conference
stringclasses
6 values
title
stringlengths
8
176
abstract
stringlengths
228
5k
decision
stringclasses
9 values
ICLR.cc/2020/Conference
Learning from Label Proportions with Consistency Regularization
The problem of learning from label proportions (LLP) involves training classifiers with weak labels on bags of instances, rather than strong labels on individual instances. The weak labels only contain the label proportions of each bag. The LLP problem is important for many practical applications that only allow label proportions to be collected because of data privacy or annotation costs, and has recently received lots of research attention. Most existing works focus on extending supervised learning models to solve the LLP problem, but the weak learning nature makes it hard to further improve LLP performance with a supervised angle. In this paper, we take a different angle from semi-supervised learning. In particular, we propose a novel model inspired by consistency regularization, a popular concept in semi-supervised learning that encourages the model to produce a decision boundary that better describes the data manifold. With the introduction of consistency regularization, we further extend our study to non-uniform bag-generation and validation-based parameter-selection procedures that better match practical needs. Experiments not only justify that LLP with consistency regularization achieves superior performance, but also demonstrate the practical usability of the proposed procedures.
Reject
ICLR.cc/2019/Conference
Differentiable Expected BLEU for Text Generation
Neural text generation models such as recurrent networks are typically trained by maximizing data log-likelihood based on cross entropy. Such training objective shows a discrepancy from test criteria like the BLEU metric. Recent work optimizes expected BLEU under the model distribution using policy gradient, while such algorithm can suffer from high variance and become impractical. In this paper, we propose a new Differentiable Expected BLEU (DEBLEU) objective that permits direct optimization of neural generation models with gradient descent. We leverage the decomposability and sparsity of BLEU, and reformulate it with moderate approximations, making the evaluation of the objective and its gradient efficient, comparable to common cross-entropy loss. We further devise a simple training procedure with ground-truth masking and annealing for stable optimization. Experiments on neural machine translation and image captioning show our method significantly improves over both cross-entropy and policy gradient training.
Reject
ICLR.cc/2022/Conference
Graph Convolutional Networks via Adaptive Filter Banks
Graph convolutional networks have been a powerful tool in representation learning of networked data. However, most architectures of message passing graph convolutional networks (MPGCNs) are limited as they employ a single message passing strategy and typically focus on low-frequency information, especially when graph features or signals are heterogeneous in different dimensions. Then, existing spectral graph convolutional operators lack a proper sharing scheme between filters, which may result in overfitting problems with numerous parameters. In this paper, we present a novel graph convolution operator, termed BankGCN, which extends the capabilities of MPGCNs beyond single `low-pass' features and simplifies spectral methods with a carefully designed sharing scheme between filters. BankGCN decomposes multi-channel signals on arbitrary graphs into subspaces and shares adaptive filters to represent information in each subspace. The filters of all subspaces differ in frequency response and together form a filter bank. The filter bank and the signal decomposition permit to adaptively capture diverse spectral characteristics of graph data for target applications with a compact architecture. We finally show through extensive experiments that BankGCN achieves excellent performance on a collection of benchmark graph datasets.
Reject
ICLR.cc/2022/Conference
EXACT: Scalable Graph Neural Networks Training via Extreme Activation Compression
Training Graph Neural Networks (GNNs) on large graphs is a fundamental challenge due to the high memory usage, which is mainly occupied by activations (e.g., node embeddings). Previous works usually focus on reducing the number of nodes retained in memory. In parallel, unlike what has been developed for other types of neural networks, training with compressed activation maps is less explored for GNNs. This extension is notoriously difficult to implement due to the miss of necessary tools in common graph learning packages. To unleash the potential of this direction, we provide { an} optimized GPU implementation which supports training GNNs with compressed activations. Based on the implementation, we propose a memory-efficient framework called ``EXACT'', which for the first time demonstrate the potential and evaluate the feasibility of training GNNs with compressed activations. We systematically analyze the trade-off among the memory saving, time overhead, and accuracy drop. In practice, EXACT can reduce the memory footprint of activations by up to $32\times$ with $0.2$-$0.5\%$ accuracy drop and $10$-$25\%$ time overhead across different models and datasets. We implement EXACT as an extension for Pytorch Geometric and Pytorch. In practice, for Pytorch Geometric, EXACT can trim down the hardware requirement of training a three-layer full-batch GraphSAGE on \textit{ogbn-products} from a 48GB GPU to a 12GB GPU.
Accept (Poster)
ICLR.cc/2018/Conference
To Prune, or Not to Prune: Exploring the Efficacy of Pruning for Model Compression
Model pruning seeks to induce sparsity in a deep neural network's various connection matrices, thereby reducing the number of nonzero-valued parameters in the model. Recent reports (Han et al., 2015; Narang et al., 2017) prune deep networks at the cost of only a marginal loss in accuracy and achieve a sizable reduction in model size. This hints at the possibility that the baseline models in these experiments are perhaps severely over-parameterized at the outset and a viable alternative for model compression might be to simply reduce the number of hidden units while maintaining the model's dense connection structure, exposing a similar trade-off in model size and accuracy. We investigate these two distinct paths for model compression within the context of energy-efficient inference in resource-constrained environments and propose a new gradual pruning technique that is simple and straightforward to apply across a variety of models/datasets with minimal tuning and can be seamlessly incorporated within the training process. We compare the accuracy of large, but pruned models (large-sparse) and their smaller, but dense (small-dense) counterparts with identical memory footprint. Across a broad range of neural network architectures (deep CNNs, stacked LSTM, and seq2seq LSTM models), we find large-sparse models to consistently outperform small-dense models and achieve up to 10x reduction in number of non-zero parameters with minimal loss in accuracy.
Invite to Workshop Track
ICLR.cc/2019/Conference
Variation Network: Learning High-level Attributes for Controlled Input Manipulation
This paper presents the Variation Network (VarNet), a generative model providing means to manipulate the high-level attributes of a given input. The originality of our approach is that VarNet is not only capable of handling pre-defined attributes but can also learn the relevant attributes of the dataset by itself. These two settings can be easily combined which makes VarNet applicable for a wide variety of tasks. Further, VarNet has a sound probabilistic interpretation which grants us with a novel way to navigate in the latent spaces as well as means to control how the attributes are learned. We demonstrate experimentally that this model is capable of performing interesting input manipulation and that the learned attributes are relevant and interpretable.
Reject
ICLR.cc/2023/Conference
Backpropagation through Combinatorial Algorithms: Identity with Projection Works
Embedding discrete solvers as differentiable layers has given modern deep learning architectures combinatorial expressivity and discrete reasoning capabilities. The derivative of these solvers is zero or undefined, therefore a meaningful replacement is crucial for effective gradient-based learning. Prior works rely on smoothing the solver with input perturbations, relaxing the solver to continuous problems, or interpolating the loss landscape with techniques that typically require additional solver calls, introduce extra hyper-parameters, or compromise performance. We propose a principled approach to exploit the geometry of the discrete solution space to treat the solver as a negative identity on the backward pass and further provide a theoretical justification. Our experiments demonstrate that such a straightforward hyper-parameter-free approach is able to compete with previous more complex methods on numerous experiments such as backpropagation through discrete samplers, deep graph matching, and image retrieval. Furthermore, we substitute the previously proposed problem-specific and label-dependent margin with a generic regularization procedure that prevents cost collapse and increases robustness.
Accept: poster
ICLR.cc/2023/Conference
Learning to Generate All Feasible Actions
Several machine learning (ML) applications are characterized by searching for an optimal solution to a complex task. The search space for this optimal solution is often very large, so large in fact that this optimal solution is often not computable. Part of the problem is that many candidate solutions found via ML are actually infeasible and have to be discarded. Restricting the search space to only the feasible solution candidates simplifies finding an optimal solution for the tasks. Further, the set of feasible solutions could be re-used in multiple problems characterized by different tasks. In particular, we observe that complex tasks can be decomposed into subtasks and corresponding skills. We propose to learn a reusable and transferable skill by training an actor to generate all feasible actions. The trained actor can then propose feasible actions, among which an optimal one can be chosen according to a specific task. The actor is trained by interpreting the feasibility of each action as a target distribution. The training procedure minimizes a divergence of the actor's output distribution to this target. We derive the general optimization target for arbitrary f-divergences using a combination of kernel density estimates, resampling, and importance sampling. We further utilize an auxiliary critic to reduce the interactions with the environment. A preliminary comparison to related strategies shows that our approach learns to visit all the modes in the feasible action space, demonstrating the framework's potential for generating multimodal action distributions.
Reject
ICLR.cc/2019/Conference
Pay Less Attention with Lightweight and Dynamic Convolutions
Self-attention is a useful mechanism to build generative models for language and images. It determines the importance of context elements by comparing each element to the current time step. In this paper, we show that a very lightweight convolution can perform competitively to the best reported self-attention results. Next, we introduce dynamic convolutions which are simpler and more efficient than self-attention. We predict separate convolution kernels based solely on the current time-step in order to determine the importance of context elements. The number of operations required by this approach scales linearly in the input length, whereas self-attention is quadratic. Experiments on large-scale machine translation, language modeling and abstractive summarization show that dynamic convolutions improve over strong self-attention models. On the WMT'14 English-German test set dynamic convolutions achieve a new state of the art of 29.7 BLEU.
Accept (Oral)
ICLR.cc/2020/Conference
Confidence Scores Make Instance-dependent Label-noise Learning Possible
Learning with noisy labels has drawn a lot of attention. In this area, most of recent works only consider class-conditional noise, where the label noise is independent of its input features. This noise model may not be faithful to many real-world applications. Instead, few pioneer works have studied instance-dependent noise, but these methods are limited to strong assumptions on noise models. To alleviate this issue, we introduce confidence-scored instance-dependent noise (CSIDN), where each instance-label pair is associated with a confidence score. The confidence scores are sufficient to estimate the noise functions of each instance with minimal assumptions. Moreover, such scores can be easily and cheaply derived during the construction of the dataset through crowdsourcing or automatic annotation. To handle CSIDN, we design a benchmark algorithm termed instance-level forward correction. Empirical results on synthetic and real-world datasets demonstrate the utility of our proposed method.
Reject
ICLR.cc/2021/Conference
Learning a Max-Margin Classifier for Cross-Domain Sentiment Analysis
Sentiment analysis is a costly yet necessary task for enterprises to study the opinions of their costumers to improve their products and services and to determine optimal marketing strategies. Due to existence of a wide range of domains across different products and services, cross-domain sentiment analysis methods have received significant attention in recent years. These methods mitigate the domain gap between different applications by training cross-domain generalizable classifiers which help to relax the need for individual data annotation per each domain. Most existing methods focus on learning domain-agnostic representations that are invariant with respect to both the source and the target domains. As a result, a classifier that is trained using annotated data in a source domain, would generalize well in a related target domain. In this work, we introduce a new domain adaptation method which induces large margins between different classes in an embedding space based on the notion of prototypical distribution. This embedding space is trained to be domain-agnostic by matching the data distributions across the domains. Large margins in the source domain help to reduce the effect of ``domain shift'' on the performance of a trained classifier in the target domain. Theoreticaland empirical analysis are provided to demonstrate that the method is effective.
Reject
ICLR.cc/2023/Conference
Sparse MoE as the New Dropout: Scaling Dense and Self-Slimmable Transformers
Despite their remarkable achievement, gigantic transformers encounter significant drawbacks, including exorbitant computational and memory footprints during training, as well as severe collapse evidenced by a high degree of parameter redundancy. Sparsely-activated Mixture-of-Experts (SMoEs) have shown promise to mitigate the issue of training efficiency, yet they are prone to (1) $\textit{redundant experts}$ due to representational collapse; and (2) $\textit{poor expert scalability for inference and downstream fine-tuning}$, primarily due to overfitting of the learned routing policy to the number of activated experts during training. As recent research efforts are predominantly focused on improving routing policies to encourage expert specializations, this work focuses on $\textit{exploring the overlooked scalability bottleneck of SMoEs}$ and leveraging it to effectively $\textbf{scale dense transformers}$. To this end, we propose a new plug-and-play training framework, $\textbf{SMoE-Dropout}$, to enable scaling transformers to better accuracy in their full capacity without collapse. Specifically, SMoE-Dropout consists of a $\textit{randomly initialized and fixed}$ router network to activate experts and gradually increases the activated expert number as training progresses over time. Transformers trained by SMoE-Dropout naturally exhibit a $\textbf{``self-slimmable”}$ property subject to resource availability, offering smooth and consistent performance boosts with an increase in activated experts during inference or fine-tuning. Our extensive experiments across diverse transformer architectures on a variety of tasks demonstrate the superior performance and substantial computation savings of SMoE-Dropout, compared to dense training baselines with equivalent parameter counts. In particular, our trained BERT outperforms its densely trained counterpart with consistent improvements of {$1.03\%$, $0.78\%$, $1.09\%$} on challenging reasoning tasks {$\texttt{ASDiv-A}$, $\texttt{MAWPS}$, $\texttt{SVAMP}$}, respectively. Codes and models are available in https://github.com/VITA-Group/Random-MoE-as-Dropout.
