content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
#!/usr/bin/env python2 # -*- encoding: utf-8 -*- # Gimp Markup Builder # author: duangsuse # date: Thu May 02 2019 CST from os import linesep from Util import stream_join class MarkupBuilder: ''' Gimp Markup SGML builder ''' ''' Indent rules: when starting new tag, write last spaces, last spaces += indent if new tag is not text tag start (inner is just text), write newline when leaving tag, last spaces -= indent ''' indented = property(useindent) def wnewline(self): ''' see use_indent''' self.marks += self.nl def windent(self): ''' see use_indent''' wrote = 0 for _ in range(0, self.last_spaces): self.marks += ' ' wrote += 1 # dummy? return wrote def cancel_indent(self): ''' cancel last indent ''' if self.indented: self.marks = self.marks[:-self.revert_last_indent_size] def do_indent(self, entering = True): ''' Write indent, increase last_spaces, saving wrote spaces and newline to revert_last_indent_size ''' if self.indented: do() def do_last_indent(self, *args, **kwargs): ''' write indenting for last block ''' self.last_spaces -= self.indent self.do_indent(*args, **kwargs) self.last_spaces += self.indent def begin(self, tag, attrs = {}): ''' Make a tag with name and attributes Attribute name, value and tag name is escaped ''' self.last_is_text = False attrst = str() tagscape = self.escape(tag) ary = list(stream_join(attrs.keys(), attrs.values())) if attrs.__class__ is dict else list(attrs) if len(attrs) != 0: for n in range(0, len(ary), 2): attrst += self.escape(str(ary[n])) attrst += '=' #print(ary) #print(n) attrst += "\"%s\"" % self.escape(str(ary[n+1])) self.marks += '<' + tagscape if len(attrs) != 0: self.marks += ' ' self.marks += attrst + '>' # always write indents for next line # makes its possible to drop last indent (text tag) self.do_indent() self.tag_stack.append(tagscape) return self def tag(self, *args, **kwargs): r''' EDSL using __close__ with syntax create nodes like: with xml.tag('span', {color: '#66ccff'}): xml % 'Q \w\ Q' ''' self.last_is_text = False return TagBuilder(self) def text(self, content): ''' append text content ''' self.last_is_text = True if self.indented: self.cancel_indent() self.marks += self.escape(content) return self #@staticmethod #def test(): # m = MarkupBuilder() # m > 'html' # m > 'head' # m > 'title' # m < 'Hello World' # m <= 2 # m > 'body' # m > 'text' # with m.tag("b"): # m < 'String' # m >= ['a', {'id': 'str'}] # m < '|sg.' # m <= 4 # return m def end(self): ''' delimites last tag ''' if not self.last_is_text: # cancel indentation #print(self.indent, self.tag_stack) self.cancel_indent() self.do_indent(False) self.marks += '</' + self.tag_stack.pop() + '>' self.do_indent(False) self.last_is_text = False # Not cared by Markup indent emitter def raw(self, raw): ''' write raw text (unescaped) ''' self.marks += raw return self def rawtag(self, rawtext): ''' append unescaped raw <> text ''' self.marks += '<' self.marks += rawtext self.marks += '>' def _escape(self, xml): ''' Escape XML string ' is replaced with &apos; " is replaced with &quot; & is replaced with &amp; < is replaced with &lt; > is replaced with &gt; ''' escapes = frozenset("'\"&<>") replacement = { '\'': 'apos', '"': 'quot', '&': 'amp', '<': 'lt', '>': 'gt' } if len(xml) < 1: return output = str() for i in range(0, len(xml)): char = xml[i] if (char in escapes): output += '&' output += replacement[char] output += ';' else: output += char return output escape = classmethod(_escape) def __str__(self): ''' M(marks)..[tag stack] ''' return 'M(' + self.marks + ')..' + str(self.tag_stack) __lt__ = text # chain __gt__ = begin # chain __add__ = raw # chain def __contains__(self, tag): ''' is tag inside enclosing tags ? ''' return tag in self.tag_stack def __ge__(self, tag_attr): ''' xml >= ['markup', {'name': 'abcs'}] ''' mark = tag_attr[0] attr = tag_attr[1] self.begin(mark, attr) def __le__(self, n = 1): ''' Leave (close) N tags ''' while n > 0: self.end() n -= 1
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 17, 198, 2, 532, 9, 12, 21004, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 2, 402, 11011, 2940, 929, 35869, 198, 2, 1772, 25, 7043, 27725, 1904, 198, 2, 3128, 25, 26223, 1737, 7816, 13130, 46429, 198, 198, 6738, 28686, 1330, 3951, 538, 198, 198, 6738, 7273, 346, 1330, 4269, 62, 22179, 198, 198, 4871, 2940, 929, 32875, 25, 198, 220, 705, 7061, 402, 11011, 2940, 929, 26147, 5805, 27098, 705, 7061, 628, 220, 705, 7061, 198, 220, 1423, 298, 3173, 25, 628, 220, 618, 3599, 649, 7621, 11, 3551, 938, 9029, 11, 938, 9029, 15853, 33793, 198, 220, 611, 649, 7621, 318, 407, 2420, 7621, 923, 357, 5083, 318, 655, 2420, 828, 3551, 649, 1370, 198, 220, 618, 4305, 7621, 11, 938, 9029, 48185, 33793, 198, 220, 705, 7061, 198, 220, 773, 4714, 796, 3119, 7, 1904, 521, 298, 8, 198, 220, 825, 266, 3605, 1370, 7, 944, 2599, 198, 220, 220, 220, 705, 7061, 766, 779, 62, 521, 298, 7061, 6, 198, 220, 220, 220, 2116, 13, 14306, 15853, 2116, 13, 21283, 198, 220, 825, 2344, 298, 7, 944, 2599, 198, 220, 220, 220, 705, 7061, 766, 779, 62, 521, 298, 7061, 6, 198, 220, 220, 220, 2630, 796, 657, 198, 220, 220, 220, 329, 4808, 287, 2837, 7, 15, 11, 2116, 13, 12957, 62, 2777, 2114, 2599, 198, 220, 220, 220, 220, 220, 2116, 13, 14306, 15853, 705, 705, 198, 220, 220, 220, 220, 220, 2630, 15853, 352, 1303, 31548, 30, 198, 220, 220, 220, 1441, 2630, 198, 220, 825, 14241, 62, 521, 298, 7, 944, 2599, 198, 220, 220, 220, 705, 7061, 14241, 938, 33793, 705, 7061, 198, 220, 220, 220, 611, 2116, 13, 521, 4714, 25, 2116, 13, 14306, 796, 2116, 13, 14306, 58, 21912, 944, 13, 260, 1851, 62, 12957, 62, 521, 298, 62, 7857, 60, 198, 220, 825, 466, 62, 521, 298, 7, 944, 11, 8218, 796, 6407, 2599, 198, 220, 220, 220, 705, 7061, 19430, 33793, 11, 2620, 938, 62, 2777, 2114, 11, 8914, 2630, 9029, 290, 649, 1370, 284, 34052, 62, 12957, 62, 521, 298, 62, 7857, 705, 7061, 198, 220, 220, 220, 611, 2116, 13, 521, 4714, 25, 466, 3419, 628, 220, 825, 466, 62, 12957, 62, 521, 298, 7, 944, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 705, 7061, 3551, 33793, 278, 329, 938, 2512, 705, 7061, 198, 220, 220, 220, 2116, 13, 12957, 62, 2777, 2114, 48185, 2116, 13, 521, 298, 198, 220, 220, 220, 2116, 13, 4598, 62, 521, 298, 46491, 22046, 11, 12429, 46265, 22046, 8, 198, 220, 220, 220, 2116, 13, 12957, 62, 2777, 2114, 15853, 2116, 13, 521, 298, 628, 220, 825, 2221, 7, 944, 11, 7621, 11, 708, 3808, 796, 23884, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 6889, 257, 7621, 351, 1438, 290, 12608, 628, 220, 220, 220, 3460, 4163, 1438, 11, 1988, 290, 7621, 1438, 318, 13537, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 2116, 13, 12957, 62, 271, 62, 5239, 796, 10352, 198, 220, 220, 220, 708, 81, 301, 796, 965, 3419, 198, 220, 220, 220, 7621, 6794, 796, 2116, 13, 41915, 7, 12985, 8, 628, 220, 220, 220, 257, 563, 796, 1351, 7, 5532, 62, 22179, 7, 1078, 3808, 13, 13083, 22784, 708, 3808, 13, 27160, 3419, 4008, 611, 708, 3808, 13, 834, 4871, 834, 318, 8633, 2073, 1351, 7, 1078, 3808, 8, 198, 220, 220, 220, 611, 18896, 7, 1078, 3808, 8, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 329, 299, 287, 2837, 7, 15, 11, 18896, 7, 560, 828, 362, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 301, 15853, 2116, 13, 41915, 7, 2536, 7, 560, 58, 77, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 301, 15853, 705, 11639, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7, 560, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7, 77, 8, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 301, 15853, 366, 7879, 4, 82, 7879, 1, 4064, 2116, 13, 41915, 7, 2536, 7, 560, 58, 77, 10, 16, 60, 4008, 628, 220, 220, 220, 2116, 13, 14306, 15853, 705, 27, 6, 1343, 7621, 6794, 198, 220, 220, 220, 611, 18896, 7, 1078, 3808, 8, 14512, 657, 25, 2116, 13, 14306, 15853, 705, 705, 198, 220, 220, 220, 2116, 13, 14306, 15853, 708, 81, 301, 1343, 705, 29, 6, 628, 220, 220, 220, 1303, 1464, 3551, 773, 658, 329, 1306, 1627, 198, 220, 220, 220, 1303, 1838, 663, 1744, 284, 4268, 938, 33793, 357, 5239, 7621, 8, 198, 220, 220, 220, 2116, 13, 4598, 62, 521, 298, 3419, 628, 220, 220, 220, 2116, 13, 12985, 62, 25558, 13, 33295, 7, 12985, 6794, 8, 198, 220, 220, 220, 1441, 2116, 628, 220, 825, 7621, 7, 944, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 7061, 6, 198, 220, 220, 220, 412, 5258, 43, 1262, 11593, 19836, 834, 351, 15582, 628, 220, 220, 220, 2251, 13760, 588, 25, 198, 220, 220, 220, 351, 35555, 13, 12985, 10786, 12626, 3256, 1391, 8043, 25, 705, 2, 2791, 535, 487, 6, 92, 2599, 198, 220, 220, 220, 220, 220, 35555, 4064, 705, 48, 3467, 86, 59, 1195, 6, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 2116, 13, 12957, 62, 271, 62, 5239, 796, 10352, 198, 220, 220, 220, 1441, 17467, 32875, 7, 944, 8, 628, 220, 825, 2420, 7, 944, 11, 2695, 2599, 198, 220, 220, 220, 705, 7061, 24443, 2420, 2695, 705, 7061, 198, 220, 220, 220, 2116, 13, 12957, 62, 271, 62, 5239, 796, 6407, 198, 220, 220, 220, 611, 2116, 13, 521, 4714, 25, 2116, 13, 66, 21130, 62, 521, 298, 3419, 198, 220, 220, 220, 2116, 13, 14306, 15853, 2116, 13, 41915, 7, 11299, 8, 198, 220, 220, 220, 1441, 2116, 628, 220, 1303, 31, 12708, 24396, 198, 220, 1303, 4299, 1332, 33529, 198, 220, 1303, 220, 285, 796, 2940, 929, 32875, 3419, 198, 220, 1303, 220, 285, 1875, 705, 6494, 6, 198, 220, 1303, 220, 285, 1875, 705, 2256, 6, 198, 220, 1303, 220, 285, 1875, 705, 7839, 6, 198, 220, 1303, 220, 285, 1279, 705, 15496, 2159, 6, 198, 220, 1303, 220, 285, 19841, 362, 198, 220, 1303, 220, 285, 1875, 705, 2618, 6, 198, 220, 1303, 220, 285, 1875, 705, 5239, 6, 198, 220, 1303, 220, 351, 285, 13, 12985, 7203, 65, 1, 2599, 198, 220, 1303, 220, 220, 220, 285, 1279, 705, 10100, 6, 198, 220, 1303, 220, 285, 18189, 37250, 64, 3256, 1391, 6, 312, 10354, 705, 2536, 6, 92, 60, 198, 220, 1303, 220, 285, 1279, 705, 91, 45213, 2637, 198, 220, 1303, 220, 285, 19841, 604, 198, 220, 1303, 220, 1441, 285, 628, 220, 825, 886, 7, 944, 2599, 198, 220, 220, 220, 705, 7061, 46728, 2737, 938, 7621, 705, 7061, 198, 220, 220, 220, 611, 407, 2116, 13, 12957, 62, 271, 62, 5239, 25, 1303, 14241, 33793, 341, 198, 220, 220, 220, 220, 220, 1303, 4798, 7, 944, 13, 521, 298, 11, 2116, 13, 12985, 62, 25558, 8, 198, 220, 220, 220, 220, 220, 2116, 13, 66, 21130, 62, 521, 298, 3419, 198, 220, 220, 220, 220, 220, 2116, 13, 4598, 62, 521, 298, 7, 25101, 8, 628, 220, 220, 220, 2116, 13, 14306, 15853, 705, 3556, 6, 1343, 2116, 13, 12985, 62, 25558, 13, 12924, 3419, 1343, 705, 29, 6, 198, 220, 220, 220, 2116, 13, 4598, 62, 521, 298, 7, 25101, 8, 198, 220, 220, 220, 2116, 13, 12957, 62, 271, 62, 5239, 796, 10352, 628, 220, 1303, 1892, 19951, 416, 2940, 929, 33793, 795, 1967, 198, 220, 825, 8246, 7, 944, 11, 8246, 2599, 198, 220, 220, 220, 705, 7061, 3551, 8246, 2420, 357, 403, 3798, 5813, 8, 705, 7061, 198, 220, 220, 220, 2116, 13, 14306, 15853, 8246, 198, 220, 220, 220, 1441, 2116, 628, 220, 825, 8246, 12985, 7, 944, 11, 8246, 5239, 2599, 198, 220, 220, 220, 705, 7061, 24443, 555, 3798, 5813, 8246, 1279, 29, 2420, 705, 7061, 198, 220, 220, 220, 2116, 13, 14306, 15853, 705, 27, 6, 198, 220, 220, 220, 2116, 13, 14306, 15853, 8246, 5239, 198, 220, 220, 220, 2116, 13, 14306, 15853, 705, 29, 6, 628, 220, 825, 4808, 41915, 7, 944, 11, 35555, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 14473, 23735, 4731, 628, 220, 220, 220, 705, 318, 6928, 351, 1222, 499, 418, 26, 198, 220, 220, 220, 366, 318, 6928, 351, 1222, 421, 313, 26, 198, 220, 220, 220, 1222, 318, 6928, 351, 1222, 696, 26, 198, 220, 220, 220, 1279, 318, 6928, 351, 1222, 2528, 26, 198, 220, 220, 220, 1875, 318, 6928, 351, 1222, 13655, 26, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 32695, 796, 8400, 8247, 316, 7203, 6, 7879, 5, 27, 29, 4943, 198, 220, 220, 220, 9014, 796, 1391, 705, 59, 7061, 25, 705, 499, 418, 3256, 705, 1, 10354, 705, 421, 313, 3256, 705, 5, 10354, 705, 696, 3256, 705, 27, 10354, 705, 2528, 3256, 705, 29, 10354, 705, 13655, 6, 1782, 628, 220, 220, 220, 611, 18896, 7, 19875, 8, 1279, 352, 25, 1441, 198, 220, 220, 220, 5072, 796, 965, 3419, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 15, 11, 18896, 7, 19875, 8, 2599, 198, 220, 220, 220, 220, 220, 1149, 796, 35555, 58, 72, 60, 198, 220, 220, 220, 220, 220, 611, 357, 10641, 287, 32695, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 15853, 705, 5, 6, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 15853, 9014, 58, 10641, 60, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 15853, 705, 26, 6, 198, 220, 220, 220, 220, 220, 2073, 25, 5072, 15853, 1149, 198, 220, 220, 220, 1441, 5072, 628, 220, 6654, 796, 1398, 24396, 28264, 41915, 8, 628, 220, 825, 11593, 2536, 834, 7, 944, 2599, 198, 220, 220, 220, 705, 7061, 337, 7, 14306, 8, 492, 58, 12985, 8931, 60, 705, 7061, 198, 220, 220, 220, 1441, 705, 44, 10786, 1343, 2116, 13, 14306, 1343, 705, 8, 492, 6, 1343, 965, 7, 944, 13, 12985, 62, 25558, 8, 628, 220, 11593, 2528, 834, 796, 2420, 1303, 6333, 198, 220, 11593, 13655, 834, 796, 2221, 1303, 6333, 198, 220, 11593, 2860, 834, 796, 8246, 1303, 6333, 628, 220, 825, 11593, 3642, 1299, 834, 7, 944, 11, 7621, 2599, 198, 220, 220, 220, 705, 7061, 318, 7621, 2641, 13507, 2752, 15940, 5633, 705, 7061, 198, 220, 220, 220, 1441, 7621, 287, 2116, 13, 12985, 62, 25558, 628, 220, 825, 11593, 469, 834, 7, 944, 11, 7621, 62, 35226, 2599, 198, 220, 220, 220, 705, 7061, 35555, 18189, 37250, 4102, 929, 3256, 1391, 6, 3672, 10354, 705, 397, 6359, 6, 92, 60, 705, 7061, 198, 220, 220, 220, 1317, 796, 7621, 62, 35226, 58, 15, 60, 198, 220, 220, 220, 708, 81, 796, 7621, 62, 35226, 58, 16, 60, 198, 220, 220, 220, 2116, 13, 27471, 7, 4102, 11, 708, 81, 8, 628, 220, 825, 11593, 293, 834, 7, 944, 11, 299, 796, 352, 2599, 198, 220, 220, 220, 705, 7061, 17446, 357, 19836, 8, 399, 15940, 705, 7061, 198, 220, 220, 220, 981, 299, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 2116, 13, 437, 3419, 198, 220, 220, 220, 220, 220, 299, 48185, 352, 628 ]
2.37605
1,904
from pkg_resources import DistributionNotFound, get_distribution, parse_version try: import psycopg2 # noqa: F401 except ImportError: raise ImportError( 'No module named psycopg2. Please install either ' 'psycopg2 or psycopg2-binary package for CPython ' 'or psycopg2cffi for Pypy.' ) for package in ['psycopg2', 'psycopg2-binary', 'psycopg2cffi']: try: if get_distribution(package).parsed_version < parse_version('2.5'): raise ImportError('Minimum required version for psycopg2 is 2.5') break except DistributionNotFound: pass __version__ = get_distribution('hs-sqlalchemy-redshift').version from sqlalchemy.dialects import registry registry.register("redshift", "sqlalchemy_redshift.dialect", "RedshiftDialect") registry.register( "redshift.psycopg2", "sqlalchemy_redshift.dialect", "RedshiftDialect" )
[ 6738, 279, 10025, 62, 37540, 1330, 27484, 3673, 21077, 11, 651, 62, 17080, 3890, 11, 21136, 62, 9641, 198, 198, 28311, 25, 198, 220, 220, 220, 1330, 17331, 22163, 70, 17, 220, 1303, 645, 20402, 25, 376, 21844, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 5298, 17267, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 2949, 8265, 3706, 17331, 22163, 70, 17, 13, 4222, 2721, 2035, 705, 198, 220, 220, 220, 220, 220, 220, 220, 705, 13764, 22163, 70, 17, 393, 17331, 22163, 70, 17, 12, 39491, 5301, 329, 16932, 7535, 705, 198, 220, 220, 220, 220, 220, 220, 220, 705, 273, 17331, 22163, 70, 17, 66, 487, 72, 329, 350, 4464, 88, 2637, 198, 220, 220, 220, 1267, 198, 198, 1640, 5301, 287, 37250, 13764, 22163, 70, 17, 3256, 705, 13764, 22163, 70, 17, 12, 39491, 3256, 705, 13764, 22163, 70, 17, 66, 487, 72, 6, 5974, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 651, 62, 17080, 3890, 7, 26495, 737, 79, 945, 276, 62, 9641, 1279, 21136, 62, 9641, 10786, 17, 13, 20, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 17267, 12331, 10786, 44046, 2672, 2196, 329, 17331, 22163, 70, 17, 318, 362, 13, 20, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 2845, 27484, 3673, 21077, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 198, 834, 9641, 834, 796, 651, 62, 17080, 3890, 10786, 11994, 12, 25410, 282, 26599, 12, 445, 30846, 27691, 9641, 198, 198, 6738, 44161, 282, 26599, 13, 38969, 478, 82, 1330, 20478, 198, 198, 2301, 4592, 13, 30238, 7203, 445, 30846, 1600, 366, 25410, 282, 26599, 62, 445, 30846, 13, 38969, 478, 1600, 366, 7738, 30846, 24400, 478, 4943, 198, 2301, 4592, 13, 30238, 7, 198, 220, 220, 220, 366, 445, 30846, 13, 13764, 22163, 70, 17, 1600, 366, 25410, 282, 26599, 62, 445, 30846, 13, 38969, 478, 1600, 366, 7738, 30846, 24400, 478, 1, 198, 8, 198 ]
2.594203
345
# -*- coding: utf-8 -*-
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198 ]
1.714286
14
""" This module contains the top level API for managing the project/file templates. """ import json import logging import os import re from binaryornot.check import is_binary from hackedit.app import settings def create(template, dest_dir, answers): """ Creates a file/project from the specified template, at the specified directory. :param template: Template data. :param dest_dir: Destination directory where to create the file/project :param answers: Dict of answers for substitution variables """ ret_val = [] if not os.path.exists(dest_dir): os.makedirs(dest_dir) src_dir = template['path'] for root, dirs, files in os.walk(src_dir): for file in files: if file == 'template.json' or file.endswith('.pyc'): continue src, dst = get_paths(root, file, src_dir, dest_dir) dst = subsitute_vars(dst) encoding = get_file_encoding(src) try: content = open_file(src, encoding) except OSError: _logger().exception('failed to open file: %r', src) if encoding != 'binary': content = subsitute_vars(content) if file == 'btpad_btn_img_0.png': print(len(content), encoding) try: open_file(dst, encoding, to_write=content) except PermissionError: _logger().exception('failed to write file: %r', dst) else: ret_val.append(dst) assert open_file(dst, encoding) == content for directory in dirs: src, dst = get_paths(root, directory, src_dir, dest_dir) dst = subsitute_vars(dst) try: os.mkdir(dst) except PermissionError: _logger().exception('failed to create directory: %r', dst) return ret_val def get_sources(): """ Returns the template sources (directory associated with a label). """ s = settings.load() tmpl_sources = s.value('_templates/sources', '[]') tmpl_sources = json.loads(tmpl_sources) return sorted(tmpl_sources, key=lambda x: x['label']) def add_source(label, path): """ Adds a template source :param label: Name of the template source. :param path: Path of the template source. """ tmpl_sources = get_sources() tmpl_sources.append({'label': label, 'path': path}) s = settings.load() s.setValue('_templates/sources', json.dumps(tmpl_sources)) def rm_source(label): """ Removes the specified template source. :param label: Name of the template source to remove. """ tmpl_sources = get_sources() for src in tmpl_sources: if src['label'] == label: tmpl_sources.remove(src) s = settings.load() s.setValue('_templates/sources', json.dumps(tmpl_sources)) def clear_sources(): """ Clear template sources. """ s = settings.load() s.setValue('_templates/sources', json.dumps([])) def get_templates(category='', source_filter=''): """ Gets the list of templates. :param category: Template category to retrieve. - use "Project" to get project templates - use "File" to get file templates - use an empty string to retrieve them all (default). :param source: Label of the source of the templates to retrieve. Use an empty string to retrieve templates from all sources. """ def filtered_sources(): """ Filter list of sources based on the ``source`` parameter. """ tmpl_sources = get_sources() filtered = [] if source_filter: # only keep the requested template source for src in tmpl_sources: if src['label'] == source_filter: filtered.append(src) break else: filtered = tmpl_sources return filtered def get_template(tdir): """ Returns template data for the given template directory. Returns None if the template is invalid. :param tdir: Template directory to get data from. """ tmpl = None template_json = os.path.join(tdir, 'template.json') if not os.path.exists(template_json): # no template.json -> invalid template _logger().warn('"template.json" not found in template directory: %r', tdir) else: try: with open(template_json) as f: tmpl = json.loads(f.read()) except (OSError, json.JSONDecodeError): # unreadable template.json -> invalid template _logger().exception('failed to read %r', template_json) tmpl = None else: try: tmpl_cat = tmpl['category'] except KeyError: # no metadata or no category in template.json -> invalid template _logger().exception('failed to read category from template metadata, ' 'incomplete template.json?') tmpl = None else: # valid template (finally). tmpl['source'] = src if category and category != tmpl_cat: _logger().debug('rejecting template directory: %r, invalid category', tdir) tmpl = None return tmpl def listdir(directory): """ Securely list subdirectories of ``directory``. Returns an empty list of an OSError occurred. """ try: return os.listdir(directory) except OSError: return [] for src in filtered_sources(): for tdir in listdir(src['path']): tdir = os.path.join(src['path'], tdir) if os.path.isfile(tdir): continue tmpl = get_template(tdir) if tmpl: tmpl['path'] = tdir yield tmpl def get_template(source, template): """ Returns the specified template data. """ for t in get_templates(source_filter=source): if t['name'] == template: return t return None if __name__ == '__main__': clear_sources() add_source('COBOL', '/home/colin/Documents/hackedit-cobol/hackedit_cobol/templates') add_source('Python', '/home/colin/Documents/hackedit-python/hackedit_python/templates') for tmpl in get_templates(): print(json.dumps(tmpl, indent=4, sort_keys=True))
[ 37811, 198, 1212, 8265, 4909, 262, 1353, 1241, 7824, 329, 11149, 262, 1628, 14, 7753, 24019, 13, 198, 37811, 198, 11748, 33918, 198, 11748, 18931, 198, 11748, 28686, 198, 11748, 302, 198, 198, 6738, 13934, 1211, 313, 13, 9122, 1330, 318, 62, 39491, 198, 198, 6738, 19957, 270, 13, 1324, 1330, 6460, 628, 198, 4299, 2251, 7, 28243, 11, 2244, 62, 15908, 11, 7429, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7921, 274, 257, 2393, 14, 16302, 422, 262, 7368, 11055, 11, 379, 262, 7368, 8619, 13, 628, 220, 220, 220, 1058, 17143, 11055, 25, 37350, 1366, 13, 198, 220, 220, 220, 1058, 17143, 2244, 62, 15908, 25, 45657, 8619, 810, 284, 2251, 262, 2393, 14, 16302, 198, 220, 220, 220, 1058, 17143, 7429, 25, 360, 713, 286, 7429, 329, 32097, 9633, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1005, 62, 2100, 796, 17635, 628, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 16520, 62, 15908, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 16520, 62, 15908, 8, 198, 220, 220, 220, 12351, 62, 15908, 796, 11055, 17816, 6978, 20520, 198, 220, 220, 220, 329, 6808, 11, 288, 17062, 11, 3696, 287, 28686, 13, 11152, 7, 10677, 62, 15908, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2393, 287, 3696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2393, 6624, 705, 28243, 13, 17752, 6, 393, 2393, 13, 437, 2032, 342, 7, 4458, 9078, 66, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12351, 11, 29636, 796, 651, 62, 6978, 82, 7, 15763, 11, 2393, 11, 12351, 62, 15908, 11, 2244, 62, 15908, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29636, 796, 6352, 3678, 62, 85, 945, 7, 67, 301, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21004, 796, 651, 62, 7753, 62, 12685, 7656, 7, 10677, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2695, 796, 1280, 62, 7753, 7, 10677, 11, 21004, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 440, 5188, 81, 1472, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 6404, 1362, 22446, 1069, 4516, 10786, 47904, 284, 1280, 2393, 25, 4064, 81, 3256, 12351, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 21004, 14512, 705, 39491, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2695, 796, 6352, 3678, 62, 85, 945, 7, 11299, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2393, 6624, 705, 18347, 15636, 62, 46118, 62, 9600, 62, 15, 13, 11134, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 11925, 7, 11299, 828, 21004, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1280, 62, 7753, 7, 67, 301, 11, 21004, 11, 284, 62, 13564, 28, 11299, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 2448, 3411, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 6404, 1362, 22446, 1069, 4516, 10786, 47904, 284, 3551, 2393, 25, 4064, 81, 3256, 29636, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 33295, 7, 67, 301, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 1280, 62, 7753, 7, 67, 301, 11, 21004, 8, 6624, 2695, 628, 220, 220, 220, 220, 220, 220, 220, 329, 8619, 287, 288, 17062, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12351, 11, 29636, 796, 651, 62, 6978, 82, 7, 15763, 11, 8619, 11, 12351, 62, 15908, 11, 2244, 62, 15908, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29636, 796, 6352, 3678, 62, 85, 945, 7, 67, 301, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28015, 15908, 7, 67, 301, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 2448, 3411, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 6404, 1362, 22446, 1069, 4516, 10786, 47904, 284, 2251, 8619, 25, 4064, 81, 3256, 29636, 8, 198, 220, 220, 220, 1441, 1005, 62, 2100, 628, 198, 4299, 651, 62, 82, 2203, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 262, 11055, 4237, 357, 34945, 3917, 351, 257, 6167, 737, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 264, 796, 6460, 13, 2220, 3419, 198, 220, 220, 220, 256, 76, 489, 62, 82, 2203, 796, 264, 13, 8367, 10786, 62, 11498, 17041, 14, 82, 2203, 3256, 705, 21737, 11537, 198, 220, 220, 220, 256, 76, 489, 62, 82, 2203, 796, 33918, 13, 46030, 7, 17209, 489, 62, 82, 2203, 8, 198, 220, 220, 220, 1441, 23243, 7, 17209, 489, 62, 82, 2203, 11, 1994, 28, 50033, 2124, 25, 2124, 17816, 18242, 6, 12962, 628, 198, 4299, 751, 62, 10459, 7, 18242, 11, 3108, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 34333, 257, 11055, 2723, 628, 220, 220, 220, 1058, 17143, 6167, 25, 6530, 286, 262, 11055, 2723, 13, 198, 220, 220, 220, 1058, 17143, 3108, 25, 10644, 286, 262, 11055, 2723, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 256, 76, 489, 62, 82, 2203, 796, 651, 62, 82, 2203, 3419, 198, 220, 220, 220, 256, 76, 489, 62, 82, 2203, 13, 33295, 15090, 6, 18242, 10354, 6167, 11, 705, 6978, 10354, 3108, 30072, 198, 220, 220, 220, 264, 796, 6460, 13, 2220, 3419, 198, 220, 220, 220, 264, 13, 2617, 11395, 10786, 62, 11498, 17041, 14, 82, 2203, 3256, 33918, 13, 67, 8142, 7, 17209, 489, 62, 82, 2203, 4008, 628, 198, 4299, 42721, 62, 10459, 7, 18242, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3982, 5241, 262, 7368, 11055, 2723, 13, 628, 220, 220, 220, 1058, 17143, 6167, 25, 6530, 286, 262, 11055, 2723, 284, 4781, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 256, 76, 489, 62, 82, 2203, 796, 651, 62, 82, 2203, 3419, 198, 220, 220, 220, 329, 12351, 287, 256, 76, 489, 62, 82, 2203, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 12351, 17816, 18242, 20520, 6624, 6167, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 76, 489, 62, 82, 2203, 13, 28956, 7, 10677, 8, 198, 220, 220, 220, 264, 796, 6460, 13, 2220, 3419, 198, 220, 220, 220, 264, 13, 2617, 11395, 10786, 62, 11498, 17041, 14, 82, 2203, 3256, 33918, 13, 67, 8142, 7, 17209, 489, 62, 82, 2203, 4008, 628, 198, 4299, 1598, 62, 82, 2203, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11459, 11055, 4237, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 264, 796, 6460, 13, 2220, 3419, 198, 220, 220, 220, 264, 13, 2617, 11395, 10786, 62, 11498, 17041, 14, 82, 2203, 3256, 33918, 13, 67, 8142, 7, 21737, 4008, 628, 198, 4299, 651, 62, 11498, 17041, 7, 22872, 11639, 3256, 2723, 62, 24455, 28, 7061, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 29620, 262, 1351, 286, 24019, 13, 628, 220, 220, 220, 1058, 17143, 6536, 25, 37350, 6536, 284, 19818, 13, 198, 220, 220, 220, 220, 220, 220, 220, 532, 779, 366, 16775, 1, 284, 651, 1628, 24019, 198, 220, 220, 220, 220, 220, 220, 220, 532, 779, 366, 8979, 1, 284, 651, 2393, 24019, 198, 220, 220, 220, 220, 220, 220, 220, 532, 779, 281, 6565, 4731, 284, 19818, 606, 477, 357, 12286, 737, 628, 220, 220, 220, 1058, 17143, 2723, 25, 36052, 286, 262, 2723, 286, 262, 24019, 284, 19818, 13, 5765, 281, 6565, 4731, 284, 19818, 198, 220, 220, 220, 220, 220, 220, 220, 24019, 422, 477, 4237, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 29083, 62, 82, 2203, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 25853, 1351, 286, 4237, 1912, 319, 262, 7559, 10459, 15506, 11507, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 256, 76, 489, 62, 82, 2203, 796, 651, 62, 82, 2203, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 29083, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2723, 62, 24455, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 691, 1394, 262, 9167, 11055, 2723, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 12351, 287, 256, 76, 489, 62, 82, 2203, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 12351, 17816, 18242, 20520, 6624, 2723, 62, 24455, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29083, 13, 33295, 7, 10677, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29083, 796, 256, 76, 489, 62, 82, 2203, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 29083, 628, 220, 220, 220, 825, 651, 62, 28243, 7, 8671, 343, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 11055, 1366, 329, 262, 1813, 11055, 8619, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 6045, 611, 262, 11055, 318, 12515, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 256, 15908, 25, 37350, 8619, 284, 651, 1366, 422, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 256, 76, 489, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 11055, 62, 17752, 796, 28686, 13, 6978, 13, 22179, 7, 8671, 343, 11, 705, 28243, 13, 17752, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 28243, 62, 17752, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 645, 11055, 13, 17752, 4613, 12515, 11055, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 6404, 1362, 22446, 40539, 10786, 1, 28243, 13, 17752, 1, 407, 1043, 287, 11055, 8619, 25, 4064, 81, 3256, 256, 15908, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 28243, 62, 17752, 8, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 76, 489, 796, 33918, 13, 46030, 7, 69, 13, 961, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 357, 2640, 12331, 11, 33918, 13, 40386, 10707, 1098, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 555, 46155, 11055, 13, 17752, 4613, 12515, 11055, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 6404, 1362, 22446, 1069, 4516, 10786, 47904, 284, 1100, 4064, 81, 3256, 11055, 62, 17752, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 76, 489, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 76, 489, 62, 9246, 796, 256, 76, 489, 17816, 22872, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 645, 20150, 393, 645, 6536, 287, 11055, 13, 17752, 4613, 12515, 11055, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 6404, 1362, 22446, 1069, 4516, 10786, 47904, 284, 1100, 6536, 422, 11055, 20150, 11, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 259, 20751, 11055, 13, 17752, 8348, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 76, 489, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4938, 11055, 357, 69, 3289, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 76, 489, 17816, 10459, 20520, 796, 12351, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6536, 290, 6536, 14512, 256, 76, 489, 62, 9246, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 6404, 1362, 22446, 24442, 10786, 260, 752, 278, 11055, 8619, 25, 4064, 81, 11, 12515, 6536, 3256, 256, 15908, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 76, 489, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 256, 76, 489, 628, 220, 220, 220, 825, 1351, 15908, 7, 34945, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 26707, 306, 1351, 850, 12942, 1749, 286, 7559, 34945, 15506, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 281, 6565, 1351, 286, 281, 440, 5188, 81, 1472, 5091, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 28686, 13, 4868, 15908, 7, 34945, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 440, 5188, 81, 1472, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 17635, 628, 220, 220, 220, 329, 12351, 287, 29083, 62, 82, 2203, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 329, 256, 15908, 287, 1351, 15908, 7, 10677, 17816, 6978, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 10677, 17816, 6978, 6, 4357, 256, 15908, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 4468, 576, 7, 8671, 343, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 76, 489, 796, 651, 62, 28243, 7, 8671, 343, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 256, 76, 489, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 76, 489, 17816, 6978, 20520, 796, 256, 15908, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 256, 76, 489, 628, 198, 4299, 651, 62, 28243, 7, 10459, 11, 11055, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 262, 7368, 11055, 1366, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 329, 256, 287, 651, 62, 11498, 17041, 7, 10459, 62, 24455, 28, 10459, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 256, 17816, 3672, 20520, 6624, 11055, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 256, 198, 220, 220, 220, 1441, 6045, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1598, 62, 82, 2203, 3419, 198, 220, 220, 220, 751, 62, 10459, 10786, 8220, 33, 3535, 3256, 220, 31051, 11195, 14, 4033, 259, 14, 38354, 14, 71, 6021, 270, 12, 66, 672, 349, 14, 71, 6021, 270, 62, 66, 672, 349, 14, 11498, 17041, 11537, 198, 220, 220, 220, 751, 62, 10459, 10786, 37906, 3256, 31051, 11195, 14, 4033, 259, 14, 38354, 14, 71, 6021, 270, 12, 29412, 14, 71, 6021, 270, 62, 29412, 14, 11498, 17041, 11537, 198, 220, 220, 220, 329, 256, 76, 489, 287, 651, 62, 11498, 17041, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 17752, 13, 67, 8142, 7, 17209, 489, 11, 33793, 28, 19, 11, 3297, 62, 13083, 28, 17821, 4008, 198 ]
2.184029
3,043
""" Convert video format x to MP4/H.264. """ import os import sys import logging from .videometainfo import VideoMetaInfo from .utils import sizeof_fmt, time_fmt, find_files, check_dependencies, call, ffmpeg logger = logging.getLogger(__name__) class VideoToMP4: """To Mp4""" SUPPORTED_EXTENSIONS = ".wmv, .avi, .mkv, .mov, .flv" RULES = { ".wmv": "-c:v libx264 -crf 19 ", ".avi": "-vf yadif=1 -c:v h264_nvenc -preset slow -tune film -crf 17", ".mkv": "-c copy", ".mov": "-vcodec h264 -acodec aac -strict -2 -crf 19 ", ".flv": " -r 20 ", } def process(self, video_file: str): """Convert video files to MP4 container format.""" name = os.path.splitext(video_file)[0] ext = os.path.splitext(video_file)[1] new_name = f"{name}.mp4" if os.path.exists(new_name): logger.info(f"Skipping file {new_name} already exists!") elif ext not in VideoToMP4.RULES: logger.error(f"Skipping unsupported type {ext}!") else: print(f'Convert {ext} to MP4 {new_name} ... ') meta_info = VideoMetaInfo(video_file) rule = VideoToMP4.RULES[ext] flags = "-movflags +faststart -pix_fmt yuv420p" ffmpeg( f'-i "{video_file}" {flags} {rule} -metadata date="{meta_info.original_date}" "{new_name}"' )
[ 37811, 198, 3103, 1851, 2008, 5794, 2124, 284, 4904, 19, 14, 39, 13, 18897, 13, 198, 37811, 198, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 18931, 198, 198, 6738, 764, 85, 485, 908, 391, 6513, 1330, 7623, 48526, 12360, 198, 6738, 764, 26791, 1330, 39364, 62, 69, 16762, 11, 640, 62, 69, 16762, 11, 1064, 62, 16624, 11, 2198, 62, 45841, 3976, 11, 869, 11, 31246, 43913, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 4871, 7623, 2514, 7378, 19, 25, 198, 220, 220, 220, 37227, 2514, 337, 79, 19, 37811, 198, 220, 220, 220, 43333, 1961, 62, 13918, 16938, 11053, 796, 27071, 26377, 85, 11, 764, 15820, 11, 764, 28015, 85, 11, 764, 76, 709, 11, 764, 2704, 85, 1, 198, 220, 220, 220, 371, 6239, 1546, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27071, 26377, 85, 1298, 27444, 66, 25, 85, 9195, 87, 18897, 532, 6098, 69, 678, 33172, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27071, 15820, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27444, 85, 69, 331, 324, 361, 28, 16, 532, 66, 25, 85, 289, 18897, 62, 77, 574, 66, 532, 18302, 316, 3105, 532, 83, 1726, 2646, 532, 6098, 69, 1596, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27071, 28015, 85, 1298, 27444, 66, 4866, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27071, 76, 709, 1298, 27444, 85, 19815, 721, 289, 18897, 532, 330, 375, 721, 257, 330, 532, 301, 2012, 532, 17, 532, 6098, 69, 678, 33172, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27071, 2704, 85, 1298, 366, 532, 81, 1160, 33172, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 825, 1429, 7, 944, 11, 2008, 62, 7753, 25, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3103, 1851, 2008, 3696, 284, 4904, 19, 9290, 5794, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 28686, 13, 6978, 13, 22018, 578, 742, 7, 15588, 62, 7753, 38381, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1070, 796, 28686, 13, 6978, 13, 22018, 578, 742, 7, 15588, 62, 7753, 38381, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 3672, 796, 277, 1, 90, 3672, 27422, 3149, 19, 1, 198, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 1069, 1023, 7, 3605, 62, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7, 69, 1, 50, 4106, 2105, 2393, 1391, 3605, 62, 3672, 92, 1541, 7160, 2474, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1070, 407, 287, 7623, 2514, 7378, 19, 13, 49, 6239, 1546, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 69, 1, 50, 4106, 2105, 24222, 2099, 1391, 2302, 92, 2474, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 3103, 1851, 1391, 2302, 92, 284, 4904, 19, 1391, 3605, 62, 3672, 92, 2644, 705, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13634, 62, 10951, 796, 7623, 48526, 12360, 7, 15588, 62, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3896, 796, 7623, 2514, 7378, 19, 13, 49, 6239, 1546, 58, 2302, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9701, 796, 27444, 76, 709, 33152, 1343, 7217, 9688, 532, 79, 844, 62, 69, 16762, 331, 14795, 27211, 79, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31246, 43913, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 29001, 72, 45144, 15588, 62, 7753, 36786, 1391, 33152, 92, 1391, 25135, 92, 532, 38993, 3128, 2625, 90, 28961, 62, 10951, 13, 14986, 62, 4475, 36786, 45144, 3605, 62, 3672, 92, 30543, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198 ]
2.002782
719
from setuptools import setup setup( name='parasol', dependency_links=[ ], install_requires=[ ] )
[ 6738, 900, 37623, 10141, 1330, 9058, 198, 40406, 7, 198, 220, 220, 220, 1438, 11639, 1845, 292, 349, 3256, 198, 220, 220, 220, 20203, 62, 28751, 41888, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 2721, 62, 47911, 41888, 198, 220, 220, 220, 2361, 198, 8, 198 ]
2.4375
48
# Generated by Django 3.2.8 on 2021-11-02 12:46 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 513, 13, 17, 13, 23, 319, 33448, 12, 1157, 12, 2999, 1105, 25, 3510, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.84375
32
import csv import io import json import logging import os import warnings from collections import defaultdict from ..utils.exceptions import OasisException from ..utils.log import oasis_log from .files import GENERAL_SETTINGS_FILE, GUL_SUMMARIES_FILE, IL_SUMMARIES_FILE, MODEL_SETTINGS_FILE def _get_summaries(summary_file): """ Get a list representation of a summary file. """ summaries_dict = defaultdict(lambda: {'leccalc': {}}) with io.open(summary_file, 'r', encoding='utf-8') as csvfile: reader = csv.reader(csvfile) for row in reader: id = int(row[0]) if row[1].startswith('leccalc'): summaries_dict[id]['leccalc'][row[1]] = row[2].lower() == 'true' else: summaries_dict[id][row[1]] = row[2].lower() == 'true' summaries = list() for id in sorted(summaries_dict): summaries_dict[id]['id'] = id summaries.append(summaries_dict[id]) return summaries @oasis_log def create_analysis_settings_json(directory): """ Generate an analysis settings JSON from a set of CSV files in a specified directory. Args: ``directory`` (string): the directory containing the CSV files. Returns: The analysis settings JSON. """ if not os.path.exists(directory): error_message = "Directory does not exist: {}".format(directory) logging.getLogger().error(error_message) raise OasisException(error_message) general_settings_file = os.path.join(directory, GENERAL_SETTINGS_FILE) model_settings_file = os.path.join(directory, MODEL_SETTINGS_FILE) gul_summaries_file = os.path.join(directory, GUL_SUMMARIES_FILE) il_summaries_file = os.path.join(directory, IL_SUMMARIES_FILE) for file in [general_settings_file, model_settings_file, gul_summaries_file, il_summaries_file]: if not os.path.exists(file): error_message = "File does not exist: {}".format(directory) logging.getLogger().error(error_message) raise OasisException(error_message) general_settings = dict() with io.open(general_settings_file, 'r', encoding='utf-8') as csvfile: reader = csv.reader(csvfile) for row in reader: general_settings[row[0]] = eval("{}('{}')".format(row[2], row[1])) model_settings = dict() with io.open(model_settings_file, 'r', encoding='utf-8') as csvfile: reader = csv.reader(csvfile) for row in reader: model_settings[row[0]] = eval("{}('{}')".format(row[2], row[1])) gul_summaries = _get_summaries(gul_summaries_file) il_summaries = _get_summaries(il_summaries_file) analysis_settings = general_settings analysis_settings['model_settings'] = model_settings analysis_settings['gul_summaries'] = gul_summaries analysis_settings['il_summaries'] = il_summaries output_json = json.dumps(analysis_settings) logging.getLogger().info("Analysis settings json: {}".format(output_json)) return output_json def read_analysis_settings(analysis_settings_fp, il_files_exist=False, ri_files_exist=False): """Read the analysis settings file""" # Load analysis_settings file try: # Load as a json with io.open(analysis_settings_fp, 'r', encoding='utf-8') as f: analysis_settings = json.load(f) # Extract the analysis_settings part within the json if analysis_settings.get('analysis_settings'): analysis_settings = analysis_settings['analysis_settings'] except (IOError, TypeError, ValueError): raise OasisException('Invalid analysis settings file or file path: {}.'.format( analysis_settings_fp)) # Reset il_output if the files are not there if not il_files_exist or 'il_output' not in analysis_settings: # No insured loss output analysis_settings['il_output'] = False analysis_settings['il_summaries'] = [] # Same for ri_output if not ri_files_exist or 'ri_output' not in analysis_settings: # No reinsured loss output analysis_settings['ri_output'] = False analysis_settings['ri_summaries'] = [] # If we want ri_output, we will need il_output, which needs il_files if analysis_settings['ri_output'] and not analysis_settings['il_output']: if not il_files_exist: warnings.warn("ri_output selected, but il files not found") analysis_settings['ri_output'] = False analysis_settings['ri_summaries'] = [] else: analysis_settings['il_output'] = True # guard - Check if at least one output type is selected if not any([ analysis_settings['gul_output'] if 'gul_output' in analysis_settings else False, analysis_settings['il_output'] if 'il_output' in analysis_settings else False, analysis_settings['ri_output'] if 'ri_output' in analysis_settings else False, ]): raise OasisException( 'No valid output settings in: {}'.format(analysis_settings_fp)) return analysis_settings
[ 11748, 269, 21370, 198, 11748, 33245, 198, 11748, 33918, 198, 11748, 18931, 198, 11748, 28686, 198, 11748, 14601, 198, 198, 6738, 17268, 1330, 4277, 11600, 198, 198, 6738, 11485, 26791, 13, 1069, 11755, 1330, 440, 17765, 16922, 198, 6738, 11485, 26791, 13, 6404, 1330, 267, 17765, 62, 6404, 198, 6738, 764, 16624, 1330, 41877, 62, 28480, 51, 20754, 62, 25664, 11, 402, 6239, 62, 50, 5883, 40569, 11015, 62, 25664, 11, 14639, 62, 50, 5883, 40569, 11015, 62, 25664, 11, 19164, 3698, 62, 28480, 51, 20754, 62, 25664, 628, 198, 4299, 4808, 1136, 62, 82, 13929, 3166, 7, 49736, 62, 7753, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3497, 257, 1351, 10552, 286, 257, 10638, 2393, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 30114, 3166, 62, 11600, 796, 4277, 11600, 7, 50033, 25, 1391, 6, 293, 535, 282, 66, 10354, 1391, 11709, 8, 628, 220, 220, 220, 351, 33245, 13, 9654, 7, 49736, 62, 7753, 11, 705, 81, 3256, 21004, 11639, 40477, 12, 23, 11537, 355, 269, 21370, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9173, 796, 269, 21370, 13, 46862, 7, 40664, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 5752, 287, 9173, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 796, 493, 7, 808, 58, 15, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5752, 58, 16, 4083, 9688, 2032, 342, 10786, 293, 535, 282, 66, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30114, 3166, 62, 11600, 58, 312, 7131, 6, 293, 535, 282, 66, 6, 7131, 808, 58, 16, 11907, 796, 5752, 58, 17, 4083, 21037, 3419, 6624, 705, 7942, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30114, 3166, 62, 11600, 58, 312, 7131, 808, 58, 16, 11907, 796, 5752, 58, 17, 4083, 21037, 3419, 6624, 705, 7942, 6, 628, 220, 220, 220, 30114, 3166, 796, 1351, 3419, 198, 220, 220, 220, 329, 4686, 287, 23243, 7, 82, 13929, 3166, 62, 11600, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 30114, 3166, 62, 11600, 58, 312, 7131, 6, 312, 20520, 796, 4686, 198, 220, 220, 220, 220, 220, 220, 220, 30114, 3166, 13, 33295, 7, 82, 13929, 3166, 62, 11600, 58, 312, 12962, 628, 220, 220, 220, 1441, 30114, 3166, 628, 198, 31, 78, 17765, 62, 6404, 198, 4299, 2251, 62, 20930, 62, 33692, 62, 17752, 7, 34945, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2980, 378, 281, 3781, 6460, 19449, 422, 257, 900, 286, 198, 220, 220, 220, 44189, 3696, 287, 257, 7368, 8619, 13, 198, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7559, 34945, 15506, 357, 8841, 2599, 262, 8619, 7268, 262, 44189, 3696, 13, 198, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 383, 3781, 6460, 19449, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 34945, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4049, 62, 20500, 796, 366, 43055, 857, 407, 2152, 25, 23884, 1911, 18982, 7, 34945, 8, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 1136, 11187, 1362, 22446, 18224, 7, 18224, 62, 20500, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 440, 17765, 16922, 7, 18224, 62, 20500, 8, 628, 220, 220, 220, 2276, 62, 33692, 62, 7753, 796, 28686, 13, 6978, 13, 22179, 7, 34945, 11, 41877, 62, 28480, 51, 20754, 62, 25664, 8, 198, 220, 220, 220, 2746, 62, 33692, 62, 7753, 796, 28686, 13, 6978, 13, 22179, 7, 34945, 11, 19164, 3698, 62, 28480, 51, 20754, 62, 25664, 8, 198, 220, 220, 220, 47161, 62, 82, 13929, 3166, 62, 7753, 796, 28686, 13, 6978, 13, 22179, 7, 34945, 11, 402, 6239, 62, 50, 5883, 40569, 11015, 62, 25664, 8, 198, 220, 220, 220, 4229, 62, 82, 13929, 3166, 62, 7753, 796, 28686, 13, 6978, 13, 22179, 7, 34945, 11, 14639, 62, 50, 5883, 40569, 11015, 62, 25664, 8, 628, 220, 220, 220, 329, 2393, 287, 685, 24622, 62, 33692, 62, 7753, 11, 2746, 62, 33692, 62, 7753, 11, 47161, 62, 82, 13929, 3166, 62, 7753, 11, 4229, 62, 82, 13929, 3166, 62, 7753, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 7753, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 62, 20500, 796, 366, 8979, 857, 407, 2152, 25, 23884, 1911, 18982, 7, 34945, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 1136, 11187, 1362, 22446, 18224, 7, 18224, 62, 20500, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 440, 17765, 16922, 7, 18224, 62, 20500, 8, 628, 220, 220, 220, 2276, 62, 33692, 796, 8633, 3419, 198, 220, 220, 220, 351, 33245, 13, 9654, 7, 24622, 62, 33692, 62, 7753, 11, 705, 81, 3256, 21004, 11639, 40477, 12, 23, 11537, 355, 269, 21370, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9173, 796, 269, 21370, 13, 46862, 7, 40664, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 5752, 287, 9173, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2276, 62, 33692, 58, 808, 58, 15, 11907, 796, 5418, 7203, 90, 92, 10786, 90, 92, 11537, 1911, 18982, 7, 808, 58, 17, 4357, 5752, 58, 16, 60, 4008, 628, 220, 220, 220, 2746, 62, 33692, 796, 8633, 3419, 198, 220, 220, 220, 351, 33245, 13, 9654, 7, 19849, 62, 33692, 62, 7753, 11, 705, 81, 3256, 21004, 11639, 40477, 12, 23, 11537, 355, 269, 21370, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9173, 796, 269, 21370, 13, 46862, 7, 40664, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 5752, 287, 9173, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 33692, 58, 808, 58, 15, 11907, 796, 5418, 7203, 90, 92, 10786, 90, 92, 11537, 1911, 18982, 7, 808, 58, 17, 4357, 5752, 58, 16, 60, 4008, 628, 220, 220, 220, 47161, 62, 82, 13929, 3166, 796, 4808, 1136, 62, 82, 13929, 3166, 7, 70, 377, 62, 82, 13929, 3166, 62, 7753, 8, 198, 220, 220, 220, 4229, 62, 82, 13929, 3166, 796, 4808, 1136, 62, 82, 13929, 3166, 7, 346, 62, 82, 13929, 3166, 62, 7753, 8, 628, 220, 220, 220, 3781, 62, 33692, 796, 2276, 62, 33692, 198, 220, 220, 220, 3781, 62, 33692, 17816, 19849, 62, 33692, 20520, 796, 2746, 62, 33692, 198, 220, 220, 220, 3781, 62, 33692, 17816, 70, 377, 62, 82, 13929, 3166, 20520, 796, 47161, 62, 82, 13929, 3166, 198, 220, 220, 220, 3781, 62, 33692, 17816, 346, 62, 82, 13929, 3166, 20520, 796, 4229, 62, 82, 13929, 3166, 198, 220, 220, 220, 5072, 62, 17752, 796, 33918, 13, 67, 8142, 7, 20930, 62, 33692, 8, 198, 220, 220, 220, 18931, 13, 1136, 11187, 1362, 22446, 10951, 7203, 32750, 6460, 33918, 25, 23884, 1911, 18982, 7, 22915, 62, 17752, 4008, 628, 220, 220, 220, 1441, 5072, 62, 17752, 628, 198, 4299, 1100, 62, 20930, 62, 33692, 7, 20930, 62, 33692, 62, 46428, 11, 4229, 62, 16624, 62, 38476, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 72, 62, 16624, 62, 38476, 28, 25101, 2599, 198, 220, 220, 220, 37227, 5569, 262, 3781, 6460, 2393, 37811, 628, 198, 220, 220, 220, 1303, 8778, 3781, 62, 33692, 2393, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 8778, 355, 257, 33918, 198, 220, 220, 220, 220, 220, 220, 220, 351, 33245, 13, 9654, 7, 20930, 62, 33692, 62, 46428, 11, 705, 81, 3256, 21004, 11639, 40477, 12, 23, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3781, 62, 33692, 796, 33918, 13, 2220, 7, 69, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 29677, 262, 3781, 62, 33692, 636, 1626, 262, 33918, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3781, 62, 33692, 13, 1136, 10786, 20930, 62, 33692, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3781, 62, 33692, 796, 3781, 62, 33692, 17816, 20930, 62, 33692, 20520, 628, 220, 220, 220, 2845, 357, 9399, 12331, 11, 5994, 12331, 11, 11052, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 440, 17765, 16922, 10786, 44651, 3781, 6460, 2393, 393, 2393, 3108, 25, 23884, 2637, 13, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3781, 62, 33692, 62, 46428, 4008, 628, 220, 220, 220, 1303, 30027, 4229, 62, 22915, 611, 262, 3696, 389, 407, 612, 198, 220, 220, 220, 611, 407, 4229, 62, 16624, 62, 38476, 393, 705, 346, 62, 22915, 6, 407, 287, 3781, 62, 33692, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1400, 31977, 2994, 5072, 198, 220, 220, 220, 220, 220, 220, 220, 3781, 62, 33692, 17816, 346, 62, 22915, 20520, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 3781, 62, 33692, 17816, 346, 62, 82, 13929, 3166, 20520, 796, 17635, 628, 220, 220, 220, 1303, 16766, 329, 374, 72, 62, 22915, 198, 220, 220, 220, 611, 407, 374, 72, 62, 16624, 62, 38476, 393, 705, 380, 62, 22915, 6, 407, 287, 3781, 62, 33692, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1400, 302, 28409, 2994, 5072, 198, 220, 220, 220, 220, 220, 220, 220, 3781, 62, 33692, 17816, 380, 62, 22915, 20520, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 3781, 62, 33692, 17816, 380, 62, 82, 13929, 3166, 20520, 796, 17635, 628, 220, 220, 220, 1303, 1002, 356, 765, 374, 72, 62, 22915, 11, 356, 481, 761, 4229, 62, 22915, 11, 543, 2476, 4229, 62, 16624, 198, 220, 220, 220, 611, 3781, 62, 33692, 17816, 380, 62, 22915, 20520, 290, 407, 3781, 62, 33692, 17816, 346, 62, 22915, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 4229, 62, 16624, 62, 38476, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14601, 13, 40539, 7203, 380, 62, 22915, 6163, 11, 475, 4229, 3696, 407, 1043, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3781, 62, 33692, 17816, 380, 62, 22915, 20520, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3781, 62, 33692, 17816, 380, 62, 82, 13929, 3166, 20520, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3781, 62, 33692, 17816, 346, 62, 22915, 20520, 796, 6407, 628, 220, 220, 220, 1303, 4860, 532, 6822, 611, 379, 1551, 530, 5072, 2099, 318, 6163, 198, 220, 220, 220, 611, 407, 597, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 3781, 62, 33692, 17816, 70, 377, 62, 22915, 20520, 611, 705, 70, 377, 62, 22915, 6, 287, 3781, 62, 33692, 2073, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3781, 62, 33692, 17816, 346, 62, 22915, 20520, 611, 705, 346, 62, 22915, 6, 287, 3781, 62, 33692, 2073, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3781, 62, 33692, 17816, 380, 62, 22915, 20520, 611, 705, 380, 62, 22915, 6, 287, 3781, 62, 33692, 2073, 10352, 11, 198, 220, 220, 220, 2361, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 440, 17765, 16922, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2949, 4938, 5072, 6460, 287, 25, 23884, 4458, 18982, 7, 20930, 62, 33692, 62, 46428, 4008, 628, 220, 220, 220, 1441, 3781, 62, 33692, 198 ]
2.540594
2,020
#!/usr/bin/env python #-------------------------------------------------------------------------------- #Changes the sky coordinates (x,y,z) to the disk coordinates (x_d,y_d,z_d) #The x axis is the rotation axis #-------------------------------------------------------------------------------- #Radiative transfer equation #-------------------------------------------------------------------------------- #Optical depth #-------------------------------------------------------------------------------- #-------------------------------------------------------------------------------- #Black body radiation #-------------------------------------------------------------------------------- #-------------------------------------------------------------------------------- #-------------------------------------------------------------------------------- #-------------------------------------------------------------------------------- #Lee las tablas de opacidad DSHARP #Load opacities with np.load('default_opacities_smooth.npz') as d: a_w = d['a'] gsca_w = d['g'] lam_w = d['lam'] k_abs_w = d['k_abs'] k_sca_w = d['k_sca'] lam_avgs = wl # We split the opacities within the range of frequency to make the calculations faster k_abs_w = k_abs_w[(0.9*lam_avgs<lam_w) & (1.1*lam_avgs>lam_w),:] k_sca_w = k_sca_w[(0.9*lam_avgs<lam_w) & (1.1*lam_avgs>lam_w),:] k_sca_w = k_sca_w*(1. - gsca_w[(0.9*lam_avgs<lam_w) & (1.1*lam_avgs>lam_w),:]) lam_w = lam_w[(0.9*lam_avgs<lam_w) & (1.1*lam_avgs>lam_w)] opac_grid = opacity.size_average_opacity(lam_avgs, a_w, lam_w, k_abs_w.T, k_sca_w.T, q=3.5, plot=True) function_ext = interpolate.interp1d(a_w, opac_grid['ka'][:]+opac_grid['ks'][:],kind='cubic') function_alb = interpolate.interp1d(a_w, opac_grid['ks'][:]/(opac_grid['ka'][:]+opac_grid['ks'][:]),kind='cubic') if not scattering: function_alb = interpolate.interp1d(a_w, np.zeros((np.shape(opac_grid['ks'][:]))),kind='cubic')
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 2, 10097, 1783, 198, 2, 29238, 262, 6766, 22715, 357, 87, 11, 88, 11, 89, 8, 284, 262, 11898, 22715, 357, 87, 62, 67, 11, 88, 62, 67, 11, 89, 62, 67, 8, 198, 2, 464, 2124, 16488, 318, 262, 13179, 16488, 198, 198, 2, 10097, 1783, 198, 2, 49, 9189, 876, 4351, 16022, 198, 198, 2, 10097, 1783, 198, 2, 27871, 605, 6795, 198, 198, 2, 10097, 1783, 198, 198, 2, 10097, 1783, 198, 2, 9915, 1767, 11881, 198, 198, 2, 10097, 1783, 198, 198, 2, 10097, 1783, 198, 198, 2, 10097, 1783, 198, 198, 2, 10097, 1783, 198, 2, 24338, 39990, 7400, 21921, 390, 1034, 330, 32482, 360, 9693, 36035, 198, 2, 8912, 1034, 330, 871, 198, 4480, 45941, 13, 2220, 10786, 12286, 62, 404, 330, 871, 62, 5796, 5226, 13, 37659, 89, 11537, 355, 288, 25, 198, 220, 220, 220, 257, 62, 86, 220, 220, 220, 220, 796, 288, 17816, 64, 20520, 198, 220, 220, 220, 308, 1416, 64, 62, 86, 220, 796, 288, 17816, 70, 20520, 198, 220, 220, 220, 30592, 62, 86, 220, 220, 796, 288, 17816, 2543, 20520, 198, 220, 220, 220, 479, 62, 8937, 62, 86, 796, 288, 17816, 74, 62, 8937, 20520, 198, 220, 220, 220, 479, 62, 1416, 64, 62, 86, 796, 288, 17816, 74, 62, 1416, 64, 20520, 198, 198, 2543, 62, 615, 14542, 796, 266, 75, 198, 2, 775, 6626, 262, 1034, 330, 871, 1626, 262, 2837, 286, 8373, 284, 787, 262, 16765, 5443, 198, 74, 62, 8937, 62, 86, 796, 479, 62, 8937, 62, 86, 58, 7, 15, 13, 24, 9, 2543, 62, 615, 14542, 27, 2543, 62, 86, 8, 1222, 357, 16, 13, 16, 9, 2543, 62, 615, 14542, 29, 2543, 62, 86, 828, 47715, 198, 74, 62, 1416, 64, 62, 86, 796, 479, 62, 1416, 64, 62, 86, 58, 7, 15, 13, 24, 9, 2543, 62, 615, 14542, 27, 2543, 62, 86, 8, 1222, 357, 16, 13, 16, 9, 2543, 62, 615, 14542, 29, 2543, 62, 86, 828, 47715, 198, 74, 62, 1416, 64, 62, 86, 796, 479, 62, 1416, 64, 62, 86, 9, 7, 16, 13, 532, 220, 308, 1416, 64, 62, 86, 58, 7, 15, 13, 24, 9, 2543, 62, 615, 14542, 27, 2543, 62, 86, 8, 1222, 357, 16, 13, 16, 9, 2543, 62, 615, 14542, 29, 2543, 62, 86, 828, 25, 12962, 198, 2543, 62, 86, 796, 30592, 62, 86, 58, 7, 15, 13, 24, 9, 2543, 62, 615, 14542, 27, 2543, 62, 86, 8, 1222, 357, 16, 13, 16, 9, 2543, 62, 615, 14542, 29, 2543, 62, 86, 15437, 198, 198, 404, 330, 62, 25928, 796, 45912, 13, 7857, 62, 23913, 62, 404, 4355, 7, 2543, 62, 615, 14542, 11, 257, 62, 86, 11, 30592, 62, 86, 11, 479, 62, 8937, 62, 86, 13, 51, 11, 479, 62, 1416, 64, 62, 86, 13, 51, 11, 10662, 28, 18, 13, 20, 11, 7110, 28, 17821, 8, 628, 198, 8818, 62, 2302, 796, 39555, 378, 13, 3849, 79, 16, 67, 7, 64, 62, 86, 11, 1034, 330, 62, 25928, 17816, 4914, 6, 7131, 47715, 10, 404, 330, 62, 25928, 17816, 591, 6, 7131, 25, 4357, 11031, 11639, 66, 549, 291, 11537, 198, 8818, 62, 282, 65, 796, 39555, 378, 13, 3849, 79, 16, 67, 7, 64, 62, 86, 11, 1034, 330, 62, 25928, 17816, 591, 6, 7131, 47715, 29006, 404, 330, 62, 25928, 17816, 4914, 6, 7131, 47715, 10, 404, 330, 62, 25928, 17816, 591, 6, 7131, 25, 46570, 11031, 11639, 66, 549, 291, 11537, 198, 361, 407, 45765, 25, 198, 220, 220, 220, 2163, 62, 282, 65, 796, 39555, 378, 13, 3849, 79, 16, 67, 7, 64, 62, 86, 11, 45941, 13, 9107, 418, 19510, 37659, 13, 43358, 7, 404, 330, 62, 25928, 17816, 591, 6, 7131, 47715, 4008, 828, 11031, 11639, 66, 549, 291, 11537, 198 ]
3.043411
645
# -*- coding: utf-8 -*- """ Created on Wed Jun 16 18:06:05 2021 @author: jhask """ import csv import pandas as pd import numpy as np import re import scipy.io as sio import os # Map MCM names to TUV labels j_vals_dict= dict({ 'O3 -> O2 + O(1D)':'J1', 'O3 -> O2 + O(3P)':'J2', 'H2O2 -> 2 OH':'J3', 'NO2 -> NO + O(3P)':'J4', 'NO3 -> NO + O2':'J5', 'NO3 -> NO2 + O(3P)':'J6', 'HNO2 -> OH + NO':'J7', 'HNO3 -> OH + NO2':'J8', 'CH2O -> H + HCO':'J11', 'CH2O -> H2 + CO':'J12', 'CH3CHO -> CH3 + HCO':'J13', 'C2H5CHO -> C2H5 + HCO':'J14', 'CH2=C(CH3)CHO -> Products':'J18', 'CH3COCH3 -> CH3CO + CH3':'J21', 'CH3COCH2CH3 -> CH3CO + CH2CH3':'J22', 'CH3COCH=CH2 -> Products':'J23', 'CHOCHO -> H2 + 2CO':'J31', 'CHOCHO -> CH2O + CO':'J32', 'CHOCHO -> HCO + HCO':'J33', 'CH3COCHO -> CH3CO + HCO':'J34', 'CH3COCOCH3 -> Products':'J35', 'CH3OOH -> CH3O + OH':'J41', 'CH3ONO2 -> CH3O + NO2':'J51', 'C2H5ONO2 -> C2H5O + NO2':'J52', 'n-C3H7ONO2 -> C3H7O + NO2':'J53', 'CH3CHONO2CH3 -> CH3CHOCH3 + NO2':'J54', 'C(CH3)3(ONO2) -> C(CH3)3(O.) + NO2':'J55', 'CH3COCH2(ONO2) -> CH3COCH2(O.) + NO2':'J56', 'CH2(OH)COCH3 -> CH3CO + CH2(OH)':'Jn10', 'CH2=CHCHO -> Products':'Jn11', 'CH3CO(OONO2) -> CH3CO(OO) + NO2':'Jn14', 'CH3CO(OONO2) -> CH3CO(O) + NO3':'Jn15', 'CH3(OONO2) -> CH3(OO) + NO2':'Jn16', 'CH3(OONO2) -> CH3(OO) + NO2':'Jn17', 'N2O5 -> NO3 + NO2':'Jn19', 'N2O5 -> NO3 + NO + O(3P)':'Jn20', 'HNO4 -> HO2 + NO2':'Jn21'}) #TUV output file. file= 'C:/Users/jhask/OneDrive/Documents/MATLAB/F0AM/Setups/SOAS_RCIM/foam_6_29_out.txt' with open(file, "r",errors="ignore") as f: # read line by line. reader = csv.reader(f, delimiter="\t") # Initialize vars we fill in reading the file. ln_num = 0; map_cols=dict({}) in_species_list=False; pass_go=False for row in reader: line = " ".join(row) # read line by line. hdrs= [key for key in list(j_vals_dict.keys()) if key in line] if len(hdrs) > 0 : headers= re.search(r"[\d]*[\=\w]", line) print(line, hdrs, j_vals_dict[ hdrs[:][0]]) if headers: map_cols[headers.group()]=j_vals_dict[ hdrs[:][0]] if (pass_go is True) and ('------' not in line ): # Append the j-values to the dataframe at this point in time. splt= [float(item) for item in line.split(" ") if item !=''] df.loc[len(df)]=np.array(splt) if 'time, hrs. sza, deg.' in line: pass_go=True df=pd.DataFrame(columns= ['time', 'sza']+ list(map_cols.values())) to_mat={name: col.values for name, col in df.items()} filename= os.path.join('C:/Users/jhask/OneDrive/Documents/MATLAB/F0AM/Setups/SOAS_RCIM/'+'F0AM_tuv.mat') sio.savemat(filename, to_mat) print(filename)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 201, 198, 37811, 201, 198, 41972, 319, 3300, 7653, 1467, 1248, 25, 3312, 25, 2713, 33448, 201, 198, 201, 198, 31, 9800, 25, 474, 71, 2093, 201, 198, 37811, 201, 198, 11748, 269, 21370, 220, 201, 198, 11748, 19798, 292, 355, 279, 67, 201, 198, 11748, 299, 32152, 355, 45941, 220, 201, 198, 11748, 302, 201, 198, 11748, 629, 541, 88, 13, 952, 355, 264, 952, 220, 201, 198, 11748, 28686, 220, 201, 198, 201, 198, 2, 9347, 13122, 44, 3891, 284, 309, 31667, 14722, 220, 201, 198, 73, 62, 12786, 62, 11600, 28, 8633, 15090, 201, 198, 6, 46, 18, 4613, 440, 17, 1343, 440, 7, 16, 35, 8, 10354, 6, 41, 16, 3256, 201, 198, 6, 46, 18, 4613, 440, 17, 1343, 440, 7, 18, 47, 8, 10354, 6, 41, 17, 3256, 201, 198, 6, 39, 17, 46, 17, 4613, 362, 18723, 10354, 6, 41, 18, 3256, 201, 198, 6, 15285, 17, 4613, 8005, 1343, 440, 7, 18, 47, 8, 10354, 6, 41, 19, 3256, 201, 198, 6, 15285, 18, 4613, 8005, 1343, 440, 17, 10354, 6, 41, 20, 3256, 201, 198, 6, 15285, 18, 4613, 8005, 17, 1343, 440, 7, 18, 47, 8, 10354, 6, 41, 21, 3256, 201, 198, 6, 39, 15285, 17, 4613, 18723, 1343, 8005, 10354, 6, 41, 22, 3256, 201, 198, 6, 39, 15285, 18, 4613, 18723, 1343, 8005, 17, 10354, 6, 41, 23, 3256, 201, 198, 6, 3398, 17, 46, 4613, 367, 1343, 367, 8220, 10354, 6, 41, 1157, 3256, 201, 198, 6, 3398, 17, 46, 4613, 367, 17, 1343, 7375, 10354, 6, 41, 1065, 3256, 201, 198, 6, 3398, 18, 44899, 4613, 5870, 18, 1343, 367, 8220, 10354, 6, 41, 1485, 3256, 201, 198, 6, 34, 17, 39, 20, 44899, 4613, 327, 17, 39, 20, 1343, 367, 8220, 10354, 6, 41, 1415, 3256, 201, 198, 6, 3398, 17, 28, 34, 7, 3398, 18, 8, 44899, 4613, 18675, 10354, 6, 41, 1507, 3256, 201, 198, 6, 3398, 18, 8220, 3398, 18, 4613, 5870, 18, 8220, 1343, 5870, 18, 10354, 6, 41, 2481, 3256, 201, 198, 6, 3398, 18, 8220, 3398, 17, 3398, 18, 4613, 5870, 18, 8220, 1343, 5870, 17, 3398, 18, 10354, 6, 41, 1828, 3256, 201, 198, 6, 3398, 18, 8220, 3398, 28, 3398, 17, 4613, 18675, 10354, 6, 41, 1954, 3256, 201, 198, 6, 44899, 44899, 4613, 367, 17, 1343, 362, 8220, 10354, 6, 41, 3132, 3256, 201, 198, 6, 44899, 44899, 4613, 5870, 17, 46, 1343, 7375, 10354, 6, 41, 2624, 3256, 201, 198, 6, 44899, 44899, 4613, 367, 8220, 1343, 367, 8220, 10354, 6, 41, 2091, 3256, 201, 198, 6, 3398, 18, 8220, 44899, 4613, 5870, 18, 8220, 1343, 367, 8220, 10354, 6, 41, 2682, 3256, 201, 198, 6, 3398, 18, 34, 4503, 46, 3398, 18, 4613, 18675, 10354, 6, 41, 2327, 3256, 201, 198, 6, 3398, 18, 6684, 39, 4613, 5870, 18, 46, 1343, 18723, 10354, 6, 41, 3901, 3256, 201, 198, 6, 3398, 18, 1340, 46, 17, 4613, 5870, 18, 46, 1343, 8005, 17, 10354, 6, 41, 4349, 3256, 201, 198, 6, 34, 17, 39, 20, 1340, 46, 17, 4613, 327, 17, 39, 20, 46, 1343, 8005, 17, 10354, 6, 41, 4309, 3256, 201, 198, 6, 77, 12, 34, 18, 39, 22, 1340, 46, 17, 4613, 327, 18, 39, 22, 46, 1343, 8005, 17, 10354, 6, 41, 4310, 3256, 201, 198, 6, 3398, 18, 3398, 1340, 46, 17, 3398, 18, 4613, 5870, 18, 44899, 3398, 18, 1343, 8005, 17, 10354, 6, 41, 4051, 3256, 201, 198, 6, 34, 7, 3398, 18, 8, 18, 7, 1340, 46, 17, 8, 4613, 327, 7, 3398, 18, 8, 18, 7, 46, 2014, 1343, 8005, 17, 10354, 6, 41, 2816, 3256, 201, 198, 6, 3398, 18, 8220, 3398, 17, 7, 1340, 46, 17, 8, 4613, 5870, 18, 8220, 3398, 17, 7, 46, 2014, 1343, 8005, 17, 10354, 6, 41, 3980, 3256, 201, 198, 6, 3398, 17, 7, 12096, 8, 8220, 3398, 18, 4613, 5870, 18, 8220, 1343, 5870, 17, 7, 12096, 8, 10354, 6, 41, 77, 940, 3256, 201, 198, 6, 3398, 17, 28, 3398, 44899, 4613, 18675, 10354, 6, 41, 77, 1157, 3256, 201, 198, 6, 3398, 18, 8220, 7, 46, 1340, 46, 17, 8, 4613, 5870, 18, 8220, 7, 6684, 8, 1343, 8005, 17, 10354, 6, 41, 77, 1415, 3256, 201, 198, 6, 3398, 18, 8220, 7, 46, 1340, 46, 17, 8, 4613, 5870, 18, 8220, 7, 46, 8, 1343, 8005, 18, 10354, 6, 41, 77, 1314, 3256, 201, 198, 6, 3398, 18, 7, 46, 1340, 46, 17, 8, 4613, 5870, 18, 7, 6684, 8, 1343, 8005, 17, 10354, 6, 41, 77, 1433, 3256, 201, 198, 6, 3398, 18, 7, 46, 1340, 46, 17, 8, 4613, 5870, 18, 7, 6684, 8, 1343, 8005, 17, 10354, 6, 41, 77, 1558, 3256, 201, 198, 6, 45, 17, 46, 20, 4613, 8005, 18, 1343, 8005, 17, 10354, 6, 41, 77, 1129, 3256, 201, 198, 6, 45, 17, 46, 20, 4613, 8005, 18, 1343, 8005, 1343, 440, 7, 18, 47, 8, 10354, 6, 41, 77, 1238, 3256, 201, 198, 6, 39, 15285, 19, 4613, 40115, 17, 1343, 8005, 17, 10354, 6, 41, 77, 2481, 6, 30072, 201, 198, 201, 198, 201, 198, 2, 51, 31667, 5072, 2393, 13, 220, 201, 198, 7753, 28, 705, 34, 14079, 14490, 14, 73, 71, 2093, 14, 3198, 24825, 14, 38354, 14, 41636, 48780, 14, 37, 15, 2390, 14, 7248, 4739, 14, 15821, 1921, 62, 7397, 3955, 14, 6513, 321, 62, 21, 62, 1959, 62, 448, 13, 14116, 6, 201, 198, 201, 198, 4480, 1280, 7, 7753, 11, 366, 81, 1600, 48277, 2625, 46430, 4943, 355, 277, 25, 1303, 1100, 1627, 416, 1627, 13, 201, 198, 220, 220, 220, 9173, 796, 269, 21370, 13, 46862, 7, 69, 11, 46728, 2676, 2625, 59, 83, 4943, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 1303, 20768, 1096, 410, 945, 356, 6070, 287, 3555, 262, 2393, 13, 220, 201, 198, 220, 220, 220, 300, 77, 62, 22510, 796, 657, 26, 3975, 62, 4033, 82, 28, 11600, 15090, 30072, 201, 198, 220, 220, 220, 287, 62, 35448, 62, 4868, 28, 25101, 26, 220, 201, 198, 201, 198, 220, 220, 220, 1208, 62, 2188, 28, 25101, 201, 198, 220, 220, 220, 329, 5752, 287, 9173, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 366, 27071, 22179, 7, 808, 8, 220, 1303, 1100, 1627, 416, 1627, 13, 220, 201, 198, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 289, 67, 3808, 28, 685, 2539, 220, 329, 1994, 287, 1351, 7, 73, 62, 12786, 62, 11600, 13, 13083, 28955, 611, 1994, 287, 1627, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 31298, 3808, 8, 1875, 657, 1058, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24697, 28, 302, 13, 12947, 7, 81, 17912, 59, 67, 60, 9, 58, 59, 28, 59, 86, 60, 1600, 1627, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 1370, 11, 289, 67, 3808, 11, 474, 62, 12786, 62, 11600, 58, 289, 67, 3808, 58, 25, 7131, 15, 11907, 8, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 24697, 25, 3975, 62, 4033, 82, 58, 50145, 13, 8094, 3419, 22241, 73, 62, 12786, 62, 11600, 58, 289, 67, 3808, 58, 25, 7131, 15, 11907, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 6603, 62, 2188, 318, 6407, 8, 290, 19203, 23031, 6, 407, 287, 1627, 15179, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2034, 437, 262, 474, 12, 27160, 284, 262, 1366, 14535, 379, 428, 966, 287, 640, 13, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4328, 83, 28, 685, 22468, 7, 9186, 8, 329, 2378, 287, 1627, 13, 35312, 7203, 366, 8, 611, 2378, 14512, 7061, 60, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 17946, 58, 11925, 7, 7568, 15437, 28, 37659, 13, 18747, 7, 22018, 83, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 2435, 11, 36201, 13, 220, 264, 4496, 11, 3396, 2637, 287, 1627, 25, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 62, 2188, 28, 17821, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 28, 30094, 13, 6601, 19778, 7, 28665, 82, 28, 37250, 2435, 3256, 705, 82, 4496, 20520, 10, 1351, 7, 8899, 62, 4033, 82, 13, 27160, 3419, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 201, 198, 1462, 62, 6759, 34758, 3672, 25, 951, 13, 27160, 329, 1438, 11, 951, 287, 47764, 13, 23814, 3419, 92, 201, 198, 201, 198, 34345, 28, 28686, 13, 6978, 13, 22179, 10786, 34, 14079, 14490, 14, 73, 71, 2093, 14, 3198, 24825, 14, 38354, 14, 41636, 48780, 14, 37, 15, 2390, 14, 7248, 4739, 14, 15821, 1921, 62, 7397, 3955, 14, 6, 10, 6, 37, 15, 2390, 62, 83, 14795, 13, 6759, 11537, 201, 198, 82, 952, 13, 21928, 6759, 7, 34345, 11, 284, 62, 6759, 8, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 4798, 7, 34345, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198 ]
1.792441
