id
stringlengths
24
28
content
stringlengths
121
2.08k
codereview_python_data_6013
if status is 1: self.api.get_inventory() response_dict = self.api.call() - if self.config.smart_catch: id_cp_tuples = self.get_id_cp_tuples_for_pokemonid(pokemon['pokemon_data']['pokemon_id'],response_dict) prev_id, prev_cp = (0,0) for id_cp in id_cp_tuples: I remember there's another function to get_inventory(), right? if status is 1: self.api.get_inventory() response_dict = self.api.call() + if self.config.cp == "smart": id_cp_tuples = self.get_id_cp_tuples_for_pokemonid(pokemon['pokemon_data']['pokemon_id'],response_dict) prev_id, prev_cp = (0,0) for id_cp in id_cp_tuples:
codereview_python_data_6017
""" minimum_size = self.minimumTabSizeHint(index) height = config.get('tabs', 'tabbar-size') if self.vertical: confwidth = str(config.get('tabs', 'width')) if confwidth.endswith('%'): I think the setting should still have a value like `auto` by default, which then here still uses the font height - otherwise it'll be confusing for people when they change the font size and the font is just cut off (or worse - they already have a bigger font size, and suddenly the bar is smaller). If you need help with figuring out how to add a new config type for that (i.e. `auto` or an integer >= 8), please let me know and I'll help! """ minimum_size = self.minimumTabSizeHint(index) height = config.get('tabs', 'tabbar-size') + if height == -1: + height = self.fontMetrics().height() if self.vertical: confwidth = str(config.get('tabs', 'width')) if confwidth.endswith('%'):
codereview_python_data_6024
# Except we do want to notify on a multipart upload completion, which does use a query. elif method == 'POST' and query.startswith('uploadId'): return True - else: - return False # instantiate listener nitpick: `else` technically not needed # Except we do want to notify on a multipart upload completion, which does use a query. elif method == 'POST' and query.startswith('uploadId'): return True # instantiate listener
codereview_python_data_6027
config = copy.deepcopy(self.engine.config) - for key in ("cli", "cli-aliases"): - if key in config: - del config[key] - provisioning = config.get(Provisioning.PROV) self._filter_unused_modules(config, provisioning) why not use existing blacklist config? config = copy.deepcopy(self.engine.config) provisioning = config.get(Provisioning.PROV) self._filter_unused_modules(config, provisioning)
codereview_python_data_6028
ann_id = self.coco.get_ann_ids(img_ids=[i]) ann_ids.extend(ann_id) assert len(set(ann_ids)) == len( - ann_ids), "Annotation ids in '{}' are not unique!".format(ann_file) return data_infos def get_ann_info(self, idx): use f string instead ann_id = self.coco.get_ann_ids(img_ids=[i]) ann_ids.extend(ann_id) assert len(set(ann_ids)) == len( + ann_ids), f"Annotation ids in '{ann_file}' are not unique!" return data_infos def get_ann_info(self, idx):
codereview_python_data_6029
self.assertTrue(os.path.exists(path)) JMeterExecutor.JMETER_DOWNLOAD_LINK = jmeter_link JMeterExecutor.PLUGINS_DOWNLOAD_TPL = plugins_link JMeterExecutor.JMETER_VER = jmeter_ver This was intentional, to check that it does not install it again. And to cover other branches of the code. self.assertTrue(os.path.exists(path)) + obj = JMeterExecutor() + obj.engine = EngineEmul() + obj.settings.merge({"path": path}) + + obj.execution = BetterDict() + obj.execution.merge({"scenario": {"requests": ["http://localhost"]}}) + + obj.prepare() + JMeterExecutor.JMETER_DOWNLOAD_LINK = jmeter_link JMeterExecutor.PLUGINS_DOWNLOAD_TPL = plugins_link JMeterExecutor.JMETER_VER = jmeter_ver
codereview_python_data_6031
num_valid_anchors = anchors.shape[0] bbox_targets = torch.zeros_like(anchors) bbox_weights = torch.zeros_like(anchors) - labels = anchors.new_zeros( - num_valid_anchors, dtype=torch.long) + background_label label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float) pos_inds = sampling_result.pos_inds We could change it to `labels = anchors.new_empty(num_valid_anchors, dtype=torch.long).fill_(background_label)`. num_valid_anchors = anchors.shape[0] bbox_targets = torch.zeros_like(anchors) bbox_weights = torch.zeros_like(anchors) + labels = anchors.new_empty( + num_valid_anchors, dtype=torch.long).fill_(background_label) label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float) pos_inds = sampling_result.pos_inds
codereview_python_data_6032
BACKBONES = Registry('backbone') NECKS = Registry('neck') -UPPER_NECKS = Registry('upper_neck') ROI_EXTRACTORS = Registry('roi_extractor') HEADS = Registry('head') DETECTORS = Registry('detector') All `upper_neck` can be renamed to `shared_head`, which may be more clear. BACKBONES = Registry('backbone') NECKS = Registry('neck') +SHARED_HEADS = Registry('shared_head') ROI_EXTRACTORS = Registry('roi_extractor') HEADS = Registry('head') DETECTORS = Registry('detector')
codereview_python_data_6034
schema_seq = int(tar.extractfile(member).read().strip()) if schema_seq != LISTENS_DUMP_SCHEMA_VERSION: raise SchemaMismatchException('Incorrect schema version! Expected: %d, got: %d.' - 'Please, get the latest version of the dump.' % (LISTENS_DUMP_SCHEMA_VERSION, schema_seq)) elif file_name.endswith('.listens'): A better message might be: "Please ensure that the data dump version matches the code version in order to import the data" schema_seq = int(tar.extractfile(member).read().strip()) if schema_seq != LISTENS_DUMP_SCHEMA_VERSION: raise SchemaMismatchException('Incorrect schema version! Expected: %d, got: %d.' + 'Please ensure that the data dump version matches the code version' + 'in order to import the data.' % (LISTENS_DUMP_SCHEMA_VERSION, schema_seq)) elif file_name.endswith('.listens'):
codereview_python_data_6040
except StopIteration: raise ValueError("Problem in misc lines before sequence") - -if __name__ == "__main__": - from Bio._utils import run_doctest - run_doctest(verbose=0) Are there any doctests in this file? If not, there is no reason to having these three lines of code. except StopIteration: raise ValueError("Problem in misc lines before sequence") +
codereview_python_data_6042
def search(text, output_format="tab", sort="score", oragnism="", columns=(), isoform=False, compress=False, offset=0, limit=0): """Perform a query over the UniProt API. - More at: https://www.uniprot.org/help/api_queries """ cgi = "https://www.uniprot.org/uniprot/?" We should probably provide a little more help here, specifically that columns should be a list/tuple of strings, and perhaps that isoform and compress are treated as booleans, with offset and limit expected to be integers. def search(text, output_format="tab", sort="score", oragnism="", columns=(), isoform=False, compress=False, offset=0, limit=0): """Perform a query over the UniProt API. + + output_format: options: + html, tab, xls, fasta, gff, txt, xml, rdf, list, rss + columns: list/tuple of strings from the following options: + citation, clusters, comments, domains, domain, ec, id, entry name, + existence, families, features, genes, go, go-id, interactor,7 + keywords, last-modified, length, organism, organism-id, pathway, + protein names, reviewed, sequence, 3d, version, virus hosts More at: https://www.uniprot.org/help/api_queries """ cgi = "https://www.uniprot.org/uniprot/?"
