code
stringlengths
57
46.3k
quality_prob
float64
0.7
0.99
learning_prob
float64
0.5
1
def calculate_desired_noise_rms(clean_rms, snr): """ Given the Root Mean Square (RMS) of a clean sound and a desired signal-to-noise ratio (SNR), calculate the desired RMS of a noise sound to be mixed in. Based on https://github.com/Sato-Kunihiko/audio-SNR/blob/8d2c933b6c0afe6f1203251f4877e7a1068a6130/create_mixed_audio_file.py#L20 :param clean_rms: Root Mean Square (RMS) - a value between 0.0 and 1.0 :param snr: Signal-to-Noise (SNR) Ratio in dB - typically somewhere between -20 and 60 :return: """ a = float(snr) / 20 noise_rms = clean_rms / (10 ** a) return noise_rms
0.930253
0.753603
def is_waveform_multichannel(samples): """ Return bool that answers the question: Is the given ndarray a multichannel waveform or not? :param samples: numpy ndarray :return: """ return len(samples.shape) > 1
0.772101
0.565959
def is_spectrogram_multichannel(spectrogram): """ Return bool that answers the question: Is the given ndarray a multichannel spectrogram? :param samples: numpy ndarray :return: """ return len(spectrogram.shape) > 2 and spectrogram.shape[-1] > 1
0.823577
0.777215
def normalize_timestamp(timestamp): """ Format a timestamp (string or numeric) into a standardized xxxxxxxxxx.xxxxx (10.5) format. Note that timestamps using values greater than or equal to November 20th, 2286 at 17:46 UTC will use 11 digits to represent the number of seconds. :param timestamp: unix timestamp :returns: normalized timestamp as a string """ return "%016.05f" % (float(timestamp))
0.860472
0.780662
def unpack_str(byteseq): """Unpack a byte sequence into a string.""" return byteseq.decode()
0.721743
0.609408
def num_model_detection_error(ground_truth_vps, detected_vps): """Measures error in the number of detected vanishing points. Returns: Integer, positive when there are too many VPs, negative when there are too few. """ return len(detected_vps) - len(ground_truth_vps)
0.785679
0.801237
def binary_search_iterative(array, item): """Time Complexity: O(log*n) because you are constantly dividing the length of array by 2 until array length is 1 Space Complexity: O(1) """ left, right = 0, len(array) - 1 if len(array) == 0: return None while left <= right: middle = left + (right - left) // 2 if item == array[middle]: return middle elif item > array[middle]: left = middle + 1 else: right = middle - 1 return None
0.755997
0.620765
import torch def smooth_l1_loss(pred, target, beta=1.0): """Smooth l1 loss. :param pred: predict :param target: target :param beta: beta :return: loss """ assert beta > 0 assert pred.size() == target.size() and target.numel() > 0 diff = torch.abs(pred - target) loss = torch.where(diff < beta, 0.5 * diff * diff / beta, diff - 0.5 * beta) return loss
0.768907
0.611295
import torch def _expand_binary_labels(labels, label_weights, label_channels): """Expand binary labels. :param labels: labels :param label_weights: label weights :param label_channels: label channels :return: binary label and label weights """ bin_labels = labels.new_full((labels.size(0), label_channels), 0) inds = torch.nonzero(labels >= 1).squeeze() if inds.numel() > 0: bin_labels[inds, labels[inds] - 1] = 1 if label_weights is None: bin_label_weights = None else: bin_label_weights = label_weights.view(-1, 1).expand(label_weights.size(0), label_channels) return bin_labels, bin_label_weights
0.779154
0.550547
