Metric: f1
Update on GitHub

Description

The F1 score is the harmonic mean of the precision and recall. It can be computed with: F1 = 2 * (precision * recall) / (precision + recall)

How to load this metric directly with the datasets library:

from datasets import load_metric
metric = load_metric("f1")

Citation

@article{scikit-learn,
  title={Scikit-learn: Machine Learning in {P}ython},
  author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
         and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
         and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
         Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
  journal={Journal of Machine Learning Research},
  volume={12},
  pages={2825--2830},
  year={2011}
}