codereview_python_data_6045
build_revision = fuzzer_utils.get_build_revision() job = environment.get_value('JOB_NAME') # fuzzer name is filled by fuzz_task. - testcase_run = fuzzer_stats.TestcaseRun('', job, build_revision, current_timestamp()) testcase_run['command'] = fuzzer_command Can we use None instead of '' build_revision = fuzzer_utils.get_build_revision() job = environment.get_value('JOB_NAME') # fuzzer name is filled by fuzz_task. + testcase_run = fuzzer_stats.TestcaseRun(None, job, build_revision, current_timestamp()) testcase_run['command'] = fuzzer_command
codereview_python_data_6047
async def upload(self, request): try: reader = await request.multipart() - exfil_dir = await self.create_unique_exfil_sub_directory() while True: field = await reader.next() if not field: good idea. changes: - make this a private function (_) - put this function under a docstring called """ PRIVATE """ (look at the bottom of the operation_svc.py for an example of where the private functions are stored) async def upload(self, request): try: reader = await request.multipart() + exfil_dir = await self._create_unique_exfil_sub_directory() while True: field = await reader.next() if not field:
codereview_python_data_6050
Returns: dict[str, Tensor]: A dictionary of loss components. """ - # NOTE the batched image size information may be useful, e.g. - # in DETR, this is needed for the construction of masks, which is - # then used for the transformer_head. - input_img_shape = tuple(img.size()[-2:]) - for img_meta in img_metas: - img_meta['input_img_shape'] = input_img_shape - x = self.extract_feat(img) losses = self.bbox_head.forward_train(x, img_metas, gt_bboxes, gt_labels, gt_bboxes_ignore) Are these modification duplicate? Or should we move it into base detector. Returns: dict[str, Tensor]: A dictionary of loss components. """ + super(SingleStageDetector, self).forward_train(img, img_metas) x = self.extract_feat(img) losses = self.bbox_head.forward_train(x, img_metas, gt_bboxes, gt_labels, gt_bboxes_ignore)
codereview_python_data_6052
self._lines = None def get_stock_info(self, product, options): - "Hook for implementing strategies that depend on product options" return self.strategy.fetch_for_product(product) def add_product(self, product, quantity=1, options=None): Let's properly decorate docstring with three double quotes. self._lines = None def get_stock_info(self, product, options): + """ + Hook for implementing strategies that depend on product options + """ + # The built-in strategies don't use options, so initially disregard + # them. return self.strategy.fetch_for_product(product) def add_product(self, product, quantity=1, options=None):
codereview_python_data_6057
super().__init__(database_manager) self.write_req_validator = write_req_validator - def additional_dynamic_validation(self, request: Request, req_pp_time: Optional[int]): - pass - def authorize(self, request): self.write_req_validator.validate(request, [AuthActionEdit(txn_type=LEDGERS_FREEZE, Maybe call super implementation, or even better omit this override? super().__init__(database_manager) self.write_req_validator = write_req_validator def authorize(self, request): self.write_req_validator.validate(request, [AuthActionEdit(txn_type=LEDGERS_FREEZE,
codereview_python_data_6058
bool: Whether this action is a subset of the other action. """ return (self.action == other.action and - (other.applies_to_all or - self.any_value or - other.any_value or not other.expanded_rules or all([ self.ports_are_subset( I recommend keeping the order the same, so you always check self.any_value then other.any_value then (self|other).applies_to_all, then the expanded rules checks. bool: Whether this action is a subset of the other action. """ return (self.action == other.action and + (self.any_value or + other.any_value or + other.applies_to_all or not other.expanded_rules or all([ self.ports_are_subset(
codereview_python_data_6059
else: self[self.SUCCESSES] += 1 - self[self.RESP_TIMES][r_time] += 1 - self[self.RESP_TIMES_HDR].record_value(int(round(r_time, 3) * 1000)) if byte_count is not None: self[self.BYTE_COUNT] += byte_count multiply before rounding? else: self[self.SUCCESSES] += 1 + self[self.RESP_TIMES_HDR].record_value(int(round(r_time * 1000, 3))) if byte_count is not None: self[self.BYTE_COUNT] += byte_count
codereview_python_data_6061
): try: val = configuration.find(attrname) - vals = [mapper(el) for el in val.text.strip().split('\n')] except: pass else: Wow that fixed it? What was wrong with splitting on any white space? I thought the problem was not doing `.split()[1:]` ): try: val = configuration.find(attrname) + vals = [mapper(el) for el in val.text.strip().split()] except: pass else:
codereview_python_data_6062
# Internal Cell @Normalize def setups(self, to:Tabular): - store_attr(means=dict(getattr(to, 'train', to).conts.mean()), - stds=dict(getattr(to, 'train', to).conts.std(ddof=0)+1e-7), - but='to') return self(to) @Normalize Move the `but=`s to the first line of the function - no need to use xtra vertical space for that little thing! :) # Internal Cell @Normalize def setups(self, to:Tabular): + store_attr(but='to', means=dict(getattr(to, 'train', to).conts.mean()), + stds=dict(getattr(to, 'train', to).conts.std(ddof=0)+1e-7)) return self(to) @Normalize
codereview_python_data_6071
recipient, recipient=recipient, verb="", description=description ) - self.stdout.write( - "Suggestion notifications sent to {count} users.".format(count=len(data)) - ) Nitpick/question: what do you think about using f-strings? recipient, recipient=recipient, verb="", description=description ) + self.stdout.write(f"Suggestion notifications sent to {len(data)} users.")
codereview_python_data_6072
''' src_data, tgt_data = self.src[mode], self.tgt[mode] n = len(src_data) - # make sure all devices have the same number of batches n = n // ndev * ndev # XXX: is partition then shuffle equivalent to shuffle then partition? I don't think so, but in order to make sure all training data are accessible during training, it seems we should divide first then shuffle. ''' src_data, tgt_data = self.src[mode], self.tgt[mode] n = len(src_data) + # make sure all devices have the same number of batch n = n // ndev * ndev # XXX: is partition then shuffle equivalent to shuffle then partition?
codereview_python_data_6077
return comment + GENERIC_INCORRECT_COMMENT.format(label=wrong_label) + suffix -def _label_display_name(issue): - """Return label display for a issue (based on its issue tracker type).""" - issue_tracker_name = issue.issue_tracker.name - if issue_tracker_name == 'monorail': - return 'label' - elif issue_tracker_name == 'buganizer': - return 'hotlist ID' - - raise Exception('Unknown issue tracker.') - - def job_platform_to_real_platform(job_platform): """Get real platform from job platform.""" for platform in data_types.PLATFORMS: We shouldn't hardcode the issue tracker names here, as the cleanup code should have no knowledge of which issue tracker implementations are provided. a better alternative would be to have a ```python @property def label_type(self): return 'label' # default ``` in the IssueTracker. return comment + GENERIC_INCORRECT_COMMENT.format(label=wrong_label) + suffix def job_platform_to_real_platform(job_platform): """Get real platform from job platform.""" for platform in data_types.PLATFORMS:
codereview_python_data_6078
eval_hook(val_dataloader, **eval_cfg), priority='LOW') resume_from = None - if cfg.resume_from is None and cfg.auto_resume: resume_from = find_latest_checkpoint(cfg.work_dir) if resume_from is not None: cfg.resume_from = resume_from ```python resume_from=None if cfg.resume_from is not None and cfg.get('auto_resume',False): warnings.warn(..) resume_from=cfg.resume_from elif cfg.resume_from is not None: resume_from=cfg.resume_from elif cfg.get('auto_resume',False) is True: resume_from=find_latest_checkpoint() if resume_from: ... ``` ... eval_hook(val_dataloader, **eval_cfg), priority='LOW') resume_from = None + if cfg.resume_from is None and cfg.get('auto_resume'): resume_from = find_latest_checkpoint(cfg.work_dir) if resume_from is not None: cfg.resume_from = resume_from
codereview_python_data_6084
self.universes = [self.universe1, self.universe2, self.universe_rev] self.psa = MDAnalysis.analysis.psa.PSAnalysis(self.universes, \ path_select='name CA', \ - targetdir=tempdir.TempDir()) self.psa.generate_paths(align=True) self.psa.paths[-1] = self.psa.paths[-1][::-1,:,:] # reverse third path self._run() `TempDir()` is a context manager and I think if you use it like `TempDir().name` (which would give you the directory name) then the directory will be created and immediately destroyed. Either wrap the whole thing in ``` python with tempdir.in_tempdir(): ``` or use `tempfile.mkdtemp()` explicitly together with explicit clean up in `tearDown()`. self.universes = [self.universe1, self.universe2, self.universe_rev] self.psa = MDAnalysis.analysis.psa.PSAnalysis(self.universes, \ path_select='name CA', \ + targetdir=self.outdir) self.psa.generate_paths(align=True) self.psa.paths[-1] = self.psa.paths[-1][::-1,:,:] # reverse third path self._run()
