + +# TF code +tensorflow_code + +# Models +proc_data + +# examples +runs +/runs_old +/wandb +/examples/runs +/examples/**/*.args +/examples/rag/sweep + +# data +/data +serialization_dir + +# emacs +*.*~ +debug.env + +# vim +.*.swp + +#ctags +tags + +# pre-commit +.pre-commit* + +# .lock +*.lock + +# DS_Store (MacOS) +.DS_Store + +# ruff +.ruff_cache \ No newline at end of file diff --git a/OPERA/transformers-4.29.2/CITATION.cff b/OPERA/transformers-4.29.2/CITATION.cff new file mode 100644 index 0000000000000000000000000000000000000000..b4d5156786f94df7ca0aebe5322b17dbb1521cb3 --- /dev/null +++ b/OPERA/transformers-4.29.2/CITATION.cff @@ -0,0 +1,82 @@ +cff-version: "1.2.0" +date-released: 2020-10 +message: "If you use this software, please cite it using these metadata." +title: "Transformers: State-of-the-Art Natural Language Processing" +url: "https://github.com/huggingface/transformers" +authors: + - family-names: Wolf + given-names: Thomas + - family-names: Debut + given-names: Lysandre + - family-names: Sanh + given-names: Victor + - family-names: Chaumond + given-names: Julien + - family-names: Delangue + given-names: Clement + - family-names: Moi + given-names: Anthony + - family-names: Cistac + given-names: Perric + - family-names: Ma + given-names: Clara + - family-names: Jernite + given-names: Yacine + - family-names: Plu + given-names: Julien + - family-names: Xu + given-names: Canwen + - family-names: "Le Scao" + given-names: Teven + - family-names: Gugger + given-names: Sylvain + - family-names: Drame + given-names: Mariama + - family-names: Lhoest + given-names: Quentin + - family-names: Rush + given-names: "Alexander M." +preferred-citation: + type: conference-paper + authors: + - family-names: Wolf + given-names: Thomas + - family-names: Debut + given-names: Lysandre + - family-names: Sanh + given-names: Victor + - family-names: Chaumond + given-names: Julien + - family-names: Delangue + given-names: Clement + - family-names: Moi + given-names: Anthony + - family-names: Cistac + given-names: Perric + - family-names: Ma + given-names: Clara + - family-names: Jernite + given-names: Yacine + - family-names: Plu + given-names: Julien + - family-names: Xu + given-names: Canwen + - family-names: "Le Scao" + given-names: Teven + - family-names: Gugger + given-names: Sylvain + - family-names: Drame + given-names: Mariama + - family-names: Lhoest + given-names: Quentin + - family-names: Rush + given-names: "Alexander M." + booktitle: "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations" + month: 10 + start: 38 + end: 45 + title: "Transformers: State-of-the-Art Natural Language Processing" + year: 2020 + publisher: "Association for Computational Linguistics" + url: "https://www.aclweb.org/anthology/2020.emnlp-demos.6" + address: "Online" diff --git a/OPERA/transformers-4.29.2/CODE_OF_CONDUCT.md b/OPERA/transformers-4.29.2/CODE_OF_CONDUCT.md new file mode 100644 index 0000000000000000000000000000000000000000..b23f3150a5a6987a74acc7bb31df8c9bf1a48d57 --- /dev/null +++ b/OPERA/transformers-4.29.2/CODE_OF_CONDUCT.md @@ -0,0 +1,133 @@ + +# Contributor Covenant Code of Conduct + +## Our Pledge + +We as members, contributors, and leaders pledge to make participation in our +community a harassment-free experience for everyone, regardless of age, body +size, visible or invisible disability, ethnicity, sex characteristics, gender +identity and expression, level of experience, education, socio-economic status, +nationality, personal appearance, race, caste, color, religion, or sexual +identity and orientation. + +We pledge to act and interact in ways that contribute to an open, welcoming, +diverse, inclusive, and healthy community. + +## Our Standards + +Examples of behavior that contributes to a positive environment for our +community include: + +* Demonstrating empathy and kindness toward other people +* Being respectful of differing opinions, viewpoints, and experiences +* Giving and gracefully accepting constructive feedback +* Accepting responsibility and apologizing to those affected by our mistakes, + and learning from the experience +* Focusing on what is best not just for us as individuals, but for the overall + community + +Examples of unacceptable behavior include: + +* The use of sexualized language or imagery, and sexual attention or advances of + any kind +* Trolling, insulting or derogatory comments, and personal or political attacks +* Public or private harassment +* Publishing others' private information, such as a physical or email address, + without their explicit permission +* Other conduct which could reasonably be considered inappropriate in a + professional setting + +## Enforcement Responsibilities + +Community leaders are responsible for clarifying and enforcing our standards of +acceptable behavior and will take appropriate and fair corrective action in +response to any behavior that they deem inappropriate, threatening, offensive, +or harmful. + +Community leaders have the right and responsibility to remove, edit, or reject +comments, commits, code, wiki edits, issues, and other contributions that are +not aligned to this Code of Conduct, and will communicate reasons for moderation +decisions when appropriate. + +## Scope + +This Code of Conduct applies within all community spaces, and also applies when +an individual is officially representing the community in public spaces. +Examples of representing our community include using an official e-mail address, +posting via an official social media account, or acting as an appointed +representative at an online or offline event. + +## Enforcement + +Instances of abusive, harassing, or otherwise unacceptable behavior may be +reported to the community leaders responsible for enforcement at +feedback@huggingface.co. +All complaints will be reviewed and investigated promptly and fairly. + +All community leaders are obligated to respect the privacy and security of the +reporter of any incident. + +## Enforcement Guidelines + +Community leaders will follow these Community Impact Guidelines in determining +the consequences for any action they deem in violation of this Code of Conduct: + +### 1. Correction + +**Community Impact**: Use of inappropriate language or other behavior deemed +unprofessional or unwelcome in the community. + +**Consequence**: A private, written warning from community leaders, providing +clarity around the nature of the violation and an explanation of why the +behavior was inappropriate. A public apology may be requested. + +### 2. Warning + +**Community Impact**: A violation through a single incident or series of +actions. + +**Consequence**: A warning with consequences for continued behavior. No +interaction with the people involved, including unsolicited interaction with +those enforcing the Code of Conduct, for a specified period of time. This +includes avoiding interactions in community spaces as well as external channels +like social media. Violating these terms may lead to a temporary or permanent +ban. + +### 3. Temporary Ban + +**Community Impact**: A serious violation of community standards, including +sustained inappropriate behavior. + +**Consequence**: A temporary ban from any sort of interaction or public +communication with the community for a specified period of time. No public or +private interaction with the people involved, including unsolicited interaction +with those enforcing the Code of Conduct, is allowed during this period. +Violating these terms may lead to a permanent ban. + +### 4. Permanent Ban + +**Community Impact**: Demonstrating a pattern of violation of community +standards, including sustained inappropriate behavior, harassment of an +individual, or aggression toward or disparagement of classes of individuals. + +**Consequence**: A permanent ban from any sort of public interaction within the +community. + +## Attribution + +This Code of Conduct is adapted from the [Contributor Covenant][homepage], +version 2.1, available at +[https://www.contributor-covenant.org/version/2/1/code_of_conduct.html][v2.1]. + +Community Impact Guidelines were inspired by +[Mozilla's code of conduct enforcement ladder][Mozilla CoC]. + +For answers to common questions about this code of conduct, see the FAQ at +[https://www.contributor-covenant.org/faq][FAQ]. Translations are available at +[https://www.contributor-covenant.org/translations][translations]. + +[homepage]: https://www.contributor-covenant.org +[v2.1]: https://www.contributor-covenant.org/version/2/1/code_of_conduct.html +[Mozilla CoC]: https://github.com/mozilla/diversity +[FAQ]: https://www.contributor-covenant.org/faq +[translations]: https://www.contributor-covenant.org/translations diff --git a/OPERA/transformers-4.29.2/CONTRIBUTING.md b/OPERA/transformers-4.29.2/CONTRIBUTING.md new file mode 100644 index 0000000000000000000000000000000000000000..9635ae09d739762d61f073dd9325cb6772c540aa --- /dev/null +++ b/OPERA/transformers-4.29.2/CONTRIBUTING.md @@ -0,0 +1,395 @@ + + +# Contribute to 🤗 Transformers + +Everyone is welcome to contribute, and we value everybody's contribution. Code +contributions are not the only way to help the community. Answering questions, helping +others, and improving the documentation are also immensely valuable. + +It also helps us if you spread the word! Reference the library in blog posts +about the awesome projects it made possible, shout out on Twitter every time it has +helped you, or simply ⭐️ the repository to say thank you. + +However you choose to contribute, please be mindful and respect our +[code of conduct](https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md). + +**This guide was heavily inspired by the awesome [scikit-learn guide to contributing](https://github.com/scikit-learn/scikit-learn/blob/main/CONTRIBUTING.md).** + +## Ways to contribute + +There are several ways you can contribute to 🤗 Transformers: + +* Fix outstanding issues with the existing code. +* Submit issues related to bugs or desired new features. +* Implement new models. +* Contribute to the examples or to the documentation. + +If you don't know where to start, there is a special [Good First +Issue](https://github.com/huggingface/transformers/contribute) listing. It will give you a list of +open issues that are beginner-friendly and help you start contributing to open-source. Just comment in the issue that you'd like to work +on it. + +For something slightly more challenging, you can also take a look at the [Good Second Issue](https://github.com/huggingface/transformers/labels/Good%20Second%20Issue) list. In general though, if you feel like you know what you're doing, go for it and we'll help you get there! 🚀 + +> All contributions are equally valuable to the community. 🥰 + +## Fixing outstanding issues + +If you notice an issue with the existing code and have a fix in mind, feel free to [start contributing](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md/#create-a-pull-request) and open a Pull Request! + +## Submitting a bug-related issue or feature request + +Do your best to follow these guidelines when submitting a bug-related issue or a feature +request. It will make it easier for us to come back to you quickly and with good +feedback. + +### Did you find a bug? + +The 🤗 Transformers library is robust and reliable thanks to users who report the problems they encounter. + +Before you report an issue, we would really appreciate it if you could **make sure the bug was not +already reported** (use the search bar on GitHub under Issues). Your issue should also be related to bugs in the library itself, and not your code. If you're unsure whether the bug is in your code or the library, please ask on the [forum](https://discuss.huggingface.co/) first. This helps us respond quicker to fixing issues related to the library versus general questions. + +Once you've confirmed the bug hasn't already been reported, please include the following information in your issue so we can quickly resolve it: + +* Your **OS type and version** and **Python**, **PyTorch** and + **TensorFlow** versions when applicable. +* A short, self-contained, code snippet that allows us to reproduce the bug in + less than 30s. +* The *full* traceback if an exception is raised. +* Attach any other additional information, like screenshots, you think may help. + +To get the OS and software versions automatically, run the following command: + +```bash +transformers-cli env +``` + +You can also run the same command from the root of the repository: + +```bash +python src/transformers/commands/transformers_cli.py env +``` + +### Do you want a new feature? + +If there is a new feature you'd like to see in 🤗 Transformers, please open an issue and describe: + +1. What is the *motivation* behind this feature? Is it related to a problem or frustration with the library? Is it a feature related to something you need for a project? Is it something you worked on and think it could benefit the community? + + Whatever it is, we'd love to hear about it! + +2. Describe your requested feature in as much detail as possible. The more you can tell us about it, the better we'll be able to help you. +3. Provide a *code snippet* that demonstrates the features usage. +4. If the feature is related to a paper, please include a link. + +If your issue is well written we're already 80% of the way there by the time you create it. + +We have added [templates](https://github.com/huggingface/transformers/tree/main/templates) to help you get started with your issue. + +## Do you want to implement a new model? + +New models are constantly released and if you want to implement a new model, please provide the following information + +* A short description of the model and link to the paper. +* Link to the implementation if it is open-sourced. +* Link to the model weights if they are available. + +If you are willing to contribute the model yourself, let us know so we can help you add it to 🤗 Transformers! + +We have added a [detailed guide and templates](https://github.com/huggingface/transformers/tree/main/templates) to help you get started with adding a new model, and we also have a more technical guide for [how to add a model to 🤗 Transformers](https://huggingface.co/docs/transformers/add_new_model). + +## Do you want to add documentation? + +We're always looking for improvements to the documentation that make it more clear and accurate. Please let us know how the documentation can be improved such as typos and any content that is missing, unclear or inaccurate. We'll be happy to make the changes or help you make a contribution if you're interested! + +For more details about how to generate, build, and write the documentation, take a look at the documentation [README](https://github.com/huggingface/transformers/tree/main/docs). + +## Create a Pull Request + +Before writing any code, we strongly advise you to search through the existing PRs or +issues to make sure nobody is already working on the same thing. If you are +unsure, it is always a good idea to open an issue to get some feedback. + +You will need basic `git` proficiency to contribute to +🤗 Transformers. While `git` is not the easiest tool to use, it has the greatest +manual. Type `git --help` in a shell and enjoy! If you prefer books, [Pro +Git](https://git-scm.com/book/en/v2) is a very good reference. + +You'll need **[Python 3.7]((https://github.com/huggingface/transformers/blob/main/setup.py#L426))** or above to contribute to 🤗 Transformers. Follow the steps below to start contributing: + +1. Fork the [repository](https://github.com/huggingface/transformers) by + clicking on the **[Fork](https://github.com/huggingface/transformers/fork)** button on the repository's page. This creates a copy of the code + under your GitHub user account. + +2. Clone your fork to your local disk, and add the base repository as a remote: + + ```bash + git clone git@github.com:/transformers.git + cd transformers + git remote add upstream https://github.com/huggingface/transformers.git + ``` + +3. Create a new branch to hold your development changes: + + ```bash + git checkout -b a-descriptive-name-for-my-changes + ``` + + 🚨 **Do not** work on the `main` branch! + +4. Set up a development environment by running the following command in a virtual environment: + + ```bash + pip install -e ".[dev]" + ``` + + If 🤗 Transformers was already installed in the virtual environment, remove + it with `pip uninstall transformers` before reinstalling it in editable + mode with the `-e` flag. + + Depending on your OS, and since the number of optional dependencies of Transformers is growing, you might get a + failure with this command. If that's the case make sure to install the Deep Learning framework you are working with + (PyTorch, TensorFlow and/or Flax) then do: + + ```bash + pip install -e ".[quality]" + ``` + + which should be enough for most use cases. + +5. Develop the features on your branch. + + As you work on your code, you should make sure the test suite + passes. Run the tests impacted by your changes like this: + + ```bash + pytest tests/.py + ``` + + For more information about tests, check out the + [Testing](https://huggingface.co/docs/transformers/testing) guide. + + 🤗 Transformers relies on `black` and `ruff` to format its source code + consistently. After you make changes, apply automatic style corrections and code verifications + that can't be automated in one go with: + + ```bash + make fixup + ``` + + This target is also optimized to only work with files modified by the PR you're working on. + + If you prefer to run the checks one after the other, the following command applies the + style corrections: + + ```bash + make style + ``` + + 🤗 Transformers also uses `ruff` and a few custom scripts to check for coding mistakes. Quality + controls are run by the CI, but you can run the same checks with: + + ```bash + make quality + ``` + + Finally, we have a lot of scripts to make sure we didn't forget to update + some files when adding a new model. You can run these scripts with: + + ```bash + make repo-consistency + ``` + + To learn more about those checks and how to fix any issues with them, check out the + [Checks on a Pull Request](https://huggingface.co/docs/transformers/pr_checks) guide. + + If you're modifying documents under `docs/source` directory, make sure the documentation can still be built. This check will also run in the CI when you open a pull request. To run a local check + make sure you install the documentation builder: + + ```bash + pip install ".[docs]" + ``` + + Run the following command from the root of the repository: + + ```bash + doc-builder build transformers docs/source/en --build_dir ~/tmp/test-build + ``` + + This will build the documentation in the `~/tmp/test-build` folder where you can inspect the generated + Markdown files with your favorite editor. You can also preview the docs on GitHub when you open a pull request. + + Once you're happy with your changes, add changed files with `git add` and + record your changes locally with `git commit`: + + ```bash + git add modified_file.py + git commit + ``` + + Please remember to write [good commit + messages](https://chris.beams.io/posts/git-commit/) to clearly communicate the changes you made! + + To keep your copy of the code up to date with the original + repository, rebase your branch on `upstream/branch` *before* you open a pull request or if requested by a maintainer: + + ```bash + git fetch upstream + git rebase upstream/main + ``` + + Push your changes to your branch: + + ```bash + git push -u origin a-descriptive-name-for-my-changes + ``` + + If you've already opened a pull request, you'll need to force push with the `--force` flag. Otherwise, if the pull request hasn't been opened yet, you can just push your changes normally. + +6. Now you can go to your fork of the repository on GitHub and click on **Pull request** to open a pull request. Make sure you tick off all the boxes in our [checklist](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md/#pull-request-checklist) below. When you're ready, you can send your changes to the project maintainers for review. + +7. It's ok if maintainers request changes, it happens to our core contributors + too! So everyone can see the changes in the pull request, work in your local + branch and push the changes to your fork. They will automatically appear in + the pull request. + +### Pull request checklist + +☐ The pull request title should summarize your contribution.
+☐ If your pull request addresses an issue, please mention the issue number in the pull +request description to make sure they are linked (and people viewing the issue know you +are working on it).
+☐ To indicate a work in progress please prefix the title with `[WIP]`. These are +useful to avoid duplicated work, and to differentiate it from PRs ready to be merged. +☐ Make sure existing tests pass.
+☐ If adding a new feature, also add tests for it.
+ - If you are adding a new model, make sure you use + `ModelTester.all_model_classes = (MyModel, MyModelWithLMHead,...)` to trigger the common tests. + - If you are adding new `@slow` tests, make sure they pass using + `RUN_SLOW=1 python -m pytest tests/models/my_new_model/test_my_new_model.py`. + - If you are adding a new tokenizer, write tests and make sure + `RUN_SLOW=1 python -m pytest tests/models/{your_model_name}/test_tokenization_{your_model_name}.py` passes. + CircleCI does not run the slow tests, but GitHub Actions does every night!
+ +☐ All public methods must have informative docstrings (see +[`modeling_bert.py`](https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py) +for an example).
+☐ Due to the rapidly growing repository, don't add any images, videos and other +non-text files that'll significantly weigh down the repository. Instead, use a Hub +repository such as [`hf-internal-testing`](https://huggingface.co/hf-internal-testing) +to host these files and reference them by URL. We recommend placing documentation +related images in the following repository: +[huggingface/documentation-images](https://huggingface.co/datasets/huggingface/documentation-images). +You can open a PR on this dataset repostitory and ask a Hugging Face member to merge it. + +For more information about the checks run on a pull request, take a look at our [Checks on a Pull Request](https://huggingface.co/docs/transformers/pr_checks) guide. + +### Tests + +An extensive test suite is included to test the library behavior and several examples. Library tests can be found in +the [tests](https://github.com/huggingface/transformers/tree/main/tests) folder and examples tests in the +[examples](https://github.com/huggingface/transformers/tree/main/examples) folder. + +We like `pytest` and `pytest-xdist` because it's faster. From the root of the +repository, specify a *path to a subfolder or a test file* to run the test. + +```bash +python -m pytest -n auto --dist=loadfile -s -v ./tests/models/my_new_model +``` + +Similarly, for the `examples` directory, specify a *path to a subfolder or test file* to run the test. For example, the following command tests the text classification subfolder in the PyTorch `examples` directory: + +```bash +pip install -r examples/xxx/requirements.txt # only needed the first time +python -m pytest -n auto --dist=loadfile -s -v ./examples/pytorch/text-classification +``` + +In fact, this is actually how our `make test` and `make test-examples` commands are implemented (not including the `pip install`)! + +You can also specify a smaller set of tests in order to test only the feature +you're working on. + +By default, slow tests are skipped but you can set the `RUN_SLOW` environment variable to +`yes` to run them. This will download many gigabytes of models so make sure you +have enough disk space, a good internet connection or a lot of patience! + + + +Remember to specify a *path to a subfolder or a test file* to run the test. Otherwise, you'll run all the tests in the `tests` or `examples` folder, which will take a very long time! + + + +```bash +RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./tests/models/my_new_model +RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./examples/pytorch/text-classification +``` + +Like the slow tests, there are other environment variables available which not enabled by default during testing: +- `RUN_CUSTOM_TOKENIZERS`: Enables tests for custom tokenizers. +- `RUN_PT_FLAX_CROSS_TESTS`: Enables tests for PyTorch + Flax integration. +- `RUN_PT_TF_CROSS_TESTS`: Enables tests for TensorFlow + PyTorch integration. + +More environment variables and additional information can be found in the [testing_utils.py](src/transformers/testing_utils.py). + +🤗 Transformers uses `pytest` as a test runner only. It doesn't use any +`pytest`-specific features in the test suite itself. + +This means `unittest` is fully supported. Here's how to run tests with +`unittest`: + +```bash +python -m unittest discover -s tests -t . -v +python -m unittest discover -s examples -t examples -v +``` + +### Style guide + +For documentation strings, 🤗 Transformers follows the [Google Python Style Guide](https://google.github.io/styleguide/pyguide.html). +Check our [documentation writing guide](https://github.com/huggingface/transformers/tree/main/docs#writing-documentation---specification) +for more information. + +### Develop on Windows + +On Windows (unless you're working in [Windows Subsystem for Linux](https://learn.microsoft.com/en-us/windows/wsl/) or WSL), you need to configure git to transform Windows `CRLF` line endings to Linux `LF` line endings: + +```bash +git config core.autocrlf input +``` + +One way to run the `make` command on Windows is with MSYS2: + +1. [Download MSYS2](https://www.msys2.org/), and we assume it's installed in `C:\msys64`. +2. Open the command line `C:\msys64\msys2.exe` (it should be available from the **Start** menu). +3. Run in the shell: `pacman -Syu` and install `make` with `pacman -S make`. +4. Add `C:\msys64\usr\bin` to your PATH environment variable. + +You can now use `make` from any terminal (Powershell, cmd.exe, etc.)! 🎉 + +### Sync a forked repository with upstream main (the Hugging Face repository) + +When updating the main branch of a forked repository, please follow these steps to avoid pinging the upstream repository which adds reference notes to each upstream PR, and sends unnecessary notifications to the developers involved in these PRs. + +1. When possible, avoid syncing with the upstream using a branch and PR on the forked repository. Instead, merge directly into the forked main. +2. If a PR is absolutely necessary, use the following steps after checking out your branch: + +```bash +git checkout -b your-branch-for-syncing +git pull --squash --no-commit upstream main +git commit -m '' +git push --set-upstream origin your-branch-for-syncing +``` diff --git a/OPERA/transformers-4.29.2/ISSUES.md b/OPERA/transformers-4.29.2/ISSUES.md new file mode 100644 index 0000000000000000000000000000000000000000..7c36da3c6804c9874a50e2a2095a182ecef93882 --- /dev/null +++ b/OPERA/transformers-4.29.2/ISSUES.md @@ -0,0 +1,277 @@ + + +# How To Request Support + +This is an Open Source Project so please be mindful that like in any other project of this kind there is no obligation to answer all requests for help. + +However, we want to encourage you to ask for help whenever you think it's needed! We are happy about every question we get because it allows us to better understand your needs, possible misunderstandings, and most importantly a way for you to help us make this library better. That being said, this document's main purpose is to provide guidelines at how you can formulate your requests to increase your chances to be understood and to get support. + +There are two main venues to receive support: [the forums](https://discuss.huggingface.co/) and [the GitHub issues](https://github.com/huggingface/transformers/issues). + +## The Forums + +[The user forums](https://discuss.huggingface.co/) are supported by the wide community of the library users and backed up by developers when needed. + +If you have a difficulty with deploying this library or some questions, or you'd like to discuss a new feature, please first consider discussing those things at the forums. Only when you feel your subject matter has been crystalized and you still need support from the library developers do proceed to file an [issue](https://github.com/huggingface/transformers/issues). + +In particular all "Please explain" questions or objectively very user-specific feature requests belong to the forums. Here are some example of such questions: + +* "I would like to use a BertModel within a RL-Agent for a customer support service. How can I use a BertForMaskedLM in my ChatBotModel?" + +* "Could you please explain why T5 has no positional embedding matrix under T5Model?" + +* "How should I set my generation parameters for translation?" + +* "How to train T5 on De->En translation?" + + +## The GitHub Issues + +Everything which hints at a bug should be opened as an [issue](https://github.com/huggingface/transformers/issues). + +You are not required to read the following guidelines before opening an issue. However, if you notice that your issue doesn't get any replies, chances are that the developers have one or several difficulties with its quality. In this case, reading the following points and adjusting your issue accordingly could help. + +1. Before posting an issue, first search for already posted issues, since chances are someone has already asked a similar question before you. + + If you use Google your search query should be: + + ``` + "huggingface" "transformers" your query + ``` + + The first two quoted words tell Google to limit the search to the context of the Huggingface Transformers. The remainder is your query - most commonly this would be the error message the software fails with. We will go deeper into details shortly. + + The results of such a query will typically match GitHub issues, Hugging Face forums, StackExchange, and blogs. + + If you find relevant hints, you may choose to continue the discussion there if you have follow up questions. + + If what you found is similar but doesn't quite answer your problem, please, post a new issue and do include links to similar issues or forum discussions you may have found. + + Let's look at some examples: + + The error message, often referred to as an assertion, tells us what went wrong. Here is an example of an assertion: + + ```python + Traceback (most recent call last): + File "", line 1, in + File "/transformers/src/transformers/__init__.py", line 34, in + from . import dependency_versions_check + File "/transformers/src/transformers/dependency_versions_check.py", line 34, in + from .utils import is_tokenizers_available + File "/transformers/src/transformers/utils/import_utils.py", line 40, in + from tqdm.auto import tqdm + ModuleNotFoundError: No module named 'tqdm.auto' + ``` + + and it typically includes a traceback, so that we can see the full stack of calls the program made before it fails. This gives us the context to know why the program failed. + + Going back to the above example. If you received this error search, look at the very last line of the error which is: + + ```python + ModuleNotFoundError: No module named 'tqdm.auto' + ``` + + And now we can use it to do the searching on your favorite search engine: + + 1. first for `"huggingface" "transformers" "ModuleNotFoundError: No module named 'tqdm.auto'"` + 2. if you don't find relevant results, then search for just `"ModuleNotFoundError: No module named 'tqdm.auto'"` + 3. and finally if nothing still comes up, then remove the outside quotes: `ModuleNotFoundError: No module named 'tqdm.auto'` + + If the error includes any messages that include bits unique to your filesystem, always remove those in the search query since other users will not have the same filesystem as yours. For example: + + ```bash + python -c 'open("/tmp/wrong_path.txt", "r")' + Traceback (most recent call last): + File "", line 1, in + FileNotFoundError: [Errno 2] No such file or directory: '/tmp/wrong_path.txt' + ``` + Here you'd search for just: `"FileNotFoundError: [Errno 2] No such file or directory"` + + If the local information that you removed were inside the error message and you removed them you may need to remove double quotes since your query is no longer exact. So if the error message was something like: + + ```bash + ValueError: '/tmp/wrong_path.txt' cannot be found + ``` + + then you'd search for `"ValueError" "cannot be found"` + + As you search you will notice that when you don't use quotes often the search engines will return a variety of unrelated hits, which may or may not be what you want. + + Experiment with different ways and find which approach gives the most satisfactory results. + +2. Keep the issue short, providing the information that you think will aid the developers to understand your situation. Put yourself in the shoes of the person who has never seen your code or knows anything about your custom setup. This mental exercise will help to develop an intuition to what/what not to share" + +3. If there is a software failure, always provide the full traceback, for example: + + ```python + $ python -c 'import transformers' + Traceback (most recent call last): + File "", line 1, in + File "/transformers/src/transformers/__init__.py", line 34, in + from . import dependency_versions_check + File "/transformers/src/transformers/dependency_versions_check.py", line 34, in + from .utils import is_tokenizers_available + File "/transformers/src/transformers/utils/import_utils.py", line 40, in + from tqdm.auto import tqdm + ModuleNotFoundError: No module named 'tqdm.auto' + ``` + + As compared to providing just the last line of the error message, e.g.: + ```python + ModuleNotFoundError: No module named 'tqdm.auto' + ``` + which is not sufficient. + + If your application is running on more than one GPU (e.g. under `DistributedDataParallel`) and typically getting every log and traceback printed multiple times, please make sure that you paste only one copy of it. At times the traceback from parallel processes may get interleaved - so either disentangle these or change the loggers to log only for `local_rank==0` so that only one process logs things. + +4. When quoting a traceback, command line instructions and any type of code always enclose it in triple backticks inside the editor window, that is: + + ```` + ``` + git clone https://github.com/huggingface/transformers + cd transformers + pip install . + ``` + ```` + + If it's a command line with a long argument list, please consider breaking it down using backslashes and new lines. Here is an example of a good command line quote: + + ```bash + cd examples/seq2seq + python -m torch.distributed.launch --nproc_per_node=2 ./finetune_trainer.py \ + --model_name_or_path sshleifer/distill-mbart-en-ro-12-4 --data_dir wmt_en_ro \ + --output_dir output_dir --overwrite_output_dir \ + --do_train --n_train 500 --num_train_epochs 1 \ + --per_device_train_batch_size 1 --freeze_embeds \ + --src_lang en_XX --tgt_lang ro_RO --task translation \ + --fp16 --sharded_ddp + ``` + + If you don't break it up, one has to scroll horizontally which often makes it quite difficult to quickly see what's happening. + + The backslashes allow us to copy the command directly into the console to run it, without needing to edit it. + +5. Include only the important information that you think will help the developer to quickly identify the problem. + + For example applications often create huge amounts of logs. Ask yourself whether providing all or parts of the log is useful. + + Pasting a 100-1000 lines of log into the issue is an immediate turn off, since it will take a lot of time to figure out where the pertinent parts of the log are. + + Attaching a full log can be helpful if it's done as an attachment, if it's enclosed in the following html code in the comment editor window: + + ``` +
+ Full log +
+
+   many
+   lines
+   go
+   here
+
+   
+
+ ``` + + which would result in the following entry, which can be opened if desired, but otherwise takes little space. + +
+ Full log +
+   many
+   lines
+   go
+   here
+   
+
+ + You could also provide a link to a pastebin service, but this is less beneficial since those links tend to expire quickly and future readers of your issue might not be able to access that log file anymore and may lack some context. + +6. If this is an issue in your code, do try to reduce that code to a minimal example that still demonstrates the problem. Please ask at the forums if you have a hard time figuring how to do that. Please realize that we don't have the luxury of having time to try and understand all of your custom code. + + If you really tried to make a short reproducible code but couldn't figure it out, it might be that having a traceback will give the developer enough information to know what's going on. But if it is not enough and we can't reproduce the problem, we can't really solve it. + + Do not despair if you can't figure it out from the beginning, just share what you can and perhaps someone else will be able to help you at the forums. + + If your setup involves any custom datasets, the best way to help us reproduce the problem is to create a [Google Colab notebook](https://colab.research.google.com/) that demonstrates the issue and once you verify that the issue still exists, include a link to that notebook in the Issue. Just make sure that you don't copy and paste the location bar url of the open notebook - as this is private and we won't be able to open it. Instead, you need to click on `Share` in the right upper corner of the notebook, select `Get Link` and then copy and paste the public link it will give to you. + +7. If you forked off some of this project's code or example applications, please, do not ask us to go into your code repository and figure out what you may have done. The code is already very complex and unless there is an easy way to do a diff and it's a small diff, it won't be possible to find someone with time on their hands to make a lengthy investigation. Albeit, you might find someone at the forums who will be generous to do this for you. + +8. Before reporting an issue, first, always try to update your environment to the latest official version of this library. We have no resources to go and debug older revisions, which could easily have bugs that have been fixed in the latest released version. + + We understand that this is not always possible, especially when APIs change, in which case file an issue against the highest library version your environment can support. + + Of course, if you upgrade the library, always retest that the problem is still there. + +9. Please do not ask us to reproduce an issue with your custom data, since we don't have it. So, either you should use some existing dataset supported by HF datasets or you need to supply a code that generates a small sample on the fly, or some another quick and simple way to get it. + + Please do not send us any non-public domain data that may require a license or a permission to be used. + +10. Do not tag multiple developers on the issue unless you know this is expected, either because you asked them and they gave you an explicit permission to tag them or the issue template instructs you to do so. + + The "who to tag for what domain" part of the issue template is there to help users direct their questions to the right developers who are designated maintainers of project's specific domains. They can then decide at their own discretion to tag other developers if they feel it'd help move the issue forward. + + We currently don't have a triage service and we trust your capacity to identify the right domain and thus the persons to tag in your issue. If you are not sure, please use the forums to ask for guidance. + + When in doubt, err on the side of not tagging a given person. If you tag multiple people out of context or permission don't be surprised if you get no response at all. Please remember that every time you tag someone, they get a notification and you're taking their time without their permission. Please be sensitive to that. + + If you got helped by one of the developers in the past please don't tag them in future issues, unless they are listed in the issue template for the domain you are asking about or that developer gave you an explicit permission to tag them in future issues. + + If you see a certain developer doing multiple and/or recent commits into a specific area of the project that you feel is relevant to your issue, it is not a good reason to tag them. Various developers may be fixing things that prevent them from moving forward, but often their work is focused on a totally different domain. And while they may or may not know how to help you with the problem at hand, it would benefit the whole community much more if they focus on the domain of their unique expertise. + +11. Use the Edit button. Take your time, and re-read and improve the wording and formatting to make your posts and comments as easy to understand as possible. + + Avoid posting multiple comments in a row, as each comment generates a notification for the developers tagged in that issue. If you happened to post multiple comments in a row, and nobody followed up yet - consider merging those into one or a few comments while editing the combined content to be coherent. + + If you choose to edit your older comments after others posted follow up comments you need to be aware that your modifications might not be noticed, so if it's not a typo fixing, try to write a new comment flagging that something has been changed in the previous comments. + + For example, the very first comment is the most important one. If while the thread unfolds you realize that things aren't as they seemed to you originally you may want to edit the first post to reflect the up-to-date understanding of the issue at hand so that it helps those who read your issue in the future quickly understand what's going on and not need to sift through dozens of comments. It also helps to indicate that the post was edited. So, those reading the thread later can understand why there might be certain discontinuity in the information flow. + + Use bullets and items if you have lists of items and the outcome improves overall readability. + + Use backticks to refer to class and function names, e.g. `BartModel` and `generate` as these stand out and improve the speed of a reader's comprehension. + + Try not use italics and bold text too much as these often make the text more difficult to read. + + +12. If you are cross-referencing a specific comment in a given thread or another issue, always link to that specific comment, rather than using the issue link. If you do the latter it could be quite impossible to find which specific comment you're referring to. + + To get the link to the specific comment do not copy the url from the location bar of your browser, but instead, click the `...` icon in the upper right corner of the comment and then select "Copy Link". + + For example the first link is a link to an issue, and the second to a specific comment in the same issue: + + 1. https://github.com/huggingface/transformers/issues/9257 + 2. https://github.com/huggingface/transformers/issues/9257#issuecomment-749945162 + + +13. If you are replying to a last comment, it's totally fine to make your reply with just your comment in it. The readers can follow the information flow here. + + But if you're replying to a comment that happened some comments back it's always a good practice to quote just the relevant lines you're replying it. The `>` is used for quoting, or you can always use the menu to do so. For example your editor box will look like: + + ``` + > How big is your gpu cluster? + + Our cluster is made of 256 gpus. + ``` + + If you are addressing multiple comments, quote the relevant parts of each before your answer. Some people use the same comment to do multiple replies, others separate them into separate comments. Either way works. The latter approach helps for linking to a specific comment. + +In general the best way to figure out what works the best is learn from issues posted by other people - see which issues get great responses and which get little to no response - observe what the posters who received great responses did differently from those who did not. + +Thank you for reading this somewhat lengthy document. We would like to conclude that these are not absolute rules, but a friendly advice that will help maximize the chances for us to understand what you are trying to communicate, reproduce the problem then resolve it to your satisfaction and the benefit of the whole community. + +If after reading this document there are remaining questions on how and why or there is a need for further elucidation, please, don't hesitate to ask your question in [this thread](https://discuss.huggingface.co/t/how-to-request-support/3128). diff --git a/OPERA/transformers-4.29.2/LICENSE b/OPERA/transformers-4.29.2/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..a8db8fafc223afeb78494238c371e69860aa643d --- /dev/null +++ b/OPERA/transformers-4.29.2/LICENSE @@ -0,0 +1,203 @@ +Copyright 2018- The Hugging Face team. All rights reserved. + + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright [yyyy] [name of copyright owner] + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. diff --git a/OPERA/transformers-4.29.2/Makefile b/OPERA/transformers-4.29.2/Makefile new file mode 100644 index 0000000000000000000000000000000000000000..ef9b2788dcf37f535a5f53e8c481cb8de2ea7ea1 --- /dev/null +++ b/OPERA/transformers-4.29.2/Makefile @@ -0,0 +1,120 @@ +.PHONY: deps_table_update modified_only_fixup extra_style_checks quality style fixup fix-copies test test-examples + +# make sure to test the local checkout in scripts and not the pre-installed one (don't use quotes!) +export PYTHONPATH = src + +check_dirs := examples tests src utils + +modified_only_fixup: + $(eval modified_py_files := $(shell python utils/get_modified_files.py $(check_dirs))) + @if test -n "$(modified_py_files)"; then \ + echo "Checking/fixing $(modified_py_files)"; \ + black $(modified_py_files); \ + ruff $(modified_py_files) --fix; \ + else \ + echo "No library .py files were modified"; \ + fi + +# Update src/transformers/dependency_versions_table.py + +deps_table_update: + @python setup.py deps_table_update + +deps_table_check_updated: + @md5sum src/transformers/dependency_versions_table.py > md5sum.saved + @python setup.py deps_table_update + @md5sum -c --quiet md5sum.saved || (printf "\nError: the version dependency table is outdated.\nPlease run 'make fixup' or 'make style' and commit the changes.\n\n" && exit 1) + @rm md5sum.saved + +# autogenerating code + +autogenerate_code: deps_table_update + +# Check that the repo is in a good state + +repo-consistency: + python utils/check_copies.py + python utils/check_table.py + python utils/check_dummies.py + python utils/check_repo.py + python utils/check_inits.py + python utils/check_config_docstrings.py + python utils/check_config_attributes.py + python utils/check_doctest_list.py + python utils/update_metadata.py --check-only + python utils/check_task_guides.py + +# this target runs checks on all files + +quality: + black --check $(check_dirs) setup.py + python utils/custom_init_isort.py --check_only + python utils/sort_auto_mappings.py --check_only + ruff $(check_dirs) setup.py + doc-builder style src/transformers docs/source --max_len 119 --check_only --path_to_docs docs/source + python utils/check_doc_toc.py + +# Format source code automatically and check is there are any problems left that need manual fixing + +extra_style_checks: + python utils/custom_init_isort.py + python utils/sort_auto_mappings.py + doc-builder style src/transformers docs/source --max_len 119 --path_to_docs docs/source + python utils/check_doc_toc.py --fix_and_overwrite + +# this target runs checks on all files and potentially modifies some of them + +style: + black $(check_dirs) setup.py + ruff $(check_dirs) setup.py --fix + ${MAKE} autogenerate_code + ${MAKE} extra_style_checks + +# Super fast fix and check target that only works on relevant modified files since the branch was made + +fixup: modified_only_fixup extra_style_checks autogenerate_code repo-consistency + +# Make marked copies of snippets of codes conform to the original + +fix-copies: + python utils/check_copies.py --fix_and_overwrite + python utils/check_table.py --fix_and_overwrite + python utils/check_dummies.py --fix_and_overwrite + python utils/check_task_guides.py --fix_and_overwrite + +# Run tests for the library + +test: + python -m pytest -n auto --dist=loadfile -s -v ./tests/ + +# Run tests for examples + +test-examples: + python -m pytest -n auto --dist=loadfile -s -v ./examples/pytorch/ + +# Run tests for SageMaker DLC release + +test-sagemaker: # install sagemaker dependencies in advance with pip install .[sagemaker] + TEST_SAGEMAKER=True python -m pytest -n auto -s -v ./tests/sagemaker + + +# Release stuff + +pre-release: + python utils/release.py + +pre-patch: + python utils/release.py --patch + +post-release: + python utils/release.py --post_release + +post-patch: + python utils/release.py --post_release --patch + +build-release: + rm -rf dist + rm -rf build + python setup.py bdist_wheel + python setup.py sdist + python utils/check_build.py diff --git a/OPERA/transformers-4.29.2/README.md b/OPERA/transformers-4.29.2/README.md new file mode 100644 index 0000000000000000000000000000000000000000..7b0ff6f293cfe3ed6c6244d9fb926802746b6f27 --- /dev/null +++ b/OPERA/transformers-4.29.2/README.md @@ -0,0 +1,514 @@ + + +

+ + + + Hugging Face Transformers Library + +
+
+

+ +

+ + Build + + + GitHub + + + Documentation + + + GitHub release + + + Contributor Covenant + + DOI +

+ +

+

+ English | + 简体中文 | + 繁體中文 | + 한국어 | + Español | + 日本語 | + हिन्दी +

+

+ +

+

State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow

+

+ +

+ +

+ +🤗 Transformers provides thousands of pretrained models to perform tasks on different modalities such as text, vision, and audio. + +These models can be applied on: + +* 📝 Text, for tasks like text classification, information extraction, question answering, summarization, translation, text generation, in over 100 languages. +* 🖼️ Images, for tasks like image classification, object detection, and segmentation. +* 🗣️ Audio, for tasks like speech recognition and audio classification. + +Transformer models can also perform tasks on **several modalities combined**, such as table question answering, optical character recognition, information extraction from scanned documents, video classification, and visual question answering. + +🤗 Transformers provides APIs to quickly download and use those pretrained models on a given text, fine-tune them on your own datasets and then share them with the community on our [model hub](https://huggingface.co/models). At the same time, each python module defining an architecture is fully standalone and can be modified to enable quick research experiments. + +🤗 Transformers is backed by the three most popular deep learning libraries — [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) and [TensorFlow](https://www.tensorflow.org/) — with a seamless integration between them. It's straightforward to train your models with one before loading them for inference with the other. + +## Online demos + +You can test most of our models directly on their pages from the [model hub](https://huggingface.co/models). We also offer [private model hosting, versioning, & an inference API](https://huggingface.co/pricing) for public and private models. + +Here are a few examples: + + In Natural Language Processing: +- [Masked word completion with BERT](https://huggingface.co/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France) +- [Name Entity Recognition with Electra](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city) +- [Text generation with GPT-2](https://huggingface.co/gpt2?text=A+long+time+ago%2C+) +- [Natural Language Inference with RoBERTa](https://huggingface.co/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal) +- [Summarization with BART](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct) +- [Question answering with DistilBERT](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species) +- [Translation with T5](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin) + +In Computer Vision: +- [Image classification with ViT](https://huggingface.co/google/vit-base-patch16-224) +- [Object Detection with DETR](https://huggingface.co/facebook/detr-resnet-50) +- [Semantic Segmentation with SegFormer](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512) +- [Panoptic Segmentation with MaskFormer](https://huggingface.co/facebook/maskformer-swin-small-coco) +- [Depth Estimation with DPT](https://huggingface.co/docs/transformers/model_doc/dpt) +- [Video Classification with VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae) +- [Universal Segmentation with OneFormer](https://huggingface.co/shi-labs/oneformer_ade20k_dinat_large) + +In Audio: +- [Automatic Speech Recognition with Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base-960h) +- [Keyword Spotting with Wav2Vec2](https://huggingface.co/superb/wav2vec2-base-superb-ks) +- [Audio Classification with Audio Spectrogram Transformer](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) + +In Multimodal tasks: +- [Table Question Answering with TAPAS](https://huggingface.co/google/tapas-base-finetuned-wtq) +- [Visual Question Answering with ViLT](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa) +- [Zero-shot Image Classification with CLIP](https://huggingface.co/openai/clip-vit-large-patch14) +- [Document Question Answering with LayoutLM](https://huggingface.co/impira/layoutlm-document-qa) +- [Zero-shot Video Classification with X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip) + +**[Write With Transformer](https://transformer.huggingface.co)**, built by the Hugging Face team, is the official demo of this repo’s text generation capabilities. + +## If you are looking for custom support from the Hugging Face team + + + HuggingFace Expert Acceleration Program +
+ +## Quick tour + +To immediately use a model on a given input (text, image, audio, ...), we provide the `pipeline` API. Pipelines group together a pretrained model with the preprocessing that was used during that model's training. Here is how to quickly use a pipeline to classify positive versus negative texts: + +```python +>>> from transformers import pipeline + +# Allocate a pipeline for sentiment-analysis +>>> classifier = pipeline('sentiment-analysis') +>>> classifier('We are very happy to introduce pipeline to the transformers repository.') +[{'label': 'POSITIVE', 'score': 0.9996980428695679}] +``` + +The second line of code downloads and caches the pretrained model used by the pipeline, while the third evaluates it on the given text. Here the answer is "positive" with a confidence of 99.97%. + +Many tasks have a pre-trained `pipeline` ready to go, in NLP but also in computer vision and speech. For example, we can easily extract detected objects in an image: + +``` python +>>> import requests +>>> from PIL import Image +>>> from transformers import pipeline + +# Download an image with cute cats +>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png" +>>> image_data = requests.get(url, stream=True).raw +>>> image = Image.open(image_data) + +# Allocate a pipeline for object detection +>>> object_detector = pipeline('object-detection') +>>> object_detector(image) +[{'score': 0.9982201457023621, + 'label': 'remote', + 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, + {'score': 0.9960021376609802, + 'label': 'remote', + 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, + {'score': 0.9954745173454285, + 'label': 'couch', + 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, + {'score': 0.9988006353378296, + 'label': 'cat', + 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, + {'score': 0.9986783862113953, + 'label': 'cat', + 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}] +``` + +Here we get a list of objects detected in the image, with a box surrounding the object and a confidence score. Here is the original image on the left, with the predictions displayed on the right: + +

+ + +

+ +You can learn more about the tasks supported by the `pipeline` API in [this tutorial](https://huggingface.co/docs/transformers/task_summary). + +In addition to `pipeline`, to download and use any of the pretrained models on your given task, all it takes is three lines of code. Here is the PyTorch version: +```python +>>> from transformers import AutoTokenizer, AutoModel + +>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") +>>> model = AutoModel.from_pretrained("bert-base-uncased") + +>>> inputs = tokenizer("Hello world!", return_tensors="pt") +>>> outputs = model(**inputs) +``` + +And here is the equivalent code for TensorFlow: +```python +>>> from transformers import AutoTokenizer, TFAutoModel + +>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") +>>> model = TFAutoModel.from_pretrained("bert-base-uncased") + +>>> inputs = tokenizer("Hello world!", return_tensors="tf") +>>> outputs = model(**inputs) +``` + +The tokenizer is responsible for all the preprocessing the pretrained model expects, and can be called directly on a single string (as in the above examples) or a list. It will output a dictionary that you can use in downstream code or simply directly pass to your model using the ** argument unpacking operator. + +The model itself is a regular [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) or a [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (depending on your backend) which you can use as usual. [This tutorial](https://huggingface.co/docs/transformers/training) explains how to integrate such a model into a classic PyTorch or TensorFlow training loop, or how to use our `Trainer` API to quickly fine-tune on a new dataset. + +## Why should I use transformers? + +1. Easy-to-use state-of-the-art models: + - High performance on natural language understanding & generation, computer vision, and audio tasks. + - Low barrier to entry for educators and practitioners. + - Few user-facing abstractions with just three classes to learn. + - A unified API for using all our pretrained models. + +1. Lower compute costs, smaller carbon footprint: + - Researchers can share trained models instead of always retraining. + - Practitioners can reduce compute time and production costs. + - Dozens of architectures with over 60,000 pretrained models across all modalities. + +1. Choose the right framework for every part of a model's lifetime: + - Train state-of-the-art models in 3 lines of code. + - Move a single model between TF2.0/PyTorch/JAX frameworks at will. + - Seamlessly pick the right framework for training, evaluation and production. + +1. Easily customize a model or an example to your needs: + - We provide examples for each architecture to reproduce the results published by its original authors. + - Model internals are exposed as consistently as possible. + - Model files can be used independently of the library for quick experiments. + +## Why shouldn't I use transformers? + +- This library is not a modular toolbox of building blocks for neural nets. The code in the model files is not refactored with additional abstractions on purpose, so that researchers can quickly iterate on each of the models without diving into additional abstractions/files. +- The training API is not intended to work on any model but is optimized to work with the models provided by the library. For generic machine learning loops, you should use another library (possibly, [Accelerate](https://huggingface.co/docs/accelerate)). +- While we strive to present as many use cases as possible, the scripts in our [examples folder](https://github.com/huggingface/transformers/tree/main/examples) are just that: examples. It is expected that they won't work out-of-the box on your specific problem and that you will be required to change a few lines of code to adapt them to your needs. + +## Installation + +### With pip + +This repository is tested on Python 3.6+, Flax 0.3.2+, PyTorch 1.3.1+ and TensorFlow 2.3+. + +You should install 🤗 Transformers in a [virtual environment](https://docs.python.org/3/library/venv.html). If you're unfamiliar with Python virtual environments, check out the [user guide](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/). + +First, create a virtual environment with the version of Python you're going to use and activate it. + +Then, you will need to install at least one of Flax, PyTorch or TensorFlow. +Please refer to [TensorFlow installation page](https://www.tensorflow.org/install/), [PyTorch installation page](https://pytorch.org/get-started/locally/#start-locally) and/or [Flax](https://github.com/google/flax#quick-install) and [Jax](https://github.com/google/jax#installation) installation pages regarding the specific installation command for your platform. + +When one of those backends has been installed, 🤗 Transformers can be installed using pip as follows: + +```bash +pip install transformers +``` + +If you'd like to play with the examples or need the bleeding edge of the code and can't wait for a new release, you must [install the library from source](https://huggingface.co/docs/transformers/installation#installing-from-source). + +### With conda + +Since Transformers version v4.0.0, we now have a conda channel: `huggingface`. + +🤗 Transformers can be installed using conda as follows: + +```shell script +conda install -c huggingface transformers +``` + +Follow the installation pages of Flax, PyTorch or TensorFlow to see how to install them with conda. + +> **_NOTE:_** On Windows, you may be prompted to activate Developer Mode in order to benefit from caching. If this is not an option for you, please let us know in [this issue](https://github.com/huggingface/huggingface_hub/issues/1062). + +## Model architectures + +**[All the model checkpoints](https://huggingface.co/models)** provided by 🤗 Transformers are seamlessly integrated from the huggingface.co [model hub](https://huggingface.co/models) where they are uploaded directly by [users](https://huggingface.co/users) and [organizations](https://huggingface.co/organizations). + +Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen) + +🤗 Transformers currently provides the following architectures (see [here](https://huggingface.co/docs/transformers/model_summary) for a high-level summary of each them): + +1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut. +1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig. +1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell. +1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass. +1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer. +1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis. +1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen. +1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei. +1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. +1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. +1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen. +1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed. +1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed. +1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu. +1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT): General Visual Representation Learning](https://arxiv.org/abs/1912.11370) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby. +1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston. +1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston. +1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi. +1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (from Salesforce) released with the paper [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) by Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi. +1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/). +1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry. +1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan. +1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel. +1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot. +1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting. +1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (from OFA-Sys) released with the paper [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou. +1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (from LAION-AI) released with the paper [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) by Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov. +1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever. +1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker. +1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong. +1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang. +1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan. +1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie. +1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie. +1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun. +1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/). +1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher. +1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang. +1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli. +1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. +1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. +1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch. +1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai. +1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou. +1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (from Google AI) released with the paper [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) by Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun. +1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (from The University of Texas at Austin) released with the paper [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl. +1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko. +1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan. +1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi. +1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and a German version of DistilBERT. +1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei. +1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER), released together with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park. +1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih. +1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun. +1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren. +1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le. +1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning. +1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. +1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu. +1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (from Baidu) released with the paper [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) by Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang. +1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2 and ESMFold** were released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives. +1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei +1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei +1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab. +1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela. +1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon. +1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao. +1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le. +1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang. +1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim. +1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever. +1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy. +1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach +1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori. +1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**. +1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki. +1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren. +1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (from BigCode) released with the paper [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) by Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra. +1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama). +1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu. +1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang. +1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed. +1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer. +1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever. +1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. +1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever. +1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou. +1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou. +1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei. +1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei. +1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan. +1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze. +1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (from South China University of Technology) released with the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding. +1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample. +1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan. +1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang. +1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto. +1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal. +1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert. +1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin. +1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team. +1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (from Microsoft Research Asia) released with the paper [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei. +1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (from FAIR and UIUC) released with the paper [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) by Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar. +1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov. +1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (from Google AI) released with the paper [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) by Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos. +1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer. +1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan. +1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (from Facebook) released with the paper [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer. +1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro. +1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro. +1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (from Alibaba Research) released with the paper [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) by Peng Wang, Cheng Da, and Cong Yao. +1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka. +1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou. +1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam. +1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen. +1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari. +1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu. +1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel. +1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. +1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi. +1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noah’s Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu. +1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team. +1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team. +1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh. +1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi. +1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama). +1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al. +1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby. +1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu. +1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu. +1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira. +1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen. +1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (from Google) released with the paper [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova. +1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang. +1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng. +1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou. +1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius. +1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela. +1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang. +1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya. +1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Platforms) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár. +1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder. +1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. +1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov. +1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (from Facebook) released with the paper [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli. +1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (from WeChatAI) released with the paper [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou. +1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu. +1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (from Bo Peng), released on [this repo](https://github.com/BlinkDL/RWKV-LM) by Bo Peng. +1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo. +1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (from Meta AI) released with the paper [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick. +1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi. +1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi. +1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (from Microsoft Research) released with the paper [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei. +1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino. +1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau. +1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy. +1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer. +1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo. +1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo. +1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte. +1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (from Google) released with the paper [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer. +1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu. +1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu. +1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (from Microsoft Research) released with the paper [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) by Brandon Smock, Rohith Pesala, Robin Abraham. +1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos. +1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou. +1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace). +1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (from Facebook) released with the paper [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani. +1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine +1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov. +1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei. +1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal. +1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler +1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang. +1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu. +1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun. +1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu. +1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang. +1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim. +1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby. +1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang. +1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby. +1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick. +1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas. +1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli. +1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino. +1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli. +1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei. +1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (from OpenAI) released with the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever. +1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (from Microsoft Research) released with the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling. +1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (from Meta AI) released with the paper [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) by Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe. +1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li. +1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau. +1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou. +1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov. +1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (from Facebook AI), released together with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau. +1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (from Meta AI) released with the paper [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa. +1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (from Google/CMU) released with the paper [​XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le. +1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli. +1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli. +1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu. +1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh. +1. Want to contribute a new model? We have added a **detailed guide and templates** to guide you in the process of adding a new model. You can find them in the [`templates`](./templates) folder of the repository. Be sure to check the [contributing guidelines](./CONTRIBUTING.md) and contact the maintainers or open an issue to collect feedbacks before starting your PR. + +To check if each model has an implementation in Flax, PyTorch or TensorFlow, or has an associated tokenizer backed by the 🤗 Tokenizers library, refer to [this table](https://huggingface.co/docs/transformers/index#supported-frameworks). + +These implementations have been tested on several datasets (see the example scripts) and should match the performance of the original implementations. You can find more details on performance in the Examples section of the [documentation](https://github.com/huggingface/transformers/tree/main/examples). + + +## Learn more + +| Section | Description | +|-|-| +| [Documentation](https://huggingface.co/docs/transformers/) | Full API documentation and tutorials | +| [Task summary](https://huggingface.co/docs/transformers/task_summary) | Tasks supported by 🤗 Transformers | +| [Preprocessing tutorial](https://huggingface.co/docs/transformers/preprocessing) | Using the `Tokenizer` class to prepare data for the models | +| [Training and fine-tuning](https://huggingface.co/docs/transformers/training) | Using the models provided by 🤗 Transformers in a PyTorch/TensorFlow training loop and the `Trainer` API | +| [Quick tour: Fine-tuning/usage scripts](https://github.com/huggingface/transformers/tree/main/examples) | Example scripts for fine-tuning models on a wide range of tasks | +| [Model sharing and uploading](https://huggingface.co/docs/transformers/model_sharing) | Upload and share your fine-tuned models with the community | +| [Migration](https://huggingface.co/docs/transformers/migration) | Migrate to 🤗 Transformers from `pytorch-transformers` or `pytorch-pretrained-bert` | + +## Citation + +We now have a [paper](https://www.aclweb.org/anthology/2020.emnlp-demos.6/) you can cite for the 🤗 Transformers library: +```bibtex +@inproceedings{wolf-etal-2020-transformers, + title = "Transformers: State-of-the-Art Natural Language Processing", + author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush", + booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations", + month = oct, + year = "2020", + address = "Online", + publisher = "Association for Computational Linguistics", + url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6", + pages = "38--45" +} +``` diff --git a/OPERA/transformers-4.29.2/README_es.md b/OPERA/transformers-4.29.2/README_es.md new file mode 100644 index 0000000000000000000000000000000000000000..c3c569c531d60c2e0b87122e94df4990c5f03624 --- /dev/null +++ b/OPERA/transformers-4.29.2/README_es.md @@ -0,0 +1,502 @@ + + +

+
+ +
+

+

+ + Build + + + GitHub + + + Documentation + + + GitHub release + + + Contributor Covenant + + DOI +

+ +

+

+ English | + 简体中文 | + 繁體中文 | + 한국어 | + Español | + 日本語 | + हिन्दी +

+

+ +

+

Lo último de Machine Learning para JAX, PyTorch y TensorFlow

+

+ +

+ +

+ +🤗 Transformers aporta miles de modelos preentrenados Para realizar tareas en diferentes modalidades como texto, vision, y audio. + +Estos modelos pueden ser aplicados en: + +* 📝 Texto, Para tareas como clasificación de texto, extracción de información, responder preguntas, resumir, traducir, generación de texto, en más de 100 idiomas. +* 🖼️ Imágenes, para tareas como clasificación de imágenes, detección the objetos, y segmentación. +* 🗣️ Audio, para tareas como reconocimiento de voz y clasificación de audio. + +Los modelos de Transformer también pueden realizar tareas en **muchas modalidades combinadas**, como responder pregunstas, reconocimiento de carácteres ópticos,extracción de información de documentos escaneados, clasificación de video, y respuesta de preguntas visuales. + +🤗 Transformers aporta APIs para descargar rápidamente y usar estos modelos preentrenados en un texto dado, afinarlos en tus propios sets de datos y compartirlos con la comunidad en nuestro [centro de modelos](https://huggingface.co/models). Al mismo tiempo, cada módulo de Python que define una arquitectura es completamente independiente y se puede modificar para permitir experimentos de investigación rápidos. + +🤗 Transformers está respaldado por las tres bibliotecas de deep learning más populares — [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) y [TensorFlow](https://www.tensorflow.org/) — con una perfecta integración entre ellos. Es sencillo entrenar sus modelos con uno antes de cargarlos para la inferencia con el otro. + +## Demostraciones en línea + +Puedes probar la mayoría de nuestros modelos directamente en sus páginas desde el [centro de modelos](https://huggingface.co/models). También ofrecemos [alojamiento de modelos privados, control de versiones y una API de inferencia](https://huggingface.co/pricing) para modelos públicos y privados. + +Aquí hay algunos ejemplos: + + En procesamiento del lenguaje natural: +- [Terminación de palabras enmascaradas con BERT](https://huggingface.co/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France) +- [Reconocimiento del nombre de la entidad con Electra](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city) +- [Generación de texto con GPT-2](https://huggingface.co/gpt2?text=A+long+time+ago%2C+) +- [Inferencia del lenguaje natural con RoBERTa](https://huggingface.co/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal) +- [Resumen con BART](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct) +- [Responder a preguntas con DistilBERT](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species) +- [Traducción con T5](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin) + +En visión de ordenador: +- [Clasificación de imágenes con ViT](https://huggingface.co/google/vit-base-patch16-224) +- [Detección de objetos con DETR](https://huggingface.co/facebook/detr-resnet-50) +- [Segmentación semántica con SegFormer](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512) +- [Segmentación panóptica con DETR](https://huggingface.co/facebook/detr-resnet-50-panoptic) +- [Segmentación Universal con OneFormer (Segmentación Semántica, de Instancia y Panóptica con un solo modelo)](https://huggingface.co/shi-labs/oneformer_ade20k_dinat_large) + +En Audio: +- [Reconocimiento de voz automático con Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base-960h) +- [Detección de palabras clave con Wav2Vec2](https://huggingface.co/superb/wav2vec2-base-superb-ks) + +En tareas multimodales: +- [Respuesta visual a preguntas con ViLT](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa) + +**[Escribe con Transformer](https://transformer.huggingface.co)**, construido por el equipo de Hugging Face, es la demostración oficial de las capacidades de generación de texto de este repositorio. + +## Si está buscando soporte personalizado del equipo de Hugging Face + + + HuggingFace Expert Acceleration Program +
+ +## Tour rápido + +Para usar inmediatamente un modelo en una entrada determinada (texto, imagen, audio, ...), proporcionamos la API de `pipeline`. Los pipelines agrupan un modelo previamente entrenado con el preprocesamiento que se usó durante el entrenamiento de ese modelo. Aquí se explica cómo usar rápidamente un pipeline para clasificar textos positivos frente a negativos: + +```python +>>> from transformers import pipeline + +# Allocate a pipeline for sentiment-analysis +>>> classifier = pipeline('sentiment-analysis') +>>> classifier('We are very happy to introduce pipeline to the transformers repository.') +[{'label': 'POSITIVE', 'score': 0.9996980428695679}] +``` + +La segunda línea de código descarga y almacena en caché el modelo previamente entrenado que usa la canalización, mientras que la tercera lo evalúa en el texto dado. Aquí la respuesta es "positiva" con una confianza del 99,97%. + +Muchas tareas tienen un `pipeline` preentrenado listo para funcionar, en NLP pero también en visión por ordenador y habla. Por ejemplo, podemos extraer fácilmente los objetos detectados en una imagen: + +``` python +>>> import requests +>>> from PIL import Image +>>> from transformers import pipeline + +# Download an image with cute cats +>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png" +>>> image_data = requests.get(url, stream=True).raw +>>> image = Image.open(image_data) + +# Allocate a pipeline for object detection +>>> object_detector = pipeline('object_detection') +>>> object_detector(image) +[{'score': 0.9982201457023621, + 'label': 'remote', + 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, + {'score': 0.9960021376609802, + 'label': 'remote', + 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, + {'score': 0.9954745173454285, + 'label': 'couch', + 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, + {'score': 0.9988006353378296, + 'label': 'cat', + 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, + {'score': 0.9986783862113953, + 'label': 'cat', + 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}] +``` + +Aquí obtenemos una lista de objetos detectados en la imagen, con un cuadro que rodea el objeto y una puntuación de confianza. Aquí está la imagen original a la derecha, con las predicciones mostradas a la izquierda: + +

+ + +