1,614
''' Imports ''' from config import * from newspaper import Article import sys as sys import pandas as pd import csv from collections import defaultdict import re ''' URL Extract ''' columns = defaultdict(list) with open('SecurityIDRBT.csv') as f: reader = csv.DictReader(f) # read rows into a dictionary format for row in reader: # read a row as {column1: value1, column2: value2,...} for (k,v) in row.items(): # go over each column name and value columns[k].append(v) # append the value into the appropriate list url_list = [] # based on column name k for element in range(len(columns['Body'])): urls = re.findall('https?://(?:[-\w.]|(?:%[\da-fA-F]{2}))+', columns['Body'][element]) for url in urls: url_list.append(url) ''' Find Unique URLs and filter with semantic search results ''' url_unique = [] for element in url_list: if element not in url_unique: if element not in common_urls_http: if element not in common_urls_https: url_unique.append(element) ''' Write it in a new CSV ''' with open('url.csv', 'w',newline='') as myfile: wr = csv.writer(myfile, quoting=csv.QUOTE_ALL) for word in url_unique: wr.writerow([word])
[ 7061, 6, 201, 198, 3546, 3742, 201, 198, 7061, 6, 201, 198, 6738, 4566, 1330, 1635, 201, 198, 6738, 7533, 1330, 10172, 201, 198, 11748, 25064, 355, 25064, 201, 198, 11748, 19798, 292, 355, 279, 67, 220, 201, 198, 11748, 269, 21370, 201, 198, 6738, 17268, 1330, 4277, 11600, 201, 198, 11748, 302, 201, 198, 7061, 6, 201, 198, 21886, 29677, 201, 198, 7061, 6, 201, 198, 28665, 82, 796, 4277, 11600, 7, 4868, 8, 201, 198, 4480, 1280, 10786, 24074, 2389, 49, 19313, 13, 40664, 11537, 355, 277, 25, 201, 198, 220, 220, 220, 9173, 796, 269, 21370, 13, 35, 713, 33634, 7, 69, 8, 1303, 1100, 15274, 656, 257, 22155, 5794, 201, 198, 220, 220, 220, 329, 5752, 287, 9173, 25, 1303, 1100, 257, 5752, 355, 1391, 28665, 16, 25, 1988, 16, 11, 5721, 17, 25, 1988, 17, 42303, 92, 201, 198, 220, 220, 220, 220, 220, 220, 220, 329, 357, 74, 11, 85, 8, 287, 5752, 13, 23814, 33529, 1303, 467, 625, 1123, 5721, 1438, 290, 1988, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15180, 58, 74, 4083, 33295, 7, 85, 8, 1303, 24443, 262, 1988, 656, 262, 5035, 1351, 201, 198, 6371, 62, 4868, 796, 17635, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1912, 319, 5721, 1438, 479, 201, 198, 1640, 5002, 287, 2837, 7, 11925, 7, 28665, 82, 17816, 25842, 6, 12962, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2956, 7278, 796, 302, 13, 19796, 439, 10786, 5450, 30, 1378, 7, 27514, 58, 12, 59, 86, 8183, 91, 7, 27514, 4, 58, 59, 6814, 12, 69, 32, 12, 37, 60, 90, 17, 92, 4008, 10, 3256, 15180, 17816, 25842, 6, 7131, 30854, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 329, 19016, 287, 2956, 7278, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19016, 62, 4868, 13, 33295, 7, 6371, 8, 201, 198, 7061, 6, 201, 198, 16742, 30015, 32336, 290, 8106, 351, 37865, 2989, 2482, 201, 198, 7061, 6, 201, 198, 6371, 62, 34642, 796, 17635, 201, 198, 1640, 5002, 287, 19016, 62, 4868, 25, 201, 198, 220, 220, 220, 611, 5002, 407, 287, 19016, 62, 34642, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5002, 407, 287, 2219, 62, 6371, 82, 62, 4023, 25, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5002, 407, 287, 2219, 62, 6371, 82, 62, 5450, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19016, 62, 34642, 13, 33295, 7, 30854, 8, 201, 198, 7061, 6, 201, 198, 16594, 340, 287, 257, 649, 44189, 201, 198, 7061, 6, 220, 220, 220, 220, 201, 198, 201, 198, 4480, 1280, 10786, 6371, 13, 40664, 3256, 705, 86, 3256, 3605, 1370, 28, 7061, 8, 355, 616, 7753, 25, 201, 198, 220, 220, 220, 1319, 796, 269, 21370, 13, 16002, 7, 1820, 7753, 11, 28411, 28, 40664, 13, 10917, 23051, 62, 7036, 8, 201, 198, 220, 220, 220, 329, 1573, 287, 19016, 62, 34642, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1319, 13, 16002, 322, 26933, 4775, 12962, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220 ]
2.284014
588
# -*- coding: utf-8 -*- # Copyright 2018, IBM. # # This source code is licensed under the Apache License, Version 2.0 found in # the LICENSE.txt file in the root directory of this source tree. # pylint: disable=missing-docstring from qiskit.mapper import _coupling from .common import QiskitTestCase
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 2, 15069, 2864, 11, 19764, 13, 198, 2, 198, 2, 770, 2723, 2438, 318, 11971, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 1043, 287, 198, 2, 262, 38559, 24290, 13, 14116, 2393, 287, 262, 6808, 8619, 286, 428, 2723, 5509, 13, 198, 198, 2, 279, 2645, 600, 25, 15560, 28, 45688, 12, 15390, 8841, 628, 198, 6738, 10662, 1984, 270, 13, 76, 11463, 1330, 4808, 66, 280, 11347, 198, 6738, 764, 11321, 1330, 1195, 1984, 270, 14402, 20448, 628 ]
3.177083
96
import os import re import k3d import types import random import pytest import numbers import tempfile import itertools import numpy as np import discretisedfield as df import matplotlib.pyplot as plt from .test_mesh import TestMesh
[ 11748, 28686, 198, 11748, 302, 198, 11748, 479, 18, 67, 198, 11748, 3858, 198, 11748, 4738, 198, 11748, 12972, 9288, 198, 11748, 3146, 198, 11748, 20218, 7753, 198, 11748, 340, 861, 10141, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 1221, 1186, 1417, 3245, 355, 47764, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 764, 9288, 62, 76, 5069, 1330, 6208, 37031, 628, 198 ]
3.405797
69
__all__ = ['get'] import collections def get(input): """return a list with input values or [] if input is None""" if input is None: return [] if not _iterable(input) or _string(input): return [input] return list(input)
[ 834, 439, 834, 796, 37250, 1136, 20520, 628, 198, 11748, 17268, 628, 628, 198, 4299, 651, 7, 15414, 2599, 198, 220, 220, 220, 37227, 7783, 257, 1351, 351, 5128, 3815, 393, 17635, 611, 5128, 318, 6045, 37811, 198, 220, 220, 220, 611, 5128, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 17635, 198, 220, 220, 220, 611, 407, 4808, 2676, 540, 7, 15414, 8, 393, 4808, 8841, 7, 15414, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 15414, 60, 198, 220, 220, 220, 1441, 1351, 7, 15414, 8, 198 ]
2.677083
96
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2019/8/20 0020 16:49 # @Author : Hadrianl # @File : __init__.py from .widget import StrategyReviewer
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2488, 7575, 220, 220, 220, 1058, 13130, 14, 23, 14, 1238, 3571, 1238, 1467, 25, 2920, 198, 2, 2488, 13838, 220, 1058, 11161, 4484, 75, 220, 198, 2, 2488, 8979, 220, 220, 220, 1058, 11593, 15003, 834, 13, 9078, 198, 198, 6738, 764, 42655, 1330, 20561, 35407 ]
2.323944
71
import xml.etree.ElementTree as ET xml_string = ''' <stuff> <users> <user x = "2"> <id>001</id> <name>Chuck</name> </user> <user x = "7"> <id>007</id> <name>Brent</name> </user> </users> </stuff> ''' root_stuff = ET.fromstring(xml_string) #don't usually refer to root element user_elements = root_stuff.findall('users/user') print ('user count:', len(user_elements)) for user in user_elements: print('name:', user.find('name').text) print('id:', user.find('id').text) print('attribute(x):', user.get('x')) #to identify attribute use 'get's
[ 11748, 35555, 13, 316, 631, 13, 20180, 27660, 355, 12152, 198, 198, 19875, 62, 8841, 796, 705, 7061, 198, 27, 41094, 29, 198, 220, 220, 220, 1279, 18417, 29, 198, 220, 220, 220, 220, 220, 220, 220, 1279, 7220, 2124, 796, 366, 17, 5320, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 312, 29, 8298, 3556, 312, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 3672, 29, 44324, 3556, 3672, 29, 198, 220, 220, 220, 220, 220, 220, 220, 7359, 7220, 29, 198, 220, 220, 220, 220, 220, 220, 220, 1279, 7220, 2124, 796, 366, 22, 5320, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 312, 29, 25816, 3556, 312, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 3672, 29, 33, 1156, 3556, 3672, 29, 198, 220, 220, 220, 220, 220, 220, 220, 7359, 7220, 29, 198, 220, 220, 220, 7359, 18417, 29, 198, 3556, 41094, 29, 198, 7061, 6, 198, 198, 15763, 62, 41094, 796, 12152, 13, 6738, 8841, 7, 19875, 62, 8841, 8, 198, 2, 9099, 470, 3221, 3522, 284, 6808, 5002, 198, 7220, 62, 68, 3639, 796, 6808, 62, 41094, 13, 19796, 439, 10786, 18417, 14, 7220, 11537, 198, 4798, 19203, 7220, 954, 25, 3256, 18896, 7, 7220, 62, 68, 3639, 4008, 198, 198, 1640, 2836, 287, 2836, 62, 68, 3639, 25, 198, 220, 220, 220, 3601, 10786, 3672, 25, 3256, 2836, 13, 19796, 10786, 3672, 27691, 5239, 8, 198, 220, 220, 220, 3601, 10786, 312, 25, 3256, 2836, 13, 19796, 10786, 312, 27691, 5239, 8, 198, 220, 220, 220, 3601, 10786, 42348, 7, 87, 2599, 3256, 2836, 13, 1136, 10786, 87, 6, 4008, 198, 220, 220, 220, 1303, 1462, 5911, 11688, 779, 705, 1136, 338, 198 ]
2.142384
302
from multiprocessing.dummy import Pool pool = Pool(3) origin_num = [x for x in range(10)] result = pool.map(calc_power2, origin_num) print(f'计算1-10的平方分别为:{result}')
[ 6738, 18540, 305, 919, 278, 13, 67, 13513, 1330, 19850, 628, 198, 7742, 796, 19850, 7, 18, 8, 198, 47103, 62, 22510, 796, 685, 87, 329, 2124, 287, 2837, 7, 940, 15437, 198, 20274, 796, 5933, 13, 8899, 7, 9948, 66, 62, 6477, 17, 11, 8159, 62, 22510, 8, 198, 4798, 7, 69, 6, 164, 106, 94, 163, 106, 245, 16, 12, 940, 21410, 33176, 111, 43095, 26344, 228, 26344, 104, 10310, 118, 171, 120, 248, 90, 20274, 92, 11537, 628, 198 ]
2.060976
82
from django.apps import AppConfig
[ 6738, 42625, 14208, 13, 18211, 1330, 2034, 16934, 628 ]
3.888889
9
from django.core.urlresolvers import reverse from django.views.generic.detail import DetailView from django.views.generic.list import ListView from django.views.generic.edit import CreateView, UpdateView, DeleteView from django.core.urlresolvers import reverse_lazy from django.utils.decorators import method_decorator from django.contrib.auth.decorators import login_required from .models import Eintrag from .forms import EintragForm
[ 6738, 42625, 14208, 13, 7295, 13, 6371, 411, 349, 690, 1330, 9575, 198, 6738, 42625, 14208, 13, 33571, 13, 41357, 13, 49170, 1330, 42585, 7680, 198, 6738, 42625, 14208, 13, 33571, 13, 41357, 13, 4868, 1330, 7343, 7680, 198, 6738, 42625, 14208, 13, 33571, 13, 41357, 13, 19312, 1330, 13610, 7680, 11, 10133, 7680, 11, 23520, 7680, 198, 6738, 42625, 14208, 13, 7295, 13, 6371, 411, 349, 690, 1330, 9575, 62, 75, 12582, 198, 6738, 42625, 14208, 13, 26791, 13, 12501, 273, 2024, 1330, 2446, 62, 12501, 273, 1352, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 12501, 273, 2024, 1330, 17594, 62, 35827, 198, 6738, 764, 27530, 1330, 412, 600, 22562, 198, 6738, 764, 23914, 1330, 412, 600, 22562, 8479, 628, 628, 628 ]
3.5
126
from typing import Any, Optional, Tuple, Union import torch from torch.nn.functional import mse_loss import pystiche import pystiche.loss.functional as F from pystiche import enc, loss from pystiche_papers.utils import HyperParameters from ._utils import ( extract_normalized_patches2d, hyper_parameters as _hyper_parameters, multi_layer_encoder as _multi_layer_encoder, target_transforms as _target_transforms, ) __all__ = [ "FeatureReconstructionLoss", "content_loss", "MRFLoss", "style_loss", "TotalVariationLoss", "regularization", "perceptual_loss", ] class FeatureReconstructionLoss(loss.FeatureReconstructionLoss): r"""Feature reconstruction loss from :cite:`LW2016`. Args: encoder: Encoder used to encode the input. impl_params: If ``False``, calculate the score with the squared error (SE) instead of the mean squared error (MSE). **feature_reconstruction_loss_kwargs: Additional parameters of a :class:`pystiche.loss.FeatureReconstructionLoss`. .. seealso:: :class:`pystiche.loss.FeatureReconstructionLoss` """ def content_loss( impl_params: bool = True, multi_layer_encoder: Optional[enc.MultiLayerEncoder] = None, hyper_parameters: Optional[HyperParameters] = None, ) -> FeatureReconstructionLoss: r"""Content loss from :cite:`LW2016`. Args: impl_params: Switch the behavior and hyper-parameters between the reference implementation of the original authors and what is described in the paper. For details see :ref:`here <li_wand_2016-impl_params>`. multi_layer_encoder: Pretrained multi-layer encoder. If omitted, :func:`~pystiche_papers.li_wand_2016.multi_layer_encoder` is used. hyper_parameters: Hyper parameters. If omitted, :func:`~pystiche_papers.li_wand_2016.hyper_parameters` is used. .. seealso:: :class:`pystiche_papers.li_wand_2016.FeatureReconstructionLoss` """ if multi_layer_encoder is None: multi_layer_encoder = _multi_layer_encoder() if hyper_parameters is None: hyper_parameters = _hyper_parameters(impl_params=impl_params) return FeatureReconstructionLoss( multi_layer_encoder.extract_encoder(hyper_parameters.content_loss.layer), impl_params=impl_params, score_weight=hyper_parameters.content_loss.score_weight, ) class MRFLoss(loss.MRFLoss): r"""MRF loss from :cite:`LW2016`. Args: encoder: Encoder used to encode the input. patch_size: Spatial size of the neural patches. impl_params: If ``True``, normalize the gradient of the neural patches. If ``False``, use a score correction factor of 1/2. **mrf_loss_kwargs: Additional parameters of a :class:`pystiche.loss.MRFLoss`. In contrast to :class:`pystiche.loss.MRFLoss`, the score is calculated with the squared error (SE) instead of the mean squared error (MSE). .. seealso:: - :class:`pystiche.loss.MRFLoss` - :func:`pystiche_papers.li_wand_2016.extract_normalized_patches2d` """ def style_loss( impl_params: bool = True, multi_layer_encoder: Optional[enc.MultiLayerEncoder] = None, hyper_parameters: Optional[HyperParameters] = None, ) -> loss.MultiLayerEncodingLoss: r"""Style loss from :cite:`LW2016`. Args: impl_params: Switch the behavior and hyper-parameters between the reference implementation of the original authors and what is described in the paper. For details see :ref:`here <li_wand_2016-impl_params>`. multi_layer_encoder: Pretrained multi-layer encoder. If omitted, :func:`~pystiche_papers.li_wand_2016.multi_layer_encoder` is used. hyper_parameters: Hyper parameters. If omitted, :func:`~pystiche_papers.li_wand_2016.hyper_parameters` is used. .. seealso:: - :class:`pystiche_papers.li_wand_2016.MRFLoss` """ if multi_layer_encoder is None: multi_layer_encoder = _multi_layer_encoder() if hyper_parameters is None: hyper_parameters = _hyper_parameters(impl_params=impl_params) return loss.MultiLayerEncodingLoss( multi_layer_encoder, hyper_parameters.style_loss.layers, encoding_loss_fn, layer_weights=hyper_parameters.style_loss.layer_weights, score_weight=hyper_parameters.style_loss.score_weight, ) class TotalVariationLoss(loss.TotalVariationLoss): r"""Total variation loss from :cite:`LW2016`. Args: impl_params: If ``False``, use a score correction factor of 1/2. **total_variation_loss_kwargs: Additional parameters of a :class:`pystiche.loss.TotalVariationLoss`. In contrast to :class:`pystiche.loss.TotalVariationLoss`, the the score is calculated with the squared error (SE) instead of the mean squared error (MSE). .. seealso:: - :class:`pystiche.loss.TotalVariationLoss` """ def regularization( impl_params: bool = True, hyper_parameters: Optional[HyperParameters] = None, ) -> TotalVariationLoss: r"""Regularization from :cite:`LW2016`. Args: impl_params: Switch the behavior and hyper-parameters between the reference implementation of the original authors and what is described in the paper. For details see :ref:`here <li_wand_2016-impl_params>`. hyper_parameters: Hyper parameters. If omitted, :func:`~pystiche_papers.li_wand_2016.hyper_parameters` is used. .. seealso:: - :class:`pystiche_papers.li_wand_2016.TotalVariationLoss` """ if hyper_parameters is None: hyper_parameters = _hyper_parameters() return TotalVariationLoss( impl_params=impl_params, score_weight=hyper_parameters.regularization.score_weight, ) def perceptual_loss( impl_params: bool = True, multi_layer_encoder: Optional[enc.MultiLayerEncoder] = None, hyper_parameters: Optional[HyperParameters] = None, ) -> loss.PerceptualLoss: r"""Perceptual loss from :cite:`LW2016`. Args: impl_params: Switch the behavior and hyper-parameters between the reference implementation of the original authors and what is described in the paper. For details see :ref:`here <li_wand_2016-impl_params>`. multi_layer_encoder: Pretrained multi-layer encoder. If omitted, :func:`~pystiche_papers.li_wand_2016.multi_layer_encoder` is used. hyper_parameters: Hyper parameters. If omitted, :func:`~pystiche_papers.li_wand_2016.hyper_parameters` is used. .. seealso:: - :func:`pystiche_papers.li_wand_2016.content_loss` - :func:`pystiche_papers.li_wand_2016.style_loss` - :func:`pystiche_papers.li_wand_2016.regularization` """ if multi_layer_encoder is None: multi_layer_encoder = _multi_layer_encoder() if hyper_parameters is None: hyper_parameters = _hyper_parameters() return loss.PerceptualLoss( content_loss( impl_params=impl_params, multi_layer_encoder=multi_layer_encoder, hyper_parameters=hyper_parameters, ), style_loss( impl_params=impl_params, multi_layer_encoder=multi_layer_encoder, hyper_parameters=hyper_parameters, ), regularization(impl_params=impl_params, hyper_parameters=hyper_parameters), )
[ 6738, 19720, 1330, 4377, 11, 32233, 11, 309, 29291, 11, 4479, 198, 198, 11748, 28034, 198, 6738, 28034, 13, 20471, 13, 45124, 1330, 285, 325, 62, 22462, 198, 198, 11748, 12972, 11268, 258, 198, 11748, 12972, 11268, 258, 13, 22462, 13, 45124, 355, 376, 198, 6738, 12972, 11268, 258, 1330, 2207, 11, 2994, 198, 6738, 12972, 11268, 258, 62, 40491, 13, 26791, 1330, 15079, 48944, 198, 198, 6738, 47540, 26791, 1330, 357, 198, 220, 220, 220, 7925, 62, 11265, 1143, 62, 8071, 2052, 17, 67, 11, 198, 220, 220, 220, 8718, 62, 17143, 7307, 355, 4808, 49229, 62, 17143, 7307, 11, 198, 220, 220, 220, 5021, 62, 29289, 62, 12685, 12342, 355, 4808, 41684, 62, 29289, 62, 12685, 12342, 11, 198, 220, 220, 220, 2496, 62, 7645, 23914, 355, 4808, 16793, 62, 7645, 23914, 11, 198, 8, 198, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 366, 38816, 6690, 261, 15019, 43, 793, 1600, 198, 220, 220, 220, 366, 11299, 62, 22462, 1600, 198, 220, 220, 220, 366, 13599, 3697, 793, 1600, 198, 220, 220, 220, 366, 7635, 62, 22462, 1600, 198, 220, 220, 220, 366, 14957, 23907, 341, 43, 793, 1600, 198, 220, 220, 220, 366, 16338, 1634, 1600, 198, 220, 220, 220, 366, 525, 984, 723, 62, 22462, 1600, 198, 60, 628, 198, 4871, 27018, 6690, 261, 15019, 43, 793, 7, 22462, 13, 38816, 6690, 261, 15019, 43, 793, 2599, 198, 220, 220, 220, 374, 37811, 38816, 25056, 2994, 422, 1058, 66, 578, 25, 63, 43, 54, 5304, 44646, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2207, 12342, 25, 14711, 12342, 973, 284, 37773, 262, 5128, 13, 198, 220, 220, 220, 220, 220, 220, 220, 4114, 62, 37266, 25, 1002, 7559, 25101, 15506, 11, 15284, 262, 4776, 351, 262, 44345, 4049, 357, 5188, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2427, 286, 262, 1612, 44345, 4049, 357, 44, 5188, 737, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 30053, 62, 260, 9979, 2762, 62, 22462, 62, 46265, 22046, 25, 15891, 10007, 286, 257, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 4871, 25, 63, 9078, 11268, 258, 13, 22462, 13, 38816, 6690, 261, 15019, 43, 793, 44646, 628, 220, 220, 220, 11485, 766, 14508, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 4871, 25, 63, 9078, 11268, 258, 13, 22462, 13, 38816, 6690, 261, 15019, 43, 793, 63, 198, 220, 220, 220, 37227, 628, 198, 4299, 2695, 62, 22462, 7, 198, 220, 220, 220, 4114, 62, 37266, 25, 20512, 796, 6407, 11, 198, 220, 220, 220, 5021, 62, 29289, 62, 12685, 12342, 25, 32233, 58, 12685, 13, 29800, 49925, 27195, 12342, 60, 796, 6045, 11, 198, 220, 220, 220, 8718, 62, 17143, 7307, 25, 32233, 58, 38197, 48944, 60, 796, 6045, 11, 198, 8, 4613, 27018, 6690, 261, 15019, 43, 793, 25, 198, 220, 220, 220, 374, 37811, 19746, 2994, 422, 1058, 66, 578, 25, 63, 43, 54, 5304, 44646, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4114, 62, 37266, 25, 14645, 262, 4069, 290, 8718, 12, 17143, 7307, 1022, 262, 4941, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7822, 286, 262, 2656, 7035, 290, 644, 318, 3417, 287, 262, 3348, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1114, 3307, 766, 1058, 5420, 25, 63, 1456, 1279, 4528, 62, 86, 392, 62, 5304, 12, 23928, 62, 37266, 29, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 5021, 62, 29289, 62, 12685, 12342, 25, 37123, 13363, 5021, 12, 29289, 2207, 12342, 13, 1002, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22532, 11, 1058, 20786, 25, 63, 93, 9078, 11268, 258, 62, 40491, 13, 4528, 62, 86, 392, 62, 5304, 13, 41684, 62, 29289, 62, 12685, 12342, 63, 318, 973, 13, 198, 220, 220, 220, 220, 220, 220, 220, 8718, 62, 17143, 7307, 25, 15079, 10007, 13, 1002, 22532, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 20786, 25, 63, 93, 9078, 11268, 258, 62, 40491, 13, 4528, 62, 86, 392, 62, 5304, 13, 49229, 62, 17143, 7307, 63, 318, 973, 13, 628, 220, 220, 220, 11485, 766, 14508, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 4871, 25, 63, 9078, 11268, 258, 62, 40491, 13, 4528, 62, 86, 392, 62, 5304, 13, 38816, 6690, 261, 15019, 43, 793, 63, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 5021, 62, 29289, 62, 12685, 12342, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5021, 62, 29289, 62, 12685, 12342, 796, 4808, 41684, 62, 29289, 62, 12685, 12342, 3419, 628, 220, 220, 220, 611, 8718, 62, 17143, 7307, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8718, 62, 17143, 7307, 796, 4808, 49229, 62, 17143, 7307, 7, 23928, 62, 37266, 28, 23928, 62, 37266, 8, 628, 220, 220, 220, 1441, 27018, 6690, 261, 15019, 43, 793, 7, 198, 220, 220, 220, 220, 220, 220, 220, 5021, 62, 29289, 62, 12685, 12342, 13, 2302, 974, 62, 12685, 12342, 7, 49229, 62, 17143, 7307, 13, 11299, 62, 22462, 13, 29289, 828, 198, 220, 220, 220, 220, 220, 220, 220, 4114, 62, 37266, 28, 23928, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4776, 62, 6551, 28, 49229, 62, 17143, 7307, 13, 11299, 62, 22462, 13, 26675, 62, 6551, 11, 198, 220, 220, 220, 1267, 628, 198, 4871, 17242, 3697, 793, 7, 22462, 13, 13599, 3697, 793, 2599, 198, 220, 220, 220, 374, 37811, 13599, 37, 2994, 422, 1058, 66, 578, 25, 63, 43, 54, 5304, 44646, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2207, 12342, 25, 14711, 12342, 973, 284, 37773, 262, 5128, 13, 198, 220, 220, 220, 220, 220, 220, 220, 8529, 62, 7857, 25, 1338, 34961, 2546, 286, 262, 17019, 16082, 13, 198, 220, 220, 220, 220, 220, 220, 220, 4114, 62, 37266, 25, 1002, 7559, 17821, 15506, 11, 3487, 1096, 262, 31312, 286, 262, 17019, 16082, 13, 1002, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7559, 25101, 15506, 11, 779, 257, 4776, 17137, 5766, 286, 352, 14, 17, 13, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 76, 41871, 62, 22462, 62, 46265, 22046, 25, 15891, 10007, 286, 257, 1058, 4871, 25, 63, 9078, 11268, 258, 13, 22462, 13, 13599, 3697, 793, 44646, 628, 220, 220, 220, 554, 6273, 284, 1058, 4871, 25, 63, 9078, 11268, 258, 13, 22462, 13, 13599, 3697, 793, 47671, 262, 4776, 318, 10488, 351, 262, 198, 220, 220, 220, 44345, 4049, 357, 5188, 8, 2427, 286, 262, 1612, 44345, 4049, 357, 44, 5188, 737, 628, 220, 220, 220, 11485, 766, 14508, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 532, 1058, 4871, 25, 63, 9078, 11268, 258, 13, 22462, 13, 13599, 3697, 793, 63, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1058, 20786, 25, 63, 9078, 11268, 258, 62, 40491, 13, 4528, 62, 86, 392, 62, 5304, 13, 2302, 974, 62, 11265, 1143, 62, 8071, 2052, 17, 67, 63, 198, 220, 220, 220, 37227, 628, 198, 4299, 3918, 62, 22462, 7, 198, 220, 220, 220, 4114, 62, 37266, 25, 20512, 796, 6407, 11, 198, 220, 220, 220, 5021, 62, 29289, 62, 12685, 12342, 25, 32233, 58, 12685, 13, 29800, 49925, 27195, 12342, 60, 796, 6045, 11, 198, 220, 220, 220, 8718, 62, 17143, 7307, 25, 32233, 58, 38197, 48944, 60, 796, 6045, 11, 198, 8, 4613, 2994, 13, 29800, 49925, 27195, 7656, 43, 793, 25, 198, 220, 220, 220, 374, 37811, 21466, 2994, 422, 1058, 66, 578, 25, 63, 43, 54, 5304, 44646, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4114, 62, 37266, 25, 14645, 262, 4069, 290, 8718, 12, 17143, 7307, 1022, 262, 4941, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7822, 286, 262, 2656, 7035, 290, 644, 318, 3417, 287, 262, 3348, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1114, 3307, 766, 1058, 5420, 25, 63, 1456, 1279, 4528, 62, 86, 392, 62, 5304, 12, 23928, 62, 37266, 29, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 5021, 62, 29289, 62, 12685, 12342, 25, 37123, 13363, 5021, 12, 29289, 2207, 12342, 13, 1002, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22532, 11, 1058, 20786, 25, 63, 93, 9078, 11268, 258, 62, 40491, 13, 4528, 62, 86, 392, 62, 5304, 13, 41684, 62, 29289, 62, 12685, 12342, 63, 318, 973, 13, 198, 220, 220, 220, 220, 220, 220, 220, 8718, 62, 17143, 7307, 25, 15079, 10007, 13, 1002, 22532, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 20786, 25, 63, 93, 9078, 11268, 258, 62, 40491, 13, 4528, 62, 86, 392, 62, 5304, 13, 49229, 62, 17143, 7307, 63, 318, 973, 13, 628, 220, 220, 220, 11485, 766, 14508, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 532, 1058, 4871, 25, 63, 9078, 11268, 258, 62, 40491, 13, 4528, 62, 86, 392, 62, 5304, 13, 13599, 3697, 793, 63, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 5021, 62, 29289, 62, 12685, 12342, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5021, 62, 29289, 62, 12685, 12342, 796, 4808, 41684, 62, 29289, 62, 12685, 12342, 3419, 628, 220, 220, 220, 611, 8718, 62, 17143, 7307, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8718, 62, 17143, 7307, 796, 4808, 49229, 62, 17143, 7307, 7, 23928, 62, 37266, 28, 23928, 62, 37266, 8, 628, 220, 220, 220, 1441, 2994, 13, 29800, 49925, 27195, 7656, 43, 793, 7, 198, 220, 220, 220, 220, 220, 220, 220, 5021, 62, 29289, 62, 12685, 12342, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8718, 62, 17143, 7307, 13, 7635, 62, 22462, 13, 75, 6962, 11, 198, 220, 220, 220, 220, 220, 220, 220, 21004, 62, 22462, 62, 22184, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7679, 62, 43775, 28, 49229, 62, 17143, 7307, 13, 7635, 62, 22462, 13, 29289, 62, 43775, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4776, 62, 6551, 28, 49229, 62, 17143, 7307, 13, 7635, 62, 22462, 13, 26675, 62, 6551, 11, 198, 220, 220, 220, 1267, 628, 198, 4871, 7472, 23907, 341, 43, 793, 7, 22462, 13, 14957, 23907, 341, 43, 793, 2599, 198, 220, 220, 220, 374, 37811, 14957, 12291, 2994, 422, 1058, 66, 578, 25, 63, 43, 54, 5304, 44646, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4114, 62, 37266, 25, 1002, 7559, 25101, 15506, 11, 779, 257, 4776, 17137, 5766, 286, 352, 14, 17, 13, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 23350, 62, 25641, 341, 62, 22462, 62, 46265, 22046, 25, 15891, 10007, 286, 257, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 4871, 25, 63, 9078, 11268, 258, 13, 22462, 13, 14957, 23907, 341, 43, 793, 44646, 628, 220, 220, 220, 554, 6273, 284, 1058, 4871, 25, 63, 9078, 11268, 258, 13, 22462, 13, 14957, 23907, 341, 43, 793, 47671, 262, 262, 4776, 318, 198, 220, 220, 220, 10488, 351, 262, 44345, 4049, 357, 5188, 8, 2427, 286, 262, 1612, 44345, 4049, 357, 44, 5188, 737, 628, 220, 220, 220, 11485, 766, 14508, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 532, 1058, 4871, 25, 63, 9078, 11268, 258, 13, 22462, 13, 14957, 23907, 341, 43, 793, 63, 198, 220, 220, 220, 37227, 628, 198, 4299, 3218, 1634, 7, 198, 220, 220, 220, 4114, 62, 37266, 25, 20512, 796, 6407, 11, 198, 220, 220, 220, 8718, 62, 17143, 7307, 25, 32233, 58, 38197, 48944, 60, 796, 6045, 11, 198, 8, 4613, 7472, 23907, 341, 43, 793, 25, 198, 220, 220, 220, 374, 37811, 40164, 1634, 422, 1058, 66, 578, 25, 63, 43, 54, 5304, 44646, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4114, 62, 37266, 25, 14645, 262, 4069, 290, 8718, 12, 17143, 7307, 1022, 262, 4941, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7822, 286, 262, 2656, 7035, 290, 644, 318, 3417, 287, 262, 3348, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1114, 3307, 766, 1058, 5420, 25, 63, 1456, 1279, 4528, 62, 86, 392, 62, 5304, 12, 23928, 62, 37266, 29, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 8718, 62, 17143, 7307, 25, 15079, 10007, 13, 1002, 22532, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 20786, 25, 63, 93, 9078, 11268, 258, 62, 40491, 13, 4528, 62, 86, 392, 62, 5304, 13, 49229, 62, 17143, 7307, 63, 318, 973, 13, 628, 220, 220, 220, 11485, 766, 14508, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 532, 1058, 4871, 25, 63, 9078, 11268, 258, 62, 40491, 13, 4528, 62, 86, 392, 62, 5304, 13, 14957, 23907, 341, 43, 793, 63, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 8718, 62, 17143, 7307, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8718, 62, 17143, 7307, 796, 4808, 49229, 62, 17143, 7307, 3419, 628, 220, 220, 220, 1441, 7472, 23907, 341, 43, 793, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4114, 62, 37266, 28, 23928, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4776, 62, 6551, 28, 49229, 62, 17143, 7307, 13, 16338, 1634, 13, 26675, 62, 6551, 11, 198, 220, 220, 220, 1267, 628, 198, 4299, 49615, 62, 22462, 7, 198, 220, 220, 220, 4114, 62, 37266, 25, 20512, 796, 6407, 11, 198, 220, 220, 220, 5021, 62, 29289, 62, 12685, 12342, 25, 32233, 58, 12685, 13, 29800, 49925, 27195, 12342, 60, 796, 6045, 11, 198, 220, 220, 220, 8718, 62, 17143, 7307, 25, 32233, 58, 38197, 48944, 60, 796, 6045, 11, 198, 8, 4613, 2994, 13, 5990, 984, 723, 43, 793, 25, 198, 220, 220, 220, 374, 37811, 5990, 984, 723, 2994, 422, 1058, 66, 578, 25, 63, 43, 54, 5304, 44646, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4114, 62, 37266, 25, 14645, 262, 4069, 290, 8718, 12, 17143, 7307, 1022, 262, 4941, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7822, 286, 262, 2656, 7035, 290, 644, 318, 3417, 287, 262, 3348, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1114, 3307, 766, 1058, 5420, 25, 63, 1456, 1279, 4528, 62, 86, 392, 62, 5304, 12, 23928, 62, 37266, 29, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 5021, 62, 29289, 62, 12685, 12342, 25, 37123, 13363, 5021, 12, 29289, 2207, 12342, 13, 1002, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22532, 11, 1058, 20786, 25, 63, 93, 9078, 11268, 258, 62, 40491, 13, 4528, 62, 86, 392, 62, 5304, 13, 41684, 62, 29289, 62, 12685, 12342, 63, 318, 973, 13, 198, 220, 220, 220, 220, 220, 220, 220, 8718, 62, 17143, 7307, 25, 15079, 10007, 13, 1002, 22532, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 20786, 25, 63, 93, 9078, 11268, 258, 62, 40491, 13, 4528, 62, 86, 392, 62, 5304, 13, 49229, 62, 17143, 7307, 63, 318, 973, 13, 628, 220, 220, 220, 11485, 766, 14508, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 532, 1058, 20786, 25, 63, 9078, 11268, 258, 62, 40491, 13, 4528, 62, 86, 392, 62, 5304, 13, 11299, 62, 22462, 63, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1058, 20786, 25, 63, 9078, 11268, 258, 62, 40491, 13, 4528, 62, 86, 392, 62, 5304, 13, 7635, 62, 22462, 63, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1058, 20786, 25, 63, 9078, 11268, 258, 62, 40491, 13, 4528, 62, 86, 392, 62, 5304, 13, 16338, 1634, 63, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 5021, 62, 29289, 62, 12685, 12342, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5021, 62, 29289, 62, 12685, 12342, 796, 4808, 41684, 62, 29289, 62, 12685, 12342, 3419, 628, 220, 220, 220, 611, 8718, 62, 17143, 7307, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8718, 62, 17143, 7307, 796, 4808, 49229, 62, 17143, 7307, 3419, 628, 220, 220, 220, 1441, 2994, 13, 5990, 984, 723, 43, 793, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2695, 62, 22462, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4114, 62, 37266, 28, 23928, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5021, 62, 29289, 62, 12685, 12342, 28, 41684, 62, 29289, 62, 12685, 12342, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8718, 62, 17143, 7307, 28, 49229, 62, 17143, 7307, 11, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 3918, 62, 22462, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4114, 62, 37266, 28, 23928, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5021, 62, 29289, 62, 12685, 12342, 28, 41684, 62, 29289, 62, 12685, 12342, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8718, 62, 17143, 7307, 28, 49229, 62, 17143, 7307, 11, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 3218, 1634, 7, 23928, 62, 37266, 28, 23928, 62, 37266, 11, 8718, 62, 17143, 7307, 28, 49229, 62, 17143, 7307, 828, 198, 220, 220, 220, 1267, 198 ]
2.511022
2,994
# -*- coding: utf-8 -*- # (c) 2017-2019, ETH Zurich, Institut fuer Theoretische Physik # Author: Dominik Gresch <greschd@gmx.ch> """ Configuration file for the pytest tests. """ import os import json import pytest import numpy as np import bands_inspect as bi import parameters # pylint: disable=wrong-import-order #--------------------------FIXTURES-------------------------------------# @pytest.fixture def test_name(request): """Returns module_name.function_name for a given test""" return request.module.__name__ + '/' + request._parent_request._pyfuncitem.name # pylint: disable=protected-access @pytest.fixture def compare_data(request, test_name, scope="session"): # pylint: disable=unused-argument,redefined-outer-name """Returns a function which either saves some data to a file or (if that file exists already) compares it to pre-existing data using a given comparison function.""" return inner @pytest.fixture def compare_equal(compare_data): # pylint: disable=redefined-outer-name """ Returns a function which checks that a given data is equal to the stored reference. """ return lambda data, tag=None: compare_data(lambda x, y: x == y, data, tag) @pytest.fixture def assert_equal(): """ Returns a function which checks that two bands-inspect object instances are equal. """ return inner @pytest.fixture def sample(): """ Returns the absolute path of the sample with a given name. """ return inner
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 2, 357, 66, 8, 2177, 12, 23344, 11, 35920, 43412, 11, 37931, 315, 14035, 263, 383, 9997, 46097, 8687, 1134, 198, 2, 6434, 25, 11817, 1134, 402, 411, 354, 1279, 34239, 354, 67, 31, 70, 36802, 13, 354, 29, 198, 37811, 198, 38149, 2393, 329, 262, 12972, 9288, 5254, 13, 198, 37811, 198, 198, 11748, 28686, 198, 11748, 33918, 198, 198, 11748, 12972, 9288, 198, 11748, 299, 32152, 355, 45941, 198, 198, 11748, 11760, 62, 1040, 806, 355, 3182, 198, 198, 11748, 10007, 220, 1303, 279, 2645, 600, 25, 15560, 28, 36460, 12, 11748, 12, 2875, 198, 198, 2, 22369, 438, 47084, 51, 29514, 3880, 30934, 2, 628, 198, 31, 9078, 9288, 13, 69, 9602, 198, 4299, 1332, 62, 3672, 7, 25927, 2599, 198, 220, 220, 220, 37227, 35561, 8265, 62, 3672, 13, 8818, 62, 3672, 329, 257, 1813, 1332, 37811, 198, 220, 220, 220, 1441, 2581, 13, 21412, 13, 834, 3672, 834, 1343, 31051, 6, 1343, 2581, 13557, 8000, 62, 25927, 13557, 9078, 20786, 9186, 13, 3672, 220, 1303, 279, 2645, 600, 25, 15560, 28, 24326, 12, 15526, 628, 198, 31, 9078, 9288, 13, 69, 9602, 198, 4299, 8996, 62, 7890, 7, 25927, 11, 1332, 62, 3672, 11, 8354, 2625, 29891, 1, 2599, 220, 1303, 279, 2645, 600, 25, 15560, 28, 403, 1484, 12, 49140, 11, 445, 18156, 12, 39605, 12, 3672, 198, 220, 220, 220, 37227, 35561, 257, 2163, 543, 2035, 16031, 617, 1366, 284, 257, 2393, 393, 357, 361, 326, 2393, 7160, 1541, 8, 23008, 340, 284, 662, 12, 25687, 1366, 1262, 257, 1813, 7208, 2163, 526, 15931, 628, 220, 220, 220, 1441, 8434, 628, 198, 31, 9078, 9288, 13, 69, 9602, 198, 4299, 8996, 62, 40496, 7, 5589, 533, 62, 7890, 2599, 220, 1303, 279, 2645, 600, 25, 15560, 28, 445, 18156, 12, 39605, 12, 3672, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 257, 2163, 543, 8794, 326, 257, 1813, 1366, 318, 4961, 284, 262, 8574, 4941, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 37456, 1366, 11, 7621, 28, 14202, 25, 8996, 62, 7890, 7, 50033, 2124, 11, 331, 25, 2124, 6624, 331, 11, 1366, 11, 7621, 8, 628, 198, 31, 9078, 9288, 13, 69, 9602, 198, 4299, 6818, 62, 40496, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 257, 2163, 543, 8794, 326, 734, 11760, 12, 1040, 806, 2134, 10245, 389, 4961, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1441, 8434, 628, 198, 31, 9078, 9288, 13, 69, 9602, 198, 4299, 6291, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 262, 4112, 3108, 286, 262, 6291, 351, 257, 1813, 1438, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1441, 8434, 198 ]
3.191898
469
import os # import tensorflow as tf import tensorrt as trt from tensorrt.parsers import uffparser import pycuda.driver as cuda # import uff import cv2 import numpy as np from tqdm import tqdm TEST_PATH = "/media/andy/Data/DevWorkSpace/Projects/imageClassifier/data/test/" LABEL = 0 ENGINE_PATH = "/home/andy/caffe/examples/mydata/slot_classifier/engine/px2_classifier.engine" NET_INPUT_SHAPE = (256, 256) NET_OUTPUT_SHAPE = 5 class_labels = ['error', 'half', 'invlb', 'invls', 'valid'] # Load Image imgTestData = test_Loader(TEST_PATH, NET_INPUT_SHAPE) # Load Engine file G_LOGGER = trt.infer.ConsoleLogger(trt.infer.LogSeverity.ERROR) engine = trt.utils.load_engine(G_LOGGER, ENGINE_PATH) context = engine.create_execution_context() runtime = trt.infer.create_infer_runtime(G_LOGGER) # output = np.empty(1, dtype = np.float32) # # Alocate device memory # d_input = cuda.mem_alloc(1 * imgTestData[0][0][0].nbytes) # d_output = cuda.mem_alloc(NET_OUTPUT_SHAPE * output.nbytes) # bindings = [int(d_input), int(d_output)] # stream = cuda.Stream() predicts = [] pair = imgTestData[0] for img, label in pair: output = np.empty(NET_OUTPUT_SHAPE, dtype = np.float32) # Alocate device memory d_input = cuda.mem_alloc(1 * img.nbytes) d_output = cuda.mem_alloc(1 * output.nbytes) bindings = [int(d_input), int(d_output)] stream = cuda.Stream() # Transfer input data to device cuda.memcpy_htod_async(d_input, img, stream) # Execute model context.enqueue(1, bindings, stream.handle, None) # Transfer predictions back cuda.memcpy_dtoh_async(output, d_output, stream) # Syncronize threads stream.synchronize() softmax = np.exp(output) / np.sum(np.exp(output)) predict = np.argmax(softmax) predicts.append(predict) print("True = ",label, ", predict = ", predict, ", softmax = ", softmax) grandTrue = np.array(imgTestData[1][1]) predicts = np.array(predicts) error = predicts[predicts!=grandTrue] print(imgTestData[1][1]) print("-------") print(predicts) print("-------") print(len(error)) print((len(imgTestData[0])-len(error))/len(imgTestData[0]))
[ 11748, 28686, 198, 2, 1330, 11192, 273, 11125, 355, 48700, 198, 11748, 11192, 273, 17034, 355, 491, 83, 198, 6738, 11192, 273, 17034, 13, 79, 945, 364, 1330, 334, 487, 48610, 198, 11748, 12972, 66, 15339, 13, 26230, 355, 269, 15339, 198, 2, 1330, 334, 487, 198, 11748, 269, 85, 17, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 628, 198, 198, 51, 6465, 62, 34219, 796, 12813, 11431, 14, 10757, 14, 6601, 14, 13603, 12468, 14106, 14, 16775, 82, 14, 9060, 9487, 7483, 14, 7890, 14, 9288, 30487, 198, 48780, 3698, 796, 657, 198, 26808, 8881, 62, 34219, 796, 12813, 11195, 14, 10757, 14, 66, 21223, 14, 1069, 12629, 14, 1820, 7890, 14, 43384, 62, 4871, 7483, 14, 18392, 14, 8416, 17, 62, 4871, 7483, 13, 18392, 1, 198, 12884, 62, 1268, 30076, 62, 9693, 45721, 796, 357, 11645, 11, 17759, 8, 198, 12884, 62, 2606, 7250, 3843, 62, 9693, 45721, 796, 642, 198, 4871, 62, 23912, 1424, 796, 37250, 18224, 3256, 705, 13959, 3256, 705, 16340, 23160, 3256, 705, 16340, 7278, 3256, 705, 12102, 20520, 198, 198, 2, 8778, 7412, 628, 198, 9600, 14402, 6601, 796, 1332, 62, 17401, 7, 51, 6465, 62, 34219, 11, 30502, 62, 1268, 30076, 62, 9693, 45721, 8, 198, 198, 2, 8778, 7117, 2393, 198, 38, 62, 25294, 30373, 796, 491, 83, 13, 259, 2232, 13, 47581, 11187, 1362, 7, 2213, 83, 13, 259, 2232, 13, 11187, 50, 964, 414, 13, 24908, 8, 198, 18392, 796, 491, 83, 13, 26791, 13, 2220, 62, 18392, 7, 38, 62, 25294, 30373, 11, 36924, 8881, 62, 34219, 8, 198, 22866, 796, 3113, 13, 17953, 62, 18558, 1009, 62, 22866, 3419, 198, 43282, 796, 491, 83, 13, 259, 2232, 13, 17953, 62, 259, 2232, 62, 43282, 7, 38, 62, 25294, 30373, 8, 198, 198, 2, 5072, 796, 45941, 13, 28920, 7, 16, 11, 288, 4906, 796, 45941, 13, 22468, 2624, 8, 198, 198, 2, 1303, 978, 13369, 3335, 4088, 198, 2, 288, 62, 15414, 796, 269, 15339, 13, 11883, 62, 32332, 7, 16, 1635, 33705, 14402, 6601, 58, 15, 7131, 15, 7131, 15, 4083, 77, 33661, 8, 198, 2, 288, 62, 22915, 796, 269, 15339, 13, 11883, 62, 32332, 7, 12884, 62, 2606, 7250, 3843, 62, 9693, 45721, 1635, 5072, 13, 77, 33661, 8, 198, 198, 2, 34111, 796, 685, 600, 7, 67, 62, 15414, 828, 493, 7, 67, 62, 22915, 15437, 198, 198, 2, 4269, 796, 269, 15339, 13, 12124, 3419, 198, 198, 28764, 14137, 796, 17635, 198, 24874, 796, 33705, 14402, 6601, 58, 15, 60, 198, 1640, 33705, 11, 6167, 287, 5166, 25, 198, 220, 220, 220, 5072, 796, 45941, 13, 28920, 7, 12884, 62, 2606, 7250, 3843, 62, 9693, 45721, 11, 288, 4906, 796, 45941, 13, 22468, 2624, 8, 628, 220, 220, 220, 1303, 978, 13369, 3335, 4088, 198, 220, 220, 220, 288, 62, 15414, 796, 269, 15339, 13, 11883, 62, 32332, 7, 16, 1635, 33705, 13, 77, 33661, 8, 198, 220, 220, 220, 288, 62, 22915, 796, 269, 15339, 13, 11883, 62, 32332, 7, 16, 1635, 5072, 13, 77, 33661, 8, 628, 220, 220, 220, 34111, 796, 685, 600, 7, 67, 62, 15414, 828, 493, 7, 67, 62, 22915, 15437, 628, 220, 220, 220, 4269, 796, 269, 15339, 13, 12124, 3419, 198, 220, 220, 220, 1303, 20558, 5128, 1366, 284, 3335, 198, 220, 220, 220, 269, 15339, 13, 11883, 66, 9078, 62, 4352, 375, 62, 292, 13361, 7, 67, 62, 15414, 11, 33705, 11, 4269, 8, 198, 220, 220, 220, 1303, 8393, 1133, 2746, 220, 198, 220, 220, 220, 4732, 13, 268, 36560, 7, 16, 11, 34111, 11, 4269, 13, 28144, 11, 6045, 8, 198, 220, 220, 220, 1303, 20558, 16277, 736, 198, 220, 220, 220, 269, 15339, 13, 11883, 66, 9078, 62, 28664, 1219, 62, 292, 13361, 7, 22915, 11, 288, 62, 22915, 11, 4269, 8, 198, 220, 220, 220, 1303, 35908, 1313, 1096, 14390, 198, 220, 220, 220, 4269, 13, 28869, 11413, 1096, 3419, 628, 220, 220, 220, 2705, 9806, 796, 45941, 13, 11201, 7, 22915, 8, 1220, 45941, 13, 16345, 7, 37659, 13, 11201, 7, 22915, 4008, 198, 220, 220, 220, 4331, 796, 45941, 13, 853, 9806, 7, 4215, 9806, 8, 198, 220, 220, 220, 26334, 13, 33295, 7, 79, 17407, 8, 628, 220, 220, 220, 3601, 7203, 17821, 796, 33172, 18242, 11, 33172, 4331, 796, 33172, 4331, 11, 33172, 2705, 9806, 796, 33172, 2705, 9806, 8, 628, 198, 23936, 17821, 796, 45941, 13, 18747, 7, 9600, 14402, 6601, 58, 16, 7131, 16, 12962, 198, 28764, 14137, 796, 45941, 13, 18747, 7, 28764, 14137, 8, 198, 18224, 796, 26334, 58, 28764, 14137, 0, 28, 23936, 17821, 60, 198, 198, 4798, 7, 9600, 14402, 6601, 58, 16, 7131, 16, 12962, 198, 4798, 7203, 26866, 4943, 198, 4798, 7, 28764, 14137, 8, 198, 4798, 7203, 26866, 4943, 198, 4798, 7, 11925, 7, 18224, 4008, 198, 4798, 19510, 11925, 7, 9600, 14402, 6601, 58, 15, 12962, 12, 11925, 7, 18224, 4008, 14, 11925, 7, 9600, 14402, 6601, 58, 15, 60, 4008 ]
2.546108
835
import filters import numpy as np import matplotlib.pyplot as plt from scipy.signal import freqz from sklearn.neural_network import MLPRegressor if __name__ == "__main__": # Create a random dataset # [fc, bandwidth, gain] n = 100 filtersNum = 1 X, Y = genXY(n=n, filtersNum=filtersNum) # Fit regression model regr = MLPRegressor(hidden_layer_sizes=(10,), max_iter=10000) regr.fit(X, Y) print('train loss', regr.loss_) # Predict X_test, Y_test = genXY(n=n, filtersNum=filtersNum) print('test loss', ((Y_test - regr.predict(X_test)) ** 2).mean()) # paras = [(1e4, 2500, 3), (300, 201, 10), (400, 600, 5), (600, 200, 8), # (2000, 3500, 13), (6000, 4000, 3), (8500, 6000, 2.75),] paras = [(1e4, 2500, 3),] f, db = filterModel(paras) plt.semilogx(f, db, label="target", color='red') y_pred = regr.predict([db]) f, db = filterModel(y_pred.reshape(filtersNum, 3)) plt.semilogx(f, db, label="NN") plt.legend() plt.show()
[ 11748, 16628, 201, 198, 11748, 299, 32152, 355, 45941, 201, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 201, 198, 6738, 629, 541, 88, 13, 12683, 282, 1330, 2030, 80, 89, 201, 198, 6738, 1341, 35720, 13, 710, 1523, 62, 27349, 1330, 10373, 4805, 1533, 44292, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 201, 198, 201, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 201, 198, 220, 220, 220, 1303, 13610, 257, 4738, 27039, 201, 198, 220, 220, 220, 1303, 685, 16072, 11, 19484, 11, 4461, 60, 201, 198, 220, 220, 220, 299, 796, 1802, 201, 198, 220, 220, 220, 16628, 33111, 796, 352, 201, 198, 201, 198, 220, 220, 220, 1395, 11, 575, 796, 2429, 34278, 7, 77, 28, 77, 11, 16628, 33111, 28, 10379, 1010, 33111, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 25048, 20683, 2746, 201, 198, 220, 220, 220, 842, 81, 796, 10373, 4805, 1533, 44292, 7, 30342, 62, 29289, 62, 82, 4340, 16193, 940, 11, 828, 3509, 62, 2676, 28, 49388, 8, 201, 198, 220, 220, 220, 842, 81, 13, 11147, 7, 55, 11, 575, 8, 201, 198, 220, 220, 220, 3601, 10786, 27432, 2994, 3256, 842, 81, 13, 22462, 62, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 49461, 201, 198, 220, 220, 220, 1395, 62, 9288, 11, 575, 62, 9288, 796, 2429, 34278, 7, 77, 28, 77, 11, 16628, 33111, 28, 10379, 1010, 33111, 8, 201, 198, 220, 220, 220, 3601, 10786, 9288, 2994, 3256, 14808, 56, 62, 9288, 532, 842, 81, 13, 79, 17407, 7, 55, 62, 9288, 4008, 12429, 362, 737, 32604, 28955, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 1303, 17850, 796, 47527, 16, 68, 19, 11, 33507, 11, 513, 828, 357, 6200, 11, 580, 11, 838, 828, 357, 7029, 11, 10053, 11, 642, 828, 357, 8054, 11, 939, 11, 807, 828, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 357, 11024, 11, 3439, 405, 11, 1511, 828, 357, 43434, 11, 30123, 11, 513, 828, 357, 23, 4059, 11, 39064, 11, 362, 13, 2425, 828, 60, 201, 198, 220, 220, 220, 17850, 796, 47527, 16, 68, 19, 11, 33507, 11, 513, 828, 60, 201, 198, 220, 220, 220, 277, 11, 20613, 796, 8106, 17633, 7, 1845, 292, 8, 201, 198, 220, 220, 220, 458, 83, 13, 325, 25433, 519, 87, 7, 69, 11, 20613, 11, 6167, 2625, 16793, 1600, 3124, 11639, 445, 11537, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 331, 62, 28764, 796, 842, 81, 13, 79, 17407, 26933, 9945, 12962, 220, 220, 220, 220, 201, 198, 220, 220, 220, 277, 11, 20613, 796, 8106, 17633, 7, 88, 62, 28764, 13, 3447, 1758, 7, 10379, 1010, 33111, 11, 513, 4008, 201, 198, 220, 220, 220, 458, 83, 13, 325, 25433, 519, 87, 7, 69, 11, 20613, 11, 6167, 2625, 6144, 4943, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 458, 83, 13, 1455, 437, 3419, 201, 198, 220, 220, 220, 458, 83, 13, 12860, 3419 ]
2.078998
519
import torch.distributed as dist import torch def synchronize(): """ Helper function to synchronize (barrier) among all processes when using distributed training """ if not dist.is_available(): return if not dist.is_initialized(): return world_size = dist.get_world_size() if world_size == 1: return dist.barrier()
[ 11748, 28034, 13, 17080, 6169, 355, 1233, 198, 11748, 28034, 198, 198, 4299, 18305, 1096, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 5053, 525, 2163, 284, 18305, 1096, 357, 5657, 5277, 8, 1871, 477, 7767, 618, 198, 220, 220, 220, 220, 220, 220, 1262, 9387, 3047, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 407, 1233, 13, 271, 62, 15182, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 611, 407, 1233, 13, 271, 62, 17532, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 995, 62, 7857, 796, 1233, 13, 1136, 62, 6894, 62, 7857, 3419, 198, 220, 220, 220, 611, 995, 62, 7857, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 1233, 13, 5657, 5277, 3419 ]
2.645833
144
import json import pymysql import datetime from dbutils.pooled_db import PooledDB import pymysql from conf.common import * mysql_client = MysqlClient()
[ 11748, 33918, 198, 11748, 279, 4948, 893, 13976, 198, 11748, 4818, 8079, 198, 6738, 288, 4360, 4487, 13, 7742, 276, 62, 9945, 1330, 19850, 276, 11012, 198, 11748, 279, 4948, 893, 13976, 198, 198, 6738, 1013, 13, 11321, 1330, 1635, 628, 198, 198, 28744, 13976, 62, 16366, 796, 337, 893, 13976, 11792, 3419, 198 ]
2.888889
54
#!/usr/bin/env python """ Script to launch a VDI session (or connect to already running session) and start a Jupyter server on the VDI A ssh tunnel from the local machine to the VDI is set up and the local webbrowser is spawned. This is a python3 script (uses unicode strings). If you don't have python3 on your local machine, try installing Miniconda3 The only external module is pexpect which may need to be installed using conda or pip. Usage: - if you use a password, the script will ask for your password when needed - if you have already set up SSH public key with Strudel, try running $ ssh-add ~/.ssh/MassiveLauncherKey to add your public key to the ssh key agent. Author: James Munroe, 2017 """ from __future__ import print_function import re import sys import time import getpass import pexpect import os import configparser # Requires future module https://pypi.org/project/future/ from builtins import input import argparse import logging logging.basicConfig(format='[%(asctime)s jupyter_vdi.py] %(message)s', datefmt='%H:%M:%S', level=logging.INFO) try: import appscript except ImportError: import webbrowser is_mac = False else: is_mac = True DEFAULTS = { 'user' : getpass.getuser(), 'JupyterPort' : '8889', 'BokehPort' : '8787', 'execHost' : 'vdi.nci.org.au' } verbose = 0 config_path = os.path.expanduser('~/cosima_cookbook.conf') parser = configparser.ConfigParser(defaults=DEFAULTS) if os.path.exists(config_path): logging.info('Using config file: {}'.format(config_path)) parser.read(config_path) else: logging.warn('No config file found. Creating default {} file.'.format(config_path)) logging.warn('*** Please edit this file as needed. ***') while DEFAULTS['user']==getpass.getuser() or DEFAULTS['user']=="": DEFAULTS['user']=input('What is your NCI username? ') parser = configparser.ConfigParser(defaults=DEFAULTS) with open(config_path, 'w') as f: parser.write(f) params = parser.defaults() def ssh(cmd, params, login_timeout=10): """ Run a remote command via SSH """ clean_params(params) cmd = ("ssh -x -l {user} {exechost} " + cmd).format(**params) if verbose > 0: logging.info(cmd) s = pexpect.spawn(cmd) # SSH pexpect logic taken from pxshh: i = s.expect(["(?i)are you sure you want to continue connecting", "(?i)(?:password)|(?:passphrase for key)", "(?i)permission denied", "(?i)connection closed by remote host", pexpect.EOF, pexpect.TIMEOUT], timeout=login_timeout) # First phase if i == 0: # New certificate -- always accept it. # This is what you get if SSH does not have the remote host's # public key stored in the 'known_hosts' cache. s.sendline("yes") i = s.expect(["(?i)are you sure you want to continue connecting", "(?i)(?:password)|(?:passphrase for key)", "(?i)permission denied", "(?i)connection closed by remote host", pexpect.EOF, pexpect.TIMEOUT], timeout=login_timeout) if i == 1: # password or passphrase if 'password' not in params: params['password'] = getpass.getpass('password: ') s.sendline(params['password']) i = s.expect(["(?i)are you sure you want to continue connecting", "(?i)(?:password)|(?:passphrase for key)", "(?i)permission denied", "(?i)connection closed by remote host", pexpect.EOF, pexpect.TIMEOUT], timeout=login_timeout) # TODO: check if ssh connection is successful return s def session(func, *args, **kwargs): """wrapper for sending session-ctl commands""" cmd = '/opt/vdi/bin/session-ctl --configver=20151620513 ' + func s = ssh(cmd, *args, **kwargs) s.close() return s tunnel_started = False tunnel = None if __name__ == "__main__": main_argv()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 37811, 198, 7391, 284, 4219, 257, 569, 17931, 6246, 357, 273, 2018, 284, 1541, 2491, 6246, 8, 198, 392, 923, 257, 449, 929, 88, 353, 4382, 319, 262, 569, 17931, 198, 198, 32, 26678, 13275, 422, 262, 1957, 4572, 284, 262, 569, 17931, 318, 900, 510, 290, 262, 1957, 198, 732, 11848, 808, 2655, 318, 29013, 13, 198, 198, 1212, 318, 257, 21015, 18, 4226, 357, 2664, 28000, 1098, 13042, 737, 220, 1002, 345, 836, 470, 423, 198, 29412, 18, 319, 534, 1957, 4572, 11, 1949, 15975, 1855, 291, 13533, 18, 198, 464, 691, 7097, 8265, 318, 613, 87, 806, 543, 743, 761, 284, 307, 6589, 198, 3500, 1779, 64, 393, 7347, 13, 198, 198, 28350, 25, 198, 12, 611, 345, 779, 257, 9206, 11, 262, 4226, 481, 1265, 329, 534, 9206, 618, 2622, 198, 12, 611, 345, 423, 1541, 900, 510, 33825, 1171, 1994, 351, 4285, 463, 417, 11, 1949, 2491, 198, 220, 220, 220, 720, 26678, 12, 2860, 39763, 45824, 14, 20273, 425, 46182, 2044, 9218, 198, 220, 284, 751, 534, 1171, 1994, 284, 262, 26678, 1994, 5797, 13, 198, 198, 13838, 25, 3700, 12107, 20646, 11, 2177, 198, 37811, 198, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 302, 198, 11748, 25064, 198, 11748, 640, 198, 11748, 651, 6603, 198, 11748, 613, 87, 806, 198, 11748, 28686, 198, 11748, 4566, 48610, 198, 2, 26848, 2003, 8265, 3740, 1378, 79, 4464, 72, 13, 2398, 14, 16302, 14, 37443, 14, 198, 6738, 3170, 1040, 1330, 5128, 198, 11748, 1822, 29572, 198, 198, 11748, 18931, 198, 6404, 2667, 13, 35487, 16934, 7, 18982, 11639, 58, 4, 7, 292, 310, 524, 8, 82, 474, 929, 88, 353, 62, 85, 10989, 13, 9078, 60, 4064, 7, 20500, 8, 82, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3128, 69, 16762, 11639, 4, 39, 25, 4, 44, 25, 4, 50, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1241, 28, 6404, 2667, 13, 10778, 8, 198, 28311, 25, 198, 220, 220, 220, 1330, 598, 12048, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 1330, 3992, 40259, 198, 220, 220, 220, 318, 62, 20285, 796, 10352, 198, 17772, 25, 198, 220, 220, 220, 318, 62, 20285, 796, 6407, 198, 198, 7206, 7708, 35342, 796, 1391, 198, 220, 220, 220, 705, 7220, 6, 1058, 651, 6603, 13, 1136, 7220, 22784, 198, 220, 220, 220, 705, 41, 929, 88, 353, 13924, 6, 1058, 705, 3459, 4531, 3256, 198, 220, 220, 220, 705, 33, 2088, 71, 13924, 6, 1058, 705, 23, 41019, 3256, 198, 220, 220, 220, 705, 18558, 17932, 6, 1058, 220, 705, 85, 10989, 13, 77, 979, 13, 2398, 13, 559, 6, 198, 92, 198, 198, 19011, 577, 796, 657, 198, 198, 11250, 62, 6978, 796, 28686, 13, 6978, 13, 11201, 392, 7220, 10786, 93, 14, 6966, 8083, 62, 27916, 2070, 13, 10414, 11537, 198, 48610, 796, 4566, 48610, 13, 16934, 46677, 7, 12286, 82, 28, 7206, 7708, 35342, 8, 198, 198, 361, 28686, 13, 6978, 13, 1069, 1023, 7, 11250, 62, 6978, 2599, 198, 220, 220, 220, 18931, 13, 10951, 10786, 12814, 4566, 2393, 25, 23884, 4458, 18982, 7, 11250, 62, 6978, 4008, 198, 220, 220, 220, 30751, 13, 961, 7, 11250, 62, 6978, 8, 198, 17772, 25, 198, 220, 220, 220, 18931, 13, 40539, 10786, 2949, 4566, 2393, 1043, 13, 30481, 4277, 23884, 2393, 2637, 13, 18982, 7, 11250, 62, 6978, 4008, 198, 220, 220, 220, 18931, 13, 40539, 10786, 8162, 4222, 4370, 428, 2393, 355, 2622, 13, 17202, 11537, 198, 220, 220, 220, 981, 5550, 7708, 35342, 17816, 7220, 20520, 855, 1136, 6603, 13, 1136, 7220, 3419, 393, 5550, 7708, 35342, 17816, 7220, 20520, 855, 1, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 5550, 7708, 35342, 17816, 7220, 20520, 28, 15414, 10786, 2061, 318, 534, 8823, 40, 20579, 30, 705, 8, 198, 220, 220, 220, 30751, 796, 4566, 48610, 13, 16934, 46677, 7, 12286, 82, 28, 7206, 7708, 35342, 8, 628, 220, 220, 220, 351, 1280, 7, 11250, 62, 6978, 11, 705, 86, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 13, 13564, 7, 69, 8, 198, 198, 37266, 796, 30751, 13, 12286, 82, 3419, 198, 198, 4299, 26678, 7, 28758, 11, 42287, 11, 17594, 62, 48678, 28, 940, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5660, 257, 6569, 3141, 2884, 33825, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 3424, 62, 37266, 7, 37266, 8, 628, 220, 220, 220, 23991, 796, 5855, 45824, 532, 87, 532, 75, 1391, 7220, 92, 1391, 1069, 3055, 455, 92, 366, 1343, 23991, 737, 18982, 7, 1174, 37266, 8, 198, 220, 220, 220, 611, 15942, 577, 1875, 657, 25, 18931, 13, 10951, 7, 28758, 8, 198, 220, 220, 220, 264, 796, 613, 87, 806, 13, 48183, 7, 28758, 8, 628, 220, 220, 220, 1303, 33825, 613, 87, 806, 9156, 2077, 422, 279, 87, 1477, 71, 25, 198, 220, 220, 220, 1312, 796, 264, 13, 1069, 806, 7, 14692, 7, 30, 72, 8, 533, 345, 1654, 345, 765, 284, 2555, 14320, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30629, 30, 72, 5769, 27514, 28712, 14726, 7, 27514, 6603, 34675, 329, 1994, 42501, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30629, 30, 72, 8, 525, 3411, 6699, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30629, 30, 72, 8, 38659, 4838, 416, 6569, 2583, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 613, 87, 806, 13, 4720, 37, 11, 613, 87, 806, 13, 34694, 12425, 4357, 26827, 28, 38235, 62, 48678, 8, 628, 220, 220, 220, 1303, 3274, 7108, 198, 220, 220, 220, 611, 1312, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 968, 10703, 1377, 1464, 2453, 340, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 770, 318, 644, 345, 651, 611, 33825, 857, 407, 423, 262, 6569, 2583, 338, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1171, 1994, 8574, 287, 262, 705, 4002, 62, 4774, 82, 6, 12940, 13, 198, 220, 220, 220, 220, 220, 220, 220, 264, 13, 21280, 1370, 7203, 8505, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 264, 13, 1069, 806, 7, 14692, 7, 30, 72, 8, 533, 345, 1654, 345, 765, 284, 2555, 14320, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30629, 30, 72, 5769, 27514, 28712, 14726, 7, 27514, 6603, 34675, 329, 1994, 42501, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30629, 30, 72, 8, 525, 3411, 6699, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30629, 30, 72, 8, 38659, 4838, 416, 6569, 2583, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 613, 87, 806, 13, 4720, 37, 11, 613, 87, 806, 13, 34694, 12425, 4357, 26827, 28, 38235, 62, 48678, 8, 628, 220, 220, 220, 611, 1312, 6624, 352, 25, 220, 1303, 9206, 393, 1208, 34675, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 28712, 6, 407, 287, 42287, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 17816, 28712, 20520, 796, 651, 6603, 13, 1136, 6603, 10786, 28712, 25, 705, 8, 628, 220, 220, 220, 220, 220, 220, 220, 264, 13, 21280, 1370, 7, 37266, 17816, 28712, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 264, 13, 1069, 806, 7, 14692, 7, 30, 72, 8, 533, 345, 1654, 345, 765, 284, 2555, 14320, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30629, 30, 72, 5769, 27514, 28712, 14726, 7, 27514, 6603, 34675, 329, 1994, 42501, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30629, 30, 72, 8, 525, 3411, 6699, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30629, 30, 72, 8, 38659, 4838, 416, 6569, 2583, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 613, 87, 806, 13, 4720, 37, 11, 613, 87, 806, 13, 34694, 12425, 4357, 26827, 28, 38235, 62, 48678, 8, 628, 220, 220, 220, 1303, 16926, 46, 25, 2198, 611, 26678, 4637, 318, 4388, 628, 220, 220, 220, 1441, 264, 198, 198, 4299, 6246, 7, 20786, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 48553, 329, 7216, 6246, 12, 34168, 9729, 37811, 198, 220, 220, 220, 23991, 796, 31051, 8738, 14, 85, 10989, 14, 8800, 14, 29891, 12, 34168, 1377, 11250, 332, 28, 4626, 1433, 21261, 1485, 705, 1343, 25439, 198, 220, 220, 220, 264, 796, 26678, 7, 28758, 11, 1635, 22046, 11, 12429, 46265, 22046, 8, 198, 220, 220, 220, 264, 13, 19836, 3419, 198, 220, 220, 220, 1441, 264, 198, 198, 28286, 4954, 62, 46981, 796, 10352, 198, 28286, 4954, 796, 6045, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 628, 220, 220, 220, 1388, 62, 853, 85, 3419, 198 ]
2.474803
1,647
# -*- coding=utf-8 -*- __all__ = [ 'tiny_imagenet', 'imagewoof2', 'imagenette2' ] import os import torch import torchvision _default_batch_size = 32 _default_num_workers = 4
[ 2, 532, 9, 12, 19617, 28, 40477, 12, 23, 532, 9, 12, 198, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 705, 44152, 62, 320, 11286, 316, 3256, 198, 220, 220, 220, 705, 48466, 413, 37711, 17, 3256, 198, 220, 220, 220, 705, 320, 11286, 5857, 17, 6, 198, 60, 198, 198, 11748, 28686, 198, 11748, 28034, 198, 11748, 28034, 10178, 198, 198, 62, 12286, 62, 43501, 62, 7857, 796, 3933, 198, 62, 12286, 62, 22510, 62, 22896, 796, 604, 628, 628, 198 ]
2.270588
85
from django.db import models from django.contrib.auth.models import User from django.db.models import Sum from datetime import datetime
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 11787, 198, 6738, 42625, 14208, 13, 9945, 13, 27530, 1330, 5060, 198, 6738, 4818, 8079, 1330, 4818, 8079, 628, 198 ]
3.538462
39
#!/usr/bin/env pytest import io import json from os import path from pytest import fixture, mark from sls import App import storyscript.hub.Hub as StoryHub from storyhub.sdk.AutoUpdateThread import AutoUpdateThread from tests.e2e.utils.features import parse_options from tests.e2e.utils.fixtures import find_test_files, hub, test_dir test_files = find_test_files(relative=True) @fixture # compile a story and compare its completion with the expected tree # load a story from the file system and load its expected result file (.json) @mark.usefixtures("patched_storyhub") @mark.parametrize("test_file", test_files)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 12972, 9288, 198, 11748, 33245, 198, 11748, 33918, 198, 6738, 28686, 1330, 3108, 198, 198, 6738, 12972, 9288, 1330, 29220, 11, 1317, 198, 198, 6738, 1017, 82, 1330, 2034, 198, 198, 11748, 1621, 12048, 13, 40140, 13, 16066, 355, 8362, 16066, 198, 6738, 1621, 40140, 13, 21282, 74, 13, 27722, 10260, 16818, 1330, 11160, 10260, 16818, 628, 198, 6738, 5254, 13, 68, 17, 68, 13, 26791, 13, 40890, 1330, 21136, 62, 25811, 198, 6738, 5254, 13, 68, 17, 68, 13, 26791, 13, 69, 25506, 1330, 1064, 62, 9288, 62, 16624, 11, 12575, 11, 1332, 62, 15908, 628, 198, 9288, 62, 16624, 796, 1064, 62, 9288, 62, 16624, 7, 43762, 28, 17821, 8, 628, 198, 31, 69, 9602, 628, 198, 2, 17632, 257, 1621, 290, 8996, 663, 11939, 351, 262, 2938, 5509, 628, 198, 2, 3440, 257, 1621, 422, 262, 2393, 1080, 290, 3440, 663, 2938, 1255, 2393, 20262, 17752, 8, 628, 198, 31, 4102, 13, 1904, 69, 25506, 7203, 8071, 1740, 62, 13571, 40140, 4943, 198, 31, 4102, 13, 17143, 316, 380, 2736, 7203, 9288, 62, 7753, 1600, 1332, 62, 16624, 8, 198 ]
3.310526
190
""" Where's My Mouse? """ import tkinter root = tkinter.Tk() root.bind('<Button>', mouse_click) root.mainloop()
[ 37811, 6350, 338, 2011, 21839, 30, 37227, 201, 198, 11748, 256, 74, 3849, 201, 198, 220, 220, 220, 220, 201, 198, 15763, 796, 256, 74, 3849, 13, 51, 74, 3419, 201, 198, 15763, 13, 21653, 10786, 27, 21864, 29, 3256, 10211, 62, 12976, 8, 201, 198, 15763, 13, 12417, 26268, 3419, 201, 198 ]
2.320755
53
from dataclasses import dataclass from enum import Enum from typing import Callable, Dict, Final, Optional, Type, Union from botx import Bot, Collector, Message from botx.concurrency import callable_to_coroutine from botx.middlewares.base import BaseMiddleware from botx.typing import Executor _default_transition: Final = object() @dataclass