codereview_python_data_6088
_define_word.return_value, ] assert _define_words_in_sentence(fakes.course1, "{foo bar} {baz quux}", True) == [ _define_word.return_value, _define_word.return_value, please introduce a new test case for this one _define_word.return_value, ] + @patch("librelingo_json_export.dictionary._define_word") + def test_defines_every_word_that_has_space(self, _define_word): + _define_word.return_value = fakes.fake_value() assert _define_words_in_sentence(fakes.course1, "{foo bar} {baz quux}", True) == [ _define_word.return_value, _define_word.return_value,
codereview_python_data_6092
"""Handler that schedules ML train jobs.""" from base import tasks -from base import utils from datastore import data_types from datastore import fuzz_target_utils from handlers import base_handler Should we rename gradientfuzz to something like gradient_generator or something similar to rnn_generator ? Same for train_gradientfuzz files ? """Handler that schedules ML train jobs.""" from base import tasks from datastore import data_types from datastore import fuzz_target_utils from handlers import base_handler
codereview_python_data_6114
self.client.timeout = dehumanize_time(self.settings.get("timeout", self.client.timeout)) self.send_interval = dehumanize_time(self.settings.get("send-interval", self.send_interval)) self.send_monitoring = self.settings.get("send-monitoring", self.send_monitoring) - self.monitoring_buffer_limit = self.settings.get("monitoring-buffer-limit", - self.DEFAULT_MONITORING_BUFFER_LIMIT) self.browser_open = self.settings.get("browser-open", self.browser_open) token = self.settings.get("token", "") if not token: Usual style is to put original field value as default, especially when you set it to constant already self.client.timeout = dehumanize_time(self.settings.get("timeout", self.client.timeout)) self.send_interval = dehumanize_time(self.settings.get("send-interval", self.send_interval)) self.send_monitoring = self.settings.get("send-monitoring", self.send_monitoring) + self.monitoring_buffer_limit = self.settings.get("monitoring-buffer-limit", self.monitoring_buffer_limit) self.browser_open = self.settings.get("browser-open", self.browser_open) token = self.settings.get("token", "") if not token:
codereview_python_data_6120
-h, --help Show this message and exit. Commands: - codemod `hypothesis codemod` refactors deprecated or inefficent code. fuzz [hypofuzz] runs tests with an adaptive coverage-guided fuzzer. write `hypothesis write` writes property-based tests for you! ```suggestion codemod `hypothesis codemod` refactors deprecated or inefficient code. ``` -h, --help Show this message and exit. Commands: + codemod `hypothesis codemod` refactors deprecated or inefficient code. fuzz [hypofuzz] runs tests with an adaptive coverage-guided fuzzer. write `hypothesis write` writes property-based tests for you!
codereview_python_data_6126
:returns tuple (number_of_files_copied, total_size_copied_in_bytes) """ - (dst_bucket, dst_key) = self._path_to_bucket_and_key(destination_path) - # don't allow threads to be less than 3 threads = 3 if threads < 3 else threads from boto3.s3.transfer import TransferConfig If we're going to move the split of `source_path` into src_bucket/src_key here, why not also do the same with `destination_path`? That way, the only two required args for `_copy_*()` are `source_path` and `destination_path`. That also mirrors the requirements of `copy()` :returns tuple (number_of_files_copied, total_size_copied_in_bytes) """ # don't allow threads to be less than 3 threads = 3 if threads < 3 else threads from boto3.s3.transfer import TransferConfig
codereview_python_data_6135
.. deprecated:: 1.0.0 - :func: `notwithin_coordinates_factory` is no longer supported and will be removed in 2.0.0. as part - of the removal of the :func:`density_from_PDB` function. """ # Benchmark of FABP system (solvent 3400 OH2, protein 2100 atoms) on G4 powerbook, 500 frames # cpu/s relative speedup use_kdtree Two things here: - As far as I'm aware, there shouldn't be a space between :func: and `notwithin_coordinates_factory`. - The sentence seems to exceed the PEP8 80 character limit. .. deprecated:: 1.0.0 + :func:`notwithin_coordinates_factory` is no longer supported and will be + removed in 2.0.0. """ # Benchmark of FABP system (solvent 3400 OH2, protein 2100 atoms) on G4 powerbook, 500 frames # cpu/s relative speedup use_kdtree
codereview_python_data_6145
B : Numpy matrix The modularity matrix of G. - Notes - ----- - For MultiGraph/MultiDiGraph, the edges weights are summed. - See Also -------- to_numpy_matrix Given the `@not_implemented_for` decorators, what does this note mean. Similarly with `modularity_spectrum`? B : Numpy matrix The modularity matrix of G. See Also -------- to_numpy_matrix
codereview_python_data_6147
# to the lock file and fail because the file is already locked by the previous process. # The -n flag in flock will fail the process right away when the process is not able to acquire the lock so we won't # queue up the jobs. -(echo "{run_frequency} /usr/bin/flock -n /tmp/forseti_cron_runner.lock $FORSETI_HOME/setup/gcp/scripts/run_forseti.sh") | crontab -u $USER - echo "Added the run_forseti.sh to crontab under user $USER" echo "Execution of startup script finished" Does this resolve the scenario when the user-triggered forseti process is running, and it would be killed by the cron job restarting the server? # to the lock file and fail because the file is already locked by the previous process. # The -n flag in flock will fail the process right away when the process is not able to acquire the lock so we won't # queue up the jobs. +# If the cron job failed the acquire lock on the process, it will log a warning message to syslog. +(echo "{run_frequency} /usr/bin/flock -n /tmp/forseti_cron_runner.lock $FORSETI_HOME/setup/gcp/scripts/run_forseti.sh || + echo "Warning: previous cron job 'run_forseti.sh' is still running and the new cron job is attempting to run, + exiting..." 2>&1 | logger) | crontab -u $USER - echo "Added the run_forseti.sh to crontab under user $USER" echo "Execution of startup script finished"
codereview_python_data_6150
display_name = self._GetRowValue(query_hash, row, 'given_displayname') fullname = self._GetRowValue(query_hash, row, 'fullname') username = '{0!s} <{1!s}>'.format(fullname, display_name) event_data = SkypeAccountEventData() why the change, what other type can fullname, display_name be? display_name = self._GetRowValue(query_hash, row, 'given_displayname') fullname = self._GetRowValue(query_hash, row, 'fullname') + + # TODO: Move this to the formatter, and ensure username is rendered + # properly when fullname and/or display_name is None. username = '{0!s} <{1!s}>'.format(fullname, display_name) event_data = SkypeAccountEventData()
codereview_python_data_6155
@pytest.mark.parametrize('smi,chirality', [ - ('C[C@@H](C(=O)O)N', 'R'), - ('C[C@H](C(=O)O)N', 'S'), ]) def test_chirality(smi, chirality): Chem = pytest.importorskip('rdkit.Chem', reason='requires rdkit') Isn't this a bit redundant? Or you want a specific test for the dtype? @pytest.mark.parametrize('smi,chirality', [ + ('C[C@@H](C(=O)O)N', 'S'), + ('C[C@H](C(=O)O)N', 'R'), ]) def test_chirality(smi, chirality): Chem = pytest.importorskip('rdkit.Chem', reason='requires rdkit')
codereview_python_data_6157
self.shared_roi_extractor = False else: self.shared_roi_extractor = True self.mask_head = builder.build_head(mask_head) self.train_cfg = train_cfg `self.mask_roi_extractor = self.bbox_roi_extractor` can be added here, which will make the inference more simple. self.shared_roi_extractor = False else: self.shared_roi_extractor = True + self.mask_roi_extractor = self.bbox_roi_extractor self.mask_head = builder.build_head(mask_head) self.train_cfg = train_cfg
codereview_python_data_6158
Args: message (str): error message """ - LOGGER.error(message) super(Error, self).__init__(message) It would be better for the raiser or the catcher to log the error, rather than log it here where you can't tell where the exception is coming from. Args: message (str): error message """ super(Error, self).__init__(message)
codereview_python_data_6161
""" itemcount = 1 for item in self._data: - itemcount += self.count_for(item) return itemcount def get_space_left(self): if `self._data[item_id].get('count', False)` fails and return `False`, then this line raises an error. It should only add if `self.count_for(item)` is an instance of int. """ itemcount = 1 for item in self._data: + current_item_count = self.count_for(item) + if current_item_count: + itemcount += current_item_count return itemcount def get_space_left(self):
codereview_python_data_6167