+ +Puedes obtener más información sobre las tareas admitidas por la API de `pipeline` en [este tutorial](https://huggingface.co/docs/transformers/task_summary). + +Además de `pipeline`, para descargar y usar cualquiera de los modelos previamente entrenados en su tarea dada, todo lo que necesita son tres líneas de código. Aquí está la versión de PyTorch: +```python +>>> from transformers import AutoTokenizer, AutoModel + +>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") +>>> model = AutoModel.from_pretrained("bert-base-uncased") + +>>> inputs = tokenizer("Hello world!", return_tensors="pt") +>>> outputs = model(**inputs) +``` + +Y aquí está el código equivalente para TensorFlow: +```python +>>> from transformers import AutoTokenizer, TFAutoModel + +>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") +>>> model = TFAutoModel.from_pretrained("bert-base-uncased") + +>>> inputs = tokenizer("Hello world!", return_tensors="tf") +>>> outputs = model(**inputs) +``` + +El tokenizador es responsable de todo el preprocesamiento que espera el modelo preentrenado y se puede llamar directamente en una sola cadena (como en los ejemplos anteriores) o en una lista. Dará como resultado un diccionario que puedes usar en el código descendente o simplemente pasarlo directamente a su modelo usando el operador de desempaquetado de argumento **. + +El modelo en si es un [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) normal o un [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (dependiendo De tu backend) que puedes usar de forma habitual. [Este tutorial](https://huggingface.co/docs/transformers/training) explica cómo integrar un modelo de este tipo en un ciclo de entrenamiento PyTorch o TensorFlow clásico, o como usar nuestra API `Trainer` para ajustar rápidamente un nuevo conjunto de datos. + +## ¿Por qué debo usar transformers? + +1. Modelos de última generación fáciles de usar: + - Alto rendimiento en comprensión y generación de lenguaje natural, visión artificial y tareas de audio. + - Baja barrera de entrada para educadores y profesionales. + - Pocas abstracciones de cara al usuario con solo tres clases para aprender. + - Una API unificada para usar todos nuestros modelos preentrenados. + +1. Menores costes de cómputo, menor huella de carbono: + - Los investigadores pueden compartir modelos entrenados en lugar de siempre volver a entrenar. + - Los profesionales pueden reducir el tiempo de cómputo y los costos de producción. + - Docenas de arquitecturas con más de 60 000 modelos preentrenados en todas las modalidades. + +1. Elija el marco adecuado para cada parte de la vida útil de un modelo: + - Entrene modelos de última generación en 3 líneas de código. + - Mueva un solo modelo entre los marcos TF2.0/PyTorch/JAX a voluntad. + - Elija sin problemas el marco adecuado para la formación, la evaluación y la producción. + +1. Personalice fácilmente un modelo o un ejemplo según sus necesidades: + - Proporcionamos ejemplos de cada arquitectura para reproducir los resultados publicados por sus autores originales.. + - Los internos del modelo están expuestos lo más consistentemente posible.. + - Los archivos modelo se pueden usar independientemente de la biblioteca para experimentos rápidos. + +## ¿Por qué no debería usar transformers? + +- Esta biblioteca no es una caja de herramientas modular de bloques de construcción para redes neuronales. El código en los archivos del modelo no se refactoriza con abstracciones adicionales a propósito, de modo que los investigadores puedan iterar rápidamente en cada uno de los modelos sin sumergirse en abstracciones/archivos adicionales. +- La API de entrenamiento no está diseñada para funcionar en ningún modelo, pero está optimizada para funcionar con los modelos proporcionados por la biblioteca. Para bucles genéricos de aprendizaje automático, debe usar otra biblioteca (posiblemente, [Accelerate](https://huggingface.co/docs/accelerate)). +- Si bien nos esforzamos por presentar tantos casos de uso como sea posible, los scripts en nuestra [carpeta de ejemplos](https://github.com/huggingface/transformers/tree/main/examples) son solo eso: ejemplos. Se espera que no funcionen de forma inmediata en su problema específico y que deba cambiar algunas líneas de código para adaptarlas a sus necesidades. + +## Instalación + +### Con pip + +Este repositorio está probado en Python 3.6+, Flax 0.3.2+, PyTorch 1.3.1+ y TensorFlow 2.3+. + +Deberías instalar 🤗 Transformers en un [ambiente virtual](https://docs.python.org/3/library/venv.html). Si no estas familiarizado con los entornos virtuales de Python, consulta la [guía de usuario](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/). + +Primero, crea un entorno virtual con la versión de Python que vas a usar y actívalo. + +Luego, deberás instalar al menos uno de Flax, PyTorch o TensorFlow. +Por favor, ve a la [página de instalación de TensorFlow](https://www.tensorflow.org/install/), [página de instalación de PyTorch](https://pytorch.org/get-started/locally/#start-locally) y/o las páginas de instalación de [Flax](https://github.com/google/flax#quick-install) y [Jax](https://github.com/google/jax#installation) con respecto al comando de instalación específico para tu plataforma. + +Cuando se ha instalado uno de esos backends, los 🤗 Transformers se pueden instalar usando pip de la siguiente manera: + +```bash +pip install transformers +``` + +Si deseas jugar con los ejemplos o necesitas la última versión del código y no puedes esperar a una nueva versión, tienes que [instalar la librería de la fuente](https://huggingface.co/docs/transformers/installation#installing-from-source). + +### Con conda + +Desde la versión v4.0.0 de Transformers, ahora tenemos un canal conda: `huggingface`. + +🤗 Transformers se puede instalar usando conda de la siguiente manera: + +```shell script +conda install -c huggingface transformers +``` + +Sigue las páginas de instalación de Flax, PyTorch o TensorFlow para ver cómo instalarlos con conda. + +> **_NOTA:_** En Windows, es posible que se le pida que active el modo de desarrollador para beneficiarse del almacenamiento en caché. Si esta no es una opción para usted, háganoslo saber en [esta issue](https://github.com/huggingface/huggingface_hub/issues/1062). + +## Arquitecturas modelo + +**[Todos los puntos de control del modelo](https://huggingface.co/models)** aportados por 🤗 Transformers están perfectamente integrados desde huggingface.co [Centro de modelos](https://huggingface.co) donde son subidos directamente por los [usuarios](https://huggingface.co/users) y [organizaciones](https://huggingface.co/organizations). + +Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen) + +🤗 Transformers actualmente proporciona las siguientes arquitecturas (ver [aquí](https://huggingface.co/docs/transformers/model_summary) para un resumen de alto nivel de cada uno de ellas.): + +1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut. +1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig. +1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell. +1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass. +1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer. +1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis. +1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen. +1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei. +1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. +1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. +1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen. +1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed. +1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed. +1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu. +1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby. +1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston. +1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston. +1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi. +1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (from Salesforce) released with the paper [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) by Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi. +1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/). +1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry. +1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan. +1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel. +1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot. +1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting. +1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (from OFA-Sys) released with the paper [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou. +1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (from LAION-AI) released with the paper [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) by Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov. +1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever. +1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker. +1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong. +1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang. +1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan. +1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie. +1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie. +1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun. +1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/). +1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher. +1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang. +1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli. +1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. +1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. +1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch. +1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai. +1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou. +1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (from Google AI) released with the paper [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) by Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun. +1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (from The University of Texas at Austin) released with the paper [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl. +1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko. +1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan. +1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi. +1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and a German version of DistilBERT. +1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei. +1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER), released together with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park. +1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih. +1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun. +1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren. +1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le. +1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning. +1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. +1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu. +1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (from Baidu) released with the paper [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) by Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang. +1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2** was released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives. +1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei +1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei +1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab. +1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela. +1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon. +1. **[FocalNet](https://huggingface.co/docs/transformers/main/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao. +1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le. +1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang. +1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim. +1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever. +1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy. +1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach +1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori. +1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**. +1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki. +1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren. +1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (from BigCode) released with the paper [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) by Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra. +1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama). +1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu. +1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang. +1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed. +1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer. +1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever. +1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. +1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever. +1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou. +1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou. +1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei. +1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei. +1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan. +1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze. +1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (from South China University of Technology) released with the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding. +1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample. +1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan. +1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang. +1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto. +1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal. +1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert. +1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin. +1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team. +1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (from Microsoft Research Asia) released with the paper [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei. +1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (from FAIR and UIUC) released with the paper [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) by Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar. +1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov. +1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (from Google AI) released with the paper [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) by Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos. +1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer. +1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan. +1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (from Facebook) released with the paper [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer. +1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro. +1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro. +1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (from Alibaba Research) released with the paper [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) by Peng Wang, Cheng Da, and Cong Yao. +1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka. +1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou. +1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam. +1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen. +1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari. +1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu. +1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel. +1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. +1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi. +1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noah’s Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu. +1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team. +1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team. +1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh. +1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi. +1. **[OpenLlama](https://huggingface.co/docs/transformers/main/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama). +1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al. +1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby. +1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu. +1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu. +1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira. +1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen. +1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (from Google) released with the paper [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova. +1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang. +1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng. +1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou. +1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius. +1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela. +1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang. +1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya. +1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Platforms) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár. +1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder. +1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. +1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov. +1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (from Facebook) released with the paper [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli. +1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (from WeChatAI) released with the paper [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou. +1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu. +1. **[RWKV](https://huggingface.co/docs/transformers/main/model_doc/rwkv)** (from Bo Peng) released with the paper [this repo](https://github.com/BlinkDL/RWKV-LM) by Bo Peng. +1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo. +1. **[Segment Anything](https://huggingface.co/docs/transformers/main/model_doc/sam)** (from Meta AI) released with the paper [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick. +1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi. +1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi. +1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (from Microsoft Research) released with the paper [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei. +1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino. +1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau. +1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy. +1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer. +1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo. +1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo. +1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte. +1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (from Google) released with the paper [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer. +1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu. +1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu. +1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (from Microsoft Research) released with the paper [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) by Brandon Smock, Rohith Pesala, Robin Abraham. +1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos. +1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou. +1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace). +1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (from Facebook) released with the paper [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani. +1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine +1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov. +1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei. +1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal. +1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler +1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang. +1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu. +1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun. +1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu. +1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang. +1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim. +1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby. +1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang. +1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby. +1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick. +1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas. +1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli. +1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino. +1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli. +1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei. +1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (from OpenAI) released with the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever. +1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (from Microsoft Research) released with the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling. +1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (from Meta AI) released with the paper [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) by Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe. +1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li. +1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau. +1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou. +1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov. +1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (from Facebook AI), released together with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau. +1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (from Meta AI) released with the paper [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa. +1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (from Google/CMU) released with the paper [​XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le. +1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli. +1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli. +1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu. +1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh. +1. ¿Quieres aportar un nuevo modelo? Hemos agregado una **guía detallada y plantillas** para guiarte en el proceso de agregar un nuevo modelo. Puedes encontrarlos en la carpeta de [`templates`](./templates) del repositorio. Asegúrate de revisar las [pautas de contribución](./CONTRIBUTING.md) y comunícate con los mantenedores o abra un problema para recopilar comentarios antes de comenzar su PR. + +Para comprobar si cada modelo tiene una implementación en Flax, PyTorch o TensorFlow, o tiene un tokenizador asociado respaldado por la librería 🤗 Tokenizers , ve a [esta tabla](https://huggingface.co/docs/transformers/index#supported-frameworks). + +Estas implementaciones se han probado en varios conjuntos de datos (consulte los scripts de ejemplo) y deberían coincidir con el rendimiento de las implementaciones originales. Puede encontrar más detalles sobre el rendimiento en la sección Examples de la [documentación](https://github.com/huggingface/transformers/tree/main/examples). + + +## Aprender más + +| Sección | Descripción | +|-|-| +| [Documentación](https://huggingface.co/docs/transformers/) | Toda la documentación de la API y tutoriales | +| [Resumen de tareas](https://huggingface.co/docs/transformers/task_summary) | Tareas soportadas 🤗 Transformers | +| [Tutorial de preprocesAmiento](https://huggingface.co/docs/transformers/preprocessing) | Usando la clase `Tokenizer` para preparar datos para los modelos | +| [Entrenamiento y puesta a punto](https://huggingface.co/docs/transformers/training) | Usando los modelos aportados por 🤗 Transformers en un bucle de entreno de PyTorch/TensorFlow y la API de `Trainer` | +| [Recorrido rápido: secuencias de comandos de ajuste/uso](https://github.com/huggingface/transformers/tree/main/examples) | Scripts de ejemplo para ajustar modelos en una amplia gama de tareas | +| [Compartir y subir modelos](https://huggingface.co/docs/transformers/model_sharing) | Carga y comparte tus modelos perfeccionados con la comunidad | +| [Migración](https://huggingface.co/docs/transformers/migration) | Migra a 🤗 Transformers desde `pytorch-transformers` o `pytorch-pretrained-bert` | + +## Citación + +Ahora nosotros tenemos un [papel](https://www.aclweb.org/anthology/2020.emnlp-demos.6/) que puedes citar para la librería de 🤗 Transformers: +```bibtex +@inproceedings{wolf-etal-2020-transformers, + title = "Transformers: State-of-the-Art Natural Language Processing", + author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush", + booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations", + month = oct, + year = "2020", + address = "Online", + publisher = "Association for Computational Linguistics", + url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6", + pages = "38--45" +} +``` diff --git a/OPERA/transformers-4.29.2/README_hd.md b/OPERA/transformers-4.29.2/README_hd.md new file mode 100644 index 0000000000000000000000000000000000000000..af9c58011455cdc83949decf918252d6910a9ab2 --- /dev/null +++ b/OPERA/transformers-4.29.2/README_hd.md @@ -0,0 +1,474 @@ + + + + +

+
+ +
+

+

+ + Build + + + GitHub + + + Documentation + + + GitHub release + + + Contributor Covenant + + DOI +

+ +

+

+ English | + 简体中文 | + 繁體中文 | + 한국어 | + Español | + 日本語 | + हिन्दी | +

+

+ +

+

Jax, PyTorch और TensorFlow के लिए उन्नत मशीन लर्निंग

+

+ +

+ +

+ +🤗 Transformers 100 से अधिक भाषाओं में पाठ वर्गीकरण, सूचना निष्कर्षण, प्रश्न उत्तर, सारांशीकरण, अनुवाद, पाठ निर्माण का समर्थन करने के लिए हजारों पूर्व-प्रशिक्षित मॉडल प्रदान करता है। इसका उद्देश्य सबसे उन्नत एनएलपी तकनीक को सभी के लिए सुलभ बनाना है। + +🤗 Transformers त्वरित डाउनलोड और उपयोग के लिए एक एपीआई प्रदान करता है, जिससे आप किसी दिए गए पाठ पर एक पूर्व-प्रशिक्षित मॉडल ले सकते हैं, इसे अपने डेटासेट पर ठीक कर सकते हैं और इसे [मॉडल हब] (https://huggingface.co/models) के माध्यम से समुदाय के साथ साझा कर सकते हैं। ) . इसी समय, प्रत्येक परिभाषित पायथन मॉड्यूल पूरी तरह से स्वतंत्र है, जो संशोधन और तेजी से अनुसंधान प्रयोगों के लिए सुविधाजनक है। + +🤗 Transformers तीन सबसे लोकप्रिय गहन शिक्षण पुस्तकालयों का समर्थन करता है: [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) and [TensorFlow](https://www.tensorflow.org/) — और इसके साथ निर्बाध रूप से एकीकृत होता है। आप अपने मॉडल को सीधे एक ढांचे के साथ प्रशिक्षित कर सकते हैं और दूसरे के साथ लोड और अनुमान लगा सकते हैं। + +## ऑनलाइन डेमो + +आप सबसे सीधे मॉडल पृष्ठ पर परीक्षण कर सकते हैं [model hub](https://huggingface.co/models) मॉडल पर। हम [निजी मॉडल होस्टिंग, मॉडल संस्करण, और अनुमान एपीआई] भी प्रदान करते हैं।(https://huggingface.co/pricing)。 + +यहाँ कुछ उदाहरण हैं: +- [शब्द को भरने के लिए मास्क के रूप में BERT का प्रयोग करें](https://huggingface.co/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France) +- [इलेक्ट्रा के साथ नामित इकाई पहचान](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city) +- [जीपीटी-2 के साथ टेक्स्ट जनरेशन](https://huggingface.co/gpt2?text=A+long+time+ago%2C+) +- [रॉबर्टा के साथ प्राकृतिक भाषा निष्कर्ष](https://huggingface.co/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal) +- [बार्ट के साथ पाठ सारांश](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct) +- [डिस्टिलबर्ट के साथ प्रश्नोत्तर](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species) +- [अनुवाद के लिए T5 का प्रयोग करें](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin) + +**[Write With Transformer](https://transformer.huggingface.co)**,हगिंग फेस टीम द्वारा बनाया गया, यह एक आधिकारिक पाठ पीढ़ी है demo。 + +## यदि आप हगिंग फेस टीम से बीस्पोक समर्थन की तलाश कर रहे हैं + + + HuggingFace Expert Acceleration Program +
+ +## जल्दी शुरू करें + +हम त्वरित उपयोग के लिए मॉडल प्रदान करते हैं `pipeline` (पाइपलाइन) एपीआई। पाइपलाइन पूर्व-प्रशिक्षित मॉडल और संबंधित पाठ प्रीप्रोसेसिंग को एकत्रित करती है। सकारात्मक और नकारात्मक भावना को निर्धारित करने के लिए पाइपलाइनों का उपयोग करने का एक त्वरित उदाहरण यहां दिया गया है: + +```python +>>> from transformers import pipeline + +# भावना विश्लेषण पाइपलाइन का उपयोग करना +>>> classifier = pipeline('sentiment-analysis') +>>> classifier('We are very happy to introduce pipeline to the transformers repository.') +[{'label': 'POSITIVE', 'score': 0.9996980428695679}] +``` + +कोड की दूसरी पंक्ति पाइपलाइन द्वारा उपयोग किए गए पूर्व-प्रशिक्षित मॉडल को डाउनलोड और कैश करती है, जबकि कोड की तीसरी पंक्ति दिए गए पाठ पर मूल्यांकन करती है। यहां उत्तर 99 आत्मविश्वास के स्तर के साथ "सकारात्मक" है। + +कई एनएलपी कार्यों में आउट ऑफ़ द बॉक्स पाइपलाइनों का पूर्व-प्रशिक्षण होता है। उदाहरण के लिए, हम किसी दिए गए पाठ से किसी प्रश्न का उत्तर आसानी से निकाल सकते हैं: + +``` python +>>> from transformers import pipeline + +# प्रश्नोत्तर पाइपलाइन का उपयोग करना +>>> question_answerer = pipeline('question-answering') +>>> question_answerer({ +... 'question': 'What is the name of the repository ?', +... 'context': 'Pipeline has been included in the huggingface/transformers repository' +... }) +{'score': 0.30970096588134766, 'start': 34, 'end': 58, 'answer': 'huggingface/transformers'} + +``` + +उत्तर देने के अलावा, पूर्व-प्रशिक्षित मॉडल संगत आत्मविश्वास स्कोर भी देता है, जहां उत्तर टोकनयुक्त पाठ में शुरू और समाप्त होता है। आप [इस ट्यूटोरियल](https://huggingface.co/docs/transformers/task_summary) से पाइपलाइन एपीआई द्वारा समर्थित कार्यों के बारे में अधिक जान सकते हैं। + +अपने कार्य पर किसी भी पूर्व-प्रशिक्षित मॉडल को डाउनलोड करना और उसका उपयोग करना भी कोड की तीन पंक्तियों की तरह सरल है। यहाँ PyTorch संस्करण के लिए एक उदाहरण दिया गया है: +```python +>>> from transformers import AutoTokenizer, AutoModel + +>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") +>>> model = AutoModel.from_pretrained("bert-base-uncased") + +>>> inputs = tokenizer("Hello world!", return_tensors="pt") +>>> outputs = model(**inputs) +``` +यहाँ समकक्ष है TensorFlow कोड: +```python +>>> from transformers import AutoTokenizer, TFAutoModel + +>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") +>>> model = TFAutoModel.from_pretrained("bert-base-uncased") + +>>> inputs = tokenizer("Hello world!", return_tensors="tf") +>>> outputs = model(**inputs) +``` + +टोकननाइज़र सभी पूर्व-प्रशिक्षित मॉडलों के लिए प्रीप्रोसेसिंग प्रदान करता है और इसे सीधे एक स्ट्रिंग (जैसे ऊपर दिए गए उदाहरण) या किसी सूची पर बुलाया जा सकता है। यह एक डिक्शनरी (तानाशाही) को आउटपुट करता है जिसे आप डाउनस्ट्रीम कोड में उपयोग कर सकते हैं या `**` अनपैकिंग एक्सप्रेशन के माध्यम से सीधे मॉडल को पास कर सकते हैं। + +मॉडल स्वयं एक नियमित [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) या [TensorFlow `tf.keras.Model`](https ://pytorch.org/docs/stable/nn.html#torch.nn.Module) ://www.tensorflow.org/api_docs/python/tf/keras/Model) (आपके बैकएंड के आधार पर), जो हो सकता है सामान्य तरीके से उपयोग किया जाता है। [यह ट्यूटोरियल](https://huggingface.co/transformers/training.html) बताता है कि इस तरह के मॉडल को क्लासिक PyTorch या TensorFlow प्रशिक्षण लूप में कैसे एकीकृत किया जाए, या हमारे `ट्रेनर` एपीआई का उपयोग कैसे करें ताकि इसे जल्दी से फ़ाइन ट्यून किया जा सके।एक नया डेटासेट पे। + +## ट्रांसफार्मर का उपयोग क्यों करें? + +1. उपयोग में आसानी के लिए उन्नत मॉडल: + - एनएलयू और एनएलजी पर बेहतर प्रदर्शन + - प्रवेश के लिए कम बाधाओं के साथ शिक्षण और अभ्यास के अनुकूल + - उपयोगकर्ता-सामना करने वाले सार तत्व, केवल तीन वर्गों को जानने की जरूरत है + - सभी मॉडलों के लिए एकीकृत एपीआई + +1. कम कम्प्यूटेशनल ओवरहेड और कम कार्बन उत्सर्जन: + - शोधकर्ता हर बार नए सिरे से प्रशिक्षण देने के बजाय प्रशिक्षित मॉडल साझा कर सकते हैं + - इंजीनियर गणना समय और उत्पादन ओवरहेड को कम कर सकते हैं + - दर्जनों मॉडल आर्किटेक्चर, 2,000 से अधिक पूर्व-प्रशिक्षित मॉडल, 100 से अधिक भाषाओं का समर्थन + +1.मॉडल जीवनचक्र के हर हिस्से को शामिल करता है: + - कोड की केवल 3 पंक्तियों में उन्नत मॉडलों को प्रशिक्षित करें + - मॉडल को मनमाने ढंग से विभिन्न डीप लर्निंग फ्रेमवर्क के बीच स्थानांतरित किया जा सकता है, जैसा आप चाहते हैं + - निर्बाध रूप से प्रशिक्षण, मूल्यांकन और उत्पादन के लिए सबसे उपयुक्त ढांचा चुनें + +1. आसानी से अनन्य मॉडल को अनुकूलित करें और अपनी आवश्यकताओं के लिए मामलों का उपयोग करें: + - हम मूल पेपर परिणामों को पुन: पेश करने के लिए प्रत्येक मॉडल आर्किटेक्चर के लिए कई उपयोग के मामले प्रदान करते हैं + - मॉडल की आंतरिक संरचना पारदर्शी और सुसंगत रहती है + - मॉडल फ़ाइल को अलग से इस्तेमाल किया जा सकता है, जो संशोधन और त्वरित प्रयोग के लिए सुविधाजनक है + +## मुझे ट्रांसफॉर्मर का उपयोग कब नहीं करना चाहिए? + +- यह लाइब्रेरी मॉड्यूलर न्यूरल नेटवर्क टूलबॉक्स नहीं है। मॉडल फ़ाइल में कोड जानबूझकर अल्पविकसित है, बिना अतिरिक्त सार इनकैप्सुलेशन के, ताकि शोधकर्ता अमूर्तता और फ़ाइल जंपिंग में शामिल हुए जल्दी से पुनरावृति कर सकें। +- `ट्रेनर` एपीआई किसी भी मॉडल के साथ संगत नहीं है, यह केवल इस पुस्तकालय के मॉडल के लिए अनुकूलित है। यदि आप सामान्य मशीन लर्निंग के लिए उपयुक्त प्रशिक्षण लूप कार्यान्वयन की तलाश में हैं, तो कहीं और देखें। +- हमारे सर्वोत्तम प्रयासों के बावजूद, [उदाहरण निर्देशिका] (https://github.com/huggingface/transformers/tree/main/examples) में स्क्रिप्ट केवल उपयोग के मामले हैं। आपकी विशिष्ट समस्या के लिए, वे जरूरी नहीं कि बॉक्स से बाहर काम करें, और आपको कोड की कुछ पंक्तियों को सूट करने की आवश्यकता हो सकती है। + +## स्थापित करना + +### पिप का उपयोग करना + +इस रिपॉजिटरी का परीक्षण Python 3.6+, Flax 0.3.2+, PyTorch 1.3.1+ और TensorFlow 2.3+ के तहत किया गया है। + +आप [वर्चुअल एनवायरनमेंट] (https://docs.python.org/3/library/venv.html) में 🤗 ट्रांसफॉर्मर इंस्टॉल कर सकते हैं। यदि आप अभी तक पायथन के वर्चुअल एनवायरनमेंट से परिचित नहीं हैं, तो कृपया इसे [उपयोगकर्ता निर्देश] (https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/) पढ़ें। + +सबसे पहले, पायथन के उस संस्करण के साथ एक आभासी वातावरण बनाएं जिसका आप उपयोग करने और उसे सक्रिय करने की योजना बना रहे हैं। + +फिर, आपको Flax, PyTorch या TensorFlow में से किसी एक को स्थापित करने की आवश्यकता है। अपने प्लेटफ़ॉर्म पर इन फ़्रेमवर्क को स्थापित करने के लिए, [TensorFlow स्थापना पृष्ठ](https://www.tensorflow.org/install/), [PyTorch स्थापना पृष्ठ](https://pytorch.org/get-started /locally/# देखें) start-locally) या [Flax स्थापना पृष्ठ](https://github.com/google/flax#quick-install). + +जब इनमें से कोई एक बैकएंड सफलतापूर्वक स्थापित हो जाता है, तो ट्रांसफॉर्मर निम्नानुसार स्थापित किए जा सकते हैं: + +```bash +pip install transformers +``` + +यदि आप उपयोग के मामलों को आज़माना चाहते हैं या आधिकारिक रिलीज़ से पहले नवीनतम इन-डेवलपमेंट कोड का उपयोग करना चाहते हैं, तो आपको [सोर्स से इंस्टॉल करना होगा](https://huggingface.co/docs/transformers/installation#installing-from- स्रोत)। + +### कोंडा का उपयोग करना + +ट्रांसफॉर्मर संस्करण 4.0.0 के बाद से, हमारे पास एक कोंडा चैनल है: `हगिंगफेस`। + +ट्रांसफॉर्मर कोंडा के माध्यम से निम्नानुसार स्थापित किया जा सकता है: + +```shell script +conda install -c huggingface transformers +``` + +कोंडा के माध्यम से Flax, PyTorch, या TensorFlow में से किसी एक को स्थापित करने के लिए, निर्देशों के लिए उनके संबंधित स्थापना पृष्ठ देखें। + +## मॉडल आर्किटेक्चर +[उपयोगकर्ता](https://huggingface.co/users) और [organization](https://huggingface.co) द्वारा ट्रांसफॉर्मर समर्थित [**सभी मॉडल चौकियों**](https://huggingface.co/models) /users) हगिंगफेस.को/ऑर्गनाइजेशन), सभी को बिना किसी बाधा के हगिंगफेस.को [मॉडल हब](https://huggingface.co) के साथ एकीकृत किया गया है। + +चौकियों की वर्तमान संख्या: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen) + +🤗 ट्रांसफॉर्मर वर्तमान में निम्नलिखित आर्किटेक्चर का समर्थन करते हैं (मॉडल के अवलोकन के लिए [यहां] देखें (https://huggingface.co/docs/transformers/model_summary)): + +1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (Google Research and the Toyota Technological Institute at Chicago) साथ थीसिस [ALBERT: A Lite BERT for Self-supervised भाषा प्रतिनिधित्व सीखना](https://arxiv.org/abs/1909.11942), झेंझोंग लैन, मिंगदा चेन, सेबेस्टियन गुडमैन, केविन गिम्पेल, पीयूष शर्मा, राडू सोरिकट +1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (Google Research से) Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig. द्वाराअनुसंधान पत्र [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) के साथ जारी किया गया +1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell. +1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass. +1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (फेसबुक) साथ थीसिस [बार्ट: प्राकृतिक भाषा निर्माण, अनुवाद के लिए अनुक्रम-से-अनुक्रम पूर्व प्रशिक्षण , और समझ] (https://arxiv.org/pdf/1910.13461.pdf) पर निर्भर माइक लुईस, यिनहान लियू, नमन गोयल, मार्जन ग़ज़विनिनेजाद, अब्देलरहमान मोहम्मद, ओमर लेवी, वेस स्टोयानोव और ल्यूक ज़ेटलमॉयर +1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (से École polytechnique) साथ थीसिस [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) पर निर्भर Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis रिहाई। +1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (VinAI Research से) साथ में पेपर [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701)गुयेन लुओंग ट्रान, डुओंग मिन्ह ले और डाट क्वोक गुयेन द्वारा पोस्ट किया गया। +1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (Microsoft से) साथ में कागज [BEiT: BERT इमेज ट्रांसफॉर्मर्स का प्री-ट्रेनिंग](https://arxiv.org/abs/2106.08254) Hangbo Bao, Li Dong, Furu Wei द्वारा। +1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (गूगल से) साथ वाला पेपर [बीईआरटी: प्री-ट्रेनिंग ऑफ डीप बिडायरेक्शनल ट्रांसफॉर्मर्स फॉर लैंग्वेज अंडरस्टैंडिंग](https://arxiv.org/abs/1810.04805) जैकब डेवलिन, मिंग-वेई चांग, ​​केंटन ली और क्रिस्टीना टौटानोवा द्वारा प्रकाशित किया गया था। . +1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (गूगल से) साथ देने वाला पेपर [सीक्वेंस जेनरेशन टास्क के लिए प्री-ट्रेंड चेकपॉइंट का इस्तेमाल करना](https ://arxiv.org/abs/1907.12461) साशा रोठे, शशि नारायण, अलियाक्सि सेवेरिन द्वारा। +1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (VinAI Research से) साथ में पेपर [BERTweet: अंग्रेजी ट्वीट्स के लिए एक पूर्व-प्रशिक्षित भाषा मॉडल] (https://aclanthology.org/2020.emnlp-demos.2/) डाट क्वोक गुयेन, थान वु और अन्ह तुआन गुयेन द्वारा प्रकाशित। +1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (गूगल रिसर्च से) साथ वाला पेपर [बिग बर्ड: ट्रांसफॉर्मर्स फॉर लॉन्गर सीक्वेंस](https://arxiv .org/abs/2007.14062) मंज़िल ज़हीर, गुरु गुरुगणेश, अविनावा दुबे, जोशुआ आइंस्ली, क्रिस अल्बर्टी, सैंटियागो ओंटानोन, फिलिप फाम, अनिरुद्ध रावुला, किफ़ान वांग, ली यांग, अमर अहमद द्वारा। +1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (गूगल रिसर्च से) साथ में पेपर [बिग बर्ड: ट्रांसफॉर्मर्स फॉर लॉन्गर सीक्वेंस](https://arxiv.org/abs/2007.14062) मंज़िल ज़हीर, गुरु गुरुगणेश, अविनावा दुबे, जोशुआ आइंस्ली, क्रिस अल्बर्टी, सैंटियागो ओंटानन, फिलिप फाम द्वारा , अनिरुद्ध रावुला, किफ़ान वांग, ली यांग, अमर अहमद द्वारा पोस्ट किया गया। +1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu. +1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby. +1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (फेसबुक से) साथ में कागज [एक ओपन-डोमेन चैटबॉट बनाने की विधि](https://arxiv.org /abs/2004.13637) स्टीफन रोलर, एमिली दीनन, नमन गोयल, दा जू, मैरी विलियमसन, यिनहान लियू, जिंग जू, मायल ओट, कर्ट शस्टर, एरिक एम। स्मिथ, वाई-लैन बॉरो, जेसन वेस्टन द्वारा। +1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (फेसबुक से) साथ में पेपर [एक ओपन-डोमेन चैटबॉट बनाने की रेसिपी](https://arxiv .org/abs/2004.13637) स्टीफन रोलर, एमिली दीनन, नमन गोयल, दा जू, मैरी विलियमसन, यिनहान लियू, जिंग जू, मायल ओट, कर्ट शस्टर, एरिक एम स्मिथ, वाई-लैन बॉरो, जेसन वेस्टन द्वारा। +1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi. +1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (Salesforce से) Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi. द्वाराअनुसंधान पत्र [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) के साथ जारी किया गया +1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigSicence Workshop](https://bigscience.huggingface.co/). +1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (एलेक्सा से) कागज के साथ [बीईआरटी के लिए ऑप्टिमल सबआर्किटेक्चर एक्सट्रैक्शन](https://arxiv.org/abs/ 2010.10499) एड्रियन डी विंटर और डैनियल जे पेरी द्वारा। +1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (हरबिन इंस्टिट्यूट ऑफ़ टेक्नोलॉजी/माइक्रोसॉफ्ट रिसर्च एशिया/इंटेल लैब्स से) कागज के साथ [ब्रिजटॉवर: विजन-लैंग्वेज रिप्रेजेंटेशन लर्निंग में एनकोडर्स के बीच ब्रिज बनाना]() by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan. +1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (Google अनुसंधान से) साथ में कागज [ByT5: पूर्व-प्रशिक्षित बाइट-टू-बाइट मॉडल के साथ एक टोकन-मुक्त भविष्य की ओर] (https://arxiv.org/abs/2105.13626) Linting Xue, Aditya Barua, Noah Constant, रामी अल-रफू, शरण नारंग, मिहिर काले, एडम रॉबर्ट्स, कॉलिन रैफेल द्वारा पोस्ट किया गया। +1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (इनरिया/फेसबुक/सोरबोन से) साथ में कागज [CamemBERT: एक टेस्टी फ्रेंच लैंग्वेज मॉडल](https:// arxiv.org/abs/1911.03894) लुई मार्टिन*, बेंजामिन मुलर*, पेड्रो जेवियर ऑर्टिज़ सुआरेज़*, योआन ड्यूपॉन्ट, लॉरेंट रोमरी, एरिक विलेमोन्टे डे ला क्लर्जरी, जैमे सेडाह और बेनोइट सगोट द्वारा। +1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (Google रिसर्च से) साथ में दिया गया पेपर [कैनाइन: प्री-ट्रेनिंग ए एफिशिएंट टोकनाइजेशन-फ्री एनकोडर फॉर लैंग्वेज रिप्रेजेंटेशन]( https://arxiv.org/abs/2103.06874) जोनाथन एच क्लार्क, डैन गैरेट, यूलिया टर्क, जॉन विएटिंग द्वारा। +1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (from OFA-Sys) released with the paper [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou. +1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (LAION-AI से) Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov. द्वाराअनुसंधान पत्र [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) के साथ जारी किया गया +1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (OpenAI से) साथ वाला पेपर [लर्निंग ट्रांसफरेबल विजुअल मॉडल फ्रॉम नेचुरल लैंग्वेज सुपरविजन](https://arxiv.org /abs/2103.00020) एलेक रैडफोर्ड, जोंग वूक किम, क्रिस हैलासी, आदित्य रमेश, गेब्रियल गोह, संध्या अग्रवाल, गिरीश शास्त्री, अमांडा एस्केल, पामेला मिश्किन, जैक क्लार्क, ग्रेचेन क्रुएगर, इल्या सुत्स्केवर द्वारा। +1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker. +1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (सेल्सफोर्स से) साथ में पेपर [प्रोग्राम सिंथेसिस के लिए एक संवादात्मक प्रतिमान](https://arxiv.org/abs/2203.13474) एरिक निजकैंप, बो पैंग, हिरोआकी हयाशी, लिफू तू, हुआन वांग, यिंगबो झोउ, सिल्वियो सावरेस, कैमिंग जिओंग रिलीज। +1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (माइक्रोसॉफ्ट रिसर्च एशिया से) कागज के साथ [फास्ट ट्रेनिंग कन्वर्जेंस के लिए सशर्त डीईटीआर](https://arxiv. org/abs/2108.06152) डेपू मेंग, ज़ियाओकांग चेन, ज़ेजिया फैन, गैंग ज़ेंग, होउकियांग ली, युहुई युआन, लेई सन, जिंगडोंग वांग द्वारा। +1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (YituTech से) साथ में कागज [ConvBERT: स्पैन-आधारित डायनेमिक कनवल्शन के साथ BERT में सुधार](https://arxiv .org/abs/2008.02496) जिहांग जियांग, वीहाओ यू, डाकान झोउ, युनपेंग चेन, जियाशी फेंग, शुइचेंग यान द्वारा। +1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (Facebook AI से) साथ वाला पेपर [A ConvNet for the 2020s](https://arxiv.org/abs /2201.03545) ज़ुआंग लियू, हेंज़ी माओ, चाओ-युआन वू, क्रिस्टोफ़ फीचटेनहोफ़र, ट्रेवर डेरेल, सैनिंग ज़ी द्वारा। +1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie. +1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (सिंघुआ यूनिवर्सिटी से) साथ में पेपर [सीपीएम: ए लार्ज-स्केल जेनेरेटिव चाइनीज प्री-ट्रेंड लैंग्वेज मॉडल](https : //arxiv.org/abs/2012.00413) झेंग्यान झांग, जू हान, हाओ झोउ, पेई के, युक्सियन गु, डेमिंग ये, युजिया किन, युशेंग सु, हाओझे जी, जियान गुआन, फैंचाओ क्यूई, ज़ियाओझी वांग, यानान झेंग द्वारा , गुओयांग ज़ेंग, हुआनकी काओ, शेंगकी चेन, डाइक्सुआन ली, ज़ेनबो सन, ज़ियुआन लियू, मिनली हुआंग, वेंटाओ हान, जी तांग, जुआनज़ी ली, ज़ियाओयान झू, माओसोंग सन। +1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/). +1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (सेल्सफोर्स से) साथ में पेपर [CTRL: ए कंडिशनल ट्रांसफॉर्मर लैंग्वेज मॉडल फॉर कंट्रोलेबल जेनरेशन](https://arxiv.org/abs/1909.05858) नीतीश शिरीष केसकर*, ब्रायन मैककैन*, लव आर. वार्ष्णेय, कैमिंग जिओंग और रिचर्ड द्वारा सोचर द्वारा जारी किया गया। +1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (Microsoft से) साथ में दिया गया पेपर [CvT: इंट्रोड्यूसिंग कनवॉल्यूशन टू विजन ट्रांसफॉर्मर्स](https://arxiv.org/ एब्स/2103.15808) हैपिंग वू, बिन जिओ, नोएल कोडेला, मेंगचेन लियू, जियांग दाई, लू युआन, लेई झांग द्वारा। +1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (फेसबुक से) साथ में कागज [Data2Vec: भाषण, दृष्टि और भाषा में स्व-पर्यवेक्षित सीखने के लिए एक सामान्य ढांचा] (https://arxiv.org/abs/2202.03555) एलेक्सी बाएव्स्की, वेई-निंग सू, कियानटोंग जू, अरुण बाबू, जियाताओ गु, माइकल औली द्वारा पोस्ट किया गया। +1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (Microsoft से) साथ में दिया गया पेपर [DeBERta: डिकोडिंग-एन्हांस्ड BERT विद डिसेंटैंगल्ड अटेंशन](https://arxiv. org/abs/2006.03654) पेंगचेंग हे, ज़ियाओडोंग लियू, जियानफेंग गाओ, वीज़ू चेन द्वारा। +1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (Microsoft से) साथ में दिया गया पेपर [DeBERTa: डिकोडिंग-एन्हांस्ड BERT विथ डिसेंन्गल्ड अटेंशन](https: //arxiv.org/abs/2006.03654) पेंगचेंग हे, ज़ियाओडोंग लियू, जियानफेंग गाओ, वीज़ू चेन द्वारा पोस्ट किया गया। +1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (बर्कले/फेसबुक/गूगल से) पेपर के साथ [डिसीजन ट्रांसफॉर्मर: रीनफोर्समेंट लर्निंग वाया सीक्वेंस मॉडलिंग](https : //arxiv.org/abs/2106.01345) लिली चेन, केविन लू, अरविंद राजेश्वरन, किमिन ली, आदित्य ग्रोवर, माइकल लास्किन, पीटर एबील, अरविंद श्रीनिवास, इगोर मोर्डच द्वारा पोस्ट किया गया। +1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (सेंसटाइम रिसर्च से) साथ में पेपर [डिफॉर्मेबल डीईटीआर: डिफॉर्मेबल ट्रांसफॉर्मर्स फॉर एंड-टू-एंड ऑब्जेक्ट डिटेक्शन] (https://arxiv.org/abs/2010.04159) Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, जिफेंग दाई द्वारा पोस्ट किया गया। +1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (फेसबुक से) साथ में पेपर [ट्रेनिंग डेटा-एफिशिएंट इमेज ट्रांसफॉर्मर और डिस्टिलेशन थ्रू अटेंशन](https://arxiv .org/abs/2012.12877) ह्यूगो टौव्रोन, मैथ्यू कॉर्ड, मैथिज्स डूज़, फ़्रांसिस्को मस्सा, एलेक्ज़ेंडर सबलेरोल्स, हर्वे जेगौ द्वारा। +1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (Google AI से) Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun. द्वाराअनुसंधान पत्र [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) के साथ जारी किया गया +1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (from The University of Texas at Austin) released with the paper [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl. +1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (फेसबुक से) साथ में कागज [ट्रांसफॉर्मर्स के साथ एंड-टू-एंड ऑब्जेक्ट डिटेक्शन](https://arxiv. org/abs/2005.12872) निकोलस कैरियन, फ़्रांसिस्को मस्सा, गेब्रियल सिनेव, निकोलस उसुनियर, अलेक्जेंडर किरिलोव, सर्गेई ज़ागोरुयको द्वारा। +1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (माइक्रोसॉफ्ट रिसर्च से) कागज के साथ [DialoGPT: बड़े पैमाने पर जनरेटिव प्री-ट्रेनिंग फॉर कन्वर्सेशनल रिस्पांस जेनरेशन](https ://arxiv.org/abs/1911.00536) यिज़े झांग, सिकी सन, मिशेल गैली, येन-चुन चेन, क्रिस ब्रोकेट, जियांग गाओ, जियानफेंग गाओ, जिंगजिंग लियू, बिल डोलन द्वारा। +1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi. +1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (हगिंगफेस से), साथ में कागज [डिस्टिलबर्ट, बीईआरटी का डिस्टिल्ड वर्जन: छोटा, तेज, सस्ता और हल्का] (https://arxiv.org/abs/1910.01108) विक्टर सनह, लिसांड्रे डेब्यू और थॉमस वुल्फ द्वारा पोस्ट किया गया। यही तरीका GPT-2 को [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERta से [DistilRoBERta](https://github.com) पर कंप्रेस करने के लिए भी लागू किया जाता है। / हगिंगफेस/ट्रांसफॉर्मर्स/ट्री/मेन/उदाहरण/डिस्टिलेशन), बहुभाषी BERT से [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) और डिस्टिलबर्ट का जर्मन संस्करण। +1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (माइक्रोसॉफ्ट रिसर्च से) साथ में पेपर [DiT: सेल्फ सुपरवाइज्ड प्री-ट्रेनिंग फॉर डॉक्यूमेंट इमेज ट्रांसफॉर्मर](https://arxiv.org/abs/2203.02378) जुनलॉन्ग ली, यिहेंग जू, टेंगचाओ लव, लेई कुई, चा झांग द्वारा फुरु वेई द्वारा पोस्ट किया गया। +1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (NAVER से) साथ में कागज [OCR-मुक्त डॉक्यूमेंट अंडरस्टैंडिंग ट्रांसफॉर्मर](https://arxiv.org/abs /2111.15664) गीवूक किम, टीकग्यू होंग, मूनबिन यिम, जियोंग्योन नाम, जिनयॉन्ग पार्क, जिनयॉन्ग यिम, वोनसेओक ह्वांग, सांगडू यूं, डोंगयून हान, सेउंग्युन पार्क द्वारा। +1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (फेसबुक से) साथ में पेपर [ओपन-डोमेन क्वेश्चन आंसरिंग के लिए डेंस पैसेज रिट्रीवल](https://arxiv. org/abs/2004.04906) व्लादिमीर करपुखिन, बरलास ओज़ुज़, सेवन मिन, पैट्रिक लुईस, लेडेल वू, सर्गेई एडुनोव, डैनकी चेन, और वेन-ताऊ यिह द्वारा। +1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (इंटेल लैब्स से) साथ में कागज [विज़न ट्रांसफॉर्मर्स फॉर डेंस प्रेडिक्शन](https://arxiv.org /abs/2103.13413) रेने रैनफ्टल, एलेक्सी बोचकोवस्की, व्लादलेन कोल्टन द्वारा। +1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren. +1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le. +1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (Google रिसर्च/स्टैनफोर्ड यूनिवर्सिटी से) साथ में दिया गया पेपर [इलेक्ट्रा: जेनरेटर के बजाय भेदभाव करने वाले के रूप में टेक्स्ट एन्कोडर्स का पूर्व-प्रशिक्षण] (https://arxiv.org/abs/2003.10555) केविन क्लार्क, मिन्ह-थांग लुओंग, क्वोक वी. ले, क्रिस्टोफर डी. मैनिंग द्वारा पोस्ट किया गया। +1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (Google रिसर्च से) साथ में दिया गया पेपर [सीक्वेंस जेनरेशन टास्क के लिए प्री-ट्रेंड चेकपॉइंट का इस्तेमाल करना](https:/ /arxiv.org/abs/1907.12461) साशा रोठे, शशि नारायण, अलियाक्सि सेवेरिन द्वारा। +1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)**(Baidu से) साथ देने वाला पेपर [ERNIE: एन्हांस्ड रिप्रेजेंटेशन थ्रू नॉलेज इंटीग्रेशन](https://arxiv.org/abs/1904.09223) यू सन, शुओहुआन वांग, युकुन ली, शिकुन फेंग, ज़ुई चेन, हान झांग, शिन तियान, डैनक्सियांग झू, हाओ तियान, हुआ वू द्वारा पोस्ट किया गया। +1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (Baidu से) Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang. द्वाराअनुसंधान पत्र [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) के साथ जारी किया गया +1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (मेटा AI से) ट्रांसफॉर्मर प्रोटीन भाषा मॉडल हैं। **ESM-1b** पेपर के साथ जारी किया गया था [ अलेक्जेंडर राइव्स, जोशुआ मेयर, टॉम सर्कु, सिद्धार्थ गोयल, ज़ेमिंग लिन द्वारा जैविक संरचना और कार्य असुरक्षित सीखने को 250 मिलियन प्रोटीन अनुक्रमों तक स्केल करने से उभरता है] (https://www.pnas.org/content/118/15/e2016239118) जेसन लियू, डेमी गुओ, मायल ओट, सी. लॉरेंस ज़िटनिक, जेरी मा और रॉब फर्गस। **ESM-1v** को पेपर के साथ जारी किया गया था [भाषा मॉडल प्रोटीन फ़ंक्शन पर उत्परिवर्तन के प्रभावों की शून्य-शॉट भविष्यवाणी को सक्षम करते हैं] (https://doi.org/10.1101/2021.07.09.450648) जोशुआ मेयर, रोशन राव, रॉबर्ट वेरकुइल, जेसन लियू, टॉम सर्कु और अलेक्जेंडर राइव्स द्वारा। **ESM-2** को पेपर के साथ जारी किया गया था [भाषा मॉडल विकास के पैमाने पर प्रोटीन अनुक्रम सटीक संरचना भविष्यवाणी को सक्षम करते हैं](https://doi.org/10.1101/2022.07.20.500902) ज़ेमिंग लिन, हलील अकिन, रोशन राव, ब्रायन ही, झोंगकाई झू, वेंटिंग लू, ए द्वारा लान डॉस सैंटोस कोस्टा, मरियम फ़ज़ल-ज़रंडी, टॉम सर्कू, साल कैंडिडो, अलेक्जेंडर राइव्स। +1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei +1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei +1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (CNRS से) साथ वाला पेपर [FlauBERT: Unsupervised Language Model Pre-training for फ़्रेंच](https://arxiv .org/abs/1912.05372) Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, बेंजामिन लेकोउटेक्स, अलेक्जेंड्रे अल्लाउज़ेन, बेनोइट क्रैबे, लॉरेंट बेसेसियर, डिडिएर श्वाब द्वारा। +1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (FLAVA: A फाउंडेशनल लैंग्वेज एंड विजन अलाइनमेंट मॉडल) (https://arxiv) साथ वाला पेपर .org/abs/2112.04482) अमनप्रीत सिंह, रोंगहांग हू, वेदानुज गोस्वामी, गुइल्यूम कुएरॉन, वोज्शिएक गालुबा, मार्कस रोहरबैक, और डौवे कीला द्वारा। +1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (गूगल रिसर्च से) साथ वाला पेपर [FNet: मिक्सिंग टोकन विद फूरियर ट्रांसफॉर्म्स](https://arxiv.org /abs/2105.03824) जेम्स ली-थॉर्प, जोशुआ आइंस्ली, इल्या एकस्टीन, सैंटियागो ओंटानन द्वारा। +1. **[FocalNet](https://huggingface.co/docs/transformers/main/model_doc/focalnet)** (Microsoft Research से) Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao. द्वाराअनुसंधान पत्र [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) के साथ जारी किया गया +1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (सीएमयू/गूगल ब्रेन से) साथ में कागज [फ़नल-ट्रांसफॉर्मर: कुशल भाषा प्रसंस्करण के लिए अनुक्रमिक अतिरेक को छानना](https://arxiv.org/abs/2006.03236) जिहांग दाई, गुओकुन लाई, यिमिंग यांग, क्वोक वी. ले ​​द्वारा रिहाई। +1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang. +1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (KAIST से) साथ वाला पेपर [वर्टिकल कटडेप्थ के साथ मोनोकुलर डेप्थ एस्टीमेशन के लिए ग्लोबल-लोकल पाथ नेटवर्क्स](https:/ /arxiv.org/abs/2201.07436) डोयोन किम, वूंगह्युन गा, प्युंगवान आह, डोंगग्यू जू, सेहवान चुन, जुनमो किम द्वारा। +1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (OpenAI से) साथ में दिया गया पेपर [जेनरेटिव प्री-ट्रेनिंग द्वारा भाषा की समझ में सुधार](https://blog .openai.com/language-unsupervised/) एलेक रैडफोर्ड, कार्तिक नरसिम्हन, टिम सालिमन्स और इल्या सुत्स्केवर द्वारा। +1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (EleutherAI से) रिपॉजिटरी के साथ [EleutherAI/gpt-neo](https://github.com/ EleutherAI /gpt-neo) रिलीज। सिड ब्लैक, स्टेला बिडरमैन, लियो गाओ, फिल वांग और कॉनर लेही द्वारा पोस्ट किया गया। +1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (EleutherAI से) पेपर के साथ जारी किया गया [GPT-NeoX-20B: एक ओपन-सोर्स ऑटोरेग्रेसिव लैंग्वेज मॉडल] (https://arxiv.org/abs/2204.06745) सिड ब्लैक, स्टेला बिडरमैन, एरिक हैलाहन, क्वेंटिन एंथोनी, लियो गाओ, लॉरेंस गोल्डिंग, होरेस हे, कॉनर लेही, काइल मैकडोनेल, जेसन फांग, माइकल पाइलर, यूएसवीएसएन साई प्रशांत द्वारा , शिवांशु पुरोहित, लारिया रेनॉल्ड्स, जोनाथन टो, बेन वांग, सैमुअल वेनबैक +1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (अबेजा के जरिए) शिन्या ओटानी, ताकायोशी मकाबे, अनुज अरोड़ा, क्यो हटोरी द्वारा। +1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (ओपनएआई से) साथ में पेपर [लैंग्वेज मॉडल्स अनसुपरवाइज्ड मल्टीटास्क लर्नर्स हैं](https://blog.openai.com/better-language-models/) एलेक रैडफोर्ड*, जेफरी वू*, रेवन चाइल्ड, डेविड लुआन, डारियो एमोडी* द्वारा * और इल्या सुत्सकेवर** ने पोस्ट किया। +1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (EleutherAI से) साथ वाला पेपर [kingoflolz/mesh-transformer-jax](https://github. com/kingoflolz/mesh-transformer-jax/) बेन वांग और अरन कोमात्सुजाकी द्वारा। +1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren. +1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (BigCode से) Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra. द्वाराअनुसंधान पत्र [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) के साथ जारी किया गया +1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama). +1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu. +1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (UCSD, NVIDIA से) साथ में कागज [GroupViT: टेक्स्ट सुपरविजन से सिमेंटिक सेगमेंटेशन इमर्जेस](https://arxiv .org/abs/2202.11094) जियारुई जू, शालिनी डी मेलो, सिफ़ी लियू, वोनमिन बायन, थॉमस ब्रेउएल, जान कौट्ज़, ज़ियाओलोंग वांग द्वारा। +1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (फेसबुक से) साथ में पेपर [ह्यूबर्ट: सेल्फ सुपरवाइज्ड स्पीच रिप्रेजेंटेशन लर्निंग बाय मास्क्ड प्रेडिक्शन ऑफ हिडन यूनिट्स](https ://arxiv.org/abs/2106.07447) वेई-निंग सू, बेंजामिन बोल्टे, याओ-हंग ह्यूबर्ट त्साई, कुशाल लखोटिया, रुस्लान सालाखुतदीनोव, अब्देलरहमान मोहम्मद द्वारा। +1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (बर्कले से) साथ में कागज [I-BERT: Integer-only BERT Quantization](https:// arxiv.org/abs/2101.01321) सेहून किम, अमीर घोलमी, ज़ेवेई याओ, माइकल डब्ल्यू महोनी, कर्ट केटज़र द्वारा। +1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever. +1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. +1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever. +1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou. +1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou. +1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (माइक्रोसॉफ्ट रिसर्च एशिया से) साथ देने वाला पेपर [लेआउटएलएमवी3: यूनिफाइड टेक्स्ट और इमेज मास्किंग के साथ दस्तावेज़ एआई के लिए पूर्व-प्रशिक्षण](https://arxiv.org/abs/2204.08387) युपन हुआंग, टेंगचाओ लव, लेई कुई, युटोंग लू, फुरु वेई द्वारा पोस्ट किया गया। +1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei. +1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan. +1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (मेटा AI से) साथ वाला पेपर [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https:/ /arxiv.org/abs/2104.01136) बेन ग्राहम, अलाएल्डिन एल-नौबी, ह्यूगो टौवरन, पियरे स्टॉक, आर्मंड जौलिन, हर्वे जेगौ, मैथिज डूज़ द्वारा। +1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (दक्षिण चीन प्रौद्योगिकी विश्वविद्यालय से) साथ में कागज [LiLT: एक सरल लेकिन प्रभावी भाषा-स्वतंत्र लेआउट ट्रांसफार्मर संरचित दस्तावेज़ समझ के लिए](https://arxiv.org/abs/2202.13669) जियापेंग वांग, लियानवेन जिन, काई डिंग द्वारा पोस्ट किया गया। +1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (The FAIR team of Meta AI से) Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample. द्वाराअनुसंधान पत्र [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) के साथ जारी किया गया +1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan. +1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (मैंडी गुओ, जोशुआ आइंस्ली, डेविड यूथस, सैंटियागो ओंटानन, जियानमो नि, यूं-हुआन सुंग, यिनफेई यांग द्वारा पोस्ट किया गया। +1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (स्टूडियो औसिया से) साथ में पेपर [LUKE: डीप कॉन्टेक्स्टुअलाइज्ड एंटिटी रिप्रेजेंटेशन विद एंटिटी-अवेयर सेल्फ-अटेंशन](https ://arxiv.org/abs/2010.01057) Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto द्वारा। +1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (UNC चैपल हिल से) साथ में पेपर [LXMERT: ओपन-डोमेन क्वेश्चन के लिए ट्रांसफॉर्मर से क्रॉस-मोडलिटी एनकोडर रिप्रेजेंटेशन सीखना Answering](https://arxiv.org/abs/1908.07490) हाओ टैन और मोहित बंसल द्वारा। +1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert. +1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (फेसबुक से) साथ देने वाला पेपर [बियॉन्ड इंग्लिश-सेंट्रिक मल्टीलिंगुअल मशीन ट्रांसलेशन](https://arxiv.org/ एब्स/2010.11125) एंजेला फैन, श्रुति भोसले, होल्गर श्वेन्क, झी मा, अहमद अल-किश्की, सिद्धार्थ गोयल, मनदीप बैनेस, ओनूर सेलेबी, गुइल्लाम वेन्जेक, विश्रव चौधरी, नमन गोयल, टॉम बर्च, विटाली लिपचिंस्की, सर्गेई एडुनोव, एडौर्ड द्वारा ग्रेव, माइकल औली, आर्मंड जौलिन द्वारा पोस्ट किया गया। +1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Jörg द्वारा [OPUS](http://opus.nlpl.eu/) डेटा से प्रशिक्षित मशीनी अनुवाद मॉडल पोस्ट किया गया टाइडेमैन द्वारा। [मैरियन फ्रेमवर्क](https://marian-nmt.github.io/) माइक्रोसॉफ्ट ट्रांसलेटर टीम द्वारा विकसित। +1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (माइक्रोसॉफ्ट रिसर्च एशिया से) साथ में पेपर [मार्कअपएलएम: विजुअली-रिच डॉक्यूमेंट अंडरस्टैंडिंग के लिए टेक्स्ट और मार्कअप लैंग्वेज का प्री-ट्रेनिंग] (https://arxiv.org/abs/2110.08518) जुनलॉन्ग ली, यिहेंग जू, लेई कुई, फुरु द्वारा वी द्वारा पोस्ट किया गया। +1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (FAIR and UIUC से) Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar. द्वाराअनुसंधान पत्र [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) के साथ जारी किया गया +1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (मेटा और UIUC से) पेपर के साथ जारी किया गया [प्रति-पिक्सेल वर्गीकरण वह सब नहीं है जिसकी आपको सिमेंटिक सेगमेंटेशन की आवश्यकता है] (https://arxiv.org/abs/2107.06278) बोवेन चेंग, अलेक्जेंडर जी. श्विंग, अलेक्जेंडर किरिलोव द्वारा >>>>>> रिबेस ठीक करें +1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (Google AI से) Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos. द्वाराअनुसंधान पत्र [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) के साथ जारी किया गया +1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (फेसबुक से) साथ में पेपर [न्यूरल मशीन ट्रांसलेशन के लिए मल्टीलिंगुअल डीनोइजिंग प्री-ट्रेनिंग](https://arxiv. org/abs/2001.08210) यिनहान लियू, जियाताओ गु, नमन गोयल, जियान ली, सर्गेई एडुनोव, मार्जन ग़ज़विनिनेजाद, माइक लुईस, ल्यूक ज़ेटलमॉयर द्वारा। +1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (फेसबुक से) साथ में पेपर [एक्स्टेंसिबल बहुभाषी प्रीट्रेनिंग और फाइनट्यूनिंग के साथ बहुभाषी अनुवाद](https://arxiv युकिंग टैंग, चाउ ट्रान, जियान ली, पेंग-जेन चेन, नमन गोयल, विश्रव चौधरी, जियाताओ गु, एंजेला फैन द्वारा .org/abs/2008.00401)। +1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (Facebook से) Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer. द्वाराअनुसंधान पत्र [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) के साथ जारी किया गया +1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (NVIDIA से) कागज के साथ [Megatron-LM: मॉडल का उपयोग करके बहु-अरब पैरामीटर भाषा मॉडल का प्रशिक्षण Parallelism](https://arxiv.org/abs/1909.08053) मोहम्मद शोएबी, मोस्टोफा पटवारी, राउल पुरी, पैट्रिक लेग्रेस्ले, जेरेड कैस्पर और ब्रायन कैटानज़ारो द्वारा। +1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (NVIDIA से) साथ वाला पेपर [Megatron-LM: ट्रेनिंग मल्टी-बिलियन पैरामीटर लैंग्वेज मॉडल्स यूजिंग मॉडल पैरेललिज़्म] (https://arxiv.org/abs/1909.08053) मोहम्मद शोएबी, मोस्टोफा पटवारी, राउल पुरी, पैट्रिक लेग्रेस्ले, जेरेड कैस्पर और ब्रायन कैटानज़ारो द्वारा पोस्ट किया गया। +1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (Alibaba Research से) Peng Wang, Cheng Da, and Cong Yao. द्वाराअनुसंधान पत्र [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) के साथ जारी किया गया +1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (फ्रॉम Studio Ousia) साथ में पेपर [mLUKE: द पावर ऑफ एंटिटी रिप्रेजेंटेशन इन मल्टीलिंगुअल प्रीट्रेन्ड लैंग्वेज मॉडल्स](https://arxiv.org/abs/2110.08151) रयोकन री, इकुया यामाडा, और योशिमासा त्सुरोका द्वारा। +1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (सीएमयू/गूगल ब्रेन से) साथ में कागज [मोबाइलबर्ट: संसाधन-सीमित उपकरणों के लिए एक कॉम्पैक्ट टास्क-अज्ञेय बीईआरटी] (https://arxiv.org/abs/2004.02984) Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, और Denny Zhou द्वारा पोस्ट किया गया। +1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam. +1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen. +1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (Apple से) साथ में कागज [MobileViT: लाइट-वेट, जनरल-पर्पस, और मोबाइल-फ्रेंडली विजन ट्रांसफॉर्मर] (https://arxiv.org/abs/2110.02178) सचिन मेहता और मोहम्मद रस्तगरी द्वारा पोस्ट किया गया। +1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu. +1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (Google AI से) साथ वाला पेपर [mT5: एक व्यापक बहुभाषी पूर्व-प्रशिक्षित टेक्स्ट-टू-टेक्स्ट ट्रांसफॉर्मर]( https://arxiv.org/abs/2010.11934) लिंटिंग ज़ू, नोआ कॉन्सटेंट, एडम रॉबर्ट्स, मिहिर काले, रामी अल-रफू, आदित्य सिद्धांत, आदित्य बरुआ, कॉलिन रैफेल द्वारा पोस्ट किया गया। +1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. +1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi. +1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (हुआवेई नूह के आर्क लैब से) साथ में कागज़ [NEZHA: चीनी भाषा समझ के लिए तंत्रिका प्रासंगिक प्रतिनिधित्व](https :/ /arxiv.org/abs/1909.00204) जुन्किउ वेई, ज़ियाओज़े रेन, ज़िआओगुआंग ली, वेनयोंग हुआंग, यी लियाओ, याशेंग वांग, जियाशू लिन, शिन जियांग, जिओ चेन और कुन लियू द्वारा। +1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (फ्रॉम मेटा) साथ में पेपर [नो लैंग्वेज लेफ्ट बिहाइंड: स्केलिंग ह्यूमन-सेंटेड मशीन ट्रांसलेशन] (https://arxiv.org/abs/2207.04672) एनएलएलबी टीम द्वारा प्रकाशित। +1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (Meta से) the NLLB team. द्वाराअनुसंधान पत्र [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) के साथ जारी किया गया +1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (विस्कॉन्सिन विश्वविद्यालय - मैडिसन से) साथ में कागज [Nyströmformer: A Nyström- आधारित एल्गोरिथम आत्म-ध्यान का अनुमान लगाने के लिए ](https://arxiv.org/abs/2102.03902) युनयांग ज़िओंग, झानपेंग ज़ेंग, रुद्रसिस चक्रवर्ती, मिंगक्सिंग टैन, ग्लेन फंग, यिन ली, विकास सिंह द्वारा पोस्ट किया गया। +1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (SHI Labs से) पेपर [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) जितेश जैन, जिआचेन ली, मांगटिक चिउ, अली हसनी, निकिता ओरलोव, हम्फ्री शि के द्वारा जारी किया गया है। +1. **[OpenLlama](https://huggingface.co/docs/transformers/main/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama). +1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al. +1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (Google AI से) साथ में कागज [विज़न ट्रांसफॉर्मर्स के साथ सिंपल ओपन-वोकैबुलरी ऑब्जेक्ट डिटेक्शन](https:/ /arxiv.org/abs/2205.06230) मैथियास मिंडरर, एलेक्सी ग्रिट्सेंको, ऑस्टिन स्टोन, मैक्सिम न्यूमैन, डिर्क वीसेनबोर्न, एलेक्सी डोसोवित्स्की, अरविंद महेंद्रन, अनुराग अर्नब, मुस्तफा देहघानी, ज़ुओरन शेन, जिओ वांग, ज़ियाओहुआ झाई, थॉमस किफ़, और नील हॉल्सबी द्वारा पोस्ट किया गया। +1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu. +1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (Google की ओर से) साथ में दिया गया पेपर [लंबे इनपुट सारांश के लिए ट्रांसफ़ॉर्मरों को बेहतर तरीके से एक्सटेंड करना](https://arxiv .org/abs/2208.04347) जेसन फांग, याओ झाओ, पीटर जे लियू द्वारा। +1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (दीपमाइंड से) साथ में पेपर [पर्सीवर आईओ: संरचित इनपुट और आउटपुट के लिए एक सामान्य वास्तुकला] (https://arxiv.org/abs/2107.14795) एंड्रयू जेगल, सेबेस्टियन बोरग्यूड, जीन-बैप्टिस्ट अलायराक, कार्ल डोर्श, कैटलिन इओनेस्कु, डेविड द्वारा डिंग, स्कंद कोप्पुला, डैनियल ज़ोरान, एंड्रयू ब्रॉक, इवान शेलहैमर, ओलिवियर हेनाफ, मैथ्यू एम। बोट्विनिक, एंड्रयू ज़िसरमैन, ओरिओल विनियल्स, जोआओ कैरेरा द्वारा पोस्ट किया गया। +1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (VinAI Research से) कागज के साथ [PhoBERT: वियतनामी के लिए पूर्व-प्रशिक्षित भाषा मॉडल](https://www .aclweb.org/anthology/2020.findings-emnlp.92/) डैट क्वोक गुयेन और अन्ह तुआन गुयेन द्वारा पोस्ट किया गया। +1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (Google से) Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova. द्वाराअनुसंधान पत्र [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) के साथ जारी किया गया +1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (UCLA NLP से) साथ वाला पेपर [प्रोग्राम अंडरस्टैंडिंग एंड जेनरेशन के लिए यूनिफाइड प्री-ट्रेनिंग](https://arxiv .org/abs/2103.06333) वसी उद्दीन अहमद, सैकत चक्रवर्ती, बैशाखी रे, काई-वेई चांग द्वारा। +1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng. +1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (माइक्रोसॉफ्ट रिसर्च से) साथ में पेपर [ProphetNet: प्रेडिक्टिंग फ्यूचर एन-ग्राम फॉर सीक्वेंस-टू-सीक्वेंस प्री-ट्रेनिंग ](https://arxiv.org/abs/2001.04063) यू यान, वीज़ेन क्यूई, येयुन गोंग, दयाहेंग लियू, नान डुआन, जिउशेंग चेन, रुओफ़ेई झांग और मिंग झोउ द्वारा पोस्ट किया गया। +1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (NVIDIA से) साथ वाला पेपर [डीप लर्निंग इंफ़ेक्शन के लिए इंटीजर क्वांटिज़ेशन: प्रिंसिपल्स एंड एम्पिरिकल इवैल्यूएशन](https:// arxiv.org/abs/2004.09602) हाओ वू, पैट्रिक जुड, जिआओजी झांग, मिखाइल इसेव और पॉलियस माइकेविसियस द्वारा। +1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (फेसबुक से) साथ में कागज [रिट्रीवल-ऑगमेंटेड जेनरेशन फॉर नॉलेज-इंटेंसिव एनएलपी टास्क](https://arxiv .org/abs/2005.11401) पैट्रिक लुईस, एथन पेरेज़, अलेक्जेंड्रा पिक्टस, फैबियो पेट्रोनी, व्लादिमीर कारपुखिन, नमन गोयल, हेनरिक कुटलर, माइक लुईस, वेन-ताउ यिह, टिम रॉकटाशेल, सेबस्टियन रिडेल, डौवे कीला द्वारा। +1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (Google अनुसंधान से) केल्विन गु, केंटन ली, ज़ोरा तुंग, पानुपोंग पसुपत और मिंग-वेई चांग द्वारा साथ में दिया गया पेपर [REALM: रिट्रीवल-ऑगमेंटेड लैंग्वेज मॉडल प्री-ट्रेनिंग](https://arxiv.org/abs/2002.08909)। +1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya. +1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (META रिसर्च से) [डिज़ाइनिंग नेटवर्क डिज़ाइन स्पेस] (https://arxiv.org/) पेपर के साथ जारी किया गया एब्स/2003.13678) इलिजा राडोसावोविक, राज प्रतीक कोसाराजू, रॉस गिर्शिक, कैमिंग ही, पिओटर डॉलर द्वारा। +1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (गूगल रिसर्च से) साथ वाला पेपर [पूर्व-प्रशिक्षित भाषा मॉडल में एम्बेडिंग कपलिंग पर पुनर्विचार](https://arxiv .org/pdf/2010.12821.pdf) ह्युंग वोन चुंग, थिबॉल्ट फ़ेवरी, हेनरी त्साई, एम. जॉनसन, सेबेस्टियन रुडर द्वारा। +1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (माइक्रोसॉफ्ट रिसर्च से) [डीप रेसिडुअल लर्निंग फॉर इमेज रिकग्निशन] (https://arxiv. org/abs/1512.03385) कैमिंग हे, जियांग्यु झांग, शाओकिंग रेन, जियान सन द्वारा। +1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (फेसबुक से), साथ में कागज [मजबूत रूप से अनुकूलित BERT प्रीट्रेनिंग दृष्टिकोण](https://arxiv.org/abs /1907.11692) यिनहान लियू, मायल ओट, नमन गोयल, जिंगफेई डू, मंदार जोशी, डैनकी चेन, ओमर लेवी, माइक लुईस, ल्यूक ज़ेटलमॉयर, वेसेलिन स्टोयानोव द्वारा। +1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (from Facebook) released with the paper [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli. +1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (from WeChatAI) released with the paper [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou. +1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (झुईई टेक्नोलॉजी से), साथ में पेपर [रोफॉर्मर: रोटरी पोजिशन एंबेडिंग के साथ एन्हांस्ड ट्रांसफॉर्मर] (https://arxiv.org/pdf/2104.09864v1.pdf) जियानलिन सु और यू लू और शेंगफेंग पैन और बो वेन और युनफेंग लियू द्वारा प्रकाशित। +1. **[RWKV](https://huggingface.co/docs/transformers/main/model_doc/rwkv)** (Bo Peng से) Bo Peng. द्वाराअनुसंधान पत्र [this repo](https://github.com/BlinkDL/RWKV-LM) के साथ जारी किया गया +1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo. +1. **[Segment Anything](https://huggingface.co/docs/transformers/main/model_doc/sam)** (Meta AI से) Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick. द्वाराअनुसंधान पत्र [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) के साथ जारी किया गया +1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (ASAPP से) साथ देने वाला पेपर [भाषण पहचान के लिए अनसुपरवाइज्ड प्री-ट्रेनिंग में परफॉर्मेंस-एफिशिएंसी ट्रेड-ऑफ्स](https ://arxiv.org/abs/2109.06870) फेलिक्स वू, क्वांगयुन किम, जिंग पैन, क्यू हान, किलियन क्यू. वेनबर्गर, योव आर्टज़ी द्वारा। +1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (ASAPP से) साथ में पेपर [भाषण पहचान के लिए अनसुपरवाइज्ड प्री-ट्रेनिंग में परफॉर्मेंस-एफिशिएंसी ट्रेड-ऑफ्स] (https://arxiv.org/abs/2109.06870) फेलिक्स वू, क्वांगयुन किम, जिंग पैन, क्यू हान, किलियन क्यू. वेनबर्गर, योआव आर्टज़ी द्वारा पोस्ट किया गया। +1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (from Microsoft Research) released with the paper [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei. +1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (फेसबुक से), साथ में पेपर [फेयरसेक S2T: फास्ट स्पीच-टू-टेक्स्ट मॉडलिंग विद फेयरसेक](https: //arxiv.org/abs/2010.05171) चांगहान वांग, यूं तांग, जुताई मा, ऐनी वू, दिमित्रो ओखोनको, जुआन पिनो द्वारा पोस्ट किया गया。 +1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (फेसबुक से) साथ में पेपर [लार्ज-स्केल सेल्फ- एंड सेमी-सुपरवाइज्ड लर्निंग फॉर स्पीच ट्रांसलेशन](https://arxiv.org/abs/2104.06678) चांगहान वांग, ऐनी वू, जुआन पिनो, एलेक्सी बेवस्की, माइकल औली, एलेक्सिस द्वारा Conneau द्वारा पोस्ट किया गया। +1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (तेल अवीव यूनिवर्सिटी से) साथ में पेपर [स्पैन सिलेक्शन को प्री-ट्रेनिंग करके कुछ-शॉट क्वेश्चन आंसरिंग](https:// arxiv.org/abs/2101.00438) ओरि राम, युवल कर्स्टन, जोनाथन बेरेंट, अमीर ग्लोबर्सन, ओमर लेवी द्वारा। +1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (बर्कले से) कागज के साथ [SqueezeBERT: कुशल तंत्रिका नेटवर्क के बारे में NLP को कंप्यूटर विज़न क्या सिखा सकता है?](https: //arxiv.org/abs/2006.11316) फॉरेस्ट एन. इनडोला, अल्बर्ट ई. शॉ, रवि कृष्णा, और कर्ट डब्ल्यू. केटज़र द्वारा। +1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (माइक्रोसॉफ्ट से) साथ में कागज [स्वाइन ट्रांसफॉर्मर: शिफ्टेड विंडोज का उपयोग कर पदानुक्रमित विजन ट्रांसफॉर्मर](https://arxiv .org/abs/2103.14030) ज़ी लियू, युटोंग लिन, यू काओ, हान हू, यिक्सुआन वेई, झेंग झांग, स्टीफन लिन, बैनिंग गुओ द्वारा। +1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (Microsoft से) साथ वाला पेपर [Swin Transformer V2: स्केलिंग अप कैपेसिटी एंड रेजोल्यूशन](https:// ज़ी लियू, हान हू, युटोंग लिन, ज़ुलिआंग याओ, ज़ेंडा ज़ी, यिक्सुआन वेई, जिया निंग, यू काओ, झेंग झांग, ली डोंग, फुरु वेई, बैनिंग गुओ द्वारा arxiv.org/abs/2111.09883। +1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte. +1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (from Google) released with the paper [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer. +1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (来自 Google AI)कॉलिन रैफेल और नोम शज़ीर और एडम रॉबर्ट्स और कैथरीन ली और शरण नारंग और माइकल मटेना द्वारा साथ में पेपर [एक एकीकृत टेक्स्ट-टू-टेक्स्ट ट्रांसफॉर्मर के साथ स्थानांतरण सीखने की सीमा की खोज] (https://arxiv.org/abs/1910.10683) और यांकी झोउ और वेई ली और पीटर जे लियू। +1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (Google AI से) साथ वाला पेपर [google-research/text-to-text-transfer- ट्रांसफॉर्मर](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) कॉलिन रैफेल और नोम शज़ीर और एडम रॉबर्ट्स और कैथरीन ली और शरण नारंग द्वारा और माइकल मटेना और यांकी झोउ और वेई ली और पीटर जे लियू। +1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (माइक्रोसॉफ्ट रिसर्च से) साथ में पेपर [पबटेबल्स-1एम: टूवर्ड्स कॉम्प्रिहेंसिव टेबल एक्सट्रैक्शन फ्रॉम अनस्ट्रक्चर्ड डॉक्यूमेंट्स ](https://arxiv.org/abs/2110.00061) ब्रैंडन स्मॉक, रोहित पेसाला, रॉबिन अब्राहम द्वारा पोस्ट किया गया। +1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (Google AI से) साथ में कागज [TAPAS: पूर्व-प्रशिक्षण के माध्यम से कमजोर पर्यवेक्षण तालिका पार्सिंग](https:// arxiv.org/abs/2004.02349) जोनाथन हर्ज़िग, पावेल क्रिज़िस्तोफ़ नोवाक, थॉमस मुलर, फ्रांसेस्को पिकिन्नो और जूलियन मार्टिन ईसेन्च्लोस द्वारा। +1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (माइक्रोसॉफ्ट रिसर्च से) साथ में पेपर [TAPEX: टेबल प्री-ट्रेनिंग थ्रू लर्निंग अ न्यूरल SQL एक्ज़ीक्यूटर](https: //arxiv.org/abs/2107.07653) कियान लियू, बेई चेन, जियाकी गुओ, मोर्टेज़ा ज़ियादी, ज़ेकी लिन, वीज़ू चेन, जियान-गुआंग लू द्वारा पोस्ट किया गया। +1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace). +1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (from Facebook) released with the paper [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani. +1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine +1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (Google/CMU की ओर से) कागज के साथ [संस्करण-एक्स: एक ब्लॉग मॉडल चौकस चौक मॉडल मॉडल] (https://arxivorg/abs/1901.02860) क्वोकोक वी. ले, रुस्लैन सलाखुतदी +1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft) released with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei. +1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal. +1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler +1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (माइक्रोसॉफ्ट रिसर्च से) साथ में दिया गया पेपर [UniSpeech: यूनिफाइड स्पीच रिप्रेजेंटेशन लर्निंग विद लेबलेड एंड अनलेबल्ड डेटा](https:/ /arxiv.org/abs/2101.07597) चेंगई वांग, यू वू, याओ कियान, केनिची कुमातानी, शुजी लियू, फुरु वेई, माइकल ज़ेंग, ज़ुएदोंग हुआंग द्वारा। +1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (माइक्रोसॉफ्ट रिसर्च से) कागज के साथ [UNISPEECH-SAT: यूनिवर्सल स्पीच रिप्रेजेंटेशन लर्निंग विद स्पीकर अवेयर प्री-ट्रेनिंग ](https://arxiv.org/abs/2110.05752) सानयुआन चेन, यू वू, चेंग्यी वांग, झेंगयांग चेन, झूओ चेन, शुजी लियू, जियान वू, याओ कियान, फुरु वेई, जिन्यु ली, जियांगज़ान यू द्वारा पोस्ट किया गया। +1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun. +1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (सिंघुआ यूनिवर्सिटी और ननकाई यूनिवर्सिटी से) साथ में पेपर [विजुअल अटेंशन नेटवर्क](https://arxiv.org/ pdf/2202.09741.pdf) मेंग-हाओ गुओ, चेंग-ज़े लू, झेंग-निंग लियू, मिंग-मिंग चेंग, शि-मिन हू द्वारा। +1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (मल्टीमीडिया कम्प्यूटिंग ग्रुप, नानजिंग यूनिवर्सिटी से) साथ में पेपर [वीडियोएमएई: मास्क्ड ऑटोएन्कोडर स्व-पर्यवेक्षित वीडियो प्री-ट्रेनिंग के लिए डेटा-कुशल सीखने वाले हैं] (https://arxiv.org/abs/2203.12602) ज़ान टोंग, यिबिंग सॉन्ग, जुए द्वारा वांग, लिमिन वांग द्वारा पोस्ट किया गया। +1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (NAVER AI Lab/Kakao Enterprise/Kakao Brain से) साथ में कागज [ViLT: Vision-and-Language Transformer बिना कनवल्शन या रीजन सुपरविजन](https://arxiv.org/abs/2102.03334) वोनजे किम, बोक्यूंग सोन, इल्डू किम द्वारा पोस्ट किया गया। +1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (गूगल एआई से) कागज के साथ [एक इमेज इज़ वर्थ 16x16 वर्ड्स: ट्रांसफॉर्मर्स फॉर इमेज रिकॉग्निशन एट स्केल](https://arxiv.org/abs/2010.11929) एलेक्सी डोसोवित्स्की, लुकास बेयर, अलेक्जेंडर कोलेसनिकोव, डिर्क वीसेनबोर्न, शियाओहुआ झाई, थॉमस अनटरथिनर, मुस्तफा देहघानी, मैथियास मिंडरर, जॉर्ज हेगोल्ड, सिल्वेन गेली, जैकब उस्ज़कोरेइट द्वारा हॉल्सबी द्वारा पोस्ट किया गया। +1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (UCLA NLP से) साथ वाला पेपर [VisualBERT: A Simple and Performant Baseline for Vision and Language](https:/ /arxiv.org/pdf/1908.03557) लियुनियन हेरोल्ड ली, मार्क यात्स्कर, दा यिन, चो-जुई हसीह, काई-वेई चांग द्वारा। +1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby. +1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (मेटा एआई से) साथ में कागज [मास्कड ऑटोएन्कोडर स्केलेबल विजन लर्नर्स हैं](https://arxiv.org/ एब्स/2111.06377) कैमिंग हे, ज़िनेली चेन, सेनिंग ज़ी, यांगहो ली, पिओट्र डॉलर, रॉस गिर्शिक द्वारा। +1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (मेटा एआई से) साथ में कागज [लेबल-कुशल सीखने के लिए मास्क्ड स्याम देश के नेटवर्क](https://arxiv. org/abs/2204.07141) महमूद असरान, मथिल्डे कैरन, ईशान मिश्रा, पियोट्र बोजानोवस्की, फ्लोरियन बोर्डेस, पास्कल विंसेंट, आर्मंड जौलिन, माइकल रब्बत, निकोलस बल्लास द्वारा। +1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (फेसबुक एआई से) साथ में पेपर [wav2vec 2.0: ए फ्रेमवर्क फॉर सेल्फ-सुपरवाइज्ड लर्निंग ऑफ स्पीच रिप्रेजेंटेशन] (https://arxiv.org/abs/2006.11477) एलेक्सी बेवस्की, हेनरी झोउ, अब्देलरहमान मोहम्मद, माइकल औली द्वारा। +1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (Facebook AI से) साथ वाला पेपर [FAIRSEQ S2T: FAIRSEQ के साथ फास्ट स्पीच-टू-टेक्स्ट मॉडलिंग ](https://arxiv.org/abs/2010.05171) चांगहान वांग, यूं तांग, जुताई मा, ऐनी वू, सरव्या पोपुरी, दिमित्रो ओखोनको, जुआन पिनो द्वारा पोस्ट किया गया। +1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (Facebook AI से) साथ वाला पेपर [सरल और प्रभावी जीरो-शॉट क्रॉस-लिंगुअल फोनेम रिकॉग्निशन](https:/ /arxiv.org/abs/2109.11680) कियानटोंग जू, एलेक्सी बाएव्स्की, माइकल औली द्वारा। +1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (माइक्रोसॉफ्ट रिसर्च से) पेपर के साथ जारी किया गया [WavLM: फुल स्टैक के लिए बड़े पैमाने पर स्व-पर्यवेक्षित पूर्व-प्रशिक्षण स्पीच प्रोसेसिंग] (https://arxiv.org/abs/2110.13900) सानयुआन चेन, चेंगयी वांग, झेंगयांग चेन, यू वू, शुजी लियू, ज़ुओ चेन, जिन्यु ली, नाओयुकी कांडा, ताकुया योशियोका, ज़िओंग जिओ, जियान वू, लॉन्ग झोउ, शुओ रेन, यानमिन कियान, याओ कियान, जियान वू, माइकल ज़ेंग, फुरु वेई। +1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (OpenAI से) साथ में कागज [बड़े पैमाने पर कमजोर पर्यवेक्षण के माध्यम से मजबूत भाषण पहचान](https://cdn. openai.com/papers/whisper.pdf) एलेक रैडफोर्ड, जोंग वूक किम, ताओ जू, ग्रेग ब्रॉकमैन, क्रिस्टीन मैकलीवे, इल्या सुत्स्केवर द्वारा। +1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (माइक्रोसॉफ्ट रिसर्च से) कागज के साथ [एक्सपैंडिंग लैंग्वेज-इमेज प्रीट्रेन्ड मॉडल फॉर जनरल वीडियो रिकग्निशन](https: //arxiv.org/abs/2208.02816) बोलिन नी, होउवेन पेंग, मिंगाओ चेन, सोंगयांग झांग, गाओफेंग मेंग, जियानलोंग फू, शिमिंग जियांग, हैबिन लिंग द्वारा। +1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (Meta AI से) Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe. द्वाराअनुसंधान पत्र [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) के साथ जारी किया गया +1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li. +1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (फेसबुक से) साथ में पेपर [क्रॉस-लिंगुअल लैंग्वेज मॉडल प्रीट्रेनिंग] (https://arxiv.org/abs/1901.07291) गिलाउम लैम्पल और एलेक्सिस कोनो द्वारा। +1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (माइक्रोसॉफ्ट रिसर्च से) साथ में कागज [ProphetNet: प्रेडिक्टिंग फ्यूचर एन-ग्राम फॉर सीक्वेंस-टू- सीक्वेंस प्री-ट्रेनिंग](https://arxiv.org/abs/2001.04063) यू यान, वीज़ेन क्यूई, येयुन गोंग, दयाहेंग लियू, नान डुआन, जिउशेंग चेन, रुओफ़ेई झांग और मिंग झोउ द्वारा। +1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (फेसबुक एआई से), साथ में पेपर [अनसुपरवाइज्ड क्रॉस-लिंगुअल रिप्रेजेंटेशन लर्निंग एट स्केल] (https://arxiv.org/abs/1911.02116) एलेक्सिस कोन्यू*, कार्तिकेय खंडेलवाल*, नमन गोयल, विश्रव चौधरी, गिलाउम वेनज़ेक, फ्रांसिस्को गुज़मैन द्वारा , एडौर्ड ग्रेव, मायल ओट, ल्यूक ज़ेटलमॉयर और वेसेलिन स्टोयानोव द्वारा। +1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (Facebook AI से) साथ में कागज [बहुभाषी नकाबपोश भाषा के लिए बड़े पैमाने पर ट्रांसफॉर्मर ] मॉडलिंग](https://arxiv.org/abs/2105.00572) नमन गोयल, जिंगफेई डू, मायल ओट, गिरि अनंतरामन, एलेक्सिस कोनो द्वारा पोस्ट किया गया। +1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (from Meta AI) released with the paper [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa. +1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (Google/CMU से) साथ वाला पेपर [XLNet: जनरलाइज्ड ऑटोरेग्रेसिव प्रीट्रेनिंग फॉर लैंग्वेज अंडरस्टैंडिंग](https://arxiv ज़ीलिन यांग*, ज़िहांग दाई*, यिमिंग यांग, जैम कार्बोनेल, रुस्लान सलाखुतदीनोव, क्वोक वी. ले ​​द्वारा .org/abs/1906.08237)। +1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (Facebook AI से) साथ वाला पेपर [XLS-R: सेल्फ सुपरवाइज्ड क्रॉस-लिंगुअल स्पीच रिप्रेजेंटेशन लर्निंग एट स्केल](https://arxiv.org/abs/2111.09296) अरुण बाबू, चांगहान वांग, एंड्रोस तजंद्रा, कुशाल लखोटिया, कियानटोंग जू, नमन गोयल, कृतिका सिंह, पैट्रिक वॉन प्लैटन, याथार्थ सराफ, जुआन पिनो, एलेक्सी बेवस्की, एलेक्सिस कोन्यू, माइकल औली द्वारा पोस्ट किया गया। +1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (फेसबुक एआई से) साथ में पेपर [अनसुपरवाइज्ड क्रॉस-लिंगुअल रिप्रेजेंटेशन लर्निंग फॉर स्पीच रिकग्निशन] (https://arxiv.org/abs/2006.13979) एलेक्सिस कोन्यू, एलेक्सी बेवस्की, रोनन कोलोबर्ट, अब्देलरहमान मोहम्मद, माइकल औली द्वारा। +1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (हुआझोंग यूनिवर्सिटी ऑफ साइंस एंड टेक्नोलॉजी से) साथ में पेपर [यू ओनली लुक एट वन सीक्वेंस: रीथिंकिंग ट्रांसफॉर्मर इन विज़न थ्रू ऑब्जेक्ट डिटेक्शन](https://arxiv.org/abs/2106.00666) युक्सिन फेंग, बेनचेंग लियाओ, जिंगगैंग वांग, जेमिन फेंग, जियांग क्यूई, रुई वू, जियानवेई नीयू, वेन्यू लियू द्वारा पोस्ट किया गया। +1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (विस्कॉन्सिन विश्वविद्यालय - मैडिसन से) साथ में पेपर [यू ओनली सैंपल (लगभग) ज़ानपेंग ज़ेंग, युनयांग ज़िओंग द्वारा , सत्य एन. रवि, शैलेश आचार्य, ग्लेन फंग, विकास सिंह द्वारा पोस्ट किया गया। +1. एक नए मॉडल में योगदान देना चाहते हैं? नए मॉडल जोड़ने में आपका मार्गदर्शन करने के लिए हमारे पास एक **विस्तृत मार्गदर्शिका और टेम्प्लेट** है। आप उन्हें [`टेम्पलेट्स`](./templates) निर्देशिका में पा सकते हैं। पीआर शुरू करने से पहले [योगदान दिशानिर्देश] (./CONTRIBUTING.md) देखना और अनुरक्षकों से संपर्क करना या प्रतिक्रिया प्राप्त करने के लिए एक नया मुद्दा खोलना याद रखें। + +यह जांचने के लिए कि क्या किसी मॉडल में पहले से ही Flax, PyTorch या TensorFlow का कार्यान्वयन है, या यदि उसके पास Tokenizers लाइब्रेरी में संबंधित टोकन है, तो [यह तालिका] (https://huggingface.co/ docs/transformers/index#supported) देखें। -फ्रेमवर्क)। + +इन कार्यान्वयनों का परीक्षण कई डेटासेट पर किया गया है (देखें केस स्क्रिप्ट का उपयोग करें) और वैनिला कार्यान्वयन के लिए तुलनात्मक रूप से प्रदर्शन करना चाहिए। आप उपयोग के मामले के दस्तावेज़ [इस अनुभाग](https://huggingface.co/docs/transformers/examples) में व्यवहार का विवरण पढ़ सकते हैं। + + +## अधिक समझें + +|अध्याय | विवरण | +|-|-| +| [दस्तावेज़ीकरण](https://huggingface.co/transformers/) | पूरा एपीआई दस्तावेज़ीकरण और ट्यूटोरियल | +| [कार्य सारांश](https://huggingface.co/docs/transformers/task_summary) | ट्रांसफॉर्मर समर्थित कार्य | +| [प्रीप्रोसेसिंग ट्यूटोरियल](https://huggingface.co/docs/transformers/preprocessing) | मॉडल के लिए डेटा तैयार करने के लिए `टोकनाइज़र` का उपयोग करना | +| [प्रशिक्षण और फाइन-ट्यूनिंग](https://huggingface.co/docs/transformers/training) | PyTorch/TensorFlow के ट्रेनिंग लूप या `ट्रेनर` API में ट्रांसफॉर्मर द्वारा दिए गए मॉडल का उपयोग करें | +| [क्विक स्टार्ट: ट्वीकिंग एंड यूज़ केस स्क्रिप्ट्स](https://github.com/huggingface/transformers/tree/main/examples) | विभिन्न कार्यों के लिए केस स्क्रिप्ट का उपयोग करें | +| [मॉडल साझा करना और अपलोड करना](https://huggingface.co/docs/transformers/model_sharing) | समुदाय के साथ अपने फाइन टूनड मॉडल अपलोड और साझा करें | +| [माइग्रेशन](https://huggingface.co/docs/transformers/migration) | `पाइटोरच-ट्रांसफॉर्मर्स` या `पाइटोरच-प्रीट्रेनड-बर्ट` से ट्रांसफॉर्मर में माइग्रेट करना | + +## उद्धरण + +हमने आधिकारिक तौर पर इस लाइब्रेरी का [पेपर](https://www.aclweb.org/anthology/2020.emnlp-demos.6/) प्रकाशित किया है, अगर आप ट्रान्सफ़ॉर्मर्स लाइब्रेरी का उपयोग करते हैं, तो कृपया उद्धृत करें: +```bibtex +@inproceedings{wolf-etal-2020-transformers, + title = "Transformers: State-of-the-Art Natural Language Processing", + author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush", + booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations", + month = oct, + year = "2020", + address = "Online", + publisher = "Association for Computational Linguistics", + url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6", + pages = "38--45" +} +``` diff --git a/OPERA/transformers-4.29.2/README_ja.md b/OPERA/transformers-4.29.2/README_ja.md new file mode 100644 index 0000000000000000000000000000000000000000..953ff5598e4af78a07fda8a0dca35ff7024ff828 --- /dev/null +++ b/OPERA/transformers-4.29.2/README_ja.md @@ -0,0 +1,536 @@ + + + + +

+
+ +
+

+

+ + Build + + + GitHub + + + Documentation + + + GitHub release + + + Contributor Covenant + + DOI +

+ +

+

+ English | + 简体中文 | + 繁體中文 | + 한국어 | + Español | + 日本語 | + हिन्दी +

+

+ +

+

JAX、PyTorch、TensorFlowのための最先端機械学習

+

+ +

+ +

+ +🤗Transformersは、テキスト、視覚、音声などの異なるモダリティに対してタスクを実行するために、事前に学習させた数千のモデルを提供します。 + +これらのモデルは次のような場合に適用できます: + +* 📝 テキストは、テキストの分類、情報抽出、質問応答、要約、翻訳、テキスト生成などのタスクのために、100以上の言語に対応しています。 +* 🖼️ 画像分類、物体検出、セグメンテーションなどのタスクのための画像。 +* 🗣️ 音声は、音声認識や音声分類などのタスクに使用します。 + +トランスフォーマーモデルは、テーブル質問応答、光学文字認識、スキャン文書からの情報抽出、ビデオ分類、視覚的質問応答など、**複数のモダリティを組み合わせた**タスクも実行可能です。 + +🤗Transformersは、与えられたテキストに対してそれらの事前学習されたモデルを素早くダウンロードして使用し、あなた自身のデータセットでそれらを微調整し、私たちの[model hub](https://huggingface.co/models)でコミュニティと共有するためのAPIを提供します。同時に、アーキテクチャを定義する各Pythonモジュールは完全にスタンドアロンであり、迅速な研究実験を可能にするために変更することができます。 + +🤗Transformersは[Jax](https://jax.readthedocs.io/en/latest/)、[PyTorch](https://pytorch.org/)、[TensorFlow](https://www.tensorflow.org/)という3大ディープラーニングライブラリーに支えられ、それぞれのライブラリをシームレスに統合しています。片方でモデルを学習してから、もう片方で推論用にロードするのは簡単なことです。 + +## オンラインデモ + +[model hub](https://huggingface.co/models)から、ほとんどのモデルのページで直接テストすることができます。また、パブリックモデル、プライベートモデルに対して、[プライベートモデルのホスティング、バージョニング、推論API](https://huggingface.co/pricing)を提供しています。 + +以下はその一例です: + + 自然言語処理にて: +- [BERTによるマスクドワード補完](https://huggingface.co/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France) +- [Electraによる名前実体認識](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city) +- [GPT-2によるテキスト生成](https://huggingface.co/gpt2?text=A+long+time+ago%2C+) +- [RoBERTaによる自然言語推論](https://huggingface.co/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal) +- [BARTによる要約](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct) +- [DistilBERTによる質問応答](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species) +- [T5による翻訳](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin) + +コンピュータビジョンにて: +- [ViTによる画像分類](https://huggingface.co/google/vit-base-patch16-224) +- [DETRによる物体検出](https://huggingface.co/facebook/detr-resnet-50) +- [SegFormerによるセマンティックセグメンテーション](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512) +- [DETRによるパノプティックセグメンテーション](https://huggingface.co/facebook/detr-resnet-50-panoptic) + +オーディオにて: +- [Wav2Vec2による自動音声認識](https://huggingface.co/facebook/wav2vec2-base-960h) +- [Wav2Vec2によるキーワード検索](https://huggingface.co/superb/wav2vec2-base-superb-ks) + +マルチモーダルなタスクにて: +- [ViLTによる視覚的質問応答](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa) + +Hugging Faceチームによって作られた **[トランスフォーマーを使った書き込み](https://transformer.huggingface.co)** は、このリポジトリのテキスト生成機能の公式デモである。 + +## Hugging Faceチームによるカスタム・サポートをご希望の場合 + + + HuggingFace Expert Acceleration Program +
+ +## クイックツアー + +与えられた入力(テキスト、画像、音声、...)に対してすぐにモデルを使うために、我々は`pipeline`というAPIを提供しております。pipelineは、学習済みのモデルと、そのモデルの学習時に使用された前処理をグループ化したものです。以下は、肯定的なテキストと否定的なテキストを分類するためにpipelineを使用する方法です: + +```python +>>> from transformers import pipeline + +# Allocate a pipeline for sentiment-analysis +>>> classifier = pipeline('sentiment-analysis') +>>> classifier('We are very happy to introduce pipeline to the transformers repository.') +[{'label': 'POSITIVE', 'score': 0.9996980428695679}] +``` + +2行目のコードでは、pipelineで使用される事前学習済みモデルをダウンロードしてキャッシュし、3行目では与えられたテキストに対してそのモデルを評価します。ここでは、答えは99.97%の信頼度で「ポジティブ」です。 + +自然言語処理だけでなく、コンピュータビジョンや音声処理においても、多くのタスクにはあらかじめ訓練された`pipeline`が用意されている。例えば、画像から検出された物体を簡単に抽出することができる: + +``` python +>>> import requests +>>> from PIL import Image +>>> from transformers import pipeline + +# Download an image with cute cats +>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png" +>>> image_data = requests.get(url, stream=True).raw +>>> image = Image.open(image_data) + +# Allocate a pipeline for object detection +>>> object_detector = pipeline('object-detection') +>>> object_detector(image) +[{'score': 0.9982201457023621, + 'label': 'remote', + 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, + {'score': 0.9960021376609802, + 'label': 'remote', + 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, + {'score': 0.9954745173454285, + 'label': 'couch', + 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, + {'score': 0.9988006353378296, + 'label': 'cat', + 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, + {'score': 0.9986783862113953, + 'label': 'cat', + 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}] +``` + +ここでは、画像から検出されたオブジェクトのリストが得られ、オブジェクトを囲むボックスと信頼度スコアが表示されます。左側が元画像、右側が予測結果を表示したものです: + +

+ + +