Accept: notable-top-25%
ICLR.cc/2020/Conference
Way Off-Policy Batch Deep Reinforcement Learning of Human Preferences in Dialog
Most deep reinforcement learning (RL) systems are not able to learn effectively from off-policy data, especially if they cannot explore online in the environment. This is a critical shortcoming for applying RL to real-world problems where collecting data is expensive, and models must be tested offline before being deployed to interact with the environment -- e.g. systems that learn from human interaction. Thus, we develop a novel class of off-policy batch RL algorithms which use KL-control to penalize divergence from a pre-trained prior model of probable actions. This KL-constraint reduces extrapolation error, enabling effective offline learning, without exploration, from a fixed batch of data. We also use dropout-based uncertainty estimates to lower bound the target Q-values as a more efficient alternative to Double Q-Learning. This Way Off-Policy (WOP) algorithm is tested on both traditional RL tasks from OpenAI Gym, and on the problem of open-domain dialog generation; a challenging reinforcement learning problem with a 20,000 dimensional action space. WOP allows for the extraction of multiple different reward functions post-hoc from collected human interaction data, and can learn effectively from all of these. We test real-world generalization by deploying dialog models live to converse with humans in an open-domain setting, and demonstrate that WOP achieves significant improvements over state-of-the-art prior methods in batch deep RL.
Reject
ICLR.cc/2022/Conference
Maximum Entropy RL (Provably) Solves Some Robust RL Problems
Many potential applications of reinforcement learning (RL) require guarantees that the agent will perform well in the face of disturbances to the dynamics or reward function. In this paper, we prove theoretically that maximum entropy (MaxEnt) RL maximizes a lower bound on a robust RL objective, and thus can be used to learn policies that are robust to some disturbances in the dynamics and the reward function. While this capability of MaxEnt RL has been observed empirically in prior work, to the best of our knowledge our work provides the first rigorous proof and theoretical characterization of the MaxEnt RL robust set. While a number of prior robust RL algorithms have been designed to handle similar disturbances to the reward function or dynamics, these methods typically require additional moving parts and hyperparameters on top of a base RL algorithm. In contrast, our results suggest that MaxEnt RL by itself is robust to certain disturbances, without requiring any additional modifications. While this does not imply that MaxEnt RL is the best available robust RL method, MaxEnt RL is a simple robust RL method with appealing formal guarantees.
Accept (Poster)
ICLR.cc/2018/Conference
Towards Reverse-Engineering Black-Box Neural Networks
Many deployed learned models are black boxes: given input, returns output. Internal information about the model, such as the architecture, optimisation procedure, or training data, is not disclosed explicitly as it might contain proprietary information or make the system more vulnerable. This work shows that such attributes of neural networks can be exposed from a sequence of queries. This has multiple implications. On the one hand, our work exposes the vulnerability of black-box neural networks to different types of attacks -- we show that the revealed internal information helps generate more effective adversarial examples against the black box model. On the other hand, this technique can be used for better protection of private content from automatic recognition models using adversarial examples. Our paper suggests that it is actually hard to draw a line between white box and black box models.
Accept (Poster)
ICLR.cc/2019/Conference
Siamese Capsule Networks
Capsule Networks have shown encouraging results on defacto benchmark computer vision datasets such as MNIST, CIFAR and smallNORB. Although, they are yet to be tested on tasks where (1) the entities detected inherently have more complex internal representations and (2) there are very few instances per class to learn from and (3) where point-wise classification is not suitable. Hence, this paper carries out experiments on face verification in both controlled and uncontrolled settings that together address these points. In doing so we introduce Siamese Capsule Networks, a new variant that can be used for pairwise learning tasks. The model is trained using contrastive loss with l2-normalized capsule encoded pose features. We find that Siamese Capsule Networks perform well against strong baselines on both pairwise learning datasets, yielding best results in the few-shot learning setting where image pairs in the test set contain unseen subjects.
Reject
ICLR.cc/2023/Conference
Implicit regularization via Spectral Neural Networks and non-linear matrix sensing
The phenomenon of \textit{implicit regularization} has attracted interest in the recent years as a fundamental aspect of the remarkable generalizing ability of neural networks. In a nutshell, it entails that gradient flow dynamics in many neural nets, even without any explicit regularizer in the loss function, converges to the solution of a regularized learning problem. However, known results attempting to theoretically explain this phenomenon focus overwhelmingly on the setting of linear neural nets, and the simplicity of the linear structure is particularly crucial to existing arguments. In this paper, we explore this problem in the context of more realistic neural networks with a general class of non-linear activation functions, and rigorously demonstrate the implicit regularization phenomenon for such networks in the setting of matrix sensing problems. This is coupled with rigorous rate guarantees that ensure exponentially fast convergence of gradient descent, complemented by matching lower bounds which stipulate that the exponential rate is the best achievable. In this vein, we contribute a network architecture called Spectral Neural Networks (\textit{abbrv.} SNN) that is particularly suitable for matrix learning problems. Conceptually, this entails coordinatizing the space of matrices by their singular values and singular vectors, as opposed to by their entries, a potentially fruitful perspective for matrix learning. We demonstrate that the SNN architecture is inherently much more amenable to theoretical analysis than vanilla neural nets and confirm its effectiveness in the context of matrix sensing, supported via both mathematical guarantees and empirical investigations. We believe that the SNN architecture has the potential to be of wide applicability in a broad class of matrix learning scenarios.
Reject
ICLR.cc/2022/Conference
The Connection between Out-of-Distribution Generalization and Privacy of ML Models
With the goal of generalizing to out-of-distribution (OOD) data, recent domain generalization methods aim to learn ``stable'' feature representations whose effect on the output remains invariant across domains. Given the theoretical connection between generalization and privacy, we ask whether better OOD generalization leads to better privacy for machine learning models, where privacy is measured through robustness to membership inference (MI) attacks. In general, we find that the relationship does not hold. Through extensive evaluation on a synthetic dataset and image datasets like MNIST, Fashion-MNIST, and Chest X-rays, we show that a lower OOD generalization gap does not imply better robustness to MI attacks. Instead, privacy benefits are based on the extent to which a model captures the stable features. A model that captures stable features is more robust to MI attacks than models that exhibit better OOD generalization but do not learn stable features. Further, for the same provable differential privacy guarantees, a model that learns stable features provides higher utility as compared to others. Our results offer the first extensive empirical study connecting stable features and privacy, and also have a takeaway for the domain generalization community; MI attack can be used as a complementary metric to measure model quality.
Reject
ICLR.cc/2022/Conference
Label Smoothed Embedding Hypothesis for Out-of-Distribution Detection
Detecting out-of-distribution (OOD) examples is critical in many applications. We propose an unsupervised method to detect OOD samples using a $k$-NN density estimate with respect to a classification model's intermediate activations on in-distribution samples. We leverage a recent insight about label smoothing, which we call the {\it Label Smoothed Embedding Hypothesis}, and show that one of the implications is that the $k$-NN density estimator performs better as an OOD detection method both theoretically and empirically when the model is trained with label smoothing. Finally, we show that our proposal outperforms many OOD baselines and we also provide new finite-sample high-probability statistical results for $k$-NN density estimation's ability to detect OOD examples.
Reject
ICLR.cc/2019/Conference
Understanding the Effectiveness of Lipschitz-Continuity in Generative Adversarial Nets
In this paper, we investigate the underlying factor that leads to the failure and success in training of GANs. Specifically, we study the property of the optimal discriminative function $f^*(x)$ and show that $f^*(x)$ in most GANs can only reflect the local densities at $x$, which means the value of $f^*(x)$ for points in the fake distribution ($P_g$) does not contain any information useful about the location of other points in the real distribution ($P_r$). Given that the supports of the real and fake distributions are usually disjoint, we argue that such a $f^*(x)$ and its gradient tell nothing about "how to pull $P_g$ to $P_r$", which turns out to be the fundamental cause of failure in training of GANs. We further demonstrate that a well-defined distance metric (including the dual form of Wasserstein distance with a compacted constraint) does not necessarily ensure the convergence of GANs. Finally, we propose Lipschitz-continuity condition as a general solution and show that in a large family of GAN objectives, Lipschitz condition is capable of connecting $P_g$ and $P_r$ through $f^*(x)$ such that the gradient $\nabla_{\!x}f^*(x)$ at each sample $x \sim P_g$ points towards some real sample $y \sim P_r$.
Reject
ICLR.cc/2019/Conference
Clean-Label Backdoor Attacks
Deep neural networks have been recently demonstrated to be vulnerable to backdoor attacks. Specifically, by altering a small set of training examples, an adversary is able to install a backdoor that can be used during inference to fully control the model’s behavior. While the attack is very powerful, it crucially relies on the adversary being able to introduce arbitrary, often clearly mislabeled, inputs to the training set and can thus be detected even by fairly rudimentary data filtering. In this paper, we introduce a new approach to executing backdoor attacks, utilizing adversarial examples and GAN-generated data. The key feature is that the resulting poisoned inputs appear to be consistent with their label and thus seem benign even upon human inspection.
Reject
ICLR.cc/2022/Conference
ClimateGAN: Raising Climate Change Awareness by Generating Images of Floods
Climate change is a major threat to humanity and the actions required to prevent its catastrophic consequences include changes in both policy-making and individual behaviour. However, taking action requires understanding its seemingly abstract and distant consequences. Projecting the potential impacts of extreme climate events such as flooding in familiar places can help make the impacts of climate change more concrete and encourage action. As part of a larger initiative to build a website (https://thisclimatedoesnotexist.com) that projects extreme climate events onto user-chosen photos, we present our solution to simulate photo-realistic floods on authentic images. To address this complex task in the absence of suitable data, we propose ClimateGAN, a model that leverages both simulated and real data through unsupervised domain adaptation and conditional image generation. In this paper, we describe the details of our framework, thoroughly evaluate the main components of our architecture and demonstrate that our model is capable of robustly generating photo-realistic flooding on street images.
Accept (Poster)
ICLR.cc/2018/Conference
Data Augmentation Generative Adversarial Networks
Effective training of neural networks requires much data. In the low-data regime, parameters are underdetermined, and learnt networks generalise poorly. Data Augmentation (Krizhevsky et al., 2012) alleviates this by using existing data more effectively. However standard data augmentation produces only limited plausible alternative data. Given there is potential to generate a much broader set of augmentations, we design and train a generative model to do data augmentation. The model, based on image conditional Generative Adversarial Networks, takes data from a source domain and learns to take any data item and generalise it to generate other within-class data items. As this generative process does not depend on the classes themselves, it can be applied to novel unseen classes of data. We show that a Data Augmentation Generative Adversarial Network (DAGAN) augments standard vanilla classifiers well. We also show a DAGAN can enhance few-shot learning systems such as Matching Networks. We demonstrate these approaches on Omniglot, on EMNIST having learnt the DAGAN on Omniglot, and VGG-Face data. In our experiments we can see over 13% increase in accuracy in the low-data regime experiments in Omniglot (from 69% to 82%), EMNIST (73.9% to 76%) and VGG-Face (4.5% to 12%); in Matching Networks for Omniglot we observe an increase of 0.5% (from 96.9% to 97.4%) and an increase of 1.8% in EMNIST (from 59.5% to 61.3%).
Invite to Workshop Track
ICLR.cc/2020/Conference
Effective and Robust Detection of Adversarial Examples via Benford-Fourier Coefficients
Adversarial examples have been well known as a serious threat to deep neural networks (DNNs). To ensure successful and safe operations of DNNs on realworld tasks, it is urgent to equip DNNs with effective defense strategies. In this work, we study the detection of adversarial examples, based on the assumption that the output and internal responses of one DNN model for both adversarial and benign examples follow the generalized Gaussian distribution (GGD), but with different parameters (i.e., shape factor, mean, and variance). GGD is a general distribution family to cover many popular distributions (e.g., Laplacian, Gaussian, or uniform). It is more likely to approximate the intrinsic distributions of internal responses than any specific distribution. Besides, since the shape factor is more robust to different databases rather than the other two parameters, we propose to construct discriminative features via the shape factor for adversarial detection, employing the magnitude of Benford-Fourier coefficients (MBF), which can be easily estimated using responses. Finally, a support vector machine is trained as the adversarial detector through leveraging the MBF features. Through the Kolmogorov-Smirnov (KS) test, we empirically verify that: 1) the posterior vectors of both adversarial and benign examples follow GGD; 2) the extracted MBF features of adversarial and benign examples follow different distributions. Extensive experiments in terms of image classification demonstrate that the proposed detector is much more effective and robust on detecting adversarial examples of different crafting methods and different sources, in contrast to state-of-the-art adversarial detection methods.
