hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
11 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
251
max_stars_repo_name
stringlengths
4
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
251
max_issues_repo_name
stringlengths
4
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
251
max_forks_repo_name
stringlengths
4
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.05M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.04M
alphanum_fraction
float64
0
1
fdf18580611d8972ffb45869d74bebdda505d879
2,310
py
Python
Ass2/lotka-volterra.py
Scoudem/modsim
a65da4a29a82ac495367278ec694a28432b30c0d
[ "Apache-2.0" ]
null
null
null
Ass2/lotka-volterra.py
Scoudem/modsim
a65da4a29a82ac495367278ec694a28432b30c0d
[ "Apache-2.0" ]
null
null
null
Ass2/lotka-volterra.py
Scoudem/modsim
a65da4a29a82ac495367278ec694a28432b30c0d
[ "Apache-2.0" ]
null
null
null
''' File: lotka-volterra.py Authors: - Sjoerd Wenker, 10617558 - Tristan van Vaalen, 10551832 Contains a Lotka-Volterra Model which is simulated using the RK4 method. ''' from integration import RungeKutta4 import matplotlib.pyplot as plt from matplotlib.widgets import Slider ''' Method that simulates a Lotka-Volterra Model using RK4 for the given functions with a list containing sets of startvalues and a list of timesteps This will show a window for each of the timesteps ''' ''' Main execution ''' if __name__ == '__main__': startvalues = [[11, 49], [1, 10], [15, 26]] dt = [1, 0.1, 0.05, 0.01, 0.005, 0.001] generations = 10000 functions = [ lambda (t, x, y): -0.5 * x + 0.01 * x * y, lambda (t, x, y): y - 0.1 * x * y ] lotke_volterra(functions, startvalues, dt, generations) ''' Calculations for stable point: x' = -a * x + c * d * x * y y' = b * y - d * x * y a = 0.5, b = 1,c = 0.1 and d = 0.1. x' = -0.5 * x + 0.01 * x * y y' = y - 0.1 * x * y Stable: x'=0 y'=0 x!=0 y!=0 -0.5 * x + 0.01 * x * y = 0 -0.5 + 0.01 * y = 0 0.01y = 0.5 y = 50 y - 0.1 * x * y = 0 1 - 0.1x = 0 0.1x = 1 x = 10 '''
26.860465
82
0.558009
fdf306a6233eb15d853aa05d6d7553accacc2060
3,717
py
Python
harmoni_detectors/harmoni_stt/test/test_deepspeech.py
interaction-lab/HARMONI
9c88019601a983a1739744919a95247a997d3bb1
[ "MIT" ]
7
2020-09-02T06:31:21.000Z
2022-02-18T21:16:44.000Z
harmoni_detectors/harmoni_stt/test/test_deepspeech.py
micolspitale93/HARMONI
cf6a13fb85e3efb4e421dbfd4555359c0a04acaa
[ "MIT" ]
61
2020-05-15T16:46:32.000Z
2021-07-28T17:44:49.000Z
harmoni_detectors/harmoni_stt/test/test_deepspeech.py
micolspitale93/HARMONI
cf6a13fb85e3efb4e421dbfd4555359c0a04acaa
[ "MIT" ]
3
2020-10-05T23:01:29.000Z
2022-03-02T11:53:34.000Z
#!/usr/bin/env python3 # Common Imports import io import rospy import sys import unittest # Specific Imports import time import wave from harmoni_common_lib.action_client import HarmoniActionClient from harmoni_common_lib.constants import ActionType, DetectorNameSpace, SensorNameSpace, State from audio_common_msgs.msg import AudioData from std_msgs.msg import String PKG = "test_harmoni_stt" def main(): # TODO combine validity tests into test suite so that setup doesn't have to run over and over. import rostest rospy.loginfo("test_deepspeech started") rospy.loginfo("TestDeepSpeech: sys.argv: %s" % str(sys.argv)) rostest.rosrun(PKG, "test_deepspeech", TestDeepSpeech_Valid, sys.argv) if __name__ == "__main__": main()
31.235294
107
0.65456
fdf47c8f7eacc32cfd98b13ee0730f15d82165c5
2,196
py
Python
smoked/management/commands/smoked.py
martinsvoboda/django-smoked
42b64fff23a37e3df42f8fc54535ea496dd27d84
[ "MIT" ]
6
2015-01-14T12:02:58.000Z
2021-08-17T23:18:56.000Z
smoked/management/commands/smoked.py
martinsvoboda/django-smoked
42b64fff23a37e3df42f8fc54535ea496dd27d84
[ "MIT" ]
7
2015-01-24T11:36:07.000Z
2015-01-26T04:55:31.000Z
smoked/management/commands/smoked.py
martinsvoboda/django-smoked
42b64fff23a37e3df42f8fc54535ea496dd27d84
[ "MIT" ]
1
2015-01-25T20:48:06.000Z
2015-01-25T20:48:06.000Z
# coding: utf-8 from __future__ import absolute_import, unicode_literals from optparse import make_option import time from django import VERSION from django.core.management.base import NoArgsCommand from smoked import default_registry from smoked.runner import run_tests stats_msg = """ Results ======= Total: {total} Success: {success} Failure: {failure} -------- Time: {time:.1f}s """
27.45
72
0.539617
fdf91475384cb8118e074e63142b83edc4f4d2bd
1,735
py
Python
Data Science With Python/07-cleaning-data-in-python/4-cleaning-data-for-analysis/10-testing-your-data-with-asserts.py
aimanahmedmoin1997/DataCamp
c6a6c4d59b83f14854bd76ed5c0c7f2dddd6de1d
[ "MIT" ]
5
2021-02-03T14:36:58.000Z
2022-01-01T10:29:26.000Z
Data Science With Python/07-cleaning-data-in-python/4-cleaning-data-for-analysis/10-testing-your-data-with-asserts.py
aimanahmedmoin1997/DataCamp
c6a6c4d59b83f14854bd76ed5c0c7f2dddd6de1d
[ "MIT" ]
null
null
null
Data Science With Python/07-cleaning-data-in-python/4-cleaning-data-for-analysis/10-testing-your-data-with-asserts.py
aimanahmedmoin1997/DataCamp
c6a6c4d59b83f14854bd76ed5c0c7f2dddd6de1d
[ "MIT" ]
7
2018-11-06T17:43:31.000Z
2020-11-07T21:08:16.000Z
''' Testing your data with asserts Here, you'll practice writing assert statements using the Ebola dataset from previous chapters to programmatically check for missing values and to confirm that all values are positive. The dataset has been pre-loaded into a DataFrame called ebola. In the video, you saw Dan use the .all() method together with the .notnull() DataFrame method to check for missing values in a column. The .all() method returns True if all values are True. When used on a DataFrame, it returns a Series of Booleans - one for each column in the DataFrame. So if you are using it on a DataFrame, like in this exercise, you need to chain another .all() method so that you return only one True or False value. When using these within an assert statement, nothing will be returned if the assert statement is true: This is how you can confirm that the data you are checking are valid. Note: You can use pd.notnull(df) as an alternative to df.notnull(). INSTRUCTIONS 100XP INSTRUCTIONS 100XP -Write an assert statement to confirm that there are no missing values in ebola. -Use the pd.notnull() function on ebola (or the .notnull() method of ebola) and chain two .all() methods (that is, .all().all()). The first .all() method will return a True or False for each column, while the second .all() method will return a single True or False. -Write an assert statement to confirm that all values in ebola are greater than or equal to 0. -Chain two all() methods to the Boolean condition (ebola >= 0). ''' import pandas as pd ebola = pd.read_csv('../_datasets/ebola.csv') # Assert that there are no missing values assert ebola.notnull().all().all() # Assert that all values are >= 0 assert (ebola >= 0).all().all()
61.964286
611
0.756196
fdfa15c5c9e42a9b497c846a1dd12bc7ab7f4c76
623
py
Python
code/waldo/conf/guisettings.py
amarallab/waldo
e38d23d9474a0bcb7a94e685545edb0115b12af4
[ "MIT" ]
null
null
null
code/waldo/conf/guisettings.py
amarallab/waldo
e38d23d9474a0bcb7a94e685545edb0115b12af4
[ "MIT" ]
null
null
null
code/waldo/conf/guisettings.py
amarallab/waldo
e38d23d9474a0bcb7a94e685545edb0115b12af4
[ "MIT" ]
null
null
null
COLLIDER_SUITE_OFFSHOOT_RANGE = (0, 100) COLLIDER_SUITE_SPLIT_ABS_RANGE = (0, 10) COLLIDER_SUITE_SPLIT_REL_RANGE = (-1, 1, 2) COLLIDER_SUITE_ASSIMILATE_SIZE_RANGE = (0, 10) TAPE_FRAME_SEARCH_LIMIT_RANGE = (1, 100000) TAPE_PIXEL_SEARCH_LIMIT_RANGE = (1, 1000000) DEFAULT_CALIBRATION_ENCLOSURE_SIZE_RANGE = (0, 1000) COLLISION_PIXEL_OVERLAP_MARGIN_RANGE = (1, 2000) SCORE_CONTRAST_RADIO_RANGE = (1.0, 5.0) SCORE_CONTRAST_DIFF_RANGE = (-0.2, 0.2) SCORE_GOOD_FRACTION_RANGE = (0.0, 1.1) SCORE_ACCURACY_RANGE = (0.0, 1.1) SCORE_COVERAGE_RANGE = (0.0, 1.1) ROI_BORDER_OFFSET_RANGE = (0, 200) ROI_CORNER_OFFSET_RANGE = (0, 200)
34.611111
52
0.781701
fdfb52a6d5dc1287a0b5c4d900e03718e519b19a
6,084
py
Python
aiospotipy/me.py
sizumita/aiospotipy
3c542ca90559abde2e35268b4eedfdbbef1dab34
[ "MIT" ]
3
2019-03-09T14:53:46.000Z
2020-06-03T12:50:33.000Z
aiospotipy/me.py
sizumita/aiospotipy
3c542ca90559abde2e35268b4eedfdbbef1dab34
[ "MIT" ]
null
null
null
aiospotipy/me.py
sizumita/aiospotipy
3c542ca90559abde2e35268b4eedfdbbef1dab34
[ "MIT" ]
1
2019-03-09T08:26:46.000Z
2019-03-09T08:26:46.000Z
from ._http import (HTTPClient, get_id, Route, GET, PUT, DELETE, ) import asyncio
34.568182
84
0.561473
fdfb78f1a782871b71fcd4058e86788874102e55
582
py
Python
iiif_prezi3/loader.py
rbturnbull/iiif-prezi3
0e66bc41438772c75e064c20964ed01aff1f3709
[ "Apache-2.0" ]
null
null
null
iiif_prezi3/loader.py
rbturnbull/iiif-prezi3
0e66bc41438772c75e064c20964ed01aff1f3709
[ "Apache-2.0" ]
null
null
null
iiif_prezi3/loader.py
rbturnbull/iiif-prezi3
0e66bc41438772c75e064c20964ed01aff1f3709
[ "Apache-2.0" ]
null
null
null
import json
22.384615
55
0.689003
fdfc80e749f6ee439afc826e7feee5425163a88f
1,237
py
Python
android_store_service/utils/config_utils.py
gpiress/android-store-service
da81c7e79a345d790f5e744fc8fdfae0e6941765
[ "Apache-2.0" ]
5
2020-12-10T14:05:04.000Z
2020-12-18T09:04:35.000Z
android_store_service/utils/config_utils.py
gpiress/android-store-service
da81c7e79a345d790f5e744fc8fdfae0e6941765
[ "Apache-2.0" ]
4
2020-12-15T12:34:51.000Z
2021-06-28T14:04:34.000Z
android_store_service/utils/config_utils.py
gpiress/android-store-service
da81c7e79a345d790f5e744fc8fdfae0e6941765
[ "Apache-2.0" ]
5
2020-12-15T12:10:22.000Z
2022-03-18T20:06:38.000Z
# Copyright 2019 Spotify AB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from flask import current_app
29.452381
81
0.712207
fdfd3606a932554deb9481786f567a3095afa229
395
py
Python
blog/migrations/0015_auto_20190810_1404.py
vishnu-chalil/sharecontent
bda2cb6db0ffc38f582829abfced163e8a6eafdb
[ "Apache-2.0" ]
null
null
null
blog/migrations/0015_auto_20190810_1404.py
vishnu-chalil/sharecontent
bda2cb6db0ffc38f582829abfced163e8a6eafdb
[ "Apache-2.0" ]
7
2020-02-12T01:20:22.000Z
2021-06-10T18:39:59.000Z
blog/migrations/0015_auto_20190810_1404.py
vishnu-chalil/sharecontent
bda2cb6db0ffc38f582829abfced163e8a6eafdb
[ "Apache-2.0" ]
null
null
null
# Generated by Django 2.2.4 on 2019-08-10 14:04 from django.db import migrations, models
20.789474
69
0.594937
a90000a60889fa2e13612a2352497c1c01e09cb6
71,385
py
Python
DeSu2SE.py
XxArcaiCxX/Devil-Survivor-2-Record-Breaker-Save-Editor
872717f66f1d9045d48f8d4c2621a925ee4e2817
[ "MIT" ]
null
null
null
DeSu2SE.py
XxArcaiCxX/Devil-Survivor-2-Record-Breaker-Save-Editor
872717f66f1d9045d48f8d4c2621a925ee4e2817
[ "MIT" ]
null
null
null
DeSu2SE.py
XxArcaiCxX/Devil-Survivor-2-Record-Breaker-Save-Editor
872717f66f1d9045d48f8d4c2621a925ee4e2817
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import tkinter as tk from tkinter import filedialog from tkinter import messagebox from tkinter import ttk import os import sys print_n = sys.stdout.write STAT_TXT = ("ST", "MA", "VI", "AG") # Characters CHAR_OFFSET = "0x24" CHAR_ID = ("0x75", 2) CHAR_LVL = ("0x79", 1) CHAR_EXP = ("0x7C", 2) CHAR_HP = ("0x82", 2) CHAR_MP = ("0x84", 2) CHAR_ST = ("0x7E", 1) CHAR_MA = ("0x7F", 1) CHAR_VI = ("0x80", 1) CHAR_AG = ("0x81", 1) CHAR_CMD1 = ("0x86", 1) CHAR_CMD2 = ("0x87", 1) CHAR_CMD3 = ("0x88", 1) CHAR_PAS1 = ("0x89", 1) CHAR_PAS2 = ("0x8A", 1) CHAR_PAS3 = ("0x8B", 1) CHAR_RAC = ("0x8C", 1) CHAR_MOV = ("0x9F", 1) # Miscellaneous MISC_MACCA = ("0x6C4", 4) # Demons DE_NUM_MAX = 27 DE_OFFSET = "0x20" DE_ID = ("0x2B6", 2) DE_LVL = ("0x2B9", 1) DE_EXP = ("0x2BC", 2) DE_HP = ("0x2C2", 2) DE_MP = ("0x2C4", 2) DE_ST = ("0x2BE", 1) DE_MA = ("0x2BF", 1) DE_VI = ("0x2C0", 1) DE_AG = ("0x2C1", 1) DE_CMD1 = ("0x2C6", 1) DE_CMD2 = ("0x2C7", 1) DE_CMD3 = ("0x2C8", 1) DE_PAS1 = ("0x2C9", 1) DE_PAS2 = ("0x2CA", 1) DE_PAS3 = ("0x2CB", 1) DE_RAC = ("0x2CC", 1) # Skill Information CMD_IDS = ('0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '100', '101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111', '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', '122', '123', '124', '125', '126', '127', '128', '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144', '145', '146', '147', '148', '149', '150', '151', '152', '153', '154', '155', '156', '157', '158', '159', '160', '161', '162', '163', '164', '165', '166', '167', '168', '169', '170', '171', '172') PAS_IDS = ('0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '100', '101', '102', '103', '104', '105', '106', '107') AUTO_IDS = ('0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39') RAC_IDS = ('0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '100', '101', '102', '103', '104', '105', '106', '107', '108', '109') DEMON_IDS = ('0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '100', '101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111', '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', '122', '123', '124', '125', '126', '127', '128', '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144', '145', '146', '147', '148', '149', '150', '151', '152', '153', '154', '155', '156', '157', '158', '159', '160', '161', '162', '163', '164', '165', '166', '167', '168', '169', '170', '171', '172', '173', '174', '175', '176', '177', '178', '179', '180', '181', '182', '183', '184', '185', '186', '187', '188', '189', '190', '191', '192', '193', '194', '195', '196', '197', '198', '199', '200', '201', '202', '203', '204', '205', '206', '207', '208', '209', '210', '211', '212', '213', '214', '215', '216', '217', '218', '219', '220', '221', '222', '223', '224', '225', '226', '227', '228', '229', '230', '231', '232', '233', '234', '235', '236', '237', '238', '239', '240', '241', '242', '243', '244', '245', '246', '247', '248', '249', '250', '251', '252', '253', '254', '255', '256', '257', '258', '259', '260', '261', '262', '263', '264', '265', '266', '267', '268', '269', '270', '271', '272', '273', '274', '275', '276', '277', '278', '279', '280', '281', '282', '283', '284', '285', '286', '287', '288', '289', '290', '291', '292', '293', '294', '295', '296', '297', '298', '299', '300', '301', '302', '303', '304', '305', '306', '307', '308', '309', '310', '311', '312', '313', '314', '315', '316', '317', '318', '319', '320', '321', '322', '323', '324', '325', '326', '327', '328', '329', '330', '331', '332', '333', '334', '335', '336', '337', '338', '339', '340', '341', '342', '343', '344', '345', '346', '347', '348', '349', '350', '351', '352', '353', '354', '355', '356', '357', '358', '359', '360', '361', '362', '363', '364', '365', '366', '367', '368', '369', '370', '371', '372', '373', '374', '375', '376', '377', '378', '379', '380', '381', '382', '383', '384', '385', '386', '387', '388', '389', '390', '391', '392', "65535") # DONE CMD_SKILLS = { "0": "None", "1": "Attack", "2": "Agi", "3": "Agidyne", "4": "Maragi", "5": "Maragidyne", "6": "Bufu", "7": "Bufudyne", "8": "Mabufu", "9": "Mabufudyne", "10": "Zio", "11": "Ziodyne", "12": "Mazio", "13": "Maziodyne", "14": "Zan", "15": "Zandyne", "16": "Mazan", "17": "Mazandyne", "18": "Megido", "19": "Megidolaon", "20": "Fire Dance", "21": "Ice Dance", "22": "Elec Dance", "23": "Force Dance", "24": "Holy Dance", "25": "Drain", "26": "Judgement", "27": "Petra Eyes", "28": "Mute Eyes", "29": "Paral Eyes", "30": "Death Call", "31": "Power Hit", "32": "Berserk", "33": "Mighty Hit", "34": "Anger Hit", "35": "Brutal Hit", "36": "Hassohappa", "37": "Deathbound", "38": "Weak Kill", "39": "Desperation", "40": "Makajamon", "41": "Gigajama", "42": "Diajama", "43": "Makarakarn", "44": "Tetrakarn", "45": "Might Call", "46": "Shield All", "47": "Taunt", "48": "Dia", "49": "Diarahan", "50": "Media", "51": "Mediarahan", "52": "Amrita", "53": "Prayer", "54": "Recarm", "55": "Samerecarm", "56": "Gunfire", "57": "Guard", "58": "Devil's Fuge", "59": "Vampiric Mist", "60": "Lost Flame", "61": "Spawn", "62": "Fire of Sodom", "63": "Purging Light", "64": "Babylon", "65": "Megidoladyne", "66": "Piercing Hit", "67": "Multi-Hit", "68": "Holy Strike", "69": "Power Charge", "70": "Sexy Gaze", "71": "Marin Karin", "72": "Extra Cancel", "73": "Assassinate", "74": "Fatal Strike", "75": "Diarama", "76": "Nigayomogi", "77": "Recarmloss", "78": "Mow Down", "79": "Snipe", "80": "Life Drain", "81": "Multi-strike", "82": "Inferno", "83": "Escape", "84": "Remain", "85": "Double Strike", "86": "Binary Fire", "87": "Heat Charge", "88": "N/A", "89": "Marked Wing", "90": "Eject Shot", "91": "Circumpolarity", "92": "N/A", "93": "N/A", "94": "Hacking", "95": "Dark Tunder", "96": "Diastrophism", "97": "Regenerate", "98": "Ultimate Hit", "99": "Twin Ultimate", "100": "Swallow", "101": "N/A", "102": "Binary Fire", "103": "Circumpolarity", "104": "Alkaid", "105": "Areadbhar", "106": "Dark Thunder", "107": "Regenerate", "108": "Supernova", "109": "Power Up", "110": "Ominous Star", "111": "Heaven Wrath", "112": "Cepheid", "113": "Unheard Prayer", "114": "Steal Macca", "115": "Barrage Strike", "116": "Heaven Wrath", "117": "Necromancy", "118": "Gomorrah Fire", "119": "Vitality Drain", "120": "Die for Me!", "121": "Ruinous Wind", "122": "Star Pressure", "123": "Ruinous Wind", "124": "Diastrophism", "125": "Final Hit", "126": "Dream Eater", "127": "Demon Dance", "128": "Roche Lobe", "129": "Darkness Blade", "130": "Defense Knife", "131": "Carney", "132": "Then, die!", "133": "Don't Hurt Me", "134": "Wanna Beating?", "135": "Shadow Scythe", "136": "No Killing...", "137": "Shadow Shield", "138": "Nemean Roar", "139": "Wider-Radius", "140": "Spica Spear", "141": "Memory-Sharing", "142": "Frozen Pillar", "143": "Vicarious Spell", "144": "Vicarious Doll", "145": "Quaser", "146": "Life Plower", "147": "Asterion", "148": "Partial Blast", "149": "Vrano=Metria", "150": "Megidoladyne", "151": "Darkness Blade(Phys)", "152": "Darkness Blade(Fire)", "153": "Darkness Blade(Ice)", "154": "Darkness Blade(Elec)", "155": "Darkness Blade(Force)", "156": "Then, die!(Phys)", "157": "Then, die!(Phys)", "158": "Then, die!(Phys)", "159": "Then, die!