) def _write_flows(self, path, flows): - f = open(path, "wb") - fw = io.FlowWriter(f) - for i in flows: - fw.add(i) - f.close() def save_one_flow(self, path, flow): return self._write_flows(path, [flow]) We should use `with open(...) as f:` more. ) def _write_flows(self, path, flows): + with open(path, "wb") as f: + fw = io.FlowWriter(f) + for i in flows: + fw.add(i) def save_one_flow(self, path, flow): return self._write_flows(path, [flow])
codereview_python_data_6174
if residual: if indim != hiddendim: self.residual_fc = nn.Linear(indim, hiddendim, bias=False) - nn.init.xavier_normal_(self.residual_fc.weight.data, gain=1.414) def forward(self, nodes): ret = nodes.data['accum'] Would it better to change to `gain=nn.init.calculate_gain('relu'))`? which is equivalent to `gain=1.414` if residual: if indim != hiddendim: self.residual_fc = nn.Linear(indim, hiddendim, bias=False) + nn.init.xavier_normal_(self.residual_fc.weight.data, gain=nn.init.calculate_gain('relu')) def forward(self, nodes): ret = nodes.data['accum']
codereview_python_data_6177
flipped[..., 1::4] = h - bboxes[..., 3::4] flipped[..., 3::4] = h - bboxes[..., 1::4] else: - raise ValueError(f'Invalid flipping direction "{direction}"') return flipped def __call__(self, results): Use single quote to wrap the str. flipped[..., 1::4] = h - bboxes[..., 3::4] flipped[..., 3::4] = h - bboxes[..., 1::4] else: + raise ValueError(f"Invalid flipping direction '{direction}'") return flipped def __call__(self, results):
codereview_python_data_6187
selection = trans_u.residues[0].atoms center_pos = selection.center_of_mass() matrix = rotation_matrix(np.deg2rad(angle), vector, center_pos) - rotation = matrix[:3, :3] - translation = matrix[:3, 3] - ref.positions = np.dot(ref.positions, rotation) + translation - transformed = rotateby(angle, vector, ag=selection, center='mass')(trans) assert_array_almost_equal(transformed.positions, ref.positions, decimal=6) def test_rotateby_atomgroup_cog_pbc(rotate_universes): Can you use `ag.transform(matrix)` for the test. It's an atom group method that accepts the 4x4 matrix for translation and rotation. selection = trans_u.residues[0].atoms center_pos = selection.center_of_mass() matrix = rotation_matrix(np.deg2rad(angle), vector, center_pos) + ref_u.atoms.transform(matrix) + transformed = rotateby(angle, vector, ag=selection, center_of='mass')(trans) assert_array_almost_equal(transformed.positions, ref.positions, decimal=6) def test_rotateby_atomgroup_cog_pbc(rotate_universes):
codereview_python_data_6189
yield "this is a generator" # pragma: no cover def send_response(self, response): - if response.content == None: - raise HttpException("Cannot assemble flow with None content") self.send_response_headers(response) self.send_response_body(response, [response.content]) ...Cannot assemble flow with **missing content** yield "this is a generator" # pragma: no cover def send_response(self, response): + if response.content is None: + raise HttpException("Cannot assemble flow with missing content") self.send_response_headers(response) self.send_response_body(response, [response.content])
codereview_python_data_6194
def check_import(self, lib_path): import tensorflow as tf - import nvidia.dali as dali # DALI symbols need to be loaded print("Importing the TF library to check for errors") try: tf.load_op_library(lib_path) So we cannot install DALI and plugin in one go as DALI needs to be fully available here, right? def check_import(self, lib_path): import tensorflow as tf + assert can_import_dali() # DALI symbols need to be loaded print("Importing the TF library to check for errors") try: tf.load_op_library(lib_path)
codereview_python_data_6197
keep_partitioning=True, lengths=None, enumerate_partitions=True, - max_retries=0, ) # pending completion This is a separate change. Please limit this PR to only adding _ability_ to pass extra keywords, and use them separately (you could use that in the `to_csv`-hang-fixing PR after this one is merged). keep_partitioning=True, lengths=None, enumerate_partitions=True, ) # pending completion
codereview_python_data_6209
return x * out -class DYReLU(BaseModule): - """Dynamic ReLU (DY-ReLU) module. See `Dynamic ReLU <https://arxiv.org/abs/2003.10027>`_ for details. Current implementation is specialized for task-aware attention in DyHead. Shall we keep using DyReLU? It is consistent with DyHead and DyDCNv2 return x * out +class DyReLU(BaseModule): + """Dynamic ReLU (DyReLU) module. See `Dynamic ReLU <https://arxiv.org/abs/2003.10027>`_ for details. Current implementation is specialized for task-aware attention in DyHead.
codereview_python_data_6210
"""Schedule computing new batch from source callback by the parallel pool.""" dst_chunk_i = (self.flat_iter_idx + lead) % pool.contexts[context_i].queue_depth if self.batch: - pool.schedule_batch(context_i, dst_chunk_i, TaskArgs.make_batch( self.callback_args(None, epoch_idx, lead=lead))) else: sample_range_start = self.current_sample + batch_size * lead sample_range_end = sample_range_start + batch_size iteration = self.current_iter + lead - work_batch = TaskArgs.make_sample( sample_range_start, sample_range_end, iteration, epoch_idx) pool.schedule_batch(context_i, dst_chunk_i, work_batch) I feel like isn't really the best place to calculate the dst_chunk_id, which is kinda internal to implementation of the pool - imo it should be hidden, with just the batch and epoch id being enough to indicate which one we request and which one we get. """Schedule computing new batch from source callback by the parallel pool.""" dst_chunk_i = (self.flat_iter_idx + lead) % pool.contexts[context_i].queue_depth if self.batch: + pool.schedule_batch(context_i, dst_chunk_i, _TaskArgs.make_batch( self.callback_args(None, epoch_idx, lead=lead))) else: sample_range_start = self.current_sample + batch_size * lead sample_range_end = sample_range_start + batch_size iteration = self.current_iter + lead + work_batch = _TaskArgs.make_sample( sample_range_start, sample_range_end, iteration, epoch_idx) pool.schedule_batch(context_i, dst_chunk_i, work_batch)
codereview_python_data_6213
_bboxes = bbox_mapping(det_bboxes[:, :4], img_shape, scale_factor, flip) mask_rois = bbox2roi([_bboxes]) - mask_roi_extractor = self.mask_roi_extractor[-1] - mask_feats = mask_roi_extractor( x[:len(mask_roi_extractor.featmap_strides)], mask_rois) for i in range(self.num_stages): mask_roi_extractor = self.mask_roi_extractor[i] Thanks for your work. This two statements seems redundant. _bboxes = bbox_mapping(det_bboxes[:, :4], img_shape, scale_factor, flip) mask_rois = bbox2roi([_bboxes]) + mask_feats = self.mask_roi_extractor[-1]( x[:len(mask_roi_extractor.featmap_strides)], mask_rois) for i in range(self.num_stages): mask_roi_extractor = self.mask_roi_extractor[i]
codereview_python_data_6220
mode=self.upsample_method, align_corners=align_corners) upsampler_cfg_['type'] = self.upsample_method - _, self.upsample = build_upsampler_layer(upsampler_cfg_) out_channels = 1 if self.class_agnostic else self.num_classes logits_in_channel = ( Also add `**self.upsample_cfg` for other options. mode=self.upsample_method, align_corners=align_corners) upsampler_cfg_['type'] = self.upsample_method + _, self.upsample = build_upsample_layer(upsampler_cfg_) out_channels = 1 if self.class_agnostic else self.num_classes logits_in_channel = (
codereview_python_data_6228
'FUCHSIA_DIR', os.path.join(self.build_dir, self.FUCHSIA_DIR_REL_PATH)) environment.set_value('FUCHSIA_RESOURCES_DIR', self.build_dir) - # Does not support partial unpack. - assert environment.get_value('UNPACK_ALL_FUZZ_TARGETS_AND_FILES') result = super(FuchsiaBuild, self).setup() if not result: return result Can we add a message after "," 'FUCHSIA_DIR', os.path.join(self.build_dir, self.FUCHSIA_DIR_REL_PATH)) environment.set_value('FUCHSIA_RESOURCES_DIR', self.build_dir) + assert environment.get_value('UNPACK_ALL_FUZZ_TARGETS_AND_FILES'), \ + 'Fuchsia does not support partial unpacks' result = super(FuchsiaBuild, self).setup() if not result: return result
codereview_python_data_6241
np.testing.assert_allclose(output, expected_output) def test_all_ones(): image = tf.ones([10, 10, 1], tf.uint8) output = dist_ops.euclidean_dist_transform(image) Do you think that we could test the new algo against `scipy.ndimage.distance_transform_edt`? np.testing.assert_allclose(output, expected_output) +@pytest.mark.with_device(["cpu", "gpu"]) def test_all_ones(): image = tf.ones([10, 10, 1], tf.uint8) output = dist_ops.euclidean_dist_transform(image)
codereview_python_data_6244
def _count_diff_NG86(codon1, codon2, codon_table=default_codon_table): - """Count differences between two codons, three-letter string; (PRIVATE). The function will take multiple pathways from codon1 to codon2 into account. The original was fine as it was. If you want to end with ``(PRIVATE)`` I would remove the semi-colon here. def _count_diff_NG86(codon1, codon2, codon_table=default_codon_table): + """Count differences between two codons, three-letter string (PRIVATE). The function will take multiple pathways from codon1 to codon2 into account.