+ +[このチュートリアル](https://huggingface.co/docs/transformers/task_summary)では、`pipeline`APIでサポートされているタスクについて詳しく説明しています。 + +`pipeline`に加えて、与えられたタスクに学習済みのモデルをダウンロードして使用するために必要なのは、3行のコードだけです。以下はPyTorchのバージョンです: +```python +>>> from transformers import AutoTokenizer, AutoModel + +>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") +>>> model = AutoModel.from_pretrained("bert-base-uncased") + +>>> inputs = tokenizer("Hello world!", return_tensors="pt") +>>> outputs = model(**inputs) +``` + +And here is the equivalent code for TensorFlow: +```python +>>> from transformers import AutoTokenizer, TFAutoModel + +>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") +>>> model = TFAutoModel.from_pretrained("bert-base-uncased") + +>>> inputs = tokenizer("Hello world!", return_tensors="tf") +>>> outputs = model(**inputs) +``` + +トークナイザは学習済みモデルが期待するすべての前処理を担当し、単一の文字列 (上記の例のように) またはリストに対して直接呼び出すことができます。これは下流のコードで使用できる辞書を出力します。また、単純に ** 引数展開演算子を使用してモデルに直接渡すこともできます。 + +モデル自体は通常の[Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) または [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (バックエンドによって異なる)で、通常通り使用することが可能です。[このチュートリアル](https://huggingface.co/docs/transformers/training)では、このようなモデルを従来のPyTorchやTensorFlowの学習ループに統合する方法や、私たちの`Trainer`APIを使って新しいデータセットで素早く微調整を行う方法について説明します。 + +## なぜtransformersを使う必要があるのでしょうか? + +1. 使いやすい最新モデル: + - 自然言語理解・生成、コンピュータビジョン、オーディオの各タスクで高いパフォーマンスを発揮します。 + - 教育者、実務者にとっての低い参入障壁。 + - 学習するクラスは3つだけで、ユーザが直面する抽象化はほとんどありません。 + - 学習済みモデルを利用するための統一されたAPI。 + +1. 低い計算コスト、少ないカーボンフットプリント: + - 研究者は、常に再トレーニングを行うのではなく、トレーニングされたモデルを共有することができます。 + - 実務家は、計算時間や生産コストを削減することができます。 + - すべてのモダリティにおいて、60,000以上の事前学習済みモデルを持つ数多くのアーキテクチャを提供します。 + +1. モデルのライフタイムのあらゆる部分で適切なフレームワークを選択可能: + - 3行のコードで最先端のモデルをトレーニング。 + - TF2.0/PyTorch/JAXフレームワーク間で1つのモデルを自在に移動させる。 + - 学習、評価、生産に適したフレームワークをシームレスに選択できます。 + +1. モデルやサンプルをニーズに合わせて簡単にカスタマイズ可能: + - 原著者が発表した結果を再現するために、各アーキテクチャの例を提供しています。 + - モデル内部は可能な限り一貫して公開されています。 + - モデルファイルはライブラリとは独立して利用することができ、迅速な実験が可能です。 + +## なぜtransformersを使ってはいけないのでしょうか? + +- このライブラリは、ニューラルネットのためのビルディングブロックのモジュール式ツールボックスではありません。モデルファイルのコードは、研究者が追加の抽象化/ファイルに飛び込むことなく、各モデルを素早く反復できるように、意図的に追加の抽象化でリファクタリングされていません。 +- 学習APIはどのようなモデルでも動作するわけではなく、ライブラリが提供するモデルで動作するように最適化されています。一般的な機械学習のループには、別のライブラリ(おそらく[Accelerate](https://huggingface.co/docs/accelerate))を使用する必要があります。 +- 私たちはできるだけ多くの使用例を紹介するよう努力していますが、[examples フォルダ](https://github.com/huggingface/transformers/tree/main/examples) にあるスクリプトはあくまで例です。あなたの特定の問題に対してすぐに動作するわけではなく、あなたのニーズに合わせるために数行のコードを変更する必要があることが予想されます。 + +## インストール + +### pipにて + +このリポジトリは、Python 3.6+, Flax 0.3.2+, PyTorch 1.3.1+, TensorFlow 2.3+ でテストされています。 + +🤗Transformersは[仮想環境](https://docs.python.org/3/library/venv.html)にインストールする必要があります。Pythonの仮想環境に慣れていない場合は、[ユーザーガイド](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/)を確認してください。 + +まず、使用するバージョンのPythonで仮想環境を作成し、アクティベートします。 + +その後、Flax, PyTorch, TensorFlowのうち少なくとも1つをインストールする必要があります。 +[TensorFlowインストールページ](https://www.tensorflow.org/install/)、[PyTorchインストールページ](https://pytorch.org/get-started/locally/#start-locally)、[Flax](https://github.com/google/flax#quick-install)、[Jax](https://github.com/google/jax#installation)インストールページで、お使いのプラットフォーム別のインストールコマンドを参照してください。 + +これらのバックエンドのいずれかがインストールされている場合、🤗Transformersは以下のようにpipを使用してインストールすることができます: + +```bash +pip install transformers +``` + +もしサンプルを試したい、またはコードの最先端が必要で、新しいリリースを待てない場合は、[ライブラリをソースからインストール](https://huggingface.co/docs/transformers/installation#installing-from-source)する必要があります。 + +### condaにて + +Transformersバージョン4.0.0から、condaチャンネルを搭載しました: `huggingface`。 + +🤗Transformersは以下のようにcondaを使って設置することができます: + +```shell script +conda install -c huggingface transformers +``` + +Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それぞれのインストールページに従ってください。 + +> **_注意:_** Windowsでは、キャッシュの恩恵を受けるために、デベロッパーモードを有効にするよう促されることがあります。このような場合は、[このissue](https://github.com/huggingface/huggingface_hub/issues/1062)でお知らせください。 + +## モデルアーキテクチャ + +🤗Transformersが提供する **[全モデルチェックポイント](https://huggingface.co/models)** は、[ユーザー](https://huggingface.co/users)や[組織](https://huggingface.co/organizations)によって直接アップロードされるhuggingface.co [model hub](https://huggingface.co)からシームレスに統合されています。 + +現在のチェックポイント数: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen) + +🤗Transformersは現在、以下のアーキテクチャを提供しています(それぞれのハイレベルな要約は[こちら](https://huggingface.co/docs/transformers/model_summary)を参照してください): + +1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (Google Research and the Toyota Technological Institute at Chicago から) Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut から公開された研究論文: [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942) +1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (Google Research から) Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig. から公開された研究論文 [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) +1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (BAAI から) Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell から公開された研究論文: [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) +1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (MIT から) Yuan Gong, Yu-An Chung, James Glass から公開された研究論文: [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) +1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (Facebook から) Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer から公開された研究論文: [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) +1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (École polytechnique から) Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis から公開された研究論文: [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) +1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (VinAI Research から) Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen から公開された研究論文: [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) +1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (Microsoft から) Hangbo Bao, Li Dong, Furu Wei から公開された研究論文: [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) +1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (Google から) Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova から公開された研究論文: [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) +1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (Google から) Sascha Rothe, Shashi Narayan, Aliaksei Severyn から公開された研究論文: [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) +1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (VinAI Research から) Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen から公開された研究論文: [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) +1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (Google Research から) Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed から公開された研究論文: [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) +1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (Google Research から) Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed から公開された研究論文: [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) +1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (Microsoft Research AI4Science から) Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu から公開された研究論文: [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) +1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (Google AI から) Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil から公開された研究論文: [Big Transfer (BiT)](https://arxiv.org/abs/1912.11370)Houlsby. +1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (Facebook から) Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston から公開された研究論文: [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) +1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (Facebook から) Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston から公開された研究論文: [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) +1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (Salesforce から) Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi から公開された研究論文: [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) +1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (Salesforce から) Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi. から公開された研究論文 [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) +1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (BigScience workshop から) [BigScience Workshop](https://bigscience.huggingface.co/) から公開されました. +1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (Alexa から) Adrian de Wynter and Daniel J. Perry から公開された研究論文: [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) +1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (Harbin Institute of Technology/Microsoft Research Asia/Intel Labs から) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan. +1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (Google Research から) Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel から公開された研究論文: [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) +1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (Inria/Facebook/Sorbonne から) Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot から公開された研究論文: [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) +1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (Google Research から) Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting から公開された研究論文: [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) +1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (OFA-Sys から) An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou から公開された研究論文: [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) +1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (LAION-AI から) Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov. から公開された研究論文 [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) +1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (OpenAI から) Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever から公開された研究論文: [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) +1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (University of Göttingen から) Timo Lüddecke and Alexander Ecker から公開された研究論文: [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) +1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (Salesforce から) Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong から公開された研究論文: [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) +1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (Microsoft Research Asia から) Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang から公開された研究論文: [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) +1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (YituTech から) Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan から公開された研究論文: [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) +1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (Facebook AI から) Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie から公開された研究論文: [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) +1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie. +1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (Tsinghua University から) Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun から公開された研究論文: [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) +1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (OpenBMB から) [OpenBMB](https://www.openbmb.org/) から公開されました. +1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (Salesforce から) Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher から公開された研究論文: [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) +1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (Microsoft から) Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang から公開された研究論文: [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) +1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (Facebook から) Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli から公開された研究論文: [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) +1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (Microsoft から) Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen から公開された研究論文: [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) +1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (Microsoft から) Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen から公開された研究論文: [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) +1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (Berkeley/Facebook/Google から) Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch から公開された研究論文: [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) +1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (SenseTime Research から) Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai から公開された研究論文: [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) +1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (Facebook から) Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou から公開された研究論文: [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) +1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (Google AI から) Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun. から公開された研究論文 [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) +1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (The University of Texas at Austin から) Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl. から公開された研究論文 [NMS Strikes Back](https://arxiv.org/abs/2212.06137) +1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (Facebook から) Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko から公開された研究論文: [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) +1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (Microsoft Research から) Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan から公開された研究論文: [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) +1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (SHI Labs から) Ali Hassani and Humphrey Shi から公開された研究論文: [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) +1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (HuggingFace から), Victor Sanh, Lysandre Debut and Thomas Wolf. 同じ手法で GPT2, RoBERTa と Multilingual BERT の圧縮を行いました.圧縮されたモデルはそれぞれ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation)、[DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation)、[DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) と名付けられました. 公開された研究論文: [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) +1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (Microsoft Research から) Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei から公開された研究論文: [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) +1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (NAVER から), Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park から公開された研究論文: [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) +1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (Facebook から) Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih から公開された研究論文: [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) +1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (Intel Labs から) René Ranftl, Alexey Bochkovskiy, Vladlen Koltun から公開された研究論文: [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) +1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (Snap Research から) Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren. から公開された研究論文 [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) +1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le. +1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (Google Research/Stanford University から) Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning から公開された研究論文: [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) +1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (Google Research から) Sascha Rothe, Shashi Narayan, Aliaksei Severyn から公開された研究論文: [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) +1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (Baidu から) Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu から公開された研究論文: [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) +1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (Baidu から) Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang. から公開された研究論文 [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) +1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (Meta AI から) はトランスフォーマープロテイン言語モデルです. **ESM-1b** は Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus から公開された研究論文: [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118). **ESM-1v** は Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives から公開された研究論文: [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648). **ESM-2** と **ESMFold** は Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives から公開された研究論文: [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) +1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (Google AI から) Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V から公開されたレポジトリー [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) Le, and Jason Wei +1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei +1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (CNRS から) Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab から公開された研究論文: [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) +1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (Facebook AI から) Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela から公開された研究論文: [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) +1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (Google Research から) James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon から公開された研究論文: [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) +1. **[FocalNet](https://huggingface.co/docs/transformers/main/model_doc/focalnet)** (Microsoft Research から) Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao. から公開された研究論文 [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) +1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (CMU/Google Brain から) Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le から公開された研究論文: [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) +1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (Microsoft Research から) Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang. から公開された研究論文 [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) +1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (KAIST から) Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim から公開された研究論文: [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) +1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (OpenAI から) Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever から公開された研究論文: [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) +1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (EleutherAI から) Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy から公開されたレポジトリー : [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) +1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (EleutherAI から) Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach から公開された研究論文: [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) +1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (ABEJA から) Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori からリリース. +1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (OpenAI から) Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever** から公開された研究論文: [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) +1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (EleutherAI から) Ben Wang and Aran Komatsuzaki から公開されたレポジトリー [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) +1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (AI-Sweden から) Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren から公開された研究論文: [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) +1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (BigCode から) Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra. から公開された研究論文 [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) +1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) 坂本俊之(tanreinama)からリリースされました. +1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (Microsoft から) Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu から公開された研究論文: [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234). +1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (UCSD, NVIDIA から) Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang から公開された研究論文: [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) +1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (Facebook から) Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed から公開された研究論文: [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) +1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (Berkeley から) Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer から公開された研究論文: [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) +1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (OpenAI から) Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever から公開された研究論文: [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) +1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. +1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (OpenAI から) Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever から公開された研究論文: [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) +1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (Microsoft Research Asia から) Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou から公開された研究論文: [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) +1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (Microsoft Research Asia から) Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou から公開された研究論文: [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) +1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (Microsoft Research Asia から) Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei から公開された研究論文: [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) +1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (Microsoft Research Asia から) Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei から公開された研究論文: [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) +1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (AllenAI から) Iz Beltagy, Matthew E. Peters, Arman Cohan から公開された研究論文: [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) +1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (Meta AI から) Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze から公開された研究論文: [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) +1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (South China University of Technology から) Jiapeng Wang, Lianwen Jin, Kai Ding から公開された研究論文: [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) +1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (The FAIR team of Meta AI から) Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample. から公開された研究論文 [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) +1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (AllenAI から) Iz Beltagy, Matthew E. Peters, Arman Cohan から公開された研究論文: [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) +1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (Google AI から) Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang から公開された研究論文: [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) +1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (Studio Ousia から) Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto から公開された研究論文: [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) +1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (UNC Chapel Hill から) Hao Tan and Mohit Bansal から公開された研究論文: [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) +1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (Facebook から) Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert から公開された研究論文: [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) +1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (Facebook から) Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin から公開された研究論文: [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) +1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Jörg Tiedemann から. [OPUS](http://opus.nlpl.eu/) を使いながら学習された "Machine translation" (マシントランスレーション) モデル. [Marian Framework](https://marian-nmt.github.io/) はMicrosoft Translator Team が現在開発中です. +1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (Microsoft Research Asia から) Junlong Li, Yiheng Xu, Lei Cui, Furu Wei から公開された研究論文: [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) +1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (FAIR and UIUC から) Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar. から公開された研究論文 [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) +1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (Meta and UIUC から) Bowen Cheng, Alexander G. Schwing, Alexander Kirillov から公開された研究論文: [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) +1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (Google AI から) Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos. から公開された研究論文 [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) +1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (Facebook から) Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer から公開された研究論文: [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) +1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (Facebook から) Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan から公開された研究論文: [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) +1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (Facebook から) Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer. から公開された研究論文 [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) +1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (NVIDIA から) Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro から公開された研究論文: [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) +1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (NVIDIA から) Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro から公開された研究論文: [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) +1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (Alibaba Research から) Peng Wang, Cheng Da, and Cong Yao. から公開された研究論文 [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) +1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (Studio Ousia から) Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka から公開された研究論文: [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) +1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (CMU/Google Brain から) Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou から公開された研究論文: [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) +1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (Google Inc. から) Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam から公開された研究論文: [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) +1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (Google Inc. から) Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen から公開された研究論文: [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) +1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (Apple から) Sachin Mehta and Mohammad Rastegari から公開された研究論文: [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) +1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (Microsoft Research から) Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu から公開された研究論文: [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) +1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (Google AI から) Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel から公開された研究論文: [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) +1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (RUC AI Box から) Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen から公開された研究論文: [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) +1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (SHI Labs から) Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi から公開された研究論文: [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) +1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (Huawei Noah’s Ark Lab から) Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu から公開された研究論文: [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) +1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (Meta から) the NLLB team から公開された研究論文: [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) +1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (Meta から) the NLLB team. から公開された研究論文 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) +1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (the University of Wisconsin - Madison から) Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh から公開された研究論文: [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) +1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (SHI Labs から) Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi から公開された研究論文: [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) +1. **[OpenLlama](https://huggingface.co/docs/transformers/main/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama). +1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (Meta AI から) Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al から公開された研究論文: [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) +1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (Google AI から) Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby から公開された研究論文: [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) +1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (Google から) Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu から公開された研究論文: [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) +1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (Google から) Jason Phang, Yao Zhao, and Peter J. Liu から公開された研究論文: [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) +1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (Deepmind から) Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira から公開された研究論文: [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) +1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (VinAI Research から) Dat Quoc Nguyen and Anh Tuan Nguyen から公開された研究論文: [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) +1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (Google から) Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova. から公開された研究論文 [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) +1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (UCLA NLP から) Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang から公開された研究論文: [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) +1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (Sea AI Labs から) Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng から公開された研究論文: [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) +1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (Microsoft Research から) Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou から公開された研究論文: [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) +1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (NVIDIA から) Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius から公開された研究論文: [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) +1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (Facebook から) Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela から公開された研究論文: [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) +1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (Google Research から) Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang から公開された研究論文: [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) +1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (Google Research から) Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya から公開された研究論文: [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) +1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (META Platforms から) Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár から公開された研究論文: [Designing Network Design Space](https://arxiv.org/abs/2003.13678) +1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (Google Research から) Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder から公開された研究論文: [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) +1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (Microsoft Research から) Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun から公開された研究論文: [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) +1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (Facebook から), Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov から公開された研究論文: [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) +1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (Facebook から) Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli から公開された研究論文: [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) +1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (WeChatAI から) HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou から公開された研究論文: [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) +1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (ZhuiyiTechnology から), Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu から公開された研究論文: [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) +1. **[RWKV](https://huggingface.co/docs/transformers/main/model_doc/rwkv)** (Bo Peng から) Bo Peng. から公開された研究論文 [this repo](https://github.com/BlinkDL/RWKV-LM) +1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (NVIDIA から) Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo から公開された研究論文: [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) +1. **[Segment Anything](https://huggingface.co/docs/transformers/main/model_doc/sam)** (Meta AI から) Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick. から公開された研究論文 [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) +1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (ASAPP から) Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi から公開された研究論文: [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) +1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (ASAPP から) Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi から公開された研究論文: [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) +1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (Microsoft Research から) Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei. から公開された研究論文 [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) +1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (Facebook から), Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino から公開された研究論文: [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) +1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (Facebook から), Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau から公開された研究論文: [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) +1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (Tel Aviv University から), Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy から公開された研究論文: [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) +1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (Berkeley から) Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer から公開された研究論文: [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) +1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (Microsoft から) Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo から公開された研究論文: [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) +1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (Microsoft から) Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo から公開された研究論文: [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) +1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (University of Würzburg から) Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte から公開された研究論文: [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) +1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (Google から) William Fedus, Barret Zoph, Noam Shazeer から公開された研究論文: [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) +1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (Google AI から) Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu から公開された研究論文: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) +1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (Google AI から) Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu から公開されたレポジトリー [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) +1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (Microsoft Research から) Brandon Smock, Rohith Pesala, Robin Abraham から公開された研究論文: [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) +1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (Google AI から) Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos から公開された研究論文: [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) +1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (Microsoft Research から) Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou から公開された研究論文: [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) +1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (HuggingFace から). +1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (Facebook から) Gedas Bertasius, Heng Wang, Lorenzo Torresani から公開された研究論文: [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) +1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (the University of California at Berkeley から) Michael Janner, Qiyang Li, Sergey Levine から公開された研究論文: [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) +1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (Google/CMU から) Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov から公開された研究論文: [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) +1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (Microsoft から), Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei から公開された研究論文: [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) +1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill から), Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal から公開された研究論文: [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) +1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (Google Research から) Yi Tay, Mostafa Dehghani, Vinh Q から公開された研究論文: [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler +1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (Microsoft Research から) Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang から公開された研究論文: [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) +1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (Microsoft Research から) Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu から公開された研究論文: [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) +1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (Peking University から) Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun. から公開された研究論文 [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) +1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (Tsinghua University and Nankai University から) Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu から公開された研究論文: [Visual Attention Network](https://arxiv.org/abs/2202.09741) +1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (Multimedia Computing Group, Nanjing University から) Zhan Tong, Yibing Song, Jue Wang, Limin Wang から公開された研究論文: [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) +1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (NAVER AI Lab/Kakao Enterprise/Kakao Brain から) Wonjae Kim, Bokyung Son, Ildoo Kim から公開された研究論文: [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) +1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (Google AI から) Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby から公開された研究論文: [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) +1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (UCLA NLP から) Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang から公開された研究論文: [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) +1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (Google AI から) Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby から公開された研究論文: [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) +1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (Meta AI から) Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick から公開された研究論文: [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) +1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (Meta AI から) Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas から公開された研究論文: [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) +1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (Facebook AI から) Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli から公開された研究論文: [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) +1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (Facebook AI から) Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino から公開された研究論文: [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) +1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (Facebook AI から) Qiantong Xu, Alexei Baevski, Michael Auli から公開された研究論文: [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) +1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (Microsoft Research から) Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei から公開された研究論文: [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) +1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (OpenAI から) Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever から公開された研究論文: [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) +1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (Microsoft Research から) Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling から公開された研究論文: [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) +1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (Meta AI から) Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe. から公開された研究論文 [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) +1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li から公開された研究論文: [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) +1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (Facebook から) Guillaume Lample and Alexis Conneau から公開された研究論文: [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) +1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (Microsoft Research から) Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou から公開された研究論文: [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) +1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (Facebook AI から), Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov から公開された研究論文: [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) +1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (Facebook AI から), Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau から公開された研究論文: [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) +1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (Meta AI から) Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa から公開された研究論文: [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) +1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (Google/CMU から) Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le から公開された研究論文: [​XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) +1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (Facebook AI から) Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli から公開された研究論文: [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) +1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (Facebook AI から) Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli から公開された研究論文: [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) +1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (Huazhong University of Science & Technology から) Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu から公開された研究論文: [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) +1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (the University of Wisconsin - Madison から) Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh から公開された研究論文: [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) +1. 新しいモデルを投稿したいですか?新しいモデルを追加するためのガイドとして、**詳細なガイドとテンプレート**が追加されました。これらはリポジトリの[`templates`](./templates)フォルダにあります。PRを始める前に、必ず[コントリビューションガイド](./CONTRIBUTING.md)を確認し、メンテナに連絡するか、フィードバックを収集するためにissueを開いてください。 + +各モデルがFlax、PyTorch、TensorFlowで実装されているか、🤗Tokenizersライブラリに支えられた関連トークナイザを持っているかは、[この表](https://huggingface.co/docs/transformers/index#supported-frameworks)を参照してください。 + +これらの実装はいくつかのデータセットでテストされており(サンプルスクリプトを参照)、オリジナルの実装の性能と一致するはずである。性能の詳細は[documentation](https://github.com/huggingface/transformers/tree/main/examples)のExamplesセクションで見ることができます。 + + +## さらに詳しく + +| セクション | 概要 | +|-|-| +| [ドキュメント](https://huggingface.co/docs/transformers/) | 完全なAPIドキュメントとチュートリアル | +| [タスク概要](https://huggingface.co/docs/transformers/task_summary) | 🤗Transformersがサポートするタスク | +| [前処理チュートリアル](https://huggingface.co/docs/transformers/preprocessing) | モデル用のデータを準備するために`Tokenizer`クラスを使用 | +| [トレーニングと微調整](https://huggingface.co/docs/transformers/training) | PyTorch/TensorFlowの学習ループと`Trainer`APIで🤗Transformersが提供するモデルを使用 | +| [クイックツアー: 微調整/使用方法スクリプト](https://github.com/huggingface/transformers/tree/main/examples) | 様々なタスクでモデルの微調整を行うためのスクリプト例 | +| [モデルの共有とアップロード](https://huggingface.co/docs/transformers/model_sharing) | 微調整したモデルをアップロードしてコミュニティで共有する | +| [マイグレーション](https://huggingface.co/docs/transformers/migration) | `pytorch-transformers`または`pytorch-pretrained-bert`から🤗Transformers に移行する | + +## 引用 + +🤗 トランスフォーマーライブラリに引用できる[論文](https://www.aclweb.org/anthology/2020.emnlp-demos.6/)が出来ました: +```bibtex +@inproceedings{wolf-etal-2020-transformers, + title = "Transformers: State-of-the-Art Natural Language Processing", + author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush", + booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations", + month = oct, + year = "2020", + address = "Online", + publisher = "Association for Computational Linguistics", + url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6", + pages = "38--45" +} +``` diff --git a/OPERA/transformers-4.29.2/README_ko.md b/OPERA/transformers-4.29.2/README_ko.md new file mode 100644 index 0000000000000000000000000000000000000000..2707f191dad0b6197e417e86278789bd65e046fc --- /dev/null +++ b/OPERA/transformers-4.29.2/README_ko.md @@ -0,0 +1,450 @@ + + +

+
+ +
+

+

+ + Build + + + GitHub + + + Documentation + + + GitHub release + + + Contributor Covenant + + DOI +

+ +

+

+ English | + 简体中文 | + 繁體中文 | + 한국어 | + Español | + 日本語 | + हिन्दी +

+

+ +

+

Jax, Pytorch, TensorFlow를 위한 최첨단 자연어처리

+

+ +

+ +

+ +🤗 Transformers는 분류, 정보 추출, 질문 답변, 요약, 번역, 문장 생성 등을 100개 이상의 언어로 수행할 수 있는 수천개의 사전학습된 모델을 제공합니다. 우리의 목표는 모두가 최첨단의 NLP 기술을 쉽게 사용하는 것입니다. + +🤗 Transformers는 이러한 사전학습 모델을 빠르게 다운로드해 특정 텍스트에 사용하고, 원하는 데이터로 fine-tuning해 커뮤니티나 우리의 [모델 허브](https://huggingface.co/models)에 공유할 수 있도록 API를 제공합니다. 또한, 모델 구조를 정의하는 각 파이썬 모듈은 완전히 독립적이여서 연구 실험을 위해 손쉽게 수정할 수 있습니다. + +🤗 Transformers는 가장 유명한 3개의 딥러닝 라이브러리를 지원합니다. 이들은 서로 완벽히 연동됩니다 — [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/), [TensorFlow](https://www.tensorflow.org/). 간단하게 이 라이브러리 중 하나로 모델을 학습하고, 또 다른 라이브러리로 추론을 위해 모델을 불러올 수 있습니다. + +## 온라인 데모 + +대부분의 모델을 [모델 허브](https://huggingface.co/models) 페이지에서 바로 테스트해볼 수 있습니다. 공개 및 비공개 모델을 위한 [비공개 모델 호스팅, 버전 관리, 추론 API](https://huggingface.co/pricing)도 제공합니다. + +예시: +- [BERT로 마스킹된 단어 완성하기](https://huggingface.co/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France) +- [Electra를 이용한 개체명 인식](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city) +- [GPT-2로 텍스트 생성하기](https://huggingface.co/gpt2?text=A+long+time+ago%2C+) +- [RoBERTa로 자연어 추론하기](https://huggingface.co/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal) +- [BART를 이용한 요약](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct) +- [DistilBERT를 이용한 질문 답변](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species) +- [T5로 번역하기](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin) + +**[Transformer와 글쓰기](https://transformer.huggingface.co)** 는 이 저장소의 텍스트 생성 능력에 관한 Hugging Face 팀의 공식 데모입니다. + +## Hugging Face 팀의 커스텀 지원을 원한다면 + + + HuggingFace Expert Acceleration Program +
+ +## 퀵 투어 + +원하는 텍스트에 바로 모델을 사용할 수 있도록, 우리는 `pipeline` API를 제공합니다. Pipeline은 사전학습 모델과 그 모델을 학습할 때 적용한 전처리 방식을 하나로 합칩니다. 다음은 긍정적인 텍스트와 부정적인 텍스트를 분류하기 위해 pipeline을 사용한 간단한 예시입니다: + +```python +>>> from transformers import pipeline + +# Allocate a pipeline for sentiment-analysis +>>> classifier = pipeline('sentiment-analysis') +>>> classifier('We are very happy to introduce pipeline to the transformers repository.') +[{'label': 'POSITIVE', 'score': 0.9996980428695679}] +``` + +코드의 두번째 줄은 pipeline이 사용하는 사전학습 모델을 다운로드하고 캐시로 저장합니다. 세번째 줄에선 그 모델이 주어진 텍스트를 평가합니다. 여기서 모델은 99.97%의 확률로 텍스트가 긍정적이라고 평가했습니다. + +많은 NLP 과제들을 `pipeline`으로 바로 수행할 수 있습니다. 예를 들어, 질문과 문맥이 주어지면 손쉽게 답변을 추출할 수 있습니다: + +``` python +>>> from transformers import pipeline + +# Allocate a pipeline for question-answering +>>> question_answerer = pipeline('question-answering') +>>> question_answerer({ +... 'question': 'What is the name of the repository ?', +... 'context': 'Pipeline has been included in the huggingface/transformers repository' +... }) +{'score': 0.30970096588134766, 'start': 34, 'end': 58, 'answer': 'huggingface/transformers'} + +``` + +답변뿐만 아니라, 여기에 사용된 사전학습 모델은 확신도와 토크나이즈된 문장 속 답변의 시작점, 끝점까지 반환합니다. [이 튜토리얼](https://huggingface.co/docs/transformers/task_summary)에서 `pipeline` API가 지원하는 다양한 과제를 확인할 수 있습니다. + +코드 3줄로 원하는 과제에 맞게 사전학습 모델을 다운로드 받고 사용할 수 있습니다. 다음은 PyTorch 버전입니다: +```python +>>> from transformers import AutoTokenizer, AutoModel + +>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") +>>> model = AutoModel.from_pretrained("bert-base-uncased") + +>>> inputs = tokenizer("Hello world!", return_tensors="pt") +>>> outputs = model(**inputs) +``` +다음은 TensorFlow 버전입니다: +```python +>>> from transformers import AutoTokenizer, TFAutoModel + +>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") +>>> model = TFAutoModel.from_pretrained("bert-base-uncased") + +>>> inputs = tokenizer("Hello world!", return_tensors="tf") +>>> outputs = model(**inputs) +``` + +토크나이저는 사전학습 모델의 모든 전처리를 책임집니다. 그리고 (위의 예시처럼) 1개의 스트링이나 리스트도 처리할 수 있습니다. 토크나이저는 딕셔너리를 반환하는데, 이는 다운스트림 코드에 사용하거나 언패킹 연산자 ** 를 이용해 모델에 바로 전달할 수도 있습니다. + +모델 자체는 일반적으로 사용되는 [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module)나 [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model)입니다. [이 튜토리얼](https://huggingface.co/transformers/training.html)은 이러한 모델을 표준적인 PyTorch나 TensorFlow 학습 과정에서 사용하는 방법, 또는 새로운 데이터로 fine-tune하기 위해 `Trainer` API를 사용하는 방법을 설명해줍니다. + +## 왜 transformers를 사용해야 할까요? + +1. 손쉽게 사용할 수 있는 최첨단 모델: + - NLU와 NLG 과제에서 뛰어난 성능을 보입니다. + - 교육자 실무자에게 진입 장벽이 낮습니다. + - 3개의 클래스만 배우면 바로 사용할 수 있습니다. + - 하나의 API로 모든 사전학습 모델을 사용할 수 있습니다. + +1. 더 적은 계산 비용, 더 적은 탄소 발자국: + - 연구자들은 모델을 계속 다시 학습시키는 대신 학습된 모델을 공유할 수 있습니다. + - 실무자들은 학습에 필요한 시간과 비용을 절약할 수 있습니다. + - 수십개의 모델 구조, 2,000개 이상의 사전학습 모델, 100개 이상의 언어로 학습된 모델 등. + +1. 모델의 각 생애주기에 적합한 프레임워크: + - 코드 3줄로 최첨단 모델을 학습하세요. + - 자유롭게 모델을 TF2.0나 PyTorch 프레임워크로 변환하세요. + - 학습, 평가, 공개 등 각 단계에 맞는 프레임워크를 원하는대로 선택하세요. + +1. 필요한 대로 모델이나 예시를 커스터마이즈하세요: + - 우리는 저자가 공개한 결과를 재현하기 위해 각 모델 구조의 예시를 제공합니다. + - 모델 내부 구조는 가능한 일관적으로 공개되어 있습니다. + - 빠른 실험을 위해 모델 파일은 라이브러리와 독립적으로 사용될 수 있습니다. + +## 왜 transformers를 사용하지 말아야 할까요? + +- 이 라이브러리는 신경망 블록을 만들기 위한 모듈이 아닙니다. 연구자들이 여러 파일을 살펴보지 않고 바로 각 모델을 사용할 수 있도록, 모델 파일 코드의 추상화 수준을 적정하게 유지했습니다. +- 학습 API는 모든 모델에 적용할 수 있도록 만들어지진 않았지만, 라이브러리가 제공하는 모델들에 적용할 수 있도록 최적화되었습니다. 일반적인 머신 러닝을 위해선, 다른 라이브러리를 사용하세요. +- 가능한 많은 사용 예시를 보여드리고 싶어서, [예시 폴더](https://github.com/huggingface/transformers/tree/main/examples)의 스크립트를 준비했습니다. 이 스크립트들을 수정 없이 특정한 문제에 바로 적용하지 못할 수 있습니다. 필요에 맞게 일부 코드를 수정해야 할 수 있습니다. + +## 설치 + +### pip로 설치하기 + +이 저장소는 Python 3.6+, Flax 0.3.2+, PyTorch 1.3.1+, TensorFlow 2.3+에서 테스트 되었습니다. + +[가상 환경](https://docs.python.org/3/library/venv.html)에 🤗 Transformers를 설치하세요. Python 가상 환경에 익숙하지 않다면, [사용자 가이드](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/)를 확인하세요. + +우선, 사용할 Python 버전으로 가상 환경을 만들고 실행하세요. + +그 다음, Flax, PyTorch, TensorFlow 중 적어도 하나는 설치해야 합니다. +플랫폼에 맞는 설치 명령어를 확인하기 위해 [TensorFlow 설치 페이지](https://www.tensorflow.org/install/), [PyTorch 설치 페이지](https://pytorch.org/get-started/locally/#start-locally), [Flax 설치 페이지](https://github.com/google/flax#quick-install)를 확인하세요. + +이들 중 적어도 하나가 설치되었다면, 🤗 Transformers는 다음과 같이 pip을 이용해 설치할 수 있습니다: + +```bash +pip install transformers +``` + +예시들을 체험해보고 싶거나, 최최최첨단 코드를 원하거나, 새로운 버전이 나올 때까지 기다릴 수 없다면 [라이브러리를 소스에서 바로 설치](https://huggingface.co/docs/transformers/installation#installing-from-source)하셔야 합니다. + +### conda로 설치하기 + +Transformers 버전 v4.0.0부터, conda 채널이 생겼습니다: `huggingface`. + +🤗 Transformers는 다음과 같이 conda로 설치할 수 있습니다: + +```shell script +conda install -c huggingface transformers +``` + +Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는 방법을 확인하세요. + +## 모델 구조 + +**🤗 Transformers가 제공하는 [모든 모델 체크포인트](https://huggingface.co/models)** 는 huggingface.co [모델 허브](https://huggingface.co)에 완벽히 연동되어 있습니다. [개인](https://huggingface.co/users)과 [기관](https://huggingface.co/organizations)이 모델 허브에 직접 업로드할 수 있습니다. + +현재 사용 가능한 모델 체크포인트의 개수: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen) + +🤗 Transformers는 다음 모델들을 제공합니다 (각 모델의 요약은 [여기](https://huggingface.co/docs/transformers/model_summary)서 확인하세요): + +1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut. +1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (Google Research 에서 제공)은 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.의 [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918)논문과 함께 발표했습니다. +1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell. +1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass. +1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/pdf/1910.13461.pdf) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer. +1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis. +1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen. +1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei. +1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. +1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. +1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen. +1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed. +1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed. +1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu. +1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby. +1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston. +1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston. +1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi. +1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (Salesforce 에서 제공)은 Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi.의 [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597)논문과 함께 발표했습니다. +1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/). +1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (Alexa 에서) Adrian de Wynter and Daniel J. Perry 의 [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) 논문과 함께 발표했습니다. +1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan. +1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (Google Research 에서) Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel 의 [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) 논문과 함께 발표했습니다. +1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (Inria/Facebook/Sorbonne 에서) Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot 의 [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) 논문과 함께 발표했습니다. +1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (Google Research 에서) Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting 의 [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) 논문과 함께 발표했습니다. +1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (OFA-Sys 에서) An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou 의 [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) 논문과 함께 발표했습니다. +1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (LAION-AI 에서 제공)은 Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov.의 [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687)논문과 함께 발표했습니다. +1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (OpenAI 에서) Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever 의 [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) 논문과 함께 발표했습니다. +1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (University of Göttingen 에서) Timo Lüddecke and Alexander Ecker 의 [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) 논문과 함께 발표했습니다. +1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (Salesforce 에서) Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong 의 [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) 논문과 함께 발표했습니다. +1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (Microsoft Research Asia 에서) Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang 의 [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) 논문과 함께 발표했습니다. +1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (YituTech 에서) Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan 의 [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) 논문과 함께 발표했습니다. +1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (Facebook AI 에서) Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie 의 [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) 논문과 함께 발표했습니다. +1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie. +1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (Tsinghua University 에서) Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun 의 [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) 논문과 함께 발표했습니다. +1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/). +1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (Salesforce 에서) Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher 의 [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) 논문과 함께 발표했습니다. +1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (Microsoft 에서) Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang 의 [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) 논문과 함께 발표했습니다. +1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (Facebook 에서) Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli 의 [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) 논문과 함께 발표했습니다. +1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (Microsoft 에서) Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen 의 [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) 논문과 함께 발표했습니다. +1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (Microsoft 에서) Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen 의 [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) 논문과 함께 발표했습니다. +1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (Berkeley/Facebook/Google 에서) Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch 의 [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) 논문과 함께 발표했습니다. +1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (SenseTime Research 에서) Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai 의 [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) 논문과 함께 발표했습니다. +1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (Facebook 에서) Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou 의 [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) 논문과 함께 발표했습니다. +1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (Google AI 에서 제공)은 Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.의 [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505)논문과 함께 발표했습니다. +1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (The University of Texas at Austin 에서 제공)은 Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.의 [NMS Strikes Back](https://arxiv.org/abs/2212.06137)논문과 함께 발표했습니다. +1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (Facebook 에서) Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko 의 [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) 논문과 함께 발표했습니다. +1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (Microsoft Research 에서) Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan 의 [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) 논문과 함께 발표했습니다. +1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (SHI Labs 에서) Ali Hassani and Humphrey Shi 의 [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) 논문과 함께 발표했습니다. +1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (HuggingFace 에서) Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German version of DistilBERT 의 [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) 논문과 함께 발표했습니다. +1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (Microsoft Research 에서) Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei 의 [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) 논문과 함께 발표했습니다. +1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (NAVER 에서) Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park 의 [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) 논문과 함께 발표했습니다. +1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (Facebook 에서) Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih 의 [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) 논문과 함께 발표했습니다. +1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (Intel Labs 에서) René Ranftl, Alexey Bochkovskiy, Vladlen Koltun 의 [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) 논문과 함께 발표했습니다. +1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren. +1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le. +1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (Google Research/Stanford University 에서) Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning 의 [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) 논문과 함께 발표했습니다. +1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (Google Research 에서) Sascha Rothe, Shashi Narayan, Aliaksei Severyn 의 [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) 논문과 함께 발표했습니다. +1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (Baidu 에서) Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu 의 [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) 논문과 함께 발표했습니다. +1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (Baidu 에서 제공)은 Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.의 [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674)논문과 함께 발표했습니다. +1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2** was released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives. +1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei +1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei +1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab. +1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela. +1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon. +1. **[FocalNet](https://huggingface.co/docs/transformers/main/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao. +1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le. +1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang. +1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim. +1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever. +1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy. +1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (EleutherAI 에서) Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbac 의 [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) 논문과 함께 발표했습니다. +1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori. +1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (OpenAI 에서) Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever** 의 [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) 논문과 함께 발표했습니다. +1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki. +1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (AI-Sweden 에서) Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren. 의 [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) 논문과 함께 발표했습니다. +1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (BigCode 에서 제공)은 Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra.의 [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988)논문과 함께 발표했습니다. +1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama). +1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu 의 [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) 논문과 함께 발표했습니다. +1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (UCSD, NVIDIA 에서) Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang 의 [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) 논문과 함께 발표했습니다. +1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (Facebook 에서) Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed 의 [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) 논문과 함께 발표했습니다. +1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (Berkeley 에서) Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer 의 [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) 논문과 함께 발표했습니다. +1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (OpenAI 에서) Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever 의 [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) 논문과 함께 발표했습니다. +1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. +1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (OpenAI 에서) Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever 의 [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) 논문과 함께 발표했습니다. +1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (Microsoft Research Asia 에서) Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou 의 [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) 논문과 함께 발표했습니다. +1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (Microsoft Research Asia 에서) Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou 의 [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) 논문과 함께 발표했습니다. +1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (Microsoft Research Asia 에서) Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei 의 [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) 논문과 함께 발표했습니다. +1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (Microsoft Research Asia 에서) Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei 의 [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) 논문과 함께 발표했습니다. +1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (AllenAI 에서) Iz Beltagy, Matthew E. Peters, Arman Cohan 의 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 논문과 함께 발표했습니다. +1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (Meta AI 에서) Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze 의 [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) 논문과 함께 발표했습니다. +1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (South China University of Technology 에서) Jiapeng Wang, Lianwen Jin, Kai Ding 의 [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) 논문과 함께 발표했습니다. +1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (The FAIR team of Meta AI 에서 제공)은 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.의 [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971)논문과 함께 발표했습니다. +1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (AllenAI 에서) Iz Beltagy, Matthew E. Peters, Arman Cohan 의 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 논문과 함께 발표했습니다. +1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (Google AI 에서) Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang 의 [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) 논문과 함께 발표했습니다. +1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (Studio Ousia 에서) Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto 의 [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) 논문과 함께 발표했습니다. +1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (UNC Chapel Hill 에서) Hao Tan and Mohit Bansal 의 [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) 논문과 함께 발표했습니다. +1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (Facebook 에서) Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert 의 [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) 논문과 함께 발표했습니다. +1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (Facebook 에서) Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin 의 [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) 논문과 함께 발표했습니다. +1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team. +1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (Microsoft Research Asia 에서) Junlong Li, Yiheng Xu, Lei Cui, Furu Wei 의 [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) 논문과 함께 발표했습니다. +1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (FAIR and UIUC 에서 제공)은 Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar.의 [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527)논문과 함께 발표했습니다. +1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (Meta and UIUC 에서) Bowen Cheng, Alexander G. Schwing, Alexander Kirillov 의 [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) 논문과 함께 발표했습니다. +1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (Google AI 에서 제공)은 Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.의 [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662)논문과 함께 발표했습니다. +1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (Facebook 에서) Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer 의 [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) 논문과 함께 발표했습니다. +1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (Facebook 에서) Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan 의 [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) 논문과 함께 발표했습니다. +1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (Facebook 에서 제공)은 Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.의 [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655)논문과 함께 발표했습니다. +1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (NVIDIA 에서) Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 의 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 논문과 함께 발표했습니다. +1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (NVIDIA 에서) Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 의 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 논문과 함께 발표했습니다. +1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (Alibaba Research 에서 제공)은 Peng Wang, Cheng Da, and Cong Yao.의 [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592)논문과 함께 발표했습니다. +1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (Studio Ousia 에서) Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka 의 [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) 논문과 함께 발표했습니다. +1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (CMU/Google Brain 에서) Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou 의 [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) 논문과 함께 발표했습니다. +1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (Google Inc. 에서) Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam 의 [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) 논문과 함께 발표했습니다. +1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (Google Inc. 에서) Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen 의 [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) 논문과 함께 발표했습니다. +1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (Apple 에서) Sachin Mehta and Mohammad Rastegari 의 [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) 논문과 함께 발표했습니다. +1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (Microsoft Research 에서) Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu 의 [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) 논문과 함께 발표했습니다. +1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (Google AI 에서) Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel 의 [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) 논문과 함께 발표했습니다. +1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (RUC AI Box 에서) Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen 의 [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) 논문과 함께 발표했습니다. +1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (SHI Labs 에서) Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi 의 [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) 논문과 함께 발표했습니다. +1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (Huawei Noah’s Ark Lab 에서) Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu 의 [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) 논문과 함께 발표했습니다. +1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (Meta 에서) the NLLB team 의 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) 논문과 함께 발표했습니다. +1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (Meta 에서 제공)은 the NLLB team.의 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672)논문과 함께 발표했습니다. +1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (the University of Wisconsin - Madison 에서) Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh 의 [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) 논문과 함께 발표했습니다. +1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (SHI Labs 에서) Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi 의 [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) 논문과 함께 발표했습니다. +1. **[OpenLlama](https://huggingface.co/docs/transformers/main/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama). +1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (Meta AI 에서) Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al 의 [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) 논문과 함께 발표했습니다. +1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (Google AI 에서) Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby 의 [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) 논문과 함께 발표했습니다. +1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (Google 에서) Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu 의 [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) 논문과 함께 발표했습니다. +1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (Google 에서) Jason Phang, Yao Zhao, Peter J. Liu 의 [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) 논문과 함께 발표했습니다. +1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (Deepmind 에서) Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira 의 [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) 논문과 함께 발표했습니다. +1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (VinAI Research 에서) Dat Quoc Nguyen and Anh Tuan Nguyen 의 [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) 논문과 함께 발표했습니다. +1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (Google 에서 제공)은 Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.의 [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347)논문과 함께 발표했습니다. +1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (UCLA NLP 에서) Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang 의 [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) 논문과 함께 발표했습니다. +1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (Sea AI Labs 에서) Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng 의 [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) 논문과 함께 발표했습니다. +1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (Microsoft Research 에서) Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 의 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 논문과 함께 발표했습니다. +1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (NVIDIA 에서) Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius 의 [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) 논문과 함께 발표했습니다. +1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (Facebook 에서) Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela 의 [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) 논문과 함께 발표했습니다. +1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (Google Research 에서) Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang 의 [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) 논문과 함께 발표했습니다. +1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (Google Research 에서) Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya 의 [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) 논문과 함께 발표했습니다. +1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (META Research 에서) Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár 의 [Designing Network Design Space](https://arxiv.org/abs/2003.13678) 논문과 함께 발표했습니다. +1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (Google Research 에서) Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder 의 [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/pdf/2010.12821.pdf) 논문과 함께 발표했습니다. +1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (Microsoft Research 에서) Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun 의 [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) 논문과 함께 발표했습니다. +1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (Facebook 에서) Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov 의 a [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) 논문과 함께 발표했습니다. +1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (Facebook 에서) Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli 의 [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) 논문과 함께 발표했습니다. +1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (WeChatAI 에서) HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou 의 [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) 논문과 함께 발표했습니다. +1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (ZhuiyiTechnology 에서) Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu 의 a [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/pdf/2104.09864v1.pdf) 논문과 함께 발표했습니다. +1. **[RWKV](https://huggingface.co/docs/transformers/main/model_doc/rwkv)** (Bo Peng 에서 제공)은 Bo Peng.의 [this repo](https://github.com/BlinkDL/RWKV-LM)논문과 함께 발표했습니다. +1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (NVIDIA 에서) Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo 의 [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) 논문과 함께 발표했습니다. +1. **[Segment Anything](https://huggingface.co/docs/transformers/main/model_doc/sam)** (Meta AI 에서 제공)은 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.의 [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf)논문과 함께 발표했습니다. +1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (ASAPP 에서) Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi 의 [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) 논문과 함께 발표했습니다. +1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (ASAPP 에서) Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi 의 [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) 논문과 함께 발표했습니다. +1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (Microsoft Research 에서 제공)은 Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.의 [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205)논문과 함께 발표했습니다. +1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (Facebook 에서) Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino 의 [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) 논문과 함께 발표했습니다. +1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (Facebook 에서) Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau 의 [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) 논문과 함께 발표했습니다. +1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (Tel Aviv University 에서) Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy 의 [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) 논문과 함께 발표했습니다. +1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (Berkeley 에서) Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer 의 [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) 논문과 함께 발표했습니다. +1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (Microsoft 에서) Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo 의 [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) 논문과 함께 발표했습니다. +1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (Microsoft 에서) Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo 의 [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) 논문과 함께 발표했습니다. +1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (University of Würzburg 에서) Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte 의 [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) 논문과 함께 발표했습니다. +1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (Google 에서) William Fedus, Barret Zoph, Noam Shazeer. 의 [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) 논문과 함께 발표했습니다. +1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (Google AI 에서) Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu 의 [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) 논문과 함께 발표했습니다. +1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu. +1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (Microsoft Research 에서) Brandon Smock, Rohith Pesala, Robin Abraham 의 [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) 논문과 함께 발표했습니다. +1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (Google AI 에서) Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos 의 [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) 논문과 함께 발표했습니다. +1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (Microsoft Research 에서) Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou 의 [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) 논문과 함께 발표했습니다. +1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace). +1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (Facebook 에서) Gedas Bertasius, Heng Wang, Lorenzo Torresani 의 [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) 논문과 함께 발표했습니다. +1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (the University of California at Berkeley 에서) Michael Janner, Qiyang Li, Sergey Levin 의 [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) 논문과 함께 발표했습니다. +1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (Google/CMU 에서) Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov 의 [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) 논문과 함께 발표했습니다. +1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (Microsoft 에서) Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei 의 [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) 논문과 함께 발표했습니다. +1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill 에서) Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal 의 [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) 논문과 함께 발표했습니다. +1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (Google Research 에서) Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzle 의 [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) 논문과 함께 발표했습니다. +1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (Microsoft Research 에서) Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang 의 [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) 논문과 함께 발표했습니다. +1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (Microsoft Research 에서) Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu 의 [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) 논문과 함께 발표했습니다. +1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (Peking University 에서 제공)은 Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.의 [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221)논문과 함께 발표했습니다. +1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (Tsinghua University and Nankai University 에서) Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu 의 [Visual Attention Network](https://arxiv.org/pdf/2202.09741.pdf) 논문과 함께 발표했습니다. +1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (Multimedia Computing Group, Nanjing University 에서) Zhan Tong, Yibing Song, Jue Wang, Limin Wang 의 [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) 논문과 함께 발표했습니다. +1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (NAVER AI Lab/Kakao Enterprise/Kakao Brain 에서) Wonjae Kim, Bokyung Son, Ildoo Kim 의 [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) 논문과 함께 발표했습니다. +1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (Google AI 에서) Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 의 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 논문과 함께 발표했습니다. +1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (UCLA NLP 에서) Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang 의 [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) 논문과 함께 발표했습니다. +1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (Google AI 에서) Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 의 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 논문과 함께 발표했습니다. +1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (Meta AI 에서) Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick 의 [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) 논문과 함께 발표했습니다. +1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (Meta AI 에서) Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas 의 [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) 논문과 함께 발표했습니다. +1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (Facebook AI 에서) Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli 의 [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) 논문과 함께 발표했습니다. +1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (Facebook AI 에서) Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino 의 [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) 논문과 함께 발표했습니다. +1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (Facebook AI 에서) Qiantong Xu, Alexei Baevski, Michael Auli 의 [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) 논문과 함께 발표했습니다. +1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (Microsoft Research 에서) Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei 의 [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) 논문과 함께 발표했습니다. +1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (OpenAI 에서) Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever 의 [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) 논문과 함께 발표했습니다. +1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (Microsoft Research 에서) Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling 의 [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) 논문과 함께 발표했습니다. +1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (Meta AI 에서 제공)은 Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe.의 [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255)논문과 함께 발표했습니다. +1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (Facebook AI 에서 제공) Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li 의 [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) 논문과 함께 발표했습니다. +1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (Facebook 에서) Guillaume Lample and Alexis Conneau 의 [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) 논문과 함께 발표했습니다. +1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (Microsoft Research 에서) Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 의 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 논문과 함께 발표했습니다. +1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (Facebook AI 에서) Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov 의 [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) 논문과 함께 발표했습니다. +1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (Facebook AI 에서) Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau 의 [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) 논문과 함께 발표했습니다. +1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (Meta AI 에서) Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa 의 [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) 논문과 함께 발표했습니다. +1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (Google/CMU 에서) Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le 의 [​XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) 논문과 함께 발표했습니다. +1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (Facebook AI 에서) Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli 의 [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) 논문과 함께 발표했습니다. +1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (Facebook AI 에서) Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli 의 [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) 논문과 함께 발표했습니다. +1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (Huazhong University of Science & Technology 에서) Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu 의 [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) 논문과 함께 발표했습니다. +1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (the University of Wisconsin - Madison 에서) Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh 의 [You Only Sample (Almost) 논문과 함께 발표했습니다. +1. 새로운 모델을 올리고 싶나요? 우리가 **상세한 가이드와 템플릿** 으로 새로운 모델을 올리도록 도와드릴게요. 가이드와 템플릿은 이 저장소의 [`templates`](./templates) 폴더에서 확인하실 수 있습니다. [컨트리뷰션 가이드라인](./CONTRIBUTING.md)을 꼭 확인해주시고, PR을 올리기 전에 메인테이너에게 연락하거나 이슈를 오픈해 피드백을 받으시길 바랍니다. + +각 모델이 Flax, PyTorch, TensorFlow으로 구현되었는지 또는 🤗 Tokenizers 라이브러리가 지원하는 토크나이저를 사용하는지 확인하려면, [이 표](https://huggingface.co/docs/transformers/index#supported-frameworks)를 확인하세요. + +이 구현은 여러 데이터로 검증되었고 (예시 스크립트를 참고하세요) 오리지널 구현의 성능과 같아야 합니다. [도큐먼트](https://huggingface.co/docs/transformers/examples)의 Examples 섹션에서 성능에 대한 자세한 설명을 확인할 수 있습니다. + +## 더 알아보기 + +| 섹션 | 설명 | +|-|-| +| [도큐먼트](https://huggingface.co/transformers/) | 전체 API 도큐먼트와 튜토리얼 | +| [과제 요약](https://huggingface.co/docs/transformers/task_summary) | 🤗 Transformers가 지원하는 과제들 | +| [전처리 튜토리얼](https://huggingface.co/docs/transformers/preprocessing) | `Tokenizer` 클래스를 이용해 모델을 위한 데이터 준비하기 | +| [학습과 fine-tuning](https://huggingface.co/docs/transformers/training) | 🤗 Transformers가 제공하는 모델 PyTorch/TensorFlow 학습 과정과 `Trainer` API에서 사용하기 | +| [퀵 투어: Fine-tuning/사용 스크립트](https://github.com/huggingface/transformers/tree/main/examples) | 다양한 과제에서 모델 fine-tuning하는 예시 스크립트 | +| [모델 공유 및 업로드](https://huggingface.co/docs/transformers/model_sharing) | 커뮤니티에 fine-tune된 모델을 업로드 및 공유하기 | +| [마이그레이션](https://huggingface.co/docs/transformers/migration) | `pytorch-transformers`나 `pytorch-pretrained-bert`에서 🤗 Transformers로 이동하기| + +## 인용 + +🤗 Transformers 라이브러리를 인용하고 싶다면, 이 [논문](https://www.aclweb.org/anthology/2020.emnlp-demos.6/)을 인용해 주세요: +```bibtex +@inproceedings{wolf-etal-2020-transformers, + title = "Transformers: State-of-the-Art Natural Language Processing", + author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush", + booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations", + month = oct, + year = "2020", + address = "Online", + publisher = "Association for Computational Linguistics", + url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6", + pages = "38--45" +} +``` diff --git a/OPERA/transformers-4.29.2/README_zh-hans.md b/OPERA/transformers-4.29.2/README_zh-hans.md new file mode 100644 index 0000000000000000000000000000000000000000..74d39b1df3d6aac220a1c3b0e69e36325d46d3fe --- /dev/null +++ b/OPERA/transformers-4.29.2/README_zh-hans.md @@ -0,0 +1,475 @@ + + + + +

+
+ +
+

+

+ + Build + + + GitHub + + + Documentation + + + GitHub release + + + Contributor Covenant + + DOI +

+ +

+

+ English | + 简体中文 | + 繁體中文 | + 한국어 | + Español | + 日本語 | + हिन्दी +

+

+ +

+

为 Jax、PyTorch 和 TensorFlow 打造的先进的自然语言处理

+

+ +

+ +

+ +🤗 Transformers 提供了数以千计的预训练模型,支持 100 多种语言的文本分类、信息抽取、问答、摘要、翻译、文本生成。它的宗旨是让最先进的 NLP 技术人人易用。 + +🤗 Transformers 提供了便于快速下载和使用的API,让你可以把预训练模型用在给定文本、在你的数据集上微调然后通过 [model hub](https://huggingface.co/models) 与社区共享。同时,每个定义的 Python 模块均完全独立,方便修改和快速研究实验。 + +🤗 Transformers 支持三个最热门的深度学习库: [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) 以及 [TensorFlow](https://www.tensorflow.org/) — 并与之无缝整合。你可以直接使用一个框架训练你的模型然后用另一个加载和推理。 + +## 在线演示 + +你可以直接在模型页面上测试大多数 [model hub](https://huggingface.co/models) 上的模型。 我们也提供了 [私有模型托管、模型版本管理以及推理API](https://huggingface.co/pricing)。 + +这里是一些例子: +- [用 BERT 做掩码填词](https://huggingface.co/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France) +- [用 Electra 做命名实体识别](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city) +- [用 GPT-2 做文本生成](https://huggingface.co/gpt2?text=A+long+time+ago%2C+) +- [用 RoBERTa 做自然语言推理](https://huggingface.co/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal) +- [用 BART 做文本摘要](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct) +- [用 DistilBERT 做问答](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species) +- [用 T5 做翻译](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin) + +**[Write With Transformer](https://transformer.huggingface.co)**,由抱抱脸团队打造,是一个文本生成的官方 demo。 + +## 如果你在寻找由抱抱脸团队提供的定制化支持服务 + + + HuggingFace Expert Acceleration Program +