(Almighty)", "160": "Lion's Armor", "161": "Ley Line True", "162": "Life Plower True", "163": "Beheadal", "164": "Primal Fire", "165": "Gravity Anomaly", "166": "Orogin Selection", "167": "Earthly Stars", "168": "Master of Life", "169": "Heavenly Rule", "170": "Fringer's Brand", "171": "Flaming Fanfare", "172": "Ley Line" } # DONE PAS_SKILLS = { "0": "None", "1": "+Mute", "2": "+Poison", "3": "+Paralyze", "4": "+Stone", "5": "Life Bonus", "6": "Mana Bonus", "7": "Life Surge", "8": "Mana Surge", "9": "Hero Aid", "10": "Ares Aid", "11": "Drain Hit", "12": "Attack All", "13": "Counter", "14": "Retaliate", "15": "Avenge", "16": "Phys Boost", "17": "Phys Amp", "18": "Fire Boost", "19": "Fire Amp", "20": "Ice Boost", "21": "Ice Amp", "22": "Elec Boost", "23": "Elec Amp", "24": "Force Boost", "25": "Force Amp", "26": "Anti-Phys", "27": "Anti-Fire", "28": "Anti-Ice", "29": "Anti-Elec", "30": "Anti-Force", "31": "Anti-Curse", "32": "Anti-Most", "33": "Anti-All", "34": "Null Phys", "35": "Null Fire", "36": "Null Ice", "37": "Null Elec", "38": "Null Force", "39": "Null Curse", "40": "Phys Drain", "41": "Fire Drain", "42": "Ice Drain", "43": "Elec Drain", "44": "Force Drain", "45": "Phys Repel", "46": "Fire Repel", "47": "Ice Repel", "48": "Elec Repel", "49": "Force Repel", "50": "Watchful", "51": "Endure", "52": "Life Aid", "53": "Life Lift", "54": "Mana Aid", "55": "Victory Cry", "56": "Pierce", "57": "Race-O", "58": "Race-D", "59": "Dual Shadow", "60": "Extra One", "61": "Leader Soul", "62": "Knight Soul", "63": "Paladin Soul", "64": "Hero Soul", "65": "Beast Eye", "66": "Dragon Eye", "67": "Crit Up", "68": "Dodge", "69": "MoneyBags", "70": "Quick Move", "71": "Vigilant", "72": "Grimoire", "73": "Double Strike", "74": "Perserve Extra", "75": "Anti-Element", "76": "+Forget", "77": "Extra Bonus", "78": "Swift Step", "79": "Life Stream", "80": "Mana Stream", "81": "Ultimate Hit", "82": "Anti-Almighty", "83": "Phys Up", "84": "Pacify Human", "85": "Dragon Power", "86": "True Dragon", "87": "Final Dragon", "88": "Heavenly Gift", "89": "Chaos Stir", "90": "Undead", "91": "Hidden Strength", "92": "Holy Blessing", "93": "Exchange", "94": "Extra Zero", "95": "Spirit Gain", "96": "Hit Rate Gain", "97": "Quick Wit", "98": "Parkour", "99": "Hitori Nabe", "100": "Ikebukuro King", "101": "Immortal Barman", "102": "Defenseless", "103": "Coiste Bodhar", "104": "Dark Courier", "105": "Massive Shadow", "106": "Hound Eyes", "107": "Fighting Doll", } # DONE RAC_SKILLS = { "0": "None", "1": "Affection", "2": "Awakening", "3": "Chaos Wave", "4": "Constrict", "5": "Evil Wave", "6": "Blood Wine", "7": "Flight", "8": "Sacrifice", "9": "Switch", "10": "Animal Leg", "11": "Devil Speed", "12": "Phantasm", "13": "Glamour", "14": "Tyranny", "15": "Double Up", "16": "Aggravate", "17": "Bind", "18": "Devotion", "19": "Long Range", "20": "Immortal", "21": "Evil Flame", "22": "Hot Flower", "23": "Dark Hand", "24": "Violent God", "25": "King's Gate", "26": "King's Gate", "27": "Fiend", "28": "Four Devas", "29": "Dark Finger", "30": "Asura Karma", "31": "Ghost Wounds", "32": "Hero's Mark", "33": "Uncanny Form", "34": "Asura Destiny", "35": "Goddess Grace", "36": "Enlightenment", "37": "Chaos Breath", "38": "Dragon Bind", "39": "Evil Flow", "40": "Angel Stigma", "41": "Winged Flight", "42": "Fallen's Mark", "43": "Warp Step", "44": "Free Leap", "45": "Devil Flash", "46": "True Phantasm", "47": "Fairy Dust", "48": "Blood Treaty", "49": "Matchless", "50": "Agitate", "51": "Evil Bind", "52": "Mother's Love", "53": "Possesion", "54": "Hero's Proof", "55": "Unearthy Form", "56": "Dubhe Proof", "57": "Merak Proof", "58": "Phecda Proof", "59": "Megrez Proof", "60": "Alioth Proof", "61": "Mizar Proof", "62": "Alkaid Proof", "63": "Polaris Proof", "64": "Alcor Proof", "65": "Alcor Warrant", "66": "Merak Envoy", "67": "Phecda Clone", "68": "Megrez Bud", "69": "Alioth Shot", "70": "Alkaid Bud", "71": "Alkaid Spawn", "72": "Alkaid Spawn", "73": "Alkaid Spawn", "74": "Alkaid Spawn", "75": "Polaris Proof", "76": "Polaris Proof", "77": "Heaven Throne", "78": "Dragon Shard", "79": "Lugh Blessing", "80": "Heaven Shield", "81": "Bounty Shield", "82": "Heaven Spear", "83": "Bounty Spear", "84": "Temptation", "85": "Mizar Proof", "86": "Mizar Proof", "87": "Star's Gate", "88": "Shinjuku Intel", "89": "Fighting Doll", "90": "Headless Rider", "91": "Leonid Five", "92": "Spica Sign", "93": "Spica Sign", "94": "Shiki-Ouji", "95": "Arcturus Sign", "96": "Miyako", "97": "Cor Caroli Sign", "98": "Cor Caroli Half", "99": "Agent of Order", "100": "Universal Law", "101": "Factor of Heat", "102": "Factor of Power", "103": "Factor of Space", "104": "Factor of Time", "105": "???", "106": "Program: Joy", "107": "Program: Ultra", "108": "Fangs of Order", "109": "Gate of Order" } # DONE AUTO_SKILLS = { "0": "None", "1": "Blitzkrieg", "2": "Hustle", "3": "Fortify", "4": "Barrier", "5": "Wall", "6": "Full Might", "7": "Ban Phys", "8": "Ban Fire", "9": "Ban Ice", "10": "Ban Elec", "11": "Ban Force", "12": "Ban Curse", "13": "Rage Soul", "14": "Grace", "15": "Marksman", "16": "Tailwind", "17": "Magic Yin", "18": "Battle Aura", "19": "Revive", "20": "Magic Yang", "21": "Healing", "22": "Alter Pain", "23": "Weaken", "24": "Debilitate", "25": "Health Save", "26": "Strengthen", "27": "Grimoire +", "28": "Desperation", "29": "Rejuvenate", "30": "Null Auto", "31": "Pierce +", "32": "Endure +", "33": "Neurotoxin", "34": "Temptation", "35": "Shield All EX", "36": "Dual Shadow EX", "37": "Kinetic Vision", "38": "Magnet Barrier", "39": "Distortion", } # Character ID's ALL_CHARS = { "0": "MC", "400": "Fumi", "300": "Yamato", "900": "Keita", "800": "Makoto", "700": "Jungo", "a00": "Airi", "b00": "Joe", "600": "Otome", "500": "Daichi", "c00": "Hinako", "200": "Io", "100": "Ronaldo", "d00": "Alcor" } # Demon Information ALL_DEMONS = { "0": "Human MC", "1": "Human Ronaldo", "2": "Human Io", "3": "Human Yamato", "4": "Human Fumi", "5": "Human Daichi", "6": "Human Otome", "7": "Human Jungo", "8": "Human Makoto", "9": "Human Keita", "10": "Human Airi", "11": "Human Joe", "12": "Human Hinako", "13": "Human Alcor", "14": "Omega Tonatiuh", "15": "Omega Chernobog", "16": "Omega Wu Kong", "17": "Omega Susano-o", "18": "Omega Kartikeya", "19": "Omega Shiva", "20": "Megami Hathor", "21": "Megami Sarasvati", "22": "Megami Kikuri-hime", "23": "Megami Brigid", "24": "Megami Scathach", "25": "Megami Laksmi", "26": "Megami Norn", "27": "Megami Isis", "28": "Megami Amaterasu", "29": "Deity Mahakala", "30": "Deity Thor", "31": "Deity Arahabaki", "32": "Deity Odin", "33": "Deity Yama", "34": "Deity Lugh", "35": "Deity Baal", "36": "Deity Asura", "37": "Vile Orcus", "38": "Vile Pazuzu", "39": "Vile Abaddon", "40": "Vile Tao Tie", "41": "Vile Arioch", "42": "Vile Tezcatlipoca", "43": "Vile Nyarlathotep", "44": "Snake Makara", "45": "Snake Nozuchi", "46": "Snake Pendragon", "47": "Snake Gui Xian", "48": "Snake Quetzacoatl", "49": "Snake Seiyuu", "50": "Snake Orochi", "51": "Snake Ananta", "52": "Snake Hoyau Kamui", "53": "Dragon Toubyou", "54": "Dragon Bai Suzhen", "55": "Dragon Basilisk", "56": "Dragon Ym", "57": "Dragon Python", "58": "Dragon Culebre", "59": "Dragon Vritra", "60": "Dragon Vasuki", "61": "Divine Holy Ghost", "62": "Divine Angel", "63": "Divine Power", "64": "Divine Lailah", "65": "Divine Aniel", "66": "Divine Kazfiel", "67": "Divine Remiel", "68": "Divine Metatron", "69": "Avian Itsumade", "70": "Avian Moh Shuvuu", "71": "Avian Hamsa", "72": "Avian Suparna", "73": "Avian Vidofnir", "74": "Avian Badb Catha", "75": "Avian Anzu", "76": "Avian Feng Huang", "77": "Avian Garuda", "78": "Fallen Gagyson", "79": "Fallen Abraxas", "80": "Fallen Flauros", "81": "Fallen Nisroc", "82": "Fallen Orobas", "83": "Fallen Decarabia", "84": "Fallen Nebiros", "85": "Fallen Agares", "86": "Fallen Murmur", "87": "Avatar Heqet", "88": "Avatar Kamapua'a", "89": "Avatar Shiisaa", "90": "Avatar Bai Ze", "91": "Avatar Baihu", "92": "Avatar Airavata", "93": "Avatar Ukano Mitama", "94": "Avatar Barong", "95": "Avatar Anubis", "96": "Beast Kabuso", "97": "Beast Hairy Jack", "98": "Beast Nekomata", "99": "Beast Cait Sith", "100": "Beast Nue", "101": "Beast Orthrus", "102": "Beast Myrmecolion", "103": "Beast Cerberus", "104": "Beast Fenrir", "105": "Wilder Hare of Inaba", "106": "Wilder Waira", "107": "Wilder Garm", "108": "Wilder Afanc", "109": "Wilder Mothman", "110": "Wilder Taown", "111": "Wilder Behemoth", "112": "Wilder Ammut", "113": "Genma Tam Lin", "114": "Genma Jambavan", "115": "Genma Tlaloc", "116": "Genma Ictinike", "117": "Genma Hanuman", "118": "Genma Cu Chulainn", "119": "Genma Kresnik", "120": "Genma Ganesha", "121": "Genma Heimdal", "122": "Fairy Pixie", "123": "Fairy Knocker", "124": "Fairy Kijimunaa", "125": "Fairy Jack Frost", "126": "Fairy Pyro Jack", "127": "Fairy Silky", "128": "Fairy Lorelei", "129": "Fairy Vivian", "130": "Fairy Titania", "131": "Fairy Oberon", "132": "Tyrant King Frost", "133": "Tyrant Moloch", "134": "Tyrant Hecate", "135": "Tyrant Tzizimitl", "136": "Tyrant Astaroth", "137": "Tyrant Mot", "138": "Tyrant Loki", "139": "Tyrant Lucifer", "140": "Kishin Ubelluris", "141": "Kishin Nalagiri", "142": "Hitokotonusi", "143": "Kishin Take-Mikazuchi", "144": "Kishin Zouchouten", "145": "Kishin Jikokuten", "146": "Kishin Koumokuten", "147": "Kishin Bishamonten", "148": "Kishin Zaou Gongen", "149": "Touki Kobold", "150": "Touki Bilwis", "151": "Touki Gozuki", "152": "Touki Mezuki", "153": "Touki Ikusa", "154": "Touki Lham Dearg", "155": "Touki Berserker", "156": "Touki Yaksa", "157": "Touki Nata Taishi", "158": "Touki Oumitsunu", "159": "Jaki Obariyon", "160": "Jaki Ogre", "161": "Jaki Mokoi", "162": "Jaki Ogun", "163": "Jaki Wendigo", "164": "Jaki Legion", "165": "Jaki Rakshasa", "166": "Jaki Girimehkala", "167": "Jaki Grendel", "168": "Jaki Black Frost", "169": "Femme Kikimora", "170": "Femme Lilim", "171": "Femme Yuki Jyorou", "172": "Femme Leanan Sidhe", "173": "Femme Peri", "174": "Femme Hariti", "175": "Femme Rangda", "176": "Femme Kali", "177": "Femme Lilith", "178": "Ghost Poltergeist", "179": "Ghost Agathion", "180": "Ghost Tenon Cut", "181": "Ghost Kumbhanda", "182": "Ghost Loa", "183": "Ghost Pisaca", "184": "Ghost Kudlak", "185": "Ghost Purple Mirror", "186": "Fiend Biliken", "187": "Fiend Ghost Q ", "188": "Fiend Sage of Time", "189": "Fiend Alice", "190": "Fiend Trumpeter", "191": "Hero Neko Shogun", "192": "Hero Hagen", "193": "Hero Jeanne d'Arc", "194": "Hero Yoshitsune", "195": "Hero Guan Yu", "196": "Element Flaemis", "197": "Element Aquans", "198": "Element Aeros", "199": "Element Erthys", "200": "Mitama Ara Mitama", "201": "Mitama Nigi Mitama", "202": "Mitama Kusi Mitama", "203": "Mitama Saki Mitama", "204": "Fallen Satan", "205": "Fallen Beelzebub", "206": "Fallen Belial", "207": "Divine Sariel", "208": "Divine Anael", "209": "Human Atsuro", "210": "Human Yuzu", "211": "Dragon Asp", "212": "Avatar Apis", "213": "Avatar Pabilsag", "214": "Wilder Sleipnir", "215": "Wilder Xiezhai", "216": "Genma Kangiten", "217": "Vile Baphomet", "218": "Famme Anat", "219": "Megami Pallas Athena", "220": "Deity Mithra", "221": "Deity Osiris", "222": "Snake Gucumatz", "223": "Avian Da Peng", "224": "Kishin Ometeotl", "225": "Genma Jarilo", "226": "Human Miyako", "227": "Fallen Botis", "228": "Human JP's Member", "229": "Human Salaryman(1)", "230": "Human Salaryman(2)", "231": "Human Salaryman(3)", "232": "Fallen Samael", "233": "Human Office Lady(1)", "234": "Human Office Lady(2)", "235": "Human Office Lady(3)", "236": "Human Punk(1)", "237": "Human Punk(2)", "238": "Human Punk(3)", "239": "Human Yakuza(1)", "240": "Human Yakuza(2)", "241": "Device Module", "242": "Human Policeman", "243": "Human JP's Member(F)", "244": "Human JP's Member(M)", "245": "Human Young Man(?)", "246": "Human Old Woman(?)", "247": "Human Worker", "248": "Human Student", "249": "Human Young man", "250": "Human Buffer(1)", "251": "Human Buffer(2)", "252": "Human JP'S Agent(?)", "253": "Human JP'S Agent(?)", "254": "Human JP'S Agent(?)", "255": "Human JP'S Agent(?)", "256": "Human ?", "257": "Fallen Bifrons", "258": "Fallen Barbatos", "259": "Femme Dzelarhons", "260": "Genma Kama", "261": "Megami Parvati", "262": "Femme Ixtab", "263": "Tyrant Balor", "264": "Tyrant Negral", "265": "Deity Inti", "266": "Deity Alilat", "267": "Omega Beji-Weng", "268": "Deity Lord Nan Dou", "269": "Hero Masakado", "270": "Megami Ishtar", "271": "Megami Black Maria", "272": "Snake Yurlungr", "273": "Dragon Fafnir", "274": "Divine Sraosha", "275": "Avian Rukh", "276": "Avian Kau", "277": "Beast Cbracan", "278": "Beast Catoblepas", "279": "Genma Roitschaggata", "280": "Fairy Spriggan", "281": "Fairy Troll", "282": "Tyrant Lucifuge", "283": "Kishin Okuninushi", "284": "Touki Dokkaebi", "285": "Touki Ongyo-Ki", "286": "Jaki Macabre", "287": "Femme Jahi", "288": "Divine Sandalphon", "289": "Snake Kohruy", "290": "Exotic Izaya", "291": "Exotic Celty", "292": "Exotic Shizuo", "293": "Touki Momunofu", "294": "Tyrant Lucifer Frost", "295": "(Crashes GUI)", "296": "Hero Frost Five", "297": "Hero Milk-Kin Frost", "298": "Hero Strawberry Fost", "299": "Fairy Lemon Frost", "300": "Fairy Melon Frost", "301": "Fairy B. Hawaii Frost", "302": "Touki Titan", "303": "Omega Dyonisus", "304": "Omega Aramisaki", "305": "Jaki Shiki-Ouji", "306": "Feeme Xi Wangmu", "307": "Divine Dominion", "308": "Fiend Mother Harlot", "309": "Fiend Dantalian", "310": "Vile Seth", "311": "Jaki Shinigami", "312": "Bel Belberith", "313": "Bel Jezebel", "314": "Bel Beldr", "315": "Maggot Maggot", "316": "Star Dubhe", "317": "Star Merak", "318": "Star Phecda", "319": "Star Megrez", "320": "Star Alioth Core", "321": "Star Mizar", "322": "Star Benetnasch", "323": "Star Alcor", "324": "Star Polaris", "325": "Star Merak Missile", "326": "Star Phecda(WK MAG)", "327": "Star Phecda(WK PHYS)", "328": "Star Megrez(Empty)", "329": "Star Alioth (Poison)", "330": "Energy LayLine Dragon", "331": "Star Dubhe", "332": "Star Dunhe(weak)", "333": "Star Mizar", "334": "Star Mizar", "335": "Star Tentacle", "336": "Star Tentacle", "337": "Star Tentacle", "338": "Star Tentacle", "339": "Star Tentacle", "340": "Star Tentacle", "341": "Star Benetnasch(dubhe)", "342": "Star Benetnasch(merak)", "343": "Star Benetnasch(phecda)", "344": "Star Benetnasch(Alioth)", "345": "Star Benetnasch", "346": "Star Alcor", "347": "Star Polaris A", "348": "Star Polaris Ab", "349": "Star Polaris B", "350": "Human Tall Woman", "351": "Device Tico", "352": "Device Tico", "353": "Human Daichi", "354": "Human Io", "355": "Human Io", "356": "Human MC", "357": "Human SDF Captain", "358": "Human SDF Member", "359": "Human Fireman", "360": "Deity Io", "361": "Star Guardian", "362": "Star Guardian", "363": "Star Guardian", "364": "Star Guardian", "365": "Star Guardian", "366": "Star Guardian", "367": "Star Guardian", "368": "Human Salaryman(1)", "369": "Human Punk(1)", "370": "Human Student(1)", "371": "Human Student(2)", "372": "Human Young Man(1)", "373": "Human Young Man(2)", "374": "Human Salaryman(2)", "375": "Human Salaryman(3)", "376": "Human Punk(2)", "377": "Human Punk(3)", "378": "Human Kitten", "379": "Human @", "380": "Human Ronaldo*", "381": "Human Io*", "382": "Human Yamato*", "383": "Human Fumi*", "384": "Human Daichi*", "385": "Human Otome*", "386": "Human Jungo*", "387": "Human Makoto*", "388": "Human Keita*", "389": "Human Airi*", "390": "Human Joe*", "391": "Human Hinako*", "392": "Human Alcor*", "65535": "Empty" } if __name__ == "__main__": app = mytestapp(None) app.mainloop()
38.255627
118
0.525867
a900d8dec7fd37ab4adca645a03f1689e7145bd6
6,692
py
Python
tutorials/examples/interp_plot.py
ReynLieu/tf-pwa
f354b5036bc8c37ffba95849de5ec3367934eef8
[ "MIT" ]
4
2021-05-10T15:17:24.000Z
2021-08-16T07:40:06.000Z
tutorials/examples/interp_plot.py
ReynLieu/tf-pwa
f354b5036bc8c37ffba95849de5ec3367934eef8
[ "MIT" ]
45
2020-10-24T08:26:19.000Z
2022-03-20T06:14:58.000Z
tutorials/examples/interp_plot.py
ReynLieu/tf-pwa
f354b5036bc8c37ffba95849de5ec3367934eef8
[ "MIT" ]
8
2020-10-24T06:41:06.000Z
2022-01-03T01:29:49.000Z
import json import matplotlib.animation as animation import matplotlib.pyplot as plt import numpy as np import scipy.signal as signal import yaml from mpl_toolkits.mplot3d.axes3d import Axes3D from scipy.interpolate import interp1d from tf_pwa.config_loader import ConfigLoader from tf_pwa.experimental.extra_amp import spline_matrix # import mplhep # plt.style.use(mplhep.style.LHCb) def polar_err(r, phi, r_e, phi_e): """polar errors for r and phi""" # print(r, phi, r_e, phi_e) dxdr = np.cos(phi) dxdphi = r * np.sin(phi) dydr = np.sin(phi) dydphi = -r * np.cos(phi) x_e = np.sqrt((dxdr * r_e) ** 2 + (dxdphi * phi_e) ** 2) y_e = np.sqrt((dydr * r_e) ** 2 + (dydphi * phi_e) ** 2) # print(x_e, y_e) return x_e, y_e def dalitz_weight(s12, m0, m1, m2, m3): """phase space weight in dalitz plot""" m12 = np.sqrt(s12) m12 = np.where(m12 > (m1 + m2), m12, m1 + m2) m12 = np.where(m12 < (m0 - m3), m12, m0 - m3) # if(mz < (m_d+m_pi)) return 0; # if(mz > (m_b-m_pi)) return 0; E2st = 0.5 * (m12 * m12 - m1 * m1 + m2 * m2) / m12 E3st = 0.5 * (m0 * m0 - m12 * m12 - m3 * m3) / m12 p2st2 = E2st * E2st - m2 * m2 p3st2 = E3st * E3st - m3 * m3 p2st = np.sqrt(np.where(p2st2 > 0, p2st2, 0)) p3st = np.sqrt(np.where(p3st2 > 0, p3st2, 0)) return p2st * p3st def trans_r2xy(r, phi, r_e, phi_e): """r,phi -> x,y """ x = np.array(r) * np.cos(phi) y = np.array(r) * np.sin(phi) err = np.array( [polar_err(i, j, k, l) for i, j, k, l in zip(r, phi, r_e, phi_e)] ) return x, y, err[:, 0], err[:, 1] def plot_x_y(name, x, y, x_i, y_i, xlabel, ylabel, ylim=(None, None)): """plot x vs y""" plt.clf() plt.plot(x, y) plt.scatter(x_i, y_i) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.ylim(ylim) plt.savefig(name) def plot_phi(name, m, phi, m_i, phi_i): """ plot phi and gradient of phi""" grad = phi[2:] - phi[:-2] mask = (phi < 3) & (phi > -3) grad_max = np.mean(np.abs(grad)) # grad_max = np.max(grad[mask[1:-1]]) (idx,) = signal.argrelextrema(grad, np.less) plt.clf() # plt.plot(m, pq/np.max(pq))# np.sqrt(x_new**2+y_new**2)**2) plt.plot(m[1:-1], grad / grad_max, label="$\\Delta \\phi$ ") plt.plot(m, phi, label="$\\phi$") # np.sqrt(x_new**2+y_new**2)**2) m_delta = m[idx + 1] print("min Delta phi in mass:", m_delta) plt.scatter(m_delta, [-np.pi] * len(m_delta)) plt.scatter(m_i, phi_i, label="points") plt.xlabel("mass") plt.ylabel("$\\phi$") plt.ylim((-np.pi, np.pi)) plt.legend() plt.savefig(name) def plot_x_y_err(name, x, y, x_e, y_e): """plot eror bar of x y""" plt.clf() plt.errorbar(x, y, xerr=x_e, yerr=y_e) plt.xlabel("real R(m)") plt.ylabel("imag R(m)") plt.savefig(name) def plot_all( res="MI(1+)S", config_file="config.yml", params="final_params.json", prefix="figure/", ): """plot all figure""" config = ConfigLoader(config_file) config.set_params(params) particle = config.get_decay().get_particle(res) mi, r, phi_i, r_e, phi_e = load_params(config_file, params, res) x, y, x_e, y_e = trans_r2xy(r, phi_i, r_e, phi_e) m = np.linspace(mi[0], mi[-1], 1000) M_Kpm = 0.49368 M_Dpm = 1.86961 M_Dstar0 = 2.00685 M_Bpm = 5.27926 # x_new = interp1d(xi, x, "cubic")(m) # y_new = interp1d(xi, y, "cubic")(m) rm_new = particle.interp(m).numpy() x_new, y_new = rm_new.real, rm_new.imag pq = dalitz_weight(m * m, M_Bpm, M_Dstar0, M_Dpm, M_Kpm) pq_i = dalitz_weight(mi * mi, M_Bpm, M_Dstar0, M_Dpm, M_Kpm) phi = np.arctan2(y_new, x_new) r2 = x_new * x_new + y_new * y_new plot_phi(f"{prefix}phi.png", m, phi, mi, np.arctan2(y, x)) plot_x_y( f"{prefix}r2.png", m, r2, mi, r * r, "mass", "$|R(m)|^2$", ylim=(0, None), ) plot_x_y(f"{prefix}x_y.png", x_new, y_new, x, y, "real R(m)", "imag R(m)") plot_x_y_err( f"{prefix}x_y_err.png", x[1:-1], y[1:-1], x_e[1:-1], y_e[1:-1] ) plot_x_y( f"{prefix}r2_pq.png", m, r2 * pq, mi, r * r * pq_i, "mass", "$|R(m)|^2 p \cdot q$", ylim=(0, None), ) plot3d_m_x_y(f"{prefix}m_r.gif", m, x_new, y_new) if __name__ == "__main__": main()
27.539095
78
0.558876
a902196e210ce0c9d3fc255989473f3fdb1ab785
3,316
py
Python
scripts/val_step_images_pull.py
neuroailab/curiosity_deprecated
65f7cde13b07cdac52eed39535a94e7544c396b8
[ "Apache-2.0" ]
null
null
null
scripts/val_step_images_pull.py
neuroailab/curiosity_deprecated
65f7cde13b07cdac52eed39535a94e7544c396b8
[ "Apache-2.0" ]
2
2017-11-18T00:53:33.000Z
2017-11-18T00:53:40.000Z
scripts/val_step_images_pull.py
neuroailab/curiosity_deprecated
65f7cde13b07cdac52eed39535a94e7544c396b8
[ "Apache-2.0" ]
null
null
null
''' A script for accessing visualization data (saving images at validation steps during training) and saving them to a local directory. ''' import pymongo as pm import pickle import os import gridfs import cPickle import numpy as np from PIL import Image dbname = 'future_pred_test' collname = 'asymmetric' port = 27017 exp_id = '3_3' save_loc = '/home/nhaber/really_temp' save_fn = os.path.join(save_loc, exp_id + '.p') target_name = 'valid0' one_channel_softmax = True conn = pm.MongoClient(port = 27017) coll = conn[dbname][collname + '.files'] print('experiments') print(coll.distinct('exp_id')) cur = coll.find({'exp_id' : exp_id}) q = {'exp_id' : exp_id, 'validation_results' : {'$exists' : True}} val_steps = coll.find(q) val_count = val_steps.count() print('num val steps so far') print(val_count) saved_data = {} def convert_to_viz(np_arr): '''I did a silly thing and saved discretized-loss predictions as if they were image predictions. This recovers and converts to an ok visualization.''' my_shape = np_arr.shape num_classes = np_arr.shape[-1] #I fixed things so that it saves the prediction not converted to 255 if np_arr.dtype == 'float32': exp_arr = np.exp(np_arr) else: exp_arr = np.exp(np_arr.astype('float32') / 255.) sum_arr = np.sum(exp_arr, axis = -1) #hack for broadcasting...I don't know broadcasting softy = (exp_arr.T / sum_arr.T).T return np.sum((softy * range(num_classes) * 255. / float(num_classes)), axis = -1).astype('uint8') def convert_to_viz_sharp(np_arr): '''Similar to the above, but just taking the argmax, hopefully giving a sharper visualization. ''' num_classes = np_arr.shape[-1] a_m = np.argmax(np_arr, axis = -1) return (a_m * 255. / float(num_classes)).astype('uint8') for val_num in range(val_count): idx = val_steps[val_num]['_id'] fn = coll.find({'item_for' : idx})[0]['filename'] fs = gridfs.GridFS(coll.database, collname) fh = fs.get_last_version(fn) saved_data[val_num] = cPickle.loads(fh.read())['validation_results'] fh.close() exp_dir = os.path.join(save_loc, exp_id) if not os.path.exists(exp_dir): os.mkdir(exp_dir) for val_num, val_data in saved_data.iteritems(): val_dir = os.path.join(exp_dir, 'val_' + str(val_num)) if not os.path.exists(val_dir): os.mkdir(val_dir) for tgt_desc, tgt in val_data[target_name].iteritems(): tgt_images = [arr for step_results in tgt for arr in step_results] for (instance_num, arr) in enumerate(tgt_images): instance_dir = os.path.join(val_dir, 'instance_' + str(instance_num)) if not os.path.exists(instance_dir): os.mkdir(instance_dir) if len(arr.shape) == 4: fn = os.path.join(instance_dir, tgt_desc + '_' + str(instance_num) + '.jpeg') arr = convert_to_viz_sharp(arr) im = Image.fromarray(arr) im.save(fn) #just save in human-readable form if 1-array elif len(arr.shape) == 1: fn = os.path.join(instance_dir, tgt_desc + '_' + str(instance_num) + '.txt') np.savetxt(fn, arr) else: assert len(arr.shape) == 3 fn = os.path.join(instance_dir, tgt_desc + '_' + str(instance_num) + '.jpeg') if one_channel_softmax and 'pred' in tgt_desc: arr = sigmoid_it(arr) im = Image.fromarray(arr) im.save(fn)
