conference
stringclasses
6 values
title
stringlengths
8
176
abstract
stringlengths
228
5k
decision
stringclasses
9 values
ICLR.cc/2023/Conference
Efficient Personalized Federated Learning via Sparse Model-Adaptation
Federated Learning (FL) aims to train machine learning models for multiple clients without sharing their own private data. Due to the heterogeneity of clients' local data distribution, recent studies explore the personalized FL that learns and deploys distinct local models with the help of auxiliary global models. However, the clients can be heterogeneous in terms of not only local data distribution, but also their computation and communication resources. The capacity and efficiency of personalized models are restricted by the lowest-resource clients, leading to sub-optimal performance and limited practicality of personalized FL. To overcome these challenges, we propose a novel approach named pFedGate for efficient personalized FL by adaptively and efficiently learning sparse local models. With a lightweight trainable gating layer, pFedGate enables clients to reach their full potential in model capacity by generating different sparse models accounting for both the heterogeneous data distributions and resource constraints. Meanwhile, the computation and communication efficiency are both improved thanks to the adaptability between the model sparsity and clients' resources. Further, we theoretically show that the proposed pFedGate has superior complexity with guaranteed convergence and generalization error. Extensive experiments show that pFedGate achieves superior global accuracy, individual accuracy and efficiency simultaneously over state-of-the-art methods, by up to 4.53\% accuracy improvement and 12x smaller model size. We also demonstrate that pFedGate performs better than competitors in the novel clients participation and partial clients participation scenarios, and can learn meaningful sparse local models adapted to different data distributions.
Reject
ICLR.cc/2021/Conference
Individually Fair Rankings
We develop an algorithm to train individually fair learning-to-rank (LTR) models. The proposed approach ensures items from minority groups appear alongside similar items from majority groups. This notion of fair ranking is based on the definition of individual fairness from supervised learning and is more nuanced than prior fair LTR approaches that simply ensure the ranking model provides underrepresented items with a basic level of exposure. The crux of our method is an optimal transport-based regularizer that enforces individual fairness and an efficient algorithm for optimizing the regularizer. We show that our approach leads to certifiably individually fair LTR models and demonstrate the efficacy of our method on ranking tasks subject to demographic biases.
Accept (Poster)
ICLR.cc/2021/Conference
PareCO: Pareto-aware Channel Optimization for Slimmable Neural Networks
Slimmable neural networks provide a flexible trade-off front between prediction error and computational cost (such as the number of floating-point operations or FLOPs) with the same storage cost as a single model. They have been proposed recently for resource-constrained settings such as mobile devices. However, current slimmable neural networks use a single width-multiplier for all the layers to arrive at sub-networks with different performance profiles, which neglects that different layers affect the network's prediction accuracy differently and have different FLOP requirements. Hence, developing a principled approach for deciding width-multipliers across different layers could potentially improve the performance of slimmable networks. To allow for heterogeneous width-multipliers across different layers, we formulate the problem of optimizing slimmable networks from a multi-objective optimization lens, which leads to a novel algorithm for optimizing both the shared weights and the width-multipliers for the sub-networks. We perform extensive empirical analysis with 15 network and dataset combinations and two types of cost objectives, i.e., FLOPs and memory footprint, to demonstrate the effectiveness of the proposed method compared to existing alternatives. Quantitatively, improvements up to 1.7% and 8% in top-1 accuracy on the ImageNet dataset can be attained for MobileNetV2 considering FLOPs and memory footprint, respectively. Our results highlight the potential of optimizing the channel counts for different layers jointly with the weights for slimmable networks.
Reject
ICLR.cc/2019/Conference
Open-Ended Content-Style Recombination Via Leakage Filtering
We consider visual domains in which a class label specifies the content of an image, and class-irrelevant properties that differentiate instances constitute the style. We present a domain-independent method that permits the open-ended recombination of style of one image with the content of another. Open ended simply means that the method generalizes to style and content not present in the training data. The method starts by constructing a content embedding using an existing deep metric-learning technique. This trained content encoder is incorporated into a variational autoencoder (VAE), paired with a to-be-trained style encoder. The VAE reconstruction loss alone is inadequate to ensure a decomposition of the latent representation into style and content. Our method thus includes an auxiliary loss, leakage filtering, which ensures that no style information remaining in the content representation is used for reconstruction and vice versa. We synthesize novel images by decoding the style representation obtained from one image with the content representation from another. Using this method for data-set augmentation, we obtain state-of-the-art performance on few-shot learning tasks.
Reject
ICLR.cc/2023/Conference
Show and Write: Entity-aware Article Generation with Image Information
Prior work for article generation has primarily focused on generating articles using a human-written prompt to provide topical context and metadata about the article. However, for many applications, such as generating news stories, these articles are also often paired with images and their captions or alt-text, which in turn are based on real-world events and may reference many different named entities that are difficult to be correctly recognized and predicted by language models. To address this shortcoming, this paper introduces an ENtity-aware article Generation method with Image iNformation, ENGIN, to incorporate an article's image information into language models. ENGIN represents articles that can be conditioned on metadata used by prior work and information such as captions and named entities extracted from images. Our key contribution is a novel Entity-aware mechanism to help our model recognize and predict the entity names in articles. We perform experiments on three public datasets, GoodNews, VisualNews, and WikiText. Quantitative results show that our approach improves generated article perplexity by 4-5 points over the base models. Qualitative results demonstrate the text generated by ENGIN is more consistent with embedded article images. We also perform article quality annotation experiments on the generated articles to validate that our model produces higher-quality articles. Finally, we investigate the effect ENGIN has on methods that automatically detect machine-generated articles.
Reject
ICLR.cc/2023/Conference
Data-efficient Supervised Learning is Powerful for Neural Combinatorial Optimization
Neural combinatorial optimization (NCO) is a promising learning-based approach to solve difficult combinatorial optimization problems. However, how to efficiently train a powerful NCO solver remains challenging. The widely-used reinforcement learning method suffers from sparse rewards and low data efficiency, while the supervised learning approach requires a large number of high-quality solutions. In this work, we develop efficient methods to extract sufficient supervised information from limited labeled data, which can significantly overcome the main shortcoming of supervised learning. To be specific, we propose a set of efficient data augmentation methods and a novel bidirectional loss to better leverage the equivalent properties of problem instances, which finally lead to a promising supervised learning approach. The thorough experimental studies demonstrate our proposed method can achieve state-of-the-art performance on the traveling salesman problem (TSP) only with a small set of 50,000 labeled instances, while it also enjoys better generalization performance. We believe this somewhat surprising finding could lead to valuable rethinking on the value of efficient supervised learning for NCO.
Reject
ICLR.cc/2023/Conference
CNN Compression and Search Using Set Transformations with Width Modifiers on Network Architectures
We propose a new approach, based on discrete filter pruning, to adapt off-the-shelf models into an embedded environment. Importantly, we circumvent the usually prohibitive costs of model compression. Our method, Structured Coarse Block Pruning (SCBP), prunes whole CNN kernels using width modifiers applied to a novel transformation of convlayers into superblocks. SCBP uses set representations to construct a rudimentary search to provide candidate networks. To test our approach, the original ResNet architectures serve as the baseline and also provide the 'seeds' for our candidate search. The search produces a configurable number of compressed (derived) models. These derived models are often ~20\% faster and ~50\% smaller than their unmodified counterparts. At the expense of accuracy, the size can become even smaller and the inference latency lowered even further. The unique SCBP transformations yield many new model variants, each with their own trade-offs, and does not require GPU clusters or expert humans for training and design.
Reject
ICLR.cc/2021/Conference
Zero-shot Fairness with Invisible Demographics
In a statistical notion of algorithmic fairness, we partition individuals into groups based on some key demographic factors such as race and gender, and require that some statistics of a classifier be approximately equalized across those groups. Current approaches require complete annotations for demographic factors, or focus on an abstract worst-off group rather than demographic groups. In this paper, we consider the setting where the demographic factors are only partially available. For example, we have training examples for white-skinned and dark-skinned males, and white-skinned females, but we have zero examples for dark-skinned females. We could also have zero examples for females regardless of their skin colors. Without additional knowledge, it is impossible to directly control the discrepancy of the classifier's statistics for those invisible groups. We develop a disentanglement algorithm that splits a representation of data into a component that captures the demographic factors and another component that is invariant to them based on a context dataset. The context dataset is much like the deployment dataset, it is unlabeled but it contains individuals from all demographics including the invisible. We cluster the context set, equalize the cluster size to form a "perfect batch", and use it as a supervision signal for the disentanglement. We propose a new discriminator loss based on a learnable attention mechanism to distinguish a perfect batch from a non-perfect one. We evaluate our approach on standard classification benchmarks and show that it is indeed possible to protect invisible demographics.
Reject
ICLR.cc/2021/Conference
PC2WF: 3D Wireframe Reconstruction from Raw Point Clouds
We introduce PC2WF, the first end-to-end trainable deep network architecture to convert a 3D point cloud into a wireframe model. The network takes as input an unordered set of 3D points sampled from the surface of some object, and outputs a wireframe of that object, i.e., a sparse set of corner points linked by line segments. Recovering the wireframe is a challenging task, where the numbers of both vertices and edges are different for every instance, and a-priori unknown. Our architecture gradually builds up the model: It starts by encoding the points into feature vectors. Based on those features, it identifies a pool of candidate vertices, then prunes those candidates to a final set of corner vertices and refines their locations. Next, the corners are linked with an exhaustive set of candidate edges, which is again pruned to obtain the final wireframe. All steps are trainable, and errors can be backpropagated through the entire sequence. We validate the proposed model on a publicly available synthetic dataset, for which the ground truth wireframes are accessible, as well as on a new real-world dataset. Our model produces wireframe abstractions of good quality and outperforms several baselines.
Accept (Poster)
ICLR.cc/2021/Conference
UMEC: Unified model and embedding compression for efficient recommendation systems
The recommendation system (RS) plays an important role in the content recommendation and retrieval scenarios. The core part of the system is the Ranking neural network, which is usually a bottleneck of whole system performance during online inference. In this work, we propose a unified model and embedding compression (UMEC) framework to hammer an efficient neural network-based recommendation system. Our framework jointly learns input feature selection and neural network compression together, and solve them as an end-to-end resource-constrained optimization problem using ADMM. Our method outperforms other baselines in terms of neural network Flops, sparse embedding feature size and the number of sparse embedding features. We evaluate our method on the public benchmark of DLRM, trained over the Kaggle Criteo dataset. The codes can be found at https://github.com/VITA-Group/UMEC.
Accept (Poster)
ICLR.cc/2022/Conference
DIVERSIFY to Generalize: Learning Generalized Representations for Time Series Classification
Time series classification is an important problem in real world. Due to its nonstationary property that the distribution changes over time, it remains challenging to build models for generalization to unseen distributions. In this paper, we propose to view the time series classification problem from the distribution perspective. We argue that the temporal complexity attributes to the unknown latent distributions within. To this end, we propose DIVERSIFY to learn generalized representations for time series classification. DIVERSIFY takes an iterative process: it first obtains the worst-case distribution scenario via adversarial training, then matches the distributions between all segments. We also present some theoretical insights. Extensive experiments on gesture recognition, speech commands recognition, and sensor-based human activity recognition demonstrate that DIVERSIFY significantly outperforms other baselines while effectively characterizing the latent distributions by qualitative and quantitative analysis.
Reject
ICLR.cc/2018/Conference
Piecewise Linear Neural Networks verification: A comparative study
The success of Deep Learning and its potential use in many important safety- critical applications has motivated research on formal verification of Neural Net- work (NN) models. Despite the reputation of learned NN models to behave as black boxes and theoretical hardness results of the problem of proving their prop- erties, researchers have been successful in verifying some classes of models by exploiting their piecewise linear structure. Unfortunately, most of these works test their algorithms on their own models and do not offer any comparison with other approaches. As a result, the advantages and downsides of the different al- gorithms are not well understood. Motivated by the need of accelerating progress in this very important area, we investigate the trade-offs of a number of different approaches based on Mixed Integer Programming, Satisfiability Modulo Theory, as well as a novel method based on the Branch-and-Bound framework. We also propose a new data set of benchmarks, in addition to a collection of previously released testcases that can be used to compare existing methods. Our analysis not only allowed a comparison to be made between different strategies, the compar- ision of results from different solvers also revealed implementation bugs in pub- lished methods. We expect that the availability of our benchmark and the analysis of the different approaches will allow researchers to invent and evaluate promising approaches for making progress on this important topic.