+ +## 快速上手 + +我们为快速使用模型提供了 `pipeline` (流水线)API。流水线聚合了预训练模型和对应的文本预处理。下面是一个快速使用流水线去判断正负面情绪的例子: + +```python +>>> from transformers import pipeline + +# 使用情绪分析流水线 +>>> classifier = pipeline('sentiment-analysis') +>>> classifier('We are very happy to introduce pipeline to the transformers repository.') +[{'label': 'POSITIVE', 'score': 0.9996980428695679}] +``` + +第二行代码下载并缓存了流水线使用的预训练模型,而第三行代码则在给定的文本上进行了评估。这里的答案“正面” (positive) 具有 99 的置信度。 + +许多的 NLP 任务都有开箱即用的预训练流水线。比如说,我们可以轻松的从给定文本中抽取问题答案: + +``` python +>>> from transformers import pipeline + +# 使用问答流水线 +>>> question_answerer = pipeline('question-answering') +>>> question_answerer({ +... 'question': 'What is the name of the repository ?', +... 'context': 'Pipeline has been included in the huggingface/transformers repository' +... }) +{'score': 0.30970096588134766, 'start': 34, 'end': 58, 'answer': 'huggingface/transformers'} + +``` + +除了给出答案,预训练模型还给出了对应的置信度分数、答案在词符化 (tokenized) 后的文本中开始和结束的位置。你可以从[这个教程](https://huggingface.co/docs/transformers/task_summary)了解更多流水线API支持的任务。 + +要在你的任务上下载和使用任意预训练模型也很简单,只需三行代码。这里是 PyTorch 版的示例: +```python +>>> from transformers import AutoTokenizer, AutoModel + +>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") +>>> model = AutoModel.from_pretrained("bert-base-uncased") + +>>> inputs = tokenizer("Hello world!", return_tensors="pt") +>>> outputs = model(**inputs) +``` +这里是等效的 TensorFlow 代码: +```python +>>> from transformers import AutoTokenizer, TFAutoModel + +>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") +>>> model = TFAutoModel.from_pretrained("bert-base-uncased") + +>>> inputs = tokenizer("Hello world!", return_tensors="tf") +>>> outputs = model(**inputs) +``` + +词符化器 (tokenizer) 为所有的预训练模型提供了预处理,并可以直接对单个字符串进行调用(比如上面的例子)或对列表 (list) 调用。它会输出一个你可以在下游代码里使用或直接通过 `**` 解包表达式传给模型的词典 (dict)。 + +模型本身是一个常规的 [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) 或 [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model)(取决于你的后端),可以常规方式使用。 [这个教程](https://huggingface.co/transformers/training.html)解释了如何将这样的模型整合到经典的 PyTorch 或 TensorFlow 训练循环中,或是如何使用我们的 `Trainer` 训练器)API 来在一个新的数据集上快速微调。 + +## 为什么要用 transformers? + +1. 便于使用的先进模型: + - NLU 和 NLG 上表现优越 + - 对教学和实践友好且低门槛 + - 高级抽象,只需了解三个类 + - 对所有模型统一的API + +1. 更低计算开销,更少的碳排放: + - 研究人员可以分享已训练的模型而非每次从头开始训练 + - 工程师可以减少计算用时和生产环境开销 + - 数十种模型架构、两千多个预训练模型、100多种语言支持 + +1. 对于模型生命周期的每一个部分都面面俱到: + - 训练先进的模型,只需 3 行代码 + - 模型在不同深度学习框架间任意转移,随你心意 + - 为训练、评估和生产选择最适合的框架,衔接无缝 + +1. 为你的需求轻松定制专属模型和用例: + - 我们为每种模型架构提供了多个用例来复现原论文结果 + - 模型内部结构保持透明一致 + - 模型文件可单独使用,方便魔改和快速实验 + +## 什么情况下我不该用 transformers? + +- 本库并不是模块化的神经网络工具箱。模型文件中的代码特意呈若璞玉,未经额外抽象封装,以便研究人员快速迭代魔改而不致溺于抽象和文件跳转之中。 +- `Trainer` API 并非兼容任何模型,只为本库之模型优化。若是在寻找适用于通用机器学习的训练循环实现,请另觅他库。 +- 尽管我们已尽力而为,[examples 目录](https://github.com/huggingface/transformers/tree/main/examples)中的脚本也仅为用例而已。对于你的特定问题,它们并不一定开箱即用,可能需要改几行代码以适之。 + +## 安装 + +### 使用 pip + +这个仓库已在 Python 3.6+、Flax 0.3.2+、PyTorch 1.3.1+ 和 TensorFlow 2.3+ 下经过测试。 + +你可以在[虚拟环境](https://docs.python.org/3/library/venv.html)中安装 🤗 Transformers。如果你还不熟悉 Python 的虚拟环境,请阅此[用户说明](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/)。 + +首先,用你打算使用的版本的 Python 创建一个虚拟环境并激活。 + +然后,你需要安装 Flax、PyTorch 或 TensorFlow 其中之一。关于在你使用的平台上安装这些框架,请参阅 [TensorFlow 安装页](https://www.tensorflow.org/install/), [PyTorch 安装页](https://pytorch.org/get-started/locally/#start-locally) 或 [Flax 安装页](https://github.com/google/flax#quick-install)。 + +当这些后端之一安装成功后, 🤗 Transformers 可依此安装: + +```bash +pip install transformers +``` + +如果你想要试试用例或者想在正式发布前使用最新的开发中代码,你得[从源代码安装](https://huggingface.co/docs/transformers/installation#installing-from-source)。 + +### 使用 conda + +自 Transformers 4.0.0 版始,我们有了一个 conda 频道: `huggingface`。 + +🤗 Transformers 可以通过 conda 依此安装: + +```shell script +conda install -c huggingface transformers +``` + +要通过 conda 安装 Flax、PyTorch 或 TensorFlow 其中之一,请参阅它们各自安装页的说明。 + +## 模型架构 + +🤗 Transformers 支持的[**所有的模型检查点**](https://huggingface.co/models)由[用户](https://huggingface.co/users)和[组织](https://huggingface.co/organizations)上传,均与 huggingface.co [model hub](https://huggingface.co) 无缝整合。 + +目前的检查点数量: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen) + +🤗 Transformers 目前支持如下的架构(模型概述请阅[这里](https://huggingface.co/docs/transformers/model_summary)): + +1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (来自 Google Research and the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。 +1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (来自 Google Research) 伴随论文 [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) 由 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig 发布。 +1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (来自 BAAI) 伴随论文 [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) 由 Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell 发布。 +1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (来自 MIT) 伴随论文 [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) 由 Yuan Gong, Yu-An Chung, James Glass 发布。 +1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (来自 Facebook) 伴随论文 [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/pdf/1910.13461.pdf) 由 Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer 发布。 +1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (来自 École polytechnique) 伴随论文 [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) 由 Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis 发布。 +1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (来自 VinAI Research) 伴随论文 [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) 由 Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen 发布。 +1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (来自 Microsoft) 伴随论文 [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) 由 Hangbo Bao, Li Dong, Furu Wei 发布。 +1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (来自 Google) 伴随论文 [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) 由 Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova 发布。 +1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (来自 Google) 伴随论文 [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) 由 Sascha Rothe, Shashi Narayan, Aliaksei Severyn 发布。 +1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (来自 VinAI Research) 伴随论文 [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) 由 Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen 发布。 +1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (来自 Google Research) 伴随论文 [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) 由 Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed 发布。 +1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (来自 Google Research) 伴随论文 [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) 由 Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed 发布。 +1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (来自 Microsoft Research AI4Science) 伴随论文 [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) 由 Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu 发布。 +1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (来自 Google AI) 伴随论文 [Big Transfer (BiT) 由 Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby 发布。 +1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (来自 Facebook) 伴随论文 [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) 由 Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston 发布。 +1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (来自 Facebook) 伴随论文 [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) 由 Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston 发布。 +1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (来自 Salesforce) 伴随论文 [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) 由 Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi 发布。 +1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (来自 Salesforce) 伴随论文 [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) 由 Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi 发布。 +1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/). +1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (来自 Alexa) 伴随论文 [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) 由 Adrian de Wynter and Daniel J. Perry 发布。 +1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan. +1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (来自 Google Research) 伴随论文 [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) 由 Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel 发布。 +1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (来自 Inria/Facebook/Sorbonne) 伴随论文 [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) 由 Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot 发布。 +1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (来自 Google Research) 伴随论文 [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) 由 Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting 发布。 +1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (来自 OFA-Sys) 伴随论文 [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) 由 An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou 发布。 +1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (来自 LAION-AI) 伴随论文 [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) 由 Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov 发布。 +1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (来自 OpenAI) 伴随论文 [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) 由 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever 发布。 +1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (来自 University of Göttingen) 伴随论文 [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) 由 Timo Lüddecke and Alexander Ecker 发布。 +1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (来自 Salesforce) 伴随论文 [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) 由 Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong 发布。 +1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (来自 Microsoft Research Asia) 伴随论文 [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) 由 Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang 发布。 +1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (来自 YituTech) 伴随论文 [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) 由 Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan 发布。 +1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (来自 Facebook AI) 伴随论文 [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) 由 Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie 发布。 +1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie. +1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (来自 Tsinghua University) 伴随论文 [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) 由 Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun 发布。 +1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/). +1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (来自 Salesforce) 伴随论文 [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) 由 Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher 发布。 +1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (来自 Microsoft) 伴随论文 [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) 由 Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang 发布。 +1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (来自 Facebook) 伴随论文 [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) 由 Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli 发布。 +1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (来自 Microsoft) 伴随论文 [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) 由 Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen 发布。 +1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (来自 Microsoft) 伴随论文 [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) 由 Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen 发布。 +1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (来自 Berkeley/Facebook/Google) 伴随论文 [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) 由 Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch 发布。 +1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (来自 SenseTime Research) 伴随论文 [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) 由 Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai 发布。 +1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (来自 Facebook) 伴随论文 [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) 由 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou 发布。 +1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (来自 Google AI) 伴随论文 [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) 由 Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun 发布。 +1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (来自 The University of Texas at Austin) 伴随论文 [NMS Strikes Back](https://arxiv.org/abs/2212.06137) 由 Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl 发布。 +1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (来自 Facebook) 伴随论文 [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) 由 Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko 发布。 +1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (来自 Microsoft Research) 伴随论文 [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) 由 Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan 发布。 +1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (来自 SHI Labs) 伴随论文 [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) 由 Ali Hassani and Humphrey Shi 发布。 +1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (来自 HuggingFace), 伴随论文 [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 同样的方法也应用于压缩 GPT-2 到 [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa 到 [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation), Multilingual BERT 到 [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) 和德语版 DistilBERT。 +1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (来自 Microsoft Research) 伴随论文 [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) 由 Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei 发布。 +1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (来自 NAVER) 伴随论文 [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) 由 Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park 发布。 +1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (来自 Facebook) 伴随论文 [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) 由 Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih 发布。 +1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (来自 Intel Labs) 伴随论文 [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) 由 René Ranftl, Alexey Bochkovskiy, Vladlen Koltun 发布。 +1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (来自 Snap Research) 伴随论文 [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) 由 Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren 发布。 +1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le. +1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (来自 Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning 发布。 +1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (来自 Google Research) 伴随论文 [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) 由 Sascha Rothe, Shashi Narayan, Aliaksei Severyn 发布。 +1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (来自 Baidu) 伴随论文 [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu 发布。 +1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (来自 Baidu) 伴随论文 [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) 由 Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang 发布。 +1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2** was released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives. +1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei +1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei +1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (来自 CNRS) 伴随论文 [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) 由 Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab 发布。 +1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (来自 Facebook AI) 伴随论文 [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) 由 Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela 发布。 +1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (来自 Google Research) 伴随论文 [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) 由 James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon 发布。 +1. **[FocalNet](https://huggingface.co/docs/transformers/main/model_doc/focalnet)** (来自 Microsoft Research) 伴随论文 [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) 由 Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao 发布。 +1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (来自 CMU/Google Brain) 伴随论文 [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) 由 Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le 发布。 +1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (来自 Microsoft Research) 伴随论文 [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) 由 Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang 发布。 +1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (来自 KAIST) 伴随论文 [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) 由 Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim 发布。 +1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (来自 OpenAI) 伴随论文 [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) 由 Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever 发布。 +1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (来自 EleutherAI) 随仓库 [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) 发布。作者为 Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy 发布。 +1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach +1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (来自 ABEJA) 由 Shinya Otani, Takayoshi Makabe, Anuj Arora, Kyo Hattori。 +1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (来自 OpenAI) 伴随论文 [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) 由 Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever** 发布。 +1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (来自 EleutherAI) 伴随论文 [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) 由 Ben Wang and Aran Komatsuzaki 发布。 +1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren. +1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (来自 BigCode) 伴随论文 [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) 由 Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra 发布。 +1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by 坂本俊之(tanreinama). +1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu. +1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (来自 UCSD, NVIDIA) 伴随论文 [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) 由 Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang 发布。 +1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (来自 Facebook) 伴随论文 [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) 由 Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed 发布。 +1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (来自 Berkeley) 伴随论文 [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) 由 Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer 发布。 +1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (来自 OpenAI) 伴随论文 [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) 由 Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever 发布。 +1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. +1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever. +1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (来自 Microsoft Research Asia) 伴随论文 [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) 由 Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou 发布。 +1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (来自 Microsoft Research Asia) 伴随论文 [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) 由 Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou 发布。 +1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (来自 Microsoft Research Asia) 伴随论文 [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) 由 Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei 发布。 +1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (来自 Microsoft Research Asia) 伴随论文 [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) 由 Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei 发布。 +1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (来自 AllenAI) 伴随论文 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 由 Iz Beltagy, Matthew E. Peters, Arman Cohan 发布。 +1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (来自 Meta AI) 伴随论文 [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) 由 Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze 发布。 +1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (来自 South China University of Technology) 伴随论文 [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) 由 Jiapeng Wang, Lianwen Jin, Kai Ding 发布。 +1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (来自 The FAIR team of Meta AI) 伴随论文 [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) 由 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample 发布。 +1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (来自 AllenAI) 伴随论文 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 由 Iz Beltagy, Matthew E. Peters, Arman Cohan 发布。 +1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (来自 Google AI) released 伴随论文 [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) 由 Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang 发布。 +1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (来自 Studio Ousia) 伴随论文 [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) 由 Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto 发布。 +1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (来自 UNC Chapel Hill) 伴随论文 [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) 由 Hao Tan and Mohit Bansal 发布。 +1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (来自 Facebook) 伴随论文 [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) 由 Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert 发布。 +1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (来自 Facebook) 伴随论文 [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) 由 Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin 发布。 +1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** 用 [OPUS](http://opus.nlpl.eu/) 数据训练的机器翻译模型由 Jörg Tiedemann 发布。[Marian Framework](https://marian-nmt.github.io/) 由微软翻译团队开发。 +1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (来自 Microsoft Research Asia) 伴随论文 [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) 由 Junlong Li, Yiheng Xu, Lei Cui, Furu Wei 发布。 +1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (来自 FAIR and UIUC) 伴随论文 [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) 由 Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar 发布。 +1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov +1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (来自 Google AI) 伴随论文 [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) 由 Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos 发布。 +1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (来自 Facebook) 伴随论文 [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) 由 Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer 发布。 +1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (来自 Facebook) 伴随论文 [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) 由 Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan 发布。 +1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (来自 Facebook) 伴随论文 [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) 由 Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer 发布。 +1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (来自 NVIDIA) 伴随论文 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 由 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 发布。 +1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (来自 NVIDIA) 伴随论文 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 由 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 发布。 +1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (来自 Alibaba Research) 伴随论文 [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) 由 Peng Wang, Cheng Da, and Cong Yao 发布。 +1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (来自 Studio Ousia) 伴随论文 [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) 由 Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka 发布。 +1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (来自 CMU/Google Brain) 伴随论文 [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) 由 Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou 发布。 +1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (来自 Google Inc.) 伴随论文 [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) 由 Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam 发布。 +1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (来自 Google Inc.) 伴随论文 [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) 由 Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen 发布。 +1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (来自 Apple) 伴随论文 [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) 由 Sachin Mehta and Mohammad Rastegari 发布。 +1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (来自 Microsoft Research) 伴随论文 [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) 由 Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu 发布。 +1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (来自 Google AI) 伴随论文 [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) 由 Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel 发布。 +1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (来自 中国人民大学 AI Box) 伴随论文 [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) 由 Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen 发布。 +1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (来自 SHI Labs) 伴随论文 [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) 由 Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi 发布。 +1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (来自华为诺亚方舟实验室) 伴随论文 [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) 由 Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu 发布。 +1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (来自 Meta) 伴随论文 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) 由 the NLLB team 发布。 +1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (来自 Meta) 伴随论文 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) 由 the NLLB team 发布。 +1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (来自 the University of Wisconsin - Madison) 伴随论文 [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) 由 Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh 发布。 +1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (来自 SHI Labs) 伴随论文 [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) 由 Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi 发布。 +1. **[OpenLlama](https://huggingface.co/docs/transformers/main/model_doc/open-llama)** (来自 [s-JoL](https://huggingface.co/s-JoL)) 由 [Open-Llama](https://github.com/s-JoL/Open-Llama) 发布. +1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (来自 Meta AI) 伴随论文 [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) 由 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al 发布。 +1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (来自 Google AI) 伴随论文 [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) 由 Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby 发布。 +1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (来自 Google) 伴随论文 [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) 由 Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu 发布。 +1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (来自 Google) 伴随论文 [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) 由 Jason Phang, Yao Zhao, Peter J. Liu 发布。 +1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (来自 Deepmind) 伴随论文 [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) 由 Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira 发布。 +1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (来自 VinAI Research) 伴随论文 [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) 由 Dat Quoc Nguyen and Anh Tuan Nguyen 发布。 +1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (来自 Google) 伴随论文 [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) 由 Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova 发布。 +1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (来自 UCLA NLP) 伴随论文 [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) 由 Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang 发布。 +1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (来自 Sea AI Labs) 伴随论文 [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) 由 Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng 发布。 +1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (来自 Microsoft Research) 伴随论文 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 由 Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 发布。 +1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (来自 NVIDIA) 伴随论文 [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) 由 Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius 发布。 +1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (来自 Facebook) 伴随论文 [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) 由 Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela 发布。 +1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (来自 Google Research) 伴随论文 [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) 由 Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang 发布。 +1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (来自 Google Research) 伴随论文 [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) 由 Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya 发布。 +1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Research) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár. +1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (来自 Google Research) 伴随论文 [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/pdf/2010.12821.pdf) 由 Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder 发布。 +1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. +1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (来自 Facebook), 伴随论文 [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) 由 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov 发布。 +1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (来自 Facebook) 伴随论文 [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) 由 Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli 发布。 +1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (来自 WeChatAI), 伴随论文 [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) 由 HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou 发布。 +1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (来自 ZhuiyiTechnology), 伴随论文 [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/pdf/2104.09864v1.pdf) 由 Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu 发布。 +1. **[RWKV](https://huggingface.co/docs/transformers/main/model_doc/rwkv)** (来自 Bo Peng) 伴随论文 [this repo](https://github.com/BlinkDL/RWKV-LM) 由 Bo Peng 发布。 +1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (来自 NVIDIA) 伴随论文 [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) 由 Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo 发布。 +1. **[Segment Anything](https://huggingface.co/docs/transformers/main/model_doc/sam)** (来自 Meta AI) 伴随论文 [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) 由 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick 发布。 +1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (来自 ASAPP) 伴随论文 [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) 由 Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi 发布。 +1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (来自 ASAPP) 伴随论文 [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) 由 Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi 发布。 +1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (来自 Microsoft Research) 伴随论文 [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) 由 Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei 发布。 +1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (来自 Facebook), 伴随论文 [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) 由 Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino 发布。 +1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (来自 Facebook) 伴随论文 [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) 由 Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau 发布。 +1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (来自 Tel Aviv University) 伴随论文 [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) 由 Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy 发布。 +1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (来自 Berkeley) 伴随论文 [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) 由 Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer 发布。 +1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (来自 Microsoft) 伴随论文 [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) 由 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo 发布。 +1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (来自 Microsoft) 伴随论文 [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) 由 Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo 发布。 +1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (来自 University of Würzburg) 伴随论文 [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) 由 Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte 发布。 +1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (from Google) released with the paper [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer. +1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (来自 Google AI) 伴随论文 [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) 由 Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu 发布。 +1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (来自 Google AI) 伴随论文 [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) 由 Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu 发布。 +1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (来自 Microsoft Research) 伴随论文 [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) 由 Brandon Smock, Rohith Pesala, Robin Abraham 发布。 +1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (来自 Google AI) 伴随论文 [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) 由 Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos 发布。 +1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (来自 Microsoft Research) 伴随论文 [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) 由 Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou 发布。 +1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace). +1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (from Facebook) released with the paper [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani. +1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine +1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (来自 Google/CMU) 伴随论文 [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) 由 Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov 发布。 +1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (来自 Microsoft) 伴随论文 [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) 由 Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei 发布。 +1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (来自 UNC Chapel Hill) 伴随论文 [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) 由 Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal 发布。 +1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler +1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (来自 Microsoft Research) 伴随论文 [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) 由 Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang 发布。 +1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (来自 Microsoft Research) 伴随论文 [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) 由 Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu 发布。 +1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (来自 Peking University) 伴随论文 [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) 由 Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun 发布。 +1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (来自 Tsinghua University and Nankai University) 伴随论文 [Visual Attention Network](https://arxiv.org/pdf/2202.09741.pdf) 由 Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu 发布。 +1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (来自 Multimedia Computing Group, Nanjing University) 伴随论文 [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) 由 Zhan Tong, Yibing Song, Jue Wang, Limin Wang 发布。 +1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (来自 NAVER AI Lab/Kakao Enterprise/Kakao Brain) 伴随论文 [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) 由 Wonjae Kim, Bokyung Son, Ildoo Kim 发布。 +1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (来自 Google AI) 伴随论文 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 由 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 发布。 +1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (来自 UCLA NLP) 伴随论文 [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) 由 Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang 发布。 +1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (来自 Google AI) 伴随论文 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 由 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 发布。 +1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (来自 Meta AI) 伴随论文 [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) 由 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick 发布。 +1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (来自 Meta AI) 伴随论文 [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas 发布. +1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (来自 Facebook AI) 伴随论文 [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) 由 Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli 发布。 +1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (来自 Facebook AI) 伴随论文 [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) 由 Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino 发布。 +1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (来自 Facebook AI) 伴随论文 [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) 由 Qiantong Xu, Alexei Baevski, Michael Auli 发布。 +1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei. +1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (来自 OpenAI) 伴随论文 [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) 由 Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever 发布。 +1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (来自 Microsoft Research) 伴随论文 [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) 由 Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling 发布。 +1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (来自 Meta AI) 伴随论文 [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) 由 Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe 发布。 +1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li. +1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (来自 Facebook) 伴随论文 [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) 由 Guillaume Lample and Alexis Conneau 发布。 +1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (来自 Microsoft Research) 伴随论文 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 由 Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 发布。 +1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (来自 Facebook AI), 伴随论文 [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) 由 Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov 发布。 +1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (来自 Facebook AI) 伴随论文 [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) 由 Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau 发布。 +1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (来自 Meta AI) 伴随论文 [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) 由 Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa 发布。 +1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (来自 Google/CMU) 伴随论文 [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) 由 Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le 发布。 +1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (来自 Facebook AI) 伴随论文 [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) 由 Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli 发布。 +1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (来自 Facebook AI) 伴随论文 [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) 由 Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli 发布。 +1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (来自 Huazhong University of Science & Technology) 伴随论文 [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) 由 Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu 发布。 +1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (来自 the University of Wisconsin - Madison) 伴随论文 [You Only Sample (Almost) 由 Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh 发布。 +1. 想要贡献新的模型?我们这里有一份**详细指引和模板**来引导你添加新的模型。你可以在 [`templates`](./templates) 目录中找到他们。记得查看 [贡献指南](./CONTRIBUTING.md) 并在开始写 PR 前联系维护人员或开一个新的 issue 来获得反馈。 + +要检查某个模型是否已有 Flax、PyTorch 或 TensorFlow 的实现,或其是否在 🤗 Tokenizers 库中有对应词符化器(tokenizer),敬请参阅[此表](https://huggingface.co/docs/transformers/index#supported-frameworks)。 + +这些实现均已于多个数据集测试(请参看用例脚本)并应于原版实现表现相当。你可以在用例文档的[此节](https://huggingface.co/docs/transformers/examples)中了解表现的细节。 + + +## 了解更多 + +| 章节 | 描述 | +|-|-| +| [文档](https://huggingface.co/transformers/) | 完整的 API 文档和教程 | +| [任务总结](https://huggingface.co/docs/transformers/task_summary) | 🤗 Transformers 支持的任务 | +| [预处理教程](https://huggingface.co/docs/transformers/preprocessing) | 使用 `Tokenizer` 来为模型准备数据 | +| [训练和微调](https://huggingface.co/docs/transformers/training) | 在 PyTorch/TensorFlow 的训练循环或 `Trainer` API 中使用 🤗 Transformers 提供的模型 | +| [快速上手:微调和用例脚本](https://github.com/huggingface/transformers/tree/main/examples) | 为各种任务提供的用例脚本 | +| [模型分享和上传](https://huggingface.co/docs/transformers/model_sharing) | 和社区上传和分享你微调的模型 | +| [迁移](https://huggingface.co/docs/transformers/migration) | 从 `pytorch-transformers` 或 `pytorch-pretrained-bert` 迁移到 🤗 Transformers | + +## 引用 + +我们已将此库的[论文](https://www.aclweb.org/anthology/2020.emnlp-demos.6/)正式发表,如果你使用了 🤗 Transformers 库,请引用: +```bibtex +@inproceedings{wolf-etal-2020-transformers, + title = "Transformers: State-of-the-Art Natural Language Processing", + author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush", + booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations", + month = oct, + year = "2020", + address = "Online", + publisher = "Association for Computational Linguistics", + url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6", + pages = "38--45" +} +``` diff --git a/OPERA/transformers-4.29.2/README_zh-hant.md b/OPERA/transformers-4.29.2/README_zh-hant.md new file mode 100644 index 0000000000000000000000000000000000000000..4fd2a3caad54914692bfe8d2f61ad3aa91eea942 --- /dev/null +++ b/OPERA/transformers-4.29.2/README_zh-hant.md @@ -0,0 +1,487 @@ + + + + +

+
+ +
+

+

+ + Build + + + GitHub + + + Documentation + + + GitHub release + + + Contributor Covenant + + DOI +

+ +

+

+ English | + 简体中文 | + 繁體中文 | + 한국어 | + Español | + 日本語 | + हिन्दी +

+

+ +

+

為 Jax、PyTorch 以及 TensorFlow 打造的先進自然語言處理函式庫

+

+ +

+ +

+ +🤗 Transformers 提供了數以千計的預訓練模型,支援 100 多種語言的文本分類、資訊擷取、問答、摘要、翻譯、文本生成。它的宗旨是讓最先進的 NLP 技術人人易用。 + +🤗 Transformers 提供了便於快速下載和使用的API,讓你可以將預訓練模型用在給定文本、在你的資料集上微調然後經由 [model hub](https://huggingface.co/models) 與社群共享。同時,每個定義的 Python 模組架構均完全獨立,方便修改和快速研究實驗。 + +🤗 Transformers 支援三個最熱門的深度學習函式庫: [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) 以及 [TensorFlow](https://www.tensorflow.org/) — 並與之完美整合。你可以直接使用其中一個框架訓練你的模型,然後用另一個載入和推論。 + +## 線上Demo + +你可以直接在 [model hub](https://huggingface.co/models) 上測試大多數的模型。我們也提供了 [私有模型託管、模型版本管理以及推論API](https://huggingface.co/pricing)。 + +這裡是一些範例: +- [用 BERT 做遮蓋填詞](https://huggingface.co/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France) +- [用 Electra 做專有名詞辨識](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city) +- [用 GPT-2 做文本生成](https://huggingface.co/gpt2?text=A+long+time+ago%2C+) +- [用 RoBERTa 做自然語言推論](https://huggingface.co/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal) +- [用 BART 做文本摘要](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct) +- [用 DistilBERT 做問答](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species) +- [用 T5 做翻譯](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin) + +**[Write With Transformer](https://transformer.huggingface.co)**,由 Hugging Face 團隊所打造,是一個文本生成的官方 demo。 + +## 如果你在尋找由 Hugging Face 團隊所提供的客製化支援服務 + + + HuggingFace Expert Acceleration Program +
+ +## 快速上手 + +我們為快速使用模型提供了 `pipeline` API。 Pipeline 包含了預訓練模型和對應的文本預處理。下面是一個快速使用 pipeline 去判斷正負面情緒的例子: + +```python +>>> from transformers import pipeline + +# 使用情緒分析 pipeline +>>> classifier = pipeline('sentiment-analysis') +>>> classifier('We are very happy to introduce pipeline to the transformers repository.') +[{'label': 'POSITIVE', 'score': 0.9996980428695679}] +``` + +第二行程式碼下載並快取 pipeline 使用的預訓練模型,而第三行程式碼則在給定的文本上進行了評估。這裡的答案“正面” (positive) 具有 99.97% 的信賴度。 + +許多的 NLP 任務都有隨選即用的預訓練 `pipeline`。例如,我們可以輕鬆地從給定文本中擷取問題答案: + +``` python +>>> from transformers import pipeline + +# 使用問答 pipeline +>>> question_answerer = pipeline('question-answering') +>>> question_answerer({ +... 'question': 'What is the name of the repository ?', +... 'context': 'Pipeline has been included in the huggingface/transformers repository' +... }) +{'score': 0.30970096588134766, 'start': 34, 'end': 58, 'answer': 'huggingface/transformers'} + +``` + +除了提供問題解答,預訓練模型還提供了對應的信賴度分數以及解答在 tokenized 後的文本中開始和結束的位置。你可以從[這個教學](https://huggingface.co/docs/transformers/task_summary)了解更多 `pipeline` API支援的任務。 + +要在你的任務中下載和使用任何預訓練模型很簡單,只需三行程式碼。這裡是 PyTorch 版的範例: +```python +>>> from transformers import AutoTokenizer, AutoModel + +>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") +>>> model = AutoModel.from_pretrained("bert-base-uncased") + +>>> inputs = tokenizer("Hello world!", return_tensors="pt") +>>> outputs = model(**inputs) +``` +這裡是對應的 TensorFlow 程式碼: +```python +>>> from transformers import AutoTokenizer, TFAutoModel + +>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") +>>> model = TFAutoModel.from_pretrained("bert-base-uncased") + +>>> inputs = tokenizer("Hello world!", return_tensors="tf") +>>> outputs = model(**inputs) +``` + +Tokenizer 為所有的預訓練模型提供了預處理,並可以直接轉換單一字串(比如上面的例子)或串列 (list)。它會輸出一個的字典 (dict) 讓你可以在下游程式碼裡使用或直接藉由 `**` 運算式傳給模型。 + +模型本身是一個常規的 [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) 或 [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model)(取決於你的後端),可依常規方式使用。 [這個教學](https://huggingface.co/transformers/training.html)解釋了如何將這樣的模型整合到一般的 PyTorch 或 TensorFlow 訓練迴圈中,或是如何使用我們的 `Trainer` API 在一個新的資料集上快速進行微調。 + +## 為什麼要用 transformers? + +1. 便於使用的先進模型: + - NLU 和 NLG 上性能卓越 + - 對教學和實作友好且低門檻 + - 高度抽象,使用者只須學習 3 個類別 + - 對所有模型使用的制式化API + +1. 更低的運算成本,更少的碳排放: + - 研究人員可以分享已訓練的模型而非每次從頭開始訓練 + - 工程師可以減少計算時間以及生產成本 + - 數十種模型架構、兩千多個預訓練模型、100多種語言支援 + +1. 對於模型生命週期的每一個部分都面面俱到: + - 訓練先進的模型,只需 3 行程式碼 + - 模型可以在不同深度學習框架之間任意轉換 + - 為訓練、評估和生產選擇最適合的框架,並完美銜接 + +1. 為你的需求輕鬆客製化專屬模型和範例: + - 我們為每種模型架構提供了多個範例來重現原論文結果 + - 一致的模型內部架構 + - 模型檔案可單獨使用,便於修改和快速實驗 + +## 什麼情況下我不該用 transformers? + +- 本函式庫並不是模組化的神經網絡工具箱。模型文件中的程式碼並未做額外的抽象封裝,以便研究人員快速地翻閱及修改程式碼,而不會深陷複雜的類別包裝之中。 +- `Trainer` API 並非相容任何模型,它只為本函式庫中的模型最佳化。對於一般的機器學習用途,請使用其他函式庫。 +- 儘管我們已盡力而為,[examples 目錄](https://github.com/huggingface/transformers/tree/main/examples)中的腳本也僅為範例而已。對於特定問題,它們並不一定隨選即用,可能需要修改幾行程式碼以符合需求。 + +## 安裝 + +### 使用 pip + +這個 Repository 已在 Python 3.6+、Flax 0.3.2+、PyTorch 1.3.1+ 和 TensorFlow 2.3+ 下經過測試。 + +你可以在[虛擬環境](https://docs.python.org/3/library/venv.html)中安裝 🤗 Transformers。如果你還不熟悉 Python 的虛擬環境,請閱此[使用者指引](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/)。 + +首先,用你打算使用的版本的 Python 創建一個虛擬環境並進入。 + +然後,你需要安裝 Flax、PyTorch 或 TensorFlow 其中之一。對於該如何在你使用的平台上安裝這些框架,請參閱 [TensorFlow 安裝頁面](https://www.tensorflow.org/install/), [PyTorch 安裝頁面](https://pytorch.org/get-started/locally/#start-locally) 或 [Flax 安裝頁面](https://github.com/google/flax#quick-install)。 + +當其中一個後端安裝成功後,🤗 Transformers 可依此安裝: + +```bash +pip install transformers +``` + +如果你想要試試範例或者想在正式發布前使用最新開發中的程式碼,你必須[從原始碼安裝](https://huggingface.co/docs/transformers/installation#installing-from-source)。 + +### 使用 conda + +自 Transformers 4.0.0 版始,我們有了一個 conda channel: `huggingface`。 + +🤗 Transformers 可以藉由 conda 依此安裝: + +```shell script +conda install -c huggingface transformers +``` + +要藉由 conda 安裝 Flax、PyTorch 或 TensorFlow 其中之一,請參閱它們各自安裝頁面的說明。 + +## 模型架構 + +**🤗 Transformers 支援的[所有的模型檢查點](https://huggingface.co/models)**,由[使用者](https://huggingface.co/users)和[組織](https://huggingface.co/organizations)上傳,均與 huggingface.co [model hub](https://huggingface.co) 完美結合。 + +目前的檢查點數量: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen) + +🤗 Transformers 目前支援以下的架構(模型概覽請參閱[這裡](https://huggingface.co/docs/transformers/model_summary)): + +1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut. +1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig. +1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell. +1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass. +1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/pdf/1910.13461.pdf) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer. +1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis. +1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen. +1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei. +1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. +1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. +1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen. +1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed. +1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed. +1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu. +1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby. +1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston. +1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston. +1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi. +1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (from Salesforce) released with the paper [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) by Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi. +1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/). +1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry. +1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan. +1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel. +1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot. +1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting. +1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (from OFA-Sys) released with the paper [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou. +1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (from LAION-AI) released with the paper [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) by Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov. +1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever. +1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker. +1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong. +1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang. +1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan. +1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie. +1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie. +1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun. +1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/). +1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher. +1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang. +1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli. +1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. +1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. +1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch. +1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai. +1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou. +1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (from Google AI) released with the paper [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) by Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun. +1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (from The University of Texas at Austin) released with the paper [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl. +1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko. +1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan. +1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi. +1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German version of DistilBERT. +1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei. +1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER) released with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park. +1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih. +1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun. +1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren. +1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le. +1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning. +1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. +1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu. +1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (from Baidu) released with the paper [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) by Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang. +1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2** was released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives. +1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei +1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei +1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab. +1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela. +1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon. +1. **[FocalNet](https://huggingface.co/docs/transformers/main/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao. +1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le. +1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang. +1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim. +1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever. +1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy. +1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach +1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori. +1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**. +1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released with the paper [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki. +1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren. +1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (from BigCode) released with the paper [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) by Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra. +1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by 坂本俊之(tanreinama). +1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu. +1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang. +1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed. +1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer. +1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever. +1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. +1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever. +1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou. +1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou. +1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei. +1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei. +1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan. +1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze. +1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (from South China University of Technology) released with the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding. +1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample. +1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan. +1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang. +1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto. +1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal. +1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert. +1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin. +1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team. +1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (from Microsoft Research Asia) released with the paper [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei. +1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (from FAIR and UIUC) released with the paper [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) by Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar. +1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov +1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (from Google AI) released with the paper [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) by Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos. +1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer. +1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan. +1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (from Facebook) released with the paper [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer. +1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro. +1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro. +1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (from Alibaba Research) released with the paper [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) by Peng Wang, Cheng Da, and Cong Yao. +1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka. +1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou. +1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam. +1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen. +1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari. +1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu. +1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel. +1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. +1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi. +1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noah’s Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu. +1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team. +1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team. +1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh. +1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi. +1. **[OpenLlama](https://huggingface.co/docs/transformers/main/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama). +1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al. +1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby. +1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu. +1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, Peter J. Liu. +1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira. +1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen. +1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (from Google) released with the paper [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova. +1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang. +1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng. +1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou. +1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius. +1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela. +1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang. +1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya. +1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Research) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár. +1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/pdf/2010.12821.pdf) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder. +1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. +1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper a [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov. +1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (from Facebook) released with the paper [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli. +1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (from WeChatAI) released with the paper [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou. +1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper a [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/pdf/2104.09864v1.pdf) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu. +1. **[RWKV](https://huggingface.co/docs/transformers/main/model_doc/rwkv)** (from Bo Peng) released with the paper [this repo](https://github.com/BlinkDL/RWKV-LM) by Bo Peng. +1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo. +1. **[Segment Anything](https://huggingface.co/docs/transformers/main/model_doc/sam)** (from Meta AI) released with the paper [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick. +1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi. +1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi. +1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (from Microsoft Research) released with the paper [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei. +1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino. +1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook) released with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau. +1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University) released with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy. +1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer. +1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo. +1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo. +1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte. +1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (from Google) released with the paper [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer. +1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu. +1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released with the paper [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu. +1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (from Microsoft Research) released with the paper [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) by Brandon Smock, Rohith Pesala, Robin Abraham. +1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos. +1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou. +1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace). +1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (from Facebook) released with the paper [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani. +1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine +1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov. +1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft) released with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei. +1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal. +1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler +1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang. +1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu. +1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun. +1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/pdf/2202.09741.pdf) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu. +1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang. +1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim. +1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby. +1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang. +1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby. +1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick. +1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas. +1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli. +1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino. +1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli. +1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei. +1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (from OpenAI) released with the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever. +1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (from Microsoft Research) released with the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling. +1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (from Meta AI) released with the paper [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) by Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe. +1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li. +1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau. +1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou. +1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov. +1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (from Facebook AI) released with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau. +1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (from Meta AI) released with the paper [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa. +1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (from Google/CMU) released with the paper [​XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le. +1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli. +1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli. +1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu. +1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh. +1. 想要貢獻新的模型?我們這裡有一份**詳細指引和模板**來引導你加入新的模型。你可以在 [`templates`](./templates) 目錄中找到它們。記得查看[貢獻指引](./CONTRIBUTING.md)並在開始寫 PR 前聯繫維護人員或開一個新的 issue 來獲得 feedbacks。 + +要檢查某個模型是否已有 Flax、PyTorch 或 TensorFlow 的實作,或其是否在🤗 Tokenizers 函式庫中有對應的 tokenizer,敬請參閱[此表](https://huggingface.co/docs/transformers/index#supported-frameworks)。 + +這些實作均已於多個資料集測試(請參閱範例腳本)並應與原版實作表現相當。你可以在範例文件的[此節](https://huggingface.co/docs/transformers/examples)中了解實作的細節。 + + +## 了解更多 + +| 章節 | 描述 | +|-|-| +| [文件](https://huggingface.co/transformers/) | 完整的 API 文件和教學 | +| [任務概覽](https://huggingface.co/docs/transformers/task_summary) | 🤗 Transformers 支援的任務 | +| [預處理教學](https://huggingface.co/docs/transformers/preprocessing) | 使用 `Tokenizer` 來為模型準備資料 | +| [訓練和微調](https://huggingface.co/docs/transformers/training) | 使用 PyTorch/TensorFlow 的內建的訓練方式或於 `Trainer` API 中使用 🤗 Transformers 提供的模型 | +| [快速上手:微調和範例腳本](https://github.com/huggingface/transformers/tree/main/examples) | 為各種任務提供的範例腳本 | +| [模型分享和上傳](https://huggingface.co/docs/transformers/model_sharing) | 上傳並與社群分享你微調的模型 | +| [遷移](https://huggingface.co/docs/transformers/migration) | 從 `pytorch-transformers` 或 `pytorch-pretrained-bert` 遷移到 🤗 Transformers | + +## 引用 + +我們已將此函式庫的[論文](https://www.aclweb.org/anthology/2020.emnlp-demos.6/)正式發表。如果你使用了 🤗 Transformers 函式庫,可以引用: +```bibtex +@inproceedings{wolf-etal-2020-transformers, + title = "Transformers: State-of-the-Art Natural Language Processing", + author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush", + booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations", + month = oct, + year = "2020", + address = "Online", + publisher = "Association for Computational Linguistics", + url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6", + pages = "38--45" +} +``` diff --git a/OPERA/transformers-4.29.2/conftest.py b/OPERA/transformers-4.29.2/conftest.py new file mode 100644 index 0000000000000000000000000000000000000000..683b47705bf4343c881d63325312e36b8eecadbf --- /dev/null +++ b/OPERA/transformers-4.29.2/conftest.py @@ -0,0 +1,82 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# tests directory-specific settings - this file is run automatically +# by pytest before any tests are run + +import doctest +import sys +import warnings +from os.path import abspath, dirname, join + + +# allow having multiple repository checkouts and not needing to remember to rerun +# 'pip install -e .[dev]' when switching between checkouts and running tests. +git_repo_path = abspath(join(dirname(__file__), "src")) +sys.path.insert(1, git_repo_path) + +# silence FutureWarning warnings in tests since often we can't act on them until +# they become normal warnings - i.e. the tests still need to test the current functionality +warnings.simplefilter(action="ignore", category=FutureWarning) + + +def pytest_configure(config): + config.addinivalue_line( + "markers", "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested" + ) + config.addinivalue_line( + "markers", "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested" + ) + config.addinivalue_line( + "markers", "is_pipeline_test: mark test to run only when pipelines are tested" + ) + config.addinivalue_line("markers", "is_staging_test: mark test to run only in the staging environment") + config.addinivalue_line("markers", "accelerate_tests: mark test that require accelerate") + config.addinivalue_line("markers", "tool_tests: mark the tool tests that are run on their specific schedule") + + +def pytest_addoption(parser): + from transformers.testing_utils import pytest_addoption_shared + + pytest_addoption_shared(parser) + + +def pytest_terminal_summary(terminalreporter): + from transformers.testing_utils import pytest_terminal_summary_main + + make_reports = terminalreporter.config.getoption("--make-reports") + if make_reports: + pytest_terminal_summary_main(terminalreporter, id=make_reports) + + +def pytest_sessionfinish(session, exitstatus): + # If no tests are collected, pytest exists with code 5, which makes the CI fail. + if exitstatus == 5: + session.exitstatus = 0 + + +# Doctest custom flag to ignore output. +IGNORE_RESULT = doctest.register_optionflag('IGNORE_RESULT') + +OutputChecker = doctest.OutputChecker + + +class CustomOutputChecker(OutputChecker): + def check_output(self, want, got, optionflags): + if IGNORE_RESULT & optionflags: + return True + return OutputChecker.check_output(self, want, got, optionflags) + + +doctest.OutputChecker = CustomOutputChecker diff --git a/OPERA/transformers-4.29.2/docker/transformers-all-latest-gpu/Dockerfile b/OPERA/transformers-4.29.2/docker/transformers-all-latest-gpu/Dockerfile new file mode 100644 index 0000000000000000000000000000000000000000..2cc6d142ff8aef9cdbd045ef25b3211b05847f76 --- /dev/null +++ b/OPERA/transformers-4.29.2/docker/transformers-all-latest-gpu/Dockerfile @@ -0,0 +1,65 @@ +FROM nvidia/cuda:11.7.1-cudnn8-devel-ubuntu20.04 +LABEL maintainer="Hugging Face" + +ARG DEBIAN_FRONTEND=noninteractive + +# Use login shell to read variables from `~/.profile` (to pass dynamic created variables between RUN commands) +SHELL ["sh", "-lc"] + +# The following `ARG` are mainly used to specify the versions explicitly & directly in this docker file, and not meant +# to be used as arguments for docker build (so far). + +ARG PYTORCH='2.0.0' +# (not always a valid torch version) +ARG INTEL_TORCH_EXT='1.11.0' +# Example: `cu102`, `cu113`, etc. +ARG CUDA='cu117' + +RUN apt update +RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg git-lfs +RUN git lfs install +RUN python3 -m pip install --no-cache-dir --upgrade pip + +ARG REF=main +RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF +RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime] + +# TODO: Handle these in a python utility script +RUN [ ${#PYTORCH} -gt 0 -a "$PYTORCH" != "pre" ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile +RUN echo torch=$VERSION +# `torchvision` and `torchaudio` should be installed along with `torch`, especially for nightly build. +# Currently, let's just use their latest releases (when `torch` is installed with a release version) +# TODO: We might need to specify proper versions that work with a specific torch version (especially for past CI). +RUN [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA || python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA + +RUN python3 -m pip install --no-cache-dir -U tensorflow==2.11 +RUN python3 -m pip install --no-cache-dir -U tensorflow_probability +RUN python3 -m pip uninstall -y flax jax + +# To include the change in this commit https://github.com/onnx/tensorflow-onnx/commit/ddca3a5eb2d912f20fe7e0568dd1a3013aee9fa3 +# Otherwise, we get tf2onnx==1.8 (caused by `flatbuffers` version), and some tests fail with `ValueError: from_keras requires input_signature`. +# TODO: remove this line once the conflict is resolved in these libraries. +RUN python3 -m pip install --no-cache-dir git+https://github.com/onnx/tensorflow-onnx.git@ddca3a5eb2d912f20fe7e0568dd1a3013aee9fa3 + +RUN python3 -m pip install --no-cache-dir intel_extension_for_pytorch==$INTEL_TORCH_EXT+cpu -f https://software.intel.com/ipex-whl-stable + +RUN python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git pytesseract +RUN python3 -m pip install -U "itsdangerous<2.1.0" + +RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate + +# Add bitsandbytes for mixed int8 testing +RUN python3 -m pip install --no-cache-dir bitsandbytes + +# For bettertransformer +RUN python3 -m pip install --no-cache-dir optimum + +# For video model testing +RUN python3 -m pip install --no-cache-dir decord av==9.2.0 + +# For `dinat` model +RUN python3 -m pip install --no-cache-dir natten -f https://shi-labs.com/natten/wheels/$CUDA/ + +# When installing in editable mode, `transformers` is not recognized as a package. +# this line must be added in order for python to be aware of transformers. +RUN cd transformers && python3 setup.py develop diff --git a/OPERA/transformers-4.29.2/docker/transformers-cpu/Dockerfile b/OPERA/transformers-4.29.2/docker/transformers-cpu/Dockerfile new file mode 100644 index 0000000000000000000000000000000000000000..ae88f3e2265e61ad7968ee8ffb0cf4adfe76733f --- /dev/null +++ b/OPERA/transformers-4.29.2/docker/transformers-cpu/Dockerfile @@ -0,0 +1,26 @@ +FROM ubuntu:18.04 +LABEL maintainer="Hugging Face" +LABEL repository="transformers" + +RUN apt update && \ + apt install -y bash \ + build-essential \ + git \ + curl \ + ca-certificates \ + python3 \ + python3-pip && \ + rm -rf /var/lib/apt/lists + +RUN python3 -m pip install --no-cache-dir --upgrade pip && \ + python3 -m pip install --no-cache-dir \ + jupyter \ + tensorflow-cpu \ + torch + +WORKDIR /workspace +COPY . transformers/ +RUN cd transformers/ && \ + python3 -m pip install --no-cache-dir . + +CMD ["/bin/bash"] diff --git a/OPERA/transformers-4.29.2/docker/transformers-doc-builder/Dockerfile b/OPERA/transformers-4.29.2/docker/transformers-doc-builder/Dockerfile new file mode 100644 index 0000000000000000000000000000000000000000..8186032ba39d90464ffd9304a8a9ccf1b9acb716 --- /dev/null +++ b/OPERA/transformers-4.29.2/docker/transformers-doc-builder/Dockerfile @@ -0,0 +1,19 @@ +FROM python:3.8 +LABEL maintainer="Hugging Face" + +RUN apt update +RUN git clone https://github.com/huggingface/transformers + +RUN python3 -m pip install --no-cache-dir --upgrade pip && python3 -m pip install --no-cache-dir git+https://github.com/huggingface/doc-builder ./transformers[dev] +RUN apt-get -y update && apt-get install -y libsndfile1-dev && apt install -y tesseract-ocr + +# Torch needs to be installed before deepspeed +RUN python3 -m pip install --no-cache-dir ./transformers[deepspeed] + +RUN python3 -m pip install --no-cache-dir torchvision git+https://github.com/facebookresearch/detectron2.git pytesseract +RUN python3 -m pip install --no-cache-dir pytorch-quantization --extra-index-url https://pypi.ngc.nvidia.com +RUN python3 -m pip install -U "itsdangerous<2.1.0" + +# Test if the image could successfully build the doc. before publishing the image +RUN doc-builder build transformers transformers/docs/source/en --build_dir doc-build-dev --notebook_dir notebooks/transformers_doc --clean +RUN rm -rf doc-build-dev \ No newline at end of file diff --git a/OPERA/transformers-4.29.2/docker/transformers-gpu/Dockerfile b/OPERA/transformers-4.29.2/docker/transformers-gpu/Dockerfile new file mode 100644 index 0000000000000000000000000000000000000000..094015cf43ad82c5aa81b229d8c3b75d5ec3601c --- /dev/null +++ b/OPERA/transformers-4.29.2/docker/transformers-gpu/Dockerfile @@ -0,0 +1,31 @@ +FROM nvidia/cuda:10.2-cudnn7-devel-ubuntu18.04 +LABEL maintainer="Hugging Face" +LABEL repository="transformers" + +RUN apt update && \ + apt install -y bash \ + build-essential \ + git \ + curl \ + ca-certificates \ + python3 \ + python3-pip && \ + rm -rf /var/lib/apt/lists + +RUN python3 -m pip install --no-cache-dir --upgrade pip && \ + python3 -m pip install --no-cache-dir \ + jupyter \ + tensorflow \ + torch + +RUN git clone https://github.com/NVIDIA/apex +RUN cd apex && \ + python3 setup.py install && \ + pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./ + +WORKDIR /workspace +COPY . transformers/ +RUN cd transformers/ && \ + python3 -m pip install --no-cache-dir . + +CMD ["/bin/bash"] diff --git a/OPERA/transformers-4.29.2/docker/transformers-past-gpu/Dockerfile b/OPERA/transformers-4.29.2/docker/transformers-past-gpu/Dockerfile new file mode 100644 index 0000000000000000000000000000000000000000..6d2a99e34ed7da093171e58e6e86616c1aaac499 --- /dev/null +++ b/OPERA/transformers-4.29.2/docker/transformers-past-gpu/Dockerfile @@ -0,0 +1,59 @@ +ARG BASE_DOCKER_IMAGE +FROM $BASE_DOCKER_IMAGE +LABEL maintainer="Hugging Face" + +ARG DEBIAN_FRONTEND=noninteractive + +# Use login shell to read variables from `~/.profile` (to pass dynamic created variables between RUN commands) +SHELL ["sh", "-lc"] + +RUN apt update +RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg git-lfs libaio-dev +RUN git lfs install +RUN python3 -m pip install --no-cache-dir --upgrade pip + +ARG REF=main +RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF +RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime] + +# When installing in editable mode, `transformers` is not recognized as a package. +# this line must be added in order for python to be aware of transformers. +RUN cd transformers && python3 setup.py develop + +ARG FRAMEWORK +ARG VERSION + +# Control `setuptools` version to avoid some issues +RUN [ "$VERSION" != "1.9" -a "$VERSION" != "1.10" ] && python3 -m pip install -U setuptools || python3 -m pip install -U "setuptools<=59.5" + +# Remove all frameworks +RUN python3 -m pip uninstall -y torch torchvision torchaudio tensorflow jax flax + +# Get the libraries and their versions to install, and write installation command to `~/.profile`. +RUN python3 ./transformers/utils/past_ci_versions.py --framework $FRAMEWORK --version $VERSION + +# Install the target framework +RUN echo "INSTALL_CMD = $INSTALL_CMD" +RUN $INSTALL_CMD + +RUN [ "$FRAMEWORK" != "pytorch" ] && echo "`deepspeed-testing` installation is skipped" || python3 -m pip install --no-cache-dir ./transformers[deepspeed-testing] + +# Remove `accelerate`: it requires `torch`, and this causes import issues for TF-only testing +# We will install `accelerate@main` in Past CI workflow file +RUN python3 -m pip uninstall -y accelerate + +# Uninstall `torch-tensorrt` and `apex` shipped with the base image +RUN python3 -m pip uninstall -y torch-tensorrt apex + +# Pre-build **nightly** release of DeepSpeed, so it would be ready for testing (otherwise, the 1st deepspeed test will timeout) +RUN python3 -m pip uninstall -y deepspeed +# This has to be run inside the GPU VMs running the tests. (So far, it fails here due to GPU checks during compilation.) +# Issue: https://github.com/microsoft/DeepSpeed/issues/2010 +# RUN git clone https://github.com/microsoft/DeepSpeed && cd DeepSpeed && rm -rf build && \ +# DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_UTILS=1 python3 -m pip install . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1 + +RUN python3 -m pip install -U "itsdangerous<2.1.0" + +# When installing in editable mode, `transformers` is not recognized as a package. +# this line must be added in order for python to be aware of transformers. +RUN cd transformers && python3 setup.py develop diff --git a/OPERA/transformers-4.29.2/docker/transformers-pytorch-cpu/Dockerfile b/OPERA/transformers-4.29.2/docker/transformers-pytorch-cpu/Dockerfile new file mode 100644 index 0000000000000000000000000000000000000000..8d5f743223ced2cc7911cd1cf6e4317618c3a5c4 --- /dev/null +++ b/OPERA/transformers-4.29.2/docker/transformers-pytorch-cpu/Dockerfile @@ -0,0 +1,25 @@ +FROM ubuntu:18.04 +LABEL maintainer="Hugging Face" +LABEL repository="transformers" + +RUN apt update && \ + apt install -y bash \ + build-essential \ + git \ + curl \ + ca-certificates \ + python3 \ + python3-pip && \ + rm -rf /var/lib/apt/lists + +RUN python3 -m pip install --no-cache-dir --upgrade pip && \ + python3 -m pip install --no-cache-dir \ + jupyter \ + torch + +WORKDIR /workspace +COPY . transformers/ +RUN cd transformers/ && \ + python3 -m pip install --no-cache-dir . + +CMD ["/bin/bash"] \ No newline at end of file diff --git a/OPERA/transformers-4.29.2/docker/transformers-pytorch-deepspeed-latest-gpu/Dockerfile b/OPERA/transformers-4.29.2/docker/transformers-pytorch-deepspeed-latest-gpu/Dockerfile new file mode 100644 index 0000000000000000000000000000000000000000..e7eb08e28f8f4b4a42c290494f093e0492802c68 --- /dev/null +++ b/OPERA/transformers-4.29.2/docker/transformers-pytorch-deepspeed-latest-gpu/Dockerfile @@ -0,0 +1,49 @@ +# https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel_22-08.html#rel_22-08 +FROM nvcr.io/nvidia/pytorch:22.08-py3 +LABEL maintainer="Hugging Face" + +ARG DEBIAN_FRONTEND=noninteractive + +ARG PYTORCH='2.0.0' +# Example: `cu102`, `cu113`, etc. +ARG CUDA='cu117' + +RUN apt -y update +RUN apt install -y libaio-dev +RUN python3 -m pip install --no-cache-dir --upgrade pip + +ARG REF=main +RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF + +# Install latest release PyTorch +# (PyTorch must be installed before pre-compiling any DeepSpeed c++/cuda ops.) +# (https://www.deepspeed.ai/tutorials/advanced-install/#pre-install-deepspeed-ops) +RUN python3 -m pip install --no-cache-dir -U torch==$PYTORCH torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA + +RUN python3 -m pip install --no-cache-dir ./transformers[deepspeed-testing] + +RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate + +# Uninstall `torch-tensorrt` shipped with the base image +RUN python3 -m pip uninstall -y torch-tensorrt + +# recompile apex +RUN python3 -m pip uninstall -y apex +RUN git clone https://github.com/NVIDIA/apex +# `MAX_JOBS=1` disables parallel building to avoid cpu memory OOM when building image on GitHub Action (standard) runners +RUN cd apex && MAX_JOBS=1 python3 -m pip install --global-option="--cpp_ext" --global-option="--cuda_ext" --no-cache -v --disable-pip-version-check . + +# Pre-build **latest** DeepSpeed, so it would be ready for testing (otherwise, the 1st deepspeed test will timeout) +RUN python3 -m pip uninstall -y deepspeed +# This has to be run (again) inside the GPU VMs running the tests. +# The installation works here, but some tests fail, if we don't pre-build deepspeed again in the VMs running the tests. +# TODO: Find out why test fail. +RUN DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_UTILS=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1 + +# When installing in editable mode, `transformers` is not recognized as a package. +# this line must be added in order for python to be aware of transformers. +RUN cd transformers && python3 setup.py develop + +# The base image ships with `pydantic==1.8.2` which is not working - i.e. the next command fails +RUN python3 -m pip install -U --no-cache-dir pydantic +RUN python3 -c "from deepspeed.launcher.runner import main" diff --git a/OPERA/transformers-4.29.2/docker/transformers-pytorch-deepspeed-nightly-gpu/Dockerfile b/OPERA/transformers-4.29.2/docker/transformers-pytorch-deepspeed-nightly-gpu/Dockerfile new file mode 100644 index 0000000000000000000000000000000000000000..4ca2afaaaad7ef48a01ea74ee4951358b355bf8d --- /dev/null +++ b/OPERA/transformers-4.29.2/docker/transformers-pytorch-deepspeed-nightly-gpu/Dockerfile @@ -0,0 +1,59 @@ +# https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel_22-08.html#rel_22-08 +FROM nvcr.io/nvidia/pytorch:22.08-py3 +LABEL maintainer="Hugging Face" + +ARG DEBIAN_FRONTEND=noninteractive + +# Example: `cu102`, `cu113`, etc. +ARG CUDA='cu117' + +RUN apt -y update +RUN apt install -y libaio-dev +RUN python3 -m pip install --no-cache-dir --upgrade pip + +ARG REF=main +RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF + +# Install **nightly** release PyTorch (flag `--pre`) +# (PyTorch must be installed before pre-compiling any DeepSpeed c++/cuda ops.) +# (https://www.deepspeed.ai/tutorials/advanced-install/#pre-install-deepspeed-ops) +RUN python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA + +RUN python3 -m pip install --no-cache-dir ./transformers[deepspeed-testing] + +RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate + +# Uninstall `torch-tensorrt` and `apex` shipped with the base image +RUN python3 -m pip uninstall -y torch-tensorrt apex + +# Pre-build **nightly** release of DeepSpeed, so it would be ready for testing (otherwise, the 1st deepspeed test will timeout) +RUN python3 -m pip uninstall -y deepspeed +# This has to be run inside the GPU VMs running the tests. (So far, it fails here due to GPU checks during compilation.) +# Issue: https://github.com/microsoft/DeepSpeed/issues/2010 +# RUN git clone https://github.com/microsoft/DeepSpeed && cd DeepSpeed && rm -rf build && \ +# DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_UTILS=1 python3 -m pip install . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1 + +## For `torchdynamo` tests +## (see https://github.com/huggingface/transformers/pull/17765) +#RUN git clone https://github.com/pytorch/functorch +#RUN python3 -m pip install --no-cache-dir ./functorch[aot] +#RUN cd functorch && python3 setup.py develop +# +#RUN git clone https://github.com/pytorch/torchdynamo +#RUN python3 -m pip install -r ./torchdynamo/requirements.txt +#RUN cd torchdynamo && python3 setup.py develop +# +## install TensorRT +#RUN python3 -m pip install --no-cache-dir -U nvidia-pyindex +#RUN python3 -m pip install --no-cache-dir -U nvidia-tensorrt==8.2.4.2 +# +## install torch_tensorrt (fx path) +#RUN git clone https://github.com/pytorch/TensorRT.git +#RUN cd TensorRT/py && python3 setup.py install --fx-only + +# When installing in editable mode, `transformers` is not recognized as a package. +# this line must be added in order for python to be aware of transformers. +RUN cd transformers && python3 setup.py develop + +# Disable for now as deepspeed is not installed above. To be enabled once the issue is fixed. +# RUN python3 -c "from deepspeed.launcher.runner import main" diff --git a/OPERA/transformers-4.29.2/docker/transformers-pytorch-gpu/Dockerfile b/OPERA/transformers-4.29.2/docker/transformers-pytorch-gpu/Dockerfile new file mode 100644 index 0000000000000000000000000000000000000000..c950faeb93e8cdaeb0a4fd093d180b282eb2f49d --- /dev/null +++ b/OPERA/transformers-4.29.2/docker/transformers-pytorch-gpu/Dockerfile @@ -0,0 +1,32 @@ +FROM nvidia/cuda:11.7.1-cudnn8-devel-ubuntu20.04 +LABEL maintainer="Hugging Face" + +ARG DEBIAN_FRONTEND=noninteractive + +RUN apt update +RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg +RUN python3 -m pip install --no-cache-dir --upgrade pip + +ARG REF=main +RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF +RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch,testing,video] + +# If set to nothing, will install the latest version +ARG PYTORCH='2.0.0' +ARG TORCH_VISION='' +ARG TORCH_AUDIO='' +# Example: `cu102`, `cu113`, etc. +ARG CUDA='cu117' + +RUN [ ${#PYTORCH} -gt 0 ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/$CUDA +RUN [ ${#TORCH_VISION} -gt 0 ] && VERSION='torchvision=='TORCH_VISION'.*' || VERSION='torchvision'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/$CUDA +RUN [ ${#TORCH_AUDIO} -gt 0 ] && VERSION='torchaudio=='TORCH_AUDIO'.*' || VERSION='torchaudio'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/$CUDA + +RUN python3 -m pip uninstall -y tensorflow flax + +RUN python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git pytesseract +RUN python3 -m pip install -U "itsdangerous<2.1.0" + +# When installing in editable mode, `transformers` is not recognized as a package. +# this line must be added in order for python to be aware of transformers. +RUN cd transformers && python3 setup.py develop diff --git a/OPERA/transformers-4.29.2/docker/transformers-pytorch-tpu/Dockerfile b/OPERA/transformers-4.29.2/docker/transformers-pytorch-tpu/Dockerfile new file mode 100644 index 0000000000000000000000000000000000000000..45c9e2b663ff8bfda733d48035ef66a208551cbe --- /dev/null +++ b/OPERA/transformers-4.29.2/docker/transformers-pytorch-tpu/Dockerfile @@ -0,0 +1,65 @@ +FROM google/cloud-sdk:slim + +# Build args. +ARG GITHUB_REF=refs/heads/main + +# TODO: This Dockerfile installs pytorch/xla 3.6 wheels. There are also 3.7 +# wheels available; see below. +ENV PYTHON_VERSION=3.6 + +RUN apt-get update && apt-get install -y --no-install-recommends \ + build-essential \ + cmake \ + git \ + curl \ + ca-certificates + +# Install conda and python. +# NOTE new Conda does not forward the exit status... https://github.com/conda/conda/issues/8385 +RUN curl -o ~/miniconda.sh https://repo.anaconda.com/miniconda/Miniconda3-4.7.12-Linux-x86_64.sh && \ + chmod +x ~/miniconda.sh && \ + ~/miniconda.sh -b && \ + rm ~/miniconda.sh + +ENV PATH=/root/miniconda3/bin:$PATH + +RUN conda create -y --name container python=$PYTHON_VERSION + +# Run the rest of commands within the new conda env. +# Use absolute path to appease Codefactor. +SHELL ["/root/miniconda3/bin/conda", "run", "-n", "container", "/bin/bash", "-c"] +RUN conda install -y python=$PYTHON_VERSION mkl + +RUN pip uninstall -y torch && \ + # Python 3.7 wheels are available. Replace cp36-cp36m with cp37-cp37m + gsutil cp 'gs://tpu-pytorch/wheels/torch-nightly-cp${PYTHON_VERSION/./}-cp${PYTHON_VERSION/./}m-linux_x86_64.whl' . && \ + gsutil cp 'gs://tpu-pytorch/wheels/torch_xla-nightly-cp${PYTHON_VERSION/./}-cp${PYTHON_VERSION/./}m-linux_x86_64.whl' . && \ + gsutil cp 'gs://tpu-pytorch/wheels/torchvision-nightly-cp${PYTHON_VERSION/./}-cp${PYTHON_VERSION/./}m-linux_x86_64.whl' . && \ + pip install 'torch-nightly-cp${PYTHON_VERSION/./}-cp${PYTHON_VERSION/./}m-linux_x86_64.whl' && \ + pip install 'torch_xla-nightly-cp${PYTHON_VERSION/./}-cp${PYTHON_VERSION/./}m-linux_x86_64.whl' && \ + pip install 'torchvision-nightly-cp${PYTHON_VERSION/./}-cp${PYTHON_VERSION/./}m-linux_x86_64.whl' && \ + rm 'torch-nightly-cp${PYTHON_VERSION/./}-cp${PYTHON_VERSION/./}m-linux_x86_64.whl' && \ + rm 'torch_xla-nightly-cp${PYTHON_VERSION/./}-cp${PYTHON_VERSION/./}m-linux_x86_64.whl' && \ + rm 'torchvision-nightly-cp${PYTHON_VERSION/./}-cp${PYTHON_VERSION/./}m-linux_x86_64.whl' && \ + apt-get install -y libomp5 + +ENV LD_LIBRARY_PATH=root/miniconda3/envs/container/lib + + +# Install huggingface/transformers at the current PR, plus dependencies. +RUN git clone https://github.com/huggingface/transformers.git && \ + cd transformers && \ + git fetch origin $GITHUB_REF:CI && \ + git checkout CI && \ + cd .. && \ + pip install ./transformers && \ + pip install -r ./transformers/examples/pytorch/_test_requirements.txt && \ + pip install pytest + +RUN python -c "import torch_xla; print(torch_xla.__version__)" +RUN python -c "import transformers as trf; print(trf.__version__)" +RUN conda init bash +COPY docker-entrypoint.sh /usr/local/bin/ +RUN chmod +x /usr/local/bin/docker-entrypoint.sh +ENTRYPOINT ["/usr/local/bin/docker-entrypoint.sh"] +CMD ["bash"] diff --git a/OPERA/transformers-4.29.2/docker/transformers-pytorch-tpu/bert-base-cased.jsonnet b/OPERA/transformers-4.29.2/docker/transformers-pytorch-tpu/bert-base-cased.jsonnet new file mode 100644 index 0000000000000000000000000000000000000000..2bfd305c06791d8313e43b9599d279d34eb72c67 --- /dev/null +++ b/OPERA/transformers-4.29.2/docker/transformers-pytorch-tpu/bert-base-cased.jsonnet @@ -0,0 +1,38 @@ +local base = import 'templates/base.libsonnet'; +local tpus = import 'templates/tpus.libsonnet'; +local utils = import "templates/utils.libsonnet"; +local volumes = import "templates/volumes.libsonnet"; + +local bertBaseCased = base.BaseTest { + frameworkPrefix: "hf", + modelName: "bert-base-cased", + mode: "example", + configMaps: [], + + timeout: 3600, # 1 hour, in seconds + + image: std.extVar('image'), + imageTag: std.extVar('image-tag'), + + tpuSettings+: { + softwareVersion: "pytorch-nightly", + }, + accelerator: tpus.v3_8, + + volumeMap+: { + datasets: volumes.PersistentVolumeSpec { + name: "huggingface-cluster-disk", + mountPath: "/datasets", + }, + }, + command: utils.scriptCommand( + ||| + python -m pytest -s transformers/examples/pytorch/test_xla_examples.py -v + test_exit_code=$? + echo "\nFinished running commands.\n" + test $test_exit_code -eq 0 + ||| + ), +}; + +bertBaseCased.oneshotJob diff --git a/OPERA/transformers-4.29.2/docker/transformers-pytorch-tpu/dataset.yaml b/OPERA/transformers-4.29.2/docker/transformers-pytorch-tpu/dataset.yaml new file mode 100644 index 0000000000000000000000000000000000000000..c3268b30db5ebc38de912b950dcbed5966f8702e --- /dev/null +++ b/OPERA/transformers-4.29.2/docker/transformers-pytorch-tpu/dataset.yaml @@ -0,0 +1,32 @@ +apiVersion: v1 +kind: PersistentVolume +metadata: + name: huggingface-cluster-disk +spec: + storageClassName: "" + capacity: + storage: 500Gi + accessModes: + - ReadOnlyMany + claimRef: + namespace: default + name: huggingface-cluster-disk-claim + gcePersistentDisk: + pdName: huggingface-cluster-disk + fsType: ext4 + readOnly: true +--- +apiVersion: v1 +kind: PersistentVolumeClaim +metadata: + name: huggingface-cluster-disk-claim +spec: + # Specify "" as the storageClassName so it matches the PersistentVolume's StorageClass. + # A nil storageClassName value uses the default StorageClass. For details, see + # https://kubernetes.io/docs/concepts/storage/persistent-volumes/#class-1 + storageClassName: "" + accessModes: + - ReadOnlyMany + resources: + requests: + storage: 1Ki diff --git a/OPERA/transformers-4.29.2/docker/transformers-pytorch-tpu/docker-entrypoint.sh b/OPERA/transformers-4.29.2/docker/transformers-pytorch-tpu/docker-entrypoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..cd4ec5ef2dce3650545dae8d8e927e87fb336bea --- /dev/null +++ b/OPERA/transformers-4.29.2/docker/transformers-pytorch-tpu/docker-entrypoint.sh @@ -0,0 +1,8 @@ +#!/bin/bash +source ~/.bashrc +echo "running docker-entrypoint.sh" +conda activate container +echo $KUBE_GOOGLE_CLOUD_TPU_ENDPOINTS +echo "printed TPU info" +export XRT_TPU_CONFIG="tpu_worker;0;${KUBE_GOOGLE_CLOUD_TPU_ENDPOINTS:7}" +exec "$@"#!/bin/bash diff --git a/OPERA/transformers-4.29.2/docker/transformers-tensorflow-cpu/Dockerfile b/OPERA/transformers-4.29.2/docker/transformers-tensorflow-cpu/Dockerfile new file mode 100644 index 0000000000000000000000000000000000000000..d8ddc451d900858c2962cd038ea57c12c9f9c393 --- /dev/null +++ b/OPERA/transformers-4.29.2/docker/transformers-tensorflow-cpu/Dockerfile @@ -0,0 +1,25 @@ +FROM ubuntu:18.04 +LABEL maintainer="Hugging Face" +LABEL repository="transformers" + +RUN apt update && \ + apt install -y bash \ + build-essential \ + git \ + curl \ + ca-certificates \ + python3 \ + python3-pip && \ + rm -rf /var/lib/apt/lists + +RUN python3 -m pip install --no-cache-dir --upgrade pip && \ + python3 -m pip install --no-cache-dir \ + mkl \ + tensorflow-cpu + +WORKDIR /workspace +COPY . transformers/ +RUN cd transformers/ && \ + python3 -m pip install --no-cache-dir . + +CMD ["/bin/bash"] diff --git a/OPERA/transformers-4.29.2/docker/transformers-tensorflow-gpu/Dockerfile b/OPERA/transformers-4.29.2/docker/transformers-tensorflow-gpu/Dockerfile new file mode 100644 index 0000000000000000000000000000000000000000..8d0376f479f91ddb2bd5f0652cce4f5830b35263 --- /dev/null +++ b/OPERA/transformers-4.29.2/docker/transformers-tensorflow-gpu/Dockerfile @@ -0,0 +1,25 @@ +FROM nvidia/cuda:11.2.2-cudnn8-devel-ubuntu20.04 +LABEL maintainer="Hugging Face" + +ARG DEBIAN_FRONTEND=noninteractive + +RUN apt update +RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg +RUN python3 -m pip install --no-cache-dir --upgrade pip + +ARG REF=main +RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF +RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-tensorflow,testing] + +# If set to nothing, will install the latest version +ARG TENSORFLOW='2.11' + +RUN [ ${#TENSORFLOW} -gt 0 ] && VERSION='tensorflow=='$TENSORFLOW'.*' || VERSION='tensorflow'; python3 -m pip install --no-cache-dir -U $VERSION +RUN python3 -m pip uninstall -y torch flax +RUN python3 -m pip install -U "itsdangerous<2.1.0" + +RUN python3 -m pip install --no-cache-dir -U tensorflow_probability + +# When installing in editable mode, `transformers` is not recognized as a package. +# this line must be added in order for python to be aware of transformers. +RUN cd transformers && python3 setup.py develop diff --git a/OPERA/transformers-4.29.2/docs/README.md b/OPERA/transformers-4.29.2/docs/README.md new file mode 100644 index 0000000000000000000000000000000000000000..9aa74d4de94b2c4feaecb9bd99ea90fdb2405309 --- /dev/null +++ b/OPERA/transformers-4.29.2/docs/README.md @@ -0,0 +1,431 @@ + + +# Generating the documentation + +To generate the documentation, you first have to build it. Several packages are necessary to build the doc, +you can install them with the following command, at the root of the code repository: + +```bash +pip install -e ".[docs]" +``` + +Then you need to install our special tool that builds the documentation: + +```bash +pip install git+https://github.com/huggingface/doc-builder +``` + +--- +**NOTE** + +You only need to generate the documentation to inspect it locally (if you're planning changes and want to +check how they look before committing for instance). You don't have to commit the built documentation. + +--- + +## Building the documentation + +Once you have setup the `doc-builder` and additional packages, you can generate the documentation by +typing the following command: + +```bash +doc-builder build transformers docs/source/en/ --build_dir ~/tmp/test-build +``` + +You can adapt the `--build_dir` to set any temporary folder that you prefer. This command will create it and generate +the MDX files that will be rendered as the documentation on the main website. You can inspect them in your favorite +Markdown editor. + +## Previewing the documentation + +To preview the docs, first install the `watchdog` module with: + +```bash +pip install watchdog +``` + +Then run the following command: + +```bash +doc-builder preview {package_name} {path_to_docs} +``` + +For example: + +```bash +doc-builder preview transformers docs/source/en/ +``` + +The docs will be viewable at [http://localhost:3000](http://localhost:3000). You can also preview the docs once you have opened a PR. You will see a bot add a comment to a link where the documentation with your changes lives. + +--- +**NOTE** + +The `preview` command only works with existing doc files. When you add a completely new file, you need to update `_toctree.yml` & restart `preview` command (`ctrl-c` to stop it & call `doc-builder preview ...` again). + +--- + +## Adding a new element to the navigation bar + +Accepted files are Markdown (.md or .mdx). + +Create a file with its extension and put it in the source directory. You can then link it to the toc-tree by putting +the filename without the extension in the [`_toctree.yml`](https://github.com/huggingface/transformers/blob/main/docs/source/_toctree.yml) file. + +## Renaming section headers and moving sections + +It helps to keep the old links working when renaming the section header and/or moving sections from one document to another. This is because the old links are likely to be used in Issues, Forums, and Social media and it'd make for a much more superior user experience if users reading those months later could still easily navigate to the originally intended information. + +Therefore, we simply keep a little map of moved sections at the end of the document where the original section was. The key is to preserve the original anchor. + +So if you renamed a section from: "Section A" to "Section B", then you can add at the end of the file: + +``` +Sections that were moved: + +[ Section A ] +``` +and of course, if you moved it to another file, then: + +``` +Sections that were moved: + +[ Section A ] +``` + +Use the relative style to link to the new file so that the versioned docs continue to work. + +For an example of a rich moved section set please see the very end of [the Trainer doc](https://github.com/huggingface/transformers/blob/main/docs/source/en/main_classes/trainer.mdx). + + +## Writing Documentation - Specification + +The `huggingface/transformers` documentation follows the +[Google documentation](https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html) style for docstrings, +although we can write them directly in Markdown. + +### Adding a new tutorial + +Adding a new tutorial or section is done in two steps: + +- Add a new file under `./source`. This file can either be ReStructuredText (.rst) or Markdown (.md). +- Link that file in `./source/_toctree.yml` on the correct toc-tree. + +Make sure to put your new file under the proper section. It's unlikely to go in the first section (*Get Started*), so +depending on the intended targets (beginners, more advanced users, or researchers) it should go in sections two, three, or +four. + +### Translating + +When translating, refer to the guide at [./TRANSLATING.md](https://github.com/huggingface/transformers/blob/main/docs/TRANSLATING.md). + + +### Adding a new model + +When adding a new model: + +- Create a file `xxx.mdx` or under `./source/model_doc` (don't hesitate to copy an existing file as template). +- Link that file in `./source/_toctree.yml`. +- Write a short overview of the model: + - Overview with paper & authors + - Paper abstract + - Tips and tricks and how to use it best +- Add the classes that should be linked in the model. This generally includes the configuration, the tokenizer, and + every model of that class (the base model, alongside models with additional heads), both in PyTorch and TensorFlow. + The order is generally: + - Configuration, + - Tokenizer + - PyTorch base model + - PyTorch head models + - TensorFlow base model + - TensorFlow head models + - Flax base model + - Flax head models + +These classes should be added using our Markdown syntax. Usually as follows: + +``` +## XXXConfig + +[[autodoc]] XXXConfig +``` + +This will include every public method of the configuration that is documented. If for some reason you wish for a method +not to be displayed in the documentation, you can do so by specifying which methods should be in the docs: + +``` +## XXXTokenizer + +[[autodoc]] XXXTokenizer + - build_inputs_with_special_tokens + - get_special_tokens_mask + - create_token_type_ids_from_sequences + - save_vocabulary +``` + +If you just want to add a method that is not documented (for instance magic methods like `__call__` are not documented +by default) you can put the list of methods to add in a list that contains `all`: + +``` +## XXXTokenizer + +[[autodoc]] XXXTokenizer + - all + - __call__ +``` + +### Writing source documentation + +Values that should be put in `code` should either be surrounded by backticks: \`like so\`. Note that argument names +and objects like True, None, or any strings should usually be put in `code`. + +When mentioning a class, function, or method, it is recommended to use our syntax for internal links so that our tool +adds a link to its documentation with this syntax: \[\`XXXClass\`\] or \[\`function\`\]. This requires the class or +function to be in the main package. + +If you want to create a link to some internal class or function, you need to +provide its path. For instance: \[\`utils.ModelOutput\`\]. This will be converted into a link with +`utils.ModelOutput` in the description. To get rid of the path and only keep the name of the object you are +linking to in the description, add a ~: \[\`~utils.ModelOutput\`\] will generate a link with `ModelOutput` in the description. + +The same works for methods so you can either use \[\`XXXClass.method\`\] or \[~\`XXXClass.method\`\]. + +#### Defining arguments in a method + +Arguments should be defined with the `Args:` (or `Arguments:` or `Parameters:`) prefix, followed by a line return and +an indentation. The argument should be followed by its type, with its shape if it is a tensor, a colon, and its +description: + +``` + Args: + n_layers (`int`): The number of layers of the model. +``` + +If the description is too long to fit in one line, another indentation is necessary before writing the description +after the argument. + +Here's an example showcasing everything so far: + +``` + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AlbertTokenizer`]. See [`~PreTrainedTokenizer.encode`] and + [`~PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) +``` + +For optional arguments or arguments with defaults we follow the following syntax: imagine we have a function with the +following signature: + +``` +def my_function(x: str = None, a: float = 1): +``` + +then its documentation should look like this: + +``` + Args: + x (`str`, *optional*): + This argument controls ... + a (`float`, *optional*, defaults to 1): + This argument is used to ... +``` + +Note that we always omit the "defaults to \`None\`" when None is the default for any argument. Also note that even +if the first line describing your argument type and its default gets long, you can't break it on several lines. You can +however write as many lines as you want in the indented description (see the example above with `input_ids`). + +#### Writing a multi-line code block + +Multi-line code blocks can be useful for displaying examples. They are done between two lines of three backticks as usual in Markdown: + + +```` +``` +# first line of code +# second line +# etc +``` +```` + +We follow the [doctest](https://docs.python.org/3/library/doctest.html) syntax for the examples to automatically test +the results to stay consistent with the library. + +#### Writing a return block + +The return block should be introduced with the `Returns:` prefix, followed by a line return and an indentation. +The first line should be the type of the return, followed by a line return. No need to indent further for the elements +building the return. + +Here's an example of a single value return: + +``` + Returns: + `List[int]`: A list of integers in the range [0, 1] --- 1 for a special token, 0 for a sequence token. +``` + +Here's an example of a tuple return, comprising several objects: + +``` + Returns: + `tuple(torch.FloatTensor)` comprising various elements depending on the configuration ([`BertConfig`]) and inputs: + - ** loss** (*optional*, returned when `masked_lm_labels` is provided) `torch.FloatTensor` of shape `(1,)` -- + Total loss is the sum of the masked language modeling loss and the next sequence prediction (classification) loss. + - **prediction_scores** (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`) -- + Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). +``` + +#### Adding an image + +Due to the rapidly growing repository, it is important to make sure that no files that would significantly weigh down the repository are added. This includes images, videos, and other non-text files. We prefer to leverage a hf.co hosted `dataset` like +the ones hosted on [`hf-internal-testing`](https://huggingface.co/hf-internal-testing) in which to place these files and reference +them by URL. We recommend putting them in the following dataset: [huggingface/documentation-images](https://huggingface.co/datasets/huggingface/documentation-images). +If an external contribution, feel free to add the images to your PR and ask a Hugging Face member to migrate your images +to this dataset. + +## Styling the docstring + +We have an automatic script running with the `make style` comment that will make sure that: +- the docstrings fully take advantage of the line width +- all code examples are formatted using black, like the code of the Transformers library + +This script may have some weird failures if you made a syntax mistake or if you uncover a bug. Therefore, it's +recommended to commit your changes before running `make style`, so you can revert the changes done by that script +easily. + +# Testing documentation examples + +Good documentation often comes with an example of how a specific function or class should be used. +Each model class should contain at least one example showcasing +how to use this model class in inference. *E.g.