29.607143
131
0.701448
a9039f8421d00114c0ba14dfaca35466584a7fcb
1,543
py
Python
server/main_node/create_tables.py
noderod/DARLMID
5737dbe222ce5a5a847c1d0a8d1af64dda87e5b2
[ "MIT" ]
null
null
null
server/main_node/create_tables.py
noderod/DARLMID
5737dbe222ce5a5a847c1d0a8d1af64dda87e5b2
[ "MIT" ]
null
null
null
server/main_node/create_tables.py
noderod/DARLMID
5737dbe222ce5a5a847c1d0a8d1af64dda87e5b2
[ "MIT" ]
null
null
null
""" BASICS Creates the necessary tables and users. """ import os import psycopg2 con = psycopg2.connect (host = os.environ["POSTGRES_URL"], database = os.environ["POSTGRES_DB"], user = os.environ["POSTGRES_USER"], password = os.environ["POSTGRES_PASSWORD"]) cur = con.cursor() # Creates main user table cur.execute(""" CREATE TABLE IF NOT EXISTS user_data ( user_id serial PRIMARY KEY, username VARCHAR (256) UNIQUE NOT NULL, password VARCHAR (256) NOT NULL, salt VARCHAR (256) NOT NULL, date_creation TIMESTAMP NOT NULL, last_action TIMESTAMP NOT NULL, last_login TIMESTAMP NOT NULL, last_logout TIMESTAMP NOT NULL )""") # Creates a read only user (SELECT) # Query is done in an unsafe way because it is the only way, sanitizing it will cause issues # No user input read_only_postgres_user = os.environ["R_USERNAME"] cur.execute("CREATE USER "+ read_only_postgres_user + " WITH ENCRYPTED PASSWORD %s", (os.environ["R_PASSWORD"],)) cur.execute("GRANT SELECT ON ALL TABLES IN SCHEMA public TO " + read_only_postgres_user) # Creates a write user (SELECT, INSERT, UPDATE) write_postgres_user = os.environ["RW_USERNAME"] cur.execute("CREATE USER "+ write_postgres_user + " WITH ENCRYPTED PASSWORD %s", (os.environ["RW_PASSWORD"],)) cur.execute("GRANT SELECT, INSERT, DELETE, UPDATE ON ALL TABLES IN SCHEMA public TO " + write_postgres_user) cur.execute("GRANT SELECT, USAGE ON ALL SEQUENCES IN SCHEMA public TO " + write_postgres_user) con.commit() con.close ()
32.829787
176
0.720674
a90540d0d0a5a9bc45b650e47d3f81668b272c4b
338
py
Python
test from collections import defaultdict.py
meeve602/nn-network
2bc422785b8d7e5fa78d73a218f5ed8d499902e7
[ "Apache-2.0" ]
null
null
null
test from collections import defaultdict.py
meeve602/nn-network
2bc422785b8d7e5fa78d73a218f5ed8d499902e7
[ "Apache-2.0" ]
null
null
null
test from collections import defaultdict.py
meeve602/nn-network
2bc422785b8d7e5fa78d73a218f5ed8d499902e7
[ "Apache-2.0" ]
null
null
null
from collections import defaultdict computing_graph = defaultdict(list)#defaultdict(list),valuelist """ for (key, value) in data: result[key].append(value) print(result)#defaultdict(<class 'list'>, {'p': [1, 2, 3], 'h': [1, 2, 3]}) """ n = 'p' m = [1,2,23] computing_graph[n].append(m) print(computing_graph)
26
76
0.659763
a905bc7c157d96b2e4f0eee9148f0267c5d741fe
597
py
Python
examples/web-scraper/playground.py
relikd/botlib
d0c5072d27db1aa3fad432457c90c9e3f23f22cc
[ "MIT" ]
null
null
null
examples/web-scraper/playground.py
relikd/botlib
d0c5072d27db1aa3fad432457c90c9e3f23f22cc
[ "MIT" ]
null
null
null
examples/web-scraper/playground.py
relikd/botlib
d0c5072d27db1aa3fad432457c90c9e3f23f22cc
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 from botlib.curl import Curl from botlib.html2list import HTML2List, MatchGroup URL = 'https://www.vice.com/en/topic/motherboard' SOURCE = Curl.get(URL, cache_only=True) SELECT = '.vice-card__content' match = MatchGroup({ 'url': r'<a href="([^"]*)"', 'title': r'<h3[^>]*><a [^>]*>([\s\S]*?)</a>[\s\S]*?</h3>', 'desc': r'<p[^>]*>([\s\S]*?)</p>', 'wrong-regex': r'<a xref="([\s\S]*?)"', }) for elem in reversed(HTML2List(SELECT).parse(SOURCE)): match.set_html(elem) for k, v in match.to_dict().items(): print(k, '=', v) print() break
28.428571
62
0.571189
a906359018ecf72d4a4f117b4a1b82b665b383a6
3,912
py
Python
examples/j1j2_2d_exact_4.py
vigsterkr/FlowKet
0d8f301b5f51a1bab83021f10f65cfb5f2751079
[ "MIT" ]
21
2019-11-19T13:59:13.000Z
2021-12-03T10:26:30.000Z
examples/j1j2_2d_exact_4.py
HUJI-Deep/PyKet
61238afd3fe1488d35c57d280675f544c559bd01
[ "MIT" ]
10
2019-11-15T12:07:28.000Z
2020-11-07T18:12:18.000Z
examples/j1j2_2d_exact_4.py
HUJI-Deep/PyKet
61238afd3fe1488d35c57d280675f544c559bd01
[ "MIT" ]
11
2019-12-09T22:51:17.000Z
2021-11-29T22:05:41.000Z
from collections import OrderedDict import itertools import sys from tensorflow.keras.layers import Input from tensorflow.keras.models import Model from tensorflow.keras.optimizers import Adam from flowket.callbacks import TensorBoard from flowket.callbacks.exact import default_wave_function_callbacks_factory, ExactObservableCallback from flowket.operators.j1j2 import J1J2 from flowket.operators import NetketOperatorWrapper from flowket.machines import ConvNetAutoregressive2D from flowket.optimization import ExactVariational, VariationalMonteCarlo, loss_for_energy_minimization from flowket.samplers import FastAutoregressiveSampler from flowket.optimizers import convert_to_accumulate_gradient_optimizer import numpy import netket params_grid_config = { 'width': [32], 'depth': [5], 'lr': [5e-3, 1e-3], 'weights_normalization': [False, True] } run_index = int(sys.argv[-1].strip()) ks, vs = zip(*params_grid_config.items()) params_options = list(itertools.product(*vs)) chosen_v = params_options[run_index % len(params_options)] params = dict(zip(ks, chosen_v)) print('Chosen params: %s' % str(params)) hilbert_state_shape = (4, 4) inputs = Input(shape=hilbert_state_shape, dtype='int8') convnet = ConvNetAutoregressive2D(inputs, depth=params['depth'], num_of_channels=params['width'], weights_normalization=params['weights_normalization']) predictions, conditional_log_probs = convnet.predictions, convnet.conditional_log_probs model = Model(inputs=inputs, outputs=predictions) conditional_log_probs_model = Model(inputs=inputs, outputs=conditional_log_probs) batch_size = 2 ** 12 # For fair comparison with monte carlo eacg epoch see 2 ** 18 sampels steps_per_epoch = 2 ** 6 true_ground_state_energy = -30.022227800323677 operator = J1J2(hilbert_state_shape=hilbert_state_shape, j2=0.5, pbc=False) exact_variational = ExactVariational(model, operator, batch_size) optimizer = Adam(lr=params['lr'], beta_1=0.9, beta_2=0.999) convert_to_accumulate_gradient_optimizer( optimizer, update_params_frequency=exact_variational.num_of_batch_until_full_cycle, accumulate_sum_or_mean=True) model.compile(optimizer=optimizer, loss=loss_for_energy_minimization) model.summary() total_spin = NetketOperatorWrapper(total_spin_netket_operator(hilbert_state_shape), hilbert_state_shape) run_name = 'j1j2_4_exact_weights_normalization_%s_depth_%s_width_%s_adam_lr_%s_run_%s' % \ (params['weights_normalization'], params['depth'], params['width'], params['lr'], run_index) tensorboard = TensorBoard(log_dir='tensorboard_logs/%s' % run_name, update_freq='epoch', write_output=False) callbacks = default_wave_function_callbacks_factory(exact_variational, log_in_batch_or_epoch=False, true_ground_state_energy=true_ground_state_energy) + [ ExactObservableCallback(exact_variational, total_spin, 'total_spin', log_in_batch_or_epoch=False), tensorboard] model.fit_generator(exact_variational.to_generator(), steps_per_epoch=steps_per_epoch, epochs=1000, callbacks=callbacks, max_queue_size=0, workers=0) model.save_weights('final_%s.h5' % run_name)
40.329897
120
0.748466
a907a743744664923c1dc0146b6eda52d8a91360
3,833
py
Python
build/package_version/archive_info.py
MicrohexHQ/nacl_contracts
3efab5eecb3cf7ba43f2d61000e65918aa4ba77a
[ "BSD-3-Clause" ]
6
2015-02-06T23:41:01.000Z
2015-10-21T03:08:51.000Z
build/package_version/archive_info.py
MicrohexHQ/nacl_contracts
3efab5eecb3cf7ba43f2d61000e65918aa4ba77a
[ "BSD-3-Clause" ]
null
null
null
build/package_version/archive_info.py
MicrohexHQ/nacl_contracts
3efab5eecb3cf7ba43f2d61000e65918aa4ba77a
[ "BSD-3-Clause" ]
1
2019-10-02T08:41:50.000Z
2019-10-02T08:41:50.000Z
#!/usr/bin/python # Copyright (c) 2014 The Native Client Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """A archive_info is a json file describing a single package archive.""" import collections import hashlib import json import os ArchiveInfoTuple = collections.namedtuple( 'ArchiveInfoTuple', ['name', 'hash', 'url', 'tar_src_dir', 'extract_dir']) def GetArchiveHash(archive_file): """Gets the standardized hash value for a given archive. This hash value is the expected value used to verify package archives. Args: archive_file: Path to archive file to hash. Returns: Hash value of archive file, or None if file is invalid. """ if os.path.isfile(archive_file): with open(archive_file, 'rb') as f: return hashlib.sha1(f.read()).hexdigest() return None
33.920354
76
0.687712
8bef32020f0494687a4f159a327cd70c156e52e5
3,546
py
Python
tests/test_lsstdoc.py
lsst-sqre/dochub-adapter
3c155bc7ffe46f41e8de5108c936aed7587c8cdb
[ "MIT" ]
null
null
null
tests/test_lsstdoc.py
lsst-sqre/dochub-adapter
3c155bc7ffe46f41e8de5108c936aed7587c8cdb
[ "MIT" ]
null
null
null
tests/test_lsstdoc.py
lsst-sqre/dochub-adapter
3c155bc7ffe46f41e8de5108c936aed7587c8cdb
[ "MIT" ]
null
null
null
"""Ad hoc tests of the LsstLatexDoc class. Other test modules rigorously verify LsstLatexDoc against sample documents. """ from pybtex.database import BibliographyData import pytest from lsstprojectmeta.tex.lsstdoc import LsstLatexDoc def test_no_short_title(): """title without a short title.""" sample = r"\title{Title}" lsstdoc = LsstLatexDoc(sample) assert lsstdoc.title == "Title" def test_title_variations(): """Test variations on the title command's formatting.""" # Test with whitespace in title command input_txt = r"\title [Test Plan] { \product ~Test Plan}" lsstdoc = LsstLatexDoc(input_txt) assert lsstdoc.title == r"\product ~Test Plan" assert lsstdoc.short_title == "Test Plan" def test_author_variations(): """Test variations on the author command's formatting.""" input_txt = (r"\author {William O'Mullane, Mario Juric, " r"Frossie Economou}" r" % the author(s)") lsstdoc = LsstLatexDoc(input_txt) assert lsstdoc.authors == ["William O'Mullane", "Mario Juric", "Frossie Economou"] def test_author_list_amanda(): """Test author list parsing where one author's name is Amanda. """ input_txt = ( r"\author {William O'Mullane, John Swinbank, Leanne Guy, " r"Amanda Bauer}" ) expected = [ "William O'Mullane", "John Swinbank", "Leanne Guy", "Amanda Bauer" ] lsstdoc = LsstLatexDoc(input_txt) assert lsstdoc.authors == expected def test_handle_variations(): """Test variations on the handle command's formatting.""" input_txt = r"\setDocRef {LDM-503} % the reference code " lsstdoc = LsstLatexDoc(input_txt) assert lsstdoc.handle == "LDM-503" def test_abstract_variations(): """Test variations on the abstract command's formatting.""" input_txt = (r"\setDocAbstract {" + "\n" r"This is the Test Plan for \product. In it we define terms " r"associated with testing and further test specifications " r"for specific items.}") expected_abstract = ( r"This is the Test Plan for \product. In it we define terms " r"associated with testing and further test specifications for " r"specific items." ) lsstdoc = LsstLatexDoc(input_txt) assert lsstdoc.abstract == expected_abstract def test_default_load_bib_db(): """Test that the common lsst-texmf bibliographies are always loaded. """ lsstdoc = LsstLatexDoc('') assert isinstance(lsstdoc.bib_db, BibliographyData)
32.833333
79
0.645798
8bf15c081cf1ec7e2805d8cdda039957d68c5367
454
py
Python
Exercicios/script030.py
jacksonmoreira/Curso-em-video-mundo1-
84b09bd3b61417fab483acf9f1a38e0cf6b95a80
[ "MIT" ]
null
null
null
Exercicios/script030.py
jacksonmoreira/Curso-em-video-mundo1-
84b09bd3b61417fab483acf9f1a38e0cf6b95a80
[ "MIT" ]
null
null
null
Exercicios/script030.py
jacksonmoreira/Curso-em-video-mundo1-
84b09bd3b61417fab483acf9f1a38e0cf6b95a80
[ "MIT" ]
null
null
null
frase = str(input('Digite o seu nome completo para a anlise ser feita:')).strip() print('-' * 50) print('Analisando nome...') print('O seu nome em maisculas {}.'.format(frase.upper())) print('O seu nome em minsculas {}.'.format(frase.lower())) print('O seu nome tem ao todo {} letras.'.format(len(frase) - frase.count(' '))) print('O seu primeiro nome tem {} letras.'.format(frase.find(' '))) print('Nome analisado com sucesso!') print('-' * 50)
41.272727
82
0.665198
8bf171a05404452569f820648c7f427a69c301b2
8,012
py
Python
bluesky_kafka/tests/test_kafka.py
gwbischof/bluesky-kafka
fb5ab9c2caa023b91722e1dfc1aac00b6e0d7ec4
[ "BSD-3-Clause" ]
null
null
null
bluesky_kafka/tests/test_kafka.py
gwbischof/bluesky-kafka
fb5ab9c2caa023b91722e1dfc1aac00b6e0d7ec4
[ "BSD-3-Clause" ]
null
null
null
bluesky_kafka/tests/test_kafka.py
gwbischof/bluesky-kafka
fb5ab9c2caa023b91722e1dfc1aac00b6e0d7ec4
[ "BSD-3-Clause" ]
null
null
null
from functools import partial import logging import msgpack import msgpack_numpy as mpn from confluent_kafka.cimpl import KafkaException import numpy as np import pickle import pytest from bluesky_kafka import Publisher, BlueskyConsumer from bluesky_kafka.tests.conftest import get_all_documents_from_queue from bluesky.plans import count from event_model import sanitize_doc # mpn.patch() is recommended by msgpack-numpy as a way # to patch msgpack but it caused a utf-8 decode error mpn.patch() logging.getLogger("bluesky.kafka").setLevel("DEBUG") # the Kafka test broker should be configured with # KAFKA_CFG_AUTO_CREATE_TOPICS_ENABLE=true
33.383333
92
0.668622
8bf35fc329c7f95687b72ea8d092fd4c3193b925
407
py
Python
Chapter01/datastructures_06.py
vabyte/Modern-Python-Standard-Library-Cookbook
4f53e3ab7b61aca1cca9343e7421e170280cd5b5
[ "MIT" ]
84
2018-08-09T09:30:03.000Z
2022-01-04T23:20:38.000Z
Chapter01/datastructures_06.py
jiro74/Modern-Python-Standard-Library-Cookbook
4f53e3ab7b61aca1cca9343e7421e170280cd5b5
[ "MIT" ]
1
2019-11-04T18:57:40.000Z
2020-09-07T08:52:25.000Z
Chapter01/datastructures_06.py
jiro74/Modern-Python-Standard-Library-Cookbook
4f53e3ab7b61aca1cca9343e7421e170280cd5b5
[ "MIT" ]
33
2018-09-26T11:05:55.000Z
2022-03-15T10:31:10.000Z
import time import heapq pq = PriorityQueue() pq.add(f2, priority=1) pq.add(f1, priority=0) pq.pop()() pq.pop()()
17.695652
63
0.619165
8bf4cdf0dd3a18f2cee9855d7af028188308986c
1,080
py
Python
webshots/popular-websites.py
acamero/evo-web
5229ff89e2ac2d3f6a3a7f80d3f514fd3ed728c9
[ "MIT" ]
null
null
null
webshots/popular-websites.py
acamero/evo-web
5229ff89e2ac2d3f6a3a7f80d3f514fd3ed728c9
[ "MIT" ]
null
null
null
webshots/popular-websites.py
acamero/evo-web
5229ff89e2ac2d3f6a3a7f80d3f514fd3ed728c9
[ "MIT" ]
null
null
null
import requests import sys from lxml import html #csv_file_name = sys.argv[1] # output file csv_file_name = "../webshot_data/popular-web-sites.csv" csv_file = open(csv_file_name, "w") categories = ["Arts", "Business", "Computers", "Games", "Health", "Home", "Kids_and_Teens", "News", "Recreation", "Reference", "Regional", "Science", "Shopping", "Society", "Sports", "World"] # categories = ["Adult", "Arts", "Business", "Computers", "Games", "Health", "Home", "Kids_and_Teens", "News", "Recreation", "Reference", "Regional", "Science", "Shopping", "Society", "Sports", "World"] base = "http://www.alexa.com/topsites/category/Top/" for category in categories: path = base + category print path r = requests.get(path) tree = html.fromstring(r.content) trs = tree.xpath('.//a/@href') for tr in trs: if tr.startswith( '/siteinfo/' ) : wp = tr.replace( '/siteinfo/', '' ) if len(wp) > 1: print wp csv_file.write( category + ',' + wp + '\n') # end for # end for csv_file.close()
34.83871
202
0.605556
8bf5aa849ab9919f36bd06cb32baf1102cd57b0f
13,653
py
Python
sunpy/coordinates/frames.py
s0nskar/sunpy
60ca4792ded4c3938a78da7055cf2c20e0e8ccfd
[ "MIT" ]
null
null
null
sunpy/coordinates/frames.py
s0nskar/sunpy
60ca4792ded4c3938a78da7055cf2c20e0e8ccfd
[ "MIT" ]
null
null
null
sunpy/coordinates/frames.py
s0nskar/sunpy
60ca4792ded4c3938a78da7055cf2c20e0e8ccfd
[ "MIT" ]
null
null
null
""" Common solar physics coordinate systems. This submodule implements various solar physics coordinate frames for use with the `astropy.coordinates` module. """ from __future__ import absolute_import, division import numpy as np from astropy import units as u from astropy.coordinates.representation import (CartesianRepresentation, UnitSphericalRepresentation, SphericalRepresentation) from astropy.coordinates.baseframe import (BaseCoordinateFrame, RepresentationMapping) from astropy.coordinates import FrameAttribute from sunpy import sun # For Carrington rotation number from .representation import (SphericalWrap180Representation, UnitSphericalWrap180Representation) from .frameattributes import TimeFrameAttributeSunPy RSUN_METERS = sun.constants.get('radius').si.to(u.m) DSUN_METERS = sun.constants.get('mean distance').si.to(u.m) __all__ = ['HeliographicStonyhurst', 'HeliographicCarrington', 'Heliocentric', 'Helioprojective']
41.49848
90
0.620669
8bf7588b6e982ef5c34279f0381a39c74ff2495d
4,640
py
Python
python/ray/serve/tests/test_pipeline_dag.py
quarkzou/ray
49de29969df0c55a5969b8ffbfc7d62459e5024b
[ "Apache-2.0" ]
null
null
null
python/ray/serve/tests/test_pipeline_dag.py
quarkzou/ray
49de29969df0c55a5969b8ffbfc7d62459e5024b
[ "Apache-2.0" ]
null
null
null
python/ray/serve/tests/test_pipeline_dag.py
quarkzou/ray
49de29969df0c55a5969b8ffbfc7d62459e5024b
[ "Apache-2.0" ]
null
null
null
import pytest import os import sys import numpy as np import ray from ray import serve from ray.serve.api import _get_deployments_from_node from ray.serve.handle import PipelineHandle from ray.serve.pipeline.pipeline_input_node import PipelineInputNode def test_single_node_deploy_success(serve_instance): m1 = Adder.bind(1) handle = serve.run(m1) assert ray.get(handle.remote(41)) == 42 def test_single_node_driver_sucess(serve_instance): m1 = Adder.bind(1) m2 = Adder.bind(2) with PipelineInputNode() as input_node: out = m1.forward.bind(input_node) out = m2.forward.bind(out) driver = Driver.bind(out) handle = serve.run(driver) assert ray.get(handle.remote(39)) == 42 def test_options_and_names(serve_instance): m1 = Adder.bind(1) m1_built = _get_deployments_from_node(m1)[-1] assert m1_built.name == "Adder" m1 = Adder.options(name="Adder2").bind(1) m1_built = _get_deployments_from_node(m1)[-1] assert m1_built.name == "Adder2" m1 = Adder.options(num_replicas=2).bind(1) m1_built = _get_deployments_from_node(m1)[-1] assert m1_built.num_replicas == 2 def test_passing_handle(serve_instance): child = Adder.bind(1) parent = TakeHandle.bind(child) driver = Driver.bind(parent) handle = serve.run(driver) assert ray.get(handle.remote(1)) == 2 def test_passing_handle_in_obj(serve_instance): child1 = Echo.bind("ed") child2 = Echo.bind("simon") parent = Parent.bind({"child1": child1, "child2": child2}) handle = serve.run(parent) assert ray.get(handle.remote("child1")) == "ed" assert ray.get(handle.remote("child2")) == "simon" def test_pass_handle_to_multiple(serve_instance): child = Child.bind() parent = Parent.bind(child) grandparent = GrandParent.bind(child, parent) handle = serve.run(grandparent) assert ray.get(handle.remote()) == "ok" def test_non_json_serializable_args(serve_instance): # Test that we can capture and bind non-json-serializable arguments. arr1 = np.zeros(100) arr2 = np.zeros(200) handle = serve.run(A.bind(arr1)) ret1, ret2 = ray.get(handle.remote()) assert np.array_equal(ret1, arr1) and np.array_equal(ret2, arr2) # TODO: check that serve.build raises an exception. if __name__ == "__main__": sys.exit(pytest.main(["-v", "-s", __file__]))
25.217391
84
0.650647
8bf7c2002c8b113a9de4b7623d703ed3f154d1fb
118
py
Python
code/super_minitaur/script/lpmslib/lputils.py