Reject
ICLR.cc/2023/Conference
Guess the Instruction! Flipped Learning Makes Language Models Stronger Zero-Shot Learners
Meta-training, which fine-tunes the language model (LM) on various downstream tasks by maximizing the likelihood of the target label given the task instruction and input instance, has improved the zero-shot task generalization performance. However, meta-trained LMs still struggle to generalize to challenging tasks containing novel labels unseen during meta-training. In this paper, we propose Flipped Learning, an alternative method of meta-training which trains the LM to generate the task instruction given the input instance and label. During inference, the LM trained with Flipped Learning, referred to as FLIPPED, selects the label option that is most likely to generate the task instruction. On 14 tasks of the BIG-bench benchmark, the 11B-sized FLIPPED outperforms zero-shot T0-11B (Sanh et al, 2021) and even a 16 times larger 3-shot GPT-3 (175B) (Brown et al, 2020) on average by 8.4% and 9.7% points, respectively. FLIPPED gives particularly large improvements on tasks with unseen labels, outperforming T0-11B by up to +20% average F1 score. This indicates that the strong task generalization of FLIPPED comes from improved generalization to novel labels. We release our code at github.com/seonghyeonye/Flipped-Learning.
Accept: poster
ICLR.cc/2021/Conference
Variational Deterministic Uncertainty Quantification
Building on recent advances in uncertainty quantification using a single deep deterministic model (DUQ), we introduce variational Deterministic Uncertainty Quantification (vDUQ). We overcome several shortcomings of DUQ by recasting it as a Gaussian process (GP) approximation. Our principled approximation is based on an inducing point GP in combination with Deep Kernel Learning. This enables vDUQ to use rigorous probabilistic foundations, and work not only on classification but also on regression problems. We avoid uncertainty collapse away from the training data by regularizing the spectral norm of the deep feature extractor. Our method matches SotA accuracy, 96.2\% on CIFAR-10, while maintaining the speed of softmax models, and provides uncertainty estimates competitive with Deep Ensembles. We demonstrate our method in regression problems and by estimating uncertainty in causal inference for personalized medicine
Reject
ICLR.cc/2021/Conference
Suppressing Outlier Reconstruction in Autoencoders for Out-of-Distribution Detection
While only trained to reconstruct training data, autoencoders may produce high-quality reconstructions of inputs that are well outside the training data distribution. This phenomenon, which we refer to as outlier reconstruction, has a detrimental effect on the use of autoencoders for outlier detection, as an autoencoder will misclassify a clear outlier as being in-distribution. In this paper, we introduce the Energy-Based Autoencoder (EBAE), an autoencoder that is considerably less susceptible to outlier reconstruction. The core idea of EBAE is to treat the reconstruction error as an energy function of a normalized density and to strictly enforce the normalization constraint. We show that the reconstruction of non-training inputs can be suppressed, and the reconstruction error made highly discriminative to outliers, by enforcing this constraint. We empirically show that EBAE significantly outperforms both existing autoencoders and other generative models for several out-of-distribution detection tasks.
Reject
ICLR.cc/2020/Conference
Analyzing the Role of Model Uncertainty for Electronic Health Records
In medicine, both ethical and monetary costs of incorrect predictions can be significant, and the complexity of the problems often necessitates increasingly complex models. Recent work has shown that changing just the random seed is enough for otherwise well-tuned deep neural networks to vary in their individual predicted probabilities. In light of this, we investigate the role of model uncertainty methods in the medical domain. Using RNN ensembles and various Bayesian RNNs, we show that population-level metrics, such as AUC-PR, AUC-ROC, log-likelihood, and calibration error, do not capture model uncertainty. Meanwhile, the presence of significant variability in patient-specific predictions and optimal decisions motivates the need for capturing model uncertainty. Understanding the uncertainty for individual patients is an area with clear clinical impact, such as determining when a model decision is likely to be brittle. We further show that RNNs with only Bayesian embeddings can be a more efficient way to capture model uncertainty compared to ensembles, and we analyze how model uncertainty is impacted across individual input features and patient subgroups.
Reject
ICLR.cc/2022/Conference
Bayesian Learning with Information Gain Provably Bounds Risk for a Robust Adversarial Defense
In this paper, we present a novel method to learn a Bayesian neural network robust against adversarial attacks. Previous algorithms have shown an adversarially trained Bayesian Neural Network (BNN) provides improved robustness against attacks. However, the learning approach for approximating the multi-modal Bayesian posterior leads to mode collapse with consequential sub-par robustness and under performance of an adversarially trained BNN. Instead, we propose approximating the multi-modal posterior of a BNN to prevent mode collapse and encourage diversity over learned posterior distributions of models to develop a novel adversarial training method for BNNs. Importantly, we conceptualize and formulate information gain (IG) in the adversarial Bayesian learning context and prove, training a BNN with IG bounds the difference between the conventional empirical risk with the risk obtained from adversarial training---our intuition is that information gain from benign and adversarial examples should be the same for a robust BNN. Extensive experimental results demonstrate our proposed algorithm to achieve state-of-the-art performance under strong adversarial attacks.
Reject
ICLR.cc/2021/Conference
Modeling the Second Player in Distributionally Robust Optimization
Distributionally robust optimization (DRO) provides a framework for training machine learning models that are able to perform well on a collection of related data distributions (the "uncertainty set"). This is done by solving a min-max game: the model is trained to minimize its maximum expected loss among all distributions in the uncertainty set. While careful design of the uncertainty set is critical to the success of the DRO procedure, previous work has been limited to relatively simple alternatives that keep the min-max optimization problem exactly tractable, such as $f$-divergence balls. In this paper, we argue instead for the use of neural generative models to characterize the worst-case distribution, allowing for more flexible and problem-specific selection of the uncertainty set. However, while simple conceptually, this approach poses a number of implementation and optimization challenges. To circumvent these issues, we propose a relaxation of the KL-constrained inner maximization objective that makes the DRO problem more amenable to gradient-based optimization of large scale generative models, and develop model selection heuristics to guide hyper-parameter search. On both toy settings and realistic NLP tasks, we find that the proposed approach yields models that are more robust than comparable baselines.
Accept (Poster)
ICLR.cc/2022/Conference
Do deep networks transfer invariances across classes?
In order to generalize well, classifiers must learn to be invariant to nuisance transformations that do not alter an input's class. Many problems have "class-agnostic" nuisance transformations that apply similarly to all classes, such as lighting and background changes for image classification. Neural networks can learn these invariances given sufficient data, but many real-world datasets are heavily class imbalanced and contain only a few examples for most of the classes. We therefore pose the question: how well do neural networks transfer class-agnostic invariances learned from the large classes to the small ones? Through careful experimentation, we observe that invariance to class-agnostic transformations is still heavily dependent on class size, with the networks being much less invariant on smaller classes. This result holds even when using data balancing techniques, and suggests poor invariance transfer across classes. Our results provide one explanation for why classifiers generalize poorly on unbalanced and long-tailed distributions. Based on this analysis, we show how a generative approach for learning the nuisance transformations can help transfer invariances across classes and improve performance on a set of imbalanced image classification benchmarks.
Accept (Poster)
ICLR.cc/2022/Conference
BANANA: a Benchmark for the Assessment of Neural Architectures for Nucleic Acids
Machine learning has always played an important role in bioinformatics and recent applications of deep learning have allowed solving a new spectrum of biologically relevant tasks. However, there is still a gap between the ``mainstream'' AI and the bioinformatics communities. This is partially due to the format of bioinformatics data, which are typically difficult to process and adapt to machine learning tasks without deep domain knowledge. Moreover, the lack of standardized evaluation methods makes it difficult to rigorously compare different models and assess their true performance. To help to bridge this gap, and inspired by work such as SuperGLUE and TAPE, we present BANANA, a benchmark consisting of six supervised classification tasks designed to assess language model performance in the DNA and RNA domains. The tasks are defined over three genomics and one transcriptomics languages (human DNA, bacterial 16S gene, nematoda ITS2 gene, human mRNA) and measure a model's ability to perform whole-sequence classification in a variety of setups. Each task was built from readily available data and is presented in a ready-to-use format, with defined labels, splits, and evaluation metrics. We use BANANA to test state-of-the-art NLP architectures, such as Transformer-based models, observing that, in general, self-supervised pretraining without external corpora is beneficial in every task.
Reject
ICLR.cc/2023/Conference
Improving Generative Flow Networks with Path Regularization
Generative Flow Networks (GFlowNets) are recently proposed models for learning stochastic policies that generate compositional objects by sequences of actions with the probability proportional to a given reward function. The central problem of GFlowNets is to improve their exploration and generalization. In this work, we propose a novel path regularization method based on optimal transport theory that places prior constraints on the underlying structure of the GFlowNets. The prior is designed to help the GFlowNets better discover the latent structure of the target distribution or enhance its ability to explore the environment in the context of active learning. The path regularization controls the flow in GFlowNets to generate more diverse and novel candidates via maximizing the optimal transport distances between two forward policies or to improve the generalization via minimizing the optimal transport distances. In addition, we derive an efficient implementation of the regularization by finding its closed form solutions in specific cases and a meaningful upper bound that can be used as an approximation to minimize the regularization term. We empirically demonstrate the advantage of our path regularization on a wide range of tasks, including synthetic hypergrid environment modeling, discrete probabilistic modeling, and biological sequence design.
Reject
ICLR.cc/2023/Conference
Robust Graph Dictionary Learning
Traditional Dictionary Learning (DL) aims to approximate data vectors as sparse linear combinations of basis elements (atoms) and is widely used in machine learning, computer vision, and signal processing. To extend DL to graphs, Vincent-Cuaz et al. 2021 propose a method, called GDL, which describes the topology of each graph with a pairwise relation matrix (PRM) and compares PRMs via the Gromov-Wasserstein Discrepancy (GWD). However, the lack of robustness often excludes GDL from a variety of real-world applications since GWD is sensitive to the structural noise in graphs. This paper proposes an improved graph dictionary learning algorithm based on a robust Gromov-Wasserstein discrepancy (RGWD) which has theoretically sound properties and an efficient numerical scheme. Based on such a discrepancy, our dictionary learning algorithm can learn atoms from noisy graph data. Experimental results demonstrate that our algorithm achieves good performance on both simulated and real-world datasets.
Accept: poster
ICLR.cc/2019/Conference
Optimized Gated Deep Learning Architectures for Sensor Fusion
Sensor fusion is a key technology that integrates various sensory inputs to allow for robust decision making in many applications such as autonomous driving and robot control. Deep neural networks have been adopted for sensor fusion in a body of recent studies. Among these, the so-called netgated architecture was proposed, which has demonstrated improved performances over the conventional convolu- tional neural networks (CNN). In this paper, we address several limitations of the baseline negated architecture by proposing two further optimized architectures: a coarser-grained gated architecture employing (feature) group-level fusion weights and a two-stage gated architectures leveraging both the group-level and feature- level fusion weights. Using driving mode prediction and human activity recogni- tion datasets, we demonstrate the significant performance improvements brought by the proposed gated architectures and also their robustness in the presence of sensor noise and failures.
Reject
ICLR.cc/2022/Conference
Direct Molecular Conformation Generation
Molecular conformation generation, which is to generate 3 dimensional coordinates of all the atoms in a molecule, is an important task for bioinformatics and pharmacology. Most existing machine learning based methods first predict interatomic distances and then generate conformations based on them. This two-stage approach has a potential limitation that the predicted distances may conflict with each other, e.g., violating the triangle inequality. In this work, we propose a method that directly outputs the coordinates of atoms, so that there is no violation of constraints. The conformation generator of our method stacks multiple blocks, and each block outputs a conformation which is then refined by the following block. We adopt the variational auto-encoder (VAE) framework and use a latent variable to generate diverse conformations. To handle the roto-translation equivariance, we adopt a loss that is invariant to rotation and translation of molecule coordinates, by computing the minimal achievable distance after any rotation and translation. Our method outperforms strong baselines on four public datasets, which shows the effectiveness of our method and the great potential of the direct approach. The code is released at \url{https://github.com/DirectMolecularConfGen/DMCG}.