Reject
ICLR.cc/2023/Conference
Safe Reinforcement Learning From Pixels Using a Stochastic Latent Representation
We address the problem of safe reinforcement learning from pixel observations. Inherent challenges in such settings are (1) a trade-off between reward optimization and adhering to safety constraints, (2) partial observability, and (3) high-dimensional observations. We formalize the problem in a constrained, partially observable Markov decision process framework, where an agent obtains distinct reward and safety signals. To address the curse of dimensionality, we employ a novel safety critic using the stochastic latent actor-critic (SLAC) approach. The latent variable model predicts rewards and safety violations, and we use the safety critic to train safe policies. Using well-known benchmark environments, we demonstrate competitive performance over existing approaches regarding computational requirements, final reward return, and satisfying the safety constraints.
Accept: poster
ICLR.cc/2023/Conference
Efficient Edge Inference by Selective Query
Edge devices provide inference on predictive tasks to many end-users. However, deploying deep neural networks that achieve state-of-the-art accuracy on these devices is infeasible due to edge resource constraints. Nevertheless, cloud-only processing, the de-facto standard, is also problematic, since uploading large amounts of data imposes severe communication bottlenecks. We propose a novel end-to-end hybrid learning framework that allows the edge to selectively query only those hard examples that the cloud can classify correctly. Our framework optimizes over neural architectures and trains edge predictors and routing models so that the overall accuracy remains high while minimizing the overall latency. Training a hybrid learner is difficult since we lack annotations of hard edge-examples. We introduce a novel proxy supervision in this context and show that our method adapts seamlessly and near optimally across different latency regimes. On the ImageNet dataset, our proposed method deployed on a micro-controller unit exhibits $25\%$ reduction in latency compared to cloud-only processing while suffering no excess loss.
Accept: poster
ICLR.cc/2021/Conference
Co-complexity: An Extended Perspective on Generalization Error
It is well known that the complexity of a classifier's function space controls its generalization gap, with two important examples being VC-dimension and Rademacher complexity (R-Complexity). We note that these traditional generalization error bounds consider the ground truth label generating function (LGF) to be fixed. However, if we consider a scenario where the LGF has no constraints at all, then the true generalization error can be large, irrespective of training performance, as the values of the LGF on unseen data points can be largely independent of the values on the training data. To account for this, in this work, we consider an extended characterization of the problem, where the ground truth labels are generated by a function within another function space, which we call the \textit{generator} space. We find that the generalization gap in this scenario depends on the R-Complexity of both the classifier and the generator function spaces. Thus, we find that, even if the R-Complexity of the classifier is low and it has a good training fit, a highly complex generator space could worsen generalization performance, in accordance with the no free lunch theorem. Furthermore, the characterization of a generator space allows us to model constraints, such as invariances (translation and scale in vision) or local smoothness. Subsequently, we propose a joint entropy-like measure of complexity between function spaces (classifier and generator), called co-complexity, which leads to tighter bounds on the generalization error in this setting. Co-complexity captures the similarities between the classifier and generator spaces. It can be decomposed into an invariance co-complexity term, which measures the extent to which the classifier respects the invariant transformations in the generator, and a dissociation co-complexity term, which measures the ability of the classifier to differentiate separate categories in the generator. Our major finding is that reducing the invariance co-complexity of a classifier, while maintaining its dissociation co-complexity, improves the training error and reduces the generalization gap. Furthermore, our results, when specialized to the previous setting where the LGF is fixed, lead to tighter generalization error bounds. Theoretical results are supported by empirical validation on the CNN architecture and its transformation-equivariant extensions. Co-complexity showcases a new side to the generalization abilities of classifiers and can potentially be used to improve their design.
Reject
ICLR.cc/2019/Conference
Globally Soft Filter Pruning For Efficient Convolutional Neural Networks
This paper propose a cumulative saliency based Globally Soft Filter Pruning (GSFP) scheme to prune redundant filters of Convolutional Neural Networks (CNNs).Specifically, the GSFP adopts a robust pruning method, which measures the global redundancy of the filter in the whole model by using the soft pruning strategy. In addition, in the model recovery process after pruning, we use the cumulative saliency strategy to improve the accuracy of pruning. GSFP has two advantages over previous works:(1) More accurate pruning guidance. For a pre-trained CNN model, the saliency of the filter varies with different input data. Therefore, accumulating the saliency of the filter over the entire data set can provide more accurate guidance for pruning. On the other hand, pruning from a global perspective is more accurate than local pruning. (2) More robust pruning strategy. We propose a reasonable normalization formula to prevent certain layers of filters in the network from being completely clipped due to excessive pruning rate.
Reject
ICLR.cc/2020/Conference
Convolutional Bipartite Attractor Networks
In human perception and cognition, a fundamental operation that brains perform is interpretation: constructing coherent neural states from noisy, incomplete, and intrinsically ambiguous evidence. The problem of interpretation is well matched to an early and often overlooked architecture, the attractor network---a recurrent neural net that performs constraint satisfaction, imputation of missing features, and clean up of noisy data via energy minimization dynamics. We revisit attractor nets in light of modern deep learning methods and propose a convolutional bipartite architecture with a novel training loss, activation function, and connectivity constraints. We tackle larger problems than have been previously explored with attractor nets and demonstrate their potential for image completion and super-resolution. We argue that this architecture is better motivated than ever-deeper feedforward models and is a viable alternative to more costly sampling-based generative methods on a range of supervised and unsupervised tasks.
Reject
ICLR.cc/2022/Conference
Multi-scale Feature Learning Dynamics: Insights for Double Descent
A key challenge in building theoretical foundations for deep learning is the complex optimization dynamics of neural networks, resulting from the high-dimensional interactions between the large number of network parameters. Such non-trivial interactions lead to intriguing model behaviors such as the phenomenon of "double descent" of the generalization error. The more commonly studied aspect of this phenomenon corresponds to model-wise double descent where the test error exhibits a second descent with increasing model complexity, beyond the classical U-shaped error curve. In this work, we investigate the origins of the less studied epoch-wise double descent in which the test error undergoes two non-monotonous transitions, or descents as the training time increases. We study a linear teacher-student setup exhibiting epoch-wise double descent similar to that in deep neural networks. In this setting, we derive closed-form analytical expressions for the evolution of generalization error over training. We find that double descent can be attributed to distinct features being learned at different scales: as fast-learning features overfit, slower-learning features start to fit, resulting in a second descent in test error. We validate our findings through numerical experiments where our theory accurately predicts empirical findings and remains consistent with observations in deep neural networks.
Reject
ICLR.cc/2021/Conference
A Text GAN for Language Generation with Non-Autoregressive Generator
Despite the great success of Generative Adversarial Networks (GANs) in generating high-quality images, GANs for text generation still face two major challenges: first, most text GANs are unstable in training mainly due to ineffective optimization of the generator, and they heavily rely on maximum likelihood pretraining; second, most text GANs adopt autoregressive generators without latent variables, which largely limits the ability to learn latent representations for natural language text. In this paper, we propose a novel text GAN, named NAGAN, which incorporates a non-autoregressive generator with latent variables. The non-autoregressive generator can be effectively trained with gradient-based methods and free of pretraining. The latent variables facilitate representation learning for text generation applications. Experiments show that our model is competitive comparing with existing text GANs in unconditional text generation, and it outperforms existing methods on sentence manipulation in latent space and unsupervised text decipherment.
Reject
ICLR.cc/2018/Conference
Transfer Learning on Manifolds via Learned Transport Operators
Within-class variation in a high-dimensional dataset can be modeled as being on a low-dimensional manifold due to the constraints of the physical processes producing that variation (e.g., translation, illumination, etc.). We desire a method for learning a representation of the manifolds induced by identity-preserving transformations that can be used to increase robustness, reduce the training burden, and encourage interpretability in machine learning tasks. In particular, what is needed is a representation of the transformation manifold that can robustly capture the shape of the manifold from the input data, generate new points on the manifold, and extend transformations outside of the training domain without significantly increasing the error. Previous work has proposed algorithms to efficiently learn analytic operators (called transport operators) that define the process of transporting one data point on a manifold to another. The main contribution of this paper is to define two transfer learning methods that use this generative manifold representation to learn natural transformations and incorporate them into new data. The first method uses this representation in a novel randomized approach to transfer learning that employs the learned generative model to map out unseen regions of the data space. These results are shown through demonstrations of transfer learning in a data augmentation task for few-shot image classification. The second method use of transport operators for injecting specific transformations into new data examples which allows for realistic image animation and informed data augmentation. These results are shown on stylized constructions using the classic swiss roll data structure and in demonstrations of transfer learning in a data augmentation task for few-shot image classification. We also propose the use of transport operators for injecting transformations into new data examples which allows for realistic image animation.
Reject
ICLR.cc/2018/Conference
Trace norm regularization and faster inference for embedded speech recognition RNNs
We propose and evaluate new techniques for compressing and speeding up dense matrix multiplications as found in the fully connected and recurrent layers of neural networks for embedded large vocabulary continuous speech recognition (LVCSR). For compression, we introduce and study a trace norm regularization technique for training low rank factored versions of matrix multiplications. Compared to standard low rank training, we show that our method leads to good accuracy versus number of parameter trade-offs and can be used to speed up training of large models. For speedup, we enable faster inference on ARM processors through new open sourced kernels optimized for small batch sizes, resulting in 3x to 7x speed ups over the widely used gemmlowp library. Beyond LVCSR, we expect our techniques and kernels to be more generally applicable to embedded neural networks with large fully connected or recurrent layers.
Reject
ICLR.cc/2020/Conference
You Only Train Once: Loss-Conditional Training of Deep Networks
In many machine learning problems, loss functions are weighted sums of several terms. A typical approach to dealing with these is to train multiple separate models with different selections of weights and then either choose the best one according to some criterion or keep multiple models if it is desirable to maintain a diverse set of solutions. This is inefficient both at training and at inference time. We propose a method that allows replacing multiple models trained on one loss function each by a single model trained on a distribution of losses. At test time a model trained this way can be conditioned to generate outputs corresponding to any loss from the training distribution of losses. We demonstrate this approach on three tasks with parametrized losses: beta-VAE, learned image compression, and fast style transfer.
Accept (Poster)
ICLR.cc/2019/Conference
Countdown Regression: Sharp and Calibrated Survival Predictions
Personalized probabilistic forecasts of time to event (such as mortality) can be crucial in decision making, especially in the clinical setting. Inspired by ideas from the meteorology literature, we approach this problem through the paradigm of maximizing sharpness of prediction distributions, subject to calibration. In regression problems, it has been shown that optimizing the continuous ranked probability score (CRPS) instead of maximum likelihood leads to sharper prediction distributions while maintaining calibration. We introduce the Survival-CRPS, a generalization of the CRPS to the time to event setting, and present right-censored and interval-censored variants. To holistically evaluate the quality of predicted distributions over time to event, we present the scale agnostic Survival-AUPRC evaluation metric, an analog to area under the precision-recall curve. We apply these ideas by building a recurrent neural network for mortality prediction, using an Electronic Health Record dataset covering millions of patients. We demonstrate significant benefits in models trained by the Survival-CRPS objective instead of maximum likelihood.
Reject
ICLR.cc/2022/Conference
Data Sharing without Rewards in Multi-Task Offline Reinforcement Learning
Offline reinforcement learning (RL) bears the promise to learn effective control policies from static datasets but is thus far unable to learn from large databases of heterogeneous experience. The multi-task version of offline RL enables the possibility of learning a single policy that can tackle multiple tasks and allows the algorithm to share offline data across tasks. Recent works indicate that sharing data between tasks can be highly beneficial in multi-task learning. However, these benefits come at a cost -- for data to be shared between tasks, each transition must be annotated with reward labels corresponding to other tasks. This is particularly expensive and unscalable, since the manual effort in annotating reward grows quadratically with the number of tasks. Can we retain the benefits of data sharing without requiring reward relabeling for every task pair? In this paper, we show that, perhaps surprisingly, under a binary-reward assumption, simply utilizing data from other tasks with constant reward labels can not only provide a substantial improvement over only using the single-task data and previously proposed success classifiers, but it can also reach comparable performance to baselines that take advantage of the oracle multi-task reward information. We also show that this performance can be further improved by selectively deciding which transitions to share, again without introducing any additional models or classifiers. We discuss how these approaches relate to each other and baseline strategies under various assumptions on the dataset. Our empirical results show that it leads to improved performance across a range of different multi-task offline RL scenarios, including robotic manipulation from visual inputs and ant-maze navigation.
Reject
ICLR.cc/2020/Conference
DeepSphere: a graph-based spherical CNN
Designing a convolution for a spherical neural network requires a delicate tradeoff between efficiency and rotation equivariance. DeepSphere, a method based on a graph representation of the discretized sphere, strikes a controllable balance between these two desiderata. This contribution is twofold. First, we study both theoretically and empirically how equivariance is affected by the underlying graph with respect to the number of pixels and neighbors. Second, we evaluate DeepSphere on relevant problems. Experiments show state-of-the-art performance and demonstrates the efficiency and flexibility of this formulation. Perhaps surprisingly, comparison with previous work suggests that anisotropic filters might be an unnecessary price to pay. Our code is available at https://github.com/deepsphere.