def normalize_pack_version(version): """ Normalize old, pre StackStorm v2.1 non valid semver version string (e.g. 0.2) to a valid semver version string (0.2.0). :rtype: ``str`` """ version = str(version) version_seperator_count = version.count('.') if version_seperator_count == 1: version = version + '.0' return version
0.719482
0.505249
def roundup_to_integer_multiple(x, factor): """Round up integer x to the nearest integer multiple of integer factor. Returns x if factor is set to -1. Both x and factor must otherwise be positive.""" # ensure integers assert int(x) == x, "The input x is not an integer." assert int(factor) == factor, "The input factor is not an integer." # use -1 to indicate no padding needed if factor == -1: return x # ensure positive values assert factor > 0 and x > 0, "Factor and x are <= 0." if x < factor: return factor else: if x % factor == 0: return x else: return x + (factor - (x % factor))
0.886039
0.563828
def calculate_matvec_accumulator_range(matrix, vec_dt): """Calculate the minimum and maximum possible result (accumulator) values for a dot product x * A, given matrix A of dims (MW, MH), and vector (1, MW) with datatype vec_dt. Returns (acc_min, acc_max). """ min_weight = matrix.min() max_weight = matrix.max() perceptive_field_elems = matrix.shape[0] min_input = vec_dt.min() max_input = vec_dt.max() # calculate minimum and maximum values of accumulator # assume inputs span the whole range of the input datatype acc_min = perceptive_field_elems * min( min_weight * max_input, min_weight * min_input, max_weight * max_input, max_weight * min_input, ) acc_max = perceptive_field_elems * max( min_weight * max_input, min_weight * min_input, max_weight * max_input, max_weight * min_input, ) return (acc_min, acc_max)
0.871146
0.762114
import torch def cam2pixel(cam_coords, proj_c2p_rot, proj_c2p_tr, padding_mode): """Transform coordinates in the camera frame to the pixel frame. Args: cam_coords: pixel coordinates defined in the first camera coordinates system -- [B, 4, H, W] proj_c2p_rot: rotation matrix of cameras -- [B, 3, 4] proj_c2p_tr: translation vectors of cameras -- [B, 3, 1] Returns: array of [-1,1] coordinates -- [B, 2, H, W] """ b, _, h, w = cam_coords.size() cam_coords_flat = cam_coords.view(b, 3, -1) # [B, 3, H*W] if proj_c2p_rot is not None: pcoords = proj_c2p_rot.bmm(cam_coords_flat) else: pcoords = cam_coords_flat if proj_c2p_tr is not None: pcoords = pcoords + proj_c2p_tr # [B, 3, H*W] X = pcoords[:, 0] Y = pcoords[:, 1] Z = pcoords[:, 2].clamp(min=1e-3) X_norm = 2*(X / Z)/(w-1) - 1 # Normalized, -1 if on extreme left, 1 if on extreme right (x = w-1) [B, H*W] Y_norm = 2*(Y / Z)/(h-1) - 1 # Idem [B, H*W] if padding_mode == 'zeros': X_mask = ((X_norm > 1)+(X_norm < -1)).detach() X_norm[X_mask] = 2 # make sure that no point in warped image is a combinaison of im and gray Y_mask = ((Y_norm > 1)+(Y_norm < -1)).detach() Y_norm[Y_mask] = 2 pixel_coords = torch.stack([X_norm, Y_norm], dim=2) # [B, H*W, 2] return pixel_coords.view(b,h,w,2)
0.805058
0.637045
import torch def euler2mat(angle): """Convert euler angles to rotation matrix. Reference: https://github.com/pulkitag/pycaffe-utils/blob/master/rot_utils.py#L174 Args: angle: rotation angle along 3 axis (in radians) -- size = [B, 3] Returns: Rotation matrix corresponding to the euler angles -- size = [B, 3, 3] """ B = angle.size(0) x, y, z = angle[:,0], angle[:,1], angle[:,2] cosz = torch.cos(z) sinz = torch.sin(z) zeros = z.detach()*0 ones = zeros.detach()+1 zmat = torch.stack([cosz, -sinz, zeros, sinz, cosz, zeros, zeros, zeros, ones], dim=1).view(B, 3, 3) cosy = torch.cos(y) siny = torch.sin(y) ymat = torch.stack([cosy, zeros, siny, zeros, ones, zeros, -siny, zeros, cosy], dim=1).view(B, 3, 3) cosx = torch.cos(x) sinx = torch.sin(x) xmat = torch.stack([ones, zeros, zeros, zeros, cosx, -sinx, zeros, sinx, cosx], dim=1).view(B, 3, 3) rotMat = xmat.bmm(ymat).bmm(zmat) return rotMat