Reject
ICLR.cc/2022/Conference
That Escalated Quickly: Compounding Complexity by Editing Levels at the Frontier of Agent Capabilities
Deep Reinforcement Learning (RL) has recently produced impressive results in a series of settings such as games and robotics. However, a key challenge that limits the utility of RL agents for real-world problems is the agent's ability to generalize to unseen variations (or levels). To train more robust agents, the field of Unsupervised Environment Design (UED) seeks to produce a curriculum by updating both the agent and the distribution over training environments. Recent advances in UED have come from promoting levels with high regret, which provides theoretical guarantees in equilibrium and empirically has been shown to produce agents capable of zero-shot transfer to unseen human-designed environments. However, current methods require either learning an environment-generating adversary, which remains a challenging optimization problem, or curating a curriculum from randomly sampled levels, which is ineffective if the search space is too large. In this paper we instead propose to evolve a curriculum, by making edits to previously selected levels. Our approach, which we call Adversarially Compounding Complexity by Editing Levels (ACCEL), produces levels at the frontier of an agent's capabilities, resulting in curricula that start simple but become increasingly complex. ACCEL maintains the theoretical benefits of prior works, while outperforming them empirically when transferring to complex out-of-distribution environments.
Reject
ICLR.cc/2022/Conference
Dynamics-Aware Comparison of Learned Reward Functions
The ability to learn reward functions plays an important role in enabling the deployment of intelligent agents in the real world. However, $\textit{comparing}$ reward functions, for example as a means of evaluating reward learning methods, presents a challenge. Reward functions are typically compared by considering the behavior of optimized policies, but this approach conflates deficiencies in the reward function with those of the policy search algorithm used to optimize it. To address this challenge, Gleave et al. (2020) propose the Equivalent-Policy Invariant Comparison (EPIC) distance. EPIC avoids policy optimization, but in doing so requires computing reward values at transitions that may be impossible under the system dynamics. This is problematic for learned reward functions because it entails evaluating them outside of their training distribution, resulting in inaccurate reward values that we show can render EPIC ineffective at comparing rewards. To address this problem, we propose the Dynamics-Aware Reward Distance (DARD), a new reward pseudometric. DARD uses an approximate transition model of the environment to transform reward functions into a form that allows for comparisons that are invariant to reward shaping while only evaluating reward functions on transitions close to their training distribution. Experiments in simulated physical domains demonstrate that DARD enables reliable reward comparisons without policy optimization and is significantly more predictive than baseline methods of downstream policy performance when dealing with learned reward functions.
Accept (Spotlight)
ICLR.cc/2021/Conference
Meta Adversarial Training
Recently demonstrated physical-world adversarial attacks have exposed vulnerabilities in perception systems that pose severe risks for safety-critical applications such as autonomous driving. These attacks place adversarial artifacts in the physical world that indirectly cause the addition of universal perturbations to inputs of a model that can fool it in a variety of contexts. Adversarial training is the most effective defense against image-dependent adversarial attacks. However, tailoring adversarial training to universal perturbations is computationally expensive since the optimal universal perturbations depend on the model weights which change during training. We propose meta adversarial training (MAT), a novel combination of adversarial training with meta-learning, which overcomes this challenge by meta-learning universal perturbations along with model training. MAT requires little extra computation while continuously adapting a large set of perturbations to the current model. We present results for universal patch and universal perturbation attacks on image classification and traffic-light detection. MAT considerably increases robustness against universal patch attacks compared to prior work.
Reject
ICLR.cc/2023/Conference
Cooperative Adversarial Learning via Closed-Loop Transcription
This paper proposes a generative model that implements cooperative adversarial learning via closed-loop transcription. In the generative model training, the encoder and decoder are trained simultaneously, and not only the adversarial process but also a cooperative process is included. In the adversarial process, the encoder plays as a critic to maximize the distance between the original and transcribed images, in which the distance is measured by rate reduction in the feature space; in the cooperative process, the encoder and the decoder cooperatively minimize the distance to improve the transcription quality. Cooperative adversarial learning possesses the concepts and properties of Auto-Encoding and GAN, and it is unique in that the encoder actively controls the training process as it is trained in both learning processes in two different roles. Experiments demonstrate that without regularization techniques, our generative model is robust to net architectures and easy to train, sample-wise reconstruction performs well in terms of sample features, and disentangled visual attributes are well modeled in independent principal components.
Reject
ICLR.cc/2023/Conference
Rethinking Backdoor Data Poisoning Attacks in the Context of Semi-Supervised Learning
Semi-supervised learning methods can train high-accuracy machine learning models with a fraction of the labeled training samples required for traditional supervised learning. Such methods do not typically involve close review of the unlabeled training samples, making them tempting targets for data poisoning attacks. In this paper we investigate the vulnerabilities of semi-supervised learning methods to backdoor data poisoning attacks on the unlabeled samples. We show that a simple poisoning attack using adversarially perturbed samples is highly effective - achieving an average attack success rate of 93.6%. We introduce a generalized attack framework targeting semi-supervised learning methods to better understand and exploit their limitations and to motivate future defense strategies.
Reject
ICLR.cc/2021/Conference
Oblivious Sketching-based Central Path Method for Solving Linear Programming Problems
In this work, we propose a sketching-based central path method for solving linear programmings, whose running time matches the state of art results [Cohen, Lee, Song STOC 19; Lee, Song, Zhang COLT 19]. Our method opens up the iterations of the central path method and deploys an "iterate and sketch" approach towards the problem by introducing a new coordinate-wise embedding technique, which may be of independent interest. Compare to previous methods, the work [Cohen, Lee, Song STOC 19] enjoys feasibility while being non-oblivious, and [Lee, Song, Zhang COLT 19] is oblivious but infeasible, and relies on $\mathit{dense}$ sketching matrices such as subsampled randomized Hadamard/Fourier transform matrices. Our method enjoys the benefits of being both oblivious and feasible, and can use $\mathit{sparse}$ sketching matrix [Nelson, Nguyen FOCS 13] to speed up the online matrix-vector multiplication. Our framework for solving LP naturally generalizes to a broader class of convex optimization problems including empirical risk minimization.
Reject
ICLR.cc/2023/Conference
FaDIn: Fast Discretized Inference for Hawkes Processes with General Parametric Kernels
Temporal point processes (TPP) are a natural tool for modeling event-based data. Among all TPP models, Hawkes processes have proven to be the most widely used, mainly due to their simplicity and computational ease when considering exponential or non-parametric kernels. Although non-parametric kernels are an option, such models require large datasets. While exponential kernels are more data efficient and relevant for certain applications where events immediately trigger more events, they are ill-suited for applications where latencies need to be estimated, such as in neuroscience. This work aims to offer an efficient solution to TPP inference using general parametric kernels with finite support. The developed solution consists of a fast L2 gradient-based solver leveraging a discretized version of the events. After supporting the use of discretization theoretically, the statistical and computational efficiency of the novel approach is demonstrated through various numerical experiments. Finally, the effectiveness of the method is evaluated by modeling the occurrence of stimuli-induced patterns from brain signals recorded with magnetoencephalography (MEG). Given the use of general parametric kernels, results show that the proposed approach leads to a more plausible estimation of pattern latency compared to the state-of-the-art.
Reject
ICLR.cc/2023/Conference
Mixed-Precision Inference Quantization: Radically Towards Faster inference speed, Lower Storage requirement, and Lower Loss
Model quantization is important for compressing models and improving computing speed. However, current researchers think that the loss function of quantizated model is usually higher than full precision model. This study provides a methodology for acquiring a mixed-precise quantization model with a lower loss than the full precision model. In addition, the analysis demonstrates that, throughout the inference process, the loss function is mostly affected by the noise of the layer inputs. In particular, we will demonstrate that neural networks with massive identity mappings are resistant to the quantization method. It is also difficult to improve the performance of these networks using quantization.
Reject
ICLR.cc/2018/Conference
Unsupervised Adversarial Anomaly Detection using One-Class Support Vector Machines
Anomaly detection discovers regular patterns in unlabeled data and identifies the non-conforming data points, which in some cases are the result of malicious attacks by adversaries. Learners such as One-Class Support Vector Machines (OCSVMs) have been successfully in anomaly detection, yet their performance may degrade significantly in the presence of sophisticated adversaries, who target the algorithm itself by compromising the integrity of the training data. With the rise in the use of machine learning in mission critical day-to-day activities where errors may have significant consequences, it is imperative that machine learning systems are made secure. To address this, we propose a defense mechanism that is based on a contraction of the data, and we test its effectiveness using OCSVMs. The proposed approach introduces a layer of uncertainty on top of the OCSVM learner, making it infeasible for the adversary to guess the specific configuration of the learner. We theoretically analyze the effects of adversarial perturbations on the separating margin of OCSVMs and provide empirical evidence on several benchmark datasets, which show that by carefully contracting the data in low dimensional spaces, we can successfully identify adversarial samples that would not have been identifiable in the original dimensional space. The numerical results show that the proposed method improves OCSVMs performance significantly (2-7%)
Reject
ICLR.cc/2020/Conference
BERT-AL: BERT for Arbitrarily Long Document Understanding
Pretrained language models attract lots of attentions, and they take advantage of the two-stages training process: pretraining on huge corpus and finetuning on specific tasks. Thereinto, BERT (Devlin et al., 2019) is a Transformer (Vaswani et al., 2017) based model and has been the state-of-the-art for many kinds of Nature Language Processing (NLP) tasks. However, BERT cannot take text longer than the maximum length as input since the maximum length is predefined during pretraining. When we apply BERT to long text tasks, e.g., document-level text summarization: 1) Truncating inputs by the maximum sequence length will decrease performance, since the model cannot capture long dependency and global information ranging the whole document. 2) Extending the maximum length requires re-pretraining which will cost a mass of time and computing resources. What's even worse is that the computational complexity will increase quadratically with the length, which will result in an unacceptable training time. To resolve these problems, we propose to apply Transformer to only model local dependency and recurrently capture long dependency by inserting multi-channel LSTM into each layer of BERT. The proposed model is named as BERT-AL (BERT for Arbitrarily Long Document Understanding) and it can accept arbitrarily long input without re-pretraining from scratch. We demonstrate BERT-AL's effectiveness on text summarization by conducting experiments on the CNN/Daily Mail dataset. Furthermore, our method can be adapted to other Transformer based models, e.g., XLNet (Yang et al., 2019) and RoBERTa (Liu et al., 2019), for various NLP tasks with long text.
Reject
ICLR.cc/2022/Conference
Wisdom of Committees: An Overlooked Approach To Faster and More Accurate Models
Committee-based models (ensembles or cascades) construct models by combining existing pre-trained ones. While ensembles and cascades are well-known techniques that were proposed before deep learning, they are not considered a core building block of deep model architectures and are rarely compared to in recent literature on developing efficient models. In this work, we go back to basics and conduct a comprehensive analysis of the efficiency of committee-based models. We find that even the most simplistic method for building committees from existing, independently pre-trained models can match or exceed the accuracy of state-of-the-art models while being drastically more efficient. These simple committee-based models also outperform sophisticated neural architecture search methods (e.g., BigNAS). These findings hold true for several tasks, including image classification, video classification, and semantic segmentation, and various architecture families, such as ViT, EfficientNet, ResNet, MobileNetV2, and X3D. Our results show that an EfficientNet cascade can achieve a 5.4x speedup over B7 and a ViT cascade can achieve a 2.3x speedup over ViT-L-384 while being equally accurate.
Accept (Poster)
ICLR.cc/2022/Conference
Emergent Communication at Scale
Emergent communication aims for a better understanding of human language evolution and building more efficient representations. We posit that reaching these goals will require scaling up, in contrast to a significant amount of literature that focuses on setting up small-scale problems to tease out desired properties of the emergent languages. We focus on three independent aspects to scale up, namely the dataset, task complexity, and population size. We provide a first set of results for large populations solving complex tasks on realistic large-scale datasets, as well as an easy-to-use codebase to enable further experimentation. In more complex tasks and datasets, we find that RL training can become unstable, but responds well to established stabilization techniques. We also identify the need for a different metric than topographic similarity, which does not correlate with the generalization performances when working with natural images. In this context, we probe ease-of-learnability and transfer methods to assess emergent languages. Finally, we observe that larger populations do not induce robust emergent protocols with high generalization performance, leading us to explore different ways to leverage population, through voting and imitation learning.
Accept (Spotlight)
ICLR.cc/2023/Conference
Intrinsic Motivation via Surprise Memory
We present a new computing model for intrinsic rewards in reinforcement learning that addresses the limitations of existing surprise-driven explorations. The reward is the novelty of the surprise rather than the surprise norm. We estimate the surprise novelty as retrieval errors of a memory network wherein the memory stores and reconstructs surprises. Our surprise memory (SM) augments the capability of surprise-based intrinsic motivators, maintaining the agent's interest in exciting exploration while reducing unwanted attraction to unpredictable or noisy observations. Our experiments demonstrate that the SM combined with various surprise predictors exhibits efficient exploring behaviors and significantly boosts the final performance in sparse reward environments, including Noisy-TV, navigation and challenging Atari games.