[ 6738, 4818, 330, 28958, 1330, 4818, 330, 31172, 198, 6738, 33829, 1330, 2039, 388, 198, 6738, 19720, 1330, 4889, 540, 11, 360, 713, 11, 8125, 11, 32233, 11, 5994, 11, 4479, 198, 198, 6738, 10214, 87, 1330, 18579, 11, 17573, 11, 16000, 198, 6738, 10214, 87, 13, 1102, 34415, 1330, 869, 540, 62, 1462, 62, 10215, 28399, 198, 6738, 10214, 87, 13, 27171, 86, 3565, 13, 8692, 1330, 7308, 34621, 1574, 198, 6738, 10214, 87, 13, 774, 13886, 1330, 8393, 38409, 198, 198, 62, 12286, 62, 7645, 653, 25, 8125, 796, 2134, 3419, 628, 198, 31, 19608, 330, 31172, 628, 628, 198 ]
3.441176
102
#!/usr/bin/env python ''' This program attempts to convert XPLOR Pseudocontact shift restraints in AMBER format XPLOR: assign ( resid 200 and name OO ) ( resid 200 and name Z ) ( resid 200 and name X ) (resid 200 and name Y ) ( resid 13 and name C ) 0.2400 0.2000 assign ( resid 200 and name OO ) ( resid 200 and name Z ) ( resid 200 and name X ) ( resid 200 and name Y ) ( resid 13 and name CA ) 0.4300 0.2000 assign ( resid 200 and name OO ) ( resid 200 and name Z ) ( resid 200 and name X ) ( resid 200 and name Y )( resid 13 and name CB ) 0.1000 0.2000 AMBER: &align num_datasets=2, dcut= -1.0, freezemol= .false., ndip= 10, dwt= 5*0.1, 5*0.1 gigj= 5*-3.1631,5*-3.1631, dij= 5*1.041,5*1.041, s11= -4.236,-4.236 s12= 56.860,56.860 s13= -34.696,-34.696 s22= -27.361,-27.361 s23= -12.867,-12.867 dataset=1, id(1)=20, jd(1)=19, dobsl(1)=-2.13, dobsu(1)=-2.13, id(2)=31, jd(2)=30, dobsl(2)= 1.10, dobsu(2)= 1.10, id(3)=43, jd(3)=42, dobsl(3)=-5.54, dobsu(3)=-5.54, ... ... &end ''' import sys import os import commands from optparse import OptionParser from xml_parser import * from normalize_tbl import normalize from constants import convtable if __name__ == '__main__': usage = "usage: %prog -w working_directory -p pdb_filename -o out_filename" parser = OptionParser(usage) parser.add_option("-w", "--wdir", dest="wd", help="Working directory", metavar="WORKDIR") parser.add_option("-p", "--pdbfile", dest="pdbfile", help="PDB filename", metavar="FILE") parser.add_option("-o", "--outfile", dest="outfile", help="Output filename", metavar="FILE") (options, args) = parser.parse_args() if not options.wd: parser.error("Working directory is required") wd=os.path.abspath(options.wd)+'/' if options.pdbfile: pdbfile=os.path.join(wd, options.pdbfile) else: parser.error("PDB filename is required") if options.outfile: outfile=os.path.join(wd, options.outfile) else: parser.error("Output filename is required") xml_input=os.path.join(wd,'input.xml') doc = etree.parse(xml_input) ndoc = etree.tostring(doc) new=parse_node(etree.fromstring(ndoc)) out=convert(pdbfile, new, wd) fout=open(outfile,'w') fout.writelines(out) fout.close()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 7061, 6, 198, 1212, 1430, 6370, 284, 10385, 1395, 6489, 1581, 49693, 463, 420, 756, 529, 6482, 45369, 287, 3001, 13246, 5794, 198, 55, 6489, 1581, 25, 198, 562, 570, 357, 15384, 939, 220, 290, 1438, 440, 46, 1267, 357, 15384, 939, 220, 290, 1438, 1168, 1267, 357, 15384, 939, 220, 290, 1438, 1395, 1267, 357, 411, 312, 939, 220, 290, 1438, 575, 1267, 357, 15384, 220, 1511, 220, 290, 1438, 327, 1267, 220, 220, 657, 13, 1731, 405, 220, 657, 13, 11024, 220, 198, 562, 570, 357, 15384, 939, 220, 290, 1438, 440, 46, 1267, 357, 15384, 939, 220, 290, 1438, 1168, 1267, 357, 15384, 939, 220, 290, 1438, 1395, 1267, 357, 15384, 939, 220, 290, 1438, 575, 1267, 357, 15384, 220, 1511, 220, 290, 1438, 7257, 1267, 657, 13, 3559, 405, 220, 657, 13, 11024, 220, 198, 562, 570, 357, 15384, 939, 220, 290, 1438, 440, 46, 1267, 357, 15384, 939, 220, 290, 1438, 1168, 1267, 357, 15384, 939, 220, 290, 1438, 1395, 1267, 357, 220, 15384, 939, 220, 290, 1438, 575, 1267, 7, 15384, 220, 1511, 220, 290, 1438, 10078, 1267, 657, 13, 12825, 220, 657, 13, 11024, 220, 628, 198, 2390, 13246, 25, 198, 5, 31494, 198, 22510, 62, 19608, 292, 1039, 28, 17, 11, 198, 220, 220, 288, 8968, 28, 532, 16, 13, 15, 11, 1479, 89, 368, 349, 28, 764, 9562, 1539, 628, 220, 220, 299, 67, 541, 28, 838, 11, 43756, 83, 28, 642, 9, 15, 13, 16, 11, 642, 9, 15, 13, 16, 198, 220, 220, 12526, 73, 28, 642, 9, 12, 18, 13, 1433, 3132, 11, 20, 9, 12, 18, 13, 1433, 3132, 11, 198, 220, 220, 2566, 73, 28, 642, 9, 16, 13, 50049, 11, 20, 9, 16, 13, 50049, 11, 198, 220, 264, 1157, 28, 532, 19, 13, 24940, 12095, 19, 13, 24940, 198, 220, 264, 1065, 28, 7265, 13, 45039, 11, 3980, 13, 45039, 198, 220, 264, 1485, 28, 532, 2682, 13, 38205, 12095, 2682, 13, 38205, 198, 220, 264, 1828, 28, 532, 1983, 13, 35195, 12095, 1983, 13, 35195, 198, 220, 264, 1954, 28, 532, 1065, 13, 23, 3134, 12095, 1065, 13, 23, 3134, 198, 220, 220, 198, 220, 27039, 28, 16, 11, 198, 220, 220, 4686, 7, 16, 47505, 1238, 11, 474, 67, 7, 16, 47505, 1129, 11, 466, 1443, 75, 7, 16, 8, 10779, 17, 13, 1485, 11, 466, 1443, 84, 7, 16, 8, 10779, 17, 13, 1485, 11, 198, 220, 220, 4686, 7, 17, 47505, 3132, 11, 474, 67, 7, 17, 47505, 1270, 11, 466, 1443, 75, 7, 17, 47505, 352, 13, 940, 11, 466, 1443, 84, 7, 17, 47505, 352, 13, 940, 11, 198, 220, 220, 4686, 7, 18, 47505, 3559, 11, 474, 67, 7, 18, 47505, 3682, 11, 466, 1443, 75, 7, 18, 8, 10779, 20, 13, 4051, 11, 466, 1443, 84, 7, 18, 8, 10779, 20, 13, 4051, 11, 198, 220, 220, 2644, 198, 220, 220, 2644, 198, 5, 437, 198, 7061, 6, 198, 198, 11748, 25064, 198, 11748, 28686, 198, 11748, 9729, 198, 6738, 2172, 29572, 1330, 16018, 46677, 198, 6738, 35555, 62, 48610, 1330, 1635, 198, 6738, 3487, 1096, 62, 83, 2436, 1330, 3487, 1096, 198, 6738, 38491, 1330, 3063, 11487, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 198, 220, 220, 220, 8748, 796, 366, 26060, 25, 4064, 1676, 70, 532, 86, 1762, 62, 34945, 220, 532, 79, 279, 9945, 62, 34345, 532, 78, 503, 62, 34345, 1, 198, 220, 220, 198, 220, 220, 220, 30751, 796, 16018, 46677, 7, 26060, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 18076, 7203, 12, 86, 1600, 366, 438, 86, 15908, 1600, 2244, 2625, 16993, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 28516, 8619, 1600, 1138, 615, 283, 2625, 33249, 34720, 4943, 198, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 30751, 13, 2860, 62, 18076, 7203, 12, 79, 1600, 366, 438, 79, 9945, 7753, 1600, 2244, 2625, 79, 9945, 7753, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 5760, 33, 29472, 1600, 1138, 615, 283, 2625, 25664, 4943, 198, 220, 220, 198, 220, 220, 220, 30751, 13, 2860, 62, 18076, 7203, 12, 78, 1600, 366, 438, 448, 7753, 1600, 2244, 2625, 448, 7753, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 26410, 29472, 1600, 1138, 615, 283, 2625, 25664, 4943, 198, 220, 220, 198, 220, 220, 220, 357, 25811, 11, 26498, 8, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 611, 407, 3689, 13, 16993, 25, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 13, 18224, 7203, 28516, 8619, 318, 2672, 4943, 198, 220, 220, 220, 220, 198, 220, 220, 220, 266, 67, 28, 418, 13, 6978, 13, 397, 2777, 776, 7, 25811, 13, 16993, 47762, 26488, 6, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 3689, 13, 79, 9945, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 9945, 7753, 28, 418, 13, 6978, 13, 22179, 7, 16993, 11, 3689, 13, 79, 9945, 7753, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 13, 18224, 7203, 5760, 33, 29472, 318, 2672, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 611, 3689, 13, 448, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 503, 7753, 28, 418, 13, 6978, 13, 22179, 7, 16993, 11, 3689, 13, 448, 7753, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 13, 18224, 7203, 26410, 29472, 318, 2672, 4943, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 35555, 62, 15414, 28, 418, 13, 6978, 13, 22179, 7, 16993, 4032, 15414, 13, 19875, 11537, 198, 220, 220, 220, 2205, 796, 2123, 631, 13, 29572, 7, 19875, 62, 15414, 8, 198, 220, 220, 220, 299, 15390, 796, 2123, 631, 13, 83, 455, 1806, 7, 15390, 8, 198, 220, 220, 220, 649, 28, 29572, 62, 17440, 7, 316, 631, 13, 6738, 8841, 7, 358, 420, 4008, 198, 220, 220, 220, 503, 28, 1102, 1851, 7, 79, 9945, 7753, 11, 649, 11, 266, 67, 8, 198, 220, 220, 220, 277, 448, 28, 9654, 7, 448, 7753, 4032, 86, 11537, 198, 220, 220, 220, 277, 448, 13, 8933, 20655, 7, 448, 8, 198, 220, 220, 220, 277, 448, 13, 19836, 3419 ]
2.166078
1,132
"""Versioned body readers and writers for track message bodies. Attributes: LATEST_VERSION (int): Latest version supported by the library. """ from typing import Callable, Tuple from . import TrackInfo, codec LATEST_VERSION = 2 ReaderType = Callable[[codec.Reader], TrackInfo] WriterType = Callable[[codec.Writer, TrackInfo], None] _FORMAT_VERSIONS = { 1: (read_body_v1, write_body_v1), 2: (read_body_v2, write_body_v2), } def get_reader(version: int) -> ReaderType: """Get a body reader for the given version. Raises: ValueError: If the version isn't supported. """ return _get_format(version)[0] def get_writer(version: int) -> WriterType: """Get a body writer for the given version. Raises: ValueError: If the version isn't supported. """ return _get_format(version)[1]
[ 37811, 14815, 276, 1767, 7183, 290, 8786, 329, 2610, 3275, 5920, 13, 198, 198, 29021, 25, 198, 220, 220, 220, 42355, 6465, 62, 43717, 357, 600, 2599, 26603, 2196, 4855, 416, 262, 5888, 13, 198, 37811, 198, 198, 6738, 19720, 1330, 4889, 540, 11, 309, 29291, 198, 198, 6738, 764, 1330, 17762, 12360, 11, 40481, 198, 198, 43, 1404, 6465, 62, 43717, 796, 362, 628, 628, 628, 628, 198, 33634, 6030, 796, 4889, 540, 30109, 19815, 721, 13, 33634, 4357, 17762, 12360, 60, 198, 34379, 6030, 796, 4889, 540, 30109, 19815, 721, 13, 34379, 11, 17762, 12360, 4357, 6045, 60, 198, 198, 62, 21389, 1404, 62, 28884, 11053, 796, 1391, 198, 220, 220, 220, 352, 25, 357, 961, 62, 2618, 62, 85, 16, 11, 3551, 62, 2618, 62, 85, 16, 828, 198, 220, 220, 220, 362, 25, 357, 961, 62, 2618, 62, 85, 17, 11, 3551, 62, 2618, 62, 85, 17, 828, 198, 92, 628, 198, 198, 4299, 651, 62, 46862, 7, 9641, 25, 493, 8, 4613, 25342, 6030, 25, 198, 220, 220, 220, 37227, 3855, 257, 1767, 9173, 329, 262, 1813, 2196, 13, 628, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11052, 12331, 25, 1002, 262, 2196, 2125, 470, 4855, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 4808, 1136, 62, 18982, 7, 9641, 38381, 15, 60, 628, 198, 4299, 651, 62, 16002, 7, 9641, 25, 493, 8, 4613, 26606, 6030, 25, 198, 220, 220, 220, 37227, 3855, 257, 1767, 6260, 329, 262, 1813, 2196, 13, 628, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11052, 12331, 25, 1002, 262, 2196, 2125, 470, 4855, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 4808, 1136, 62, 18982, 7, 9641, 38381, 16, 60, 198 ]
2.824503
302
/home/runner/.cache/pip/pool/f3/de/85/7dca1e096a43e00e6ff1ca900dda1ca91c8c5c3a1d6798e466a9173a00
[ 14, 11195, 14, 16737, 11757, 23870, 14, 79, 541, 14, 7742, 14, 69, 18, 14, 2934, 14, 5332, 14, 22, 67, 6888, 16, 68, 2931, 21, 64, 3559, 68, 405, 68, 21, 487, 16, 6888, 12865, 1860, 64, 16, 6888, 6420, 66, 23, 66, 20, 66, 18, 64, 16, 67, 3134, 4089, 68, 42199, 64, 24, 25399, 64, 405 ]
1.627119
59
""" The Alarm Extension provides easy access to setting an application alarm to handle timing out operations. See the `Python Signal Library <https://docs.python.org/3.5/library/signal.html>`_. Requirements ------------ * No external dependencies. * Only available on Unix/Linux Configuration ------------- This extension does not honor any application configuration settings. Usage ----- .. code-block:: python import time from cement.core.foundation import CementApp from cement.core.exc import CaughtSignal class MyApp(CementApp): class Meta: label = 'myapp' exit_on_close = True extensions = ['alarm'] with MyApp() as app: try: app.run() app.alarm.set(3, "The operation timed out after 3 seconds!") # do something that takes time to operate time.sleep(5) app.alarm.stop() except CaughtSignal as e: print(e.msg) app.exit_code = 1 Looks like: .. code-block:: console $ python myapp.py ERROR: The operation timed out after 3 seconds! Caught signal 14 """ import signal from ..utils.misc import minimal_logger LOG = minimal_logger(__name__) class AlarmManager(object): """ Lets the developer easily set and stop an alarm. If the alarm exceeds the given time it will raise ``signal.SIGALRM``. """ def set(self, time, msg): """ Set the application alarm to ``time`` seconds. If the time is exceeded ``signal.SIGALRM`` is raised. :param time: The time in seconds to set the alarm to. :param msg: The message to display if the alarm is triggered. """ LOG.debug('setting application alarm for %s seconds' % time) self.msg = msg signal.alarm(int(time)) def stop(self): """ Stop the application alarm. """ LOG.debug('stopping application alarm') signal.alarm(0)
[ 37811, 198, 464, 978, 1670, 27995, 3769, 2562, 1895, 284, 4634, 281, 3586, 10436, 284, 198, 28144, 10576, 503, 4560, 13, 220, 4091, 262, 198, 63, 37906, 26484, 10074, 1279, 5450, 1378, 31628, 13, 29412, 13, 2398, 14, 18, 13, 20, 14, 32016, 14, 12683, 282, 13, 6494, 29, 63, 44807, 198, 198, 42249, 198, 10541, 628, 1635, 1400, 7097, 20086, 13, 198, 1635, 5514, 1695, 319, 33501, 14, 19314, 628, 198, 38149, 198, 32501, 198, 198, 1212, 7552, 857, 407, 7522, 597, 3586, 8398, 6460, 13, 628, 198, 28350, 198, 30934, 198, 198, 492, 2438, 12, 9967, 3712, 21015, 628, 220, 220, 220, 1330, 640, 198, 220, 220, 220, 422, 20534, 13, 7295, 13, 42526, 1330, 327, 972, 4677, 198, 220, 220, 220, 422, 20534, 13, 7295, 13, 41194, 1330, 327, 3413, 11712, 282, 628, 198, 220, 220, 220, 1398, 2011, 4677, 7, 34, 972, 4677, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1398, 30277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 796, 705, 1820, 1324, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8420, 62, 261, 62, 19836, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18366, 796, 37250, 282, 1670, 20520, 628, 198, 220, 220, 220, 351, 2011, 4677, 3419, 355, 598, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 598, 13, 5143, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 598, 13, 282, 1670, 13, 2617, 7, 18, 11, 366, 464, 4905, 28805, 503, 706, 513, 4201, 2474, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 466, 1223, 326, 2753, 640, 284, 8076, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 20, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 598, 13, 282, 1670, 13, 11338, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2845, 327, 3413, 11712, 282, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 68, 13, 19662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 598, 13, 37023, 62, 8189, 796, 352, 198, 198, 41102, 588, 25, 198, 198, 492, 2438, 12, 9967, 3712, 8624, 628, 220, 220, 220, 720, 21015, 616, 1324, 13, 9078, 198, 220, 220, 220, 33854, 25, 383, 4905, 28805, 503, 706, 513, 4201, 0, 198, 220, 220, 220, 327, 3413, 6737, 1478, 198, 198, 37811, 198, 198, 11748, 6737, 198, 6738, 11485, 26791, 13, 44374, 1330, 10926, 62, 6404, 1362, 198, 198, 25294, 796, 10926, 62, 6404, 1362, 7, 834, 3672, 834, 8, 628, 198, 198, 4871, 978, 1670, 13511, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 38257, 262, 8517, 3538, 900, 290, 2245, 281, 10436, 13, 220, 1002, 262, 198, 220, 220, 220, 10436, 21695, 262, 1813, 640, 340, 481, 5298, 7559, 12683, 282, 13, 50, 3528, 1847, 29138, 15506, 13, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 900, 7, 944, 11, 640, 11, 31456, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5345, 262, 3586, 10436, 284, 7559, 2435, 15506, 4201, 13, 220, 1002, 262, 640, 318, 198, 220, 220, 220, 220, 220, 220, 220, 20672, 7559, 12683, 282, 13, 50, 3528, 1847, 29138, 15506, 318, 4376, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 640, 25, 383, 640, 287, 4201, 284, 900, 262, 10436, 284, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 31456, 25, 383, 3275, 284, 3359, 611, 262, 10436, 318, 13973, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 41605, 13, 24442, 10786, 33990, 3586, 10436, 329, 4064, 82, 4201, 6, 4064, 640, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19662, 796, 31456, 198, 220, 220, 220, 220, 220, 220, 220, 6737, 13, 282, 1670, 7, 600, 7, 2435, 4008, 628, 220, 220, 220, 825, 2245, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 13707, 262, 3586, 10436, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 41605, 13, 24442, 10786, 301, 33307, 3586, 10436, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 6737, 13, 282, 1670, 7, 15, 8, 628 ]
2.591203
773
from meross_iot.cloud.abilities import * from meross_iot.cloud.device import AbstractMerossDevice from meross_iot.logger import POWER_PLUGS_LOGGER as l from meross_iot.meross_event import DeviceSwitchStatusEvent
[ 6738, 4017, 793, 62, 5151, 13, 17721, 13, 5738, 1330, 1635, 198, 6738, 4017, 793, 62, 5151, 13, 17721, 13, 25202, 1330, 27741, 13102, 793, 24728, 198, 6738, 4017, 793, 62, 5151, 13, 6404, 1362, 1330, 40295, 62, 6489, 7340, 50, 62, 25294, 30373, 355, 300, 198, 6738, 4017, 793, 62, 5151, 13, 647, 793, 62, 15596, 1330, 16232, 38978, 19580, 9237, 628 ]
3.380952
63
from django.db.backends.mysql.introspection import * from django.db.backends.mysql.introspection import DatabaseIntrospection as MYSQLDatabaseIntrospection from django.utils.functional import cached_property
[ 6738, 42625, 14208, 13, 9945, 13, 1891, 2412, 13, 28744, 13976, 13, 600, 305, 31308, 1330, 1635, 198, 6738, 42625, 14208, 13, 9945, 13, 1891, 2412, 13, 28744, 13976, 13, 600, 305, 31308, 1330, 24047, 5317, 305, 31308, 355, 337, 16309, 9711, 38105, 5317, 305, 31308, 198, 6738, 42625, 14208, 13, 26791, 13, 45124, 1330, 39986, 62, 26745, 628, 628 ]
3.516667
60
import highiq import numpy as np
[ 11748, 1029, 25011, 198, 11748, 299, 32152, 355, 45941, 628, 628, 628 ]
3.166667
12
# Base imports import subprocess from typing import Iterable, Optional # Project imports from docker import common from docker.run import run
[ 2, 7308, 17944, 198, 11748, 850, 14681, 198, 6738, 19720, 1330, 40806, 540, 11, 32233, 198, 198, 2, 4935, 17944, 198, 6738, 36253, 1330, 2219, 198, 6738, 36253, 13, 5143, 1330, 1057, 628, 198 ]
4.264706
34
import json import glob import numpy as np import os path = "data_state_space_v3/" out_path = "small_data/" files = glob.glob(path + "*.npy") # ワイルドカードが使用可能 train_data_num = 100 test_data_num = 10 train_data = {} test_data = {} for filename in files: obj = np.load(filename) if filename.find("_test.npy") >= 0: test_data[filename] = obj else: train_data[filename] = obj os.makedirs(out_path, exist_ok=True) for k, v in train_data.items(): b = os.path.basename(k) print(b, v.shape) o = v[:train_data_num] np.save(out_path + b, o) for k, v in test_data.items(): b = os.path.basename(k) print(b, v.shape) o = v[:test_data_num] np.save(out_path + b, o) fp = open(path + "pack_selected_info.json") obj = json.load(fp) obj["pid_list_train"] = obj["pid_list_train"][:train_data_num] obj["pid_list_test"] = obj["pid_list_test"][:test_data_num] fp = open(out_path + "pack_selected_info.json", "w") json.dump(obj, fp)
[ 11748, 33918, 198, 11748, 15095, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28686, 198, 198, 6978, 796, 366, 7890, 62, 5219, 62, 13200, 62, 85, 18, 30487, 198, 448, 62, 6978, 796, 366, 17470, 62, 7890, 30487, 198, 16624, 796, 15095, 13, 4743, 672, 7, 6978, 1343, 366, 24620, 77, 9078, 4943, 220, 1303, 14524, 107, 11482, 9202, 13765, 21763, 12045, 231, 35585, 45635, 18796, 101, 20998, 107, 47797, 121, 198, 27432, 62, 7890, 62, 22510, 796, 1802, 198, 9288, 62, 7890, 62, 22510, 796, 838, 198, 27432, 62, 7890, 796, 23884, 198, 9288, 62, 7890, 796, 23884, 198, 1640, 29472, 287, 3696, 25, 198, 220, 220, 220, 26181, 796, 45941, 13, 2220, 7, 34345, 8, 198, 220, 220, 220, 611, 29472, 13, 19796, 7203, 62, 9288, 13, 77, 9078, 4943, 18189, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 7890, 58, 34345, 60, 796, 26181, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 7890, 58, 34345, 60, 796, 26181, 198, 418, 13, 76, 4335, 17062, 7, 448, 62, 6978, 11, 2152, 62, 482, 28, 17821, 8, 198, 1640, 479, 11, 410, 287, 4512, 62, 7890, 13, 23814, 33529, 198, 220, 220, 220, 275, 796, 28686, 13, 6978, 13, 12093, 12453, 7, 74, 8, 198, 220, 220, 220, 3601, 7, 65, 11, 410, 13, 43358, 8, 198, 220, 220, 220, 267, 796, 410, 58, 25, 27432, 62, 7890, 62, 22510, 60, 198, 220, 220, 220, 45941, 13, 21928, 7, 448, 62, 6978, 1343, 275, 11, 267, 8, 198, 198, 1640, 479, 11, 410, 287, 1332, 62, 7890, 13, 23814, 33529, 198, 220, 220, 220, 275, 796, 28686, 13, 6978, 13, 12093, 12453, 7, 74, 8, 198, 220, 220, 220, 3601, 7, 65, 11, 410, 13, 43358, 8, 198, 220, 220, 220, 267, 796, 410, 58, 25, 9288, 62, 7890, 62, 22510, 60, 198, 220, 220, 220, 45941, 13, 21928, 7, 448, 62, 6978, 1343, 275, 11, 267, 8, 198, 46428, 796, 1280, 7, 6978, 1343, 366, 8002, 62, 34213, 62, 10951, 13, 17752, 4943, 198, 26801, 796, 33918, 13, 2220, 7, 46428, 8, 198, 26801, 14692, 35317, 62, 4868, 62, 27432, 8973, 796, 26181, 14692, 35317, 62, 4868, 62, 27432, 1, 7131, 25, 27432, 62, 7890, 62, 22510, 60, 198, 26801, 14692, 35317, 62, 4868, 62, 9288, 8973, 796, 26181, 14692, 35317, 62, 4868, 62, 9288, 1, 7131, 25, 9288, 62, 7890, 62, 22510, 60, 198, 46428, 796, 1280, 7, 448, 62, 6978, 1343, 366, 8002, 62, 34213, 62, 10951, 13, 17752, 1600, 366, 86, 4943, 198, 17752, 13, 39455, 7, 26801, 11, 277, 79, 8, 198 ]
2.206818
440
# https://www.hackerrank.com/challenges/three-month-preparation-kit-maxsubarray/problem #!/bin/python3 import math import os import random import re import sys # # Complete the 'maxSubarray' function below. # # The function is expected to return an INTEGER_ARRAY. # The function accepts INTEGER_ARRAY arr as parameter. # if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') t = int(input().strip()) for t_itr in range(t): n = int(input().strip()) arr = list(map(int, input().rstrip().split())) result = maxSubarray(arr) fptr.write(' '.join(map(str, result))) fptr.write('\n') fptr.close()
[ 2, 3740, 1378, 2503, 13, 31153, 8056, 962, 13, 785, 14, 36747, 34120, 14, 15542, 12, 8424, 12, 3866, 1845, 341, 12, 15813, 12, 9806, 7266, 18747, 14, 45573, 198, 198, 2, 48443, 8800, 14, 29412, 18, 198, 198, 11748, 10688, 198, 11748, 28686, 198, 11748, 4738, 198, 11748, 302, 198, 11748, 25064, 198, 198, 2, 198, 2, 13248, 262, 705, 9806, 7004, 18747, 6, 2163, 2174, 13, 198, 2, 198, 2, 383, 2163, 318, 2938, 284, 1441, 281, 17828, 7156, 1137, 62, 1503, 30631, 13, 198, 2, 383, 2163, 18178, 17828, 7156, 1137, 62, 1503, 30631, 5240, 355, 11507, 13, 198, 2, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 277, 20692, 796, 1280, 7, 418, 13, 268, 2268, 17816, 2606, 7250, 3843, 62, 34219, 6, 4357, 705, 86, 11537, 628, 220, 220, 220, 256, 796, 493, 7, 15414, 22446, 36311, 28955, 628, 220, 220, 220, 329, 256, 62, 270, 81, 287, 2837, 7, 83, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 299, 796, 493, 7, 15414, 22446, 36311, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 5240, 796, 1351, 7, 8899, 7, 600, 11, 5128, 22446, 81, 36311, 22446, 35312, 3419, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 3509, 7004, 18747, 7, 3258, 8, 628, 220, 220, 220, 220, 220, 220, 220, 277, 20692, 13, 13564, 10786, 45302, 22179, 7, 8899, 7, 2536, 11, 1255, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 277, 20692, 13, 13564, 10786, 59, 77, 11537, 628, 220, 220, 220, 277, 20692, 13, 19836, 3419 ]
2.507463
268
import torch from torch.nn.modules.module import Module from torch.autograd import Function import correlation_cuda
[ 11748, 28034, 198, 6738, 28034, 13, 20471, 13, 18170, 13, 21412, 1330, 19937, 198, 6738, 28034, 13, 2306, 519, 6335, 1330, 15553, 198, 11748, 16096, 62, 66, 15339, 628 ]
4.034483
29
from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from tensorflow.python.ops import data_flow_ops import tensorflow.contrib.tensorrt as trt import numpy as np import time from tensorflow.python.platform import gfile from tensorflow.python.client import timeline import argparse, sys, itertools,datetime import json tf.logging.set_verbosity(tf.logging.INFO) import os from utils import * #main if "__main__" in __name__: P=argparse.ArgumentParser(prog="trt_convert") P.add_argument('--FP32',action='store_true') P.add_argument('--FP16',action='store_true') P.add_argument('--INT8',action='store_true') P.add_argument('--input_file',type=str) P.add_argument('--input_path_calibration',type=str,default='./',help="path to read input files from for calibration mode") P.add_argument('--output_prefix',type=str) P.add_argument('--batch_size',type=int, default=32) P.add_argument('--num_calibration_runs',type=int, default=10) P.add_argument('--workspace_size',type=int, default=1<<20,help="workspace size in MB") P.add_argument('--gpu', type=int, default=0) #P.add_argument('--update_graphdef',action='store_true') #parse args f,unparsed=P.parse_known_args() #select the GPU os.environ["CUDA_VISIBLE_DEVICES"]=str(f.gpu) #selects a specific device #create a session just in case sess = tf.Session() #print graph print_graph(f.input_file) #do the conversion if f.FP32: getFP32(input_file=f.input_file, output_prefix=f.output_prefix, output=["Softmax"], batch_size=f.batch_size, workspace_size=f.workspace_size) if f.FP16: getFP16(input_file=f.input_file, output_prefix=f.output_prefix, output=["Softmax"], batch_size=f.batch_size, workspace_size=f.workspace_size) if f.INT8: calibGraph = getINT8CalibGraph(input_file=f.input_file, output_prefix=f.output_prefix, output=["Softmax"], batch_size=f.batch_size, workspace_size=f.workspace_size) print('Calibrating Graph...') #run graph runGraph(calibGraph, f.batch_size, f.num_calibration_runs, "Placeholder", ["Softmax"], dtype=np.float32, input_data=f.input_path_calibration) print('done...') #get int8 graph getINT8InferenceGraph(output_prefix=f.output_prefix, calibGraph=calibGraph) sys.exit(0)
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 2840, 1330, 1366, 62, 11125, 62, 2840, 198, 11748, 11192, 273, 11125, 13, 3642, 822, 13, 83, 22854, 17034, 355, 491, 83, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 640, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 24254, 1330, 308, 7753, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 16366, 1330, 15264, 198, 11748, 1822, 29572, 11, 25064, 11, 340, 861, 10141, 11, 19608, 8079, 198, 11748, 33918, 198, 27110, 13, 6404, 2667, 13, 2617, 62, 19011, 16579, 7, 27110, 13, 6404, 2667, 13, 10778, 8, 198, 198, 11748, 28686, 198, 198, 6738, 3384, 4487, 1330, 1635, 198, 198, 2, 12417, 198, 361, 366, 834, 12417, 834, 1, 287, 11593, 3672, 834, 25, 198, 220, 220, 198, 220, 350, 28, 853, 29572, 13, 28100, 1713, 46677, 7, 1676, 70, 2625, 2213, 83, 62, 1102, 1851, 4943, 198, 220, 350, 13, 2860, 62, 49140, 10786, 438, 5837, 2624, 3256, 2673, 11639, 8095, 62, 7942, 11537, 198, 220, 350, 13, 2860, 62, 49140, 10786, 438, 5837, 1433, 3256, 2673, 11639, 8095, 62, 7942, 11537, 198, 220, 350, 13, 2860, 62, 49140, 10786, 438, 12394, 23, 3256, 2673, 11639, 8095, 62, 7942, 11537, 198, 220, 350, 13, 2860, 62, 49140, 10786, 438, 15414, 62, 7753, 3256, 4906, 28, 2536, 8, 198, 220, 350, 13, 2860, 62, 49140, 10786, 438, 15414, 62, 6978, 62, 9948, 571, 1358, 3256, 4906, 28, 2536, 11, 12286, 28, 4458, 14, 3256, 16794, 2625, 6978, 284, 1100, 5128, 3696, 422, 329, 36537, 4235, 4943, 198, 220, 350, 13, 2860, 62, 49140, 10786, 438, 22915, 62, 40290, 3256, 4906, 28, 2536, 8, 198, 220, 350, 13, 2860, 62, 49140, 10786, 438, 43501, 62, 7857, 3256, 4906, 28, 600, 11, 4277, 28, 2624, 8, 198, 220, 350, 13, 2860, 62, 49140, 10786, 438, 22510, 62, 9948, 571, 1358, 62, 48381, 3256, 4906, 28, 600, 11, 4277, 28, 940, 8, 198, 220, 350, 13, 2860, 62, 49140, 10786, 438, 5225, 10223, 62, 7857, 3256, 4906, 28, 600, 11, 4277, 28, 16, 16791, 1238, 11, 16794, 2625, 5225, 10223, 2546, 287, 10771, 4943, 198, 220, 350, 13, 2860, 62, 49140, 10786, 438, 46999, 3256, 2099, 28, 600, 11, 4277, 28, 15, 8, 198, 220, 1303, 47, 13, 2860, 62, 49140, 10786, 438, 19119, 62, 34960, 4299, 3256, 2673, 11639, 8095, 62, 7942, 11537, 198, 220, 220, 198, 220, 1303, 29572, 26498, 198, 220, 277, 11, 403, 79, 945, 276, 28, 47, 13, 29572, 62, 4002, 62, 22046, 3419, 198, 220, 220, 198, 220, 1303, 19738, 262, 11362, 198, 220, 28686, 13, 268, 2268, 14692, 43633, 5631, 62, 29817, 34563, 62, 39345, 34444, 8973, 28, 2536, 7, 69, 13, 46999, 8, 1303, 19738, 82, 257, 2176, 3335, 628, 220, 1303, 17953, 257, 6246, 655, 287, 1339, 198, 220, 264, 408, 796, 48700, 13, 36044, 3419, 628, 220, 1303, 4798, 4823, 198, 220, 3601, 62, 34960, 7, 69, 13, 15414, 62, 7753, 8, 198, 220, 220, 198, 220, 1303, 4598, 262, 11315, 198, 220, 611, 277, 13, 5837, 2624, 25, 198, 220, 220, 220, 651, 5837, 2624, 7, 15414, 62, 7753, 28, 69, 13, 15414, 62, 7753, 11, 5072, 62, 40290, 28, 69, 13, 22915, 62, 40290, 11, 5072, 28, 14692, 18380, 9806, 33116, 15458, 62, 7857, 28, 69, 13, 43501, 62, 7857, 11, 44573, 62, 7857, 28, 69, 13, 5225, 10223, 62, 7857, 8, 198, 220, 611, 277, 13, 5837, 1433, 25, 198, 220, 220, 220, 651, 5837, 1433, 7, 15414, 62, 7753, 28, 69, 13, 15414, 62, 7753, 11, 5072, 62, 40290, 28, 69, 13, 22915, 62, 40290, 11, 5072, 28, 14692, 18380, 9806, 33116, 15458, 62, 7857, 28, 69, 13, 43501, 62, 7857, 11, 44573, 62, 7857, 28, 69, 13, 5225, 10223, 62, 7857, 8, 198, 220, 611, 277, 13, 12394, 23, 25, 198, 220, 220, 220, 27417, 37065, 796, 651, 12394, 23, 9771, 571, 37065, 7, 15414, 62, 7753, 28, 69, 13, 15414, 62, 7753, 11, 5072, 62, 40290, 28, 69, 13, 22915, 62, 40290, 11, 5072, 28, 14692, 18380, 9806, 33116, 15458, 62, 7857, 28, 69, 13, 43501, 62, 7857, 11, 44573, 62, 7857, 28, 69, 13, 5225, 10223, 62, 7857, 8, 198, 220, 220, 220, 3601, 10786, 9771, 2889, 803, 29681, 986, 11537, 198, 220, 220, 220, 1303, 5143, 4823, 198, 220, 220, 220, 1057, 37065, 7, 9948, 571, 37065, 11, 277, 13, 43501, 62, 7857, 11, 277, 13, 22510, 62, 9948, 571, 1358, 62, 48381, 11, 366, 27271, 13829, 1600, 14631, 18380, 9806, 33116, 288, 4906, 28, 37659, 13, 22468, 2624, 11, 5128, 62, 7890, 28, 69, 13, 15414, 62, 6978, 62, 9948, 571, 1358, 8, 198, 220, 220, 220, 3601, 10786, 28060, 986, 11537, 198, 220, 220, 220, 1303, 1136, 493, 23, 4823, 198, 220, 220, 220, 651, 12394, 23, 818, 4288, 37065, 7, 22915, 62, 40290, 28, 69, 13, 22915, 62, 40290, 11, 27417, 37065, 28, 9948, 571, 37065, 8, 198, 220, 220, 220, 220, 198, 220, 25064, 13, 37023, 7, 15, 8, 198 ]
2.707317
861
import Adafruit_SSD1306 import Image import ImageDraw import ImageFont # I2C ADDRESS / BITS SSD1306_ADDRESS = 0x3C
[ 11748, 1215, 1878, 4872, 62, 5432, 35, 12952, 21, 198, 11748, 7412, 198, 11748, 7412, 25302, 198, 11748, 7412, 23252, 198, 198, 2, 314, 17, 34, 5984, 7707, 7597, 1220, 347, 29722, 198, 5432, 35, 12952, 21, 62, 2885, 7707, 7597, 796, 657, 87, 18, 34, 628 ]
2.489362
47
if __name__ == '__main__': print compute(1, 0.1) # default values
[ 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 3601, 24061, 7, 16, 11, 657, 13, 16, 8, 1303, 4277, 3815, 628 ]
2.571429
28
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np from ..optimization import discretization from ..common.decorators import Registry registry = Registry() @registry.register @registry.register @registry.register @registry.register @registry.register @registry.register @registry.register @registry.register @registry.register @registry.register @registry.register @registry.register def lunacek(x: np.ndarray) -> float: """ Based on https://www.cs.unm.edu/~neal.holts/dga/benchmarkFunction/lunacek.html.""" problemDimensions = len(x) s = 1.0 - (1.0 / (2.0 * np.sqrt(problemDimensions + 20.0) - 8.2)) mu1 = 2.5 mu2 = - np.sqrt(abs((mu1**2 - 1.0) / s)) firstSum = 0.0 secondSum = 0.0 thirdSum = 0.0 for i in range(problemDimensions): firstSum += (x[i]-mu1)**2 secondSum += (x[i]-mu2)**2 thirdSum += 1.0 - np.cos(2*np.pi*(x[i]-mu1)) return min(firstSum, 1.0*problemDimensions + secondSum)+10*thirdSum # following functions using discretization should not be used with translation/rotation @registry.register_with_info(no_transfrom=True) @registry.register_with_info(no_transfrom=True) @registry.register_with_info(no_transfrom=True) @registry.register_with_info(no_transfrom=True) @registry.register_with_info(no_transfrom=True) @registry.register_with_info(no_transfrom=True) @registry.register_with_info(no_transfrom=True) @registry.register_with_info(no_transfrom=True) @registry.register_with_info(no_transfrom=True) @registry.register_with_info(no_transfrom=True) @registry.register_with_info(no_transfrom=True) @registry.register_with_info(no_transfrom=True) @registry.register_with_info(no_transfrom=True) @registry.register_with_info(no_transfrom=True) @registry.register @registry.register @registry.register @registry.register @registry.register @registry.register @registry.register @registry.register
[ 2, 15069, 357, 66, 8, 3203, 11, 3457, 13, 290, 663, 29116, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 770, 2723, 2438, 318, 11971, 739, 262, 17168, 5964, 1043, 287, 262, 198, 2, 38559, 24290, 2393, 287, 262, 6808, 8619, 286, 428, 2723, 5509, 13, 198, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 11485, 40085, 1634, 1330, 1221, 1186, 1634, 198, 6738, 11485, 11321, 13, 12501, 273, 2024, 1330, 33432, 628, 198, 2301, 4592, 796, 33432, 3419, 628, 628, 628, 198, 31, 2301, 4592, 13, 30238, 628, 198, 31, 2301, 4592, 13, 30238, 628, 198, 31, 2301, 4592, 13, 30238, 628, 198, 31, 2301, 4592, 13, 30238, 628, 198, 31, 2301, 4592, 13, 30238, 628, 198, 31, 2301, 4592, 13, 30238, 628, 198, 31, 2301, 4592, 13, 30238, 628, 198, 31, 2301, 4592, 13, 30238, 628, 198, 31, 2301, 4592, 13, 30238, 628, 198, 31, 2301, 4592, 13, 30238, 628, 198, 31, 2301, 4592, 13, 30238, 628, 198, 31, 2301, 4592, 13, 30238, 198, 4299, 14678, 558, 74, 7, 87, 25, 45941, 13, 358, 18747, 8, 4613, 12178, 25, 198, 220, 220, 220, 37227, 13403, 319, 3740, 1378, 2503, 13, 6359, 13, 403, 76, 13, 15532, 14, 93, 710, 282, 13, 3937, 912, 14, 67, 4908, 14, 26968, 4102, 22203, 14, 75, 403, 558, 74, 13, 6494, 526, 15931, 198, 220, 220, 220, 1917, 29271, 5736, 796, 18896, 7, 87, 8, 198, 220, 220, 220, 264, 796, 352, 13, 15, 532, 357, 16, 13, 15, 1220, 357, 17, 13, 15, 1635, 45941, 13, 31166, 17034, 7, 45573, 29271, 5736, 1343, 1160, 13, 15, 8, 532, 807, 13, 17, 4008, 198, 220, 220, 220, 38779, 16, 796, 362, 13, 20, 198, 220, 220, 220, 38779, 17, 796, 532, 45941, 13, 31166, 17034, 7, 8937, 19510, 30300, 16, 1174, 17, 532, 352, 13, 15, 8, 1220, 264, 4008, 198, 220, 220, 220, 717, 13065, 796, 657, 13, 15, 198, 220, 220, 220, 1218, 13065, 796, 657, 13, 15, 198, 220, 220, 220, 2368, 13065, 796, 657, 13, 15, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 45573, 29271, 5736, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 717, 13065, 15853, 357, 87, 58, 72, 45297, 30300, 16, 8, 1174, 17, 198, 220, 220, 220, 220, 220, 220, 220, 1218, 13065, 15853, 357, 87, 58, 72, 45297, 30300, 17, 8, 1174, 17, 198, 220, 220, 220, 220, 220, 220, 220, 2368, 13065, 15853, 352, 13, 15, 532, 45941, 13, 6966, 7, 17, 9, 37659, 13, 14415, 9, 7, 87, 58, 72, 45297, 30300, 16, 4008, 198, 220, 220, 220, 1441, 949, 7, 11085, 13065, 11, 352, 13, 15, 9, 45573, 29271, 5736, 1343, 1218, 13065, 47762, 940, 9, 17089, 13065, 628, 198, 2, 1708, 5499, 1262, 1221, 1186, 1634, 815, 407, 307, 973, 351, 11059, 14, 10599, 341, 628, 198, 31, 2301, 4592, 13, 30238, 62, 4480, 62, 10951, 7, 3919, 62, 7645, 6738, 28, 17821, 8, 628, 198, 31, 2301, 4592, 13, 30238, 62, 4480, 62, 10951, 7, 3919, 62, 7645, 6738, 28, 17821, 8, 628, 198, 31, 2301, 4592, 13, 30238, 62, 4480, 62, 10951, 7, 3919, 62, 7645, 6738, 28, 17821, 8, 628, 198, 31, 2301, 4592, 13, 30238, 62, 4480, 62, 10951, 7, 3919, 62, 7645, 6738, 28, 17821, 8, 628, 198, 31, 2301, 4592, 13, 30238, 62, 4480, 62, 10951, 7, 3919, 62, 7645, 6738, 28, 17821, 8, 628, 198, 31, 2301, 4592, 13, 30238, 62, 4480, 62, 10951, 7, 3919, 62, 7645, 6738, 28, 17821, 8, 628, 198, 31, 2301, 4592, 13, 30238, 62, 4480, 62, 10951, 7, 3919, 62, 7645, 6738, 28, 17821, 8, 628, 198, 31, 2301, 4592, 13, 30238, 62, 4480, 62, 10951, 7, 3919, 62, 7645, 6738, 28, 17821, 8, 628, 198, 31, 2301, 4592, 13, 30238, 62, 4480, 62, 10951, 7, 3919, 62, 7645, 6738, 28, 17821, 8, 628, 198, 31, 2301, 4592, 13, 30238, 62, 4480, 62, 10951, 7, 3919, 62, 7645, 6738, 28, 17821, 8, 628, 198, 31, 2301, 4592, 13, 30238, 62, 4480, 62, 10951, 7, 3919, 62, 7645, 6738, 28, 17821, 8, 628, 198, 31, 2301, 4592, 13, 30238, 62, 4480, 62, 10951, 7, 3919, 62, 7645, 6738, 28, 17821, 8, 628, 198, 31, 2301, 4592, 13, 30238, 62, 4480, 62, 10951, 7, 3919, 62, 7645, 6738, 28, 17821, 8, 628, 198, 31, 2301, 4592, 13, 30238, 62, 4480, 62, 10951, 7, 3919, 62, 7645, 6738, 28, 17821, 8, 628, 198, 31, 2301, 4592, 13, 30238, 628, 198, 31, 2301, 4592, 13, 30238, 628, 198, 31, 2301, 4592, 13, 30238, 628, 198, 31, 2301, 4592, 13, 30238, 628, 198, 31, 2301, 4592, 13, 30238, 628, 198, 31, 2301, 4592, 13, 30238, 628, 198, 31, 2301, 4592, 13, 30238, 628, 198, 31, 2301, 4592, 13, 30238, 198 ]
2.67087
793
string = input() d = {} for i in string: if i in d: d[i] += 1 else: d[i] = 1 s = sorted(sorted(d), key = d.get, reverse = True) for i in s[:3]: print(i, d[i])
[ 8841, 796, 5128, 3419, 198, 67, 796, 23884, 198, 1640, 1312, 287, 4731, 25, 198, 220, 220, 220, 611, 1312, 287, 288, 25, 198, 220, 220, 220, 220, 220, 220, 220, 288, 58, 72, 60, 15853, 352, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 288, 58, 72, 60, 796, 352, 198, 82, 796, 23243, 7, 82, 9741, 7, 67, 828, 1994, 796, 288, 13, 1136, 11, 9575, 796, 6407, 8, 198, 1640, 1312, 287, 264, 58, 25, 18, 5974, 198, 220, 220, 220, 3601, 7, 72, 11, 288, 58, 72, 12962, 198 ]
1.888889
99
for row in solve(10): print(row)
[ 198, 198, 1640, 5752, 287, 8494, 7, 940, 2599, 198, 220, 220, 220, 3601, 7, 808, 8, 198 ]
2.166667
18
import random import string from subprocess import run from types import SimpleNamespace import psycopg2 import versions from docker_helpers import get_image_name, pull, exec_safely from service_config import api_db_user from settings import get_secret root_user = "vimc" # these tables should only be modified via sql migrations protected_tables = ["gavi_support_level", "activity_type", "burden_outcome", "gender", "responsibility_set_status", "impact_outcome", "gavi_support_level", "support_type", "touchstone_status", "permission", "role", "role_permission"] def for_each_user(root_password, users, operation): """Operation is a callback (function) that takes the connection cursor and a UserConfig object""" with connect(root_user, root_password) as conn: with conn.cursor() as cur: for user in users: operation(cur, user) conn.commit() # NOTE: it might be worth revisiting this to not run this script # directly (that requires corresponding changes in montagu-db to move # the inline sql into a standalone .sql file and then getting psql to # run it via docker exec - it must run as the vimc user). The # passwords might move directly under control here using set_password # (but these are special users so we'd not want to use the rest of the # user machinery). But I suggest waiting until the restore is done # VIMC-1560) because that is likely to affect how we deal with users
[ 11748, 4738, 198, 11748, 4731, 198, 6738, 850, 14681, 1330, 1057, 198, 6738, 3858, 1330, 17427, 36690, 10223, 198, 198, 11748, 17331, 22163, 70, 17, 198, 198, 11748, 6300, 198, 6738, 36253, 62, 16794, 364, 1330, 651, 62, 9060, 62, 3672, 11, 2834, 11, 2452, 62, 21230, 306, 198, 6738, 2139, 62, 11250, 1330, 40391, 62, 9945, 62, 7220, 198, 6738, 6460, 1330, 651, 62, 21078, 198, 198, 15763, 62, 7220, 796, 366, 31124, 66, 1, 198, 2, 777, 8893, 815, 691, 307, 9518, 2884, 44161, 15720, 602, 198, 24326, 62, 83, 2977, 796, 14631, 70, 15820, 62, 11284, 62, 5715, 1600, 366, 21797, 62, 4906, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 65, 42568, 62, 448, 2958, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8388, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 16733, 2247, 62, 2617, 62, 13376, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 48240, 62, 448, 2958, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 70, 15820, 62, 11284, 62, 5715, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11284, 62, 4906, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 29332, 6440, 62, 13376, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 525, 3411, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 18090, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 18090, 62, 525, 3411, 8973, 628, 628, 628, 628, 628, 628, 628, 628, 198, 198, 4299, 329, 62, 27379, 62, 7220, 7, 15763, 62, 28712, 11, 2985, 11, 4905, 2599, 198, 220, 220, 220, 37227, 32180, 318, 257, 23838, 357, 8818, 8, 326, 2753, 262, 4637, 23493, 198, 220, 220, 220, 290, 257, 11787, 16934, 2134, 37811, 198, 220, 220, 220, 351, 2018, 7, 15763, 62, 7220, 11, 6808, 62, 28712, 8, 355, 48260, 25, 198, 220, 220, 220, 220, 220, 220, 220, 351, 48260, 13, 66, 21471, 3419, 355, 1090, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2836, 287, 2985, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4905, 7, 22019, 11, 2836, 8, 198, 220, 220, 220, 220, 220, 220, 220, 48260, 13, 41509, 3419, 628, 198, 198, 2, 24550, 25, 340, 1244, 307, 2861, 22124, 1780, 428, 284, 407, 1057, 428, 4226, 198, 2, 3264, 357, 5562, 4433, 11188, 2458, 287, 40689, 11433, 12, 9945, 284, 1445, 198, 2, 262, 26098, 44161, 656, 257, 27669, 764, 25410, 2393, 290, 788, 1972, 279, 25410, 284, 198, 2, 1057, 340, 2884, 36253, 2452, 532, 340, 1276, 1057, 355, 262, 43907, 66, 2836, 737, 220, 383, 198, 2, 21442, 1244, 1445, 3264, 739, 1630, 994, 1262, 900, 62, 28712, 198, 2, 357, 4360, 777, 389, 2041, 2985, 523, 356, 1549, 407, 765, 284, 779, 262, 1334, 286, 262, 198, 2, 2836, 20230, 737, 220, 887, 314, 1950, 4953, 1566, 262, 11169, 318, 1760, 198, 2, 569, 3955, 34, 12, 1314, 1899, 8, 780, 326, 318, 1884, 284, 2689, 703, 356, 1730, 351, 2985, 628 ]
2.615987
638
#!/usr/bin/env python3 import poplib import argparse if __name__ == '__main__': parser = argparse.ArgumentParser(description='MailBox basic params') parser.add_argument('--hostname', action="store", dest="hostname") parser.add_argument('--port', action="store", dest="port") parser.add_argument('--user', action="store", dest="user") given_args = parser.parse_args() hostname = given_args.hostname port = given_args.port user = given_args.user import getpass password = getpass.getpass(prompt='Enter your password:') main(hostname,port,user,password)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 11748, 1461, 8019, 198, 11748, 1822, 29572, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 11639, 25804, 14253, 4096, 42287, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 4774, 3672, 3256, 2223, 2625, 8095, 1600, 2244, 2625, 4774, 3672, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 634, 3256, 2223, 2625, 8095, 1600, 2244, 2625, 634, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 7220, 3256, 2223, 2625, 8095, 1600, 2244, 2625, 7220, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 1813, 62, 22046, 796, 30751, 13, 29572, 62, 22046, 3419, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2583, 3672, 796, 1813, 62, 22046, 13, 4774, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 2493, 796, 1813, 62, 22046, 13, 634, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 796, 1813, 62, 22046, 13, 7220, 628, 220, 220, 220, 220, 220, 220, 220, 1330, 651, 6603, 220, 198, 220, 220, 220, 220, 220, 220, 220, 9206, 796, 651, 6603, 13, 1136, 6603, 7, 16963, 457, 11639, 17469, 534, 9206, 25, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1388, 7, 4774, 3672, 11, 634, 11, 7220, 11, 28712, 8, 628 ]
2.557312
253
import sys import time import redis from openob.rtp.tx import RTPTransmitter from openob.rtp.rx import RTPReceiver import gst from colorama import Fore, Back, Style # OpenOB Link Manager # One of these runs at each end and negotiates everything (RX pushes config info to TX), reconnects when links fail, and so on. class Manager: '''OpenOB Manager. Handles management of links, mostly recovery from failures.'''
[ 11748, 25064, 201, 198, 11748, 640, 201, 198, 11748, 2266, 271, 201, 198, 6738, 1280, 672, 13, 17034, 79, 13, 17602, 1330, 371, 7250, 8291, 37974, 201, 198, 6738, 1280, 672, 13, 17034, 79, 13, 40914, 1330, 371, 7250, 3041, 39729, 201, 198, 11748, 308, 301, 201, 198, 6738, 3124, 1689, 1330, 4558, 11, 5157, 11, 17738, 201, 198, 2, 4946, 9864, 7502, 9142, 201, 198, 2, 1881, 286, 777, 4539, 379, 1123, 886, 290, 5578, 689, 2279, 357, 49, 55, 20070, 4566, 7508, 284, 15326, 828, 37671, 82, 618, 6117, 2038, 11, 290, 523, 319, 13, 201, 198, 4871, 9142, 25, 201, 198, 220, 705, 7061, 11505, 9864, 9142, 13, 7157, 829, 4542, 286, 6117, 11, 4632, 7628, 422, 15536, 2637, 7061, 201, 198 ]
3.4
125
# -*- coding: utf-8 -*- # ------------------------------------------------------------------------------ # # Copyright 2018-2019 Fetch.AI Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ------------------------------------------------------------------------------ """This module contains the tests of the strategy class of the confirmation aw2 skill.""" import datetime import logging from pathlib import Path from typing import cast from unittest.mock import Mock, patch import pytest from packages.fetchai.skills.confirmation_aw2.registration_db import RegistrationDB from packages.fetchai.skills.confirmation_aw2.strategy import Strategy from tests.conftest import ROOT_DIR from tests.test_packages.test_skills.test_confirmation_aw2.intermediate_class import ( ConfirmationAW2TestCase, ) class TestStrategy(ConfirmationAW2TestCase): """Test Strategy of confirmation aw2.""" path_to_skill = Path(ROOT_DIR, "packages", "fetchai", "skills", "confirmation_aw2") @classmethod def setup(cls): """Setup the test class.""" super().setup() cls.minimum_hours_between_txs = 4 cls.minimum_minutes_since_last_attempt = 2 cls.strategy = Strategy( aw1_aea="some_aw1_aea", mininum_hours_between_txs=cls.minimum_hours_between_txs, minimum_minutes_since_last_attempt=cls.minimum_minutes_since_last_attempt, name="strategy", skill_context=cls._skill.skill_context, ) cls.address = "some_address" cls.info = { "ethereum_address": "some_value", "signature_of_ethereum_address": "some_signature_of_ethereum_address", "signature_of_fetchai_address": "some_signature_of_fetchai_address", "developer_handle": "some_developer_handle", "tweet": "some_tweet", } cls.logger = cls._skill.skill_context.logger cls.db = cast(RegistrationDB, cls._skill.skill_context.registration_db) cls.counterparty = "couterparty_1" def test__init__i(self): """Test the __init__ of Strategy class.""" assert self.strategy.aw1_aea == self.aw1_aea assert self.strategy.minimum_hours_between_txs == self.minimum_hours_between_txs assert ( self.strategy.minimum_minutes_since_last_attempt == self.minimum_minutes_since_last_attempt ) def test__init__ii(self): """Test the __init__ of Strategy class where aw1_aea is None.""" with pytest.raises(ValueError, match="aw1_aea must be provided!"): Strategy( aw1_aea=None, mininum_hours_between_txs=self.minimum_hours_between_txs, minimum_minutes_since_last_attempt=self.minimum_minutes_since_last_attempt, name="strategy", skill_context=self.skill.skill_context, ) def test_get_acceptable_counterparties(self): """Test the get_acceptable_counterparties method of the Strategy class.""" # setup couterparties = ("couterparty_1", "couterparty_2", "couterparty_3") is_valid_counterparty = [True, False, True] # operation with patch.object( self.strategy, "is_valid_counterparty", side_effect=is_valid_counterparty ): actual_acceptable_counterparties = self.strategy.get_acceptable_counterparties( couterparties ) # after assert actual_acceptable_counterparties == ("couterparty_1", "couterparty_3") def test_is_enough_time_since_last_attempt_i(self): """Test the is_enough_time_since_last_attempt method of the Strategy class where now IS greater than last attempt + min minutes.""" # setup counterparty_last_attempt_time_str = "2020-12-22 20:30:00.000000" counterparty_last_attempt_time = datetime.datetime.strptime( counterparty_last_attempt_time_str, "%Y-%m-%d %H:%M:%S.%f" ) mocked_now_greater_than_last_plus_minimum = "2020-12-22 20:33:00.000000" datetime_mock = Mock(wraps=datetime.datetime) datetime_mock.now.return_value = datetime.datetime.strptime( mocked_now_greater_than_last_plus_minimum, "%Y-%m-%d %H:%M:%S.%f" ) self.strategy.last_attempt = {self.counterparty: counterparty_last_attempt_time} # operation with patch("datetime.datetime", new=datetime_mock): is_enough_time = self.strategy.is_enough_time_since_last_attempt( self.counterparty ) # after assert is_enough_time is True def test_is_enough_time_since_last_attempt_ii(self): """Test the is_enough_time_since_last_attempt method of the Strategy class where now is NOT greater than last attempt + min minutes.""" # setup counterparty_last_attempt_time_str = "2020-12-22 20:30:00.000000" counterparty_last_attempt_time = datetime.datetime.strptime( counterparty_last_attempt_time_str, "%Y-%m-%d %H:%M:%S.%f" ) mocked_now_less_than_last_plus_minimum = "2020-12-22 20:31:00.000000" datetime_mock = Mock(wraps=datetime.datetime) datetime_mock.now.return_value = datetime.datetime.strptime( mocked_now_less_than_last_plus_minimum, "%Y-%m-%d %H:%M:%S.%f" ) self.strategy.last_attempt = {self.counterparty: counterparty_last_attempt_time} # operation with patch("datetime.datetime", new=datetime_mock): is_enough_time = self.strategy.is_enough_time_since_last_attempt( self.counterparty ) # after assert is_enough_time is False def test_is_enough_time_since_last_attempt_iii(self): """Test the is_enough_time_since_last_attempt method of the Strategy class where now counterparty is NOT in last_attempt.""" # setup self.strategy.last_attempt = {} # operation is_enough_time = self.strategy.is_enough_time_since_last_attempt( self.counterparty ) # after assert is_enough_time is True def test_is_valid_counterparty_i(self): """Test the is_valid_counterparty method of the Strategy class where is_registered is False.""" # operation with patch.object(self.db, "is_registered", return_value=False): with patch.object(self.logger, "log") as mock_logger: is_valid = self.strategy.is_valid_counterparty(self.counterparty) # after mock_logger.assert_any_call( logging.INFO, f"Invalid counterparty={self.counterparty}, not registered!", ) assert is_valid is False def test_is_valid_counterparty_ii(self): """Test the is_valid_counterparty method of the Strategy class where is_enough_time_since_last_attempt is False.""" # operation with patch.object(self.db, "is_registered", return_value=True): with patch.object( self.strategy, "is_enough_time_since_last_attempt", return_value=False ): with patch.object(self.logger, "log") as mock_logger: is_valid = self.strategy.is_valid_counterparty(self.counterparty) # after mock_logger.assert_any_call( logging.DEBUG, f"Not enough time since last attempt for counterparty={self.counterparty}!", ) assert is_valid is False def test_is_valid_counterparty_iii(self): """Test the is_valid_counterparty method of the Strategy class where is_allowed_to_trade is False.""" # operation with patch.object(self.db, "is_registered", return_value=True): with patch.object( self.strategy, "is_enough_time_since_last_attempt", return_value=True ): with patch.object(self.db, "is_allowed_to_trade", return_value=False): is_valid = self.strategy.is_valid_counterparty(self.counterparty) # after assert is_valid is False def test_is_valid_counterparty_iv(self): """Test the is_valid_counterparty method of the Strategy class where it succeeds.""" # operation with patch.object(self.db, "is_registered", return_value=True): with patch.object( self.strategy, "is_enough_time_since_last_attempt", return_value=True ): with patch.object(self.db, "is_allowed_to_trade", return_value=True): is_valid = self.strategy.is_valid_counterparty(self.counterparty) # after assert is_valid is True def test_successful_trade_with_counterparty(self): """Test the successful_trade_with_counterparty method of the Strategy class.""" # setup data = {"some_key_1": "some_value_1", "some_key_2": "some_value_2"} mocked_now_str = "2020-12-22 20:33:00.000000" mock_now = datetime.datetime.strptime(mocked_now_str, "%Y-%m-%d %H:%M:%S.%f") datetime_mock = Mock(wraps=datetime.datetime) datetime_mock.now.return_value = mock_now # operation with patch.object(self.db, "set_trade") as mock_set_trade: with patch("datetime.datetime", new=datetime_mock): with patch.object(self.logger, "log") as mock_logger: self.strategy.successful_trade_with_counterparty( self.counterparty, data ) # after mock_set_trade.assert_any_call(self.counterparty, mock_now, data) mock_logger.assert_any_call( logging.INFO, f"Successful trade with={self.counterparty}. Data acquired={data}!", ) def test_register_counterparty(self): """Test the register_counterparty method of the Strategy class.""" # setup developer_handle = "some_developer_handle" # operation with patch.object(self.db, "set_registered") as mock_set_registered: self.strategy.register_counterparty(self.counterparty, developer_handle) # after mock_set_registered.assert_any_call(self.counterparty, developer_handle)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 16529, 26171, 198, 2, 198, 2, 220, 220, 15069, 2864, 12, 23344, 376, 7569, 13, 20185, 15302, 198, 2, 198, 2, 220, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 220, 220, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 220, 220, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 220, 220, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 220, 220, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 220, 220, 11247, 739, 262, 13789, 13, 198, 2, 198, 2, 16529, 26171, 198, 37811, 1212, 8265, 4909, 262, 5254, 286, 262, 4811, 1398, 286, 262, 12641, 3253, 17, 5032, 526, 15931, 198, 198, 11748, 4818, 8079, 198, 11748, 18931, 198, 6738, 3108, 8019, 1330, 10644, 198, 6738, 19720, 1330, 3350, 198, 6738, 555, 715, 395, 13, 76, 735, 1330, 44123, 11, 8529, 198, 198, 11748, 12972, 9288, 198, 198, 6738, 10392, 13, 69, 7569, 1872, 13, 8135, 2171, 13, 10414, 36241, 62, 707, 17, 13, 2301, 33397, 62, 9945, 1330, 24610, 11012, 198, 6738, 10392, 13, 69, 7569, 1872, 13, 8135, 2171, 13, 10414, 36241, 62, 707, 17, 13, 2536, 4338, 1330, 20561, 198, 198, 6738, 5254, 13, 1102, 701, 395, 1330, 15107, 2394, 62, 34720, 198, 6738, 5254, 13, 9288, 62, 43789, 13, 9288, 62, 8135, 2171, 13, 9288, 62, 10414, 36241, 62, 707, 17, 13, 3849, 13857, 62, 4871, 1330, 357, 198, 220, 220, 220, 7326, 36241, 12298, 17, 14402, 20448, 11, 198, 8, 628, 198, 4871, 6208, 13290, 4338, 7, 18546, 36241, 12298, 17, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 14402, 20561, 286, 12641, 3253, 17, 526, 15931, 628, 220, 220, 220, 3108, 62, 1462, 62, 42401, 796, 10644, 7, 13252, 2394, 62, 34720, 11, 366, 43789, 1600, 366, 69, 7569, 1872, 1600, 366, 8135, 2171, 1600, 366, 10414, 36241, 62, 707, 17, 4943, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 9058, 7, 565, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 40786, 262, 1332, 1398, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 40406, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13, 39504, 62, 24425, 62, 23395, 62, 17602, 82, 796, 604, 198, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13, 39504, 62, 1084, 1769, 62, 20777, 62, 12957, 62, 1078, 1791, 796, 362, 198, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13, 2536, 4338, 796, 20561, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3253, 16, 62, 44705, 2625, 11246, 62, 707, 16, 62, 44705, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 259, 388, 62, 24425, 62, 23395, 62, 17602, 82, 28, 565, 82, 13, 39504, 62, 24425, 62, 23395, 62, 17602, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5288, 62, 1084, 1769, 62, 20777, 62, 12957, 62, 1078, 1791, 28, 565, 82, 13, 39504, 62, 1084, 1769, 62, 20777, 62, 12957, 62, 1078, 1791, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 2536, 4338, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5032, 62, 22866, 28, 565, 82, 13557, 42401, 13, 42401, 62, 22866, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13, 21975, 796, 366, 11246, 62, 21975, 1, 198, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13, 10951, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 316, 1456, 388, 62, 21975, 1298, 366, 11246, 62, 8367, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12683, 1300, 62, 1659, 62, 316, 1456, 388, 62, 21975, 1298, 366, 11246, 62, 12683, 1300, 62, 1659, 62, 316, 1456, 388, 62, 21975, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12683, 1300, 62, 1659, 62, 69, 7569, 1872, 62, 21975, 1298, 366, 11246, 62, 12683, 1300, 62, 1659, 62, 69, 7569, 1872, 62, 21975, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 16244, 263, 62, 28144, 1298, 366, 11246, 62, 16244, 263, 62, 28144, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 83, 7277, 1298, 366, 11246, 62, 83, 7277, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13, 6404, 1362, 796, 537, 82, 13557, 42401, 13, 42401, 62, 22866, 13, 6404, 1362, 198, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13, 9945, 796, 3350, 7, 47133, 11012, 11, 537, 82, 13557, 42401, 13, 42401, 62, 22866, 13, 2301, 33397, 62, 9945, 8, 628, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13, 24588, 10608, 796, 366, 66, 39605, 10608, 62, 16, 1, 628, 220, 220, 220, 825, 1332, 834, 15003, 834, 72, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 262, 11593, 15003, 834, 286, 20561, 1398, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 2116, 13, 2536, 4338, 13, 707, 16, 62, 44705, 6624, 2116, 13, 707, 16, 62, 44705, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 2116, 13, 2536, 4338, 13, 39504, 62, 24425, 62, 23395, 62, 17602, 82, 6624, 2116, 13, 39504, 62, 24425, 62, 23395, 62, 17602, 82, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2536, 4338, 13, 39504, 62, 1084, 1769, 62, 20777, 62, 12957, 62, 1078, 1791, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6624, 2116, 13, 39504, 62, 1084, 1769, 62, 20777, 62, 12957, 62, 1078, 1791, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 1332, 834, 15003, 834, 4178, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 262, 11593, 15003, 834, 286, 20561, 1398, 810, 3253, 16, 62, 44705, 318, 6045, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 11395, 12331, 11, 2872, 2625, 707, 16, 62, 44705, 1276, 307, 2810, 2474, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20561, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3253, 16, 62, 44705, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 259, 388, 62, 24425, 62, 23395, 62, 17602, 82, 28, 944, 13, 39504, 62, 24425, 62, 23395, 62, 17602, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5288, 62, 1084, 1769, 62, 20777, 62, 12957, 62, 1078, 1791, 28, 944, 13, 39504, 62, 1084, 1769, 62, 20777, 62, 12957, 62, 1078, 1791, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 2536, 4338, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5032, 62, 22866, 28, 944, 13, 42401, 13, 42401, 62, 22866, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 1332, 62, 1136, 62, 16037, 62, 24588, 3911, 444, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 262, 651, 62, 16037, 62, 24588, 3911, 444, 2446, 286, 262, 20561, 1398, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 9058, 198, 220, 220, 220, 220, 220, 220, 220, 2284, 353, 3911, 444, 796, 5855, 66, 39605, 10608, 62, 16, 1600, 366, 66, 39605, 10608, 62, 17, 1600, 366, 66, 39605, 10608, 62, 18, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 318, 62, 12102, 62, 24588, 10608, 796, 685, 17821, 11, 10352, 11, 6407, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4905, 198, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 13, 15252, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2536, 4338, 11, 366, 271, 62, 12102, 62, 24588, 10608, 1600, 1735, 62, 10760, 28, 271, 62, 12102, 62, 24588, 10608, 198, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4036, 62, 16037, 62, 24588, 3911, 444, 796, 2116, 13, 2536, 4338, 13, 1136, 62, 16037, 62, 24588, 3911, 444, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2284, 353, 3911, 444, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 706, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 4036, 62, 16037, 62, 24588, 3911, 444, 6624, 5855, 66, 39605, 10608, 62, 16, 1600, 366, 66, 39605, 10608, 62, 18, 4943, 628, 220, 220, 220, 825, 1332, 62, 271, 62, 48229, 62, 2435, 62, 20777, 62, 12957, 62, 1078, 1791, 62, 72, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 262, 318, 62, 48229, 62, 2435, 62, 20777, 62, 12957, 62, 1078, 1791, 2446, 286, 262, 20561, 1398, 810, 783, 3180, 3744, 621, 938, 2230, 1343, 949, 2431, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 9058, 198, 220, 220, 220, 220, 220, 220, 220, 3753, 10608, 62, 12957, 62, 1078, 1791, 62, 2435, 62, 2536, 796, 366, 42334, 12, 1065, 12, 1828, 1160, 25, 1270, 25, 405, 13, 10535, 1, 198, 220, 220, 220, 220, 220, 220, 220, 3753, 10608, 62, 12957, 62, 1078, 1791, 62, 2435, 796, 4818, 8079, 13, 19608, 8079, 13, 2536, 457, 524, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3753, 10608, 62, 12957, 62, 1078, 1791, 62, 2435, 62, 2536, 11, 36521, 56, 12, 4, 76, 12, 4, 67, 4064, 39, 25, 4, 44, 25, 4, 50, 13, 4, 69, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 29180, 62, 2197, 62, 18223, 263, 62, 14813, 62, 12957, 62, 9541, 62, 39504, 796, 366, 42334, 12, 1065, 12, 1828, 1160, 25, 2091, 25, 405, 13, 10535, 1, 198, 220, 220, 220, 220, 220, 220, 220, 4818, 8079, 62, 76, 735, 796, 44123, 7, 29988, 862, 28, 19608, 8079, 13, 19608, 8079, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4818, 8079, 62, 76, 735, 13, 2197, 13, 7783, 62, 8367, 796, 4818, 8079, 13, 19608, 8079, 13, 2536, 457, 524, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29180, 62, 2197, 62, 18223, 263, 62, 14813, 62, 12957, 62, 9541, 62, 39504, 11, 36521, 56, 12, 4, 76, 12, 4, 67, 4064, 39, 25, 4, 44, 25, 4, 50, 13, 4, 69, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2536, 4338, 13, 12957, 62, 1078, 1791, 796, 1391, 944, 13, 24588, 10608, 25, 3753, 10608, 62, 12957, 62, 1078, 1791, 62, 2435, 92, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4905, 198, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 7203, 19608, 8079, 13, 19608, 8079, 1600, 649, 28, 19608, 8079, 62, 76, 735, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 48229, 62, 2435, 796, 2116, 13, 2536, 4338, 13, 271, 62, 48229, 62, 2435, 62, 20777, 62, 12957, 62, 1078, 1791, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24588, 10608, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 706, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 318, 62, 48229, 62, 2435, 318, 6407, 628, 220, 220, 220, 825, 1332, 62, 271, 62, 48229, 62, 2435, 62, 20777, 62, 12957, 62, 1078, 1791, 62, 4178, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 262, 318, 62, 48229, 62, 2435, 62, 20777, 62, 12957, 62, 1078, 1791, 2446, 286, 262, 20561, 1398, 810, 783, 318, 5626, 3744, 621, 938, 2230, 1343, 949, 2431, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 9058, 198, 220, 220, 220, 220, 220, 220, 220, 3753, 10608, 62, 12957, 62, 1078, 1791, 62, 2435, 62, 2536, 796, 366, 42334, 12, 1065, 12, 1828, 1160, 25, 1270, 25, 405, 13, 10535, 1, 198, 220, 220, 220, 220, 220, 220, 220, 3753, 10608, 62, 12957, 62, 1078, 1791, 62, 2435, 796, 4818, 8079, 13, 19608, 8079, 13, 2536, 457, 524, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3753, 10608, 62, 12957, 62, 1078, 1791, 62, 2435, 62, 2536, 11, 36521, 56, 12, 4, 76, 12, 4, 67, 4064, 39, 25, 4, 44, 25, 4, 50, 13, 4, 69, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 29180, 62, 2197, 62, 1203, 62, 14813, 62, 12957, 62, 9541, 62, 39504, 796, 366, 42334, 12, 1065, 12, 1828, 1160, 25, 3132, 25, 405, 13, 10535, 1, 198, 220, 220, 220, 220, 220, 220, 220, 4818, 8079, 62, 76, 735, 796, 44123, 7, 29988, 862, 28, 19608, 8079, 13, 19608, 8079, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4818, 8079, 62, 76, 735, 13, 2197, 13, 7783, 62, 8367, 796, 4818, 8079, 13, 19608, 8079, 13, 2536, 457, 524, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29180, 62, 2197, 62, 1203, 62, 14813, 62, 12957, 62, 9541, 62, 39504, 11, 36521, 56, 12, 4, 76, 12, 4, 67, 4064, 39, 25, 4, 44, 25, 4, 50, 13, 4, 69, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2536, 4338, 13, 12957, 62, 1078, 1791, 796, 1391, 944, 13, 24588, 10608, 25, 3753, 10608, 62, 12957, 62, 1078, 1791, 62, 2435, 92, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4905, 198, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 7203, 19608, 8079, 13, 19608, 8079, 1600, 649, 28, 19608, 8079, 62, 76, 735, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 48229, 62, 2435, 796, 2116, 13, 2536, 4338, 13, 271, 62, 48229, 62, 2435, 62, 20777, 62, 12957, 62, 1078, 1791, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24588, 10608, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 706, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 318, 62, 48229, 62, 2435, 318, 10352, 628, 220, 220, 220, 825, 1332, 62, 271, 62, 48229, 62, 2435, 62, 20777, 62, 12957, 62, 1078, 1791, 62, 15479, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 262, 318, 62, 48229, 62, 2435, 62, 20777, 62, 12957, 62, 1078, 1791, 2446, 286, 262, 20561, 1398, 810, 783, 3753, 10608, 318, 5626, 287, 938, 62, 1078, 1791, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 9058, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2536, 4338, 13, 12957, 62, 1078, 1791, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4905, 198, 220, 220, 220, 220, 220, 220, 220, 318, 62, 48229, 62, 2435, 796, 2116, 13, 2536, 4338, 13, 271, 62, 48229, 62, 2435, 62, 20777, 62, 12957, 62, 1078, 1791, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24588, 10608, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 706, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 318, 62, 48229, 62, 2435, 318, 6407, 628, 220, 220, 220, 825, 1332, 62, 271, 62, 12102, 62, 24588, 10608, 62, 72, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 262, 318, 62, 12102, 62, 24588, 10608, 2446, 286, 262, 20561, 1398, 810, 318, 62, 33736, 318, 10352, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4905, 198, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 13, 15252, 7, 944, 13, 9945, 11, 366, 271, 62, 33736, 1600, 1441, 62, 8367, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 13, 15252, 7, 944, 13, 6404, 1362, 11, 366, 6404, 4943, 355, 15290, 62, 6404, 1362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 12102, 796, 2116, 13, 2536, 4338, 13, 271, 62, 12102, 62, 24588, 10608, 7, 944, 13, 24588, 10608, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 706, 198, 220, 220, 220, 220, 220, 220, 220, 15290, 62, 6404, 1362, 13, 30493, 62, 1092, 62, 13345, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10778, 11, 277, 1, 44651, 3753, 10608, 34758, 944, 13, 24588, 10608, 5512, 407, 6823, 40754, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 318, 62, 12102, 318, 10352, 628, 220, 220, 220, 825, 1332, 62, 271, 62, 12102, 62, 24588, 10608, 62, 4178, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 262, 318, 62, 12102, 62, 24588, 10608, 2446, 286, 262, 20561, 1398, 810, 318, 62, 48229, 62, 2435, 62, 20777, 62, 12957, 62, 1078, 1791, 318, 10352, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4905, 198, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 13, 15252, 7, 944, 13, 9945, 11, 366, 271, 62, 33736, 1600, 1441, 62, 8367, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 13, 15252, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2536, 4338, 11, 366, 271, 62, 48229, 62, 2435, 62, 20777, 62, 12957, 62, 1078, 1791, 1600, 1441, 62, 8367, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 13, 15252, 7, 944, 13, 6404, 1362, 11, 366, 6404, 4943, 355, 15290, 62, 6404, 1362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 12102, 796, 2116, 13, 2536, 4338, 13, 271, 62, 12102, 62, 24588, 10608, 7, 944, 13, 24588, 10608, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 706, 198, 220, 220, 220, 220, 220, 220, 220, 15290, 62, 6404, 1362, 13, 30493, 62, 1092, 62, 13345, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 30531, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 3673, 1576, 640, 1201, 938, 2230, 329, 3753, 10608, 34758, 944, 13, 24588, 10608, 92, 40754, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 318, 62, 12102, 318, 10352, 628, 220, 220, 220, 825, 1332, 62, 271, 62, 12102, 62, 24588, 10608, 62, 15479, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 262, 318, 62, 12102, 62, 24588, 10608, 2446, 286, 262, 20561, 1398, 810, 318, 62, 40845, 62, 1462, 62, 25351, 318, 10352, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4905, 198, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 13, 15252, 7, 944, 13, 9945, 11, 366, 271, 62, 33736, 1600, 1441, 62, 8367, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 13, 15252, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2536, 4338, 11, 366, 271, 62, 48229, 62, 2435, 62, 20777, 62, 12957, 62, 1078, 1791, 1600, 1441, 62, 8367, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 13, 15252, 7, 944, 13, 9945, 11, 366, 271, 62, 40845, 62, 1462, 62, 25351, 1600, 1441, 62, 8367, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 12102, 796, 2116, 13, 2536, 4338, 13, 271, 62, 12102, 62, 24588, 10608, 7, 944, 13, 24588, 10608, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 706, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 318, 62, 12102, 318, 10352, 628, 220, 220, 220, 825, 1332, 62, 271, 62, 12102, 62, 24588, 10608, 62, 452, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 262, 318, 62, 12102, 62, 24588, 10608, 2446, 286, 262, 20561, 1398, 810, 340, 31137, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4905, 198, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 13, 15252, 7, 944, 13, 9945, 11, 366, 271, 62, 33736, 1600, 1441, 62, 8367, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 13, 15252, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2536, 4338, 11, 366, 271, 62, 48229, 62, 2435, 62, 20777, 62, 12957, 62, 1078, 1791, 1600, 1441, 62, 8367, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 13, 15252, 7, 944, 13, 9945, 11, 366, 271, 62, 40845, 62, 1462, 62, 25351, 1600, 1441, 62, 8367, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 12102, 796, 2116, 13, 2536, 4338, 13, 271, 62, 12102, 62, 24588, 10608, 7, 944, 13, 24588, 10608, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 706, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 318, 62, 12102, 318, 6407, 628, 220, 220, 220, 825, 1332, 62, 17212, 62, 25351, 62, 4480, 62, 24588, 10608, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 262, 4388, 62, 25351, 62, 4480, 62, 24588, 10608, 2446, 286, 262, 20561, 1398, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 9058, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 19779, 11246, 62, 2539, 62, 16, 1298, 366, 11246, 62, 8367, 62, 16, 1600, 366, 11246, 62, 2539, 62, 17, 1298, 366, 11246, 62, 8367, 62, 17, 20662, 628, 220, 220, 220, 220, 220, 220, 220, 29180, 62, 2197, 62, 2536, 796, 366, 42334, 12, 1065, 12, 1828, 1160, 25, 2091, 25, 405, 13, 10535, 1, 198, 220, 220, 220, 220, 220, 220, 220, 15290, 62, 2197, 796, 4818, 8079, 13, 19608, 8079, 13, 2536, 457, 524, 7, 76, 3543, 62, 2197, 62, 2536, 11, 36521, 56, 12, 4, 76, 12, 4, 67, 4064, 39, 25, 4, 44, 25, 4, 50, 13, 4, 69, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 4818, 8079, 62, 76, 735, 796, 44123, 7, 29988, 862, 28, 19608, 8079, 13, 19608, 8079, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4818, 8079, 62, 76, 735, 13, 2197, 13, 7783, 62, 8367, 796, 15290, 62, 2197, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4905, 198, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 13, 15252, 7, 944, 13, 9945, 11, 366, 2617, 62, 25351, 4943, 355, 15290, 62, 2617, 62, 25351, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 7203, 19608, 8079, 13, 19608, 8079, 1600, 649, 28, 19608, 8079, 62, 76, 735, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 13, 15252, 7, 944, 13, 6404, 1362, 11, 366, 6404, 4943, 355, 15290, 62, 6404, 1362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2536, 4338, 13, 17212, 62, 25351, 62, 4480, 62, 24588, 10608, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24588, 10608, 11, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 706, 198, 220, 220, 220, 220, 220, 220, 220, 15290, 62, 2617, 62, 25351, 13, 30493, 62, 1092, 62, 13345, 7, 944, 13, 24588, 10608, 11, 15290, 62, 2197, 11, 1366, 8, 628, 220, 220, 220, 220, 220, 220, 220, 15290, 62, 6404, 1362, 13, 30493, 62, 1092, 62, 13345, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10778, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 33244, 913, 3292, 351, 34758, 944, 13, 24588, 10608, 27422, 6060, 9477, 34758, 7890, 92, 40754, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 1332, 62, 30238, 62, 24588, 10608, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 262, 7881, 62, 24588, 10608, 2446, 286, 262, 20561, 1398, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 9058, 198, 220, 220, 220, 220, 220, 220, 220, 8517, 62, 28144, 796, 366, 11246, 62, 16244, 263, 62, 28144, 1, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4905, 198, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 13, 15252, 7, 944, 13, 9945, 11, 366, 2617, 62, 33736, 4943, 355, 15290, 62, 2617, 62, 33736, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2536, 4338, 13, 30238, 62, 24588, 10608, 7, 944, 13, 24588, 10608, 11, 8517, 62, 28144, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 706, 198, 220, 220, 220, 220, 220, 220, 220, 15290, 62, 2617, 62, 33736, 13, 30493, 62, 1092, 62, 13345, 7, 944, 13, 24588, 10608, 11, 8517, 62, 28144, 8, 198 ]
2.337744