codereview_python_data_6246
from . import backend from .set_default_backend import set_default_backend -from .pytorch.sparse import gspmm_hetero -from .pytorch.sparse import gsddmm_hetero _enabled_apis = set() we should import any function in pytorch backend here. from . import backend from .set_default_backend import set_default_backend _enabled_apis = set()
codereview_python_data_6247
return [self.app, pickle_loc] + self.app_options() def run(self): - name = re.sub(r'[^\w]', '_', self.name) - self.run_path = tempfile.mkdtemp(prefix=name) - self.run_pickle = os.path.join(self.run_path, '.'.join([name, 'pickle'])) with open(self.run_pickle, 'wb') as fd: # Copy module file to run path. module_path = os.path.abspath(inspect.getfile(self.__class__)) I'd rename variable `name` to something like `run_path_prefix` (maybe some better option) due to two reasons: - it is actually a path, not a name anymore - we must be having a hard time dealing with `name` and `self.name` in the same place return [self.app, pickle_loc] + self.app_options() def run(self): + path_name_fragment = re.sub(r'[^\w]', '_', self.name) + self.run_path = tempfile.mkdtemp(prefix=path_name_fragment) + self.run_pickle = os.path.join(self.run_path, '.'.join([path_name_fragment, 'pickle'])) with open(self.run_pickle, 'wb') as fd: # Copy module file to run path. module_path = os.path.abspath(inspect.getfile(self.__class__))
codereview_python_data_6248
self._init_key_label() def _check_save_support(self, save): - if self.question.option is None: raise Error("No setting available to save the answer for this " "question.") Should this be `if save and self.question.option is None:`? self._init_key_label() def _check_save_support(self, save): + if save and self.question.option is None: raise Error("No setting available to save the answer for this " "question.")
codereview_python_data_6249
(test_Y == argmax_Y.float()).sum().item() / len(test_Y) * 100)) ############################################################################### -# The figure here is an animation where you plot graphs with the probability that a trained model # assigns its Amazon SageMaker ground truth label to it. # # .. image:: https://s3.us-east-2.amazonaws.com/dgl.ai/tutorial/batch/test_eval4.gif As @yzh119 has explained, the label is not from Amazon SageMaker. It is a categorical variable from the dataset itself indicating the graph type of each sample. How about "The animation here plots the probability a trained model predicts the correct graph type."? (test_Y == argmax_Y.float()).sum().item() / len(test_Y) * 100)) ############################################################################### +# The animation here plots the probability that a trained model predicts the correct graph type. # assigns its Amazon SageMaker ground truth label to it. # # .. image:: https://s3.us-east-2.amazonaws.com/dgl.ai/tutorial/batch/test_eval4.gif
codereview_python_data_6252
DBA = dual_barabasi_albert_graph(100, m1, m2, p, seed, initial=initial) BA1 = barabasi_albert_graph(100, m1, seed, initial=initial) - BA2 = barabasi_albert_graph(100, m1, seed, initial=initial) assert ( min(BA1.size(), BA2.size()) <= DBA.size() <= max(BA1.size(), BA2.size()) ) Isn't `initial` mutated and returned? So DBA and BA1 and BA2 will end up all the same object? If true, we will need to make the mutating nature very clear -- or change to `G = initial.copy()` DBA = dual_barabasi_albert_graph(100, m1, m2, p, seed, initial=initial) BA1 = barabasi_albert_graph(100, m1, seed, initial=initial) + BA2 = barabasi_albert_graph(100, m2, seed, initial=initial) assert ( min(BA1.size(), BA2.size()) <= DBA.size() <= max(BA1.size(), BA2.size()) )
codereview_python_data_6254
@register_query(LocalMongoDBConnection) -def put_pre_commit_state(conn, state): commit_id = state['commit_id'] return conn.run( conn.collection('pre_commit') All functions to save data have "store" as prefix, would it make sense to use it here as well so we are consistent? @register_query(LocalMongoDBConnection) +def store_pre_commit_state(conn, state): commit_id = state['commit_id'] return conn.run( conn.collection('pre_commit')
codereview_python_data_6260
else: candidates.append((func, func_type)) - # Optimize the most common case of no overloading... - if len(candidates) == 1 and not validate_types_fully: - return candidates[0][0] - elif len(candidates) == 0: if pos is not None: func, errmsg = errors[0] if len(errors) == 1 or [1 for func, e in errors if e == errmsg]: This looks funny and seems worth explaining - why continue if we only have a single candidate anyway? else: candidates.append((func, func_type)) + if len(candidates) == 0: if pos is not None: func, errmsg = errors[0] if len(errors) == 1 or [1 for func, e in errors if e == errmsg]:
codereview_python_data_6263
if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( - "--export_path", dest="export_path", type=str, required=False, ```suggestion "--export-path", ``` plus note that you should change the calling line in `conf.py` now, otherwise the variables' table won't be regenerated properly if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( + "--export-path", dest="export_path", type=str, required=False,
codereview_python_data_6265
from urwid import BaseScreen from bzt import TaurusInternalException, TaurusNetworkError, ToolError -from bzt.six import string_types, iteritems, binary_type, text_type, b, integer_types, request, file_type, etree, parse -def get_output(args, env=None): - return subprocess.check_output(args, env=env, stderr=subprocess.STDOUT) def get_full_path(path, default=None, step_up=0): The name does not reflect starting subprocess. It is confusing now... from urwid import BaseScreen from bzt import TaurusInternalException, TaurusNetworkError, ToolError +from bzt.six import stream_decode, file_type, etree, parse +from bzt.six import string_types, iteritems, binary_type, text_type, b, integer_types, request +def sync_run(args, env=None): + output = subprocess.check_output(args, env=env, stderr=subprocess.STDOUT) + return stream_decode(output).rstrip() def get_full_path(path, default=None, step_up=0):
codereview_python_data_6270
def _list_from_csv(csv_string, caster=None): - """Transform the given comma-separated string into a list. :param csv_string: comma-separated input string :type csv_string: string Can you make this end ``... into a list (PRIVATE).`` too please. def _list_from_csv(csv_string, caster=None): + """Transform the given comma-separated string into a list (PRIVATE). :param csv_string: comma-separated input string :type csv_string: string
codereview_python_data_6276
CHANGED_OPTIONS = { ('content', 'cookies-accept'): _get_value_transformer('default', 'no-3rdparty'), - ('storage', 'download-directory'): - _get_value_transformer('', '%'), } changed = pyqtSignal(str, str) I think this will change `''` to `'%'` unconditionally, i.e. there'll be no way to set `''` anymore. This should really only be used for values which make no sense anymore. CHANGED_OPTIONS = { ('content', 'cookies-accept'): _get_value_transformer('default', 'no-3rdparty'), } changed = pyqtSignal(str, str)
codereview_python_data_6277
import numpy as np from Bio.KDTree import _CKDTree -# Bio 1.71 API different from previous :( -from distutils import version -import Bio -_NEW_BIO_KDTREE = version.LooseVersion(Bio.__version__) >= version.LooseVersion('1.7.1') -del Bio -del version - - from MDAnalysis.lib.distances import _box_check, _check_array, apply_PBC from MDAnalysis.lib.mdamath import norm, triclinic_vectors, triclinic_box I think you mean Bio version 1.71 import numpy as np from Bio.KDTree import _CKDTree from MDAnalysis.lib.distances import _box_check, _check_array, apply_PBC from MDAnalysis.lib.mdamath import norm, triclinic_vectors, triclinic_box
codereview_python_data_6283