Reject
ICLR.cc/2022/Conference
Test-Time Adaptation to Distribution Shifts by Confidence Maximization and Input Transformation
Deep neural networks often exhibit poor performance on data that is unlikely under the train-time data distribution, for instance data affected by corruptions. Previous works demonstrate that test-time adaptation to data shift, for instance using entropy minimization, effectively improves performance on such shifted distributions. This paper focuses on the fully test-time adaptation setting, where only unlabeled data from the target distribution is required. This allows adapting arbitrary pretrained networks. Specifically, we propose a novel loss that improves test-time adaptation by addressing both premature convergence and instability of entropy minimization. This is achieved by replacing the entropy by a non-saturating surrogate and adding a diversity regularizer based on batch-wise entropy maximization that prevents convergence to trivial collapsed solutions. Moreover, we propose to prepend an input transformation module to the network that can partially undo test-time distribution shifts. Surprisingly, this preprocessing can be learned solely using the fully test-time adaptation loss in an end-to-end fashion without any target domain labels or source domain data. We show that our approach outperforms previous work in improving the robustness of publicly available pretrained image classifiers to common corruptions on such challenging benchmarks as ImageNet-C.
Reject
ICLR.cc/2023/Conference
LiftedCL: Lifting Contrastive Learning for Human-Centric Perception
Human-centric perception targets for understanding human body pose, shape and segmentation. Pre-training the model on large-scale datasets and fine-tuning it on specific tasks has become a well-established paradigm in human-centric perception. Recently, self-supervised learning methods have re-investigated contrastive learning to achieve superior performance on various downstream tasks. When handling human-centric perception, there still remains untapped potential since 3D human structure information is neglected during the task-agnostic pre-training. In this paper, we propose the Lifting Contrastive Learning (LiftedCL) to obtain 3D-aware human-centric representations which absorb 3D human structure information. In particular, to induce the learning process, a set of 3D skeletons is randomly sampled by resorting to 3D human kinematic prior. With this set of generic 3D samples, 3D human structure information can be learned into 3D-aware representations through adversarial learning. Empirical results demonstrate that LiftedCL outperforms state-of-the-art self-supervised methods on four human-centric downstream tasks, including 2D and 3D human pose estimation (0.4% mAP and 1.8 mm MPJPE improvement on COCO 2D pose estimation and Human3.6M 3D pose estimation), human shape recovery and human parsing.
Accept: poster
ICLR.cc/2022/Conference
Surgical Prediction with Interpretable Latent Representation
Given the risks and cost of surgeries, there has been significant interest in exploiting predictive models to improve perioperative care. However, due to the high dimensionality and noisiness of perioperative data, it is challenging to develop accurate, robust and interpretable encoding for surgical applications. We propose surgical VAE (sVAE), a representation learning framework for perioperative data based on variational autoencoder (VAE). sVAE provides a holistic approach combining two salient features tailored for surgical applications. To overcome performance limitations of traditional VAE, it is prediction-guided with explicit expression of predicted outcome in the latent representation. Furthermore, it disentangles the latent space so that it can be interpreted in a clinically meaningful fashion. We apply sVAE to two real-world perioperative datasets and the open MIMIC-III dataset to evaluate its efficacy and performance in predicting diverse outcomes including surgery duration, postoperative complication, ICU duration, and mortality. Our results show that the latent representation provided by sVAE leads to superior performance in classification, regression and multi-task predictions. We further demonstrate the interpretability of the disentangled representation and its capability to capture intrinsic characteristics of surgical patients.
Reject
ICLR.cc/2020/Conference
Towards Effective 2-bit Quantization: Pareto-optimal Bit Allocation for Deep CNNs Compression
State-of-the-art quantization methods can compress deep neural networks down to 4 bits without losing accuracy. However, when it comes to 2 bits, the performance drop is still noticeable. One problem in these methods is that they assign equal bit rate to quantize weights and activations in all layers, which is not reasonable in the case of high rate compression (such as 2-bit quantization), as some of layers in deep neural networks are sensitive to quantization and performing coarse quantization on these layers can hurt the accuracy. In this paper, we address an important problem of how to optimize the bit allocation of weights and activations for deep CNNs compression. We first explore the additivity of output error caused by quantization and find that additivity property holds for deep neural networks which are continuously differentiable in the layers. Based on this observation, we formulate the optimal bit allocation problem of weights and activations in a joint framework and propose a very efficient method to solve the optimization problem via Lagrangian Formulation. Our method obtains excellent results on deep neural networks. It can compress deep CNN ResNet-50 down to 2 bits with only 0.7% accuracy loss. To the best our knowledge, this is the first paper that reports 2-bit results on deep CNNs without hurting the accuracy.
Reject
ICLR.cc/2023/Conference
Cross-Silo Training of Differentially Private Models with Secure Multiparty Computation
We address the problem of learning a machine learning model from training data that originates at multiple data holders in a cross-silo federated setup, while providing formal privacy guarantees regarding the protection of each holder's data. Existing solutions based on Differential Privacy (DP) achieve this at the cost of a drop in accuracy. Solutions based on Secure Multiparty Computation (MPC) do not incur such accuracy loss but leak information when the trained model is made publicly available. We propose an MPC solution for training differentially private models. Our solution relies on an MPC protocol for model training, and an MPC protocol for perturbing the trained model coefficients with Laplace noise in a privacy-preserving manner. The resulting MPC+DP approach achieves higher accuracy than a pure DP approach, while providing the same formal privacy guarantees.
Reject
ICLR.cc/2023/Conference
Multi-Rate VAE: Train Once, Get the Full Rate-Distortion Curve
Variational autoencoders (VAEs) are powerful tools for learning latent representations of data used in a wide range of applications. In practice, VAEs usually require multiple training rounds to choose the amount of information the latent variable should retain. This trade-off between the reconstruction error (distortion) and the KL divergence (rate) is typically parameterized by a hyperparameter $\beta$. In this paper, we introduce Multi-Rate VAE (MR-VAE), a computationally efficient framework for learning optimal parameters corresponding to various $\beta$ in a single training run. The key idea is to explicitly formulate a response function using hypernetworks that maps $\beta$ to the optimal parameters. MR-VAEs construct a compact response hypernetwork where the pre-activations are conditionally gated based on $\beta$. We justify the proposed architecture by analyzing linear VAEs and showing that it can represent response functions exactly for linear VAEs. With the learned hypernetwork, MR-VAEs can construct the rate-distortion curve without additional training and can be deployed with significantly less hyperparameter tuning. Empirically, our approach is competitive and often exceeds the performance of multiple $\beta$-VAEs training with minimal computation and memory overheads.
Accept: notable-top-5%
ICLR.cc/2018/Conference
Lifelong Learning by Adjusting Priors
In representational lifelong learning an agent aims to continually learn to solve novel tasks while updating its representation in light of previous tasks. Under the assumption that future tasks are related to previous tasks, representations should be learned in such a way that they capture the common structure across learned tasks, while allowing the learner sufficient flexibility to adapt to novel aspects of a new task. We develop a framework for lifelong learning in deep neural networks that is based on generalization bounds, developed within the PAC-Bayes framework. Learning takes place through the construction of a distribution over networks based on the tasks seen so far, and its utilization for learning a new task. Thus, prior knowledge is incorporated through setting a history-dependent prior for novel tasks. We develop a gradient-based algorithm implementing these ideas, based on minimizing an objective function motivated by generalization bounds, and demonstrate its effectiveness through numerical examples.
Reject
ICLR.cc/2021/Conference
Attacking Few-Shot Classifiers with Adversarial Support Sets
Few-shot learning systems, especially those based on meta-learning, have recently made significant advances, and are now being considered for real world problems in healthcare, personalization, and science. In this paper, we examine the robustness of such deployed few-shot learning systems when they are fed an imperceptibly perturbed few-shot dataset, showing that the resulting predictions on test inputs can become worse than chance. This is achieved by developing a novel Adversarial Support Set Attack which crafts a poisoned set of examples. When even a small subset of malicious data points is inserted into the support set of a meta-learner, accuracy is significantly reduced. For example, the average classification accuracy of CNAPs on the Aircraft dataset in the META-DATASET benchmark drops from 69.2% to 9.1% when only 20% of the support set is poisoned by imperceptible perturbations. We evaluate the new attack on a variety of few-shot classification algorithms including MAML, prototypical networks, and CNAPs, on both small scale (miniImageNet) and large scale (META-DATASET) few-shot classification problems. Interestingly, adversarial support sets produced by attacking a meta-learning based few-shot classifier can also reduce the accuracy of a fine-tuning based few-shot classifier when both models use similar feature extractors.
Reject
ICLR.cc/2023/Conference
On the Feasibility of Cross-Task Transfer with Model-Based Reinforcement Learning
Reinforcement Learning (RL) algorithms can solve challenging control problems directly from image observations, but they often require millions of environment interactions to do so. Recently, model-based RL algorithms have greatly improved sample-efficiency by concurrently learning an internal model of the world, and supplementing real environment interactions with imagined rollouts for policy improvement. However, learning an effective model of the world from scratch is challenging, and in stark contrast to humans that rely heavily on world understanding and visual cues for learning new skills. In this work, we investigate whether internal models learned by modern model-based RL algorithms can be leveraged to solve new, distinctly different tasks faster. We propose Model-Based Cross-Task Transfer (XTRA), a framework for sample-efficient online RL with scalable pretraining and finetuning of learned world models. By offline multi-task pretraining and online cross-task finetuning, we achieve substantial improvements over a baseline trained from scratch; we improve mean performance of model-based algorithm EfficientZero by 23%, and by as much as 71% in some instances. Project page: https://nicklashansen.github.io/xtra
Accept: poster
ICLR.cc/2023/Conference
System identification of neural systems: If we got it right, would we know?
Various artificial neural networks developed by engineers are now proposed as models of parts of the brain, such as the ventral stream in the primate visual cortex. The network activations are compared to recordings of biological neurons, and good performance in reproducing neural responses is considered to support the model's validity. This system identification approach, however, is only part of the traditional ways to develop and test models in the natural sciences. A key question is how much the ability to predict neural responses tells us. In particular, do these functional tests about neuron activation allow us to distinguish between different model architectures? We benchmark existing techniques to correctly identify a model by replacing brain recordings with known ground truth models. We evaluate the most commonly used identification approaches, such as a linear encoding model and centered kernel alignment. Even in the setting where the correct model is among the candidates, system identification performance is quite variable; it also depends significantly on factors independent of the ground truth architecture, such as stimuli images. In addition, we show the limitations of using functional similarity scores in identifying higher-level architectural motifs.
Reject
ICLR.cc/2021/Conference
Expectigrad: Fast Stochastic Optimization with Robust Convergence Properties
Many popular adaptive gradient methods such as Adam and RMSProp rely on an exponential moving average (EMA) to normalize their stepsizes. While the EMA makes these methods highly responsive to new gradient information, recent research has shown that it also causes divergence on at least one convex optimization problem. We propose a novel method called Expectigrad, which adjusts stepsizes according to a per-component unweighted mean of all historical gradients and computes a bias-corrected momentum term jointly between the numerator and denominator. We prove that Expectigrad cannot diverge on every instance of the optimization problem known to cause Adam to diverge. We also establish a regret bound in the general stochastic nonconvex setting that suggests Expectigrad is less susceptible to gradient variance than existing methods are. Testing Expectigrad on several high-dimensional machine learning tasks, we find it often performs favorably to state-of-the-art methods with little hyperparameter tuning.
Reject
ICLR.cc/2021/Conference
Higher-order Structure Prediction in Evolving Graph Simplicial Complexes
Dynamic graphs are rife with higher-order interactions, such as co-authorship relationships and protein-protein interactions in biological networks, that naturally arise between more than two nodes at once. In spite of the ubiquitous presence of such higher-order interactions, limited attention has been paid to the higher-order counterpart of the popular pairwise link prediction problem. Existing higher-order structure prediction methods are mostly based on heuristic feature extraction procedures, which work well in practice but lack theoretical guarantees. Such heuristics are primarily focused on predicting links in a static snapshot of the graph. Moreover, these heuristic-based methods fail to effectively utilize and benefit from the knowledge of latent substructures already present within the higher-order structures. In this paper, we overcome these obstacles by capturing higher-order interactions succinctly as simplices, model their neighborhood by face-vectors, and develop a nonparametric kernel estimator for simplices that views the evolving graph from the perspective of a time process (i.e., a sequence of graph snapshots). Our method substantially outperforms several baseline higher-order prediction methods. As a theoretical achievement, we prove the consistency and asymptotic normality in terms of Wasserstein distance of our estimator using Stein's method.