Accept (Spotlight)
ICLR.cc/2023/Conference
PGrad: Learning Principal Gradients For Domain Generalization
Machine learning models fail to perform when facing out-of-distribution (OOD) domains, a challenging task known as domain generalization (DG). In this work, we develop a novel DG training strategy, we call PGrad, to learn a robust gradient direction, improving models' generalization ability on unseen domains. The proposed gradient aggregates the principal directions of a sampled roll-out optimization trajectory that measures the training dynamics across all training domains. PGrad gradient design forces the DG training to ignore domain-dependent noise signals and updates all training domains with a robust direction covering main components of parameter dynamics. We further improve PGrad via bijection-based computational refinement and directional plus length-based calibrations. Our theoretical proof connects PGrad to the spectral analysis of Hessian in training neural networks. Experiments on DomainBed and WILDS benchmarks demonstrate that our approach effectively enables robust DG optimization and leads to smoothly decreased loss curves. Empirically, PGrad achieves competitive results across seven datasets, demonstrating its efficacy across both synthetic and real-world distributional shifts.
Accept: poster
ICLR.cc/2021/Conference
Emergent Symbols through Binding in External Memory
A key aspect of human intelligence is the ability to infer abstract rules directly from high-dimensional sensory data, and to do so given only a limited amount of training experience. Deep neural network algorithms have proven to be a powerful tool for learning directly from high-dimensional data, but currently lack this capacity for data-efficient induction of abstract rules, leading some to argue that symbol-processing mechanisms will be necessary to account for this capacity. In this work, we take a step toward bridging this gap by introducing the Emergent Symbol Binding Network (ESBN), a recurrent network augmented with an external memory that enables a form of variable-binding and indirection. This binding mechanism allows symbol-like representations to emerge through the learning process without the need to explicitly incorporate symbol-processing machinery, enabling the ESBN to learn rules in a manner that is abstracted away from the particular entities to which those rules apply. Across a series of tasks, we show that this architecture displays nearly perfect generalization of learned rules to novel entities given only a limited number of training examples, and outperforms a number of other competitive neural network architectures.
Accept (Spotlight)
ICLR.cc/2023/Conference
Effective Cross-instance Positive Relations for Generalized Category Discovery
We tackle the issue of generalized category discovery (GCD). GCD considers the open-world problem of automatically clustering a partially labelled dataset, in which the unlabelled data contain instances from novel categories and also the labelled classes. In this paper, we address the GCD problem without a known category number in the unlabelled data. We propose a framework, named CiP, to bootstrap the representation by exploiting Cross-instance Positive relations for contrastive learning in the partially labelled data which are neglected in existing methods. First, to obtain reliable cross-instance relations to facilitate the representation learning, we introduce a semi-supervised hierarchical clustering algorithm, named selective neighbor clustering (SNC), which can produce a clustering hierarchy directly from the connected components in the graph constructed by selective neighbors. We also extend SNC to be capable of label assignment for the unlabelled instances with the given class number. Moreover, we present a method to estimate the unknown class number using SNC with a joint reference score considering clustering indexes of both labelled and unlabelled data. Finally, we thoroughly evaluate our CiP framework on public generic image recognition datasets (CIFAR-10, CIFAR-100, and ImageNet-100) and challenging fine-grained datasets (CUB, Stanford Cars, and Herbarium19), all establishing the new state-of-the-art.
Reject
ICLR.cc/2023/Conference
Tackling Diverse Tasks via Cross-Modal Transfer Learning
Fine-tuning large-scale pretrained models has led to remarkable progress in well-studied modalities such as vision and NLP. However, similar gains have not been observed in many other tasks due to an assumed lack of relevant pretrained models for these diverse modalities. In this work, we revisit this assumption by studying the cross-modal transfer ability of large-scale pretrained models. We introduce ORCA, a general cross-modal fine-tuning workflow that enables fast and automatic exploitation of existing pretrained models for diverse tasks. ORCA achieves task-specific adaptation by learning feature embeddings that minimize an optimal transport distance metric to map the data distribution in the end-task modality to the pretraining modality. We test ORCA on 13 tasks with varying modalities and input-output types. ORCA performs the best on 10 of them and is in the top three on the others. We further quantify the importance of embedding distance for downstream performance, highlight ORCA’s utility for data-limited tasks, and demonstrate its compatibility with same-modality transfer.
Reject
ICLR.cc/2022/Conference
Classify and Generate Reciprocally: Simultaneous Positive-Unlabelled Learning and Conditional Generation with Extra Data
The scarcity of class-labeled data is a ubiquitous bottleneck in a wide range of machine learning problems. While abundant unlabeled data normally exist and provide a potential solution, it is extremely challenging to exploit them. In this paper, we address this problem by leveraging Positive-Unlabeled~(PU) classification and the conditional generation with extra unlabeled data \emph{simultaneously}, both of which aim to make full use of agnostic unlabeled data to improve classification and generation performance. In particular, we present a novel training framework to jointly target both PU classification and conditional generation when exposing to extra data, especially out-of-distribution unlabeled data, by exploring the interplay between them: 1) enhancing the performance of PU classifiers with the assistance of a novel Conditional Generative Adversarial Network~(CGAN) that is robust to noisy labels, 2) leveraging extra data with predicted labels from a PU classifier to help the generation. Our key contribution is a Classifier-Noise-Invariant Conditional GAN~(CNI-CGAN) that can learn the clean data distribution from noisy labels predicted by a PU classifier. Theoretically, we proved the optimal condition of CNI-CGAN and experimentally, we conducted extensive evaluations on diverse datasets, verifying the simultaneous improvements on both classification and generation.
Reject
ICLR.cc/2021/Conference
Score-Based Generative Modeling through Stochastic Differential Equations
Creating noise from data is easy; creating data from noise is generative modeling. We present a stochastic differential equation (SDE) that smoothly transforms a complex data distribution to a known prior distribution by slowly injecting noise, and a corresponding reverse-time SDE that transforms the prior distribution back into the data distribution by slowly removing the noise. Crucially, the reverse-time SDE depends only on the time-dependent gradient field (a.k.a., score) of the perturbed data distribution. By leveraging advances in score-based generative modeling, we can accurately estimate these scores with neural networks, and use numerical SDE solvers to generate samples. We show that this framework encapsulates previous approaches in score-based generative modeling and diffusion probabilistic modeling, allowing for new sampling procedures and new modeling capabilities. In particular, we introduce a predictor-corrector framework to correct errors in the evolution of the discretized reverse-time SDE. We also derive an equivalent neural ODE that samples from the same distribution as the SDE, but additionally enables exact likelihood computation, and improved sampling efficiency. In addition, we provide a new way to solve inverse problems with score-based models, as demonstrated with experiments on class-conditional generation, image inpainting, and colorization. Combined with multiple architectural improvements, we achieve record-breaking performance for unconditional image generation on CIFAR-10 with an Inception score of 9.89 and FID of 2.20, a competitive likelihood of 2.99 bits/dim, and demonstrate high fidelity generation of $1024\times 1024$ images for the first time from a score-based generative model.
Accept (Oral)
ICLR.cc/2023/Conference
Efficient Large-scale Transformer Training via Random and Layerwise Token Dropping
Large-scale transformer models have become the de-facto architectures for various machine learning applications, e.g., CV and NLP. However, those large models also introduce prohibitive training costs. To mitigate this issue, we propose a novel random and layerwise token dropping method (\OURS), which skips the computation of a subset of the input tokens at all middle layers. Particularly, \OURS achieves considerable speedups and comparable accuracy as the standard training baseline. Compared to other token dropping methods, \OURS does not require (1) any importance score-based metrics, (2) any special token treatment (e.g., \texttt{[CLS]}), and (3) many layers in full sequence length training except the first and the last layers. Besides, a new \layertoken learning rate schedule is proposed for pretraining problems that resolve the heavy tuning requirement for our proposed training mechanism. Finally, we demonstrate that \OURS can be applied to broader applications, including \gpt and \bert pretraining as well as ViT and \gpt finetuning tasks. Our results show that \OURS can save about 33.3\% theoretical compute cost and 25.6\% wall-clock training time while achieving similar zero-shot evaluations on \gptb as compared to baseline.
Reject
ICLR.cc/2022/Conference
Model Compression via Symmetries of the Parameter Space
We provide a theoretical framework for neural networks in terms of the representation theory of quivers, thus revealing symmetries of the parameter space of neural networks. An exploitation of these symmetries leads to a model compression algorithm for radial neural networks based on an analogue of the QR decomposition. The algorithm is lossless; the compressed model has the same feedforward function as the original model. If applied before training, optimization of the compressed model by gradient descent is equivalent to a projected version of gradient descent on the original model.
Reject
ICLR.cc/2020/Conference
Unsupervised Learning of Graph Hierarchical Abstractions with Differentiable Coarsening and Optimal Transport
Hierarchical abstractions are a methodology for solving large-scale graph problems in various disciplines. Coarsening is one such approach: it generates a pyramid of graphs whereby the one in the next level is a structural summary of the prior one. With a long history in scientific computing, many coarsening strategies were developed based on mathematically driven heuristics. Recently, resurgent interests exist in deep learning to design hierarchical methods learnable through differentiable parameterization. These approaches are paired with downstream tasks for supervised learning. In this work, we propose an unsupervised approach, coined \textsc{OTCoarsening}, with the use of optimal transport. Both the coarsening matrix and the transport cost matrix are parameterized, so that an optimal coarsening strategy can be learned and tailored for a given set of graphs. We demonstrate that the proposed approach produces meaningful coarse graphs and yields competitive performance compared with supervised methods for graph classification.
Reject
ICLR.cc/2023/Conference
Modeling the Uncertainty with Maximum Discrepant Students for Semi-supervised 2D Pose Estimation
Semi-supervised pose estimation is a practically challenging task for computer vision. Although numerous excellent semi-supervised classification methods have emerged, these methods typically use confidence to evaluate the quality of pseudo-labels, which is difficult to achieve in pose estimation tasks. For example, in pose estimation, confidence represents only the possibility that a position of the heatmap is a keypoint, not the quality of that prediction. In this paper, we propose a simple yet efficient framework to estimate the quality of pseudo-labels in semi-supervised pose estimation tasks from the perspective of modeling the uncertainty of the pseudo-labels. Concretely, under the dual mean-teacher framework, we construct the two maximum discrepant students (MDSs) to effectively push two teachers to generate different decision boundaries for the same sample. Moreover, we create multiple uncertainties to assess the quality of the pseudo-labels. Experimental results demonstrate that our method improves the performance of semi-supervised pose estimation on three datasets.
Reject
ICLR.cc/2021/Conference
Inductive Bias of Gradient Descent for Exponentially Weight Normalized Smooth Homogeneous Neural Nets
We analyze the inductive bias of gradient descent for weight normalized smooth homogeneous neural nets, when trained on exponential or cross-entropy loss. Our analysis focuses on exponential weight normalization (EWN), which encourages weight updates along the radial direction. This paper shows that the gradient flow path with EWN is equivalent to gradient flow on standard networks with an adaptive learning rate, and hence causes the weights to be updated in a way that prefers asymptotic relative sparsity. These results can be extended to hold for gradient descent via an appropriate adaptive learning rate. The asymptotic convergence rate of the loss in this setting is given by $\Theta(\frac{1}{t(\log t)^2})$, and is independent of the depth of the network. We contrast these results with the inductive bias of standard weight normalization (SWN) and unnormalized architectures, and demonstrate their implications on synthetic data sets.Experimental results on simple data sets and architectures support our claim on sparse EWN solutions, even with SGD. This demonstrates its potential applications in learning prunable neural networks.
Reject
ICLR.cc/2018/Conference
Learning Representations for Faster Similarity Search
In high dimensions, the performance of nearest neighbor algorithms depends crucially on structure in the data. While traditional nearest neighbor datasets consisted mostly of hand-crafted feature vectors, an increasing number of datasets comes from representations learned with neural networks. We study the interaction between nearest neighbor algorithms and neural networks in more detail. We find that the network architecture can significantly influence the efficacy of nearest neighbor algorithms even when the classification accuracy is unchanged. Based on our experiments, we propose a number of training modifications that lead to significantly better datasets for nearest neighbor algorithms. Our modifications lead to learned representations that can accelerate nearest neighbor queries by 5x.
Reject
ICLR.cc/2022/Conference
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods
Graph Neural Networks (GNNs) have achieved state-of-the-art performance in node classification, regression, and recommendation tasks. GNNs work well when rich and high-quality connections are available. However, their effectiveness is often jeopardized in many real-world graphs in which node degrees have power-law distributions. The extreme case of this situation, where a node may have no neighbors, is called Strict Cold Start (SCS). SCS forces the prediction to rely completely on the node's own features. We propose Cold Brew, a teacher-student distillation approach to address the SCS and noisy-neighbor challenges for GNNs. We also introduce feature contribution ratio (FCR), a metric to quantify the behavior of inductive GNNs to solve SCS. We experimentally show that FCR disentangles the contributions of different graph data components and helps select the best architecture for SCS generalization. We further demonstrate the superior performance of Cold Brew on several public benchmark and proprietary e-commerce datasets, where many nodes have either very few or noisy connections. Our source code is available at https://github.com/amazon-research/gnn-tail-generalization.