# Requires Python 2.4+ and Openssl 1.0+ # -import azurelinuxagent.utils.shellutil as shellutil -from azurelinuxagent.distro.default.osutil import DefaultOSUtil class AlpineOSUtil(DefaultOSUtil): def __init__(self): looks like you just need to update imports to `azurelinuxagent.common.utils.shellutil` and `azurelinuxagent.common.osutil.default` # Requires Python 2.4+ and Openssl 1.0+ # +import azurelinuxagent.common.utils.shellutil as shellutil +from azurelinuxagent.common.osutil.default import DefaultOSUtil class AlpineOSUtil(DefaultOSUtil): def __init__(self):
codereview_python_data_6288
def get_config(self): config = { "margin": self.margin, } base_config = super().get_config() return {**base_config, **config} Should we also serialize `self.soft` here? def get_config(self): config = { "margin": self.margin, + "soft": self.soft, } base_config = super().get_config() return {**base_config, **config}
codereview_python_data_6293
Parameters ---------- - diha : list of 4 np.int64 element tuples - The dihedrals not involving hydrogens - dihh : list of 4 np.int64 element tuples - The dihedrals involving hydrogens Returns ------- nitpicky, but here you could just have `if not vals in dihed:` and not have the `continue` branch Parameters ---------- + diha : list of tuples + The atom ids of dihedrals not involving hydrogens + dihh : list of tuples + The atom ids of dihedrals involving hydrogens Returns -------
codereview_python_data_6300
usecols=usecols, **kwargs ) - pandas_df = parser.read().dropna(how="all") # Since we know the number of rows that occur before this partition, we can # correctly assign the index in cases of RangeIndex. If it is not a RangeIndex, What is this change for? usecols=usecols, **kwargs ) + # In excel if you create a row with only a border (no values), this parser will + # interpret that as a row of NaN values. Pandas discards these values, so we + # also must discard these values. pandas_df = parser.read().dropna(how="all") # Since we know the number of rows that occur before this partition, we can # correctly assign the index in cases of RangeIndex. If it is not a RangeIndex,
codereview_python_data_6301
Callable, Mapping, cookielib, urlunparse, urlsplit, urlencode, str, bytes, is_py2, chardet, builtin_str, basestring) -from .compat import json from .status_codes import codes #: The set of HTTP status codes that indicate an automatically Why did you change this? Callable, Mapping, cookielib, urlunparse, urlsplit, urlencode, str, bytes, is_py2, chardet, builtin_str, basestring) +from .compat import json as complexjson from .status_codes import codes #: The set of HTTP status codes that indicate an automatically
codereview_python_data_6305
} -# @test_utils.run_all_in_graph_and_eager_modes -# class TranslateOpTest(tf.test.TestCase): - - @pytest.mark.usefixtures("maybe_run_functions_eagerly") @pytest.mark.parametrize("dtype", _DTYPES) def test_translate(dtype): I think you can remove this. } @pytest.mark.usefixtures("maybe_run_functions_eagerly") @pytest.mark.parametrize("dtype", _DTYPES) def test_translate(dtype):
codereview_python_data_6311
Notes ----- Graphs may have node labels, node attributes, edge labels, and edge attributes, - varing from different dataset. """ _url = r"https://www.chrsmrrs.com/graphkerneldatasets/{}.zip" I suggest we clearly describe the changes here, so that people will know instantly by reading the doc. Ideally people would know how to adapt their own code just by reading this doc. Notes ----- Graphs may have node labels, node attributes, edge labels, and edge attributes, + varing from different dataset. + + Labels are mapped to :math:`\lbrace 0,\cdots,n-1 \rbrace` where :math:`n` is the + number of labels (some datasets have raw labels :math:`\lbrace -1, 1 \rbrace` which + will be mapped to :math:`\lbrace 0, 1 \rbrace`). In previous versions, the minimum + label was added so that :math:`\lbrace -1, 1 \rbrace` was mapped to + :math:`\lbrace 0, 2 \rbrace`. """ _url = r"https://www.chrsmrrs.com/graphkerneldatasets/{}.zip"
codereview_python_data_6316
Enum for defining the Feature Names for all internal and CRP features """ MultiConfig = "MultipleExtensionsPerHandler" - ExtensionTelemetryPipeline = "ExtensionTelemetryPipeline" class AgentFeature(object): we should move this class to its own file we also need to clarify its intent (and maybe rename it?) "new features that the Linux Guest Agent supports" seems too vague Enum for defining the Feature Names for all internal and CRP features """ MultiConfig = "MultipleExtensionsPerHandler" class AgentFeature(object):
codereview_python_data_6317
calculated_md5 = dirhash.dirhash(path, 'md5', ignore=ignore, match=included_extensions) if md5 == calculated_md5: return version - return 'unknown' class Access(Enum): APP = 0 I feel like this should return a tuple-- the version (number), and the hash, separately. we will display the former on the GUI whereas the latter is for validation only calculated_md5 = dirhash.dirhash(path, 'md5', ignore=ignore, match=included_extensions) if md5 == calculated_md5: return version + return None class Access(Enum): APP = 0
codereview_python_data_6323
class StringSelection(Selection): """Selections based on text attributes - .. versionchanged:: 0.21 - Supports multiple wildcards, based on fnmatch """ def __init__(self, parser, tokens): vals = grab_not_keywords(tokens) @Iv-Hristov the text entry in a `versionchanged` needs to be indented (this is what is causing Travis to fail). So: ``` .. versionchanged:: 1.0.0 Supports... ``` class StringSelection(Selection): """Selections based on text attributes + .. versionchanged:: 0.21.0 + Supports multiple wildcards, based on fnmatch """ def __init__(self, parser, tokens): vals = grab_not_keywords(tokens)
codereview_python_data_6327
class ContentDecodingError(RequestException, BaseHTTPError): """Failed to decode response content""" -class StreamConsumedError(RequestException): """The content for this response was already consumed""" This needs to doubly inherit, like so: ``` python class StreamConsumedError(RequestException, TypeError): ``` class ContentDecodingError(RequestException, BaseHTTPError): """Failed to decode response content""" +class StreamConsumedError(RequestException, TypeError): """The content for this response was already consumed"""
codereview_python_data_6331
import collections import os - -import shade -import paramiko import time import tempfile from molecule import util from molecule.driver import basedriver Since `time` and `tempfile` are part of the standard library, they should be imorted with `os` (above), in alphabetical order. `Paramiko` should stay with `shade`, however, should go before it. import collections import os import time import tempfile +import paramiko +import shade + from molecule import util from molecule.driver import basedriver
codereview_python_data_6335
Tries harder: if the thing to inspect is a class but typing.get_type_hints raises an error or returns no hints, then this function will try calling it - on the __init__ method. This second step often helps with user-defined - classes on older versions of Python. Never errors: instead of raising TypeError for uninspectable objects, or NameError for unresolvable forward references, just return an empty dict. Please also update the docstring of this function to describe what it does now, and why we need the additional logic for classes. Tries harder: if the thing to inspect is a class but typing.get_type_hints raises an error or returns no hints, then this function will try calling it + on the __init__ method. This second step often helps with user-defined + classes on older versions of Python. The third step we take is trying + to fetch types from the __signature__ property. + They override any other ones we found earlier. Never errors: instead of raising TypeError for uninspectable objects, or NameError for unresolvable forward references, just return an empty dict.