Reject
ICLR.cc/2020/Conference
Model Inversion Networks for Model-Based Optimization
In this work, we aim to solve data-driven optimization problems, where the goal is to find an input that maximizes an unknown score function given access to a dataset of input, score pairs. Inputs may lie on extremely thin manifolds in high-dimensional spaces, making the optimization prone to falling-off the manifold. Further, evaluating the unknown function may be expensive, so the algorithm should be able to exploit static, offline data. We propose model inversion networks (MINs) as an approach to solve such problems. Unlike prior work, MINs scale to extremely high-dimensional input spaces and can efficiently leverage offline logged datasets for optimization in both contextual and non-contextual settings. We show that MINs can also be extended to the active setting, commonly studied in prior work, via a simple, novel and effective scheme for active data collection. Our experiments show that MINs act as powerful optimizers on a range of contextual/non-contextual, static/active problems including optimization over images and protein designs and learning from logged bandit feedback.
Reject
ICLR.cc/2020/Conference
Enhancing Language Emergence through Empathy
The emergence of language in multi-agent settings is a promising research direction to ground natural language in simulated agents. If AI would be able to understand the meaning of language through its using it, it could also transfer it to other situations flexibly. That is seen as an important step towards achieving general AI. The scope of emergent communication is so far, however, still limited. It is necessary to enhance the learning possibilities for skills associated with communication to increase the emergable complexity. We took an example from human language acquisition and the importance of the empathic connection in this process. We propose an approach to introduce the notion of empathy to multi-agent deep reinforcement learning. We extend existing approaches on referential games with an auxiliary task for the speaker to predict the listener's mind change improving the learning time. Our experiments show the high potential of this architectural element by doubling the learning speed of the test setup.
Reject
ICLR.cc/2022/Conference
Value Function Spaces: Skill-Centric State Abstractions for Long-Horizon Reasoning
Reinforcement learning can train policies that effectively perform complex tasks. However for long-horizon tasks, the performance of these methods degrades with horizon, often necessitating reasoning over and chaining lower-level skills. Hierarchical reinforcement learning aims to enable this by providing a bank of low-level skills as action abstractions. Hierarchies can further improve on this by abstracting the space states as well. We posit that a suitable state abstraction should depend on the capabilities of the available lower-level policies. We propose Value Function Spaces: a simple approach that produces such a representation by using the value functions corresponding to each lower-level skill. These value functions capture the affordances of the scene, thus forming a representation that compactly abstracts task relevant information and robustly ignores distractors. Empirical evaluations for maze-solving and robotic manipulation tasks demonstrate that our approach improves long-horizon performance and enables better zero-shot generalization than alternative model-free and model-based methods.
Accept (Poster)
ICLR.cc/2023/Conference
The Vendi Score: A Diversity Evaluation Metric for Machine Learning
Diversity is an important criterion for many areas of machine learning (ML), including generative modeling and dataset curation. Yet little work has gone into understanding, formalizing, and measuring diversity in ML. In this paper we address the diversity evaluation problem by proposing the Vendi Score, which connects and extends ideas from ecology and quantum statistical mechanics to ML. The Vendi Score is defined as the exponential of the Shannon entropy of the eigenvalues of a similarity matrix. This matrix is induced by a user-defined similarity function applied to the sample to be evaluated for diversity. In taking a similarity function as input, the Vendi Score enables its user to specify any desired form of diversity. Importantly, unlike many existing metrics in ML, the Vendi Score doesn’t require a reference dataset or distribution over samples or labels, it is therefore general and applicable to any generative model, decoding algorithm, and dataset from any domain where similarity can be defined. We showcase the Vendi Score on molecular generative modeling where we found it addresses shortcomings of the current diversity metric of choice in that domain. We also applied the Vendi Score to generative models of images and decoding algorithms of text where we found it confirms known results about diversity in those domains. Furthermore, we used the Vendi Score to measure mode collapse, a known shortcoming of generative adversarial networks (GANs). In particular, the Vendi Score revealed that even GANs that capture all the modes of a labelled dataset can be less diverse than the original dataset. Finally, the interpretability of the Vendi Score allowed us to diagnose several benchmark ML datasets for diversity, opening the door for diversity-informed data augmentation
Reject
ICLR.cc/2022/Conference
On Invariance Penalties for Risk Minimization
The Invariant Risk Minimization (IRM) principle was first proposed by Arjovsky et al. (2019) to address the domain generalization problem by leveraging data heterogeneity from differing experimental conditions. Specifically, IRM seeks to find a data representation under which an optimal classifier remains invariant across all domains. Despite the conceptual appeal of IRM, the effectiveness of the originally proposed invariance penalty has recently been brought into question through stylized experiments and counterexamples. In this work, we investigate the relationship between the data representation, invariance penalty, and risk. In doing so, we propose a novel invariance penalty, and utilize it to design an adaptive rule for tuning the coefficient of the penalty proposed by Arjovsky et al. (2019). More- over, we provide practical insights on how to avoid the potential failure of IRM considered in the nascent counterexamples. Finally, we conduct numerical experiments on both synthetic and real-world data sets with the objective of building invariant predictors. In our non-synthetic experiments, we sought to build a predictor of human health status using a collection of data sets from various studies which investigate the relationship between human gut microbiome and a particular disease. We substantiate the effectiveness of our proposed approach on these data sets and thus further facilitate the adoption of the IRM principle in other real-world applications.
Reject
ICLR.cc/2023/Conference
Adaptive Computation with Elastic Input Sequence
When solving a problem, human beings have the adaptive ability in terms of the type of information they use, the procedure they take, and the amount of time they spend approaching and solving the problem. However, most standard neural networks have the same function type and fixed computation budget on different samples regardless of their nature and difficulty. Adaptivity is a powerful paradigm as it not only imbues practitioners with flexibility pertaining to the downstream usage of these models but can also serve as a powerful inductive bias for solving certain challenging classes of problems. In this work, we propose a new strategy, AdaTape, that enables dynamic computation in neural networks via adaptive tape tokens. AdaTape employs an elastic input sequence by equipping an existing architecture with a dynamic read and write tape. Specifically, we adaptively generate input sequences using tape tokens obtained from a tape bank that can either be trainable or generated from input data. We analyze the challenges and requirements to obtain dynamic sequence content and length, and propose the Adaptive Tape Reader (ATR) algorithm to achieve both objectives. Via extensive experiments on image recognition tasks, we show that AdaTape can achieve better performance while maintaining the computational cost.
Reject
ICLR.cc/2019/Conference
BIGSAGE: unsupervised inductive representation learning of graph via bi-attended sampling and global-biased aggregating
Different kinds of representation learning techniques on graph have shown significant effect in downstream machine learning tasks. Recently, in order to inductively learn representations for graph structures that is unobservable during training, a general framework with sampling and aggregating (GraphSAGE) was proposed by Hamilton and Ying and had been proved more efficient than transductive methods on fileds like transfer learning or evolving dataset. However, GraphSAGE is uncapable of selective neighbor sampling and lack of memory of known nodes that've been trained. To address these problems, we present an unsupervised method that samples neighborhood information attended by co-occurring structures and optimizes a trainable global bias as a representation expectation for each node in the given graph. Experiments show that our approach outperforms the state-of-the-art inductive and unsupervised methods for representation learning on graphs.
Reject
ICLR.cc/2021/Conference
SOAR: Second-Order Adversarial Regularization
Adversarial training is a common approach to improving the robustness of deep neural networks against adversarial examples. In this work, we propose a novel regularization approach as an alternative. To derive the regularizer, we formulate the adversarial robustness problem under the robust optimization framework and approximate the loss function using a second-order Taylor series expansion. Our proposed second-order adversarial regularizer (SOAR) is an upper bound based on the Taylor approximation of the inner-max in the robust optimization objective. We empirically show that the proposed method improves the robustness of networks against the $\ell_\infty$ and $\ell_2$ bounded perturbations on CIFAR-10 and SVHN.
Reject
ICLR.cc/2020/Conference
SoftLoc: Robust Temporal Localization under Label Misalignment
This work addresses the long-standing problem of robust event localization in the presence of temporally of misaligned labels in the training data. We propose a novel versatile loss function that generalizes a number of training regimes from standard fully-supervised cross-entropy to count-based weakly-supervised learning. Unlike classical models which are constrained to strictly fit the annotations during training, our soft localization learning approach relaxes the reliance on the exact position of labels instead. Training with this new loss function exhibits strong robustness to temporal misalignment of labels, thus alleviating the burden of precise annotation of temporal sequences. We demonstrate state-of-the-art performance against standard benchmarks in a number of challenging experiments and further show that robustness to label noise is not achieved at the expense of raw performance.
Reject
ICLR.cc/2020/Conference
Imitation Learning via Off-Policy Distribution Matching
When performing imitation learning from expert demonstrations, distribution matching is a popular approach, in which one alternates between estimating distribution ratios and then using these ratios as rewards in a standard reinforcement learning (RL) algorithm. Traditionally, estimation of the distribution ratio requires on-policy data, which has caused previous work to either be exorbitantly data- inefficient or alter the original objective in a manner that can drastically change its optimum. In this work, we show how the original distribution ratio estimation objective may be transformed in a principled manner to yield a completely off-policy objective. In addition to the data-efficiency that this provides, we are able to show that this objective also renders the use of a separate RL optimization unnecessary. Rather, an imitation policy may be learned directly from this objective without the use of explicit rewards. We call the resulting algorithm ValueDICE and evaluate it on a suite of popular imitation learning benchmarks, finding that it can achieve state-of-the-art sample efficiency and performance.
Accept (Poster)
ICLR.cc/2022/Conference
EXPLAINABLE AI-BASED DYNAMIC FILTER PRUNING OF CONVOLUTIONAL NEURAL NETWORKS
Filter pruning is one of the most effective ways to accelerate Convolutional Neural Networks (CNNs). Most of the existing works are focused on the static pruning of CNN filters. In dynamic pruning of CNN filters, existing works are based on the idea of switching between different branches of a CNN or exiting early based on the difficulty of a sample. These approaches can reduce the average latency of inference, but they cannot reduce the longest-path latency of inference. In contrast, we present a novel approach of dynamic filter pruning that utilizes explainable AI along with early coarse prediction in the intermediate layers of a CNN. This coarse prediction is performed using a simple branch that is trained to perform top-k classification. The branch either predicts the output class with high confidence, in which case, the rest of the computations are left out. Alternatively, the branch predicts the output class to be within a subset of possible output classes. After this coarse prediction, only those filters that are important for this subset of classes are utilized for further computations. The importances of filters for each output class are obtained using explainable AI. Using this architecture of dynamic pruning, we not only reduce the average latency of inference, but we can also reduce the longest-path latency of inference. Our proposed architecture for dynamic pruning can be deployed on different hardware platforms. We evaluate our approach using commonly used image classification models and datasets on CPU and GPU platforms and demonstrate speedup without significant overhead.
Reject
ICLR.cc/2022/Conference
Understanding Knowledge Integration in Language Models with Graph Convolutions
Pretrained language models (LMs) are not very good at robustly capturing factual knowledge. This has led to the development of a number of knowledge integration (KI) methods which aim to incorporate external knowledge into pretrained LMs. Even though KI methods show some performance gains over base LMs, the efficacy and limitations of these methods are not well-understood. For instance, it is unclear how and what kind of knowledge is effectively integrated into LMs and if such integration may lead to catastrophic forgetting of already learned knowledge. In this paper, we revisit the KI process from the view of graph signal processing and show that KI could be interpreted using a graph convolution operation. We propose a simple probe model called Graph Convolution Simulator (GCS) for interpreting knowledge-enhanced LMs and exposing what kind of knowledge is integrated into these models. We conduct experiments to verify that our GCS model can indeed be used to correctly interpret the KI process, and we use it to analyze two typical knowledge-enhanced LMs: K-Adapter and ERNIE. We find that only a small amount of factual knowledge is captured in these models during integration. While K-Adapter is better at integrating simple relational knowledge, complex relational knowledge is integrated better in ERNIE. We further find that while K-Adapter struggles to integrate time-related knowledge, it successfully integrates knowledge of unpopular entities and relations. Our analysis also show some challenges in KI. In particular, we find simply increasing the size of the KI corpus may not lead to better KI and more fundamental advances may be needed.