4,610
try: from mpi4py import MPI # @UnusedImport @IgnorePep8 This is imported before NEURON to avoid a bug in NEURON except ImportError: mpi_comm = DummyMPICom() else: mpi_comm = MPI.COMM_WORLD MPI_ROOT = 0
[ 198, 28311, 25, 198, 220, 220, 220, 422, 285, 14415, 19, 9078, 1330, 4904, 40, 220, 1303, 2488, 3118, 1484, 20939, 2488, 32916, 382, 47, 538, 23, 770, 318, 17392, 878, 10635, 4261, 1340, 284, 3368, 257, 5434, 287, 10635, 4261, 1340, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 285, 14415, 62, 9503, 796, 360, 13513, 7378, 2149, 296, 3419, 198, 17772, 25, 198, 220, 220, 220, 285, 14415, 62, 9503, 796, 4904, 40, 13, 9858, 44, 62, 45359, 11163, 198, 198, 7378, 40, 62, 13252, 2394, 796, 657, 628 ]
2.369565
92
# -*- coding: utf-8 -*- """Unpacks Raw API data from zkillboard into victim files that contain TEST - 10/02/2019 Params: 10000002201505.csv | 61MB | 28208 rows x 8 columns Output: ``` (+0.000s|t:0.000s) Importing modules... (+2.209s|t:2.209s) Loading CSV data from local file... (+1.132s|t:3.341s) Converting DataFrame column value types... (+18.746s|t:22.087s) Loading YAML files into memory... (+3.88m|t:4.25m) Unpacking DataFrame values... (+2.30m|t:6.55m) Writing results to CSV... (+8.008s|t:6.68m) Exit ``` Written By: Adam Coscia Updated On: 11/09/2019 """ # Start timing import time start = time.time() total = 0 def lap(msg): """Records time elapsed.""" global start, total elapsed = (time.time() - start) - total total = time.time() - start if elapsed > 3600: print(f'(+{elapsed/3600:.2f}h|t:{total/3600:.2f}h) {msg}') elif elapsed > 60: if total > 3600: print(f'(+{elapsed/60:.2f}m|t:{total/3600:.2f}h) {msg}') else: print(f'(+{elapsed/60:.2f}m|t:{total/60:.2f}m) {msg}') else: if total > 3600: print(f'(+{elapsed:.3f}s|t:{total/3600:.2f}h) {msg}') elif total > 60: print(f'(+{elapsed:.3f}s|t:{total/60:.2f}m) {msg}') else: print(f'(+{elapsed:.3f}s|t:{total:.3f}s) {msg}') lap("Importing modules...") from ast import literal_eval import os import sys import numpy as np import pandas as pd import yaml def load_yaml(file_loc, encoding='utf-8'): """Loads yaml file at file_loc and returns Python object based on yaml structure. """ data = None with open(file_loc, 'r', encoding=encoding) as stream: try: data = yaml.safe_load(stream) except yaml.YAMLError as exc: print(exc) return data def unpack(data: pd.DataFrame): """Operations to unpack nested data, yield row for row in old data. Iterate over each row of data using generator and unpack each row. """ for row in data.itertuples(): # Some killmails are npcs, don't include their items and values if 'character_id' in row.victim: # These values are guaranteed in every killmail victim_row = [row.killmail_time, row.solar_system_id, row.victim['character_id']] # Try to add ship_type_id to victim values if exists if 'ship_type_id' in row.victim: victim_row.append(row.victim['ship_type_id']) else: victim_row.append(np.nan) # Try to add item info to victim values if exists if 'items' in row.victim and row.victim['items']: victim_row.append(parse_items(row.victim['items'])) else: victim_row.append([]) # keep empty array else: victim_row = None if 'npc' in row.zkb: npc = row.zkb['npc'] else: npc = False # Assume there are attackers attacker_rows = [] if not npc: attacker_rows.extend( [attacker for attacker in parse_attackers(row.attackers)] ) yield victim_row, attacker_rows, row.killmail_id # Specify S3 parameters and SQL query bucket='dilabevetrajectorymining' key='eve-trajectory-mining/Killmail_Fetching/killmail_scrapes/byregion/10000002/10000002201505.csv' query=""" SELECT * FROM s3Object s LIMIT 5 """ # Let amazon do the api calls # print('Querying s3 bucket...') # df = select(bucket, key, query) # # Open YAML file of typeIDs to get names of items # typeIDs.yaml -> dictionary of typeID keys which contain attributes # ex. typeIDs[11317] -> {'description': {'en': 'blah', ...}, ...} # typeIDs[11317]['name']['en'] == '800mm Rolled Tungsten Compact Plates' # typeIDs[11317]['groupID'] == 329 # groupIDs[329] -> {'name': {'en': 'blah', ...}, ...} # groupIDs[329]['name']['en'] == 'Armor Reinforcer' # lap("Loading YAML files into memory...") root = "../Trajectory_Mining/docs/eve files" # YAML file location typeIDs = load_yaml(os.path.join(root, 'typeIDs.yaml')) groupIDs = load_yaml(os.path.join(root, 'groupIDs.yaml')) # invFlags = load_yaml(os.path.join(root, 'invFlags.yaml')) # invMarketGroups = load_yaml(os.path.join(root, 'invMarketGroups.yaml')) # categoryIDs = load_yaml(os.path.join(root, 'categoryIDs.yaml')) # Sequentially load CSV's from file lap("Loading CSV data from killmail_scrapes...") victims = [] # list of victim dataframes generated from CSV's attackers = [] # list of victim dataframes generated from CSV's for root, dirs, files in os.walk("../Killmail_Fetching/killmail_scrapes/byregion", topdown=False): count = 0 num_files = len(files) # number of CSV files for file in sorted(files): print(f"Progress {count/num_files:2.1%} ", end="\r") df = pd.read_csv(os.path.join(root, file), encoding='utf-8') # Convert all timestamp strings to numpy.datetime64 # print("> Converting DataFrame column value types ", end="") df['killmail_time'] = pd.to_datetime(df['killmail_time'], # Turn errors into NaT errors='coerce', # Use this format to parse str format='%Y-%m-%dT%H:%M:%SZ') # Convert all numeric values in 'solar_system_id' to smallest int type # Convert all non-numeric values in 'solar_system_id' to NaN df['solar_system_id'] = pd.to_numeric(df['solar_system_id'], # Turn errors into NaN errors='coerce', # Convert to smallest int type downcast='integer') # Convert values in columns to python objects df['victim'] = df['victim'].apply(literal_eval) df['attackers'] = df['attackers'].apply(literal_eval) df['zkb'] = df['zkb'].apply(literal_eval) # Unpack DataFrame subset containing lists and dicts # print("> Unpacking DataFrame values ", end="") victim_rows = [] attacker_rows = [] a_col = ['final_blow', 'damage_done', 'ship_type_id'] v_col = ['killmail_time', 'solar_system_id', 'character_id', 'ship_type_id', 'items'] for v_row, a_rows, k_id in unpack(df): if v_row is not None: # If no character ID, don't append victim victim_rows.append(pd.DataFrame( [v_row], columns=v_col, index=pd.Index([k_id], name='killmail_id') )) if a_rows: attacker_rows.extend([pd.DataFrame( [a_row], columns=a_col, index=pd.MultiIndex.from_tuples( [(k_id, a_id)], names=('killmail_id', 'character_id') ) ) for a_id, a_row in a_rows]) # Concat victim_rows together # print("> Concating victim rows ", end="\r") victims.append(pd.concat(victim_rows, sort=False)) # attackers.append(pd.concat(attacker_rows, sort=False)) count += 1 # Save victim and attacker info to CSV lap("Writing results to CSV...") df_victims = pd.concat(victims) df_victims.to_csv('data/all_victims_items.csv') # df_attackers = pd.concat(attackers) # df_attackers.to_csv('data/all_attackers.csv') lap("Exit")
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 3118, 32377, 16089, 7824, 1366, 422, 1976, 12728, 3526, 656, 3117, 3696, 326, 3994, 220, 198, 198, 51, 6465, 532, 838, 14, 2999, 14, 23344, 198, 10044, 4105, 25, 1802, 2388, 17, 1264, 31654, 13, 40664, 930, 8454, 10744, 930, 2579, 21315, 15274, 2124, 807, 15180, 198, 26410, 25, 198, 15506, 63, 198, 7, 10, 15, 13, 830, 82, 91, 83, 25, 15, 13, 830, 82, 8, 17267, 278, 13103, 986, 198, 7, 10, 17, 13, 22567, 82, 91, 83, 25, 17, 13, 22567, 82, 8, 12320, 44189, 1366, 422, 1957, 2393, 986, 198, 7, 10, 16, 13, 19924, 82, 91, 83, 25, 18, 13, 33660, 82, 8, 35602, 889, 6060, 19778, 5721, 1988, 3858, 986, 198, 7, 10, 1507, 13, 22, 3510, 82, 91, 83, 25, 1828, 13, 2919, 22, 82, 8, 12320, 575, 2390, 43, 3696, 656, 4088, 986, 198, 7, 10, 18, 13, 3459, 76, 91, 83, 25, 19, 13, 1495, 76, 8, 791, 41291, 6060, 19778, 3815, 986, 198, 7, 10, 17, 13, 1270, 76, 91, 83, 25, 21, 13, 2816, 76, 8, 22183, 2482, 284, 44189, 986, 198, 7, 10, 23, 13, 25257, 82, 91, 83, 25, 21, 13, 3104, 76, 8, 29739, 198, 15506, 63, 198, 198, 25354, 2750, 25, 7244, 10437, 33743, 198, 17354, 1550, 25, 1367, 14, 2931, 14, 23344, 198, 198, 37811, 198, 2, 7253, 10576, 198, 11748, 640, 198, 9688, 796, 640, 13, 2435, 3419, 198, 23350, 796, 657, 198, 198, 4299, 14779, 7, 19662, 2599, 198, 220, 220, 220, 37227, 6690, 3669, 640, 42118, 526, 15931, 198, 220, 220, 220, 3298, 923, 11, 2472, 198, 220, 220, 220, 42118, 796, 357, 2435, 13, 2435, 3419, 532, 923, 8, 532, 2472, 198, 220, 220, 220, 2472, 796, 640, 13, 2435, 3419, 532, 923, 198, 220, 220, 220, 611, 42118, 1875, 4570, 405, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 7, 10, 90, 417, 28361, 14, 2623, 405, 25, 13, 17, 69, 92, 71, 91, 83, 29164, 23350, 14, 2623, 405, 25, 13, 17, 69, 92, 71, 8, 1391, 19662, 92, 11537, 198, 220, 220, 220, 1288, 361, 42118, 1875, 3126, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2472, 1875, 4570, 405, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 7, 10, 90, 417, 28361, 14, 1899, 25, 13, 17, 69, 92, 76, 91, 83, 29164, 23350, 14, 2623, 405, 25, 13, 17, 69, 92, 71, 8, 1391, 19662, 92, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 7, 10, 90, 417, 28361, 14, 1899, 25, 13, 17, 69, 92, 76, 91, 83, 29164, 23350, 14, 1899, 25, 13, 17, 69, 92, 76, 8, 1391, 19662, 92, 11537, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2472, 1875, 4570, 405, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 7, 10, 90, 417, 28361, 25, 13, 18, 69, 92, 82, 91, 83, 29164, 23350, 14, 2623, 405, 25, 13, 17, 69, 92, 71, 8, 1391, 19662, 92, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2472, 1875, 3126, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 7, 10, 90, 417, 28361, 25, 13, 18, 69, 92, 82, 91, 83, 29164, 23350, 14, 1899, 25, 13, 17, 69, 92, 76, 8, 1391, 19662, 92, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 7, 10, 90, 417, 28361, 25, 13, 18, 69, 92, 82, 91, 83, 29164, 23350, 25, 13, 18, 69, 92, 82, 8, 1391, 19662, 92, 11537, 198, 198, 37796, 7203, 20939, 278, 13103, 9313, 8, 198, 198, 6738, 6468, 1330, 18875, 62, 18206, 198, 11748, 28686, 198, 11748, 25064, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 331, 43695, 628, 198, 4299, 3440, 62, 88, 43695, 7, 7753, 62, 17946, 11, 21004, 11639, 40477, 12, 23, 6, 2599, 198, 220, 220, 220, 37227, 8912, 82, 331, 43695, 2393, 379, 2393, 62, 17946, 290, 5860, 11361, 2134, 1912, 319, 331, 43695, 198, 220, 220, 220, 4645, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1366, 796, 6045, 198, 220, 220, 220, 351, 1280, 7, 7753, 62, 17946, 11, 705, 81, 3256, 21004, 28, 12685, 7656, 8, 355, 4269, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 331, 43695, 13, 21230, 62, 2220, 7, 5532, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 331, 43695, 13, 56, 2390, 2538, 81, 1472, 355, 2859, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 41194, 8, 198, 220, 220, 220, 1441, 1366, 628, 198, 4299, 555, 8002, 7, 7890, 25, 279, 67, 13, 6601, 19778, 2599, 198, 220, 220, 220, 37227, 18843, 602, 284, 555, 8002, 28376, 1366, 11, 7800, 5752, 329, 5752, 287, 1468, 1366, 13, 628, 220, 220, 220, 40806, 378, 625, 1123, 5752, 286, 1366, 1262, 17301, 290, 555, 8002, 1123, 5752, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 329, 5752, 287, 1366, 13, 270, 861, 84, 2374, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2773, 1494, 26165, 389, 45941, 6359, 11, 836, 470, 2291, 511, 3709, 290, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 22769, 62, 312, 6, 287, 5752, 13, 32433, 320, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2312, 3815, 389, 11462, 287, 790, 1494, 4529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3117, 62, 808, 796, 685, 808, 13, 12728, 4529, 62, 2435, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5752, 13, 82, 6192, 62, 10057, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5752, 13, 32433, 320, 17816, 22769, 62, 312, 6, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9993, 284, 751, 4074, 62, 4906, 62, 312, 284, 3117, 3815, 611, 7160, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 6720, 62, 4906, 62, 312, 6, 287, 5752, 13, 32433, 320, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3117, 62, 808, 13, 33295, 7, 808, 13, 32433, 320, 17816, 6720, 62, 4906, 62, 312, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3117, 62, 808, 13, 33295, 7, 37659, 13, 12647, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9993, 284, 751, 2378, 7508, 284, 3117, 3815, 611, 7160, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 23814, 6, 287, 5752, 13, 32433, 320, 290, 5752, 13, 32433, 320, 17816, 23814, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3117, 62, 808, 13, 33295, 7, 29572, 62, 23814, 7, 808, 13, 32433, 320, 17816, 23814, 20520, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3117, 62, 808, 13, 33295, 26933, 12962, 220, 1303, 1394, 6565, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3117, 62, 808, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 77, 14751, 6, 287, 5752, 13, 89, 32812, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 14751, 796, 5752, 13, 89, 32812, 17816, 77, 14751, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 14751, 796, 10352, 220, 1303, 2195, 2454, 612, 389, 16391, 198, 220, 220, 220, 220, 220, 220, 220, 15250, 62, 8516, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 299, 14751, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15250, 62, 8516, 13, 2302, 437, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 1078, 10735, 329, 15250, 287, 21136, 62, 20358, 364, 7, 808, 13, 20358, 364, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 7800, 3117, 62, 808, 11, 15250, 62, 8516, 11, 5752, 13, 12728, 4529, 62, 312, 628, 198, 2, 18291, 1958, 311, 18, 10007, 290, 16363, 12405, 198, 27041, 316, 11639, 67, 346, 11231, 303, 9535, 752, 652, 45374, 6, 198, 2539, 11639, 44655, 12, 9535, 752, 652, 12, 45374, 14, 27100, 4529, 62, 37, 7569, 278, 14, 12728, 4529, 62, 1416, 2416, 274, 14, 1525, 36996, 14, 16, 10535, 17, 14, 16, 10535, 17, 1264, 31654, 13, 40664, 6, 198, 22766, 2625, 15931, 198, 46506, 1635, 220, 198, 220, 16034, 264, 18, 10267, 264, 198, 27564, 2043, 642, 198, 37811, 198, 2, 3914, 716, 5168, 466, 262, 40391, 3848, 198, 2, 3601, 10786, 4507, 263, 1112, 264, 18, 19236, 986, 11537, 198, 2, 47764, 796, 2922, 7, 27041, 316, 11, 1994, 11, 12405, 8, 198, 198, 2, 198, 2, 4946, 575, 2390, 43, 2393, 286, 2099, 47954, 284, 651, 3891, 286, 3709, 198, 2, 2099, 47954, 13, 88, 43695, 4613, 22155, 286, 2099, 2389, 8251, 543, 3994, 12608, 198, 2, 409, 13, 2099, 47954, 58, 16616, 1558, 60, 4613, 1391, 6, 11213, 10354, 1391, 6, 268, 10354, 705, 2436, 993, 3256, 2644, 5512, 2644, 92, 198, 2, 220, 220, 220, 220, 2099, 47954, 58, 16616, 1558, 7131, 6, 3672, 6, 7131, 6, 268, 20520, 6624, 705, 7410, 3020, 8299, 276, 309, 2150, 26400, 37904, 1345, 689, 6, 198, 2, 220, 220, 220, 220, 2099, 47954, 58, 16616, 1558, 7131, 6, 8094, 2389, 20520, 6624, 42141, 198, 2, 220, 220, 220, 220, 1448, 47954, 58, 37967, 60, 4613, 1391, 6, 3672, 10354, 1391, 6, 268, 10354, 705, 2436, 993, 3256, 2644, 5512, 2644, 92, 198, 2, 220, 220, 220, 220, 1448, 47954, 58, 37967, 7131, 6, 3672, 6, 7131, 6, 268, 20520, 6624, 705, 31512, 22299, 45515, 6, 198, 2, 220, 220, 220, 220, 220, 198, 37796, 7203, 19031, 575, 2390, 43, 3696, 656, 4088, 9313, 8, 198, 15763, 796, 366, 40720, 15721, 752, 652, 62, 44, 3191, 14, 31628, 14, 44655, 3696, 1, 220, 1303, 575, 2390, 43, 2393, 4067, 198, 4906, 47954, 796, 3440, 62, 88, 43695, 7, 418, 13, 6978, 13, 22179, 7, 15763, 11, 705, 4906, 47954, 13, 88, 43695, 6, 4008, 198, 8094, 47954, 796, 3440, 62, 88, 43695, 7, 418, 13, 6978, 13, 22179, 7, 15763, 11, 705, 8094, 47954, 13, 88, 43695, 6, 4008, 198, 2, 800, 40053, 796, 3440, 62, 88, 43695, 7, 418, 13, 6978, 13, 22179, 7, 15763, 11, 705, 16340, 40053, 13, 88, 43695, 6, 4008, 198, 2, 800, 27470, 38, 14459, 796, 3440, 62, 88, 43695, 7, 418, 13, 6978, 13, 22179, 7, 15763, 11, 705, 16340, 27470, 38, 14459, 13, 88, 43695, 6, 4008, 198, 2, 6536, 47954, 796, 3440, 62, 88, 43695, 7, 418, 13, 6978, 13, 22179, 7, 15763, 11, 705, 22872, 47954, 13, 88, 43695, 6, 4008, 198, 198, 2, 24604, 3746, 3440, 44189, 338, 422, 2393, 198, 37796, 7203, 19031, 44189, 1366, 422, 1494, 4529, 62, 1416, 2416, 274, 9313, 8, 198, 32433, 12078, 796, 17635, 220, 1303, 1351, 286, 3117, 1366, 37805, 7560, 422, 44189, 338, 198, 20358, 364, 796, 17635, 220, 1303, 1351, 286, 3117, 1366, 37805, 7560, 422, 44189, 338, 198, 1640, 6808, 11, 288, 17062, 11, 3696, 287, 28686, 13, 11152, 7203, 40720, 27100, 4529, 62, 37, 7569, 278, 14, 12728, 4529, 62, 1416, 2416, 274, 14, 1525, 36996, 1600, 1353, 2902, 28, 25101, 2599, 198, 220, 220, 220, 954, 796, 657, 198, 220, 220, 220, 997, 62, 16624, 796, 18896, 7, 16624, 8, 220, 1303, 1271, 286, 44189, 3696, 198, 220, 220, 220, 329, 2393, 287, 23243, 7, 16624, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 32577, 1391, 9127, 14, 22510, 62, 16624, 25, 17, 13, 16, 4, 92, 33172, 886, 2625, 59, 81, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 279, 67, 13, 961, 62, 40664, 7, 418, 13, 6978, 13, 22179, 7, 15763, 11, 2393, 828, 21004, 11639, 40477, 12, 23, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 38240, 477, 41033, 13042, 284, 299, 32152, 13, 19608, 8079, 2414, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7, 5320, 35602, 889, 6060, 19778, 5721, 1988, 3858, 33172, 886, 2625, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 17816, 12728, 4529, 62, 2435, 20520, 796, 279, 67, 13, 1462, 62, 19608, 8079, 7, 7568, 17816, 12728, 4529, 62, 2435, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6756, 8563, 656, 11013, 51, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8563, 11639, 1073, 263, 344, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5765, 428, 5794, 284, 21136, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5794, 11639, 4, 56, 12, 4, 76, 12, 4, 67, 51, 4, 39, 25, 4, 44, 25, 4, 50, 57, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 38240, 477, 35575, 3815, 287, 705, 82, 6192, 62, 10057, 62, 312, 6, 284, 18197, 493, 2099, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 38240, 477, 1729, 12, 77, 39223, 3815, 287, 705, 82, 6192, 62, 10057, 62, 312, 6, 284, 11013, 45, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 17816, 82, 6192, 62, 10057, 62, 312, 20520, 796, 279, 67, 13, 1462, 62, 77, 39223, 7, 7568, 17816, 82, 6192, 62, 10057, 62, 312, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6756, 8563, 656, 11013, 45, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8563, 11639, 1073, 263, 344, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 38240, 284, 18197, 493, 2099, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 866, 2701, 11639, 41433, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 38240, 3815, 287, 15180, 284, 21015, 5563, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 17816, 32433, 320, 20520, 796, 47764, 17816, 32433, 320, 6, 4083, 39014, 7, 18250, 1691, 62, 18206, 8, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 17816, 20358, 364, 20520, 796, 47764, 17816, 20358, 364, 6, 4083, 39014, 7, 18250, 1691, 62, 18206, 8, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 17816, 89, 32812, 20520, 796, 47764, 17816, 89, 32812, 6, 4083, 39014, 7, 18250, 1691, 62, 18206, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 791, 8002, 6060, 19778, 24637, 7268, 8341, 290, 8633, 82, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7, 5320, 791, 41291, 6060, 19778, 3815, 33172, 886, 2625, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3117, 62, 8516, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 15250, 62, 8516, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 257, 62, 4033, 796, 37250, 20311, 62, 48619, 3256, 705, 28735, 62, 28060, 3256, 705, 6720, 62, 4906, 62, 312, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 410, 62, 4033, 796, 37250, 12728, 4529, 62, 2435, 3256, 705, 82, 6192, 62, 10057, 62, 312, 3256, 705, 22769, 62, 312, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6720, 62, 4906, 62, 312, 3256, 705, 23814, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 329, 410, 62, 808, 11, 257, 62, 8516, 11, 479, 62, 312, 287, 555, 8002, 7, 7568, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 410, 62, 808, 318, 407, 6045, 25, 220, 1303, 1002, 645, 2095, 4522, 11, 836, 470, 24443, 3117, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3117, 62, 8516, 13, 33295, 7, 30094, 13, 6601, 19778, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 85, 62, 808, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15180, 28, 85, 62, 4033, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 28, 30094, 13, 15732, 26933, 74, 62, 312, 4357, 1438, 11639, 12728, 4529, 62, 312, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15306, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 257, 62, 8516, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15250, 62, 8516, 13, 2302, 437, 26933, 30094, 13, 6601, 19778, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 64, 62, 808, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15180, 28, 64, 62, 4033, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 28, 30094, 13, 29800, 15732, 13, 6738, 62, 28047, 2374, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47527, 74, 62, 312, 11, 257, 62, 312, 8, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3891, 28, 10786, 12728, 4529, 62, 312, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22769, 62, 312, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 329, 257, 62, 312, 11, 257, 62, 808, 287, 257, 62, 8516, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1482, 9246, 3117, 62, 8516, 1978, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7, 5320, 13223, 803, 3117, 15274, 33172, 886, 2625, 59, 81, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 4970, 13, 33295, 7, 30094, 13, 1102, 9246, 7, 32433, 320, 62, 8516, 11, 3297, 28, 25101, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16391, 13, 33295, 7, 30094, 13, 1102, 9246, 7, 1078, 10735, 62, 8516, 11, 3297, 28, 25101, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 954, 15853, 352, 198, 198, 2, 12793, 3117, 290, 15250, 7508, 284, 44189, 198, 37796, 7203, 33874, 2482, 284, 44189, 9313, 8, 198, 7568, 62, 32433, 12078, 796, 279, 67, 13, 1102, 9246, 7, 32433, 12078, 8, 198, 7568, 62, 32433, 12078, 13, 1462, 62, 40664, 10786, 7890, 14, 439, 62, 32433, 12078, 62, 23814, 13, 40664, 11537, 198, 2, 47764, 62, 20358, 364, 796, 279, 67, 13, 1102, 9246, 7, 20358, 364, 8, 198, 2, 47764, 62, 20358, 364, 13, 1462, 62, 40664, 10786, 7890, 14, 439, 62, 20358, 364, 13, 40664, 11537, 198, 198, 37796, 7203, 30337, 4943, 198 ]
1.991009
4,004
from django.shortcuts import render, get_object_or_404 from django.contrib import messages from .forms import ReportForm from data.models import Paper
[ 6738, 42625, 14208, 13, 19509, 23779, 1330, 8543, 11, 651, 62, 15252, 62, 273, 62, 26429, 198, 6738, 42625, 14208, 13, 3642, 822, 1330, 6218, 198, 6738, 764, 23914, 1330, 6358, 8479, 198, 6738, 1366, 13, 27530, 1330, 14962, 198 ]
3.775
40
#!/usr/bin/python #stats.py ''' Classes and functons to implement calculation and output of statistics ''' #geonomics imports from geonomics.utils.io import (_append_array2d_to_array_stack, _append_row_to_csv, _write_dict_to_csv) from geonomics.ops.selection import _calc_fitness from geonomics.utils.viz import _check_display #other imports import numpy as np from scipy.stats.stats import pearsonr from collections import Counter as C import os import matplotlib as mpl _check_display() import matplotlib.pyplot as plt ###################################### # -----------------------------------# # CLASSES ---------------------------# # -----------------------------------# ###################################### #a StatsCollector class, to parameterize and manage calculation #and collection of stats, then write them to file at the end of #each model iteration #create a master method, to be called each timestep, which will make a list #of all stats that need to be calculated that timestep (based on the #calculation-frequencies provided in the params dicts), and then calls the #functions to calculate them all and adds the results to self.stats #a method to make the filenames for all of the stats to be saved #wrapper around io.append_array2d_to_array_stack #TODO WHAT TO DO WITH t IN THIS CASE?? CAN'T ADD TO txt 3D ARRAY FILE #wrapper around io.append_row_to_csv #use io._write_dict_to_csv to write to disk all "other stats", i.e. #all stats that collect only a single value per species per timestep #TODO: CHANGE THE 'OTHER STATS' NAMING CONVENTION TO SOMETING MORE #DESCRIPTIVE #method to write stats to files, in the appropriate directory (by model #and iteration number), and with the appropriate spp names in the filenames #method to plot whichever stat as a function of runtime ###################################### # -----------------------------------# # FUNCTIONS -------------------------# # -----------------------------------# ###################################### #method to get pop size (NOTE: not actually calculating it) #function to calculate the locus-wise (if mean == False) or mean (if #mean == True) heterozygosity of the species #function to calculate the locus-wise minor allele frequency of the species #function to calculate the mean fitness of the species
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 2, 34242, 13, 9078, 628, 198, 7061, 6, 198, 9487, 274, 290, 1257, 310, 684, 284, 3494, 17952, 290, 5072, 286, 7869, 198, 7061, 6, 198, 198, 2, 6281, 31994, 17944, 198, 6738, 4903, 6326, 873, 13, 26791, 13, 952, 1330, 44104, 33295, 62, 18747, 17, 67, 62, 1462, 62, 18747, 62, 25558, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 33295, 62, 808, 62, 1462, 62, 40664, 11, 4808, 13564, 62, 11600, 62, 1462, 62, 40664, 8, 198, 6738, 4903, 6326, 873, 13, 2840, 13, 49283, 1330, 4808, 9948, 66, 62, 69, 3659, 198, 6738, 4903, 6326, 873, 13, 26791, 13, 85, 528, 1330, 4808, 9122, 62, 13812, 198, 198, 2, 847, 17944, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 629, 541, 88, 13, 34242, 13, 34242, 1330, 25286, 1559, 81, 198, 6738, 17268, 1330, 15034, 355, 327, 198, 11748, 28686, 198, 11748, 2603, 29487, 8019, 355, 285, 489, 198, 62, 9122, 62, 13812, 3419, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 628, 198, 29113, 4242, 2235, 198, 2, 20368, 6329, 2, 198, 2, 42715, 1546, 220, 22369, 6329, 2, 198, 2, 20368, 6329, 2, 198, 29113, 4242, 2235, 198, 198, 2, 64, 20595, 31337, 273, 1398, 11, 284, 11507, 1096, 290, 6687, 17952, 198, 2, 392, 4947, 286, 9756, 11, 788, 3551, 606, 284, 2393, 379, 262, 886, 286, 220, 198, 2, 27379, 2746, 24415, 628, 220, 220, 220, 1303, 17953, 257, 4958, 2446, 11, 284, 307, 1444, 1123, 4628, 395, 538, 11, 543, 481, 787, 257, 1351, 220, 198, 220, 220, 220, 1303, 1659, 477, 9756, 326, 761, 284, 307, 10488, 326, 4628, 395, 538, 357, 3106, 319, 262, 220, 198, 220, 220, 220, 1303, 9948, 14902, 12, 69, 8897, 3976, 2810, 287, 262, 42287, 8633, 82, 828, 290, 788, 3848, 262, 198, 220, 220, 220, 1303, 12543, 2733, 284, 15284, 606, 477, 290, 6673, 262, 2482, 284, 2116, 13, 34242, 628, 220, 220, 220, 1303, 64, 2446, 284, 787, 262, 1226, 268, 1047, 329, 477, 286, 262, 9756, 284, 307, 7448, 628, 220, 220, 220, 1303, 48553, 1088, 33245, 13, 33295, 62, 18747, 17, 67, 62, 1462, 62, 18747, 62, 25558, 198, 220, 220, 220, 1303, 51, 3727, 46, 25003, 5390, 8410, 13315, 256, 3268, 12680, 42001, 3548, 15628, 6, 51, 27841, 5390, 256, 742, 513, 35, 5923, 30631, 45811, 628, 220, 220, 220, 1303, 48553, 1088, 33245, 13, 33295, 62, 808, 62, 1462, 62, 40664, 628, 220, 220, 220, 1303, 1904, 33245, 13557, 13564, 62, 11600, 62, 1462, 62, 40664, 284, 3551, 284, 11898, 477, 366, 847, 9756, 1600, 1312, 13, 68, 13, 220, 198, 220, 220, 220, 1303, 439, 9756, 326, 2824, 691, 257, 2060, 1988, 583, 4693, 583, 4628, 395, 538, 198, 220, 220, 220, 1303, 51, 3727, 46, 25, 5870, 27746, 3336, 705, 31858, 37889, 6, 399, 2390, 2751, 7102, 53, 45589, 5390, 42121, 2767, 2751, 12011, 198, 220, 220, 220, 1303, 30910, 36584, 51, 9306, 628, 220, 220, 220, 1303, 24396, 284, 3551, 9756, 284, 3696, 11, 287, 262, 5035, 8619, 357, 1525, 2746, 198, 220, 220, 220, 1303, 392, 24415, 1271, 828, 290, 351, 262, 5035, 264, 381, 3891, 287, 262, 1226, 268, 1047, 628, 220, 220, 220, 1303, 24396, 284, 7110, 26204, 1185, 355, 257, 2163, 286, 19124, 628, 198, 29113, 4242, 2235, 198, 2, 20368, 6329, 2, 198, 2, 29397, 4177, 11053, 220, 22369, 12, 2, 198, 2, 20368, 6329, 2, 198, 29113, 4242, 2235, 198, 198, 2, 24396, 284, 651, 1461, 2546, 357, 16580, 25, 407, 1682, 26019, 340, 8, 628, 198, 198, 2, 8818, 284, 15284, 262, 1179, 385, 12, 3083, 357, 361, 1612, 6624, 10352, 8, 393, 1612, 357, 361, 198, 2, 32604, 6624, 6407, 8, 14445, 49834, 16579, 286, 262, 4693, 198, 198, 2, 8818, 284, 15284, 262, 1179, 385, 12, 3083, 4159, 45907, 8373, 286, 262, 4693, 628, 198, 2, 8818, 284, 15284, 262, 1612, 13547, 286, 262, 4693, 198 ]
3.520408
686
from eve import Eve from .db_domains import db_domains import os SETTINGS = { 'DOMAIN': db_domains, 'MONGO_HOST': 'localhost', 'MONGO_PORT': 27017, # MONGO_USERNAME': os.environ.get(...), # MONGO_PASSWORD': os.environ.get(...), 'MONGO_DBNAME': 'quantz', 'RENDERERS': [ 'eve.render.JSONRenderer' # 'eve.render.XMLRenderer' ], 'ALLOW_UNKNOWN': True, # 'X_DOMAINS_RE': r'.*', 'X_DOMAINS': [r'*.zhangyuzheng.com'], 'IF_MATCH': False, 'ENFORCE_IF_MATCH': False, 'HATEOAS': False, # 修改数据域名称,从 _items 改为 items,避免前端语法检查严格不能使用_开头的变量 # 'ITEMS': 'items', # 'META': 'meta', # 'DATE_CREATED': 'created', # 'ID_FIELD': 'id', # FIXME: not working, Y? # 'LAST_UPDATED': 'updated', # 'ETAG': 'etag', 'PAGINATION_DEFAULT': 10000, 'PAGINATION_LIMIT': 99999999, # 'OPTIMIZE_PAGINATION_FOR_SPEED': True, 'RESOURCE_METHODS': ['GET'], 'ITEM_METHODS': ['GET'] } app = Eve(settings=SETTINGS) app.on_fetched_resource += on_fetched_resource @app.route('/mnt') if __name__ == '__main__': app.run(host='0.0.0.0', port=80)
[ 6738, 28001, 1330, 12882, 198, 198, 6738, 764, 9945, 62, 3438, 1299, 1330, 20613, 62, 3438, 1299, 198, 198, 11748, 28686, 628, 198, 198, 28480, 51, 20754, 796, 1391, 198, 220, 220, 220, 705, 39170, 29833, 10354, 20613, 62, 3438, 1299, 11, 198, 220, 220, 220, 705, 27857, 11230, 62, 39, 10892, 10354, 705, 36750, 3256, 198, 220, 220, 220, 705, 27857, 11230, 62, 15490, 10354, 2681, 29326, 11, 198, 220, 220, 220, 1303, 25000, 11230, 62, 29904, 20608, 10354, 28686, 13, 268, 2268, 13, 1136, 7, 986, 828, 198, 220, 220, 220, 1303, 25000, 11230, 62, 47924, 54, 12532, 10354, 28686, 13, 268, 2268, 13, 1136, 7, 986, 828, 198, 220, 220, 220, 705, 27857, 11230, 62, 11012, 20608, 10354, 705, 40972, 89, 3256, 198, 220, 220, 220, 705, 49, 10619, 1137, 4877, 10354, 685, 198, 220, 220, 220, 220, 220, 220, 220, 705, 44655, 13, 13287, 13, 40386, 49, 437, 11882, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 44655, 13, 13287, 13, 55, 5805, 49, 437, 11882, 6, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 705, 7036, 3913, 62, 4944, 44706, 10354, 6407, 11, 198, 220, 220, 220, 1303, 705, 55, 62, 39170, 32, 20913, 62, 2200, 10354, 374, 4458, 9, 3256, 198, 220, 220, 220, 705, 55, 62, 39170, 32, 20913, 10354, 685, 81, 6, 24620, 23548, 648, 88, 10277, 31753, 13, 785, 6, 4357, 198, 220, 220, 220, 705, 5064, 62, 44, 11417, 10354, 10352, 11, 198, 220, 220, 220, 705, 1677, 13775, 5222, 62, 5064, 62, 44, 11417, 10354, 10352, 11, 198, 220, 220, 220, 705, 39, 1404, 4720, 1921, 10354, 10352, 11, 198, 220, 220, 220, 1303, 220, 46479, 106, 162, 242, 117, 46763, 108, 162, 235, 106, 161, 253, 253, 28938, 235, 163, 100, 108, 11, 20015, 236, 4808, 23814, 10545, 242, 117, 10310, 118, 3709, 171, 120, 234, 34402, 123, 17739, 235, 30298, 235, 44165, 107, 46237, 255, 37345, 243, 162, 96, 222, 162, 253, 98, 10310, 98, 43718, 120, 38834, 47797, 121, 45635, 18796, 101, 62, 28156, 222, 13783, 112, 21410, 20998, 246, 34932, 237, 198, 220, 220, 220, 1303, 705, 2043, 39201, 10354, 705, 23814, 3256, 198, 220, 220, 220, 1303, 705, 44, 20892, 10354, 705, 28961, 3256, 198, 220, 220, 220, 1303, 705, 35, 6158, 62, 43387, 11617, 10354, 705, 25598, 3256, 198, 220, 220, 220, 1303, 705, 2389, 62, 44603, 10354, 705, 312, 3256, 220, 1303, 44855, 11682, 25, 407, 1762, 11, 575, 30, 198, 220, 220, 220, 1303, 705, 43, 11262, 62, 52, 49316, 10354, 705, 43162, 3256, 198, 220, 220, 220, 1303, 705, 2767, 4760, 10354, 705, 316, 363, 3256, 198, 220, 220, 220, 705, 4537, 38, 1268, 6234, 62, 7206, 38865, 10354, 33028, 11, 198, 220, 220, 220, 705, 4537, 38, 1268, 6234, 62, 43, 3955, 2043, 10354, 860, 24214, 17032, 11, 198, 220, 220, 220, 1303, 705, 3185, 51, 3955, 35400, 62, 4537, 38, 1268, 6234, 62, 13775, 62, 4303, 41841, 10354, 6407, 11, 198, 220, 220, 220, 705, 19535, 31033, 62, 49273, 50, 10354, 37250, 18851, 6, 4357, 198, 220, 220, 220, 705, 2043, 3620, 62, 49273, 50, 10354, 37250, 18851, 20520, 198, 92, 628, 628, 198, 1324, 796, 12882, 7, 33692, 28, 28480, 51, 20754, 8, 198, 198, 1324, 13, 261, 62, 50012, 62, 31092, 15853, 319, 62, 50012, 62, 31092, 628, 198, 31, 1324, 13, 38629, 10786, 14, 76, 429, 11537, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 598, 13, 5143, 7, 4774, 11639, 15, 13, 15, 13, 15, 13, 15, 3256, 2493, 28, 1795, 8, 198 ]
1.883527
601
import datetime as dt import calendar import time def iter_dates(start, end, period): """Yield dates from `start` to `end` with step equalt to `period`.""" current = start while current <= end: yield current current += period def month_last_day(date): """Return the last date of the month for the month containing date.""" _, last_day = calendar.monthrange(date.year, date.month) return dt.datetime(date.year, date.month, last_day) def month_first_day(date): """Return the first date of the month (always 01) for the month containing date.""" return dt.datetime(date.year, date.month, 1)
[ 11748, 4818, 8079, 355, 288, 83, 198, 11748, 11845, 198, 11748, 640, 628, 628, 198, 4299, 11629, 62, 19581, 7, 9688, 11, 886, 11, 2278, 2599, 198, 220, 220, 220, 37227, 56, 1164, 9667, 422, 4600, 9688, 63, 284, 4600, 437, 63, 351, 2239, 1602, 2501, 284, 4600, 41007, 63, 526, 15931, 198, 220, 220, 220, 1459, 796, 923, 198, 220, 220, 220, 981, 1459, 19841, 886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7800, 1459, 198, 220, 220, 220, 220, 220, 220, 220, 1459, 15853, 2278, 628, 198, 4299, 1227, 62, 12957, 62, 820, 7, 4475, 2599, 198, 220, 220, 220, 37227, 13615, 262, 938, 3128, 286, 262, 1227, 329, 262, 1227, 7268, 3128, 526, 15931, 198, 220, 220, 220, 4808, 11, 938, 62, 820, 796, 11845, 13, 8424, 9521, 7, 4475, 13, 1941, 11, 3128, 13, 8424, 8, 198, 220, 220, 220, 1441, 288, 83, 13, 19608, 8079, 7, 4475, 13, 1941, 11, 3128, 13, 8424, 11, 938, 62, 820, 8, 628, 198, 4299, 1227, 62, 11085, 62, 820, 7, 4475, 2599, 198, 220, 220, 220, 37227, 13615, 262, 717, 3128, 286, 262, 1227, 357, 33770, 5534, 8, 329, 262, 1227, 7268, 3128, 526, 15931, 198, 220, 220, 220, 1441, 288, 83, 13, 19608, 8079, 7, 4475, 13, 1941, 11, 3128, 13, 8424, 11, 352, 8, 628, 198 ]
2.90991
222
# https://leetcode.com/problems/remove-all-adjacent-duplicates-in-string
[ 2, 3740, 1378, 293, 316, 8189, 13, 785, 14, 1676, 22143, 14, 28956, 12, 439, 12, 41255, 12643, 12, 646, 489, 16856, 12, 259, 12, 8841 ]
2.769231
26
#-*- coding: utf-8 -*- from py3wirecard.entities.lib.wireentity import * from py3wirecard.entities.taxdocument import TaxDocument
[ 2, 12, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 12972, 18, 21809, 9517, 13, 298, 871, 13, 8019, 13, 21809, 26858, 1330, 1635, 198, 6738, 12972, 18, 21809, 9517, 13, 298, 871, 13, 19290, 22897, 1330, 9241, 24941, 198 ]
2.888889
45
chinese_strings = [ '京', '津', '冀', '晋', '蒙', '辽', '吉', '黑', '沪', '苏', '浙', '皖', '闽', '赣', '鲁', '豫', '鄂', '湘', '粤', '桂', '琼', '渝', '川', '贵', '云', '藏', '陕', '甘', '青', '宁', '新', '港', '澳', '台', '警', 'WJ'] # 36 chinese = [ 'Beijing', 'Tianjin', 'Hebei', 'Shanxi', 'InnerMongolia', 'Liaoning', 'Jilin', 'Heilongjiang', 'Shanghai', 'Jiangsu', 'Zhejiang', 'Anhui', 'Fujian', 'Jiangxi', 'Shandong', 'Henan', 'Hubei', 'Hunan', 'Guangdong', 'Guangxi', 'Hainan', 'Chongqing', 'Sichuan', 'Guizhou', 'Yunnan', 'Xizang', 'Shaanxi', 'Gansu', 'Qinghai', 'Ningxia', 'Xinjiang', 'HongKong', 'Macau', 'Tibet', 'police', 'WJ'] # 26 alphabet = [ 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'I', 'O'] # 10 number = [ '0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] blank = ['-'] CHARS = blank + chinese + alphabet + number SHOW_CHARS = blank + chinese_strings + alphabet + number
[ 354, 3762, 62, 37336, 796, 685, 198, 220, 220, 220, 705, 12859, 105, 3256, 705, 162, 112, 98, 3256, 705, 37863, 222, 3256, 705, 162, 247, 233, 3256, 705, 164, 240, 247, 3256, 705, 164, 122, 121, 3256, 705, 28938, 231, 3256, 705, 165, 119, 239, 3256, 705, 162, 110, 103, 3256, 705, 164, 233, 237, 3256, 198, 220, 220, 220, 705, 38184, 247, 3256, 705, 19021, 244, 3256, 705, 29785, 121, 3256, 705, 164, 113, 96, 3256, 705, 165, 110, 223, 3256, 705, 164, 109, 104, 3256, 705, 165, 226, 224, 3256, 705, 162, 117, 246, 3256, 705, 163, 110, 97, 3256, 705, 162, 94, 224, 3256, 198, 220, 220, 220, 705, 49426, 120, 3256, 705, 162, 116, 251, 3256, 705, 32432, 251, 3256, 705, 164, 112, 113, 3256, 705, 12859, 239, 3256, 705, 164, 245, 237, 3256, 705, 165, 247, 243, 3256, 705, 18796, 246, 3256, 705, 165, 251, 240, 3256, 705, 22522, 223, 3256, 198, 220, 220, 220, 705, 23877, 108, 3256, 705, 162, 116, 107, 3256, 705, 162, 122, 111, 3256, 705, 20998, 108, 3256, 705, 164, 255, 99, 3256, 705, 54, 41, 20520, 198, 198, 2, 4570, 198, 354, 3762, 796, 685, 198, 220, 220, 220, 705, 3856, 11030, 3256, 198, 220, 220, 220, 705, 51, 666, 18594, 3256, 198, 220, 220, 220, 705, 1544, 1350, 72, 3256, 198, 220, 220, 220, 705, 2484, 272, 29992, 3256, 198, 220, 220, 220, 705, 818, 1008, 44, 506, 22703, 3256, 198, 220, 220, 220, 705, 43, 544, 12484, 3256, 198, 220, 220, 220, 705, 41, 346, 259, 3256, 198, 220, 220, 220, 705, 1544, 346, 506, 39598, 3256, 198, 220, 220, 220, 705, 2484, 272, 20380, 3256, 198, 220, 220, 220, 705, 41, 15483, 2385, 3256, 198, 220, 220, 220, 705, 57, 258, 39598, 3256, 198, 220, 220, 220, 705, 2025, 71, 9019, 3256, 198, 220, 220, 220, 705, 37, 23577, 666, 3256, 198, 220, 220, 220, 705, 41, 15483, 29992, 3256, 198, 220, 220, 220, 705, 2484, 392, 506, 3256, 198, 220, 220, 220, 705, 26055, 272, 3256, 198, 220, 220, 220, 705, 39, 3266, 72, 3256, 198, 220, 220, 220, 705, 25117, 272, 3256, 198, 220, 220, 220, 705, 8205, 648, 67, 506, 3256, 198, 220, 220, 220, 705, 8205, 648, 29992, 3256, 198, 220, 220, 220, 705, 39, 391, 272, 3256, 198, 220, 220, 220, 705, 1925, 506, 80, 278, 3256, 198, 220, 220, 220, 705, 50, 488, 7258, 3256, 198, 220, 220, 220, 705, 8205, 528, 15710, 3256, 198, 220, 220, 220, 705, 56, 403, 12647, 3256, 198, 220, 220, 220, 705, 55, 528, 648, 3256, 198, 220, 220, 220, 705, 2484, 28340, 29992, 3256, 198, 220, 220, 220, 705, 38, 504, 84, 3256, 198, 220, 220, 220, 705, 48, 278, 44488, 3256, 198, 220, 220, 220, 705, 45, 278, 36072, 3256, 198, 220, 220, 220, 705, 55, 259, 39598, 3256, 198, 220, 220, 220, 705, 48559, 42, 506, 3256, 198, 220, 220, 220, 705, 14155, 559, 3256, 198, 220, 220, 220, 705, 51, 571, 316, 3256, 198, 220, 220, 220, 705, 38191, 3256, 198, 220, 220, 220, 705, 54, 41, 20520, 198, 198, 2, 2608, 198, 17307, 8380, 796, 685, 198, 220, 220, 220, 705, 32, 3256, 705, 33, 3256, 705, 34, 3256, 705, 35, 3256, 705, 36, 3256, 705, 37, 3256, 705, 38, 3256, 705, 39, 3256, 705, 41, 3256, 705, 42, 3256, 198, 220, 220, 220, 705, 43, 3256, 705, 44, 3256, 705, 45, 3256, 705, 47, 3256, 705, 48, 3256, 705, 49, 3256, 705, 50, 3256, 705, 51, 3256, 705, 52, 3256, 705, 53, 3256, 198, 220, 220, 220, 705, 54, 3256, 705, 55, 3256, 705, 56, 3256, 705, 57, 3256, 705, 40, 3256, 705, 46, 20520, 198, 198, 2, 838, 220, 220, 220, 220, 198, 17618, 796, 685, 198, 220, 220, 220, 705, 15, 3256, 705, 16, 3256, 705, 17, 3256, 705, 18, 3256, 705, 19, 3256, 705, 20, 3256, 705, 21, 3256, 705, 22, 3256, 705, 23, 3256, 705, 24, 20520, 198, 198, 27190, 796, 37250, 19355, 60, 198, 198, 3398, 27415, 796, 9178, 1343, 442, 3762, 1343, 24830, 1343, 1271, 198, 9693, 3913, 62, 3398, 27415, 796, 9178, 1343, 442, 3762, 62, 37336, 1343, 24830, 1343, 1271 ]
1.596291
701
# Generated by Django 3.1.7 on 2021-04-05 14:35 from django.db import migrations, models import django.db.models.deletion
[ 2, 2980, 515, 416, 37770, 513, 13, 16, 13, 22, 319, 33448, 12, 3023, 12, 2713, 1478, 25, 2327, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 42625, 14208, 13, 9945, 13, 27530, 13, 2934, 1616, 295, 628 ]
2.818182
44
"""Main definitions for Virtool Workflows.""" from typing import Any, Callable, Coroutine, Iterable, Optional, Sequence from virtool_workflow.utils import coerce_to_coroutine_function from fixtures import FixtureScope WorkflowStep = Callable[..., Coroutine[Any, Any, None]] class Workflow: """ A Workflow is a step-wise, long-running operation. A workflow is comprised of: 1. a set of functions to be executed on startup (.on_startup) 2. a set of step functions which will be executed in order (.steps) 3. a set of functions to be executed once all steps are completed (.on_cleanup) """ on_startup: Sequence[WorkflowStep] on_cleanup: Sequence[WorkflowStep] steps: Sequence[WorkflowStep] def __new__( cls, *args, startup: Optional[Iterable[WorkflowStep]] = None, cleanup: Optional[Iterable[WorkflowStep]] = None, steps: Optional[Iterable[WorkflowStep]] = None, **kwargs ): """ :param startup: An initial set of startup steps. :param cleanup: An initial set of cleanup steps. :param steps: An initial set of steps. """ obj = super().__new__(cls) obj.on_startup = [] obj.on_cleanup = [] obj.steps = [] if startup: obj.on_startup.extend(startup) if cleanup: obj.on_cleanup.extend(cleanup) if steps: obj.steps.extend(steps) return obj def startup(self, action: Callable) -> Callable: """Decorator for adding a step to workflow startup.""" self.on_startup.append(coerce_to_coroutine_function(action)) return action def cleanup(self, action: Callable) -> Callable: """Decorator for adding a step to workflow cleanup.""" self.on_cleanup.append(coerce_to_coroutine_function(action)) return action def step(self, step: Callable) -> Callable: """Decorator for adding a step to the workflow.""" self.steps.append(coerce_to_coroutine_function(step)) return step def merge(self, *workflows: "Workflow"): """Merge steps from other workflows into this workflow.""" self.steps.extend(step for w in workflows for step in w.steps) self.on_startup.extend( step for w in workflows for step in w.on_startup) self.on_cleanup.extend( step for w in workflows for step in w.on_cleanup) return self async def bind_to_fixtures(self, scope: FixtureScope): """ Bind a workflow to fixtures. This is a convenience method for binding a workflow to a set of fixtures. """ self.on_startup = [await scope.bind(f) for f in self.on_startup] self.on_cleanup = [await scope.bind(f) for f in self.on_cleanup] self.steps = [await scope.bind(f) for f in self.steps] return self
[ 37811, 13383, 17336, 329, 11285, 970, 5521, 44041, 526, 15931, 198, 6738, 19720, 1330, 4377, 11, 4889, 540, 11, 2744, 28399, 11, 40806, 540, 11, 32233, 11, 45835, 198, 6738, 4118, 970, 62, 1818, 11125, 13, 26791, 1330, 31255, 344, 62, 1462, 62, 10215, 28399, 62, 8818, 198, 198, 6738, 34609, 1330, 376, 9602, 43642, 198, 198, 12468, 11125, 8600, 796, 4889, 540, 58, 986, 11, 2744, 28399, 58, 7149, 11, 4377, 11, 6045, 11907, 628, 198, 4871, 5521, 11125, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 5521, 11125, 318, 257, 2239, 12, 3083, 11, 890, 12, 20270, 4905, 13, 628, 220, 220, 220, 317, 30798, 318, 19869, 286, 25, 198, 220, 220, 220, 220, 220, 220, 220, 352, 13, 257, 900, 286, 5499, 284, 307, 10945, 319, 13693, 20262, 261, 62, 9688, 929, 8, 198, 220, 220, 220, 220, 220, 220, 220, 362, 13, 257, 900, 286, 2239, 5499, 543, 481, 307, 10945, 287, 1502, 20262, 20214, 8, 198, 220, 220, 220, 220, 220, 220, 220, 513, 13, 257, 900, 286, 5499, 284, 307, 10945, 1752, 477, 4831, 389, 5668, 20262, 261, 62, 27773, 929, 8, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 319, 62, 9688, 929, 25, 45835, 58, 12468, 11125, 8600, 60, 198, 220, 220, 220, 319, 62, 27773, 929, 25, 45835, 58, 12468, 11125, 8600, 60, 198, 220, 220, 220, 4831, 25, 45835, 58, 12468, 11125, 8600, 60, 628, 220, 220, 220, 825, 11593, 3605, 834, 7, 198, 220, 220, 220, 220, 220, 220, 220, 537, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 22046, 11, 198, 220, 220, 220, 220, 220, 220, 220, 13693, 25, 32233, 58, 29993, 540, 58, 12468, 11125, 8600, 11907, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 27425, 25, 32233, 58, 29993, 540, 58, 12468, 11125, 8600, 11907, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4831, 25, 32233, 58, 29993, 540, 58, 12468, 11125, 8600, 11907, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 198, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 13693, 25, 1052, 4238, 900, 286, 13693, 4831, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 27425, 25, 1052, 4238, 900, 286, 27425, 4831, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4831, 25, 1052, 4238, 900, 286, 4831, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 26181, 796, 2208, 22446, 834, 3605, 834, 7, 565, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 26181, 13, 261, 62, 9688, 929, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 26181, 13, 261, 62, 27773, 929, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 26181, 13, 20214, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 611, 13693, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26181, 13, 261, 62, 9688, 929, 13, 2302, 437, 7, 9688, 929, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 27425, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26181, 13, 261, 62, 27773, 929, 13, 2302, 437, 7, 27773, 929, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4831, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26181, 13, 20214, 13, 2302, 437, 7, 20214, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 26181, 628, 220, 220, 220, 825, 13693, 7, 944, 11, 2223, 25, 4889, 540, 8, 4613, 4889, 540, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10707, 273, 1352, 329, 4375, 257, 2239, 284, 30798, 13693, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 261, 62, 9688, 929, 13, 33295, 7, 1073, 263, 344, 62, 1462, 62, 10215, 28399, 62, 8818, 7, 2673, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2223, 628, 220, 220, 220, 825, 27425, 7, 944, 11, 2223, 25, 4889, 540, 8, 4613, 4889, 540, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10707, 273, 1352, 329, 4375, 257, 2239, 284, 30798, 27425, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 261, 62, 27773, 929, 13, 33295, 7, 1073, 263, 344, 62, 1462, 62, 10215, 28399, 62, 8818, 7, 2673, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2223, 628, 220, 220, 220, 825, 2239, 7, 944, 11, 2239, 25, 4889, 540, 8, 4613, 4889, 540, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10707, 273, 1352, 329, 4375, 257, 2239, 284, 262, 30798, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20214, 13, 33295, 7, 1073, 263, 344, 62, 1462, 62, 10215, 28399, 62, 8818, 7, 9662, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2239, 628, 220, 220, 220, 825, 20121, 7, 944, 11, 1635, 1818, 44041, 25, 366, 12468, 11125, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13102, 469, 4831, 422, 584, 670, 44041, 656, 428, 30798, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20214, 13, 2302, 437, 7, 9662, 329, 266, 287, 670, 44041, 329, 2239, 287, 266, 13, 20214, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 261, 62, 9688, 929, 13, 2302, 437, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2239, 329, 266, 287, 670, 44041, 329, 2239, 287, 266, 13, 261, 62, 9688, 929, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 261, 62, 27773, 929, 13, 2302, 437, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2239, 329, 266, 287, 670, 44041, 329, 2239, 287, 266, 13, 261, 62, 27773, 929, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 628, 220, 220, 220, 30351, 825, 11007, 62, 1462, 62, 69, 25506, 7, 944, 11, 8354, 25, 376, 9602, 43642, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 41211, 257, 30798, 284, 34609, 13, 628, 220, 220, 220, 220, 220, 220, 220, 770, 318, 257, 15607, 2446, 329, 12765, 257, 30798, 284, 257, 900, 286, 34609, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 261, 62, 9688, 929, 796, 685, 707, 4548, 8354, 13, 21653, 7, 69, 8, 329, 277, 287, 2116, 13, 261, 62, 9688, 929, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 261, 62, 27773, 929, 796, 685, 707, 4548, 8354, 13, 21653, 7, 69, 8, 329, 277, 287, 2116, 13, 261, 62, 27773, 929, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20214, 796, 685, 707, 4548, 8354, 13, 21653, 7, 69, 8, 329, 277, 287, 2116, 13, 20214, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 198 ]
2.454163
1,189
#coding:utf-8 import threading import time import pytest from .connect import DataClient, DataBase from ..psrc import ConnPool from concurrent.futures import ProcessPoolExecutor,ThreadPoolExecutor,as_completed app = None DATABASECONFIG = { "test":{ "host": "localhost", "port": 3306, "username": "root", "password": "", "schema" : "test" } }
[ 2, 66, 7656, 25, 40477, 12, 23, 198, 11748, 4704, 278, 220, 198, 11748, 640, 198, 11748, 12972, 9288, 198, 6738, 764, 8443, 1330, 6060, 11792, 11, 6060, 14881, 198, 6738, 11485, 862, 6015, 1330, 20776, 27201, 198, 6738, 24580, 13, 69, 315, 942, 1330, 10854, 27201, 23002, 38409, 11, 16818, 27201, 23002, 38409, 11, 292, 62, 785, 16838, 198, 198, 1324, 796, 6045, 198, 35, 1404, 6242, 1921, 2943, 1340, 16254, 796, 1391, 198, 220, 220, 220, 366, 9288, 1298, 90, 198, 220, 220, 220, 220, 220, 220, 220, 366, 4774, 1298, 366, 36750, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 634, 1298, 513, 20548, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 29460, 1298, 366, 15763, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 28712, 1298, 366, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 15952, 2611, 1, 220, 1058, 366, 9288, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 92, 198, 220, 220, 220, 220, 628, 198 ]
2.348837
172
from . import parseutil
[ 6738, 764, 1330, 21136, 22602, 198 ]
4
6
# package org.apache.helix #from org.apache.helix import * #from java.lang.reflect import Constructor #from java.util import ArrayList #from java.util import Collection #from java.util import Collections #from java.util import HashMap #from java.util import List #from java.util import Map from org.apache.helix.util.misc import enum from org.apache.helix.ZNRecord import ZNRecord import traceback HelixPropertyAttribute = enum('BUCKET_SIZE', 'GROUP_MESSAGE_MODE')
[ 2, 5301, 8745, 13, 43073, 13, 2978, 844, 198, 2, 6738, 8745, 13, 43073, 13, 2978, 844, 1330, 1635, 198, 2, 6738, 20129, 13, 17204, 13, 35051, 1330, 28407, 273, 198, 2, 6738, 20129, 13, 22602, 1330, 15690, 8053, 198, 2, 6738, 20129, 13, 22602, 1330, 12251, 198, 2, 6738, 20129, 13, 22602, 1330, 50004, 198, 2, 6738, 20129, 13, 22602, 1330, 21059, 13912, 198, 2, 6738, 20129, 13, 22602, 1330, 7343, 198, 2, 6738, 20129, 13, 22602, 1330, 9347, 198, 198, 6738, 8745, 13, 43073, 13, 2978, 844, 13, 22602, 13, 44374, 1330, 33829, 198, 6738, 8745, 13, 43073, 13, 2978, 844, 13, 57, 45, 23739, 1330, 1168, 45, 23739, 198, 11748, 12854, 1891, 198, 198, 12621, 844, 21746, 33682, 796, 33829, 10786, 33, 16696, 2767, 62, 33489, 3256, 705, 46846, 62, 44, 1546, 4090, 8264, 62, 49058, 11537, 628, 628 ]
3.309859
142
# Copyright (c) 2019 fortiss GmbH # # This software is released under the MIT License. # https://opensource.org/licenses/MIT import unittest import matplotlib.pyplot as plt from bark.world.agent import * from bark.models.behavior import * from bark.world import * from bark.geometry import * from bark.models.dynamic import * from bark.models.execution import * from bark.geometry import * from bark.geometry.standard_shapes import * from modules.runtime.commons.parameters import ParameterServer from bark.world.opendrive import * from bark.world.map import * from modules.runtime.commons.xodr_parser import XodrParser if __name__ == '__main__': unittest.main()
[ 2, 15069, 357, 66, 8, 13130, 6285, 747, 402, 2022, 39, 198, 2, 198, 2, 770, 3788, 318, 2716, 739, 262, 17168, 13789, 13, 198, 2, 3740, 1378, 44813, 1668, 13, 2398, 14, 677, 4541, 14, 36393, 198, 198, 11748, 555, 715, 395, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 21405, 13, 6894, 13, 25781, 1330, 1635, 198, 6738, 21405, 13, 27530, 13, 46571, 1330, 1635, 198, 6738, 21405, 13, 6894, 1330, 1635, 198, 6738, 21405, 13, 469, 15748, 1330, 1635, 198, 6738, 21405, 13, 27530, 13, 67, 28995, 1330, 1635, 198, 6738, 21405, 13, 27530, 13, 18558, 1009, 1330, 1635, 198, 6738, 21405, 13, 469, 15748, 1330, 1635, 198, 6738, 21405, 13, 469, 15748, 13, 20307, 62, 1477, 7916, 1330, 1635, 198, 6738, 13103, 13, 43282, 13, 9503, 684, 13, 17143, 7307, 1330, 25139, 2357, 10697, 198, 6738, 21405, 13, 6894, 13, 404, 437, 11590, 1330, 1635, 198, 6738, 21405, 13, 6894, 13, 8899, 1330, 1635, 198, 6738, 13103, 13, 43282, 13, 9503, 684, 13, 87, 375, 81, 62, 48610, 1330, 1395, 375, 81, 46677, 628, 220, 220, 220, 220, 220, 220, 220, 220, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
3.17757
214
if sm.hasQuest(1666): sm.warpInstanceIn(931050429) sm.createClock(6*60) sm.invokeAfterDelay(6*60*1000, "warpInstanceOut", 230040410, 0) else: map = 230040420 portal = 2 sm.warp(map, portal)
[ 361, 895, 13, 10134, 12166, 7, 1433, 2791, 2599, 198, 220, 220, 220, 895, 13, 86, 5117, 33384, 818, 7, 6052, 940, 1120, 11785, 8, 198, 220, 220, 220, 895, 13, 17953, 44758, 7, 21, 9, 1899, 8, 198, 220, 220, 220, 895, 13, 37669, 3260, 13856, 323, 7, 21, 9, 1899, 9, 12825, 11, 366, 86, 5117, 33384, 7975, 1600, 2242, 405, 26429, 940, 11, 657, 8, 198, 198, 17772, 25, 198, 220, 220, 220, 3975, 796, 2242, 405, 26429, 1238, 198, 220, 220, 220, 17898, 796, 362, 198, 220, 220, 220, 895, 13, 86, 5117, 7, 8899, 11, 17898, 8, 198 ]
2.087379
103
from typing import List, Union from pysbr.queries.query import Query import pysbr.utils as utils class MarketsByMarketIds(Query): """Get information about a number of leagues from their league ids. Market name, description, and market type id are included in the response. Args: market_ids: SBR market id or list of market ids. sport_id: SBR sport id. """ @Query.typecheck
[ 6738, 19720, 1330, 7343, 11, 4479, 198, 198, 6738, 279, 893, 1671, 13, 421, 10640, 13, 22766, 1330, 43301, 198, 11748, 279, 893, 1671, 13, 26791, 355, 3384, 4487, 628, 198, 4871, 30251, 3886, 27470, 7390, 82, 7, 20746, 2599, 198, 220, 220, 220, 37227, 3855, 1321, 546, 257, 1271, 286, 16861, 422, 511, 4652, 220, 2340, 13, 628, 220, 220, 220, 5991, 1438, 11, 6764, 11, 290, 1910, 2099, 4686, 389, 3017, 287, 262, 2882, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1910, 62, 2340, 25, 311, 11473, 1910, 4686, 393, 1351, 286, 1910, 220, 2340, 13, 198, 220, 220, 220, 220, 220, 220, 220, 6332, 62, 312, 25, 311, 11473, 6332, 4686, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 20746, 13, 4906, 9122, 198 ]
2.985612
139
from py_uci import UCIEngine e = UCIEngine() e.new_game() e.set_position(moves=["e2e4"]) e.find_best_move()
[ 6738, 12972, 62, 42008, 1330, 14417, 40, 13798, 198, 68, 796, 14417, 40, 13798, 3419, 198, 68, 13, 3605, 62, 6057, 3419, 198, 68, 13, 2617, 62, 9150, 7, 76, 5241, 28, 14692, 68, 17, 68, 19, 8973, 8, 198, 68, 13, 19796, 62, 13466, 62, 21084, 3419, 198 ]
2.204082
49
name = "branch_bound" if __name__ == "__main__": print("branch bound installed!")
[ 3672, 796, 366, 1671, 3702, 62, 7784, 1, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 3601, 7203, 1671, 3702, 5421, 6589, 2474, 8, 198 ]
2.636364
33
# coding:utf-8 # tensorflow version1.13.1 import tensorflow as tf saver = tf.train.import_meta_graph('models/model.ckpt-667589.meta', clear_devices=True) with tf.Session() as sess: chpt_state = tf.train.get_checkpoint_state('models/model.ckpt-667589') # if chpt_state: # last_model = chpt_state.model_checkpoint_path last_model = "models/model.ckpt-667589" saver.restore(sess,last_model) print ("model was loaded",last_model) # else: # print ("model cannot loaded") # exit(1) graph = tf.get_default_graph() graph_def = graph.as_graph_def() x = graph.get_tensor_by_name('x:0') out = graph.get_tensor_by_name('reduce/out:0') tf.saved_model.simple_save(sess, './models', inputs={"x": x}, outputs={"reduce/out": out})
[ 2, 19617, 25, 40477, 12, 23, 198, 2, 11192, 273, 11125, 2196, 16, 13, 1485, 13, 16, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 198, 82, 8770, 796, 48700, 13, 27432, 13, 11748, 62, 28961, 62, 34960, 10786, 27530, 14, 19849, 13, 694, 457, 12, 2791, 2425, 4531, 13, 28961, 3256, 1598, 62, 42034, 28, 17821, 8, 198, 198, 4480, 48700, 13, 36044, 3419, 355, 264, 408, 25, 628, 220, 442, 457, 62, 5219, 796, 48700, 13, 27432, 13, 1136, 62, 9122, 4122, 62, 5219, 10786, 27530, 14, 19849, 13, 694, 457, 12, 2791, 2425, 4531, 11537, 628, 1303, 611, 442, 457, 62, 5219, 25, 198, 220, 220, 220, 1303, 938, 62, 19849, 796, 442, 457, 62, 5219, 13, 19849, 62, 9122, 4122, 62, 6978, 198, 220, 938, 62, 19849, 796, 366, 27530, 14, 19849, 13, 694, 457, 12, 2791, 2425, 4531, 1, 198, 220, 473, 332, 13, 2118, 382, 7, 82, 408, 11, 12957, 62, 19849, 8, 198, 220, 3601, 5855, 19849, 373, 9639, 1600, 12957, 62, 19849, 8, 198, 2, 220, 2073, 25, 198, 2, 220, 220, 220, 3601, 5855, 19849, 2314, 9639, 4943, 198, 2, 220, 220, 220, 8420, 7, 16, 8, 628, 220, 4823, 796, 48700, 13, 1136, 62, 12286, 62, 34960, 3419, 198, 220, 4823, 62, 4299, 796, 4823, 13, 292, 62, 34960, 62, 4299, 3419, 628, 220, 2124, 796, 4823, 13, 1136, 62, 83, 22854, 62, 1525, 62, 3672, 10786, 87, 25, 15, 11537, 198, 220, 503, 796, 4823, 13, 1136, 62, 83, 22854, 62, 1525, 62, 3672, 10786, 445, 7234, 14, 448, 25, 15, 11537, 198, 220, 48700, 13, 82, 9586, 62, 19849, 13, 36439, 62, 21928, 7, 82, 408, 11, 705, 19571, 27530, 3256, 17311, 28, 4895, 87, 1298, 2124, 5512, 23862, 28, 4895, 445, 7234, 14, 448, 1298, 503, 30072, 198 ]
2.491694
301
'''Running subprocesses asynchronously.''' from __future__ import print_function import fcntl import os import os.path import subprocess import functools import datetime import pty import signal import atexit import tornado.ioloop from tornado.ioloop import IOLoop, PeriodicCallback import tornado.process from seesaw.event import Event from seesaw.task import Task from seesaw.config import realize import time _all_procs = set() @atexit.register class AsyncPopen(object): '''Asynchronous version of :class:`subprocess.Popen`. Deprecated. ''' @classmethod class AsyncPopen2(object): '''Adapter for the legacy AsyncPopen''' @property class ExternalProcess(Task): '''External subprocess runner.''' class WgetDownload(ExternalProcess): '''Download with Wget process runner.''' class RsyncUpload(ExternalProcess): '''Upload with Rsync process runner.''' class CurlUpload(ExternalProcess): '''Upload with Curl process runner.'''