* the class [Wav2Vec2ForCTC](https://huggingface.co/docs/transformers/model_doc/wav2vec2#transformers.Wav2Vec2ForCTC) +includes an example of how to transcribe speech to text in the +[docstring of its forward function](https://huggingface.co/docs/transformers/model_doc/wav2vec2#transformers.Wav2Vec2ForCTC.forward). + +## Writing documentation examples + +The syntax for Example docstrings can look as follows: + +``` + Example: + + ```python + >>> from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC + >>> from datasets import load_dataset + >>> import torch + + >>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") + >>> dataset = dataset.sort("id") + >>> sampling_rate = dataset.features["audio"].sampling_rate + + >>> processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h") + >>> model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h") + + >>> # audio file is decoded on the fly + >>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt") + >>> with torch.no_grad(): + ... logits = model(**inputs).logits + >>> predicted_ids = torch.argmax(logits, dim=-1) + + >>> # transcribe speech + >>> transcription = processor.batch_decode(predicted_ids) + >>> transcription[0] + 'MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL' + ``` +``` + +The docstring should give a minimal, clear example of how the respective model +is to be used in inference and also include the expected (ideally sensible) +output. +Often, readers will try out the example before even going through the function +or class definitions. Therefore, it is of utmost importance that the example +works as expected. + +## Docstring testing + +To do so each example should be included in the doctests. +We use pytests' [doctest integration](https://docs.pytest.org/doctest.html) to verify that all of our examples run correctly. +For Transformers, the doctests are run on a daily basis via GitHub Actions as can be +seen [here](https://github.com/huggingface/transformers/actions/workflows/doctests.yml). + +To include your example in the daily doctests, you need to add the filename that +contains the example docstring to the [documentation_tests.txt](../utils/documentation_tests.txt). + +### For Python files + +You will first need to run the following command (from the root of the repository) to prepare the doc file (doc-testing needs to add additional lines that we don't include in the doc source files): + +```bash +python utils/prepare_for_doc_test.py src docs +``` + +If you work on a specific python module, say `modeling_wav2vec2.py`, you can run the command as follows (to avoid the unnecessary temporary changes in irrelevant files): + +```bash +python utils/prepare_for_doc_test.py src/transformers/utils/doc.py src/transformers/models/wav2vec2/modeling_wav2vec2.py +``` +(`utils/doc.py` should always be included) + +Then you can run all the tests in the docstrings of a given file with the following command, here is how we test the modeling file of Wav2Vec2 for instance: + +```bash +pytest --doctest-modules src/transformers/models/wav2vec2/modeling_wav2vec2.py -sv --doctest-continue-on-failure +``` + +If you want to isolate a specific docstring, just add `::` after the file name then type the whole path of the function/class/method whose docstring you want to test. For instance, here is how to just test the forward method of `Wav2Vec2ForCTC`: + +```bash +pytest --doctest-modules src/transformers/models/wav2vec2/modeling_wav2vec2.py::transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC.forward -sv --doctest-continue-on-failure +``` + +Once you're done, you can run the following command (still from the root of the repository) to undo the changes made by the first command before committing: + +```bash +python utils/prepare_for_doc_test.py src docs --remove_new_line +``` + +### For Markdown files + +You will first need to run the following command (from the root of the repository) to prepare the doc file (doc-testing needs to add additional lines that we don't include in the doc source files): + +```bash +python utils/prepare_for_doc_test.py src docs +``` + +Then you can test locally a given file with this command (here testing the quicktour): + +```bash +pytest --doctest-modules docs/source/quicktour.mdx -sv --doctest-continue-on-failure --doctest-glob="*.mdx" +``` + +Once you're done, you can run the following command (still from the root of the repository) to undo the changes made by the first command before committing: + +```bash +python utils/prepare_for_doc_test.py src docs --remove_new_line +``` + +### Writing doctests + +Here are a few tips to help you debug the doctests and make them pass: + +- The outputs of the code need to match the expected output **exactly**, so make sure you have the same outputs. In particular doctest will see a difference between single quotes and double quotes, or a missing parenthesis. The only exceptions to that rule are: + * whitespace: one give whitespace (space, tabulation, new line) is equivalent to any number of whitespace, so you can add new lines where there are spaces to make your output more readable. + * numerical values: you should never put more than 4 or 5 digits to expected results as different setups or library versions might get you slightly different results. `doctest` is configured to ignore any difference lower than the precision to which you wrote (so 1e-4 if you write 4 digits). +- Don't leave a block of code that is very long to execute. If you can't make it fast, you can either not use the doctest syntax on it (so that it's ignored), or if you want to use the doctest syntax to show the results, you can add a comment `# doctest: +SKIP` at the end of the lines of code too long to execute +- Each line of code that produces a result needs to have that result written below. You can ignore an output if you don't want to show it in your code example by adding a comment ` # doctest: +IGNORE_RESULT` at the end of the line of code producing it. diff --git a/OPERA/transformers-4.29.2/docs/TRANSLATING.md b/OPERA/transformers-4.29.2/docs/TRANSLATING.md new file mode 100644 index 0000000000000000000000000000000000000000..c6f5c45baf029146c061113dae7f42a1bdb14b3a --- /dev/null +++ b/OPERA/transformers-4.29.2/docs/TRANSLATING.md @@ -0,0 +1,57 @@ +### Translating the Transformers documentation into your language + +As part of our mission to democratize machine learning, we'd love to make the Transformers library available in many more languages! Follow the steps below if you want to help translate the documentation into your language 🙏. + +**🗞️ Open an issue** + +To get started, navigate to the [Issues](https://github.com/huggingface/transformers/issues) page of this repo and check if anyone else has opened an issue for your language. If not, open a new issue by selecting the "Translation template" from the "New issue" button. + +Once an issue exists, post a comment to indicate which chapters you'd like to work on, and we'll add your name to the list. + + +**🍴 Fork the repository** + +First, you'll need to [fork the Transformers repo](https://docs.github.com/en/get-started/quickstart/fork-a-repo). You can do this by clicking on the **Fork** button on the top-right corner of this repo's page. + +Once you've forked the repo, you'll want to get the files on your local machine for editing. You can do that by cloning the fork with Git as follows: + +```bash +git clone https://github.com/YOUR-USERNAME/transformers.git +``` + +**📋 Copy-paste the English version with a new language code** + +The documentation files are in one leading directory: + +- [`docs/source`](https://github.com/huggingface/transformers/tree/main/docs/source): All the documentation materials are organized here by language. + +You'll only need to copy the files in the [`docs/source/en`](https://github.com/huggingface/transformers/tree/main/docs/source/en) directory, so first navigate to your fork of the repo and run the following: + +```bash +cd ~/path/to/transformers/docs +cp -r source/en source/LANG-ID +``` + +Here, `LANG-ID` should be one of the ISO 639-1 or ISO 639-2 language codes -- see [here](https://www.loc.gov/standards/iso639-2/php/code_list.php) for a handy table. + +**✍️ Start translating** + +The fun part comes - translating the text! + +The first thing we recommend is translating the part of the `_toctree.yml` file that corresponds to your doc chapter. This file is used to render the table of contents on the website. + +> 🙋 If the `_toctree.yml` file doesn't yet exist for your language, you can create one by copy-pasting from the English version and deleting the sections unrelated to your chapter. Just make sure it exists in the `docs/source/LANG-ID/` directory! + +The fields you should add are `local` (with the name of the file containing the translation; e.g. `autoclass_tutorial`), and `title` (with the title of the doc in your language; e.g. `Load pretrained instances with an AutoClass`) -- as a reference, here is the `_toctree.yml` for [English](https://github.com/huggingface/transformers/blob/main/docs/source/en/_toctree.yml): + +```yaml +- sections: + - local: pipeline_tutorial # Do not change this! Use the same name for your .md file + title: Pipelines for inference # Translate this! + ... + title: Tutorials # Translate this! +``` + +Once you have translated the `_toctree.yml` file, you can start translating the [MDX](https://mdxjs.com/) files associated with your docs chapter. + +> 🙋 If you'd like others to help you with the translation, you should [open an issue](https://github.com/huggingface/transformers/issues) and tag @sgugger. diff --git a/OPERA/transformers-4.29.2/docs/source/_config.py b/OPERA/transformers-4.29.2/docs/source/_config.py new file mode 100644 index 0000000000000000000000000000000000000000..4a7a86cc23d8070ff3070ef6fcf3a9f6598f858b --- /dev/null +++ b/OPERA/transformers-4.29.2/docs/source/_config.py @@ -0,0 +1,14 @@ +# docstyle-ignore +INSTALL_CONTENT = """ +# Transformers installation +! pip install transformers datasets evaluate +# To install from source instead of the last release, comment the command above and uncomment the following one. +# ! pip install git+https://github.com/huggingface/transformers.git +""" + +notebook_first_cells = [{"type": "code", "content": INSTALL_CONTENT}] +black_avoid_patterns = { + "{processor_class}": "FakeProcessorClass", + "{model_class}": "FakeModelClass", + "{object_class}": "FakeObjectClass", +} diff --git a/OPERA/transformers-4.29.2/docs/source/de/_config.py b/OPERA/transformers-4.29.2/docs/source/de/_config.py new file mode 100644 index 0000000000000000000000000000000000000000..a6d75853f572193e4c04bb931d9254c23fbd838b --- /dev/null +++ b/OPERA/transformers-4.29.2/docs/source/de/_config.py @@ -0,0 +1,14 @@ +# docstyle-ignore +INSTALL_CONTENT = """ +# Transformers installation +! pip install transformers datasets +# To install from source instead of the last release, comment the command above and uncomment the following one. +# ! pip install git+https://github.com/huggingface/transformers.git +""" + +notebook_first_cells = [{"type": "code", "content": INSTALL_CONTENT}] +black_avoid_patterns = { + "{processor_class}": "FakeProcessorClass", + "{model_class}": "FakeModelClass", + "{object_class}": "FakeObjectClass", +} diff --git a/OPERA/transformers-4.29.2/docs/source/de/_toctree.yml b/OPERA/transformers-4.29.2/docs/source/de/_toctree.yml new file mode 100644 index 0000000000000000000000000000000000000000..083f452d0373b85b70b91884266a67043d78a76d --- /dev/null +++ b/OPERA/transformers-4.29.2/docs/source/de/_toctree.yml @@ -0,0 +1,22 @@ +- sections: + - local: index + title: 🤗 Transformers + - local: quicktour + title: Schnellstart + - local: installation + title: Installation + title: Erste Schritte +- sections: + - local: pipeline_tutorial + title: Pipelines für Inferenzen + - local: autoclass_tutorial + title: Laden von vortrainierten Instanzen mit einer AutoClass + - local: preprocessing + title: Vorverarbeiten + - local: training + title: Optimierung eines vortrainierten Modells + - local: accelerate + title: Verteiltes Training mit 🤗 Accelerate + - local: model_sharing + title: Ein Modell teilen + title: Tutorials diff --git a/OPERA/transformers-4.29.2/docs/source/de/accelerate.mdx b/OPERA/transformers-4.29.2/docs/source/de/accelerate.mdx new file mode 100644 index 0000000000000000000000000000000000000000..64f85f205f8afb10fea8a0d9d5831648bb949f03 --- /dev/null +++ b/OPERA/transformers-4.29.2/docs/source/de/accelerate.mdx @@ -0,0 +1,132 @@ + + +# Verteiltes Training mit 🤗 Accelerate + +Da die Modelle immer größer werden, hat sich die Parallelität als Strategie zum Trainieren größerer Modelle auf begrenzter Hardware und zur Beschleunigung der Trainingsgeschwindigkeit um mehrere Größenordnungen erwiesen. Bei Hugging Face haben wir die Bibliothek [🤗 Accelerate](https://huggingface.co/docs/accelerate) entwickelt, um Nutzern zu helfen, ein 🤗 Transformers-Modell auf jeder Art von verteiltem Setup zu trainieren, egal ob es sich um mehrere GPUs auf einer Maschine oder mehrere GPUs auf mehreren Maschinen handelt. In diesem Tutorial lernen Sie, wie Sie Ihre native PyTorch-Trainingsschleife anpassen, um das Training in einer verteilten Umgebung zu ermöglichen. + +## Einrichtung + +Beginnen Sie mit der Installation von 🤗 Accelerate: + +```bash +pip install accelerate +``` + +Dann importieren und erstellen Sie ein [`~accelerate.Accelerator`]-Objekt. Der [`~accelerate.Accelerator`] wird automatisch Ihre Art der verteilten Einrichtung erkennen und alle notwendigen Komponenten für das Training initialisieren. Sie müssen Ihr Modell nicht explizit auf einem Gerät platzieren. + +```py +>>> from accelerate import Accelerator + +>>> accelerator = Accelerator() +``` + +## Vorbereiten auf die Beschleunigung + +Der nächste Schritt ist die Übergabe aller relevanten Trainingsobjekte an die Methode [`~accelerate.Accelerator.prepare`]. Dazu gehören Ihre Trainings- und Evaluierungs-DataLoader, ein Modell und ein Optimierer: + +```py +>>> train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare( +... train_dataloader, eval_dataloader, model, optimizer +... ) +``` + +## Rückwärts + +Die letzte Ergänzung besteht darin, das typische `loss.backward()` in der Trainingsschleife durch die 🤗 Accelerate-Methode [`~accelerate.Accelerator.backward`] zu ersetzen: + +```py +>>> for epoch in range(num_epochs): +... for batch in train_dataloader: +... outputs = model(**batch) +... loss = outputs.loss +... accelerator.backward(loss) + +... optimizer.step() +... lr_scheduler.step() +... optimizer.zero_grad() +... progress_bar.update(1) +``` + +Wie Sie im folgenden Code sehen können, müssen Sie nur vier zusätzliche Codezeilen zu Ihrer Trainingsschleife hinzufügen, um verteiltes Training zu ermöglichen! + +```diff ++ from accelerate import Accelerator + from transformers import AdamW, AutoModelForSequenceClassification, get_scheduler + ++ accelerator = Accelerator() + + model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2) + optimizer = AdamW(model.parameters(), lr=3e-5) + +- device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") +- model.to(device) + ++ train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare( ++ train_dataloader, eval_dataloader, model, optimizer ++ ) + + num_epochs = 3 + num_training_steps = num_epochs * len(train_dataloader) + lr_scheduler = get_scheduler( + "linear", + optimizer=optimizer, + num_warmup_steps=0, + num_training_steps=num_training_steps + ) + + progress_bar = tqdm(range(num_training_steps)) + + model.train() + for epoch in range(num_epochs): + for batch in train_dataloader: +- batch = {k: v.to(device) for k, v in batch.items()} + outputs = model(**batch) + loss = outputs.loss +- loss.backward() ++ accelerator.backward(loss) + + optimizer.step() + lr_scheduler.step() + optimizer.zero_grad() + progress_bar.update(1) +``` + +## Trainieren + +Sobald Sie die entsprechenden Codezeilen hinzugefügt haben, starten Sie Ihr Training in einem Skript oder einem Notebook wie Colaboratory. + +### Trainieren mit einem Skript + +Wenn Sie Ihr Training mit einem Skript durchführen, führen Sie den folgenden Befehl aus, um eine Konfigurationsdatei zu erstellen und zu speichern: + +```bash +accelerate config +``` + +Dann starten Sie Ihr Training mit: + +```bash +accelerate launch train.py +``` + +### Trainieren mit einem Notebook + +🤗 Accelerate kann auch in einem Notebook laufen, wenn Sie planen, die TPUs von Colaboratory zu verwenden. Verpacken Sie den gesamten Code, der für das Training verantwortlich ist, in eine Funktion und übergeben Sie diese an [`~accelerate.notebook_launcher`]: + +```py +>>> from accelerate import notebook_launcher + +>>> notebook_launcher(training_function) +``` + +Weitere Informationen über 🤗 Accelerate und seine umfangreichen Funktionen finden Sie in der [Dokumentation](https://huggingface.co/docs/accelerate). \ No newline at end of file diff --git a/OPERA/transformers-4.29.2/docs/source/de/autoclass_tutorial.mdx b/OPERA/transformers-4.29.2/docs/source/de/autoclass_tutorial.mdx new file mode 100644 index 0000000000000000000000000000000000000000..95247cd04ba0ce7fc2061cba781898f33b29c4c0 --- /dev/null +++ b/OPERA/transformers-4.29.2/docs/source/de/autoclass_tutorial.mdx @@ -0,0 +1,127 @@ + + +# Vortrainierte Instanzen mit einer AutoClass laden + +Bei so vielen verschiedenen Transformator-Architekturen kann es eine Herausforderung sein, eine für Ihren Checkpoint zu erstellen. Als Teil der 🤗 Transformers Kernphilosophie, die Bibliothek leicht, einfach und flexibel nutzbar zu machen, leitet eine `AutoClass` automatisch die richtige Architektur aus einem gegebenen Checkpoint ab und lädt sie. Mit der Methode `from_pretrained()` kann man schnell ein vortrainiertes Modell für eine beliebige Architektur laden, so dass man keine Zeit und Ressourcen aufwenden muss, um ein Modell von Grund auf zu trainieren. Die Erstellung dieser Art von Checkpoint-agnostischem Code bedeutet, dass Ihr Code, wenn er für einen Checkpoint funktioniert, auch mit einem anderen Checkpoint funktionieren wird - solange er für eine ähnliche Aufgabe trainiert wurde - selbst wenn die Architektur unterschiedlich ist. + + + +Denken Sie daran, dass sich die Architektur auf das Skelett des Modells bezieht und die Checkpoints die Gewichte für eine bestimmte Architektur sind. Zum Beispiel ist [BERT](https://huggingface.co/bert-base-uncased) eine Architektur, während `bert-base-uncased` ein Checkpoint ist. Modell ist ein allgemeiner Begriff, der entweder Architektur oder Prüfpunkt bedeuten kann. + + + +In dieser Anleitung lernen Sie, wie man: + +* Einen vortrainierten Tokenizer lädt. +* Einen vortrainierten Merkmalsextraktor lädt. +* Einen vortrainierten Prozessor lädt. +* Ein vortrainiertes Modell lädt. + +## AutoTokenizer + +Nahezu jede NLP-Aufgabe beginnt mit einem Tokenizer. Ein Tokenizer wandelt Ihre Eingabe in ein Format um, das vom Modell verarbeitet werden kann. + +Laden Sie einen Tokenizer mit [`AutoTokenizer.from_pretrained`]: + +```py +>>> from transformers import AutoTokenizer + +>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") +``` + +Dann tokenisieren Sie Ihre Eingabe wie unten gezeigt: + +```py +>>> sequence = "In a hole in the ground there lived a hobbit." +>>> print(tokenizer(sequence)) +{'input_ids': [101, 1999, 1037, 4920, 1999, 1996, 2598, 2045, 2973, 1037, 7570, 10322, 4183, 1012, 102], + 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]} +``` + +## AutoFeatureExtractor + +Für Audio- und Bildverarbeitungsaufgaben verarbeitet ein Merkmalsextraktor das Audiosignal oder Bild in das richtige Eingabeformat. + +Laden Sie einen Merkmalsextraktor mit [`AutoFeatureExtractor.from_pretrained`]: + +```py +>>> from transformers import AutoFeatureExtractor + +>>> feature_extractor = AutoFeatureExtractor.from_pretrained( +... "ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition" +... ) +``` + +## AutoProcessor + +Multimodale Aufgaben erfordern einen Prozessor, der zwei Arten von Vorverarbeitungswerkzeugen kombiniert. Das Modell [LayoutLMV2](model_doc/layoutlmv2) beispielsweise benötigt einen Feature-Extraktor für Bilder und einen Tokenizer für Text; ein Prozessor kombiniert beide. + +Laden Sie einen Prozessor mit [`AutoProcessor.from_pretrained`]: + +```py +>>> from transformers import AutoProcessor + +>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased") +``` + +## AutoModel + + + +Mit den `AutoModelFor`-Klassen können Sie schließlich ein vortrainiertes Modell für eine bestimmte Aufgabe laden (siehe [hier](model_doc/auto) für eine vollständige Liste der verfügbaren Aufgaben). Laden Sie zum Beispiel ein Modell für die Sequenzklassifikation mit [`AutoModelForSequenceClassification.from_pretrained`]: + +```py +>>> from transformers import AutoModelForSequenceClassification + +>>> model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased") +``` + +Sie können denselben Prüfpunkt problemlos wiederverwenden, um eine Architektur für eine andere Aufgabe zu laden: + +```py +>>> from transformers import AutoModelForTokenClassification + +>>> model = AutoModelForTokenClassification.from_pretrained("distilbert-base-uncased") +``` + + + +Für PyTorch-Modelle verwendet die Methode `from_pretrained()` `torch.load()`, die intern `pickle` verwendet und als unsicher bekannt ist. Generell sollte man niemals ein Modell laden, das aus einer nicht vertrauenswürdigen Quelle stammen könnte, oder das manipuliert worden sein könnte. Dieses Sicherheitsrisiko wird für öffentliche Modelle, die auf dem Hugging Face Hub gehostet werden, teilweise gemildert, da diese bei jeder Übertragung [auf Malware](https://huggingface.co/docs/hub/security-malware) gescannt werden. Siehe die [Hub-Dokumentation](https://huggingface.co/docs/hub/security) für Best Practices wie [signierte Commit-Verifizierung](https://huggingface.co/docs/hub/security-gpg#signing-commits-with-gpg) mit GPG. + +TensorFlow- und Flax-Checkpoints sind nicht betroffen und können in PyTorch-Architekturen mit den Kwargs `from_tf` und `from_flax` für die Methode `from_pretrained` geladen werden, um dieses Problem zu umgehen. + + + +Im Allgemeinen empfehlen wir die Verwendung der Klasse "AutoTokenizer" und der Klasse "AutoModelFor", um trainierte Instanzen von Modellen zu laden. Dadurch wird sichergestellt, dass Sie jedes Mal die richtige Architektur laden. Im nächsten [Tutorial] (Vorverarbeitung) erfahren Sie, wie Sie Ihren neu geladenen Tokenizer, Feature Extractor und Prozessor verwenden, um einen Datensatz für die Feinabstimmung vorzuverarbeiten. + + +Mit den Klassen `TFAutoModelFor` schließlich können Sie ein vortrainiertes Modell für eine bestimmte Aufgabe laden (siehe [hier](model_doc/auto) für eine vollständige Liste der verfügbaren Aufgaben). Laden Sie zum Beispiel ein Modell für die Sequenzklassifikation mit [`TFAutoModelForSequenceClassification.from_pretrained`]: + +```py +>>> from transformers import TFAutoModelForSequenceClassification + +>>> model = TFAutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased") +``` + +Sie können denselben Prüfpunkt problemlos wiederverwenden, um eine Architektur für eine andere Aufgabe zu laden: + +```py +>>> from transformers import TFAutoModelForTokenClassification + +>>> model = TFAutoModelForTokenClassification.from_pretrained("distilbert-base-uncased") +``` + +Im Allgemeinen empfehlen wir, die Klasse "AutoTokenizer" und die Klasse "TFAutoModelFor" zu verwenden, um vortrainierte Instanzen von Modellen zu laden. Dadurch wird sichergestellt, dass Sie jedes Mal die richtige Architektur laden. Im nächsten [Tutorial] (Vorverarbeitung) erfahren Sie, wie Sie Ihren neu geladenen Tokenizer, Feature Extractor und Prozessor verwenden, um einen Datensatz für die Feinabstimmung vorzuverarbeiten. + + diff --git a/OPERA/transformers-4.29.2/docs/source/de/index.mdx b/OPERA/transformers-4.29.2/docs/source/de/index.mdx new file mode 100644 index 0000000000000000000000000000000000000000..c14e803ed02236b14af8231f90e3592113b413a8 --- /dev/null +++ b/OPERA/transformers-4.29.2/docs/source/de/index.mdx @@ -0,0 +1,329 @@ + + +# 🤗 Transformers + +Maschinelles Lernen auf dem neuesten Stand der Technik für PyTorch, TensorFlow und JAX. + +🤗 Transformers bietet APIs zum einfachen Herunterladen und Trainieren von vortrainierten Modellen auf dem neuesten Stand der Technik. Die Verwendung von vortrainierten Modellen kann Rechenkosten sparen und den CO2-Fußabdruck reduzieren und Zeit sparen, die für das Training eines Modells von Grund auf benötigt wird. Die Modelle können für verschiedene Modalitäten verwendet werden, wie z. B.: + +* 📝 Text: Textklassifizierung, Informationsextrahierung, Beantwortung von Fragen, Zusammenfassung, Übersetzung und Texterstellung in über 100 Sprachen. +* 🖼️ Bilder: Bildklassifizierung, Objekterkennung und Segmentierung. +* 🗣️ Audio: Spracherkennung und Audioklassifizierung. +* 🐙 Multimodal: Beantwortung von Tabellenfragen, optische Zeichenerkennung, Informationsextraktion aus gescannten Dokumenten, Videoklassifizierung und Beantwortung visueller Fragen. + +Unsere Bibliothek unterstützt die nahtlose Integration von drei der beliebtesten Deep-Learning-Bibliotheken: [PyTorch](https://pytorch.org/), [TensorFlow](https://www.tensorflow.org/) und [JAX](https://jax.readthedocs.io/en/latest/). Trainieren Sie Ihr Modell in drei Codezeilen in einem Framework und laden Sie es zur Inferenz mit einem anderen. + +Jede 🤗 Transformers-Architektur ist in einem eigenständigen Python-Modul definiert, so dass sie leicht für Forschung und Experimente angepasst werden kann. + +## Wenn Sie auf der Suche nach individueller Unterstützung durch das Hugging Face-Team sind + + + HuggingFace Expert Acceleration Program + + +## Inhalt + +Die Dokumentation ist in fünf Teile gegliedert: + +- **GET STARTED** enthält eine kurze Tour und Installationsanweisungen, um mit 🤗 Transformers loszulegen. +- **TUTORIALS** sind ein hervorragender Ausgangspunkt, wenn Sie neu in unserer Bibliothek sind. Dieser Abschnitt hilft Ihnen, die grundlegenden Fähigkeiten zu erlangen, die Sie benötigen, um mit 🤗 Transformers zu arbeiten. +- **HOW-TO GUIDES** zeigen Ihnen, wie Sie ein bestimmtes Ziel erreichen können, z. B. die Feinabstimmung eines vortrainierten Modells für die Sprachmodellierung oder die Erstellung eines benutzerdefinierten Modellkopfs. +- **KONZEPTUELLE ANLEITUNGEN** bietet weitere Diskussionen und Erklärungen zu den zugrunde liegenden Konzepten und Ideen hinter Modellen, Aufgaben und der Designphilosophie von 🤗 Transformers. +- **API** beschreibt jede Klasse und Funktion, gruppiert in: + + - **MAIN CLASSES** für die Hauptklassen, die die wichtigsten APIs der Bibliothek darstellen. + - MODELLE** für die Klassen und Funktionen, die zu jedem in der Bibliothek implementierten Modell gehören. + - **INTERNAL HELPERS** für die Klassen und Funktionen, die wir intern verwenden. + +Die Bibliothek enthält derzeit JAX-, PyTorch- und TensorFlow-Implementierungen, vortrainierte Modellgewichte, Nutzungsskripte und Konvertierungsprogramme für die folgenden Modelle. + +### Unterstütze Modelle + + + +1. **[ALBERT](model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut. +1. **[ALIGN](model_doc/align)** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig. +1. **[BART](model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer. +1. **[BARThez](model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis. +1. **[BARTpho](model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen. +1. **[BEiT](model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei. +1. **[BERT](model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. +1. **[BERT For Sequence Generation](model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. +1. **[BERTweet](model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen. +1. **[BigBird-Pegasus](model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed. +1. **[BigBird-RoBERTa](model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed. +1. **[Blenderbot](model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston. +1. **[BlenderbotSmall](model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston. +1. **[BLOOM](model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/). +1. **[BORT](model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry. +1. **[ByT5](model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel. +1. **[CamemBERT](model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot. +1. **[CANINE](model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting. +1. **[CLIP](model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever. +1. **[CodeGen](model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong. +1. **[ConvBERT](model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan. +1. **[ConvNeXT](model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie. +1. **[ConvNeXTV2](model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie. +1. **[CPM](model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun. +1. **[CTRL](model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher. +1. **[CvT](model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang. +1. **[Data2Vec](model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli. +1. **[DeBERTa](model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. +1. **[DeBERTa-v2](model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. +1. **[Decision Transformer](model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch. +1. **[DeiT](model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou. +1. **[DETR](model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko. +1. **[DialoGPT](model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan. +1. **[DistilBERT](model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and a German version of DistilBERT. +1. **[DiT](model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei. +1. **[DPR](model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih. +1. **[DPT](master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun. +1. **[EfficientNet](model_doc/efficientnet)** (from Google Research) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan and Quoc V. Le. +1. **[ELECTRA](model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning. +1. **[EncoderDecoder](model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. +1. **[FlauBERT](model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab. +1. **[FLAVA](model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela. +1. **[FNet](model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon. +1. **[Funnel Transformer](model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le. +1. **[GLPN](model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim. +1. **[GPT](model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever. +1. **[GPT Neo](model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy. +1. **[GPT NeoX](model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach +1. **[GPT-2](model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**. +1. **[GPT-J](model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki. +1. **[GPTSAN-japanese](model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama). +1. **[GroupViT](model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang. +1. **[Hubert](model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed. +1. **[I-BERT](model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer. +1. **[ImageGPT](model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever. +1. **[LayoutLM](model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou. +1. **[LayoutLMv2](model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou. +1. **[LayoutLMv3](model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei. +1. **[LayoutXLM](model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei. +1. **[LED](model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan. +1. **[LeViT](model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze. +1. **[Longformer](model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan. +1. **[LongT5](model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang. +1. **[LUKE](model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto. +1. **[LXMERT](model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal. +1. **[M-CTC-T](model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert. +1. **[M2M100](model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin. +1. **[MarianMT](model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team. +1. **[Mask2Former](model_doc/mask2former)** (from FAIR and UIUC) released with the paper [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) by Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar. +1. **[MaskFormer](model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov. +1. **[mBART](model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer. +1. **[mBART-50](model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan. +1. **[Megatron-BERT](model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro. +1. **[Megatron-GPT2](model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro. +1. **[mLUKE](model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka. +1. **[MobileBERT](model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou. +1. **[MobileViT](model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari. +1. **[MPNet](model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu. +1. **[MT5](model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel. +1. **[MVP](model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. +1. **[Nezha](model_doc/nezha)** (from Huawei Noah’s Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu. +1. **[NLLB](model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team. +1. **[Nyströmformer](model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh. +1. **[OneFormer](model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi. +1. **[OPT](master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al. +1. **[OWL-ViT](model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby. +1. **[Pegasus](model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu. +1. **[Perceiver IO](model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira. +1. **[PhoBERT](model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen. +1. **[PLBart](model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang. +1. **[PoolFormer](model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng. +1. **[ProphetNet](model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou. +1. **[QDQBert](model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius. +1. **[RAG](model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela. +1. **[REALM](model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang. +1. **[Reformer](model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya. +1. **[RegNet](model_doc/regnet)** (from META Platforms) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár. +1. **[RemBERT](model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder. +1. **[ResNet](model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. +1. **[RoBERTa](model_doc/roberta)** (from Facebook), released together with the paper [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov. +1. **[RoFormer](model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu. +1. **[SegFormer](model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo. +1. **[SEW](model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi. +1. **[SEW-D](model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi. +1. **[SpeechToTextTransformer](model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino. +1. **[SpeechToTextTransformer2](model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau. +1. **[Splinter](model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy. +1. **[SqueezeBERT](model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer. +1. **[Swin Transformer](model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo. +1. **[Swin Transformer V2](model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo. +1. **[T5](model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu. +1. **[T5v1.1](model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu. +1. **[TAPAS](model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos. +1. **[TAPEX](model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou. +1. **[Trajectory Transformer](model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine +1. **[Transformer-XL](model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov. +1. **[TrOCR](model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei. +1. **[UL2](model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler +1. **[UniSpeech](model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang. +1. **[UniSpeechSat](model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu. +1. **[VAN](model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu. +1. **[VideoMAE](model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang. +1. **[ViLT](model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim. +1. **[Vision Transformer (ViT)](model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby. +1. **[VisualBERT](model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang. +1. **[ViTMAE](model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick. +1. **[Wav2Vec2](model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli. +1. **[Wav2Vec2-Conformer](model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino. +1. **[Wav2Vec2Phoneme](model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli. +1. **[WavLM](model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei. +1. **[XGLM](model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li. +1. **[XLM](model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau. +1. **[XLM-ProphetNet](model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou. +1. **[XLM-RoBERTa](model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov. +1. **[XLM-RoBERTa-XL](model_doc/xlm-roberta-xl)** (from Facebook AI), released together with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau. +1. **[XLM-V](model_doc/xlm-v)** (from Meta AI) released with the paper [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa. +1. **[XLNet](model_doc/xlnet)** (from Google/CMU) released with the paper [​XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le. +1. **[XLS-R](model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli. +1. **[XLSR-Wav2Vec2](model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli. +1. **[YOLOS](model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu. +1. **[YOSO](model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh. + + +### Unterstützte Frameworks + +Die folgende Tabelle zeigt die derzeitige Unterstützung in der Bibliothek für jedes dieser Modelle, unabhängig davon, ob sie einen Python +Tokenizer haben (als "langsam" bezeichnet), ein "schneller" Tokenizer, der von der 🤗 Tokenizers Bibliothek unterstützt wird, ob sie Unterstützung in Jax (via +Flax), PyTorch, und/oder TensorFlow haben. + + + +| Model | Tokenizer slow | Tokenizer fast | PyTorch support | TensorFlow support | Flax Support | +|:---------------------------:|:--------------:|:--------------:|:---------------:|:------------------:|:------------:| +| ALBERT | ✅ | ✅ | ✅ | ✅ | ✅ | +| BART | ✅ | ✅ | ✅ | ✅ | ✅ | +| BEiT | ❌ | ❌ | ✅ | ❌ | ✅ | +| BERT | ✅ | ✅ | ✅ | ✅ | ✅ | +| Bert Generation | ✅ | ❌ | ✅ | ❌ | ❌ | +| BigBird | ✅ | ✅ | ✅ | ❌ | ✅ | +| BigBird-Pegasus | ❌ | ❌ | ✅ | ❌ | ❌ | +| Blenderbot | ✅ | ✅ | ✅ | ✅ | ✅ | +| BlenderbotSmall | ✅ | ✅ | ✅ | ✅ | ✅ | +| BLOOM | ❌ | ✅ | ✅ | ❌ | ❌ | +| CamemBERT | ✅ | ✅ | ✅ | ✅ | ❌ | +| CANINE | ✅ | ❌ | ✅ | ❌ | ❌ | +| CLIP | ✅ | ✅ | ✅ | ✅ | ✅ | +| CodeGen | ✅ | ✅ | ✅ | ❌ | ❌ | +| ConvBERT | ✅ | ✅ | ✅ | ✅ | ❌ | +| ConvNeXT | ❌ | ❌ | ✅ | ✅ | ❌ | +| CTRL | ✅ | ❌ | ✅ | ✅ | ❌ | +| CvT | ❌ | ❌ | ✅ | ❌ | ❌ | +| Data2VecAudio | ❌ | ❌ | ✅ | ❌ | ❌ | +| Data2VecText | ❌ | ❌ | ✅ | ❌ | ❌ | +| Data2VecVision | ❌ | ❌ | ✅ | ✅ | ❌ | +| DeBERTa | ✅ | ✅ | ✅ | ✅ | ❌ | +| DeBERTa-v2 | ✅ | ✅ | ✅ | ✅ | ❌ | +| Decision Transformer | ❌ | ❌ | ✅ | ❌ | ❌ | +| DeiT | ❌ | ❌ | ✅ | ✅ | ❌ | +| DETR | ❌ | ❌ | ✅ | ❌ | ❌ | +| DistilBERT | ✅ | ✅ | ✅ | ✅ | ✅ | +| DPR | ✅ | ✅ | ✅ | ✅ | ❌ | +| DPT | ❌ | ❌ | ✅ | ❌ | ❌ | +| ELECTRA | ✅ | ✅ | ✅ | ✅ | ✅ | +| Encoder decoder | ❌ | ❌ | ✅ | ✅ | ✅ | +| FairSeq Machine-Translation | ✅ | ❌ | ✅ | ❌ | ❌ | +| FlauBERT | ✅ | ❌ | ✅ | ✅ | ❌ | +| FLAVA | ❌ | ❌ | ✅ | ❌ | ❌ | +| FNet | ✅ | ✅ | ✅ | ❌ | ❌ | +| Funnel Transformer | ✅ | ✅ | ✅ | ✅ | ❌ | +| GLPN | ❌ | ❌ | ✅ | ❌ | ❌ | +| GPT Neo | ❌ | ❌ | ✅ | ❌ | ✅ | +| GPT NeoX | ❌ | ✅ | ✅ | ❌ | ❌ | +| GPT-J | ❌ | ❌ | ✅ | ✅ | ✅ | +| GroupViT | ❌ | ❌ | ✅ | ❌ | ❌ | +| Hubert | ❌ | ❌ | ✅ | ✅ | ❌ | +| I-BERT | ❌ | ❌ | ✅ | ❌ | ❌ | +| ImageGPT | ❌ | ❌ | ✅ | ❌ | ❌ | +| LayoutLM | ✅ | ✅ | ✅ | ✅ | ❌ | +| LayoutLMv2 | ✅ | ✅ | ✅ | ❌ | ❌ | +| LayoutLMv3 | ✅ | ✅ | ✅ | ❌ | ❌ | +| LED | ✅ | ✅ | ✅ | ✅ | ❌ | +| LeViT | ❌ | ❌ | ✅ | ❌ | ❌ | +| Longformer | ✅ | ✅ | ✅ | ✅ | ❌ | +| LongT5 | ❌ | ❌ | ✅ | ❌ | ✅ | +| LUKE | ✅ | ❌ | ✅ | ❌ | ❌ | +| LXMERT | ✅ | ✅ | ✅ | ✅ | ❌ | +| M-CTC-T | ❌ | ❌ | ✅ | ❌ | ❌ | +| M2M100 | ✅ | ❌ | ✅ | ❌ | ❌ | +| Marian | ✅ | ❌ | ✅ | ✅ | ✅ | +| MaskFormer | ❌ | ❌ | ✅ | ❌ | ❌ | +| mBART | ✅ | ✅ | ✅ | ✅ | ✅ | +| Megatron-BERT | ❌ | ❌ | ✅ | ❌ | ❌ | +| MobileBERT | ✅ | ✅ | ✅ | ✅ | ❌ | +| MobileViT | ❌ | ❌ | ✅ | ❌ | ❌ | +| MPNet | ✅ | ✅ | ✅ | ✅ | ❌ | +| MT5 | ✅ | ✅ | ✅ | ✅ | ✅ | +| MVP | ✅ | ✅ | ✅ | ❌ | ❌ | +| Nezha | ❌ | ❌ | ✅ | ❌ | ❌ | +| Nyströmformer | ❌ | ❌ | ✅ | ❌ | ❌ | +| OpenAI GPT | ✅ | ✅ | ✅ | ✅ | ❌ | +| OpenAI GPT-2 | ✅ | ✅ | ✅ | ✅ | ✅ | +| OPT | ❌ | ❌ | ✅ | ✅ | ✅ | +| OWL-ViT | ❌ | ❌ | ✅ | ❌ | ❌ | +| Pegasus | ✅ | ✅ | ✅ | ✅ | ✅ | +| Perceiver | ✅ | ❌ | ✅ | ❌ | ❌ | +| PLBart | ✅ | ❌ | ✅ | ❌ | ❌ | +| PoolFormer | ❌ | ❌ | ✅ | ❌ | ❌ | +| ProphetNet | ✅ | ❌ | ✅ | ❌ | ❌ | +| QDQBert | ❌ | ❌ | ✅ | ❌ | ❌ | +| RAG | ✅ | ❌ | ✅ | ✅ | ❌ | +| REALM | ✅ | ✅ | ✅ | ❌ | ❌ | +| Reformer | ✅ | ✅ | ✅ | ❌ | ❌ | +| RegNet | ❌ | ❌ | ✅ | ✅ | ✅ | +| RemBERT | ✅ | ✅ | ✅ | ✅ | ❌ | +| ResNet | ❌ | ❌ | ✅ | ✅ | ✅ | +| RetriBERT | ✅ | ✅ | ✅ | ❌ | ❌ | +| RoBERTa | ✅ | ✅ | ✅ | ✅ | ✅ | +| RoFormer | ✅ | ✅ | ✅ | ✅ | ✅ | +| SegFormer | ❌ | ❌ | ✅ | ✅ | ❌ | +| SEW | ❌ | ❌ | ✅ | ❌ | ❌ | +| SEW-D | ❌ | ❌ | ✅ | ❌ | ❌ | +| Speech Encoder decoder | ❌ | ❌ | ✅ | ❌ | ✅ | +| Speech2Text | ✅ | ❌ | ✅ | ✅ | ❌ | +| Speech2Text2 | ✅ | ❌ | ❌ | ❌ | ❌ | +| Splinter | ✅ | ✅ | ✅ | ❌ | ❌ | +| SqueezeBERT | ✅ | ✅ | ✅ | ❌ | ❌ | +| Swin Transformer | ❌ | ❌ | ✅ | ✅ | ❌ | +| Swin Transformer V2 | ❌ | ❌ | ✅ | ❌ | ❌ | +| T5 | ✅ | ✅ | ✅ | ✅ | ✅ | +| TAPAS | ✅ | ❌ | ✅ | ✅ | ❌ | +| Trajectory Transformer | ❌ | ❌ | ✅ | ❌ | ❌ | +| Transformer-XL | ✅ | ❌ | ✅ | ✅ | ❌ | +| TrOCR | ❌ | ❌ | ✅ | ❌ | ❌ | +| UniSpeech | ❌ | ❌ | ✅ | ❌ | ❌ | +| UniSpeechSat | ❌ | ❌ | ✅ | ❌ | ❌ | +| VAN | ❌ | ❌ | ✅ | ❌ | ❌ | +| VideoMAE | ❌ | ❌ | ✅ | ❌ | ❌ | +| ViLT | ❌ | ❌ | ✅ | ❌ | ❌ | +| Vision Encoder decoder | ❌ | ❌ | ✅ | ✅ | ✅ | +| VisionTextDualEncoder | ❌ | ❌ | ✅ | ❌ | ✅ | +| VisualBERT | ❌ | ❌ | ✅ | ❌ | ❌ | +| ViT | ❌ | ❌ | ✅ | ✅ | ✅ | +| ViTMAE | ❌ | ❌ | ✅ | ✅ | ❌ | +| Wav2Vec2 | ✅ | ❌ | ✅ | ✅ | ✅ | +| Wav2Vec2-Conformer | ❌ | ❌ | ✅ | ❌ | ❌ | +| WavLM | ❌ | ❌ | ✅ | ❌ | ❌ | +| XGLM | ✅ | ✅ | ✅ | ❌ | ✅ | +| XLM | ✅ | ❌ | ✅ | ✅ | ❌ | +| XLM-ProphetNet | ✅ | ❌ | ✅ | ❌ | ❌ | +| XLM-RoBERTa | ✅ | ✅ | ✅ | ✅ | ✅ | +| XLM-RoBERTa-XL | ❌ | ❌ | ✅ | ❌ | ❌ | +| XLNet | ✅ | ✅ | ✅ | ✅ | ❌ | +| YOLOS | ❌ | ❌ | ✅ | ❌ | ❌ | +| YOSO | ❌ | ❌ | ✅ | ❌ | ❌ | + + diff --git a/OPERA/transformers-4.29.2/docs/source/de/installation.mdx b/OPERA/transformers-4.29.2/docs/source/de/installation.mdx new file mode 100644 index 0000000000000000000000000000000000000000..3103830ee7fd8a3c7da607b15484110005232fb4 --- /dev/null +++ b/OPERA/transformers-4.29.2/docs/source/de/installation.mdx @@ -0,0 +1,246 @@ + + +# Installation + +Installieren Sie 🤗 Transformers für die Deep-Learning-Bibliothek, mit der Sie arbeiten, richten Sie Ihren Cache ein und konfigurieren Sie 🤗 Transformers optional für den Offline-Betrieb. + +🤗 Transformers wurde unter Python 3.6+, PyTorch 1.1.0+, TensorFlow 2.0+, und Flax getestet. Folgen Sie den Installationsanweisungen unten für die von Ihnen verwendete Deep-Learning-Bibliothek: + +* [PyTorch](https://pytorch.org/get-started/locally/) installation instructions. +* [TensorFlow 2.0](https://www.tensorflow.org/install/pip) installation instructions. +* [Flax](https://flax.readthedocs.io/en/latest/) installation instructions. + +## Installation mit pip + +Sie sollten 🤗 Transformers in einer [virtuellen Umgebung](https://docs.python.org/3/library/venv.html) installieren. Wenn Sie mit virtuellen Python-Umgebungen nicht vertraut sind, werfen Sie einen Blick auf diese [Anleitung](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/). Eine virtuelle Umgebung macht es einfacher, verschiedene Projekte zu verwalten und Kompatibilitätsprobleme zwischen Abhängigkeiten zu vermeiden. + +Beginnen wir mit der Erstellung einer virtuellen Umgebung in Ihrem Projektverzeichnis: + + +```bash +python -m venv .env +``` + +Aktivieren wir die virtuelle Umgebung. Unter Linux und MacOs: + +```bash +source .env/bin/activate +``` +Aktivieren wir die virtuelle Umgebung unter Windows + +```bash +.env/Scripts/activate +``` + +Jetzt können wir die 🤗 Transformers mit dem folgenden Befehl installieren: + +```bash +pip install transformers +``` + +Bei reiner CPU-Unterstützung können wir 🤗 Transformers und eine Deep-Learning-Bibliothek bequem in einer Zeile installieren. Installieren wir zum Beispiel 🤗 Transformers und PyTorch mit: + +```bash +pip install transformers[torch] +``` + +🤗 Transformers und TensorFlow 2.0: + +```bash +pip install transformers[tf-cpu] +``` + +🤗 Transformers und Flax: + +```bash +pip install transformers[flax] +``` + +Überprüfen wir abschließend, ob 🤗 Transformers ordnungsgemäß installiert wurde, indem wir den folgenden Befehl ausführen. Es wird ein vortrainiertes Modell heruntergeladen: + +```bash +python -c "from transformers import pipeline; print(pipeline('sentiment-analysis')('we love you'))" +``` + +Dann wird die Kategorie und die Wahrscheinlichkeit ausgegeben: + +```bash +[{'label': 'POSITIVE', 'score': 0.9998704791069031}] +``` + +## Installation aus dem Code + +Installieren wir 🤗 Transformers aus dem Quellcode mit dem folgenden Befehl: + +```bash +pip install git+https://github.com/huggingface/transformers +``` + +Dieser Befehl installiert die aktuelle `main` Version und nicht die neueste `stable` Version. Die `main`-Version ist nützlich, um mit den neuesten Entwicklungen Schritt zu halten. Zum Beispiel, wenn ein Fehler seit der letzten offiziellen Version behoben wurde, aber eine neue Version noch nicht veröffentlicht wurde. Das bedeutet jedoch, dass die "Hauptversion" nicht immer stabil ist. Wir bemühen uns, die Hauptversion einsatzbereit zu halten, und die meisten Probleme werden normalerweise innerhalb weniger Stunden oder eines Tages behoben. Wenn Sie auf ein Problem stoßen, öffnen Sie bitte ein [Issue] (https://github.com/huggingface/transformers/issues), damit wir es noch schneller beheben können! + +Überprüfen wir, ob 🤗 Transformers richtig installiert wurde, indem Sie den folgenden Befehl ausführen: + + +```bash +python -c "from transformers import pipeline; print(pipeline('sentiment-analysis')('I love you'))" +``` + +## Editierbare Installation + +Sie benötigen eine bearbeitbare Installation, wenn Sie: + +* die "Haupt"-Version des Quellcodes verwenden möchten. +* Zu 🤗 Transformers beitragen und Änderungen am Code testen wollen. + +Klonen Sie das Repository und installieren 🤗 Transformers mit den folgenden Befehlen: + +```bash +git clone https://github.com/huggingface/transformers.git +cd transformers +pip install -e . +``` + +Diese Befehle verknüpfen den Ordner, in den Sie das Repository geklont haben, mit den Pfaden Ihrer Python-Bibliotheken. Python wird nun in dem Ordner suchen, in den Sie geklont haben, zusätzlich zu den normalen Bibliothekspfaden. Wenn zum Beispiel Ihre Python-Pakete normalerweise in `~/anaconda3/envs/main/lib/python3.7/site-packages/` installiert sind, wird Python auch den Ordner durchsuchen, in den Sie geklont haben: `~/transformers/`. + + + + +Sie müssen den Ordner `transformers` behalten, wenn Sie die Bibliothek weiter verwenden wollen. + + + +Jetzt können Sie Ihren Klon mit dem folgenden Befehl ganz einfach auf die neueste Version von 🤗 Transformers aktualisieren: + + +```bash +cd ~/transformers/ +git pull +``` + +Ihre Python-Umgebung wird beim nächsten Ausführen die `main`-Version von 🤗 Transformers finden. + +## Installation mit conda + +Installation von dem conda Kanal `huggingface`: + +```bash +conda install -c huggingface transformers +``` + +## Cache Einrichtung + +Vorgefertigte Modelle werden heruntergeladen und lokal zwischengespeichert unter: `~/.cache/huggingface/hub`. Dies ist das Standardverzeichnis, das durch die Shell-Umgebungsvariable "TRANSFORMERS_CACHE" vorgegeben ist. Unter Windows wird das Standardverzeichnis durch `C:\Benutzer\Benutzername\.cache\huggingface\hub` angegeben. Sie können die unten aufgeführten Shell-Umgebungsvariablen - in der Reihenfolge ihrer Priorität - ändern, um ein anderes Cache-Verzeichnis anzugeben: + +1. Shell-Umgebungsvariable (Standard): `HUGGINGFACE_HUB_CACHE` oder `TRANSFORMERS_CACHE`. +2. Shell-Umgebungsvariable: `HF_HOME`. +3. Shell-Umgebungsvariable: `XDG_CACHE_HOME` + `/huggingface`. + + + + +Transformers verwendet die Shell-Umgebungsvariablen `PYTORCH_TRANSFORMERS_CACHE` oder `PYTORCH_PRETRAINED_BERT_CACHE`, wenn Sie von einer früheren Iteration dieser Bibliothek kommen und diese Umgebungsvariablen gesetzt haben, sofern Sie nicht die Shell-Umgebungsvariable `TRANSFORMERS_CACHE` angeben. + + + +## Offline Modus + +Transformers ist in der Lage, in einer Firewall- oder Offline-Umgebung zu laufen, indem es nur lokale Dateien verwendet. Setzen Sie die Umgebungsvariable `TRANSFORMERS_OFFLINE=1`, um dieses Verhalten zu aktivieren. + + + +Fügen sie [🤗 Datasets](https://huggingface.co/docs/datasets/) zu Ihrem Offline-Trainingsworkflow hinzufügen, indem Sie die Umgebungsvariable `HF_DATASETS_OFFLINE=1` setzen. + + + +So würden Sie beispielsweise ein Programm in einem normalen Netzwerk mit einer Firewall für externe Instanzen mit dem folgenden Befehl ausführen: + +```bash +python examples/pytorch/translation/run_translation.py --model_name_or_path t5-small --dataset_name wmt16 --dataset_config ro-en ... +``` + +Führen Sie das gleiche Programm in einer Offline-Instanz mit aus: + +```bash +HF_DATASETS_OFFLINE=1 TRANSFORMERS_OFFLINE=1 \ +python examples/pytorch/translation/run_translation.py --model_name_or_path t5-small --dataset_name wmt16 --dataset_config ro-en ... +``` + +Das Skript sollte nun laufen, ohne sich aufzuhängen oder eine Zeitüberschreitung abzuwarten, da es weiß, dass es nur nach lokalen Dateien suchen soll. + + +### Abrufen von Modellen und Tokenizern zur Offline-Verwendung + +Eine andere Möglichkeit, 🤗 Transformers offline zu verwenden, besteht darin, die Dateien im Voraus herunterzuladen und dann auf ihren lokalen Pfad zu verweisen, wenn Sie sie offline verwenden müssen. Es gibt drei Möglichkeiten, dies zu tun: + +* Laden Sie eine Datei über die Benutzeroberfläche des [Model Hub](https://huggingface.co/models) herunter, indem Sie auf das ↓-Symbol klicken. + + ![download-icon](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/download-icon.png) + +* Verwenden Sie den [PreTrainedModel.from_pretrained] und [PreTrainedModel.save_pretrained] Workflow: + + 1. Laden Sie Ihre Dateien im Voraus mit [`PreTrainedModel.from_pretrained`] herunter: + + ```py + >>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM + + >>> tokenizer = AutoTokenizer.from_pretrained("bigscience/T0_3B") + >>> model = AutoModelForSeq2SeqLM.from_pretrained("bigscience/T0_3B") + ``` + + 2. Speichern Sie Ihre Dateien in einem bestimmten Verzeichnis mit [`PreTrainedModel.save_pretrained`]: + + ```py + >>> tokenizer.save_pretrained("./your/path/bigscience_t0") + >>> model.save_pretrained("./your/path/bigscience_t0") + ``` + + 3. Wenn Sie nun offline sind, laden Sie Ihre Dateien mit [`PreTrainedModel.from_pretrained`] aus dem bestimmten Verzeichnis: + + ```py + >>> tokenizer = AutoTokenizer.from_pretrained("./your/path/bigscience_t0") + >>> model = AutoModel.from_pretrained("./your/path/bigscience_t0") + ``` + +* Programmatisches Herunterladen von Dateien mit der [huggingface_hub](https://github.com/huggingface/huggingface_hub/tree/main/src/huggingface_hub) Bibliothek: + + 1. Installieren Sie die "huggingface_hub"-Bibliothek in Ihrer virtuellen Umgebung: + + ```bash + python -m pip install huggingface_hub + ``` + + 2. Verwenden Sie die Funktion [`hf_hub_download`](https://huggingface.co/docs/hub/adding-a-library#download-files-from-the-hub), um eine Datei in einen bestimmten Pfad herunterzuladen. Der folgende Befehl lädt zum Beispiel die Datei "config.json" aus dem Modell [T0](https://huggingface.co/bigscience/T0_3B) in den gewünschten Pfad herunter: + + ```py + >>> from huggingface_hub import hf_hub_download + + >>> hf_hub_download(repo_id="bigscience/T0_3B", filename="config.json", cache_dir="./your/path/bigscience_t0") + ``` + +Sobald Ihre Datei heruntergeladen und lokal zwischengespeichert ist, geben Sie den lokalen Pfad an, um sie zu laden und zu verwenden: + +```py +>>> from transformers import AutoConfig + +>>> config = AutoConfig.from_pretrained("./your/path/bigscience_t0/config.json") +``` + + + +Weitere Informationen zum Herunterladen von Dateien, die auf dem Hub gespeichert sind, finden Sie im Abschnitt [Wie man Dateien vom Hub herunterlädt] (https://huggingface.co/docs/hub/how-to-downstream). + + diff --git a/OPERA/transformers-4.29.2/docs/source/de/model_sharing.mdx b/OPERA/transformers-4.29.2/docs/source/de/model_sharing.mdx new file mode 100644 index 0000000000000000000000000000000000000000..42b09d40d70ade95fc15fcd04cdf47689fc6dab7 --- /dev/null +++ b/OPERA/transformers-4.29.2/docs/source/de/model_sharing.mdx @@ -0,0 +1,228 @@ + + +# Ein Modell teilen + +Die letzten beiden Tutorials haben gezeigt, wie man ein Modell mit PyTorch, Keras und 🤗 Accelerate für verteilte Setups feinabstimmen kann. Der nächste Schritt besteht darin, Ihr Modell mit der Community zu teilen! Bei Hugging Face glauben wir an den offenen Austausch von Wissen und Ressourcen, um künstliche Intelligenz für alle zu demokratisieren. Wir ermutigen Sie, Ihr Modell mit der Community zu teilen, um anderen zu helfen, Zeit und Ressourcen zu sparen. + +In diesem Tutorial lernen Sie zwei Methoden kennen, wie Sie ein trainiertes oder verfeinertes Modell auf dem [Model Hub](https://huggingface.co/models) teilen können: + +- Programmgesteuertes Übertragen Ihrer Dateien auf den Hub. +- Ziehen Sie Ihre Dateien per Drag-and-Drop über die Weboberfläche in den Hub. + + + + + +Um ein Modell mit der Öffentlichkeit zu teilen, benötigen Sie ein Konto auf [huggingface.co](https://huggingface.co/join). Sie können auch einer bestehenden Organisation beitreten oder eine neue Organisation gründen. + + + +## Repository-Funktionen + +Jedes Repository im Model Hub verhält sich wie ein typisches GitHub-Repository. Unsere Repositorys bieten Versionierung, Commit-Historie und die Möglichkeit, Unterschiede zu visualisieren. + +Die integrierte Versionierung des Model Hub basiert auf Git und [git-lfs](https://git-lfs.github.com/). Mit anderen Worten: Sie können ein Modell als ein Repository behandeln, was eine bessere Zugriffskontrolle und Skalierbarkeit ermöglicht. Die Versionskontrolle ermöglicht *Revisionen*, eine Methode zum Anheften einer bestimmten Version eines Modells mit einem Commit-Hash, Tag oder Branch. + +Folglich können Sie eine bestimmte Modellversion mit dem Parameter "Revision" laden: + +```py +>>> model = AutoModel.from_pretrained( +... "julien-c/EsperBERTo-small", revision="v2.0.1" # tag name, or branch name, or commit hash +... ) +``` + +Dateien lassen sich auch in einem Repository leicht bearbeiten, und Sie können die Commit-Historie sowie die Unterschiede einsehen: + +![vis_diff](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/vis_diff.png) + +## Einrichtung + +Bevor Sie ein Modell für den Hub freigeben, benötigen Sie Ihre Hugging Face-Anmeldedaten. Wenn Sie Zugang zu einem Terminal haben, führen Sie den folgenden Befehl in der virtuellen Umgebung aus, in der 🤗 Transformers installiert ist. Dadurch werden Ihre Zugangsdaten in Ihrem Hugging Face-Cache-Ordner (standardmäßig `~/.cache/`) gespeichert: + +```bash +huggingface-cli login +``` + +Wenn Sie ein Notebook wie Jupyter oder Colaboratory verwenden, stellen Sie sicher, dass Sie die [`huggingface_hub`](https://huggingface.co/docs/hub/adding-a-library) Bibliothek installiert haben. Diese Bibliothek ermöglicht Ihnen die programmatische Interaktion mit dem Hub. + +```bash +pip install huggingface_hub +``` + +Verwenden Sie dann `notebook_login`, um sich beim Hub anzumelden, und folgen Sie dem Link [hier](https://huggingface.co/settings/token), um ein Token für die Anmeldung zu generieren: + +```py +>>> from huggingface_hub import notebook_login + +>>> notebook_login() +``` + +## Ein Modell für alle Frameworks konvertieren + +Um sicherzustellen, dass Ihr Modell von jemandem verwendet werden kann, der mit einem anderen Framework arbeitet, empfehlen wir Ihnen, Ihr Modell sowohl mit PyTorch- als auch mit TensorFlow-Checkpoints zu konvertieren und hochzuladen. Während Benutzer immer noch in der Lage sind, Ihr Modell von einem anderen Framework zu laden, wenn Sie diesen Schritt überspringen, wird es langsamer sein, weil 🤗 Transformers den Checkpoint on-the-fly konvertieren müssen. + +Die Konvertierung eines Checkpoints für ein anderes Framework ist einfach. Stellen Sie sicher, dass Sie PyTorch und TensorFlow installiert haben (siehe [hier](installation) für Installationsanweisungen), und finden Sie dann das spezifische Modell für Ihre Aufgabe in dem anderen Framework. + + + +Geben Sie `from_tf=True` an, um einen Prüfpunkt von TensorFlow nach PyTorch zu konvertieren: + +```py +>>> pt_model = DistilBertForSequenceClassification.from_pretrained("path/to/awesome-name-you-picked", from_tf=True) +>>> pt_model.save_pretrained("path/to/awesome-name-you-picked") +``` + + +Geben Sie `from_pt=True` an, um einen Prüfpunkt von PyTorch nach TensorFlow zu konvertieren: + +```py +>>> tf_model = TFDistilBertForSequenceClassification.from_pretrained("path/to/awesome-name-you-picked", from_pt=True) +``` + +Dann können Sie Ihr neues TensorFlow-Modell mit seinem neuen Checkpoint speichern: + +```py +>>> tf_model.save_pretrained("path/to/awesome-name-you-picked") +``` + + +Wenn ein Modell in Flax verfügbar ist, können Sie auch einen Kontrollpunkt von PyTorch nach Flax konvertieren: + +```py +>>> flax_model = FlaxDistilBertForSequenceClassification.from_pretrained( +... "path/to/awesome-name-you-picked", from_pt=True +... ) +``` + + + +## Ein Modell während des Trainings hochladen + + + + + +Die Weitergabe eines Modells an den Hub ist so einfach wie das Hinzufügen eines zusätzlichen Parameters oder Rückrufs. Erinnern Sie sich an das [Feinabstimmungs-Tutorial](training), in der Klasse [`TrainingArguments`] geben Sie Hyperparameter und zusätzliche Trainingsoptionen an. Eine dieser Trainingsoptionen beinhaltet die Möglichkeit, ein Modell direkt an den Hub zu pushen. Setzen Sie `push_to_hub=True` in Ihrer [`TrainingArguments`]: + +```py +>>> training_args = TrainingArguments(output_dir="my-awesome-model", push_to_hub=True) +``` + +Übergeben Sie Ihre Trainingsargumente wie gewohnt an [`Trainer`]: + +```py +>>> trainer = Trainer( +... model=model, +... args=training_args, +... train_dataset=small_train_dataset, +... eval_dataset=small_eval_dataset, +... compute_metrics=compute_metrics, +... ) +``` + +Nach der Feinabstimmung Ihres Modells rufen Sie [`~transformers.Trainer.push_to_hub`] auf [`Trainer`] auf, um das trainierte Modell an den Hub zu übertragen. Transformers fügt sogar automatisch Trainings-Hyperparameter, Trainingsergebnisse und Framework-Versionen zu Ihrer Modellkarte hinzu! + +```py +>>> trainer.push_to_hub() +``` + + +Geben Sie ein Modell mit [`PushToHubCallback`] an den Hub weiter. In der [`PushToHubCallback`] Funktion, fügen Sie hinzu: + +- Ein Ausgabeverzeichnis für Ihr Modell. +- Einen Tokenizer. +- Die `hub_model_id`, die Ihr Hub-Benutzername und Modellname ist. + +```py +>>> from transformers import PushToHubCallback + +>>> push_to_hub_callback = PushToHubCallback( +... output_dir="./your_model_save_path", tokenizer=tokenizer, hub_model_id="your-username/my-awesome-model" +... ) +``` + +Fügen Sie den Callback zu [`fit`](https://keras.io/api/models/model_training_apis/) hinzu, und 🤗 Transformers wird das trainierte Modell an den Hub weiterleiten: + +```py +>>> model.fit(tf_train_dataset, validation_data=tf_validation_dataset, epochs=3, callbacks=push_to_hub_callback) +``` + + + +## Verwenden Sie die Funktion `push_to_hub`. + +Sie können `push_to_hub` auch direkt für Ihr Modell aufrufen, um es in den Hub hochzuladen. + +Geben Sie den Namen Ihres Modells in "push_to_hub" an: + +```py +>>> pt_model.push_to_hub("my-awesome-model") +``` + +Dadurch wird ein Repository unter Ihrem Benutzernamen mit dem Modellnamen `my-awesome-model` erstellt. Benutzer können nun Ihr Modell mit der Funktion `from_pretrained` laden: + +```py +>>> from transformers import AutoModel + +>>> model = AutoModel.from_pretrained("your_username/my-awesome-model") +``` + +Wenn Sie zu einer Organisation gehören und Ihr Modell stattdessen unter dem Namen der Organisation pushen wollen, fügen Sie diesen einfach zur `repo_id` hinzu: + +```py +>>> pt_model.push_to_hub("my-awesome-org/my-awesome-model") +``` + +Die Funktion "push_to_hub" kann auch verwendet werden, um andere Dateien zu einem Modell-Repository hinzuzufügen. Zum Beispiel kann man einen Tokenizer zu einem Modell-Repository hinzufügen: + +```py +>>> tokenizer.push_to_hub("my-awesome-model") +``` + +Oder vielleicht möchten Sie die TensorFlow-Version Ihres fein abgestimmten PyTorch-Modells hinzufügen: + +```py +>>> tf_model.push_to_hub("my-awesome-model") +``` + +Wenn Sie nun zu Ihrem Hugging Face-Profil navigieren, sollten Sie Ihr neu erstelltes Modell-Repository sehen. Wenn Sie auf die Registerkarte **Dateien** klicken, werden alle Dateien angezeigt, die Sie in das Repository hochgeladen haben. + +Weitere Einzelheiten zum Erstellen und Hochladen von Dateien in ein Repository finden Sie in der Hub-Dokumentation [hier](https://huggingface.co/docs/hub/how-to-upstream). + +## Hochladen mit der Weboberfläche + +Benutzer, die einen no-code Ansatz bevorzugen, können ein Modell über das Webinterface des Hubs hochladen. Besuchen Sie [huggingface.co/new](https://huggingface.co/new) um ein neues Repository zu erstellen: + +![new_model_repo](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/new_model_repo.png) + +Fügen Sie von hier aus einige Informationen über Ihr Modell hinzu: + +- Wählen Sie den **Besitzer** des Repositorys. Dies können Sie selbst oder eine der Organisationen sein, denen Sie angehören. +- Wählen Sie einen Namen für Ihr Modell, der auch der Name des Repositorys sein wird. +- Wählen Sie, ob Ihr Modell öffentlich oder privat ist. +- Geben Sie die Lizenzverwendung für Ihr Modell an. + +Klicken Sie nun auf die Registerkarte **Dateien** und klicken Sie auf die Schaltfläche **Datei hinzufügen**, um eine neue Datei in Ihr Repository hochzuladen. Ziehen Sie dann eine Datei per Drag-and-Drop hoch und fügen Sie eine Übergabemeldung hinzu. + +![upload_file](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/upload_file.png) + +## Hinzufügen einer Modellkarte + +Um sicherzustellen, dass die Benutzer die Fähigkeiten, Grenzen, möglichen Verzerrungen und ethischen Aspekte Ihres Modells verstehen, fügen Sie bitte eine Modellkarte zu Ihrem Repository hinzu. Die Modellkarte wird in der Datei `README.md` definiert. Sie können eine Modellkarte hinzufügen, indem Sie: + +* Manuelles Erstellen und Hochladen einer "README.md"-Datei. +* Klicken Sie auf die Schaltfläche **Modellkarte bearbeiten** in Ihrem Modell-Repository. + +Werfen Sie einen Blick auf die DistilBert [model card](https://huggingface.co/distilbert-base-uncased) als gutes Beispiel für die Art von Informationen, die eine Modellkarte enthalten sollte. Weitere Details über andere Optionen, die Sie in der Datei "README.md" einstellen können, wie z.B. den Kohlenstoff-Fußabdruck eines Modells oder Beispiele für Widgets, finden Sie in der Dokumentation [hier](https://huggingface.co/docs/hub/models-cards). \ No newline at end of file diff --git a/OPERA/transformers-4.29.2/docs/source/de/pipeline_tutorial.mdx b/OPERA/transformers-4.29.2/docs/source/de/pipeline_tutorial.mdx new file mode 100644 index 0000000000000000000000000000000000000000..19c37c35dea1ec27aa64ad9671026f93848f4673 --- /dev/null +++ b/OPERA/transformers-4.29.2/docs/source/de/pipeline_tutorial.mdx @@ -0,0 +1,171 @@ + + +# Pipelines für Inferenzen + +Die [`pipeline`] macht es einfach, jedes beliebige Modell aus dem [Hub](https://huggingface.co/models) für die Inferenz auf jede Sprache, Computer Vision, Sprache und multimodale Aufgaben zu verwenden. Selbst wenn Sie keine Erfahrung mit einer bestimmten Modalität haben oder nicht mit dem zugrundeliegenden Code hinter den Modellen vertraut sind, können Sie sie mit der [`pipeline`] für Inferenzen verwenden! In diesem Beispiel lernen Sie, wie: + +* Eine [`pipeline`] für Inferenz zu verwenden. +* Einen bestimmten Tokenizer oder ein bestimmtes Modell zu verwenden. +* Eine [`pipeline`] für Audio-, Vision- und multimodale Aufgaben zu verwenden. + + + +Eine vollständige Liste der unterstützten Aufgaben und verfügbaren Parameter finden Sie in der [`pipeline`]-Dokumentation. + + + +## Verwendung von Pipelines + +Obwohl jede Aufgabe eine zugehörige [`pipeline`] hat, ist es einfacher, die allgemeine [`pipeline`]-Abstraktion zu verwenden, die alle aufgabenspezifischen Pipelines enthält. Die [`pipeline`] lädt automatisch ein Standardmodell und eine Vorverarbeitungsklasse, die für Ihre Aufgabe inferenzfähig ist. + +1. Beginnen Sie mit der Erstellung einer [`pipeline`] und geben Sie eine Inferenzaufgabe an: + +```py +>>> from transformers import pipeline + +>>> generator = pipeline(task="text-generation") +``` + +2. Übergeben Sie Ihren Eingabetext an die [`pipeline`]: + +```py +>>> generator( +... "Three Rings for the Elven-kings under the sky, Seven for the Dwarf-lords in their halls of stone" +... ) # doctest: +SKIP +[{'generated_text': 'Three Rings for the Elven-kings under the sky, Seven for the Dwarf-lords in their halls of stone, Seven for the Iron-priests at the door to the east, and thirteen for the Lord Kings at the end of the mountain'}] +``` + +Wenn Sie mehr als eine Eingabe haben, übergeben Sie die Eingabe als Liste: + +```py +>>> generator( +... [ +... "Three Rings for the Elven-kings under the sky, Seven for the Dwarf-lords in their halls of stone", +... "Nine for Mortal Men, doomed to die, One for the Dark Lord on his dark throne", +... ] +... ) # doctest: +SKIP +``` + +Alle zusätzlichen Parameter für Ihre Aufgabe können auch in die [`pipeline`] aufgenommen werden. Die Aufgabe `Text-Generierung` hat eine [`~generation.GenerationMixin.generate`]-Methode mit mehreren Parametern zur Steuerung der Ausgabe. Wenn Sie zum Beispiel mehr als eine Ausgabe erzeugen wollen, setzen Sie den Parameter `num_return_sequences`: + +```py +>>> generator( +... "Three Rings for the Elven-kings under the sky, Seven for the Dwarf-lords in their halls of stone", +... num_return_sequences=2, +... ) # doctest: +SKIP +``` + +### Wählen Sie ein Modell und einen Tokenizer + +Die [`pipeline`] akzeptiert jedes Modell aus dem [Hub] (https://huggingface.co/models). Auf dem Hub gibt es Tags, mit denen Sie nach einem Modell filtern können, das Sie für Ihre Aufgabe verwenden möchten. Sobald Sie ein passendes Modell ausgewählt haben, laden Sie es mit der entsprechenden `AutoModelFor` und [`AutoTokenizer`] Klasse. Laden Sie zum Beispiel die Klasse [`AutoModelForCausalLM`] für eine kausale Sprachmodellierungsaufgabe: + +```py +>>> from transformers import AutoTokenizer, AutoModelForCausalLM + +>>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2") +>>> model = AutoModelForCausalLM.from_pretrained("distilgpt2") +``` + +Erstellen Sie eine [`pipeline`] für Ihre Aufgabe, und geben Sie das Modell und den Tokenizer an, die Sie geladen haben: + +```py +>>> from transformers import pipeline + +>>> generator = pipeline(task="text-generation", model=model, tokenizer=tokenizer) +``` + +Übergeben Sie Ihren Eingabetext an die [`pipeline`] , um einen Text zu erzeugen: + +```py +>>> generator( +... "Three Rings for the Elven-kings under the sky, Seven for the Dwarf-lords in their halls of stone" +... ) # doctest: +SKIP +[{'generated_text': 'Three Rings for the Elven-kings under the sky, Seven for the Dwarf-lords in their halls of stone, Seven for the Dragon-lords (for them to rule in a world ruled by their rulers, and all who live within the realm'}] +``` + +## Audio-Pipeline + +Die [`pipeline`] unterstützt auch Audioaufgaben wie Audioklassifizierung und automatische Spracherkennung. + +Lassen Sie uns zum Beispiel die Emotion in diesem Audioclip klassifizieren: + +```py +>>> from datasets import load_dataset +>>> import torch + +>>> torch.manual_seed(42) # doctest: +IGNORE_RESULT +>>> ds = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") +>>> audio_file = ds[0]["audio"]["path"] +``` + +Finden Sie ein [Audioklassifikation](https://huggingface.co/models?pipeline_tag=audio-classification) Modell auf dem Model Hub für Emotionserkennung und laden Sie es in die [`pipeline`]: + +```py +>>> from transformers import pipeline + +>>> audio_classifier = pipeline( +... task="audio-classification", model="ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition" +... ) +``` + +Übergeben Sie die Audiodatei an die [`pipeline`]: + +```py +>>> preds = audio_classifier(audio_file) +>>> preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds] +>>> preds +[{'score': 0.1315, 'label': 'calm'}, {'score': 0.1307, 'label': 'neutral'}, {'score': 0.1274, 'label': 'sad'}, {'score': 0.1261, 'label': 'fearful'}, {'score': 0.1242, 'label': 'happy'}] +``` + +## Bildverarbeitungs-Pipeline + +Die Verwendung einer [`pipeline`] für Bildverarbeitungsaufgaben ist praktisch identisch. + +Geben Sie Ihre Aufgabe an und übergeben Sie Ihr Bild an den Klassifikator. Das Bild kann ein Link oder ein lokaler Pfad zu dem Bild sein. Zum Beispiel: Welche Katzenart ist unten abgebildet? + +![pipeline-cat-chonk](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg) + +```py +>>> from transformers import pipeline + +>>> vision_classifier = pipeline(task="image-classification") +>>> preds = vision_classifier( +... images="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg" +... ) +>>> preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds] +>>> preds +[{'score': 0.4335, 'label': 'lynx, catamount'}, {'score': 0.0348, 'label': 'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor'}, {'score': 0.0324, 'label': 'snow leopard, ounce, Panthera uncia'}, {'score': 0.0239, 'label': 'Egyptian cat'}, {'score': 0.0229, 'label': 'tiger cat'}] +``` + +## Multimodale Pipeline + +Die [`pipeline`] unterstützt mehr als eine Modalität. Eine Aufgabe zur Beantwortung visueller Fragen (VQA) kombiniert zum Beispiel Text und Bild. Verwenden Sie einen beliebigen Bildlink und eine Frage, die Sie zu dem Bild stellen möchten. Das Bild kann eine URL oder ein lokaler Pfad zu dem Bild sein. + +Wenn Sie zum Beispiel das gleiche Bild wie in der obigen Vision-Pipeline verwenden: + +```py +>>> image = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg" +>>> question = "Where is the cat?" +``` + +Erstellen Sie eine Pipeline für "vqa" und übergeben Sie ihr das Bild und die Frage: + +```py +>>> from transformers import pipeline + +>>> vqa = pipeline(task="vqa") +>>> preds = vqa(image=image, question=question) +>>> preds = [{"score": round(pred["score"], 4), "answer": pred["answer"]} for pred in preds] +>>> preds +[{'score': 0.9112, 'answer': 'snow'}, {'score': 0.8796, 'answer': 'in snow'}, {'score': 0.6717, 'answer': 'outside'}, {'score': 0.0291, 'answer': 'on ground'}, {'score': 0.027, 'answer': 'ground'}] +``` diff --git a/OPERA/transformers-4.29.2/docs/source/de/preprocessing.mdx b/OPERA/transformers-4.29.2/docs/source/de/preprocessing.mdx new file mode 100644 index 0000000000000000000000000000000000000000..ea6c185cc1015551f85002c01d2c73e1e91c0f67 --- /dev/null +++ b/OPERA/transformers-4.29.2/docs/source/de/preprocessing.mdx @@ -0,0 +1,502 @@ + + +# Vorverarbeiten + +[[open-in-colab]] + +Bevor Sie Ihre Daten in einem Modell verwenden können, müssen die Daten in ein für das Modell akzeptables Format gebracht werden. Ein Modell versteht keine Rohtexte, Bilder oder Audiodaten. Diese Eingaben müssen in Zahlen umgewandelt und zu Tensoren zusammengesetzt werden. In dieser Anleitung werden Sie: + +* Textdaten mit einem Tokenizer vorverarbeiten. +* Bild- oder Audiodaten mit einem Feature Extractor vorverarbeiten. +* Daten für eine multimodale Aufgabe mit einem Prozessor vorverarbeiten. + +## NLP + + + +Das wichtigste Werkzeug zur Verarbeitung von Textdaten ist ein [Tokenizer](main_classes/tokenizer). Ein Tokenizer zerlegt Text zunächst nach einer Reihe von Regeln in *Token*. Die Token werden in Zahlen umgewandelt, die zum Aufbau von Tensoren als Eingabe für ein Modell verwendet werden. Alle zusätzlichen Eingaben, die ein Modell benötigt, werden ebenfalls vom Tokenizer hinzugefügt. + + + +Wenn Sie ein vortrainiertes Modell verwenden möchten, ist es wichtig, den zugehörigen vortrainierten Tokenizer zu verwenden. Dadurch wird sichergestellt, dass der Text auf die gleiche Weise aufgeteilt wird wie das Pretraining-Korpus und die gleichen entsprechenden Token-zu-Index (in der Regel als *vocab* bezeichnet) während des Pretrainings verwendet werden. + + + +Laden Sie einen vortrainierten Tokenizer mit der Klasse [AutoTokenizer], um schnell loszulegen. Damit wird das *vocab* heruntergeladen, das verwendet wird, wenn ein Modell vortrainiert wird. + +### Tokenize + +Laden Sie einen vortrainierten Tokenizer mit [`AutoTokenizer.from_pretrained`]: + +```py +>>> from transformers import AutoTokenizer + +>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") +``` + +Dann übergeben Sie Ihren Satz an den Tokenizer: + +```py +>>> encoded_input = tokenizer("Do not meddle in the affairs of wizards, for they are subtle and quick to anger.") +>>> print(encoded_input) +{'input_ids': [101, 2079, 2025, 19960, 10362, 1999, 1996, 3821, 1997, 16657, 1010, 2005, 2027, 2024, 11259, 1998, 4248, 2000, 4963, 1012, 102], + 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]} +``` + +Der Tokenizer gibt ein Wörterbuch mit drei wichtigen Elementen zurück: + +* [input_ids](glossary#input-ids) sind die Indizes, die den einzelnen Token im Satz entsprechen. +* [attention_mask](glossary#attention-mask) gibt an, ob ein Token beachtet werden soll oder nicht. +* [token_type_ids](glossary#token-type-ids) gibt an, zu welcher Sequenz ein Token gehört, wenn es mehr als eine Sequenz gibt. + +Sie können die `input_ids` dekodieren, um die ursprüngliche Eingabe zurückzugeben: + +```py +>>> tokenizer.decode(encoded_input["input_ids"]) +'[CLS] Do not meddle in the affairs of wizards, for they are subtle and quick to anger. [SEP]' +``` + +Wie Sie sehen können, hat der Tokenisierer zwei spezielle Token - `CLS` und `SEP` (Klassifikator und Separator) - zum Satz hinzugefügt. Nicht alle Modelle benötigen +spezielle Token, aber wenn dies der Fall ist, fügt der Tokenisierer sie automatisch für Sie hinzu. + +Wenn Sie mehrere Sätze verarbeiten wollen, übergeben Sie die Sätze als Liste an den Tokenizer: + +```py +>>> batch_sentences = [ +... "But what about second breakfast?", +... "Don't think he knows about second breakfast, Pip.", +... "What about elevensies?", +... ] +>>> encoded_inputs = tokenizer(batch_sentences) +>>> print(encoded_inputs) +{'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102], + [101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102], + [101, 1327, 1164, 5450, 23434, 136, 102]], + 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]], + 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1], + [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], + [1, 1, 1, 1, 1, 1, 1]]} +``` + +### Pad + +Dies bringt uns zu einem wichtigen Thema. Wenn Sie einen Haufen von Sätzen verarbeiten, sind diese nicht immer gleich lang. Das ist ein Problem, weil Tensoren, die Eingabe für das Modell, eine einheitliche Form haben müssen. Padding ist eine Strategie, die sicherstellt, dass Tensoren rechteckig sind, indem ein spezielles *Padding-Token* zu Sätzen mit weniger Token hinzugefügt wird. + +Setzen Sie den Parameter "padding" auf "true", um die kürzeren Sequenzen im Stapel so aufzufüllen, dass sie der längsten Sequenz entsprechen: + +```py +>>> batch_sentences = [ +... "But what about second breakfast?", +... "Don't think he knows about second breakfast, Pip.", +... "What about elevensies?", +... ] +>>> encoded_input = tokenizer(batch_sentences, padding=True) +>>> print(encoded_input) +{'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0], + [101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102], + [101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]], + 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], + 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], + [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], + [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]]} +``` + +Beachten Sie, dass der Tokenizer den ersten und den dritten Satz mit einer "0" aufgefüllt hat, weil sie kürzer sind! + +### Kürzung + +Auf der anderen Seite des Spektrums kann es vorkommen, dass eine Sequenz zu lang für ein Modell ist. In diesem Fall müssen Sie die Sequenz auf eine kürzere Länge kürzen. + +Setzen Sie den Parameter "truncation" auf "true", um eine Sequenz auf die vom Modell akzeptierte Höchstlänge zu kürzen: + +```py +>>> batch_sentences = [ +... "But what about second breakfast?", +... "Don't think he knows about second breakfast, Pip.", +... "What about elevensies?", +... ] +>>> encoded_input = tokenizer(batch_sentences, padding=True, truncation=True) +>>> print(encoded_input) +{'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0], + [101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102], + [101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]], + 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], + 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], + [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], + [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]]} +``` + +### Tensoren erstellen + +Schließlich möchten Sie, dass der Tokenizer die tatsächlichen Tensoren zurückgibt, die dem Modell zugeführt werden. + +Setzen Sie den Parameter `return_tensors` entweder auf `pt` für PyTorch, oder `tf` für TensorFlow: + + + + +```py +>>> batch_sentences = [ +... "But what about second breakfast?", +... "Don't think he knows about second breakfast, Pip.", +... "What about elevensies?", +... ] +>>> encoded_input = tokenizer(batch_sentences, padding=True, truncation=True, return_tensors="pt") +>>> print(encoded_input) +{'input_ids': tensor([[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0], + [101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102], + [101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]]), + 'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]), + 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], + [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], + [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]])} +``` + + +```py +>>> batch_sentences = [ +... "But what about second breakfast?", +... "Don't think he knows about second breakfast, Pip.", +... "What about elevensies?", +... ] +>>> encoded_input = tokenizer(batch_sentences, padding=True, truncation=True, return_tensors="tf") +>>> print(encoded_input) +{'input_ids': , + 'token_type_ids': , + 'attention_mask': } +``` + + + +## Audio + +Audioeingaben werden anders vorverarbeitet als Texteingaben, aber das Endziel bleibt dasselbe: numerische Sequenzen zu erstellen, die das Modell verstehen kann. Ein [feature extractor](main_classes/feature_extractor) dient dem ausdrücklichen Zweck, Merkmale aus Rohbild- oder Audiodaten zu extrahieren und in Tensoren zu konvertieren. Bevor Sie beginnen, installieren Sie 🤗 Datasets, um einen Audio-Datensatz zu laden, mit dem Sie experimentieren können: + +```bash +pip install datasets +``` + +Laden Sie den [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) Datensatz (weitere Informationen zum Laden eines Datensatzes finden Sie im 🤗 [Datasets tutorial](https://huggingface.co/docs/datasets/load_hub.html)): + +```py +>>> from datasets import load_dataset, Audio + +>>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train") +``` + +Greifen Sie auf das erste Element der `audio`-Spalte zu, um einen Blick auf die Eingabe zu werfen. Durch den Aufruf der Spalte "audio" wird die Audiodatei automatisch geladen und neu gesampelt: + +```py +>>> dataset[0]["audio"] +{'array': array([ 0. , 0.00024414, -0.00024414, ..., -0.00024414, + 0. , 0. ], dtype=float32), + 'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav', + 'sampling_rate': 8000} +``` + +Dies gibt drei Elemente zurück: + +* "array" ist das Sprachsignal, das als 1D-Array geladen - und möglicherweise neu gesampelt - wurde. +* Pfad" zeigt auf den Speicherort der Audiodatei. +* `sampling_rate` bezieht sich darauf, wie viele Datenpunkte im Sprachsignal pro Sekunde gemessen werden. + +### Resample + +Für dieses Tutorial werden Sie das Modell [Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base) verwenden. Wie Sie aus der Modellkarte ersehen können, ist das Wav2Vec2-Modell auf 16kHz abgetastetes Sprachaudio vortrainiert. Es ist wichtig, dass die Abtastrate Ihrer Audiodaten mit der Abtastrate des Datensatzes übereinstimmt, der für das Pre-Training des Modells verwendet wurde. Wenn die Abtastrate Ihrer Daten nicht dieselbe ist, müssen Sie Ihre Audiodaten neu abtasten. + +Der Datensatz [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) hat zum Beispiel eine Abtastrate von 8000 kHz. Um das Wav2Vec2-Modell mit diesem Datensatz verwenden zu können, müssen Sie die Abtastrate auf 16 kHz erhöhen: + +```py +>>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train") +>>> dataset[0]["audio"] +{'array': array([ 0. , 0.00024414, -0.00024414, ..., -0.00024414, + 0. , 0. ], dtype=float32), + 'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav', + 'sampling_rate': 8000} +``` + +1. Verwenden Sie die Methode [~datasets.Dataset.cast_column] von 🤗 Datasets, um die Abtastrate auf 16kHz zu erhöhen: + +```py +>>> dataset = dataset.cast_column("audio", Audio(sampling_rate=16_000)) +``` + +2. Laden Sie die Audiodatei: + +```py +>>> dataset[0]["audio"] +{'array': array([ 2.3443763e-05, 2.1729663e-04, 2.2145823e-04, ..., + 3.8356509e-05, -7.3497440e-06, -2.1754686e-05], dtype=float32), + 'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav', + 'sampling_rate': 16000} +``` + +Wie Sie sehen können, ist die Abtastrate jetzt 16kHz! + +### Merkmalsextraktor + +Der nächste Schritt ist das Laden eines Merkmalsextraktors, um die Eingabe zu normalisieren und aufzufüllen. Beim Auffüllen von Textdaten wird für kürzere Sequenzen ein `0` hinzugefügt. Die gleiche Idee gilt für Audiodaten, und der Audio-Feature-Extraktor fügt eine `0` - interpretiert als Stille - zu `array` hinzu. + +Laden Sie den Merkmalsextraktor mit [`AutoFeatureExtractor.from_pretrained`]: + +```py +>>> from transformers import AutoFeatureExtractor + +>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base") +``` + +Übergeben Sie das Audio-"Array" an den Feature-Extraktor. Wir empfehlen auch, das Argument `sampling_rate` im Feature Extractor hinzuzufügen, um eventuell auftretende stille Fehler besser zu beheben. + +```py +>>> audio_input = [dataset[0]["audio"]["array"]] +>>> feature_extractor(audio_input, sampling_rate=16000) +{'input_values': [array([ 3.8106556e-04, 2.7506407e-03, 2.8015103e-03, ..., + 5.6335266e-04, 4.6588284e-06, -1.7142107e-04], dtype=float32)]} +``` + +### Auffüllen und Kürzen + +Genau wie beim Tokenizer können Sie variable Sequenzen in einem Stapel durch Auffüllen oder Abschneiden behandeln. Werfen Sie einen Blick auf die Sequenzlänge dieser beiden Audiobeispiele: + +```py +>>> dataset[0]["audio"]["array"].shape +(173398,) + +>>> dataset[1]["audio"]["array"].shape +(106496,) +``` + +Wie Sie sehen können, hat das erste Beispiel eine längere Sequenz als das zweite Beispiel. Lassen Sie uns eine Funktion erstellen, die den Datensatz vorverarbeitet. Geben Sie eine maximale Länge der Probe an, und der Feature-Extraktor wird die Sequenzen entweder auffüllen oder abschneiden, damit sie dieser Länge entsprechen: + +```py +>>> def preprocess_function(examples): +... audio_arrays = [x["array"] for x in examples["audio"]] +... inputs = feature_extractor( +... audio_arrays, +... sampling_rate=16000, +... padding=True, +... max_length=100000, +... truncation=True, +... ) +... return inputs +``` + +Wenden Sie die Funktion auf die ersten paar Beispiele im Datensatz an: + +```py +>>> processed_dataset = preprocess_function(dataset[:5]) +``` + +Schauen Sie sich nun noch einmal die verarbeiteten Beispiel-Längen an: + +```py +>>> processed_dataset["input_values"][0].shape +(100000,) + +>>> processed_dataset["input_values"][1].shape +(100000,) +``` + +Die Länge der ersten beiden Beispiele entspricht nun der von Ihnen angegebenen Maximallänge. + +## Bildverarbeitung + +Ein Merkmalsextraktor wird auch verwendet, um Bilder für Bildverarbeitungsaufgaben zu verarbeiten. Auch hier besteht das Ziel darin, das Rohbild in eine Reihe von Tensoren als Eingabe zu konvertieren. + +Laden wir den [food101](https://huggingface.co/datasets/food101) Datensatz für dieses Tutorial. Verwenden Sie den Parameter 🤗 Datasets `split`, um nur eine kleine Stichprobe aus dem Trainingssplit zu laden, da der Datensatz recht groß ist: + +```py +>>> from datasets import load_dataset + +>>> dataset = load_dataset("food101", split="train[:100]") +``` + +Als Nächstes sehen Sie sich das Bild mit dem Merkmal 🤗 Datensätze [Bild] (https://huggingface.co/docs/datasets/package_reference/main_classes.html?highlight=image#datasets.Image) an: + +```py +>>> dataset[0]["image"] +``` + +![vision-preprocess-tutorial.png](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/vision-preprocess-tutorial.png) + +### Merkmalsextraktor + +Laden Sie den Merkmalsextraktor mit [`AutoFeatureExtractor.from_pretrained`]: + +```py +>>> from transformers import AutoFeatureExtractor + +>>> feature_extractor = AutoFeatureExtractor.from_pretrained("google/vit-base-patch16-224") +``` + +### Datenerweiterung + +Bei Bildverarbeitungsaufgaben ist es üblich, den Bildern als Teil der Vorverarbeitung eine Art von Datenerweiterung hinzuzufügen. Sie können Erweiterungen mit jeder beliebigen Bibliothek hinzufügen, aber in diesem Tutorial werden Sie das Modul [`transforms`](https://pytorch.org/vision/stable/transforms.html) von torchvision verwenden. + +1. Normalisieren Sie das Bild und verwenden Sie [`Compose`](https://pytorch.org/vision/master/generated/torchvision.transforms.Compose.html), um einige Transformationen - [`RandomResizedCrop`](https://pytorch.org/vision/main/generated/torchvision.transforms.RandomResizedCrop.html) und [`ColorJitter`](https://pytorch.org/vision/main/generated/torchvision.transforms.ColorJitter.html) - miteinander zu verknüpfen: + +```py +>>> from torchvision.transforms import Compose, Normalize, RandomResizedCrop, ColorJitter, ToTensor + +>>> normalize = Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std) +>>> _transforms = Compose( +... [RandomResizedCrop(feature_extractor.size), ColorJitter(brightness=0.5, hue=0.5), ToTensor(), normalize] +... ) +``` + +2. Das Modell akzeptiert [`pixel_values`](model_doc/visionencoderdecoder#transformers.VisionEncoderDecoderModel.forward.pixel_values) als Eingabe. Dieser Wert wird vom Merkmalsextraktor erzeugt. Erstellen Sie eine Funktion, die `pixel_values` aus den Transformationen erzeugt: + +```py +>>> def transforms(examples): +... examples["pixel_values"] = [_transforms(image.convert("RGB")) for image in examples["image"]] +... return examples +``` + +3. Dann verwenden Sie 🤗 Datasets [`set_transform`](https://huggingface.co/docs/datasets/process.html#format-transform), um die Transformationen im laufenden Betrieb anzuwenden: + +```py +>>> dataset.set_transform(transforms) +``` + +4. Wenn Sie nun auf das Bild zugreifen, werden Sie feststellen, dass der Feature Extractor die Modelleingabe "pixel_values" hinzugefügt hat: + +```py +>>> dataset[0]["image"] +{'image': , + 'label': 6, + 'pixel_values': tensor([[[ 0.0353, 0.0745, 0.1216, ..., -0.9922, -0.9922, -0.9922], + [-0.0196, 0.0667, 0.1294, ..., -0.9765, -0.9843, -0.9922], + [ 0.0196, 0.0824, 0.1137, ..., -0.9765, -0.9686, -0.8667], + ..., + [ 0.0275, 0.0745, 0.0510, ..., -0.1137, -0.1216, -0.0824], + [ 0.0667, 0.0824, 0.0667, ..., -0.0588, -0.0745, -0.0980], + [ 0.0353, 0.0353, 0.0431, ..., -0.0039, -0.0039, -0.0588]], + + [[ 0.2078, 0.2471, 0.2863, ..., -0.9451, -0.9373, -0.9451], + [ 0.1608, 0.2471, 0.3098, ..., -0.9373, -0.9451, -0.9373], + [ 0.2078, 0.2706, 0.3020, ..., -0.9608, -0.9373, -0.8275], + ..., + [-0.0353, 0.0118, -0.0039, ..., -0.2392, -0.2471, -0.2078], + [ 0.0196, 0.0353, 0.0196, ..., -0.1843, -0.2000, -0.2235], + [-0.0118, -0.0039, -0.0039, ..., -0.0980, -0.0980, -0.1529]], + + [[ 0.3961, 0.4431, 0.4980, ..., -0.9216, -0.9137, -0.9216], + [ 0.3569, 0.4510, 0.5216, ..., -0.9059, -0.9137, -0.9137], + [ 0.4118, 0.4745, 0.5216, ..., -0.9137, -0.8902, -0.7804], + ..., + [-0.2314, -0.1922, -0.2078, ..., -0.4196, -0.4275, -0.3882], + [-0.1843, -0.1686, -0.2000, ..., -0.3647, -0.3804, -0.4039], + [-0.1922, -0.1922, -0.1922, ..., -0.2941, -0.2863, -0.3412]]])} +``` + +Hier sehen Sie, wie das Bild nach der Vorverarbeitung aussieht. Wie von den angewandten Transformationen zu erwarten, wurde das Bild willkürlich beschnitten und seine Farbeigenschaften sind anders. + +```py +>>> import numpy as np +>>> import matplotlib.pyplot as plt + +>>> img = dataset[0]["pixel_values"] +>>> plt.imshow(img.permute(1, 2, 0)) +``` + +![preprocessed_image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/preprocessed_image.png) + +## Multimodal + +Für multimodale Aufgaben werden Sie eine Kombination aus allem, was Sie bisher gelernt haben, verwenden und Ihre Fähigkeiten auf eine Aufgabe der automatischen Spracherkennung (ASR) anwenden. Dies bedeutet, dass Sie einen: + +* Feature Extractor zur Vorverarbeitung der Audiodaten. +* Tokenizer, um den Text zu verarbeiten. + +Kehren wir zum [LJ Speech](https://huggingface.co/datasets/lj_speech) Datensatz zurück: + +```py +>>> from datasets import load_dataset + +>>> lj_speech = load_dataset("lj_speech", split="train") +``` + +Da Sie hauptsächlich an den Spalten "Audio" und "Text" interessiert sind, entfernen Sie die anderen Spalten: + +```py +>>> lj_speech = lj_speech.map(remove_columns=["file", "id", "normalized_text"]) +``` + +Schauen Sie sich nun die Spalten "Audio" und "Text" an: + +```py +>>> lj_speech[0]["audio"] +{'array': array([-7.3242188e-04, -7.6293945e-04, -6.4086914e-04, ..., + 7.3242188e-04, 2.1362305e-04, 6.1035156e-05], dtype=float32), + 'path': '/root/.cache/huggingface/datasets/downloads/extracted/917ece08c95cf0c4115e45294e3cd0dee724a1165b7fc11798369308a465bd26/LJSpeech-1.1/wavs/LJ001-0001.wav', + 'sampling_rate': 22050} + +>>> lj_speech[0]["text"] +'Printing, in the only sense with which we are at present concerned, differs from most if not from all the arts and crafts represented in the Exhibition' +``` + +Erinnern Sie sich an den früheren Abschnitt über die Verarbeitung von Audiodaten: Sie sollten immer die Abtastrate Ihrer Audiodaten [resample](preprocessing#audio), damit sie mit der Abtastrate des Datensatzes übereinstimmt, der für das Vortraining eines Modells verwendet wird: + +```py +>>> lj_speech = lj_speech.cast_column("audio", Audio(sampling_rate=16_000)) +``` + +### Prozessor + +Ein Processor kombiniert einen Feature-Extraktor und einen Tokenizer. Laden Sie einen Processor mit [`AutoProcessor.from_pretrained]: + +```py +>>> from transformers import AutoProcessor + +>>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h") +``` + +1. Erstellen Sie eine Funktion, die die Audiodaten zu `input_values` verarbeitet und den Text zu `labels` tokenisiert. Dies sind Ihre Eingaben für das Modell: + +```py +>>> def prepare_dataset(example): +... audio = example["audio"] + +... example.update(processor(audio=audio["array"], text=example["text"], sampling_rate=16000)) + +... return example +``` + +2. Wenden Sie die Funktion "prepare_dataset" auf ein Beispiel an: + +```py +>>> prepare_dataset(lj_speech[0]) +``` + +Beachten Sie, dass der Processor `input_values` und `labels` hinzugefügt hat. Auch die Abtastrate wurde korrekt auf 16kHz heruntergerechnet. + +Toll, Sie sollten jetzt in der Lage sein, Daten für jede Modalität vorzuverarbeiten und sogar verschiedene Modalitäten zu kombinieren! Im nächsten Kurs lernen Sie, wie Sie ein Modell mit Ihren neu aufbereiteten Daten feinabstimmen können. diff --git a/OPERA/transformers-4.29.2/docs/source/de/quicktour.mdx b/OPERA/transformers-4.29.2/docs/source/de/quicktour.mdx new file mode 100644 index 0000000000000000000000000000000000000000..4c668bf419b134193057ba54398b6590bef25e3b --- /dev/null +++ b/OPERA/transformers-4.29.2/docs/source/de/quicktour.mdx @@ -0,0 +1,428 @@ + + +# Schnellstart + +[[open-in-colab]] + +Mit 🤗 Transformers können Sie sofort loslegen! Verwenden Sie die [`pipeline`] für schnelle Inferenz und laden Sie schnell ein vortrainiertes Modell und einen Tokenizer mit einer [AutoClass](./model_doc/auto), um Ihre Text-, Bild- oder Audioaufgabe zu lösen. + + + +Alle in der Dokumentation vorgestellten Codebeispiele haben oben links einen Umschalter für PyTorch und TensorFlow. Wenn +nicht, wird erwartet, dass der Code für beide Backends ohne Änderungen funktioniert. + + + +## Pipeline + +[`pipeline`] ist der einfachste Weg, ein vortrainiertes Modell für eine bestimmte Aufgabe zu verwenden. + + + +Die [`pipeline`] unterstützt viele gängige Aufgaben: + +**Text**: +* Stimmungsanalyse: Klassifizierung der Polarität eines gegebenen Textes. +* Textgenerierung (auf Englisch): Generierung von Text aus einer gegebenen Eingabe. +* Name-Entity-Recognition (NER): Kennzeichnung jedes Worts mit der Entität, die es repräsentiert (Person, Datum, Ort usw.). +* Beantwortung von Fragen: Extrahieren der Antwort aus dem Kontext, wenn ein gewisser Kontext und eine Frage gegeben sind. +* Fill-mask: Ausfüllen von Lücken in einem Text mit maskierten Wörtern. +* Zusammenfassung: Erstellung einer Zusammenfassung einer langen Text- oder Dokumentensequenz. +* Übersetzung: Übersetzen eines Textes in eine andere Sprache. +* Merkmalsextraktion: Erstellen einer Tensordarstellung des Textes. + +**Bild**: +* Bildklassifizierung: Klassifizierung eines Bildes. +* Bildsegmentierung: Klassifizierung jedes Pixels in einem Bild. +* Objekterkennung: Erkennen von Objekten innerhalb eines Bildes. + +**Audio**: +* Audioklassifizierung: Zuweisung eines Labels zu einem bestimmten Audiosegment. +* Automatische Spracherkennung (ASR): Transkription von Audiodaten in Text. + + + +Für mehr Details über die [`pipeline`] und assoziierte Aufgaben, schauen Sie in die Dokumentation [hier](./main_classes/pipelines). + + + +### Verwendung der Pipeline + +Im folgenden Beispiel werden Sie die [`pipeline`] für die Stimmungsanalyse verwenden. + +Installieren Sie die folgenden Abhängigkeiten, falls Sie dies nicht bereits getan haben: + + + +```bash +pip install torch +``` + + +```bash +pip install tensorflow +``` + + + +Importieren sie die [`pipeline`] und spezifizieren sie die Aufgabe, welche sie lösen möchten: + +```py +>>> from transformers import pipeline + +>>> classifier = pipeline("sentiment-analysis") +``` + +Die Pipeline lädt ein standardmäßiges [vortrainiertes Modell] (https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) und einen Tokenizer für die Stimmungs-Analyse herunter und speichert sie. Jetzt können Sie den "Klassifikator" auf Ihren Zieltext anwenden: + +```py +>>> classifier("We are very happy to show you the 🤗 Transformers library.") +[{'label': 'POSITIVE', 'score': 0.9998}] +``` + +For more than one sentence, pass a list of sentences to the [`pipeline`] which returns a list of dictionaries: + +```py +>>> results = classifier(["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."]) +>>> for result in results: +... print(f"label: {result['label']}, with score: {round(result['score'], 4)}") +label: POSITIVE, with score: 0.9998 +label: NEGATIVE, with score: 0.5309 +``` + +Die [`pipeline`] kann auch über einen ganzen Datensatz iterieren. Starten wir mit der Installation der [🤗 Datasets](https://huggingface.co/docs/datasets/) Bibliothek: + +```bash +pip install datasets +``` + +Erstellen wir eine [`pipeline`] mit der Aufgabe die wir lösen und dem Modell welches wir nutzen möchten. + +```py +>>> import torch +>>> from transformers import pipeline + +>>> speech_recognizer = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h") +``` + +Als nächstes laden wir den Datensatz (siehe 🤗 Datasets [Quick Start](https://huggingface.co/docs/datasets/quickstart.html) für mehr Details) welches wir nutzen möchten. Zum Beispiel laden wir den [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) Datensatz: + +```py +>>> from datasets import load_dataset, Audio + +>>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train") # doctest: +IGNORE_RESULT +``` + +Wir müssen sicherstellen, dass die Abtastrate des Datensatzes der Abtastrate entspricht, mit der `facebook/wav2vec2-base-960h` trainiert wurde. + +```py +>>> dataset = dataset.cast_column("audio", Audio(sampling_rate=speech_recognizer.feature_extractor.sampling_rate)) +``` + +Audiodateien werden automatisch geladen und neu abgetastet, wenn die Spalte "audio" aufgerufen wird. +Extrahieren wir die rohen Wellenform-Arrays der ersten 4 Beispiele und übergeben wir sie als Liste an die Pipeline: + +```py +>>> result = speech_recognizer(dataset[:4]["audio"]) +>>> print([d["text"] for d in result]) +['I WOULD LIKE TO SET UP A JOINT ACCOUNT WITH MY PARTNER HOW DO I PROCEED WITH DOING THAT', "FODING HOW I'D SET UP A JOIN TO HET WITH MY WIFE AND WHERE THE AP MIGHT BE", "I I'D LIKE TOY SET UP A JOINT ACCOUNT WITH MY PARTNER I'M NOT SEEING THE OPTION TO DO IT ON THE AP SO I CALLED IN TO GET SOME HELP CAN I JUST DO IT OVER THE PHONE WITH YOU AND GIVE YOU THE INFORMATION OR SHOULD I DO IT IN THE AP AND I'M MISSING SOMETHING UQUETTE HAD PREFERRED TO JUST DO IT OVER THE PHONE OF POSSIBLE THINGS", 'HOW DO I THURN A JOIN A COUNT'] +``` + +Bei einem größeren Datensatz mit vielen Eingaben (wie bei Sprache oder Bildverarbeitung) sollten Sie einen Generator anstelle einer Liste übergeben, der alle Eingaben in den Speicher lädt. Weitere Informationen finden Sie in der [Pipeline-Dokumentation](./main_classes/pipelines). + +### Ein anderes Modell und einen anderen Tokenizer in der Pipeline verwenden + +Die [`pipeline`] kann jedes Modell aus dem [Model Hub] (https://huggingface.co/models) verwenden, wodurch es einfach ist, die [`pipeline`] für andere Anwendungsfälle anzupassen. Wenn Sie beispielsweise ein Modell wünschen, das französischen Text verarbeiten kann, verwenden Sie die Tags im Model Hub, um nach einem geeigneten Modell zu filtern. Das oberste gefilterte Ergebnis liefert ein mehrsprachiges [BERT-Modell](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment), das auf die Stimmungsanalyse abgestimmt ist. Großartig, verwenden wir dieses Modell! + +```py +>>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment" +``` + + + +Use the [`AutoModelForSequenceClassification`] and [`AutoTokenizer`] to load the pretrained model and it's associated tokenizer (more on an `AutoClass` below): + +```py +>>> from transformers import AutoTokenizer, AutoModelForSequenceClassification + +>>> model = AutoModelForSequenceClassification.from_pretrained(model_name) +>>> tokenizer = AutoTokenizer.from_pretrained(model_name) +``` + + +Use the [`TFAutoModelForSequenceClassification`] and [`AutoTokenizer`] to load the pretrained model and it's associated tokenizer (more on an `TFAutoClass` below): + +```py +>>> from transformers import AutoTokenizer, TFAutoModelForSequenceClassification + +>>> model = TFAutoModelForSequenceClassification.from_pretrained(model_name) +>>> tokenizer = AutoTokenizer.from_pretrained(model_name) +``` + + + +Dann können Sie das Modell und den Tokenizer in der [`pipeline`] angeben und den `Klassifikator` auf Ihren Zieltext anwenden: + +```py +>>> classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) +>>> classifier("Nous sommes très heureux de vous présenter la bibliothèque 🤗 Transformers.") +[{'label': '5 stars', 'score': 0.7273}] +``` + +Wenn Sie kein Modell für Ihren Anwendungsfall finden können, müssen Sie ein vortrainiertes Modell auf Ihren Daten feinabstimmen. Schauen Sie sich unser [Feinabstimmungs-Tutorial](./training) an, um zu erfahren, wie das geht. Und schließlich, nachdem Sie Ihr trainiertes Modell verfeinert haben, sollten Sie es mit der Community im Model Hub teilen (siehe Tutorial [hier](./model_sharing)), um NLP für alle zu demokratisieren! 