Reject
ICLR.cc/2020/Conference
Bayesian Meta Sampling for Fast Uncertainty Adaptation
Meta learning has been making impressive progress for fast model adaptation. However, limited work has been done on learning fast uncertainty adaption for Bayesian modeling. In this paper, we propose to achieve the goal by placing meta learning on the space of probability measures, inducing the concept of meta sampling for fast uncertainty adaption. Specifically, we propose a Bayesian meta sampling framework consisting of two main components: a meta sampler and a sample adapter. The meta sampler is constructed by adopting a neural-inverse-autoregressive-flow (NIAF) structure, a variant of the recently proposed neural autoregressive flows, to efficiently generate meta samples to be adapted. The sample adapter moves meta samples to task-specific samples, based on a newly proposed and general Bayesian sampling technique, called optimal-transport Bayesian sampling. The combination of the two components allows a simple learning procedure for the meta sampler to be developed, which can be efficiently optimized via standard back-propagation. Extensive experimental results demonstrate the efficiency and effectiveness of the proposed framework, obtaining better sample quality and faster uncertainty adaption compared to related methods.
Accept (Poster)
ICLR.cc/2022/Conference
Learning Universal User Representations via Self-Supervised Lifelong Behaviors Modeling
Universal user representation is an important research topic in industry, and is widely used in diverse downstream user analysis tasks, such as user profiling and user preference prediction. With the rapid development of Internet service platforms, extremely long user behavior sequences have been accumulated. However, existing researches have little ability to model universal user representation based on lifelong behavior sequences since user registration. In this study, we propose a novel framework called Lifelong User Representation Model (LURM) to tackle this challenge. Specifically, LURM consists of two cascaded sub-models: (i) Bag of Interests (BoI) encodes user behaviors in any time period into a sparse vector with super-high dimension (eg. 10^5); (ii) Self-supervised Multi-anchor Encoder Network (SMEN) maps sequences of BoI features to multiple low-dimensional user representations by contrastive learning. SMEN achieves almost lossless dimensionality reduction with the main help of a novel multi-anchor module which can learn different aspects of user preferences. Experiments on several benchmark datasets show that our approach can outperform state-of-the-art unsupervised representation methods in downstream tasks.
Reject
ICLR.cc/2020/Conference
Bounds on Over-Parameterization for Guaranteed Existence of Descent Paths in Shallow ReLU Networks
We study the landscape of squared loss in neural networks with one-hidden layer and ReLU activation functions. Let $m$ and $d$ be the widths of hidden and input layers, respectively. We show that there exist poor local minima with positive curvature for some training sets of size $n\geq m+2d-2$. By positive curvature of a local minimum, we mean that within a small neighborhood the loss function is strictly increasing in all directions. Consequently, for such training sets, there are initialization of weights from which there is no descent path to global optima. It is known that for $n\le m$, there always exist descent paths to global optima from all initial weights. In this perspective, our results provide a somewhat sharp characterization of the over-parameterization required for "existence of descent paths" in the loss landscape.
Accept (Poster)
ICLR.cc/2022/Conference
Fast and Reliable Evaluation of Adversarial Robustness with Minimum-Margin Attack
The AutoAttack (AA) has been the most reliable method to evaluate adversarial robustness when considerable computational resources are available. However, the high computational cost (e.g., 100 times more than that of the project gradient descent attack) makes AA infeasible for practitioners with limited computational resources, and also hinders applications of AA in the adversarial training (AT). In this paper, we propose a novel method, minimum-margin (MM) attack, to fast and reliably evaluate adversarial robustness. Compared with AA, our method achieves comparable performance but only costs 3% of the computational time in extensive experiments. The reliability of our method lies in that we evaluate the quality of adversarial examples using the margin between two targets that can precisely identify the most adversarial example. The computational efficiency of our method lies in an effective Sequential TArget Ranking Selection (STARS) method, ensuring that the cost of the MM attack is independent of the number of classes. The MM attack opens a new way for evaluating adversarial robustness and contributes a feasible and reliable method to generate high-quality adversarial examples in AT.
Reject
ICLR.cc/2020/Conference
Imitation Learning of Robot Policies using Language, Vision and Motion
In this work we propose a novel end-to-end imitation learning approach which combines natural language, vision, and motion information to produce an abstract representation of a task, which in turn can be used to synthesize specific motion controllers at run-time. This multimodal approach enables generalization to a wide variety of environmental conditions and allows an end-user to influence a robot policy through verbal communication. We empirically validate our approach with an extensive set of simulations and show that it achieves a high task success rate over a variety of conditions while remaining amenable to probabilistic interpretability.
Reject
ICLR.cc/2021/Conference
Clustering-friendly Representation Learning via Instance Discrimination and Feature Decorrelation
Clustering is one of the most fundamental tasks in machine learning. Recently, deep clustering has become a major trend in clustering techniques. Representation learning often plays an important role in the effectiveness of deep clustering, and thus can be a principal cause of performance degradation. In this paper, we propose a clustering-friendly representation learning method using instance discrimination and feature decorrelation. Our deep-learning-based representation learning method is motivated by the properties of classical spectral clustering. Instance discrimination learns similarities among data and feature decorrelation removes redundant correlation among features. We utilize an instance discrimination method in which learning individual instance classes leads to learning similarity among instances. Through detailed experiments and examination, we show that the approach can be adapted to learning a latent space for clustering. We design novel softmax-formulated decorrelation constraints for learning. In evaluations of image clustering using CIFAR-10 and ImageNet-10, our method achieves accuracy of 81.5% and 95.4%, respectively. We also show that the softmax-formulated constraints are compatible with various neural networks.
Accept (Poster)
ICLR.cc/2021/Conference
Increasing the Coverage and Balance of Robustness Benchmarks by Using Non-Overlapping Corruptions
Neural Networks are sensitive to various corruptions that usually occur in real-world applications such as low-lighting conditions, blurs, noises, etc. To estimate the robustness of neural networks to these common corruptions, we generally use a group of modeled corruptions gathered into a benchmark. We argue that corruption benchmarks often have a poor coverage: being robust to them only implies being robust to a narrow range of corruptions. They are also often unbalanced: they give too much importance to some corruptions compared to others. In this paper, we propose to build corruption benchmarks with only non-overlapping corruptions, to improve their coverage and their balance. Two corruptions overlap when the robustnesses of neural networks to these corruptions are correlated. We propose the first metric to measure the overlapping between two corruptions. We provide an algorithm that uses this metric to build benchmarks of Non-Overlapping Corruptions. Using this algorithm, we build from ImageNet a new corruption benchmark called ImageNet-NOC. We show that ImageNet-NOC is balanced and covers several kinds of corruptions that are not covered by ImageNet-C.
Reject
ICLR.cc/2022/Conference
Local Feature Swapping for Generalization in Reinforcement Learning
Over the past few years, the acceleration of computing resources and research in Deep Learning has led to significant practical successes in a range of tasks, including in particular in computer vision. Building on these advances, reinforcement learning has also seen a leap forward with the emergence of agents capable of making decisions directly from visual observations. Despite these successes, the over-parametrization of neural architectures leads to memorization of the data used during training and thus to a lack of generalization. Reinforcement learning agents based on visual inputs also suffer from this phenomenon by erroneously correlating rewards with unrelated visual features such as background elements. To alleviate this problem, we introduce a new regularization layer consisting of channel-consistent local permutations (CLOP) of the feature maps. The proposed permutations induce robustness to spatial correlations and help prevent overfitting behaviors in RL. We demonstrate, on the OpenAI Procgen Benchmark, that RL agents trained with the CLOP layer exhibit robustness to visual changes and better generalization properties than agents trained using other state-of-the-art regularization techniques.
Accept (Poster)
ICLR.cc/2020/Conference
SGD with Hardness Weighted Sampling for Distributionally Robust Deep Learning
Distributionally Robust Optimization (DRO) has been proposed as an alternative to Empirical Risk Minimization (ERM) in order to account for potential biases in the training data distribution. However, its use in deep learning has been severely restricted due to the relative inefficiency of the optimizers available for DRO compared to the wide-spread Stochastic Gradient Descent (SGD) based optimizers for deep learning with ERM. In this work, we demonstrate that SGD with hardness weighted sampling is a principled and efficient optimization method for DRO in machine learning and is particularly suited in the context of deep learning. Similar to a hard example mining strategy in essence and in practice, the proposed algorithm is straightforward to implement and computationally as efficient as SGD-based optimizers used for deep learning. It only requires adding a softmax layer and maintaining an history of the loss values for each training example to compute adaptive sampling probabilities. In contrast to typical ad hoc hard mining approaches, and exploiting recent theoretical results in deep learning optimization, we prove the convergence of our DRO algorithm for over-parameterized deep learning networks with ReLU activation and finite number of layers and parameters. Preliminary results demonstrate the feasibility and usefulness of our approach.
Reject
ICLR.cc/2023/Conference
CodeT5Mix: A Pretrained Mixture of Encoder-decoder Transformers for Code Understanding and Generation
Pretrained language models (LMs) trained on vast source code have achieved prominent progress in a wide range of code intelligence tasks. Despite their success, they either adopt specific types of network architectures (encoder-only or decoder-only) for different downstream tasks or rely on a single architecture (encoder-decoder or UniLM-style encoder) for all tasks. The latter approach usually results in a sub-optimal performance on a subset of tasks. To address these limitations, we propose “CodeT5Mix”, a mixture of encoder-decoder Transformers for code where its components can be flexibly combined based on the target tasks during finetuning, while still enjoying the mutual benefits from the joint pretraining. To endow the model with both code understanding and generation capabilities, we pretrain CodeT5Mix using a mixture of denoising, contrastive learning, matching, and Causal Language Modeling (CLM) tasks on large-scale multilingual code corpora in nine programming languages. Additionally, we design a weight sharing strategy in decoders except the feedforward layers, which act as task-specific experts to reduce the interference across tasks of various types. We extensively evaluate CodeT5Mix on seven tasks in four different modes and achieve state-of-the-art (SoTA) performance on most tasks such as text-to-code retrieval, code completion and generation, and math programming. Particularly, we demonstrate that CodeT5Mix can be used as a unified semi-parametric retrieval-augmented generator with SoTA code generation performance.
Reject
ICLR.cc/2021/Conference
Learning Hyperbolic Representations of Topological Features
Learning task-specific representations of persistence diagrams is an important problem in topological data analysis and machine learning. However, current state of the art methods are restricted in terms of their expressivity as they are focused on Euclidean representations. Persistence diagrams often contain features of infinite persistence (i.e., essential features) and Euclidean spaces shrink their importance relative to non-essential features because they cannot assign infinite distance to finite points. To deal with this issue, we propose a method to learn representations of persistence diagrams on hyperbolic spaces, more specifically on the Poincare ball. By representing features of infinite persistence infinitesimally close to the boundary of the ball, their distance to non-essential features approaches infinity, thereby their relative importance is preserved. This is achieved without utilizing extremely high values for the learnable parameters, thus the representation can be fed into downstream optimization methods and trained efficiently in an end-to-end fashion. We present experimental results on graph and image classification tasks and show that the performance of our method is on par with or exceeds the performance of other state of the art methods.
Accept (Poster)
ICLR.cc/2022/Conference
On the Uncomputability of Partition Functions in Energy-Based Sequence Models
In this paper, we argue that energy-based sequence models backed by expressive parametric families can result in uncomputable and inapproximable partition functions. Among other things, this makes model selection--and therefore learning model parameters--not only difficult, but generally _undecidable_. The reason is that there are no good deterministic or randomized estimates of partition functions. Specifically, we exhibit a pathological example where under common assumptions, _no_ useful importance sampling estimates of the partition function can guarantee to have variance bounded below a rational number. As alternatives, we consider sequence model families whose partition functions are computable (if they exist), but at the cost of reduced expressiveness. Our theoretical results suggest that statistical procedures with asymptotic guarantees and sheer (but finite) amounts of compute are not the only things that make sequence modeling work; computability concerns must not be neglected as we consider more expressive model parametrizations.