buenos-dan/quadrupedal_robot
605054c027e20b83e347f2aa175c03c965e72983
[ "MIT" ]
5
2019-03-22T06:39:42.000Z
2021-07-27T13:56:45.000Z
code/super_minitaur/script/lpmslib/lputils.py
buenos-dan/quadrupedal_robot
605054c027e20b83e347f2aa175c03c965e72983
[ "MIT" ]
null
null
null
code/super_minitaur/script/lpmslib/lputils.py
buenos-dan/quadrupedal_robot
605054c027e20b83e347f2aa175c03c965e72983
[ "MIT" ]
2
2021-02-16T09:52:04.000Z
2021-11-30T12:12:55.000Z
#helpers
13.111111
32
0.550847
8bf7e9d1ed3871fd0972273d253da43b826c3e35
598
py
Python
test/data_producer_kafka.py
netgroup/srv6-pm-dockerized
770976e9e2da56780ae9bb4048360235d2568627
[ "Apache-2.0" ]
null
null
null
test/data_producer_kafka.py
netgroup/srv6-pm-dockerized
770976e9e2da56780ae9bb4048360235d2568627
[ "Apache-2.0" ]
null
null
null
test/data_producer_kafka.py
netgroup/srv6-pm-dockerized
770976e9e2da56780ae9bb4048360235d2568627
[ "Apache-2.0" ]
2
2020-07-28T18:12:09.000Z
2021-02-22T06:31:19.000Z
from kafka import KafkaProducer from kafka.errors import KafkaError import json # produce json messages producer = KafkaProducer(bootstrap_servers='kafka:9092', security_protocol='PLAINTEXT', value_serializer=lambda m: json.dumps(m).encode('ascii')) result = producer.send('ktig', {'measure_id': 1, 'interval': 10, 'timestamp': '', 'color': 'red', 'sender_tx_counter': 50, 'sender_rx_counter': 50, 'reflector_tx_counter': 48, 'reflector_rx_counter': 48}) producer.close()
37.375
88
0.602007
8bf80a6b7a2e719d044ca3071a20a59ca3623e14
248
py
Python
uasyncio.core/test_cb_args.py
Carglglz/micropython-lib
07102c56aa1087b97ee313cedc1d89fd20452e11
[ "PSF-2.0" ]
126
2019-07-19T14:42:41.000Z
2022-03-21T22:22:19.000Z
uasyncio.core/test_cb_args.py
Carglglz/micropython-lib
07102c56aa1087b97ee313cedc1d89fd20452e11
[ "PSF-2.0" ]
38
2019-08-28T01:46:31.000Z
2022-03-17T05:46:51.000Z
uasyncio.core/test_cb_args.py
Carglglz/micropython-lib
07102c56aa1087b97ee313cedc1d89fd20452e11
[ "PSF-2.0" ]
55
2019-08-02T09:32:33.000Z
2021-12-22T11:25:51.000Z
try: import uasyncio.core as asyncio except: import asyncio loop = asyncio.get_event_loop() loop.call_soon(cb, "test", "test2") loop.run_forever() print("OK")
14.588235
35
0.637097
8bf8770f23fe5d9c46d48d1b60253229783948a7
1,491
py
Python
labdevices/_mock/ando.py
jkrauth/labdevices
4b00579117216b6431079d79c1c978b73a6c0b96
[ "MIT" ]
null
null
null
labdevices/_mock/ando.py
jkrauth/labdevices
4b00579117216b6431079d79c1c978b73a6c0b96
[ "MIT" ]
null
null
null
labdevices/_mock/ando.py
jkrauth/labdevices
4b00579117216b6431079d79c1c978b73a6c0b96
[ "MIT" ]
1
2021-04-28T15:17:31.000Z
2021-04-28T15:17:31.000Z
""" Provides a mock for the plx_gpib_ethernet package used in the Ando devices. """ from unittest.mock import Mock # The commands that are used in the methods of the # ANDO devices and typical responses. QUERY_COMMANDS = { # Spectrum Analyzer commands "*IDN?": "ANDO dummy\r\n", "SWEEP?": "0\r\n", "SMPL?": " 501\r\n", "ANA?": " 490.808, 94.958, 19\r\n", "CTRWL?": "1050.00\r\n", "SPAN?": "1300.0\r\n", "CWPLS?": "1\r\n", "PLMOD?": " 38\r\n", }
33.886364
91
0.541247
8bf9802eb12db8bd7835a073469cfa2b0ae5ce2e
2,898
py
Python
hearthstone/simulator/core/card_graveyard.py
JDBumgardner/stone_ground_hearth_battles
9fe095651fab60e8ddbf563f0b9b7f3e723d5f4f
[ "Apache-2.0" ]
20
2020-08-01T03:14:57.000Z
2021-12-19T11:47:50.000Z
hearthstone/simulator/core/card_graveyard.py
JDBumgardner/stone_ground_hearth_battles
9fe095651fab60e8ddbf563f0b9b7f3e723d5f4f
[ "Apache-2.0" ]
48
2020-08-01T03:06:43.000Z
2022-02-27T10:03:47.000Z
hearthstone/simulator/core/card_graveyard.py
JDBumgardner/stone_ground_hearth_battles
9fe095651fab60e8ddbf563f0b9b7f3e723d5f4f
[ "Apache-2.0" ]
3
2020-06-28T01:23:37.000Z
2021-11-11T23:09:36.000Z
import sys from inspect import getmembers, isclass from typing import Union from hearthstone.simulator.core.cards import MonsterCard from hearthstone.simulator.core.events import CardEvent, EVENTS, BuyPhaseContext, CombatPhaseContext from hearthstone.simulator.core.monster_types import MONSTER_TYPES REMOVED_CARDS = [member[1] for member in getmembers(sys.modules[__name__], lambda member: isclass(member) and issubclass(member, MonsterCard) and member.__module__ == __name__)]
36.683544
149
0.640787
8bfa439c74e0b340dc223e43b06761bdee5d063d
1,026
py
Python
cookiecutter_mbam/scan/views.py
tiburona/cookiecutter_mbam
13788774a4c1426c133b3f689f98d8f0c54de9c6
[ "BSD-3-Clause" ]
null
null
null
cookiecutter_mbam/scan/views.py
tiburona/cookiecutter_mbam
13788774a4c1426c133b3f689f98d8f0c54de9c6
[ "BSD-3-Clause" ]
null
null
null
cookiecutter_mbam/scan/views.py
tiburona/cookiecutter_mbam
13788774a4c1426c133b3f689f98d8f0c54de9c6
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """Scan views.""" from flask import Blueprint, render_template, flash, redirect, url_for, session from flask_login import current_user from .forms import ScanForm from .service import ScanService from cookiecutter_mbam.utils import flash_errors blueprint = Blueprint('scan', __name__, url_prefix='/scans', static_folder='../static') from flask import current_app
34.2
87
0.693957
8bfa8f2b88f8aca9aab6973afb6831c3aa0a0478
3,460
py
Python
python-route-endpoint/test_dbstore.py
blues/note-samples
a50c27ea0b8728668f2c44139b088d5fdf0c7d57
[ "Apache-2.0" ]
1
2021-10-04T14:42:43.000Z
2021-10-04T14:42:43.000Z
python-route-endpoint/test_dbstore.py
blues/note-samples
a50c27ea0b8728668f2c44139b088d5fdf0c7d57
[ "Apache-2.0" ]
3
2021-09-07T17:54:58.000Z
2021-11-16T21:40:52.000Z
python-route-endpoint/test_dbstore.py
blues/note-samples
a50c27ea0b8728668f2c44139b088d5fdf0c7d57
[ "Apache-2.0" ]
null
null
null
import pytest import dbstore inMemFile = ":memory:" measurementTable = "measurements" alertTable = "alerts" timestampTestData = "2021-04-29T23:25:44Z"
23.69863
102
0.67052
8bfbe25b3704f8131128b16676dbbc1e54dcc6b4
446
py
Python
bin/Notifier/NotificationLoader.py
juergenhoetzel/craft
9d3fe6dc07f2307e8f8212c8981b980a9d2d28fd
[ "BSD-2-Clause" ]
55
2016-11-20T17:08:19.000Z
2022-03-11T22:19:43.000Z
bin/Notifier/NotificationLoader.py
juergenhoetzel/craft
9d3fe6dc07f2307e8f8212c8981b980a9d2d28fd
[ "BSD-2-Clause" ]
17
2017-09-20T07:52:17.000Z
2021-12-03T10:03:00.000Z
bin/Notifier/NotificationLoader.py
juergenhoetzel/craft
9d3fe6dc07f2307e8f8212c8981b980a9d2d28fd
[ "BSD-2-Clause" ]
29
2016-12-10T15:00:11.000Z
2021-12-02T12:54:05.000Z
import importlib _NOTIFICATION_BACKENDS = None
29.733333
99
0.695067
8bfc984d3b1bbcef2b5af5e9508ff3a2a9c35186
604
py
Python
basics/linear.py
zhijiahu/dltk
bf0484e22d3d0116b1ac60ae78f688a36c5a0636
[ "MIT" ]
null
null
null
basics/linear.py
zhijiahu/dltk
bf0484e22d3d0116b1ac60ae78f688a36c5a0636
[ "MIT" ]
null
null
null
basics/linear.py
zhijiahu/dltk
bf0484e22d3d0116b1ac60ae78f688a36c5a0636
[ "MIT" ]
null
null
null
import numpy as np import cv2 labels = ['dog', 'cat', 'panda'] np.random.seed(1) # Simulate model already trained W = np.random.randn(3, 3072) b = np.random.randn(3) orig = cv2.imread('beagle.png') image = cv2.resize(orig, (32, 32)).flatten() scores = W.dot(image) + b for (label, score) in zip(labels, scores): print('[INFO] {}: {:2}'.format(label, score)) cv2.putText(orig, 'Label: {}'.format(labels[np.argmax(scores)]), (10,30), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2) cv2.imshow('Image', orig) cv2.waitKey(0)
20.133333
58
0.574503
8bfd515b8c9ab45a349fc3b66ded01bb3b315143
2,759
py
Python
sevivi/synchronizer/synchronizer.py
edgarriba/sevivi
52c8bef206e531c797221a08037306c0c5b0ca59
[ "MIT" ]
null
null
null
sevivi/synchronizer/synchronizer.py
edgarriba/sevivi
52c8bef206e531c797221a08037306c0c5b0ca59
[ "MIT" ]
9
2021-09-09T07:40:21.000Z
2022-01-13T07:03:59.000Z
sevivi/synchronizer/synchronizer.py
edgarriba/sevivi
52c8bef206e531c797221a08037306c0c5b0ca59
[ "MIT" ]
1
2022-01-26T09:51:29.000Z
2022-01-26T09:51:29.000Z
import pandas as pd import numpy as np import matplotlib.pyplot as plt from .signal_processing import ( resample_data, normalize_signal, calculate_magnitude, calculate_offset_in_seconds_using_cross_correlation, calculate_sampling_frequency_from_timestamps, ) def get_synchronization_offset( video_sync_df: pd.DataFrame, sensor_sync_df: pd.DataFrame, use_gradient: bool, show_plots: bool = False, ) -> pd.Timedelta: """ Get the temporal offset between the two given sensor dataframes. :param video_sync_df: the synchronization information from the video :param sensor_sync_df: the synchronization information from the sensor :param use_gradient: if true, the second derivation of the video synchronization data will be used. if false, the raw data will be used. :param show_plots: can enable debugging plots :return: a pd.Timedelta object that specifies how much the sensor_sync_df needs to be moved in time to align it with the video_sync_df """ video_sf = calculate_sampling_frequency_from_timestamps(video_sync_df.index) sensor_sf = calculate_sampling_frequency_from_timestamps(sensor_sync_df.index) if use_gradient: video_acceleration = np.gradient( np.gradient(video_sync_df.to_numpy(), axis=0), axis=0 ) else: video_acceleration = video_sync_df.to_numpy() video_acceleration = resample_data( video_acceleration, current_sampling_rate=video_sf, new_sampling_rate=sensor_sf, ) video_acceleration = normalize_signal(video_acceleration) video_acceleration = calculate_magnitude(video_acceleration) sensor_acceleration = normalize_signal(sensor_sync_df.to_numpy()) sensor_acceleration = calculate_magnitude(sensor_acceleration) if show_plots: plt.close() plt.figure(1) plt.plot(video_acceleration, label="Kinect") plt.plot(sensor_acceleration, label="IMU") plt.xlabel("Time (s)") plt.ylabel("Acceleration Magnitude (normalized)") plt.legend() plt.show() shift = calculate_offset_in_seconds_using_cross_correlation( ref_signal=video_acceleration, target_signal=sensor_acceleration, sampling_frequency=sensor_sf, ) if show_plots: plt.close() plt.figure(1) plt.plot(video_acceleration, label="Kinect") plt.plot( np.arange(len(sensor_acceleration)) + (sensor_sf * shift), sensor_acceleration, label="IMU", ) plt.xlabel("Time (s)") plt.ylabel("Acceleration (normalized)") plt.legend() plt.show() return pd.Timedelta(seconds=shift)
33.240964
120
0.696629
8bfd607f605b753ac1980b586075777909511585
244
py
Python
bob.py
williamstern/Intro-to-CS-MIT-Course
0f6129fa6bd47767cb57507279d49b27501a160f
[ "MIT" ]
null
null
null
bob.py
williamstern/Intro-to-CS-MIT-Course
0f6129fa6bd47767cb57507279d49b27501a160f
[ "MIT" ]
null
null
null
bob.py
williamstern/Intro-to-CS-MIT-Course
0f6129fa6bd47767cb57507279d49b27501a160f
[ "MIT" ]
null
null
null
s = 'vpoboooboboobooboboo' y = 0 counter = 0 times_run = 0 start = 0 end = 3 for letter in s: sc = s[start:end] start += 1 end += 1 if sc == str('bob'): counter += 1 print('Number of times bob occurs is: ', counter)
10.166667
49
0.565574
8bfd9f299f8a3e49d68acee30f35331e05c04631
5,469
py
Python
tests/main.py
bastienleonard/pysfml-cython
c71194988ba90678cbc4c9e6fd3e03f53ac4c2e4
[ "Zlib", "BSD-2-Clause" ]
14
2015-09-14T18:04:27.000Z
2021-02-19T16:51:57.000Z
tests/main.py
bastienleonard/pysfml-cython
c71194988ba90678cbc4c9e6fd3e03f53ac4c2e4
[ "Zlib", "BSD-2-Clause" ]
3
2015-12-14T17:07:45.000Z
2021-10-02T05:55:11.000Z
tests/main.py
bastienleonard/pysfml-cython
c71194988ba90678cbc4c9e6fd3e03f53ac4c2e4
[ "Zlib", "BSD-2-Clause" ]
3
2015-04-12T16:57:02.000Z
2021-02-20T17:15:51.000Z
#! /usr/bin/env python2 # -*- coding: utf-8 -*- import random import unittest import sfml as sf if __name__ == '__main__': unittest.main()
30.724719
78
0.513257
8bfef33258b56cdbd64d66536a38eaa752a6a523
12,840
py
Python
textgen/augment/word_level_augment.py
shibing624/textgen
0a9d55f1f61d5217b8e06f1f23904e49afa84370
[ "Apache-2.0" ]
31
2021-06-29T14:31:35.000Z
2022-03-25T00:36:44.000Z
textgen/augment/word_level_augment.py
shibing624/text-generation
0a9d55f1f61d5217b8e06f1f23904e49afa84370
[ "Apache-2.0" ]
1
2021-11-09T21:30:16.000Z
2022-03-02T10:21:04.000Z
textgen/augment/word_level_augment.py
shibing624/text-generation
0a9d55f1f61d5217b8e06f1f23904e49afa84370
[ "Apache-2.0" ]
5
2021-06-21T03:13:39.000Z
2022-02-07T06:53:22.000Z
# -*- coding: utf-8 -*- """ @author:XuMing(xuming624@qq.com) @description: Word level augmentations including Replace words with uniform random words or TF-IDF based word replacement. """ import collections import copy import math import numpy as np from textgen.utils.log import logger min_token_num = 3 def get_data_idf(tokenized_sentence_list): """Compute the IDF score for each word. Then compute the TF-IDF score.""" word_doc_freq = collections.defaultdict(int) # Compute IDF for cur_sent in tokenized_sentence_list: cur_word_dict = {} for word in cur_sent: cur_word_dict[word] = 1 for word in cur_word_dict: word_doc_freq[word] += 1 idf = {} for word in word_doc_freq: idf[word] = math.log(len(tokenized_sentence_list) * 1. / word_doc_freq[word]) # Compute TF-IDF tf_idf = {} for cur_sent in tokenized_sentence_list: for word in cur_sent: if word not in tf_idf: tf_idf[word] = 0 tf_idf[word] += 1. / len(cur_sent) * idf[word] return { "idf": idf, "tf_idf": tf_idf, }
35.469613
95
0.576947
e300c54c781958b660c0d153f40329e21fe52fd9
6,539
py
Python
three_d_resnet_builder/builder.py
thauptmann/3D-ResNet-for-Keras
ac1b8b3d0032c9af832cc945bc57a63106366e54
[ "MIT" ]
4
2021-05-23T09:30:40.000Z
2021-12-29T16:14:46.000Z
three_d_resnet_builder/builder.py
thauptmann/3D-ResNet-for-Keras
ac1b8b3d0032c9af832cc945bc57a63106366e54
[ "MIT" ]
3
2021-06-24T09:26:58.000Z
2022-01-06T11:01:59.000Z
three_d_resnet_builder/builder.py
thauptmann/3D-ResNet-for-Keras
ac1b8b3d0032c9af832cc945bc57a63106366e54
[ "MIT" ]
3
2021-06-07T18:11:34.000Z
2021-12-22T01:57:03.000Z
from . import three_D_resnet from .kernel import get_kernel_to_name def build_three_d_resnet(input_shape, output_shape, repetitions, output_activation, regularizer=None, squeeze_and_excitation=False, use_bottleneck=False, kernel_size=3, kernel_name='3D'): """Return a full customizable resnet. :param input_shape: The input shape of the network as (frames, height, width, channel) :param output_shape: The output shape. Dependant on the task of the network. :param repetitions: Define the repetitions of the Residual Blocks e.g. (2, 2, 2, 2) for ResNet-18 :param output_activation: Define the used output activation. Also depends on the task of the network. :param regularizer: Define the regularizer to use. E.g. "l1" or "l2" :param squeeze_and_excitation: Activate or deactivate SE-Paths. :param use_bottleneck: Activate bottleneck layers. Recommended for networks with many layers. :param kernel_size: Set the kernel size. Don't need to be changes in almost all cases. It's just exist for customization purposes. :param kernel_name: :return: Return the built network. """ conv_kernel = get_kernel_to_name(kernel_name) return three_D_resnet.ThreeDConvolutionResNet(input_shape, output_shape, repetitions, output_activation, regularizer, squeeze_and_excitation, use_bottleneck, kernel_size, kernel=conv_kernel) def build_three_d_resnet_18(input_shape, output_shape, output_activation, regularizer=None, squeeze_and_excitation=False, kernel_name='3D'): """Return a customizable resnet_18. :param input_shape: The input shape of the network as (frames, height, width, channel) :param output_shape: The output shape. Dependant on the task of the network. :param output_activation: Define the used output activation. Also depends on the task of the network. :param regularizer: Defines the regularizer to use. E.g. "l1" or "l2" :param squeeze_and_excitation:Activate or deactivate SE-Paths. :param kernel_name: :return: The built ResNet-18 """ conv_kernel = get_kernel_to_name(kernel_name) return three_D_resnet.ThreeDConvolutionResNet(input_shape, output_shape, output_activation, (2, 2, 2, 2), regularizer, squeeze_and_excitation, kernel=conv_kernel) def build_three_d_resnet_34(input_shape, output_shape, output_activation, regularizer=None, squeeze_and_excitation=False, kernel_name='3D'): """Return a customizable resnet_34. :param input_shape: The input shape of the network as (frames, height, width, channel) :param output_shape: The output shape. Dependant on the task of the network. :param output_activation: Define the used output activation. Also depends on the task of the network. :param regularizer: Defines the regularizer to use. E.g. "l1" or "l2" :param squeeze_and_excitation:Activate or deactivate SE-Paths. :param kernel_name: :return: The built ResNet-34 """ conv_kernel = get_kernel_to_name(kernel_name) return three_D_resnet.ThreeDConvolutionResNet(input_shape, output_shape, output_activation, (3, 4, 6, 3), regularizer, squeeze_and_excitation, kernel=conv_kernel) def build_three_d_resnet_50(input_shape, output_shape, output_activation, regularizer=None, squeeze_and_excitation=False, kernel_name='3D'): """Return a customizable resnet_50. :param input_shape: The input shape of the network as (frames, height, width, channels) :param output_shape: The output shape. Dependant on the task of the network. :param output_activation: Define the used output activation. Also depends on the task of the network. :param regularizer: Defines the regularizer to use. E.g. "l1" or "l2" :param squeeze_and_excitation:Activate or deactivate SE-Paths. :param kernel_name: :return: The built ResNet-50 """ conv_kernel = get_kernel_to_name(kernel_name) return three_D_resnet.ThreeDConvolutionResNet(input_shape, output_shape, output_activation, (3, 4, 6, 3), regularizer, squeeze_and_excitation, use_bottleneck=True, kernel=conv_kernel) def build_three_d_resnet_102(input_shape, output_shape, output_activation, regularizer=None, squeeze_and_excitation=False, kernel_name='3D'): """Return a customizable resnet_102. :param input_shape: The input shape of the network as (frames, height, width, channel) :param output_shape: The output shape. Dependant on the task of the network. :param output_activation: Define the used output activation. Also depends on the task of the network. :param regularizer: Defines the regularizer to use. E.g. "l1" or "l2" :param squeeze_and_excitation:Activate or deactivate SE-Paths. :param kernel_name: :return: The built ResNet-102 """ conv_kernel = get_kernel_to_name(kernel_name) return three_D_resnet.ThreeDConvolutionResNet(input_shape, output_shape, output_activation, (3, 4, 23, 3), regularizer, squeeze_and_excitation, use_bottleneck=True, kernel=conv_kernel) def build_three_d_resnet_152(input_shape, output_shape, output_activation, regularizer=None, squeeze_and_excitation=False, kernel_name='3D'): """ Return a customizable resnet_152 :param input_shape: The input shape of the network as (frames, height, width, channel) :param output_shape: The output shape. Dependant on the task of the network. :param output_activation: Define the used output activation. Also depends on the task of the network. :param regularizer: Defines the regularizer to use. E.g. "l1" or "l2" :param squeeze_and_excitation:Activate or deactivate SE-Paths. :param kernel_name: :return: The built ResNet-152 """ conv_kernel = get_kernel_to_name(kernel_name) return three_D_resnet.ThreeDConvolutionResNet(input_shape, output_shape, output_activation, (3, 8, 36, 3), regularizer, squeeze_and_excitation, use_bottleneck=True, kernel=conv_kernel)
57.867257
115
0.692002
e301076532db001f5790d94584e7f5e4d2165387
1,198
py
Python
ubuntu20/projects/libRadtran-2.0.4/examples/GUI/spectrum_GOME/spectrum_GOME_plot.py
AmberCrafter/docker-compose_libRadtran
0182f991db6a13e0cacb3bf9f43809e6850593e4
[ "MIT" ]
null
null
null
ubuntu20/projects/libRadtran-2.0.4/examples/GUI/spectrum_GOME/spectrum_GOME_plot.py
AmberCrafter/docker-compose_libRadtran
0182f991db6a13e0cacb3bf9f43809e6850593e4
[ "MIT" ]
null
null
null
ubuntu20/projects/libRadtran-2.0.4/examples/GUI/spectrum_GOME/spectrum_GOME_plot.py
AmberCrafter/docker-compose_libRadtran
0182f991db6a13e0cacb3bf9f43809e6850593e4
[ "MIT" ]
null
null
null