codereview_python_data_6336
async def load_ability_file(self, filename, access): for entries in self.strip_yml(filename): for ab in entries: - ability_id = ab.pop('id') if 'id' in ab else ab.pop('ability_id', None) name = ab.pop('name', '') description = ab.pop('description', '') tactic = ab.pop('tactic', None) should the default value of `ab.pop()` be `[]` rather than an empty dict? It looks like `load_executors_from_list` wants the `executors` parameter to be a list async def load_ability_file(self, filename, access): for entries in self.strip_yml(filename): for ab in entries: + ability_id = ab.pop('id', None) name = ab.pop('name', '') description = ab.pop('description', '') tactic = ab.pop('tactic', None)
codereview_python_data_6346
please use format(motif, format_spec). """ warnings.warn( - """\ -Motif.format has been deprecated, and we intend to remove it in a future -release of Biopython. Instead of motif.format(format_spec), please use -format(motif, format_spec). -""", BiopythonDeprecationWarning, ) return self.__format__(format_spec) I think this slash is not needed. please use format(motif, format_spec). """ warnings.warn( + "Motif.format has been deprecated, and we intend to remove it in a " + "future release of Biopython. Instead of motif.format(format_spec), " + "please use format(motif, format_spec).", BiopythonDeprecationWarning, ) return self.__format__(format_spec)
codereview_python_data_6348
) -> None: lines = text.splitlines() for action, full_insert in zip(*[iter(lines)] * 2): - # if '0x71F85B2E46976bD21302B64329868fd15eb0D127' in action: - # __import__("pdb").set_trace() - # a = 1 - if full_insert == '*': full_insert = action Is this a leftover? ) -> None: lines = text.splitlines() for action, full_insert in zip(*[iter(lines)] * 2): if full_insert == '*': full_insert = action
codereview_python_data_6352
Slice object to check. sequence_len : int, optional Length of the sequence to index with the passed `slc`. - If not specified the function won't consider `slc` to - be a full-grab if its ``.stop`` attribute is equal or - greater than the sequence length. Returns ------- wait, how the function can know sequence length if it's `None` to compare `slc.stop` to it?.. something's wrong with this docstring, pls fix Slice object to check. sequence_len : int, optional Length of the sequence to index with the passed `slc`. + If not specified the function won't be able to check whether + ``slc.stop`` is equal or greater than the sequence length to + consider `slc` to be a full-grab, and so, only slices with + ``.stop is None`` are considered to be a full-grab. Returns -------
codereview_python_data_6360
""" def _get_new_resampler(key): - return Resampler(self._dataframe[key], **self.resample_args) from .series import Series I think @YarShev was against my simplification - this indeed makes it harder to make a subclass if we create `Resampler` explicitly """ def _get_new_resampler(key): + subset = self._dataframe[key] + resampler = type(self)(subset, **self.resample_kwargs) + return resampler from .series import Series
codereview_python_data_6371
for i in range(0, 20): al = [Atom() for j in range(100)] ns = NeighborSearch(al) - for i in [0, 1, 2, 3, 4, 5, 6]: self.assertEqual(i, len(ns.search_all(5.0))) Why not use ``range(7)`` which gives 0, 1, 2, 3, 4, 5 ,6? for i in range(0, 20): al = [Atom() for j in range(100)] ns = NeighborSearch(al) + for i in range(7): self.assertEqual(i, len(ns.search_all(5.0)))
codereview_python_data_6375
RUBYGEMS_API_KEY = os.path.join(SECRETS, 'api_key.yaml') def decrypt_secrets(): subprocess.check_call([ 'openssl', 'aes-256-cbc', minor: why is this defined in the top-level tooling file, if it's a Ruby-specific constant? RUBYGEMS_API_KEY = os.path.join(SECRETS, 'api_key.yaml') +SECRET_FILES = [ + DEPLOY_KEY, PYPIRC, RUBYGEMS_API_KEY +] + + def decrypt_secrets(): subprocess.check_call([ 'openssl', 'aes-256-cbc',
codereview_python_data_6380
def __init__(self, learn:Learner, n_step:int = 1, drop_last:bool = False): super().__init__(learn) - self.n_step = n_step - self.drop_last = drop_last def on_train_begin(self, **kwargs): "check if loss is reduction" Both on one line (fastai style guide) def __init__(self, learn:Learner, n_step:int = 1, drop_last:bool = False): super().__init__(learn) + self.n_step, self.drop_last = n_step, drop_last def on_train_begin(self, **kwargs): "check if loss is reduction"
codereview_python_data_6383
""" index = count if count is not None else index - if index in ('last', self._current_index() + 1): self._tab_focus_last() return - - if index is None: self.tab_next() return As for not raising the error in the `self._current_index() + 1` case - what about this? ```python if index == 'last': self._tab_focus_last() return elif index == self._current_index() + 1: self._tab_focus_last(show_error=False) return elif index is None: # from below self.tab_next() return ``` Then in `_tab_focus_last`, add a `show_error` argument, and just return instead of raising `CommandError` if it's false. """ index = count if count is not None else index + if index == 'last': self._tab_focus_last() return + elif index == self._current_index() + 1: + self._tab_focus_last(show_error=False) + return + elif index is None: self.tab_next() return
codereview_python_data_6385
<h1>Error 503 Backend is unhealthy</h1> <p>Backend is unhealthy</p> <h3>Guru Mediation:</h3> - <p>Details: cache-sea4478-SEA 1645521665 3876263177</p> <hr> <p>Varnish cache server</p> </body> nit: We could use `select_attributes(..)` from `utils/common.py` here, to make this a bit shorter: ``` attrs = ('filterName', 'logGroupName', 'filterPattern', 'destinationArn', 'roleArn') entry = select_attributes(data, attrs) entry['creationTime'] = now_utc() subscription_filters.append(entry) ``` <h1>Error 503 Backend is unhealthy</h1> <p>Backend is unhealthy</p> <h3>Guru Mediation:</h3> + <p>Details: cache-sea4465-SEA 1645521665 174095590</p> <hr> <p>Varnish cache server</p> </body>
codereview_python_data_6390
Multiplier. Default: 2 avg_deg : int, optional Average degree. Default: 3 - pq : list of pair of nonnegative float or str, optional - Random densities. Default: Appendix_C rng : numpy.random.RandomState, optional Random number generator. Default: None - Raises - ------ - RuntimeError is raised if pq is not a list or string. - Examples -------- >>> data = SBMMixtureDataset(n_graphs=16, n_nodes=10000, n_communities=2) I'm confused by this `Appendix_C`. What are the options for `str` input, and what does a float input mean? Multiplier. Default: 2 avg_deg : int, optional Average degree. Default: 3 rng : numpy.random.RandomState, optional Random number generator. Default: None Examples -------- >>> data = SBMMixtureDataset(n_graphs=16, n_nodes=10000, n_communities=2)
codereview_python_data_6392
sig.freeze(self.request.id) if self.request.is_eager: - return sig.apply().get() - # task_result = sig.apply() - # with allow_join_result(): - # return task_result.get() else: sig.delay() raise Ignore('Replaced by new task') This is probably what you meant. ```suggestion task_result = sig.apply() with allow_join_result(): return task_result.get() ``` sig.freeze(self.request.id) if self.request.is_eager: + task_result = sig.apply() + with allow_join_result(): + return task_result.get() else: sig.delay() raise Ignore('Replaced by new task')
codereview_python_data_6393