Accept (Spotlight)
ICLR.cc/2022/Conference
$G^3$: Representation Learning and Generation for Geometric Graphs
A geometric graph is a graph equipped with geometric information (i.e., node coordinates). A notable example is molecular graphs, where the combinatorial bonding is supplement with atomic coordinates that determine the three-dimensional structure. This work proposes a generative model for geometric graphs, capitalizing on the complementary information of structure and geometry to learn the underlying distribution. The proposed model, Geometric Graph Generator (G$^3$), orchestrates graph neural networks and point cloud models in a nontrivial manner under an autoencoding framework. Additionally, we augment this framework with a normalizing flow so that one can effectively sample from the otherwise intractable latent space. G$^3$ can be used in computer-aided drug discovery, where seeking novel and optimal molecular structures is critical. As a representation learning approach, the interaction of the graph structure and the geometric point cloud also improve significantly the performance of downstream tasks, such as molecular property prediction. We conduct a comprehensive set of experiments to demonstrate that G$^3$ learns more accurately the distribution of given molecules and helps identify novel molecules with better properties of interest.
Reject
ICLR.cc/2020/Conference
An Empirical and Comparative Analysis of Data Valuation with Scalable Algorithms
This paper focuses on valuating training data for supervised learning tasks and studies the Shapley value, a data value notion originated in cooperative game theory. The Shapley value defines a unique value distribution scheme that satisfies a set of appealing properties desired by a data value notion. However, the Shapley value requires exponential complexity to calculate exactly. Existing approximation algorithms, although achieving great improvement over the exact algorithm, relies on retraining models for multiple times, thus remaining limited when applied to larger-scale learning tasks and real-world datasets. In this work, we develop a simple and efficient algorithm to estimate the Shapley value with complexity independent with the model size. The key idea is to approximate the model via a $K$-nearest neighbor ($K$NN) classifier, which has a locality structure that can lead to efficient Shapley value calculation. We evaluate the utility of the values produced by the $K$NN proxies in various settings, including label noise correction, watermark detection, data summarization, active data acquisition, and domain adaption. Extensive experiments demonstrate that our algorithm achieves at least comparable utility to the values produced by existing algorithms while significant efficiency improvement. Moreover, we theoretically analyze the Shapley value and justify its advantage over the leave-one-out error as a data value measure.
Reject
ICLR.cc/2022/Conference
Congested bandits: Optimal routing via short-term resets
For traffic routing platforms, the choice of which route to recommend to a user depends on the congestion on these routes -- indeed, an individual's utility depends on the number of people using the recommended route at that instance. Motivated by this, we introduce the problem of Congested Bandits where each arm's reward is allowed to depend on the number of times it was played in the past $\Delta$ timesteps. This dependence on past history of actions leads to a dynamical system where an algorithm's present choices also affect its future pay-offs, and requires an algorithm to plan for this. We study the congestion aware formulation in the multi-armed bandit (MAB) setup and in the contextual bandit setup with linear rewards. For the multi-armed setup, we propose a UCB style algorithm and show that its policy regret scales as $\tilde{O}(\sqrt{K \Delta T})$. For the linear contextual bandit setup, our algorithm, based on an iterative least squares planner, achieves policy regret $\tilde{O}(\sqrt{dT} + \Delta)$. From an experimental standpoint, we corroborate the no-regret properties of our algorithms via a simulation study.
Reject
ICLR.cc/2022/Conference
Distributionally Robust Fair Principal Components via Geodesic Descents
Principal component analysis is a simple yet useful dimensionality reduction technique in modern machine learning pipelines. In consequential domains such as college admission, healthcare and credit approval, it is imperative to take into account emerging criteria such as the fairness and the robustness of the learned projection. In this paper, we propose a distributionally robust optimization problem for principal component analysis which internalizes a fairness criterion in the objective function. The learned projection thus balances the trade-off between the total reconstruction error and the reconstruction error gap between subgroups, taken in the min-max sense over all distributions in a moment-based ambiguity set. The resulting optimization problem over the Stiefel manifold can be efficiently solved by a Riemannian subgradient descent algorithm with a sub-linear convergence rate. Our experimental results on real-world datasets show the merits of our proposed method over state-of-the-art baselines.
Accept (Poster)
ICLR.cc/2021/Conference
On Dyadic Fairness: Exploring and Mitigating Bias in Graph Connections
Disparate impact has raised serious concerns in machine learning applications and its societal impacts. In response to the need of mitigating discrimination, fairness has been regarded as a crucial property in algorithmic design. In this work, we study the problem of disparate impact on graph-structured data. Specifically, we focus on dyadic fairness, which articulates a fairness concept that a predictive relationship between two instances should be independent of the sensitive attributes. Based on this, we theoretically relate the graph connections to dyadic fairness on link predictive scores in learning graph neural networks, and reveal that regulating weights on existing edges in a graph contributes to dyadic fairness conditionally. Subsequently, we propose our algorithm, \textbf{FairAdj}, to empirically learn a fair adjacency matrix with proper graph structural constraints for fair link prediction, and in the meanwhile preserve predictive accuracy as much as possible. Empirical validation demonstrates that our method delivers effective dyadic fairness in terms of various statistics, and at the same time enjoys a favorable fairness-utility tradeoff.
Accept (Poster)
ICLR.cc/2023/Conference
Self-attentive Rationalization for Graph Contrastive Learning
Graph augmentation is the key component to reveal instance-discriminative features of a graph as its rationale in graph contrastive learning (GCL). And existing rationale-aware augmentation mechanisms in GCL frameworks roughly fall into two categories and suffer from inherent limitations: (1) non-heuristic methods with the guidance of domain knowledge to preserve salient features, which require expensive expertise and lacks generality, or (2) heuristic augmentations with a co-trained auxiliary model to identify crucial substructures, which face not only the dilemma between system complexity and transformation diversity, but also the instability stemming from the co-training of two separated sub-models. Inspired by recent studies on transformers, we propose $\underline{S}$elf-attentive $\underline{R}$ationale guided $\underline{G}$raph $\underline{C}$ontrastive $\underline{L}$earning (SR-GCL), which integrates rationale finder and encoder together, leverages the self-attention values in transformer module as a natural guidance to delineate semantically informative substructures from both node- and edge-wise views, and contrasts on rationale-aware augmented pairs. On real world biochemistry datasets, visualization results verify the effectiveness of self-attentive rationalization and the performance on downstream tasks demonstrates the state-of-the-art performance of SR-GCL for graph model pre-training.
Reject
ICLR.cc/2018/Conference
Attacking Binarized Neural Networks
Neural networks with low-precision weights and activations offer compelling efficiency advantages over their full-precision equivalents. The two most frequently discussed benefits of quantization are reduced memory consumption, and a faster forward pass when implemented with efficient bitwise operations. We propose a third benefit of very low-precision neural networks: improved robustness against some adversarial attacks, and in the worst case, performance that is on par with full-precision models. We focus on the very low-precision case where weights and activations are both quantized to $\pm$1, and note that stochastically quantizing weights in just one layer can sharply reduce the impact of iterative attacks. We observe that non-scaled binary neural networks exhibit a similar effect to the original \emph{defensive distillation} procedure that led to \emph{gradient masking}, and a false notion of security. We address this by conducting both black-box and white-box experiments with binary models that do not artificially mask gradients.
Accept (Poster)
ICLR.cc/2022/Conference
Additive Poisson Process: Learning Intensity of Higher-Order Interaction in Poisson Processes
We present the Additive Poisson Process (APP), a novel framework that can model the higher-order interaction effects of the intensity functions in Poisson processes using projections into lower-dimensional space. Our model combines the techniques in information geometry to model higher-order interactions on a statistical manifold and in generalized additive models to use lower-dimensional projections to overcome the effects from the curse of dimensionality. Our approach solves a convex optimization problem by minimizing the KL divergence from a sample distribution in lower-dimensional projections to the distribution modeled by an intensity function in the Poisson process. Our empirical results show that our model is able to use samples observed in the lower dimensional space to estimate the higher-order intensity function with extremely sparse observations.
Reject
ICLR.cc/2022/Conference
Optimal ANN-SNN Conversion for High-accuracy and Ultra-low-latency Spiking Neural Networks
Spiking Neural Networks (SNNs) have gained great attraction due to their distinctive properties of low power consumption and fast inference on neuromorphic hardware. As the most effective method to get deep SNNs, ANN-SNN conversion has achieved comparable performance as ANNs on large-scale datasets. Despite this, it requires long time-steps to match the firing rates of SNNs to the activation of ANNs. As a result, the converted SNN suffers severe performance degradation problems with short time-steps, which hamper the practical application of SNNs. In this paper, we theoretically analyze ANN-SNN conversion error and derive the estimated activation function of SNNs. Then we propose the quantization clip-floor-shift activation function to replace the ReLU activation function in source ANNs, which can better approximate the activation function of SNNs. We prove that the expected conversion error between SNNs and ANNs is zero, enabling us to achieve high-accuracy and ultra-low-latency SNNs. We evaluate our method on CIFAR-10/100 and ImageNet datasets, and show that it outperforms the state-of-the-art ANN-SNN and directly trained SNNs in both accuracy and time-steps. To the best of our knowledge, this is the first time to explore high-performance ANN-SNN conversion with ultra-low latency (4 time-steps). Code is available at https://github.com/putshua/SNN_conversion_QCFS
Accept (Poster)
ICLR.cc/2023/Conference
Stateful Active Facilitator: Coordination and Environmental Heterogeneity in Cooperative Multi-Agent Reinforcement Learning
In cooperative multi-agent reinforcement learning, a team of agents works together to achieve a common goal. Different environments or tasks may require varying degrees of coordination among agents in order to achieve the goal in an optimal way. The nature of coordination will depend on properties of the environment—its spatial layout, distribution of obstacles, dynamics, etc. We term this variation of properties within an environment as heterogeneity. Existing literature has not sufficiently addressed the fact that different environments may have different levels of heterogeneity. We formalize the notions of coordination level and heterogeneity level of an environment and present HECOGrid, a suite of multi-agent RL environments that facilitates empirical evaluation of different MARL approaches across different levels of coordination and environmental heterogeneity by providing a quantitative control over coordination and heterogeneity levels of the environment. Further, we propose a Centralized Training Decentralized Execution learning approach called Stateful Active Facilitator (SAF) that enables agents to work efficiently in high-coordination and high-heterogeneity environments through a differentiable and shared knowledge source used during training and dynamic selection from a shared pool of policies. We evaluate SAF and compare its performance against baselines IPPO and MAPPO on HECOGrid. Our results show that SAF consistently outperforms the baselines across different tasks and different heterogeneity and coordination levels.
Accept: poster
ICLR.cc/2018/Conference
The power of deeper networks for expressing natural functions
It is well-known that neural networks are universal approximators, but that deeper networks tend in practice to be more powerful than shallower ones. We shed light on this by proving that the total number of neurons m required to approximate natural classes of multivariate polynomials of n variables grows only linearly with n for deep neural networks, but grows exponentially when merely a single hidden layer is allowed. We also provide evidence that when the number of hidden layers is increased from 1 to k, the neuron requirement grows exponentially not with n but with n^{1/k}, suggesting that the minimum number of layers required for practical expressibility grows only logarithmically with n.
Accept (Poster)
ICLR.cc/2023/Conference
Transferable Unlearnable Examples
With more people publishing their personal data online, unauthorized data usage has become a serious concern. The unlearnable examples strategies have been introduced to prevent third parties from training on the data without permission. They add perturbations to the users’ data before publishing, so as to make the models trained on the perturbed published dataset invalidated. These perturbations have been generated for a specific training setting and a target dataset. However, their unlearnable effects significantly decrease when used in other training settings or datasets. To tackle this issue, we propose a novel unlearnable strategy based on Class-wise Separability Discriminant (CSD), which boosts the transferability of the unlearnable perturbations by enhancing the linear separability. Extensive experiments demonstrate the transferability of the unlearnable examples crafted by our proposed method across training settings and datasets.
Accept: poster
ICLR.cc/2020/Conference
Mixed-curvature Variational Autoencoders
Euclidean space has historically been the typical workhorse geometry for machine learning applications due to its power and simplicity. However, it has recently been shown that geometric spaces with constant non-zero curvature improve representations and performance on a variety of data types and downstream tasks. Consequently, generative models like Variational Autoencoders (VAEs) have been successfully generalized to elliptical and hyperbolic latent spaces. While these approaches work well on data with particular kinds of biases e.g. tree-like data for a hyperbolic VAE, there exists no generic approach unifying and leveraging all three models. We develop a Mixed-curvature Variational Autoencoder, an efficient way to train a VAE whose latent space is a product of constant curvature Riemannian manifolds, where the per-component curvature is fixed or learnable. This generalizes the Euclidean VAE to curved latent spaces and recovers it when curvatures of all latent space components go to 0.