0.950353
0.861538
import torch def quat2mat(quat): """Convert quaternion coefficients to rotation matrix. Args: quat: first three coeff of quaternion of rotation. fourht is then computed to have a norm of 1 -- size = [B, 3] Returns: Rotation matrix corresponding to the quaternion -- size = [B, 3, 3] """ norm_quat = torch.cat([quat[:,:1].detach()*0 + 1, quat], dim=1) norm_quat = norm_quat/norm_quat.norm(p=2, dim=1, keepdim=True) w, x, y, z = norm_quat[:,0], norm_quat[:,1], norm_quat[:,2], norm_quat[:,3] B = quat.size(0) w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2) wx, wy, wz = w*x, w*y, w*z xy, xz, yz = x*y, x*z, y*z rotMat = torch.stack([w2 + x2 - y2 - z2, 2*xy - 2*wz, 2*wy + 2*xz, 2*wz + 2*xy, w2 - x2 + y2 - z2, 2*yz - 2*wx, 2*xz - 2*wy, 2*wx + 2*yz, w2 - x2 - y2 + z2], dim=1).view(B, 3, 3) return rotMat
0.914558
0.940024
def elemwise_mul(a, b): """ a: A theano matrix b: A theano matrix Returns the elementwise product of a and b """ return a * b
0.713531
0.629276
import torch def l2_norm(input, axis=1): """l2 normalization. Args: input (torch.Tensor): The input tensor. axis (int, optional): Specifies which axis of input to calculate the norm across. Defaults to 1. Returns: Tensor: Tensor after L2 normalization per-instance. """ norm = torch.norm(input, 2, axis, True) output = torch.div(input, norm) return output
0.818193
0.500122
def rectangle_centroid(rectangle): """ get the centroid of the rectangle Keyword arguments: rectangle -- polygon geojson object return centroid """ bbox = rectangle['coordinates'][0] xmin = bbox[0][0] ymin = bbox[0][1] xmax = bbox[2][0] ymax = bbox[2][1] xwidth = xmax - xmin ywidth = ymax - ymin return {'type': 'Point', 'coordinates': [xmin + xwidth / 2, ymin + ywidth / 2]}
0.817684
0.666021
def fixed_time_horizon(df, column='close', lookback=20): """ Fixed-time Horizon As it relates to finance, virtually all ML papers label observations using the fixed-time horizon method. Fixed-time horizon is presented as one of the main procedures to label data when it comes to processing financial time series for machine learning. Parameters ---------- df: pd.DataFrame column: str Choose from "open", "high", "low", and "close." lookahead: str The number of days to look ahead. References ---------- 1. https://mlfinlab.readthedocs.io/en/latest/labeling/labeling_fixed_time_horizon.html 2. https://arxiv.org/pdf/1603.08604.pdf 3. https://quantdare.com/4-simple-ways-to-label-financial-data-for-machine-learning/ 4. De Prado, Advances in financial machine learning, 2018 5. Dixon et al., Classification-based financial markets prediction using deep neural networks, 2017 """ price = df[column] label = (price.shift(-lookback) / price > 1).astype(int) return label
0.937002
0.756942
def _make_cache_key(times, targets): """ Make a unique key to reference this combination of ``times`` and ``targets``. Often, we wish to store expensive calculations for a combination of ``targets`` and ``times`` in a cache on an ``observer``` object. This routine will provide an appropriate, hashable, key to store these calculations in a dictionary. Parameters ---------- times : `~astropy.time.Time` Array of times on which to test the constraint. targets : `~astropy.coordinates.SkyCoord` Target or list of targets. Returns ------- cache_key : tuple A hashable tuple for use as a cache key """ # make a tuple from times try: timekey = tuple(times.jd) + times.shape except BaseException: # must be scalar timekey = (times.jd,) # make hashable thing from targets coords try: if hasattr(targets, 'frame'): # treat as a SkyCoord object. Accessing the longitude # attribute of the frame data should be unique and is # quicker than accessing the ra attribute. targkey = tuple(targets.frame.data.lon.value.ravel()) + targets.shape else: # assume targets is a string. targkey = (targets,) except BaseException: targkey = (targets.frame.data.lon,) return timekey + targkey
0.903967
0.904693
def min_best_rescale(vals, min_val, max_val, less_than_min=1): """ rescales an input array ``vals`` to be a score (between zero and one), where the ``min_val`` goes to one, and the ``max_val`` goes to zero. Parameters ---------- vals : array-like the values that need to be rescaled to be between 0 and 1 min_val : float worst acceptable value (rescales to 0) max_val : float best value cared about (rescales to 1) less_than_min : 0 or 1 what is returned for ``vals`` below ``min_val``. (in some cases anything less than ``min_val`` should also return one, in some cases it should return zero) Returns ------- array of floats between 0 and 1 inclusive rescaled so that ``vals`` equal to ``max_val`` equal 0 and those equal to ``min_val`` equal 1 Examples -------- rescale airmasses to between 0 and 1, with the best (1) and worst (2.25). All values outside the range should return 0. >>> from astroplan.constraints import min_best_rescale >>> import numpy as np >>> airmasses = np.array([1, 1.5, 2, 3, 0]) >>> min_best_rescale(airmasses, 1, 2.25, less_than_min = 0) # doctest: +FLOAT_CMP array([ 1. , 0.6, 0.2, 0. , 0. ]) """ rescaled = (vals - max_val) / (min_val - max_val) below = vals < min_val above = vals > max_val rescaled[below] = less_than_min rescaled[above] = 0 return rescaled
0.937947
0.981095
def max_best_rescale(vals, min_val, max_val, greater_than_max=1): """ rescales an input array ``vals`` to be a score (between zero and one), where the ``max_val`` goes to one, and the ``min_val`` goes to zero. Parameters ---------- vals : array-like the values that need to be rescaled to be between 0 and 1 min_val : float worst acceptable value (rescales to 0) max_val : float best value cared about (rescales to 1) greater_than_max : 0 or 1 what is returned for ``vals`` above ``max_val``. (in some cases anything higher than ``max_val`` should also return one, in some cases it should return zero) Returns ------- array of floats between 0 and 1 inclusive rescaled so that ``vals`` equal to ``min_val`` equal 0 and those equal to ``max_val`` equal 1 Examples -------- rescale an array of altitudes to be between 0 and 1, with the best (60) going to 1 and worst (35) going to 0. For values outside the range, the rescale should return 0 below 35 and 1 above 60. >>> from astroplan.constraints import max_best_rescale >>> import numpy as np >>> altitudes = np.array([20, 30, 40, 45, 55, 70]) >>> max_best_rescale(altitudes, 35, 60) # doctest: +FLOAT_CMP array([ 0. , 0. , 0.2, 0.4, 0.8, 1. ]) """ rescaled = (vals - min_val) / (max_val - min_val) below = vals < min_val above = vals > max_val rescaled[below] = 0 rescaled[above] = greater_than_max return rescaled
0.942354
0.984796
def convert_qkv_weight(cfg, value): """ Convert qkv.weight to be compatible with LiBai transformer layer Args: cfg: config file value: qkv.weight in the loaded checkpoint """ num_heads = cfg.model.num_heads hidden_size = cfg.model.embed_dim head_size = int(hidden_size / num_heads) qkv_weight = ( value.view([3, num_heads, head_size, hidden_size]) .permute(1, 0, 2, 3) .contiguous() .view(hidden_size * 3, hidden_size) ) return qkv_weight