if project_name == TFA_RELEASE: # TODO: remove if-else condition when tf supports package consolidation. if platform.system() == 'Linux': - REQUIRED_PACKAGES.append('tensorflow-gpu >= 2.0.0-rc0') else: - REQUIRED_PACKAGES.append('tensorflow >= 2.0.0-rc0') elif project_name == TFA_NIGHTLY: # TODO: remove if-else condition when tf-nightly supports package consolidation. if platform.system() == 'Linux': Is the version requirement `>=` correct? For example if a user froze `tensorflow_addons` to a version built against TensorFlow 2.0 and then update to TensorFlow 2.1, will it work correctly? if project_name == TFA_RELEASE: # TODO: remove if-else condition when tf supports package consolidation. if platform.system() == 'Linux': + REQUIRED_PACKAGES.append('tensorflow-gpu == 2.0.0-rc0') else: + REQUIRED_PACKAGES.append('tensorflow == 2.0.0-rc0') elif project_name == TFA_NIGHTLY: # TODO: remove if-else condition when tf-nightly supports package consolidation. if platform.system() == 'Linux':
codereview_python_data_6395
if isinstance(struct, Task): return struct.output() elif isinstance(struct, dict): - r = struct.__class__() - for k, v in six.iteritems(struct): - r[k] = getpaths(v) - return r elif isinstance(struct, (list, tuple)): return struct.__class__(getpaths(r) for r in struct) else: What's this? The constructor for the dict subtype? Will this work if it's a immutable type? if isinstance(struct, Task): return struct.output() elif isinstance(struct, dict): + return struct.__class__((k, getpaths(v)) for k, v in six.iteritems(struct)) elif isinstance(struct, (list, tuple)): return struct.__class__(getpaths(r) for r in struct) else:
codereview_python_data_6398
images, bb, labels = self.input(name="Reader") return self.base_define_graph(images, labels, bb) -test_data = {\ COCOReaderPipeline: [["/data/coco/coco-2017/coco2017/train2017", "/data/coco/coco-2017/coco2017/annotations/instances_train2017.json"], ["/data/coco/coco-2017/coco2017/val2017", "/data/coco/coco-2017/coco2017/annotations/instances_val2017.json"]] } is that `\` intentional? images, bb, labels = self.input(name="Reader") return self.base_define_graph(images, labels, bb) +test_data = { COCOReaderPipeline: [["/data/coco/coco-2017/coco2017/train2017", "/data/coco/coco-2017/coco2017/annotations/instances_train2017.json"], ["/data/coco/coco-2017/coco2017/val2017", "/data/coco/coco-2017/coco2017/annotations/instances_val2017.json"]] }
codereview_python_data_6401
dim_names = [d.name for d in dimensions] if dynamic: - group_dims = [d.name for d in self.kdims if d not in dimensions] - kdims = [self.get_dimension(d) for d in group_dims] group_kwargs = dict(util.get_param_values(self), kdims=kdims) group_kwargs.update(kwargs) - kdims = group_kwargs['kdims'] - drop_dim = len(kdims) != len(group_kwargs['kdims']) def load_subset(*args): constraint = dict(zip(dim_names, args)) group = self.select(**constraint) ``kdims`` is shadowed a number of times. If ``len(kdims)`` is the same for line 527 and 530, I would inline the access on ``group_kwargs`` (which doesn't seem to be mutated anywhere). i.e: ``data = group.reindex(group_kwargs['kdims'])`` If the lengths are different, I am happy to discard this suggestion. dim_names = [d.name for d in dimensions] if dynamic: + group_dims = [kd for kd in self.kdims if kd not in dimensions] + kdims = [self.get_dimension(d) for d in kwargs.pop('kdims', group_dims)] + drop_dim = len(group_dims) != len(kdims) group_kwargs = dict(util.get_param_values(self), kdims=kdims) group_kwargs.update(kwargs) def load_subset(*args): constraint = dict(zip(dim_names, args)) group = self.select(**constraint)
codereview_python_data_6408
if not pass_through: broadcast_finished = tf.broadcast_to( tf.expand_dims(finished, axis=-1), new.shape) - return new if pass_through else tf.where( - broadcast_finished, cur, new) if impute_finished: next_state = tf.nest.map_structure(_maybe_copy_state, Let's merge this `if` statement with the one above, e.g: ```python if not pass_through: ... return tf.where(...) else: return new ``` if not pass_through: broadcast_finished = tf.broadcast_to( tf.expand_dims(finished, axis=-1), new.shape) + return tf.where(broadcast_finished, cur, new) + else: + return new if impute_finished: next_state = tf.nest.map_structure(_maybe_copy_state,
codereview_python_data_6416
naive_dice=False, loss_weight=1.0, eps=1e-3): - """`Dice Loss, there are two forms of dice loss is supported: - the one proposed in `V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation '`' is unnecessary? naive_dice=False, loss_weight=1.0, eps=1e-3): + """Dice Loss, there are two forms of dice loss is supported: - the one proposed in `V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation
codereview_python_data_6417
def get(self, k, d=None): """Return the value in the dictionary. - - If key not found the second - attribute is returned. By default it is None. """ try: return self.__getitem__(k) That's odd line breaking. We could explain the short hand k=key and d=default (which followed the Python built-in dictionary docstring). How about: ``` If the key (k) is not found, this returns None unless a specified default (d) is specified. ``` def get(self, k, d=None): """Return the value in the dictionary. + + If the key (k) is not found, this returns None unless a specified + default (d) is specified. """ try: return self.__getitem__(k)
codereview_python_data_6419
# this is important for some web applications that store authentication-related info in cookies (it took a long time to figure out) if response2.headers.get('set-cookie'): - headers['Cookie'] = response2.headers.get('set-cookie') # get the challenge auth_header_value = response2.headers[auth_header_field] I might be missing something, but where is the `headers` dict defined here? # this is important for some web applications that store authentication-related info in cookies (it took a long time to figure out) if response2.headers.get('set-cookie'): + response2.headers['Cookie'] = response2.headers.get('set-cookie') # get the challenge auth_header_value = response2.headers[auth_header_field]
codereview_python_data_6427
if self.master.options.mode != "regular": r.append("[%s]" % self.master.options.mode) if self.master.options.scripts: - scripts = list(chain.from_iterable([glob(re) for re in self.master.options.scripts])) r.append("[scripts:%s]" % len(scripts)) if self.master.options.save_stream_file: This snippet seems to appear the second time now - maybe split it off into a function and reuse it? if self.master.options.mode != "regular": r.append("[%s]" % self.master.options.mode) if self.master.options.scripts: + scripts = script.get_scripts() r.append("[scripts:%s]" % len(scripts)) if self.master.options.save_stream_file:
codereview_python_data_6431
---------- graph : DGLGraph The graph. - feat : mxnet.NDArray If a mxnet.NDArray is given, the input feature of shape :math:`(N, D_{in})` where :math:`D_{in}` is size of input feature, :math:`N` is the number of nodes. mxnet.NDArray or pair of mxnet.NDArray ---------- graph : DGLGraph The graph. + feat : mxnet.NDArray or a pair of mxnet.NDArray If a mxnet.NDArray is given, the input feature of shape :math:`(N, D_{in})` where :math:`D_{in}` is size of input feature, :math:`N` is the number of nodes.
codereview_python_data_6432
"Bio.Align.Applications", "Bio.Align.substitution_matrices", "Bio.AlignIO", "Bio.Application", "Bio.Blast", "Bio.CAPS", If you want to keep a ``Bio.Alphabet`` stub, we need to keep it on the list of installed packages. "Bio.Align.Applications", "Bio.Align.substitution_matrices", "Bio.AlignIO", + "Bio.Alphabet", "Bio.Application", "Bio.Blast", "Bio.CAPS",