Accept (Poster)
ICLR.cc/2022/Conference
Fixed Neural Network Steganography: Train the images, not the network
Recent attempts at image steganography make use of advances in deep learning to train an encoder-decoder network pair to hide and retrieve secret messages in images. These methods are able to hide large amounts of data, but they also incur high decoding error rates (around 20%). In this paper, we propose a novel algorithm for steganography that takes advantage of the fact that neural networks are sensitive to tiny perturbations. Our method, Fixed Neural Network Steganography (FNNS), yields significantly lower error rates when compared to prior state-of-the-art methods and achieves 0% error reliably for hiding up to 3 bits per pixel (bpp) of secret information in images. FNNS also successfully evades existing statistical steganalysis systems and can be modified to evade neural steganalysis systems as well. Recovering every bit correctly, up to 3 bpp, enables novel applications that requires encryption. We introduce one specific use case for facilitating anonymized and safe image sharing. Our code is available at https://github.com/varshakishore/FNNS.
Accept (Poster)
ICLR.cc/2022/Conference
Locality-Based Mini Batching for Graph Neural Networks
Training graph neural networks on large graphs is challenging since there is no clear way of how to extract mini batches from connected data. To solve this, previous methods have primarily relied on sampling. While this often leads to good convergence, it introduces significant overhead and requires expensive random data accesses. In this work we propose locality-based mini batching (LBMB), which circumvents sampling by using fixed mini batches based on node locality. LBMB first partitions the training/validation nodes into batches, and then selects the most important auxiliary nodes for each batch using local clustering. Thanks to precomputed batches and consecutive memory accesses, LBMB accelerates training by up to 20x per epoch compared to previous methods, and thus provides significantly better convergence per runtime. Moreover, it accelerates inference by up to 100x, at little to no cost of accuracy.
Reject
ICLR.cc/2023/Conference
Strong inductive biases provably prevent harmless interpolation
Classical wisdom suggests that estimators should avoid fitting noise to achieve good generalization. In contrast, modern overparameterized models can yield small test error despite interpolating noise — a phenomenon often called "benign overfitting" or "harmless interpolation". This paper argues that the degree to which interpolation is harmless hinges upon the strength of an estimator's inductive bias, i.e., how heavily the estimator favors solutions with a certain structure: while strong inductive biases prevent harmless interpolation, weak inductive biases can even require fitting noise to generalize well. Our main theoretical result establishes tight non-asymptotic bounds for high-dimensional kernel regression that reflect this phenomenon for convolutional kernels, where the filter size regulates the strength of the inductive bias. We further provide empirical evidence of the same behavior for deep neural networks with varying filter sizes and rotational invariance.
Accept: poster
ICLR.cc/2020/Conference
Generative Adversarial Nets for Multiple Text Corpora
Generative adversarial nets (GANs) have been successfully applied to the artificial generation of image data. In terms of text data, much has been done on the artificial generation of natural language from a single corpus. We consider multiple text corpora as the input data, for which there can be two applications of GANs: (1) the creation of consistent cross-corpus word embeddings given different word embeddings per corpus; (2) the generation of robust bag-of-words document embeddings for each corpora. We demonstrate our GAN models on real-world text data sets from different corpora, and show that embeddings from both models lead to improvements in supervised learning problems.
Reject
ICLR.cc/2018/Conference
Scalable Private Learning with PATE
The rapid adoption of machine learning has increased concerns about the privacy implications of machine learning models trained on sensitive data, such as medical records or other personal information. To address those concerns, one promising approach is Private Aggregation of Teacher Ensembles, or PATE, which transfers to a "student" model the knowledge of an ensemble of "teacher" models, with intuitive privacy provided by training teachers on disjoint data and strong privacy guaranteed by noisy aggregation of teachers’ answers. However, PATE has so far been evaluated only on simple classification tasks like MNIST, leaving unclear its utility when applied to larger-scale learning tasks and real-world datasets. In this work, we show how PATE can scale to learning tasks with large numbers of output classes and uncurated, imbalanced training data with errors. For this, we introduce new noisy aggregation mechanisms for teacher ensembles that are more selective and add less noise, and prove their tighter differential-privacy guarantees. Our new mechanisms build on two insights: the chance of teacher consensus is increased by using more concentrated noise and, lacking consensus, no answer need be given to a student. The consensus answers used are more likely to be correct, offer better intuitive privacy, and incur lower-differential privacy cost. Our evaluation shows our mechanisms improve on the original PATE on all measures, and scale to larger tasks with both high utility and very strong privacy (ε < 1.0).
Accept (Poster)
ICLR.cc/2022/Conference
EBM Life Cycle: MCMC Strategies for Synthesis, Defense, and Density Modeling
This work presents strategies to learn an Energy-Based Model (EBM) according to the desired length of its MCMC sampling trajectories. MCMC trajectories of different lengths correspond to models with different purposes. Our experiments cover three different trajectory magnitudes and learning outcomes: 1) shortrun sampling for image generation; 2) midrun sampling for classifier-agnostic adversarial defense; and 3) longrun sampling for principled modeling of image probability densities. To achieve these outcomes, we introduce three novel methods of MCMC initialization for negative samples used in Maximum Likelihood (ML) learning. With standard network architectures and an unaltered ML objective, our MCMC initialization methods alone enable significant performance gains across the three applications that we investigate. Our results include state-of-the-art FID scores for unnormalized image densities on the CIFAR-10 and ImageNet datasets; state-of-the-art adversarial defense on CIFAR-10 among purification methods and the first EBM defense on ImageNet; and scalable techniques for learning valid probability densities.
Reject
ICLR.cc/2021/Conference
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding
Disentangling the underlying generative factors from complex data has so far been limited to carefully constructed scenarios. We propose a path towards natural data by first showing that the statistics of natural data provide enough structure to enable disentanglement, both theoretically and empirically. Specifically, we provide evidence that objects in natural movies undergo transitions that are typically small in magnitude with occasional large jumps, which is characteristic of a temporally sparse distribution. To address this finding we provide a novel proof that relies on a sparse prior on temporally adjacent observations to recover the true latent variables up to permutations and sign flips, directly providing a stronger result than previous work. We show that equipping practical estimation methods with our prior often surpasses the current state-of-the-art on several established benchmark datasets without any impractical assumptions, such as knowledge of the number of changing generative factors. Furthermore, we contribute two new benchmarks, Natural Sprites and KITTI Masks, which integrate the measured natural dynamics to enable disentanglement evaluation with more realistic datasets. We leverage these benchmarks to test our theory, demonstrating improved performance. We also identify non-obvious challenges for current methods in scaling to more natural domains. Taken together our work addresses key issues in disentanglement research for moving towards more natural settings.
Accept (Oral)
ICLR.cc/2020/Conference
OPTIMAL BINARY QUANTIZATION FOR DEEP NEURAL NETWORKS
Quantizing weights and activations of deep neural networks results in significant improvement in inference efficiency at the cost of lower accuracy. A source of the accuracy gap between full precision and quantized models is the quantization error. In this work, we focus on the binary quantization, in which values are mapped to -1 and 1. We introduce several novel quantization algorithms: optimal 2-bits, optimal ternary, and greedy. Our quantization algorithms can be implemented efficiently on the hardware using bitwise operations. We present proofs to show that our proposed methods are optimal, and also provide empirical error analysis. We conduct experiments on the ImageNet dataset and show a reduced accuracy gap when using the proposed optimal quantization algorithms.
Reject
ICLR.cc/2023/Conference
Simulating Task-Free Continual Learning Streams From Existing Datasets
Task-free continual learning is the subfield of machine learning that focuses on learning online from a stream whose distribution changes continuously over time. However, previous works evaluate task-free continual learning using streams with distributions that change only at a few distinct points in time. In order to address the discrepancy between the definition and evaluation of task-free continual learning, we propose a principled algorithm that can permute any labeled dataset into a stream that is continuously nonstationary. We empirically show that the streams generated by our algorithm are less structured than the ones conventionally used in the literature. Moreover, we use our simulated task-free streams to benchmark multiple methods applicable to the task-free setting. We hope that our work will make it more likely that task-free continual learning methods are able to better generalize to real-world problems.
Reject
ICLR.cc/2022/Conference
Dive Deeper Into Integral Pose Regression
Integral pose regression combines an implicit heatmap with end-to-end training for human body and hand pose estimation. Unlike detection-based heatmap methods, which decode final joint positions from the heatmap with a non-differentiable argmax operation, integral regression methods apply a differentiable expectation operation. This paper offers a deep dive into the inference and back-propagation of integral pose regression to better understand the differences in performance and training compared to detection-based methods. For inference, we give theoretical support as to why expectation should always be better than the argmax operation, i.e. integral regression should always outperform detection. Yet, in practice, this is observed only in hard cases because the heatmap activation for regression shrinks in easy cases. We then experimentally show that activation shrinkage is one of the leading causes for integral regression's inferior performance. For back-propagation, we theoretically and empirically analyze the gradients to explain the slow training speed of integral regression. Based on these findings, we incorporate the supervision of a spatial prior to speed up training and improve performance.
Accept (Poster)
ICLR.cc/2022/Conference
A Modulation Layer to Increase Neural Network Robustness Against Data Quality Issues
Data quality is a common problem in machine learning, especially in high-stakes settings such as healthcare. Missing data affects accuracy, calibration, and feature attribution in complex patterns. Developers often train models on carefully curated datasets to minimize missing data bias; however, this reduces the usability of such models in production environments, such as real-time healthcare records. Making machine learning models robust to missing data is therefore crucial for practical application. While some classifiers naturally handle missing data, others, such as deep neural networks, are not designed for unknown values. We propose a novel neural network modification to mitigate the impacts of missing data. The approach is inspired by neuromodulation that is performed by biological neural networks. Our proposal replaces the fixed weights of a fully-connected layer with a function of an additional input (reliability score) at each input, mimicking the ability of cortex to up- and down-weight inputs based on the presence of other data. The modulation function is jointly learned with the main task using a multi-layer perceptron. We tested our modulating fully connected layer on multiple classification, regression, and imputation problems, and it either improved performance or generated comparable performance to conventional neural network architectures concatenating reliability to the inputs. Models with modulating layers were more robust against degradation of data quality by introducing additional missingness at evaluation time. These results suggest that explicitly accounting for reduced information quality with a modulating fully connected layer can enable the deployment of artificial intelligence systems in real-time settings.
Reject
ICLR.cc/2023/Conference
Oracles and Followers: Stackelberg Equilibria in Deep Multi-Agent Reinforcement Learning
Stackelberg equilibria arise naturally in a range of popular learning problems, such as in security games or indirect mechanism design, and have received in- creasing attention in the reinforcement learning literature. We present a general framework for implementing Stackelberg equilibria search as a multi-agent RL problem, allowing a wide range of algorithmic design choices. We discuss how previous approaches can be seen as specific instantiations of this framework. As a key insight, we note that the design space allows for approaches not previously seen in the literature, for instance by leveraging multitask and meta-RL techniques for follower convergence. We propose one such approach using contextual poli- cies and evaluate it experimentally on standard benchmark domains. Finally, we illustrate the effect of adopting designs outside the borders of our framework in controlled experiments.
Reject
ICLR.cc/2020/Conference
Towards an Adversarially Robust Normalization Approach
Batch Normalization (BatchNorm) has shown to be effective for improving and accelerating the training of deep neural networks. However, recently it has been shown that it is also vulnerable to adversarial perturbations. In this work, we aim to investigate the cause of adversarial vulnerability of the BatchNorm. We hypothesize that the use of different normalization statistics during training and inference (mini-batch statistics for training and moving average of these values at inference) is the main cause of this adversarial vulnerability in the BatchNorm layer. We empirically proved this by experiments on various neural network architectures and datasets. Furthermore, we introduce Robust Normalization (RobustNorm) and experimentally show that it is not only resilient to adversarial perturbation but also inherit the benefits of BatchNorm.
Reject
ICLR.cc/2018/Conference
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models
In recent years, deep neural network approaches have been widely adopted for machine learning tasks, including classification. However, they were shown to be vulnerable to adversarial perturbations: carefully crafted small perturbations can cause misclassification of legitimate images. We propose Defense-GAN, a new framework leveraging the expressive capability of generative models to defend deep neural networks against such attacks. Defense-GAN is trained to model the distribution of unperturbed images. At inference time, it finds a close output to a given image which does not contain the adversarial changes. This output is then fed to the classifier. Our proposed method can be used with any classification model and does not modify the classifier structure or training procedure. It can also be used as a defense against any attack as it does not assume knowledge of the process for generating the adversarial examples. We empirically show that Defense-GAN is consistently effective against different attack methods and improves on existing defense strategies.
Accept (Poster)