0.88136
0.689458
def convert_qkv_bias(cfg, value): """ Convert qkv.bias to be compatible with LiBai transformer layer Args: cfg: config file value: qkv.bias in the loaded checkpoint """ num_heads = cfg.model.num_heads hidden_size = cfg.model.embed_dim head_size = int(hidden_size / num_heads) qkv_bias = ( value.view(3, num_heads, head_size).permute(1, 0, 2).contiguous().view(hidden_size * 3) ) return qkv_bias
0.914901
0.817137
def get_supported_schedulers(): """ Return a tuple of the scheduler supported by parallelcluster. :return: a tuple of strings of the supported scheduler """ return "sge", "torque", "slurm", "awsbatch"
0.744006
0.517937
def textBoxSize(txt, transformation=None, figure=None): """Get the width and height of a text object's bounding box transformed to the desired coordinates. Defaults to figure coordinates if transformation is None.""" fig= txt.get_figure() if figure is None else figure if transformation is None: transformation = fig.transFigure coordConvert = transformation.inverted().transform bboxDisp = txt.get_window_extent(fig.canvas.renderer) bboxConv = coordConvert(bboxDisp) w = bboxConv[1,0] - bboxConv[0,0] h = bboxConv[1,1] - bboxConv[0,1] return w, h
0.802517
0.693596
def pretty_date(ago): """ Process a timedelta object. From https://stackoverflow.com/questions/1551382/user-friendly-time-format-in-python """ second_diff = ago.seconds day_diff = ago.days if day_diff < 0: return '' if day_diff == 0: if second_diff < 10: return "just now" if second_diff < 60: return str(second_diff) + " seconds ago" if second_diff < 120: return "a minute ago" if second_diff < 3600: return str(second_diff / 60) + " minutes ago" if second_diff < 7200: return "an hour ago" if second_diff < 86400: return str(second_diff / 3600) + " hours ago" if day_diff == 1: return "Yesterday" if day_diff < 7: return str(day_diff) + " days ago" if day_diff < 31: if day_diff / 7 == 1: return str(day_diff / 7) + " week ago" return str(day_diff / 7) + " weeks ago" if day_diff < 365: if day_diff / 30 == 1: return str(day_diff / 30) + " month ago" return str(day_diff / 30) + " months ago" if day_diff / 365 == 1: return str(day_diff / 365) + " year ago" return str(day_diff / 365) + " years ago"
0.736401
0.514217
def combine_dict(d1,d2): """Creates a dictionary which has entries from both of them. :param d1: dictionary 1 :param d2: dictionary 2 :return: resulting dictionary """ d = d1.copy() d.update(d2) return d
0.723993
0.975414
def lift_to_dimension(A, dim): """Creates a view of A of dimension dim (by adding dummy dimensions if necessary). :param A: numpy array :param dim: desired dimension of view :return: returns view of A of appropriate dimension """ current_dim = len(A.shape) if current_dim > dim: raise ValueError('Can only add dimensions, but not remove them') if current_dim == dim: return A else: return A.reshape([1]*(dim-current_dim)+list(A.shape))
0.769514
0.587647
def get_dim_of_affine_transform(Ab): """Returns the number of dimensions corresponding to an affine transformation of the form y=Ax+b stored in a column vector. For A =[a1,a2,a3], the parameter vector is simply [a1;a2;a3;b], i.e., all columns stacked on top of each other. :param Ab: parameter vector :return: dimensionality of transform (1,2,or 3) """ nr = len(Ab) if nr==2: return 1 elif nr==6: return 2 elif nr==12: return 3 else: raise ValueError('Only supports dimensions 1, 2, and 3.')