Accept (Poster)
ICLR.cc/2023/Conference
RangeAugment: Efficient Online Augmentation with Range Learning
State-of-the-art automatic augmentation methods (e.g., AutoAugment and RandAugment) for visual recognition tasks diversify training data using a large set of augmentation operations. The range of magnitudes of many augmentation operations (e.g., brightness and contrast) is continuous. Therefore, to make search computationally tractable, these methods use fixed and manually-defined magnitude ranges for each operation, which may lead to sub-optimal policies. To answer the open question on the importance of magnitude ranges for each augmentation operation, we introduce RangeAugment that allows us to efficiently learn the range of magnitudes for individual as well as composite augmentation operations. RangeAugment uses an auxiliary loss based on image similarity as a measure to control the range of magnitudes of augmentation operations. As a result, RangeAugment has a single scalar parameter for search, image similarity, which we simply optimize via linear search. RangeAugment integrates seamlessly with any model and learns model- and task-specific augmentation policies. With extensive experiments on the ImageNet dataset across different networks, we show that RangeAugment achieves competitive performance to state-of-the-art automatic augmentation methods with 4-5 times fewer augmentation operations. Experimental results on semantic segmentation and contrastive learning further shows RangeAugment's effectiveness.
Reject
ICLR.cc/2023/Conference
Understanding Gradient Regularization in Deep Learning: Efficient Finite-Difference Computation and Implicit Bias
Gradient regularization (GR) is a method that penalizes the gradient norm of the training loss during training. Although some studies have reported that GR improves generalization performance in deep learning, little attention has been paid to it from the algorithmic perspective, that is, the algorithms of GR that efficiently improve performance. In this study, we first reveal that a specific finite-difference computation, composed of both gradient ascent and descent steps, reduces the computational cost for GR. In addition, this computation empirically achieves better generalization performance. Next, we theoretically analyze a solvable model, a diagonal linear network, and clarify that GR has a desirable implicit bias. Learning with GR chooses better minima in a certain problem, and the finite-difference GR chooses even better ones as the ascent step size becomes larger. Finally, we demonstrate that finite-difference GR is closely related to some other algorithms based on iterative ascent and descent steps for exploring flat minima: sharpness-aware minimization and the flooding method. In particular, we reveal that flooding performs finite-difference GR in an implicit way. Thus, this work broadens our understanding of GR in both practice and theory.
Reject
ICLR.cc/2022/Conference
Using Document Similarity Methods to create Parallel Datasets for Code Translation
Translating source code from one programming language to another is a critical, time-consuming task in modernizing legacy applications and codebases. Recent work in this space has drawn inspiration from the software naturalness hypothesis by applying natural language processing techniques towards automating the code translation task. However, due to the paucity of parallel data in this domain, supervised techniques have only been applied to a limited set of popular programming languages. To bypass this limitation, unsupervised neural machine translation techniques have been proposed to learn code translation using only monolingual corpora. In this work, we propose to use document similarity methods to create noisy parallel datasets of code, thus enabling supervised techniques to be applied for automated code translation without having to rely on the availability or expensive curation of parallel code datasets. We explore the noise tolerance of models trained on such automatically-created datasets and show that these models perform comparably to models trained on ground truth for reasonable levels of noise. Finally, we exhibit the practical utility of the proposed method by creating parallel datasets for languages beyond the ones explored in prior work, thus expanding the set of programming languages for automated code translation.
Reject
ICLR.cc/2019/Conference
Lyapunov-based Safe Policy Optimization
In many reinforcement learning applications, it is crucial that the agent interacts with the environment only through safe policies, i.e.,~policies that do not take the agent to certain undesirable situations. These problems are often formulated as a constrained Markov decision process (CMDP) in which the agent's goal is to optimize its main objective while not violating a number of safety constraints. In this paper, we propose safe policy optimization algorithms that are based on the Lyapunov approach to CMDPs, an approach that has well-established theoretical guarantees in control engineering. We first show how to generate a set of state-dependent Lyapunov constraints from the original CMDP safety constraints. We then propose safe policy gradient algorithms that train a neural network policy using DDPG or PPO, while guaranteeing near-constraint satisfaction at every policy update by projecting either the policy parameter or the action onto the set of feasible solutions induced by the linearized Lyapunov constraints. Unlike the existing (safe) constrained PG algorithms, ours are more data efficient as they are able to utilize both on-policy and off-policy data. Furthermore, the action-projection version of our algorithms often leads to less conservative policy updates and allows for natural integration into an end-to-end PG training pipeline. We evaluate our algorithms and compare them with CPO and the Lagrangian method on several high-dimensional continuous state and action simulated robot locomotion tasks, in which the agent must satisfy certain safety constraints while minimizing its expected cumulative cost.
Reject
ICLR.cc/2020/Conference
Attention on Abstract Visual Reasoning
Attention mechanisms have been boosting the performance of deep learning models on a wide range of applications, ranging from speech understanding to program induction. However, despite experiments from psychology which suggest that attention plays an essential role in visual reasoning, the full potential of attention mechanisms has so far not been explored to solve abstract cognitive tasks on image data. In this work, we propose a hybrid network architecture, grounded on self-attention and relational reasoning. We call this new model Attention Relation Network (ARNe). ARNe combines features from the recently introduced Transformer and the Wild Relation Network (WReN). We test ARNe on the Procedurally Generated Matrices (PGMs) datasets for abstract visual reasoning. ARNe excels the WReN model on this task by 11.28 ppt. Relational concepts between objects are efficiently learned demanding only 35% of the training samples to surpass reported accuracy of the base line model. Our proposed hybrid model, represents an alternative on learning abstract relations using self-attention and demonstrates that the Transformer network is also well suited for abstract visual reasoning.
Reject
ICLR.cc/2021/Conference
Improving Relational Regularized Autoencoders with Spherical Sliced Fused Gromov Wasserstein
Relational regularized autoencoder (RAE) is a framework to learn the distribution of data by minimizing a reconstruction loss together with a relational regularization on the prior of latent space. A recent attempt to reduce the inner discrepancy between the prior and aggregated posterior distributions is to incorporate sliced fused Gromov-Wasserstein (SFG) between these distributions. That approach has a weakness since it treats every slicing direction similarly, meanwhile several directions are not useful for the discriminative task. To improve the discrepancy and consequently the relational regularization, we propose a new relational discrepancy, named spherical sliced fused Gromov Wasserstein (SSFG), that can find an important area of projections characterized by a von Mises-Fisher distribution. Then, we introduce two variants of SSFG to improve its performance. The first variant, named mixture spherical sliced fused Gromov Wasserstein (MSSFG), replaces the vMF distribution by a mixture of von Mises-Fisher distributions to capture multiple important areas of directions that are far from each other. The second variant, named power spherical sliced fused Gromov Wasserstein (PSSFG), replaces the vMF distribution by a power spherical distribution to improve the sampling time of the vMF distribution in high dimension settings. We then apply the new discrepancies to the RAE framework to achieve its new variants. Finally, we conduct extensive experiments to show that the new autoencoders have favorable performance in learning latent manifold structure, image generation, and reconstruction.
Accept (Poster)
ICLR.cc/2023/Conference
K-SAM: Sharpness-Aware Minimization at the Speed of SGD
Sharpness-Aware Minimization (SAM) has recently emerged as a robust technique for improving the accuracy of deep neural networks. However, SAM incurs a high computational cost in practice, requiring up to twice as much computation as vanilla SGD. The computational challenge posed by SAM arises because each iteration requires both ascent and descent steps and thus double the gradient computations. To address this challenge, we propose to compute gradients in both stages of SAM on only the top-k samples with highest loss. K-SAM is simple and extremely easy-to-implement while providing significant generalization boosts over vanilla SGD at little to no additional cost.
Reject
ICLR.cc/2021/Conference
Class Imbalance in Few-Shot Learning
Few-shot learning aims to train models on a limited number of labeled samples from a support set in order to generalize to unseen samples from a query set. In the standard setup, the support set contains an equal amount of data points for each class. This assumption overlooks many practical considerations arising from the dynamic nature of the real world, such as class imbalance. In this paper, we present a detailed study of few-shot class imbalance along three axes: dataset vs. support set imbalance, effect of different imbalance distributions (linear, step, random), and effect of rebalancing techniques. We extensively compare over 10 state-of-the-art few-shot learning methods using backbones of different depths on multiple datasets. Our analysis reveals that 1) compared to the balanced task, the performances of their class-imbalance counterparts always drop, by up to $18.0\%$ for optimization-based methods, although feature-transfer and metric-based methods generally suffer less, 2) strategies used to mitigate imbalance in supervised learning can be adapted to the few-shot case resulting in better performances, 3) the effects of imbalance at the dataset level are less significant than the effects at the support set level. The code to reproduce the experiments is released under an open-source license.
Reject
ICLR.cc/2020/Conference
Smoothness and Stability in GANs
Generative adversarial networks, or GANs, commonly display unstable behavior during training. In this work, we develop a principled theoretical framework for understanding the stability of various types of GANs. In particular, we derive conditions that guarantee eventual stationarity of the generator when it is trained with gradient descent, conditions that must be satisfied by the divergence that is minimized by the GAN and the generator's architecture. We find that existing GAN variants satisfy some, but not all, of these conditions. Using tools from convex analysis, optimal transport, and reproducing kernels, we construct a GAN that fulfills these conditions simultaneously. In the process, we explain and clarify the need for various existing GAN stabilization techniques, including Lipschitz constraints, gradient penalties, and smooth activation functions.
Accept (Poster)
ICLR.cc/2020/Conference
Refining the variational posterior through iterative optimization
Variational inference (VI) is a popular approach for approximate Bayesian inference that is particularly promising for highly parameterized models such as deep neural networks. A key challenge of variational inference is to approximate the posterior over model parameters with a distribution that is simpler and tractable yet sufficiently expressive. In this work, we propose a method for training highly flexible variational distributions by starting with a coarse approximation and iteratively refining it. Each refinement step makes cheap, local adjustments and only requires optimization of simple variational families. We demonstrate theoretically that our method always improves a bound on the approximation (the Evidence Lower BOund) and observe this empirically across a variety of benchmark tasks. In experiments, our method consistently outperforms recent variational inference methods for deep learning in terms of log-likelihood and the ELBO. We see that the gains are further amplified on larger scale models, significantly outperforming standard VI and deep ensembles on residual networks on CIFAR10.
Reject
ICLR.cc/2021/Conference
Learning Monotonic Alignments with Source-Aware GMM Attention
Transformers with soft attention have been widely adopted in various sequence-to-sequence (Seq2Seq) tasks. Whereas soft attention is effective for learning semantic similarities between queries and keys based on their contents, it does not explicitly model the order of elements in sequences which is crucial for monotonic Seq2Seq tasks. Learning monotonic alignments between input and output sequences may be beneficial for long-form and online inference applications that are still challenging for the conventional soft attention algorithm. Herein, we focus on monotonic Seq2Seq tasks and propose a source-aware Gaussian mixture model attention in which the attention scores are monotonically calculated considering both the content and order of the source sequence. We experimentally demonstrate that the proposed attention mechanism improved the performance on the online and long-form speech recognition problems without performance degradation in offline in-distribution speech recognition.
Reject
ICLR.cc/2022/Conference
MDFL: A UNIFIED FRAMEWORK WITH META-DROPOUT FOR FEW-SHOT LEARNING
Conventional training of deep neural networks usually requires a substantial amount of data with expensive human annotations. In this paper, we utilize the idea of meta-learning to integrate two very different streams of few-shot learning, i.e., the episodic meta-learning-based and pre-train finetune-based few-shot learning, and form a unified meta-learning framework. In order to improve the generalization power of our framework, we propose a simple yet effective strategy named meta-dropout, which is applied to the transferable knowledge generalized from base categories to novel categories. The proposed strategy can effectively prevent neural units from co-adapting excessively in the meta-training stage. Extensive experiments on the few-shot object detection and few-shot image classification datasets, i.e., Pascal VOC, MS COCO, CUB, and mini-ImageNet, validate the effectiveness of our method.
Reject
ICLR.cc/2019/Conference
Diversity and Depth in Per-Example Routing Models
Routing models, a form of conditional computation where examples are routed through a subset of components in a larger network, have shown promising results in recent works. Surprisingly, routing models to date have lacked important properties, such as architectural diversity and large numbers of routing decisions. Both architectural diversity and routing depth can increase the representational power of a routing network. In this work, we address both of these deficiencies. We discuss the significance of architectural diversity in routing models, and explain the tradeoffs between capacity and optimization when increasing routing depth. In our experiments, we find that adding architectural diversity to routing models significantly improves performance, cutting the error rates of a strong baseline by 35% on an Omniglot setup. However, when scaling up routing depth, we find that modern routing techniques struggle with optimization. We conclude by discussing both the positive and negative results, and suggest directions for future research.