🤗 + +## AutoClass + + + +Unter der Haube arbeiten die Klassen [`AutoModelForSequenceClassification`] und [`AutoTokenizer`] zusammen, um die [`pipeline`] zu betreiben. Eine [`AutoClass`](./model_doc/auto) ist eine Abkürzung, die automatisch die Architektur eines trainierten Modells aus dessen Namen oder Pfad abruft. Sie müssen nur die passende `AutoClass` für Ihre Aufgabe und den zugehörigen Tokenizer mit [`AutoTokenizer`] auswählen. + +Kehren wir zu unserem Beispiel zurück und sehen wir uns an, wie Sie die `AutoClass` verwenden können, um die Ergebnisse der [`pipeline`] zu replizieren. + +### AutoTokenizer + +Ein Tokenizer ist für die Vorverarbeitung von Text in ein für das Modell verständliches Format zuständig. Zunächst zerlegt der Tokenisierer den Text in Wörter, die *Token* genannt werden. Es gibt mehrere Regeln für den Tokenisierungsprozess, z. B. wie und auf welcher Ebene ein Wort aufgespalten wird (weitere Informationen über Tokenisierung [hier](./tokenizer_summary)). Das Wichtigste ist jedoch, dass Sie den Tokenizer mit demselben Modellnamen instanziieren müssen, um sicherzustellen, dass Sie dieselben Tokenisierungsregeln verwenden, mit denen ein Modell zuvor trainiert wurde. +Laden sie einen Tokenizer mit [`AutoTokenizer`]: + +```py +>>> from transformers import AutoTokenizer + +>>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment" +>>> tokenizer = AutoTokenizer.from_pretrained(model_name) +``` + +Anschließend wandelt der Tokenizer die Token in Zahlen um, um einen Tensor als Eingabe für das Modell zu konstruieren. Dieser wird als *Vokabular* des Modells bezeichnet. + +Übergeben Sie Ihren Text an den Tokenizer: + +```py +>>> encoding = tokenizer("We are very happy to show you the 🤗 Transformers library.") +>>> print(encoding) +{'input_ids': [101, 11312, 10320, 12495, 19308, 10114, 11391, 10855, 10103, 100, 58263, 13299, 119, 102], + 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]} +``` + +Der Tokenizer gibt ein Wörterbuch zurück, das Folgendes enthält: + +* [input_ids](./glossary#input-ids): numerische Repräsentationen Ihrer Token. +* [atttention_mask](.glossary#attention-mask): gibt an, welche Token beachtet werden sollen. + +Genau wie die [`pipeline`] akzeptiert der Tokenizer eine Liste von Eingaben. Darüber hinaus kann der Tokenizer den Text auch auffüllen und kürzen, um einen Stapel mit einheitlicher Länge zurückzugeben: + + + +```py +>>> pt_batch = tokenizer( +... ["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."], +... padding=True, +... truncation=True, +... max_length=512, +... return_tensors="pt", +... ) +``` + + +```py +>>> tf_batch = tokenizer( +... ["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."], +... padding=True, +... truncation=True, +... max_length=512, +... return_tensors="tf", +... ) +``` + + + +Lesen Sie das Tutorial [preprocessing](./preprocessing) für weitere Details zur Tokenisierung. + +### AutoModel + + + +🤗 Transformers bietet eine einfache und einheitliche Möglichkeit, vortrainierte Instanzen zu laden. Das bedeutet, dass Sie ein [`AutoModel`] laden können, wie Sie einen [`AutoTokenizer`] laden würden. Der einzige Unterschied ist die Auswahl des richtigen [`AutoModel`] für die Aufgabe. Da Sie eine Text- oder Sequenzklassifizierung vornehmen, laden Sie [`AutoModelForSequenceClassification`]: + +```py +>>> from transformers import AutoModelForSequenceClassification + +>>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment" +>>> pt_model = AutoModelForSequenceClassification.from_pretrained(model_name) +``` + + + +In der [Aufgabenzusammenfassung](./task_summary) steht, welche [AutoModel]-Klasse für welche Aufgabe zu verwenden ist. + + + +Jetzt können Sie Ihren vorverarbeiteten Stapel von Eingaben direkt an das Modell übergeben. Sie müssen nur das Wörterbuch entpacken, indem Sie `**` hinzufügen: + +```py +>>> pt_outputs = pt_model(**pt_batch) +``` + +Das Modell gibt die endgültigen Aktivierungen in dem Attribut "logits" aus. Wenden Sie die Softmax-Funktion auf die "logits" an, um die Wahrscheinlichkeiten zu erhalten: + +```py +>>> from torch import nn + +>>> pt_predictions = nn.functional.softmax(pt_outputs.logits, dim=-1) +>>> print(pt_predictions) +tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725], + [0.2084, 0.1826, 0.1969, 0.1755, 0.2365]], grad_fn=) +``` + + +🤗 Transformers bietet eine einfache und einheitliche Methode zum Laden von vortrainierten Instanzen. Das bedeutet, dass Sie ein [`TFAutoModel`] genauso laden können, wie Sie einen [`AutoTokenizer`] laden würden. Der einzige Unterschied ist die Auswahl des richtigen [`TFAutoModel`] für die Aufgabe. Da Sie Text - oder Sequenz - Klassifizierung machen, laden Sie [`TFAutoModelForSequenceClassification`]: + +```py +>>> from transformers import TFAutoModelForSequenceClassification + +>>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment" +>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(model_name) +``` + + + +In der [Aufgabenzusammenfassung](./task_summary) steht, welche [AutoModel]-Klasse für welche Aufgabe zu verwenden ist. + + + +Jetzt können Sie Ihren vorverarbeiteten Stapel von Eingaben direkt an das Modell übergeben, indem Sie die Wörterbuchschlüssel direkt an die Tensoren übergeben: + +```py +>>> tf_outputs = tf_model(tf_batch) +``` + +Das Modell gibt die endgültigen Aktivierungen in dem Attribut "logits" aus. Wenden Sie die Softmax-Funktion auf die "logits" an, um die Wahrscheinlichkeiten zu erhalten: + +```py +>>> import tensorflow as tf + +>>> tf_predictions = tf.nn.softmax(tf_outputs.logits, axis=-1) +>>> tf_predictions # doctest: +IGNORE_RESULT +``` + + + + + +Alle 🤗 Transformers-Modelle (PyTorch oder TensorFlow) geben die Tensoren *vor* der endgültigen Aktivierungsfunktion +Funktion (wie Softmax) aus, da die endgültige Aktivierungsfunktion oft mit dem Verlusten verschmolzen ist. + + + +Modelle sind ein standardmäßiges [`torch.nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) oder ein [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model), sodass Sie sie in Ihrer üblichen Trainingsschleife verwenden können. Um jedoch die Dinge einfacher zu machen, bietet 🤗 Transformers eine [`Trainer`]-Klasse für PyTorch, die Funktionalität für verteiltes Training, gemischte Präzision und mehr bietet. Für TensorFlow können Sie die Methode `fit` aus [Keras](https://keras.io/) verwenden. Siehe das [training tutorial](./training) für weitere Details. + + + +Transformers-Modellausgaben sind spezielle Datenklassen, so dass ihre Attribute in einer IDE automatisch vervollständigt werden. +Die Modellausgänge verhalten sich auch wie ein Tupel oder ein Wörterbuch (z.B. können Sie mit einem Integer, einem Slice oder einem String indexieren), wobei die Attribute, die "None" sind, ignoriert werden. + + + +### Modell speichern + + + +Sobald Ihr Modell feinabgestimmt ist, können Sie es mit seinem Tokenizer speichern, indem Sie [`PreTrainedModel.save_pretrained`] verwenden: + +```py +>>> pt_save_directory = "./pt_save_pretrained" +>>> tokenizer.save_pretrained(pt_save_directory) # doctest: +IGNORE_RESULT +>>> pt_model.save_pretrained(pt_save_directory) +``` + +Wenn Sie bereit sind, das Modell erneut zu verwenden, laden Sie es mit [`PreTrainedModel.from_pretrained`]: + +```py +>>> pt_model = AutoModelForSequenceClassification.from_pretrained("./pt_save_pretrained") +``` + + +Sobald Ihr Modell feinabgestimmt ist, können Sie es mit seinem Tokenizer unter Verwendung von [`TFPreTrainedModel.save_pretrained`] speichern: + +```py +>>> tf_save_directory = "./tf_save_pretrained" +>>> tokenizer.save_pretrained(tf_save_directory) # doctest: +IGNORE_RESULT +>>> tf_model.save_pretrained(tf_save_directory) +``` + +Wenn Sie bereit sind, das Modell wieder zu verwenden, laden Sie es mit [`TFPreTrainedModel.from_pretrained`]: + +```py +>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained("./tf_save_pretrained") +``` + + + +Ein besonders cooles 🤗 Transformers-Feature ist die Möglichkeit, ein Modell zu speichern und es entweder als PyTorch- oder TensorFlow-Modell wieder zu laden. Der Parameter "from_pt" oder "from_tf" kann das Modell von einem Framework in das andere konvertieren: + + + +```py +>>> from transformers import AutoModel + +>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory) +>>> pt_model = AutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True) +``` + + +```py +>>> from transformers import TFAutoModel + +>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory) +>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True) +``` + + + +## Custom model builds + +Sie können die Konfigurationsklasse des Modells ändern, um zu bestimmen, wie ein Modell aufgebaut ist. Die Konfiguration legt die Attribute eines Modells fest, z. B. die Anzahl der verborgenen Schichten oder der Aufmerksamkeitsköpfe. Wenn Sie ein Modell aus einer benutzerdefinierten Konfigurationsklasse initialisieren, beginnen Sie bei Null. Die Modellattribute werden zufällig initialisiert, und Sie müssen das Modell trainieren, bevor Sie es verwenden können, um aussagekräftige Ergebnisse zu erhalten. + +Beginnen Sie mit dem Import von [`AutoConfig`] und laden Sie dann das trainierte Modell, das Sie ändern möchten. Innerhalb von [`AutoConfig.from_pretrained`] können Sie das Attribut angeben, das Sie ändern möchten, z. B. die Anzahl der Aufmerksamkeitsköpfe: + +```py +>>> from transformers import AutoConfig + +>>> my_config = AutoConfig.from_pretrained("distilbert-base-uncased", n_heads=12) +``` + + + +Create a model from your custom configuration with [`AutoModel.from_config`]: + +```py +>>> from transformers import AutoModel + +>>> my_model = AutoModel.from_config(my_config) +``` + + +Create a model from your custom configuration with [`TFAutoModel.from_config`]: + +```py +>>> from transformers import TFAutoModel + +>>> my_model = TFAutoModel.from_config(my_config) +``` + + + +Weitere Informationen zur Erstellung von benutzerdefinierten Konfigurationen finden Sie in der Anleitung [Erstellen einer benutzerdefinierten Architektur](./create_a_model). + +## Wie geht es weiter? + +Nachdem Sie nun die 🤗 Transformers-Kurztour abgeschlossen haben, schauen Sie sich unsere Anleitungen an und erfahren Sie, wie Sie spezifischere Dinge tun können, wie das Schreiben eines benutzerdefinierten Modells, die Feinabstimmung eines Modells für eine Aufgabe und wie man ein Modell mit einem Skript trainiert. Wenn Sie mehr über die Kernkonzepte von 🤗 Transformers erfahren möchten, nehmen Sie sich eine Tasse Kaffee und werfen Sie einen Blick auf unsere konzeptionellen Leitfäden! diff --git a/OPERA/transformers-4.29.2/docs/source/de/training.mdx b/OPERA/transformers-4.29.2/docs/source/de/training.mdx new file mode 100644 index 0000000000000000000000000000000000000000..e38779ba55714f9bbec8454ee56767059e6ec279 --- /dev/null +++ b/OPERA/transformers-4.29.2/docs/source/de/training.mdx @@ -0,0 +1,429 @@ + + +# Optimierung eines vortrainierten Modells + +[[open-in-colab]] + +Die Verwendung eines vorab trainierten Modells hat erhebliche Vorteile. Es reduziert die Rechenkosten und den CO2-Fußabdruck und ermöglicht Ihnen die Verwendung von Modellen, die dem neuesten Stand der Technik entsprechen, ohne dass Sie ein Modell von Grund auf neu trainieren müssen. Transformers bietet Zugang zu Tausenden von vortrainierten Modellen für eine Vielzahl von Aufgaben. Wenn Sie ein vorab trainiertes Modell verwenden, trainieren Sie es auf einem für Ihre Aufgabe spezifischen Datensatz. Dies wird als Feinabstimmung bezeichnet und ist eine unglaublich leistungsfähige Trainingstechnik. In diesem Tutorial werden Sie ein vortrainiertes Modell mit einem Deep-Learning-Framework Ihrer Wahl feinabstimmen: + +* Feinabstimmung eines vorab trainierten Modells mit 🤗 Transformers [`Trainer`]. +* Feinabstimmung eines vorab trainierten Modells in TensorFlow mit Keras. +* Feinabstimmung eines vorab trainierten Modells in nativem PyTorch. + + + +## Vorbereitung eines Datensatzes + + + +Bevor Sie die Feinabstimmung eines vortrainierten Modells vornehmen können, müssen Sie einen Datensatz herunterladen und für das Training vorbereiten. Im vorangegangenen Leitfaden haben Sie gelernt, wie man Daten für das Training aufbereitet, und jetzt haben Sie die Gelegenheit, diese Fähigkeiten zu testen! + +Laden Sie zunächst den Datensatz [Yelp Reviews](https://huggingface.co/datasets/yelp_review_full): + +```py +>>> from datasets import load_dataset + +>>> dataset = load_dataset("yelp_review_full") +>>> dataset["train"][100] +{'label': 0, + 'text': 'My expectations for McDonalds are t rarely high. But for one to still fail so spectacularly...that takes something special!\\nThe cashier took my friends\'s order, then promptly ignored me. I had to force myself in front of a cashier who opened his register to wait on the person BEHIND me. I waited over five minutes for a gigantic order that included precisely one kid\'s meal. After watching two people who ordered after me be handed their food, I asked where mine was. The manager started yelling at the cashiers for \\"serving off their orders\\" when they didn\'t have their food. But neither cashier was anywhere near those controls, and the manager was the one serving food to customers and clearing the boards.\\nThe manager was rude when giving me my order. She didn\'t make sure that I had everything ON MY RECEIPT, and never even had the decency to apologize that I felt I was getting poor service.\\nI\'ve eaten at various McDonalds restaurants for over 30 years. I\'ve worked at more than one location. I expect bad days, bad moods, and the occasional mistake. But I have yet to have a decent experience at this store. It will remain a place I avoid unless someone in my party needs to avoid illness from low blood sugar. Perhaps I should go back to the racially biased service of Steak n Shake instead!'} +``` + +Wie Sie nun wissen, benötigen Sie einen Tokenizer, um den Text zu verarbeiten und eine Auffüll- und Abschneidungsstrategie einzubauen, um mit variablen Sequenzlängen umzugehen. Um Ihren Datensatz in einem Schritt zu verarbeiten, verwenden Sie die 🤗 Methode Datasets [`map`](https://huggingface.co/docs/datasets/process.html#map), um eine Vorverarbeitungsfunktion auf den gesamten Datensatz anzuwenden: + +```py +>>> from transformers import AutoTokenizer + +>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") + + +>>> def tokenize_function(examples): +... return tokenizer(examples["text"], padding="max_length", truncation=True) + + +>>> tokenized_datasets = dataset.map(tokenize_function, batched=True) +``` + +Wenn Sie möchten, können Sie eine kleinere Teilmenge des gesamten Datensatzes für die Feinabstimmung erstellen, um den Zeitaufwand zu verringern: + +```py +>>> small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000)) +>>> small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000)) +``` + + + +## Training + +An dieser Stelle sollten Sie dem Abschnitt folgen, der dem Rahmen entspricht, den Sie verwenden möchten. Sie können über die Links +in der rechten Seitenleiste können Sie zu dem gewünschten Abschnitt springen - und wenn Sie den gesamten Inhalt eines bestimmten Frameworks ausblenden möchten, +klicken Sie einfach auf die Schaltfläche oben rechts im Block des jeweiligen Frameworks! + + + + + +## Trainieren mit PyTorch Trainer + +🤗 Transformers bietet eine [`Trainer`]-Klasse, die für das Training von 🤗 Transformers-Modellen optimiert ist und es einfacher macht, mit dem Training zu beginnen, ohne manuell eine eigene Trainingsschleife zu schreiben. Die [`Trainer`]-API unterstützt eine breite Palette von Trainingsoptionen und Funktionen wie Logging, Gradientenakkumulation und gemischte Präzision. + +Beginnen Sie mit dem Laden Ihres Modells und geben Sie die Anzahl der erwarteten Labels an. Aus dem Yelp Review [dataset card](https://huggingface.co/datasets/yelp_review_full#data-fields) wissen Sie, dass es fünf Labels gibt: + +```py +>>> from transformers import AutoModelForSequenceClassification + +>>> model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5) +``` + + + +Es wird eine Warnung angezeigt, dass einige der trainierten Parameter nicht verwendet werden und einige Parameter zufällig +initialisiert werden. Machen Sie sich keine Sorgen, das ist völlig normal! Der vorher trainierte Kopf des BERT-Modells wird verworfen und durch einen zufällig initialisierten Klassifikationskopf ersetzt. Sie werden diesen neuen Modellkopf in Ihrer Sequenzklassifizierungsaufgabe feinabstimmen, indem Sie das Wissen des vortrainierten Modells auf ihn übertragen. + + + +### Hyperparameter für das Training + +Als Nächstes erstellen Sie eine Klasse [`TrainingArguments`], die alle Hyperparameter enthält, die Sie einstellen können, sowie Flags zur Aktivierung verschiedener Trainingsoptionen. Für dieses Lernprogramm können Sie mit den Standard- [Hyperparametern](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments) beginnen, aber Sie können mit diesen experimentieren, um Ihre optimalen Einstellungen zu finden. + +Geben Sie an, wo die Kontrollpunkte Ihres Trainings gespeichert werden sollen: + +```py +>>> from transformers import TrainingArguments + +>>> training_args = TrainingArguments(output_dir="test_trainer") +``` + +### Auswerten + +Der [`Trainer`] wertet die Leistung des Modells während des Trainings nicht automatisch aus. Sie müssen [`Trainer`] eine Funktion übergeben, um Metriken zu berechnen und zu berichten. Die [🤗 Evaluate](https://huggingface.co/docs/evaluate/index) Bibliothek bietet eine einfache [`accuracy`](https://huggingface.co/spaces/evaluate-metric/accuracy) Funktion, die Sie mit der [`evaluate.load`] Funktion laden können (siehe diese [quicktour](https://huggingface.co/docs/evaluate/a_quick_tour) für weitere Informationen): + +```py +>>> import numpy as np +>>> import evaluate + +>>> metric = evaluate.load("accuracy") +``` + +Rufen Sie [`~evaluate.compute`] auf `metric` auf, um die Genauigkeit Ihrer Vorhersagen zu berechnen. Bevor Sie Ihre Vorhersagen an `compute` übergeben, müssen Sie die Vorhersagen in Logits umwandeln (denken Sie daran, dass alle 🤗 Transformers-Modelle Logits zurückgeben): + +```py +>>> def compute_metrics(eval_pred): +... logits, labels = eval_pred +... predictions = np.argmax(logits, axis=-1) +... return metric.compute(predictions=predictions, references=labels) +``` + +Wenn Sie Ihre Bewertungsmetriken während der Feinabstimmung überwachen möchten, geben Sie den Parameter `evaluation_strategy` in Ihren Trainingsargumenten an, um die Bewertungsmetrik am Ende jeder Epoche zu ermitteln: + +```py +>>> from transformers import TrainingArguments, Trainer + +>>> training_args = TrainingArguments(output_dir="test_trainer", evaluation_strategy="epoch") +``` + +### Trainer + +Erstellen Sie ein [`Trainer`]-Objekt mit Ihrem Modell, Trainingsargumenten, Trainings- und Testdatensätzen und einer Evaluierungsfunktion: + +```py +>>> trainer = Trainer( +... model=model, +... args=training_args, +... train_dataset=small_train_dataset, +... eval_dataset=small_eval_dataset, +... compute_metrics=compute_metrics, +... ) +``` + +Anschließend können Sie Ihr Modell durch den Aufruf von [`~transformers.Trainer.train`] optimieren: + +```py +>>> trainer.train() +``` + + + + + + +## Trainieren Sie ein TensorFlow-Modell mit Keras + +Sie können auch 🤗 Transformers Modelle in TensorFlow mit der Keras API trainieren! + +### Laden von Daten für Keras + +Wenn Sie ein 🤗 Transformers Modell mit der Keras API trainieren wollen, müssen Sie Ihren Datensatz in ein Format konvertieren, das +Keras versteht. Wenn Ihr Datensatz klein ist, können Sie das Ganze einfach in NumPy-Arrays konvertieren und an Keras übergeben. +Probieren wir das zuerst aus, bevor wir etwas Komplizierteres tun. + +Laden Sie zunächst ein Dataset. Wir werden den CoLA-Datensatz aus dem [GLUE-Benchmark](https://huggingface.co/datasets/glue) verwenden, +da es sich um eine einfache Aufgabe zur Klassifizierung von binärem Text handelt, und nehmen vorerst nur den Trainingssplit. + +```py +from datasets import load_dataset + +dataset = load_dataset("glue", "cola") +dataset = dataset["train"] # Just take the training split for now +``` + +Als nächstes laden Sie einen Tokenizer und tokenisieren die Daten als NumPy-Arrays. Beachten Sie, dass die Beschriftungen bereits eine Liste von 0 und 1en sind, +Wir können sie also ohne Tokenisierung direkt in ein NumPy-Array konvertieren! + +```py +from transformers import AutoTokenizer + +tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") +tokenized_data = tokenizer(dataset["text"], return_tensors="np", padding=True) +# Tokenizer returns a BatchEncoding, but we convert that to a dict for Keras +tokenized_data = dict(tokenized_data) + +labels = np.array(dataset["label"]) # Label is already an array of 0 and 1 +``` + +Schließlich laden, [`compile`](https://keras.io/api/models/model_training_apis/#compile-method) und [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) Sie das Modell: + +```py +from transformers import TFAutoModelForSequenceClassification +from tensorflow.keras.optimizers import Adam + +# Load and compile our model +model = TFAutoModelForSequenceClassification.from_pretrained("bert-base-cased") +# Lower learning rates are often better for fine-tuning transformers +model.compile(optimizer=Adam(3e-5)) + +model.fit(tokenized_data, labels) +``` + + + +Sie müssen Ihren Modellen kein Verlustargument übergeben, wenn Sie sie `compile()`! Hugging-Face-Modelle wählen automatisch +einen Loss, der für ihre Aufgabe und Modellarchitektur geeignet ist, wenn dieses Argument leer gelassen wird. Sie können jederzeit außer Kraft setzen, indem Sie selbst einen Loss angeben, wenn Sie das möchten! + + + +Dieser Ansatz eignet sich hervorragend für kleinere Datensätze, aber bei größeren Datensätzen kann er zu einem Problem werden. Warum? +Weil das tokenisierte Array und die Beschriftungen vollständig in den Speicher geladen werden müssten, und weil NumPy nicht mit +"gezackte" Arrays nicht verarbeiten kann, so dass jedes tokenisierte Sample auf die Länge des längsten Samples im gesamten Datensatz aufgefüllt werden müsste. +Datensatzes aufgefüllt werden. Dadurch wird das Array noch größer, und all die aufgefüllten Token verlangsamen auch das Training! + +### Laden von Daten als tf.data.Dataset + +Wenn Sie eine Verlangsamung des Trainings vermeiden wollen, können Sie Ihre Daten stattdessen als `tf.data.Dataset` laden. Sie können zwar Ihre eigene +tf.data"-Pipeline schreiben können, wenn Sie wollen, haben wir zwei bequeme Methoden, um dies zu tun: + +- [`~TFPreTrainedModel.prepare_tf_dataset`]: Dies ist die Methode, die wir in den meisten Fällen empfehlen. Da es sich um eine Methode +Ihres Modells ist, kann sie das Modell inspizieren, um automatisch herauszufinden, welche Spalten als Modelleingaben verwendet werden können, und +verwirft die anderen, um einen einfacheren, leistungsfähigeren Datensatz zu erstellen. +- [~datasets.Dataset.to_tf_dataset`]: Diese Methode ist eher auf niedriger Ebene angesiedelt und ist nützlich, wenn Sie genau kontrollieren wollen, wie +Dataset erstellt wird, indem man genau angibt, welche `columns` und `label_cols` einbezogen werden sollen. + +Bevor Sie [~TFPreTrainedModel.prepare_tf_dataset`] verwenden können, müssen Sie die Tokenizer-Ausgaben als Spalten zu Ihrem Datensatz hinzufügen, wie in +dem folgenden Codebeispiel: + +```py +def tokenize_dataset(data): + # Keys of the returned dictionary will be added to the dataset as columns + return tokenizer(data["text"]) + + +dataset = dataset.map(tokenize_dataset) +``` + +Denken Sie daran, dass Hugging Face-Datensätze standardmäßig auf der Festplatte gespeichert werden, so dass dies nicht zu einem erhöhten Arbeitsspeicherbedarf führen wird! Sobald die +Spalten hinzugefügt wurden, können Sie Batches aus dem Datensatz streamen und zu jedem Batch Auffüllungen hinzufügen, was die Anzahl der Auffüllungs-Token im Vergleich zum Auffüllen des gesamten Datensatzes reduziert. + + +```py +>>> tf_dataset = model.prepare_tf_dataset(dataset, batch_size=16, shuffle=True, tokenizer=tokenizer) +``` + +Beachten Sie, dass Sie im obigen Codebeispiel den Tokenizer an `prepare_tf_dataset` übergeben müssen, damit die Stapel beim Laden korrekt aufgefüllt werden können. +Wenn alle Stichproben in Ihrem Datensatz die gleiche Länge haben und kein Auffüllen erforderlich ist, können Sie dieses Argument weglassen. +Wenn Sie etwas Komplexeres als nur das Auffüllen von Stichproben benötigen (z. B. das Korrumpieren von Token für die maskierte Sprachmodellierung), können Sie das Argument +Modellierung), können Sie stattdessen das Argument `collate_fn` verwenden, um eine Funktion zu übergeben, die aufgerufen wird, um die +Liste von Stichproben in einen Stapel umwandelt und alle gewünschten Vorverarbeitungen vornimmt. Siehe unsere +[examples](https://github.com/huggingface/transformers/tree/main/examples) oder +[notebooks](https://huggingface.co/docs/transformers/notebooks), um diesen Ansatz in Aktion zu sehen. + +Sobald Sie einen `tf.data.Dataset` erstellt haben, können Sie das Modell wie zuvor kompilieren und anpassen: + +```py +model.compile(optimizer=Adam(3e-5)) + +model.fit(tf_dataset) +``` + + + + + + +## Trainieren in nativem PyTorch + + + + + +[`Trainer`] kümmert sich um die Trainingsschleife und ermöglicht die Feinabstimmung eines Modells in einer einzigen Codezeile. Für Benutzer, die es vorziehen, ihre eigene Trainingsschleife zu schreiben, können Sie auch eine Feinabstimmung eines 🤗 Transformers-Modells in nativem PyTorch vornehmen. + +An diesem Punkt müssen Sie möglicherweise Ihr Notebook neu starten oder den folgenden Code ausführen, um etwas Speicher freizugeben: + +```py +del model +del pytorch_model +del trainer +torch.cuda.empty_cache() +``` + +Als Nächstes müssen Sie den Datensatz `tokenized_dataset` manuell nachbearbeiten, um ihn für das Training vorzubereiten. + +1. Entfernen Sie die Spalte "Text", da das Modell keinen Rohtext als Eingabe akzeptiert: + + ```py + >>> tokenized_datasets = tokenized_datasets.remove_columns(["text"]) + ``` + +2. Benennen Sie die Spalte "Label" in "Labels" um, da das Modell erwartet, dass das Argument "Labels" genannt wird: + + ```py + >>> tokenized_datasets = tokenized_datasets.rename_column("label", "labels") + ``` + +3. Stellen Sie das Format des Datensatzes so ein, dass PyTorch-Tensoren anstelle von Listen zurückgegeben werden: + + ```py + >>> tokenized_datasets.set_format("torch") + ``` + +Erstellen Sie dann eine kleinere Teilmenge des Datensatzes, wie zuvor gezeigt, um die Feinabstimmung zu beschleunigen: + +```py +>>> small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000)) +>>> small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000)) +``` + +### DataLoader + +Erstellen Sie einen `DataLoader` für Ihre Trainings- und Testdatensätze, damit Sie über die Datenstapel iterieren können: + +```py +>>> from torch.utils.data import DataLoader + +>>> train_dataloader = DataLoader(small_train_dataset, shuffle=True, batch_size=8) +>>> eval_dataloader = DataLoader(small_eval_dataset, batch_size=8) +``` + +Laden Sie Ihr Modell mit der Anzahl der erwarteten Kennzeichnungen: + +```py +>>> from transformers import AutoModelForSequenceClassification + +>>> model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5) +``` + +### Optimierer und Lernratensteuerung + +Erstellen Sie einen Optimierer und einen Scheduler für die Lernrate, um das Modell fein abzustimmen. Wir verwenden den Optimierer [`AdamW`](https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html) aus PyTorch: + +```py +>>> from torch.optim import AdamW + +>>> optimizer = AdamW(model.parameters(), lr=5e-5) +``` + +Erstellen Sie den Standard-Lernratenplaner aus [`Trainer`]: + +```py +>>> from transformers import get_scheduler + +>>> num_epochs = 3 +>>> num_training_steps = num_epochs * len(train_dataloader) +>>> lr_scheduler = get_scheduler( +... name="linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=num_training_steps +... ) +``` + +Geben Sie schließlich `device` an, um einen Grafikprozessor zu verwenden, wenn Sie Zugang zu einem solchen haben. Andernfalls kann das Training auf einer CPU mehrere Stunden statt ein paar Minuten dauern. + +```py +>>> import torch + +>>> device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") +>>> model.to(device) +``` + + + +Holen Sie sich mit einem gehosteten Notebook wie [Colaboratory](https://colab.research.google.com/) oder [SageMaker StudioLab](https://studiolab.sagemaker.aws/) kostenlosen Zugang zu einem Cloud-GPU, wenn Sie noch keinen haben. + + + +Großartig, Sie sind bereit für das Training! 🥳 + +### Trainingsschleife + +Um Ihren Trainingsfortschritt zu verfolgen, verwenden Sie die [tqdm](https://tqdm.github.io/) Bibliothek, um einen Fortschrittsbalken über die Anzahl der Trainingsschritte hinzuzufügen: + +```py +>>> from tqdm.auto import tqdm + +>>> progress_bar = tqdm(range(num_training_steps)) + +>>> model.train() +>>> for epoch in range(num_epochs): +... for batch in train_dataloader: +... batch = {k: v.to(device) for k, v in batch.items()} +... outputs = model(**batch) +... loss = outputs.loss +... loss.backward() + +... optimizer.step() +... lr_scheduler.step() +... optimizer.zero_grad() +... progress_bar.update(1) +``` + +### Auswertung + +Genauso wie Sie eine Bewertungsfunktion zu [`Trainer`] hinzugefügt haben, müssen Sie dasselbe tun, wenn Sie Ihre eigene Trainingsschleife schreiben. Aber anstatt die Metrik am Ende jeder Epoche zu berechnen und zu melden, werden Sie dieses Mal alle Stapel mit [`~evaluate.add_batch`] akkumulieren und die Metrik ganz am Ende berechnen. + +```py +>>> import evaluate + +>>> metric = evaluate.load("accuracy") +>>> model.eval() +>>> for batch in eval_dataloader: +... batch = {k: v.to(device) for k, v in batch.items()} +... with torch.no_grad(): +... outputs = model(**batch) + +... logits = outputs.logits +... predictions = torch.argmax(logits, dim=-1) +... metric.add_batch(predictions=predictions, references=batch["labels"]) + +>>> metric.compute() +``` + + + + + +## Zusätzliche Ressourcen + +Weitere Beispiele für die Feinabstimmung finden Sie unter: + +- [🤗 Transformers Examples](https://github.com/huggingface/transformers/tree/main/examples) enthält Skripte + um gängige NLP-Aufgaben in PyTorch und TensorFlow zu trainieren. + +- [🤗 Transformers Notebooks](notebooks) enthält verschiedene Notebooks zur Feinabstimmung eines Modells für bestimmte Aufgaben in PyTorch und TensorFlow. \ No newline at end of file diff --git a/OPERA/transformers-4.29.2/docs/source/en/_config.py b/OPERA/transformers-4.29.2/docs/source/en/_config.py new file mode 100644 index 0000000000000000000000000000000000000000..cd76263e9a5cb2cc1a9e3e5709c44fd65331942f --- /dev/null +++ b/OPERA/transformers-4.29.2/docs/source/en/_config.py @@ -0,0 +1,14 @@ +# docstyle-ignore +INSTALL_CONTENT = """ +# Transformers installation +! pip install transformers datasets +# To install from source instead of the last release, comment the command above and uncomment the following one. +# ! pip install git+https://github.com/huggingface/transformers.git +""" + +notebook_first_cells = [{"type": "code", "content": INSTALL_CONTENT}] +black_avoid_patterns = { + "{processor_class}": "FakeProcessorClass", + "{model_class}": "FakeModelClass", + "{object_class}": "FakeObjectClass", +} diff --git a/OPERA/transformers-4.29.2/docs/source/en/_toctree.yml b/OPERA/transformers-4.29.2/docs/source/en/_toctree.yml new file mode 100644 index 0000000000000000000000000000000000000000..54afc6e53c8540941d3239fa6be6c796edbc4bea --- /dev/null +++ b/OPERA/transformers-4.29.2/docs/source/en/_toctree.yml @@ -0,0 +1,686 @@ +- sections: + - local: index + title: 🤗 Transformers + - local: quicktour + title: Quick tour + - local: installation + title: Installation + title: Get started +- sections: + - local: pipeline_tutorial + title: Run inference with pipelines + - local: autoclass_tutorial + title: Write portable code with AutoClass + - local: preprocessing + title: Preprocess data + - local: training + title: Fine-tune a pretrained model + - local: run_scripts + title: Train with a script + - local: accelerate + title: Set up distributed training with 🤗 Accelerate + - local: model_sharing + title: Share your model + - local: transformers_agents + title: Agents + title: Tutorials +- sections: + - sections: + - local: tasks/sequence_classification + title: Text classification + - local: tasks/token_classification + title: Token classification + - local: tasks/question_answering + title: Question answering + - local: tasks/language_modeling + title: Causal language modeling + - local: tasks/masked_language_modeling + title: Masked language modeling + - local: tasks/translation + title: Translation + - local: tasks/summarization + title: Summarization + - local: tasks/multiple_choice + title: Multiple choice + title: Natural Language Processing + isExpanded: false + - sections: + - local: tasks/audio_classification + title: Audio classification + - local: tasks/asr + title: Automatic speech recognition + title: Audio + isExpanded: false + - sections: + - local: tasks/image_classification + title: Image classification + - local: tasks/semantic_segmentation + title: Semantic segmentation + - local: tasks/video_classification + title: Video classification + - local: tasks/object_detection + title: Object detection + - local: tasks/zero_shot_object_detection + title: Zero-shot object detection + - local: tasks/zero_shot_image_classification + title: Zero-shot image classification + - local: tasks/monocular_depth_estimation + title: Depth estimation + title: Computer Vision + isExpanded: false + - sections: + - local: tasks/image_captioning + title: Image captioning + - local: tasks/document_question_answering + title: Document Question Answering + - local: tasks/text-to-speech + title: Text to speech + title: Multimodal + isExpanded: false + title: Task Guides +- sections: + - local: fast_tokenizers + title: Use fast tokenizers from 🤗 Tokenizers + - local: multilingual + title: Run inference with multilingual models + - local: generation_strategies + title: Customize text generation strategy + - local: create_a_model + title: Use model-specific APIs + - local: custom_models + title: Share a custom model + - local: sagemaker + title: Run training on Amazon SageMaker + - local: serialization + title: Export to ONNX + - local: torchscript + title: Export to TorchScript + - local: benchmarks + title: Benchmarks + - local: notebooks + title: Notebooks with examples + - local: community + title: Community resources + - local: custom_tools + title: Custom Tools and Prompts + - local: troubleshooting + title: Troubleshoot + title: Developer guides +- sections: + - local: performance + title: Overview + - local: perf_train_gpu_one + title: Training on one GPU + - local: perf_train_gpu_many + title: Training on many GPUs + - local: perf_train_cpu + title: Training on CPU + - local: perf_train_cpu_many + title: Training on many CPUs + - local: perf_train_tpu + title: Training on TPUs + - local: perf_train_tpu_tf + title: Training on TPU with TensorFlow + - local: perf_train_special + title: Training on Specialized Hardware + - local: perf_infer_cpu + title: Inference on CPU + - local: perf_infer_gpu_one + title: Inference on one GPU + - local: perf_infer_gpu_many + title: Inference on many GPUs + - local: perf_infer_special + title: Inference on Specialized Hardware + - local: perf_hardware + title: Custom hardware for training + - local: big_models + title: Instantiating a big model + - local: debugging + title: Debugging + - local: hpo_train + title: Hyperparameter Search using Trainer API + - local: tf_xla + title: XLA Integration for TensorFlow Models + title: Performance and scalability +- sections: + - local: contributing + title: How to contribute to transformers? + - local: add_new_model + title: How to add a model to 🤗 Transformers? + - local: add_tensorflow_model + title: How to convert a 🤗 Transformers model to TensorFlow? + - local: add_new_pipeline + title: How to add a pipeline to 🤗 Transformers? + - local: testing + title: Testing + - local: pr_checks + title: Checks on a Pull Request + title: Contribute + +- sections: + - local: philosophy + title: Philosophy + - local: glossary + title: Glossary + - local: task_summary + title: What 🤗 Transformers can do + - local: tasks_explained + title: How 🤗 Transformers solve tasks + - local: model_summary + title: The Transformer model family + - local: tokenizer_summary + title: Summary of the tokenizers + - local: attention + title: Attention mechanisms + - local: pad_truncation + title: Padding and truncation + - local: bertology + title: BERTology + - local: perplexity + title: Perplexity of fixed-length models + - local: pipeline_webserver + title: Pipelines for webserver inference + title: Conceptual guides +- sections: + - sections: + - local: main_classes/agent + title: Agents and Tools + - local: model_doc/auto + title: Auto Classes + - local: main_classes/callback + title: Callbacks + - local: main_classes/configuration + title: Configuration + - local: main_classes/data_collator + title: Data Collator + - local: main_classes/keras_callbacks + title: Keras callbacks + - local: main_classes/logging + title: Logging + - local: main_classes/model + title: Models + - local: main_classes/text_generation + title: Text Generation + - local: main_classes/onnx + title: ONNX + - local: main_classes/optimizer_schedules + title: Optimization + - local: main_classes/output + title: Model outputs + - local: main_classes/pipelines + title: Pipelines + - local: main_classes/processors + title: Processors + - local: main_classes/quantization + title: Quantization + - local: main_classes/tokenizer + title: Tokenizer + - local: main_classes/trainer + title: Trainer + - local: main_classes/deepspeed + title: DeepSpeed Integration + - local: main_classes/feature_extractor + title: Feature Extractor + - local: main_classes/image_processor + title: Image Processor + title: Main Classes + - sections: + - isExpanded: false + sections: + - local: model_doc/albert + title: ALBERT + - local: model_doc/bart + title: BART + - local: model_doc/barthez + title: BARThez + - local: model_doc/bartpho + title: BARTpho + - local: model_doc/bert + title: BERT + - local: model_doc/bert-generation + title: BertGeneration + - local: model_doc/bert-japanese + title: BertJapanese + - local: model_doc/bertweet + title: Bertweet + - local: model_doc/big_bird + title: BigBird + - local: model_doc/bigbird_pegasus + title: BigBirdPegasus + - local: model_doc/biogpt + title: BioGpt + - local: model_doc/blenderbot + title: Blenderbot + - local: model_doc/blenderbot-small + title: Blenderbot Small + - local: model_doc/bloom + title: BLOOM + - local: model_doc/bort + title: BORT + - local: model_doc/byt5 + title: ByT5 + - local: model_doc/camembert + title: CamemBERT + - local: model_doc/canine + title: CANINE + - local: model_doc/codegen + title: CodeGen + - local: model_doc/convbert + title: ConvBERT + - local: model_doc/cpm + title: CPM + - local: model_doc/cpmant + title: CPMANT + - local: model_doc/ctrl + title: CTRL + - local: model_doc/deberta + title: DeBERTa + - local: model_doc/deberta-v2 + title: DeBERTa-v2 + - local: model_doc/dialogpt + title: DialoGPT + - local: model_doc/distilbert + title: DistilBERT + - local: model_doc/dpr + title: DPR + - local: model_doc/electra + title: ELECTRA + - local: model_doc/encoder-decoder + title: Encoder Decoder Models + - local: model_doc/ernie + title: ERNIE + - local: model_doc/ernie_m + title: ErnieM + - local: model_doc/esm + title: ESM + - local: model_doc/flan-t5 + title: FLAN-T5 + - local: model_doc/flan-ul2 + title: FLAN-UL2 + - local: model_doc/flaubert + title: FlauBERT + - local: model_doc/fnet + title: FNet + - local: model_doc/fsmt + title: FSMT + - local: model_doc/funnel + title: Funnel Transformer + - local: model_doc/openai-gpt + title: GPT + - local: model_doc/gpt_neo + title: GPT Neo + - local: model_doc/gpt_neox + title: GPT NeoX + - local: model_doc/gpt_neox_japanese + title: GPT NeoX Japanese + - local: model_doc/gptj + title: GPT-J + - local: model_doc/gpt2 + title: GPT2 + - local: model_doc/gpt_bigcode + title: GPTBigCode + - local: model_doc/gptsan-japanese + title: GPTSAN Japanese + - local: model_doc/gpt-sw3 + title: GPTSw3 + - local: model_doc/herbert + title: HerBERT + - local: model_doc/ibert + title: I-BERT + - local: model_doc/jukebox + title: Jukebox + - local: model_doc/led + title: LED + - local: model_doc/llama + title: LLaMA + - local: model_doc/longformer + title: Longformer + - local: model_doc/longt5 + title: LongT5 + - local: model_doc/luke + title: LUKE + - local: model_doc/m2m_100 + title: M2M100 + - local: model_doc/marian + title: MarianMT + - local: model_doc/markuplm + title: MarkupLM + - local: model_doc/mbart + title: MBart and MBart-50 + - local: model_doc/mega + title: MEGA + - local: model_doc/megatron-bert + title: MegatronBERT + - local: model_doc/megatron_gpt2 + title: MegatronGPT2 + - local: model_doc/mluke + title: mLUKE + - local: model_doc/mobilebert + title: MobileBERT + - local: model_doc/mpnet + title: MPNet + - local: model_doc/mt5 + title: MT5 + - local: model_doc/mvp + title: MVP + - local: model_doc/nezha + title: NEZHA + - local: model_doc/nllb + title: NLLB + - local: model_doc/nllb-moe + title: NLLB-MoE + - local: model_doc/nystromformer + title: Nyströmformer + - local: model_doc/open-llama + title: Open-Llama + - local: model_doc/opt + title: OPT + - local: model_doc/pegasus + title: Pegasus + - local: model_doc/pegasus_x + title: PEGASUS-X + - local: model_doc/phobert + title: PhoBERT + - local: model_doc/plbart + title: PLBart + - local: model_doc/prophetnet + title: ProphetNet + - local: model_doc/qdqbert + title: QDQBert + - local: model_doc/rag + title: RAG + - local: model_doc/realm + title: REALM + - local: model_doc/reformer + title: Reformer + - local: model_doc/rembert + title: RemBERT + - local: model_doc/retribert + title: RetriBERT + - local: model_doc/roberta + title: RoBERTa + - local: model_doc/roberta-prelayernorm + title: RoBERTa-PreLayerNorm + - local: model_doc/roc_bert + title: RoCBert + - local: model_doc/roformer + title: RoFormer + - local: model_doc/rwkv + title: RWKV + - local: model_doc/splinter + title: Splinter + - local: model_doc/squeezebert + title: SqueezeBERT + - local: model_doc/switch_transformers + title: SwitchTransformers + - local: model_doc/t5 + title: T5 + - local: model_doc/t5v1.1 + title: T5v1.1 + - local: model_doc/tapex + title: TAPEX + - local: model_doc/transfo-xl + title: Transformer XL + - local: model_doc/ul2 + title: UL2 + - local: model_doc/xmod + title: X-MOD + - local: model_doc/xglm + title: XGLM + - local: model_doc/xlm + title: XLM + - local: model_doc/xlm-prophetnet + title: XLM-ProphetNet + - local: model_doc/xlm-roberta + title: XLM-RoBERTa + - local: model_doc/xlm-roberta-xl + title: XLM-RoBERTa-XL + - local: model_doc/xlm-v + title: XLM-V + - local: model_doc/xlnet + title: XLNet + - local: model_doc/yoso + title: YOSO + title: Text models + - isExpanded: false + sections: + - local: model_doc/beit + title: BEiT + - local: model_doc/bit + title: BiT + - local: model_doc/conditional_detr + title: Conditional DETR + - local: model_doc/convnext + title: ConvNeXT + - local: model_doc/convnextv2 + title: ConvNeXTV2 + - local: model_doc/cvt + title: CvT + - local: model_doc/deformable_detr + title: Deformable DETR + - local: model_doc/deit + title: DeiT + - local: model_doc/deta + title: DETA + - local: model_doc/detr + title: DETR + - local: model_doc/dinat + title: DiNAT + - local: model_doc/dit + title: DiT + - local: model_doc/dpt + title: DPT + - local: model_doc/efficientformer + title: EfficientFormer + - local: model_doc/efficientnet + title: EfficientNet + - local: model_doc/focalnet + title: FocalNet + - local: model_doc/glpn + title: GLPN + - local: model_doc/imagegpt + title: ImageGPT + - local: model_doc/levit + title: LeViT + - local: model_doc/mask2former + title: Mask2Former + - local: model_doc/maskformer + title: MaskFormer + - local: model_doc/mobilenet_v1 + title: MobileNetV1 + - local: model_doc/mobilenet_v2 + title: MobileNetV2 + - local: model_doc/mobilevit + title: MobileViT + - local: model_doc/nat + title: NAT + - local: model_doc/poolformer + title: PoolFormer + - local: model_doc/regnet + title: RegNet + - local: model_doc/resnet + title: ResNet + - local: model_doc/segformer + title: SegFormer + - local: model_doc/swin + title: Swin Transformer + - local: model_doc/swinv2 + title: Swin Transformer V2 + - local: model_doc/swin2sr + title: Swin2SR + - local: model_doc/table-transformer + title: Table Transformer + - local: model_doc/timesformer + title: TimeSformer + - local: model_doc/upernet + title: UperNet + - local: model_doc/van + title: VAN + - local: model_doc/videomae + title: VideoMAE + - local: model_doc/vit + title: Vision Transformer (ViT) + - local: model_doc/vit_hybrid + title: ViT Hybrid + - local: model_doc/vit_mae + title: ViTMAE + - local: model_doc/vit_msn + title: ViTMSN + - local: model_doc/yolos + title: YOLOS + title: Vision models + - isExpanded: false + sections: + - local: model_doc/audio-spectrogram-transformer + title: Audio Spectrogram Transformer + - local: model_doc/clap + title: CLAP + - local: model_doc/hubert + title: Hubert + - local: model_doc/mctct + title: MCTCT + - local: model_doc/sew + title: SEW + - local: model_doc/sew-d + title: SEW-D + - local: model_doc/speech_to_text + title: Speech2Text + - local: model_doc/speech_to_text_2 + title: Speech2Text2 + - local: model_doc/speecht5 + title: SpeechT5 + - local: model_doc/unispeech + title: UniSpeech + - local: model_doc/unispeech-sat + title: UniSpeech-SAT + - local: model_doc/wav2vec2 + title: Wav2Vec2 + - local: model_doc/wav2vec2-conformer + title: Wav2Vec2-Conformer + - local: model_doc/wav2vec2_phoneme + title: Wav2Vec2Phoneme + - local: model_doc/wavlm + title: WavLM + - local: model_doc/whisper + title: Whisper + - local: model_doc/xls_r + title: XLS-R + - local: model_doc/xlsr_wav2vec2 + title: XLSR-Wav2Vec2 + title: Audio models + - isExpanded: false + sections: + - local: model_doc/align + title: ALIGN + - local: model_doc/altclip + title: AltCLIP + - local: model_doc/blip + title: BLIP + - local: model_doc/blip-2 + title: BLIP-2 + - local: model_doc/bridgetower + title: BridgeTower + - local: model_doc/chinese_clip + title: Chinese-CLIP + - local: model_doc/clip + title: CLIP + - local: model_doc/clipseg + title: CLIPSeg + - local: model_doc/data2vec + title: Data2Vec + - local: model_doc/deplot + title: DePlot + - local: model_doc/donut + title: Donut + - local: model_doc/flava + title: FLAVA + - local: model_doc/git + title: GIT + - local: model_doc/groupvit + title: GroupViT + - local: model_doc/layoutlm + title: LayoutLM + - local: model_doc/layoutlmv2 + title: LayoutLMV2 + - local: model_doc/layoutlmv3 + title: LayoutLMV3 + - local: model_doc/layoutxlm + title: LayoutXLM + - local: model_doc/lilt + title: LiLT + - local: model_doc/lxmert + title: LXMERT + - local: model_doc/matcha + title: MatCha + - local: model_doc/mgp-str + title: MGP-STR + - local: model_doc/oneformer + title: OneFormer + - local: model_doc/owlvit + title: OWL-ViT + - local: model_doc/perceiver + title: Perceiver + - local: model_doc/pix2struct + title: Pix2Struct + - local: model_doc/sam + title: Segment Anything + - local: model_doc/speech-encoder-decoder + title: Speech Encoder Decoder Models + - local: model_doc/tapas + title: TAPAS + - local: model_doc/trocr + title: TrOCR + - local: model_doc/tvlt + title: TVLT + - local: model_doc/vilt + title: ViLT + - local: model_doc/vision-encoder-decoder + title: Vision Encoder Decoder Models + - local: model_doc/vision-text-dual-encoder + title: Vision Text Dual Encoder + - local: model_doc/visual_bert + title: VisualBERT + - local: model_doc/xclip + title: X-CLIP + title: Multimodal models + - isExpanded: false + sections: + - local: model_doc/decision_transformer + title: Decision Transformer + - local: model_doc/trajectory_transformer + title: Trajectory Transformer + title: Reinforcement learning models + - isExpanded: false + sections: + - local: model_doc/informer + title: Informer + - local: model_doc/time_series_transformer + title: Time Series Transformer + title: Time series models + - isExpanded: false + sections: + - local: model_doc/graphormer + title: Graphormer + title: Graph models + title: Models + - sections: + - local: internal/modeling_utils + title: Custom Layers and Utilities + - local: internal/pipelines_utils + title: Utilities for pipelines + - local: internal/tokenization_utils + title: Utilities for Tokenizers + - local: internal/trainer_utils + title: Utilities for Trainer + - local: internal/generation_utils + title: Utilities for Generation + - local: internal/image_processing_utils + title: Utilities for Image Processors + - local: internal/audio_utils + title: Utilities for Audio processing + - local: internal/file_utils + title: General Utilities + - local: internal/time_series_utils + title: Utilities for Time Series + title: Internal Helpers + title: API diff --git a/OPERA/transformers-4.29.2/docs/source/en/accelerate.mdx b/OPERA/transformers-4.29.2/docs/source/en/accelerate.mdx new file mode 100644 index 0000000000000000000000000000000000000000..02e05df3907492dcb1883b7c0d123fd3e6c9cb46 --- /dev/null +++ b/OPERA/transformers-4.29.2/docs/source/en/accelerate.mdx @@ -0,0 +1,132 @@ + + +# Distributed training with 🤗 Accelerate + +As models get bigger, parallelism has emerged as a strategy for training larger models on limited hardware and accelerating training speed by several orders of magnitude. At Hugging Face, we created the [🤗 Accelerate](https://huggingface.co/docs/accelerate) library to help users easily train a 🤗 Transformers model on any type of distributed setup, whether it is multiple GPU's on one machine or multiple GPU's across several machines. In this tutorial, learn how to customize your native PyTorch training loop to enable training in a distributed environment. + +## Setup + +Get started by installing 🤗 Accelerate: + +```bash +pip install accelerate +``` + +Then import and create an [`~accelerate.Accelerator`] object. The [`~accelerate.Accelerator`] will automatically detect your type of distributed setup and initialize all the necessary components for training. You don't need to explicitly place your model on a device. + +```py +>>> from accelerate import Accelerator + +>>> accelerator = Accelerator() +``` + +## Prepare to accelerate + +The next step is to pass all the relevant training objects to the [`~accelerate.Accelerator.prepare`] method. This includes your training and evaluation DataLoaders, a model and an optimizer: + +```py +>>> train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare( +... train_dataloader, eval_dataloader, model, optimizer +... ) +``` + +## Backward + +The last addition is to replace the typical `loss.backward()` in your training loop with 🤗 Accelerate's [`~accelerate.Accelerator.backward`]method: + +```py +>>> for epoch in range(num_epochs): +... for batch in train_dataloader: +... outputs = model(**batch) +... loss = outputs.loss +... accelerator.backward(loss) + +... optimizer.step() +... lr_scheduler.step() +... optimizer.zero_grad() +... progress_bar.update(1) +``` + +As you can see in the following code, you only need to add four additional lines of code to your training loop to enable distributed training! + +```diff ++ from accelerate import Accelerator + from transformers import AdamW, AutoModelForSequenceClassification, get_scheduler + ++ accelerator = Accelerator() + + model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2) + optimizer = AdamW(model.parameters(), lr=3e-5) + +- device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") +- model.to(device) + ++ train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare( ++ train_dataloader, eval_dataloader, model, optimizer ++ ) + + num_epochs = 3 + num_training_steps = num_epochs * len(train_dataloader) + lr_scheduler = get_scheduler( + "linear", + optimizer=optimizer, + num_warmup_steps=0, + num_training_steps=num_training_steps + ) + + progress_bar = tqdm(range(num_training_steps)) + + model.train() + for epoch in range(num_epochs): + for batch in train_dataloader: +- batch = {k: v.to(device) for k, v in batch.items()} + outputs = model(**batch) + loss = outputs.loss +- loss.backward() ++ accelerator.backward(loss) + + optimizer.step() + lr_scheduler.step() + optimizer.zero_grad() + progress_bar.update(1) +``` + +## Train + +Once you've added the relevant lines of code, launch your training in a script or a notebook like Colaboratory. + +### Train with a script + +If you are running your training from a script, run the following command to create and save a configuration file: + +```bash +accelerate config +``` + +Then launch your training with: + +```bash +accelerate launch train.py +``` + +### Train with a notebook + +🤗 Accelerate can also run in a notebook if you're planning on using Colaboratory's TPUs. Wrap all the code responsible for training in a function, and pass it to [`~accelerate.notebook_launcher`]: + +```py +>>> from accelerate import notebook_launcher + +>>> notebook_launcher(training_function) +``` + +For more information about 🤗 Accelerate and it's rich features, refer to the [documentation](https://huggingface.co/docs/accelerate). \ No newline at end of file diff --git a/OPERA/transformers-4.29.2/docs/source/en/add_new_model.mdx b/OPERA/transformers-4.29.2/docs/source/en/add_new_model.mdx new file mode 100644 index 0000000000000000000000000000000000000000..38efaa945ded25f11e86206b9fa00c285b27a292 --- /dev/null +++ b/OPERA/transformers-4.29.2/docs/source/en/add_new_model.mdx @@ -0,0 +1,891 @@ + + +# How to add a model to 🤗 Transformers? + +The 🤗 Transformers library is often able to offer new models thanks to community contributors. But this can be a challenging project and requires an in-depth knowledge of the 🤗 Transformers library and the model to implement. At Hugging Face, we're trying to empower more of the community to actively add models and we've put together this guide to walk you through the process of adding a PyTorch model (make sure you have [PyTorch installed](https://pytorch.org/get-started/locally/)). + + + +If you're interested in implementing a TensorFlow model, take a look at the [How to convert a 🤗 Transformers model to TensorFlow](add_tensorflow_model) guide! + + + +Along the way, you'll: + +- get insights into open-source best practices +- understand the design principles behind one of the most popular deep learning libraries +- learn how to efficiently test large models +- learn how to integrate Python utilities like `black`, `ruff`, and `make fix-copies` to ensure clean and readable code + +A Hugging Face team member will be available to help you along the way so you'll never be alone. 🤗 ❤️ + +To get started, open a [New model addition](https://github.com/huggingface/transformers/issues/new?assignees=&labels=New+model&template=new-model-addition.yml) issue for the model you want to see in 🤗 Transformers. If you're not especially picky about contributing a specific model, you can filter by the [New model label](https://github.com/huggingface/transformers/labels/New%20model) to see if there are any unclaimed model requests and work on it. + +Once you've opened a new model request, the first step is to get familiar with 🤗 Transformers if you aren't already! + +## General overview of 🤗 Transformers + +First, you should get a general overview of 🤗 Transformers. 🤗 Transformers is a very opinionated library, so there is a +chance that you don't agree with some of the library's philosophies or design choices. From our experience, however, we +found that the fundamental design choices and philosophies of the library are crucial to efficiently scale 🤗 +Transformers while keeping maintenance costs at a reasonable level. + +A good first starting point to better understand the library is to read the [documentation of our philosophy](philosophy). As a result of our way of working, there are some choices that we try to apply to all models: + +- Composition is generally favored over-abstraction +- Duplicating code is not always bad if it strongly improves the readability or accessibility of a model +- Model files are as self-contained as possible so that when you read the code of a specific model, you ideally only + have to look into the respective `modeling_....py` file. + +In our opinion, the library's code is not just a means to provide a product, *e.g.* the ability to use BERT for +inference, but also as the very product that we want to improve. Hence, when adding a model, the user is not only the +person that will use your model, but also everybody that will read, try to understand, and possibly tweak your code. + +With this in mind, let's go a bit deeper into the general library design. + +### Overview of models + +To successfully add a model, it is important to understand the interaction between your model and its config, +[`PreTrainedModel`], and [`PretrainedConfig`]. For exemplary purposes, we will +call the model to be added to 🤗 Transformers `BrandNewBert`. + +Let's take a look: + + + +As you can see, we do make use of inheritance in 🤗 Transformers, but we keep the level of abstraction to an absolute +minimum. There are never more than two levels of abstraction for any model in the library. `BrandNewBertModel` +inherits from `BrandNewBertPreTrainedModel` which in turn inherits from [`PreTrainedModel`] and +that's it. As a general rule, we want to make sure that a new model only depends on +[`PreTrainedModel`]. The important functionalities that are automatically provided to every new +model are [`~PreTrainedModel.from_pretrained`] and +[`~PreTrainedModel.save_pretrained`], which are used for serialization and deserialization. All of the +other important functionalities, such as `BrandNewBertModel.forward` should be completely defined in the new +`modeling_brand_new_bert.py` script. Next, we want to make sure that a model with a specific head layer, such as +`BrandNewBertForMaskedLM` does not inherit from `BrandNewBertModel`, but rather uses `BrandNewBertModel` +as a component that can be called in its forward pass to keep the level of abstraction low. Every new model requires a +configuration class, called `BrandNewBertConfig`. This configuration is always stored as an attribute in +[`PreTrainedModel`], and thus can be accessed via the `config` attribute for all classes +inheriting from `BrandNewBertPreTrainedModel`: + +```python +model = BrandNewBertModel.from_pretrained("brandy/brand_new_bert") +model.config # model has access to its config +``` + +Similar to the model, the configuration inherits basic serialization and deserialization functionalities from +[`PretrainedConfig`]. Note that the configuration and the model are always serialized into two +different formats - the model to a *pytorch_model.bin* file and the configuration to a *config.json* file. Calling +[`~PreTrainedModel.save_pretrained`] will automatically call +[`~PretrainedConfig.save_pretrained`], so that both model and configuration are saved. + + +### Code style + +When coding your new model, keep in mind that Transformers is an opinionated library and we have a few quirks of our +own regarding how code should be written :-) + +1. The forward pass of your model should be fully written in the modeling file while being fully independent of other + models in the library. If you want to reuse a block from another model, copy the code and paste it with a + `# Copied from` comment on top (see [here](https://github.com/huggingface/transformers/blob/v4.17.0/src/transformers/models/roberta/modeling_roberta.py#L160) + for a good example). +2. The code should be fully understandable, even by a non-native English speaker. This means you should pick + descriptive variable names and avoid abbreviations. As an example, `activation` is preferred to `act`. + One-letter variable names are strongly discouraged unless it's an index in a for loop. +3. More generally we prefer longer explicit code to short magical one. +4. Avoid subclassing `nn.Sequential` in PyTorch but subclass `nn.Module` and write the forward pass, so that anyone + using your code can quickly debug it by adding print statements or breaking points. +5. Your function signature should be type-annotated. For the rest, good variable names are way more readable and + understandable than type annotations. + +### Overview of tokenizers + +Not quite ready yet :-( This section will be added soon! + +## Step-by-step recipe to add a model to 🤗 Transformers + +Everyone has different preferences of how to port a model so it can be very helpful for you to take a look at summaries +of how other contributors ported models to Hugging Face. Here is a list of community blog posts on how to port a model: + +1. [Porting GPT2 Model](https://medium.com/huggingface/from-tensorflow-to-pytorch-265f40ef2a28) by [Thomas](https://huggingface.co/thomwolf) +2. [Porting WMT19 MT Model](https://huggingface.co/blog/porting-fsmt) by [Stas](https://huggingface.co/stas) + +From experience, we can tell you that the most important things to keep in mind when adding a model are: + +- Don't reinvent the wheel! Most parts of the code you will add for the new 🤗 Transformers model already exist + somewhere in 🤗 Transformers. Take some time to find similar, already existing models and tokenizers you can copy + from. [grep](https://www.gnu.org/software/grep/) and [rg](https://github.com/BurntSushi/ripgrep) are your + friends. Note that it might very well happen that your model's tokenizer is based on one model implementation, and + your model's modeling code on another one. *E.g.* FSMT's modeling code is based on BART, while FSMT's tokenizer code + is based on XLM. +- It's more of an engineering challenge than a scientific challenge. You should spend more time on creating an + efficient debugging environment than trying to understand all theoretical aspects of the model in the paper. +- Ask for help, when you're stuck! Models are the core component of 🤗 Transformers so that we at Hugging Face are more + than happy to help you at every step to add your model. Don't hesitate to ask if you notice you are not making + progress. + +In the following, we try to give you a general recipe that we found most useful when porting a model to 🤗 Transformers. + +The following list is a summary of everything that has to be done to add a model and can be used by you as a To-Do +List: + +☐ (Optional) Understood the model's theoretical aspects
+☐ Prepared 🤗 Transformers dev environment
+☐ Set up debugging environment of the original repository
+☐ Created script that successfully runs the `forward()` pass using the original repository and checkpoint
+☐ Successfully added the model skeleton to 🤗 Transformers
+☐ Successfully converted original checkpoint to 🤗 Transformers checkpoint
+☐ Successfully ran `forward()` pass in 🤗 Transformers that gives identical output to original checkpoint
+☐ Finished model tests in 🤗 Transformers
+☐ Successfully added tokenizer in 🤗 Transformers
+☐ Run end-to-end integration tests
+☐ Finished docs
+☐ Uploaded model weights to the Hub
+☐ Submitted the pull request
+☐ (Optional) Added a demo notebook + +To begin with, we usually recommend to start by getting a good theoretical understanding of `BrandNewBert`. However, +if you prefer to understand the theoretical aspects of the model *on-the-job*, then it is totally fine to directly dive +into the `BrandNewBert`'s code-base. This option might suit you better, if your engineering skills are better than +your theoretical skill, if you have trouble understanding `BrandNewBert`'s paper, or if you just enjoy programming +much more than reading scientific papers. + +### 1. (Optional) Theoretical aspects of BrandNewBert + +You should take some time to read *BrandNewBert's* paper, if such descriptive work exists. There might be large +sections of the paper that are difficult to understand. If this is the case, this is fine - don't worry! The goal is +not to get a deep theoretical understanding of the paper, but to extract the necessary information required to +effectively re-implement the model in 🤗 Transformers. That being said, you don't have to spend too much time on the +theoretical aspects, but rather focus on the practical ones, namely: + +- What type of model is *brand_new_bert*? BERT-like encoder-only model? GPT2-like decoder-only model? BART-like + encoder-decoder model? Look at the [model_summary](model_summary) if you're not familiar with the differences between those. +- What are the applications of *brand_new_bert*? Text classification? Text generation? Seq2Seq tasks, *e.g.,* + summarization? +- What is the novel feature of the model making it different from BERT/GPT-2/BART? +- Which of the already existing [🤗 Transformers models](https://huggingface.co/transformers/#contents) is most + similar to *brand_new_bert*? +- What type of tokenizer is used? A sentencepiece tokenizer? Word piece tokenizer? Is it the same tokenizer as used + for BERT or BART? + +After you feel like you have gotten a good overview of the architecture of the model, you might want to write to the +Hugging Face team with any questions you might have. This might include questions regarding the model's architecture, +its attention layer, etc. We will be more than happy to help you. + +### 2. Next prepare your environment + +1. Fork the [repository](https://github.com/huggingface/transformers) by clicking on the ‘Fork' button on the + repository's page. This creates a copy of the code under your GitHub user account. + +2. Clone your `transformers` fork to your local disk, and add the base repository as a remote: + +```bash +git clone https://github.com/[your Github handle]/transformers.git +cd transformers +git remote add upstream https://github.com/huggingface/transformers.git +``` + +3. Set up a development environment, for instance by running the following command: + +```bash +python -m venv .env +source .env/bin/activate +pip install -e ".[dev]" +``` + +Depending on your OS, and since the number of optional dependencies of Transformers is growing, you might get a +failure with this command. If that's the case make sure to install the Deep Learning framework you are working with +(PyTorch, TensorFlow and/or Flax) then do: + +```bash +pip install -e ".[quality]" +``` + +which should be enough for most use cases. You can then return to the parent directory + +```bash +cd .. +``` + +4. We recommend adding the PyTorch version of *brand_new_bert* to Transformers. To install PyTorch, please follow the + instructions on https://pytorch.org/get-started/locally/. + +**Note:** You don't need to have CUDA installed. Making the new model work on CPU is sufficient. + +5. To port *brand_new_bert*, you will also need access to its original repository: + +```bash +git clone https://github.com/org_that_created_brand_new_bert_org/brand_new_bert.git +cd brand_new_bert +pip install -e . +``` + +Now you have set up a development environment to port *brand_new_bert* to 🤗 Transformers. + +### 3.-4. Run a pretrained checkpoint using the original repository + +At first, you will work on the original *brand_new_bert* repository. Often, the original implementation is very +“researchy”. Meaning that documentation might be lacking and the code can be difficult to understand. But this should +be exactly your motivation to reimplement *brand_new_bert*. At Hugging Face, one of our main goals is to *make people +stand on the shoulders of giants* which translates here very well into taking a working model and rewriting it to make +it as **accessible, user-friendly, and beautiful** as possible. This is the number-one motivation to re-implement +models into 🤗 Transformers - trying to make complex new NLP technology accessible to **everybody**. + +You should start thereby by diving into the original repository. + +Successfully running the official pretrained model in the original repository is often **the most difficult** step. +From our experience, it is very important to spend some time getting familiar with the original code-base. You need to +figure out the following: + +- Where to find the pretrained weights? +- How to load the pretrained weights into the corresponding model? +- How to run the tokenizer independently from the model? +- Trace one forward pass so that you know which classes and functions are required for a simple forward pass. Usually, + you only have to reimplement those functions. +- Be able to locate the important components of the model: Where is the model's class? Are there model sub-classes, + *e.g.* EncoderModel, DecoderModel? Where is the self-attention layer? Are there multiple different attention layers, + *e.g.* *self-attention*, *cross-attention*...? +- How can you debug the model in the original environment of the repo? Do you have to add *print* statements, can you + work with an interactive debugger like *ipdb*, or should you use an efficient IDE to debug the model, like PyCharm? + +It is very important that before you start the porting process, that you can **efficiently** debug code in the original +repository! Also, remember that you are working with an open-source library, so do not hesitate to open an issue, or +even a pull request in the original repository. The maintainers of this repository are most likely very happy about +someone looking into their code! + +At this point, it is really up to you which debugging environment and strategy you prefer to use to debug the original +model. We strongly advise against setting up a costly GPU environment, but simply work on a CPU both when starting to +dive into the original repository and also when starting to write the 🤗 Transformers implementation of the model. Only +at the very end, when the model has already been successfully ported to 🤗 Transformers, one should verify that the +model also works as expected on GPU. + +In general, there are two possible debugging environments for running the original model + +- [Jupyter notebooks](https://jupyter.org/) / [google colab](https://colab.research.google.com/notebooks/intro.ipynb) +- Local python scripts. + +Jupyter notebooks have the advantage that they allow for cell-by-cell execution which can be helpful to better split +logical components from one another and to have faster debugging cycles as intermediate results can be stored. Also, +notebooks are often easier to share with other contributors, which might be very helpful if you want to ask the Hugging +Face team for help. If you are familiar with Jupyter notebooks, we strongly recommend you to work with them. + +The obvious disadvantage of Jupyter notebooks is that if you are not used to working with them you will have to spend +some time adjusting to the new programming environment and that you might not be able to use your known debugging tools +anymore, like `ipdb`. + +For each code-base, a good first step is always to load a **small** pretrained checkpoint and to be able to reproduce a +single forward pass using a dummy integer vector of input IDs as an input. Such a script could look like this (in +pseudocode): + +```python +model = BrandNewBertModel.load_pretrained_checkpoint("/path/to/checkpoint/") +input_ids = [0, 4, 5, 2, 3, 7, 9] # vector of input ids +original_output = model.predict(input_ids) +``` + +Next, regarding the debugging strategy, there are generally a few from which to choose from: + +- Decompose the original model into many small testable components and run a forward pass on each of those for + verification +- Decompose the original model only into the original *tokenizer* and the original *model*, run a forward pass on + those, and use intermediate print statements or breakpoints for verification + +Again, it is up to you which strategy to choose. Often, one or the other is advantageous depending on the original code +base. + +If the original code-base allows you to decompose the model into smaller sub-components, *e.g.* if the original +code-base can easily be run in eager mode, it is usually worth the effort to do so. There are some important advantages +to taking the more difficult road in the beginning: + +- at a later stage when comparing the original model to the Hugging Face implementation, you can verify automatically + for each component individually that the corresponding component of the 🤗 Transformers implementation matches instead + of relying on visual comparison via print statements +- it can give you some rope to decompose the big problem of porting a model into smaller problems of just porting + individual components and thus structure your work better +- separating the model into logical meaningful components will help you to get a better overview of the model's design + and thus to better understand the model +- at a later stage those component-by-component tests help you to ensure that no regression occurs as you continue + changing your code + +[Lysandre's](https://gist.github.com/LysandreJik/db4c948f6b4483960de5cbac598ad4ed) integration checks for ELECTRA +gives a nice example of how this can be done. + +However, if the original code-base is very complex or only allows intermediate components to be run in a compiled mode, +it might be too time-consuming or even impossible to separate the model into smaller testable sub-components. A good +example is [T5's MeshTensorFlow](https://github.com/tensorflow/mesh/tree/master/mesh_tensorflow) library which is +very complex and does not offer a simple way to decompose the model into its sub-components. For such libraries, one +often relies on verifying print statements. + +No matter which strategy you choose, the recommended procedure is often the same in that you should start to debug the +starting layers first and the ending layers last. + +It is recommended that you retrieve the output, either by print statements or sub-component functions, of the following +layers in the following order: + +1. Retrieve the input IDs passed to the model +2. Retrieve the word embeddings +3. Retrieve the input of the first Transformer layer +4. Retrieve the output of the first Transformer layer +5. Retrieve the output of the following n - 1 Transformer layers +6. Retrieve the output of the whole BrandNewBert Model + +Input IDs should thereby consists of an array of integers, *e.g.* `input_ids = [0, 4, 4, 3, 2, 4, 1, 7, 19]` + +The outputs of the following layers often consist of multi-dimensional float arrays and can look like this: + +``` +[[ + [-0.1465, -0.6501, 0.1993, ..., 0.1451, 0.3430, 0.6024], + [-0.4417, -0.5920, 0.3450, ..., -0.3062, 0.6182, 0.7132], + [-0.5009, -0.7122, 0.4548, ..., -0.3662, 0.6091, 0.7648], + ..., + [-0.5613, -0.6332, 0.4324, ..., -0.3792, 0.7372, 0.9288], + [-0.5416, -0.6345, 0.4180, ..., -0.3564, 0.6992, 0.9191], + [-0.5334, -0.6403, 0.4271, ..., -0.3339, 0.6533, 0.8694]]], +``` + +We expect that every model added to 🤗 Transformers passes a couple of integration tests, meaning that the original +model and the reimplemented version in 🤗 Transformers have to give the exact same output up to a precision of 0.001! +Since it is normal that the exact same model written in different libraries can give a slightly different output +depending on the library framework, we accept an error tolerance of 1e-3 (0.001). It is not enough if the model gives +nearly the same output, they have to be the almost identical. Therefore, you will certainly compare the intermediate +outputs of the 🤗 Transformers version multiple times against the intermediate outputs of the original implementation of +*brand_new_bert* in which case an **efficient** debugging environment of the original repository is absolutely +important. Here is some advice is to make your debugging environment as efficient as possible. + +- Find the best way of debugging intermediate results. Is the original repository written in PyTorch? Then you should + probably take the time to write a longer script that decomposes the original model into smaller sub-components to + retrieve intermediate values. Is the original repository written in Tensorflow 1? Then you might have to rely on + TensorFlow print operations like [tf.print](https://www.tensorflow.org/api_docs/python/tf/print) to output + intermediate values. Is the original repository written in Jax? Then make sure that the model is **not jitted** when + running the forward pass, *e.g.* check-out [this link](https://github.com/google/jax/issues/196). +- Use the smallest pretrained checkpoint you can find. The smaller the checkpoint, the faster your debug cycle + becomes. It is not efficient if your pretrained model is so big that your forward pass takes more than 10 seconds. + In case only very large checkpoints are available, it might make more sense to create a dummy model in the new + environment with randomly initialized weights and save those weights for comparison with the 🤗 Transformers version + of your model +- Make sure you are using the easiest way of calling a forward pass in the original repository. Ideally, you want to + find the function in the original repository that **only** calls a single forward pass, *i.e.* that is often called + `predict`, `evaluate`, `forward` or `__call__`. You don't want to debug a function that calls `forward` + multiple times, *e.g.* to generate text, like `autoregressive_sample`, `generate`. +- Try to separate the tokenization from the model's *forward* pass. If the original repository shows examples where + you have to input a string, then try to find out where in the forward call the string input is changed to input ids + and start from this point. This might mean that you have to possibly write a small script yourself or change the + original code so that you can directly input the ids instead of an input string. +- Make sure that the model in your debugging setup is **not** in training mode, which often causes the model to yield + random outputs due to multiple dropout layers in the model. Make sure that the forward pass in your debugging + environment is **deterministic** so that the dropout layers are not used. Or use *transformers.utils.set_seed* + if the old and new implementations are in the same framework. + +The following section gives you more specific details/tips on how you can do this for *brand_new_bert*. + +### 5.-14. Port BrandNewBert to 🤗 Transformers + +Next, you can finally start adding new code to 🤗 Transformers. Go into the clone of your 🤗 Transformers' fork: + +```bash +cd transformers +``` + +In the special case that you are adding a model whose architecture exactly matches the model architecture of an +existing model you only have to add a conversion script as described in [this section](#write-a-conversion-script). +In this case, you can just re-use the whole model architecture of the already existing model. + +Otherwise, let's start generating a new model. You have two choices here: + +- `transformers-cli add-new-model-like` to add a new model like an existing one +- `transformers-cli add-new-model` to add a new model from our template (will look like BERT or Bart depending on the type of model you select) + +In both cases, you will be prompted with a questionnaire to fill the basic information of your model. The second command requires to install `cookiecutter`, you can find more information on it [here](https://github.com/huggingface/transformers/tree/main/templates/adding_a_new_model). + +**Open a Pull Request on the main huggingface/transformers repo** + +Before starting to adapt the automatically generated code, now is the time to open a “Work in progress (WIP)” pull +request, *e.g.