from matplotlib import use use('WXAgg') import pylab as plt import numpy as np plt.figure(figsize=(8,5)) ax = plt.subplot(111) fil = './spectrum_GOME.out' data = np.loadtxt(fil) y = data[:,1] x = data[:,0] pl_list = [] pl, = ax.plot(x,y,'r') pl_list.append(pl) y = 10*data[:,3] pl, = ax.plot(x,y,'b') pl_list.append(pl) #plt.xlim([425,450]) #plt.ylim([0,2000]) plt.ylabel(r"Radiation (photons/(s cm$^2$ nm))", fontsize = 12) plt.xlabel(r"Wavelength (nm)", fontsize = 12) from matplotlib.legend import Legend l0 = Legend(ax, pl_list[0:1], ('Solar irradiance',), loc=(0.1,0.85)) #ltext = l0.get_texts() # all the text.Text instance in the legend #plt.setp(ltext, fontsize='small', linespacing=0) # the legend text fontsize l0.draw_frame(False) # don't draw the legend frame ax.add_artist(l0) l0 = Legend(ax, pl_list[1:2], ('Earth shine (multiplied by 10)',), loc=(0.1,0.75)) #ltext = l0.get_texts() # all the text.Text instance in the legend #plt.setp(ltext, fontsize='small', linespacing=0) # the legend text fontsize l0.draw_frame(False) # don't draw the legend frame ax.add_artist(l0) #plt.show() plt.savefig('spectrum_GOME.png')
26.622222
83
0.656093
e3018352709a236201cb1c03963553b833bc04b2
569
py
Python
pepdb/tasks/migrations/0026_auto_20171031_0153.py
dchaplinsky/pep.org.ua
8633a65fb657d7f04dbdb12eb8ae705fa6be67e3
[ "MIT" ]
7
2015-12-21T03:52:46.000Z
2020-07-24T19:17:23.000Z
pepdb/tasks/migrations/0026_auto_20171031_0153.py
dchaplinsky/pep.org.ua
8633a65fb657d7f04dbdb12eb8ae705fa6be67e3
[ "MIT" ]
12
2016-03-05T18:11:05.000Z
2021-06-17T20:20:03.000Z
pepdb/tasks/migrations/0026_auto_20171031_0153.py
dchaplinsky/pep.org.ua
8633a65fb657d7f04dbdb12eb8ae705fa6be67e3
[ "MIT" ]
4
2016-07-17T20:19:38.000Z
2021-03-23T12:47:20.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.11.5 on 2017-10-30 23:53 from __future__ import unicode_literals from django.db import migrations from tasks.models import BeneficiariesMatching
22.76
52
0.70123
e302119a1e26db2aa7e3d9148ce46b0ec243f446
24,156
py
Python
condensation-forum/application.py
BitFracture/condensation
a68a9bbae7a7d35e1542242a4f1588ce3abf9d3f
[ "BSD-2-Clause" ]
null
null
null
condensation-forum/application.py
BitFracture/condensation
a68a9bbae7a7d35e1542242a4f1588ce3abf9d3f
[ "BSD-2-Clause" ]
59
2018-03-02T03:08:22.000Z
2018-03-11T01:43:02.000Z
condensation-forum/application.py
BitFracture/condensation
a68a9bbae7a7d35e1542242a4f1588ce3abf9d3f
[ "BSD-2-Clause" ]
null
null
null
""" An AWS Python3+Flask web app. """ from flask import Flask, redirect, url_for, request, session, flash, get_flashed_messages, render_template, escape from flask_oauthlib.client import OAuth import boto3,botocore import jinja2 from boto3.dynamodb.conditions import Key, Attr import urllib.request import json import cgi import time import random import sys from configLoader import ConfigLoader from googleOAuthManager import GoogleOAuthManager from data.session import SessionManager from data import query, schema from forms import CreateThreadForm, CreateCommentForm import inspect from werkzeug.utils import secure_filename import uuid import os ############################################################################### #FLASK CONFIG ############################################################################### # This is the EB application, calling directly into Flask application = Flask(__name__) # Loads config from file or environment variable config = ConfigLoader("config.local.json") # Enable encrypted session, required for OAuth to stick application.secret_key = config.get("sessionSecret") #used for form validation application.config["SECRET_KEY"]=config.get("sessionSecret") # Set up service handles botoSession = boto3.Session( aws_access_key_id = config.get("accessKey"), aws_secret_access_key = config.get("secretKey"), aws_session_token=None, region_name = config.get("region"), botocore_session=None, profile_name=None) dynamodb = botoSession.resource('dynamodb') s3 = botoSession.resource('s3') authCacheTable = dynamodb.Table('person-attribute-table') # Example: bucket = s3.Bucket('elasticbeanstalk-us-west-2-3453535353') # OAuth setup authManager = GoogleOAuthManager( flaskApp = application, clientId = config.get("oauthClientId"), clientSecret = config.get("oauthClientSecret")) #This is the Upload requirement section bucket = s3.Bucket('condensation-forum') bucket_name = 'condensation-forum' s3client = boto3.client( "s3", aws_access_key_id=config.get("accessKey"), aws_secret_access_key=config.get("secretKey") ) #database connection dataSessionMgr = SessionManager( config.get("dbUser"), config.get("dbPassword"), config.get("dbEndpoint")) # Load up Jinja2 templates templateLoader = jinja2.FileSystemLoader(searchpath="./templates/") templateEnv = jinja2.Environment(loader=templateLoader) #pass in library functions to jinja, isn't python terrifying? #we want to zip collections in view templateEnv.globals.update(zip=zip) #we also want to view our flashed messages templateEnv.globals.update(get_flashed_messages=get_flashed_messages) #generate urls for buttons in the view templateEnv.globals.update(url_for=url_for) bodyTemplate = templateEnv.get_template("body.html") bodySimpleTemplate = templateEnv.get_template("body-simple.html") homeTemplate = templateEnv.get_template("home.html") threadTemplate = templateEnv.get_template("thread.html") editThreadTemplate = templateEnv.get_template("edit-thread.html") editCommentTemplate = templateEnv.get_template("edit-comment.html") fileManagerTemplate = templateEnv.get_template("file-manager.html") fileListTemplate = templateEnv.get_template("file-list.html") sharedJavascript = templateEnv.get_template("shared.js") ############################################################################### #END CONFIG ############################################################################### # Run Flask app now if __name__ == "__main__": # Enable debug output, disable in prod application.debug = True application.run()
36.711246
123
0.638475
e30514bdd0f30538d4ed999ec163ad0e47c028b6
186
py
Python
CA3/news_test.py
aadyajha12/Covid19-SmartAlarm
911fe819cff6ef792f14b7dd48cbbb2c73f2405d
[ "MIT" ]
1
2021-03-11T11:57:19.000Z
2021-03-11T11:57:19.000Z
CA3/news_test.py
aadyajha12/Covid19-SmartAlarm
911fe819cff6ef792f14b7dd48cbbb2c73f2405d
[ "MIT" ]
null
null
null
CA3/news_test.py
aadyajha12/Covid19-SmartAlarm
911fe819cff6ef792f14b7dd48cbbb2c73f2405d
[ "MIT" ]
null
null
null
import json from newsapi import covid_news
26.571429
47
0.698925
e30656fdcf081203a75edc6af8dad04320307e06
390
py
Python
2015/02/fc_2015_02_10.py
mfwarren/FreeCoding
58ac87f35ad2004a3514782556762ee0ed72c39a
[ "MIT" ]
null
null
null
2015/02/fc_2015_02_10.py
mfwarren/FreeCoding
58ac87f35ad2004a3514782556762ee0ed72c39a
[ "MIT" ]
1
2015-04-27T01:43:45.000Z
2015-04-27T01:43:45.000Z
2015/02/fc_2015_02_10.py
mfwarren/FreeCoding
58ac87f35ad2004a3514782556762ee0ed72c39a
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # imports go here import atexit # # Free Coding session for 2015-02-10 # Written by Matt Warren # if __name__ == '__main__': atexit.register(clean_up) try: import time while True: time.sleep(1) except KeyboardInterrupt: pass
14.444444
36
0.623077
e3073fdd2f59dca010998232729affa0626a74d8
3,133
py
Python
core/scheduler/at.py
vsilent/smarty-bot
963cba05433be14494ba339343c9903ccab3c37d
[ "MIT" ]
1
2016-10-08T09:01:05.000Z
2016-10-08T09:01:05.000Z
core/scheduler/at.py
vsilent/smarty-bot
963cba05433be14494ba339343c9903ccab3c37d
[ "MIT" ]
1
2019-09-24T09:56:52.000Z
2019-09-24T09:56:52.000Z
core/scheduler/at.py
vsilent/smarty-bot
963cba05433be14494ba339343c9903ccab3c37d
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ apscheduler. """ import subprocess from apscheduler.scheduler import Scheduler from apscheduler.jobstores.shelve_store import ShelveJobStore from datetime import date, datetime, timedelta import os import shelve import zmq from core.config.settings import logger daemon = ScheduleDaemon() daemon.start()
25.892562
73
0.531759
e307995e7666610653ffb5c496c1cf1dfe8feab6
897
py
Python
machin/frame/algorithms/__init__.py
ikamensh/machin
af7b423c47bc1412530cf6c96c11bd3af9b3e239
[ "MIT" ]
1
2021-04-01T21:21:23.000Z
2021-04-01T21:21:23.000Z
machin/frame/algorithms/__init__.py
ikamensh/machin
af7b423c47bc1412530cf6c96c11bd3af9b3e239
[ "MIT" ]
null
null
null
machin/frame/algorithms/__init__.py
ikamensh/machin
af7b423c47bc1412530cf6c96c11bd3af9b3e239
[ "MIT" ]
null
null
null
import warnings from .base import TorchFramework from .dqn import DQN from .dqn_per import DQNPer from .rainbow import RAINBOW from .ddpg import DDPG from .hddpg import HDDPG from .td3 import TD3 from .ddpg_per import DDPGPer from .a2c import A2C from .a3c import A3C from .ppo import PPO from .sac import SAC from .maddpg import MADDPG try: from .apex import DQNApex, DDPGApex from .impala import IMPALA from .ars import ARS except ImportError as _: warnings.warn( "Failed to import algorithms relying on torch.distributed." " Set them to None." ) DQNApex = None DDPGApex = None IMPALA = None ARS = None __all__ = [ "TorchFramework", "DQN", "DQNPer", "RAINBOW", "DDPG", "HDDPG", "TD3", "DDPGPer", "A2C", "A3C", "PPO", "SAC", "DQNApex", "DDPGApex", "IMPALA", "ARS", "MADDPG", ]
16.924528
88
0.637681
e3079c30e7e32fd20e5ad106e7daf8c8a6a94f80
575
py
Python
apps/paper/migrations/0008_alter_paper_course.py
godetaph/uresearch
fb23cb0fe07f8b434b9c46f80b5b43030a3d5323
[ "MIT" ]
null
null
null
apps/paper/migrations/0008_alter_paper_course.py
godetaph/uresearch
fb23cb0fe07f8b434b9c46f80b5b43030a3d5323
[ "MIT" ]
null
null
null
apps/paper/migrations/0008_alter_paper_course.py
godetaph/uresearch
fb23cb0fe07f8b434b9c46f80b5b43030a3d5323
[ "MIT" ]
null
null
null
# Generated by Django 3.2.7 on 2021-09-24 02:31 from django.db import migrations, models import django.db.models.deletion
27.380952
157
0.653913
e308a4fb297dc8f9348bbe1730683c0c197aa336
2,925
py
Python
plaso/cli/helpers/hashers.py
cugu-stars/plaso
a205f8e52dfe4c239aeae5558d572806b7b00e81
[ "Apache-2.0" ]
1,253
2015-01-02T13:58:02.000Z
2022-03-31T08:43:39.000Z
plaso/cli/helpers/hashers.py
cugu-stars/plaso
a205f8e52dfe4c239aeae5558d572806b7b00e81
[ "Apache-2.0" ]
3,388
2015-01-02T11:17:58.000Z
2022-03-30T10:21:45.000Z
plaso/cli/helpers/hashers.py
cugu-stars/plaso
a205f8e52dfe4c239aeae5558d572806b7b00e81
[ "Apache-2.0" ]
376
2015-01-20T07:04:54.000Z
2022-03-04T23:53:00.000Z
# -*- coding: utf-8 -*- """The hashers CLI arguments helper.""" from plaso.cli import tools from plaso.cli.helpers import interface from plaso.cli.helpers import manager from plaso.lib import errors manager.ArgumentHelperManager.RegisterHelper(HashersArgumentsHelper)
36.111111
80
0.699487
e308f94d9774663e111da5671ce07f0ce2dd542e
20,297
py
Python
tutorials/create_sakila/migrations/0001_initial.py
MeGustas-5427/SQL_Tutorials
627372c2d5d8656d72645830c9a1fae1df278fc7
[ "Apache-2.0" ]
13
2020-11-05T04:22:51.000Z
2022-02-27T08:44:50.000Z
tutorials/create_sakila/migrations/0001_initial.py
MeGustas-5427/SQL_Tutorials
627372c2d5d8656d72645830c9a1fae1df278fc7
[ "Apache-2.0" ]
null
null
null
tutorials/create_sakila/migrations/0001_initial.py
MeGustas-5427/SQL_Tutorials
627372c2d5d8656d72645830c9a1fae1df278fc7
[ "Apache-2.0" ]
2
2020-11-10T10:01:20.000Z
2021-04-07T02:33:29.000Z
# Generated by Django 3.1.5 on 2021-01-11 08:07 from django.db import migrations, models import django.db.models.deletion import django_mysql.models import utils.models
58.157593
3,672
0.564862
e30dad35391d44bf3295ac9fde3a87c8c67a561f
2,098
py
Python
ncrf_to_bed.py
makovalab-psu/NoiseCancellingRepeatFinder
b24732ae73a4cef431277664ad4193a0638758c1
[ "MIT" ]
16
2019-03-30T05:15:53.000Z
2022-01-28T15:20:06.000Z
ncrf_to_bed.py
makovalab-psu/NoiseCancellingRepeatFinder
b24732ae73a4cef431277664ad4193a0638758c1
[ "MIT" ]
8
2019-04-04T19:46:08.000Z
2020-11-18T15:11:53.000Z
ncrf_to_bed.py
makovalab-psu/NoiseCancellingRepeatFinder
b24732ae73a4cef431277664ad4193a0638758c1
[ "MIT" ]
6
2019-10-05T05:16:00.000Z
2021-01-28T10:07:49.000Z
#!/usr/bin/env python """ Convert the output of Noise Cancelling Repeat Finder to bed format. """ from sys import argv,stdin,stdout,stderr,exit from os import path as os_path from ncrf_parse import alignments,parse_noise_rate if __name__ == "__main__": main()
29.549296
76
0.605815
e30fa4b4018e2cb629164838090fb39449877a74
2,551
py
Python
advertorch/tests/test_utilities.py
sleepstagingrest/rest
cf0de7ae82b6b74fe23e9d057214970cd3c9672d
[ "MIT" ]
18
2020-02-03T07:14:40.000Z
2021-12-20T18:45:43.000Z
advertorch/tests/test_utilities.py
sleepstagingrest/rest
cf0de7ae82b6b74fe23e9d057214970cd3c9672d
[ "MIT" ]
11
2020-01-28T23:16:25.000Z
2022-02-10T01:04:56.000Z
advertorch/tests/test_utilities.py
sleepstagingrest/REST
cf0de7ae82b6b74fe23e9d057214970cd3c9672d
[ "MIT" ]
2
2020-08-20T08:15:09.000Z
2021-02-23T07:30:40.000Z
# Copyright (c) 2018-present, Royal Bank of Canada. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import warnings import numpy as np import torch import torchvision.transforms.functional as F from advertorch.utils import torch_allclose from advertorch.utils import CIFAR10_MEAN from advertorch.utils import CIFAR10_STD from advertorch.utils import MNIST_MEAN from advertorch.utils import MNIST_STD from advertorch.utils import NormalizeByChannelMeanStd from advertorch.utils import PerImageStandardize from advertorch_examples.utils import bchw2bhwc from advertorch_examples.utils import bhwc2bchw
30.73494
74
0.717758
e30ff60533abef30a592ebe83ada7b1e9f61003f
5,595
py
Python
RV/portfolio/portfolio/hindex.py
rmomizo/portfolio_bot
b7854c4b5c9f32e9631389bb2238b5bb30d54c8e
[ "MIT" ]
null
null
null
RV/portfolio/portfolio/hindex.py
rmomizo/portfolio_bot
b7854c4b5c9f32e9631389bb2238b5bb30d54c8e
[ "MIT" ]
null
null
null
RV/portfolio/portfolio/hindex.py
rmomizo/portfolio_bot
b7854c4b5c9f32e9631389bb2238b5bb30d54c8e
[ "MIT" ]
null
null
null
from __future__ import division import itertools import matplotlib.pyplot as plt from matplotlib.pyplot import savefig import random from random import shuffle from collections import Counter def term_frequency(somelist): """Returns the term frequency of each unique token in the term list""" somelist = flatten_list(somelist) term_freqs = dict(Counter(somelist)) return term_freqs def h_tag_nodes(somelist): """ Tag tokens in a processed list as either autosemantic(fast) or synsematic(slow). """ fast = fast_h(somelist) fasth = [(word, {'h':'syns'}) for (word, rank) in fast] slow = slow_h(somelist) slowh = [(word, {'h':'auto'}) for (word,rank) in slow] h_tags = fasth + slowh return h_tags def extract_fast_h(list_of_cycle_length_freqs, cycles): """ This is specifically designed to extract lists from lists by comparing the length of the nested list to the most frequent cycles lengths found using fast_h method """ fh = [key for (key, (val1, val2)) in fast_h(list_of_cycle_length_freqs)] fast_cycles = [cycle for cycle in cycles if len(cycle) in fh] return fast_cycles def extract_slow_h(list_of_cycle_length_freqs, cycles): """ This is specifically designed to extract lists from lists by comparing the length of the nested list to the most frequent cycles lengths found using slow_h method """ sh = [key for (key, (val1, val2)) in slow_h(list_of_cycle_length_freqs)] slow_cycles = [cycle for cycle in cycles if len(cycle) in sh] return slow_cycles
32.719298
94
0.557283
e3106531f1b9e6f9266ac05f2587a787cfc4e699
1,316
py
Python
operators/device_output.py
a1exwang/fm-synth
fb14aa1dec3798b15a607ac03442decf322bebee
[ "MIT" ]
3
2018-01-18T12:25:38.000Z
2020-03-19T13:19:31.000Z
operators/device_output.py
a1exwang/fm-synth
fb14aa1dec3798b15a607ac03442decf322bebee
[ "MIT" ]
4
2017-04-24T16:36:59.000Z
2017-05-11T11:23:44.000Z
operators/device_output.py
a1exwang/fm-synth
fb14aa1dec3798b15a607ac03442decf322bebee
[ "MIT" ]
null
null
null
from PyQt5.QtCore import pyqtSlot from channels.channel import Channel from operators.base import OutputOperator import numpy as np
34.631579
105
0.575988
e31093c826bcdc408129c3db911766a20c8f8973
524
py
Python
code/0217-containsDuplicate.py
RRRoger/LeetCodeExercise
0019a048fcfac9ac9e6f37651b17d01407c92c7d
[ "MIT" ]
null
null
null
code/0217-containsDuplicate.py
RRRoger/LeetCodeExercise
0019a048fcfac9ac9e6f37651b17d01407c92c7d
[ "MIT" ]
null
null
null
code/0217-containsDuplicate.py
RRRoger/LeetCodeExercise
0019a048fcfac9ac9e6f37651b17d01407c92c7d
[ "MIT" ]
null
null
null
if "__main__" == __name__: solution = Solution() n = 1025 res = solution.isPowerOfTwo(n) print(res)
15.878788
34
0.412214
e310a6a628079388cd4034e0733f019c20a04124
308
py
Python
yak/rest_social_auth/utils.py
johnchuks/YAK-server
910af81a7b23e88585479131886c627e33163de1
[ "MIT" ]
15
2015-10-10T07:56:23.000Z
2021-07-26T14:39:17.000Z
yak/rest_social_auth/utils.py
johnchuks/YAK-server
910af81a7b23e88585479131886c627e33163de1
[ "MIT" ]
26
2015-01-06T00:43:50.000Z
2018-10-29T03:12:09.000Z
yak/rest_social_auth/utils.py
johnchuks/YAK-server
910af81a7b23e88585479131886c627e33163de1
[ "MIT" ]
8
2015-09-28T14:47:52.000Z
2018-02-09T18:53:53.000Z
from celery.task import task from django.conf import settings from social_core.backends.utils import get_backend
30.8
86
0.834416
e312667320932a26f8caa618268190a0a7f675cc
7,753
py
Python
filepath/NuclearCMC_raw_data_file_list.py
hbar/alsTomographyTools
ec1edd1477367a57ee94e806134aee92e57db977
[ "MIT" ]
null
null
null
filepath/NuclearCMC_raw_data_file_list.py
hbar/alsTomographyTools
ec1edd1477367a57ee94e806134aee92e57db977
[ "MIT" ]
null
null
null
filepath/NuclearCMC_raw_data_file_list.py
hbar/alsTomographyTools
ec1edd1477367a57ee94e806134aee92e57db977
[ "MIT" ]
null
null
null
#pathList = [ #"/global/project/projectdirs/als/spade/warehouse/als/bl832/phosemann/20160512_092220_tensile7_T700_240mic/raw/20160512_092220_tensile7_T700_240mic.h5", #"/global/project/projectdirs/als/spade/warehouse/als/bl832/phosemann/20160512_085327_tensile7_T700_200mic/raw/20160512_085327_tensile7_T700_200mic.h5", #"/global/project/projectdirs/als/spade/warehouse/als/bl832/phosemann/20160512_083018_tensile7_T700_140mic/raw/20160512_083018_tensile7_T700_140mic.h5", #"/global/project/projectdirs/als/spade/warehouse/als/bl832/phosemann/20160512_080231_tensile7_T700_100mic/raw/20160512_080231_tensile7_T700_100mic.h5", #"/global/project/projectdirs/als/spade/warehouse/als/bl832/phosemann/20160512_073647_tensile7_T700_060mic/raw/20160512_073647_tensile7_T700_060mic.h5", #"/global/project/projectdirs/als/spade/warehouse/als/bl832/phosemann/20160512_071026_tensile7_T700_040mic/raw/20160512_071026_tensile7_T700_040mic.h5", #"/global/project/projectdirs/als/spade/warehouse/als/bl832/phosemann/20160512_064307_tensile7_T700_020mic/raw/20160512_064307_tensile7_T700_020mic.h5", #"/global/project/projectdirs/als/spade/warehouse/als/bl832/phosemann/20160512_061643_tensile7_T700_baseline1/raw/20160512_061643_tensile7_T700_baseline1.h5", #.... fileListALL = [ "20131023_095305_TRISO_Shell", "20131023_100150_TRISO_Shell", "20131023_100319_TRISO_Shell", "20131023_111954_TRISO_Shell_2", "20131023_160337_TRISO_Shell_2", "20131023_165529_SiC-SiC_fiber1", "20131023_173205_SiC-SiC_fiber1_LuAG", "20160427_134903_T3_scan1_5lb", "20160427_141044_T3_scan2_12lb", "20160427_143230_T3_scan2_13lb", "20160427_145232_T3_scan4_broken", "20160427_155707_T2_scan1_10x_RT_broken", "20160427_181029_T5_scan1_10x_RT", "20160427_194922_T5_scan2_10x_700C_lowload", "20160427_200524_T5_scan3_10x_700C_50um", "20160427_201945_T5_scan4_10x_700C_100um", "20160427_203402_T5_scan5_10x_700C_150um", "20160427_204733_T5_scan6_10x_700C_180um", "20160427_210036_T5_scan7_10x_700C_205um", "20160427_211351_T5_scan8_10x_700C_240um", "20160427_212644_T5_scan9_10x_700C_290um", "20160427_214157_T5_scan10_10x_700C_340um", "20160427_215424_T5_scan11_10x_700C_380um_break", #"20160428_094431_test", #"20160429_105847_test", "20160511_114747_tensile6_RT_scan0", "20160511_120731_tensile6_RT_scan1", "20160511_124156_tensile6_RT_scan2", "20160511_133259_tensile6_RT_scan3", "20160511_141112_tensile6_RT_scan4", "20160511_144829_tensile6_RT_scan5", "20160511_152620_tensile6_RT_scan6", "20160511_155912_tensile6_RT_scan7", "20160511_164956_tensile6_RT_automation", "20160511_171448_tensile6_RT_automation", "20160511_173948_tensile6_RT_automation", "20160511_180448_tensile6_RT_automation", "20160511_182950_tensile6_RT_automation", "20160511_185451_tensile6_RT_automation", "20160511_191955_tensile6_RT_automation", "20160511_194454_tensile6_RT_automation", "20160511_210757_tensile9_T1000_baseline1", "20160511_212851_tensile9_T1000_baseline2", "20160511_215551_tensile6_RT_automation", "20160511_222053_tensile6_RT_automation", "20160511_224554_tensile6_RT_automation", "20160511_231059_tensile6_RT_automation", "20160511_233557_tensile6_RT_automation", "20160512_000100_tensile6_RT_automation", "20160512_002605_tensile6_RT_automation", "20160512_005106_tensile6_RT_automation", "20160512_011607_tensile6_RT_automation", "20160512_014105_tensile6_RT_automation", "20160512_020605_tensile6_RT_automation", "20160512_023115_tensile6_RT_automation", "20160512_025622_tensile6_RT_automation", "20160512_032120_tensile6_RT_automation", "20160512_034618_tensile6_RT_automation", "20160512_041123_tensile6_RT_automation", "20160512_061643_tensile7_T700_baseline1", "20160512_064307_tensile7_T700_020mic", "20160512_071026_tensile7_T700_040mic", "20160512_073647_tensile7_T700_060mic", "20160512_080231_tensile7_T700_100mic", "20160512_083018_tensile7_T700_140mic", "20160512_085327_tensile7_T700_200mic", "20160512_092220_tensile7_T700_240mic", "20160915_111315_filename", "20160915_115049_TowA_10x_testrun", "20160915_123154_TowA_10x_testrun2", "20160915_125446_TowA_10x_testrun2", "20160915_132337_TowA_10x_testrun3", "20160915_133622_TowA_5x_testrun4", "20160915_135147_TowA_5x_testrun5", "20160915_140821_TowA_5x_testrun6", "20160915_143002_TowA_5x_testrun7", "20160915_145626_TowA_5x_testrun8", "20160915_151537_TowA_10x_baseload", "20160915_153039_TowA_10x_10um", "20160915_154304_TowA_10x_20um", "20160915_155844_TowA_10x_50um", "20160915_161315_TowA_10x_90um", "20160915_163009_TowA_10x_120um", "20160915_164534_TowA_10x_150um", "20160915_170105_TowA_10x_190um", "20160915_171946_TowA_10x_240um", "20160915_182720_TowB_10x_baseload", "20160915_191935_TowB_10x_baseload", "20160915_194458_TowB_10x_20um", "20160915_195935_TowB_10x_automation", "20160915_201303_TowB_10x_automation", "20160915_202619_TowB_10x_automation", "20160915_204037_TowB_10x_automation", "20160915_205552_TowB_10x_automation", "20160915_211209_TowB_10x_automation", "20160915_212622_TowB_10x_automation", "20160915_213947_TowB_10x_automation", "20160915_222012_TowC_5x_baseload_RT", "20160915_230717_TowC_5x_automated", "20160915_231816_TowC_5x_automated", "20160915_232910_TowC_5x_automated", "20160915_234856_TowC_5x_automated", "20160916_000349_TowC_5x_automated", "20160916_013821_TowD_5x_baseload_RT", "20160916_020612_TowD_5x_automation", "20160916_021651_TowD_5x_automation", "20160916_022742_TowD_5x_automation", "20160916_023832_TowD_5x_automation", "20160916_025102_TowD_5x_automation", "20160916_030236_TowD_5x_automation" ] fileListShort = [ "20160512_064307_tensile7_T700_020mic", "20160512_071026_tensile7_T700_040mic", "20160512_073647_tensile7_T700_060mic", "20160512_080231_tensile7_T700_100mic", "20160512_083018_tensile7_T700_140mic", "20160512_085327_tensile7_T700_200mic", "20160512_092220_tensile7_T700_240mic" ] fileListTEST = [ "20160512_061643_tensile7_T700_baseline1", "20160512_064307_tensile7_T700_020mic", "20160512_071026_tensile7_T700_040mic"] fileList20160915 = [ #"20160915_111315_filename", #"20160915_115049_TowA_10x_testrun", #"20160915_123154_TowA_10x_testrun2", #"20160915_125446_TowA_10x_testrun2", #"20160915_132337_TowA_10x_testrun3", #"20160915_133622_TowA_5x_testrun4", #"20160915_135147_TowA_5x_testrun5", #"20160915_140821_TowA_5x_testrun6", #"20160915_143002_TowA_5x_testrun7", #"20160915_145626_TowA_5x_testrun8", #"20160915_151537_TowA_10x_baseload", "20160915_153039_TowA_10x_10um", "20160915_154304_TowA_10x_20um", "20160915_155844_TowA_10x_50um", "20160915_161315_TowA_10x_90um", "20160915_163009_TowA_10x_120um", "20160915_164534_TowA_10x_150um", "20160915_170105_TowA_10x_190um", "20160915_171946_TowA_10x_240um", "20160915_182720_TowB_10x_baseload", "20160915_191935_TowB_10x_baseload", "20160915_194458_TowB_10x_20um", "20160915_195935_TowB_10x_automation", "20160915_201303_TowB_10x_automation", "20160915_202619_TowB_10x_automation", "20160915_204037_TowB_10x_automation", "20160915_205552_TowB_10x_automation", "20160915_211209_TowB_10x_automation", "20160915_212622_TowB_10x_automation", "20160915_213947_TowB_10x_automation", "20160915_222012_TowC_5x_baseload_RT", "20160915_230717_TowC_5x_automated", "20160915_231816_TowC_5x_automated", "20160915_232910_TowC_5x_automated", "20160915_234856_TowC_5x_automated", "20160916_000349_TowC_5x_automated", "20160916_013821_TowD_5x_baseload_RT", "20160916_020612_TowD_5x_automation", "20160916_021651_TowD_5x_automation", "20160916_022742_TowD_5x_automation", "20160916_023832_TowD_5x_automation", "20160916_025102_TowD_5x_automation", "20160916_030236_TowD_5x_automation" ] fileList = fileList20160915
40.591623
159
0.864569
e312d0f86ad81db6700f196a91af6d00bac33137
3,870
py
Python
app/discal/cogs/handler.py
Shirataki2/DisCalendar
cfb5ecad6c65911fbb041cbc585d86588de125f5
[ "MIT" ]
6
2020-11-29T08:04:07.000Z
2021-05-07T11:05:10.000Z
app/discal/cogs/handler.py
Shirataki2/DisCalendar
cfb5ecad6c65911fbb041cbc585d86588de125f5
[ "MIT" ]
139
2020-11-24T23:37:03.000Z
2022-03-30T00:18:09.000Z
app/discal/cogs/handler.py
Shirataki2/DisCalendar
cfb5ecad6c65911fbb041cbc585d86588de125f5
[ "MIT" ]
1
2021-02-01T15:07:17.000Z
2021-02-01T15:07:17.000Z
import asyncio import json import discord from discord.ext import commands, tasks from discal.bot import Bot from datetime import datetime, timedelta from discal.logger import get_module_logger logger = get_module_logger(__name__)
36.168224
100
0.496382
e312d4733d2d6ab5dadd53371794d5b4269ec969
2,738
py
Python
nids/enipcip/enip_cpf.py
Cyphysecurity/ICS-SDN-1
c04d9e7bb7ad945166e969e071a2f82fb5bd18bf
[ "MIT" ]
4
2019-12-17T08:59:57.000Z
2022-01-09T19:52:27.000Z
nids/enipcip/enip_cpf.py
Cyphysecurity/ICS-SDN-1
c04d9e7bb7ad945166e969e071a2f82fb5bd18bf
[ "MIT" ]
3
2020-08-13T16:05:46.000Z
2021-10-17T07:49:33.000Z
nids/enipcip/enip_cpf.py
Cyphysecurity/ICS-SDN-1
c04d9e7bb7ad945166e969e071a2f82fb5bd18bf
[ "MIT" ]
4
2017-06-14T23:41:50.000Z
2021-03-01T18:54:03.000Z
#!/usr/bin/env python2 # -*- coding: utf-8 -*- # Copyright (c) 2015 David I. Urbina, david.urbina@utdallas.edu # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. """Ethernet/IP Common Packet Format Scapy dissector.""" import struct from scapy import all as scapy_all from . import utils scapy_all.bind_layers(CPF_AddressDataItem, CPF_SequencedAddressItem, type_id=0x8002)
36.506667
106
0.685172
e314ca5cb9348b5a95152247da6288de4e244796
1,103
py
Python
programming_hw_4s/tasks_with_eolymp_tags/t_7_6_(eolimp_5089).py
andriidem308/python_practice
85a0ebd6ecbecf63eaba170c8279f0a88600237a
[ "MIT" ]
2
2020-01-27T11:58:54.000Z
2020-03-30T10:54:08.000Z
programming_hw_4s/tasks_with_eolymp_tags/t_7_6_(eolimp_5089).py
andriidem308/python_practice
85a0ebd6ecbecf63eaba170c8279f0a88600237a
[ "MIT" ]
null
null
null
programming_hw_4s/tasks_with_eolymp_tags/t_7_6_(eolimp_5089).py
andriidem308/python_practice
85a0ebd6ecbecf63eaba170c8279f0a88600237a
[ "MIT" ]
null
null
null
n = int(input()) words = [''] * n for i in range(n): words[i] = input() # merge_sort(words) insertion_sort(words, n) for w in words: print(w)
19.350877
55
0.44243
e31548410089b175367898405bf5be3d08d7b387
418
py
Python
electionleaflets/apps/content/models.py
electionleaflets/electionleaflets
4110e96a3035c32d0b6ff3c9f832c5e003728170
[ "MIT" ]
null
null
null
electionleaflets/apps/content/models.py
electionleaflets/electionleaflets
4110e96a3035c32d0b6ff3c9f832c5e003728170
[ "MIT" ]
23
2015-02-19T14:02:23.000Z
2015-04-30T11:14:01.000Z
electionleaflets/apps/content/models.py
electionleaflets/electionleaflets
4110e96a3035c32d0b6ff3c9f832c5e003728170
[ "MIT" ]
2
2015-02-02T19:39:54.000Z
2017-02-08T09:19:53.000Z
from django.db import models
24.588235
79
0.662679
e316c0dee9255d1c94a21d0fb077092ad8593724
162
py
Python
Python/1017.py
lucasferreiraa/uri-judge-respostas
f5fc659d53c6b512a3624764041675e62d3fa053
[ "MIT" ]
null
null
null
Python/1017.py
lucasferreiraa/uri-judge-respostas
f5fc659d53c6b512a3624764041675e62d3fa053
[ "MIT" ]
null
null
null
Python/1017.py
lucasferreiraa/uri-judge-respostas
f5fc659d53c6b512a3624764041675e62d3fa053
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # URI Judge - Problema 1017 tempo = int(input()) velocidade = int(input()) litros = (velocidade / 12.0) * tempo print("%.3f" % litros)
16.2
36
0.604938
e316f4ba8d78958af8ea71861f55f56a0c25786e
765
py
Python
Algorithms and Data Structures/sort/qks.py
ioyy900205/PyTorch_mess-around
90d255e17158699fd7902f7746b35fa18975112e
[ "MIT" ]
null
null
null
Algorithms and Data Structures/sort/qks.py
ioyy900205/PyTorch_mess-around
90d255e17158699fd7902f7746b35fa18975112e
[ "MIT" ]
null
null
null
Algorithms and Data Structures/sort/qks.py
ioyy900205/PyTorch_mess-around
90d255e17158699fd7902f7746b35fa18975112e
[ "MIT" ]
null
null
null
''' Date: 2021-08-10 17:17:35 LastEditors: Liuliang LastEditTime: 2021-08-10 18:27:56 Description: ''' import random import sys sys.path.append("..") from bacic_module.random_int_list import random_int_list c = random_int_list(0,10,10) print(c) p = qks(c,0,len(c)-1) print(c)
21.25
56
0.605229
e318e94372f3438841131a8e520812b4b488dc1f
2,144
py
Python
Core/config/CYCEnv/run_json_CYC_envs.py
geoffroygivry/CyclopsVFX-Unity
6ab9ab122b6c3e6200e90d49a0c2bf774e53d985
[ "MIT" ]
17
2017-06-27T04:14:42.000Z
2022-03-07T03:37:44.000Z
Core/config/CYCEnv/run_json_CYC_envs.py
geoffroygivry/Cyclops-VFX
6ab9ab122b6c3e6200e90d49a0c2bf774e53d985
[ "MIT" ]
2
2017-06-14T04:17:51.000Z
2018-08-23T20:12:44.000Z
Core/config/CYCEnv/run_json_CYC_envs.py
geoffroygivry/CyclopsVFX-Unity
6ab9ab122b6c3e6200e90d49a0c2bf774e53d985
[ "MIT" ]
2
2019-03-18T06:18:33.000Z
2019-08-14T21:07:53.000Z
import os import json create_json_CYC_envs("/home/geoff/Dropbox")
39.703704
65
0.58722
e31a51d9bad6493d50583997c938e58165b7c257
956
py
Python
tests/some_test.py
ShashkovS/drawzero
3722b2fccb655779b6b62e97b1584683413d7fc0
[ "MIT" ]
2
2020-08-06T09:51:43.000Z
2020-08-06T10:03:58.000Z
tests/some_test.py
ShashkovS/drawzero
3722b2fccb655779b6b62e97b1584683413d7fc0
[ "MIT" ]
null
null
null
tests/some_test.py
ShashkovS/drawzero
3722b2fccb655779b6b62e97b1584683413d7fc0
[ "MIT" ]
null
null
null
import unittest import drawzero ################################################################################ if __name__ == "__main__": unittest.main()
38.24
80
0.614017
e31af962393b8a7c27bf698791ef898144c732f5
4,143
py
Python
test/unit/api/test_api_safety.py
technocreep/FEDOT
c11f19d1d231bd9c1d96d6e39d14697a028f6272
[ "BSD-3-Clause" ]
null
null
null
test/unit/api/test_api_safety.py
technocreep/FEDOT
c11f19d1d231bd9c1d96d6e39d14697a028f6272
[ "BSD-3-Clause" ]
null
null
null
test/unit/api/test_api_safety.py
technocreep/FEDOT
c11f19d1d231bd9c1d96d6e39d14697a028f6272
[ "BSD-3-Clause" ]
null
null
null
import numpy as np from fedot.api.api_utils.api_data import ApiDataProcessor from fedot.api.api_utils.api_data_analyser import DataAnalyser from fedot.api.main import Fedot from fedot.core.data.data import InputData from fedot.core.repository.dataset_types import DataTypesEnum from fedot.core.repository.tasks import TaskTypesEnum, Task from fedot.preprocessing.preprocessing import DataPreprocessor from test.unit.api.test_main_api import composer_params def get_data_analyser_with_specific_params(max_size=18, max_cat_cardinality=5): """ Create a DataAnalyser object with small max dataset size and small max cardinality for categorical features""" safety_module = DataAnalyser(safe_mode=True) preprocessor = ApiDataProcessor(Task(TaskTypesEnum.classification)) safety_module.max_size = max_size safety_module.max_cat_cardinality = max_cat_cardinality return safety_module, preprocessor def get_small_cat_data(): """ Generate tabular data with categorical features.""" features = np.array([["a", "qq", 0.5], ["b", "pp", 1], ["c", np.nan, 3], ["d", "oo", 3], ["d", "oo", 3], ["d", "oo", 3], ["d", "oo", 3], ["d", "oo", 3]], dtype=object) target = np.array([0, 0, 0, 0, 1, 1, 1, 1]) input_data = InputData(idx=np.arange(features.shape[0]), features=features, target=target, data_type=DataTypesEnum.table, task=Task(TaskTypesEnum.classification)) input_data = DataPreprocessor().obligatory_prepare_for_fit(input_data) return input_data def test_safety_label_correct(): """ Check if cutting and label encoding is used for pseudo large data with categorical features with high cardinality """ api_safety, api_preprocessor = get_data_analyser_with_specific_params() data = get_small_cat_data() recs = api_safety.give_recommendation(data) api_preprocessor.accept_and_apply_recommendations(data, recs) assert data.features.shape[0] * data.features.shape[1] <= api_safety.max_size assert data.features.shape[1] == 3 assert data.features[0, 0] != 'a' def test_no_safety_needed_correct(): """ Check if oneHot encoding is used for small data with small cardinality of categorical features """ api_safety, api_preprocessor = get_data_analyser_with_specific_params(max_size=100, max_cat_cardinality=100) data = get_small_cat_data() recs = api_safety.give_recommendation(data) api_preprocessor.accept_and_apply_recommendations(data, recs) assert data.features.shape[0] * data.features.shape[1] == 24 assert data.features.shape[1] == 3 assert data.features[0, 0] == 'a' def test_api_fit_predict_with_pseudo_large_dataset_with_label_correct(): """ Test if safe mode in API cut large data and use LabelEncoder for features with high cardinality """ model = Fedot(problem="classification", composer_params=composer_params) model.data_analyser.max_cat_cardinality = 5 model.data_analyser.max_size = 18 data = get_small_cat_data() pipeline = model.fit(features=data, predefined_model='auto') pipeline.predict(data) model.predict(features=data) # the should be only tree like models + data operations assert len(model.params.api_params['available_operations']) == 6 assert 'logit' not in model.params.api_params['available_operations'] def test_api_fit_predict_with_pseudo_large_dataset_with_onehot_correct(): """ Test if safe mode in API use OneHotEncoder with small data with small cardinality """ model = Fedot(problem="classification", composer_params=composer_params) model.data_analyser.max_size = 1000 data = get_small_cat_data() model.fit(features=data, predefined_model='auto') model.predict(features=data) # there should be all light models + data operations assert 'logit' in model.params.api_params['available_operations']
42.71134
118
0.69901
e31bbe934af2c97028c0e66dc59a02ae268f0c31
7,765
py
Python
parallelpy/parallelpy.py
krober/parallelpy
356fa0b75d3de2fa695b2fd64f0a53555f6bf55f
[ "MIT" ]
null
null
null
parallelpy/parallelpy.py
krober/parallelpy
356fa0b75d3de2fa695b2fd64f0a53555f6bf55f
[ "MIT" ]
1
2018-08-26T03:01:18.000Z
2018-08-26T03:01:18.000Z
parallelpy/parallelpy.py
krober/parallelpy
356fa0b75d3de2fa695b2fd64f0a53555f6bf55f
[ "MIT" ]
null
null
null
from multiprocessing import cpu_count, Manager, Process from time import sleep
34.665179
79
0.582228
e31cd77f7061ef13a9e31f26ee8ba9f374dfc272
9,781
py
Python
sfa/util/api.py
planetlab/sfa
d0f743e245e0bb24d7ed1016bcc6e61d1e558a95
[ "MIT" ]
1
2015-11-19T13:34:45.000Z
2015-11-19T13:34:45.000Z
sfa/util/api.py
planetlab/sfa
d0f743e245e0bb24d7ed1016bcc6e61d1e558a95
[ "MIT" ]
null
null
null
sfa/util/api.py
planetlab/sfa
d0f743e245e0bb24d7ed1016bcc6e61d1e558a95
[ "MIT" ]
null
null
null
# # SFA XML-RPC and SOAP interfaces # import sys import os import traceback import string import xmlrpclib import sfa.util.xmlrpcprotocol as xmlrpcprotocol from sfa.util.sfalogging import logger from sfa.trust.auth import Auth from sfa.util.config import * from sfa.util.faults import * from sfa.util.cache import Cache from sfa.trust.credential import * from sfa.trust.certificate import * # See "2.2 Characters" in the XML specification: # # #x9 | #xA | #xD | [#x20-#xD7FF] | [#xE000-#xFFFD] # avoiding # [#x7F-#x84], [#x86-#x9F], [#xFDD0-#xFDDF] invalid_xml_ascii = map(chr, range(0x0, 0x8) + [0xB, 0xC] + range(0xE, 0x1F)) xml_escape_table = string.maketrans("".join(invalid_xml_ascii), "?" * len(invalid_xml_ascii)) def xmlrpclib_escape(s, replace = string.replace): """ xmlrpclib does not handle invalid 7-bit control characters. This function augments xmlrpclib.escape, which by default only replaces '&', '<', and '>' with entities. """ # This is the standard xmlrpclib.escape function s = replace(s, "&", "&amp;") s = replace(s, "<", "&lt;") s = replace(s, ">", "&gt;",) # Replace invalid 7-bit control characters with '?' return s.translate(xml_escape_table) def xmlrpclib_dump(self, value, write): """ xmlrpclib cannot marshal instances of subclasses of built-in types. This function overrides xmlrpclib.Marshaller.__dump so that any value that is an instance of one of its acceptable types is marshalled as that type. xmlrpclib also cannot handle invalid 7-bit control characters. See above. """ # Use our escape function args = [self, value, write] if isinstance(value, (str, unicode)): args.append(xmlrpclib_escape) try: # Try for an exact match first f = self.dispatch[type(value)] except KeyError: raise # Try for an isinstance() match for Type, f in self.dispatch.iteritems(): if isinstance(value, Type): f(*args) return raise TypeError, "cannot marshal %s objects" % type(value) else: f(*args) # You can't hide from me! xmlrpclib.Marshaller._Marshaller__dump = xmlrpclib_dump # SOAP support is optional try: import SOAPpy from SOAPpy.Parser import parseSOAPRPC from SOAPpy.Types import faultType from SOAPpy.NS import NS from SOAPpy.SOAPBuilder import buildSOAP except ImportError: SOAPpy = None
34.807829
112
0.618546
e31d9fd874884c64a5cfd7e556213a44724536fb
9,507
py
Python
deanslist/deanslist.py
upeducationnetwork/deanslist-python
226eda2580055427119397bc28e7976f019d7301
[ "MIT" ]
null
null
null
deanslist/deanslist.py
upeducationnetwork/deanslist-python
226eda2580055427119397bc28e7976f019d7301
[ "MIT" ]
2
2016-05-16T19:54:26.000Z
2016-05-20T12:02:20.000Z
deanslist/deanslist.py
upeducationnetwork/deanslist-python
226eda2580055427119397bc28e7976f019d7301
[ "MIT" ]
null
null
null
__author__ = 'rknight' import os import csv import logging import datetime from requests_futures.sessions import FuturesSession def dlrequest(reports, dlkeys): ''' Primary function to get data for a range of dates Returns a dict. Structure should be: {'outname': {'data': [all the data for this report with one list item per school], 'write': whether to write or append}, 'second outname': {'data': [all the data for this report with one list item per key], 'write': whether to write or append}, etc } ''' session = FuturesSession(max_workers=10) allreports = {} futures = [] # This is run in background once the download is completed # Throw the requests at Deanslist for ireport in reports: outname = ireport['outname'] url = ireport['reporturl'] allreports[outname] = {'data': [], 'write': ireport.get('rewrite', 'w')} for dlkey in dlkeys: futures.append(session.get(url, params={'sdt': ireport.get('pulldate', ''), 'edt': ireport.get('enddate', ''), 'apikey': dlkey}, background_callback=lambda sess, resp, outname=outname: bg_call(sess, resp, outname))) # Parse errors in the results for f in futures: try: f.result() except: logging.warning('{0}'.format(f.exception)) continue return allreports def dlrequest_single(reporturl, sdt, edt, dlkeys, session = FuturesSession(max_workers=5)): """ Request and write a single report for all schools for a date range """ alldat = [] futures = [] url = reporturl # Throw the requests at Deanslist for dlkey in dlkeys: futures.append(session.get(url, params={'sdt': sdt, 'edt': edt, 'apikey': dlkey})) # Parse errors in the results for f in futures: try: response = f.result() except MemoryError: logging.warning('Memory Error.') if response.status_code != 200: logging.warning('Response code {0} for {1}'.format(response.status_code, response.url)) continue # Append results dat = response.json() alldat.extend(dat['data']) return alldat def writefile(outname, dataset, headers=None, rewrite='a'): """ Utility to write results to file """ if len(dataset) == 0: logging.warning('No data for {0}'.format(outname)) return # Make default headers if not headers: headers = sorted(list(dataset[0].keys())) # Flag to write headers if its the first time exists = os.path.isfile(outname) # Write output with open(outname, rewrite, encoding='utf-8') as file: outfile = csv.DictWriter(file, headers, lineterminator='\n') if not exists or rewrite == 'w': outfile.writeheader() for row in dataset: outfile.writerow(row) # Parse & write the incidents module, which has a unique json structure
31.376238
141
0.577154
e31da554e9612910aa7b87468de6e4101ac08273
7,210
py
Python
anchore_engine/services/policy_engine/api/models/image.py
roachmd/anchore-engine