Accept (Poster)
ICLR.cc/2022/Conference
Towards Understanding Data Values: Empirical Results on Synthetic Data
Understanding the influence of data on machine learning models is an emerging research field. Inspired by recent work in data valuation, we perform several experiments to get an intuition for this influence on a multi-layer perceptron. We generate a synthetic two-dimensional data set to visualize how different valuation methods value data points on a mesh grid spanning the relevant feature space. In this setting, individual data values can be derived directly from the impact of the respective data points on the decision boundary. Our results show that the most important data points are the miss-classified ones. Furthermore, despite performance differences on real world data sets, all investigated methods except one qualitatively agree on the data values derived from our experiments. Finally, we place our results into the recent literature and discuss data values and their relationship to other methods.
Reject
ICLR.cc/2022/Conference
Exploring the Limits of Large Scale Pre-training
Recent developments in large-scale machine learning suggest that by scaling up data, model size and training time properly, one might observe that improvements in pre-training would transfer favorably to most downstream tasks. In this work we systematically study this phenomena and establish that, as we increase the upstream accuracy, performance of downstream tasks \emph{saturates}. In particular, we investigate more than 4800 experiments on Vision Transformers, MLP-Mixers and ResNets with number of parameters ranging from ten million to ten billion, trained on the largest scale of available image data (JFT, ImageNet21K) and evaluated on more than 20 downstream image recognition tasks. We propose a model for downstream performance that reflects the saturation phenomena and captures the nonlinear relationship in performance of upstream and downstream tasks. Delving deeper to understand the reasons that give rise to these phenomena, we show that the observed saturation behavior is closely related to the way that representations evolve through the layers of the models. We showcase an even more extreme scenario where performance on upstream and downstream are at odds with each other. That is, in order to have a better downstream performance, we need to hurt upstream accuracy.
Accept (Spotlight)
ICLR.cc/2022/Conference
Two Regimes of Generalization for Non-Linear Metric Learning
A common approach to metric learning is to seek an embedding of the input data that behaves well with respect to the labels. While generalization bounds for linear embeddings are known, the non-linear case is not well understood. In this work we fill this gap by providing uniform generalization guarantees for the case where the metric is induced by a neural network type embedding of the data. Specifically, we discover and analyze two regimes of behavior of the networks, which are roughly related to the sparsity of the last layer. The bounds corresponding to the first regime are based on the spectral and $(2,1)$-norms of the weight matrices, while the second regime bounds use the $(2,\infty)$-norm at the last layer, and are significantly stronger when the last layer is dense. In addition, we empirically evaluate the behavior of the bounds for networks trained with SGD on the MNIST and 20newsgroups datasets. In particular, we demonstrate that both regimes occur naturally on realistic data.
Reject
ICLR.cc/2023/Conference
CodeT: Code Generation with Generated Tests
The task of generating code solutions for a given programming problem can benefit from the use of pre-trained language models such as Codex, which can produce multiple diverse samples. However, a major challenge for this task is to select the most appropriate solution from the multiple samples generated by the pre-trained language models. A natural way to evaluate the quality and correctness of a code solution is to run it against a set of test cases, but the manual creation of such test cases is often costly and time-consuming. In this paper, we propose a novel method, CodeT, that leverages the same pre-trained language models to automatically generate test cases for the code samples, thus reducing the human effort and increasing the coverage of the test scenarios. CodeT then executes the code samples using the generated test cases, and performs a dual execution agreement, which considers both the consistency of the outputs against the generated test cases and the agreement of the outputs with other code samples. We conduct comprehensive experiments on four benchmarks, HumanEval, MBPP, APPS and CodeContests, using five different pre-trained language models with varying sizes and capabilities. Our results show that CodeT can significantly improve the performance of code solution selection over previous methods, achieving remarkable and consistent gains across different models and benchmarks. For instance, CodeT improves the pass@1 metric on HumanEval to 65.8%, which represents an absolute improvement of 18.8% over the code-davinci-002 model, and an absolute improvement of more than 20% over the previous state-of-the-art results.
Accept: poster
ICLR.cc/2023/Conference
Emergence of Maps in the Memories of Blind Navigation Agents
Animal navigation research posits that organisms build and maintain internal spa- tial representations, or maps, of their environment. We ask if machines – specifically, artificial intelligence (AI) navigation agents – also build implicit (or ‘mental’) maps. A positive answer to this question would (a) explain the surprising phenomenon in recent literature of ostensibly map-free neural-networks achieving strong performance, and (b) strengthen the evidence of mapping as a fundamental mechanism for navigation by intelligent embodied agents, whether they be biological or artificial. Unlike animal navigation, we can judiciously design the agent’s perceptual system and control the learning paradigm to nullify alternative navigation mechanisms. Specifically, we train ‘blind’ agents – with sensing limited to only egomotion and no other sensing of any kind – to perform PointGoal navigation (‘go to $\Delta$x, $\Delta$y’) via reinforcement learning. Our agents are composed of navigation-agnostic components (fully-connected and recurrent neural networks), and our experimental setup provides no inductive bias towards mapping. Despite these harsh conditions, we find that blind agents are (1) surprisingly effective navigators in new environments (∼95% success); (2) they utilize memory over long horizons (remembering ∼1,000 steps of past experience in an episode); (3) this memory enables them to exhibit intelligent behavior (following walls, detecting collisions, taking shortcuts); (4) there is emergence of maps and collision detection neurons in the representations of the environment built by a blind agent as it navigates; and (5) the emergent maps are selective and task dependent (e.g. the agent ‘forgets’ exploratory detours). Overall, this paper presents no new techniques for the AI audience, but a surprising finding, an insight, and an explanation.
Accept: notable-top-5%
ICLR.cc/2023/Conference
How Useful are Gradients for OOD Detection Really?
One critical challenge in deploying machine learning models in real-life applications is out-of-distribution (OOD) detection. Given a predictive model which is accurate on in distribution (ID) data, an OOD detection system can further equip the model with the option to defer prediction when the input is novel and the model has low confidence. Notably, there has been some recent interest in utilizing gradient information in pretrained models for OOD detection. While these methods are competitive, we argue that previous works conflate their performance with the necessity of gradients. In this work, we provide an in-depth analysis of gradient-based methods and elucidate the key components that warrant their OOD detection performance. We further demonstrate that a general, non-gradient-based family of OOD detection methods are just as competitive, casting doubt on the usefulness of gradients for OOD detection
Reject
ICLR.cc/2023/Conference
Diffusion Models Already Have A Semantic Latent Space
Diffusion models achieve outstanding generative performance in various domains. Despite their great success, they lack semantic latent space which is essential for controlling the generative process. To address the problem, we propose asymmetric reverse process (Asyrp) which discovers the semantic latent space in frozen pretrained diffusion models. Our semantic latent space, named h-space, has nice properties for accommodating semantic image manipulation: homogeneity, linearity, robustness, and consistency across timesteps. In addition, we measure editing strength and quality deficiency of a generative process at timesteps to provide a principled design of the process for versatility and quality improvements. Our method is applicable to various architectures (DDPM++, iDDPM, and ADM) and datasets (CelebA-HQ, AFHQ-dog, LSUN-church, LSUN-bedroom, and METFACES).
Accept: notable-top-25%
ICLR.cc/2023/Conference
Internet-augmented language models through few-shot prompting for open-domain question answering
In this work, we aim to capitalize on the unique few-shot capabilities of large-scale language models (LSLMs) to overcome some of their challenges with respect to grounding to factual and up-to-date information. Motivated by semi-parametric lan4 guage models (LMs), which ground their decisions in external retrieved evidence, we use few-shot prompting to learn to condition LMs on information returned from the web using Google Search, a broad and constantly updated knowledge source. Our approach does not involve fine-tuning or learning additional parameters, thus making it applicable to any LM, offering therefore a strong baseline. Indeed, we find that LMs conditioned on the web surpass performance of closed-book models of similar, or even larger, model sizes in open-domain question answering. Finally, we find that increasing the inference-time compute of models, achieved via using multiple retrieved evidences to generate multiple answers followed by a reranking stage that uses scores generated by the same LMs, leads to better performance and alleviates lower performance of smaller few-shot LMs. All in all, our findings suggest that it might be beneficial to slow down the race towards the biggest model and instead shift attention towards finding more effective ways to use models, including but not limited to, better prompting or increasing inference-time compute.
Reject
ICLR.cc/2021/Conference
Out-of-Distribution Generalization via Risk Extrapolation (REx)
Distributional shift is one of the major obstacles when transferring machine learning prediction systems from the lab to the real world. To tackle this problem, we assume that variation across training domains is representative of the variation we might encounter at test time, but also that shifts at test time may be more extreme in magnitude. In particular, we show that reducing differences in risk across training domains can reduce a model’s sensitivity to a wide range of extreme distributional shifts, including the challenging setting where the input contains both causal and anti-causal elements. We motivate this approach, Risk Extrapolation (REx), as a form of robust optimization over a perturbation set of extrapolated domains (MM-REx), and propose a penalty on the variance of training risks (V-REx) as a simpler variant. We prove that variants of REx can recover the causal mechanisms of the targets, while also providing some robustness to changes in the input distribution (``covariate shift''). By appropriately trading-off robustness to causally induced distributional shifts and covariate shift, REx is able to outperform alternative methods such as Invariant Risk Minimization in situations where these types of shift co-occur.
Reject
ICLR.cc/2022/Conference
Show Your Work: Scratchpads for Intermediate Computation with Language Models
Large pre-trained language models perform remarkably well on tasks that can be done "in one pass", such as generating realistic text or synthesizing computer programs. However, they struggle with tasks that require unbounded multi-step computation, such as adding integers or executing programs. Surprisingly, we find that these same models are able to perform complex multi-step computations --- even in the few-shot regime --- when asked to perform the operation "step by step", showing the results of intermediate computations. In particular, we train transformers to perform multi-step computations by asking them to emit intermediate computation steps into a "scratchpad". On a series of increasingly complex tasks ranging from long addition to the execution of arbitrary programs, we show that scratchpads dramatically improve the ability of language models to perform multi-step computations.
Reject
ICLR.cc/2018/Conference
Don't encrypt the data; just approximate the model \ Towards Secure Transaction and Fair Pricing of Training Data
As machine learning becomes ubiquitous, deployed systems need to be as accu- rate as they can. As a result, machine learning service providers have a surging need for useful, additional training data that benefits training, without giving up all the details about the trained program. At the same time, data owners would like to trade their data for its value, without having to first give away the data itself be- fore receiving compensation. It is difficult for data providers and model providers to agree on a fair price without first revealing the data or the trained model to the other side. Escrow systems only complicate this further, adding an additional layer of trust required of both parties. Currently, data owners and model owners don’t have a fair pricing system that eliminates the need to trust a third party and training the model on the data, which 1) takes a long time to complete, 2) does not guarantee that useful data is paid valuably and that useless data isn’t, without trusting in the third party with both the model and the data. Existing improve- ments to secure the transaction focus heavily on encrypting or approximating the data, such as training on encrypted data, and variants of federated learning. As powerful as the methods appear to be, we show them to be impractical in our use case with real world assumptions for preserving privacy for the data owners when facing black-box models. Thus, a fair pricing scheme that does not rely on secure data encryption and obfuscation is needed before the exchange of data. This pa- per proposes a novel method for fair pricing using data-model efficacy techniques such as influence functions, model extraction, and model compression methods, thus enabling secure data transactions. We successfully show that without running the data through the model, one can approximate the value of the data; that is, if the data turns out redundant, the pricing is minimal, and if the data leads to proper improvement, its value is properly assessed, without placing strong assumptions on the nature of the model. Future work will be focused on establishing a system with stronger transactional security against adversarial attacks that will reveal details about the model or the data to the other party.
Reject
ICLR.cc/2020/Conference
Stochastic Conditional Generative Networks with Basis Decomposition
While generative adversarial networks (GANs) have revolutionized machine learning, a number of open questions remain to fully understand them and exploit their power. One of these questions is how to efficiently achieve proper diversity and sampling of the multi-mode data space. To address this, we introduce BasisGAN, a stochastic conditional multi-mode image generator. By exploiting the observation that a convolutional filter can be well approximated as a linear combination of a small set of basis elements, we learn a plug-and-played basis generator to stochastically generate basis elements, with just a few hundred of parameters, to fully embed stochasticity into convolutional filters. By sampling basis elements instead of filters, we dramatically reduce the cost of modeling the parameter space with no sacrifice on either image diversity or fidelity. To illustrate this proposed plug-and-play framework, we construct variants of BasisGAN based on state-of-the-art conditional image generation networks, and train the networks by simply plugging in a basis generator, without additional auxiliary components, hyperparameters, or training objectives. The experimental success is complemented with theoretical results indicating how the perturbations introduced by the proposed sampling of basis elements can propagate to the appearance of generated images.