* “[WIP] Add *brand_new_bert*”, in 🤗 Transformers so that you and the Hugging Face team can work +side-by-side on integrating the model into 🤗 Transformers. + +You should do the following: + +1. Create a branch with a descriptive name from your main branch + +```bash +git checkout -b add_brand_new_bert +``` + +2. Commit the automatically generated code: + +```bash +git add . +git commit +``` + +3. Fetch and rebase to current main + +```bash +git fetch upstream +git rebase upstream/main +``` + +4. Push the changes to your account using: + +```bash +git push -u origin a-descriptive-name-for-my-changes +``` + +5. Once you are satisfied, go to the webpage of your fork on GitHub. Click on “Pull request”. Make sure to add the + GitHub handle of some members of the Hugging Face team as reviewers, so that the Hugging Face team gets notified for + future changes. + +6. Change the PR into a draft by clicking on “Convert to draft” on the right of the GitHub pull request web page. + +In the following, whenever you have done some progress, don't forget to commit your work and push it to your account so +that it shows in the pull request. Additionally, you should make sure to update your work with the current main from +time to time by doing: + +```bash +git fetch upstream +git merge upstream/main +``` + +In general, all questions you might have regarding the model or your implementation should be asked in your PR and +discussed/solved in the PR. This way, the Hugging Face team will always be notified when you are committing new code or +if you have a question. It is often very helpful to point the Hugging Face team to your added code so that the Hugging +Face team can efficiently understand your problem or question. + +To do so, you can go to the “Files changed” tab where you see all of your changes, go to a line regarding which you +want to ask a question, and click on the “+” symbol to add a comment. Whenever a question or problem has been solved, +you can click on the “Resolve” button of the created comment. + +In the same way, the Hugging Face team will open comments when reviewing your code. We recommend asking most questions +on GitHub on your PR. For some very general questions that are not very useful for the public, feel free to ping the +Hugging Face team by Slack or email. + +**5. Adapt the generated models code for brand_new_bert** + +At first, we will focus only on the model itself and not care about the tokenizer. All the relevant code should be +found in the generated files `src/transformers/models/brand_new_bert/modeling_brand_new_bert.py` and +`src/transformers/models/brand_new_bert/configuration_brand_new_bert.py`. + +Now you can finally start coding :). The generated code in +`src/transformers/models/brand_new_bert/modeling_brand_new_bert.py` will either have the same architecture as BERT if +it's an encoder-only model or BART if it's an encoder-decoder model. At this point, you should remind yourself what +you've learned in the beginning about the theoretical aspects of the model: *How is the model different from BERT or +BART?*". Implement those changes which often means to change the *self-attention* layer, the order of the normalization +layer, etc… Again, it is often useful to look at the similar architecture of already existing models in Transformers to +get a better feeling of how your model should be implemented. + +**Note** that at this point, you don't have to be very sure that your code is fully correct or clean. Rather, it is +advised to add a first *unclean*, copy-pasted version of the original code to +`src/transformers/models/brand_new_bert/modeling_brand_new_bert.py` until you feel like all the necessary code is +added. From our experience, it is much more efficient to quickly add a first version of the required code and +improve/correct the code iteratively with the conversion script as described in the next section. The only thing that +has to work at this point is that you can instantiate the 🤗 Transformers implementation of *brand_new_bert*, *i.e.* the +following command should work: + +```python +from transformers import BrandNewBertModel, BrandNewBertConfig + +model = BrandNewBertModel(BrandNewBertConfig()) +``` + +The above command will create a model according to the default parameters as defined in `BrandNewBertConfig()` with +random weights, thus making sure that the `init()` methods of all components works. + +Note that all random initialization should happen in the `_init_weights` method of your `BrandnewBertPreTrainedModel` +class. It should initialize all leaf modules depending on the variables of the config. Here is an example with the +BERT `_init_weights` method: + +```py +def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) +``` + +You can have some more custom schemes if you need a special initialization for some modules. For instance, in +`Wav2Vec2ForPreTraining`, the last two linear layers need to have the initialization of the regular PyTorch `nn.Linear` +but all the other ones should use an initialization as above. This is coded like this: + +```py +def _init_weights(self, module): + """Initialize the weights""" + if isinstnace(module, Wav2Vec2ForPreTraining): + module.project_hid.reset_parameters() + module.project_q.reset_parameters() + module.project_hid._is_hf_initialized = True + module.project_q._is_hf_initialized = True + elif isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() +``` + +The `_is_hf_initialized` flag is internally used to make sure we only initialize a submodule once. By setting it to +`True` for `module.project_q` and `module.project_hid`, we make sure the custom initialization we did is not overridden later on, +the `_init_weights` function won't be applied to them. + +**6. Write a conversion script** + +Next, you should write a conversion script that lets you convert the checkpoint you used to debug *brand_new_bert* in +the original repository to a checkpoint compatible with your just created 🤗 Transformers implementation of +*brand_new_bert*. It is not advised to write the conversion script from scratch, but rather to look through already +existing conversion scripts in 🤗 Transformers for one that has been used to convert a similar model that was written in +the same framework as *brand_new_bert*. Usually, it is enough to copy an already existing conversion script and +slightly adapt it for your use case. Don't hesitate to ask the Hugging Face team to point you to a similar already +existing conversion script for your model. + +- If you are porting a model from TensorFlow to PyTorch, a good starting point might be BERT's conversion script [here](https://github.com/huggingface/transformers/blob/7acfa95afb8194f8f9c1f4d2c6028224dbed35a2/src/transformers/models/bert/modeling_bert.py#L91) +- If you are porting a model from PyTorch to PyTorch, a good starting point might be BART's conversion script [here](https://github.com/huggingface/transformers/blob/main/src/transformers/models/bart/convert_bart_original_pytorch_checkpoint_to_pytorch.py) + +In the following, we'll quickly explain how PyTorch models store layer weights and define layer names. In PyTorch, the +name of a layer is defined by the name of the class attribute you give the layer. Let's define a dummy model in +PyTorch, called `SimpleModel` as follows: + +```python +from torch import nn + + +class SimpleModel(nn.Module): + def __init__(self): + super().__init__() + self.dense = nn.Linear(10, 10) + self.intermediate = nn.Linear(10, 10) + self.layer_norm = nn.LayerNorm(10) +``` + +Now we can create an instance of this model definition which will fill all weights: `dense`, `intermediate`, +`layer_norm` with random weights. We can print the model to see its architecture + +```python +model = SimpleModel() + +print(model) +``` + +This will print out the following: + +``` +SimpleModel( + (dense): Linear(in_features=10, out_features=10, bias=True) + (intermediate): Linear(in_features=10, out_features=10, bias=True) + (layer_norm): LayerNorm((10,), eps=1e-05, elementwise_affine=True) +) +``` + +We can see that the layer names are defined by the name of the class attribute in PyTorch. You can print out the weight +values of a specific layer: + +```python +print(model.dense.weight.data) +``` + +to see that the weights were randomly initialized + +``` +tensor([[-0.0818, 0.2207, -0.0749, -0.0030, 0.0045, -0.1569, -0.1598, 0.0212, + -0.2077, 0.2157], + [ 0.1044, 0.0201, 0.0990, 0.2482, 0.3116, 0.2509, 0.2866, -0.2190, + 0.2166, -0.0212], + [-0.2000, 0.1107, -0.1999, -0.3119, 0.1559, 0.0993, 0.1776, -0.1950, + -0.1023, -0.0447], + [-0.0888, -0.1092, 0.2281, 0.0336, 0.1817, -0.0115, 0.2096, 0.1415, + -0.1876, -0.2467], + [ 0.2208, -0.2352, -0.1426, -0.2636, -0.2889, -0.2061, -0.2849, -0.0465, + 0.2577, 0.0402], + [ 0.1502, 0.2465, 0.2566, 0.0693, 0.2352, -0.0530, 0.1859, -0.0604, + 0.2132, 0.1680], + [ 0.1733, -0.2407, -0.1721, 0.1484, 0.0358, -0.0633, -0.0721, -0.0090, + 0.2707, -0.2509], + [-0.1173, 0.1561, 0.2945, 0.0595, -0.1996, 0.2988, -0.0802, 0.0407, + 0.1829, -0.1568], + [-0.1164, -0.2228, -0.0403, 0.0428, 0.1339, 0.0047, 0.1967, 0.2923, + 0.0333, -0.0536], + [-0.1492, -0.1616, 0.1057, 0.1950, -0.2807, -0.2710, -0.1586, 0.0739, + 0.2220, 0.2358]]). +``` + +In the conversion script, you should fill those randomly initialized weights with the exact weights of the +corresponding layer in the checkpoint. *E.g.* + +```python +# retrieve matching layer weights, e.g. by +# recursive algorithm +layer_name = "dense" +pretrained_weight = array_of_dense_layer + +model_pointer = getattr(model, "dense") + +model_pointer.weight.data = torch.from_numpy(pretrained_weight) +``` + +While doing so, you must verify that each randomly initialized weight of your PyTorch model and its corresponding +pretrained checkpoint weight exactly match in both **shape and name**. To do so, it is **necessary** to add assert +statements for the shape and print out the names of the checkpoints weights. E.g. you should add statements like: + +```python +assert ( + model_pointer.weight.shape == pretrained_weight.shape +), f"Pointer shape of random weight {model_pointer.shape} and array shape of checkpoint weight {pretrained_weight.shape} mismatched" +``` + +Besides, you should also print out the names of both weights to make sure they match, *e.g.* + +```python +logger.info(f"Initialize PyTorch weight {layer_name} from {pretrained_weight.name}") +``` + +If either the shape or the name doesn't match, you probably assigned the wrong checkpoint weight to a randomly +initialized layer of the 🤗 Transformers implementation. + +An incorrect shape is most likely due to an incorrect setting of the config parameters in `BrandNewBertConfig()` that +do not exactly match those that were used for the checkpoint you want to convert. However, it could also be that +PyTorch's implementation of a layer requires the weight to be transposed beforehand. + +Finally, you should also check that **all** required weights are initialized and print out all checkpoint weights that +were not used for initialization to make sure the model is correctly converted. It is completely normal, that the +conversion trials fail with either a wrong shape statement or wrong name assignment. This is most likely because either +you used incorrect parameters in `BrandNewBertConfig()`, have a wrong architecture in the 🤗 Transformers +implementation, you have a bug in the `init()` functions of one of the components of the 🤗 Transformers +implementation or you need to transpose one of the checkpoint weights. + +This step should be iterated with the previous step until all weights of the checkpoint are correctly loaded in the +Transformers model. Having correctly loaded the checkpoint into the 🤗 Transformers implementation, you can then save +the model under a folder of your choice `/path/to/converted/checkpoint/folder` that should then contain both a +`pytorch_model.bin` file and a `config.json` file: + +```python +model.save_pretrained("/path/to/converted/checkpoint/folder") +``` + +**7. Implement the forward pass** + +Having managed to correctly load the pretrained weights into the 🤗 Transformers implementation, you should now make +sure that the forward pass is correctly implemented. In [Get familiar with the original repository](#34-run-a-pretrained-checkpoint-using-the-original-repository), you have already created a script that runs a forward +pass of the model using the original repository. Now you should write an analogous script using the 🤗 Transformers +implementation instead of the original one. It should look as follows: + +```python +model = BrandNewBertModel.from_pretrained("/path/to/converted/checkpoint/folder") +input_ids = [0, 4, 4, 3, 2, 4, 1, 7, 19] +output = model(input_ids).last_hidden_states +``` + +It is very likely that the 🤗 Transformers implementation and the original model implementation don't give the exact +same output the very first time or that the forward pass throws an error. Don't be disappointed - it's expected! First, +you should make sure that the forward pass doesn't throw any errors. It often happens that the wrong dimensions are +used leading to a *Dimensionality mismatch* error or that the wrong data type object is used, *e.g.* `torch.long` +instead of `torch.float32`. Don't hesitate to ask the Hugging Face team for help, if you don't manage to solve +certain errors. + +The final part to make sure the 🤗 Transformers implementation works correctly is to ensure that the outputs are +equivalent to a precision of `1e-3`. First, you should ensure that the output shapes are identical, *i.e.* +`outputs.shape` should yield the same value for the script of the 🤗 Transformers implementation and the original +implementation. Next, you should make sure that the output values are identical as well. This one of the most difficult +parts of adding a new model. Common mistakes why the outputs are not identical are: + +- Some layers were not added, *i.e.* an *activation* layer was not added, or the residual connection was forgotten +- The word embedding matrix was not tied +- The wrong positional embeddings are used because the original implementation uses on offset +- Dropout is applied during the forward pass. To fix this make sure *model.training is False* and that no dropout + layer is falsely activated during the forward pass, *i.e.* pass *self.training* to [PyTorch's functional dropout](https://pytorch.org/docs/stable/nn.functional.html?highlight=dropout#torch.nn.functional.dropout) + +The best way to fix the problem is usually to look at the forward pass of the original implementation and the 🤗 +Transformers implementation side-by-side and check if there are any differences. Ideally, you should debug/print out +intermediate outputs of both implementations of the forward pass to find the exact position in the network where the 🤗 +Transformers implementation shows a different output than the original implementation. First, make sure that the +hard-coded `input_ids` in both scripts are identical. Next, verify that the outputs of the first transformation of +the `input_ids` (usually the word embeddings) are identical. And then work your way up to the very last layer of the +network. At some point, you will notice a difference between the two implementations, which should point you to the bug +in the 🤗 Transformers implementation. From our experience, a simple and efficient way is to add many print statements +in both the original implementation and 🤗 Transformers implementation, at the same positions in the network +respectively, and to successively remove print statements showing the same values for intermediate presentations. + +When you're confident that both implementations yield the same output, verifying the outputs with +`torch.allclose(original_output, output, atol=1e-3)`, you're done with the most difficult part! Congratulations - the +work left to be done should be a cakewalk 😊. + +**8. Adding all necessary model tests** + +At this point, you have successfully added a new model. However, it is very much possible that the model does not yet +fully comply with the required design. To make sure, the implementation is fully compatible with 🤗 Transformers, all +common tests should pass. The Cookiecutter should have automatically added a test file for your model, probably under +the same `tests/models/brand_new_bert/test_modeling_brand_new_bert.py`. Run this test file to verify that all common +tests pass: + +```bash +pytest tests/models/brand_new_bert/test_modeling_brand_new_bert.py +``` + +Having fixed all common tests, it is now crucial to ensure that all the nice work you have done is well tested, so that + +- a) The community can easily understand your work by looking at specific tests of *brand_new_bert* +- b) Future changes to your model will not break any important feature of the model. + +At first, integration tests should be added. Those integration tests essentially do the same as the debugging scripts +you used earlier to implement the model to 🤗 Transformers. A template of those model tests is already added by the +Cookiecutter, called `BrandNewBertModelIntegrationTests` and only has to be filled out by you. To ensure that those +tests are passing, run + +```bash +RUN_SLOW=1 pytest -sv tests/models/brand_new_bert/test_modeling_brand_new_bert.py::BrandNewBertModelIntegrationTests +``` + + + +In case you are using Windows, you should replace `RUN_SLOW=1` with `SET RUN_SLOW=1` + + + +Second, all features that are special to *brand_new_bert* should be tested additionally in a separate test under +`BrandNewBertModelTester`/``BrandNewBertModelTest`. This part is often forgotten but is extremely useful in two +ways: + +- It helps to transfer the knowledge you have acquired during the model addition to the community by showing how the + special features of *brand_new_bert* should work. +- Future contributors can quickly test changes to the model by running those special tests. + + +**9. Implement the tokenizer** + +Next, we should add the tokenizer of *brand_new_bert*. Usually, the tokenizer is equivalent or very similar to an +already existing tokenizer of 🤗 Transformers. + +It is very important to find/extract the original tokenizer file and to manage to load this file into the 🤗 +Transformers' implementation of the tokenizer. + +To ensure that the tokenizer works correctly, it is recommended to first create a script in the original repository +that inputs a string and returns the `input_ids``. It could look similar to this (in pseudo-code): + +```python +input_str = "This is a long example input string containing special characters .$?-, numbers 2872 234 12 and words." +model = BrandNewBertModel.load_pretrained_checkpoint("/path/to/checkpoint/") +input_ids = model.tokenize(input_str) +``` + +You might have to take a deeper look again into the original repository to find the correct tokenizer function or you +might even have to do changes to your clone of the original repository to only output the `input_ids`. Having written +a functional tokenization script that uses the original repository, an analogous script for 🤗 Transformers should be +created. It should look similar to this: + +```python +from transformers import BrandNewBertTokenizer + +input_str = "This is a long example input string containing special characters .$?-, numbers 2872 234 12 and words." + +tokenizer = BrandNewBertTokenizer.from_pretrained("/path/to/tokenizer/folder/") + +input_ids = tokenizer(input_str).input_ids +``` + +When both `input_ids` yield the same values, as a final step a tokenizer test file should also be added. + +Analogous to the modeling test files of *brand_new_bert*, the tokenization test files of *brand_new_bert* should +contain a couple of hard-coded integration tests. + +**10. Run End-to-end integration tests** + +Having added the tokenizer, you should also add a couple of end-to-end integration tests using both the model and the +tokenizer to `tests/models/brand_new_bert/test_modeling_brand_new_bert.py` in 🤗 Transformers. +Such a test should show on a meaningful +text-to-text sample that the 🤗 Transformers implementation works as expected. A meaningful text-to-text sample can +include *e.g.* a source-to-target-translation pair, an article-to-summary pair, a question-to-answer pair, etc… If none +of the ported checkpoints has been fine-tuned on a downstream task it is enough to simply rely on the model tests. In a +final step to ensure that the model is fully functional, it is advised that you also run all tests on GPU. It can +happen that you forgot to add some `.to(self.device)` statements to internal tensors of the model, which in such a +test would show in an error. In case you have no access to a GPU, the Hugging Face team can take care of running those +tests for you. + +**11. Add Docstring** + +Now, all the necessary functionality for *brand_new_bert* is added - you're almost done! The only thing left to add is +a nice docstring and a doc page. The Cookiecutter should have added a template file called +`docs/source/model_doc/brand_new_bert.mdx` that you should fill out. Users of your model will usually first look at +this page before using your model. Hence, the documentation must be understandable and concise. It is very useful for +the community to add some *Tips* to show how the model should be used. Don't hesitate to ping the Hugging Face team +regarding the docstrings. + +Next, make sure that the docstring added to `src/transformers/models/brand_new_bert/modeling_brand_new_bert.py` is +correct and included all necessary inputs and outputs. We have a detailed guide about writing documentation and our docstring format [here](writing-documentation). It is always to good to remind oneself that documentation should +be treated at least as carefully as the code in 🤗 Transformers since the documentation is usually the first contact +point of the community with the model. + +**Code refactor** + +Great, now you have added all the necessary code for *brand_new_bert*. At this point, you should correct some potential +incorrect code style by running: + +```bash +make style +``` + +and verify that your coding style passes the quality check: + +```bash +make quality +``` + +There are a couple of other very strict design tests in 🤗 Transformers that might still be failing, which shows up in +the tests of your pull request. This is often because of some missing information in the docstring or some incorrect +naming. The Hugging Face team will surely help you if you're stuck here. + +Lastly, it is always a good idea to refactor one's code after having ensured that the code works correctly. With all +tests passing, now it's a good time to go over the added code again and do some refactoring. + +You have now finished the coding part, congratulation! 🎉 You are Awesome! 😎 + +**12. Upload the models to the model hub** + +In this final part, you should convert and upload all checkpoints to the model hub and add a model card for each +uploaded model checkpoint. You can get familiar with the hub functionalities by reading our [Model sharing and uploading Page](model_sharing). You should work alongside the Hugging Face team here to decide on a fitting name for each +checkpoint and to get the required access rights to be able to upload the model under the author's organization of +*brand_new_bert*. The `push_to_hub` method, present in all models in `transformers`, is a quick and efficient way to push your checkpoint to the hub. A little snippet is pasted below: + +```python +brand_new_bert.push_to_hub("brand_new_bert") +# Uncomment the following line to push to an organization. +# brand_new_bert.push_to_hub("/brand_new_bert") +``` + +It is worth spending some time to create fitting model cards for each checkpoint. The model cards should highlight the +specific characteristics of this particular checkpoint, *e.g.* On which dataset was the checkpoint +pretrained/fine-tuned on? On what down-stream task should the model be used? And also include some code on how to +correctly use the model. + +**13. (Optional) Add notebook** + +It is very helpful to add a notebook that showcases in-detail how *brand_new_bert* can be used for inference and/or +fine-tuned on a downstream task. This is not mandatory to merge your PR, but very useful for the community. + +**14. Submit your finished PR** + +You're done programming now and can move to the last step, which is getting your PR merged into main. Usually, the +Hugging Face team should have helped you already at this point, but it is worth taking some time to give your finished +PR a nice description and eventually add comments to your code, if you want to point out certain design choices to your +reviewer. + +### Share your work!! + +Now, it's time to get some credit from the community for your work! Having completed a model addition is a major +contribution to Transformers and the whole NLP community. Your code and the ported pre-trained models will certainly be +used by hundreds and possibly even thousands of developers and researchers. You should be proud of your work and share +your achievement with the community. + +**You have made another model that is super easy to access for everyone in the community! 🤯** diff --git a/OPERA/transformers-4.29.2/docs/source/en/add_new_pipeline.mdx b/OPERA/transformers-4.29.2/docs/source/en/add_new_pipeline.mdx new file mode 100644 index 0000000000000000000000000000000000000000..b0cc2cd0ff72e7bea9afead2c6f7a28cb9d28a95 --- /dev/null +++ b/OPERA/transformers-4.29.2/docs/source/en/add_new_pipeline.mdx @@ -0,0 +1,254 @@ + + +# How to create a custom pipeline? + +In this guide, we will see how to create a custom pipeline and share it on the [Hub](hf.co/models) or add it to the +🤗 Transformers library. + +First and foremost, you need to decide the raw entries the pipeline will be able to take. It can be strings, raw bytes, +dictionaries or whatever seems to be the most likely desired input. Try to keep these inputs as pure Python as possible +as it makes compatibility easier (even through other languages via JSON). Those will be the `inputs` of the +pipeline (`preprocess`). + +Then define the `outputs`. Same policy as the `inputs`. The simpler, the better. Those will be the outputs of +`postprocess` method. + +Start by inheriting the base class `Pipeline` with the 4 methods needed to implement `preprocess`, +`_forward`, `postprocess`, and `_sanitize_parameters`. + + +```python +from transformers import Pipeline + + +class MyPipeline(Pipeline): + def _sanitize_parameters(self, **kwargs): + preprocess_kwargs = {} + if "maybe_arg" in kwargs: + preprocess_kwargs["maybe_arg"] = kwargs["maybe_arg"] + return preprocess_kwargs, {}, {} + + def preprocess(self, inputs, maybe_arg=2): + model_input = Tensor(inputs["input_ids"]) + return {"model_input": model_input} + + def _forward(self, model_inputs): + # model_inputs == {"model_input": model_input} + outputs = self.model(**model_inputs) + # Maybe {"logits": Tensor(...)} + return outputs + + def postprocess(self, model_outputs): + best_class = model_outputs["logits"].softmax(-1) + return best_class +``` + +The structure of this breakdown is to support relatively seamless support for CPU/GPU, while supporting doing +pre/postprocessing on the CPU on different threads + +`preprocess` will take the originally defined inputs, and turn them into something feedable to the model. It might +contain more information and is usually a `Dict`. + +`_forward` is the implementation detail and is not meant to be called directly. `forward` is the preferred +called method as it contains safeguards to make sure everything is working on the expected device. If anything is +linked to a real model it belongs in the `_forward` method, anything else is in the preprocess/postprocess. + +`postprocess` methods will take the output of `_forward` and turn it into the final output that was decided +earlier. + +`_sanitize_parameters` exists to allow users to pass any parameters whenever they wish, be it at initialization +time `pipeline(...., maybe_arg=4)` or at call time `pipe = pipeline(...); output = pipe(...., maybe_arg=4)`. + +The returns of `_sanitize_parameters` are the 3 dicts of kwargs that will be passed directly to `preprocess`, +`_forward`, and `postprocess`. Don't fill anything if the caller didn't call with any extra parameter. That +allows to keep the default arguments in the function definition which is always more "natural". + +A classic example would be a `top_k` argument in the post processing in classification tasks. + +```python +>>> pipe = pipeline("my-new-task") +>>> pipe("This is a test") +[{"label": "1-star", "score": 0.8}, {"label": "2-star", "score": 0.1}, {"label": "3-star", "score": 0.05} +{"label": "4-star", "score": 0.025}, {"label": "5-star", "score": 0.025}] + +>>> pipe("This is a test", top_k=2) +[{"label": "1-star", "score": 0.8}, {"label": "2-star", "score": 0.1}] +``` + +In order to achieve that, we'll update our `postprocess` method with a default parameter to `5`. and edit +`_sanitize_parameters` to allow this new parameter. + + +```python +def postprocess(self, model_outputs, top_k=5): + best_class = model_outputs["logits"].softmax(-1) + # Add logic to handle top_k + return best_class + + +def _sanitize_parameters(self, **kwargs): + preprocess_kwargs = {} + if "maybe_arg" in kwargs: + preprocess_kwargs["maybe_arg"] = kwargs["maybe_arg"] + + postprocess_kwargs = {} + if "top_k" in kwargs: + postprocess_kwargs["top_k"] = kwargs["top_k"] + return preprocess_kwargs, {}, postprocess_kwargs +``` + +Try to keep the inputs/outputs very simple and ideally JSON-serializable as it makes the pipeline usage very easy +without requiring users to understand new kind of objects. It's also relatively common to support many different types +of arguments for ease of use (audio files, can be filenames, URLs or pure bytes) + + + +## Adding it to the list of supported tasks + +To register your `new-task` to the list of supported tasks, you have to add it to the `PIPELINE_REGISTRY`: + +```python +from transformers.pipelines import PIPELINE_REGISTRY + +PIPELINE_REGISTRY.register_pipeline( + "new-task", + pipeline_class=MyPipeline, + pt_model=AutoModelForSequenceClassification, +) +``` + +You can specify a default model if you want, in which case it should come with a specific revision (which can be the name of a branch or a commit hash, here we took `"abcdef"`) as well as the type: + +```python +PIPELINE_REGISTRY.register_pipeline( + "new-task", + pipeline_class=MyPipeline, + pt_model=AutoModelForSequenceClassification, + default={"pt": ("user/awesome_model", "abcdef")}, + type="text", # current support type: text, audio, image, multimodal +) +``` + +## Share your pipeline on the Hub + +To share your custom pipeline on the Hub, you just have to save the custom code of your `Pipeline` subclass in a +python file. For instance, let's say we want to use a custom pipeline for sentence pair classification like this: + +```py +import numpy as np + +from transformers import Pipeline + + +def softmax(outputs): + maxes = np.max(outputs, axis=-1, keepdims=True) + shifted_exp = np.exp(outputs - maxes) + return shifted_exp / shifted_exp.sum(axis=-1, keepdims=True) + + +class PairClassificationPipeline(Pipeline): + def _sanitize_parameters(self, **kwargs): + preprocess_kwargs = {} + if "second_text" in kwargs: + preprocess_kwargs["second_text"] = kwargs["second_text"] + return preprocess_kwargs, {}, {} + + def preprocess(self, text, second_text=None): + return self.tokenizer(text, text_pair=second_text, return_tensors=self.framework) + + def _forward(self, model_inputs): + return self.model(**model_inputs) + + def postprocess(self, model_outputs): + logits = model_outputs.logits[0].numpy() + probabilities = softmax(logits) + + best_class = np.argmax(probabilities) + label = self.model.config.id2label[best_class] + score = probabilities[best_class].item() + logits = logits.tolist() + return {"label": label, "score": score, "logits": logits} +``` + +The implementation is framework agnostic, and will work for PyTorch and TensorFlow models. If we have saved this in +a file named `pair_classification.py`, we can then import it and register it like this: + +```py +from pair_classification import PairClassificationPipeline +from transformers.pipelines import PIPELINE_REGISTRY +from transformers import AutoModelForSequenceClassification, TFAutoModelForSequenceClassification + +PIPELINE_REGISTRY.register_pipeline( + "pair-classification", + pipeline_class=PairClassificationPipeline, + pt_model=AutoModelForSequenceClassification, + tf_model=TFAutoModelForSequenceClassification, +) +``` + +Once this is done, we can use it with a pretrained model. For instance `sgugger/finetuned-bert-mrpc` has been +fine-tuned on the MRPC dataset, which classifies pairs of sentences as paraphrases or not. + +```py +from transformers import pipeline + +classifier = pipeline("pair-classification", model="sgugger/finetuned-bert-mrpc") +``` + +Then we can share it on the Hub by using the `save_pretrained` method in a `Repository`: + +```py +from huggingface_hub import Repository + +repo = Repository("test-dynamic-pipeline", clone_from="{your_username}/test-dynamic-pipeline") +classifier.save_pretrained("test-dynamic-pipeline") +repo.push_to_hub() +``` + +This will copy the file where you defined `PairClassificationPipeline` inside the folder `"test-dynamic-pipeline"`, +along with saving the model and tokenizer of the pipeline, before pushing everything in the repository +`{your_username}/test-dynamic-pipeline`. After that anyone can use it as long as they provide the option +`trust_remote_code=True`: + +```py +from transformers import pipeline + +classifier = pipeline(model="{your_username}/test-dynamic-pipeline", trust_remote_code=True) +``` + +## Add the pipeline to 🤗 Transformers + +If you want to contribute your pipeline to 🤗 Transformers, you will need to add a new module in the `pipelines` submodule +with the code of your pipeline, then add it in the list of tasks defined in `pipelines/__init__.py`. + +Then you will need to add tests. Create a new file `tests/test_pipelines_MY_PIPELINE.py` with example with the other tests. + +The `run_pipeline_test` function will be very generic and run on small random models on every possible +architecture as defined by `model_mapping` and `tf_model_mapping`. + +This is very important to test future compatibility, meaning if someone adds a new model for +`XXXForQuestionAnswering` then the pipeline test will attempt to run on it. Because the models are random it's +impossible to check for actual values, that's why there is a helper `ANY` that will simply attempt to match the +output of the pipeline TYPE. + +You also *need* to implement 2 (ideally 4) tests. + +- `test_small_model_pt` : Define 1 small model for this pipeline (doesn't matter if the results don't make sense) + and test the pipeline outputs. The results should be the same as `test_small_model_tf`. +- `test_small_model_tf` : Define 1 small model for this pipeline (doesn't matter if the results don't make sense) + and test the pipeline outputs. The results should be the same as `test_small_model_pt`. +- `test_large_model_pt` (`optional`): Tests the pipeline on a real pipeline where the results are supposed to + make sense. These tests are slow and should be marked as such. Here the goal is to showcase the pipeline and to make + sure there is no drift in future releases. +- `test_large_model_tf` (`optional`): Tests the pipeline on a real pipeline where the results are supposed to + make sense. These tests are slow and should be marked as such. Here the goal is to showcase the pipeline and to make + sure there is no drift in future releases. diff --git a/OPERA/transformers-4.29.2/docs/source/en/add_tensorflow_model.mdx b/OPERA/transformers-4.29.2/docs/source/en/add_tensorflow_model.mdx new file mode 100644 index 0000000000000000000000000000000000000000..f59b318b3f4b0b23021d43d73e7083a0dd58b09a --- /dev/null +++ b/OPERA/transformers-4.29.2/docs/source/en/add_tensorflow_model.mdx @@ -0,0 +1,353 @@ + + +# How to convert a 🤗 Transformers model to TensorFlow? + +Having multiple frameworks available to use with 🤗 Transformers gives you flexibility to play their strengths when +designing your application, but it implies that compatibility must be added on a per-model basis. The good news is that +adding TensorFlow compatibility to an existing model is simpler than [adding a new model from scratch](add_new_model)! +Whether you wish to have a deeper understanding of large TensorFlow models, make a major open-source contribution, or +enable TensorFlow for your model of choice, this guide is for you. + +This guide empowers you, a member of our community, to contribute TensorFlow model weights and/or +architectures to be used in 🤗 Transformers, with minimal supervision from the Hugging Face team. Writing a new model +is no small feat, but hopefully this guide will make it less of a rollercoaster 🎢 and more of a walk in the park 🚶. +Harnessing our collective experiences is absolutely critical to make this process increasingly easier, and thus we +highly encourage that you suggest improvements to this guide! + +Before you dive deeper, it is recommended that you check the following resources if you're new to 🤗 Transformers: +- [General overview of 🤗 Transformers](add_new_model#general-overview-of-transformers) +- [Hugging Face's TensorFlow Philosophy](https://huggingface.co/blog/tensorflow-philosophy) + +In the remainder of this guide, you will learn what's needed to add a new TensorFlow model architecture, the +procedure to convert PyTorch into TensorFlow model weights, and how to efficiently debug mismatches across ML +frameworks. Let's get started! + + + +Are you unsure whether the model you wish to use already has a corresponding TensorFlow architecture? + +  + +Check the `model_type` field of the `config.json` of your model of choice +([example](https://huggingface.co/bert-base-uncased/blob/main/config.json#L14)). If the corresponding model folder in +🤗 Transformers has a file whose name starts with "modeling_tf", it means that it has a corresponding TensorFlow +architecture ([example](https://github.com/huggingface/transformers/tree/main/src/transformers/models/bert)). + + + + +## Step-by-step guide to add TensorFlow model architecture code + +There are many ways to design a large model architecture, and multiple ways of implementing said design. However, +you might recall from our [general overview of 🤗 Transformers](add_new_model#general-overview-of-transformers) +that we are an opinionated bunch - the ease of use of 🤗 Transformers relies on consistent design choices. From +experience, we can tell you a few important things about adding TensorFlow models: + +- Don't reinvent the wheel! More often that not, there are at least two reference implementations you should check: the +PyTorch equivalent of the model you are implementing and other TensorFlow models for the same class of problems. +- Great model implementations survive the test of time. This doesn't happen because the code is pretty, but rather +because the code is clear, easy to debug and build upon. If you make the life of the maintainers easy with your +TensorFlow implementation, by replicating the same patterns as in other TensorFlow models and minimizing the mismatch +to the PyTorch implementation, you ensure your contribution will be long lived. +- Ask for help when you're stuck! The 🤗 Transformers team is here to help, and we've probably found solutions to the same +problems you're facing. + +Here's an overview of the steps needed to add a TensorFlow model architecture: +1. Select the model you wish to convert +2. Prepare transformers dev environment +3. (Optional) Understand theoretical aspects and the existing implementation +4. Implement the model architecture +5. Implement model tests +6. Submit the pull request +7. (Optional) Build demos and share with the world + +### 1.-3. Prepare your model contribution + +**1. Select the model you wish to convert** + +Let's start off with the basics: the first thing you need to know is the architecture you want to convert. If you +don't have your eyes set on a specific architecture, asking the 🤗 Transformers team for suggestions is a great way to +maximize your impact - we will guide you towards the most prominent architectures that are missing on the TensorFlow +side. If the specific model you want to use with TensorFlow already has a TensorFlow architecture implementation in +🤗 Transformers but is lacking weights, feel free to jump straight into the +[weight conversion section](#adding-tensorflow-weights-to-hub) +of this page. + +For simplicity, the remainder of this guide assumes you've decided to contribute with the TensorFlow version of +*BrandNewBert* (the same example as in the [guide](add_new_model) to add a new model from scratch). + + + +Before starting the work on a TensorFlow model architecture, double-check that there is no ongoing effort to do so. +You can search for `BrandNewBert` on the +[pull request GitHub page](https://github.com/huggingface/transformers/pulls?q=is%3Apr) to confirm that there is no +TensorFlow-related pull request. + + + + +**2. Prepare transformers dev environment** + +Having selected the model architecture, open an draft PR to signal your intention to work on it. Follow the +instructions below to set up your environment and open a draft PR. + +1. Fork the [repository](https://github.com/huggingface/transformers) by clicking on the 'Fork' button on the + repository's page. This creates a copy of the code under your GitHub user account. + +2. Clone your `transformers` fork to your local disk, and add the base repository as a remote: + +```bash +git clone https://github.com/[your Github handle]/transformers.git +cd transformers +git remote add upstream https://github.com/huggingface/transformers.git +``` + +3. Set up a development environment, for instance by running the following command: + +```bash +python -m venv .env +source .env/bin/activate +pip install -e ".[dev]" +``` + +Depending on your OS, and since the number of optional dependencies of Transformers is growing, you might get a +failure with this command. If that's the case make sure to install TensorFlow then do: + +```bash +pip install -e ".[quality]" +``` + +**Note:** You don't need to have CUDA installed. Making the new model work on CPU is sufficient. + +4. Create a branch with a descriptive name from your main branch + +```bash +git checkout -b add_tf_brand_new_bert +``` + +5. Fetch and rebase to current main + +```bash +git fetch upstream +git rebase upstream/main +``` + +6. Add an empty `.py` file in `transformers/src/models/brandnewbert/` named `modeling_tf_brandnewbert.py`. This will +be your TensorFlow model file. + +7. Push the changes to your account using: + +```bash +git add . +git commit -m "initial commit" +git push -u origin add_tf_brand_new_bert +``` + +8. Once you are satisfied, go to the webpage of your fork on GitHub. Click on “Pull request”. Make sure to add the + GitHub handle of some members of the Hugging Face team as reviewers, so that the Hugging Face team gets notified for + future changes. + +9. Change the PR into a draft by clicking on “Convert to draft” on the right of the GitHub pull request web page. + + +Now you have set up a development environment to port *BrandNewBert* to TensorFlow in 🤗 Transformers. + + +**3. (Optional) Understand theoretical aspects and the existing implementation** + +You should take some time to read *BrandNewBert's* paper, if such descriptive work exists. There might be large +sections of the paper that are difficult to understand. If this is the case, this is fine - don't worry! The goal is +not to get a deep theoretical understanding of the paper, but to extract the necessary information required to +effectively re-implement the model in 🤗 Transformers using TensorFlow. That being said, you don't have to spend too +much time on the theoretical aspects, but rather focus on the practical ones, namely the existing model documentation +page (e.g. [model docs for BERT](model_doc/bert)). + +After you've grasped the basics of the models you are about to implement, it's important to understand the existing +implementation. This is a great chance to confirm that a working implementation matches your expectations for the +model, as well as to foresee technical challenges on the TensorFlow side. + +It's perfectly natural that you feel overwhelmed with the amount of information that you've just absorbed. It is +definitely not a requirement that you understand all facets of the model at this stage. Nevertheless, we highly +encourage you to clear any pressing questions in our [forum](https://discuss.huggingface.co/). + + +### 4. Model implementation + +Now it's time to finally start coding. Our suggested starting point is the PyTorch file itself: copy the contents of +`modeling_brand_new_bert.py` inside `src/transformers/models/brand_new_bert/` into +`modeling_tf_brand_new_bert.py`. The goal of this section is to modify the file and update the import structure of +🤗 Transformers such that you can import `TFBrandNewBert` and +`TFBrandNewBert.from_pretrained(model_repo, from_pt=True)` successfully loads a working TensorFlow *BrandNewBert* model. + +Sadly, there is no prescription to convert a PyTorch model into TensorFlow. You can, however, follow our selection of +tips to make the process as smooth as possible: +- Prepend `TF` to the name of all classes (e.g. `BrandNewBert` becomes `TFBrandNewBert`). +- Most PyTorch operations have a direct TensorFlow replacement. For example, `torch.nn.Linear` corresponds to + `tf.keras.layers.Dense`, `torch.nn.Dropout` corresponds to `tf.keras.layers.Dropout`, etc. If you're not sure + about a specific operation, you can use the [TensorFlow documentation](https://www.tensorflow.org/api_docs/python/tf) + or the [PyTorch documentation](https://pytorch.org/docs/stable/). +- Look for patterns in the 🤗 Transformers codebase. If you come across a certain operation that doesn't have a direct + replacement, the odds are that someone else already had the same problem. +- By default, keep the same variable names and structure as in PyTorch. This will make it easier to debug, track + issues, and add fixes down the line. +- Some layers have different default values in each framework. A notable example is the batch normalization layer's + epsilon (`1e-5` in [PyTorch](https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm2d.html#torch.nn.BatchNorm2d) + and `1e-3` in [TensorFlow](https://www.tensorflow.org/api_docs/python/tf/keras/layers/BatchNormalization)). + Double-check the documentation! +- PyTorch's `nn.Parameter` variables typically need to be initialized within TF Layer's `build()`. See the following + example: [PyTorch](https://github.com/huggingface/transformers/blob/655f72a6896c0533b1bdee519ed65a059c2425ac/src/transformers/models/vit_mae/modeling_vit_mae.py#L212) / + [TensorFlow](https://github.com/huggingface/transformers/blob/655f72a6896c0533b1bdee519ed65a059c2425ac/src/transformers/models/vit_mae/modeling_tf_vit_mae.py#L220) +- If the PyTorch model has a `#copied from ...` on top of a function, the odds are that your TensorFlow model can also + borrow that function from the architecture it was copied from, assuming it has a TensorFlow architecture. +- Assigning the `name` attribute correctly in TensorFlow functions is critical to do the `from_pt=True` weight + cross-loading. `name` is almost always the name of the corresponding variable in the PyTorch code. If `name` is not + properly set, you will see it in the error message when loading the model weights. +- The logic of the base model class, `BrandNewBertModel`, will actually reside in `TFBrandNewBertMainLayer`, a Keras + layer subclass ([example](https://github.com/huggingface/transformers/blob/4fd32a1f499e45f009c2c0dea4d81c321cba7e02/src/transformers/models/bert/modeling_tf_bert.py#L719)). + `TFBrandNewBertModel` will simply be a wrapper around this layer. +- Keras models need to be built in order to load pretrained weights. For that reason, `TFBrandNewBertPreTrainedModel` + will need to hold an example of inputs to the model, the `dummy_inputs` + ([example](https://github.com/huggingface/transformers/blob/4fd32a1f499e45f009c2c0dea4d81c321cba7e02/src/transformers/models/bert/modeling_tf_bert.py#L916)). +- If you get stuck, ask for help - we're here to help you! 🤗 + +In addition to the model file itself, you will also need to add the pointers to the model classes and related +documentation pages. You can complete this part entirely following the patterns in other PRs +([example](https://github.com/huggingface/transformers/pull/18020/files)). Here's a list of the needed manual +changes: +- Include all public classes of *BrandNewBert* in `src/transformers/__init__.py` +- Add *BrandNewBert* classes to the corresponding Auto classes in `src/transformers/models/auto/modeling_tf_auto.py` +- Include the modeling file in the documentation test file list in `utils/documentation_tests.txt` +- Add the lazy loading classes related to *BrandNewBert* in `src/transformers/utils/dummy_tf_objects.py` +- Update the import structures for the public classes in `src/transformers/models/brand_new_bert/__init__.py` +- Add the documentation pointers to the public methods of *BrandNewBert* in `docs/source/en/model_doc/brand_new_bert.mdx` +- Add yourself to the list of contributors to *BrandNewBert* in `docs/source/en/model_doc/brand_new_bert.mdx` +- Finally, add a green tick ✅ to the TensorFlow column of *BrandNewBert* in `docs/source/en/index.mdx` + +When you're happy with your implementation, run the following checklist to confirm that your model architecture is +ready: +1. All layers that behave differently at train time (e.g. Dropout) are called with a `training` argument, which is +propagated all the way from the top-level classes +2. You have used `#copied from ...` whenever possible +3. `TFBrandNewBertMainLayer` and all classes that use it have their `call` function decorated with `@unpack_inputs` +4. `TFBrandNewBertMainLayer` is decorated with `@keras_serializable` +5. A TensorFlow model can be loaded from PyTorch weights using `TFBrandNewBert.from_pretrained(model_repo, from_pt=True)` +6. You can call the TensorFlow model using the expected input format + + +### 5. Add model tests + +Hurray, you've implemented a TensorFlow model! Now it's time to add tests to make sure that your model behaves as +expected. As in the previous section, we suggest you start by copying the `test_modeling_brand_new_bert.py` file in +`tests/models/brand_new_bert/` into `test_modeling_tf_brand_new_bert.py`, and continue by making the necessary +TensorFlow replacements. For now, in all `.from_pretrained()` calls, you should use the `from_pt=True` flag to load +the existing PyTorch weights. + +After you're done, it's time for the moment of truth: run the tests! 😬 + +```bash +NVIDIA_TF32_OVERRIDE=0 RUN_SLOW=1 RUN_PT_TF_CROSS_TESTS=1 \ +py.test -vv tests/models/brand_new_bert/test_modeling_tf_brand_new_bert.py +``` + +The most likely outcome is that you'll see a bunch of errors. Don't worry, this is expected! Debugging ML models is +notoriously hard, and the key ingredient to success is patience (and `breakpoint()`). In our experience, the hardest +problems arise from subtle mismatches between ML frameworks, for which we have a few pointers at the end of this guide. +In other cases, a general test might not be directly applicable to your model, in which case we suggest an override +at the model test class level. Regardless of the issue, don't hesitate to ask for help in your draft pull request if +you're stuck. + +When all tests pass, congratulations, your model is nearly ready to be added to the 🤗 Transformers library! 🎉 + +### 6.-7. Ensure everyone can use your model + +**6. Submit the pull request** + +Once you're done with the implementation and the tests, it's time to submit a pull request. Before pushing your code, +run our code formatting utility, `make fixup` 🪄. This will automatically fix any formatting issues, which would cause +our automatic checks to fail. + +It's now time to convert your draft pull request into a real pull request. To do so, click on the "Ready for +review" button and add Joao (`@gante`) and Matt (`@Rocketknight1`) as reviewers. A model pull request will need +at least 3 reviewers, but they will take care of finding appropriate additional reviewers for your model. + +After all reviewers are happy with the state of your PR, the final action point is to remove the `from_pt=True` flag in +`.from_pretrained()` calls. Since there are no TensorFlow weights, you will have to add them! Check the section +below for instructions on how to do it. + +Finally, when the TensorFlow weights get merged, you have at least 3 reviewer approvals, and all CI checks are +green, double-check the tests locally one last time + +```bash +NVIDIA_TF32_OVERRIDE=0 RUN_SLOW=1 RUN_PT_TF_CROSS_TESTS=1 \ +py.test -vv tests/models/brand_new_bert/test_modeling_tf_brand_new_bert.py +``` + +and we will merge your PR! Congratulations on the milestone 🎉 + +**7. (Optional) Build demos and share with the world** + +One of the hardest parts about open-source is discovery. How can the other users learn about the existence of your +fabulous TensorFlow contribution? With proper communication, of course! 📣 + +There are two main ways to share your model with the community: +- Build demos. These include Gradio demos, notebooks, and other fun ways to show off your model. We highly + encourage you to add a notebook to our [community-driven demos](https://huggingface.co/docs/transformers/community). +- Share stories on social media like Twitter and LinkedIn. You should be proud of your work and share + your achievement with the community - your model can now be used by thousands of engineers and researchers around + the world 🌍! We will be happy to retweet your posts and help you share your work with the community. + + +## Adding TensorFlow weights to 🤗 Hub + +Assuming that the TensorFlow model architecture is available in 🤗 Transformers, converting PyTorch weights into +TensorFlow weights is a breeze! + +Here's how to do it: +1. Make sure you are logged into your Hugging Face account in your terminal. You can log in using the command + `huggingface-cli login` (you can find your access tokens [here](https://huggingface.co/settings/tokens)) +2. Run `transformers-cli pt-to-tf --model-name foo/bar`, where `foo/bar` is the name of the model repository + containing the PyTorch weights you want to convert +3. Tag `@joaogante` and `@Rocketknight1` in the 🤗 Hub PR the command above has just created + +That's it! 🎉 + + +## Debugging mismatches across ML frameworks 🐛 + +At some point, when adding a new architecture or when creating TensorFlow weights for an existing architecture, you +might come across errors compaining about mismatches between PyTorch and TensorFlow. You might even decide to open the +model architecture code for the two frameworks, and find that they look identical. What's going on? 🤔 + +First of all, let's talk about why understanding these mismatches matters. Many community members will use 🤗 +Transformers models out of the box, and trust that our models behave as expected. When there is a large mismatch +between the two frameworks, it implies that the model is not following the reference implementation for at least one +of the frameworks. This might lead to silent failures, in which the model runs but has poor performance. This is +arguably worse than a model that fails to run at all! To that end, we aim at having a framework mismatch smaller than +`1e-5` at all stages of the model. + +As in other numerical problems, the devil is in the details. And as in any detail-oriented craft, the secret +ingredient here is patience. Here is our suggested workflow for when you come across this type of issues: +1. Locate the source of mismatches. The model you're converting probably has near identical inner variables up to a + certain point. Place `breakpoint()` statements in the two frameworks' architectures, and compare the values of the + numerical variables in a top-down fashion until you find the source of the problems. +2. Now that you've pinpointed the source of the issue, get in touch with the 🤗 Transformers team. It is possible + that we've seen a similar problem before and can promptly provide a solution. As a fallback, scan popular pages + like StackOverflow and GitHub issues. +3. If there is no solution in sight, it means you'll have to go deeper. The good news is that you've located the + issue, so you can focus on the problematic instruction, abstracting away the rest of the model! The bad news is + that you'll have to venture into the source implementation of said instruction. In some cases, you might find an + issue with a reference implementation - don't abstain from opening an issue in the upstream repository. + +In some cases, in dicussion with the 🤗 Transformers team, we might find that the fixing the mismatch is infeasible. +When the mismatch is very small in the output layers of the model (but potentially large in the hidden states), we +might decide to ignore it in favor of distributing the model. The `pt-to-tf` CLI mentioned above has a `--max-error` +flag to override the error message at weight conversion time. diff --git a/OPERA/transformers-4.29.2/docs/source/en/attention.mdx b/OPERA/transformers-4.29.2/docs/source/en/attention.mdx new file mode 100644 index 0000000000000000000000000000000000000000..d6542b3be4548171be53f90bac8b0e3669ce13bb --- /dev/null +++ b/OPERA/transformers-4.29.2/docs/source/en/attention.mdx @@ -0,0 +1,57 @@ + + +# Attention mechanisms + +Most transformer models use full attention in the sense that the attention matrix is square. It can be a big +computational bottleneck when you have long texts. Longformer and reformer are models that try to be more efficient and +use a sparse version of the attention matrix to speed up training. + +## LSH attention + +[Reformer](#reformer) uses LSH attention. In the softmax(QK^t), only the biggest elements (in the softmax +dimension) of the matrix QK^t are going to give useful contributions. So for each query q in Q, we can consider only +the keys k in K that are close to q. A hash function is used to determine if q and k are close. The attention mask is +modified to mask the current token (except at the first position), because it will give a query and a key equal (so +very similar to each other). Since the hash can be a bit random, several hash functions are used in practice +(determined by a n_rounds parameter) and then are averaged together. + +## Local attention + +[Longformer](#longformer) uses local attention: often, the local context (e.g., what are the two tokens to the +left and right?) is enough to take action for a given token. Also, by stacking attention layers that have a small +window, the last layer will have a receptive field of more than just the tokens in the window, allowing them to build a +representation of the whole sentence. + +Some preselected input tokens are also given global attention: for those few tokens, the attention matrix can access +all tokens and this process is symmetric: all other tokens have access to those specific tokens (on top of the ones in +their local window). This is shown in Figure 2d of the paper, see below for a sample attention mask: + +
+ +
+ +Using those attention matrices with less parameters then allows the model to have inputs having a bigger sequence +length. + +## Other tricks + +### Axial positional encodings + +[Reformer](#reformer) uses axial positional encodings: in traditional transformer models, the positional encoding +E is a matrix of size \\(l\\) by \\(d\\), \\(l\\) being the sequence length and \\(d\\) the dimension of the +hidden state. If you have very long texts, this matrix can be huge and take way too much space on the GPU. To alleviate +that, axial positional encodings consist of factorizing that big matrix E in two smaller matrices E1 and E2, with +dimensions \\(l_{1} \times d_{1}\\) and \\(l_{2} \times d_{2}\\), such that \\(l_{1} \times l_{2} = l\\) and +\\(d_{1} + d_{2} = d\\) (with the product for the lengths, this ends up being way smaller). The embedding for time +step \\(j\\) in E is obtained by concatenating the embeddings for timestep \\(j \% l1\\) in E1 and \\(j // l1\\) +in E2. diff --git a/OPERA/transformers-4.29.2/docs/source/en/autoclass_tutorial.mdx b/OPERA/transformers-4.29.2/docs/source/en/autoclass_tutorial.mdx new file mode 100644 index 0000000000000000000000000000000000000000..6b44e41a856c617dada68778678bc2140c8bd63e --- /dev/null +++ b/OPERA/transformers-4.29.2/docs/source/en/autoclass_tutorial.mdx @@ -0,0 +1,139 @@ + + +# Load pretrained instances with an AutoClass + +With so many different Transformer architectures, it can be challenging to create one for your checkpoint. As a part of 🤗 Transformers core philosophy to make the library easy, simple and flexible to use, an `AutoClass` automatically infer and load the correct architecture from a given checkpoint. The `from_pretrained()` method lets you quickly load a pretrained model for any architecture so you don't have to devote time and resources to train a model from scratch. Producing this type of checkpoint-agnostic code means if your code works for one checkpoint, it will work with another checkpoint - as long as it was trained for a similar task - even if the architecture is different. + + + +Remember, architecture refers to the skeleton of the model and checkpoints are the weights for a given architecture. For example, [BERT](https://huggingface.co/bert-base-uncased) is an architecture, while `bert-base-uncased` is a checkpoint. Model is a general term that can mean either architecture or checkpoint. + + + +In this tutorial, learn to: + +* Load a pretrained tokenizer. +* Load a pretrained image processor +* Load a pretrained feature extractor. +* Load a pretrained processor. +* Load a pretrained model. + +## AutoTokenizer + +Nearly every NLP task begins with a tokenizer. A tokenizer converts your input into a format that can be processed by the model. + +Load a tokenizer with [`AutoTokenizer.from_pretrained`]: + +```py +>>> from transformers import AutoTokenizer + +>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") +``` + +Then tokenize your input as shown below: + +```py +>>> sequence = "In a hole in the ground there lived a hobbit." +>>> print(tokenizer(sequence)) +{'input_ids': [101, 1999, 1037, 4920, 1999, 1996, 2598, 2045, 2973, 1037, 7570, 10322, 4183, 1012, 102], + 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]} +``` + +## AutoImageProcessor + +For vision tasks, an image processor processes the image into the correct input format. + +```py +>>> from transformers import AutoImageProcessor + +>>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224") +``` + + +## AutoFeatureExtractor + +For audio tasks, a feature extractor processes the audio signal the correct input format. + +Load a feature extractor with [`AutoFeatureExtractor.from_pretrained`]: + +```py +>>> from transformers import AutoFeatureExtractor + +>>> feature_extractor = AutoFeatureExtractor.from_pretrained( +... "ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition" +... ) +``` + +## AutoProcessor + +Multimodal tasks require a processor that combines two types of preprocessing tools. For example, the [LayoutLMV2](model_doc/layoutlmv2) model requires an image processor to handle images and a tokenizer to handle text; a processor combines both of them. + +Load a processor with [`AutoProcessor.from_pretrained`]: + +```py +>>> from transformers import AutoProcessor + +>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased") +``` + +## AutoModel + + + +Finally, the `AutoModelFor` classes let you load a pretrained model for a given task (see [here](model_doc/auto) for a complete list of available tasks). For example, load a model for sequence classification with [`AutoModelForSequenceClassification.from_pretrained`]: + +```py +>>> from transformers import AutoModelForSequenceClassification + +>>> model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased") +``` + +Easily reuse the same checkpoint to load an architecture for a different task: + +```py +>>> from transformers import AutoModelForTokenClassification + +>>> model = AutoModelForTokenClassification.from_pretrained("distilbert-base-uncased") +``` + + + +For PyTorch models, the `from_pretrained()` method uses `torch.load()` which internally uses `pickle` and is known to be insecure. In general, never load a model that could have come from an untrusted source, or that could have been tampered with. This security risk is partially mitigated for public models hosted on the Hugging Face Hub, which are [scanned for malware](https://huggingface.co/docs/hub/security-malware) at each commit. See the [Hub documentation](https://huggingface.co/docs/hub/security) for best practices like [signed commit verification](https://huggingface.co/docs/hub/security-gpg#signing-commits-with-gpg) with GPG. + +TensorFlow and Flax checkpoints are not affected, and can be loaded within PyTorch architectures using the `from_tf` and `from_flax` kwargs for the `from_pretrained` method to circumvent this issue. + + + +Generally, we recommend using the `AutoTokenizer` class and the `AutoModelFor` class to load pretrained instances of models. This will ensure you load the correct architecture every time. In the next [tutorial](preprocessing), learn how to use your newly loaded tokenizer, image processor, feature extractor and processor to preprocess a dataset for fine-tuning. + + +Finally, the `TFAutoModelFor` classes let you load a pretrained model for a given task (see [here](model_doc/auto) for a complete list of available tasks). For example, load a model for sequence classification with [`TFAutoModelForSequenceClassification.from_pretrained`]: + +```py +>>> from transformers import TFAutoModelForSequenceClassification + +>>> model = TFAutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased") +``` + +Easily reuse the same checkpoint to load an architecture for a different task: + +```py +>>> from transformers import TFAutoModelForTokenClassification + +>>> model = TFAutoModelForTokenClassification.from_pretrained("distilbert-base-uncased") +``` + +Generally, we recommend using the `AutoTokenizer` class and the `TFAutoModelFor` class to load pretrained instances of models. This will ensure you load the correct architecture every time. In the next [tutorial](preprocessing), learn how to use your newly loaded tokenizer, image processor, feature extractor and processor to preprocess a dataset for fine-tuning. + + diff --git a/OPERA/transformers-4.29.2/docs/source/en/benchmarks.mdx b/OPERA/transformers-4.29.2/docs/source/en/benchmarks.mdx new file mode 100644 index 0000000000000000000000000000000000000000..244112001f5ccfd0b9b991a26d975bf8aabf6411 --- /dev/null +++ b/OPERA/transformers-4.29.2/docs/source/en/benchmarks.mdx @@ -0,0 +1,383 @@ + + +# Benchmarks + + + +Hugging Face's Benchmarking tools are deprecated and it is advised to use external Benchmarking libraries to measure the speed +and memory complexity of Transformer models. + + + +[[open-in-colab]] + +Let's take a look at how 🤗 Transformers models can be benchmarked, best practices, and already available benchmarks. + +A notebook explaining in more detail how to benchmark 🤗 Transformers models can be found [here](https://github.com/huggingface/notebooks/tree/main/examples/benchmark.ipynb). + +## How to benchmark 🤗 Transformers models + +The classes [`PyTorchBenchmark`] and [`TensorFlowBenchmark`] allow to flexibly benchmark 🤗 Transformers models. The benchmark classes allow us to measure the _peak memory usage_ and _required time_ for both _inference_ and _training_. + + + +Hereby, _inference_ is defined by a single forward pass, and _training_ is defined by a single forward pass and +backward pass. + + + +The benchmark classes [`PyTorchBenchmark`] and [`TensorFlowBenchmark`] expect an object of type [`PyTorchBenchmarkArguments`] and +[`TensorFlowBenchmarkArguments`], respectively, for instantiation. [`PyTorchBenchmarkArguments`] and [`TensorFlowBenchmarkArguments`] are data classes and contain all relevant configurations for their corresponding benchmark class. In the following example, it is shown how a BERT model of type _bert-base-cased_ can be benchmarked. + + + +```py +>>> from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments + +>>> args = PyTorchBenchmarkArguments(models=["bert-base-uncased"], batch_sizes=[8], sequence_lengths=[8, 32, 128, 512]) +>>> benchmark = PyTorchBenchmark(args) +``` + + +```py +>>> from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments + +>>> args = TensorFlowBenchmarkArguments( +... models=["bert-base-uncased"], batch_sizes=[8], sequence_lengths=[8, 32, 128, 512] +... ) +>>> benchmark = TensorFlowBenchmark(args) +``` + + + +Here, three arguments are given to the benchmark argument data classes, namely `models`, `batch_sizes`, and +`sequence_lengths`. The argument `models` is required and expects a `list` of model identifiers from the +[model hub](https://huggingface.co/models) The `list` arguments `batch_sizes` and `sequence_lengths` define +the size of the `input_ids` on which the model is benchmarked. There are many more parameters that can be configured +via the benchmark argument data classes. For more detail on these one can either directly consult the files +`src/transformers/benchmark/benchmark_args_utils.py`, `src/transformers/benchmark/benchmark_args.py` (for PyTorch) +and `src/transformers/benchmark/benchmark_args_tf.py` (for Tensorflow). Alternatively, running the following shell +commands from root will print out a descriptive list of all configurable parameters for PyTorch and Tensorflow +respectively. + + + +```bash +python examples/pytorch/benchmarking/run_benchmark.py --help +``` + +An instantiated benchmark object can then simply be run by calling `benchmark.run()`. + +```py +>>> results = benchmark.run() +>>> print(results) +==================== INFERENCE - SPEED - RESULT ==================== +-------------------------------------------------------------------------------- +Model Name Batch Size Seq Length Time in s +-------------------------------------------------------------------------------- +bert-base-uncased 8 8 0.006 +bert-base-uncased 8 32 0.006 +bert-base-uncased 8 128 0.018 +bert-base-uncased 8 512 0.088 +-------------------------------------------------------------------------------- + +==================== INFERENCE - MEMORY - RESULT ==================== +-------------------------------------------------------------------------------- +Model Name Batch Size Seq Length Memory in MB +-------------------------------------------------------------------------------- +bert-base-uncased 8 8 1227 +bert-base-uncased 8 32 1281 +bert-base-uncased 8 128 1307 +bert-base-uncased 8 512 1539 +-------------------------------------------------------------------------------- + +==================== ENVIRONMENT INFORMATION ==================== + +- transformers_version: 2.11.0 +- framework: PyTorch +- use_torchscript: False +- framework_version: 1.4.0 +- python_version: 3.6.10 +- system: Linux +- cpu: x86_64 +- architecture: 64bit +- date: 2020-06-29 +- time: 08:58:43.371351 +- fp16: False +- use_multiprocessing: True +- only_pretrain_model: False +- cpu_ram_mb: 32088 +- use_gpu: True +- num_gpus: 1 +- gpu: TITAN RTX +- gpu_ram_mb: 24217 +- gpu_power_watts: 280.0 +- gpu_performance_state: 2 +- use_tpu: False +``` + + +```bash +python examples/tensorflow/benchmarking/run_benchmark_tf.py --help +``` + +An instantiated benchmark object can then simply be run by calling `benchmark.run()`. + +```py +>>> results = benchmark.run() +>>> print(results) +>>> results = benchmark.run() +>>> print(results) +==================== INFERENCE - SPEED - RESULT ==================== +-------------------------------------------------------------------------------- +Model Name Batch Size Seq Length Time in s +-------------------------------------------------------------------------------- +bert-base-uncased 8 8 0.005 +bert-base-uncased 8 32 0.008 +bert-base-uncased 8 128 0.022 +bert-base-uncased 8 512 0.105 +-------------------------------------------------------------------------------- + +==================== INFERENCE - MEMORY - RESULT ==================== +-------------------------------------------------------------------------------- +Model Name Batch Size Seq Length Memory in MB +-------------------------------------------------------------------------------- +bert-base-uncased 8 8 1330 +bert-base-uncased 8 32 1330 +bert-base-uncased 8 128 1330 +bert-base-uncased 8 512 1770 +-------------------------------------------------------------------------------- + +==================== ENVIRONMENT INFORMATION ==================== + +- transformers_version: 2.11.0 +- framework: Tensorflow +- use_xla: False +- framework_version: 2.2.0 +- python_version: 3.6.10 +- system: Linux +- cpu: x86_64 +- architecture: 64bit +- date: 2020-06-29 +- time: 09:26:35.617317 +- fp16: False +- use_multiprocessing: True +- only_pretrain_model: False +- cpu_ram_mb: 32088 +- use_gpu: True +- num_gpus: 1 +- gpu: TITAN RTX +- gpu_ram_mb: 24217 +- gpu_power_watts: 280.0 +- gpu_performance_state: 2 +- use_tpu: False +``` + + + +By default, the _time_ and the _required memory_ for _inference_ are benchmarked. In the example output above the first +two sections show the result corresponding to _inference time_ and _inference memory_. In addition, all relevant +information about the computing environment, _e.g._ the GPU type, the system, the library versions, etc... are printed +out in the third section under _ENVIRONMENT INFORMATION_. This information can optionally be saved in a _.csv_ file +when adding the argument `save_to_csv=True` to [`PyTorchBenchmarkArguments`] and +[`TensorFlowBenchmarkArguments`] respectively. In this case, every section is saved in a separate +_.csv_ file. The path to each _.csv_ file can optionally be defined via the argument data classes. + +Instead of benchmarking pre-trained models via their model identifier, _e.g._ `bert-base-uncased`, the user can +alternatively benchmark an arbitrary configuration of any available model class. In this case, a `list` of +configurations must be inserted with the benchmark args as follows. + + + +```py +>>> from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments, BertConfig + +>>> args = PyTorchBenchmarkArguments( +... models=["bert-base", "bert-384-hid", "bert-6-lay"], batch_sizes=[8], sequence_lengths=[8, 32, 128, 512] +... ) +>>> config_base = BertConfig() +>>> config_384_hid = BertConfig(hidden_size=384) +>>> config_6_lay = BertConfig(num_hidden_layers=6) + +>>> benchmark = PyTorchBenchmark(args, configs=[config_base, config_384_hid, config_6_lay]) +>>> benchmark.run() +==================== INFERENCE - SPEED - RESULT ==================== +-------------------------------------------------------------------------------- +Model Name Batch Size Seq Length Time in s +-------------------------------------------------------------------------------- +bert-base 8 128 0.006 +bert-base 8 512 0.006 +bert-base 8 128 0.018 +bert-base 8 512 0.088 +bert-384-hid 8 8 0.006 +bert-384-hid 8 32 0.006 +bert-384-hid 8 128 0.011 +bert-384-hid 8 512 0.054 +bert-6-lay 8 8 0.003 +bert-6-lay 8 32 0.004 +bert-6-lay 8 128 0.009 +bert-6-lay 8 512 0.044 +-------------------------------------------------------------------------------- + +==================== INFERENCE - MEMORY - RESULT ==================== +-------------------------------------------------------------------------------- +Model Name Batch Size Seq Length Memory in MB +-------------------------------------------------------------------------------- +bert-base 8 8 1277 +bert-base 8 32 1281 +bert-base 8 128 1307 +bert-base 8 512 1539 +bert-384-hid 8 8 1005 +bert-384-hid 8 32 1027 +bert-384-hid 8 128 1035 +bert-384-hid 8 512 1255 +bert-6-lay 8 8 1097 +bert-6-lay 8 32 1101 +bert-6-lay 8 128 1127 +bert-6-lay 8 512 1359 +-------------------------------------------------------------------------------- + +==================== ENVIRONMENT INFORMATION ==================== + +- transformers_version: 2.11.0 +- framework: PyTorch +- use_torchscript: False +- framework_version: 1.4.0 +- python_version: 3.6.10 +- system: Linux +- cpu: x86_64 +- architecture: 64bit +- date: 2020-06-29 +- time: 09:35:25.143267 +- fp16: False +- use_multiprocessing: True +- only_pretrain_model: False +- cpu_ram_mb: 32088 +- use_gpu: True +- num_gpus: 1 +- gpu: TITAN RTX +- gpu_ram_mb: 24217 +- gpu_power_watts: 280.0 +- gpu_performance_state: 2 +- use_tpu: False +``` + + +```py +>>> from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments, BertConfig + +>>> args = TensorFlowBenchmarkArguments( +... models=["bert-base", "bert-384-hid", "bert-6-lay"], batch_sizes=[8], sequence_lengths=[8, 32, 128, 512] +... ) +>>> config_base = BertConfig() +>>> config_384_hid = BertConfig(hidden_size=384) +>>> config_6_lay = BertConfig(num_hidden_layers=6) + +>>> benchmark = TensorFlowBenchmark(args, configs=[config_base, config_384_hid, config_6_lay]) +>>> benchmark.run() +==================== INFERENCE - SPEED - RESULT ==================== +-------------------------------------------------------------------------------- +Model Name Batch Size Seq Length Time in s +-------------------------------------------------------------------------------- +bert-base 8 8 0.005 +bert-base 8 32 0.008 +bert-base 8 128 0.022 +bert-base 8 512 0.106 +bert-384-hid 8 8 0.005 +bert-384-hid 8 32 0.007 +bert-384-hid 8 128 0.018 +bert-384-hid 8 512 0.064 +bert-6-lay 8 8 0.002 +bert-6-lay 8 32 0.003 +bert-6-lay 8 128 0.0011 +bert-6-lay 8 512 0.074 +-------------------------------------------------------------------------------- + +==================== INFERENCE - MEMORY - RESULT ==================== +-------------------------------------------------------------------------------- +Model Name Batch Size Seq Length Memory in MB +-------------------------------------------------------------------------------- +bert-base 8 8 1330 +bert-base 8 32 1330 +bert-base 8 128 1330 +bert-base 8 512 1770 +bert-384-hid 8 8 1330 +bert-384-hid 8 32 1330 +bert-384-hid 8 128 1330 +bert-384-hid 8 512 1540 +bert-6-lay 8 8 1330 +bert-6-lay 8 32 1330 +bert-6-lay 8 128 1330 +bert-6-lay 8 512 1540 +-------------------------------------------------------------------------------- + +==================== ENVIRONMENT INFORMATION ==================== + +- transformers_version: 2.11.0 +- framework: Tensorflow +- use_xla: False +- framework_version: 2.2.0 +- python_version: 3.6.10 +- system: Linux +- cpu: x86_64 +- architecture: 64bit +- date: 2020-06-29 +- time: 09:38:15.487125 +- fp16: False +- use_multiprocessing: True +- only_pretrain_model: False +- cpu_ram_mb: 32088 +- use_gpu: True +- num_gpus: 1 +- gpu: TITAN RTX +- gpu_ram_mb: 24217 +- gpu_power_watts: 280.0 +- gpu_performance_state: 2 +- use_tpu: False +``` + + + +Again, _inference time_ and _required memory_ for _inference_ are measured, but this time for customized configurations +of the `BertModel` class. This feature can especially be helpful when deciding for which configuration the model +should be trained. + + +## Benchmark best practices + +This section lists a couple of best practices one should be aware of when benchmarking a model. + +- Currently, only single device benchmarking is supported. When benchmarking on GPU, it is recommended that the user + specifies on which device the code should be run by setting the `CUDA_VISIBLE_DEVICES` environment variable in the + shell, _e.g._ `export CUDA_VISIBLE_DEVICES=0` before running the code. +- The option `no_multi_processing` should only be set to `True` for testing and debugging. To ensure accurate + memory measurement it is recommended to run each memory benchmark in a separate process by making sure + `no_multi_processing` is set to `True`. +- One should always state the environment information when sharing the results of a model benchmark. Results can vary + heavily between different GPU devices, library versions, etc., so that benchmark results on their own are not very + useful for the community. + + +## Sharing your benchmark + +Previously all available core models (10 at the time) have been benchmarked for _inference time_, across many different +settings: using PyTorch, with and without TorchScript, using TensorFlow, with and without XLA. All of those tests were +done across CPUs (except for TensorFlow XLA) and GPUs. + +The approach is detailed in the [following blogpost](https://medium.com/huggingface/benchmarking-transformers-pytorch-and-tensorflow-e2917fb891c2) and the results are +available [here](https://docs.google.com/spreadsheets/d/1sryqufw2D0XlUH4sq3e9Wnxu5EAQkaohzrJbd5HdQ_w/edit?usp=sharing). + +With the new _benchmark_ tools, it is easier than ever to share your benchmark results with the community + +- [PyTorch Benchmarking Results](https://github.com/huggingface/transformers/tree/main/examples/pytorch/benchmarking/README.md). +- [TensorFlow Benchmarking Results](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/benchmarking/README.md). diff --git a/OPERA/transformers-4.29.2/docs/source/en/bertology.mdx b/OPERA/transformers-4.29.2/docs/source/en/bertology.mdx new file mode 100644 index 0000000000000000000000000000000000000000..505b5690281727921501c3e2f88c40fdf42d37be --- /dev/null +++ b/OPERA/transformers-4.29.2/docs/source/en/bertology.mdx @@ -0,0 +1,37 @@ + + +# BERTology + +There is a growing field of study concerned with investigating the inner working of large-scale transformers like BERT +(that some call "BERTology"). Some good examples of this field are: + + +- BERT Rediscovers the Classical NLP Pipeline by Ian Tenney, Dipanjan Das, Ellie Pavlick: + https://arxiv.org/abs/1905.05950 +- Are Sixteen Heads Really Better than One? by Paul Michel, Omer Levy, Graham Neubig: https://arxiv.org/abs/1905.10650 +- What Does BERT Look At? An Analysis of BERT's Attention by Kevin Clark, Urvashi Khandelwal, Omer Levy, Christopher D. + Manning: https://arxiv.org/abs/1906.04341 +- CAT-probing: A Metric-based Approach to Interpret How Pre-trained Models for Programming Language Attend Code Structure: https://arxiv.org/abs/2210.04633 + +In order to help this new field develop, we have included a few additional features in the BERT/GPT/GPT-2 models to +help people access the inner representations, mainly adapted from the great work of Paul Michel +(https://arxiv.org/abs/1905.10650): + + +- accessing all the hidden-states of BERT/GPT/GPT-2, +- accessing all the attention weights for each head of BERT/GPT/GPT-2, +- retrieving heads output values and gradients to be able to compute head importance score and prune head as explained + in https://arxiv.org/abs/1905.10650. + +To help you understand and use these features, we have added a specific example script: [bertology.py](https://github.com/huggingface/transformers/tree/main/examples/research_projects/bertology/run_bertology.py) while extract information and prune a model pre-trained on +GLUE. diff --git a/OPERA/transformers-4.29.2/docs/source/en/big_models.mdx b/OPERA/transformers-4.29.2/docs/source/en/big_models.mdx new file mode 100644 index 0000000000000000000000000000000000000000..971403b62d4a01eb6833d56ad00b5e14591731dd --- /dev/null +++ b/OPERA/transformers-4.29.2/docs/source/en/big_models.mdx @@ -0,0 +1,119 @@ + + +# Instantiating a big model + +When you want to use a very big pretrained model, one challenge is to minimize the use of the RAM. The usual workflow +from PyTorch is: + +1. Create your model with random weights. +2. Load your pretrained weights. +3. Put those pretrained weights in your random model. + +Step 1 and 2 both require a full version of the model in memory, which is not a problem in most cases, but if your model starts weighing several GigaBytes, those two copies can make you got our of RAM. Even worse, if you are using `torch.distributed` to launch a distributed training, each process will load the pretrained model and store these two copies in RAM. + + + +Note that the randomly created model is initialized with "empty" tensors, which take the space in memory without filling it (thus the random values are whatever was in this chunk of memory at a given time). The random initialization following the appropriate distribution for the kind of model/parameters instatiated (like a normal distribution for instance) is only performed after step 3 on the non-initialized weights, to be as fast as possible! + + + +In this guide, we explore the solutions Transformers offer to deal with this issue. Note that this is an area of active development, so the APIs explained here may change slightly in the future. + +## Sharded checkpoints + +Since version 4.18.0, model checkpoints that end up taking more than 10GB of space are automatically sharded in smaller pieces. In terms of having one single checkpoint when you do `model.save_pretrained(save_dir)`, you will end up with several partial checkpoints (each of which being of size < 10GB) and an index that maps parameter names to the files they are stored in. + +You can control the maximum size before sharding with the `max_shard_size` parameter, so for the sake of an example, we'll use a normal-size models with a small shard size: let's take a traditional BERT model. + +```py +from transformers import AutoModel + +model = AutoModel.from_pretrained("bert-base-cased") +``` + +If you save it using [`~PreTrainedModel.save_pretrained`], you will get a new folder with two files: the config of the model and its weights: + +```py +>>> import os +>>> import tempfile + +>>> with tempfile.TemporaryDirectory() as tmp_dir: +... model.save_pretrained(tmp_dir) +... print(sorted(os.listdir(tmp_dir))) +['config.json', 'pytorch_model.bin'] +``` + +Now let's use a maximum shard size of 200MB: + +```py +>>> with tempfile.TemporaryDirectory() as tmp_dir: +... model.save_pretrained(tmp_dir, max_shard_size="200MB") +... print(sorted(os.listdir(tmp_dir))) +['config.json', 'pytorch_model-00001-of-00003.bin', 'pytorch_model-00002-of-00003.bin', 'pytorch_model-00003-of-00003.bin', 'pytorch_model.bin.index.json'] +``` + +On top of the configuration of the model, we see three different weights files, and an `index.json` file which is our index. A checkpoint like this can be fully reloaded using the [`~PreTrainedModel.from_pretrained`] method: + +```py +>>> with tempfile.TemporaryDirectory() as tmp_dir: +... model.save_pretrained(tmp_dir, max_shard_size="200MB") +... new_model = AutoModel.from_pretrained(tmp_dir) +``` + +The main advantage of doing this for big models is that during step 2 of the workflow shown above, each shard of the checkpoint is loaded after the previous one, capping the memory usage in RAM to the model size plus the size of the biggest shard. + +Behind the scenes, the index file is used to determine which keys are in the checkpoint, and where the corresponding weights are stored. We can load that index like any json and get a dictionary: + +```py +>>> import json + +>>> with tempfile.TemporaryDirectory() as tmp_dir: +... model.save_pretrained(tmp_dir, max_shard_size="200MB") +... with open(os.path.join(tmp_dir, "pytorch_model.bin.index.json"), "r") as f: +... index = json.load(f) + +>>> print(index.keys()) +dict_keys(['metadata', 'weight_map']) +``` + +The metadata just consists of the total size of the model for now. We plan to add other information in the future: + +```py +>>> index["metadata"] +{'total_size': 433245184} +``` + +The weights map is the main part of this index, which maps each parameter name (as usually found in a PyTorch model `state_dict`) to the file it's stored in: + +```py +>>> index["weight_map"] +{'embeddings.LayerNorm.bias': 'pytorch_model-00001-of-00003.bin', + 'embeddings.LayerNorm.weight': 'pytorch_model-00001-of-00003.bin', + ... +``` + +If you want to directly load such a sharded checkpoint inside a model without using [`~PreTrainedModel.from_pretrained`] (like you would do `model.load_state_dict()` for a full checkpoint) you should use [`~modeling_utils.load_sharded_checkpoint`]: + +```py +>>> from transformers.modeling_utils import load_sharded_checkpoint + +>>> with tempfile.TemporaryDirectory() as tmp_dir: +... model.save_pretrained(tmp_dir, max_shard_size="200MB") +... load_sharded_checkpoint(model, tmp_dir) +``` + +## Low memory loading + +Sharded checkpoints reduce the memory usage during step 2 of the workflow mentioned above, but in order to use that model in a low memory setting, we recommend leveraging our tools based on the Accelerate library. + +Please read the following guide for more information: [Large model loading using Accelerate](./main_classes/model#large-model-loading) \ No newline at end of file diff --git a/OPERA/transformers-4.29.2/docs/source/en/community.mdx b/OPERA/transformers-4.29.2/docs/source/en/community.mdx new file mode 100644 index 0000000000000000000000000000000000000000..05164ffdaa191e49e81d263acaf3a6dcf1522900 --- /dev/null +++ b/OPERA/transformers-4.29.2/docs/source/en/community.mdx @@ -0,0 +1,65 @@ +# Community + +This page regroups resources around 🤗 Transformers developed by the community. + +## Community resources: + +| Resource | Description | Author | +|:----------|:-------------|------:| +| [Hugging Face Transformers Glossary Flashcards](https://www.darigovresearch.com/huggingface-transformers-glossary-flashcards) | A set of flashcards based on the [Transformers Docs Glossary](glossary) that has been put into a form which can be easily learnt/revised using [Anki ](https://apps.ankiweb.net/) an open source, cross platform app specifically designed for long term knowledge retention. See this [Introductory video on how to use the flashcards](https://www.youtube.com/watch?v=Dji_h7PILrw). | [Darigov Research](https://www.darigovresearch.com/) | + +## Community notebooks: + +| Notebook | Description | Author | | +|:----------|:-------------|:-------------|------:| +| [Fine-tune a pre-trained Transformer to generate lyrics](https://github.com/AlekseyKorshuk/huggingartists) | How to generate lyrics in the style of your favorite artist by fine-tuning a GPT-2 model | [Aleksey Korshuk](https://github.com/AlekseyKorshuk) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb) | +| [Train T5 in Tensorflow 2 ](https://github.com/snapthat/TF-T5-text-to-text) | How to train T5 for any task using Tensorflow 2. This notebook demonstrates a Question & Answer task implemented in Tensorflow 2 using SQUAD | [Muhammad Harris](https://github.com/HarrisDePerceptron) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/snapthat/TF-T5-text-to-text/blob/master/snapthatT5/notebooks/TF-T5-Datasets%20Training.ipynb) | +| [Train T5 on TPU](https://github.com/patil-suraj/exploring-T5/blob/master/T5_on_TPU.ipynb) | How to train T5 on SQUAD with Transformers and Nlp | [Suraj Patil](https://github.com/patil-suraj) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patil-suraj/exploring-T5/blob/master/T5_on_TPU.ipynb#scrollTo=QLGiFCDqvuil) | +| [Fine-tune T5 for Classification and Multiple Choice](https://github.com/patil-suraj/exploring-T5/blob/master/t5_fine_tuning.ipynb) | How to fine-tune T5 for classification and multiple choice tasks using a text-to-text format with PyTorch Lightning | [Suraj Patil](https://github.com/patil-suraj) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patil-suraj/exploring-T5/blob/master/t5_fine_tuning.ipynb) | +| [Fine-tune DialoGPT on New Datasets and Languages](https://github.com/ncoop57/i-am-a-nerd/blob/master/_notebooks/2020-05-12-chatbot-part-1.ipynb) | How to fine-tune the DialoGPT model on a new dataset for open-dialog conversational chatbots | [Nathan Cooper](https://github.com/ncoop57) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ncoop57/i-am-a-nerd/blob/master/_notebooks/2020-05-12-chatbot-part-1.ipynb) | +| [Long Sequence Modeling with Reformer](https://github.com/patrickvonplaten/notebooks/blob/master/PyTorch_Reformer.ipynb) | How to train on sequences as long as 500,000 tokens with Reformer | [Patrick von Platen](https://github.com/patrickvonplaten) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/PyTorch_Reformer.ipynb) | +| [Fine-tune