521d6796778139a95f51542670714205c2735a81
[ "Apache-2.0" ]
null
null
null
anchore_engine/services/policy_engine/api/models/image.py
roachmd/anchore-engine
521d6796778139a95f51542670714205c2735a81
[ "Apache-2.0" ]
null
null
null
anchore_engine/services/policy_engine/api/models/image.py
roachmd/anchore-engine
521d6796778139a95f51542670714205c2735a81
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 from __future__ import absolute_import from datetime import date, datetime # noqa: F401 from typing import List, Dict # noqa: F401 from anchore_engine.services.policy_engine.api.models.base_model_ import Model from anchore_engine.services.policy_engine.api import util
27.414449
156
0.59251
e31e1e564d0eb470b1f222fdeb2e2e5813305ea2
28,531
py
Python
src/pte_decode/decoding/decoder_factory.py
richardkoehler/pte-decode
d1a466c166e5c3dd5e2c0caf1b12492f0e93bc57
[ "MIT" ]
null
null
null
src/pte_decode/decoding/decoder_factory.py
richardkoehler/pte-decode
d1a466c166e5c3dd5e2c0caf1b12492f0e93bc57
[ "MIT" ]
null
null
null
src/pte_decode/decoding/decoder_factory.py
richardkoehler/pte-decode
d1a466c166e5c3dd5e2c0caf1b12492f0e93bc57
[ "MIT" ]
null
null
null
"""Module for machine learning models.""" from dataclasses import dataclass from typing import Any, Optional, Union import numpy as np import pandas as pd from bayes_opt import BayesianOptimization from catboost import CatBoostClassifier from sklearn.discriminant_analysis import ( LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis, ) from sklearn.dummy import DummyClassifier from sklearn.linear_model import LogisticRegression from sklearn.metrics import balanced_accuracy_score, log_loss from sklearn.model_selection import GroupKFold, GroupShuffleSplit # from sklearn.svm import SVC from xgboost import XGBClassifier from pte_decode.decoding.decoder_base import Decoder def get_decoder( classifier: str = "lda", scoring: str = "balanced_accuracy", balancing: Optional[str] = None, optimize: bool = False, ) -> Decoder: """Create and return Decoder of desired type. Parameters ---------- classifier : str Allowed values for `classifier`: ["catboost", "lda", "lin_svm", "lr", "svm_lin", "svm_poly", "svm_rbf", "xgb"]. scoring : str | None, default="balanced_accuracy" Score to be calculated. Possible values: ["oversample", "undersample", "balance_weights"]. balancing : str | None, default=None Method for balancing skewed datasets. Possible values: ["oversample", "undersample", "balance_weights"]. Returns ------- Decoder Instance of Decoder given `classifer` and `balancing` method. """ classifiers = { "catboost": CATB, "dummy": Dummy, "lda": LDA, "lr": LR, "qda": QDA, # "svm_lin": SVC_Lin, # "svm_poly": SVC_Poly, # "svm_rbf": SVC_RBF, "xgb": XGB, } scoring_methods = { "balanced_accuracy": _get_balanced_accuracy, "log_loss": _get_log_loss, } classifier = classifier.lower() balancing = balancing.lower() if isinstance(balancing, str) else balancing scoring = scoring.lower() if classifier not in classifiers: raise DecoderNotFoundError(classifier, classifiers.keys()) if scoring not in scoring_methods: raise ScoringMethodNotFoundError(scoring, scoring_methods.keys()) return classifiers[classifier]( balancing=balancing, optimize=optimize, scoring=scoring_methods[scoring], ) def _get_balanced_accuracy(model, data_test, label_test) -> Any: """Calculated balanced accuracy score.""" return balanced_accuracy_score(label_test, model.predict(data_test)) def _get_log_loss(model, data_test, label_test) -> Any: """Calculate Log Loss score.""" return log_loss(label_test, model.predict_proba(data_test))
33.68477
78
0.537836
e3203c55f3123f00f21c9072e3c16a2c74fb421f
7,603
py
Python
pikoToHM.py
lucasHSA/piko
a0bca6bfbdf1ecf95fd8dcca563350c676d2edf7
[ "MIT" ]
null
null
null
pikoToHM.py
lucasHSA/piko
a0bca6bfbdf1ecf95fd8dcca563350c676d2edf7
[ "MIT" ]
1
2016-07-18T08:24:50.000Z
2016-12-17T09:19:07.000Z
pikoToHM.py
lucasHSA/piko
a0bca6bfbdf1ecf95fd8dcca563350c676d2edf7
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # The MIT License (MIT) # # Copyright (c) 2015 Lucas Koegel # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from piko import Piko from hm import HM from pyowm import OWM import time import sys import logging, logging.handlers logger = logging.getLogger() logger.setLevel(logging.DEBUG) ch = logging.StreamHandler() ch.setLevel(logging.INFO) fh = logging.handlers.RotatingFileHandler('/home/pi/Desktop/piko/pikoToHM.log', maxBytes=1024*1024*512, backupCount=2) fh.setLevel(logging.DEBUG) logging.getLogger('urllib3.connectionpool').setLevel(logging.WARNING) format = logging.Formatter('%(asctime)s %(levelname)s: %(message)s') ch.setFormatter(format) fh.setFormatter(format) logger.addHandler(ch) logger.addHandler(fh) PIKO_INTERVAL = 30 # seconds OWM_INTERVAL = 1800 # seconds HM_PV_REMAINING_POWER_ID = 12772 HM_PV_STRING_1_POWER_ID = 15241 HM_PV_STRING_2_POWER_ID = 15242 HM_WEATHER_FORECAST_CLOUDS_ID = 20144 HM_WEATHER_CURRENT_TEMPERATURE_ID = 21442 HM_WEATHER_FORECAST_TEMPERATURE_ID = 21443 OWM_API_KEY = 'insert' OWM_CITY_ID = 2835477 logging.info('Started') p = Piko(host='http://192.168.178.123') hm = HM('http://192.168.178.49') owm = OWM(OWM_API_KEY) last_weather_update = time.time() - OWM_INTERVAL # - OWM_INTERVAL to update on first run while(True): try: # ------------------------------- # Weather now = time.time() if (now - last_weather_update) >= OWM_INTERVAL: try: # Queries the OWM web API for three hours weather forecast for the specified city ID. # A Forecaster object is returned, containing a Forecast instance covering a global streak of five days: # this instance encapsulates Weather objects, with a time interval of three hours one from each other logging.debug('Calling: owm.three_hours_forecast_at_id') forecast = owm.three_hours_forecast_at_id(OWM_CITY_ID).get_forecast() # get current weather logging.debug('Calling: owm.weather_at_id') weather = owm.weather_at_id(OWM_CITY_ID).get_weather() # set the cloud coverage of the weather to homematic # .get_clouds(): Returns the cloud coverage percentage as an int logging.debug('Calling: set_state HM_WEATHER_FORECAST_CLOUDS_ID') hm.set_state(HM_WEATHER_FORECAST_CLOUDS_ID, weather.get_clouds()) # set the current temperature of the weather to homematic # .get_temperature(): Returns a dict with temperature info {'temp': 293.4, 'temp_kf': None, 'temp_max': 297.5, 'temp_min': 290.9} hm.set_state(HM_WEATHER_CURRENT_TEMPERATURE_ID, weather.get_temperature(unit="celsius")["temp"]) # set the temperature of the weather in 12 hours to homematic # .get(): Lookups up into the Weather items list for the item at the specified index # .get_temperature(): Returns a dict with temperature info {'temp': 293.4, 'temp_kf': None, 'temp_max': 297.5, 'temp_min': 290.9} hm.set_state(HM_WEATHER_FORECAST_TEMPERATURE_ID, forecast.get(3).get_temperature(unit="celsius")["temp"]) # Update last_weather_update time last_weather_update = time.time() except: # catch *all* exceptions err = sys.exc_info()[0] logging.exception('Error on updating weather: {0}'.format(err)) # ------------------------------- # Piko # Get values for remaining power calculation logging.debug('Calling: get_current_power') current_solar_power = p.get_current_power() logging.debug('Calling: get_consumption_phase_1') consumption_phase_1 = p.get_consumption_phase_1() consumption_phase_2 = p.get_consumption_phase_2() logging.debug('Calling: get_consumption_phase_2') logging.debug('Calling: get_consumption_phase_3') consumption_phase_3 = p.get_consumption_phase_3() # Get values for string 1 power and string 2 power logging.debug('Calling: get_string1_current') string1Current = p.get_string1_current() logging.debug('Calling: get_string2_current') string2Current = p.get_string2_current() logging.debug('Calling: get_string1_voltage') string1Voltage = p.get_string1_voltage() logging.debug('Calling: get_string2_voltage') string2Voltage = p.get_string2_voltage() if current_solar_power < 0: # Piko is off logging.info('Piko is off, going to sleep 10 minutes.') # Set state of homematic logging.debug('Calling: set_state HM_PV_REMAINING_POWER_ID') hm.set_state(HM_PV_REMAINING_POWER_ID, 0) logging.debug('Calling: set_state HM_PV_STRING_1_POWER_ID') hm.set_state(HM_PV_STRING_1_POWER_ID, 0) logging.debug('Calling: set_state HM_PV_STRING_2_POWER_ID') hm.set_state(HM_PV_STRING_2_POWER_ID, 0) logging.debug('Calling: time.sleep 600') time.sleep(600) continue # Calculate remaining power logging.debug('Rounding for remaining_power') remaining_power = round(current_solar_power - (consumption_phase_1 + consumption_phase_2 + consumption_phase_3)) if remaining_power < 0: remaining_power = 0 # Calculate string 1 power and string 2 power string1 = round(string1Current * string1Voltage) string2 = round(string2Current * string2Voltage) # Set state of homematic logging.debug('Calling: set_state HM_PV_REMAINING_POWER_ID') hm.set_state(HM_PV_REMAINING_POWER_ID, remaining_power) logging.debug('Calling: set_state HM_PV_STRING_1_POWER_ID') hm.set_state(HM_PV_STRING_1_POWER_ID, string1) logging.debug('Calling: set_state HM_PV_STRING_2_POWER_ID') hm.set_state(HM_PV_STRING_2_POWER_ID, string2) # Sleep logging.debug('Calling: time.sleep PIKO_INTERVAL') time.sleep(PIKO_INTERVAL) except KeyboardInterrupt: break except: # catch *all* exceptions err = sys.exc_info()[0] logging.exception('Error: {0}'.format(err)) continue
42.47486
145
0.663422
e321f4353a25d31bcaa64e339213294f5626c9c9
480
py
Python
src/default/ellipse/index.py
mikeludemann/python-data-visualization
e5317505d41ae79389f6eec61cefeca1690935b0
[ "MIT" ]
null
null
null
src/default/ellipse/index.py
mikeludemann/python-data-visualization
e5317505d41ae79389f6eec61cefeca1690935b0
[ "MIT" ]
null
null
null
src/default/ellipse/index.py
mikeludemann/python-data-visualization
e5317505d41ae79389f6eec61cefeca1690935b0
[ "MIT" ]
null
null
null
import matplotlib.pyplot as plt import numpy as np from matplotlib.patches import Ellipse NUM = 250 ells = [Ellipse(xy=np.random.rand(2) * 10, width=np.random.rand(), height=np.random.rand(), angle=np.random.rand() * 360) for i in range(NUM)] fig, ax = plt.subplots(subplot_kw={'aspect': 'equal'}) for e in ells: ax.add_artist(e) e.set_clip_box(ax.bbox) e.set_alpha(np.random.rand()) e.set_facecolor(np.random.rand(3)) ax.set_xlim(0, 10) ax.set_ylim(0, 10) plt.show()
20.869565
54
0.708333
e32283e627f56eef0ab47dab2fb3694cb482ef8d
231
py
Python
hdc-utility/model/Formation.py
YSRKEN/HDC_React2
cba48a0563caef629169644254742f688a0e1ec7
[ "MIT" ]
null
null
null
hdc-utility/model/Formation.py
YSRKEN/HDC_React2
cba48a0563caef629169644254742f688a0e1ec7
[ "MIT" ]
13
2020-09-04T23:25:20.000Z
2022-02-18T01:52:33.000Z
hdc-utility/model/Formation.py
YSRKEN/HDC_React2
cba48a0563caef629169644254742f688a0e1ec7
[ "MIT" ]
null
null
null
from enum import Enum
21
43
0.562771
e323376f728d32ac2cbf19f89a6bf1e46c450382
638
py
Python
_/chapter5-OpenStack/IdentityService/createproject.py
paullewallencom/hybrid-cloud-978-1-7888-3087-4
d101553fd342f420b581b87c58c7219f2b04a7c6
[ "Apache-2.0" ]
3
2018-03-27T14:34:48.000Z
2021-10-04T16:28:19.000Z
_/chapter5-OpenStack/IdentityService/createproject.py
paullewallencom/hybrid-cloud-978-1-7888-3087-4
d101553fd342f420b581b87c58c7219f2b04a7c6
[ "Apache-2.0" ]
null
null
null
_/chapter5-OpenStack/IdentityService/createproject.py
paullewallencom/hybrid-cloud-978-1-7888-3087-4
d101553fd342f420b581b87c58c7219f2b04a7c6
[ "Apache-2.0" ]
1
2021-08-27T23:51:28.000Z
2021-08-27T23:51:28.000Z
#import OpenStack connection class from the SDK from openstack import connection # Create a connection object by calling the constructor and pass the security information conn = connection.Connection(auth_url="http://192.168.0.106/identity", project_name="demo", username="admin", password="manoj", user_domain_id="default", project_domain_id="default") create_project(conn)
30.380952
89
0.714734
e323be496777a0e952195a0a60b4f2ae474d9dd5
849
py
Python
bisection.py
Raijeku/Optimizacion
b06c302c3edbdb3a2a2b378b0c53baaf9fe69c2b
[ "Apache-2.0" ]
null
null
null
bisection.py
Raijeku/Optimizacion
b06c302c3edbdb3a2a2b378b0c53baaf9fe69c2b
[ "Apache-2.0" ]
null
null
null
bisection.py
Raijeku/Optimizacion
b06c302c3edbdb3a2a2b378b0c53baaf9fe69c2b
[ "Apache-2.0" ]
null
null
null
from sympy import * import pandas as pd print(bisection(10, 50, 0.01, '3*x**2 - 120*x + 100'))
30.321429
212
0.522968
e323ed5e92eb5da83c0443afabf48a5b468396f3
176
py
Python
gd/utils/crypto/__init__.py
scottwedge/gd.py
328c9833abc949b1c9ac0eabe276bd66fead4c2c
[ "MIT" ]
null
null
null
gd/utils/crypto/__init__.py
scottwedge/gd.py
328c9833abc949b1c9ac0eabe276bd66fead4c2c
[ "MIT" ]
null
null
null
gd/utils/crypto/__init__.py
scottwedge/gd.py
328c9833abc949b1c9ac0eabe276bd66fead4c2c
[ "MIT" ]
null
null
null
"""Main module for operating on crypted/encoded strings in Geometry Dash""" from gd.utils.crypto.coders import Coder from gd.utils.crypto.xor_cipher import XORCipher as xor
44
76
0.795455
e324c2b47225b873ec4b37a7708b700104f77b26
3,684
py
Python
subt/ros/base/src/motor_controller.py
m3d/osgar_archive_2020
556b534e59f8aa9b6c8055e2785c8ae75a1a0a0e
[ "MIT" ]
12
2017-02-16T10:22:59.000Z
2022-03-20T05:48:06.000Z
subt/ros/base/src/motor_controller.py
m3d/osgar_archive_2020
556b534e59f8aa9b6c8055e2785c8ae75a1a0a0e
[ "MIT" ]
618
2016-08-30T04:46:12.000Z
2022-03-25T16:03:10.000Z
subt/ros/base/src/motor_controller.py
robotika/osgar
6f4f584d5553ab62c08a1c7bb493fefdc9033173
[ "MIT" ]
11
2016-08-27T20:02:55.000Z
2022-03-07T08:53:53.000Z
from pid import PID import pdb #for anonymous objects Object = lambda **kwargs: type("Object", (), kwargs)
47.844156
140
0.659609
e325abcd58eea788430716963a4dc7047047719c
4,931
py
Python
shiftscheduler/gui/barebone.py
c-rainbow/nurse-scheduling
8537c875e46772700499a89dec3a30a796434fe0
[ "MIT" ]
2
2020-04-16T17:03:56.000Z
2021-04-08T17:23:21.000Z
shiftscheduler/gui/barebone.py
c-rainbow/nurse-scheduling
8537c875e46772700499a89dec3a30a796434fe0
[ "MIT" ]
null
null
null
shiftscheduler/gui/barebone.py
c-rainbow/nurse-scheduling
8537c875e46772700499a89dec3a30a796434fe0
[ "MIT" ]
1
2020-05-04T18:03:59.000Z
2020-05-04T18:03:59.000Z
import tkinter as tk from tkinter import filedialog from tkinter import messagebox from tkinter import scrolledtext from tkinter import ttk import tkcalendar as tkc from shiftscheduler.data_types import data_types from shiftscheduler.excel import output as excel_output from shiftscheduler.gui import constants from shiftscheduler.gui import util from shiftscheduler.i18n import gettext _ = gettext.GetTextFn('gui/barebone') LOCALE_CODE = gettext.GetLanguageCode() DATE_PATTERN = _('y/m/d') # TkInter frame for getting barebone Excel file
35.47482
110
0.636585
e3274579faa2032556dd5e38f0e928addfcdc145
1,093
py
Python
orders/migrations/0001_initial.py
MahmudulHassan5809/Ecommerce-WebSite-With-Django2
a9c76e6e925e236ba064be194a03d9d6635edac2
[ "MIT" ]
1
2021-09-24T04:32:35.000Z
2021-09-24T04:32:35.000Z
orders/migrations/0001_initial.py
MahmudulHassan5809/Ecommerce-WebSite-With-Django2
a9c76e6e925e236ba064be194a03d9d6635edac2
[ "MIT" ]
null
null
null
orders/migrations/0001_initial.py
MahmudulHassan5809/Ecommerce-WebSite-With-Django2
a9c76e6e925e236ba064be194a03d9d6635edac2
[ "MIT" ]
null
null
null
# Generated by Django 2.1.5 on 2019-01-26 19:42 import datetime from django.db import migrations, models
34.15625
123
0.563586
e3278fc449a9b7f42367d6c094639616a86c1514
353
py
Python
setup.py
markus61/selfstoredict
c770fd0dd4976e66299f51f71a71ad9c1875d699
[ "MIT" ]
1
2017-01-18T11:19:24.000Z
2017-01-18T11:19:24.000Z
setup.py
markus61/selfstoredict
c770fd0dd4976e66299f51f71a71ad9c1875d699
[ "MIT" ]
null
null
null
setup.py
markus61/selfstoredict
c770fd0dd4976e66299f51f71a71ad9c1875d699
[ "MIT" ]
1
2018-02-23T06:23:43.000Z
2018-02-23T06:23:43.000Z
from setuptools import setup, find_packages setup( name='selfstoredict', version='0.6', packages=find_packages(), url='https://github.com/markus61/selfstoredict', license='MIT', author='markus', author_email='ms@dom.de', description='a python class delivering a dict that stores itself into a JSON file or a redis db', )
29.416667
101
0.696884
e328edcf699e6d13889b75058d9c53daede11262
428
py
Python
play.py
Samitha156/100-days-of-coding
b47aff0f6d432945a20a5f95e2252cddb6cc5522
[ "MIT" ]
null
null
null
play.py
Samitha156/100-days-of-coding
b47aff0f6d432945a20a5f95e2252cddb6cc5522
[ "MIT" ]
null
null
null
play.py
Samitha156/100-days-of-coding
b47aff0f6d432945a20a5f95e2252cddb6cc5522
[ "MIT" ]
null
null
null
sum = add(2,5,6,5) print(sum) calculate(add=3, mul=5) my_car = Car(make="Nissan") print(my_car.model)
17.12
36
0.514019
e3294c6b906349f5541063a2b6f7ca5cb0e7e90b
21,406
py
Python
lib/simpleauth/handler.py
Bekt/tweetement
5cdb2e7db30a1600fbf522754c4917f8c9e377a6
[ "MIT" ]
2
2015-02-18T17:31:58.000Z
2019-04-01T13:44:45.000Z
lib/simpleauth/handler.py
Bekt/tweetement
5cdb2e7db30a1600fbf522754c4917f8c9e377a6
[ "MIT" ]
1
2015-01-26T03:58:19.000Z
2015-01-26T03:58:19.000Z
lib/simpleauth/handler.py
Bekt/tweetement
5cdb2e7db30a1600fbf522754c4917f8c9e377a6
[ "MIT" ]
1
2021-05-04T21:15:53.000Z
2021-05-04T21:15:53.000Z
# -*- coding: utf-8 -*- import os import sys import logging import json from urllib import urlencode import urlparse #for CSRF state tokens import time import base64 # Get available json parser try: # should be the fastest on App Engine py27. import json except ImportError: try: import simplejson as json except ImportError: from django.utils import simplejson as json # at this point ImportError will be raised # if none of the above could be imported # it's a OAuth 1.0 spec even though the lib is called oauth2 import oauth2 as oauth1 # users module is needed for OpenID authentication. from google.appengine.api import urlfetch, users from webapp2_extras import security __all__ = ['SimpleAuthHandler', 'Error', 'UnknownAuthMethodError', 'AuthProviderResponseError', 'InvalidCSRFTokenError', 'InvalidOAuthRequestToken', 'InvalidOpenIDUserError'] OAUTH1 = 'oauth1' OAUTH2 = 'oauth2' OPENID = 'openid'
34.525806
80
0.679996
e32db38efba021a5263a02a0f603ee6533341d64
766
py
Python
test.py
litex-hub/pythondata-cpu-ibex
9775779f0770fc635a17dfc467cb8d5afdf01d1d
[ "Apache-2.0" ]
2
2021-02-18T00:27:38.000Z
2021-05-12T21:57:41.000Z
test.py
litex-hub/pythondata-cpu-ibex
9775779f0770fc635a17dfc467cb8d5afdf01d1d
[ "Apache-2.0" ]
null
null
null
test.py
litex-hub/pythondata-cpu-ibex
9775779f0770fc635a17dfc467cb8d5afdf01d1d
[ "Apache-2.0" ]
1
2021-04-28T02:42:51.000Z
2021-04-28T02:42:51.000Z
#!/usr/bin/env python3 from __future__ import print_function import os import pythondata_cpu_ibex print("Found ibex @ version", pythondata_cpu_ibex.version_str, "(with data", pythondata_cpu_ibex.data_version_str, ")") print() print("Data is in", pythondata_cpu_ibex.data_location) assert os.path.exists(pythondata_cpu_ibex.data_location) print("Data is version", pythondata_cpu_ibex.data_version_str, pythondata_cpu_ibex.data_git_hash) print("-"*75) print(pythondata_cpu_ibex.data_git_msg) print("-"*75) print() print("It contains:") for root, dirs, files in os.walk(pythondata_cpu_ibex.data_location): dirs.sort() for f in sorted(files): path = os.path.relpath(os.path.join(root, f), pythondata_cpu_ibex.data_location) print(" -", path)
31.916667
119
0.765013
e331235f5a65953d372c517da81e56d9c43aa850
2,652
py
Python
scenegraph/pddlgym_planners/lapkt.py
taskography/3dscenegraph-dev
2c261241230fbea1f1c687ff793478248f25c02c
[ "MIT" ]
1
2022-01-30T22:06:57.000Z
2022-01-30T22:06:57.000Z
scenegraph/pddlgym_planners/lapkt.py
taskography/3dscenegraph-dev
2c261241230fbea1f1c687ff793478248f25c02c
[ "MIT" ]
null
null
null
scenegraph/pddlgym_planners/lapkt.py
taskography/3dscenegraph-dev
2c261241230fbea1f1c687ff793478248f25c02c
[ "MIT" ]
null
null
null
"""LAPKT-BFWS https://github.com/nirlipo/BFWS-public """ import re import os import sys import subprocess import tempfile from pddlgym_planners.pddl_planner import PDDLPlanner from pddlgym_planners.planner import PlanningFailure import numpy as np from utils import FilesInCommonTempDirectory DOCKER_IMAGE = 'khodeir/bfws:latest'
42.774194
232
0.667044
e33575c4ac98eb7bd72db9483692a67e2a8b1c0f
1,914
py
Python
Create Network Zones.py
Tosatsu/okta-python-scripts
bca5ff89b8fc2381ccab08de971f65505ed0cda5
[ "MIT" ]
1
2021-04-09T09:46:31.000Z
2021-04-09T09:46:31.000Z
Create Network Zones.py