0.795975
0.727129
def t2np(v): """ Takes a torch array and returns it as a numpy array on the cpu :param v: torch array :return: numpy array """ return (v.detach()).cpu().numpy()
0.77518
0.791821
def cxyz_to_xyzc( v ): """ Takes a torch array and returns it as a numpy array on the cpu :param v: torch array :return: numpy array """ dim = len(v.shape)-2 if dim ==2: v = v.permute(0,2,3,1) if dim ==3: v = v.permute(0,2,3,4,1) return v
0.725357
0.735642
def best_scale(number): """Scale and units for a number with proper prefix.""" absnr = abs(number) if absnr == 0: return 1, ' ' if absnr < 0.99999999e-9: return 1e12, 'p' if absnr < 0.99999999e-6: return 1e9, 'n' if absnr < 0.99999999e-3: return 1e6, 'µ' if absnr < 0.99999999: return 1e3, 'm' if absnr < 0.99999999e3: return 1, ' ' if absnr < 0.99999999e6: return 1e-3, 'k' if absnr < 0.999999991e9: return 1e-6, 'M' return 1e-9, 'G'
0.702326
0.625495
def crop_img(img, relative_corners): """ relative_corners are floats between 0 and 1 designating where the corners of a crop box should be ([[top_left_x, top_left_y], [bottom_right_x, bottom_right_y]]). e.g. [[0, 0], [1, 1]] would be the full image, [[0.5, 0.5], [1, 1]] would be bottom right.""" rc = relative_corners raw_height, raw_width = img.shape[:2] top_left_pix = [int(rc[0][0] * raw_width), int(rc[0][1] * raw_height)] bottom_right_pix = [int(rc[1][0] * raw_width), int(rc[1][1] * raw_height)] img_cropped = img[top_left_pix[1]:bottom_right_pix[1], top_left_pix[0]:bottom_right_pix[0]] return img_cropped
0.809765
0.708015
def loss(y_pred, y_true, metric): """Compute loss function between prediction and ground truth. Loss function given by a Riemannian metric, expressed as the squared geodesic distance between the prediction and the ground truth. Parameters ---------- y_pred y_true metric Returns ------- loss """ loss = metric.squared_dist(y_pred, y_true) return loss
0.947884
0.811265
def kl_to_prior(means, log_stds, stds): """ KL between a Gaussian and a standard Gaussian. https://stats.stackexchange.com/questions/60680/kl-divergence-between-two-multivariate-gaussians """ return 0.5 * ( - 2 * log_stds # log std_prior = 0 - 1 # d = 1 + stds ** 2 + means ** 2 )
0.72952
0.557243
def getConflictingAssignments(schedule): """ Get list of assignments which exceeded rotation capacity Parameters: schedule (dict): overall assignments Returns: confictingAssignmentsByRotation (dict): overall schedule with conflicting assignments """ return {}
0.777131
0.615203
def quadratic_formula(polynomial): """ input is single-variable polynomial of degree 2 returns zeros """ if len(polynomial.term_matrix) == 3: if polynomial.term_matrix[2][1] == 1: a, b = polynomial.term_matrix[1][0], polynomial.term_matrix[2][0] return 0, -b/a a, c = polynomial.term_matrix[1][0], polynomial.term_matrix[2][0] return (-c/a)**.5, -(-c/a)**.5 if len(polynomial.term_matrix) == 2: a, b, c, = polynomial.term_matrix[1][0], 0, 0 elif len(polynomial.term_matrix) == 3: a, b, c = polynomial.term_matrix[1][0], polynomial.term_matrix[2][0], 0 else: a, b, c = polynomial.term_matrix[1][0], polynomial.term_matrix[2][0], polynomial.term_matrix[3][0] ans1 = (-b + (b**2 - 4*a*c)**.5)/2*a ans2 = (-b - (b**2 - 4*a*c)**.5)/2*a if ans1 == ans2: return ans1 return ans1, ans2
0.739234
0.795221
def generate_coordinates(coords): """ A function that returns all possible triples of coords Parameters: coords: a numpy array of coordinates Returns: x: the first coordinate of possible triples y: the second coordinate of possible triples z the third coordinate of possible triples """ x = coords.reshape(-1, 1).repeat(1, len(coords) * len(coords)).flatten() y = coords.reshape(-1, 1).repeat(1, len(coords)).flatten().repeat(len(coords)) z = coords.reshape(-1, 1).flatten().repeat(len(coords)*len(coords)) return x, y, z
0.914827
0.929824
def midpoint_rule(f, M=100000): """Integrate f(x) over [0,1] using M intervals.""" from numpy import sum, linspace dx = 1.0/M # interval length x = linspace(dx/2, 1-dx/2, M) # integration points return dx*sum(f(x))
0.700895
0.504639
def dollar(amount): """ Given an amount as a number Return a string formatted as a dollar amount """ amount = round(amount, 2) return '${0:0.2f}'.format(amount)
0.778986
0.924688