BART for Summarization](https://github.com/ohmeow/ohmeow_website/blob/master/posts/2021-05-25-mbart-sequence-classification-with-blurr.ipynb) | How to fine-tune BART for summarization with fastai using blurr | [Wayde Gilliam](https://ohmeow.com/) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ohmeow/ohmeow_website/blob/master/posts/2021-05-25-mbart-sequence-classification-with-blurr.ipynb) | +| [Fine-tune a pre-trained Transformer on anyone's tweets](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb) | How to generate tweets in the style of your favorite Twitter account by fine-tuning a GPT-2 model | [Boris Dayma](https://github.com/borisdayma) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb) | +| [Optimize 🤗 Hugging Face models with Weights & Biases](https://colab.research.google.com/github/wandb/examples/blob/master/colabs/huggingface/Optimize_Hugging_Face_models_with_Weights_%26_Biases.ipynb) | A complete tutorial showcasing W&B integration with Hugging Face | [Boris Dayma](https://github.com/borisdayma) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/wandb/examples/blob/master/colabs/huggingface/Optimize_Hugging_Face_models_with_Weights_%26_Biases.ipynb) | +| [Pretrain Longformer](https://github.com/allenai/longformer/blob/master/scripts/convert_model_to_long.ipynb) | How to build a "long" version of existing pretrained models | [Iz Beltagy](https://beltagy.net) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/allenai/longformer/blob/master/scripts/convert_model_to_long.ipynb) | +| [Fine-tune Longformer for QA](https://github.com/patil-suraj/Notebooks/blob/master/longformer_qa_training.ipynb) | How to fine-tune longformer model for QA task | [Suraj Patil](https://github.com/patil-suraj) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patil-suraj/Notebooks/blob/master/longformer_qa_training.ipynb) | +| [Evaluate Model with 🤗nlp](https://github.com/patrickvonplaten/notebooks/blob/master/How_to_evaluate_Longformer_on_TriviaQA_using_NLP.ipynb) | How to evaluate longformer on TriviaQA with `nlp` | [Patrick von Platen](https://github.com/patrickvonplaten) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1m7eTGlPmLRgoPkkA7rkhQdZ9ydpmsdLE?usp=sharing) | +| [Fine-tune T5 for Sentiment Span Extraction](https://github.com/enzoampil/t5-intro/blob/master/t5_qa_training_pytorch_span_extraction.ipynb) | How to fine-tune T5 for sentiment span extraction using a text-to-text format with PyTorch Lightning | [Lorenzo Ampil](https://github.com/enzoampil) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/enzoampil/t5-intro/blob/master/t5_qa_training_pytorch_span_extraction.ipynb) | +| [Fine-tune DistilBert for Multiclass Classification](https://github.com/abhimishra91/transformers-tutorials/blob/master/transformers_multiclass_classification.ipynb) | How to fine-tune DistilBert for multiclass classification with PyTorch | [Abhishek Kumar Mishra](https://github.com/abhimishra91) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/abhimishra91/transformers-tutorials/blob/master/transformers_multiclass_classification.ipynb)| +|[Fine-tune BERT for Multi-label Classification](https://github.com/abhimishra91/transformers-tutorials/blob/master/transformers_multi_label_classification.ipynb)|How to fine-tune BERT for multi-label classification using PyTorch|[Abhishek Kumar Mishra](https://github.com/abhimishra91) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/abhimishra91/transformers-tutorials/blob/master/transformers_multi_label_classification.ipynb)| +|[Fine-tune T5 for Summarization](https://github.com/abhimishra91/transformers-tutorials/blob/master/transformers_summarization_wandb.ipynb)|How to fine-tune T5 for summarization in PyTorch and track experiments with WandB|[Abhishek Kumar Mishra](https://github.com/abhimishra91) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/abhimishra91/transformers-tutorials/blob/master/transformers_summarization_wandb.ipynb)| +|[Speed up Fine-Tuning in Transformers with Dynamic Padding / Bucketing](https://github.com/ELS-RD/transformers-notebook/blob/master/Divide_Hugging_Face_Transformers_training_time_by_2_or_more.ipynb)|How to speed up fine-tuning by a factor of 2 using dynamic padding / bucketing|[Michael Benesty](https://github.com/pommedeterresautee) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1CBfRU1zbfu7-ijiOqAAQUA-RJaxfcJoO?usp=sharing)| +|[Pretrain Reformer for Masked Language Modeling](https://github.com/patrickvonplaten/notebooks/blob/master/Reformer_For_Masked_LM.ipynb)| How to train a Reformer model with bi-directional self-attention layers | [Patrick von Platen](https://github.com/patrickvonplaten) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1tzzh0i8PgDQGV3SMFUGxM7_gGae3K-uW?usp=sharing)| +|[Expand and Fine Tune Sci-BERT](https://github.com/lordtt13/word-embeddings/blob/master/COVID-19%20Research%20Data/COVID-SciBERT.ipynb)| How to increase vocabulary of a pretrained SciBERT model from AllenAI on the CORD dataset and pipeline it. | [Tanmay Thakur](https://github.com/lordtt13) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1rqAR40goxbAfez1xvF3hBJphSCsvXmh8)| +|[Fine Tune BlenderBotSmall for Summarization using the Trainer API](https://github.com/lordtt13/transformers-experiments/blob/master/Custom%20Tasks/fine-tune-blenderbot_small-for-summarization.ipynb)| How to fine tune BlenderBotSmall for summarization on a custom dataset, using the Trainer API. | [Tanmay Thakur](https://github.com/lordtt13) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/19Wmupuls7mykSGyRN_Qo6lPQhgp56ymq?usp=sharing)| +|[Fine-tune Electra and interpret with Integrated Gradients](https://github.com/elsanns/xai-nlp-notebooks/blob/master/electra_fine_tune_interpret_captum_ig.ipynb) | How to fine-tune Electra for sentiment analysis and interpret predictions with Captum Integrated Gradients | [Eliza Szczechla](https://elsanns.github.io) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/elsanns/xai-nlp-notebooks/blob/master/electra_fine_tune_interpret_captum_ig.ipynb)| +|[fine-tune a non-English GPT-2 Model with Trainer class](https://github.com/philschmid/fine-tune-GPT-2/blob/master/Fine_tune_a_non_English_GPT_2_Model_with_Huggingface.ipynb) | How to fine-tune a non-English GPT-2 Model with Trainer class | [Philipp Schmid](https://www.philschmid.de) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/philschmid/fine-tune-GPT-2/blob/master/Fine_tune_a_non_English_GPT_2_Model_with_Huggingface.ipynb)| +|[Fine-tune a DistilBERT Model for Multi Label Classification task](https://github.com/DhavalTaunk08/Transformers_scripts/blob/master/Transformers_multilabel_distilbert.ipynb) | How to fine-tune a DistilBERT Model for Multi Label Classification task | [Dhaval Taunk](https://github.com/DhavalTaunk08) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/DhavalTaunk08/Transformers_scripts/blob/master/Transformers_multilabel_distilbert.ipynb)| +|[Fine-tune ALBERT for sentence-pair classification](https://github.com/NadirEM/nlp-notebooks/blob/master/Fine_tune_ALBERT_sentence_pair_classification.ipynb) | How to fine-tune an ALBERT model or another BERT-based model for the sentence-pair classification task | [Nadir El Manouzi](https://github.com/NadirEM) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NadirEM/nlp-notebooks/blob/master/Fine_tune_ALBERT_sentence_pair_classification.ipynb)| +|[Fine-tune Roberta for sentiment analysis](https://github.com/DhavalTaunk08/NLP_scripts/blob/master/sentiment_analysis_using_roberta.ipynb) | How to fine-tune a Roberta model for sentiment analysis | [Dhaval Taunk](https://github.com/DhavalTaunk08) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/DhavalTaunk08/NLP_scripts/blob/master/sentiment_analysis_using_roberta.ipynb)| +|[Evaluating Question Generation Models](https://github.com/flexudy-pipe/qugeev) | How accurate are the answers to questions generated by your seq2seq transformer model? | [Pascal Zoleko](https://github.com/zolekode) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1bpsSqCQU-iw_5nNoRm_crPq6FRuJthq_?usp=sharing)| +|[Classify text with DistilBERT and Tensorflow](https://github.com/peterbayerle/huggingface_notebook/blob/main/distilbert_tf.ipynb) | How to fine-tune DistilBERT for text classification in TensorFlow | [Peter Bayerle](https://github.com/peterbayerle) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/peterbayerle/huggingface_notebook/blob/main/distilbert_tf.ipynb)| +|[Leverage BERT for Encoder-Decoder Summarization on CNN/Dailymail](https://github.com/patrickvonplaten/notebooks/blob/master/BERT2BERT_for_CNN_Dailymail.ipynb) | How to warm-start a *EncoderDecoderModel* with a *bert-base-uncased* checkpoint for summarization on CNN/Dailymail | [Patrick von Platen](https://github.com/patrickvonplaten) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/BERT2BERT_for_CNN_Dailymail.ipynb)| +|[Leverage RoBERTa for Encoder-Decoder Summarization on BBC XSum](https://github.com/patrickvonplaten/notebooks/blob/master/RoBERTaShared_for_BBC_XSum.ipynb) | How to warm-start a shared *EncoderDecoderModel* with a *roberta-base* checkpoint for summarization on BBC/XSum | [Patrick von Platen](https://github.com/patrickvonplaten) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/RoBERTaShared_for_BBC_XSum.ipynb)| +|[Fine-tune TAPAS on Sequential Question Answering (SQA)](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/TAPAS/Fine_tuning_TapasForQuestionAnswering_on_SQA.ipynb) | How to fine-tune *TapasForQuestionAnswering* with a *tapas-base* checkpoint on the Sequential Question Answering (SQA) dataset | [Niels Rogge](https://github.com/nielsrogge) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/TAPAS/Fine_tuning_TapasForQuestionAnswering_on_SQA.ipynb)| +|[Evaluate TAPAS on Table Fact Checking (TabFact)](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/TAPAS/Evaluating_TAPAS_on_the_Tabfact_test_set.ipynb) | How to evaluate a fine-tuned *TapasForSequenceClassification* with a *tapas-base-finetuned-tabfact* checkpoint using a combination of the 🤗 datasets and 🤗 transformers libraries | [Niels Rogge](https://github.com/nielsrogge) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/TAPAS/Evaluating_TAPAS_on_the_Tabfact_test_set.ipynb)| +|[Fine-tuning mBART for translation](https://colab.research.google.com/github/vasudevgupta7/huggingface-tutorials/blob/main/translation_training.ipynb) | How to fine-tune mBART using Seq2SeqTrainer for Hindi to English translation | [Vasudev Gupta](https://github.com/vasudevgupta7) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/vasudevgupta7/huggingface-tutorials/blob/main/translation_training.ipynb)| +|[Fine-tune LayoutLM on FUNSD (a form understanding dataset)](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/LayoutLM/Fine_tuning_LayoutLMForTokenClassification_on_FUNSD.ipynb) | How to fine-tune *LayoutLMForTokenClassification* on the FUNSD dataset for information extraction from scanned documents | [Niels Rogge](https://github.com/nielsrogge) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/LayoutLM/Fine_tuning_LayoutLMForTokenClassification_on_FUNSD.ipynb)| +|[Fine-Tune DistilGPT2 and Generate Text](https://colab.research.google.com/github/tripathiaakash/DistilGPT2-Tutorial/blob/main/distilgpt2_fine_tuning.ipynb) | How to fine-tune DistilGPT2 and generate text | [Aakash Tripathi](https://github.com/tripathiaakash) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/tripathiaakash/DistilGPT2-Tutorial/blob/main/distilgpt2_fine_tuning.ipynb)| +|[Fine-Tune LED on up to 8K tokens](https://github.com/patrickvonplaten/notebooks/blob/master/Fine_tune_Longformer_Encoder_Decoder_(LED)_for_Summarization_on_pubmed.ipynb) | How to fine-tune LED on pubmed for long-range summarization | [Patrick von Platen](https://github.com/patrickvonplaten) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/Fine_tune_Longformer_Encoder_Decoder_(LED)_for_Summarization_on_pubmed.ipynb)| +|[Evaluate LED on Arxiv](https://github.com/patrickvonplaten/notebooks/blob/master/LED_on_Arxiv.ipynb) | How to effectively evaluate LED on long-range summarization | [Patrick von Platen](https://github.com/patrickvonplaten) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/LED_on_Arxiv.ipynb)| +|[Fine-tune LayoutLM on RVL-CDIP (a document image classification dataset)](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/LayoutLM/Fine_tuning_LayoutLMForSequenceClassification_on_RVL_CDIP.ipynb) | How to fine-tune *LayoutLMForSequenceClassification* on the RVL-CDIP dataset for scanned document classification | [Niels Rogge](https://github.com/nielsrogge) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/LayoutLM/Fine_tuning_LayoutLMForSequenceClassification_on_RVL_CDIP.ipynb)| +|[Wav2Vec2 CTC decoding with GPT2 adjustment](https://github.com/voidful/huggingface_notebook/blob/main/xlsr_gpt.ipynb) | How to decode CTC sequence with language model adjustment | [Eric Lam](https://github.com/voidful) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1e_z5jQHYbO2YKEaUgzb1ww1WwiAyydAj?usp=sharing)| +|[Fine-tune BART for summarization in two languages with Trainer class](https://github.com/elsanns/xai-nlp-notebooks/blob/master/fine_tune_bart_summarization_two_langs.ipynb) | How to fine-tune BART for summarization in two languages with Trainer class | [Eliza Szczechla](https://github.com/elsanns) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/elsanns/xai-nlp-notebooks/blob/master/fine_tune_bart_summarization_two_langs.ipynb)| +|[Evaluate Big Bird on Trivia QA](https://github.com/patrickvonplaten/notebooks/blob/master/Evaluating_Big_Bird_on_TriviaQA.ipynb) | How to evaluate BigBird on long document question answering on Trivia QA | [Patrick von Platen](https://github.com/patrickvonplaten) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/Evaluating_Big_Bird_on_TriviaQA.ipynb)| +| [Create video captions using Wav2Vec2](https://github.com/Muennighoff/ytclipcc/blob/main/wav2vec_youtube_captions.ipynb) | How to create YouTube captions from any video by transcribing the audio with Wav2Vec | [Niklas Muennighoff](https://github.com/Muennighoff) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Muennighoff/ytclipcc/blob/main/wav2vec_youtube_captions.ipynb) | +| [Fine-tune the Vision Transformer on CIFAR-10 using PyTorch Lightning](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/VisionTransformer/Fine_tuning_the_Vision_Transformer_on_CIFAR_10_with_PyTorch_Lightning.ipynb) | How to fine-tune the Vision Transformer (ViT) on CIFAR-10 using HuggingFace Transformers, Datasets and PyTorch Lightning | [Niels Rogge](https://github.com/nielsrogge) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/VisionTransformer/Fine_tuning_the_Vision_Transformer_on_CIFAR_10_with_PyTorch_Lightning.ipynb) | +| [Fine-tune the Vision Transformer on CIFAR-10 using the 🤗 Trainer](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/VisionTransformer/Fine_tuning_the_Vision_Transformer_on_CIFAR_10_with_the_%F0%9F%A4%97_Trainer.ipynb) | How to fine-tune the Vision Transformer (ViT) on CIFAR-10 using HuggingFace Transformers, Datasets and the 🤗 Trainer | [Niels Rogge](https://github.com/nielsrogge) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/VisionTransformer/Fine_tuning_the_Vision_Transformer_on_CIFAR_10_with_the_%F0%9F%A4%97_Trainer.ipynb) | +| [Evaluate LUKE on Open Entity, an entity typing dataset](https://github.com/studio-ousia/luke/blob/master/notebooks/huggingface_open_entity.ipynb) | How to evaluate *LukeForEntityClassification* on the Open Entity dataset | [Ikuya Yamada](https://github.com/ikuyamada) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/studio-ousia/luke/blob/master/notebooks/huggingface_open_entity.ipynb) | +| [Evaluate LUKE on TACRED, a relation extraction dataset](https://github.com/studio-ousia/luke/blob/master/notebooks/huggingface_tacred.ipynb) | How to evaluate *LukeForEntityPairClassification* on the TACRED dataset | [Ikuya Yamada](https://github.com/ikuyamada) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/studio-ousia/luke/blob/master/notebooks/huggingface_tacred.ipynb) | +| [Evaluate LUKE on CoNLL-2003, an important NER benchmark](https://github.com/studio-ousia/luke/blob/master/notebooks/huggingface_conll_2003.ipynb) | How to evaluate *LukeForEntitySpanClassification* on the CoNLL-2003 dataset | [Ikuya Yamada](https://github.com/ikuyamada) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/studio-ousia/luke/blob/master/notebooks/huggingface_conll_2003.ipynb) | +| [Evaluate BigBird-Pegasus on PubMed dataset](https://github.com/vasudevgupta7/bigbird/blob/main/notebooks/bigbird_pegasus_evaluation.ipynb) | How to evaluate *BigBirdPegasusForConditionalGeneration* on PubMed dataset | [Vasudev Gupta](https://github.com/vasudevgupta7) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/vasudevgupta7/bigbird/blob/main/notebooks/bigbird_pegasus_evaluation.ipynb) | +| [Speech Emotion Classification with Wav2Vec2](https://github/m3hrdadfi/soxan/blob/main/notebooks/Emotion_recognition_in_Greek_speech_using_Wav2Vec2.ipynb) | How to leverage a pretrained Wav2Vec2 model for Emotion Classification on the MEGA dataset | [Mehrdad Farahani](https://github.com/m3hrdadfi) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/m3hrdadfi/soxan/blob/main/notebooks/Emotion_recognition_in_Greek_speech_using_Wav2Vec2.ipynb) | +| [Detect objects in an image with DETR](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/DETR/DETR_minimal_example_(with_DetrFeatureExtractor).ipynb) | How to use a trained *DetrForObjectDetection* model to detect objects in an image and visualize attention | [Niels Rogge](https://github.com/NielsRogge) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/DETR/DETR_minimal_example_(with_DetrFeatureExtractor).ipynb) | +| [Fine-tune DETR on a custom object detection dataset](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/DETR/Fine_tuning_DetrForObjectDetection_on_custom_dataset_(balloon).ipynb) | How to fine-tune *DetrForObjectDetection* on a custom object detection dataset | [Niels Rogge](https://github.com/NielsRogge) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/DETR/Fine_tuning_DetrForObjectDetection_on_custom_dataset_(balloon).ipynb) | +| [Finetune T5 for Named Entity Recognition](https://github.com/ToluClassics/Notebooks/blob/main/T5_Ner_Finetuning.ipynb) | How to fine-tune *T5* on a Named Entity Recognition Task | [Ogundepo Odunayo](https://github.com/ToluClassics) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1obr78FY_cBmWY5ODViCmzdY6O1KB65Vc?usp=sharing) | diff --git a/OPERA/transformers-4.29.2/docs/source/en/contributing.md b/OPERA/transformers-4.29.2/docs/source/en/contributing.md new file mode 100644 index 0000000000000000000000000000000000000000..9635ae09d739762d61f073dd9325cb6772c540aa --- /dev/null +++ b/OPERA/transformers-4.29.2/docs/source/en/contributing.md @@ -0,0 +1,395 @@ + + +# Contribute to 🤗 Transformers + +Everyone is welcome to contribute, and we value everybody's contribution. Code +contributions are not the only way to help the community. Answering questions, helping +others, and improving the documentation are also immensely valuable. + +It also helps us if you spread the word! Reference the library in blog posts +about the awesome projects it made possible, shout out on Twitter every time it has +helped you, or simply ⭐️ the repository to say thank you. + +However you choose to contribute, please be mindful and respect our +[code of conduct](https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md). + +**This guide was heavily inspired by the awesome [scikit-learn guide to contributing](https://github.com/scikit-learn/scikit-learn/blob/main/CONTRIBUTING.md).** + +## Ways to contribute + +There are several ways you can contribute to 🤗 Transformers: + +* Fix outstanding issues with the existing code. +* Submit issues related to bugs or desired new features. +* Implement new models. +* Contribute to the examples or to the documentation. + +If you don't know where to start, there is a special [Good First +Issue](https://github.com/huggingface/transformers/contribute) listing. It will give you a list of +open issues that are beginner-friendly and help you start contributing to open-source. Just comment in the issue that you'd like to work +on it. + +For something slightly more challenging, you can also take a look at the [Good Second Issue](https://github.com/huggingface/transformers/labels/Good%20Second%20Issue) list. In general though, if you feel like you know what you're doing, go for it and we'll help you get there! 🚀 + +> All contributions are equally valuable to the community. 🥰 + +## Fixing outstanding issues + +If you notice an issue with the existing code and have a fix in mind, feel free to [start contributing](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md/#create-a-pull-request) and open a Pull Request! + +## Submitting a bug-related issue or feature request + +Do your best to follow these guidelines when submitting a bug-related issue or a feature +request. It will make it easier for us to come back to you quickly and with good +feedback. + +### Did you find a bug? + +The 🤗 Transformers library is robust and reliable thanks to users who report the problems they encounter. + +Before you report an issue, we would really appreciate it if you could **make sure the bug was not +already reported** (use the search bar on GitHub under Issues). Your issue should also be related to bugs in the library itself, and not your code. If you're unsure whether the bug is in your code or the library, please ask on the [forum](https://discuss.huggingface.co/) first. This helps us respond quicker to fixing issues related to the library versus general questions. + +Once you've confirmed the bug hasn't already been reported, please include the following information in your issue so we can quickly resolve it: + +* Your **OS type and version** and **Python**, **PyTorch** and + **TensorFlow** versions when applicable. +* A short, self-contained, code snippet that allows us to reproduce the bug in + less than 30s. +* The *full* traceback if an exception is raised. +* Attach any other additional information, like screenshots, you think may help. + +To get the OS and software versions automatically, run the following command: + +```bash +transformers-cli env +``` + +You can also run the same command from the root of the repository: + +```bash +python src/transformers/commands/transformers_cli.py env +``` + +### Do you want a new feature? + +If there is a new feature you'd like to see in 🤗 Transformers, please open an issue and describe: + +1. What is the *motivation* behind this feature? Is it related to a problem or frustration with the library? Is it a feature related to something you need for a project? Is it something you worked on and think it could benefit the community? + + Whatever it is, we'd love to hear about it! + +2. Describe your requested feature in as much detail as possible. The more you can tell us about it, the better we'll be able to help you. +3. Provide a *code snippet* that demonstrates the features usage. +4. If the feature is related to a paper, please include a link. + +If your issue is well written we're already 80% of the way there by the time you create it. + +We have added [templates](https://github.com/huggingface/transformers/tree/main/templates) to help you get started with your issue. + +## Do you want to implement a new model? + +New models are constantly released and if you want to implement a new model, please provide the following information + +* A short description of the model and link to the paper. +* Link to the implementation if it is open-sourced. +* Link to the model weights if they are available. + +If you are willing to contribute the model yourself, let us know so we can help you add it to 🤗 Transformers! + +We have added a [detailed guide and templates](https://github.com/huggingface/transformers/tree/main/templates) to help you get started with adding a new model, and we also have a more technical guide for [how to add a model to 🤗 Transformers](https://huggingface.co/docs/transformers/add_new_model). + +## Do you want to add documentation? + +We're always looking for improvements to the documentation that make it more clear and accurate. Please let us know how the documentation can be improved such as typos and any content that is missing, unclear or inaccurate. We'll be happy to make the changes or help you make a contribution if you're interested! + +For more details about how to generate, build, and write the documentation, take a look at the documentation [README](https://github.com/huggingface/transformers/tree/main/docs). + +## Create a Pull Request + +Before writing any code, we strongly advise you to search through the existing PRs or +issues to make sure nobody is already working on the same thing. If you are +unsure, it is always a good idea to open an issue to get some feedback. + +You will need basic `git` proficiency to contribute to +🤗 Transformers. While `git` is not the easiest tool to use, it has the greatest +manual. Type `git --help` in a shell and enjoy! If you prefer books, [Pro +Git](https://git-scm.com/book/en/v2) is a very good reference. + +You'll need **[Python 3.7]((https://github.com/huggingface/transformers/blob/main/setup.py#L426))** or above to contribute to 🤗 Transformers. Follow the steps below to start contributing: + +1. Fork the [repository](https://github.com/huggingface/transformers) by + clicking on the **[Fork](https://github.com/huggingface/transformers/fork)** button on the repository's page. This creates a copy of the code + under your GitHub user account. + +2. Clone your fork to your local disk, and add the base repository as a remote: + + ```bash + git clone git@github.com:/transformers.git + cd transformers + git remote add upstream https://github.com/huggingface/transformers.git + ``` + +3. Create a new branch to hold your development changes: + + ```bash + git checkout -b a-descriptive-name-for-my-changes + ``` + + 🚨 **Do not** work on the `main` branch! + +4. Set up a development environment by running the following command in a virtual environment: + + ```bash + pip install -e ".[dev]" + ``` + + If 🤗 Transformers was already installed in the virtual environment, remove + it with `pip uninstall transformers` before reinstalling it in editable + mode with the `-e` flag. + + Depending on your OS, and since the number of optional dependencies of Transformers is growing, you might get a + failure with this command. If that's the case make sure to install the Deep Learning framework you are working with + (PyTorch, TensorFlow and/or Flax) then do: + + ```bash + pip install -e ".[quality]" + ``` + + which should be enough for most use cases. + +5. Develop the features on your branch. + + As you work on your code, you should make sure the test suite + passes. Run the tests impacted by your changes like this: + + ```bash + pytest tests/.py + ``` + + For more information about tests, check out the + [Testing](https://huggingface.co/docs/transformers/testing) guide. + + 🤗 Transformers relies on `black` and `ruff` to format its source code + consistently. After you make changes, apply automatic style corrections and code verifications + that can't be automated in one go with: + + ```bash + make fixup + ``` + + This target is also optimized to only work with files modified by the PR you're working on. + + If you prefer to run the checks one after the other, the following command applies the + style corrections: + + ```bash + make style + ``` + + 🤗 Transformers also uses `ruff` and a few custom scripts to check for coding mistakes. Quality + controls are run by the CI, but you can run the same checks with: + + ```bash + make quality + ``` + + Finally, we have a lot of scripts to make sure we didn't forget to update + some files when adding a new model. You can run these scripts with: + + ```bash + make repo-consistency + ``` + + To learn more about those checks and how to fix any issues with them, check out the + [Checks on a Pull Request](https://huggingface.co/docs/transformers/pr_checks) guide. + + If you're modifying documents under `docs/source` directory, make sure the documentation can still be built. This check will also run in the CI when you open a pull request. To run a local check + make sure you install the documentation builder: + + ```bash + pip install ".[docs]" + ``` + + Run the following command from the root of the repository: + + ```bash + doc-builder build transformers docs/source/en --build_dir ~/tmp/test-build + ``` + + This will build the documentation in the `~/tmp/test-build` folder where you can inspect the generated + Markdown files with your favorite editor. You can also preview the docs on GitHub when you open a pull request. + + Once you're happy with your changes, add changed files with `git add` and + record your changes locally with `git commit`: + + ```bash + git add modified_file.py + git commit + ``` + + Please remember to write [good commit + messages](https://chris.beams.io/posts/git-commit/) to clearly communicate the changes you made! + + To keep your copy of the code up to date with the original + repository, rebase your branch on `upstream/branch` *before* you open a pull request or if requested by a maintainer: + + ```bash + git fetch upstream + git rebase upstream/main + ``` + + Push your changes to your branch: + + ```bash + git push -u origin a-descriptive-name-for-my-changes + ``` + + If you've already opened a pull request, you'll need to force push with the `--force` flag. Otherwise, if the pull request hasn't been opened yet, you can just push your changes normally. + +6. Now you can go to your fork of the repository on GitHub and click on **Pull request** to open a pull request. Make sure you tick off all the boxes in our [checklist](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md/#pull-request-checklist) below. When you're ready, you can send your changes to the project maintainers for review. + +7. It's ok if maintainers request changes, it happens to our core contributors + too! So everyone can see the changes in the pull request, work in your local + branch and push the changes to your fork. They will automatically appear in + the pull request. + +### Pull request checklist + +☐ The pull request title should summarize your contribution.
+☐ If your pull request addresses an issue, please mention the issue number in the pull +request description to make sure they are linked (and people viewing the issue know you +are working on it).
+☐ To indicate a work in progress please prefix the title with `[WIP]`. These are +useful to avoid duplicated work, and to differentiate it from PRs ready to be merged. +☐ Make sure existing tests pass.
+☐ If adding a new feature, also add tests for it.
+ - If you are adding a new model, make sure you use + `ModelTester.all_model_classes = (MyModel, MyModelWithLMHead,...)` to trigger the common tests. + - If you are adding new `@slow` tests, make sure they pass using + `RUN_SLOW=1 python -m pytest tests/models/my_new_model/test_my_new_model.py`. + - If you are adding a new tokenizer, write tests and make sure + `RUN_SLOW=1 python -m pytest tests/models/{your_model_name}/test_tokenization_{your_model_name}.py` passes. + CircleCI does not run the slow tests, but GitHub Actions does every night!
+ +☐ All public methods must have informative docstrings (see +[`modeling_bert.py`](https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py) +for an example).
+☐ Due to the rapidly growing repository, don't add any images, videos and other +non-text files that'll significantly weigh down the repository. Instead, use a Hub +repository such as [`hf-internal-testing`](https://huggingface.co/hf-internal-testing) +to host these files and reference them by URL. We recommend placing documentation +related images in the following repository: +[huggingface/documentation-images](https://huggingface.co/datasets/huggingface/documentation-images). +You can open a PR on this dataset repostitory and ask a Hugging Face member to merge it. + +For more information about the checks run on a pull request, take a look at our [Checks on a Pull Request](https://huggingface.co/docs/transformers/pr_checks) guide. + +### Tests + +An extensive test suite is included to test the library behavior and several examples. Library tests can be found in +the [tests](https://github.com/huggingface/transformers/tree/main/tests) folder and examples tests in the +[examples](https://github.com/huggingface/transformers/tree/main/examples) folder. + +We like `pytest` and `pytest-xdist` because it's faster. From the root of the +repository, specify a *path to a subfolder or a test file* to run the test. + +```bash +python -m pytest -n auto --dist=loadfile -s -v ./tests/models/my_new_model +``` + +Similarly, for the `examples` directory, specify a *path to a subfolder or test file* to run the test. For example, the following command tests the text classification subfolder in the PyTorch `examples` directory: + +```bash +pip install -r examples/xxx/requirements.txt # only needed the first time +python -m pytest -n auto --dist=loadfile -s -v ./examples/pytorch/text-classification +``` + +In fact, this is actually how our `make test` and `make test-examples` commands are implemented (not including the `pip install`)! + +You can also specify a smaller set of tests in order to test only the feature +you're working on. + +By default, slow tests are skipped but you can set the `RUN_SLOW` environment variable to +`yes` to run them. This will download many gigabytes of models so make sure you +have enough disk space, a good internet connection or a lot of patience! + + + +Remember to specify a *path to a subfolder or a test file* to run the test. Otherwise, you'll run all the tests in the `tests` or `examples` folder, which will take a very long time! + + + +```bash +RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./tests/models/my_new_model +RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./examples/pytorch/text-classification +``` + +Like the slow tests, there are other environment variables available which not enabled by default during testing: +- `RUN_CUSTOM_TOKENIZERS`: Enables tests for custom tokenizers. +- `RUN_PT_FLAX_CROSS_TESTS`: Enables tests for PyTorch + Flax integration. +- `RUN_PT_TF_CROSS_TESTS`: Enables tests for TensorFlow + PyTorch integration. + +More environment variables and additional information can be found in the [testing_utils.py](src/transformers/testing_utils.py). + +🤗 Transformers uses `pytest` as a test runner only. It doesn't use any +`pytest`-specific features in the test suite itself. + +This means `unittest` is fully supported. Here's how to run tests with +`unittest`: + +```bash +python -m unittest discover -s tests -t . -v +python -m unittest discover -s examples -t examples -v +``` + +### Style guide + +For documentation strings, 🤗 Transformers follows the [Google Python Style Guide](https://google.github.io/styleguide/pyguide.html). +Check our [documentation writing guide](https://github.com/huggingface/transformers/tree/main/docs#writing-documentation---specification) +for more information. + +### Develop on Windows + +On Windows (unless you're working in [Windows Subsystem for Linux](https://learn.microsoft.com/en-us/windows/wsl/) or WSL), you need to configure git to transform Windows `CRLF` line endings to Linux `LF` line endings: + +```bash +git config core.autocrlf input +``` + +One way to run the `make` command on Windows is with MSYS2: + +1. [Download MSYS2](https://www.msys2.org/), and we assume it's installed in `C:\msys64`. +2. Open the command line `C:\msys64\msys2.exe` (it should be available from the **Start** menu). +3. Run in the shell: `pacman -Syu` and install `make` with `pacman -S make`. +4. Add `C:\msys64\usr\bin` to your PATH environment variable. + +You can now use `make` from any terminal (Powershell, cmd.exe, etc.)! 🎉 + +### Sync a forked repository with upstream main (the Hugging Face repository) + +When updating the main branch of a forked repository, please follow these steps to avoid pinging the upstream repository which adds reference notes to each upstream PR, and sends unnecessary notifications to the developers involved in these PRs. + +1. When possible, avoid syncing with the upstream using a branch and PR on the forked repository. Instead, merge directly into the forked main. +2. If a PR is absolutely necessary, use the following steps after checking out your branch: + +```bash +git checkout -b your-branch-for-syncing +git pull --squash --no-commit upstream main +git commit -m '' +git push --set-upstream origin your-branch-for-syncing +``` diff --git a/OPERA/transformers-4.29.2/docs/source/en/create_a_model.mdx b/OPERA/transformers-4.29.2/docs/source/en/create_a_model.mdx new file mode 100644 index 0000000000000000000000000000000000000000..5c736f1d79435fa3510dc0c1616de6fa0e357aa9 --- /dev/null +++ b/OPERA/transformers-4.29.2/docs/source/en/create_a_model.mdx @@ -0,0 +1,385 @@ + + +# Create a custom architecture + +An [`AutoClass`](model_doc/auto) automatically infers the model architecture and downloads pretrained configuration and weights. Generally, we recommend using an `AutoClass` to produce checkpoint-agnostic code. But users who want more control over specific model parameters can create a custom 🤗 Transformers model from just a few base classes. This could be particularly useful for anyone who is interested in studying, training or experimenting with a 🤗 Transformers model. In this guide, dive deeper into creating a custom model without an `AutoClass`. Learn how to: + +- Load and customize a model configuration. +- Create a model architecture. +- Create a slow and fast tokenizer for text. +- Create an image processor for vision tasks. +- Create a feature extractor for audio tasks. +- Create a processor for multimodal tasks. + +## Configuration + +A [configuration](main_classes/configuration) refers to a model's specific attributes. Each model configuration has different attributes; for instance, all NLP models have the `hidden_size`, `num_attention_heads`, `num_hidden_layers` and `vocab_size` attributes in common. These attributes specify the number of attention heads or hidden layers to construct a model with. + +Get a closer look at [DistilBERT](model_doc/distilbert) by accessing [`DistilBertConfig`] to inspect it's attributes: + +```py +>>> from transformers import DistilBertConfig + +>>> config = DistilBertConfig() +>>> print(config) +DistilBertConfig { + "activation": "gelu", + "attention_dropout": 0.1, + "dim": 768, + "dropout": 0.1, + "hidden_dim": 3072, + "initializer_range": 0.02, + "max_position_embeddings": 512, + "model_type": "distilbert", + "n_heads": 12, + "n_layers": 6, + "pad_token_id": 0, + "qa_dropout": 0.1, + "seq_classif_dropout": 0.2, + "sinusoidal_pos_embds": false, + "transformers_version": "4.16.2", + "vocab_size": 30522 +} +``` + +[`DistilBertConfig`] displays all the default attributes used to build a base [`DistilBertModel`]. All attributes are customizable, creating space for experimentation. For example, you can customize a default model to: + +- Try a different activation function with the `activation` parameter. +- Use a higher dropout ratio for the attention probabilities with the `attention_dropout` parameter. + +```py +>>> my_config = DistilBertConfig(activation="relu", attention_dropout=0.4) +>>> print(my_config) +DistilBertConfig { + "activation": "relu", + "attention_dropout": 0.4, + "dim": 768, + "dropout": 0.1, + "hidden_dim": 3072, + "initializer_range": 0.02, + "max_position_embeddings": 512, + "model_type": "distilbert", + "n_heads": 12, + "n_layers": 6, + "pad_token_id": 0, + "qa_dropout": 0.1, + "seq_classif_dropout": 0.2, + "sinusoidal_pos_embds": false, + "transformers_version": "4.16.2", + "vocab_size": 30522 +} +``` + +Pretrained model attributes can be modified in the [`~PretrainedConfig.from_pretrained`] function: + +```py +>>> my_config = DistilBertConfig.from_pretrained("distilbert-base-uncased", activation="relu", attention_dropout=0.4) +``` + +Once you are satisfied with your model configuration, you can save it with [`~PretrainedConfig.save_pretrained`]. Your configuration file is stored as a JSON file in the specified save directory: + +```py +>>> my_config.save_pretrained(save_directory="./your_model_save_path") +``` + +To reuse the configuration file, load it with [`~PretrainedConfig.from_pretrained`]: + +```py +>>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/config.json") +``` + + + +You can also save your configuration file as a dictionary or even just the difference between your custom configuration attributes and the default configuration attributes! See the [configuration](main_classes/configuration) documentation for more details. + + + +## Model + +The next step is to create a [model](main_classes/models). The model - also loosely referred to as the architecture - defines what each layer is doing and what operations are happening. Attributes like `num_hidden_layers` from the configuration are used to define the architecture. Every model shares the base class [`PreTrainedModel`] and a few common methods like resizing input embeddings and pruning self-attention heads. In addition, all models are also either a [`torch.nn.Module`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html), [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) or [`flax.linen.Module`](https://flax.readthedocs.io/en/latest/flax.linen.html#module) subclass. This means models are compatible with each of their respective framework's usage. + + + +Load your custom configuration attributes into the model: + +```py +>>> from transformers import DistilBertModel + +>>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/config.json") +>>> model = DistilBertModel(my_config) +``` + +This creates a model with random values instead of pretrained weights. You won't be able to use this model for anything useful yet until you train it. Training is a costly and time-consuming process. It is generally better to use a pretrained model to obtain better results faster, while using only a fraction of the resources required for training. + +Create a pretrained model with [`~PreTrainedModel.from_pretrained`]: + +```py +>>> model = DistilBertModel.from_pretrained("distilbert-base-uncased") +``` + +When you load pretrained weights, the default model configuration is automatically loaded if the model is provided by 🤗 Transformers. However, you can still replace - some or all of - the default model configuration attributes with your own if you'd like: + +```py +>>> model = DistilBertModel.from_pretrained("distilbert-base-uncased", config=my_config) +``` + + +Load your custom configuration attributes into the model: + +```py +>>> from transformers import TFDistilBertModel + +>>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/my_config.json") +>>> tf_model = TFDistilBertModel(my_config) +``` + +This creates a model with random values instead of pretrained weights. You won't be able to use this model for anything useful yet until you train it. Training is a costly and time-consuming process. It is generally better to use a pretrained model to obtain better results faster, while using only a fraction of the resources required for training. + +Create a pretrained model with [`~TFPreTrainedModel.from_pretrained`]: + +```py +>>> tf_model = TFDistilBertModel.from_pretrained("distilbert-base-uncased") +``` + +When you load pretrained weights, the default model configuration is automatically loaded if the model is provided by 🤗 Transformers. However, you can still replace - some or all of - the default model configuration attributes with your own if you'd like: + +```py +>>> tf_model = TFDistilBertModel.from_pretrained("distilbert-base-uncased", config=my_config) +``` + + + +### Model heads + +At this point, you have a base DistilBERT model which outputs the *hidden states*. The hidden states are passed as inputs to a model head to produce the final output. 🤗 Transformers provides a different model head for each task as long as a model supports the task (i.e., you can't use DistilBERT for a sequence-to-sequence task like translation). + + + +For example, [`DistilBertForSequenceClassification`] is a base DistilBERT model with a sequence classification head. The sequence classification head is a linear layer on top of the pooled outputs. + +```py +>>> from transformers import DistilBertForSequenceClassification + +>>> model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased") +``` + +Easily reuse this checkpoint for another task by switching to a different model head. For a question answering task, you would use the [`DistilBertForQuestionAnswering`] model head. The question answering head is similar to the sequence classification head except it is a linear layer on top of the hidden states output. + +```py +>>> from transformers import DistilBertForQuestionAnswering + +>>> model = DistilBertForQuestionAnswering.from_pretrained("distilbert-base-uncased") +``` + + +For example, [`TFDistilBertForSequenceClassification`] is a base DistilBERT model with a sequence classification head. The sequence classification head is a linear layer on top of the pooled outputs. + +```py +>>> from transformers import TFDistilBertForSequenceClassification + +>>> tf_model = TFDistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased") +``` + +Easily reuse this checkpoint for another task by switching to a different model head. For a question answering task, you would use the [`TFDistilBertForQuestionAnswering`] model head. The question answering head is similar to the sequence classification head except it is a linear layer on top of the hidden states output. + +```py +>>> from transformers import TFDistilBertForQuestionAnswering + +>>> tf_model = TFDistilBertForQuestionAnswering.from_pretrained("distilbert-base-uncased") +``` + + + +## Tokenizer + +The last base class you need before using a model for textual data is a [tokenizer](main_classes/tokenizer) to convert raw text to tensors. There are two types of tokenizers you can use with 🤗 Transformers: + +- [`PreTrainedTokenizer`]: a Python implementation of a tokenizer. +- [`PreTrainedTokenizerFast`]: a tokenizer from our Rust-based [🤗 Tokenizer](https://huggingface.co/docs/tokenizers/python/latest/) library. This tokenizer type is significantly faster - especially during batch tokenization - due to it's Rust implementation. The fast tokenizer also offers additional methods like *offset mapping* which maps tokens to their original words or characters. + +Both tokenizers support common methods such as encoding and decoding, adding new tokens, and managing special tokens. + + + +Not every model supports a fast tokenizer. Take a look at this [table](index#supported-frameworks) to check if a model has fast tokenizer support. + + + +If you trained your own tokenizer, you can create one from your *vocabulary* file: + +```py +>>> from transformers import DistilBertTokenizer + +>>> my_tokenizer = DistilBertTokenizer(vocab_file="my_vocab_file.txt", do_lower_case=False, padding_side="left") +``` + +It is important to remember the vocabulary from a custom tokenizer will be different from the vocabulary generated by a pretrained model's tokenizer. You need to use a pretrained model's vocabulary if you are using a pretrained model, otherwise the inputs won't make sense. Create a tokenizer with a pretrained model's vocabulary with the [`DistilBertTokenizer`] class: + +```py +>>> from transformers import DistilBertTokenizer + +>>> slow_tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased") +``` + +Create a fast tokenizer with the [`DistilBertTokenizerFast`] class: + +```py +>>> from transformers import DistilBertTokenizerFast + +>>> fast_tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert-base-uncased") +``` + + + +By default, [`AutoTokenizer`] will try to load a fast tokenizer. You can disable this behavior by setting `use_fast=False` in `from_pretrained`. + + + +## Image Processor + +An image processor processes vision inputs. It inherits from the base [`~image_processing_utils.ImageProcessingMixin`] class. + +To use, create an image processor associated with the model you're using. For example, create a default [`ViTImageProcessor`] if you are using [ViT](model_doc/vit) for image classification: + +```py +>>> from transformers import ViTImageProcessor + +>>> vit_extractor = ViTImageProcessor() +>>> print(vit_extractor) +ViTImageProcessor { + "do_normalize": true, + "do_resize": true, + "feature_extractor_type": "ViTImageProcessor", + "image_mean": [ + 0.5, + 0.5, + 0.5 + ], + "image_std": [ + 0.5, + 0.5, + 0.5 + ], + "resample": 2, + "size": 224 +} +``` + + + +If you aren't looking for any customization, just use the `from_pretrained` method to load a model's default image processor parameters. + + + +Modify any of the [`ViTImageProcessor`] parameters to create your custom image processor: + +```py +>>> from transformers import ViTImageProcessor + +>>> my_vit_extractor = ViTImageProcessor(resample="PIL.Image.BOX", do_normalize=False, image_mean=[0.3, 0.3, 0.3]) +>>> print(my_vit_extractor) +ViTImageProcessor { + "do_normalize": false, + "do_resize": true, + "feature_extractor_type": "ViTImageProcessor", + "image_mean": [ + 0.3, + 0.3, + 0.3 + ], + "image_std": [ + 0.5, + 0.5, + 0.5 + ], + "resample": "PIL.Image.BOX", + "size": 224 +} +``` + +## Feature Extractor + +A feature extractor processes audio inputs. It inherits from the base [`~feature_extraction_utils.FeatureExtractionMixin`] class, and may also inherit from the [`SequenceFeatureExtractor`] class for processing audio inputs. + +To use, create a feature extractor associated with the model you're using. For example, create a default [`Wav2Vec2FeatureExtractor`] if you are using [Wav2Vec2](model_doc/wav2vec2) for audio classification: + +```py +>>> from transformers import Wav2Vec2FeatureExtractor + +>>> w2v2_extractor = Wav2Vec2FeatureExtractor() +>>> print(w2v2_extractor) +Wav2Vec2FeatureExtractor { + "do_normalize": true, + "feature_extractor_type": "Wav2Vec2FeatureExtractor", + "feature_size": 1, + "padding_side": "right", + "padding_value": 0.0, + "return_attention_mask": false, + "sampling_rate": 16000 +} +``` + + + +If you aren't looking for any customization, just use the `from_pretrained` method to load a model's default feature extractor parameters. + + + +Modify any of the [`Wav2Vec2FeatureExtractor`] parameters to create your custom feature extractor: + +```py +>>> from transformers import Wav2Vec2FeatureExtractor + +>>> w2v2_extractor = Wav2Vec2FeatureExtractor(sampling_rate=8000, do_normalize=False) +>>> print(w2v2_extractor) +Wav2Vec2FeatureExtractor { + "do_normalize": false, + "feature_extractor_type": "Wav2Vec2FeatureExtractor", + "feature_size": 1, + "padding_side": "right", + "padding_value": 0.0, + "return_attention_mask": false, + "sampling_rate": 8000 +} +``` + + +## Processor + +For models that support multimodal tasks, 🤗 Transformers offers a processor class that conveniently wraps processing classes such as a feature extractor and a tokenizer into a single object. For example, let's use the [`Wav2Vec2Processor`] for an automatic speech recognition task (ASR). ASR transcribes audio to text, so you will need a feature extractor and a tokenizer. + +Create a feature extractor to handle the audio inputs: + +```py +>>> from transformers import Wav2Vec2FeatureExtractor + +>>> feature_extractor = Wav2Vec2FeatureExtractor(padding_value=1.0, do_normalize=True) +``` + +Create a tokenizer to handle the text inputs: + +```py +>>> from transformers import Wav2Vec2CTCTokenizer + +>>> tokenizer = Wav2Vec2CTCTokenizer(vocab_file="my_vocab_file.txt") +``` + +Combine the feature extractor and tokenizer in [`Wav2Vec2Processor`]: + +```py +>>> from transformers import Wav2Vec2Processor + +>>> processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer) +``` + +With two basic classes - configuration and model - and an additional preprocessing class (tokenizer, image processor, feature extractor, or processor), you can create any of the models supported by 🤗 Transformers. Each of these base classes are configurable, allowing you to use the specific attributes you want. You can easily setup a model for training or modify an existing pretrained model to fine-tune. diff --git a/OPERA/transformers-4.29.2/docs/source/en/custom_models.mdx b/OPERA/transformers-4.29.2/docs/source/en/custom_models.mdx new file mode 100644 index 0000000000000000000000000000000000000000..f5ad558562433674a55e4f9138db9501c5abde59 --- /dev/null +++ b/OPERA/transformers-4.29.2/docs/source/en/custom_models.mdx @@ -0,0 +1,352 @@ + + +# Sharing custom models + +The 🤗 Transformers library is designed to be easily extensible. Every model is fully coded in a given subfolder +of the repository with no abstraction, so you can easily copy a modeling file and tweak it to your needs. + +If you are writing a brand new model, it might be easier to start from scratch. In this tutorial, we will show you +how to write a custom model and its configuration so it can be used inside Transformers, and how you can share it +with the community (with the code it relies on) so that anyone can use it, even if it's not present in the 🤗 +Transformers library. + +We will illustrate all of this on a ResNet model, by wrapping the ResNet class of the +[timm library](https://github.com/rwightman/pytorch-image-models) into a [`PreTrainedModel`]. + +## Writing a custom configuration + +Before we dive into the model, let's first write its configuration. The configuration of a model is an object that +will contain all the necessary information to build the model. As we will see in the next section, the model can only +take a `config` to be initialized, so we really need that object to be as complete as possible. + +In our example, we will take a couple of arguments of the ResNet class that we might want to tweak. Different +configurations will then give us the different types of ResNets that are possible. We then just store those arguments, +after checking the validity of a few of them. + +```python +from transformers import PretrainedConfig +from typing import List + + +class ResnetConfig(PretrainedConfig): + model_type = "resnet" + + def __init__( + self, + block_type="bottleneck", + layers: List[int] = [3, 4, 6, 3], + num_classes: int = 1000, + input_channels: int = 3, + cardinality: int = 1, + base_width: int = 64, + stem_width: int = 64, + stem_type: str = "", + avg_down: bool = False, + **kwargs, + ): + if block_type not in ["basic", "bottleneck"]: + raise ValueError(f"`block_type` must be 'basic' or bottleneck', got {block_type}.") + if stem_type not in ["", "deep", "deep-tiered"]: + raise ValueError(f"`stem_type` must be '', 'deep' or 'deep-tiered', got {stem_type}.") + + self.block_type = block_type + self.layers = layers + self.num_classes = num_classes + self.input_channels = input_channels + self.cardinality = cardinality + self.base_width = base_width + self.stem_width = stem_width + self.stem_type = stem_type + self.avg_down = avg_down + super().__init__(**kwargs) +``` + +The three important things to remember when writing you own configuration are the following: +- you have to inherit from `PretrainedConfig`, +- the `__init__` of your `PretrainedConfig` must accept any kwargs, +- those `kwargs` need to be passed to the superclass `__init__`. + +The inheritance is to make sure you get all the functionality from the 🤗 Transformers library, while the two other +constraints come from the fact a `PretrainedConfig` has more fields than the ones you are setting. When reloading a +config with the `from_pretrained` method, those fields need to be accepted by your config and then sent to the +superclass. + +Defining a `model_type` for your configuration (here `model_type="resnet"`) is not mandatory, unless you want to +register your model with the auto classes (see last section). + +With this done, you can easily create and save your configuration like you would do with any other model config of the +library. Here is how we can create a resnet50d config and save it: + +```py +resnet50d_config = ResnetConfig(block_type="bottleneck", stem_width=32, stem_type="deep", avg_down=True) +resnet50d_config.save_pretrained("custom-resnet") +``` + +This will save a file named `config.json` inside the folder `custom-resnet`. You can then reload your config with the +`from_pretrained` method: + +```py +resnet50d_config = ResnetConfig.from_pretrained("custom-resnet") +``` + +You can also use any other method of the [`PretrainedConfig`] class, like [`~PretrainedConfig.push_to_hub`] to +directly upload your config to the Hub. + +## Writing a custom model + +Now that we have our ResNet configuration, we can go on writing the model. We will actually write two: one that +extracts the hidden features from a batch of images (like [`BertModel`]) and one that is suitable for image +classification (like [`BertForSequenceClassification`]). + +As we mentioned before, we'll only write a loose wrapper of the model to keep it simple for this example. The only +thing we need to do before writing this class is a map between the block types and actual block classes. Then the +model is defined from the configuration by passing everything to the `ResNet` class: + +```py +from transformers import PreTrainedModel +from timm.models.resnet import BasicBlock, Bottleneck, ResNet +from .configuration_resnet import ResnetConfig + + +BLOCK_MAPPING = {"basic": BasicBlock, "bottleneck": Bottleneck} + + +class ResnetModel(PreTrainedModel): + config_class = ResnetConfig + + def __init__(self, config): + super().__init__(config) + block_layer = BLOCK_MAPPING[config.block_type] + self.model = ResNet( + block_layer, + config.layers, + num_classes=config.num_classes, + in_chans=config.input_channels, + cardinality=config.cardinality, + base_width=config.base_width, + stem_width=config.stem_width, + stem_type=config.stem_type, + avg_down=config.avg_down, + ) + + def forward(self, tensor): + return self.model.forward_features(tensor) +``` + +For the model that will classify images, we just change the forward method: + +```py +import torch + + +class ResnetModelForImageClassification(PreTrainedModel): + config_class = ResnetConfig + + def __init__(self, config): + super().__init__(config) + block_layer = BLOCK_MAPPING[config.block_type] + self.model = ResNet( + block_layer, + config.layers, + num_classes=config.num_classes, + in_chans=config.input_channels, + cardinality=config.cardinality, + base_width=config.base_width, + stem_width=config.stem_width, + stem_type=config.stem_type, + avg_down=config.avg_down, + ) + + def forward(self, tensor, labels=None): + logits = self.model(tensor) + if labels is not None: + loss = torch.nn.cross_entropy(logits, labels) + return {"loss": loss, "logits": logits} + return {"logits": logits} +``` + +In both cases, notice how we inherit from `PreTrainedModel` and call the superclass initialization with the `config` +(a bit like when you write a regular `torch.nn.Module`). The line that sets the `config_class` is not mandatory, unless +you want to register your model with the auto classes (see last section). + + + +If your model is very similar to a model inside the library, you can re-use the same configuration as this model. + + + +You can have your model return anything you want, but returning a dictionary like we did for +`ResnetModelForImageClassification`, with the loss included when labels are passed, will make your model directly +usable inside the [`Trainer`] class. Using another output format is fine as long as you are planning on using your own +training loop or another library for training. + +Now that we have our model class, let's create one: + +```py +resnet50d = ResnetModelForImageClassification(resnet50d_config) +``` + +Again, you can use any of the methods of [`PreTrainedModel`], like [`~PreTrainedModel.save_pretrained`] or +[`~PreTrainedModel.push_to_hub`]. We will use the second in the next section, and see how to push the model weights +with the code of our model. But first, let's load some pretrained weights inside our model. + +In your own use case, you will probably be training your custom model on your own data. To go fast for this tutorial, +we will use the pretrained version of the resnet50d. Since our model is just a wrapper around it, it's going to be +easy to transfer those weights: + +```py +import timm + +pretrained_model = timm.create_model("resnet50d", pretrained=True) +resnet50d.model.load_state_dict(pretrained_model.state_dict()) +``` + +Now let's see how to make sure that when we do [`~PreTrainedModel.save_pretrained`] or [`~PreTrainedModel.push_to_hub`], the +code of the model is saved. + +## Sending the code to the Hub + + + +This API is experimental and may have some slight breaking changes in the next releases. + + + +First, make sure your model is fully defined in a `.py` file. It can rely on relative imports to some other files as +long as all the files are in the same directory (we don't support submodules for this feature yet). For our example, +we'll define a `modeling_resnet.py` file and a `configuration_resnet.py` file in a folder of the current working +directory named `resnet_model`. The configuration file contains the code for `ResnetConfig` and the modeling file +contains the code of `ResnetModel` and `ResnetModelForImageClassification`. + +``` +. +└── resnet_model + ├── __init__.py + ├── configuration_resnet.py + └── modeling_resnet.py +``` + +The `__init__.py` can be empty, it's just there so that Python detects `resnet_model` can be use as a module. + + + +If copying a modeling files from the library, you will need to replace all the relative imports at the top of the file +to import from the `transformers` package. + + + +Note that you can re-use (or subclass) an existing configuration/model. + +To share your model with the community, follow those steps: first import the ResNet model and config from the newly +created files: + +```py +from resnet_model.configuration_resnet import ResnetConfig +from resnet_model.modeling_resnet import ResnetModel, ResnetModelForImageClassification +``` + +Then you have to tell the library you want to copy the code files of those objects when using the `save_pretrained` +method and properly register them with a given Auto class (especially for models), just run: + +```py +ResnetConfig.register_for_auto_class() +ResnetModel.register_for_auto_class("AutoModel") +ResnetModelForImageClassification.register_for_auto_class("AutoModelForImageClassification") +``` + +Note that there is no need to specify an auto class for the configuration (there is only one auto class for them, +[`AutoConfig`]) but it's different for models. Your custom model could be suitable for many different tasks, so you +have to specify which one of the auto classes is the correct one for your model. + +Next, let's create the config and models as we did before: + +```py +resnet50d_config = ResnetConfig(block_type="bottleneck", stem_width=32, stem_type="deep", avg_down=True) +resnet50d = ResnetModelForImageClassification(resnet50d_config) + +pretrained_model = timm.create_model("resnet50d", pretrained=True) +resnet50d.model.load_state_dict(pretrained_model.state_dict()) +``` + +Now to send the model to the Hub, make sure you are logged in. Either run in your terminal: + +```bash +huggingface-cli login +``` + +or from a notebook: + +```py +from huggingface_hub import notebook_login + +notebook_login() +``` + +You can then push to your own namespace (or an organization you are a member of) like this: + +```py +resnet50d.push_to_hub("custom-resnet50d") +``` + +On top of the modeling weights and the configuration in json format, this also copied the modeling and +configuration `.py` files in the folder `custom-resnet50d` and uploaded the result to the Hub. You can check the result +in this [model repo](https://huggingface.co/sgugger/custom-resnet50d). + +See the [sharing tutorial](model_sharing) for more information on the push to Hub method. + +## Using a model with custom code + +You can use any configuration, model or tokenizer with custom code files in its repository with the auto-classes and +the `from_pretrained` method. All files and code uploaded to the Hub are scanned for malware (refer to the [Hub security](https://huggingface.co/docs/hub/security#malware-scanning) documentation for more information), but you should still +review the model code and author to avoid executing malicious code on your machine. Set `trust_remote_code=True` to use +a model with custom code: + +```py +from transformers import AutoModelForImageClassification + +model = AutoModelForImageClassification.from_pretrained("sgugger/custom-resnet50d", trust_remote_code=True) +``` + +It is also strongly encouraged to pass a commit hash as a `revision` to make sure the author of the models did not +update the code with some malicious new lines (unless you fully trust the authors of the models). + +```py +commit_hash = "ed94a7c6247d8aedce4647f00f20de6875b5b292" +model = AutoModelForImageClassification.from_pretrained( + "sgugger/custom-resnet50d", trust_remote_code=True, revision=commit_hash +) +``` + +Note that when browsing the commit history of the model repo on the Hub, there is a button to easily copy the commit +hash of any commit. + +## Registering a model with custom code to the auto classes + +If you are writing a library that extends 🤗 Transformers, you may want to extend the auto classes to include your own +model. This is different from pushing the code to the Hub in the sense that users will need to import your library to +get the custom models (contrarily to automatically downloading the model code from the Hub). + +As long as your config has a `model_type` attribute that is different from existing model types, and that your model +classes have the right `config_class` attributes, you can just add them to the auto classes likes this: + +```py +from transformers import AutoConfig, AutoModel, AutoModelForImageClassification + +AutoConfig.register("resnet", ResnetConfig) +AutoModel.register(ResnetConfig, ResnetModel) +AutoModelForImageClassification.register(ResnetConfig, ResnetModelForImageClassification) +``` + +Note that the first argument used when registering your custom config to [`AutoConfig`] needs to match the `model_type` +of your custom config, and the first argument used when registering your custom models to any auto model class needs +to match the `config_class` of those models. diff --git a/OPERA/transformers-4.29.2/docs/source/en/custom_tools.mdx b/OPERA/transformers-4.29.2/docs/source/en/custom_tools.mdx new file mode 100644 index 0000000000000000000000000000000000000000..23ca4bccbadca4c8df846356358d9102c38ca5f4 --- /dev/null +++ b/OPERA/transformers-4.29.2/docs/source/en/custom_tools.mdx @@ -0,0 +1,778 @@ + + +# Custom Tools and Prompts + + + +If you are not aware of what tools and agents are in the context of transformers, we recommend you read the +[Transformers Agents](transformers_agents) page first. + + + + + +Transformers Agent is an experimental API that is subject to change at any time. Results returned by the agents +can vary as the APIs or underlying models are prone to change. + + + +Creating and using custom tools and prompts is paramount to empowering the agent and having it perform new tasks. +In this guide we'll take a look at: + +- How to customize the prompt +- How to use custom tools +- How to create custom tools + +## Customizing the prompt + +As explained in [Transformers Agents](transformers_agents) agents can run in [`~Agent.run`] and [`~Agent.chat`] mode. +Both the `run` and `chat` modes underlie the same logic. The language model powering the agent is conditioned on a long +prompt and completes the prompt by generating the next tokens until the stop token is reached. +The only difference between the two modes is that during the `chat` mode the prompt is extended with +previous user inputs and model generations. This allows the agent to have access to past interactions, +seemingly giving the agent some kind of memory. + +### Structure of the prompt + +Let's take a closer look at how the prompt is structured to understand how it can be best customized. +The prompt is structured broadly into four parts. + +- 1. Introduction: how the agent should behave, explanation of the concept of tools. +- 2. Description of all the tools. This is defined by a `<>` token that is dynamically replaced at runtime with the tools defined/chosen by the user. +- 3. A set of examples of tasks and their solution +- 4. Current example, and request for solution. + +To better understand each part, let's look at a shortened version of how the `run` prompt can look like: + +````text +I will ask you to perform a task, your job is to come up with a series of simple commands in Python that will perform the task. +[...] +You can print intermediate results if it makes sense to do so. + +Tools: +- document_qa: This is a tool that answers a question about a document (pdf). It takes an input named `document` which should be the document containing the information, as well as a `question` that is the question about the document. It returns a text that contains the answer to the question. +- image_captioner: This is a tool that generates a description of an image. It takes an input named `image` which should be the image to the caption and returns a text that contains the description in English. +[...] + +Task: "Answer the question in the variable `question` about the image stored in the variable `image`. The question is in French." + +I will use the following tools: `translator` to translate the question into English and then `image_qa` to answer the question on the input image. + +Answer: +```py +translated_question = translator(question=question, src_lang="French", tgt_lang="English") +print(f"The translated question is {translated_question}.") +answer = image_qa(image=image, question=translated_question) +print(f"The answer is {answer}") +``` + +Task: "Identify the oldest person in the `document` and create an image showcasing the result as a banner." + +I will use the following tools: `document_qa` to find the oldest person in the document, then `image_generator` to generate an image according to the answer. + +Answer: +```py +answer = document_qa(document, question="What is the oldest person?") +print(f"The answer is {answer}.") +image = image_generator("A banner showing " + answer) +``` + +[...] + +Task: "Draw me a picture of rivers and lakes" + +I will use the following +```` + +The introduction (the text before *"Tools:"*) explains precisely how the model shall behave and what it should do. +This part most likely does not need to be customized as the agent shall always behave the same way. + +The second part (the bullet points below *"Tools"*) is dynamically added upon calling `run` or `chat`. There are +exactly as many bullet points as there are tools in `agent.toolbox` and each bullet point consists of the name +and description of the tool: + +```text +- : +``` + +Let's verify this quickly by loading the document_qa tool and printing out the name and description. + +```py +from transformers import load_tool + +document_qa = load_tool("document-question-answering") +print(f"- {document_qa.name}: {document_qa.description}") +``` + +which gives: +```text +- document_qa: This is a tool that answers a question about a document (pdf). It takes an input named `document` which should be the document containing the information, as well as a `question` that is the question about the document. It returns a text that contains the answer to the question. +``` + +We can see that the tool name is short and precise. The description includes two parts, the first explaining +what the tool does and the second states what input arguments and return values are expected. + +A good tool name and tool description are very important for the agent to correctly use it. Note that the only +information the agent has about the tool is its name and description, so one should make sure that both +are precisely written and match the style of the existing tools in the toolbox. In particular make sure the description +mentions all the arguments expected by name in code-style, along with the expected type and a description of what they +are. + + + +Check the naming and description of the curated Transformers tools to better understand what name and +description a tool is expected to have. You can see all tools with the [`Agent.toolbox`] property. + + + +The third part includes a set of curated examples that show the agent exactly what code it should produce +for what kind of user request. The large language models empowering the agent are extremely good at +recognizing patterns in a prompt and repeating the pattern with new data. Therefore, it is very important +that the examples are written in a way that maximizes the likelihood of the agent to generating correct, +executable code in practice. + +Let's have a look at one example: + +````text +Task: "Identify the oldest person in the `document` and create an image showcasing the result as a banner." + +I will use the following tools: `document_qa` to find the oldest person in the document, then `image_generator` to generate an image according to the answer. + +Answer: +```py +answer = document_qa(document, question="What is the oldest person?") +print(f"The answer is {answer}.") +image = image_generator("A banner showing " + answer) +``` + +```` + +The pattern the model is prompted to repeat has three parts: The task statement, the agent's explanation of +what it intends to do, and finally the generated code. Every example that is part of the prompt has this exact +pattern, thus making sure that the agent will reproduce exactly the same pattern when generating new tokens. + +The prompt examples are curated by the Transformers team and rigorously evaluated on a set of +[problem statements](https://github.com/huggingface/transformers/blob/main/src/transformers/tools/evaluate_agent.py) +to ensure that the agent's prompt is as good as possible to solve real use cases of the agent. + +The final part of the prompt corresponds to: +```text +Task: "Draw me a picture of rivers and lakes" + +I will use the following +``` + +is a final and unfinished example that the agent is tasked to complete. The unfinished example +is dynamically created based on the actual user input. For the above example, the user ran: + +```py +agent.run("Draw me a picture of rivers and lakes") +``` + +The user input - *a.k.a* the task: *"Draw me a picture of rivers and lakes"* is cast into the +prompt template: "Task: \n\n I will use the following". This sentence makes up the final lines of the +prompt the agent is conditioned on, therefore strongly influencing the agent to finish the example +exactly in the same way it was previously done in the examples. + +Without going into too much detail, the chat template has the same prompt structure with the +examples having a slightly different style, *e.g.*: + +````text +[...] + +===== + +Human: Answer the question in the variable `question` about the image stored in the variable `image`. + +Assistant: I will use the tool `image_qa` to answer the question on the input image. + +```py +answer = image_qa(text=question, image=image) +print(f"The answer is {answer}") +``` + +Human: I tried this code, it worked but didn't give me a good result. The question is in French + +Assistant: In this case, the question needs to be translated first. I will use the tool `translator` to do this. + +```py +translated_question = translator(question=question, src_lang="French", tgt_lang="English") +print(f"The translated question is {translated_question}.") +answer = image_qa(text=translated_question, image=image) +print(f"The answer is {answer}") +``` + +===== + +[...] +```` + +Contrary, to the examples of the `run` prompt, each `chat` prompt example has one or more exchanges between the +*Human* and the *Assistant*. Every exchange is structured similarly to the example of the `run` prompt. +The user's input is appended to behind *Human:* and the agent is prompted to first generate what needs to be done +before generating code. An exchange can be based on previous exchanges, therefore allowing the user to refer +to past exchanges as is done *e.g.* above by the user's input of "I tried **this** code" refers to the +previously generated code of the agent. + +Upon running `.chat`, the user's input or *task* is cast into an unfinished example of the form: +```text +Human: \n\nAssistant: +``` +which the agent completes. Contrary to the `run` command, the `chat` command then appends the completed example +to the prompt, thus giving the agent more context for the next `chat` turn. + +Great now that we know how the prompt is structured, let's see how we can customize it! + +### Writing good user inputs + +While large language models are getting better and better at understanding users' intentions, it helps +enormously to be as precise as possible to help the agent pick the correct task. What does it mean to be +as precise as possible? + +The agent sees a list of tool names and their description in its prompt. The more tools are added the +more difficult it becomes for the agent to choose the correct tool and it's even more difficult to choose +the correct sequences of tools to run. Let's look at a common failure case, here we will only return +the code to analyze it. + +```py +from transformers import HfAgent + +agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder") + +agent.run("Show me a tree", return_code=True) +``` + +gives: + +```text +==Explanation from the agent== +I will use the following tool: `image_segmenter` to create a segmentation mask for the image. + + +==Code generated by the agent== +mask = image_segmenter(image, prompt="tree") +``` + +which is probably not what we wanted. Instead, it is more likely that we want an image of a tree to be generated. +To steer the agent more towards using a specific tool it can therefore be very helpful to use important keywords that +are present in the tool's name and description. Let's have a look. +```py +agent.toolbox["image_generator"].description +``` + +```text +'This is a tool that creates an image according to a prompt, which is a text description. It takes an input named `prompt` which contains the image description and outputs an image. +``` + +The name and description make use of the keywords "image", "prompt", "create" and "generate". Using these words will most likely work better here. Let's refine our prompt a bit. + +```py +agent.run("Create an image of a tree", return_code=True) +``` + +gives: +```text +==Explanation from the agent== +I will use the following tool `image_generator` to generate an image of a tree. + + +==Code generated by the agent== +image = image_generator(prompt="tree") +``` + +Much better! That looks more like what we want. In short, when you notice that the agent struggles to +correctly map your task to the correct tools, try looking up the most pertinent keywords of the tool's name +and description and try refining your task request with it. + +### Customizing the tool descriptions + +As we've seen before the agent has access to each of the tools' names and descriptions. The base tools +should have very precise names and descriptions, however, you might find that it could help to change the +the description or name of a tool for your specific use case. This might become especially important +when you've added multiple tools that are very similar or if you want to use your agent only for a certain +domain, *e.g.* image generation and transformations. + +A common problem is that the agent confuses image generation with image transformation/modification when +used a lot for image generation tasks, *e.g.* +```py +agent.run("Make an image of a house and a car", return_code=True) +``` +returns +```text +==Explanation from the agent== +I will use the following tools `image_generator` to generate an image of a house and `image_transformer` to transform the image of a car into the image of a house. + +==Code generated by the agent== +house_image = image_generator(prompt="A house") +car_image = image_generator(prompt="A car") +house_car_image = image_transformer(image=car_image, prompt="A house") +``` + +which is probably not exactly what we want here. It seems like the agent has a difficult time +to understand the difference between `image_generator` and `image_transformer` and often uses the two together. + +We can help the agent here by changing the tool name and description of `image_transformer`. Let's instead call it `modifier` +to disassociate it a bit from "image" and "prompt": +```py +agent.toolbox["modifier"] = agent.toolbox.pop("image_transformer") +agent.toolbox["modifier"].description = agent.toolbox["modifier"].description.replace( + "transforms an image according to a prompt", "modifies an image" +) +``` + +Now "modify" is a strong cue to use the new image processor which should help with the above prompt. Let's run it again. + +```py +agent.run("Make an image of a house and a car", return_code=True) +``` + +Now we're getting: +```text +==Explanation from the agent== +I will use the following tools: `image_generator` to generate an image of a house, then `image_generator` to generate an image of a car. + + +==Code generated by the agent== +house_image = image_generator(prompt="A house") +car_image = image_generator(prompt="A car") +``` + +which is definitely closer to what we had in mind! However, we want to have both the house and car in the same image. Steering the task more toward single image generation should help: + +```py +agent.run("Create image: 'A house and car'", return_code=True) +``` + +```text +==Explanation from the agent== +I will use the following tool: `image_generator` to generate an image. + + +==Code generated by the agent== +image = image_generator(prompt="A house and car") +``` + + + +Agents are still brittle for many use cases, especially when it comes to +slightly more complex use cases like generating an image of multiple objects. +Both the agent itself and the underlying prompt will be further improved in the coming +months making sure that agents become more robust to a variety of user inputs. + + + +### Customizing the whole prompt + +To give the user maximum flexibility, the whole prompt template as explained in [above](#structure-of-the-prompt) +can be overwritten by the user. In this case make sure that your custom prompt includes an introduction section, +a tool section, an example section, and an unfinished example section. If you want to overwrite the `run` prompt template, +you can do as follows: + +```py +template = """ [...] """ + +agent = HfAgent(your_endpoint, run_prompt_template=template) +``` + + + +Please make sure to have the `<>` string and the `<>` defined somewhere in the `template` so that the agent can be aware +of the tools, it has available to it as well as correctly insert the user's prompt. + + + +Similarly, one can overwrite the `chat` prompt template. Note that the `chat` mode always uses the following format for the exchanges: +```text +Human: <> + +Assistant: +``` + +Therefore it is important that the examples of the custom `chat` prompt template also make use of this format. +You can overwrite the `chat` template at instantiation as follows. + +``` +template = """ [...] """ + +agent = HfAgent(url_endpoint=your_endpoint, chat_prompt_template=template) +``` + + + +Please make sure to have the `<>` string defined somewhere in the `template` so that the agent can be aware +of the tools, it has available to it. + + + +## Using custom tools + +In this section, we'll be leveraging two existing custom tools that are specific to image generation: + +- We replace [huggingface-tools/image-transformation](https://huggingface.co/spaces/huggingface-tools/image-transformation), + with [diffusers/controlnet-canny-tool](https://huggingface.co/spaces/diffusers/controlnet-canny-tool) + to allow for more image modifications. +- We add a new tool for image upscaling to the default toolbox: + [diffusers/latent-upscaler-tool](https://huggingface.co/spaces/diffusers/latent-upscaler-tool) replace the existing image-transformation tool. + +We'll start by loading the custom tools with the convenient [`load_tool`] function: + +```py +from transformers import load_tool + +controlnet_transformer = load_tool("diffusers/controlnet-canny-tool") +upscaler = load_tool("diffusers/latent-upscaler-tool") +``` + +Upon adding custom tools to an agent, the tools' descriptions and names are automatically +included in the agents' prompts. Thus, it is imperative that custom tools have +a well-written description and name in order for the agent to understand how to use them. +Let's take a look at the description and name of `controlnet_transformer`: + +```py +print(f"Description: '{controlnet_transformer.description}'") +print(f"Name: '{controlnet_transformer.name}'") +``` + +gives +```text +Description: 'This is a tool that transforms an image with ControlNet according to a prompt. +It takes two inputs: `image`, which should be the image to transform, and `prompt`, which should be the prompt to use to change it. It returns the modified image.' +Name: 'image_transformer' +``` + +The name and description are accurate and fit the style of the [curated set of tools](./transformers_agents#a-curated-set-of-tools). +Next, let's instantiate an agent with `controlnet_transformer` and `upscaler`: + +```py +tools = [controlnet_transformer, upscaler] +agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder", additional_tools=tools) +``` + +This command should give you the following info: + +```text +image_transformer has been replaced by as provided in `additional_tools` +``` + +The set of curated tools already has an `image_transformer` tool which is hereby replaced with our custom tool. + + + +Overwriting existing tools can be beneficial if we want to use a custom tool exactly for the same task as an existing tool +because the agent is well-versed in using the specific task. Beware that the custom tool should follow the exact same API +as the overwritten tool in this case, or you should adapt the prompt template to make sure all examples using that +tool are updated. + + + +The upscaler tool was given the name `image_upscaler` which is not yet present in the default toolbox and is therefore simply added to the list of tools. +You can always have a look at the toolbox that is currently available to the agent via the `agent.toolbox` attribute: + +```py +print("\n".join([f"- {a}" for a in agent.toolbox.keys()])) +``` + +```text +- document_qa +- image_captioner +- image_qa +- image_segmenter +- transcriber +- summarizer +- text_classifier +- text_qa +- text_reader +- translator +- image_transformer +- text_downloader +- image_generator +- video_generator +- image_upscaler +``` + +Note how `image_upscaler` is now part of the agents' toolbox. + +Let's now try out the new tools! We will re-use the image we generated in [Transformers Agents Quickstart](./transformers_agents#single-execution-run). + +```py +from diffusers.utils import load_image + +image = load_image( + "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rivers_and_lakes.png" +) +``` + + + +Let's transform the image into a beautiful winter landscape: + +```py +image = agent.run("Transform the image: 'A frozen lake and snowy forest'", image=image) +``` + +```text +==Explanation from the agent== +I will use the following tool: `image_transformer` to transform the image. + + +==Code generated by the agent== +image = image_transformer(image, prompt="A frozen lake and snowy forest") +``` + + + +The new image processing tool is based on ControlNet which can make very strong modifications to the image. +By default the image processing tool returns an image of size 512x512 pixels. Let's see if we can upscale it. + +```py +image = agent.run("Upscale the image", image) +``` + +```text +==Explanation from the agent== +I will use the following tool: `image_upscaler` to upscale the image. + + +==Code generated by the agent== +upscaled_image = image_upscaler(image) +``` + + + +The agent automatically mapped our prompt "Upscale the image" to the just added upscaler tool purely based on the description and name of the upscaler tool +and was able to correctly run it. + +Next, let's have a look at how you can create a new custom tool. + +### Adding new tools + +In this section, we show how to create a new tool that can be added to the agent. + +#### Creating a new tool + +We'll first start by creating a tool. We'll add the not-so-useful yet fun task of fetching the model on the Hugging Face +Hub with the most downloads for a given task. + +We can do that with the following code: + +```python +from huggingface_hub import list_models + +task = "text-classification" + +model = next(iter(list_models(filter=task, sort="downloads", direction=-1))) +print(model.id) +``` + +For the task `text-classification`, this returns `'facebook/bart-large-mnli'`, for `translation` it returns `'t5-base`. + +How do we convert this to a tool that the agent can leverage? All tools depend on the superclass `Tool` that holds the +main attributes necessary. We'll create a class that inherits from it: + +```python +from transformers import Tool + + +class HFModelDownloadsTool(Tool): + pass +``` + +This class has a few needs: +- An attribute `name`, which corresponds to the name of the tool itself. To be in tune with other tools which have a + performative name, we'll name it `model_download_counter`. +- An attribute `description`, which will be used to populate the prompt of the agent. +- `inputs` and `outputs` attributes. Defining this will help the python interpreter make educated choices about types, + and will allow for a gradio-demo to be spawned when we push our tool to the Hub. They're both a list of expected + values, which can be `text`, `image`, or `audio`. +- A `__call__` method which contains the inference code. This is the code we've played with above! + +Here's what our class looks like now: + +```python +from transformers import Tool +from huggingface_hub import list_models + + +class HFModelDownloadsTool(Tool): + name = "model_download_counter" + description = ( + "This is a tool that returns the most downloaded model of a given task on the Hugging Face Hub. " + "It takes the name of the category (such as text-classification, depth-estimation, etc), and " + "returns the name of the checkpoint." + ) + + inputs = ["text"] + outputs = ["text"] + + def __call__(self, task: str): + model = next(iter(list_models(filter=task, sort="downloads", direction=-1))) + return model.id +``` + +We now have our tool handy. Save it in a file and import it from your main script. Let's name this file +`model_downloads.py`, so the resulting import code looks like this: + +```python +from model_downloads import HFModelDownloadsTool + +tool = HFModelDownloadsTool() +``` + +In order to let others benefit from it and for simpler initialization, we recommend pushing it to the Hub under your +namespace. To do so, just call `push_to_hub` on the `tool` variable: + +```python +tool.push_to_hub("hf-model-downloads") +``` + +You now have your code on the Hub! Let's take a look at the final step, which is to have the agent use it. + +#### Having the agent use the tool + +We now have our tool that lives on the Hub which can be instantiated as such (change the user name for your tool): + +```python +from transformers import load_tool + +tool = load_tool("lysandre/hf-model-downloads") +``` + +In order to use it in the agent, simply pass it in the `additional_tools` parameter of the agent initialization method: + +```python +from transformers import HfAgent + +agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder", additional_tools=[tool]) + +agent.run( + "Can you read out loud the name of the model that has the most downloads in the 'text-to-video' task on the Hugging Face Hub?" +) +``` +which outputs the following: +```text +==Code generated by the agent== +model = model_download_counter(task="text-to-video") +print(f"The model with the most downloads is {model}.") +audio_model = text_reader(model) + + +==Result== +The model with the most downloads is damo-vilab/text-to-video-ms-1.7b. +``` + +and generates the following audio. + +| **Audio** | +|------------------------------------------------------------------------------------------------------------------------------------------------------| +|