[ 7061, 6, 28768, 850, 14681, 274, 355, 24871, 3481, 2637, 7061, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 277, 66, 429, 75, 198, 11748, 28686, 198, 11748, 28686, 13, 6978, 198, 11748, 850, 14681, 198, 11748, 1257, 310, 10141, 198, 11748, 4818, 8079, 198, 11748, 279, 774, 198, 11748, 6737, 198, 11748, 379, 37023, 198, 198, 11748, 33718, 13, 1669, 11224, 198, 6738, 33718, 13, 1669, 11224, 1330, 314, 3535, 11224, 11, 18581, 291, 47258, 198, 11748, 33718, 13, 14681, 198, 198, 6738, 7224, 707, 13, 15596, 1330, 8558, 198, 6738, 7224, 707, 13, 35943, 1330, 15941, 198, 6738, 7224, 707, 13, 11250, 1330, 6537, 198, 11748, 640, 628, 198, 62, 439, 62, 1676, 6359, 796, 900, 3419, 628, 198, 31, 378, 10198, 13, 30238, 628, 198, 4871, 1081, 13361, 47, 9654, 7, 15252, 2599, 198, 220, 220, 220, 705, 7061, 1722, 31301, 2196, 286, 1058, 4871, 25, 63, 7266, 14681, 13, 47, 9654, 44646, 628, 220, 220, 220, 2129, 31023, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 2488, 4871, 24396, 628, 198, 4871, 1081, 13361, 47, 9654, 17, 7, 15252, 2599, 198, 220, 220, 220, 705, 7061, 47307, 329, 262, 10655, 1081, 13361, 47, 9654, 7061, 6, 628, 220, 220, 220, 2488, 26745, 628, 198, 4871, 34579, 18709, 7, 25714, 2599, 198, 220, 220, 220, 705, 7061, 41506, 850, 14681, 17490, 2637, 7061, 628, 198, 4871, 370, 1136, 10002, 7, 41506, 18709, 2599, 198, 220, 220, 220, 705, 7061, 10002, 351, 370, 1136, 1429, 17490, 2637, 7061, 628, 198, 4871, 371, 27261, 41592, 7, 41506, 18709, 2599, 198, 220, 220, 220, 705, 7061, 41592, 351, 371, 27261, 1429, 17490, 2637, 7061, 628, 198, 4871, 4424, 75, 41592, 7, 41506, 18709, 2599, 198, 220, 220, 220, 705, 7061, 41592, 351, 4424, 75, 1429, 17490, 2637, 7061, 198 ]
3.22549
306
from fastai.vision.all import * import gc import torch from typing import Callable __all__ = ['EMAAverager', 'EMACallback', 'add_ema_to_gan_learner', 'custom_save_model', 'custom_load_model', 'SaveCheckpointsCallback', 'clean_mem'] class EMAAverager(): """Callable class that calculates the EMA of a parameter. It can be used as the `avg_fn` parameter of `torch.optim.swa_utils.AveragedModel` Args: decay (float): weight of averaged value. The new value of the parameter is multiplied by 1 - decay. """ class FullyAveragedModel(torch.optim.swa_utils.AveragedModel): """Extension of AveragedModel that also averages the buffers. To update both the parameters and the buffers, the method `update_all` should be called instead of `update_parameters`.""" @torch.no_grad() def _update_bn(loader, model, device=None, forward_batch:Callable=None): r"""Updates BatchNorm running_mean, running_var buffers in the model. It performs one pass over data in `loader` to estimate the activation statistics for BatchNorm layers in the model. Args: loader (torch.utils.data.DataLoader): dataset loader to compute the activation statistics on. Each data batch should be either a tensor, or a list/tuple whose first element is a tensor containing data. model (torch.nn.Module): model for which we seek to update BatchNorm statistics. device (torch.device, optional): If set, data will be transferred to :attr:`device` before being passed into :attr:`model`. forward_batch: method that chooses how to extract the input from every element of :attr:`loader`, transfers it to :attr:`device` and finally makes a forward pass on :attr:`model`. Example: >>> loader, model = ... >>> _update_bn(loader, model) """ momenta = {} for module in model.modules(): if isinstance(module, torch.nn.modules.batchnorm._BatchNorm): module.running_mean = torch.zeros_like(module.running_mean) module.running_var = torch.ones_like(module.running_var) momenta[module] = module.momentum if not momenta: return was_training = model.training model.train() for module in momenta.keys(): module.momentum = None module.num_batches_tracked *= 0 if forward_batch is None: forward_batch = _default_forward_batch for batch in loader: forward_batch(model, batch, device) for bn_module in momenta.keys(): bn_module.momentum = momenta[bn_module] model.train(was_training) class EMACallback(Callback): """Updates the averaged weights of the generator of a GAN after every opt step. It's meant to be used only with a GANLearner; i.e., an instance of this callback is assumed to be attached to a GANLearner. Args: ema_model: AveragedModel that wraps the averaged generator module. orig_model: active (not averaged) generator module, the one that's included in learner.model and updated by the optimizer. dl: dataloader needed to iterate over all data and make forward passes over the ema_model in order to update the running statistic of BN layers. update_buffers: if True, not only parameters, but also buffers, of ema_model are averaged and updated, forward_batch (Callable): Method with params (model, batch, device) that chooses how to extract the input from every element of `dl`, transfers it to the proper device and finally makes a forward pass on the model (here `ema_model`). It's needed for updating the running statistics of BN layers. """ def add_ema_to_gan_learner(gan_learner, dblock, decay=0.999, update_bn_dl_bs=64, forward_batch=None): """"Creates and setups everything needed to update an alternative EMA generator. It stores the EMA generator in `ema_model` attribute of `gan_learner`. Args: gan_learner (GANLearner): the learner to add the EMA generator to. dblock (DataBlock): needed to create dataloaders that are independent of those of `gan_learner`, used after fit to update BN running stats of the EMA G. decay: weight that multiplies averaged parameter every update. update_bn_dl_bs: batch size used to update BN running stats. forward_batch (Callable): Method with params (model, batch, device) that chooses how to extract the input from every element of the dataloader, transfers it to the proper device and finally makes a forward pass on the ema model. It's needed for updating the running statistics of BN layers. """ generator = gan_learner.model.generator ema_avg_fn = EMAAverager(decay=decay) gan_learner.ema_model = FullyAveragedModel(generator, avg_fn=ema_avg_fn) ds_path = gan_learner.dls.path clean_dls = dblock.dataloaders(ds_path, path=ds_path, bs=update_bn_dl_bs) gan_learner.ema_model.eval().to(clean_dls.device) gan_learner.add_cb(EMACallback(gan_learner.ema_model, generator, clean_dls.train, forward_batch=forward_batch)) def custom_save_model(learner, filename, base_path='.'): """Saves the model and optimizer state of the learner. The path of the generated file is base_path/learner.model_dir/filename with ".pth" extension. If the learner has an EMA G model attached too, a similar file with the suffix "_ema" is generated too. """ if isinstance(base_path, str): base_path = Path(base_path) if not isinstance(base_path, Path): raise Exception('Invalid base_path') file = join_path_file(filename, base_path/learner.model_dir, ext='.pth') save_model(file, learner.model, learner.opt) if getattr(learner, 'ema_model', None) is not None: _save_ema_model(learner, base_path, filename) def custom_load_model(learner, filename, with_opt=True, device=None, base_path='./models', with_ema=False, **kwargs): """Loads the model and optimizer state of the learner. The file is expected to be placed in `base_path/filename` with ".pth" extension. `kwargs` are forwarded to fastai's `load_model` method. """ if isinstance(base_path, str): base_path = Path(base_path) if not isinstance(base_path, Path): raise Exception('Invalid base_path') if device is None and hasattr(learner.dls, 'device'): device = learner.dls.device if learner.opt is None: learner.create_opt() #file = join_path_file(filename, base_path/learner.model_dir, ext='.pth') file = base_path/f'{filename}.pth' load_model(file, learner.model, learner.opt, with_opt=with_opt, device=device, **kwargs) if with_ema: _load_ema_model(learner, base_path, filename) class SaveCheckpointsCallback(Callback): "Callback that saves the model at the end of each epoch."
[ 6738, 3049, 1872, 13, 10178, 13, 439, 1330, 1635, 198, 11748, 308, 66, 198, 11748, 28034, 198, 6738, 19720, 1330, 4889, 540, 628, 198, 834, 439, 834, 796, 37250, 3620, 3838, 332, 3536, 3256, 705, 3620, 2246, 439, 1891, 3256, 705, 2860, 62, 19687, 62, 1462, 62, 1030, 62, 3238, 1008, 3256, 705, 23144, 62, 21928, 62, 19849, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 23144, 62, 2220, 62, 19849, 3256, 705, 16928, 9787, 13033, 47258, 3256, 705, 27773, 62, 11883, 20520, 628, 198, 4871, 17228, 3838, 332, 3536, 33529, 198, 220, 220, 220, 37227, 14134, 540, 1398, 326, 43707, 262, 412, 5673, 286, 257, 11507, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 632, 460, 307, 973, 355, 262, 4600, 615, 70, 62, 22184, 63, 11507, 286, 4600, 13165, 354, 13, 40085, 13, 2032, 64, 62, 26791, 13, 32, 332, 1886, 17633, 63, 198, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 22119, 357, 22468, 2599, 3463, 286, 16449, 1988, 13, 383, 649, 1988, 286, 262, 11507, 318, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33096, 416, 352, 532, 22119, 13, 198, 220, 220, 220, 37227, 628, 198, 198, 4871, 40234, 32, 332, 1886, 17633, 7, 13165, 354, 13, 40085, 13, 2032, 64, 62, 26791, 13, 32, 332, 1886, 17633, 2599, 198, 220, 220, 220, 37227, 11627, 3004, 286, 317, 332, 1886, 17633, 326, 635, 25694, 262, 39334, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1675, 4296, 1111, 262, 10007, 290, 262, 39334, 11, 262, 2446, 4600, 19119, 62, 439, 63, 815, 307, 220, 198, 220, 220, 220, 1444, 2427, 286, 4600, 19119, 62, 17143, 7307, 63, 526, 15931, 628, 198, 31, 13165, 354, 13, 3919, 62, 9744, 3419, 198, 4299, 4808, 19119, 62, 9374, 7, 29356, 11, 2746, 11, 3335, 28, 14202, 11, 2651, 62, 43501, 25, 14134, 540, 28, 14202, 2599, 198, 220, 220, 220, 374, 37811, 4933, 19581, 347, 963, 35393, 2491, 62, 32604, 11, 2491, 62, 7785, 39334, 287, 262, 2746, 13, 628, 220, 220, 220, 632, 17706, 530, 1208, 625, 1366, 287, 4600, 29356, 63, 284, 8636, 262, 14916, 198, 220, 220, 220, 7869, 329, 347, 963, 35393, 11685, 287, 262, 2746, 13, 198, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 40213, 357, 13165, 354, 13, 26791, 13, 7890, 13, 6601, 17401, 2599, 27039, 40213, 284, 24061, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14916, 7869, 319, 13, 5501, 1366, 15458, 815, 307, 2035, 257, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11192, 273, 11, 393, 257, 1351, 14, 83, 29291, 3025, 717, 5002, 318, 257, 11192, 273, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7268, 1366, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 357, 13165, 354, 13, 20471, 13, 26796, 2599, 2746, 329, 543, 356, 5380, 284, 4296, 347, 963, 35393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7869, 13, 198, 220, 220, 220, 220, 220, 220, 220, 3335, 357, 13165, 354, 13, 25202, 11, 11902, 2599, 1002, 900, 11, 1366, 481, 307, 11172, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 35226, 25, 63, 25202, 63, 878, 852, 3804, 656, 1058, 35226, 25, 63, 19849, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 2651, 62, 43501, 25, 2446, 326, 19769, 703, 284, 7925, 262, 5128, 422, 790, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5002, 286, 1058, 35226, 25, 63, 29356, 47671, 16395, 340, 284, 1058, 35226, 25, 63, 25202, 63, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3443, 1838, 257, 2651, 1208, 319, 1058, 35226, 25, 63, 19849, 44646, 628, 220, 220, 220, 17934, 25, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 40213, 11, 2746, 796, 2644, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 4808, 19119, 62, 9374, 7, 29356, 11, 2746, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2589, 64, 796, 23884, 198, 220, 220, 220, 329, 8265, 287, 2746, 13, 18170, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 21412, 11, 28034, 13, 20471, 13, 18170, 13, 43501, 27237, 13557, 33, 963, 35393, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8265, 13, 20270, 62, 32604, 796, 28034, 13, 9107, 418, 62, 2339, 7, 21412, 13, 20270, 62, 32604, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8265, 13, 20270, 62, 7785, 796, 28034, 13, 1952, 62, 2339, 7, 21412, 13, 20270, 62, 7785, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2589, 64, 58, 21412, 60, 796, 8265, 13, 32542, 298, 388, 628, 220, 220, 220, 611, 407, 2589, 64, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 373, 62, 34409, 796, 2746, 13, 34409, 198, 220, 220, 220, 2746, 13, 27432, 3419, 198, 220, 220, 220, 329, 8265, 287, 2589, 64, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 8265, 13, 32542, 298, 388, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 8265, 13, 22510, 62, 8664, 2052, 62, 2213, 6021, 1635, 28, 657, 628, 220, 220, 220, 611, 2651, 62, 43501, 318, 6045, 25, 2651, 62, 43501, 796, 4808, 12286, 62, 11813, 62, 43501, 198, 220, 220, 220, 329, 15458, 287, 40213, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2651, 62, 43501, 7, 19849, 11, 15458, 11, 3335, 8, 628, 220, 220, 220, 329, 275, 77, 62, 21412, 287, 2589, 64, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 275, 77, 62, 21412, 13, 32542, 298, 388, 796, 2589, 64, 58, 9374, 62, 21412, 60, 198, 220, 220, 220, 2746, 13, 27432, 7, 9776, 62, 34409, 8, 628, 198, 4871, 17228, 2246, 439, 1891, 7, 47258, 2599, 198, 220, 220, 220, 37227, 4933, 19581, 262, 16449, 19590, 286, 262, 17301, 286, 257, 402, 1565, 706, 790, 2172, 2239, 13, 628, 220, 220, 220, 632, 338, 4001, 284, 307, 973, 691, 351, 257, 402, 1565, 14961, 1008, 26, 1312, 13, 68, 1539, 281, 4554, 286, 428, 23838, 198, 220, 220, 220, 318, 9672, 284, 307, 7223, 284, 257, 402, 1565, 14961, 1008, 13, 198, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 795, 64, 62, 19849, 25, 317, 332, 1886, 17633, 326, 27521, 262, 16449, 17301, 8265, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1796, 62, 19849, 25, 4075, 357, 1662, 16449, 8, 17301, 8265, 11, 262, 530, 326, 338, 3017, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 22454, 1008, 13, 19849, 290, 6153, 416, 262, 6436, 7509, 13, 198, 220, 220, 220, 220, 220, 220, 220, 288, 75, 25, 4818, 282, 1170, 263, 2622, 284, 11629, 378, 625, 477, 1366, 290, 787, 2651, 8318, 625, 262, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 795, 64, 62, 19849, 287, 1502, 284, 4296, 262, 2491, 24696, 286, 347, 45, 11685, 13, 198, 220, 220, 220, 220, 220, 220, 220, 4296, 62, 36873, 364, 25, 611, 6407, 11, 407, 691, 10007, 11, 475, 635, 39334, 11, 286, 795, 64, 62, 19849, 389, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16449, 290, 6153, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2651, 62, 43501, 357, 14134, 540, 2599, 11789, 351, 42287, 357, 19849, 11, 15458, 11, 3335, 8, 326, 19769, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 703, 284, 7925, 262, 5128, 422, 790, 5002, 286, 4600, 25404, 47671, 16395, 340, 284, 262, 1774, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3335, 290, 3443, 1838, 257, 2651, 1208, 319, 262, 2746, 357, 1456, 4600, 19687, 62, 19849, 63, 737, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 632, 338, 2622, 329, 19698, 262, 2491, 7869, 286, 347, 45, 11685, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 198, 4299, 751, 62, 19687, 62, 1462, 62, 1030, 62, 3238, 1008, 7, 1030, 62, 3238, 1008, 11, 288, 9967, 11, 22119, 28, 15, 13, 17032, 11, 4296, 62, 9374, 62, 25404, 62, 1443, 28, 2414, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2651, 62, 43501, 28, 14202, 2599, 198, 220, 220, 220, 13538, 15931, 16719, 274, 290, 44266, 2279, 2622, 284, 4296, 281, 5559, 412, 5673, 17301, 13, 628, 220, 220, 220, 632, 7000, 262, 412, 5673, 17301, 287, 4600, 19687, 62, 19849, 63, 11688, 286, 4600, 1030, 62, 3238, 1008, 44646, 198, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 308, 272, 62, 3238, 1008, 357, 45028, 14961, 1008, 2599, 262, 22454, 1008, 284, 751, 262, 412, 5673, 17301, 284, 13, 198, 220, 220, 220, 220, 220, 220, 220, 288, 9967, 357, 6601, 12235, 2599, 2622, 284, 2251, 4818, 282, 1170, 364, 326, 389, 4795, 286, 883, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 286, 4600, 1030, 62, 3238, 1008, 47671, 973, 706, 4197, 284, 4296, 347, 45, 2491, 9756, 286, 262, 412, 5673, 402, 13, 198, 220, 220, 220, 220, 220, 220, 220, 22119, 25, 3463, 326, 15082, 444, 16449, 11507, 790, 4296, 13, 198, 220, 220, 220, 220, 220, 220, 220, 4296, 62, 9374, 62, 25404, 62, 1443, 25, 15458, 2546, 973, 284, 4296, 347, 45, 2491, 9756, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2651, 62, 43501, 357, 14134, 540, 2599, 11789, 351, 42287, 357, 19849, 11, 15458, 11, 3335, 8, 326, 19769, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 703, 284, 7925, 262, 5128, 422, 790, 5002, 286, 262, 4818, 282, 1170, 263, 11, 16395, 340, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 262, 1774, 3335, 290, 3443, 1838, 257, 2651, 1208, 319, 262, 795, 64, 2746, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 632, 338, 2622, 329, 19698, 262, 2491, 7869, 286, 347, 45, 11685, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 17301, 796, 308, 272, 62, 3238, 1008, 13, 19849, 13, 8612, 1352, 198, 220, 220, 220, 795, 64, 62, 615, 70, 62, 22184, 796, 17228, 3838, 332, 3536, 7, 12501, 323, 28, 12501, 323, 8, 198, 220, 220, 220, 308, 272, 62, 3238, 1008, 13, 19687, 62, 19849, 796, 40234, 32, 332, 1886, 17633, 7, 8612, 1352, 11, 42781, 62, 22184, 28, 19687, 62, 615, 70, 62, 22184, 8, 198, 220, 220, 220, 288, 82, 62, 6978, 796, 308, 272, 62, 3238, 1008, 13, 67, 7278, 13, 6978, 198, 220, 220, 220, 3424, 62, 67, 7278, 796, 288, 9967, 13, 67, 10254, 1170, 364, 7, 9310, 62, 6978, 11, 3108, 28, 9310, 62, 6978, 11, 275, 82, 28, 19119, 62, 9374, 62, 25404, 62, 1443, 8, 198, 220, 220, 220, 308, 272, 62, 3238, 1008, 13, 19687, 62, 19849, 13, 18206, 22446, 1462, 7, 27773, 62, 67, 7278, 13, 25202, 8, 198, 220, 220, 220, 308, 272, 62, 3238, 1008, 13, 2860, 62, 21101, 7, 3620, 2246, 439, 1891, 7, 1030, 62, 3238, 1008, 13, 19687, 62, 19849, 11, 17301, 11, 3424, 62, 67, 7278, 13, 27432, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2651, 62, 43501, 28, 11813, 62, 43501, 4008, 628, 198, 4299, 2183, 62, 21928, 62, 19849, 7, 3238, 1008, 11, 29472, 11, 2779, 62, 6978, 11639, 2637, 2599, 198, 220, 220, 220, 37227, 50, 3080, 262, 2746, 290, 6436, 7509, 1181, 286, 262, 22454, 1008, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 383, 3108, 286, 262, 7560, 2393, 318, 2779, 62, 6978, 14, 3238, 1008, 13, 19849, 62, 15908, 14, 34345, 198, 220, 220, 220, 351, 27071, 79, 400, 1, 7552, 13, 1002, 262, 22454, 1008, 468, 281, 412, 5673, 402, 2746, 7223, 1165, 11, 198, 220, 220, 220, 257, 2092, 2393, 351, 262, 35488, 45434, 19687, 1, 318, 7560, 1165, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 318, 39098, 7, 8692, 62, 6978, 11, 965, 2599, 2779, 62, 6978, 796, 10644, 7, 8692, 62, 6978, 8, 198, 220, 220, 220, 611, 407, 318, 39098, 7, 8692, 62, 6978, 11, 10644, 2599, 5298, 35528, 10786, 44651, 2779, 62, 6978, 11537, 198, 220, 220, 220, 2393, 796, 4654, 62, 6978, 62, 7753, 7, 34345, 11, 2779, 62, 6978, 14, 3238, 1008, 13, 19849, 62, 15908, 11, 1070, 28, 4458, 79, 400, 11537, 198, 220, 220, 220, 3613, 62, 19849, 7, 7753, 11, 22454, 1008, 13, 19849, 11, 22454, 1008, 13, 8738, 8, 198, 220, 220, 220, 611, 651, 35226, 7, 3238, 1008, 11, 705, 19687, 62, 19849, 3256, 6045, 8, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 21928, 62, 19687, 62, 19849, 7, 3238, 1008, 11, 2779, 62, 6978, 11, 29472, 8, 198, 220, 220, 220, 220, 198, 198, 4299, 2183, 62, 2220, 62, 19849, 7, 3238, 1008, 11, 29472, 11, 351, 62, 8738, 28, 17821, 11, 3335, 28, 14202, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2779, 62, 6978, 28, 4458, 14, 27530, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 62, 19687, 28, 25101, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 8912, 82, 262, 2746, 290, 6436, 7509, 1181, 286, 262, 22454, 1008, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 383, 2393, 318, 2938, 284, 307, 4624, 287, 4600, 8692, 62, 6978, 14, 34345, 63, 351, 27071, 79, 400, 1, 198, 220, 220, 220, 7552, 13, 4600, 46265, 22046, 63, 389, 28308, 284, 3049, 1872, 338, 4600, 2220, 62, 19849, 63, 2446, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 318, 39098, 7, 8692, 62, 6978, 11, 965, 2599, 2779, 62, 6978, 796, 10644, 7, 8692, 62, 6978, 8, 198, 220, 220, 220, 611, 407, 318, 39098, 7, 8692, 62, 6978, 11, 10644, 2599, 5298, 35528, 10786, 44651, 2779, 62, 6978, 11537, 198, 220, 220, 220, 611, 3335, 318, 6045, 290, 468, 35226, 7, 3238, 1008, 13, 67, 7278, 11, 705, 25202, 6, 2599, 3335, 796, 22454, 1008, 13, 67, 7278, 13, 25202, 198, 220, 220, 220, 611, 22454, 1008, 13, 8738, 318, 6045, 25, 22454, 1008, 13, 17953, 62, 8738, 3419, 198, 220, 220, 220, 1303, 7753, 796, 4654, 62, 6978, 62, 7753, 7, 34345, 11, 2779, 62, 6978, 14, 3238, 1008, 13, 19849, 62, 15908, 11, 1070, 28, 4458, 79, 400, 11537, 198, 220, 220, 220, 2393, 796, 2779, 62, 6978, 14, 69, 6, 90, 34345, 27422, 79, 400, 6, 198, 220, 220, 220, 3440, 62, 19849, 7, 7753, 11, 22454, 1008, 13, 19849, 11, 22454, 1008, 13, 8738, 11, 351, 62, 8738, 28, 4480, 62, 8738, 11, 3335, 28, 25202, 11, 12429, 46265, 22046, 8, 198, 220, 220, 220, 611, 351, 62, 19687, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 2220, 62, 19687, 62, 19849, 7, 3238, 1008, 11, 2779, 62, 6978, 11, 29472, 8, 628, 628, 198, 4871, 12793, 9787, 13033, 47258, 7, 47258, 2599, 198, 220, 220, 220, 366, 47258, 326, 16031, 262, 2746, 379, 262, 886, 286, 1123, 36835, 526, 628 ]
2.660038
2,665
"""A set of sudoku puzzles to experiment with the spinnaker_csp package. the puzzles are containned on the dictionary puzzles, keys are the name of the puzzle and values are tuples with the puzzle as first element and solution as second element. """ puzzles={ #--------------------------------------------------------------------- 'Dream': ("dream", #--------------------------------------------------------------------- [[0 for x in range(9)] for y in range(9)], None), #--------------------------------------------------------------------- 'easy':("easy", # easy from doi:10.1038/srep00725 #--------------------------------------- [[0, 4, 0, 8, 0, 5, 2, 0, 0], [0, 2, 0, 0, 4, 0, 0, 5, 0], [5, 0, 0, 0, 0, 0, 0, 0, 4], [0, 9, 0, 0, 0, 3, 1, 2, 0], [1, 0, 6, 0, 7, 8, 0, 0, 3], [3, 7, 0, 9, 0, 4, 0, 8, 0], [0, 0, 0, 0, 0, 6, 7, 0, 0], [0, 0, 8, 3, 5, 9, 0, 1, 0], [0, 1, 9, 0, 0, 7, 6, 0, 0]], #--------------------------------------- [[9, 4, 7, 8, 3, 5, 2, 6, 1], [6, 2, 3, 7, 4, 1, 8, 5, 9], [5, 8, 1, 6, 9, 2, 3, 7, 4], [8, 9, 4, 5, 6, 3, 1, 2, 7], [1, 5, 6, 2, 7, 8, 9, 4, 3], [3, 7, 2, 9, 1, 4, 5, 8, 6], [4, 3, 5, 1, 2, 6, 7, 9, 8], [7, 6, 8, 3, 5, 9, 4, 1, 2], [2, 1, 9, 4, 8, 7, 6, 3, 5]]), #--------------------------------------------------------------------- 'hard':('hard', # hard puzzle from https://doi.org/10.1371/journal.pcbi.1003311 #--------------------------------------------------------------------- [[8, 0, 5, 0, 0, 0, 0, 3, 0], [0, 3, 0, 9, 0, 0, 0, 0, 0], [4, 0, 6, 0, 3, 0, 0, 0, 0], [6, 0, 0, 0, 1, 0, 9, 0, 0], [0, 5, 0, 3, 0, 8, 0, 7, 0], [0, 0, 9, 0, 4, 0, 0, 0, 1], [0, 0, 0, 0, 2, 0, 3, 0, 8], [0, 0, 0, 0, 0, 9, 0, 2, 0], [0, 7, 0, 0, 0, 0, 5, 0, 4]], #--------------------------------------------------------------------- [[8, 1, 5, 6, 7, 4, 2, 3, 9], [7, 3, 2, 9, 5, 1, 4, 8, 6], [4, 9, 6, 8, 3, 2, 7, 1, 5], [6, 8, 7, 2, 1, 5, 9, 4, 3], [1, 5, 4, 3, 9, 8, 6, 7, 2], [3, 2, 9, 7, 4, 6, 8, 5, 1], [9, 4, 1, 5, 2, 7, 3, 6, 8], [5, 6, 3, 4, 8, 9, 1, 2, 7], [2, 7, 8, 1, 6, 3, 5, 9, 4]]), #--------------------------------------------------------------------- 'AI_escargot': ('AI_escargot', #--------------------------------------------------------------------- [[1, 0, 0, 0, 0, 7, 0, 9, 0], [0, 3, 0, 0, 2, 0, 0, 0, 8], [0, 0, 9, 6, 0, 0, 5, 0, 0], [0, 0, 5, 3, 0, 0, 9, 0, 0], [0, 1, 0, 0, 8, 0, 0, 0, 2], [6, 0, 0, 0, 0, 4, 0, 0, 0], [3, 0, 0, 0, 0, 0, 0, 1, 0], [0, 4, 0, 0, 0, 0, 0, 0, 7], [0, 0, 7, 0, 0, 0, 3, 0, 0]], #--------------------------------------------------------------------- [[0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0]]), #--------------------------------------------------------------------- 'platinum_blonde':('platinum_blonde', # hard from doi:10.1038/srep00725 #--------------------------------------------------------------------- [[0, 0, 0, 0, 0, 0, 0, 1, 2], [0, 0, 0, 0, 0, 0, 0, 0, 3], [0, 0, 2, 3, 0, 0, 4, 0, 0], [0, 0, 1, 8, 0, 0, 0, 0, 5], [0, 6, 0, 0, 7, 0, 8, 0, 0], [0, 0, 0, 0, 0, 9, 0, 0, 0], [0, 0, 8, 5, 0, 0, 0, 0, 0], [9, 0, 0, 0, 4, 0, 5, 0, 0], [4, 7, 0, 0, 0, 6, 0, 0, 0]], #--------------------------------------------------------------------- [[8, 3, 9, 4, 6, 5, 7, 1, 2], [1, 4, 6, 7, 8, 2, 9, 5, 3], [7, 5, 2, 3, 9, 1, 4, 8, 6], [3, 9, 1, 8, 2, 4, 6, 7, 5], [5, 6, 4, 1, 7, 3, 8, 2, 9], [2, 8, 7, 6, 5, 9, 3, 4, 1], [6, 2, 8, 5, 3, 7, 1, 9, 4], [9, 1, 3, 2, 4, 8, 5, 6, 7], [4, 7, 5, 9, 1, 6, 2, 3, 8]]) } #-----------------TEMPLATE--------------------------------------------- ##--------------------------------------------------------------------- # [[0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0]] #-----------------TEMPLATE 16X16---------------------------------------- # #--------------------------------------------------------------------- # [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]
[ 37811, 32, 900, 286, 424, 67, 11601, 24367, 284, 6306, 351, 262, 599, 3732, 3110, 62, 66, 2777, 5301, 13, 198, 198, 1169, 24367, 389, 3994, 2817, 319, 262, 22155, 24367, 11, 8251, 389, 262, 1438, 286, 262, 15027, 290, 3815, 389, 12777, 2374, 351, 262, 198, 79, 9625, 355, 717, 5002, 290, 4610, 355, 1218, 5002, 13, 198, 37811, 198, 79, 4715, 829, 34758, 198, 2, 10097, 30934, 198, 6, 30571, 10354, 5855, 25966, 1600, 198, 2, 10097, 30934, 198, 30109, 15, 329, 2124, 287, 2837, 7, 24, 15437, 329, 331, 287, 2837, 7, 24, 8, 4357, 198, 14202, 828, 198, 2, 10097, 30934, 198, 6, 38171, 10354, 7203, 38171, 1600, 1303, 2562, 422, 23899, 25, 940, 13, 940, 2548, 14, 82, 7856, 25816, 1495, 198, 2, 3880, 26866, 198, 30109, 15, 11, 604, 11, 657, 11, 807, 11, 657, 11, 642, 11, 362, 11, 657, 11, 657, 4357, 198, 58, 15, 11, 362, 11, 657, 11, 657, 11, 604, 11, 657, 11, 657, 11, 642, 11, 657, 4357, 198, 58, 20, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 604, 4357, 198, 58, 15, 11, 860, 11, 657, 11, 657, 11, 657, 11, 513, 11, 352, 11, 362, 11, 657, 4357, 198, 58, 16, 11, 657, 11, 718, 11, 657, 11, 767, 11, 807, 11, 657, 11, 657, 11, 513, 4357, 198, 58, 18, 11, 767, 11, 657, 11, 860, 11, 657, 11, 604, 11, 657, 11, 807, 11, 657, 4357, 198, 58, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 718, 11, 767, 11, 657, 11, 657, 4357, 198, 58, 15, 11, 657, 11, 807, 11, 513, 11, 642, 11, 860, 11, 657, 11, 352, 11, 657, 4357, 198, 58, 15, 11, 352, 11, 860, 11, 657, 11, 657, 11, 767, 11, 718, 11, 657, 11, 657, 60, 4357, 198, 2, 3880, 26866, 198, 30109, 24, 11, 604, 11, 767, 11, 807, 11, 513, 11, 642, 11, 362, 11, 718, 11, 352, 4357, 198, 58, 21, 11, 362, 11, 513, 11, 767, 11, 604, 11, 352, 11, 807, 11, 642, 11, 860, 4357, 198, 58, 20, 11, 807, 11, 352, 11, 718, 11, 860, 11, 362, 11, 513, 11, 767, 11, 604, 4357, 198, 58, 23, 11, 860, 11, 604, 11, 642, 11, 718, 11, 513, 11, 352, 11, 362, 11, 767, 4357, 198, 58, 16, 11, 642, 11, 718, 11, 362, 11, 767, 11, 807, 11, 860, 11, 604, 11, 513, 4357, 198, 58, 18, 11, 767, 11, 362, 11, 860, 11, 352, 11, 604, 11, 642, 11, 807, 11, 718, 4357, 198, 58, 19, 11, 513, 11, 642, 11, 352, 11, 362, 11, 718, 11, 767, 11, 860, 11, 807, 4357, 198, 58, 22, 11, 718, 11, 807, 11, 513, 11, 642, 11, 860, 11, 604, 11, 352, 11, 362, 4357, 198, 58, 17, 11, 352, 11, 860, 11, 604, 11, 807, 11, 767, 11, 718, 11, 513, 11, 642, 11907, 828, 198, 2, 10097, 30934, 198, 6, 10424, 10354, 10786, 10424, 3256, 1303, 220, 1327, 15027, 422, 220, 3740, 1378, 34023, 13, 2398, 14, 940, 13, 1485, 4869, 14, 24891, 13, 14751, 8482, 13, 3064, 2091, 1157, 198, 2, 10097, 30934, 198, 30109, 23, 11, 657, 11, 642, 11, 657, 11, 657, 11, 657, 11, 657, 11, 513, 11, 657, 4357, 198, 58, 15, 11, 513, 11, 657, 11, 860, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 4357, 198, 58, 19, 11, 657, 11, 718, 11, 657, 11, 513, 11, 657, 11, 657, 11, 657, 11, 657, 4357, 198, 58, 21, 11, 657, 11, 657, 11, 657, 11, 352, 11, 657, 11, 860, 11, 657, 11, 657, 4357, 198, 58, 15, 11, 642, 11, 657, 11, 513, 11, 657, 11, 807, 11, 657, 11, 767, 11, 657, 4357, 198, 58, 15, 11, 657, 11, 860, 11, 657, 11, 604, 11, 657, 11, 657, 11, 657, 11, 352, 4357, 198, 58, 15, 11, 657, 11, 657, 11, 657, 11, 362, 11, 657, 11, 513, 11, 657, 11, 807, 4357, 198, 58, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 860, 11, 657, 11, 362, 11, 657, 4357, 198, 58, 15, 11, 767, 11, 657, 11, 657, 11, 657, 11, 657, 11, 642, 11, 657, 11, 604, 60, 4357, 198, 2, 10097, 30934, 198, 30109, 23, 11, 352, 11, 642, 11, 718, 11, 767, 11, 604, 11, 362, 11, 513, 11, 860, 4357, 198, 58, 22, 11, 513, 11, 362, 11, 860, 11, 642, 11, 352, 11, 604, 11, 807, 11, 718, 4357, 198, 58, 19, 11, 860, 11, 718, 11, 807, 11, 513, 11, 362, 11, 767, 11, 352, 11, 642, 4357, 198, 58, 21, 11, 807, 11, 767, 11, 362, 11, 352, 11, 642, 11, 860, 11, 604, 11, 513, 4357, 198, 58, 16, 11, 642, 11, 604, 11, 513, 11, 860, 11, 807, 11, 718, 11, 767, 11, 362, 4357, 198, 58, 18, 11, 362, 11, 860, 11, 767, 11, 604, 11, 718, 11, 807, 11, 642, 11, 352, 4357, 198, 58, 24, 11, 604, 11, 352, 11, 642, 11, 362, 11, 767, 11, 513, 11, 718, 11, 807, 4357, 198, 58, 20, 11, 718, 11, 513, 11, 604, 11, 807, 11, 860, 11, 352, 11, 362, 11, 767, 4357, 198, 58, 17, 11, 767, 11, 807, 11, 352, 11, 718, 11, 513, 11, 642, 11, 860, 11, 604, 11907, 828, 198, 2, 10097, 30934, 198, 6, 20185, 62, 3798, 853, 313, 10354, 19203, 20185, 62, 3798, 853, 313, 3256, 198, 2, 10097, 30934, 198, 30109, 16, 11, 657, 11, 657, 11, 657, 11, 657, 11, 767, 11, 657, 11, 860, 11, 657, 4357, 198, 58, 15, 11, 513, 11, 657, 11, 657, 11, 362, 11, 657, 11, 657, 11, 657, 11, 807, 4357, 198, 58, 15, 11, 657, 11, 860, 11, 718, 11, 657, 11, 657, 11, 642, 11, 657, 11, 657, 4357, 198, 58, 15, 11, 657, 11, 642, 11, 513, 11, 657, 11, 657, 11, 860, 11, 657, 11, 657, 4357, 198, 58, 15, 11, 352, 11, 657, 11, 657, 11, 807, 11, 657, 11, 657, 11, 657, 11, 362, 4357, 198, 58, 21, 11, 657, 11, 657, 11, 657, 11, 657, 11, 604, 11, 657, 11, 657, 11, 657, 4357, 198, 58, 18, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 352, 11, 657, 4357, 198, 58, 15, 11, 604, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 767, 4357, 198, 58, 15, 11, 657, 11, 767, 11, 657, 11, 657, 11, 657, 11, 513, 11, 657, 11, 657, 60, 4357, 198, 2, 10097, 30934, 198, 30109, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 4357, 198, 58, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 4357, 198, 58, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 4357, 198, 58, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 4357, 198, 58, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 4357, 198, 58, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 4357, 198, 58, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 4357, 198, 58, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 4357, 198, 58, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11907, 828, 198, 2, 10097, 30934, 198, 6, 489, 16881, 62, 2436, 14378, 10354, 10786, 489, 16881, 62, 2436, 14378, 3256, 1303, 1327, 422, 23899, 25, 940, 13, 940, 2548, 14, 82, 7856, 25816, 1495, 198, 2, 10097, 30934, 198, 30109, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 352, 11, 362, 4357, 198, 58, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 513, 4357, 198, 58, 15, 11, 657, 11, 362, 11, 513, 11, 657, 11, 657, 11, 604, 11, 657, 11, 657, 4357, 198, 58, 15, 11, 657, 11, 352, 11, 807, 11, 657, 11, 657, 11, 657, 11, 657, 11, 642, 4357, 198, 58, 15, 11, 718, 11, 657, 11, 657, 11, 767, 11, 657, 11, 807, 11, 657, 11, 657, 4357, 198, 58, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 860, 11, 657, 11, 657, 11, 657, 4357, 198, 58, 15, 11, 657, 11, 807, 11, 642, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 4357, 198, 58, 24, 11, 657, 11, 657, 11, 657, 11, 604, 11, 657, 11, 642, 11, 657, 11, 657, 4357, 198, 58, 19, 11, 767, 11, 657, 11, 657, 11, 657, 11, 718, 11, 657, 11, 657, 11, 657, 60, 4357, 198, 2, 10097, 30934, 198, 30109, 23, 11, 513, 11, 860, 11, 604, 11, 718, 11, 642, 11, 767, 11, 352, 11, 362, 4357, 198, 58, 16, 11, 604, 11, 718, 11, 767, 11, 807, 11, 362, 11, 860, 11, 642, 11, 513, 4357, 198, 58, 22, 11, 642, 11, 362, 11, 513, 11, 860, 11, 352, 11, 604, 11, 807, 11, 718, 4357, 198, 58, 18, 11, 860, 11, 352, 11, 807, 11, 362, 11, 604, 11, 718, 11, 767, 11, 642, 4357, 198, 58, 20, 11, 718, 11, 604, 11, 352, 11, 767, 11, 513, 11, 807, 11, 362, 11, 860, 4357, 198, 58, 17, 11, 807, 11, 767, 11, 718, 11, 642, 11, 860, 11, 513, 11, 604, 11, 352, 4357, 198, 58, 21, 11, 362, 11, 807, 11, 642, 11, 513, 11, 767, 11, 352, 11, 860, 11, 604, 4357, 198, 58, 24, 11, 352, 11, 513, 11, 362, 11, 604, 11, 807, 11, 642, 11, 718, 11, 767, 4357, 198, 58, 19, 11, 767, 11, 642, 11, 860, 11, 352, 11, 718, 11, 362, 11, 513, 11, 807, 11907, 8, 198, 92, 198, 198, 2, 1783, 12, 51, 3620, 6489, 6158, 3880, 32501, 198, 2235, 10097, 30934, 198, 2, 16410, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 4357, 198, 2, 685, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 4357, 198, 2, 685, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 4357, 198, 2, 685, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 4357, 198, 2, 685, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 4357, 198, 2, 685, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 4357, 198, 2, 685, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 4357, 198, 2, 685, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 4357, 198, 2, 685, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11907, 198, 198, 2, 1783, 12, 51, 3620, 6489, 6158, 1467, 55, 1433, 3880, 982, 198, 2, 1303, 10097, 30934, 198, 2, 16410, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 4357, 198, 2, 220, 685, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 4357, 198, 2, 220, 685, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 4357, 198, 2, 220, 685, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 4357, 198, 2, 220, 685, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 4357, 198, 2, 220, 685, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 4357, 198, 2, 220, 685, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 4357, 198, 2, 220, 685, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 4357, 198, 2, 220, 685, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 4357, 198, 2, 220, 685, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 4357, 198, 2, 220, 685, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 4357, 198, 2, 220, 685, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 4357, 198, 2, 220, 685, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 4357, 198, 2, 220, 685, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 4357, 198, 2, 220, 685, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 4357, 198, 2, 220, 685, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11907 ]
2.015638
2,494
#!/usr/bin/env python from __future__ import print_function import os print( """[busco] out_path = {0} tmp_path = {0}/tmp [tblastn] # path to tblastn path = /usr/bin/ [makeblastdb] # path to makeblastdb path = /usr/bin/ [augustus] # path to augustus path = /opt/augustus/bin/ [etraining] # path to augustus etraining path = /opt/augustus/bin/ # path to augustus perl scripts, redeclare it for each new script [gff2gbSmallDNA.pl] path = /usr/bin/ [new_species.pl] path = /usr/bin/ [optimize_augustus.pl] path = /usr/bin/ [hmmsearch] # path to HMMsearch executable path = /usr/local/bin/ [Rscript] # path to Rscript, if you wish to use the plot tool path = /usr/bin/""".format(os.environ['PWD']) )
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 11748, 28686, 198, 4798, 7, 198, 15931, 17912, 10885, 1073, 60, 198, 448, 62, 6978, 796, 1391, 15, 92, 198, 22065, 62, 6978, 796, 1391, 15, 92, 14, 22065, 198, 198, 58, 83, 39806, 77, 60, 198, 2, 3108, 284, 256, 39806, 77, 198, 6978, 796, 1220, 14629, 14, 8800, 14, 198, 198, 58, 15883, 39806, 9945, 60, 198, 2, 3108, 284, 787, 39806, 9945, 198, 6978, 796, 1220, 14629, 14, 8800, 14, 198, 198, 58, 7493, 436, 385, 60, 198, 2, 3108, 284, 16339, 436, 385, 198, 6978, 796, 1220, 8738, 14, 7493, 436, 385, 14, 8800, 14, 198, 198, 58, 21879, 1397, 60, 198, 2, 3108, 284, 16339, 436, 385, 2123, 24674, 198, 6978, 796, 1220, 8738, 14, 7493, 436, 385, 14, 8800, 14, 198, 198, 2, 3108, 284, 16339, 436, 385, 48746, 14750, 11, 21459, 565, 533, 340, 329, 1123, 649, 4226, 198, 58, 70, 487, 17, 22296, 18712, 28886, 13, 489, 60, 198, 6978, 796, 1220, 14629, 14, 8800, 14, 220, 198, 58, 3605, 62, 35448, 13, 489, 60, 198, 6978, 796, 1220, 14629, 14, 8800, 14, 220, 198, 58, 40085, 1096, 62, 7493, 436, 385, 13, 489, 60, 198, 6978, 796, 1220, 14629, 14, 8800, 14, 220, 198, 198, 58, 71, 3020, 12947, 60, 198, 2, 3108, 284, 367, 12038, 12947, 28883, 198, 6978, 796, 1220, 14629, 14, 12001, 14, 8800, 14, 220, 198, 198, 58, 49, 12048, 60, 198, 2, 3108, 284, 371, 12048, 11, 611, 345, 4601, 284, 779, 262, 7110, 2891, 198, 6978, 796, 1220, 14629, 14, 8800, 14, 15931, 1911, 18982, 7, 418, 13, 268, 2268, 17816, 47, 22332, 6, 12962, 198, 8, 198 ]
2.429553
291
from flask import Flask, current_app import jwt from disasterpets import db from disasterpets.Pets.models import Pets
[ 6738, 42903, 1330, 46947, 11, 1459, 62, 1324, 198, 11748, 474, 46569, 198, 6738, 9336, 79, 1039, 1330, 20613, 198, 6738, 9336, 79, 1039, 13, 47, 1039, 13, 27530, 1330, 43578, 198 ]
3.6875
32
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. An additional grant # of patent rights can be found in the PATENTS file in the same directory. """ Utilities for downloading and building data. These can be replaced if your particular file system does not support them. """ import datetime import os import requests import shutil import wget def built(path): """Checks if '.built' flag has been set for that task.""" return os.path.isfile(os.path.join(path, '.built')) def download(path, url, redownload=True): """Downloads file using `wget`. If redownload is set to false, then will not download tar file again if it is present (default true). """ if redownload or not os.path.isfile(path): filename = wget.download(url, out=path) print() # wget prints download status, without newline def download_request(url, path, fname): """Downloads file using `requests`.""" with requests.Session() as session: response = session.get(url, stream=True) CHUNK_SIZE = 32768 with open(os.path.join(path, fname), 'wb') as f: for chunk in response.iter_content(CHUNK_SIZE): if chunk: # filter out keep-alive new chunks f.write(chunk) response.close() def make_dir(path): """Makes the directory and any nonexistent parent directories.""" os.makedirs(path, exist_ok=True) def mark_done(path): """Marks the path as done by adding a '.built' file with the current timestamp. """ with open(os.path.join(path, '.built'), 'w') as write: write.write(str(datetime.datetime.today())) def move(path1, path2): """Renames the given file.""" shutil.move(path1, path2) def remove_dir(path): """Removes the given directory, if it exists.""" shutil.rmtree(path, ignore_errors=True) def untar(path, fname, deleteTar=True): """Unpacks the given archive file to the same directory, then (by default) deletes the archive file. """ print('unpacking ' + fname) fullpath = os.path.join(path, fname) shutil.unpack_archive(fullpath, path) if deleteTar: os.remove(fullpath) def download_from_google_drive(gd_id, destination): """Uses the requests package to download a file from Google Drive.""" URL = 'https://docs.google.com/uc?export=download' with requests.Session() as session: response = session.get(URL, params={'id': gd_id}, stream=True) token = _get_confirm_token(response) if token: response.close() params = {'id': gd_id, 'confirm': token} response = session.get(URL, params=params, stream=True) CHUNK_SIZE = 32768 with open(destination, 'wb') as f: for chunk in response.iter_content(CHUNK_SIZE): if chunk: # filter out keep-alive new chunks f.write(chunk) response.close()
[ 2, 15069, 357, 66, 8, 2177, 12, 25579, 11, 3203, 11, 3457, 13, 198, 2, 1439, 2489, 10395, 13, 198, 2, 770, 2723, 2438, 318, 11971, 739, 262, 347, 10305, 12, 7635, 5964, 1043, 287, 262, 198, 2, 38559, 24290, 2393, 287, 262, 6808, 8619, 286, 428, 2723, 5509, 13, 1052, 3224, 7264, 198, 2, 286, 12701, 2489, 460, 307, 1043, 287, 262, 28748, 15365, 2393, 287, 262, 976, 8619, 13, 198, 37811, 198, 18274, 2410, 329, 22023, 290, 2615, 1366, 13, 198, 4711, 460, 307, 6928, 611, 534, 1948, 2393, 1080, 857, 407, 1104, 606, 13, 198, 37811, 198, 198, 11748, 4818, 8079, 198, 11748, 28686, 198, 11748, 7007, 198, 11748, 4423, 346, 198, 11748, 266, 1136, 198, 198, 4299, 3170, 7, 6978, 2599, 198, 220, 220, 220, 37227, 7376, 4657, 611, 45302, 18780, 6, 6056, 468, 587, 900, 329, 326, 4876, 526, 15931, 198, 220, 220, 220, 1441, 28686, 13, 6978, 13, 4468, 576, 7, 418, 13, 6978, 13, 22179, 7, 6978, 11, 45302, 18780, 6, 4008, 198, 198, 4299, 4321, 7, 6978, 11, 19016, 11, 2266, 593, 2220, 28, 17821, 2599, 198, 220, 220, 220, 37227, 10002, 82, 2393, 1262, 4600, 86, 1136, 44646, 1002, 2266, 593, 2220, 318, 900, 284, 3991, 11, 788, 481, 407, 198, 220, 220, 220, 4321, 13422, 2393, 757, 611, 340, 318, 1944, 357, 12286, 2081, 737, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 2266, 593, 2220, 393, 407, 28686, 13, 6978, 13, 4468, 576, 7, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 29472, 796, 266, 1136, 13, 15002, 7, 6371, 11, 503, 28, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 3419, 1303, 266, 1136, 20842, 4321, 3722, 11, 1231, 649, 1370, 198, 198, 4299, 4321, 62, 25927, 7, 6371, 11, 3108, 11, 277, 3672, 2599, 198, 220, 220, 220, 37227, 10002, 82, 2393, 1262, 4600, 8897, 3558, 63, 526, 15931, 198, 220, 220, 220, 351, 7007, 13, 36044, 3419, 355, 6246, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 6246, 13, 1136, 7, 6371, 11, 4269, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5870, 4944, 42, 62, 33489, 796, 36203, 3104, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 418, 13, 6978, 13, 22179, 7, 6978, 11, 277, 3672, 828, 705, 39346, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 16058, 287, 2882, 13, 2676, 62, 11299, 7, 3398, 4944, 42, 62, 33489, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 16058, 25, 220, 1303, 8106, 503, 1394, 12, 282, 425, 649, 22716, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 7, 354, 2954, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 13, 19836, 3419, 198, 198, 4299, 787, 62, 15908, 7, 6978, 2599, 198, 220, 220, 220, 37227, 44, 1124, 262, 8619, 290, 597, 42601, 2560, 29196, 526, 15931, 198, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 6978, 11, 2152, 62, 482, 28, 17821, 8, 198, 198, 4299, 1317, 62, 28060, 7, 6978, 2599, 198, 220, 220, 220, 37227, 44, 5558, 262, 3108, 355, 1760, 416, 4375, 257, 45302, 18780, 6, 2393, 351, 262, 1459, 198, 220, 220, 220, 41033, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 351, 1280, 7, 418, 13, 6978, 13, 22179, 7, 6978, 11, 45302, 18780, 33809, 705, 86, 11537, 355, 3551, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 13, 13564, 7, 2536, 7, 19608, 8079, 13, 19608, 8079, 13, 40838, 3419, 4008, 198, 198, 4299, 1445, 7, 6978, 16, 11, 3108, 17, 2599, 198, 220, 220, 220, 37227, 26764, 1047, 262, 1813, 2393, 526, 15931, 198, 220, 220, 220, 4423, 346, 13, 21084, 7, 6978, 16, 11, 3108, 17, 8, 198, 198, 4299, 4781, 62, 15908, 7, 6978, 2599, 198, 220, 220, 220, 37227, 8413, 5241, 262, 1813, 8619, 11, 611, 340, 7160, 526, 15931, 198, 220, 220, 220, 4423, 346, 13, 81, 16762, 631, 7, 6978, 11, 8856, 62, 48277, 28, 17821, 8, 198, 198, 4299, 1418, 283, 7, 6978, 11, 277, 3672, 11, 12233, 47079, 28, 17821, 2599, 198, 220, 220, 220, 37227, 3118, 32377, 262, 1813, 15424, 2393, 284, 262, 976, 8619, 11, 788, 357, 1525, 4277, 8, 198, 220, 220, 220, 28128, 274, 262, 15424, 2393, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3601, 10786, 403, 41291, 705, 1343, 277, 3672, 8, 198, 220, 220, 220, 1336, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 6978, 11, 277, 3672, 8, 198, 220, 220, 220, 4423, 346, 13, 403, 8002, 62, 17474, 7, 12853, 6978, 11, 3108, 8, 198, 220, 220, 220, 611, 12233, 47079, 25, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28956, 7, 12853, 6978, 8, 198, 198, 4299, 4321, 62, 6738, 62, 13297, 62, 19472, 7, 21287, 62, 312, 11, 10965, 2599, 198, 220, 220, 220, 37227, 5842, 274, 262, 7007, 5301, 284, 4321, 257, 2393, 422, 3012, 9974, 526, 15931, 198, 220, 220, 220, 10289, 796, 705, 5450, 1378, 31628, 13, 13297, 13, 785, 14, 1229, 30, 39344, 28, 15002, 6, 628, 220, 220, 220, 351, 7007, 13, 36044, 3419, 355, 6246, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 6246, 13, 1136, 7, 21886, 11, 42287, 34758, 6, 312, 10354, 308, 67, 62, 312, 5512, 4269, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 11241, 796, 4808, 1136, 62, 10414, 2533, 62, 30001, 7, 26209, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 11241, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 13, 19836, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 1391, 6, 312, 10354, 308, 67, 62, 312, 11, 705, 10414, 2533, 10354, 11241, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 6246, 13, 1136, 7, 21886, 11, 42287, 28, 37266, 11, 4269, 28, 17821, 8, 628, 220, 220, 220, 220, 220, 220, 220, 5870, 4944, 42, 62, 33489, 796, 36203, 3104, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 16520, 1883, 11, 705, 39346, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 16058, 287, 2882, 13, 2676, 62, 11299, 7, 3398, 4944, 42, 62, 33489, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 16058, 25, 220, 1303, 8106, 503, 1394, 12, 282, 425, 649, 22716, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 7, 354, 2954, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 13, 19836, 3419, 198 ]
2.638243
1,161
from datetime import datetime import pytz import firebase_admin from firebase_admin import credentials from firebase_admin import firestore
[ 6738, 4818, 8079, 1330, 4818, 8079, 198, 11748, 12972, 22877, 198, 11748, 2046, 8692, 62, 28482, 198, 6738, 2046, 8692, 62, 28482, 1330, 18031, 198, 6738, 2046, 8692, 62, 28482, 1330, 2046, 8095, 198 ]
4.117647
34
#!/usr/bin/env python # -*- coding: utf-8 -*- from bacpypes.iocb import IOCB from bacpypes.pdu import Address, GlobalBroadcast from bacpypes.apdu import WhoIsRequest, ReadPropertyRequest, ReadPropertyACK from bacpypes.object import get_object_class, get_datatype from bacpypes.object import ObjectType, registered_object_types from bacpypes.basetypes import PropertyIdentifier from eyed.driver.bacnet import definition # # BACnet Client # # # BACnetClient 初期化処理 # # # getAddressByDeviceID # # # WhoIsRequest # # # IamRequest の 受信待ち # - 例外: Empty (タイムアウト時) # # # ReadProperty # # # ReadProperty # # # ReadDeviceProperty (デバイス関連の情報読み出し) # # # addObject (オブジェクト の 登録) # # # addProperty (プロパティ の 登録) # # # getProperty (プロパティ の 登録) # # # getObjectByID (オブジェクト の 取得) # # # getObjectByID (オブジェクト の 取得 [ID 検索]) # # # getObjectByName (オブジェクト の 取得 [名前で検索]) #
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 275, 330, 79, 9497, 13, 72, 420, 65, 1330, 48245, 33, 198, 6738, 275, 330, 79, 9497, 13, 79, 646, 1330, 17917, 11, 8060, 30507, 2701, 198, 6738, 275, 330, 79, 9497, 13, 499, 646, 1330, 5338, 3792, 18453, 11, 4149, 21746, 18453, 11, 4149, 21746, 8120, 198, 6738, 275, 330, 79, 9497, 13, 15252, 1330, 651, 62, 15252, 62, 4871, 11, 651, 62, 19608, 265, 2981, 198, 6738, 275, 330, 79, 9497, 13, 15252, 1330, 9515, 6030, 11, 6823, 62, 15252, 62, 19199, 198, 6738, 275, 330, 79, 9497, 13, 12093, 2963, 12272, 1330, 14161, 33234, 7483, 198, 6738, 45320, 13, 26230, 13, 65, 330, 3262, 1330, 6770, 198, 198, 2, 198, 2, 347, 2246, 3262, 20985, 198, 2, 198, 197, 2, 198, 197, 2, 347, 2246, 3262, 11792, 10263, 230, 251, 17312, 253, 44293, 244, 49035, 99, 49426, 228, 198, 197, 2, 628, 197, 2, 198, 197, 2, 651, 20231, 3886, 24728, 2389, 198, 197, 2, 628, 197, 2, 198, 197, 2, 5338, 3792, 18453, 198, 197, 2, 628, 197, 2, 198, 197, 2, 314, 321, 18453, 220, 5641, 10263, 237, 245, 46479, 94, 36181, 227, 2515, 94, 198, 197, 2, 532, 220, 160, 122, 233, 13783, 244, 25, 33523, 357, 23376, 11482, 25795, 11839, 16165, 13298, 162, 25081, 8, 198, 197, 2, 628, 197, 2, 198, 197, 2, 4149, 21746, 198, 197, 2, 628, 197, 2, 198, 197, 2, 4149, 21746, 198, 197, 2, 628, 197, 2, 198, 197, 2, 4149, 24728, 21746, 357, 21959, 29659, 11482, 8943, 38461, 95, 34460, 96, 27032, 225, 227, 161, 254, 109, 45739, 255, 2515, 123, 49035, 118, 22180, 8, 198, 197, 2, 628, 197, 2, 198, 197, 2, 751, 10267, 357, 20513, 24001, 21091, 24806, 14099, 13298, 220, 5641, 13328, 247, 119, 165, 234, 110, 8, 198, 197, 2, 628, 197, 2, 198, 197, 2, 751, 21746, 357, 30965, 16253, 32546, 44431, 220, 5641, 13328, 247, 119, 165, 234, 110, 8, 198, 197, 2, 628, 197, 2, 198, 197, 2, 651, 21746, 357, 30965, 16253, 32546, 44431, 220, 5641, 13328, 247, 119, 165, 234, 110, 8, 198, 197, 2, 628, 197, 2, 198, 197, 2, 651, 10267, 3886, 2389, 357, 20513, 24001, 21091, 24806, 14099, 13298, 220, 5641, 10263, 237, 244, 36181, 245, 8, 198, 197, 2, 628, 197, 2, 198, 197, 2, 651, 10267, 3886, 2389, 357, 20513, 24001, 21091, 24806, 14099, 13298, 220, 5641, 10263, 237, 244, 36181, 245, 685, 2389, 10545, 97, 250, 163, 112, 95, 12962, 198, 197, 2, 628, 197, 2, 198, 197, 2, 651, 10267, 3886, 5376, 357, 20513, 24001, 21091, 24806, 14099, 13298, 220, 5641, 10263, 237, 244, 36181, 245, 685, 28938, 235, 30298, 235, 30640, 162, 97, 250, 163, 112, 95, 12962, 198, 197, 2, 628 ]
1.889121
478
#!/usr/bin/env python # -*- coding: utf-8 -*- from bson.objectid import ObjectId from pymongo import MongoClient from validate_email import validate_email from views.base import base import config import hashlib ''' forms constructor. * Es necesario crear una variable tipo dict() que debe llevar la siguiente estructura. { 'config(requerido)':{ 'method(requerido)': 'valores POST o GET', 'action(requerido)': 'url para enviar la data', 'class' : 'Clases de css', 'error-class': 'Clase para el error' }, fields(requerido): [ { 'name(requerido)': 'nombre del campo', 'widget(requerido)': 'Tipo de input', 'class': 'Clases de css', 'id': 'Valor del ID', 'label'(*Requiere que el ID del campo este seteado.): { 'attributes': 'Cualquier otro valor que no este disponible. ejemplo: data-*= "" ', 'class': 'Clases de css' } 'placeholder': 'Valor del placeholder', 'required': 'Valores True o False', 'value': 'valor default del campo.' } ] } '''
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 275, 1559, 13, 15252, 312, 1330, 9515, 7390, 198, 6738, 279, 4948, 25162, 1330, 42591, 11792, 198, 6738, 26571, 62, 12888, 1330, 26571, 62, 12888, 198, 6738, 5009, 13, 8692, 1330, 2779, 220, 198, 11748, 4566, 198, 11748, 12234, 8019, 198, 198, 7061, 6, 220, 198, 23914, 23772, 13, 198, 198, 9, 8678, 497, 728, 4982, 1126, 283, 555, 64, 7885, 8171, 78, 8633, 3419, 8358, 390, 1350, 300, 2768, 283, 8591, 43237, 84, 1153, 68, 1556, 1356, 5330, 13, 198, 197, 90, 198, 197, 197, 6, 11250, 7, 8897, 263, 17305, 8, 10354, 90, 198, 197, 197, 197, 1101, 316, 2065, 7, 8897, 263, 17305, 8, 10354, 705, 2100, 2850, 24582, 267, 17151, 3256, 198, 197, 197, 197, 6, 2673, 7, 8897, 263, 17305, 8, 10354, 705, 6371, 31215, 551, 8903, 283, 8591, 1366, 3256, 198, 197, 197, 197, 6, 4871, 6, 1058, 705, 2601, 1386, 390, 269, 824, 3256, 198, 197, 197, 197, 6, 18224, 12, 4871, 10354, 705, 2601, 589, 31215, 1288, 4049, 6, 198, 197, 197, 5512, 198, 197, 197, 25747, 7, 8897, 263, 17305, 2599, 685, 198, 197, 197, 197, 90, 198, 197, 197, 197, 197, 6, 3672, 7, 8897, 263, 17305, 8, 10354, 705, 77, 2381, 260, 1619, 1413, 78, 3256, 198, 197, 197, 197, 197, 6, 42655, 7, 8897, 263, 17305, 8, 10354, 705, 28434, 78, 390, 5128, 3256, 198, 197, 197, 197, 197, 6, 4871, 10354, 705, 2601, 1386, 390, 269, 824, 3256, 198, 197, 197, 197, 197, 6, 312, 10354, 705, 7762, 273, 1619, 4522, 3256, 198, 197, 197, 197, 197, 6, 18242, 6, 46491, 16844, 13235, 8358, 1288, 4522, 1619, 1413, 78, 43577, 900, 1329, 78, 47308, 1391, 198, 197, 197, 197, 197, 197, 6, 1078, 7657, 10354, 705, 34, 723, 421, 959, 267, 23528, 1188, 273, 8358, 645, 43577, 4596, 261, 856, 13, 304, 73, 18856, 78, 25, 1366, 12, 9, 28, 13538, 46083, 198, 197, 197, 197, 197, 197, 6, 4871, 10354, 705, 2601, 1386, 390, 269, 824, 6, 198, 197, 197, 197, 197, 92, 198, 197, 197, 197, 197, 6, 5372, 13829, 10354, 705, 7762, 273, 1619, 46076, 3256, 198, 197, 197, 197, 197, 821, 421, 1202, 10354, 705, 7762, 2850, 6407, 267, 10352, 3256, 198, 197, 197, 197, 197, 6, 8367, 10354, 705, 2100, 273, 4277, 1619, 1413, 78, 2637, 198, 197, 197, 197, 92, 198, 197, 197, 60, 628, 197, 92, 198, 7061, 6, 628 ]
2.40566
424
import traceback from twisted.internet import reactor reactor.callWhenRunning(stack) reactor.run()
[ 11748, 12854, 1891, 198, 6738, 19074, 13, 37675, 1330, 21905, 628, 198, 198, 260, 11218, 13, 13345, 2215, 28768, 7, 25558, 8, 198, 260, 11218, 13, 5143, 3419, 198 ]
3.517241
29
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import logging from ralph.util import plugin from ralph.util.api_scrooge import get_blade_servers from ralph_scrooge.models import ( AssetInfo, DailyAssetInfo, DailyUsage, UsageType, ) logger = logging.getLogger(__name__) def update_usage(daily_asset_info, date, value, usage_type): """ Saves single record to model """ usage, created = DailyUsage.objects.get_or_create( date=date, type=usage_type, daily_pricing_object=daily_asset_info, defaults=dict( service_environment=daily_asset_info.service_environment, ) ) usage.service_environment = daily_asset_info.service_environment usage.value = value usage.save() return created def update_blade_server(data, date, usage_type): """ Updates single Blade Server usage type record """ try: asset_info = AssetInfo.objects.get(device_id=data['device_id']) daily_asset_info = asset_info.dailyassetinfo_set.get(date=date) return update_usage( daily_asset_info, date, 1, usage_type, ) except AssetInfo.DoesNotExist: raise AssetInfoNotFoundError() except DailyAssetInfo.DoesNotExist: raise DailyAssetInfoNotFoundError() def get_usage_type(): """ Returns Blade Server usage type """ return UsageType.objects.get_or_create( symbol='blade_server', defaults=dict( name='Blade server', ) )[0] @plugin.register(chain='scrooge', requires=['asset', 'service']) def blade_server(today, **kwargs): """ Updates Blade Servers usages from Ralph """ usage_type = get_usage_type() new_blades = updated = total = 0 for data in get_blade_servers(): try: if update_blade_server(data, today, usage_type): new_blades += 1 else: updated += 1 except AssetInfoNotFoundError: logger.warning('Device {} not found'.format(data['device_id'])) except DailyAssetInfoNotFoundError: logger.warning( 'DailyAssetInfo for id {} and date {} not found'.format( data['device_id'], today, ) ) total += 1 return ( True, '{} new Blade Servers usages, {} updated, {} total'.format( new_blades, updated, total, ) )
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 11748, 18931, 198, 198, 6738, 374, 17307, 13, 22602, 1330, 13877, 198, 6738, 374, 17307, 13, 22602, 13, 15042, 62, 1416, 42407, 469, 1330, 651, 62, 22500, 62, 2655, 690, 198, 6738, 374, 17307, 62, 1416, 42407, 469, 13, 27530, 1330, 357, 198, 220, 220, 220, 31433, 12360, 11, 198, 220, 220, 220, 6714, 45869, 12360, 11, 198, 220, 220, 220, 6714, 28350, 11, 198, 220, 220, 220, 29566, 6030, 11, 198, 8, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 628, 198, 4299, 4296, 62, 26060, 7, 29468, 62, 562, 316, 62, 10951, 11, 3128, 11, 1988, 11, 8748, 62, 4906, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 311, 3080, 2060, 1700, 284, 2746, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8748, 11, 2727, 796, 6714, 28350, 13, 48205, 13, 1136, 62, 273, 62, 17953, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3128, 28, 4475, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 26060, 62, 4906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4445, 62, 1050, 6345, 62, 15252, 28, 29468, 62, 562, 316, 62, 10951, 11, 198, 220, 220, 220, 220, 220, 220, 220, 26235, 28, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2139, 62, 38986, 28, 29468, 62, 562, 316, 62, 10951, 13, 15271, 62, 38986, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 8748, 13, 15271, 62, 38986, 796, 4445, 62, 562, 316, 62, 10951, 13, 15271, 62, 38986, 198, 220, 220, 220, 8748, 13, 8367, 796, 1988, 198, 220, 220, 220, 8748, 13, 21928, 3419, 198, 220, 220, 220, 1441, 2727, 628, 198, 4299, 4296, 62, 22500, 62, 15388, 7, 7890, 11, 3128, 11, 8748, 62, 4906, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 28090, 2060, 11671, 9652, 8748, 2099, 1700, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11171, 62, 10951, 796, 31433, 12360, 13, 48205, 13, 1136, 7, 25202, 62, 312, 28, 7890, 17816, 25202, 62, 312, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 4445, 62, 562, 316, 62, 10951, 796, 11171, 62, 10951, 13, 29468, 562, 316, 10951, 62, 2617, 13, 1136, 7, 4475, 28, 4475, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4296, 62, 26060, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4445, 62, 562, 316, 62, 10951, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3128, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8748, 62, 4906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 2845, 31433, 12360, 13, 13921, 3673, 3109, 396, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 31433, 12360, 3673, 21077, 12331, 3419, 198, 220, 220, 220, 2845, 6714, 45869, 12360, 13, 13921, 3673, 3109, 396, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 6714, 45869, 12360, 3673, 21077, 12331, 3419, 628, 198, 4299, 651, 62, 26060, 62, 4906, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 11671, 9652, 8748, 2099, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 29566, 6030, 13, 48205, 13, 1136, 62, 273, 62, 17953, 7, 198, 220, 220, 220, 220, 220, 220, 220, 6194, 11639, 22500, 62, 15388, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 26235, 28, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11639, 47520, 4382, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 1267, 58, 15, 60, 628, 198, 31, 33803, 13, 30238, 7, 7983, 11639, 1416, 42407, 469, 3256, 4433, 28, 17816, 562, 316, 3256, 705, 15271, 6, 12962, 198, 4299, 11865, 62, 15388, 7, 40838, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 28090, 11671, 2930, 690, 514, 1095, 422, 20993, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8748, 62, 4906, 796, 651, 62, 26060, 62, 4906, 3419, 198, 220, 220, 220, 649, 62, 2436, 2367, 796, 6153, 796, 2472, 796, 657, 198, 220, 220, 220, 329, 1366, 287, 651, 62, 22500, 62, 2655, 690, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4296, 62, 22500, 62, 15388, 7, 7890, 11, 1909, 11, 8748, 62, 4906, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 2436, 2367, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6153, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 31433, 12360, 3673, 21077, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 43917, 10786, 24728, 23884, 407, 1043, 4458, 18982, 7, 7890, 17816, 25202, 62, 312, 20520, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 6714, 45869, 12360, 3673, 21077, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 43917, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28545, 45869, 12360, 329, 4686, 23884, 290, 3128, 23884, 407, 1043, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 17816, 25202, 62, 312, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1909, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 15853, 352, 198, 220, 220, 220, 1441, 357, 198, 220, 220, 220, 220, 220, 220, 220, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 90, 92, 649, 11671, 2930, 690, 514, 1095, 11, 23884, 6153, 11, 23884, 2472, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 2436, 2367, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6153, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2472, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 1267, 198 ]
2.242017
1,190
from django.db import models from django.contrib.auth.models import ( AbstractUser, BaseUserManager )
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 357, 198, 220, 220, 220, 27741, 12982, 11, 198, 220, 220, 220, 7308, 12982, 13511, 198, 8, 628, 198 ]
2.897436
39
#!/usr/bin/env python3 # # Convert Pavlick's dictionary to hunalign # import argparse import re if __name__ == "__main__": main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 2, 198, 2, 38240, 24081, 75, 624, 338, 22155, 284, 5494, 31494, 198, 2, 198, 198, 11748, 1822, 29572, 198, 11748, 302, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 1388, 3419, 198 ]
2.72
50
# Standard Library from typing import List, Union, Optional from ipaddress import IPv4Network, IPv6Network # Third Party from pydantic import StrictStr # Project from rp.models._common import Flag, RPModel class RouteFilterEntry(RPModel): """JunOS route-filter-list item JSON model.""" address: Union[IPv4Network, IPv6Network] longer: Flag orlonger: Flag exact: Flag prefix_length_range: Optional[StrictStr] through: Optional[StrictStr] upto: Optional[StrictStr] class Config: """Pydantic config overrides.""" fields = {"prefix_length_range": "prefix-length-range"} class RouteFilterList(RPModel): """JunOS route-filter-list JSON model.""" name: StrictStr rf_list: List[RouteFilterEntry]
[ 2, 8997, 10074, 198, 6738, 19720, 1330, 7343, 11, 4479, 11, 32233, 198, 6738, 20966, 21975, 1330, 25961, 19, 26245, 11, 25961, 21, 26245, 198, 198, 2, 10467, 3615, 198, 6738, 279, 5173, 5109, 1330, 520, 2012, 13290, 198, 198, 2, 4935, 198, 6738, 374, 79, 13, 27530, 13557, 11321, 1330, 19762, 11, 25812, 17633, 628, 198, 4871, 18956, 22417, 30150, 7, 20031, 17633, 2599, 198, 220, 220, 220, 37227, 22396, 2640, 6339, 12, 24455, 12, 4868, 2378, 19449, 2746, 526, 15931, 628, 220, 220, 220, 2209, 25, 4479, 58, 4061, 85, 19, 26245, 11, 25961, 21, 26245, 60, 198, 220, 220, 220, 2392, 25, 19762, 198, 220, 220, 220, 393, 6511, 263, 25, 19762, 198, 220, 220, 220, 2748, 25, 19762, 198, 220, 220, 220, 21231, 62, 13664, 62, 9521, 25, 32233, 58, 1273, 2012, 13290, 60, 198, 220, 220, 220, 832, 25, 32233, 58, 1273, 2012, 13290, 60, 198, 220, 220, 220, 18529, 78, 25, 32233, 58, 1273, 2012, 13290, 60, 628, 220, 220, 220, 1398, 17056, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 47, 5173, 5109, 4566, 23170, 1460, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 7032, 796, 19779, 40290, 62, 13664, 62, 9521, 1298, 366, 40290, 12, 13664, 12, 9521, 20662, 628, 198, 4871, 18956, 22417, 8053, 7, 20031, 17633, 2599, 198, 220, 220, 220, 37227, 22396, 2640, 6339, 12, 24455, 12, 4868, 19449, 2746, 526, 15931, 628, 220, 220, 220, 1438, 25, 520, 2012, 13290, 198, 220, 220, 220, 374, 69, 62, 4868, 25, 7343, 58, 43401, 22417, 30150, 60, 198 ]
2.908397
262
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2021 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import json from django.utils.translation import ugettext_lazy as _ from jsonschema import SchemaError from jsonschema import ValidationError as JsonValidationError from jsonschema import validate as json_validate from rest_framework.exceptions import ValidationError from .constants import KEY_PATTERN, NUM_VAR_ERROR_MSG, REAL_NUM_VAR_PATTERN from .models import VersionedEntity, get_model_class_by_resource_name def is_name_duplicate(resource_name, resource_id, name, version_id): """同一类资源的名称不能重复""" # 判断新名称与老名称是否一致,如果一致,则不会重复 model_class = get_model_class_by_resource_name(resource_name) try: resource = model_class.objects.get(id=resource_id) if name == resource.name: return False except model_class.DoesNotExist: pass # 只校验当前版本内是否重复 try: version_entity = VersionedEntity.objects.get(id=version_id) except VersionedEntity.DoesNotExist: return False else: entity = version_entity.get_entity() resource_ids = entity.get(resource_name, '') if not resource_ids: return False if model_class.objects.filter(name=name, id__in=resource_ids.split(',')): return True return False def validate_variable_inconfig(config): """校验配置文件中的变量名是否合法""" search_list = KEY_PATTERN.findall(json.dumps(config)) search_keys = set(search_list) for ikey in search_keys: if not REAL_NUM_VAR_PATTERN.match(ikey): raise ValidationError(_('变量[{}]不合法, {}').format(ikey, NUM_VAR_ERROR_MSG))
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 24893, 1087, 318, 10607, 284, 1104, 262, 1280, 2723, 2055, 416, 1642, 5525, 241, 251, 165, 110, 116, 162, 247, 118, 12859, 239, 47, 7252, 50, 33176, 111, 20998, 108, 163, 97, 122, 44293, 118, 48304, 357, 14573, 15708, 350, 7252, 50, 8108, 198, 7407, 653, 8, 1695, 13, 198, 15269, 357, 34, 8, 2177, 12, 1238, 2481, 2320, 43, 317, 1959, 15302, 11, 257, 9368, 1087, 1664, 13, 1439, 2489, 10395, 13, 198, 26656, 15385, 739, 262, 17168, 13789, 357, 1169, 366, 34156, 15341, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 1639, 743, 7330, 257, 4866, 286, 262, 13789, 379, 628, 220, 220, 220, 2638, 1378, 44813, 1668, 13, 2398, 14, 677, 4541, 14, 36393, 198, 198, 28042, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 9387, 739, 262, 13789, 318, 9387, 319, 198, 272, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 4091, 262, 13789, 329, 262, 198, 11423, 3303, 15030, 21627, 290, 11247, 739, 262, 13789, 13, 198, 37811, 198, 11748, 33918, 198, 198, 6738, 42625, 14208, 13, 26791, 13, 41519, 1330, 334, 1136, 5239, 62, 75, 12582, 355, 4808, 198, 6738, 44804, 684, 2395, 2611, 1330, 10011, 2611, 12331, 198, 6738, 44804, 684, 2395, 2611, 1330, 3254, 24765, 12331, 355, 449, 1559, 7762, 24765, 12331, 198, 6738, 44804, 684, 2395, 2611, 1330, 26571, 355, 33918, 62, 12102, 378, 198, 6738, 1334, 62, 30604, 13, 1069, 11755, 1330, 3254, 24765, 12331, 198, 198, 6738, 764, 9979, 1187, 1330, 35374, 62, 47, 1404, 31800, 11, 36871, 62, 53, 1503, 62, 24908, 62, 5653, 38, 11, 32744, 62, 41359, 62, 53, 1503, 62, 47, 1404, 31800, 198, 6738, 764, 27530, 1330, 10628, 276, 32398, 11, 651, 62, 19849, 62, 4871, 62, 1525, 62, 31092, 62, 3672, 628, 198, 198, 4299, 318, 62, 3672, 62, 646, 489, 5344, 7, 31092, 62, 3672, 11, 8271, 62, 312, 11, 1438, 11, 2196, 62, 312, 2599, 198, 220, 220, 220, 37227, 28938, 234, 31660, 163, 109, 119, 164, 113, 226, 162, 118, 238, 21410, 28938, 235, 163, 100, 108, 38834, 47797, 121, 34932, 235, 13783, 235, 37811, 198, 220, 220, 220, 1303, 10263, 230, 97, 23877, 255, 23877, 108, 28938, 235, 163, 100, 108, 10310, 236, 32003, 223, 28938, 235, 163, 100, 108, 42468, 28938, 99, 31660, 164, 229, 112, 171, 120, 234, 36685, 224, 162, 252, 250, 31660, 164, 229, 112, 171, 120, 234, 26344, 247, 38834, 27670, 21253, 229, 235, 13783, 235, 198, 220, 220, 220, 2746, 62, 4871, 796, 651, 62, 19849, 62, 4871, 62, 1525, 62, 31092, 62, 3672, 7, 31092, 62, 3672, 8, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8271, 796, 2746, 62, 4871, 13, 48205, 13, 1136, 7, 312, 28, 31092, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1438, 6624, 8271, 13, 3672, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 2845, 2746, 62, 4871, 13, 13921, 3673, 3109, 396, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 1303, 10263, 237, 103, 43718, 94, 165, 103, 234, 37605, 241, 30298, 235, 48304, 17312, 105, 37863, 227, 42468, 28938, 99, 34932, 235, 13783, 235, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2196, 62, 26858, 796, 10628, 276, 32398, 13, 48205, 13, 1136, 7, 312, 28, 9641, 62, 312, 8, 198, 220, 220, 220, 2845, 10628, 276, 32398, 13, 13921, 3673, 3109, 396, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9312, 796, 2196, 62, 26858, 13, 1136, 62, 26858, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 8271, 62, 2340, 796, 9312, 13, 1136, 7, 31092, 62, 3672, 11, 10148, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 8271, 62, 2340, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2746, 62, 4871, 13, 48205, 13, 24455, 7, 3672, 28, 3672, 11, 4686, 834, 259, 28, 31092, 62, 2340, 13, 35312, 7, 3256, 11537, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 198, 4299, 26571, 62, 45286, 62, 259, 11250, 7, 11250, 2599, 198, 220, 220, 220, 37227, 43718, 94, 165, 103, 234, 165, 227, 235, 163, 121, 106, 23877, 229, 20015, 114, 40792, 21410, 20998, 246, 34932, 237, 28938, 235, 42468, 28938, 99, 28938, 230, 37345, 243, 37811, 198, 220, 220, 220, 2989, 62, 4868, 796, 35374, 62, 47, 1404, 31800, 13, 19796, 439, 7, 17752, 13, 67, 8142, 7, 11250, 4008, 198, 220, 220, 220, 2989, 62, 13083, 796, 900, 7, 12947, 62, 4868, 8, 198, 220, 220, 220, 329, 220, 522, 88, 287, 2989, 62, 13083, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 32744, 62, 41359, 62, 53, 1503, 62, 47, 1404, 31800, 13, 15699, 7, 522, 88, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 3254, 24765, 12331, 28264, 10786, 20998, 246, 34932, 237, 58, 90, 92, 60, 38834, 28938, 230, 37345, 243, 11, 23884, 27691, 18982, 7, 522, 88, 11, 36871, 62, 53, 1503, 62, 24908, 62, 5653, 38, 4008, 628, 198 ]
2.43949
942
''' DeviceManager: a Component that manages different device families e.g. Telescope, Camera, FilterWheel via a GUI element that permits selection/connection/disconnection DeviceFamily: superclass of e.g. Camera, Telescope, FilterWheel handles communication with devices for generic functions such as select, connect, disconnect as well as common error handling Device: superclass of device instances e.g. SXCamera, ASCOMFilterWheel ''' import json import importlib from functools import partial from kivy.app import App from loguru import logger from kivy.metrics import dp from kivy.uix.spinner import Spinner from kivy.uix.button import Button from kivy.uix.label import Label from kivy.uix.boxlayout import BoxLayout from kivy.event import EventDispatcher from kivy.core.window import Window from kivy.properties import ( ObjectProperty, StringProperty, BooleanProperty, DictProperty ) from kivy.clock import Clock from jocular.component import Component from jocular.settingsmanager import SettingsBase from jocular.widgets import jicon, LabelL from jocular.formwidgets import configurable_to_widget from kivy.lang import Builder Builder.load_string(''' <DeviceManager>: canvas: Color: rgba: .2, .2, .2, .7 Ellipse: pos: self.x + dp(58) + (self.width - self.height) / 2, dp(58) size: self.height - dp(116), self.height - dp(116) orientation: 'vertical' pos_hint: {'center_x': 10, 'center_y': .5} ''') ''' Each actual device e.g. ASCOMTelescope, ManualFilterwheel etc is a subclass of this '''
[ 7061, 6, 220, 198, 197, 24728, 13511, 25, 220, 198, 197, 197, 64, 35100, 326, 15314, 1180, 3335, 4172, 304, 13, 70, 13, 36789, 11, 20432, 11, 25853, 45307, 198, 197, 197, 8869, 257, 25757, 5002, 326, 13892, 6356, 14, 38659, 14, 6381, 38659, 628, 197, 24728, 24094, 25, 198, 197, 197, 16668, 4871, 286, 304, 13, 70, 13, 20432, 11, 36789, 11, 25853, 45307, 198, 197, 197, 4993, 829, 6946, 351, 4410, 329, 14276, 5499, 884, 355, 198, 197, 197, 19738, 11, 2018, 11, 22837, 355, 880, 355, 2219, 4049, 9041, 628, 197, 24728, 25, 198, 197, 197, 16668, 4871, 286, 3335, 10245, 304, 13, 70, 13, 44205, 35632, 11, 25400, 2662, 22417, 45307, 198, 7061, 6, 198, 198, 11748, 33918, 198, 11748, 1330, 8019, 198, 198, 6738, 1257, 310, 10141, 1330, 13027, 198, 198, 6738, 479, 452, 88, 13, 1324, 1330, 2034, 198, 6738, 2604, 14717, 1330, 49706, 198, 6738, 479, 452, 88, 13, 4164, 10466, 1330, 288, 79, 198, 6738, 479, 452, 88, 13, 84, 844, 13, 2777, 5083, 1330, 1338, 5083, 198, 6738, 479, 452, 88, 13, 84, 844, 13, 16539, 1330, 20969, 198, 6738, 479, 452, 88, 13, 84, 844, 13, 18242, 1330, 36052, 198, 6738, 479, 452, 88, 13, 84, 844, 13, 3524, 39786, 1330, 8315, 32517, 198, 6738, 479, 452, 88, 13, 15596, 1330, 8558, 7279, 8071, 2044, 198, 6738, 479, 452, 88, 13, 7295, 13, 17497, 1330, 26580, 198, 198, 6738, 479, 452, 88, 13, 48310, 1330, 357, 198, 197, 10267, 21746, 11, 220, 198, 197, 10100, 21746, 11, 41146, 21746, 11, 360, 713, 21746, 198, 197, 8, 198, 6738, 479, 452, 88, 13, 15750, 1330, 21328, 198, 198, 6738, 474, 37320, 13, 42895, 1330, 35100, 198, 6738, 474, 37320, 13, 33692, 37153, 1330, 16163, 14881, 198, 6738, 474, 37320, 13, 28029, 11407, 1330, 474, 4749, 11, 36052, 43, 198, 6738, 474, 37320, 13, 687, 28029, 11407, 1330, 4566, 11970, 62, 1462, 62, 42655, 198, 198, 6738, 479, 452, 88, 13, 17204, 1330, 35869, 198, 32875, 13, 2220, 62, 8841, 7, 7061, 6, 198, 27, 24728, 13511, 31175, 198, 197, 5171, 11017, 25, 198, 197, 197, 10258, 25, 198, 197, 197, 197, 41345, 7012, 25, 764, 17, 11, 764, 17, 11, 764, 17, 11, 764, 22, 198, 197, 197, 30639, 541, 325, 25, 198, 197, 197, 197, 1930, 25, 2116, 13, 87, 1343, 288, 79, 7, 3365, 8, 1343, 357, 944, 13, 10394, 532, 2116, 13, 17015, 8, 1220, 362, 11, 288, 79, 7, 3365, 8, 198, 197, 197, 197, 7857, 25, 2116, 13, 17015, 532, 288, 79, 7, 18298, 828, 2116, 13, 17015, 532, 288, 79, 7, 18298, 8, 198, 197, 13989, 341, 25, 705, 1851, 605, 6, 198, 197, 1930, 62, 71, 600, 25, 1391, 6, 16159, 62, 87, 10354, 838, 11, 705, 16159, 62, 88, 10354, 764, 20, 92, 198, 7061, 11537, 628, 628, 198, 7061, 6, 5501, 4036, 3335, 304, 13, 70, 13, 25400, 2662, 33317, 3798, 3008, 11, 17969, 22417, 22001, 3503, 318, 257, 47611, 286, 428, 198, 7061, 6, 220, 628 ]
3.067327
505
import numpy as np import cv2 import time #Test unit if __name__ == '__main__': while True: img = capture_image(0,10) print(img) time.sleep(2) cv2.imshow("c",img) cv2.waitKey(0) cv2.destroyAllWindows()
[ 11748, 299, 32152, 355, 45941, 220, 198, 11748, 269, 85, 17, 198, 11748, 640, 198, 198, 2, 14402, 4326, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33705, 796, 8006, 62, 9060, 7, 15, 11, 940, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 9600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 320, 12860, 7203, 66, 1600, 9600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 17077, 9218, 7, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 41659, 3237, 11209, 3419, 198 ]
1.681564
179
from ._Encode import *
[ 6738, 47540, 4834, 8189, 1330, 1635, 198 ]
3.285714
7
a = float(2) b = int(2.0) c = bool(a) d = float(None) # fails e = int(None) # fails f = bool(None) # fails # show_store()
[ 64, 796, 12178, 7, 17, 8, 198, 65, 796, 493, 7, 17, 13, 15, 8, 198, 66, 796, 20512, 7, 64, 8, 198, 67, 796, 12178, 7, 14202, 8, 220, 1303, 10143, 198, 68, 796, 493, 7, 14202, 8, 220, 220, 220, 1303, 10143, 198, 69, 796, 20512, 7, 14202, 8, 220, 220, 1303, 10143, 198, 198, 2, 905, 62, 8095, 3419, 198 ]
2.047619
63
from db import nova_conexao from mysql.connector.errors import ProgrammingError sql = ''' SELECT A.NOME, A.TEL, B.DESCRICAO FROM CONTATOS A INNER JOIN GRUPOS B ON A.IDGRUPO = B.ID ORDER BY B.DESCRICAO, A.NOME ''' with nova_conexao() as conexao: try: cursor = conexao.cursor() cursor.execute(sql) contatos = cursor.fetchall() except ProgrammingError as e: print(f'Erro: {e.msg}') else: for contato in contatos: print(f'Nome: {contato[0]:10s} tel: {contato[1]:15s} grupo: {contato[2]}')