Accept (Poster)
ICLR.cc/2018/Conference
POLICY DRIVEN GENERATIVE ADVERSARIAL NETWORKS FOR ACCENTED SPEECH GENERATION
In this paper, we propose the generation of accented speech using generative adversarial networks. Through this work we make two main contributions a) The ability to condition latent representations while generating realistic speech samples b) The ability to efficiently generate long speech samples by using a novel latent variable transformation module that is trained using policy gradients. Previous methods are limited in being able to generate only relatively short samples or are not very efficient at generating long samples. The generated speech samples are validated through a number of various evaluation measures viz, a WGAN critic loss and through subjective scores on user evaluations against competitive speech synthesis baselines and detailed ablation analysis of the proposed model. The evaluations demonstrate that the model generates realistic long speech samples conditioned on accent efficiently.
Reject
ICLR.cc/2023/Conference
Provably Learning Diverse Features in Multi-View Data with Midpoint Mixup
Mixup is a data augmentation technique that relies on training using random convex combinations of data points and their labels. In recent years, Mixup has become a standard primitive used in the training of state-of-the-art image classification models due to its demonstrated benefits over empirical risk minimization with regards to generalization and robustness. In this work, we try to explain some of this success from a feature learning perspective. We focus our attention on classification problems in which each class may have multiple associated features (or views) that can be used to predict the class correctly. Our main theoretical results demonstrate that, for a non-trivial class of data distributions with two features per class, training a 2-layer convolutional network using empirical risk minimization can lead to learning only one feature for almost all classes while training with a specific instantiation of Mixup succeeds in learning both features for every class. We also show empirically that these theoretical insights extend to the practical settings of image benchmarks modified to have additional synthetic features.
Reject
ICLR.cc/2021/Conference
When does preconditioning help or hurt generalization?
While second order optimizers such as natural gradient descent (NGD) often speed up optimization, their effect on generalization has been called into question. This work presents a more nuanced view on how the \textit{implicit bias} of optimizers affects the comparison of generalization properties. We provide an exact asymptotic bias-variance decomposition of the generalization error of preconditioned ridgeless regression in the overparameterized regime, and consider the inverse population Fisher information matrix (used in NGD) as a particular example. We determine the optimal preconditioner $\boldsymbol{P}$ for both the bias and variance, and find that the relative generalization performance of different optimizers depends on label noise and ``shape'' of the signal (true parameters): when the labels are noisy, the model is misspecified, or the signal is misaligned with the features, NGD can achieve lower risk; conversely, GD generalizes better under clean labels, a well-specified model, or aligned signal. Based on this analysis, we discuss several approaches to manage the bias-variance tradeoff, and the potential benefit of interpolating between first- and second-order updates. We then extend our analysis to regression in the reproducing kernel Hilbert space and demonstrate that preconditioning can lead to more efficient decrease in the population risk. Lastly, we empirically compare the generalization error of first- and second-order optimizers in neural network experiments, and observe robust trends matching our theoretical analysis.
Accept (Poster)
ICLR.cc/2022/Conference
GSmooth: Certified Robustness against Semantic Transformations via Generalized Randomized Smoothing
The vulnerability of deep learning models to adversarial examples and semantic transformations has limited the applications in risk-sensitive areas. The recent development of certified defense approaches like randomized smoothing provides a promising direction towards building reliable machine learning systems. However, current certified defenses cannot handle complex semantic transformations like rotational blur and defocus blur which are common in practical applications. In this paper, we propose a generalized randomized smoothing framework (GSmooth) for certified robustness against semantic transformations. We provide both a unified and rigorous theoretical framework and scalable algorithms for certified robustness on complex semantic transformations. Specifically, our key idea is to use a surrogate image-to-image neural network to approximate a transformation which provides a powerful tool for studying the properties of semantic transformations and certify the transformation based on this neural network. Experiments on multiple types of semantic perturbations and corruptions using multiple datasets demonstrate the effectiveness of our approach.
Reject
ICLR.cc/2021/Conference
ALFWorld: Aligning Text and Embodied Environments for Interactive Learning
Given a simple request like Put a washed apple in the kitchen fridge, humans can reason in purely abstract terms by imagining action sequences and scoring their likelihood of success, prototypicality, and efficiency, all without moving a muscle. Once we see the kitchen in question, we can update our abstract plans to fit the scene. Embodied agents require the same abilities, but existing work does not yet provide the infrastructure necessary for both reasoning abstractly and executing concretely. We address this limitation by introducing ALFWorld, a simulator that enables agents to learn abstract, text-based policies in TextWorld (Côté et al., 2018) and then execute goals from the ALFRED benchmark (Shridhar et al., 2020) in a rich visual environment. ALFWorld enables the creation of a new BUTLER agent whose abstract knowledge, learned in TextWorld, corresponds directly to concrete, visually grounded actions. In turn, as we demonstrate empirically, this fosters better agent generalization than training only in the visually grounded environment. BUTLER’s simple, modular design factors the problem to allow researchers to focus on models for improving every piece of the pipeline (language understanding, planning, navigation, and visual scene understanding).
Accept (Poster)
ICLR.cc/2019/Conference
ReNeg and Backseat Driver: Learning from demonstration with continuous human feedback
Reinforcement learning (RL) is a powerful framework for solving problems by exploring and learning from mistakes. However, in the context of autonomous vehicle (AV) control, requiring an agent to make mistakes, or even allowing mistakes, can be quite dangerous and costly in the real world. For this reason, AV RL is generally only viable in simulation. Because these simulations have imperfect representations, particularly with respect to graphics, physics, and human interaction, we find motivation for a framework similar to RL, suitable to the real world. To this end, we formulate a learning framework that learns from restricted exploration by having a human demonstrator do the exploration. Existing work on learning from demonstration typically either assumes the collected data is performed by an optimal expert, or requires potentially dangerous exploration to find the optimal policy. We propose an alternative framework that learns continuous control from only safe behavior. One of our key insights is that the problem becomes tractable if the feedback score that rates the demonstration applies to the atomic action, as opposed to the entire sequence of actions. We use human experts to collect driving data as well as to label the driving data through a framework we call ``Backseat Driver'', giving us state-action pairs matched with scalar values representing the score for the action. We call the more general learning framework ReNeg, since it learns a regression from states to actions given negative as well as positive examples. We empirically validate several models in the ReNeg framework, testing on lane-following with limited data. We find that the best solution in this context outperforms behavioral cloning has strong connections to stochastic policy gradient approaches.
Reject
ICLR.cc/2023/Conference
SOM-CPC: Unsupervised Contrastive Learning with Self-Organizing Maps for Structured Representations of High-Rate Time Series
Continuous monitoring with an ever-increasing number of sensors has become ubiquitous across many application domains. Acquired data are typically high-dimensional and difficult to interpret, but they are also hypothesized to lie on a low-dimensional manifold. Dimensionality reduction techniques have, therefore, been sought for. Popular linear methods like Principle Component Analysis (PCA) have been extended to non-linear techniques such as Self-Organizing Maps (SOMs) or deep learning (DL) models. DL models have the ability to act on raw data, preventing heuristic feature selection, but the resulting latent space is often unstructured and still multi-dimensional. PCA and SOMs, on the other hand, need to be preceded with a feature-extraction step, but can then map high-dimensional features to 2D space. In this work we propose SOM-CPC, a model that jointly optimizes Contrastive Predictive Coding and a SOM to find an organized 2D manifold. We address a largely unexplored and challenging set of scenarios comprising high-rate time series, and show on both synthetic and real-life data (medical sleep data and audio recordings) that SOM-CPC outperforms both DL-based feature extraction, followed by PCA, K-means or a SOM, and strong deep-SOM baselines that jointly optimize a DL model and a SOM. SOM-CPC has great potential to expose latent patterns in high-rate data streams and may therefore contribute to a better understanding of many different processes and systems.
Reject
ICLR.cc/2023/Conference
EUCLID: Towards Efficient Unsupervised Reinforcement Learning with Multi-choice Dynamics Model
Unsupervised reinforcement learning (URL) poses a promising paradigm to learn useful behaviors in a task-agnostic environment without the guidance of extrinsic rewards to facilitate the fast adaptation of various downstream tasks. Previous works focused on the pre-training in a model-free manner while lacking the study of transition dynamics modeling that leaves a large space for the improvement of sample efficiency in downstream tasks. To this end, we propose an Efficient Unsupervised Reinforcement Learning Framework with Multi-choice Dynamics model (EUCLID), which introduces a novel model-fused paradigm to jointly pre-train the dynamics model and unsupervised exploration policy in the pre-training phase, thus better leveraging the environmental samples and improving the downstream task sampling efficiency. However, constructing a generalizable model which captures the local dynamics under different behaviors remains a challenging problem. We introduce the multi-choice dynamics model that covers different local dynamics under different behaviors concurrently, which uses different heads to learn the state transition under different behaviors during unsupervised pre-training and selects the most appropriate head for prediction in the downstream task. Experimental results in the manipulation and locomotion domains demonstrate that EUCLID achieves state-of-the-art performance with high sample efficiency, basically solving the state-based URLB benchmark and reaching a mean normalized score of 104.0±1.2% in downstream tasks with 100k fine-tuning steps, which is equivalent to DDPG’s performance at 2M interactive steps with 20× more data. More visualization videos are released on our homepage.
Accept: poster
ICLR.cc/2019/Conference
Systematic Generalization: What Is Required and Can It Be Learned?
Numerous models for grounded language understanding have been recently proposed, including (i) generic models that can be easily adapted to any given task and (ii) intuitively appealing modular models that require background knowledge to be instantiated. We compare both types of models in how much they lend themselves to a particular form of systematic generalization. Using a synthetic VQA test, we evaluate which models are capable of reasoning about all possible object pairs after training on only a small subset of them. Our findings show that the generalization of modular models is much more systematic and that it is highly sensitive to the module layout, i.e. to how exactly the modules are connected. We furthermore investigate if modular models that generalize well could be made more end-to-end by learning their layout and parametrization. We find that end-to-end methods from prior work often learn inappropriate layouts or parametrizations that do not facilitate systematic generalization. Our results suggest that, in addition to modularity, systematic generalization in language understanding may require explicit regularizers or priors.
Accept (Poster)
ICLR.cc/2021/Conference
Generative Learning With Euler Particle Transport
We propose an Euler particle transport (EPT) approach for generative learning. The proposed approach is motivated by the problem of finding the optimal transport map from a reference distribution to a target distribution characterized by the Monge-Ampere equation. Interpreting the infinitesimal linearization of the Monge-Ampere equation from the perspective of gradient flows in measure spaces leads to a stochastic McKean-Vlasov equation. We use the forward Euler method to solve this equation. The resulting forward Euler map pushes forward a reference distribution to the target. This map is the composition of a sequence of simple residual maps, which are computationally stable and easy to train. The key task in training is the estimation of the density ratios or differences that determine the residual maps. We estimate the density ratios (differences) based on the Bregman divergence with a gradient penalty using deep density-ratio (difference) fitting. We show that the proposed density-ratio (difference) estimators do not suffer from the ``curse of dimensionality" if data is supported on a lower-dimensional manifold. Numerical experiments with multi-mode synthetic datasets and comparisons with the existing methods on real benchmark datasets support our theoretical results and demonstrate the effectiveness of the proposed method.
Reject
ICLR.cc/2023/Conference
ConBaT: Control Barrier Transformer for Safety-Critical Policy Learning
Large-scale self-supervised models have recently revolutionized our ability to perform a variety of tasks within the vision and language domains. However, using such models for autonomous systems is challenging because of safety requirements: besides executing correct actions, an autonomous agent needs to also avoid high cost and potentially fatal critical mistakes. Traditionally, self-supervised training mostly focuses on imitating previously observed behaviors, and the training demonstrations carry no notion of which behaviors should be explicitly avoided. In this work, we propose Control Barrier Transformer (ConBaT), an approach that learns safe behaviors from demonstrations in a self-supervised fashion. ConBaT is inspired by the concept of control barrier functions in control theory and uses a causal transformer that learns to predict safe robot actions autoregressively using a critic that requires minimal safety data labeling. During deployment, we employ a lightweight online optimization to find actions that can ensure future states lie within the safe set. We apply our approach to different simulated control tasks and show that our method results in safer control policies compared to other classical and learning-based methods.
Reject
ICLR.cc/2020/Conference
Evaluating Lossy Compression Rates of Deep Generative Models
Deep generative models have achieved remarkable progress in recent years. Despite this progress, quantitative evaluation and comparison of generative models remains as one of the important challenges. One of the most popular metrics for evaluating generative models is the log-likelihood. While the direct computation of log-likelihood can be intractable, it has been recently shown that the log-likelihood of some of the most interesting generative models such as variational autoencoders (VAE) or generative adversarial networks (GAN) can be efficiently estimated using annealed importance sampling (AIS). In this work, we argue that the log-likelihood metric by itself cannot represent all the different performance characteristics of generative models, and propose to use rate distortion curves to evaluate and compare deep generative models. We show that we can approximate the entire rate distortion curve using one single run of AIS for roughly the same computational cost as a single log-likelihood estimate. We evaluate lossy compression rates of different deep generative models such as VAEs, GANs (and its variants) and adversarial autoencoders (AAE) on MNIST and CIFAR10, and arrive at a number of insights not obtainable from log-likelihoods alone.