Tosatsu/okta-python-scripts
bca5ff89b8fc2381ccab08de971f65505ed0cda5
[ "MIT" ]
null
null
null
Create Network Zones.py
Tosatsu/okta-python-scripts
bca5ff89b8fc2381ccab08de971f65505ed0cda5
[ "MIT" ]
1
2021-04-12T11:27:13.000Z
2021-04-12T11:27:13.000Z
import csv import re import sys import requests import json import Data # data container, replace with your own orgName = Data.orgName # replace with your own apiKey = Data.apiKey # provide your own API token api_token = "SSWS " + apiKey headers = {'Accept': 'application/json', 'Content-Type': 'application/json', 'Authorization': api_token} if __name__ == "__main__": CreateZones()
29.90625
71
0.405434
e33639a848594d63e324d70460cacf9ae086d33c
959
py
Python
simulador_de_dado.py
lucianoferreirasa/PythonProjects
c26a16bcbd61bd0563bc4f7d4dc0dd3593bd95e5
[ "MIT" ]
null
null
null
simulador_de_dado.py
lucianoferreirasa/PythonProjects
c26a16bcbd61bd0563bc4f7d4dc0dd3593bd95e5
[ "MIT" ]
null
null
null
simulador_de_dado.py
lucianoferreirasa/PythonProjects
c26a16bcbd61bd0563bc4f7d4dc0dd3593bd95e5
[ "MIT" ]
null
null
null
import random import PySimpleGUI as sg simulador = SimuladorDeDado() simulador.Iniciar()
29.96875
71
0.577685
e3370f6e006d93026ba5320fad4727621e81fc92
1,712
py
Python
src/geometry/linear_algebra.py
seahrh/coding-interview
517d19e7e88c02acec4aa6336bc20206ce3f1897
[ "MIT" ]
null
null
null
src/geometry/linear_algebra.py
seahrh/coding-interview
517d19e7e88c02acec4aa6336bc20206ce3f1897
[ "MIT" ]
null
null
null
src/geometry/linear_algebra.py
seahrh/coding-interview
517d19e7e88c02acec4aa6336bc20206ce3f1897
[ "MIT" ]
null
null
null
import math from typing import List, Iterable, Union Numeric = Union[int, float] def vdot(p: List[Numeric], q: List[Numeric]) -> float: """Vector dot product.""" if len(p) == 0: raise ValueError("p must not be None or empty") if len(q) == 0: raise ValueError("q must not be None or empty") if len(p) != len(q): raise ValueError("vectors p and q must have the same dimension") res: float = 0 for i in range(len(p)): res += p[i] * q[i] return res def full(rows: int, columns: int, fill: Numeric = 0) -> List[List[float]]: """Return a new array of given shape and type, filled with fill_value.""" return [[fill] * columns for _ in range(rows)] def dot(p: List[List[Numeric]], q: List[List[Numeric]]) -> List[List[float]]: """Matrix dot product.""" p_shape = len(p), len(p[0]) q_shape = len(q), len(q[0]) if p_shape[1] != q_shape[0]: raise ValueError("number of columns in p must equal the number of rows in q") res: List[List[float]] = full(rows=p_shape[0], columns=q_shape[1]) for i in range(p_shape[0]): for j in range(q_shape[1]): for k in range(p_shape[1]): res[i][j] += p[i][k] * q[k][j] return res
31.703704
86
0.567757
e337c8816166ee2eea4a6327ac76523c1a2e9c32
1,231
py
Python
plot/eigenvalue_statistics.py
dh4gan/tache
51ed037769ecc4fdadc591e3b3619416c79e65b7
[ "MIT" ]
5
2018-02-27T04:07:15.000Z
2020-12-29T20:49:36.000Z
plot/eigenvalue_statistics.py
dh4gan/tache
51ed037769ecc4fdadc591e3b3619416c79e65b7
[ "MIT" ]
null
null
null
plot/eigenvalue_statistics.py
dh4gan/tache
51ed037769ecc4fdadc591e3b3619416c79e65b7
[ "MIT" ]
null
null
null
# Written 9/10/14 by dh4gan # Code reads in output eigenvalue file from tache # Computes statistics import numpy as np import matplotlib.pyplot as plt import io_tache as io # Read in inputs from command line filename = ff.find_local_input_files('eigenvalues*') threshold = input("What is the threshold for classification? ") # Read in eigenvalue file print "Reading eigenvalue file ", filename npart,x,y,z,eigenpart,eigenvalues = io.read_eigenvalue_file(filename) print np.amax(eigenvalues),np.amin(eigenvalues) # Calculate the trace for each simulation element trace = np.zeros(npart) for i in range(npart): for j in range(3): trace[i] = trace[i]+ eigenvalues[i,j] normedeigenvalues = eigenvalues.copy() for i in range(npart): if(trace[i]>0.0): normedeigenvalues[i,:] = normedeigenvalues[i,:]/trace[i] else: normedeigenvalues[i,:] = 0.0 # Make a histogram of the eigenvalues alleigenvalues = eigenvalues.flatten() fig1 = plt.figure(1) ax = fig1.add_subplot(111) ax.hist(alleigenvalues, bins=100, normed=True, log=True) plt.show() # Make a histogram of the traces fig1 = plt.figure(1) ax = fig1.add_subplot(111) ax.hist(trace, bins=100, normed=True, log=True) plt.show()
21.224138
69
0.723802
e337db10027ece0f941b1295bc94ad1a0ed34904
4,179
py
Python
arrow/forwarder/views.py
AkhilGKrishnan/arrow
bbd35faa5011c642cdcf218b180b48dd7ef39ef6
[ "MIT" ]
null
null
null
arrow/forwarder/views.py
AkhilGKrishnan/arrow
bbd35faa5011c642cdcf218b180b48dd7ef39ef6
[ "MIT" ]
null
null
null
arrow/forwarder/views.py
AkhilGKrishnan/arrow
bbd35faa5011c642cdcf218b180b48dd7ef39ef6
[ "MIT" ]
3
2019-01-07T17:07:16.000Z
2021-01-09T13:01:40.000Z
from django.views.generic.edit import CreateView, FormMixin from django.views.generic.list import ListView from django.views.generic.detail import DetailView from django import forms from django.urls import reverse from reportlab.pdfgen import canvas from django.http import HttpResponse from forwarder.models import Application, Hierarchy def pdf_dl(request, pk): # Create the HttpResponse object with the appropriate PDF headers. application = Application.objects.get(pk=pk) response = HttpResponse(content_type='application/pdf') response['Content-Disposition'] = 'attachment; filename="%s.pdf"' % (application) # Create the PDF object, using the response object as its "file." p = canvas.Canvas(response) # Draw things on the PDF. Here's where the PDF generation happens. # See the ReportLab documentation for the full list of functionality. p.drawString(100, 800, "Name : " + application.applicant.name) p.drawString(100, 780, "Admission no : " + str(application.applicant.admn_no)) p.drawString(100, 760, "Department : " + application.applicant.branch) p.drawString(100, 740, "Semester : " + str(application.applicant.semester)) p.drawString(100, 720, "Parent name : " + application.applicant.parent_name) if application.type == "OTH": p.drawString(100, 700, "Application type : " + application.other()) else: p.drawString(100, 700, "Application type : " + application.get_type_display()) p.drawString(100, 680, "Recommended by HOD of " + application.applicant.branch) # Close the PDF object cleanly, and we're done. p.showPage() p.save() return response
36.025862
93
0.675042
e3390f43d3793bc787b6b52cd5f2cc575976a36e
4,793
py
Python
caption_feats_generation_scripts/full_vid_data_loader.py
Alterith/Dense_Video_Captioning_Feature_Extraction_Model_Choice
65d0f2d26698cc8f7a5ffb564936113e2bbec201
[ "MIT" ]
1
2021-04-21T12:39:07.000Z
2021-04-21T12:39:07.000Z
caption_feats_generation_scripts/full_vid_data_loader.py
Alterith/masters_code
65d0f2d26698cc8f7a5ffb564936113e2bbec201
[ "MIT" ]
null
null
null
caption_feats_generation_scripts/full_vid_data_loader.py
Alterith/masters_code
65d0f2d26698cc8f7a5ffb564936113e2bbec201
[ "MIT" ]
null
null
null
import h5py # torch imports import torch from torch.utils.data import Dataset # generic imports import os import sys import numpy as np import random import pandas as pd import cv2 from decord import VideoReader from decord import cpu, gpu from matplotlib import pyplot as plt import gc # create data loader
30.335443
130
0.580638
e339d61b7c0a81fbe079a184470ec5bdef08b9e1
1,583
py
Python
sklearn_baseline.py
Shinkai125/KerasForTextClassfication
ed3d04c5c58d1dfb3f79b83ba704dd486616f0e4
[ "MIT" ]
null
null
null
sklearn_baseline.py
Shinkai125/KerasForTextClassfication
ed3d04c5c58d1dfb3f79b83ba704dd486616f0e4
[ "MIT" ]
null
null
null
sklearn_baseline.py
Shinkai125/KerasForTextClassfication
ed3d04c5c58d1dfb3f79b83ba704dd486616f0e4
[ "MIT" ]
null
null
null
""" @file: sklearn_method.py @time: 2020-12-09 17:38:38 """ import pandas as pd import seaborn as sns from tqdm import tqdm from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.naive_bayes import MultinomialNB from sklearn.svm import LinearSVC from sklearn.model_selection import cross_val_score import matplotlib.pyplot as plt import matplotlib.font_manager as fm myfont = fm.FontProperties(fname='SimHei.ttf') # train_data = pd.read_csv('chnsenticorp/train.tsv', sep='\t') tfidf = TfidfVectorizer(norm='l2', ngram_range=(1, 2)) features = tfidf.fit_transform(train_data.text_a) labels = train_data.label print(features.shape) models = [ RandomForestClassifier(n_estimators=200, max_depth=3, random_state=0), LinearSVC(), MultinomialNB(), LogisticRegression(random_state=0, solver='liblinear'), ] CV = 10 cv_df = pd.DataFrame(index=range(CV * len(models))) entries = [] for model in tqdm(models): model_name = model.__class__.__name__ accuracies = cross_val_score(model, features, labels, scoring='f1', cv=CV) for fold_idx, accuracy in enumerate(accuracies): entries.append((model_name, fold_idx, accuracy)) results = pd.DataFrame(entries, columns=['model_name', 'fold_idx', 'f1']) sns.boxplot(x='model_name', y='f1', data=results) sns.stripplot(x='model_name', y='f1', data=results, size=8, jitter=True, edgecolor="gray", linewidth=2) plt.show() print(results.groupby('model_name').f1.mean())
31.66
78
0.753001
e33bc5cbc72c8153bc963c853fb7e883e19b21c8
2,087
py
Python
handypackages/gallery/tests.py
roundium/handypackages
b8a0e4952644144b31168f9a4ac8e743933d87c7
[ "MIT" ]
1
2019-07-31T11:40:06.000Z
2019-07-31T11:40:06.000Z
handypackages/gallery/tests.py
roundium/handypackages
b8a0e4952644144b31168f9a4ac8e743933d87c7
[ "MIT" ]
10
2020-02-12T01:16:25.000Z
2021-06-10T18:42:24.000Z
handypackages/gallery/tests.py
roundium/handypackages
b8a0e4952644144b31168f9a4ac8e743933d87c7
[ "MIT" ]
1
2019-07-31T11:40:18.000Z
2019-07-31T11:40:18.000Z
import tempfile from django.conf import settings from django.contrib.auth.models import User from django.core.files.uploadedfile import SimpleUploadedFile from django.test import TestCase from filer.models import Image from handypackages.tag.models import Tag from .models import Gallery
29.394366
77
0.577384
e33d45a696398845a0fe18a3dbb14693d8655739
1,926
py
Python
src/jk_mediawiki/impl/WikiCronProcessFilter.py
jkpubsrc/python-module-jk-mediawiki
5d76a060f0ed46c072d44e8084f6fa40d16e6069
[ "Apache-1.1" ]
null
null
null
src/jk_mediawiki/impl/WikiCronProcessFilter.py
jkpubsrc/python-module-jk-mediawiki
5d76a060f0ed46c072d44e8084f6fa40d16e6069
[ "Apache-1.1" ]
null
null
null
src/jk_mediawiki/impl/WikiCronProcessFilter.py
jkpubsrc/python-module-jk-mediawiki
5d76a060f0ed46c072d44e8084f6fa40d16e6069
[ "Apache-1.1" ]
null
null
null
import os import typing import jk_typing from .ProcessFilter import ProcessFilter #
27.514286
129
0.297508
e33da7e662f4c2fc76532c7c89e8edb38e2cccee
96
py
Python
venv/lib/python3.8/site-packages/filelock/_error.py
GiulianaPola/select_repeats
17a0d053d4f874e42cf654dd142168c2ec8fbd11
[ "MIT" ]
2
2022-03-13T01:58:52.000Z
2022-03-31T06:07:54.000Z
venv/lib/python3.8/site-packages/filelock/_error.py
DesmoSearch/Desmobot
b70b45df3485351f471080deb5c785c4bc5c4beb
[ "MIT" ]
19
2021-11-20T04:09:18.000Z
2022-03-23T15:05:55.000Z
venv/lib/python3.8/site-packages/filelock/_error.py
DesmoSearch/Desmobot
b70b45df3485351f471080deb5c785c4bc5c4beb
[ "MIT" ]
null
null
null
/home/runner/.cache/pip/pool/ab/0b/2c/7ae80e56fd2208fbee5ef317ac009972f468b5601f62f8f799f9d9279a
96
96
0.895833
e33e7075c79b3b47f743f64502284119cdb5e862
2,094
py
Python
konbata/Formats/xml_format.py
jzeuner/konbata
41c5ec9ce4c84e82e09daaa106ceed9de38c437b
[ "MIT" ]
2
2019-12-01T16:12:24.000Z
2021-05-18T22:10:12.000Z
konbata/Formats/xml_format.py
jzeuner/konbata
41c5ec9ce4c84e82e09daaa106ceed9de38c437b
[ "MIT" ]
10
2019-09-19T17:08:46.000Z
2021-02-17T21:42:10.000Z
konbata/Formats/xml_format.py
jzeuner/konbata
41c5ec9ce4c84e82e09daaa106ceed9de38c437b
[ "MIT" ]
3
2019-11-27T18:39:12.000Z
2021-02-10T15:11:58.000Z
""" Loader and Parser for the xml format. Version: 0.01-alpha """ from xml.dom import minidom from konbata.Data.Data import DataNode, DataTree from konbata.Formats.Format import Format def xml_toTree(file, delimiter, options=None): """ Function transforms a xml file into a DataTree. Parameters ---------- file: file open input file in at least read mode Returns ------- tree: DataTree """ # TODO: Second Parser with the import xml.etree.ElementTree as ET class xml_reader = minidom.parse(file) xml_reader.normalize() tree = DataTree(tree_type='xml') if xml_reader.hasChildNodes(): for node in xml_reader.childNodes: childNode = help_xml_toTree(node) tree.root.add(childNode) return tree def help_xml_toTree(xml_node): """ Helps xml_ToTree function, walks through xml recursive Parameters ---------- xml_node: ElementType1 Returns ------- node: DataNode """ if xml_node.hasChildNodes(): tree_node = DataNode(xml_node.localName) for node in xml_node.childNodes: tree_node.add(help_xml_toTree(node)) return tree_node # TODO Add Attributes node = None if xml_node.nodeType == xml_node.TEXT_NODE: # TODO: guess xml_node.nodeValue == xml_node.data node = DataNode(xml_node.nodeValue.replace('\n ', '')) elif xml_node.nodeType == xml_node.ELEMENT_NODE: # TODO: guess xml_node.tagName == xml_node.localName node = DataNode(xml_node.localName) else: # TODO: Implement the other nodeTypes print('Warning: NodeType not supported yet') node = DataNode(xml_node.localName) return node def xml_fromTree(tree, file, options=None): """ Function transforms a DataTree into a xml file. Parameters ---------- tree: DataTree file: file open output file in at least write mode options: list, optional """ # TODO pass xml_format = Format('xml', ['/n'], xml_toTree, xml_fromTree)
22.516129
75
0.637536
e33ec5c64b5732e244db6498e5c0817ede88b3d0
1,650
py
Python
make_high_indel.py
wckdouglas/ngs_qc_plot
b279905f9e30d1cf547cda5f51cc77e8a134ce99
[ "MIT" ]
null
null
null
make_high_indel.py
wckdouglas/ngs_qc_plot
b279905f9e30d1cf547cda5f51cc77e8a134ce99
[ "MIT" ]
null
null
null
make_high_indel.py
wckdouglas/ngs_qc_plot
b279905f9e30d1cf547cda5f51cc77e8a134ce99
[ "MIT" ]
null
null
null
#!/usr/env python import pandas as pd import os import sys import numpy as np if len(sys.argv) != 3: sys.exit('[usage] python %s <repeat_index table> <indel cutoff>') ref_table = sys.argv[1] indel_cut_off = int(sys.argv[2]) for gdf in pd.read_csv(ref_table, sep='\t', chunksize = 10000): for contig, contig_df in gdf.groupby('contig'): df = contig_df\ .assign(indel_index = lambda d: d.negative_index + d.positive_index) \ .query('indel_index >= %i ' %indel_cut_off) count = 0 for i, base in df.iterrows(): if base['negative_index'] == base['indel_index']: start = base['start'] mononucleotide = base['fwd_base'] indel_index = base['indel_index'] taken_base = 1 elif taken_base != indel_index and base['fwd_base'] == mononucleotide: taken_base += 1 elif taken_base == indel_index: assert base['positive_index'] == indel_index and base['fwd_base'] == mononucleotide,'Wrong parsing' end = base['start'] line = '{contig}\t{start}\t{end}\tIndel{id}\t{indel_index}\t+\t{mononucleotide}' \ .format(contig = base['contig'], start = start, end = end, id = count, indel_index = indel_index, mononucleotide = mononucleotide) print(line, file= sys.stdout) count += 1 else: print(base)
36.666667
115
0.512121
e3431c6a3c1b12221c308a1da4d98113e28475f3
474
py
Python
xicsrt/optics/_InteractNone.py
PrincetonUniversity/xicsrt
15dfe5e3cd8ac6a326e8f0e502c8b739bd09d3fd
[ "MIT" ]
1
2021-07-21T17:07:31.000Z
2021-07-21T17:07:31.000Z
xicsrt/optics/_InteractNone.py
PrincetonUniversity/xicsrt
15dfe5e3cd8ac6a326e8f0e502c8b739bd09d3fd
[ "MIT" ]
null
null
null
xicsrt/optics/_InteractNone.py
PrincetonUniversity/xicsrt
15dfe5e3cd8ac6a326e8f0e502c8b739bd09d3fd
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ .. Authors: Novimir Pablant <npablant@pppl.gov> Define the :class:`InteractNone` class. """ import numpy as np from copy import deepcopy from xicsrt.tools.xicsrt_doc import dochelper from xicsrt.optics._InteractObject import InteractObject
21.545455
66
0.723629
e34633ea0534cf1b5136a4ecb84b248d7c202e57
416
py
Python
#103 - Ficha do Jogador.py
Lucas-HMSC/curso-python3
b6506d508107c9a43993a7b5795ee39fc3b7c79d
[ "MIT" ]
null
null
null
#103 - Ficha do Jogador.py
Lucas-HMSC/curso-python3
b6506d508107c9a43993a7b5795ee39fc3b7c79d
[ "MIT" ]
null
null
null
#103 - Ficha do Jogador.py
Lucas-HMSC/curso-python3
b6506d508107c9a43993a7b5795ee39fc3b7c79d
[ "MIT" ]
null
null
null
print('='*30) nome = str(input('Nome do Jogador: ')) gols = str(input('Nmero de Gols: ')) ficha(nome, gols)
24.470588
67
0.560096
e347285e41902227dea4612bf91fb04df4a24692
3,598
py
Python
sub_1602_display.py
leonardlinde/timeandtemp
93e9ad16b2027fd9c261052c22a5977b86326550
[ "Artistic-2.0" ]
null
null
null
sub_1602_display.py
leonardlinde/timeandtemp
93e9ad16b2027fd9c261052c22a5977b86326550
[ "Artistic-2.0" ]
null
null
null
sub_1602_display.py
leonardlinde/timeandtemp
93e9ad16b2027fd9c261052c22a5977b86326550
[ "Artistic-2.0" ]
null
null
null
#!/usr/bin/env python """ ZMQ Subscriber for 1602 display Queue: INF and CMD """ import wiringpi2 as wiringpi import datetime import time import json import Adafruit_DHT import traceback import zmq import sys import pprint infoSocket = "tcp://localhost:5550" cmdSocket = "tcp://localhost:5560" wiringpi.wiringPiSetup() # Initialize mcp3008 (same as 3004) ADC - first parm is pin base (must be > 64) # Second param is SPI bus number wiringpi.mcp3004Setup(100,0) # Initialize LCD # 2 rows of 16 columns, driven by 4 bits # Control pins are WiringPi 15 & 16 # Data pins are WiringPi 0,1,2,3 display = wiringpi.lcdInit (2, 16, 4, 15,16, 0,1,2,3,0,0,0,0) # LCD Backlight backlightPin = 26 # GPIO12 is set to ground to turn off backlight wiringpi.pinMode(backlightPin,1) #output wiringpi.digitalWrite(backlightPin, 0) # Init zmq context = zmq.Context() # Subscribe to all the info queues info = context.socket(zmq.SUB) info.connect(infoSocket) info.setsockopt(zmq.SUBSCRIBE, 'INF_SENSOR') info.setsockopt(zmq.SUBSCRIBE, 'INF_CURRENTWX') info.setsockopt(zmq.SUBSCRIBE, 'INF_FORECASTWX') # Subscribe to LCD command queue cmd = context.socket(zmq.SUB) cmd.connect(cmdSocket) cmd.setsockopt(zmq.SUBSCRIBE, 'CMD_LCD') # set up a poller to read both sockets poller = zmq.Poller() poller.register(info, zmq.POLLIN) poller.register(cmd, zmq.POLLIN) # state variables commandState = {'backlight':True} # convert ADC reading to Lux if __name__ == '__main__': main_sub_1602_display()
26.651852
79
0.658143
e347e8efaaade3a7b28a992e4961e185b12004e3
2,079
py
Python
app/business_layers/presentation.py
martireg/bmat
b5ccd6dcd1edd1e90fa07cb0ef4006b909018a4c
[ "MIT" ]
null
null
null
app/business_layers/presentation.py
martireg/bmat
b5ccd6dcd1edd1e90fa07cb0ef4006b909018a4c
[ "MIT" ]
null
null
null
app/business_layers/presentation.py
martireg/bmat
b5ccd6dcd1edd1e90fa07cb0ef4006b909018a4c
[ "MIT" ]
null
null
null
from typing import List, Dict from fastapi import APIRouter, UploadFile, File, Depends, HTTPException from pydantic import create_model from starlette.responses import StreamingResponse from app.business_layers.domain import Work from app.business_layers.repository import WorkRepository from app.business_layers.use_cases import ( bulk_upload_works_use_case, get_work_use_case, list_works_use_case, ) from app.db.mongodb import get_client from app.utils.csv_manipulation import process_csv, stream_csv_from_dicts work_router = APIRouter() # Model Fields are defined by either a tuple of the form (<type>, <default value>) or a default value model_fields = {k: (v, ...) for k, v in Work.__annotations__.items()} WorkModel = create_model("WorkModel", **model_fields)
34.65
101
0.746032
e348be446d860ef514d588759be2dbd6de2b4764
651
py
Python
essentials_kit_management/interactors/get_pay_through_details_interactor.py
RajeshKumar1490/iB_hubs_mini_project
f7126092400fb9a62fb4bff643dae7cda3a8d9d2
[ "MIT" ]
null
null
null
essentials_kit_management/interactors/get_pay_through_details_interactor.py
RajeshKumar1490/iB_hubs_mini_project
f7126092400fb9a62fb4bff643dae7cda3a8d9d2
[ "MIT" ]
2
2021-09-07T07:06:00.000Z
2021-09-07T07:24:26.000Z
essentials_kit_management/interactors/get_pay_through_details_interactor.py
RajeshKumar1490/iB_hubs_mini_project
f7126092400fb9a62fb4bff643dae7cda3a8d9d2
[ "MIT" ]
null
null
null
from essentials_kit_management.interactors.storages.storage_interface \ import StorageInterface from essentials_kit_management.interactors.presenters.presenter_interface \ import PresenterInterface
34.263158
76
0.761905