[ 6738, 20613, 1330, 645, 6862, 62, 49180, 87, 5488, 198, 6738, 48761, 13, 8443, 273, 13, 48277, 1330, 30297, 12331, 198, 198, 25410, 796, 705, 7061, 198, 220, 220, 220, 33493, 220, 317, 13, 45, 13649, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 13, 51, 3698, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 347, 13, 30910, 9419, 25241, 46, 220, 198, 220, 220, 220, 16034, 220, 220, 220, 22904, 1404, 2640, 317, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3268, 21479, 32357, 1268, 10863, 8577, 2640, 347, 6177, 317, 13, 2389, 10761, 8577, 46, 796, 347, 13, 2389, 198, 220, 220, 220, 38678, 11050, 347, 13, 30910, 9419, 25241, 46, 11, 317, 13, 45, 13649, 198, 7061, 6, 198, 198, 4480, 645, 6862, 62, 49180, 87, 5488, 3419, 355, 369, 1069, 5488, 25, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 23493, 796, 369, 1069, 5488, 13, 66, 21471, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 23493, 13, 41049, 7, 25410, 8, 198, 220, 220, 220, 220, 220, 220, 220, 542, 35492, 796, 23493, 13, 69, 7569, 439, 3419, 198, 220, 220, 220, 2845, 30297, 12331, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 9139, 305, 25, 1391, 68, 13, 19662, 92, 11537, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 542, 5549, 287, 542, 35492, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 45, 462, 25, 1391, 3642, 5549, 58, 15, 5974, 940, 82, 92, 13632, 25, 1391, 3642, 5549, 58, 16, 5974, 1314, 82, 92, 22848, 7501, 25, 1391, 3642, 5549, 58, 17, 48999, 11537 ]
1.964286
308
#!/usr/bin/env python3 import json import logging import socket import sys from os.path import dirname, realpath; sys.path.append(dirname(dirname(dirname(realpath(__file__))))) from logger.utils.formats import Text from logger.readers.reader import Reader # Don't barf if they don't have redis installed. Only complain if # they actually try to use it, below try: import paho.mqtt.client as mqtt # import the client | $ pip installing paho-mqtt is necessary PAHO_ENABLED = True except ModuleNotFoundError: PAHO_ENABLED = False ################################################################################ class MQTTReader(Reader): """ Read messages from an mqtt broker """ def __init__(self, broker, channel, client_name): """ Read text records from the channel subscription. ``` broker MQTT broker to connect, broker format[###.###.#.#] channel MQTT channel to read from, channel format[@broker/path_of_subscripton] ``` Instructions on how to start an MQTT broker: 1. First install the Mosquitto Broker : ``` sudo apt-get update sudo apt-get install mosquitto sudo apt-get install mosquitto-clients ``` 2. The mosquitto service starts automatically when downloaded but use : ``` sudo service mosquitto start sudo service mosquitto stop ``` to start and stop the service. 3. To test the install use: ``` netstat -at ``` and you should see the MQTT broker which is the port 1883 4. In order to manually subscribe to a client use : ``` mosquitto_sub -t "example/topic" ``` and publish a message by using ``` mosquitto_pub -m "published message" -t "certain/channel" ``` 5. Mosquitto uses a configuration file "mosquitto.conf" which you can find in /etc/mosquitto folder ``` """ super().__init__(output_format=Text) if not PAHO_ENABLED: raise ModuleNotFoundError('MQTTReader(): paho-mqtt is not installed. Please ' 'try "pip install paho-mqtt" prior to use.') self.broker = broker self.channel = channel self.client_name = client_name try: self.paho = mqtt.Client(client_name) self.paho.connect(broker) self.paho.subscribe(channel) while paho.loop() == 0: pass except mqtt.WebsocketConnectionError as e: logging.error('Unable to connect to broker at %s:%s', self.broker, self.channel) raise e ############################ ################################################################################
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 11748, 33918, 198, 11748, 18931, 198, 11748, 17802, 198, 11748, 25064, 198, 198, 6738, 28686, 13, 6978, 1330, 26672, 3672, 11, 1103, 6978, 26, 25064, 13, 6978, 13, 33295, 7, 15908, 3672, 7, 15908, 3672, 7, 15908, 3672, 7, 5305, 6978, 7, 834, 7753, 834, 4008, 22305, 198, 198, 6738, 49706, 13, 26791, 13, 687, 1381, 1330, 8255, 198, 6738, 49706, 13, 961, 364, 13, 46862, 1330, 25342, 198, 198, 2, 2094, 470, 2318, 69, 611, 484, 836, 470, 423, 2266, 271, 6589, 13, 5514, 13121, 611, 198, 2, 484, 1682, 1949, 284, 779, 340, 11, 2174, 198, 28311, 25, 198, 220, 1330, 279, 17108, 13, 76, 80, 926, 13, 16366, 355, 285, 80, 926, 1303, 1330, 262, 5456, 930, 720, 7347, 15975, 279, 17108, 12, 76, 80, 926, 318, 3306, 198, 220, 8147, 32298, 62, 1677, 6242, 30465, 796, 6407, 198, 16341, 19937, 3673, 21077, 12331, 25, 198, 220, 8147, 32298, 62, 1677, 6242, 30465, 796, 10352, 198, 198, 29113, 29113, 14468, 198, 4871, 337, 48, 51, 5446, 1329, 263, 7, 33634, 2599, 198, 220, 37227, 198, 220, 4149, 6218, 422, 281, 285, 80, 926, 20426, 198, 220, 37227, 198, 220, 825, 11593, 15003, 834, 7, 944, 11, 20426, 11, 6518, 11, 5456, 62, 3672, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4149, 2420, 4406, 422, 262, 6518, 14569, 13, 198, 220, 220, 220, 7559, 63, 628, 220, 220, 220, 20426, 220, 220, 220, 220, 220, 220, 337, 48, 15751, 20426, 284, 2018, 11, 20426, 5794, 58, 21017, 13, 21017, 32535, 32535, 60, 198, 220, 220, 220, 6518, 220, 220, 220, 220, 337, 48, 15751, 6518, 284, 1100, 422, 11, 6518, 5794, 58, 31, 7957, 6122, 14, 6978, 62, 1659, 62, 7266, 12048, 261, 60, 198, 220, 220, 220, 7559, 63, 198, 220, 220, 220, 27759, 319, 703, 284, 923, 281, 337, 48, 15751, 20426, 25, 628, 220, 220, 220, 352, 13, 3274, 2721, 262, 5826, 421, 37606, 2806, 6122, 1058, 198, 197, 15506, 63, 198, 197, 24032, 15409, 12, 1136, 4296, 198, 197, 24032, 15409, 12, 1136, 2721, 22263, 37606, 198, 197, 24032, 15409, 12, 1136, 2721, 22263, 37606, 12, 565, 2334, 198, 197, 15506, 63, 198, 220, 220, 220, 362, 13, 383, 22263, 37606, 2139, 4940, 6338, 618, 15680, 475, 779, 1058, 198, 197, 15506, 63, 198, 197, 24032, 2139, 22263, 37606, 923, 198, 197, 24032, 2139, 22263, 37606, 2245, 198, 197, 15506, 63, 198, 197, 1462, 923, 290, 2245, 262, 2139, 13, 628, 220, 220, 220, 513, 13, 1675, 1332, 262, 2721, 779, 25, 198, 197, 15506, 63, 198, 197, 3262, 14269, 532, 265, 198, 197, 15506, 63, 198, 197, 392, 345, 815, 766, 262, 337, 48, 15751, 20426, 543, 318, 262, 2493, 1248, 5999, 628, 220, 220, 220, 604, 13, 554, 1502, 284, 14500, 12383, 284, 257, 5456, 779, 1058, 198, 197, 15506, 63, 198, 197, 16785, 421, 37606, 62, 7266, 532, 83, 366, 20688, 14, 26652, 1, 198, 197, 15506, 63, 198, 220, 197, 392, 7715, 257, 3275, 416, 1262, 198, 197, 15506, 63, 198, 197, 16785, 421, 37606, 62, 12984, 532, 76, 366, 30271, 3275, 1, 532, 83, 366, 39239, 14, 17620, 1, 198, 197, 15506, 63, 198, 220, 220, 220, 642, 13, 5826, 421, 37606, 3544, 257, 8398, 2393, 366, 16785, 421, 37606, 13, 10414, 1, 543, 345, 460, 1064, 287, 1220, 14784, 14, 16785, 421, 37606, 220, 197, 43551, 628, 220, 220, 220, 7559, 63, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2208, 22446, 834, 15003, 834, 7, 22915, 62, 18982, 28, 8206, 8, 628, 220, 220, 220, 611, 407, 8147, 32298, 62, 1677, 6242, 30465, 25, 198, 220, 220, 220, 220, 220, 5298, 19937, 3673, 21077, 12331, 10786, 49215, 51, 5446, 1329, 263, 33529, 279, 17108, 12, 76, 80, 926, 318, 407, 6589, 13, 4222, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28311, 366, 79, 541, 2721, 279, 17108, 12, 76, 80, 926, 1, 3161, 284, 779, 2637, 8, 628, 220, 220, 220, 2116, 13, 7957, 6122, 796, 20426, 198, 220, 220, 220, 2116, 13, 17620, 796, 6518, 198, 220, 220, 220, 2116, 13, 16366, 62, 3672, 796, 5456, 62, 3672, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 2116, 13, 79, 17108, 796, 285, 80, 926, 13, 11792, 7, 16366, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 2116, 13, 79, 17108, 13, 8443, 7, 7957, 6122, 8, 198, 220, 220, 220, 220, 220, 2116, 13, 79, 17108, 13, 7266, 12522, 7, 17620, 8, 628, 220, 220, 220, 220, 220, 981, 279, 17108, 13, 26268, 3419, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 2845, 285, 80, 926, 13, 1135, 1443, 5459, 32048, 12331, 355, 304, 25, 198, 220, 220, 220, 220, 220, 18931, 13, 18224, 10786, 3118, 540, 284, 2018, 284, 20426, 379, 4064, 82, 25, 4, 82, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7957, 6122, 11, 2116, 13, 17620, 8, 198, 220, 220, 220, 220, 220, 5298, 304, 628, 220, 1303, 14468, 7804, 21017, 198, 198, 29113, 29113, 14468, 198 ]
2.852679
896
import logging from synch.enums import ClickHouseEngine from synch.factory import Global from synch.replication.etl import etl_full from synch.writer.collapsing_merge_tree import ClickHouseCollapsingMergeTree from synch.writer.merge_tree import ClickHouseMergeTree logger = logging.getLogger("synch.replication.consumer")
[ 11748, 18931, 198, 198, 6738, 6171, 354, 13, 268, 5700, 1330, 6914, 18102, 13798, 198, 6738, 6171, 354, 13, 69, 9548, 1330, 8060, 198, 6738, 6171, 354, 13, 35666, 3299, 13, 316, 75, 1330, 2123, 75, 62, 12853, 198, 6738, 6171, 354, 13, 16002, 13, 26000, 1686, 278, 62, 647, 469, 62, 21048, 1330, 6914, 18102, 22667, 1686, 278, 13102, 469, 27660, 198, 6738, 6171, 354, 13, 16002, 13, 647, 469, 62, 21048, 1330, 6914, 18102, 13102, 469, 27660, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7203, 28869, 354, 13, 35666, 3299, 13, 49827, 4943, 628 ]
3.282828
99
# Authors: Lukas Breuer <l.breuer@fz-juelich.de> """ ---------------------------------------------------------------------- --- jumeg.decompose.fourier_ica_plot --------------------------------- ---------------------------------------------------------------------- autor : Lukas Breuer email : l.breuer@fz-juelich.de last update: 17.11.2016 version : 1.1 ---------------------------------------------------------------------- This is a simple implementation to plot the results achieved by applying FourierICA ---------------------------------------------------------------------- """ ####################################################### # # # plotting functions for FourierICA # # # ####################################################### # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ # Simple function to adjust axis in plots # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ def adjust_spines(ax, spines, labelsize=10): """ Simple function to adjust axis in plots Parameters ---------- ax: axis object Plot object which should be adjusted spines: list of strings ['bottom', 'left'] Name of the axis which should be adjusted labelsize: integer Font size for the x- and y-axis labels """ for loc, spine in list(ax.spines.items()): if loc in spines: spine.set_position(('outward', 4)) # outward by 4 points # spine.set_smart_bounds(True) else: spine.set_color('none') # don't draw spine # turn off ticks where there is no spine if 'left' in spines: ax.yaxis.set_ticks_position('left') else: # no yaxis ticks ax.yaxis.set_ticks([]) if 'bottom' in spines: ax.xaxis.set_ticks_position('bottom') else: # no xaxis ticks ax.xaxis.set_ticks([]) ax.tick_params(axis='x', labelsize=labelsize) ax.tick_params(axis='y', labelsize=labelsize) # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ # function to generate automatically combined labels # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ def get_combined_labels(subject='fsaverage', subjects_dir=None, parc='aparc.a2009s'): """ Helper function to combine labels automatically according to previous studies. Parameters ---------- subject: string containing the subjects name default: subject='fsaverage' subjects_dir: Subjects directory. If not given the system variable SUBJECTS_DIR is used default: subjects_dir=None parc: name of the parcellation to use for reading in the labels default: parc='aparc.a2009s' Return ------ label_keys: names of the new labels labels: list containing the combined labels """ # ------------------------------------------ # import necessary modules # ------------------------------------------ from mne import read_labels_from_annot import numpy as np from os.path import join # ------------------------------------------ # define labels based on previous studies # ------------------------------------------ # to get more information about the label names and their # locations check the following publication: # Destrieux et al. (2010), Automatic parcellation of human # cortical gyri and sulci using standard anatomical nomenclature, # NeuroImage, DOI: 10.1016/j.neuroimage.2010.06.010 label_combinations = { 'auditory': ['G_temp_sup-G_T_transv', 'G_temp_sup-Plan_polar', 'Lat_Fis-post'], 'broca': ['G_front_inf-Opercular', 'G_front_inf-Triangul', 'Lat_Fis-ant-Vertical'], 'cingulate': ['G_cingul-Post-dorsal', 'G_cingul-Post-ventral', 'G_and_S_cingul-Ant', 'G_and_S_cingul-Mid-Ant', 'G_and_S_cingul-Mid-Post', 'S_pericallosal', 'cingul-Post-ventral'], 'frontal': ['G_and_S_frontomargin', 'G_and_S_transv_frontopol', 'G_front_inf-Orbital', 'G_front_middle', 'G_front_sup', 'G_orbital', 'G_rectus', 'G_subcallosal', 'Lat_Fis-ant-Horizont', 'S_front_inf', 'S_front_middle', 'S_front_sup', 'S_orbital_lateral', 'S_orbital-H_Shaped', 'S_suborbital'], 'gustatory': ['G_and_S_subcentral'], 'insula': ['S_circular_insula_ant', 'S_circular_insula_inf', 'S_circular_insula_sup', 'G_Ins_lg_and_S_cent_ins', 'G_insular_short'], 'motor': ['G_precentral', 'S_precentral-sup-part', 'S_precentral-inf-part', 'S_central'], 'olfactory': ['S_temporal_transverse'], 'somatosensory': ['G_postcentral', 'S_postcentral'], 'somatosensory associated': ['G_and_S_paracentral', 'G_pariet_inf-Angular', 'G_parietal_sup', 'S_cingul-Marginalis', 'S_intrapariet_and_P_trans'], 'temporal': ['G_oc-temp_lat-fusifor', 'G_oc-temp_med-Parahip', 'G_temp_sup-Plan_polar', 'G_temporal_inf', 'G_temporal_middle', 'G_temp_sup-Lateral', 'Pole_temporal', 'S_collat_transv_ant', 'S_oc-temp_lat', 'S_oc-temp_med_and_Lingual', 'S_temporal_inf', 'S_temporal_sup'], 'vision': ['G_and_S_occipital_inf', 'G_occipital_middle', 'G_oc-temp_med-Lingual', 'S_collat_transv_post', 'S_oc_sup_and_transversal', 'S_occipital_ant', 'S_oc_middle_and_Lunatus'], 'visual': ['G_cuneus', 'G_precuneus', 'S_calcarine', 'S_parieto_occipital', 'G_occipital_sup', 'Pole_occipital', 'S_subparietal'], 'wernicke': ['G_pariet_inf-Supramar', 'G_temp_sup-Plan_tempo', 'S_interm_prim-Jensen'] } label_keys = list(label_combinations.keys()) labels = [] # ------------------------------------------ # combine labels # ------------------------------------------ # loop over both hemispheres for hemi in ['lh', 'rh']: # read all labels in labels_all = read_labels_from_annot(subject, parc=parc, hemi=hemi, surf_name='inflated', subjects_dir=subjects_dir, verbose=False) # loop over all labels to extract label names label_names = [] for label in labels_all: label_names.append(label.name) # ------------------------------------------ # now generate labels based on previous # studies # ------------------------------------------ # loop over all previously defined labels for label_key in label_keys: # get name of all labels related to the current one label_members = label_combinations[label_key] label_members = [x+'-'+hemi for x in label_members] # check which labels we need for the current one idx_labels_want = np.where(np.in1d(label_names, label_members))[0] labels_want = [labels_all[i] for i in idx_labels_want] # combine labels label_new = np.sum(labels_want) label_new.name = label_key + '-' + hemi # fill the surface between sources label_new.values.fill(1.0) label_new.smooth(subject=subject, subjects_dir=subjects_dir) # save new label fnout = join(subjects_dir, subject, 'label', hemi + '.' + label_key + '.label') label_new.save(fnout) labels.append(label_new) return label_keys, labels # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ # function to get the anatomical label to a given vertex # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ def get_anat_label_name(vertex, hemi, labels=None, subject='fsaverage', subjects_dir=None, parc='aparc.a2009s'): """ Helper function to get to a given vertex the name of the anatomical label Parameters ---------- vertex: integer containing the vertex number hemi: string containing the information in which hemisphere the vertex is located. Should be either 'lh' or 'rh' labels: labels to use for checking. If not given the labels are read from the subjects directory default: labels=None subject: string containing the subjects name default: subject='fsaverage' subjects_dir: Subjects directory. If not given the system variable SUBJECTS_DIR is used default: subjects_dir=None parc: name of the parcellation to use for reading in the labels default: parc='aparc.a2009s' Return ------ name: string containing the name of the anatomical label related to the given vertex """ # ------------------------------------------ # import necessary modules # ------------------------------------------ from mne import read_labels_from_annot import numpy as np # ------------------------------------------ # check input parameter # ------------------------------------------ # check if labels are given or must be read if not labels: labels = read_labels_from_annot(subject, parc=parc, hemi=hemi, surf_name='inflated', subjects_dir=subjects_dir, verbose=False) # ------------------------------------------ # loop over labels to find corresponding # label # ------------------------------------------ name = '' for label in labels: if label.hemi == hemi: # get vertices of current label label_vert = np.in1d(np.array(vertex), label.vertices) if label_vert: name = label.name break if name == '': name = 'unknown-' + hemi return name # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ # function to get the MNI-coordinate(s) to a given # FourierICA component # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ def get_mni_coordinates(A_orig, subject='fsaverage', subjects_dir=None, parc='aparc.a2009s', percentile=97, combine_labels=True): """ Helper function to get the MNI-coordinate(s) to a given FourierICA component. The selection if a component has activation in both hemispheres or only in one is made like follows: estimate for each component an activation threshold based on the given percentile. Next, estimate the total number of voxels in the component which are above the estimated threshold. Now check if at least 20% of the total number of voxels above threshold are in each hemisphere. If yes both hemispheres are marked as active, otherwise only one. Parameters ---------- A_orig: array 2D-mixing-array (nvoxel, ncomp) estimated when applying FourierICA subject: string containing the subjects name default: subject='fsaverage' subjects_dir: Subjects directory. If not given the system variable SUBJECTS_DIR is used default: subjects_dir=None parc: name of the parcellation to use for reading in the labels default: parc='aparc.a2009s' percentile: integer value between 0 and 100 used to set a lower limit for the shown intensity range of the spatial plots combine_labels: if set labels are combined automatically according to previous studies default: combine_labels=True Return ------ mni_coords: dictionary The dictionary contains two elements: 'rh' and 'lh', each of which containing a list with the MNI coordinates as string. Note, each list contains the same number of elements as components are given. If there is no MNI coordinate for a component an empty string is used, e.g. for two components {'rh': ['(37.55, 1.58, -21.71)', '(44.78, -10.41, 27.89)'], 'lh': ['(-39.43, 5.60, -27.80)', '']} hemi_loc_txt: list containing for each FourierICA component to which region it spatially belongs ('left', 'right' or 'both') classification: dictionary classification object. It is a dictionary containing two sub-dictionaries 'lh' and 'rh' (for left and right hemisphere). In both sub-dictionaries the information about the groups is stored, i.e. a group/region name + the information which components are stored in this group (as indices). An example for 6 components might look like this: {'rh': {'somatosensory': [1, 3], 'cingulate': [4, 5]}, 'lh': {'somatosensory': [1, 2], 'cingulate': [0, 5]}} labels: list of strings names of the labels which are involved in this data set """ # ------------------------------------------ # import necessary modules # ------------------------------------------ from mne import vertex_to_mni import numpy as np from os import environ import types # ------------------------------------------- # check input parameter # ------------------------------------------- if not subjects_dir: subjects_dir = environ.get('SUBJECTS_DIR') # ------------------------------------------- # generate spatial profiles # (using magnitude and phase) # ------------------------------------------- if isinstance(A_orig[0, 0], complex): A_orig_mag = np.abs(A_orig) else: A_orig_mag = A_orig # ------------------------------------------- # set some parameters # ------------------------------------------- nvoxel, ncomp = A_orig_mag.shape nvoxel_half = int(nvoxel / 2) hemi = ['lh', 'rh'] hemi_names = ['left ', 'right', 'both '] hemi_indices = [[0, nvoxel_half], [nvoxel_half, -1]] hemi_loc_txt = np.array([' '] * ncomp) hemi_loc = np.zeros(ncomp) # ------------------------------------------- # generate structures to save results # ------------------------------------------- # generate dictionary to save MNI coordinates mni_coords = {'rh': [''] * ncomp, 'lh': [''] * ncomp} # ------------------------------------------ # check if labels should be combined # automatically # ------------------------------------------ if combine_labels: label_names, labels = get_combined_labels(subject=subject, subjects_dir=subjects_dir, parc=parc) # generate empty classification dictionary class_keys = label_names[:] class_keys.append('unknown') classification = {'lh': {key: [] for key in class_keys}, 'rh': {key: [] for key in class_keys}} # if not generate empty variables else: label_names, labels = None, None classification = {} # ------------------------------------------ # loop over all components # ------------------------------------------ for icomp in range(ncomp): # ------------------------------------------ # extract maxima in the spatial profile of # the current component separately for both # hemispheres # ------------------------------------------ idx_ver_max_lh = np.argmax(A_orig_mag[:nvoxel_half, icomp]) idx_ver_max_rh = np.argmax(A_orig_mag[nvoxel_half:, icomp]) # ------------------------------------------ # check for both maxima if they are # significant # ------------------------------------------ # set some paremeter threshold = np.percentile(A_orig_mag[:, icomp], percentile) nidx_above = len(np.where(A_orig_mag[:, icomp] > threshold)[0]) cur_label_name = [] # loop over both hemispheres for idx_hemi, idx_vertex_max in enumerate([idx_ver_max_lh, idx_ver_max_rh]): # get the number of vertices above the threshold # in the current hemisphere nidx_above_hemi = len(np.where(A_orig_mag[hemi_indices[idx_hemi][0]:hemi_indices[idx_hemi][1], icomp] > threshold)[0]) # check if at least 20% of all vertices above the threshold # are in the current hemisphere if nidx_above_hemi * 5 > nidx_above: # get MNI-coordinate mni_coord = vertex_to_mni(idx_vertex_max, idx_hemi, subject, subjects_dir=subjects_dir)[0] # store results in structures mni_coords[hemi[idx_hemi]][icomp] = \ '(' + ', '.join(["%2.2f" % x for x in mni_coord]) + ')' # store hemisphere information hemi_loc[icomp] += idx_hemi + 1.0 # ------------------------------------------ # get MNI-coordinate to vertex as well as # the name of the corresponding anatomical # label # ------------------------------------------ anat_name = get_anat_label_name(idx_vertex_max, hemi[idx_hemi], subject=subject, subjects_dir=subjects_dir, parc=parc, labels=labels) cur_label_name.append(anat_name[:-3]) else: cur_label_name.append(' ') # ------------------------------------------ # check which results must be saved # ------------------------------------------ if combine_labels: # check if activation was found in both hemispheres # --> if not we can directly save the results if ' ' in cur_label_name: # adjust classification dictionary if cur_label_name[0] == ' ': classification[hemi[1]][cur_label_name[1]].append(icomp) else: classification[hemi[0]][cur_label_name[0]].append(icomp) # --> otherwise we have to make sure that we group the # component only into one region else: # check if both vertices are in the same anatomical location # --> then we have no problem if cur_label_name[0] == cur_label_name[1]: classification[hemi[0]][cur_label_name[0]].append(icomp) classification[hemi[1]][cur_label_name[1]].append(icomp) else: # check if we have an unknown region being involved # --> if yes chose the other one if cur_label_name[0] == 'unknown': classification[hemi[1]][cur_label_name[1]].append(icomp) hemi_loc[icomp], mni_coords[hemi[0]][icomp] = 2, '' elif cur_label_name[1] == 'unknown': classification[hemi[0]][cur_label_name[0]].append(icomp) hemi_loc[icomp], mni_coords[hemi[1]][icomp] = 1, '' # otherwise chose the region with the strongest vertex else: if A_orig_mag[idx_ver_max_lh, icomp] > A_orig_mag[idx_ver_max_rh, icomp]: classification[hemi[0]][cur_label_name[0]].append(icomp) hemi_loc[icomp], mni_coords[hemi[1]][icomp] = 1, '' else: classification[hemi[1]][cur_label_name[1]].append(icomp) hemi_loc[icomp], mni_coords[hemi[0]][icomp] = 2, '' # ------------------------------------------ # adjust hemi_loc_txt if activity was found # in both hemispheres # ------------------------------------------ for idx, hemi_name in enumerate(hemi_names): idx_change = np.where(hemi_loc == (idx + 1.0))[0] hemi_loc_txt[idx_change] = hemi_name # ------------------------------------------ # adjust label_names to only contain regions # being involved in processing the current # data # ------------------------------------------ labels = [] for cur_hemi in hemi: for key in label_names: if classification[cur_hemi][key]: labels.append(key) labels = np.unique(labels).tolist() return mni_coords, hemi_loc_txt, classification, labels # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ # helper function to check if classification was # performed prior to plotting # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ def _check_classification(classification, ncomp): """ Helper function to check if classification was performed prior to plotting Parameters ---------- classification: dictionary classification object from the group_ica_object. It is a dictionary containing two sub-dictionaries 'lh' and 'rh' (for left and right hemisphere). In both sub-dictionaries the information about the groups is stored, i.e. a group/region name + the information which components are stored in this group ncomp: integer number of components Return ------ keys: list containing the group names key_borders: list containing the group borders, i.e. the information where to plot a new group name idx_sort: array containing the plotting order of the components, i.e. components beloning to one group are plotted together """ # ------------------------------------------ # import necessary modules # ------------------------------------------ import numpy as np # ------------------------------------------ # check if classification was done # ------------------------------------------ key_borders = [] if np.any(classification): # initialize empty lists idx_sort = [] keys_hemi = list(classification.keys()) # sort keys keys = list(classification[keys_hemi[0]].keys()) keys.sort(key=lambda v: v.upper()) # set 'unknown' variables to the end keys.remove('unknown') keys.append('unknown') # remove keys with empty entries keys_want = [] for key in keys: if classification[keys_hemi[0]][key] or\ classification[keys_hemi[1]][key]: keys_want.append(key) # loop over all keys for key in keys_want: # get indices to each class idx_lh = classification[keys_hemi[0]][key] idx_rh = classification[keys_hemi[1]][key] # get indices of components in both hemispheres idx_both = np.intersect1d(idx_lh, idx_rh) # get indices of components only in right hemisphere idx_only_rh = np.setdiff1d(idx_rh, idx_lh) # get indices of components only in left hemisphere idx_only_lh = np.setdiff1d(idx_lh, idx_rh) # add components to list of sorted indices idx_all = np.concatenate((idx_both, idx_only_rh, idx_only_lh)) idx_sort += idx_all.tolist() key_borders.append(len(idx_all)) # add first border and estimate cumulative sum to # have the right borders key_borders = np.insert(key_borders, 0, 1) key_borders = np.cumsum(key_borders)[:-1] # ------------------------------------------ # if classification was not performed set # some default values # ------------------------------------------ else: idx_sort = np.arange(ncomp) keys_want = [] return keys_want, key_borders, idx_sort # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ # helper function to handle time courses for plotting # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ def _get_temporal_envelopes(fourier_ica_obj, W_orig, temporal_envelope=[], src_loc_data=[], tICA=False, global_scaling=True, win_length_sec=None, tpre=None, flow=None): """ Helper function to check if classification was performed prior to plotting Parameters ---------- fourier_ica_obj: FourierICA object generated when applying jumeg.decompose.fourier_ica W_orig: array 2D-demixing-array (ncomp x nvoxel) estimated when applying FourierICA temporal_envelope: list of arrays containing the temporal envelopes. If the temporal envelopes are already given here z-scoring and mean estimation is performed src_loc_data: array 3D array containing the source localization data used for FourierICA estimation (nfreq x nepochs x nvoxel). Only necessary if temporal_envelope is not given. tICA: bool If set we know that temporal ICA was applied when estimating the FourierICA, i.e. when generating the temporal-envelopes the data must not be transformed from the Fourier domain to the time-domain global_scaling: bool If set all temporal-envelopes are globally scaled. Otherwise each component is scaled individually win_length_sec: float or None Length of the epoch window in seconds tpre: float or None Lower border (in seconds) of the time-window used for generating/showing the epochs. If 'None' the value stored in 'fourier_ica_obj' is used flow: float, integer or None Lower frequency border for generating the temporal-envelope. If 'None' the frequency border stored in 'fourier_ica_obj' is used Return ------ temporal_envelope_mean: list containing the 2D arrays of the mean temporal envelopes of the components temporal_envelope: list containing the 3D arrays of the temporal envelopes of the components. Necessary for estimating the spectral profiles """ # ------------------------------------------ # import necessary modules # ------------------------------------------ from mne.baseline import rescale import numpy as np from scipy import fftpack # ------------------------------------------- # check input parameter # ------------------------------------------- if tpre == None: tpre = fourier_ica_obj.tpre if flow == None: flow = fourier_ica_obj.flow if not win_length_sec: win_length_sec = fourier_ica_obj.win_length_sec # estimate some simple parameter sfreq = fourier_ica_obj.sfreq ncomp, nvoxel = W_orig.shape win_ntsl = int(np.floor(sfreq * win_length_sec)) startfftind = int(np.floor(flow * win_length_sec)) # ------------------------------------------- # check if temporal envelope is already # given or should be estimated # ------------------------------------------- if temporal_envelope == []: # ------------------------------------------- # check if 'src_loc_data' is given... # if not throw an error # ------------------------------------------- if src_loc_data == []: print(">>> ERROR: You have to provide either the 'temporal_envelope' or") print(">>> 'src_loc_data'. Otherwise no temporal information can be plotted!") import pdb pdb.set_trace() # ------------------------------------------- # get independent components # ------------------------------------------- nfreq, nepochs, nvoxel = src_loc_data.shape act = np.zeros((ncomp, nepochs, nfreq), dtype=np.complex) if tICA: win_ntsl = nfreq temporal_envelope = np.zeros((nepochs, ncomp, win_ntsl)) fft_act = np.zeros((ncomp, win_ntsl), dtype=np.complex) # loop over all epochs to get time-courses from # source localized data by inverse FFT for iepoch in range(nepochs): # normalize data src_loc_zero_mean = (src_loc_data[:, iepoch, :] - np.dot(np.ones((nfreq, 1)), fourier_ica_obj.dmean)) / \ np.dot(np.ones((nfreq, 1)), fourier_ica_obj.dstd) act[:ncomp, iepoch, :] = np.dot(W_orig, src_loc_zero_mean.transpose()) #act[ncomp:, iepoch, :] = np.dot(W_orig, src_loc_zero_mean.transpose()) if tICA: temporal_envelope[iepoch, :, :] = act[:, iepoch, :].real else: # ------------------------------------------- # generate temporal profiles # ------------------------------------------- # apply inverse STFT to get temporal envelope fft_act[:, startfftind:(startfftind + nfreq)] = act[:, iepoch, :] temporal_envelope[iepoch, :, :] = fftpack.ifft(fft_act, n=win_ntsl, axis=1).real # ------------------------------------------- # average temporal envelope # ------------------------------------------- if not isinstance(temporal_envelope, list): temporal_envelope = [[temporal_envelope]] ntemp = len(temporal_envelope) temporal_envelope_mean = np.empty((ntemp, 0)).tolist() times = (np.arange(win_ntsl) / sfreq + tpre) # ------------------------------------------- # perform baseline correction # ------------------------------------------- for itemp in range(ntemp): for icomp in range(ncomp): temporal_envelope[itemp][0][:, icomp, :] = rescale(temporal_envelope[itemp][0][:, icomp, :], times, (None, 0), 'zscore') # ------------------------------------------- # estimate mean from temporal envelopes # ------------------------------------------- for itemp in range(ntemp): temporal_envelope_mean[itemp].append(np.mean(temporal_envelope[itemp][0], axis=0)[:, 5:-5]) # ------------------------------------------- # check if global scaling should be used # ------------------------------------------- # if not scale each component separately between -0.5 and 0.5 if not global_scaling: for icomp in range(ncomp): min_val = np.min([temporal_envelope_mean[0][0][icomp, :], temporal_envelope_mean[1][0][icomp, :]]) max_val = np.max([temporal_envelope_mean[0][0][icomp, :], temporal_envelope_mean[1][0][icomp, :]]) scale_fact = 1.0 / (max_val - min_val) for itemp in range(ntemp): temporal_envelope_mean[itemp][0][icomp, :] = np.clip( scale_fact * temporal_envelope_mean[itemp][0][icomp, :] - scale_fact * min_val - 0.5, -0.5, 0.5) # if global scaling should be used, scale all # data between -0.5 and 0.5 else: # scale temporal envelope between -0.5 and 0.5 min_val = np.min(temporal_envelope_mean) max_val = np.max(temporal_envelope_mean) scale_fact = 1.0 / (max_val - min_val) for itemp in range(ntemp): temporal_envelope_mean[itemp][0] = np.clip(scale_fact * temporal_envelope_mean[itemp][0] - scale_fact * min_val - 0.5, -0.5, 0.5) return temporal_envelope_mean, temporal_envelope # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ # helper function to handle spatial profiles for plotting # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ def _get_spatial_profiles(A_orig, keys, idx_text, vertno=[], subject='fsaverage', subjects_dir=None, labels=None, classification={}, percentile=97, mni_coord=[], add_foci=False, fnout=None): """ Helper function to get/generate the spatial profiles of the FourierICA components for plotting Parameters ---------- A_orig: array 2D-mixing-array (nvoxel, ncomp) estimated when applying FourierICA keys: list containing the group names idx_text: list containing the information in which brain hemisphere a component is mainly located (could be either 'both', 'left', 'right' or ' ' if no classification was performed before plotting) vertno: list list containing two arrays with the order of the vertices. If not given it will be generated in this routine subject: string string containing the subjects ID subjects_dir: string string containing the subjects directory path labels: list of strings names of the labels which should be plotted. Note, the prefix 'lh.' and the suffix '.label' are automatically added classification: dictionary classification object from the group_ica_object. It is a dictionary containing two sub-dictionaries 'lh' and 'rh' (for left and right hemisphere). In both sub-dictionaries the information about the groups is stored, i.e. a group/region name + the information which components are stored in this group percentile: integer value between 0 and 100 used to set a lower limit for the shown intensity range of the spatial plots mni_coord: list of strings if given the MNI coordinates are plotted beneath the spatial profiles add_foci: bool if True and the MNI coordinates are given a foci is plotted at the position of the MNI coordinate fnout: string or None if labels and classification is given the output filename of the brain plot containing all labels. If 'None' the results are not stored Return ------ temp_plot_dir: string directory where the spatial profiles are stored """ # ------------------------------------------ # import necessary modules # ------------------------------------------ from matplotlib import gridspec as grd from matplotlib import pyplot as plt from mayavi import mlab from mne.source_estimate import _make_stc import numpy as np from os import environ, makedirs from os.path import exists, join import re from scipy import misc from surfer import set_log_level import types # set log level to 'WARNING' set_log_level('CRITICAL') import mayavi mayavi.mlab.options.offscreen = True # ------------------------------------------- # create temporary directory to save plots # of spatial profiles # ------------------------------------------- temp_plot_dir = join(subjects_dir, subject, 'temp_plots') if not exists(temp_plot_dir): makedirs(temp_plot_dir) # ------------------------------------------- # generate spatial profiles # (using magnitude and phase) # ------------------------------------------- if not subjects_dir: subjects_dir = environ.get('SUBJECTS_DIR') if isinstance(A_orig[0, 0], complex): A_orig_mag = np.abs(A_orig) else: A_orig_mag = A_orig nvoxel, ncomp = A_orig_mag.shape # ------------------------------------------- # check if vertno is given, otherwise # generate it # ------------------------------------------- if not np.any(vertno): vertno = [np.arange(nvoxel/2), np.arange(nvoxel/2)] # ------------------------------------------- # check if labels should be plotted and if # classification was already performed # --> if yes define some colors for the # labels # ------------------------------------------- if labels and classification: colors = ['green', 'red', 'cyan', 'yellow', 'mediumblue', 'magenta', 'chartreuse', 'indigo', 'sandybrown', 'slateblue', 'purple', 'lightpink', 'springgreen', 'orange', 'sienna', 'cadetblue', 'crimson', 'maroon', 'powderblue', 'deepskyblue', 'olive'] # ------------------------------------------- # loop over all components to generate # spatial profiles # ------------------------------------------- for icomp in range(ncomp): # ------------------------------------------- # plot spatial profile # ------------------------------------------- # generate stc-object from current component A_cur = A_orig_mag[:, icomp] src_loc = _make_stc(A_cur[:, np.newaxis], vertices=vertno, tmin=0, tstep=1, subject=subject) # define current range (Xth percentile) fmin = np.percentile(A_cur, percentile) fmax = np.max(A_cur) fmid = 0.5 * (fmin + fmax) clim = {'kind': 'value', 'lims': [fmin, fmid, fmax]} # plot spatial profiles brain = src_loc.plot(surface='inflated', hemi='split', subjects_dir=subjects_dir, config_opts={'cortex': 'bone'}, views=['lateral', 'medial'], time_label=' ', colorbar=False, clim=clim) # check if foci should be added to the plot if add_foci and np.any(mni_coord): for i_hemi in ['lh', 'rh']: mni_string = mni_coord[i_hemi][icomp] # if 'mni_string' is not empty (it might be empty if activity # can only be found in one hemisphere) plot a foci if mni_string != "": mni_float = list(map(float, re.findall("[-+]?\d*\.\d+|\d+", mni_string))) brain.add_foci(mni_float, coords_as_verts=False, hemi=i_hemi, color='chartreuse', scale_factor=1.5, map_surface='white') # ------------------------------------------- # check if labels should be plotted # ------------------------------------------- if labels and classification: # import module to read in labels from mne import read_label # get path to labels dir_labels = join(subjects_dir, subject, 'label') # identify in which group the IC is classified hemi = 'rh' if idx_text[icomp] == 'right' else 'lh' # read in the corresponding label for idx_key, key in enumerate(keys): if icomp in classification[hemi][key]: label_name = ".%s.label" % key color = colors[idx_key] break # loop over both hemispheres to read the label in and plot it hemi = ['lh', 'rh'] if idx_text[icomp] == 'both ' else [hemi] for hemi_cur in hemi: label = read_label(join(dir_labels, hemi_cur + label_name), subject=subject) brain.add_label(label, borders=False, hemi=hemi_cur, color=color, alpha=0.1) brain.add_label(label, borders=True, hemi=hemi_cur, color=color) # save results fn_base = "IC%02d_spatial_profile.png" % (icomp+1) fnout_img = join(temp_plot_dir, fn_base) brain.save_image(fnout_img) # close mlab figure mlab.close(all=True) # ------------------------------------------- # also generate one plot with all labels # ------------------------------------------- if labels and classification: # set clim in a way that no activity can be seen # (Note: we only want to see the labels) clim = {'kind': 'value', 'lims': [fmax, 1.5 * fmax, 2.0 * fmax]} # generate plot brain = src_loc.plot(surface='inflated', hemi='split', subjects_dir=subjects_dir, config_opts={'cortex': 'bone'}, views=['lateral', 'medial'], time_label=' ', colorbar=False, clim=clim, background='white') # loop over all labels for idx_key, key in enumerate(keys): label_name = ".%s.label" % key color = colors[idx_key] # loop over both hemispheres in order to plotting the labels for hemi in ['lh', 'rh']: label = read_label(join(dir_labels, hemi + label_name), subject=subject) brain.add_label(label, borders=False, hemi=hemi, color=color, alpha=0.6) # save results if fnout: fnout_img = '%s_labels.png' % fnout brain.save_image(fnout_img) # close mlab figure mlab.close(all=True) # ------------------------------------------- # now adjust the label plot appropriate # ------------------------------------------- # read spatial profile image spat_tmp = misc.imread(fnout_img) # rearrange image x_size, y_size, _ = spat_tmp.shape x_half, y_half = x_size / 2, y_size / 2 x_frame, y_frame = int(0.11 * x_half), int(0.01 * y_half) spatial_profile = np.concatenate((spat_tmp[x_frame:(x_half - x_frame), y_frame:(y_half - y_frame), :], spat_tmp[(x_half + x_frame):-x_frame, y_frame:(y_half - y_frame), :], spat_tmp[(x_half + x_frame):-x_frame, (y_half + y_frame):-y_frame, :], spat_tmp[x_frame:(x_half - x_frame), (y_half + y_frame):-y_frame, :]), axis=1) # plot image plt.ioff() fig = plt.figure('Labels plots', figsize=(17, 3)) gs = grd.GridSpec(1, 30, wspace=0.00001, hspace=0.00001, left=0.0, right=1.0, bottom=0.0, top=1.0) # set plot position and plot image p1 = fig.add_subplot(gs[0, 0:26]) p1.imshow(spatial_profile) adjust_spines(p1, []) # add label names keys_fac = 0.8/len(keys) keys_split = 0 p_text = fig.add_subplot(gs[0, 26:30]) keys_sort_idx = np.argsort(keys) for idx_key in range(len(keys)): key = keys[keys_sort_idx[idx_key]] # check if string should be split if len(key) > 21 and ' ' in key: p_text.text(0.0, 0.9-keys_fac*(idx_key+keys_split), key.split()[0]+'-', fontsize=13, color=colors[keys_sort_idx[idx_key]]) keys_split += 1 p_text.text(0.0, 0.9-keys_fac*(idx_key+keys_split), key.split()[1], fontsize=13, color=colors[keys_sort_idx[idx_key]]) else: p_text.text(0.0, 0.9-keys_fac*(idx_key+keys_split), key, fontsize=13, color=colors[keys_sort_idx[idx_key]]) adjust_spines(p_text, []) plt.savefig(fnout_img, dpi=300) # close plot and set plotting back to screen plt.close('FourierICA plots') plt.ion() mayavi.mlab.options.offscreen = False return temp_plot_dir # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ # helper function to get spectral profiles for plotting # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ def _get_spectral_profile(temporal_envelope, tpre, sfreq, flow, fhigh, bar_plot=False, use_multitaper=False): """ Helper function to get the spectral-profile of the temporal-envelopes of the FourierICA components for plotting Parameters ---------- temporal_envelope: list of arrays containing the temporal envelopes. tpre: float Lower border (in seconds) of the time-window used for generating/showing the epochs. If 'None' the value stored in 'fourier_ica_obj' is used sfreq: float Sampling frequency of the data flow: float or integer Lower frequency range for time frequency analysis fhigh: float or integer Upper frequency range for time frequency analysis bar_plot: boolean if set the number of time points for time-frequency estimation is reduced in order to save memory and computing-time use_multitaper: boolean If set 'multitaper' is usewd for time frequency analysis, otherwise 'stockwell' Return ------ average_power_all: list containing the averaged frequency power of all components freqs: array containing the frequencies used to calculate the frequency power vmin: lower frequency range for plotting vmax: upper frequency range for plotting """ # ------------------------------------------ # import necessary modules # ------------------------------------------ from mne.baseline import rescale from mne.time_frequency._stockwell import _induced_power_stockwell import numpy as np # ------------------------------------------ # define some parameter # ------------------------------------------ ntemp = len(temporal_envelope) ncomp = temporal_envelope[0][0].shape[1] win_ntsl = temporal_envelope[0][0].shape[-1] average_power_all = np.empty((ntemp, 0)).tolist() vmin = np.zeros(ncomp) vmax = np.zeros(ncomp) # define some time parameter times = np.arange(win_ntsl) / sfreq + tpre idx_start = np.argmin(np.abs(times - tpre)) idx_end = np.argmin(np.abs(times - (tpre + win_ntsl/sfreq))) if bar_plot: decim = 10 else: decim = 1 # ------------------------------------------ # loop over all time courses, i.e. # conditions, and all components # ------------------------------------------ for itemp in range(ntemp): for icomp in range(ncomp): # extract some information from the temporal_envelope nepochs = temporal_envelope[itemp][0].shape[0] # ------------------------------------------ # perform time frequency analysis # ------------------------------------------ # prepare data for frequency analysis data_stockwell = temporal_envelope[itemp][0][:, icomp, idx_start:idx_end].\ reshape((nepochs, 1, idx_end-idx_start)) data_stockwell = data_stockwell.transpose([1, 0, 2]) # mirror data to reduce transient frequencies data_stockwell = np.concatenate((data_stockwell[:, :, 50:0:-1], data_stockwell, data_stockwell[:, :, -1:-51:-1]), axis=-1) n_fft = data_stockwell.shape[-1] # check if 'multitaper' or 'stockwell' should be # used for time-frequency analysis if use_multitaper: from mne.time_frequency.tfr import _compute_tfr n_cycle = 3.0 if (10.0 * n_cycle*sfreq)/(2.0 * np.pi * flow) > n_fft: flow *= ((10.0 * n_cycle*sfreq)/(2.0 * np.pi * flow))/n_fft flow = np.ceil(flow) freqs = np.arange(flow, fhigh) power_data = _compute_tfr(data_stockwell, freqs, sfreq=sfreq, use_fft=True, n_cycles=n_cycle, zero_mean=True, decim=decim, output='power', method='multitaper', time_bandwidth=10) else: power_data, _, freqs = _induced_power_stockwell(data_stockwell, sfreq=sfreq, fmin=flow, fmax=fhigh, width=0.6, decim=1, n_fft=n_fft, return_itc=False, n_jobs=4) # perform baseline correction (and remove mirrored parts from data) power_data = rescale(power_data[:, :, int(50/decim):-int(50/decim)], times[idx_start:idx_end][0:-1:decim], (None, 0), 'mean') average_power = np.mean(power_data, axis=0) # ------------------------------------------ # store all frequency data in one list # ------------------------------------------ average_power_all[itemp].append(average_power) # ------------------------------------------ # estimate frequency thresholds for plotting # ------------------------------------------ vmax[icomp] = np.max((np.percentile(average_power, 98), vmax[icomp])) vmin[icomp] = np.min((np.percentile(average_power, 2), vmin[icomp])) if np.abs(vmax[icomp]) > np.abs(vmin[icomp]): vmin[icomp] = - np.abs(vmax[icomp]) else: vmax[icomp] = np.abs(vmin[icomp]) return average_power_all, freqs, vmin, vmax # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ # plot results when Fourier ICA was applied in the # source space # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ def plot_results_src_space(fourier_ica_obj, W_orig, A_orig, src_loc_data=[], temporal_envelope=[], # parameter for temporal profiles tpre=None, win_length_sec=None, tICA=False, vertno=[], subject='fsaverage', subjects_dir=None, # parameter for spatial profiles percentile=97, add_foci=True, classification={}, mni_coords=[], labels=None, flow=None, fhigh=None, bar_plot=False, # parameter for spectral profiles global_scaling=True, ncomp_per_plot=13, fnout=None, # general plotting parameter temp_profile_names=[]): """ Generate plot containing all results achieved by applying FourierICA in source space, i.e., plot spatial and spectral profiles. Parameters ---------- fourier_ica_obj: FourierICA object generated when applying jumeg.decompose.fourier_ica W_orig: array 2D-demixing-array (ncomp x nvoxel) estimated when applying FourierICA A_orig: array 2D-mixing-array (nvoxel, ncomp) estimated when applying FourierICA **** parameter for temporal profiles **** src_loc_data: array 3D array containing the source localization data used for FourierICA estimation (nfreq x nepochs x nvoxel). Only necessary if temporal_envelope is not given. default: src_loc_data=[] temporal_envelope: list of arrays containing the temporal envelopes. If not given the temporal envelopes are estimated here based on the 'src_loc_data' default: temporal_envelope=[] tpre: float Lower border (in seconds) of the time-window used for generating/showing the epochs. If 'None' the value stored in 'fourier_ica_obj' is used win_length_sec: float or None Length of the epoch window in seconds. If 'None' the value stored in 'fourier_ica_obj' is used tICA: boolean should be True if temporal ICA was applied default: tICA=False **** parameter for spatial profiles **** vertno: list list containing two arrays with the order of the vertices. If list is empty it will be automatically generated default: vertno=[] subject: string subjects ID default: subject='fsaverage' subjects_dir: string or None string containing the subjects directory path default: subjects_dir=None --> system variable SUBJETCS_DIR is used percentile: integer value between 0 and 100 used to set a lower limit for the shown intensity range of the spatial plots default: percentile=97 add_foci: bool if True and the MNI coordinates are given a foci is plotted at the position of the MNI coordinate default: add_foci=True classification: dictionary classification object from the group_ica_object. It is a dictionary containing two sub-dictionaries 'lh' and 'rh' (for left and right hemisphere). In both sub-dictionaries the information about the groups is stored, i.e. a group/region name + the information which components are stored in this group default: classification={} mni_coords: list of strings if given the MNI coordinates are plotted beneath the spatial profiles default: mni_coords=[] labels: list of strings names of the labels which should be plotted. Note, the prefix 'lh.' and the suffix '.label' are automatically added default: labels=None **** parameter for spectral profiles **** flow: float or integer Lower frequency range for time frequency analysis fhigh: float or integer Upper frequency range for time frequency analysis bar_plot: boolean If set the results of the time-frequency analysis are shown as bar plot. This option is recommended when FourierICA was applied to resting-state data default: bar_plot=False **** general plotting parameter **** global_scaling: bool If set spatial, spectral and temporal profiles are globally scaled. Otherwise each component is scaled individually default: global_scaling=True ncomp_per_plot: integer number of components per plot fnout: string default: fnout=None temp_profile_names: list of string The list should have the same number of elements as conditions were used to generate the temporal envelopes. The names given here are used as headline for the temporal profiles in the plot default: temp_profile_name=[] """ # ------------------------------------------ # import necessary modules # ------------------------------------------ from matplotlib import pyplot as plt from matplotlib import gridspec as grd from matplotlib.colors import Normalize import numpy as np from os import remove, rmdir from os.path import exists, join from scipy import misc # ------------------------------------------- # check input parameter # ------------------------------------------- if tpre == None: tpre = fourier_ica_obj.tpre if flow == None: flow = fourier_ica_obj.flow if not fhigh: fhigh = fourier_ica_obj.fhigh if not win_length_sec: win_length_sec = fourier_ica_obj.win_length_sec # check if either 'src_loc_data' or # 'temporal_envelope' is given, otherwise stop if src_loc_data == [] and temporal_envelope == []: print(">>> ERROR: you have either to provide the variable") print(">>> 'src_loc_data' or 'temporal_envelope'.") import pdb pdb.set_trace() # estimate/set some simple parameter sfreq = fourier_ica_obj.sfreq win_ntsl = int(np.floor(sfreq * win_length_sec)) ncomp, nvoxel = W_orig.shape ylim_temp = [-0.55, 0.55] time_range = [tpre, tpre + win_length_sec] # ------------------------------------------- # get temporal envelopes, or rather check if # temporal envelopes already exist or must # be calculated # ------------------------------------------- temporal_envelope_mean, temporal_envelope = \ _get_temporal_envelopes(fourier_ica_obj, W_orig, temporal_envelope=temporal_envelope, src_loc_data=src_loc_data, tICA=tICA, global_scaling=global_scaling, win_length_sec=win_length_sec, tpre=tpre, flow=flow) ntemp = len(temporal_envelope) # ------------------------------------------- # get MNI-coordinates of the FourierICA # components # ------------------------------------------- if not classification and not mni_coords and not labels: mni_coords, hemi_loc_txt, classification, labels = \ get_mni_coordinates(A_orig, subject=subject, subjects_dir=subjects_dir, percentile=percentile) # otherwise we only have to get the 'hemi_loc_txt' variable else: hemi_loc = np.array([int(i != '') for i in mni_coords['lh']]) hemi_loc += np.array([2*int(i != '') for i in mni_coords['rh']]) hemi_loc_txt = np.array([' '] * len(hemi_loc)) for idx, hemi_name in enumerate(['left ', 'right', 'both ']): idx_change = np.where(hemi_loc == (idx + 1.0))[0] hemi_loc_txt[idx_change] = hemi_name # check if classification was performed prior to plotting keys, key_borders, idx_sort = _check_classification(classification, ncomp) # ------------------------------------------- # get spatial profiles of all components # Note: This will take a while # ------------------------------------------- temp_plot_dir = _get_spatial_profiles(A_orig, keys, hemi_loc_txt, vertno=vertno, subject=subject, subjects_dir=subjects_dir, labels=labels, classification=classification, percentile=percentile, mni_coord=mni_coords, add_foci=add_foci, fnout=fnout) # ------------------------------------------- # get spectral profiles of all components # Note: This will take a while # ------------------------------------------- average_power_all, freqs, vmin, vmax = \ _get_spectral_profile(temporal_envelope, tpre, sfreq, flow, fhigh, bar_plot=bar_plot) # check if bar plot should be used # --> if yes estimate histogram data and normalize results if bar_plot: # generate an array to store the results freq_heights = np.zeros((ntemp, ncomp, len(freqs))) # loop over all conditions for i_power, average_power in enumerate(average_power_all): freq_heights[i_power, :, :] = np.sum(np.abs(average_power), axis=2) # normalize to a range between 0 and 1 freq_heights /= np.max(freq_heights) # ------------------------------------------ # now generate plot containing spatial, # spectral and temporal profiles # ------------------------------------------ # set some general parameter plt.ioff() nimg = int(np.ceil(ncomp/(1.0*ncomp_per_plot))) idx_key = 0 nplot = list(range(ncomp_per_plot, nimg*ncomp_per_plot, ncomp_per_plot)) nplot.append(ncomp) # generate image and its layout for plotting fig = plt.figure('FourierICA plots', figsize=(14 + ntemp * 8, 34)) n_keys = len(key_borders) if len(key_borders) > 0 else 1 gs = grd.GridSpec(ncomp_per_plot * 20 + n_keys * 10, 10 + ntemp * 8, wspace=0.1, hspace=0.05, left=0.04, right=0.96, bottom=0.04, top=0.96) # ------------------------------------------ # loop over the estimated number of images # ------------------------------------------ for iimg in range(nimg): # clear figure (to start with a white image in each loop) plt.clf() # estimate how many plots on current image istart_plot = int(ncomp_per_plot * iimg) # set idx_class parameter idx_class = 1 if key_borders == [] else 0 # ------------------------------------------ # loop over all components which should be # plotted on the current image # ------------------------------------------ for icomp in range(istart_plot, nplot[iimg]): # ---------------------------------------------- # check if key_boarders is set and should be # written on the image # ---------------------------------------------- if (icomp == istart_plot and key_borders != []) or \ ((icomp + 1) in key_borders): # adjust key-index if (icomp + 1) in key_borders: idx_key += 1 # add sub-plot with 'key_text' p_text = fig.add_subplot(gs[20 * (icomp - istart_plot) + idx_class * 10: \ 20 * (icomp - istart_plot) + 8 + idx_class * 10, 0:10]) p_text.text(0, 0, keys[idx_key-1], fontsize=25) adjust_spines(p_text, []) # adjust idx_class parameter idx_class += 1 # ---------------------------------------------- # plot spatial profiles # ---------------------------------------------- # read spatial profile image fn_base = "IC%02d_spatial_profile.png" % (idx_sort[icomp] + 1) fnin_img = join(temp_plot_dir, fn_base) spat_tmp = misc.imread(fnin_img) remove(fnin_img) # rearrange image x_size, y_size, _ = spat_tmp.shape x_half, y_half = x_size / 2, y_size / 2 x_frame, y_frame = int(0.11 * x_half), int(0.01 * y_half) spatial_profile = np.concatenate((spat_tmp[x_frame:(x_half - x_frame), y_frame:(y_half - y_frame), :], spat_tmp[(x_half + x_frame):-x_frame, y_frame:(y_half - y_frame), :], spat_tmp[(x_half + x_frame):-x_frame, (y_half + y_frame):-y_frame, :], spat_tmp[x_frame:(x_half - x_frame), (y_half + y_frame):-y_frame, :]), axis=1) # set plot position and plot image p1 = fig.add_subplot( gs[20 * (icomp - istart_plot) + idx_class * 10:20 * (icomp - istart_plot) + 15 + idx_class * 10, 0:10]) p1.imshow(spatial_profile) # set some plotting options p1.yaxis.set_ticks([]) p1.xaxis.set_ticks([]) y_name = "IC#%02d" % (idx_sort[icomp] + 1) p1.set_ylabel(y_name, fontsize=18) # ---------------------------------------------- # if given write MNI coordinates under the image # ---------------------------------------------- if np.any(mni_coords): # left hemisphere plt.text(120, 360, mni_coords['lh'][int(idx_sort[int(icomp)])], color="black", fontsize=18) # right hemisphere plt.text(850, 360, mni_coords['rh'][int(idx_sort[int(icomp)])], color="black", fontsize=18) # add location information of the component # --> if located in 'both', 'left' or 'right' hemisphere plt.text(-220, 100, hemi_loc_txt[int(idx_sort[int(icomp)])], color="red", fontsize=25, rotation=90) # ---------------------------------------------- # temporal/spectral profiles # ---------------------------------------------- # loop over all time courses for itemp in range(ntemp): # ---------------------------------------------- # if given plot a headline above the time # courses of each condition # ---------------------------------------------- if icomp == istart_plot and len(temp_profile_names): # add a sub-plot for the text p_text = fig.add_subplot(gs[(idx_class - 1) * 10: 6 + (idx_class - 1) * 12, (itemp) * 8 + 11:(itemp + 1) * 8 + 9]) # plot the text and adjust spines p_text.text(0, 0, " " + temp_profile_names[itemp], fontsize=30) adjust_spines(p_text, []) # set plot position if bar_plot: p2 = plt.subplot( gs[20 * (icomp - istart_plot) + idx_class * 11:20 * (icomp - istart_plot) + 13 + idx_class * 10, itemp * 8 + 11:(itemp + 1) * 8 + 9]) else: p2 = plt.subplot( gs[20 * (icomp - istart_plot) + idx_class * 10:20 * (icomp - istart_plot) + 15 + idx_class * 10, itemp * 8 + 11:(itemp + 1) * 8 + 9]) # extract temporal plotting information times = (np.arange(win_ntsl) / sfreq + tpre)[5:-5] idx_start = np.argmin(np.abs(times - time_range[0])) idx_end = np.argmin(np.abs(times - time_range[1])) # ---------------------------------------------- # plot spectral profile # ---------------------------------------------- # check if global scaling should be used if global_scaling: vmin_cur, vmax_cur = np.min(vmin), np.max(vmax) else: vmin_cur, vmax_cur = vmin[icomp], vmax[icomp] # show spectral profile if bar_plot: plt.bar(freqs, freq_heights[itemp, int(idx_sort[icomp]), :], width=1.0, color='cornflowerblue') plt.xlim(flow, fhigh) plt.ylim(0.0, 1.0) # set some parameter p2.set_xlabel("freq. [Hz]") p2.set_ylabel("ampl. [a.u.]") # ---------------------------------------------- # plot temporal profile on the some spot # ---------------------------------------------- ax = plt.twiny() ax.set_xlabel("time [s]") ax.plot(times[idx_start:idx_end], 0.5+temporal_envelope_mean[itemp][0][int(idx_sort[icomp]), idx_start:idx_end], color='red', linewidth=3.0) ax.set_xlim(times[idx_start], times[idx_end]) ax.set_ylim(0.0, 1.0) else: average_power = average_power_all[itemp][int(idx_sort[icomp])] extent = (times[idx_start], times[idx_end], freqs[0], freqs[-1]) p2.imshow(average_power, extent=extent, aspect="auto", origin="lower", picker=False, cmap='RdBu_r', vmin=vmin_cur, vmax=vmax_cur) # set some parameter p2.set_xlabel("time [s]") p2.set_ylabel("freq. [Hz]") # ---------------------------------------------- # plot temporal profile on the some spot # ---------------------------------------------- ax = plt.twinx() ax.set_xlim(times[idx_start], times[idx_end]) ax.set_ylim(ylim_temp) ax.set_ylabel("ampl. [a.u.]") ax.plot(times[idx_start:idx_end], temporal_envelope_mean[itemp][0][int(idx_sort[icomp]), idx_start:idx_end], color='black', linewidth=3.0) # ---------------------------------------------- # finally plot a color bar # ---------------------------------------------- if not bar_plot: # first normalize the color table norm = Normalize(vmin=np.round(vmin_cur, 2), vmax=np.round(vmax_cur, 2)) sm = plt.cm.ScalarMappable(cmap='RdBu_r', norm=norm) sm.set_array(np.linspace(vmin_cur, 1.0)) # estimate position of the color bar xpos = 0.405 + 0.5/(ntemp + 1.0) if n_keys > 1: cbaxes = fig.add_axes([xpos, 0.135, 0.2, 0.006]) else: cbaxes = fig.add_axes([xpos, 0.03, 0.2, 0.006]) ticks_fac = (vmax_cur - vmin_cur) * 0.3333 ticks = np.round([vmin_cur, vmin_cur + ticks_fac, vmax_cur - ticks_fac, vmax_cur], 2) # ticks = [-1.0, -0.5, 0.0, 0.5, 1.0] # now plot color bar cb = plt.colorbar(sm, ax=p2, cax=cbaxes, use_gridspec=False, orientation='horizontal', ticks=ticks, format='%1.2g') cb.ax.tick_params(labelsize=18) # ---------------------------------------------- # save image # ---------------------------------------------- if fnout: fnout_complete = '%s_%02d.png' % (fnout, iimg + 1) plt.savefig(fnout_complete, format='png', dpi=300) # close plot and set plotting back to screen plt.close('FourierICA plots') plt.ion() # remove temporary directory for # spatial profile plots if exists(temp_plot_dir): rmdir(temp_plot_dir) return mni_coords, classification, labels
[ 2, 46665, 25, 28102, 292, 3719, 15573, 1279, 75, 13, 4679, 15573, 31, 69, 89, 12, 73, 2731, 488, 13, 2934, 29, 198, 198, 37811, 198, 10097, 23031, 198, 6329, 474, 388, 1533, 13, 12501, 3361, 577, 13, 69, 280, 5277, 62, 3970, 62, 29487, 20368, 12, 198, 10097, 23031, 198, 1960, 273, 220, 220, 220, 220, 220, 1058, 28102, 292, 3719, 15573, 198, 3053, 220, 220, 220, 220, 220, 1058, 300, 13, 4679, 15573, 31, 69, 89, 12, 73, 2731, 488, 13, 2934, 198, 938, 4296, 25, 1596, 13, 1157, 13, 5304, 198, 2196, 220, 220, 220, 1058, 352, 13, 16, 198, 198, 10097, 23031, 198, 770, 318, 257, 2829, 7822, 284, 7110, 262, 2482, 8793, 416, 198, 11524, 34296, 5277, 25241, 198, 10097, 23031, 198, 37811, 198, 29113, 14468, 4242, 21017, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29353, 5499, 329, 34296, 5277, 25241, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 29113, 14468, 4242, 21017, 198, 2, 1343, 44627, 44627, 44627, 14030, 4880, 198, 2, 17427, 2163, 284, 4532, 16488, 287, 21528, 198, 2, 1343, 44627, 44627, 44627, 14030, 4880, 198, 4299, 4532, 62, 2777, 1127, 7, 897, 11, 599, 1127, 11, 14722, 1096, 28, 940, 2599, 628, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 17427, 2163, 284, 4532, 16488, 287, 21528, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 25, 16488, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28114, 2134, 543, 815, 307, 12328, 198, 220, 220, 220, 220, 220, 220, 220, 599, 1127, 25, 1351, 286, 13042, 37250, 22487, 3256, 705, 9464, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6530, 286, 262, 16488, 543, 815, 307, 12328, 198, 220, 220, 220, 220, 220, 220, 220, 14722, 1096, 25, 18253, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24060, 2546, 329, 262, 2124, 12, 290, 331, 12, 22704, 14722, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 329, 1179, 11, 19656, 287, 1351, 7, 897, 13, 2777, 1127, 13, 23814, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1179, 287, 599, 1127, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19656, 13, 2617, 62, 9150, 7, 10786, 448, 904, 3256, 604, 4008, 220, 1303, 23537, 416, 604, 2173, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 19656, 13, 2617, 62, 27004, 62, 65, 3733, 7, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19656, 13, 2617, 62, 8043, 10786, 23108, 11537, 220, 1303, 836, 470, 3197, 19656, 628, 220, 220, 220, 1303, 1210, 572, 36066, 810, 612, 318, 645, 19656, 198, 220, 220, 220, 611, 705, 9464, 6, 287, 599, 1127, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 88, 22704, 13, 2617, 62, 83, 3378, 62, 9150, 10786, 9464, 11537, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 645, 331, 22704, 36066, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 88, 22704, 13, 2617, 62, 83, 3378, 26933, 12962, 628, 220, 220, 220, 611, 705, 22487, 6, 287, 599, 1127, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 87, 22704, 13, 2617, 62, 83, 3378, 62, 9150, 10786, 22487, 11537, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 645, 2124, 22704, 36066, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 87, 22704, 13, 2617, 62, 83, 3378, 26933, 12962, 628, 220, 220, 220, 7877, 13, 42298, 62, 37266, 7, 22704, 11639, 87, 3256, 14722, 1096, 28, 23912, 1424, 1096, 8, 198, 220, 220, 220, 7877, 13, 42298, 62, 37266, 7, 22704, 11639, 88, 3256, 14722, 1096, 28, 23912, 1424, 1096, 8, 628, 628, 198, 2, 1343, 44627, 44627, 44627, 14030, 4880, 198, 2, 2163, 284, 7716, 6338, 5929, 14722, 198, 2, 1343, 44627, 44627, 44627, 14030, 4880, 198, 4299, 651, 62, 24011, 1389, 62, 23912, 1424, 7, 32796, 11639, 9501, 23913, 3256, 7481, 62, 15908, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1582, 66, 11639, 499, 5605, 13, 64, 10531, 82, 6, 2599, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 5053, 525, 2163, 284, 12082, 14722, 6338, 198, 220, 220, 220, 1864, 284, 2180, 3640, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 2426, 25, 4731, 7268, 262, 7481, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 25, 2426, 11639, 9501, 23913, 6, 198, 220, 220, 220, 220, 220, 220, 220, 7481, 62, 15908, 25, 43815, 8619, 13, 1002, 407, 1813, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1080, 7885, 28932, 41, 2943, 4694, 62, 34720, 318, 973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 25, 7481, 62, 15908, 28, 14202, 198, 220, 220, 220, 220, 220, 220, 220, 1582, 66, 25, 1438, 286, 262, 1582, 3846, 341, 284, 779, 329, 3555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 262, 14722, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 25, 1582, 66, 11639, 499, 5605, 13, 64, 10531, 82, 6, 628, 220, 220, 220, 220, 220, 220, 220, 8229, 198, 220, 220, 220, 220, 220, 220, 220, 40103, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 13083, 25, 3891, 286, 262, 649, 14722, 198, 220, 220, 220, 220, 220, 220, 220, 14722, 25, 1351, 7268, 262, 5929, 14722, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 1303, 1330, 3306, 13103, 198, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 422, 285, 710, 1330, 1100, 62, 23912, 1424, 62, 6738, 62, 34574, 198, 220, 220, 220, 1330, 299, 32152, 355, 45941, 198, 220, 220, 220, 422, 28686, 13, 6978, 1330, 4654, 628, 198, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 1303, 8160, 14722, 1912, 319, 2180, 3640, 198, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 1303, 284, 651, 517, 1321, 546, 262, 6167, 3891, 290, 511, 198, 220, 220, 220, 1303, 7064, 2198, 262, 1708, 9207, 25, 198, 220, 220, 220, 1303, 8145, 5034, 2821, 2123, 435, 13, 357, 10333, 828, 30199, 1582, 3846, 341, 286, 1692, 198, 220, 220, 220, 1303, 35001, 21486, 380, 290, 33154, 979, 1262, 3210, 48631, 299, 3674, 565, 1300, 11, 198, 220, 220, 220, 1303, 13782, 5159, 11, 40722, 25, 838, 13, 27956, 14, 73, 13, 710, 1434, 9060, 13, 10333, 13, 3312, 13, 20943, 198, 220, 220, 220, 6167, 62, 24011, 7352, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3885, 37765, 10354, 37250, 38, 62, 29510, 62, 37330, 12, 38, 62, 51, 62, 7645, 85, 3256, 705, 38, 62, 29510, 62, 37330, 12, 20854, 62, 79, 6192, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24220, 62, 37, 271, 12, 7353, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7957, 6888, 10354, 37250, 38, 62, 8534, 62, 10745, 12, 18843, 10440, 3256, 705, 38, 62, 8534, 62, 10745, 12, 14824, 648, 377, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24220, 62, 37, 271, 12, 415, 12, 42369, 605, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 2259, 5039, 10354, 37250, 38, 62, 2259, 377, 12, 6307, 12, 67, 669, 282, 3256, 705, 38, 62, 2259, 377, 12, 6307, 12, 1151, 1373, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 38, 62, 392, 62, 50, 62, 2259, 377, 12, 13217, 3256, 705, 38, 62, 392, 62, 50, 62, 2259, 377, 12, 22622, 12, 13217, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 38, 62, 392, 62, 50, 62, 2259, 377, 12, 22622, 12, 6307, 3256, 705, 50, 62, 525, 291, 439, 40725, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2259, 377, 12, 6307, 12, 1151, 1373, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 8534, 282, 10354, 37250, 38, 62, 392, 62, 50, 62, 8534, 296, 853, 259, 3256, 705, 38, 62, 392, 62, 50, 62, 7645, 85, 62, 8534, 39704, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 38, 62, 8534, 62, 10745, 12, 5574, 65, 1287, 3256, 705, 38, 62, 8534, 62, 27171, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 38, 62, 8534, 62, 37330, 3256, 705, 38, 62, 27688, 1287, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 38, 62, 2554, 385, 3256, 705, 38, 62, 7266, 13345, 40725, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24220, 62, 37, 271, 12, 415, 12, 27991, 12071, 3256, 705, 50, 62, 8534, 62, 10745, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 50, 62, 8534, 62, 27171, 3256, 705, 50, 62, 8534, 62, 37330, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 50, 62, 27688, 1287, 62, 75, 10534, 3256, 705, 50, 62, 27688, 1287, 12, 39, 62, 2484, 5813, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 50, 62, 7266, 27688, 1287, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 70, 436, 2870, 10354, 37250, 38, 62, 392, 62, 50, 62, 7266, 31463, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 16495, 10354, 37250, 50, 62, 21170, 934, 62, 16495, 62, 415, 3256, 705, 50, 62, 21170, 934, 62, 16495, 62, 10745, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 50, 62, 21170, 934, 62, 16495, 62, 37330, 3256, 705, 38, 62, 20376, 62, 75, 70, 62, 392, 62, 50, 62, 1087, 62, 1040, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 38, 62, 1040, 934, 62, 19509, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 76, 20965, 10354, 37250, 38, 62, 3866, 31463, 3256, 705, 50, 62, 3866, 31463, 12, 37330, 12, 3911, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 50, 62, 3866, 31463, 12, 10745, 12, 3911, 3256, 705, 50, 62, 31463, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4024, 9548, 10354, 37250, 50, 62, 11498, 35738, 62, 7645, 4399, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 82, 296, 35492, 641, 652, 10354, 37250, 38, 62, 7353, 31463, 3256, 705, 50, 62, 7353, 31463, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 82, 296, 35492, 641, 652, 3917, 10354, 37250, 38, 62, 392, 62, 50, 62, 1845, 12643, 1373, 3256, 705, 38, 62, 1845, 1155, 62, 10745, 12, 13450, 934, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 38, 62, 1845, 21587, 62, 37330, 3256, 705, 50, 62, 2259, 377, 12, 36003, 271, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 50, 62, 600, 430, 1845, 1155, 62, 392, 62, 47, 62, 7645, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 11498, 35738, 10354, 37250, 38, 62, 420, 12, 29510, 62, 15460, 12, 69, 385, 361, 273, 3256, 705, 38, 62, 420, 12, 29510, 62, 1150, 12, 10044, 993, 541, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 38, 62, 29510, 62, 37330, 12, 20854, 62, 79, 6192, 3256, 705, 38, 62, 11498, 35738, 62, 10745, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 38, 62, 11498, 35738, 62, 27171, 3256, 705, 38, 62, 29510, 62, 37330, 12, 43, 10534, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 47, 2305, 62, 11498, 35738, 3256, 705, 50, 62, 26000, 265, 62, 7645, 85, 62, 415, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 50, 62, 420, 12, 29510, 62, 15460, 3256, 705, 50, 62, 420, 12, 29510, 62, 1150, 62, 392, 62, 43, 278, 723, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 50, 62, 11498, 35738, 62, 10745, 3256, 705, 50, 62, 11498, 35738, 62, 37330, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 10178, 10354, 37250, 38, 62, 392, 62, 50, 62, 13966, 541, 1287, 62, 10745, 3256, 705, 38, 62, 13966, 541, 1287, 62, 27171, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 38, 62, 420, 12, 29510, 62, 1150, 12, 43, 278, 723, 3256, 705, 50, 62, 26000, 265, 62, 7645, 85, 62, 7353, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 50, 62, 420, 62, 37330, 62, 392, 62, 7645, 690, 282, 3256, 705, 50, 62, 13966, 541, 1287, 62, 415, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 50, 62, 420, 62, 27171, 62, 392, 62, 43, 403, 7240, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 41464, 10354, 37250, 38, 62, 66, 1726, 385, 3256, 705, 38, 62, 3866, 66, 1726, 385, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 50, 62, 9948, 7718, 500, 3256, 705, 50, 62, 1845, 1155, 78, 62, 13966, 541, 1287, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 38, 62, 13966, 541, 1287, 