Reject
ICLR.cc/2021/Conference
Feature-Robust Optimal Transport for High-Dimensional Data
Optimal transport is a machine learning problem with applications including distribution comparison, feature selection, and generative adversarial networks. In this paper, we propose feature-robust optimal transport (FROT) for high-dimensional data, which solves high-dimensional OT problems using feature selection to avoid the curse of dimensionality. Specifically, we find a transport plan with discriminative features. To this end, we formulate the FROT problem as a min--max optimization problem. We then propose a convex formulation of the FROT problem and solve it using a Frank--Wolfe-based optimization algorithm, whereby the subproblem can be efficiently solved using the Sinkhorn algorithm. Since FROT finds the transport plan from selected features, it is robust to noise features. To show the effectiveness of FROT, we propose using the FROT algorithm for the layer selection problem in deep neural networks for semantic correspondence. By conducting synthetic and benchmark experiments, we demonstrate that the proposed method can find a strong correspondence by determining important layers. We show that the FROT algorithm achieves state-of-the-art performance in real-world semantic correspondence datasets.
Reject
ICLR.cc/2018/Conference
Learnability of Learned Neural Networks
This paper explores the simplicity of learned neural networks under various settings: learned on real vs random data, varying size/architecture and using large minibatch size vs small minibatch size. The notion of simplicity used here is that of learnability i.e., how accurately can the prediction function of a neural network be learned from labeled samples from it. While learnability is different from (in fact often higher than) test accuracy, the results herein suggest that there is a strong correlation between small generalization errors and high learnability. This work also shows that there exist significant qualitative differences in shallow networks as compared to popular deep networks. More broadly, this paper extends in a new direction, previous work on understanding the properties of learned neural networks. Our hope is that such an empirical study of understanding learned neural networks might shed light on the right assumptions that can be made for a theoretical study of deep learning.
Reject
ICLR.cc/2021/Conference
FLAGNet : Feature Label based Automatic Generation Network for symbolic music
The technology for automatic music generation has been very actively studied in recent years. However, almost in these studies, handling domain knowledge of music was omitted or considered a difficult task. In particular, research that analyzes and utilizes the characteristics of each bar of music is very rare, even though it is essential in the human composition. We propose a model that generate music with musical characteristics of bars by conditional generative adversarial network, and analyze the good combination of the sequence of which characterized bars for symbolic-domain music generation by Recurrent Neural Network with Long short term memory layer. Also, by analyzing symbolic music data as image-like based on relational pitch approach, it increases the utilization of the data set with arbitrary chord scales and enables the use of generational results extensively. The resulting model FLAGNet generates music with the understanding of musical domain knowledge while handling inputs like minimum unit of note, length of music, chart scales, and chord condition.
Reject
ICLR.cc/2021/Conference
Contrastive Syn-to-Real Generalization
Training on synthetic data can be beneficial for label or data-scarce scenarios. However, synthetically trained models often suffer from poor generalization in real domains due to domain gaps. In this work, we make a key observation that the diversity of the learned feature embeddings plays an important role in the generalization performance. To this end, we propose contrastive synthetic-to-real generalization (CSG), a novel framework that leverage the pre-trained ImageNet knowledge to prevent overfitting to the synthetic domain, while promoting the diversity of feature embeddings as an inductive bias to improve generalization. In addition, we enhance the proposed CSG framework with attentional pooling (A-pool) to let the model focus on semantically important regions and further improve its generalization. We demonstrate the effectiveness of CSG on various synthetic training tasks, exhibiting state-of-the-art performance on zero-shot domain generalization.
Accept (Poster)
ICLR.cc/2023/Conference
Multi-scale Sinusoidal Embeddings Enable Learning on High Resolution Mass Spectrometry Data
Small molecules in biological samples are studied to provide information about disease states, environmental toxins, natural product drug discovery, and many other applications. The primary window into the composition of small molecule mixtures is tandem mass spectrometry (MS2), which produces data that are of high sensitivity and part per million resolution. We adopt multi-scale sinusoidal embeddings of the mass data in MS2 designed to meet the challenge of learning from the full resolution of MS2 data. Using these embeddings, we provide a new state of the art model for spectral library search, the standard task for initial evaluation of MS2 data. We also investigate the task of chemical property prediction from MS2 data, that has natural applications in high-throughput MS2 experiments and show that an average $R^2$ of 80\% for novel compounds can be achieved across 10 chemical properties prioritized by medicinal chemists. We use dimensionality reduction techniques and experiments with different floating point resolutions to show the essential role multi-scale sinusoidal embeddings play in learning from MS2 data.
Reject
ICLR.cc/2023/Conference
Combinatorial Pure Exploration of Causal Bandits
The combinatorial pure exploration of causal bandits is the following online learning task: given a causal graph with unknown causal inference distributions, in each round we choose a subset of variables to intervene or do no intervention, and observe the random outcomes of all random variables, with the goal that using as few rounds as possible, we can output an intervention that gives the best (or almost best) expected outcome on the reward variable $Y$ with probability at least $1-\delta$, where $\delta$ is a given confidence level. We provide the first gap-dependent and fully adaptive pure exploration algorithms on two types of causal models --- the binary generalized linear model (BGLM) and general graphs. For BGLM, our algorithm is the first to be designed specifically for this setting and achieves polynomial sample complexity, while all existing algorithms for general graphs have either sample complexity exponential to the graph size or some unreasonable assumptions. For general graphs, our algorithm provides a significant improvement on sample complexity, and it nearly matches the lower bound we prove. Our algorithms achieve such improvement by a novel integration of prior causal bandit algorithms and prior adaptive pure exploration algorithms, the former of which utilize the rich observational feedback in causal bandits but are not adaptive to reward gaps, while the latter of which have the issue in reverse.
Accept: poster
ICLR.cc/2022/Conference
PACE: A Parallelizable Computation Encoder for Directed Acyclic Graphs
Optimization of directed acyclic graph (DAG) structures has many applications, such as neural architecture search (NAS) and probabilistic graphical model learning. Encoding DAGs into real vectors is a dominant component in most neural-network-based DAG optimization frameworks. Currently, most popular DAG encoders use an asynchronous message passing scheme which sequentially processes nodes according to the dependency between nodes in a DAG. That is, a node must not be processed until all its predecessors are processed. As a result, they are inherently not parallelizable. In this work, we propose a Parallelizable Attention-based Computation structure Encoder (PACE) that processes nodes simultaneously and encodes DAGs in parallel. We demonstrate the superiority of PACE through encoder-dependent optimization subroutines that search the optimal DAG structure based on the learned DAG embeddings. Experiments show that PACE not only improves the effectiveness over previous sequential DAG encoders with a significantly boosted training and inference speed, but also generates smooth latent (DAG encoding) spaces that are beneficial to downstream optimization subroutines.
Reject
ICLR.cc/2019/Conference
Adaptivity of deep ReLU network for learning in Besov and mixed smooth Besov spaces: optimal rate and curse of dimensionality
Deep learning has shown high performances in various types of tasks from visual recognition to natural language processing, which indicates superior flexibility and adaptivity of deep learning. To understand this phenomenon theoretically, we develop a new approximation and estimation error analysis of deep learning with the ReLU activation for functions in a Besov space and its variant with mixed smoothness. The Besov space is a considerably general function space including the Holder space and Sobolev space, and especially can capture spatial inhomogeneity of smoothness. Through the analysis in the Besov space, it is shown that deep learning can achieve the minimax optimal rate and outperform any non-adaptive (linear) estimator such as kernel ridge regression, which shows that deep learning has higher adaptivity to the spatial inhomogeneity of the target function than other estimators such as linear ones. In addition to this, it is shown that deep learning can avoid the curse of dimensionality if the target function is in a mixed smooth Besov space. We also show that the dependency of the convergence rate on the dimensionality is tight due to its minimax optimality. These results support high adaptivity of deep learning and its superior ability as a feature extractor.
Accept (Poster)
ICLR.cc/2023/Conference
Efficient approximation of neural population structure and correlations with probabilistic circuits
We present a computationally efficient framework to model a wide range of population structures with high order correlations and a large number of neurons. Our method is based on a special type of Bayesian network that has linear inference time and is founded upon the concept of contextual independence. Moreover, we use an efficient architecture learning method for network selection to model large neural populations even with a small amount of data. Our framework is both fast and accurate in approximating neural population structures. Furthermore, our approach enables us to reliably quantify higher order neural correlations. We test our method on simulated neural populations commonly used to generate higher order correlations, as well as on publicly available large-scale neural recordings from the Allen Brain Observatory. Our approach significantly outperforms other models both in terms of statistical measures and alignment with experimental evidence.
Accept: poster
ICLR.cc/2023/Conference
A Closer Look at Self-supervised Lightweight Vision Transformers
Self-supervised learning on large-scale Vision Transformers (ViTs) as pre-training methods has achieved promising downstream performance. Yet, how much these pre-training paradigms promote lightweight ViTs' performance is considerably less studied. In this work, we mainly develop and benchmark self-supervised pre-training methods, e.g., contrastive-learning-based MoCo-v3, masked-image-modeling-based MAE on image classification tasks, and some downstream dense prediction tasks. We surprisingly find that if proper pre-training is adopted, even vanilla lightweight ViTs show comparable performance on ImageNet to previous SOTA networks with delicate architecture design. We also point out some defects of such pre-training, \eg, failing to benefit from large-scale pre-training data and showing inferior performance on data-insufficient downstream tasks. Furthermore, we analyze and clearly show the effect of such pre-training by analyzing the properties of the layer representation and attention maps for related models. Finally, based on the above analyses, a distillation strategy during pre-training is developed, which leads to further downstream performance improvement for MAE-based pre-training.
Reject
ICLR.cc/2022/Conference
Model-augmented Prioritized Experience Replay
Experience replay is an essential component in off-policy model-free reinforcement learning (MfRL). Due to its effectiveness, various methods for calculating priority scores on experiences have been proposed for sampling. Since critic networks are crucial to policy learning, TD-error, directly correlated to $Q$-values, is one of the most frequently used features to compute the scores. However, critic networks often under- or overestimate $Q$-values, so it is often ineffective to learn to predict $Q$-values by sampled experiences based heavily on TD-error. Accordingly, it is valuable to find auxiliary features, which positively support TD-error in calculating the scores for efficient sampling. Motivated by this, we propose a novel experience replay method, which we call model-augmented prioritized experience replay (MaPER), that employs new learnable features driven from components in model-based RL (MbRL) to calculate the scores on experiences. The proposed MaPER brings the effect of curriculum learning for predicting $Q$-values better by the critic network with negligible memory and computational overhead compared to the vanilla PER. Indeed, our experimental results on various tasks demonstrate that MaPER can significantly improve the performance of the state-of-the-art off-policy MfRL and MbRL which includes off-policy MfRL algorithms in its policy optimization procedure.
Accept (Poster)
ICLR.cc/2019/Conference
Composing Complex Skills by Learning Transition Policies
Humans acquire complex skills by exploiting previously learned skills and making transitions between them. To empower machines with this ability, we propose a method that can learn transition policies which effectively connect primitive skills to perform sequential tasks without handcrafted rewards. To efficiently train our transition policies, we introduce proximity predictors which induce rewards gauging proximity to suitable initial states for the next skill. The proposed method is evaluated on a set of complex continuous control tasks in bipedal locomotion and robotic arm manipulation which traditional policy gradient methods struggle at. We demonstrate that transition policies enable us to effectively compose complex skills with existing primitive skills. The proposed induced rewards computed using the proximity predictor further improve training efficiency by providing more dense information than the sparse rewards from the environments. We make our environments, primitive skills, and code public for further research at https://youngwoon.github.io/transition .
Accept (Poster)
ICLR.cc/2020/Conference
Policy path programming
We develop a normative theory of hierarchical model-based policy optimization for Markov decision processes resulting in a full-depth, full-width policy iteration algorithm. This method performs policy updates which integrate reward information over all states at all horizons simultaneously thus sequentially maximizing the expected reward obtained per algorithmic iteration. Effectively, policy path programming ascends the expected cumulative reward gradient in the space of policies defined over all state-space paths. An exact formula is derived which finitely parametrizes these path gradients in terms of action preferences. Policy path gradients can be directly computed using an internal model thus obviating the need to sample paths in order to optimize in depth. They are quadratic in successor representation entries and afford natural generalizations to higher-order gradient techniques. In simulations, it is shown that intuitive hierarchical reasoning is emergent within the associated policy optimization dynamics.
Reject