62, 37330, 3256, 705, 47, 2305, 62, 13966, 541, 1287, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 50, 62, 7266, 1845, 21587, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 86, 1142, 291, 365, 10354, 37250, 38, 62, 1845, 1155, 62, 10745, 12, 40784, 859, 283, 3256, 705, 38, 62, 29510, 62, 37330, 12, 20854, 62, 11498, 7501, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 50, 62, 3849, 76, 62, 19795, 12, 41, 18756, 20520, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 6167, 62, 13083, 796, 1351, 7, 18242, 62, 24011, 7352, 13, 13083, 28955, 198, 220, 220, 220, 14722, 796, 17635, 628, 198, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 1303, 12082, 14722, 198, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 1303, 9052, 625, 1111, 16869, 8802, 19079, 198, 220, 220, 220, 329, 339, 11632, 287, 37250, 75, 71, 3256, 705, 17179, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1100, 477, 14722, 287, 198, 220, 220, 220, 220, 220, 220, 220, 14722, 62, 439, 796, 1100, 62, 23912, 1424, 62, 6738, 62, 34574, 7, 32796, 11, 1582, 66, 28, 1845, 66, 11, 339, 11632, 28, 4411, 72, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9053, 62, 3672, 11639, 259, 2704, 515, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7481, 62, 15908, 28, 32796, 82, 62, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15942, 577, 28, 25101, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 9052, 625, 477, 14722, 284, 7925, 6167, 3891, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 14933, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 6167, 287, 14722, 62, 439, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 14933, 13, 33295, 7, 18242, 13, 3672, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 783, 7716, 14722, 1912, 319, 2180, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3640, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 9052, 625, 477, 4271, 5447, 14722, 198, 220, 220, 220, 220, 220, 220, 220, 329, 6167, 62, 2539, 287, 6167, 62, 13083, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 1438, 286, 477, 14722, 3519, 284, 262, 1459, 530, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 30814, 796, 6167, 62, 24011, 7352, 58, 18242, 62, 2539, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 30814, 796, 685, 87, 10, 6, 19355, 10, 4411, 72, 329, 2124, 287, 6167, 62, 30814, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 543, 14722, 356, 761, 329, 262, 1459, 530, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 62, 23912, 1424, 62, 42949, 796, 45941, 13, 3003, 7, 37659, 13, 259, 16, 67, 7, 18242, 62, 14933, 11, 6167, 62, 30814, 4008, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14722, 62, 42949, 796, 685, 23912, 1424, 62, 439, 58, 72, 60, 329, 1312, 287, 4686, 87, 62, 23912, 1424, 62, 42949, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 12082, 14722, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 3605, 796, 45941, 13, 16345, 7, 23912, 1424, 62, 42949, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 3605, 13, 3672, 796, 6167, 62, 2539, 1343, 705, 19355, 1343, 339, 11632, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6070, 262, 4417, 1022, 4237, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 3605, 13, 27160, 13, 20797, 7, 16, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 3605, 13, 5796, 5226, 7, 32796, 28, 32796, 11, 7481, 62, 15908, 28, 32796, 82, 62, 15908, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3613, 649, 6167, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24714, 448, 796, 4654, 7, 32796, 82, 62, 15908, 11, 2426, 11, 705, 18242, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 339, 11632, 1343, 705, 2637, 1343, 6167, 62, 2539, 1343, 45302, 18242, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 3605, 13, 21928, 7, 22184, 448, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14722, 13, 33295, 7, 18242, 62, 3605, 8, 628, 198, 220, 220, 220, 1441, 6167, 62, 13083, 11, 14722, 628, 628, 198, 2, 1343, 44627, 44627, 44627, 14030, 4880, 198, 2, 2163, 284, 651, 262, 48631, 6167, 284, 257, 1813, 37423, 198, 2, 1343, 44627, 44627, 44627, 14030, 4880, 198, 4299, 651, 62, 272, 265, 62, 18242, 62, 3672, 7, 332, 16886, 11, 339, 11632, 11, 14722, 28, 14202, 11, 2426, 11639, 9501, 23913, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7481, 62, 15908, 28, 14202, 11, 1582, 66, 11639, 499, 5605, 13, 64, 10531, 82, 6, 2599, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 5053, 525, 2163, 284, 651, 284, 257, 1813, 37423, 262, 198, 220, 220, 220, 1438, 286, 262, 48631, 6167, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 37423, 25, 18253, 7268, 262, 37423, 1271, 198, 220, 220, 220, 220, 220, 220, 220, 339, 11632, 25, 4731, 7268, 262, 1321, 287, 543, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33169, 262, 37423, 318, 5140, 13, 10358, 307, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2035, 705, 75, 71, 6, 393, 705, 17179, 6, 198, 220, 220, 220, 220, 220, 220, 220, 14722, 25, 14722, 284, 779, 329, 10627, 13, 1002, 407, 1813, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 14722, 389, 1100, 422, 262, 7481, 8619, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 25, 14722, 28, 14202, 198, 220, 220, 220, 220, 220, 220, 220, 2426, 25, 4731, 7268, 262, 7481, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 25, 2426, 11639, 9501, 23913, 6, 198, 220, 220, 220, 220, 220, 220, 220, 7481, 62, 15908, 25, 43815, 8619, 13, 1002, 407, 1813, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1080, 7885, 28932, 41, 2943, 4694, 62, 34720, 318, 973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 25, 7481, 62, 15908, 28, 14202, 198, 220, 220, 220, 220, 220, 220, 220, 1582, 66, 25, 1438, 286, 262, 1582, 3846, 341, 284, 779, 329, 3555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 262, 14722, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 25, 1582, 66, 11639, 499, 5605, 13, 64, 10531, 82, 6, 628, 198, 220, 220, 220, 220, 220, 220, 220, 8229, 198, 220, 220, 220, 220, 220, 220, 220, 40103, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 25, 4731, 7268, 262, 1438, 286, 262, 48631, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 3519, 284, 262, 1813, 37423, 198, 220, 220, 220, 37227, 628, 198, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 1303, 1330, 3306, 13103, 198, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 422, 285, 710, 1330, 1100, 62, 23912, 1424, 62, 6738, 62, 34574, 198, 220, 220, 220, 1330, 299, 32152, 355, 45941, 628, 198, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 1303, 2198, 5128, 11507, 198, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 1303, 2198, 611, 14722, 389, 1813, 393, 1276, 307, 1100, 198, 220, 220, 220, 611, 407, 14722, 25, 198, 220, 220, 220, 220, 220, 220, 220, 14722, 796, 1100, 62, 23912, 1424, 62, 6738, 62, 34574, 7, 32796, 11, 1582, 66, 28, 1845, 66, 11, 339, 11632, 28, 4411, 72, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9053, 62, 3672, 11639, 259, 2704, 515, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7481, 62, 15908, 28, 32796, 82, 62, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15942, 577, 28, 25101, 8, 628, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 1303, 9052, 625, 14722, 284, 1064, 11188, 198, 220, 220, 220, 1303, 6167, 198, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 1438, 796, 10148, 628, 220, 220, 220, 329, 6167, 287, 14722, 25, 628, 220, 220, 220, 220, 220, 220, 220, 611, 6167, 13, 4411, 72, 6624, 339, 11632, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 9421, 1063, 286, 1459, 6167, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 1851, 796, 45941, 13, 259, 16, 67, 7, 37659, 13, 18747, 7, 332, 16886, 828, 6167, 13, 1851, 1063, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6167, 62, 1851, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 6167, 13, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 611, 1438, 6624, 10148, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 705, 34680, 19355, 1343, 339, 11632, 628, 220, 220, 220, 1441, 1438, 628, 628, 198, 2, 1343, 44627, 44627, 44627, 14030, 4880, 198, 2, 2163, 284, 651, 262, 337, 22125, 12, 37652, 4559, 7, 82, 8, 284, 257, 1813, 198, 2, 34296, 5277, 25241, 7515, 198, 2, 1343, 44627, 44627, 44627, 14030, 4880, 198, 4299, 651, 62, 76, 8461, 62, 37652, 17540, 7, 32, 62, 11612, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2426, 11639, 9501, 23913, 3256, 7481, 62, 15908, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1582, 66, 11639, 499, 5605, 13, 64, 10531, 82, 3256, 37894, 28, 5607, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12082, 62, 23912, 1424, 28, 17821, 2599, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 5053, 525, 2163, 284, 651, 262, 337, 22125, 12, 37652, 4559, 7, 82, 8, 284, 257, 1813, 198, 220, 220, 220, 34296, 5277, 25241, 7515, 13, 383, 6356, 611, 257, 7515, 468, 198, 220, 220, 220, 14916, 287, 1111, 16869, 8802, 19079, 393, 691, 287, 530, 318, 925, 198, 220, 220, 220, 588, 5679, 25, 8636, 329, 1123, 7515, 281, 14916, 198, 220, 220, 220, 11387, 1912, 319, 262, 1813, 37894, 13, 7406, 11, 8636, 198, 220, 220, 220, 262, 2472, 1271, 286, 410, 1140, 1424, 287, 262, 7515, 543, 389, 198, 220, 220, 220, 2029, 262, 6108, 11387, 13, 2735, 2198, 611, 379, 1551, 1160, 4, 198, 220, 220, 220, 286, 262, 2472, 1271, 286, 410, 1140, 1424, 2029, 11387, 389, 287, 1123, 198, 220, 220, 220, 33169, 13, 1002, 3763, 1111, 16869, 8802, 19079, 389, 7498, 355, 4075, 11, 198, 220, 220, 220, 4306, 691, 530, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 317, 62, 11612, 25, 220, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 362, 35, 12, 19816, 278, 12, 18747, 357, 48005, 1140, 417, 11, 299, 5589, 8, 6108, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 618, 11524, 34296, 5277, 25241, 198, 220, 220, 220, 220, 220, 220, 220, 2426, 25, 4731, 7268, 262, 7481, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 25, 2426, 11639, 9501, 23913, 6, 198, 220, 220, 220, 220, 220, 220, 220, 7481, 62, 15908, 25, 43815, 8619, 13, 1002, 407, 1813, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1080, 7885, 28932, 41, 2943, 4694, 62, 34720, 318, 973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 25, 7481, 62, 15908, 28, 14202, 198, 220, 220, 220, 220, 220, 220, 220, 1582, 66, 25, 1438, 286, 262, 1582, 3846, 341, 284, 779, 329, 3555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 262, 14722, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 25, 1582, 66, 11639, 499, 5605, 13, 64, 10531, 82, 6, 198, 220, 220, 220, 220, 220, 220, 220, 37894, 25, 18253, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 1022, 657, 290, 1802, 973, 284, 900, 257, 2793, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4179, 329, 262, 3402, 12245, 2837, 286, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21739, 21528, 198, 220, 220, 220, 220, 220, 220, 220, 12082, 62, 23912, 1424, 25, 611, 900, 14722, 389, 5929, 6338, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1864, 284, 2180, 3640, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 25, 12082, 62, 23912, 1424, 28, 17821, 628, 220, 220, 220, 220, 220, 220, 220, 8229, 198, 220, 220, 220, 220, 220, 220, 220, 40103, 198, 220, 220, 220, 220, 220, 220, 220, 285, 8461, 62, 1073, 3669, 25, 22155, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 22155, 4909, 734, 4847, 25, 705, 17179, 6, 290, 705, 75, 71, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1123, 286, 543, 7268, 257, 1351, 351, 262, 337, 22125, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22715, 355, 4731, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5740, 11, 1123, 1351, 4909, 262, 976, 1271, 286, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4847, 355, 6805, 389, 1813, 13, 1002, 612, 318, 645, 337, 22125, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20435, 329, 257, 7515, 281, 6565, 4731, 318, 973, 11, 304, 13, 70, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 734, 6805, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 17179, 10354, 37250, 7, 2718, 13, 2816, 11, 352, 13, 3365, 11, 532, 2481, 13, 4869, 8, 3256, 29513, 2598, 13, 3695, 11, 532, 940, 13, 3901, 11, 2681, 13, 4531, 33047, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 75, 71, 10354, 37250, 32590, 2670, 13, 3559, 11, 642, 13, 1899, 11, 532, 1983, 13, 1795, 8, 3256, 10148, 48999, 198, 220, 220, 220, 220, 220, 220, 220, 339, 11632, 62, 17946, 62, 14116, 25, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7268, 329, 1123, 34296, 5277, 25241, 7515, 284, 543, 3814, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 340, 15246, 1927, 14448, 19203, 9464, 3256, 705, 3506, 6, 393, 705, 16885, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 17923, 25, 22155, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17923, 2134, 13, 632, 318, 257, 22155, 7268, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 734, 850, 12, 67, 2867, 3166, 705, 75, 71, 6, 290, 705, 17179, 6, 357, 1640, 1364, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 826, 33169, 737, 554, 1111, 850, 12, 67, 2867, 3166, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1321, 546, 262, 2628, 318, 8574, 11, 1312, 13, 68, 13, 257, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1448, 14, 36996, 1438, 1343, 262, 1321, 543, 6805, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 389, 8574, 287, 428, 1448, 357, 292, 36525, 737, 1052, 1672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 718, 6805, 1244, 804, 588, 428, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 17179, 10354, 1391, 6, 82, 296, 35492, 641, 652, 10354, 685, 16, 11, 513, 4357, 705, 2259, 5039, 10354, 685, 19, 11, 642, 60, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 75, 71, 10354, 1391, 6, 82, 296, 35492, 641, 652, 10354, 685, 16, 11, 362, 4357, 705, 2259, 5039, 10354, 685, 15, 11, 642, 60, 11709, 198, 220, 220, 220, 220, 220, 220, 220, 14722, 25, 1351, 286, 13042, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3891, 286, 262, 14722, 543, 389, 2950, 287, 428, 1366, 900, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 1303, 1330, 3306, 13103, 198, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 422, 285, 710, 1330, 37423, 62, 1462, 62, 76, 8461, 198, 220, 220, 220, 1330, 299, 32152, 355, 45941, 198, 220, 220, 220, 422, 28686, 1330, 551, 2268, 198, 220, 220, 220, 1330, 3858, 628, 198, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 1303, 2198, 5128, 11507, 198, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 611, 407, 7481, 62, 15908, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7481, 62, 15908, 796, 551, 2268, 13, 1136, 10786, 50, 10526, 41, 2943, 4694, 62, 34720, 11537, 628, 198, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 1303, 7716, 21739, 16545, 198, 220, 220, 220, 1303, 357, 3500, 14735, 290, 7108, 8, 198, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 611, 318, 39098, 7, 32, 62, 11612, 58, 15, 11, 657, 4357, 3716, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 317, 62, 11612, 62, 19726, 796, 45941, 13, 8937, 7, 32, 62, 11612, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 317, 62, 11612, 62, 19726, 796, 317, 62, 11612, 628, 198, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 1303, 900, 617, 10007, 198, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 299, 85, 1140, 417, 11, 299, 5589, 796, 317, 62, 11612, 62, 19726, 13, 43358, 198, 220, 220, 220, 299, 85, 1140, 417, 62, 13959, 796, 493, 7, 48005, 1140, 417, 1220, 362, 8, 198, 220, 220, 220, 339, 11632, 796, 37250, 75, 71, 3256, 705, 17179, 20520, 198, 220, 220, 220, 339, 11632, 62, 14933, 796, 37250, 9464, 46083, 705, 3506, 3256, 705, 16885, 705, 60, 198, 220, 220, 220, 339, 11632, 62, 521, 1063, 796, 16410, 15, 11, 299, 85, 1140, 417, 62, 13959, 4357, 685, 48005, 1140, 417, 62, 13959, 11, 532, 16, 11907, 198, 220, 220, 220, 339, 11632, 62, 17946, 62, 14116, 796, 45941, 13, 18747, 7, 17816, 220, 220, 220, 220, 705, 60, 1635, 299, 5589, 8, 198, 220, 220, 220, 339, 11632, 62, 17946, 796, 45941, 13, 9107, 418, 7, 77, 5589, 8, 628, 198, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 1303, 7716, 8573, 284, 3613, 2482, 198, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 1303, 7716, 22155, 284, 3613, 337, 22125, 22715, 198, 220, 220, 220, 285, 8461, 62, 1073, 3669, 796, 1391, 6, 17179, 10354, 685, 7061, 60, 1635, 299, 5589, 11, 705, 75, 71, 10354, 685, 7061, 60, 1635, 299, 5589, 92, 628, 198, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 1303, 2198, 611, 14722, 815, 307, 5929, 198, 220, 220, 220, 1303, 6338, 198, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 611, 12082, 62, 23912, 1424, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 14933, 11, 14722, 796, 651, 62, 24011, 1389, 62, 23912, 1424, 7, 32796, 28, 32796, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7481, 62, 15908, 28, 32796, 82, 62, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1582, 66, 28, 1845, 66, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 7716, 6565, 17923, 22155, 198, 220, 220, 220, 220, 220, 220, 220, 1398, 62, 13083, 796, 6167, 62, 14933, 58, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 1398, 62, 13083, 13, 33295, 10786, 34680, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 17923, 796, 1391, 6, 75, 71, 10354, 1391, 2539, 25, 17635, 329, 1994, 287, 1398, 62, 13083, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17179, 10354, 1391, 2539, 25, 17635, 329, 1994, 287, 1398, 62, 13083, 11709, 198, 220, 220, 220, 1303, 611, 407, 7716, 6565, 9633, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 14933, 11, 14722, 796, 6045, 11, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 17923, 796, 23884, 628, 198, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 1303, 9052, 625, 477, 6805, 198, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 329, 14158, 3361, 287, 2837, 7, 77, 5589, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7925, 3509, 8083, 287, 262, 21739, 7034, 286, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 1459, 7515, 13869, 329, 1111, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16869, 8802, 19079, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 62, 332, 62, 9806, 62, 75, 71, 796, 45941, 13, 853, 9806, 7, 32, 62, 11612, 62, 19726, 58, 25, 48005, 1140, 417, 62, 13959, 11, 14158, 3361, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 62, 332, 62, 9806, 62, 17179, 796, 45941, 13, 853, 9806, 7, 32, 62, 11612, 62, 19726, 58, 48005, 1140, 417, 62, 13959, 45299, 14158, 3361, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 329, 1111, 3509, 8083, 611, 484, 389, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2383, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 900, 617, 279, 533, 27231, 198, 220, 220, 220, 220, 220, 220, 220, 11387, 796, 45941, 13, 25067, 576, 7, 32, 62, 11612, 62, 19726, 58, 45299, 14158, 3361, 4357, 37894, 8, 198, 220, 220, 220, 220, 220, 220, 220, 299, 312, 87, 62, 29370, 796, 18896, 7, 37659, 13, 3003, 7, 32, 62, 11612, 62, 19726, 58, 45299, 14158, 3361, 60, 1875, 11387, 38381, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1090, 62, 18242, 62, 3672, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 9052, 625, 1111, 16869, 8802, 19079, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4686, 87, 62, 4411, 72, 11, 4686, 87, 62, 332, 16886, 62, 9806, 287, 27056, 378, 26933, 312, 87, 62, 332, 62, 9806, 62, 75, 71, 11, 4686, 87, 62, 332, 62, 9806, 62, 17179, 60, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 262, 1271, 286, 9421, 1063, 2029, 262, 11387, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 287, 262, 1459, 33169, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 312, 87, 62, 29370, 62, 4411, 72, 796, 18896, 7, 37659, 13, 3003, 7, 32, 62, 11612, 62, 19726, 58, 4411, 72, 62, 521, 1063, 58, 312, 87, 62, 4411, 72, 7131, 15, 5974, 4411, 72, 62, 521, 1063, 58, 312, 87, 62, 4411, 72, 7131, 16, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14158, 3361, 60, 1875, 11387, 38381, 15, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 611, 379, 1551, 1160, 4, 286, 477, 9421, 1063, 2029, 262, 11387, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 389, 287, 262, 1459, 33169, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 299, 312, 87, 62, 29370, 62, 4411, 72, 1635, 642, 1875, 299, 312, 87, 62, 29370, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 337, 22125, 12, 37652, 4559, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 8461, 62, 37652, 796, 37423, 62, 1462, 62, 76, 8461, 7, 312, 87, 62, 332, 16886, 62, 9806, 11, 4686, 87, 62, 4411, 72, 11, 2426, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7481, 62, 15908, 28, 32796, 82, 62, 15908, 38381, 15, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3650, 2482, 287, 8573, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 8461, 62, 1073, 3669, 58, 4411, 72, 58, 312, 87, 62, 4411, 72, 60, 7131, 291, 3361, 60, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10786, 1343, 46083, 45302, 22179, 7, 14692, 4, 17, 13, 17, 69, 1, 4064, 2124, 329, 2124, 287, 285, 8461, 62, 37652, 12962, 1343, 705, 33047, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3650, 33169, 1321, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 339, 11632, 62, 17946, 58, 291, 3361, 60, 15853, 4686, 87, 62, 4411, 72, 1343, 352, 13, 15, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 337, 22125, 12, 37652, 4559, 284, 37423, 355, 880, 355, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 1438, 286, 262, 11188, 48631, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6167, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20076, 62, 3672, 796, 651, 62, 272, 265, 62, 18242, 62, 3672, 7, 312, 87, 62, 332, 16886, 62, 9806, 11, 339, 11632, 58, 312, 87, 62, 4411, 72, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2426, 28, 32796, 11, 7481, 62, 15908, 28, 32796, 82, 62, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1582, 66, 28, 1845, 66, 11, 14722, 28, 23912, 1424, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1090, 62, 18242, 62, 3672, 13, 33295, 7, 272, 265, 62, 3672, 58, 21912, 18, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1090, 62, 18242, 62, 3672, 13, 33295, 10786, 705, 8, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 543, 2482, 1276, 307, 7448, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 220, 220, 220, 220, 611, 12082, 62, 23912, 1424, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 611, 14916, 373, 1043, 287, 1111, 16869, 8802, 19079, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 14610, 611, 407, 356, 460, 3264, 3613, 262, 2482, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 705, 287, 1090, 62, 18242, 62, 3672, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4532, 17923, 22155, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1090, 62, 18242, 62, 3672, 58, 15, 60, 6624, 705, 705, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17923, 58, 4411, 72, 58, 16, 60, 7131, 22019, 62, 18242, 62, 3672, 58, 16, 60, 4083, 33295, 7, 291, 3361, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17923, 58, 4411, 72, 58, 15, 60, 7131, 22019, 62, 18242, 62, 3672, 58, 15, 60, 4083, 33295, 7, 291, 3361, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 14610, 4306, 356, 423, 284, 787, 1654, 326, 356, 1448, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 7515, 691, 656, 530, 3814, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 611, 1111, 9421, 1063, 389, 287, 262, 976, 48631, 4067, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 14610, 788, 356, 423, 645, 1917, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1090, 62, 18242, 62, 3672, 58, 15, 60, 6624, 1090, 62, 18242, 62, 3672, 58, 16, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17923, 58, 4411, 72, 58, 15, 60, 7131, 22019, 62, 18242, 62, 3672, 58, 15, 60, 4083, 33295, 7, 291, 3361, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17923, 58, 4411, 72, 58, 16, 60, 7131, 22019, 62, 18242, 62, 3672, 58, 16, 60, 4083, 33295, 7, 291, 3361, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 611, 356, 423, 281, 6439, 3814, 852, 2950, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 14610, 611, 3763, 7690, 262, 584, 530, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1090, 62, 18242, 62, 3672, 58, 15, 60, 6624, 705, 34680, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17923, 58, 4411, 72, 58, 16, 60, 7131, 22019, 62, 18242, 62, 3672, 58, 16, 60, 4083, 33295, 7, 291, 3361, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 339, 11632, 62, 17946, 58, 291, 3361, 4357, 285, 8461, 62, 1073, 3669, 58, 4411, 72, 58, 15, 60, 7131, 291, 3361, 60, 796, 362, 11, 10148, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1090, 62, 18242, 62, 3672, 58, 16, 60, 6624, 705, 34680, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17923, 58, 4411, 72, 58, 15, 60, 7131, 22019, 62, 18242, 62, 3672, 58, 15, 60, 4083, 33295, 7, 291, 3361, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 339, 11632, 62, 17946, 58, 291, 3361, 4357, 285, 8461, 62, 1073, 3669, 58, 4411, 72, 58, 16, 60, 7131, 291, 3361, 60, 796, 352, 11, 10148, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4306, 7690, 262, 3814, 351, 262, 12841, 37423, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 317, 62, 11612, 62, 19726, 58, 312, 87, 62, 332, 62, 9806, 62, 75, 71, 11, 14158, 3361, 60, 1875, 317, 62, 11612, 62, 19726, 58, 312, 87, 62, 332, 62, 9806, 62, 17179, 11, 14158, 3361, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17923, 58, 4411, 72, 58, 15, 60, 7131, 22019, 62, 18242, 62, 3672, 58, 15, 60, 4083, 33295, 7, 291, 3361, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 339, 11632, 62, 17946, 58, 291, 3361, 4357, 285, 8461, 62, 1073, 3669, 58, 4411, 72, 58, 16, 60, 7131, 291, 3361, 60, 796, 352, 11, 10148, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17923, 58, 4411, 72, 58, 16, 60, 7131, 22019, 62, 18242, 62, 3672, 58, 16, 60, 4083, 33295, 7, 291, 3361, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 339, 11632, 62, 17946, 58, 291, 3361, 4357, 285, 8461, 62, 1073, 3669, 58, 4411, 72, 58, 15, 60, 7131, 291, 3361, 60, 796, 362, 11, 10148, 628, 628, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 1303, 4532, 339, 11632, 62, 17946, 62, 14116, 611, 3842, 373, 1043, 198, 220, 220, 220, 1303, 287, 1111, 16869, 8802, 19079, 198, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 329, 4686, 87, 11, 339, 11632, 62, 3672, 287, 27056, 378, 7, 4411, 72, 62, 14933, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 62, 3803, 796, 45941, 13, 3003, 7, 4411, 72, 62, 17946, 6624, 357, 312, 87, 1343, 352, 13, 15, 4008, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 339, 11632, 62, 17946, 62, 14116, 58, 312, 87, 62, 3803, 60, 796, 339, 11632, 62, 3672, 628, 198, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 1303, 4532, 6167, 62, 14933, 284, 691, 3994, 7652, 198, 220, 220, 220, 1303, 852, 2950, 287, 7587, 262, 1459, 198, 220, 220, 220, 1303, 1366, 198, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 14722, 796, 17635, 198, 220, 220, 220, 329, 1090, 62, 4411, 72, 287, 339, 11632, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 287, 6167, 62, 14933, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 17923, 58, 22019, 62, 4411, 72, 7131, 2539, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14722, 13, 33295, 7, 2539, 8, 628, 220, 220, 220, 14722, 796, 45941, 13, 34642, 7, 23912, 1424, 737, 83, 349, 396, 3419, 628, 220, 220, 220, 1441, 285, 8461, 62, 1073, 3669, 11, 339, 11632, 62, 17946, 62, 14116, 11, 17923, 11, 14722, 628, 628, 198, 2, 1343, 44627, 44627, 44627, 14030, 4880, 198, 2, 31904, 2163, 284, 2198, 611, 17923, 373, 198, 2, 6157, 3161, 284, 29353, 198, 2, 1343, 44627, 44627, 44627, 14030, 4880, 198, 4299, 4808, 9122, 62, 4871, 2649, 7, 4871, 2649, 11, 299, 5589, 2599, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 5053, 525, 2163, 284, 2198, 611, 17923, 373, 198, 220, 220, 220, 6157, 3161, 284, 29353, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 17923, 25, 22155, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17923, 2134, 422, 262, 1448, 62, 3970, 62, 15252, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 632, 318, 257, 22155, 7268, 734, 850, 12, 67, 2867, 3166, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 75, 71, 6, 290, 705, 17179, 6, 357, 1640, 1364, 290, 826, 33169, 737, 554, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1111, 850, 12, 67, 2867, 3166, 262, 1321, 546, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2628, 318, 8574, 11, 1312, 13, 68, 13, 257, 1448, 14, 36996, 1438, 1343, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1321, 543, 6805, 389, 8574, 287, 428, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1448, 198, 220, 220, 220, 220, 220, 220, 220, 299, 5589, 25, 18253, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 286, 6805, 628, 220, 220, 220, 220, 220, 220, 220, 8229, 198, 220, 220, 220, 220, 220, 220, 220, 40103, 198, 220, 220, 220, 220, 220, 220, 220, 8251, 25, 1351, 7268, 262, 1448, 3891, 198, 220, 220, 220, 220, 220, 220, 220, 1994, 62, 65, 6361, 25, 1351, 7268, 262, 1448, 11637, 11, 1312, 13, 68, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 1321, 810, 284, 7110, 257, 649, 1448, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 62, 30619, 25, 7177, 7268, 262, 29353, 1502, 286, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 6805, 11, 1312, 13, 68, 13, 6805, 894, 12484, 284, 530, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1448, 389, 37515, 1978, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 1303, 1330, 3306, 13103, 198, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 1330, 299, 32152, 355, 45941, 628, 198, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 1303, 2198, 611, 17923, 373, 1760, 198, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 1994, 62, 65, 6361, 796, 17635, 198, 220, 220, 220, 611, 45941, 13, 1092, 7, 4871, 2649, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 41216, 6565, 8341, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 62, 30619, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 8251, 62, 4411, 72, 796, 1351, 7, 4871, 2649, 13, 13083, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3297, 8251, 198, 220, 220, 220, 220, 220, 220, 220, 8251, 796, 1351, 7, 4871, 2649, 58, 13083, 62, 4411, 72, 58, 15, 60, 4083, 13083, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 8251, 13, 30619, 7, 2539, 28, 50033, 410, 25, 410, 13, 45828, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 900, 705, 34680, 6, 9633, 284, 262, 886, 198, 220, 220, 220, 220, 220, 220, 220, 8251, 13, 28956, 10786, 34680, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 8251, 13, 33295, 10786, 34680, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4781, 8251, 351, 6565, 12784, 198, 220, 220, 220, 220, 220, 220, 220, 8251, 62, 42949, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 287, 8251, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 17923, 58, 13083, 62, 4411, 72, 58, 15, 60, 7131, 2539, 60, 393, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17923, 58, 13083, 62, 4411, 72, 58, 16, 60, 7131, 2539, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8251, 62, 42949, 13, 33295, 7, 2539, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 9052, 625, 477, 8251, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 287, 8251, 62, 42949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 36525, 284, 1123, 1398, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 62, 75, 71, 796, 17923, 58, 13083, 62, 4411, 72, 58, 15, 60, 7131, 2539, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 62, 17179, 796, 17923, 58, 13083, 62, 4411, 72, 58, 16, 60, 7131, 2539, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 36525, 286, 6805, 287, 1111, 16869, 8802, 19079, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 62, 16885, 796, 45941, 13, 3849, 8831, 16, 67, 7, 312, 87, 62, 75, 71, 11, 4686, 87, 62, 17179, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 36525, 286, 6805, 691, 287, 826, 33169, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 62, 8807, 62, 17179, 796, 45941, 13, 2617, 26069, 16, 67, 7, 312, 87, 62, 17179, 11, 4686, 87, 62, 75, 71, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 36525, 286, 6805, 691, 287, 1364, 33169, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 62, 8807, 62, 75, 71, 796, 45941, 13, 2617, 26069, 16, 67, 7, 312, 87, 62, 75, 71, 11, 4686, 87, 62, 17179, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 751, 6805, 284, 1351, 286, 23243, 36525, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 62, 439, 796, 45941, 13, 1102, 9246, 268, 378, 19510, 312, 87, 62, 16885, 11, 4686, 87, 62, 8807, 62, 17179, 11, 4686, 87, 62, 8807, 62, 75, 71, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 62, 30619, 15853, 4686, 87, 62, 439, 13, 83, 349, 396, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 62, 65, 6361, 13, 33295, 7, 11925, 7, 312, 87, 62, 439, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 751, 717, 4865, 290, 8636, 23818, 2160, 284, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 423, 262, 826, 11637, 198, 220, 220, 220, 220, 220, 220, 220, 1994, 62, 65, 6361, 796, 45941, 13, 28463, 7, 2539, 62, 65, 6361, 11, 657, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1994, 62, 65, 6361, 796, 45941, 13, 66, 5700, 388, 7, 2539, 62, 65, 6361, 38381, 21912, 16, 60, 628, 198, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 1303, 611, 17923, 373, 407, 6157, 900, 198, 220, 220, 220, 1303, 617, 4277, 3815, 198, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 62, 30619, 796, 45941, 13, 283, 858, 7, 77, 5589, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8251, 62, 42949, 796, 17635, 628, 198, 220, 220, 220, 1441, 8251, 62, 42949, 11, 1994, 62, 65, 6361, 11, 4686, 87, 62, 30619, 628, 628, 198, 2, 1343, 44627, 44627, 44627, 14030, 4880, 198, 2, 31904, 2163, 284, 5412, 640, 10902, 329, 29353, 198, 2, 1343, 44627, 44627, 44627, 14030, 4880, 198, 4299, 4808, 1136, 62, 11498, 35738, 62, 268, 1091, 274, 7, 69, 280, 5277, 62, 3970, 62, 26801, 11, 370, 62, 11612, 11, 21964, 62, 268, 1091, 68, 41888, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12351, 62, 17946, 62, 7890, 41888, 4357, 256, 25241, 28, 25101, 11, 3298, 62, 1416, 4272, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1592, 62, 13664, 62, 2363, 28, 14202, 11, 256, 3866, 28, 14202, 11, 5202, 28, 14202, 2599, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 5053, 525, 2163, 284, 2198, 611, 17923, 373, 198, 220, 220, 220, 6157, 3161, 284, 29353, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 46287, 5277, 62, 3970, 62, 26801, 25, 34296, 5277, 25241, 2134, 7560, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 618, 11524, 474, 388, 1533, 13, 12501, 3361, 577, 13, 69, 280, 5277, 62, 3970, 198, 220, 220, 220, 220, 220, 220, 220, 370, 62, 11612, 25, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 362, 35, 12, 9536, 844, 278, 12, 18747, 357, 77, 5589, 2124, 299, 85, 1140, 417, 8, 6108, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 618, 11524, 34296, 5277, 25241, 198, 220, 220, 220, 220, 220, 220, 220, 21964, 62, 268, 1091, 68, 25, 1351, 286, 26515, 7268, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 21964, 16441, 274, 13, 1002, 262, 21964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16441, 274, 389, 1541, 1813, 994, 1976, 12, 46536, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 1612, 31850, 318, 6157, 198, 220, 220, 220, 220, 220, 220, 220, 12351, 62, 17946, 62, 7890, 25, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 513, 35, 7177, 7268, 262, 2723, 42842, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 973, 329, 34296, 5277, 25241, 31850, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 77, 19503, 80, 2124, 25919, 5374, 82, 2124, 299, 85, 1140, 417, 737, 5514, 3306, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 21964, 62, 268, 1091, 68, 318, 407, 1813, 13, 198, 220, 220, 220, 220, 220, 220, 220, 256, 25241, 25, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 900, 356, 760, 326, 21964, 314, 8141, 373, 5625, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 618, 39539, 262, 34296, 5277, 25241, 11, 1312, 13, 68, 13, 618, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15453, 262, 21964, 12, 268, 1091, 274, 262, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1276, 407, 307, 14434, 422, 262, 34296, 5277, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7386, 284, 262, 640, 12, 27830, 198, 220, 220, 220, 220, 220, 220, 220, 3298, 62, 1416, 4272, 25, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 900, 477, 21964, 12, 268, 1091, 274, 389, 18309, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27464, 13, 15323, 1123, 7515, 318, 27464, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17033, 198, 220, 220, 220, 220, 220, 220, 220, 1592, 62, 13664, 62, 2363, 25, 12178, 393, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22313, 286, 262, 36835, 4324, 287, 4201, 198, 220, 220, 220, 220, 220, 220, 220, 256, 3866, 25, 12178, 393, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16048, 4865, 357, 259, 4201, 8, 286, 262, 640, 12, 17497, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 973, 329, 15453, 14, 1477, 7855, 262, 36835, 82, 13, 1002, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 14202, 6, 262, 1988, 8574, 287, 705, 69, 280, 5277, 62, 3970, 62, 26801, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 973, 198, 220, 220, 220, 220, 220, 220, 220, 5202, 25, 12178, 11, 18253, 393, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16048, 8373, 4865, 329, 15453, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21964, 12, 268, 1091, 68, 13, 1002, 705, 14202, 6, 262, 8373, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4865, 8574, 287, 705, 69, 280, 5277, 62, 3970, 62, 26801, 6, 318, 973, 628, 220, 220, 220, 220, 220, 220, 220, 8229, 198, 220, 220, 220, 220, 220, 220, 220, 40103, 198, 220, 220, 220, 220, 220, 220, 220, 21964, 62, 268, 1091, 68, 62, 32604, 25, 1351, 7268, 262, 362, 35, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26515, 286, 262, 1612, 21964, 16441, 274, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 286, 262, 6805, 198, 220, 220, 220, 220, 220, 220, 220, 21964, 62, 268, 1091, 68, 25, 1351, 7268, 262, 513, 35, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26515, 286, 262, 21964, 16441, 274, 286, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6805, 13, 19652, 408, 560, 329, 39539, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37410, 16545, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 1303, 1330, 3306, 13103, 198, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 422, 285, 710, 13, 12093, 4470, 1330, 6811, 1000, 198, 220, 220, 220, 1330, 299, 32152, 355, 45941, 198, 220, 220, 220, 422, 629, 541, 88, 1330, 277, 701, 8002, 628, 198, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 1303, 2198, 5128, 11507, 198, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 611, 256, 3866, 6624, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 256, 3866, 796, 46287, 5277, 62, 3970, 62, 26801, 13, 83, 3866, 198, 220, 220, 220, 611, 5202, 6624, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5202, 796, 46287, 5277, 62, 3970, 62, 26801, 13, 11125, 198, 220, 220, 220, 611, 407, 1592, 62, 13664, 62, 2363, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1592, 62, 13664, 62, 2363, 796, 46287, 5277, 62, 3970, 62, 26801, 13, 5404, 62, 13664, 62, 2363, 628, 220, 220, 220, 1303, 8636, 617, 2829, 11507, 198, 220, 220, 220, 264, 19503, 80, 796, 46287, 5277, 62, 3970, 62, 26801, 13, 82, 19503, 80, 198, 220, 220, 220, 299, 5589, 11, 299, 85, 1140, 417, 796, 370, 62, 11612, 13, 43358, 628, 220, 220, 220, 1592, 62, 429, 6649, 796, 493, 7, 37659, 13, 28300, 7, 82, 19503, 80, 1635, 1592, 62, 13664, 62, 2363, 4008, 198, 220, 220, 220, 923, 487, 83, 521, 796, 493, 7, 37659, 13, 28300, 7, 11125, 1635, 1592, 62, 13664, 62, 2363, 4008, 628, 198, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 1303, 2198, 611, 21964, 22878, 318, 1541, 198, 220, 220, 220, 1303, 1813, 393, 815, 307, 6108, 198, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 611, 21964, 62, 268, 1091, 68, 6624, 685, 5974, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 611, 705, 10677, 62, 17946, 62, 7890, 6, 318, 1813, 986, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 407, 3714, 281, 4049, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 220, 220, 220, 220, 611, 12351, 62, 17946, 62, 7890, 6624, 685, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 33409, 33854, 25, 921, 423, 284, 2148, 2035, 262, 705, 11498, 35738, 62, 268, 1091, 68, 6, 393, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 33409, 705, 10677, 62, 17946, 62, 7890, 4458, 15323, 645, 21964, 1321, 460, 307, 37515, 2474, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1330, 279, 9945, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 9945, 13, 2617, 62, 40546, 3419, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 4795, 6805, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 220, 220, 220, 220, 299, 19503, 80, 11, 25919, 5374, 82, 11, 299, 85, 1140, 417, 796, 12351, 62, 17946, 62, 7890, 13, 43358, 198, 220, 220, 220, 220, 220, 220, 220, 719, 796, 45941, 13, 9107, 418, 19510, 77, 5589, 11, 25919, 5374, 82, 11, 299, 19503, 80, 828, 288, 4906, 28, 37659, 13, 41887, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 256, 25241, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1592, 62, 429, 6649, 796, 299, 19503, 80, 628, 220, 220, 220, 220, 220, 220, 220, 21964, 62, 268, 1091, 68, 796, 45941, 13, 9107, 418, 19510, 77, 538, 5374, 82, 11, 299, 5589, 11, 1592, 62, 429, 6649, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 277, 701, 62, 529, 796, 45941, 13, 9107, 418, 19510, 77, 5589, 11, 1592, 62, 429, 6649, 828, 288, 4906, 28, 37659, 13, 41887, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 9052, 625, 477, 36835, 82, 284, 651, 640, 12, 66, 39975, 422, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2723, 36618, 1366, 416, 34062, 376, 9792, 198, 220, 220, 220, 220, 220, 220, 220, 329, 37941, 79, 5374, 287, 2837, 7, 77, 538, 5374, 82, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3487, 1096, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12351, 62, 17946, 62, 22570, 62, 32604, 796, 357, 10677, 62, 17946, 62, 7890, 58, 45299, 37941, 79, 5374, 11, 1058, 60, 532, 45941, 13, 26518, 7, 37659, 13, 1952, 19510, 77, 19503, 80, 11, 352, 36911, 46287, 5277, 62, 3970, 62, 26801, 13, 67, 32604, 4008, 1220, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 26518, 7, 37659, 13, 1952, 19510, 77, 19503, 80, 11, 352, 36911, 46287, 5277, 62, 3970, 62, 26801, 13, 67, 19282, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 719, 58, 25, 77, 5589, 11, 37941, 79, 5374, 11, 1058, 60, 796, 45941, 13, 26518, 7, 54, 62, 11612, 11, 12351, 62, 17946, 62, 22570, 62, 32604, 13, 7645, 3455, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 529, 58, 77, 5589, 45299, 37941, 79, 5374, 11, 1058, 60, 796, 45941, 13, 26518, 7, 54, 62, 11612, 11, 12351, 62, 17946, 62, 22570, 62, 32604, 13, 7645, 3455, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 256, 25241, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21964, 62, 268, 1091, 68, 58, 494, 79, 5374, 11, 1058, 11, 1058, 60, 796, 719, 58, 45299, 37941, 79, 5374, 11, 1058, 4083, 5305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7716, 21964, 16545, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4174, 34062, 3563, 9792, 284, 651, 21964, 22878, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 701, 62, 529, 58, 45299, 923, 487, 83, 521, 37498, 9688, 487, 83, 521, 1343, 299, 19503, 80, 15437, 796, 719, 58, 45299, 37941, 79, 5374, 11, 1058, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21964, 62, 268, 1091, 68, 58, 494, 79, 5374, 11, 1058, 11, 1058, 60, 796, 277, 701, 8002, 13, 361, 701, 7, 487, 83, 62, 529, 11, 299, 28, 5404, 62, 429, 6649, 11, 16488, 28, 16, 737, 5305, 628, 628, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 1303, 2811, 21964, 22878, 198, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 611, 407, 318, 39098, 7, 11498, 35738, 62, 268, 1091, 68, 11, 1351, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 21964, 62, 268, 1091, 68, 796, 16410, 11498, 35738, 62, 268, 1091, 68, 11907, 628, 220, 220, 220, 299, 29510, 796, 18896, 7, 11498, 35738, 62, 268, 1091, 68, 8, 198, 220, 220, 220, 21964, 62, 268, 1091, 68, 62, 32604, 796, 45941, 13, 28920, 19510, 429, 45787, 11, 657, 29720, 83, 349, 396, 3419, 198, 220, 220, 220, 1661, 796, 357, 37659, 13, 283, 858, 7, 5404, 62, 429, 6649, 8, 1220, 264, 19503, 80, 1343, 256, 3866, 8, 628, 198, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 1303, 1620, 14805, 17137, 198, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 329, 2378, 79, 287, 2837, 7, 429, 45787, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 14158, 3361, 287, 2837, 7, 77, 5589, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21964, 62, 268, 1091, 68, 58, 9186, 79, 7131, 15, 7131, 45299, 14158, 3361, 11, 1058, 60, 796, 6811, 1000, 7, 11498, 35738, 62, 268, 1091, 68, 58, 9186, 79, 7131, 15, 7131, 45299, 14158, 3361, 11, 1058, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1661, 11, 357, 14202, 11, 657, 828, 705, 89, 26675, 11537, 628, 198, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 1303, 8636, 1612, 422, 21964, 16441, 274, 198, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 329, 2378, 79, 287, 2837, 7, 429, 45787, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 21964, 62, 268, 1091, 68, 62, 32604, 58, 9186, 79, 4083, 33295, 7, 37659, 13, 32604, 7, 11498, 35738, 62, 268, 1091, 68, 58, 9186, 79, 7131, 15, 4357, 16488, 28, 15, 38381, 45299, 642, 21912, 20, 12962, 628, 198, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 1303, 2198, 611, 3298, 20796, 815, 307, 973, 198, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 1303, 611, 407, 5046, 1123, 7515, 13869, 1022, 532, 15, 13, 20, 290, 657, 13, 20, 198, 220, 220, 220, 611, 407, 3298, 62, 1416, 4272, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 14158, 3361, 287, 2837, 7, 77, 5589, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 62, 2100, 796, 45941, 13, 1084, 26933, 11498, 35738, 62, 268, 1091, 68, 62, 32604, 58, 15, 7131, 15, 7131, 291, 3361, 11, 1058, 4357, 21964, 62, 268, 1091, 68, 62, 32604, 58, 16, 7131, 15, 7131, 291, 3361, 11, 1058, 11907, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 2100, 796, 45941, 13, 9806, 26933, 11498, 35738, 62, 268, 1091, 68, 62, 32604, 58, 15, 7131, 15, 7131, 291, 3361, 11, 1058, 4357, 21964, 62, 268, 1091, 68, 62, 32604, 58, 16, 7131, 15, 7131, 291, 3361, 11, 1058, 11907, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5046, 62, 22584, 796, 352, 13, 15, 1220, 357, 9806, 62, 2100, 532, 949, 62, 2100, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2378, 79, 287, 2837, 7, 429, 45787, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21964, 62, 268, 1091, 68, 62, 32604, 58, 9186, 79, 7131, 15, 7131, 291, 3361, 11, 1058, 60, 796, 45941, 13, 15036, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5046, 62, 22584, 1635, 21964, 62, 268, 1091, 68, 62, 32604, 58, 9186, 79, 7131, 15, 7131, 291, 3361, 11, 1058, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 5046, 62, 22584, 1635, 949, 62, 2100, 532, 657, 13, 20, 11, 532, 15, 13, 20, 11, 657, 13, 20, 8, 628, 220, 220, 220, 1303, 611, 3298, 20796, 815, 307, 973, 11, 5046, 477, 198, 220, 220, 220, 1303, 1366, 1022, 532, 15, 13, 20, 290, 657, 13, 20, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5046, 21964, 22878, 1022, 532, 15, 13, 20, 290, 657, 13, 20, 198, 220, 220, 220, 220, 220, 220, 220, 949, 62, 2100, 796, 45941, 13, 1084, 7, 11498, 35738, 62, 268, 1091, 68, 62, 32604, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 2100, 796, 45941, 13, 9806, 7, 11498, 35738, 62, 268, 1091, 68, 62, 32604, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5046, 62, 22584, 796, 352, 13, 15, 1220, 357, 9806, 62, 2100, 532, 949, 62, 2100, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2378, 79, 287, 2837, 7, 429, 45787, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21964, 62, 268, 1091, 68, 62, 32604, 58, 9186, 79, 7131, 15, 60, 796, 45941, 13, 15036, 7, 9888, 62, 22584, 1635, 21964, 62, 268, 1091, 68, 62, 32604, 58, 9186, 79, 7131, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 5046, 62, 22584, 1635, 949, 62, 2100, 532, 657, 13, 20, 11, 532, 15, 13, 20, 11, 657, 13, 20, 8, 628, 198, 220, 220, 220, 1441, 21964, 62, 268, 1091, 68, 62, 32604, 11, 21964, 62, 268, 1091, 68, 628, 628, 198, 2, 1343, 44627, 44627, 44627, 14030, 4880, 198, 2, 31904, 2163, 284, 5412, 21739, 16545, 329, 29353, 198, 2, 1343, 44627, 44627, 44627, 14030, 4880, 198, 4299, 4808, 1136, 62, 2777, 34961, 62, 5577, 2915, 7, 32, 62, 11612, 11, 8251, 11, 4686, 87, 62, 5239, 11, 9421, 3919, 41888, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2426, 11639, 9501, 23913, 3256, 7481, 62, 15908, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14722, 28, 14202, 11, 17923, 34758, 5512, 37894, 28, 5607, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 8461, 62, 37652, 41888, 4357, 751, 62, 69, 1733, 28, 25101, 11, 24714, 448, 28, 14202, 2599, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 5053, 525, 2163, 284, 651, 14, 8612, 378, 262, 21739, 198, 220, 220, 220, 16545, 286, 262, 34296, 5277, 25241, 6805, 329, 198, 220, 220, 220, 29353, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 317, 62, 11612, 25, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 362, 35, 12, 19816, 278, 12, 18747, 357, 48005, 1140, 417, 11, 299, 5589, 8, 6108, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 618, 11524, 34296, 5277, 25241, 198, 220, 220, 220, 220, 220, 220, 220, 8251, 25, 1351, 7268, 262, 1448, 3891, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 62, 5239, 25, 1351, 7268, 262, 1321, 287, 543, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3632, 33169, 257, 7515, 318, 8384, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5140, 357, 24089, 307, 2035, 705, 16885, 3256, 705, 9464, 3256, 705, 3506, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 705, 705, 611, 645, 17923, 373, 6157, 878, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29353, 8, 198, 220, 220, 220, 220, 220, 220, 220, 9421, 3919, 25, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1351, 7268, 734, 26515, 351, 262, 1502, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 286, 262, 9421, 1063, 13, 1002, 407, 1813, 340, 481, 307, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7560, 287, 428, 8027, 198, 220, 220, 220, 220, 220, 220, 220, 2426, 25, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4731, 7268, 262, 7481, 4522, 198, 220, 220, 220, 220, 220, 220, 220, 7481, 62, 15908, 25, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4731, 7268, 262, 7481, 8619, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 198, 220, 220, 220, 220, 220, 220, 220, 14722, 25, 1351, 286, 13042, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3891, 286, 262, 14722, 543, 815, 307, 37515, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5740, 11, 262, 21231, 705, 75, 71, 2637, 290, 262, 35488, 45302, 18242, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 389, 6338, 2087, 198, 220, 220, 220, 220, 220, 220, 220, 17923, 25, 22155, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17923, 2134, 422, 262, 1448, 62, 3970, 62, 15252, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 632, 318, 257, 22155, 7268, 734, 850, 12, 67, 2867, 3166, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 75, 71, 6, 290, 705, 17179, 6, 357, 1640, 1364, 290, 826, 33169, 737, 554, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1111, 850, 12, 67, 2867, 3166, 262, 1321, 546, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2628, 318, 8574, 11, 1312, 13, 68, 13, 257, 1448, 14, 36996, 1438, 1343, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1321, 543, 6805, 389, 8574, 287, 428, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1448, 198, 220, 220, 220, 220, 220, 220, 220, 37894, 25, 18253, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 1022, 657, 290, 1802, 973, 284, 900, 257, 2793, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4179, 329, 262, 3402, 12245, 2837, 286, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21739, 21528, 198, 220, 220, 220, 220, 220, 220, 220, 285, 8461, 62, 37652, 25, 1351, 286, 13042, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1813, 262, 337, 22125, 22715, 389, 37515, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11061, 262, 21739, 16545, 198, 220, 220, 220, 220, 220, 220, 220, 751, 62, 69, 1733, 25, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6407, 290, 262, 337, 22125, 22715, 389, 1813, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 277, 1733, 318, 37515, 379, 262, 2292, 286, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 337, 22125, 20435, 198, 220, 220, 220, 220, 220, 220, 220, 24714, 448, 25, 4731, 393, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 14722, 290, 17923, 318, 1813, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 29472, 286, 262, 3632, 7110, 7268, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 477, 14722, 13, 1002, 705, 14202, 6, 262, 2482, 389, 407, 8574, 628, 198, 220, 220, 220, 220, 220, 220, 220, 8229, 198, 220, 220, 220, 220, 220, 220, 220, 40103, 198, 220, 220, 220, 220, 220, 220, 220, 20218, 62, 29487, 62, 15908, 25, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8619, 810, 262, 21739, 16545, 389, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8574, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 1303, 1330, 3306, 13103, 198, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 422, 2603, 29487, 8019, 1330, 50000, 43106, 355, 1036, 67, 198, 220, 220, 220, 422, 2603, 29487, 8019, 1330, 12972, 29487, 355, 458, 83, 198, 220, 220, 220, 422, 743, 15820, 1330, 285, 23912, 198, 220, 220, 220, 422, 285, 710, 13, 10459, 62, 395, 1920, 1330, 4808, 15883, 62, 301, 66, 198, 220, 220, 220, 1330, 299, 32152, 355, 45941, 198, 220, 220, 220, 422, 28686, 1330, 551, 2268, 11, 285, 4335, 17062, 198, 220, 220, 220, 422, 28686, 13, 6978, 1330, 7160, 11, 4654, 198, 220, 220, 220, 1330, 302, 198, 220, 220, 220, 422, 629, 541, 88, 1330, 12747, 198, 220, 220, 220, 422, 969, 2232, 1330, 900, 62, 6404, 62, 5715, 198, 220, 220, 220, 1330, 3858, 628, 220, 220, 220, 1303, 900, 2604, 1241, 284, 705, 31502, 6, 198, 220, 220, 220, 900, 62, 6404, 62, 5715, 10786, 9419, 2043, 20151, 11537, 628, 220, 220, 220, 1330, 743, 15820, 198, 220, 220, 220, 743, 15820, 13, 4029, 397, 13, 25811, 13, 2364, 9612, 796, 6407, 628, 198, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 1303, 2251, 8584, 8619, 284, 3613, 21528, 198, 220, 220, 220, 1303, 286, 21739, 16545, 198, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 20218, 62, 29487, 62, 15908, 796, 4654, 7, 32796, 82, 62, 15908, 11, 2426, 11, 705, 29510, 62, 489, 1747, 11537, 198, 220, 220, 220, 611, 407, 7160, 7, 29510, 62, 29487, 62, 15908, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 285, 4335, 17062, 7, 29510, 62, 29487, 62, 15908, 8, 628, 198, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 1303, 7716, 21739, 16545, 198, 220, 220, 220, 1303, 357, 3500, 14735, 290, 7108, 8, 198, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 611, 407, 7481, 62, 15908, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7481, 62, 15908, 796, 551, 2268, 13, 1136, 10786, 50, 10526, 41, 2943, 4694, 62, 34720, 11537, 628, 220, 220, 220, 611, 318, 39098, 7, 32, 62, 11612, 58, 15, 11, 657, 4357, 3716, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 317, 62, 11612, 62, 19726, 796, 45941, 13, 8937, 7, 32, 62, 11612, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 317, 62, 11612, 62, 19726, 796, 317, 62, 11612, 628, 220, 220, 220, 299, 85, 1140, 417, 11, 299, 5589, 796, 317, 62, 11612, 62, 19726, 13, 43358, 628, 198, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 1303, 2198, 611, 9421, 3919, 318, 1813, 11, 4306, 198, 220, 220, 220, 1303, 7716, 340, 198, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 611, 407, 45941, 13, 1092, 7, 1851, 3919, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 9421, 3919, 796, 685, 37659, 13, 283, 858, 7, 48005, 1140, 417, 14, 17, 828, 45941, 13, 283, 858, 7, 48005, 1140, 417, 14, 17, 15437, 628, 198, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 1303, 2198, 611, 14722, 815, 307, 37515, 290, 611, 198, 220, 220, 220, 1303, 17923, 373, 1541, 6157, 198, 220, 220, 220, 1303, 14610, 611, 3763, 8160, 617, 7577, 329, 262, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 14722, 198, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 611, 14722, 290, 17923, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7577, 796, 37250, 14809, 3256, 705, 445, 3256, 705, 948, 272, 3256, 705, 36022, 3256, 705, 24132, 17585, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19726, 29188, 3256, 705, 40926, 260, 1904, 3256, 705, 521, 14031, 3256, 705, 82, 10757, 33282, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6649, 378, 17585, 3256, 705, 14225, 1154, 3256, 705, 2971, 79, 676, 3256, 705, 16469, 14809, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 43745, 3256, 705, 13396, 13713, 3256, 705, 66, 324, 316, 17585, 3256, 705, 50086, 1559, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3876, 2049, 3256, 705, 45855, 17585, 3256, 705, 22089, 15688, 17585, 3256, 705, 349, 425, 20520, 628, 628, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 1303, 9052, 625, 477, 6805, 284, 7716, 198, 220, 220, 220, 1303, 21739, 16545, 198, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 329, 14158, 3361, 287, 2837, 7, 77, 5589, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7110, 21739, 7034, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7716, 336, 66, 12, 15252, 422, 1459, 7515, 198, 220, 220, 220, 220, 220, 220, 220, 317, 62, 22019, 796, 317, 62, 11612, 62, 19726, 58, 45299, 14158, 3361, 60, 198, 220, 220, 220, 220, 220, 220, 220, 12351, 62, 17946, 796, 4808, 15883, 62, 301, 66, 7, 32, 62, 22019, 58, 45299, 45941, 13, 3605, 22704, 4357, 9421, 1063, 28, 1851, 3919, 11, 256, 1084, 28, 15, 11, 256, 9662, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2426, 28, 32796, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 8160, 1459, 2837, 357, 55, 400, 37894, 8, 198, 220, 220, 220, 220, 220, 220, 220, 277, 1084, 796, 45941, 13, 25067, 576, 7, 32, 62, 22019, 11, 37894, 8, 198, 220, 220, 220, 220, 220, 220, 220, 277, 9806, 796, 45941, 13, 9806, 7, 32, 62, 22019, 8, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13602, 796, 657, 13, 20, 1635, 357, 69, 1084, 1343, 277, 9806, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5424, 796, 1391, 6, 11031, 10354, 705, 8367, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2475, 82, 10354, 685, 69, 1084, 11, 277, 13602, 11, 277, 9806, 48999, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 7110, 21739, 16545, 198, 220, 220, 220, 220, 220, 220, 220, 3632, 796, 12351, 62, 17946, 13, 29487, 7, 42029, 11639, 259, 2704, 515, 3256, 339, 11632, 11639, 35312, 3256, 7481, 62, 15908, 28, 32796, 82, 62, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 62, 404, 912, 34758, 6, 66, 26158, 10354, 705, 15992, 6, 5512, 5009, 28, 17816, 75, 10534, 3256, 705, 1150, 498, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 62, 18242, 11639, 46083, 3124, 5657, 28, 25101, 11, 5424, 28, 565, 320, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 611, 277, 1733, 815, 307, 2087, 284, 262, 7110, 198, 220, 220, 220, 220, 220, 220, 220, 611, 751, 62, 69, 1733, 290, 45941, 13, 1092, 7, 76, 8461, 62, 37652, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 62, 4411, 72, 287, 37250, 75, 71, 3256, 705, 17179, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 8461, 62, 8841, 796, 285, 8461, 62, 37652, 58, 72, 62, 4411, 72, 7131, 291, 3361, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 705, 76, 8461, 62, 8841, 6, 318, 407, 6565, 357, 270, 1244, 307, 6565, 611, 3842, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 460, 691, 307, 1043, 287, 530, 33169, 8, 7110, 257, 277, 1733, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 285, 8461, 62, 8841, 14512, 366, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 8461, 62, 22468, 796, 1351, 7, 8899, 7, 22468, 11, 302, 13, 19796, 439, 7203, 58, 19529, 60, 30, 59, 67, 9, 17405, 59, 67, 10, 91, 59, 67, 10, 1600, 285, 8461, 62, 8841, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3632, 13, 2860, 62, 69, 1733, 7, 76, 8461, 62, 22468, 11, 763, 3669, 62, 292, 62, 24040, 28, 25101, 11, 339, 11632, 28, 72, 62, 4411, 72, 11, 3124, 11639, 40926, 260, 1904, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5046, 62, 31412, 28, 16, 13, 20, 11, 3975, 62, 42029, 11639, 11186, 11537, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 611, 14722, 815, 307, 37515, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 220, 220, 220, 220, 611, 14722, 290, 17923, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1330, 8265, 284, 1100, 287, 14722, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 422, 285, 710, 1330, 1100, 62, 18242, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 3108, 284, 14722, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26672, 62, 23912, 1424, 796, 4654, 7, 32796, 82, 62, 15908, 11, 2426, 11, 705, 18242, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5911, 287, 543, 1448, 262, 12460, 318, 10090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 339, 11632, 796, 705, 17179, 6, 611, 4686, 87, 62, 5239, 58, 291, 3361, 60, 6624, 705, 3506, 6, 2073, 705, 75, 71, 6, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1100, 287, 262, 11188, 6167, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 4686, 87, 62, 2539, 11, 1994, 287, 27056, 378, 7, 13083, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 14158, 3361, 287, 17923, 58, 4411, 72, 7131, 2539, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 3672, 796, 27071, 4, 82, 13, 18242, 1, 4064, 1994, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 796, 7577, 58, 312, 87, 62, 2539, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9052, 625, 1111, 16869, 8802, 19079, 284, 1100, 262, 6167, 287, 290, 7110, 340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 339, 11632, 796, 37250, 75, 71, 3256, 705, 17179, 20520, 611, 4686, 87, 62, 5239, 58, 291, 3361, 60, 6624, 705, 16885, 705, 2073, 685, 4411, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 339, 11632, 62, 22019, 287, 339, 11632, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 796, 1100, 62, 18242, 7, 22179, 7, 15908, 62, 23912, 1424, 11, 339, 11632, 62, 22019, 1343, 6167, 62, 3672, 828, 2426, 28, 32796, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3632, 13, 2860, 62, 18242, 7, 18242, 11, 11637, 28, 25101, 11, 339, 11632, 28, 4411, 72, 62, 22019, 11, 3124, 28, 8043, 11, 17130, 28, 15, 13, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3632, 13, 2860, 62, 18242, 7, 18242, 11, 11637, 28, 17821, 11, 339, 11632, 28, 4411, 72, 62, 22019, 11, 3124, 28, 8043, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3613, 2482, 198, 220, 220, 220, 220, 220, 220, 220, 24714, 62, 8692, 796, 366, 2149, 4, 2999, 67, 62, 2777, 34961, 62, 13317, 13, 11134, 1, 4064, 357, 291, 3361, 10, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 24714, 448, 62, 9600, 796, 4654, 7, 29510, 62, 29487, 62, 15908, 11, 24714, 62, 8692, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3632, 13, 21928, 62, 9060, 7, 22184, 448, 62, 9600, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1969, 285, 23912, 3785, 198, 220, 220, 220, 220, 220, 220, 220, 285, 23912, 13, 19836, 7, 439, 28, 17821, 8, 628, 198, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 1303, 635, 7716, 530, 7110, 351, 477, 14722, 198, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 611, 14722, 290, 17923, 25, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 900, 5424, 287, 257, 835, 326, 645, 3842, 460, 307, 1775, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 357, 6425, 25, 356, 691, 765, 284, 766, 262, 14722, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5424, 796, 1391, 6, 11031, 10354, 705, 8367, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2475, 82, 10354, 685, 69, 9806, 11, 352, 13, 20, 1635, 277, 9806, 11, 362, 13, 15, 1635, 277, 9806, 48999, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 7716, 7110, 198, 220, 220, 220, 220, 220, 220, 220, 3632, 796, 12351, 62, 17946, 13, 29487, 7, 42029, 11639, 259, 2704, 515, 3256, 339, 11632, 11639, 35312, 3256, 7481, 62, 15908, 28, 32796, 82, 62, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 62, 404, 912, 34758, 6, 66, 26158, 10354, 705, 15992, 6, 5512, 5009, 28, 17816, 75, 10534, 3256, 705, 1150, 498, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 62, 18242, 11639, 46083, 3124, 5657, 28, 25101, 11, 5424, 28, 565, 320, 11, 4469, 11639, 11186, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 9052, 625, 477, 14722, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4686, 87, 62, 2539, 11, 1994, 287, 27056, 378, 7, 13083, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 3672, 796, 27071, 4, 82, 13, 18242, 1, 4064, 1994, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 796, 7577, 58, 312, 87, 62, 2539, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9052, 625, 1111, 16869, 8802, 19079, 287, 1502, 284, 29353, 262, 14722, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 339, 11632, 287, 37250, 75, 71, 3256, 705, 17179, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 796, 1100, 62, 18242, 7, 22179, 7, 15908, 62, 23912, 1424, 11, 339, 11632, 1343, 6167, 62, 3672, 828, 2426, 28, 32796, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3632, 13, 2860, 62, 18242, 7, 18242, 11, 11637, 28, 25101, 11, 339, 11632, 28, 4411, 72, 11, 3124, 28, 8043, 11, 17130, 28, 15, 13, 21, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3613, 2482, 198, 220, 220, 220, 220, 220, 220, 220, 611, 24714, 448, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24714, 448, 62, 9600, 796, 705, 4, 82, 62, 23912, 1424, 13, 11134, 6, 4064, 24714, 448, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3632, 13, 21928, 62, 9060, 7, 22184, 448, 62, 9600, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1969, 285, 23912, 3785, 198, 220, 220, 220, 220, 220, 220, 220, 285, 23912, 13, 19836, 7, 439, 28, 17821, 8, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 783, 4532, 262, 6167, 7110, 5035, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1100, 21739, 7034, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 15246, 62, 22065, 796, 12747, 13, 320, 961, 7, 22184, 448, 62, 9600, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 37825, 858, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 7857, 11, 331, 62, 7857, 11, 4808, 796, 15246, 62, 22065, 13, 43358, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 13959, 11, 331, 62, 13959, 796, 2124, 62, 7857, 1220, 362, 11, 331, 62, 7857, 1220, 362, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 14535, 11, 331, 62, 14535, 796, 493, 7, 15, 13, 1157, 1635, 2124, 62, 13959, 828, 493, 7, 15, 13, 486, 1635, 331, 62, 13959, 8, 198, 220, 220, 220, 220, 220, 220, 220, 21739, 62, 13317, 796, 45941, 13, 1102, 9246, 268, 378, 19510, 2777, 265, 62, 22065, 58, 87, 62, 14535, 37498, 87, 62, 13959, 532, 2124, 62, 14535, 828, 331, 62, 14535, 37498, 88, 62, 13959, 532, 331, 62, 14535, 828, 1058, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15246, 62, 22065, 58, 7, 87, 62, 13959, 1343, 2124, 62, 14535, 2599, 12, 87, 62, 14535, 11, 331, 62, 14535, 37498, 88, 62, 13959, 532, 331, 62, 14535, 828, 1058, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15246, 62, 22065, 58, 7, 87, 62, 13959, 1343, 2124, 62, 14535, 2599, 12, 87, 62, 14535, 11, 357, 88, 62, 13959, 1343, 331, 62, 14535, 2599, 12, 88, 62, 14535, 11, 1058, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15246, 62, 22065, 58, 87, 62, 14535, 37498, 87, 62, 13959, 532, 2124, 62, 14535, 828, 357, 88, 62, 13959, 1343, 331, 62, 14535, 2599, 12, 88, 62, 14535, 11, 1058, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16488, 28, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 7110, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 952, 487, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 796, 458, 83, 13, 26875, 10786, 17822, 1424, 21528, 3256, 2336, 7857, 16193, 1558, 11, 513, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 308, 82, 796, 1036, 67, 13, 41339, 22882, 7, 16, 11, 1542, 11, 266, 13200, 28, 15, 13, 2388, 16, 11, 289, 13200, 28, 15, 13, 2388, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1364, 28, 15, 13, 15, 11, 826, 28, 16, 13, 15, 11, 4220, 28, 15, 13, 15, 11, 1353, 28, 16, 13, 15, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 900, 7110, 2292, 290, 7110, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 279, 16, 796, 2336, 13, 2860, 62, 7266, 29487, 7, 14542, 58, 15, 11, 657, 25, 2075, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 279, 16, 13, 320, 12860, 7, 2777, 34961, 62, 13317, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4532, 62, 2777, 1127, 7, 79, 16, 11, 685, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 751, 6167, 3891, 198, 220, 220, 220, 220, 220, 220, 220, 8251, 62, 38942, 796, 657, 13, 23, 14, 11925, 7, 13083, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8251, 62, 35312, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 279, 62, 5239, 796, 2336, 13, 2860, 62, 7266, 29487, 7, 14542, 58, 15, 11, 2608, 25, 1270, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 8251, 62, 30619, 62, 312, 87, 796, 45941, 13, 22046, 419, 7, 13083, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4686, 87, 62, 2539, 287, 2837, 7, 11925, 7, 13083, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 796, 8251, 58, 13083, 62, 30619, 62, 312, 87, 58, 312, 87, 62, 2539, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 611, 4731, 815, 307, 6626, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 2539, 8, 1875, 2310, 290, 705, 705, 287, 1994, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 62, 5239, 13, 5239, 7, 15, 13, 15, 11, 657, 13, 24, 12, 13083, 62, 38942, 9, 7, 312, 87, 62, 2539, 10, 13083, 62, 35312, 828, 1994, 13, 35312, 3419, 58, 15, 48688, 29001, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10369, 7857, 28, 1485, 11, 3124, 28, 4033, 669, 58, 13083, 62, 30619, 62, 312, 87, 58, 312, 87, 62, 2539, 11907, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8251, 62, 35312, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 62, 5239, 13, 5239, 7, 15, 13, 15, 11, 657, 13, 24, 12, 13083, 62, 38942, 9, 7, 312, 87, 62, 2539, 10, 13083, 62, 35312, 828, 1994, 13, 35312, 3419, 58, 16, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10369, 7857, 28, 1485, 11, 3124, 28, 4033, 669, 58, 13083, 62, 30619, 62, 312, 87, 58, 312, 87, 62, 2539, 11907, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 62, 5239, 13, 5239, 7, 15, 13, 15, 11, 657, 13, 24, 12, 13083, 62, 38942, 9, 7, 312, 87, 62, 2539, 10, 13083, 62, 35312, 828, 1994, 11, 10369, 7857, 28, 1485, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 28, 4033, 669, 58, 13083, 62, 30619, 62, 312, 87, 58, 312, 87, 62, 2539, 11907, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4532, 62, 2777, 1127, 7, 79, 62, 5239, 11, 685, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 21928, 5647, 7, 22184, 448, 62, 9600, 11, 288, 14415, 28, 6200, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1969, 7110, 290, 900, 29353, 736, 284, 3159, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 19836, 10786, 37, 280, 5277, 25241, 21528, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 295, 3419, 628, 220, 220, 220, 743, 15820, 13, 4029, 397, 13, 25811, 13, 2364, 9612, 796, 10352, 198, 220, 220, 220, 1441, 20218, 62, 29487, 62, 15908, 628, 628, 198, 2, 1343, 44627, 44627, 44627, 14030, 4880, 198, 2, 31904, 2163, 284, 651, 37410, 16545, 329, 29353, 198, 2, 1343, 44627, 44627, 44627, 14030, 4880, 198, 4299, 4808, 1136, 62, 4443, 1373, 62, 13317, 7, 11498, 35738, 62, 268, 1091, 68, 11, 256, 3866, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 19503, 80, 11, 5202, 11, 277, 8929, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2318, 62, 29487, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 779, 62, 16680, 270, 2136, 28, 25101, 2599, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 5053, 525, 2163, 284, 651, 262, 37410, 12, 13317, 286, 262, 198, 220, 220, 220, 21964, 12, 268, 1091, 274, 286, 262, 34296, 5277, 25241, 6805, 198, 220, 220, 220, 329, 29353, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 21964, 62, 268, 1091, 68, 25, 1351, 286, 26515, 7268, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 21964, 16441, 274, 13, 198, 220, 220, 220, 220, 220, 220, 220, 256, 3866, 25, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16048, 4865, 357, 259, 4201, 8, 286, 262, 640, 12, 17497, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 973, 329, 15453, 14, 1477, 7855, 262, 36835, 82, 13, 1002, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 14202, 6, 262, 1988, 8574, 287, 705, 69, 280, 5277, 62, 3970, 62, 26801, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 973, 198, 220, 220, 220, 220, 220, 220, 220, 264, 19503, 80, 25, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3409, 11347, 8373, 286, 262, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 5202, 25, 12178, 393, 18253, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16048, 8373, 2837, 329, 640, 8373, 3781, 198, 220, 220, 220, 220, 220, 220, 220, 277, 8929, 25, 12178, 393, 18253, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20390, 8373, 2837, 329, 640, 8373, 3781, 198, 220, 220, 220, 220, 220, 220, 220, 2318, 62, 29487, 25, 25131, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 900, 262, 1271, 286, 640, 2173, 329, 640, 12, 35324, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31850, 318, 5322, 287, 1502, 284, 3613, 4088, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14492, 12, 2435, 198, 220, 220, 220, 220, 220, 220, 220, 779, 62, 16680, 270, 2136, 25, 25131, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 900, 705, 16680, 270, 2136, 6, 318, 779, 16993, 329, 640, 8373, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3781, 11, 4306, 705, 13578, 4053, 6, 628, 220, 220, 220, 220, 220, 220, 220, 8229, 198, 220, 220, 220, 220, 220, 220, 220, 40103, 198, 220, 220, 220, 220, 220, 220, 220, 2811, 62, 6477, 62, 439, 25, 1351, 7268, 262, 16449, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8373, 1176, 286, 477, 6805, 198, 220, 220, 220, 220, 220, 220, 220, 2030, 48382, 25, 7177, 7268, 262, 19998, 973, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15284, 262, 8373, 1176, 198, 220, 220, 220, 220, 220, 220, 220, 410, 1084, 25, 2793, 8373, 2837, 329, 29353, 198, 220, 220, 220, 220, 220, 220, 220, 410, 9806, 25, 6727, 8373, 2837, 329, 29353, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 1303, 1330, 3306, 13103, 198, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 422, 285, 710, 13, 12093, 4470, 1330, 6811, 1000, 198, 220, 220, 220, 422, 285, 710, 13, 2435, 62, 35324, 13557, 13578, 4053, 1330, 4808, 17223, 62, 6477, 62, 13578, 4053, 198, 220, 220, 220, 1330, 299, 32152, 355, 45941, 628, 198, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 1303, 8160, 617, 11507, 198, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 299, 29510, 796, 18896, 7, 11498, 35738, 62, 268, 1091, 68, 8, 198, 220, 220, 220, 299, 5589, 796, 21964, 62, 268, 1091, 68, 58, 15, 7131, 15, 4083, 43358, 58, 16, 60, 198, 220, 220, 220, 1592, 62, 429, 6649, 796, 21964, 62, 268, 1091, 68, 58, 15, 7131, 15, 4083, 43358, 58, 12, 16, 60, 198, 220, 220, 220, 2811, 62, 6477, 62, 439, 796, 45941, 13, 28920, 19510, 429, 45787, 11, 657, 29720, 83, 349, 396, 3419, 198, 220, 220, 220, 410, 1084, 796, 45941, 13, 9107, 418, 7, 77, 5589, 8, 198, 220, 220, 220, 410, 9806, 796, 45941, 13, 9107, 418, 7, 77, 5589, 8, 628, 220, 220, 220, 1303, 8160, 617, 640, 11507, 198, 220, 220, 220, 1661, 796, 45941, 13, 283, 858, 7, 5404, 62, 429, 6649, 8, 1220, 264, 19503, 80, 1343, 256, 3866, 198, 220, 220, 220, 4686, 87, 62, 9688, 796, 45941, 13, 853, 1084, 7, 37659, 13, 8937, 7, 22355, 532, 256, 3866, 4008, 198, 220, 220, 220, 4686, 87, 62, 437, 796, 45941, 13, 853, 1084, 7, 37659, 13, 8937, 7, 22355, 532, 357, 83, 3866, 1343, 1592, 62, 429, 6649, 14, 82, 19503, 80, 22305, 628, 220, 220, 220, 611, 2318, 62, 29487, 25, 198, 220, 220, 220, 220, 220, 220, 220, 875, 320, 796, 838, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 875, 320, 796, 352, 628, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 1303, 9052, 625, 477, 640, 10902, 11, 1312, 13, 68, 13, 198, 220, 220, 220, 1303, 3403, 11, 290, 477, 6805, 198, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 329, 2378, 79, 287, 2837, 7, 429, 45787, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 14158, 3361, 287, 2837, 7, 77, 5589, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7925, 617, 1321, 422, 262, 21964, 62, 268, 1091, 68, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25919, 5374, 82, 796, 21964, 62, 268, 1091, 68, 58, 9186, 79, 7131, 15, 4083, 43358, 58, 15, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1620, 640, 8373, 3781, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8335, 1366, 329, 8373, 3781, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 13578, 4053, 796, 21964, 62, 268, 1091, 68, 58, 9186, 79, 7131, 15, 7131, 45299, 14158, 3361, 11, 4686, 87, 62, 9688, 25, 312, 87, 62, 437, 4083, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27179, 1758, 19510, 77, 538, 5374, 82, 11, 352, 11, 4686, 87, 62, 437, 12, 312, 87, 62, 9688, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 13578, 4053, 796, 1366, 62, 13578, 4053, 13, 7645, 3455, 26933, 16, 11, 657, 11, 362, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10162, 1366, 284, 4646, 32361, 19998, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 13578, 4053, 796, 45941, 13, 1102, 9246, 268, 378, 19510, 7890, 62, 13578, 4053, 58, 45299, 1058, 11, 2026, 25, 15, 21912, 16, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 13578, 4053, 11, 1366, 62, 13578, 4053, 58, 45299, 1058, 11, 532, 16, 21912, 4349, 21912, 16, 46570, 16488, 10779, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 487, 83, 796, 1366, 62, 13578, 4053, 13, 43358, 58, 12, 16, 60, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 611, 705, 16680, 270, 2136, 6, 393, 705, 13578, 4053, 6, 815, 307, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 973, 329, 640, 12, 35324, 3781, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 779, 62, 16680, 270, 2136, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 422, 285, 710, 13, 2435, 62, 35324, 13, 83, 8310, 1330, 4808, 5589, 1133, 62, 83, 8310, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 13696, 796, 513, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 940, 13, 15, 1635, 299, 62, 13696, 9, 82, 19503, 80, 20679, 7, 17, 13, 15, 1635, 45941, 13, 14415, 1635, 5202, 8, 1875, 299, 62, 487, 83, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5202, 1635, 28, 220, 14808, 940, 13, 15, 1635, 299, 62, 13696, 9, 82, 19503, 80, 20679, 7, 17, 13, 15, 1635, 45941, 13, 14415, 1635, 5202, 4008, 14, 77, 62, 487, 83, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5202, 796, 45941, 13, 344, 346, 7, 11125, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2030, 48382, 796, 45941, 13, 283, 858, 7, 11125, 11, 277, 8929, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1176, 62, 7890, 796, 4808, 5589, 1133, 62, 83, 8310, 7, 7890, 62, 13578, 4053, 11, 2030, 48382, 11, 264, 19503, 80, 28, 82, 19503, 80, 11, 779, 62, 487, 83, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 32503, 28, 77, 62, 13696, 11, 6632, 62, 32604, 28, 17821, 11, 875, 320, 28, 12501, 320, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 11639, 6477, 3256, 2446, 11639, 16680, 270, 2136, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 62, 3903, 10394, 28, 940, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1176, 62, 7890, 11, 4808, 11, 2030, 48382, 796, 4808, 17223, 62, 6477, 62, 13578, 4053, 7, 7890, 62, 13578, 4053, 11, 264, 19503, 80, 28, 82, 19503, 80, 11, 277, 1084, 28, 11125, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 9806, 28, 69, 8929, 11, 9647, 28, 15, 13, 21, 11, 875, 320, 28, 16, 11, 299, 62, 487, 83, 28, 77, 62, 487, 83, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 62, 270, 66, 28, 25101, 11, 299, 62, 43863, 28, 19, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1620, 14805, 17137, 357, 392, 4781, 40070, 3354, 422, 1366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1176, 62, 7890, 796, 6811, 1000, 7, 6477, 62, 7890, 58, 45299, 1058, 11, 493, 7, 1120, 14, 12501, 320, 2599, 12, 600, 7, 1120, 14, 12501, 320, 8, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1661, 58, 312, 87, 62, 9688, 25, 312, 87, 62, 437, 7131, 15, 21912, 16, 25, 12501, 320, 4357, 357, 14202, 11, 657, 828, 705, 32604, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2811, 62, 6477, 796, 45941, 13, 32604, 7, 6477, 62, 7890, 11, 16488, 28, 15, 8, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3650, 477, 8373, 1366, 287, 530, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2811, 62, 6477, 62, 439, 58, 9186, 79, 4083, 33295, 7, 23913, 62, 6477, 8, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8636, 8373, 40885, 329, 29353, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 9806, 58, 291, 3361, 60, 796, 45941, 13, 9806, 19510, 37659, 13, 25067, 576, 7, 23913, 62, 6477, 11, 9661, 828, 410, 9806, 58, 291, 3361, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 1084, 58, 291, 3361, 60, 796, 45941, 13, 1084, 19510, 37659, 13, 25067, 576, 7, 23913, 62, 6477, 11, 362, 828, 410, 1084, 58, 291, 3361, 60, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 45941, 13, 8937, 7, 85, 9806, 58, 291, 3361, 12962, 1875, 45941, 13, 8937, 7, 85, 1084, 58, 291, 3361, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 1084, 58, 291, 3361, 60, 796, 532, 45941, 13, 8937, 7, 85, 9806, 58, 291, 3361, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 9806, 58, 291, 3361, 60, 796, 45941, 13, 8937, 7, 85, 1084, 58, 291, 3361, 12962, 628, 220, 220, 220, 1441, 2811, 62, 6477, 62, 439, 11, 2030, 48382, 11, 410, 1084, 11, 410, 9806, 628, 628, 198, 2, 1343, 44627, 44627, 44627, 14030, 4880, 198, 2, 7110, 2482, 618, 34296, 5277, 314, 8141, 373, 5625, 287, 262, 198, 2, 2723, 2272, 198, 2, 1343, 44627, 44627, 44627, 14030, 4880, 198, 4299, 7110, 62, 43420, 62, 10677, 62, 13200, 7, 69, 280, 5277, 62, 3970, 62, 26801, 11, 370, 62, 11612, 11, 317, 62, 11612, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12351, 62, 17946, 62, 7890, 41888, 4357, 21964, 62, 268, 1091, 68, 41888, 4357, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 11507, 329, 21964, 16545, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 3866, 28, 14202, 11, 1592, 62, 13664, 62, 2363, 28, 14202, 11, 256, 25241, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9421, 3919, 41888, 4357, 2426, 11639, 9501, 23913, 3256, 7481, 62, 15908, 28, 14202, 11, 220, 220, 220, 220, 220, 220, 1303, 11507, 329, 21739, 16545, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37894, 28, 5607, 11, 751, 62, 69, 1733, 28, 17821, 11, 17923, 34758, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 8461, 62, 1073, 3669, 41888, 4357, 14722, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5202, 28, 14202, 11, 277, 8929, 28, 14202, 11, 2318, 62, 29487, 28, 25101, 11, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 11507, 329, 37410, 16545, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3298, 62, 1416, 4272, 28, 17821, 11, 299, 5589, 62, 525, 62, 29487, 28, 1485, 11, 24714, 448, 28, 14202, 11, 220, 220, 220, 220, 220, 1303, 2276, 29353, 11507, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 62, 13317, 62, 14933, 28, 21737, 2599, 628, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2980, 378, 7110, 7268, 477, 2482, 8793, 416, 198, 220, 220, 220, 11524, 34296, 5277, 25241, 287, 2723, 2272, 11, 1312, 13, 68, 1539, 7110, 198, 220, 220, 220, 21739, 290, 37410, 16545, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 46287, 5277, 62, 3970, 62, 26801, 25, 220, 34296, 5277, 25241, 2134, 7560, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 618, 11524, 474, 388, 1533, 13, 12501, 3361, 577, 13, 69, 280, 5277, 62, 3970, 198, 220, 220, 220, 220, 220, 220, 220, 370, 62, 11612, 25, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 362, 35, 12, 9536, 844, 278, 12, 18747, 357, 77, 5589, 2124, 299, 85, 1140, 417, 8, 6108, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 618, 11524, 34296, 5277, 25241, 198, 220, 220, 220, 220, 220, 220, 220, 317, 62, 11612, 25, 220, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 362, 35, 12, 19816, 278, 12, 18747, 357, 48005, 1140, 417, 11, 299, 5589, 8, 6108, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 618, 11524, 34296, 5277, 25241, 628, 198, 220, 220, 220, 220, 220, 220, 220, 25998, 11507, 329, 21964, 16545, 25998, 628, 220, 220, 220, 220, 220, 220, 220, 12351, 62, 17946, 62, 7890, 25, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 513, 35, 7177, 7268, 262, 2723, 42842, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 973, 329, 34296, 5277, 25241, 31850, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 77, 19503, 80, 2124, 25919, 5374, 82, 2124, 299, 85, 1140, 417, 737, 5514, 3306, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 21964, 62, 268, 1091, 68, 318, 407, 1813, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 25, 12351, 62, 17946, 62, 7890, 28, 21737, 198, 220, 220, 220, 220, 220, 220, 220, 21964, 62, 268, 1091, 68, 25, 1351, 286, 26515, 7268, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 21964, 16441, 274, 13, 1002, 407, 1813, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21964, 16441, 274, 389, 6108, 994, 1912, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 319, 262, 705, 10677, 62, 17946, 62, 7890, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 25, 21964, 62, 268, 1091, 68, 28, 21737, 198, 220, 220, 220, 220, 220, 220, 220, 256, 3866, 25, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16048, 4865, 357, 259, 4201, 8, 286, 262, 640, 12, 17497, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 973, 329, 15453, 14, 1477, 7855, 262, 36835, 82, 13, 1002, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 14202, 6, 262, 1988, 8574, 287, 705, 69, 280, 5277, 62, 3970, 62, 26801, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 973, 198, 220, 220, 220, 220, 220, 220, 220, 1592, 62, 13664, 62, 2363, 25, 12178, 393, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22313, 286, 262, 36835, 4324, 287, 4201, 13, 220, 1002, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 14202, 6, 262, 1988, 8574, 287, 705, 69, 280, 5277, 62, 3970, 62, 26801, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 973, 198, 220, 220, 220, 220, 220, 220, 220, 256, 25241, 25, 25131, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 815, 307, 6407, 611, 21964, 314, 8141, 373, 5625, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 25, 256, 25241, 28, 25101, 628, 198, 220, 220, 220, 220, 220, 220, 220, 25998, 11507, 329, 21739, 16545, 25998, 628, 220, 220, 220, 220, 220, 220, 220, 9421, 3919, 25, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1351, 7268, 734, 26515, 351, 262, 1502, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 286, 262, 9421, 1063, 13, 1002, 1351, 318, 6565, 340, 481, 307, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6338, 7560, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 25, 9421, 3919, 28, 21737, 198, 220, 220, 220, 220, 220, 220, 220, 2426, 25, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7481, 4522, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 25, 2426, 11639, 9501, 23913, 6, 198, 220, 220, 220, 220, 220, 220, 220, 7481, 62, 15908, 25, 4731, 393, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4731, 7268, 262, 7481, 8619, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 25, 7481, 62, 15908, 28, 14202, 14610, 1080, 7885, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28932, 41, 2767, 7902, 62, 34720, 318, 973, 198, 220, 220, 220, 220, 220, 220, 220, 37894, 25, 18253, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 1022, 657, 290, 1802, 973, 284, 900, 257, 2793, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4179, 329, 262, 3402, 12245, 2837, 286, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21739, 21528, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 25, 37894, 28, 5607, 198, 220, 220, 220, 220, 220, 220, 220, 751, 62, 69, 1733, 25, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6407, 290, 262, 337, 22125, 22715, 389, 1813, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 277, 1733, 318, 37515, 379, 262, 2292, 286, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 337, 22125, 20435, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 25, 751, 62, 69, 1733, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 17923, 25, 22155, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17923, 2134, 422, 262, 1448, 62, 3970, 62, 15252, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 632, 318, 257, 22155, 7268, 734, 850, 12, 67, 2867, 3166, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 75, 71, 6, 290, 705, 17179, 6, 357, 1640, 1364, 290, 826, 33169, 737, 554, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1111, 850, 12, 67, 2867, 3166, 262, 1321, 546, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2628, 318, 8574, 11, 1312, 13, 68, 13, 257, 1448, 14, 36996, 1438, 1343, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1321, 543, 6805, 389, 8574, 287, 428, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1448, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 25, 17923, 34758, 92, 198, 220, 220, 220, 220, 220, 220, 220, 285, 8461, 62, 1073, 3669, 25, 1351, 286, 13042, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1813, 262, 337, 22125, 22715, 389, 37515, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11061, 262, 21739, 16545, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 25, 285, 8461, 62, 1073, 3669, 28, 21737, 198, 220, 220, 220, 220, 220, 220, 220, 14722, 25, 1351, 286, 13042, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3891, 286, 262, 14722, 543, 815, 307, 37515, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5740, 11, 262, 21231, 705, 75, 71, 2637, 290, 262, 35488, 45302, 18242, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 389, 6338, 2087, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 25, 14722, 28, 14202, 628, 198, 220, 220, 220, 220, 220, 220, 220, 25998, 11507, 329, 37410, 16545, 25998, 628, 220, 220, 220, 220, 220, 220, 220, 5202, 25, 12178, 393, 18253, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16048, 8373, 2837, 329, 640, 8373, 3781, 198, 220, 220, 220, 220, 220, 220, 220, 277, 8929, 25, 12178, 393, 18253, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20390, 8373, 2837, 329, 640, 8373, 3781, 198, 220, 220, 220, 220, 220, 220, 220, 2318, 62, 29487, 25, 25131, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 900, 262, 2482, 286, 262, 640, 12, 35324, 3781, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 389, 3402, 355, 2318, 7110, 13, 770, 3038, 318, 7151, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 618, 34296, 5277, 25241, 373, 5625, 284, 19186, 12, 5219, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 25, 2318, 62, 29487, 28, 25101, 628, 198, 220, 220, 220, 220, 220, 220, 220, 25998, 2276, 29353, 11507, 25998, 628, 220, 220, 220, 220, 220, 220, 220, 3298, 62, 1416, 4272, 25, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 900, 21739, 11, 37410, 290, 21964, 16545, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 389, 18309, 27464, 13, 15323, 1123, 7515, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 27464, 17033, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 25, 3298, 62, 1416, 4272, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 299, 5589, 62, 525, 62, 29487, 25, 18253, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 286, 6805, 583, 7110, 198, 220, 220, 220, 220, 220, 220, 220, 24714, 448, 25, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 25, 24714, 448, 28, 14202, 198, 220, 220, 220, 220, 220, 220, 220, 20218, 62, 13317, 62, 14933, 25, 1351, 286, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1351, 815, 423, 262, 976, 1271, 286, 4847, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 355, 3403, 547, 973, 284, 7716, 262, 21964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16441, 274, 13, 383, 3891, 1813, 994, 389, 973, 355, 16534, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 262, 21964, 16545, 287, 262, 7110, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 25, 20218, 62, 13317, 62, 3672, 28, 21737, 198, 220, 220, 220, 37227, 628, 198, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 1303, 1330, 3306, 13103, 198, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 422, 2603, 29487, 8019, 1330, 12972, 29487, 355, 458, 83, 198, 220, 220, 220, 422, 2603, 29487, 8019, 1330, 50000, 43106, 355, 1036, 67, 198, 220, 220, 220, 422, 2603, 29487, 8019, 13, 4033, 669, 1330, 14435, 1096, 198, 220, 220, 220, 1330, 299, 32152, 355, 45941, 198, 220, 220, 220, 422, 28686, 1330, 4781, 11, 374, 9132, 343, 198, 220, 220, 220, 422, 28686, 13, 6978, 1330, 7160, 11, 4654, 198, 220, 220, 220, 422, 629, 541, 88, 1330, 12747, 628, 198, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 1303, 2198, 5128, 11507, 198, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 611, 256, 3866, 6624, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 256, 3866, 796, 46287, 5277, 62, 3970, 62, 26801, 13, 83, 3866, 198, 220, 220, 220, 611, 5202, 6624, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5202, 796, 46287, 5277, 62, 3970, 62, 26801, 13, 11125, 198, 220, 220, 220, 611, 407, 277, 8929, 25, 198, 220, 220, 220, 220, 220, 220, 220, 277, 8929, 796, 46287, 5277, 62, 3970, 62, 26801, 13, 69, 8929, 198, 220, 220, 220, 611, 407, 1592, 62, 13664, 62, 2363, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1592, 62, 13664, 62, 2363, 796, 46287, 5277, 62, 3970, 62, 26801, 13, 5404, 62, 13664, 62, 2363, 628, 220, 220, 220, 1303, 2198, 611, 2035, 705, 10677, 62, 17946, 62, 7890, 6, 393, 198, 220, 220, 220, 1303, 705, 11498, 35738, 62, 268, 1091, 68, 6, 318, 1813, 11, 4306, 2245, 198, 220, 220, 220, 611, 12351, 62, 17946, 62, 7890, 6624, 17635, 290, 21964, 62, 268, 1091, 68, 6624, 685, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 33409, 33854, 25, 345, 423, 2035, 284, 2148, 262, 7885, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 33409, 220, 220, 220, 220, 220, 220, 220, 705, 10677, 62, 17946, 62, 7890, 6, 393, 705, 11498, 35738, 62, 268, 1091, 68, 6, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 279, 9945, 198, 220, 220, 220, 220, 220, 220, 220, 279, 9945, 13, 2617, 62, 40546, 3419, 628, 198, 220, 220, 220, 1303, 8636, 14, 2617, 617, 2829, 11507, 198, 220, 220, 220, 264, 19503, 80, 796, 46287, 5277, 62, 3970, 62, 26801, 13, 82, 19503, 80, 198, 220, 220, 220, 1592, 62, 429, 6649, 796, 493, 7, 37659, 13, 28300, 7, 82, 19503, 80, 1635, 1592, 62, 13664, 62, 2363, 4008, 198, 220, 220, 220, 299, 5589, 11, 299, 85, 1140, 417, 796, 370, 62, 11612, 13, 43358, 198, 220, 220, 220, 331, 2475, 62, 29510, 796, 25915, 15, 13, 2816, 11, 657, 13, 2816, 60, 198, 220, 220, 220, 640, 62, 9521, 796, 685, 83, 3866, 11, 256, 3866, 1343, 1592, 62, 13664, 62, 2363, 60, 628, 198, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 1303, 651, 21964, 16441, 274, 11, 393, 2138, 2198, 611, 198, 220, 220, 220, 1303, 21964, 16441, 274, 1541, 2152, 393, 1276, 198, 220, 220, 220, 1303, 307, 10488, 198, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 21964, 62, 268, 1091, 68, 62, 32604, 11, 21964, 62, 268, 1091, 68, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 1136, 62, 11498, 35738, 62, 268, 1091, 274, 7, 69, 280, 5277, 62, 3970, 62, 26801, 11, 370, 62, 11612, 11, 21964, 62, 268, 1091, 68, 28, 11498, 35738, 62, 268, 1091, 68, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12351, 62, 17946, 62, 7890, 28, 10677, 62, 17946, 62, 7890, 11, 256, 25241, 28, 83, 25241, 11, 3298, 62, 1416, 4272, 28, 20541, 62, 1416, 4272, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1592, 62, 13664, 62, 2363, 28, 5404, 62, 13664, 62, 2363, 11, 256, 3866, 28, 83, 3866, 11, 5202, 28, 11125, 8, 198, 220, 220, 220, 299, 29510, 796, 18896, 7, 11498, 35738, 62, 268, 1091, 68, 8, 628, 198, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 1303, 651, 337, 22125, 12, 37652, 17540, 286, 262, 34296, 5277, 25241, 198, 220, 220, 220, 1303, 6805, 198, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 611, 407, 17923, 290, 407, 285, 8461, 62, 1073, 3669, 290, 407, 14722, 25, 198, 220, 220, 220, 220, 220, 220, 220, 285, 8461, 62, 1073, 3669, 11, 339, 11632, 62, 17946, 62, 14116, 11, 17923, 11, 14722, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 62, 76, 8461, 62, 37652, 17540, 7, 32, 62, 11612, 11, 2426, 28, 32796, 11, 7481, 62, 15908, 28, 32796, 82, 62, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37894, 28, 25067, 576, 8, 628, 220, 220, 220, 1303, 4306, 356, 691, 423, 284, 651, 262, 705, 4411, 72, 62, 17946, 62, 14116, 6, 7885, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 339, 11632, 62, 17946, 796, 45941, 13, 18747, 26933, 600, 7, 72, 14512, 10148, 8, 329, 1312, 287, 285, 8461, 62, 1073, 3669, 17816, 75, 71, 6, 11907, 8, 198, 220, 220, 220, 220, 220, 220, 220, 339, 11632, 62, 17946, 15853, 45941, 13, 18747, 26933, 17, 9, 600, 7, 72, 14512, 10148, 8, 329, 1312, 287, 285, 8461, 62, 1073, 3669, 17816, 17179, 6, 11907, 8, 198, 220, 220, 220, 220, 220, 220, 220, 339, 11632, 62, 17946, 62, 14116, 796, 45941, 13, 18747, 7, 17816, 220, 220, 220, 220, 705, 60, 1635, 18896, 7, 4411, 72, 62, 17946, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4686, 87, 11, 339, 11632, 62, 3672, 287, 27056, 378, 7, 17816, 9464, 46083, 705, 3506, 3256, 705, 16885, 705, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 62, 3803, 796, 45941, 13, 3003, 7, 4411, 72, 62, 17946, 6624, 357, 312, 87, 1343, 352, 13, 15, 4008, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 339, 11632, 62, 17946, 62, 14116, 58, 312, 87, 62, 3803, 60, 796, 339, 11632, 62, 3672, 628, 198, 220, 220, 220, 1303, 2198, 611, 17923, 373, 6157, 3161, 284, 29353, 198, 220, 220, 220, 8251, 11, 1994, 62, 65, 6361, 11, 4686, 87, 62, 30619, 796, 4808, 9122, 62, 4871, 2649, 7, 4871, 2649, 11, 299, 5589, 8, 628, 198, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 1303, 651, 21739, 16545, 286, 477, 6805, 198, 220, 220, 220, 1303, 5740, 25, 770, 481, 1011, 257, 981, 198, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 20218, 62, 29487, 62, 15908, 796, 4808, 1136, 62, 2777, 34961, 62, 5577, 2915, 7, 32, 62, 11612, 11, 8251, 11, 339, 11632, 62, 17946, 62, 14116, 11, 9421, 3919, 28, 1851, 3919, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2426, 28, 32796, 11, 7481, 62, 15908, 28, 32796, 82, 62, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14722, 28, 23912, 1424, 11, 17923, 28, 4871, 2649, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37894, 28, 25067, 576, 11, 285, 8461, 62, 37652, 28, 76, 8461, 62, 1073, 3669, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 751, 62, 69, 1733, 28, 2860, 62, 69, 1733, 11, 24714, 448, 28, 22184, 448, 8, 628, 198, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 1303, 651, 37410, 16545, 286, 477, 6805, 198, 220, 220, 220, 1303, 5740, 25, 770, 481, 1011, 257, 981, 198, 220, 220, 220, 1303, 20368, 32284, 198, 220, 220, 220, 2811, 62, 6477, 62, 439, 11, 2030, 48382, 11, 410, 1084, 11, 410, 9806, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 1136, 62, 4443, 1373, 62, 13317, 7, 11498, 35738, 62, 268, 1091, 68, 11, 256, 3866, 11, 264, 19503, 80, 11, 5202, 11, 277, 8929, 11, 2318, 62, 29487, 28, 5657, 62, 29487, 8, 628, 220, 220, 220, 1303, 2198, 611, 2318, 7110, 815, 307, 973, 198, 220, 220, 220, 1303, 14610, 611, 3763, 8636, 1554, 21857, 1366, 290, 3487, 1096, 2482, 198, 220, 220, 220, 611, 2318, 62, 29487, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7716, 281, 7177, 284, 3650, 262, 2482, 198, 220, 220, 220, 220, 220, 220, 220, 2030, 80, 62, 258, 2337, 796, 45941, 13, 9107, 418, 19510, 429, 45787, 11, 299, 5589, 11, 18896, 7, 19503, 48382, 22305, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 9052, 625, 477, 3403, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 62, 6477, 11, 2811, 62, 6477, 287, 27056, 378, 7, 23913, 62, 6477, 62, 439, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2030, 80, 62, 258, 2337, 58, 72, 62, 6477, 11, 1058, 11, 1058, 60, 796, 45941, 13, 16345, 7, 37659, 13, 8937, 7, 23913, 62, 6477, 828, 16488, 28, 17, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3487, 1096, 284, 257, 2837, 1022, 657, 290, 352, 198, 220, 220, 220, 220, 220, 220, 220, 2030, 80, 62, 258, 2337, 1220, 28, 45941, 13, 9806, 7, 19503, 80, 62, 258, 2337, 8, 628, 628, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 1303, 783, 7716, 7110, 7268, 21739, 11, 198, 220, 220, 220, 1303, 37410, 290, 21964, 16545, 198, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 1303, 900, 617, 2276, 11507, 198, 220, 220, 220, 458, 83, 13, 952, 487, 3419, 198, 220, 220, 220, 299, 9600, 796, 493, 7, 37659, 13, 344, 346, 7, 77, 5589, 29006, 16, 13, 15, 9, 77, 5589, 62, 525, 62, 29487, 22305, 198, 220, 220, 220, 4686, 87, 62, 2539, 796, 657, 198, 220, 220, 220, 299, 29487, 796, 1351, 7, 9521, 7, 77, 5589, 62, 525, 62, 29487, 11, 299, 9600, 9, 77, 5589, 62, 525, 62, 29487, 11, 299, 5589, 62, 525, 62, 29487, 4008, 198, 220, 220, 220, 299, 29487, 13, 33295, 7, 77, 5589, 8, 628, 198, 220, 220, 220, 1303, 7716, 2939, 290, 663, 12461, 329, 29353, 198, 220, 220, 220, 2336, 796, 458, 83, 13, 26875, 10786, 37, 280, 5277, 25241, 21528, 3256, 2336, 7857, 16193, 1415, 1343, 299, 29510, 1635, 807, 11, 4974, 4008, 198, 220, 220, 220, 299, 62, 13083, 796, 18896, 7, 2539, 62, 65, 6361, 8, 611, 18896, 7, 2539, 62, 65, 6361, 8, 1875, 657, 2073, 352, 198, 220, 220, 220, 308, 82, 796, 1036, 67, 13, 41339, 22882, 7, 77, 5589, 62, 525, 62, 29487, 1635, 1160, 1343, 299, 62, 13083, 1635, 838, 11, 838, 1343, 299, 29510, 1635, 807, 11, 266, 13200, 28, 15, 13, 16, 11, 289, 13200, 28, 15, 13, 2713, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1364, 28, 15, 13, 3023, 11, 826, 28, 15, 13, 4846, 11, 4220, 28, 15, 13, 3023, 11, 1353, 28, 15, 13, 4846, 8, 628, 198, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 1303, 9052, 625, 262, 6108, 1271, 286, 4263, 198, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 329, 1312, 9600, 287, 2837, 7, 77, 9600, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1598, 3785, 357, 1462, 923, 351, 257, 2330, 2939, 287, 1123, 9052, 8, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 565, 69, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 8636, 703, 867, 21528, 319, 1459, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 318, 83, 433, 62, 29487, 796, 493, 7, 77, 5589, 62, 525, 62, 29487, 1635, 1312, 9600, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 900, 4686, 87, 62, 4871, 11507, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 62, 4871, 796, 352, 611, 1994, 62, 65, 6361, 6624, 17635, 2073, 657, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 9052, 625, 477, 6805, 543, 815, 307, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 37515, 319, 262, 1459, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 35937, 198, 220, 220, 220, 220, 220, 220, 220, 329, 14158, 3361, 287, 2837, 7, 396, 433, 62, 29487, 11, 299, 29487, 58, 72, 9600, 60, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 26171, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 611, 1994, 62, 3526, 364, 318, 900, 290, 815, 307, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3194, 319, 262, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 26171, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 291, 3361, 6624, 318, 83, 433, 62, 29487, 290, 1994, 62, 65, 6361, 14512, 685, 12962, 393, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14808, 291, 3361, 1343, 352, 8, 287, 1994, 62, 65, 6361, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4532, 1994, 12, 9630, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 291, 3361, 1343, 352, 8, 287, 1994, 62, 65, 6361, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 62, 2539, 15853, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 751, 850, 12, 29487, 351, 705, 2539, 62, 5239, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 62, 5239, 796, 2336, 13, 2860, 62, 7266, 29487, 7, 14542, 58, 1238, 1635, 357, 291, 3361, 532, 318, 83, 433, 62, 29487, 8, 1343, 4686, 87, 62, 4871, 1635, 838, 25, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1160, 1635, 357, 291, 3361, 532, 318, 83, 433, 62, 29487, 8, 1343, 807, 1343, 4686, 87, 62, 4871, 1635, 838, 11, 657, 25, 940, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 62, 5239, 13, 5239, 7, 15, 11, 657, 11, 8251, 58, 312, 87, 62, 2539, 12, 16, 4357, 10369, 7857, 28, 1495, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4532, 62, 2777, 1127, 7, 79, 62, 5239, 11, 685, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4532, 4686, 87, 62, 4871, 11507, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 62, 4871, 15853, 352, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 26171, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7110, 21739, 16545, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 26171, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1100, 21739, 7034, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24714, 62, 8692, 796, 366, 2149, 4, 2999, 67, 62, 2777, 34961, 62, 13317, 13, 11134, 1, 4064, 357, 312, 87, 62, 30619, 58, 291, 3361, 60, 1343, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24714, 259, 62, 9600, 796, 4654, 7, 29510, 62, 29487, 62, 15908, 11, 24714, 62, 8692, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15246, 62, 22065, 796, 12747, 13, 320, 961, 7, 22184, 259, 62, 9600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4781, 7, 22184, 259, 62, 9600, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 37825, 858, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 7857, 11, 331, 62, 7857, 11, 4808, 796, 15246, 62, 22065, 13, 43358, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 13959, 11, 331, 62, 13959, 796, 2124, 62, 7857, 1220, 362, 11, 331, 62, 7857, 1220, 362, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 14535, 11, 331, 62, 14535, 796, 493, 7, 15, 13, 1157, 1635, 2124, 62, 13959, 828, 493, 7, 15, 13, 486, 1635, 331, 62, 13959, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21739, 62, 13317, 796, 45941, 13, 1102, 9246, 268, 378, 19510, 2777, 265, 62, 22065, 58, 87, 62, 14535, 37498, 87, 62, 13959, 532, 2124, 62, 14535, 828, 331, 62, 14535, 37498, 88, 62, 13959, 532, 331, 62, 14535, 828, 1058, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15246, 62, 22065, 58, 7, 87, 62, 13959, 1343, 2124, 62, 14535, 2599, 12, 87, 62, 14535, 11, 331, 62, 14535, 37498, 88, 62, 13959, 532, 331, 62, 14535, 828, 1058, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15246, 62, 22065, 58, 7, 87, 62, 13959, 1343, 2124, 62, 14535, 2599, 12, 87, 62, 14535, 11, 357, 88, 62, 13959, 1343, 331, 62, 14535, 2599, 12, 88, 62, 14535, 11, 1058, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15246, 62, 22065, 58, 87, 62, 14535, 37498, 87, 62, 13959, 532, 2124, 62, 14535, 828, 357, 88, 62, 13959, 1343, 331, 62, 14535, 2599, 12, 88, 62, 14535, 11, 1058, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16488, 28, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 900, 7110, 2292, 290, 7110, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 16, 796, 2336, 13, 2860, 62, 7266, 29487, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 82, 58, 1238, 1635, 357, 291, 3361, 532, 318, 83, 433, 62, 29487, 8, 1343, 4686, 87, 62, 4871, 1635, 838, 25, 1238, 1635, 357, 291, 3361, 532, 318, 83, 433, 62, 29487, 8, 1343, 1315, 1343, 4686, 87, 62, 4871, 1635, 838, 11, 657, 25, 940, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 16, 13, 320, 12860, 7, 2777, 34961, 62, 13317, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 900, 617, 29353, 3689, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 16, 13, 88, 22704, 13, 2617, 62, 83, 3378, 26933, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 16, 13, 87, 22704, 13, 2617, 62, 83, 3378, 26933, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 3672, 796, 366, 2149, 2, 4, 2999, 67, 1, 4064, 357, 312, 87, 62, 30619, 58, 291, 3361, 60, 1343, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 16, 13, 2617, 62, 2645, 9608, 7, 88, 62, 3672, 11, 10369, 7857, 28, 1507, 8, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 26171, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 1813, 3551, 337, 22125, 22715, 739, 262, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 26171, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 45941, 13, 1092, 7, 76, 8461, 62, 1073, 3669, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1364, 33169, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 5239, 7, 10232, 11, 11470, 11, 285, 8461, 62, 1073, 3669, 17816, 75, 71, 6, 7131, 600, 7, 312, 87, 62, 30619, 58, 600, 7, 291, 3361, 8, 12962, 4357, 3124, 2625, 13424, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10369, 7857, 28, 1507, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 826, 33169, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 5239, 7, 25764, 11, 11470, 11, 285, 8461, 62, 1073, 3669, 17816, 17179, 6, 7131, 600, 7, 312, 87, 62, 30619, 58, 600, 7, 291, 3361, 8, 12962, 4357, 3124, 2625, 13424, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10369, 7857, 28, 1507, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 751, 4067, 1321, 286, 262, 7515, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 14610, 611, 5140, 287, 705, 16885, 3256, 705, 9464, 6, 393, 705, 3506, 6, 33169, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 5239, 32590, 17572, 11, 1802, 11, 339, 11632, 62, 17946, 62, 14116, 58, 600, 7, 312, 87, 62, 30619, 58, 600, 7, 291, 3361, 8, 12962, 4357, 3124, 2625, 445, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10369, 7857, 28, 1495, 11, 13179, 28, 3829, 8, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 26171, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 21964, 14, 4443, 1373, 16545, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 26171, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9052, 625, 477, 640, 10902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2378, 79, 287, 2837, 7, 429, 45787, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 26171, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 1813, 7110, 257, 16534, 2029, 262, 640, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10902, 286, 1123, 4006, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 26171, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 14158, 3361, 6624, 318, 83, 433, 62, 29487, 290, 18896, 7, 29510, 62, 13317, 62, 14933, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 751, 257, 850, 12, 29487, 329, 262, 2420, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 62, 5239, 796, 2336, 13, 2860, 62, 7266, 29487, 7, 14542, 58, 7, 312, 87, 62, 4871, 532, 352, 8, 1635, 838, 25, 718, 1343, 357, 312, 87, 62, 4871, 532, 352, 8, 1635, 1105, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 9186, 79, 8, 1635, 807, 1343, 1367, 37498, 9186, 79, 1343, 352, 8, 1635, 807, 1343, 860, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7110, 262, 2420, 290, 4532, 599, 1127, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 62, 5239, 13, 5239, 7, 15, 11, 657, 11, 366, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1343, 20218, 62, 13317, 62, 14933, 58, 9186, 79, 4357, 10369, 7857, 28, 1270, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4532, 62, 2777, 1127, 7, 79, 62, 5239, 11, 685, 12962, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 900, 7110, 2292, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2318, 62, 29487, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 17, 796, 458, 83, 13, 7266, 29487, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 82, 58, 1238, 1635, 357, 291, 3361, 532, 318, 83, 433, 62, 29487, 8, 1343, 4686, 87, 62, 4871, 1635, 1367, 25, 1238, 1635, 357, 291, 3361, 532, 318, 83, 433, 62, 29487, 8, 1343, 1511, 1343, 4686, 87, 62, 4871, 1635, 838, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2378, 79, 1635, 807, 1343, 1367, 37498, 9186, 79, 1343, 352, 8, 1635, 807, 1343, 860, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 17, 796, 458, 83, 13, 7266, 29487, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 82, 58, 1238, 1635, 357, 291, 3361, 532, 318, 83, 433, 62, 29487, 8, 1343, 4686, 87, 62, 4871, 1635, 838, 25, 1238, 1635, 357, 291, 3361, 532, 318, 83, 433, 62, 29487, 8, 1343, 1315, 1343, 4686, 87, 62, 4871, 1635, 838, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2378, 79, 1635, 807, 1343, 1367, 37498, 9186, 79, 1343, 352, 8, 1635, 807, 1343, 860, 12962, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7925, 21964, 29353, 1321, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1661, 796, 357, 37659, 13, 283, 858, 7, 5404, 62, 429, 6649, 8, 1220, 264, 19503, 80, 1343, 256, 3866, 38381, 20, 21912, 20, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 62, 9688, 796, 45941, 13, 853, 1084, 7, 37659, 13, 8937, 7, 22355, 532, 640, 62, 9521, 58, 15, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 62, 437, 796, 45941, 13, 853, 1084, 7, 37659, 13, 8937, 7, 22355, 532, 640, 62, 9521, 58, 16, 60, 4008, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 26171, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7110, 37410, 7034, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 26171, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 611, 3298, 20796, 815, 307, 973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3298, 62, 1416, 4272, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 1084, 62, 22019, 11, 410, 9806, 62, 22019, 796, 45941, 13, 1084, 7, 85, 1084, 828, 45941, 13, 9806, 7, 85, 9806, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 1084, 62, 22019, 11, 410, 9806, 62, 22019, 796, 410, 1084, 58, 291, 3361, 4357, 410, 9806, 58, 291, 3361, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 905, 37410, 7034, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2318, 62, 29487, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 5657, 7, 19503, 48382, 11, 2030, 80, 62, 258, 2337, 58, 9186, 79, 11, 493, 7, 312, 87, 62, 30619, 58, 291, 3361, 46570, 1058, 4357, 9647, 28, 16, 13, 15, 11, 3124, 11639, 20772, 25547, 17585, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 87, 2475, 7, 11125, 11, 277, 8929, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 88, 2475, 7, 15, 13, 15, 11, 352, 13, 15, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 900, 617, 11507, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 17, 13, 2617, 62, 87, 18242, 7203, 19503, 80, 13, 685, 7399, 60, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 17, 13, 2617, 62, 2645, 9608, 7203, 321, 489, 13, 685, 64, 13, 84, 8183, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 26171, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7110, 21964, 7034, 319, 262, 617, 4136, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 26171, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 796, 458, 83, 13, 4246, 3541, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 87, 18242, 7203, 2435, 685, 82, 60, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 7, 22355, 58, 312, 87, 62, 9688, 25, 312, 87, 62, 437, 4357, 657, 13, 20, 10, 11498, 35738, 62, 268, 1091, 68, 62, 32604, 58, 9186, 79, 7131, 15, 7131, 600, 7, 312, 87, 62, 30619, 58, 291, 3361, 46570, 4686, 87, 62, 9688, 25, 312, 87, 62, 437, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 11639, 445, 3256, 9493, 413, 5649, 28, 18, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 87, 2475, 7, 22355, 58, 312, 87, 62, 9688, 4357, 1661, 58, 312, 87, 62, 437, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 88, 2475, 7, 15, 13, 15, 11, 352, 13, 15, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2811, 62, 6477, 796, 2811, 62, 6477, 62, 439, 58, 9186, 79, 7131, 600, 7, 312, 87, 62, 30619, 58, 291, 3361, 12962, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6287, 796, 357, 22355, 58, 312, 87, 62, 9688, 4357, 1661, 58, 312, 87, 62, 437, 4357, 2030, 48382, 58, 15, 4357, 2030, 48382, 58, 12, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 17, 13, 320, 12860, 7, 23913, 62, 6477, 11, 6287, 28, 2302, 298, 11, 4843, 2625, 23736, 1600, 8159, 2625, 21037, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2298, 263, 28, 25101, 11, 269, 8899, 11639, 49, 36077, 84, 62, 81, 3256, 410, 1084, 28, 85, 1084, 62, 22019, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 9806, 28, 85, 9806, 62, 22019, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 900, 617, 11507, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 17, 13, 2617, 62, 87, 18242, 7203, 2435, 685, 82, 60, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 17, 13, 2617, 62, 2645, 9608, 7203, 19503, 80, 13, 685, 7399, 60, 4943, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 26171, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7110, 21964, 7034, 319, 262, 617, 4136, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 26171, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 796, 458, 83, 13, 4246, 28413, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 87, 2475, 7, 22355, 58, 312, 87, 62, 9688, 4357, 1661, 58, 312, 87, 62, 437, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 88, 2475, 7, 88, 2475, 62, 29510, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 2645, 9608, 7203, 321, 489, 13, 685, 64, 13, 84, 8183, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 7, 22355, 58, 312, 87, 62, 9688, 25, 312, 87, 62, 437, 4357, 21964, 62, 268, 1091, 68, 62, 32604, 58, 9186, 79, 7131, 15, 7131, 600, 7, 312, 87, 62, 30619, 58, 291, 3361, 46570, 4686, 87, 62, 9688, 25, 312, 87, 62, 437, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 11639, 13424, 3256, 9493, 413, 5649, 28, 18, 13, 15, 8, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 26171, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3443, 7110, 257, 3124, 2318, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 26171, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2318, 62, 29487, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 717, 3487, 1096, 262, 3124, 3084, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2593, 796, 14435, 1096, 7, 85, 1084, 28, 37659, 13, 744, 7, 85, 1084, 62, 22019, 11, 362, 828, 410, 9806, 28, 37659, 13, 744, 7, 85, 9806, 62, 22019, 11, 362, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 895, 796, 458, 83, 13, 11215, 13, 3351, 282, 283, 44, 1324, 540, 7, 66, 8899, 11639, 49, 36077, 84, 62, 81, 3256, 2593, 28, 27237, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 895, 13, 2617, 62, 18747, 7, 37659, 13, 21602, 10223, 7, 85, 1084, 62, 22019, 11, 352, 13, 15, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8636, 2292, 286, 262, 3124, 2318, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 1930, 796, 657, 13, 26598, 1343, 657, 13, 20, 29006, 429, 45787, 1343, 352, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 299, 62, 13083, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 65, 897, 274, 796, 2336, 13, 2860, 62, 897, 274, 26933, 87, 1930, 11, 657, 13, 17059, 11, 657, 13, 17, 11, 657, 13, 28041, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 65, 897, 274, 796, 2336, 13, 2860, 62, 897, 274, 26933, 87, 1930, 11, 657, 13, 3070, 11, 657, 13, 17, 11, 657, 13, 28041, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36066, 62, 38942, 796, 357, 85, 9806, 62, 22019, 532, 410, 1084, 62, 22019, 8, 1635, 657, 13, 24840, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36066, 796, 45941, 13, 744, 26933, 85, 1084, 62, 22019, 11, 410, 1084, 62, 22019, 1343, 36066, 62, 38942, 11, 410, 9806, 62, 22019, 532, 36066, 62, 38942, 11, 410, 9806, 62, 22019, 4357, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 36066, 796, 25915, 16, 13, 15, 11, 532, 15, 13, 20, 11, 657, 13, 15, 11, 657, 13, 20, 11, 352, 13, 15, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 783, 7110, 3124, 2318, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 65, 796, 458, 83, 13, 8043, 5657, 7, 5796, 11, 7877, 28, 79, 17, 11, 269, 897, 28, 21101, 897, 274, 11, 779, 62, 2164, 2340, 43106, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12852, 11639, 17899, 38342, 3256, 36066, 28, 83, 3378, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5794, 11639, 4, 16, 13, 17, 70, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 65, 13, 897, 13, 42298, 62, 37266, 7, 23912, 1424, 1096, 28, 1507, 8, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 26171, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3613, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 26171, 198, 220, 220, 220, 220, 220, 220, 220, 611, 24714, 448, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24714, 448, 62, 20751, 796, 705, 4, 82, 62, 4, 2999, 67, 13, 11134, 6, 4064, 357, 22184, 448, 11, 1312, 9600, 1343, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 21928, 5647, 7, 22184, 448, 62, 20751, 11, 5794, 11639, 11134, 3256, 288, 14415, 28, 6200, 8, 628, 628, 198, 220, 220, 220, 1303, 1969, 7110, 290, 900, 29353, 736, 284, 3159, 198, 220, 220, 220, 458, 83, 13, 19836, 10786, 37, 280, 5277, 25241, 21528, 11537, 198, 220, 220, 220, 458, 83, 13, 295, 3419, 628, 220, 220, 220, 1303, 4781, 8584, 8619, 329, 198, 220, 220, 220, 1303, 21739, 7034, 21528, 198, 220, 220, 220, 611, 7160, 7, 29510, 62, 29487, 62, 15908, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 374, 9132, 343, 7, 29510, 62, 29487, 62, 15908, 8, 628, 198, 220, 220, 220, 1441, 285, 8461, 62, 1073, 3669, 11, 17923, 11, 14722, 628, 628 ]
2.235067
31,825
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Author : qichun tang # @Contact : tqichun@gmail.com import json import os from pathlib import Path import pandas as pd from joblib import Parallel, delayed from joblib import dump info = { "bohb": ("HpBandSter-BOHB", "r",), "ultraopt_BOHB": ("UltraOpt-BOHB", "g",), "ultraopt_HyperBand": ("HyperBand", "b",), "tpe": ("HyperOpt-TPE", "r",), "ultraopt_ETPE": ("UltraOpt-ETPE", "g",), "ultraopt_Random": ("Random", "b",), } benchmarks = [ "protein_structure", "slice_localization", "naval_propulsion", "parkinsons_telemonitoring" ] args_list = [] for _, benchmark in enumerate(benchmarks): for fname in info.keys(): args_list.append((benchmark, fname)) Parallel(n_jobs=10)( delayed(process)(*args) for args in args_list )
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2488, 13838, 220, 1058, 10662, 488, 403, 13875, 198, 2, 2488, 17829, 220, 220, 220, 1058, 256, 80, 488, 403, 31, 14816, 13, 785, 198, 11748, 33918, 198, 11748, 28686, 198, 6738, 3108, 8019, 1330, 10644, 198, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 1693, 8019, 1330, 42945, 11, 11038, 198, 6738, 1693, 8019, 1330, 10285, 198, 198, 10951, 796, 1391, 198, 220, 220, 220, 366, 65, 1219, 65, 1298, 5855, 39, 79, 31407, 50, 353, 12, 8202, 32886, 1600, 366, 81, 1600, 828, 198, 220, 220, 220, 366, 586, 430, 8738, 62, 8202, 32886, 1298, 5855, 36122, 27871, 12, 8202, 32886, 1600, 366, 70, 1600, 828, 198, 220, 220, 220, 366, 586, 430, 8738, 62, 38197, 31407, 1298, 5855, 38197, 31407, 1600, 366, 65, 1600, 828, 198, 220, 220, 220, 366, 83, 431, 1298, 5855, 38197, 27871, 12, 7250, 36, 1600, 366, 81, 1600, 828, 198, 220, 220, 220, 366, 586, 430, 8738, 62, 2767, 11401, 1298, 5855, 36122, 27871, 12, 2767, 11401, 1600, 366, 70, 1600, 828, 198, 220, 220, 220, 366, 586, 430, 8738, 62, 29531, 1298, 5855, 29531, 1600, 366, 65, 1600, 828, 198, 92, 198, 198, 26968, 14306, 796, 685, 198, 220, 220, 220, 366, 48693, 62, 301, 5620, 1600, 198, 220, 220, 220, 366, 48369, 62, 12001, 1634, 1600, 198, 220, 220, 220, 366, 77, 9226, 62, 22930, 15204, 1600, 198, 220, 220, 220, 366, 20928, 1040, 684, 62, 46813, 41143, 278, 1, 198, 60, 628, 198, 198, 22046, 62, 4868, 796, 17635, 198, 1640, 4808, 11, 18335, 287, 27056, 378, 7, 26968, 14306, 2599, 198, 220, 220, 220, 329, 277, 3672, 287, 7508, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 62, 4868, 13, 33295, 19510, 26968, 4102, 11, 277, 3672, 4008, 198, 198, 10044, 29363, 7, 77, 62, 43863, 28, 940, 5769, 198, 220, 220, 220, 11038, 7, 14681, 5769, 9, 22046, 8, 329, 26498, 287, 26498, 62, 4868, 198, 8, 198 ]
2.385714
350
# coding=utf-8 # Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/master/config import os import sys sys.path.insert(0, os.path.abspath('..')) # -- Project information ----------------------------------------------------- project = 'learned_optimization' copyright = '2021, Google LLC.' author = 'The learned_optimization authors' # The short X.Y version version = '' # The full version, including alpha/beta/rc tags release = '' # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '2.1' extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.intersphinx', 'sphinx.ext.mathjax', 'sphinx.ext.napoleon', 'sphinx.ext.viewcode', 'matplotlib.sphinxext.plot_directive', 'sphinx_autodoc_typehints', 'myst_nb', ] intersphinx_mapping = { 'python': ('https://docs.python.org/3/', None), 'numpy': ('https://numpy.org/doc/stable/', None), 'scipy': ('https://docs.scipy.org/doc/scipy/reference/', None), } suppress_warnings = [ 'ref.citation', # Many duplicated citations in numpy/scipy docstrings. 'ref.footnote', # Many unreferenced footnotes in numpy/scipy docstrings ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. source_suffix = ['.rst', '.ipynb', '.md'] # The main toctree document. main_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [ # Sometimes sphinx reads its own outputs as inputs! '_build/html', '_build/', '_build/jupyter_execute', 'notebooks/README.md', 'README.md', # Ignore markdown source for notebooks; myst-nb builds from the ipynb # These are kept in sync via jupytext --sync 'notebooks/*.md', ] # The name of the Pygments (syntax highlighting) style to use. pygments_style = None autosummary_generate = True # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = { 'logo_only': True, } # The name of an image file (relative to this directory) to place at the top # of the sidebar. # TODO(lmetz) add logos! # html_logo = '_static/logo_250px.png' # html_favicon = '_static/favicon.png' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # -- Options for myst ---------------------------------------------- jupyter_execute_notebooks = 'force' execution_allow_errors = False # Notebook cell execution timeout; defaults to 30. execution_timeout = 100 # List of patterns, relative to source directory, that match notebook # files that will not be executed. execution_excludepatterns = ['*'] # -- Extension configuration ------------------------------------------------- # Tell sphinx-autodoc-typehints to generate stub parameter annotations including # types, even if the parameters aren't explicitly documented. always_document_param_types = True # force clear docs every rebuild. import shutil if os.path.exists('_build/'): shutil.rmtree('_build/')
[ 2, 19617, 28, 40477, 12, 23, 198, 2, 15069, 33448, 3012, 11419, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 3740, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 28373, 2393, 329, 262, 45368, 28413, 10314, 27098, 13, 198, 2, 198, 2, 770, 2393, 857, 691, 3994, 257, 6356, 286, 262, 749, 2219, 3689, 13, 1114, 257, 198, 2, 1336, 1351, 766, 262, 10314, 25, 198, 2, 2638, 1378, 2503, 13, 82, 746, 28413, 12, 15390, 13, 2398, 14, 268, 14, 9866, 14, 11250, 198, 198, 11748, 28686, 198, 11748, 25064, 198, 198, 17597, 13, 6978, 13, 28463, 7, 15, 11, 28686, 13, 6978, 13, 397, 2777, 776, 10786, 492, 6, 4008, 628, 198, 2, 1377, 4935, 1321, 20368, 19351, 12, 198, 198, 16302, 796, 705, 35720, 276, 62, 40085, 1634, 6, 198, 22163, 4766, 796, 705, 1238, 2481, 11, 3012, 11419, 2637, 198, 9800, 796, 705, 464, 4499, 62, 40085, 1634, 7035, 6, 198, 198, 2, 383, 1790, 1395, 13, 56, 2196, 198, 9641, 796, 10148, 198, 2, 383, 1336, 2196, 11, 1390, 17130, 14, 31361, 14, 6015, 15940, 198, 20979, 796, 10148, 198, 198, 2, 1377, 3611, 8398, 20368, 1783, 6329, 198, 198, 2, 1002, 534, 10314, 2476, 257, 10926, 45368, 28413, 2196, 11, 1181, 340, 994, 13, 198, 2, 198, 50032, 62, 82, 746, 28413, 796, 705, 17, 13, 16, 6, 198, 198, 2302, 5736, 796, 685, 198, 220, 220, 220, 705, 82, 746, 28413, 13, 2302, 13, 2306, 375, 420, 3256, 198, 220, 220, 220, 705, 82, 746, 28413, 13, 2302, 13, 2306, 418, 388, 6874, 3256, 198, 220, 220, 220, 705, 82, 746, 28413, 13, 2302, 13, 20193, 746, 28413, 3256, 198, 220, 220, 220, 705, 82, 746, 28413, 13, 2302, 13, 11018, 73, 897, 3256, 198, 220, 220, 220, 705, 82, 746, 28413, 13, 2302, 13, 77, 499, 25637, 3256, 198, 220, 220, 220, 705, 82, 746, 28413, 13, 2302, 13, 1177, 8189, 3256, 198, 220, 220, 220, 705, 6759, 29487, 8019, 13, 82, 746, 28413, 2302, 13, 29487, 62, 12942, 425, 3256, 198, 220, 220, 220, 705, 82, 746, 28413, 62, 2306, 375, 420, 62, 4906, 71, 29503, 3256, 198, 220, 220, 220, 705, 1820, 301, 62, 46803, 3256, 198, 60, 198, 198, 20193, 746, 28413, 62, 76, 5912, 796, 1391, 198, 220, 220, 220, 705, 29412, 10354, 19203, 5450, 1378, 31628, 13, 29412, 13, 2398, 14, 18, 14, 3256, 6045, 828, 198, 220, 220, 220, 705, 77, 32152, 10354, 19203, 5450, 1378, 77, 32152, 13, 2398, 14, 15390, 14, 31284, 14, 3256, 6045, 828, 198, 220, 220, 220, 705, 1416, 541, 88, 10354, 19203, 5450, 1378, 31628, 13, 1416, 541, 88, 13, 2398, 14, 15390, 14, 1416, 541, 88, 14, 35790, 14, 3256, 6045, 828, 198, 92, 198, 198, 18608, 601, 62, 40539, 654, 796, 685, 198, 220, 220, 220, 705, 5420, 13, 66, 3780, 3256, 220, 1303, 4650, 14184, 3474, 33499, 287, 299, 32152, 14, 1416, 541, 88, 2205, 37336, 13, 198, 220, 220, 220, 705, 5420, 13, 5898, 11295, 3256, 220, 1303, 4650, 555, 5420, 14226, 771, 2366, 17815, 287, 299, 32152, 14, 1416, 541, 88, 2205, 37336, 198, 60, 198, 198, 2, 3060, 597, 13532, 326, 3994, 24019, 994, 11, 3585, 284, 428, 8619, 13, 198, 11498, 17041, 62, 6978, 796, 37250, 62, 11498, 17041, 20520, 198, 198, 2, 383, 35488, 7, 274, 8, 286, 2723, 1226, 268, 1047, 13, 198, 10459, 62, 37333, 844, 796, 685, 4458, 81, 301, 3256, 45302, 541, 2047, 65, 3256, 45302, 9132, 20520, 198, 198, 2, 383, 1388, 284, 310, 631, 3188, 13, 198, 12417, 62, 15390, 796, 705, 9630, 6, 198, 198, 2, 383, 3303, 329, 2695, 1960, 519, 877, 515, 416, 45368, 28413, 13, 33973, 284, 10314, 198, 2, 329, 257, 1351, 286, 4855, 8950, 13, 198, 2, 198, 2, 770, 318, 635, 973, 611, 345, 466, 2695, 11059, 2884, 651, 5239, 18388, 82, 13, 198, 2, 19672, 345, 900, 366, 16129, 1, 422, 262, 3141, 1627, 329, 777, 2663, 13, 198, 16129, 796, 6045, 198, 198, 2, 7343, 286, 7572, 11, 3585, 284, 2723, 8619, 11, 326, 2872, 3696, 290, 198, 2, 29196, 284, 8856, 618, 2045, 329, 2723, 3696, 13, 198, 2, 770, 3912, 635, 10975, 27711, 62, 12708, 62, 6978, 290, 27711, 62, 26086, 62, 6978, 13, 198, 1069, 9152, 62, 33279, 82, 796, 685, 198, 220, 220, 220, 1303, 8975, 599, 20079, 87, 9743, 663, 898, 23862, 355, 17311, 0, 198, 220, 220, 220, 705, 62, 11249, 14, 6494, 3256, 198, 220, 220, 220, 705, 62, 11249, 14, 3256, 198, 220, 220, 220, 705, 62, 11249, 14, 73, 929, 88, 353, 62, 41049, 3256, 198, 220, 220, 220, 705, 11295, 12106, 14, 15675, 11682, 13, 9132, 3256, 198, 220, 220, 220, 705, 15675, 11682, 13, 9132, 3256, 198, 220, 220, 220, 1303, 41032, 1317, 2902, 2723, 329, 43935, 26, 21619, 12, 46803, 12188, 422, 262, 20966, 2047, 65, 198, 220, 220, 220, 1303, 2312, 389, 4030, 287, 17510, 2884, 474, 929, 88, 5239, 1377, 27261, 198, 220, 220, 220, 705, 11295, 12106, 15211, 13, 9132, 3256, 198, 60, 198, 198, 2, 383, 1438, 286, 262, 9485, 11726, 357, 1837, 41641, 21292, 8, 3918, 284, 779, 13, 198, 9078, 11726, 62, 7635, 796, 6045, 198, 198, 2306, 418, 388, 6874, 62, 8612, 378, 796, 6407, 198, 198, 2, 1377, 18634, 329, 11532, 5072, 20368, 1783, 12, 198, 198, 2, 383, 7505, 284, 779, 329, 11532, 290, 11532, 10478, 5468, 13, 220, 4091, 262, 10314, 329, 198, 2, 257, 1351, 286, 3170, 259, 13460, 13, 198, 2, 198, 6494, 62, 43810, 796, 705, 82, 746, 28413, 62, 81, 8671, 62, 43810, 6, 198, 198, 2, 26729, 3689, 389, 7505, 12, 11423, 290, 24184, 262, 804, 290, 1254, 286, 257, 7505, 198, 2, 2252, 13, 220, 1114, 257, 1351, 286, 3689, 1695, 329, 1123, 7505, 11, 766, 262, 198, 2, 10314, 13, 198, 6494, 62, 43810, 62, 25811, 796, 1391, 198, 220, 220, 220, 705, 6404, 78, 62, 8807, 10354, 6407, 11, 198, 92, 198, 198, 2, 383, 1438, 286, 281, 2939, 2393, 357, 43762, 284, 428, 8619, 8, 284, 1295, 379, 262, 1353, 198, 2, 286, 262, 40217, 13, 198, 2, 16926, 46, 7, 75, 4164, 89, 8, 751, 29645, 0, 198, 2, 220, 27711, 62, 6404, 78, 796, 705, 62, 12708, 14, 6404, 78, 62, 9031, 8416, 13, 11134, 6, 198, 2, 27711, 62, 69, 615, 4749, 796, 705, 62, 12708, 14, 69, 615, 4749, 13, 11134, 6, 198, 198, 2, 3060, 597, 13532, 326, 3994, 2183, 9037, 3696, 357, 10508, 355, 3918, 15747, 8, 994, 11, 198, 2, 3585, 284, 428, 8619, 13, 1119, 389, 18984, 706, 262, 3170, 259, 9037, 3696, 11, 198, 2, 523, 257, 2393, 3706, 366, 12286, 13, 25471, 1, 481, 49312, 262, 3170, 259, 366, 12286, 13, 25471, 1911, 198, 6494, 62, 12708, 62, 6978, 796, 37250, 62, 12708, 20520, 198, 198, 2, 1377, 18634, 329, 21619, 20368, 26171, 198, 73, 929, 88, 353, 62, 41049, 62, 11295, 12106, 796, 705, 3174, 6, 198, 18558, 1009, 62, 12154, 62, 48277, 796, 10352, 198, 198, 2, 5740, 2070, 2685, 9706, 26827, 26, 26235, 284, 1542, 13, 198, 18558, 1009, 62, 48678, 796, 1802, 198, 198, 2, 7343, 286, 7572, 11, 3585, 284, 2723, 8619, 11, 326, 2872, 20922, 198, 2, 3696, 326, 481, 407, 307, 10945, 13, 198, 18558, 1009, 62, 1069, 758, 538, 265, 759, 82, 796, 37250, 9, 20520, 198, 198, 2, 1377, 27995, 8398, 20368, 1783, 12, 198, 198, 2, 14026, 599, 20079, 87, 12, 2306, 375, 420, 12, 4906, 71, 29503, 284, 7716, 17071, 11507, 37647, 1390, 198, 2, 3858, 11, 772, 611, 262, 10007, 3588, 470, 11777, 12395, 13, 198, 33770, 62, 22897, 62, 17143, 62, 19199, 796, 6407, 198, 198, 2, 2700, 1598, 34165, 790, 17884, 13, 198, 11748, 4423, 346, 198, 361, 28686, 13, 6978, 13, 1069, 1023, 10786, 62, 11249, 14, 6, 2599, 198, 220, 4423, 346, 13, 81, 16762, 631, 10786, 62, 11249, 14, 11537, 198 ]
3.257844
1,466
import tensorflow as tf from tensorflow.contrib.framework import add_arg_scope from tfsnippet.utils import (add_name_and_scope_arg_doc, get_static_shape, get_default_scope_name) from .conv2d_ import conv2d from .utils import validate_conv2d_size_tuple, validate_conv2d_input __all__ = ['shifted_conv2d'] @add_arg_scope @add_name_and_scope_arg_doc def shifted_conv2d(input, out_channels, kernel_size, spatial_shift, strides=(1, 1), channels_last=True, conv_fn=conv2d, name=None, scope=None, **kwargs): """ 2D convolution with shifted input. This method first pads `input` according to the `kernel_size` and `spatial_shift` arguments, then do 2D convolution (using `conv_fn`) with "VALID" padding. Args: input (Tensor): The input tensor, at least 4-d. out_channels (int): The channel numbers of the output. kernel_size (int or (int, int)): Kernel size over spatial dimensions. spatial_shift: The `spatial_shift` should be a tuple with two elements (corresponding to height and width spatial axes), and the elements can only be -1, 0 or 1. If the shift for a specific axis is `-1`, then `kernel_size - 1` zeros will be padded at the end of that axis. If the shift is `0`, then `(kernel_size - 1) // 2` zeros will be padded at the front, and `kernel_size // 2` zeros will be padded at the end that axis. Otherwise if the shift is `1`, then `kernel_size + 1` zeros will be padded at the front of that axis. strides (int or (int, int)): Strides over spatial dimensions. channels_last (bool): Whether or not the channel axis is the last axis in `input`? (i.e., the data format is "NHWC") conv_fn: The 2D convolution function. (default :func:`conv2d`) \\**kwargs: Other named parameters passed to `conv_fn`. Returns: tf.Tensor: The output tensor. """ spatial_shift = tuple(spatial_shift) if len(spatial_shift) != 2 or \ any(s not in (-1, 0, 1) for s in spatial_shift): raise TypeError('`spatial_shift` must be a tuple with two elements, ' 'and the elements can only be -1, 0 or 1.') kernel_size = validate_conv2d_size_tuple('kernel_size', kernel_size) if 'padding' in kwargs: raise ValueError('`padding` argument is not supported.') input, _, _ = validate_conv2d_input(input, channels_last=channels_last) rank = len(get_static_shape(input)) pads = [(0, 0)] * rank is_shifted_conv2d = False spatial_start = -3 if channels_last else -2 for i, (ksize, shift) in enumerate(zip(kernel_size, spatial_shift)): axis = i + spatial_start if shift == 0: pads[axis] = ((ksize - 1) // 2, ksize // 2) elif shift == -1: pads[axis] = (0, ksize - 1) is_shifted_conv2d = True else: assert(shift == 1) pads[axis] = (ksize - 1, 0) is_shifted_conv2d = True # fast routine: no shift, use ordinary conv_fn with padding == 'SAME' if not is_shifted_conv2d: return conv_fn( input=input, out_channels=out_channels, kernel_size=kernel_size, strides=strides, channels_last=channels_last, padding='SAME', scope=scope, name=name, **kwargs ) # slow routine: pad and use conv_fn with padding == 'VALID' with tf.variable_scope(scope, default_name=name or 'shifted_conv2d'): output = tf.pad(input, pads) output = conv_fn( input=output, out_channels=out_channels, kernel_size=kernel_size, strides=strides, channels_last=channels_last, padding='VALID', scope=get_default_scope_name( getattr(conv_fn, '__name__', None) or 'conv_fn'), **kwargs ) return output
[ 11748, 11192, 273, 11125, 355, 48700, 198, 6738, 11192, 273, 11125, 13, 3642, 822, 13, 30604, 1330, 751, 62, 853, 62, 29982, 198, 198, 6738, 256, 9501, 77, 3974, 316, 13, 26791, 1330, 357, 2860, 62, 3672, 62, 392, 62, 29982, 62, 853, 62, 15390, 11, 651, 62, 12708, 62, 43358, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 62, 12286, 62, 29982, 62, 3672, 8, 198, 6738, 764, 42946, 17, 67, 62, 1330, 3063, 17, 67, 198, 6738, 764, 26791, 1330, 26571, 62, 42946, 17, 67, 62, 7857, 62, 83, 29291, 11, 26571, 62, 42946, 17, 67, 62, 15414, 198, 198, 834, 439, 834, 796, 37250, 1477, 21715, 62, 42946, 17, 67, 20520, 628, 198, 31, 2860, 62, 853, 62, 29982, 198, 31, 2860, 62, 3672, 62, 392, 62, 29982, 62, 853, 62, 15390, 198, 4299, 14869, 62, 42946, 17, 67, 7, 15414, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 62, 354, 8961, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21739, 62, 30846, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35002, 16193, 16, 11, 352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9619, 62, 12957, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3063, 62, 22184, 28, 42946, 17, 67, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8354, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 362, 35, 3063, 2122, 351, 14869, 5128, 13, 628, 220, 220, 220, 770, 2446, 717, 21226, 4600, 15414, 63, 1864, 284, 262, 4600, 33885, 62, 7857, 63, 290, 198, 220, 220, 220, 4600, 2777, 34961, 62, 30846, 63, 7159, 11, 788, 466, 362, 35, 3063, 2122, 357, 3500, 4600, 42946, 62, 22184, 63, 8, 198, 220, 220, 220, 351, 366, 23428, 2389, 1, 24511, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 357, 51, 22854, 2599, 383, 5128, 11192, 273, 11, 379, 1551, 604, 12, 67, 13, 198, 220, 220, 220, 220, 220, 220, 220, 503, 62, 354, 8961, 357, 600, 2599, 383, 6518, 3146, 286, 262, 5072, 13, 198, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 7857, 357, 600, 393, 357, 600, 11, 493, 8, 2599, 32169, 2546, 625, 21739, 15225, 13, 198, 220, 220, 220, 220, 220, 220, 220, 21739, 62, 30846, 25, 383, 4600, 2777, 34961, 62, 30846, 63, 815, 307, 257, 46545, 351, 734, 4847, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 10215, 5546, 278, 284, 6001, 290, 9647, 21739, 34197, 828, 290, 262, 4847, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 460, 691, 307, 532, 16, 11, 657, 393, 352, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 6482, 329, 257, 2176, 16488, 318, 4600, 12, 16, 47671, 788, 4600, 33885, 62, 7857, 532, 352, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1976, 27498, 481, 307, 44582, 379, 262, 886, 286, 326, 16488, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 6482, 318, 4600, 15, 47671, 788, 4600, 7, 33885, 62, 7857, 532, 352, 8, 3373, 362, 63, 1976, 27498, 481, 307, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44582, 379, 262, 2166, 11, 290, 4600, 33885, 62, 7857, 3373, 362, 63, 1976, 27498, 481, 307, 44582, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 379, 262, 886, 326, 16488, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15323, 611, 262, 6482, 318, 4600, 16, 47671, 788, 4600, 33885, 62, 7857, 1343, 352, 63, 1976, 27498, 481, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 307, 44582, 379, 262, 2166, 286, 326, 16488, 13, 198, 220, 220, 220, 220, 220, 220, 220, 35002, 357, 600, 393, 357, 600, 11, 493, 8, 2599, 4285, 1460, 625, 21739, 15225, 13, 198, 220, 220, 220, 220, 220, 220, 220, 9619, 62, 12957, 357, 30388, 2599, 10127, 393, 407, 262, 6518, 16488, 318, 262, 938, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16488, 287, 4600, 15414, 63, 30, 357, 72, 13, 68, 1539, 262, 1366, 5794, 318, 366, 33863, 27353, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3063, 62, 22184, 25, 383, 362, 35, 3063, 2122, 2163, 13, 357, 12286, 1058, 20786, 25, 63, 42946, 17, 67, 63, 8, 198, 220, 220, 220, 220, 220, 220, 220, 26867, 1174, 46265, 22046, 25, 3819, 3706, 10007, 3804, 284, 4600, 42946, 62, 22184, 44646, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 48700, 13, 51, 22854, 25, 383, 5072, 11192, 273, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 21739, 62, 30846, 796, 46545, 7, 2777, 34961, 62, 30846, 8, 198, 220, 220, 220, 611, 18896, 7, 2777, 34961, 62, 30846, 8, 14512, 362, 393, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 597, 7, 82, 407, 287, 13841, 16, 11, 657, 11, 352, 8, 329, 264, 287, 21739, 62, 30846, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 10786, 63, 2777, 34961, 62, 30846, 63, 1276, 307, 257, 46545, 351, 734, 4847, 11, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 392, 262, 4847, 460, 691, 307, 532, 16, 11, 657, 393, 352, 2637, 8, 198, 220, 220, 220, 9720, 62, 7857, 796, 26571, 62, 42946, 17, 67, 62, 7857, 62, 83, 29291, 10786, 33885, 62, 7857, 3256, 9720, 62, 7857, 8, 198, 220, 220, 220, 611, 705, 39231, 6, 287, 479, 86, 22046, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 63, 39231, 63, 4578, 318, 407, 4855, 2637, 8, 198, 220, 220, 220, 5128, 11, 4808, 11, 4808, 796, 26571, 62, 42946, 17, 67, 62, 15414, 7, 15414, 11, 9619, 62, 12957, 28, 354, 8961, 62, 12957, 8, 628, 220, 220, 220, 4279, 796, 18896, 7, 1136, 62, 12708, 62, 43358, 7, 15414, 4008, 198, 220, 220, 220, 21226, 796, 47527, 15, 11, 657, 15437, 1635, 4279, 628, 220, 220, 220, 318, 62, 1477, 21715, 62, 42946, 17, 67, 796, 10352, 198, 220, 220, 220, 21739, 62, 9688, 796, 532, 18, 611, 9619, 62, 12957, 2073, 532, 17, 198, 220, 220, 220, 329, 1312, 11, 357, 591, 1096, 11, 6482, 8, 287, 27056, 378, 7, 13344, 7, 33885, 62, 7857, 11, 21739, 62, 30846, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 796, 1312, 1343, 21739, 62, 9688, 198, 220, 220, 220, 220, 220, 220, 220, 611, 6482, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 58, 22704, 60, 796, 14808, 591, 1096, 532, 352, 8, 3373, 362, 11, 479, 7857, 3373, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 6482, 6624, 532, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 58, 22704, 60, 796, 357, 15, 11, 479, 7857, 532, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 1477, 21715, 62, 42946, 17, 67, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 7, 30846, 6624, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 58, 22704, 60, 796, 357, 591, 1096, 532, 352, 11, 657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 1477, 21715, 62, 42946, 17, 67, 796, 6407, 628, 220, 220, 220, 1303, 3049, 8027, 25, 645, 6482, 11, 779, 8850, 3063, 62, 22184, 351, 24511, 6624, 705, 50, 10067, 6, 198, 220, 220, 220, 611, 407, 318, 62, 1477, 21715, 62, 42946, 17, 67, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 3063, 62, 22184, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 28, 15414, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 62, 354, 8961, 28, 448, 62, 354, 8961, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 7857, 28, 33885, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35002, 28, 2536, 1460, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9619, 62, 12957, 28, 354, 8961, 62, 12957, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24511, 11639, 50, 10067, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8354, 28, 29982, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 3105, 8027, 25, 14841, 290, 779, 3063, 62, 22184, 351, 24511, 6624, 705, 23428, 2389, 6, 198, 220, 220, 220, 351, 48700, 13, 45286, 62, 29982, 7, 29982, 11, 4277, 62, 3672, 28, 3672, 393, 705, 1477, 21715, 62, 42946, 17, 67, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 48700, 13, 15636, 7, 15414, 11, 21226, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 3063, 62, 22184, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 28, 22915, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 62, 354, 8961, 28, 448, 62, 354, 8961, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 7857, 28, 33885, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35002, 28, 2536, 1460, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9619, 62, 12957, 28, 354, 8961, 62, 12957, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24511, 11639, 23428, 2389, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8354, 28, 1136, 62, 12286, 62, 29982, 62, 3672, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 35226, 7, 42946, 62, 22184, 11, 705, 834, 3672, 834, 3256, 6045, 8, 393, 705, 42946, 62, 22184, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 5072, 198 ]
2.145611
1,971
# Copyright The IETF Trust 2007-2019, All Rights Reserved # -*- coding: utf-8 -*- from __future__ import absolute_import, print_function, unicode_literals import os from django.contrib.syndication.views import Feed from django.utils.feedgenerator import Atom1Feed from django.conf import settings from django.utils.html import escape from ietf.doc.models import Document
[ 2, 15069, 383, 314, 22274, 9870, 4343, 12, 23344, 11, 1439, 6923, 33876, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 628, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 11, 3601, 62, 8818, 11, 28000, 1098, 62, 17201, 874, 198, 198, 11748, 28686, 198, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 1837, 358, 3299, 13, 33571, 1330, 18272, 198, 6738, 42625, 14208, 13, 26791, 13, 12363, 8612, 1352, 1330, 33102, 16, 18332, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 26791, 13, 6494, 1330, 6654, 198, 198, 6738, 220, 1155, 69, 13, 15390, 13, 27530, 1330, 16854, 198 ]
3.357143
112
""" Zachary Cook Manages calls to the databases. """ import sqlite3 from Controller import ConfigurationManager from Model import Time,User """ Class representing the database. """ class DatabaseManager: """ Creates a database manager. """ """ Initializes the tables if they aren't defined. """ """ Marks open sessions with a finish time of -1. This should only happen if there was power-lose during the operation of the system. """ """ Returns the type of user. """ """ Sets the access type of a user. """ """ Logs the session starting. """ """ Logs the session ending. """ staticDatabaseManager = None """ Returns the static database instance. """ """ Returns the User for the given id (non-hash). If there is no registered User, None is returned. """ """ Sets the access type of a user. """ """ Registers a session being started. """ """ Registers a session ended. """
[ 37811, 198, 57, 620, 560, 8261, 198, 198, 5124, 1095, 3848, 284, 262, 20083, 13, 198, 37811, 198, 198, 11748, 44161, 578, 18, 198, 6738, 22741, 1330, 28373, 13511, 198, 6738, 9104, 1330, 3862, 11, 12982, 628, 198, 198, 37811, 198, 9487, 10200, 262, 6831, 13, 198, 37811, 198, 4871, 24047, 13511, 25, 198, 197, 37811, 198, 197, 16719, 274, 257, 6831, 4706, 13, 198, 197, 37811, 628, 197, 37811, 198, 197, 24243, 4340, 262, 8893, 611, 484, 3588, 470, 5447, 13, 198, 197, 37811, 628, 197, 37811, 198, 197, 44, 5558, 1280, 10991, 351, 257, 5461, 640, 286, 532, 16, 13, 770, 198, 197, 21754, 691, 1645, 611, 612, 373, 1176, 12, 75, 577, 1141, 262, 4905, 198, 197, 1659, 262, 1080, 13, 198, 197, 37811, 628, 197, 37811, 198, 197, 35561, 262, 2099, 286, 2836, 13, 198, 197, 37811, 628, 197, 37811, 198, 197, 50, 1039, 262, 1895, 2099, 286, 257, 2836, 13, 198, 197, 37811, 628, 197, 37811, 198, 197, 11187, 82, 262, 6246, 3599, 13, 198, 197, 37811, 628, 197, 37811, 198, 197, 11187, 82, 262, 6246, 7464, 13, 198, 197, 37811, 628, 198, 198, 12708, 38105, 13511, 796, 6045, 198, 198, 37811, 198, 35561, 262, 9037, 6831, 4554, 13, 198, 37811, 628, 198, 37811, 198, 35561, 262, 11787, 329, 262, 1813, 4686, 357, 13159, 12, 17831, 737, 1002, 198, 8117, 318, 645, 6823, 11787, 11, 6045, 318, 4504, 13, 198, 37811, 198, 198, 37811, 198, 50, 1039, 262, 1895, 2099, 286, 257, 2836, 13, 198, 37811, 198, 198, 37811, 198, 8081, 6223, 257, 6246, 852, 2067, 13, 198, 37811, 198, 198, 37811, 198, 8081, 6223, 257, 6246, 4444, 13, 198, 37811 ]
3.311594
276