def dataqc_condcompress(p_orig, p_new, c_orig, cpcor=-9.57e-8): """ Description: Implementation of the Sea-Bird conductivity compressibility correction, scaling the input conductivity based on ratio of the original pressure and the updated pressure. Implemented by: 2013-04-07: Christopher Wingard. Initial python implementation. Usage: c_new = dataqc_condcompress(p_orig, p_new, c_orig, cpcor) where c_new = updated conductivity record [S/m] p_orig = original pressure used to calculate original conductivity, this typically the L1a PRESWAT [dbar] p_new = updated pressure, typically L1b PRESWAT [dbar] c_orig = original conductivty record, typically L1a CONDWAT [S/m] cpcor = pressure correction coefficient used to calculate original conductivity, default is -9.57e-8 References: OOI (2012). Data Product Specification for Conductivity Compressibility Correction. Document Control Number 1341-10030. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-10030_Data_Product_SPEC_CNDCMPR_OOI.pdf) """ c_new = c_orig * (1 + cpcor * p_orig) / (1 + cpcor * p_new) return c_new
0.825906
0.751785
def delta(a, b): """ Return change in percent (or None if undefined). The delta in percent is rounded to one decimal. """ if a is None or b is None: return None if a == 0.0 and b == 0.0: return 0.0 assert a != 0.0 and b != 0.0 return round((b - a) * 1000.0 / a) / 10.0
0.741393
0.654322
def adjust_contrast(image, contrast_level): """Return the image scaled to a certain contrast level in [0, 1]. parameters: - image: a numpy.ndarray - contrast_level: a scalar in [0, 1]; with 1 -> full contrast """ assert(contrast_level >= 0.0), "contrast_level too low." assert(contrast_level <= 1.0), "contrast_level too high." return (1-contrast_level)/2.0 + image.dot(contrast_level)
0.89753
0.78964
def to_list(data_in): """Convert the data into a list. Does not pack lists into a new one. If your input is, for example, a string or a list of strings, or a tuple filled with strings, you have, in general, a problem: - just iterate through the object will fail because it iterates through the characters of the string. - using list(obj) converts the tuple, leaves the list but splits the strings characters into single elements of a new list. - using [obj] creates a list containing a string, but also a list containing a list or a tuple, which you did not want to. Solution: use to_list(obj), which creates a new list in case the object is a single object (a string is a single object in this sence) or converts to a list if the object is already a container for several objects. Parameters ---------- data_in : any obj So far, any object can be entered. Returns ------- out : list Return a list containing the object or the object converted to a list. """ if isinstance(data_in, (str, int, float)): data_in = [data_in] data_in = list(data_in) return data_in
0.814754
0.701317
def dot(a, b, out=None): """Returns a dot product of two arrays. For arrays with more than one axis, it computes the dot product along the last axis of ``a`` and the second-to-last axis of ``b``. This is just a matrix product if the both arrays are 2-D. For 1-D arrays, it uses their unique axis as an axis to take dot product over. Args: a (cupy.ndarray): The left argument. b (cupy.ndarray): The right argument. out (cupy.ndarray): Output array. Returns: cupy.ndarray: The dot product of ``a`` and ``b``. .. seealso:: :func:`numpy.dot` """ # TODO(okuta): check type return a.dot(b, out)
0.814422
0.750736
def coord_to_index(coord, sl): """ Takes a 3D coordinate in a cube and the cube side length. Returns index in flattened 3D array. """ return coord[0] * sl * sl + coord[1] * sl + coord[2]
0.749546
0.992327
def index_to_coord(index, sl): """ Takes an index into a flattened 3D array and its side length. Returns the coordinate in the cube. """ coord = [] two_d_slice_size = sl * sl coord.append(index // two_d_slice_size) remaining = index % two_d_slice_size coord.append(remaining // sl) coord.append(remaining % sl) return coord
0.748076
0.868102
def use_node_def_or_str(given_value, default_func): """Transform a value of type (None, str, Callable) to a node annotation function.""" # Default: use pre-defined function from this module if given_value is None: func = default_func # Transform: value to function that returns the value elif isinstance(given_value, str): given_value = str(given_value) def func(atom): return given_value # Passthrough: value itself is a function else: func = given_value return func
0.745306
0.540378
def use_node_def_or_num(given_value, default_func): """Transform a value of type (None, int, float, Callable) to a node annotation function.""" # Default: use pre-defined function from this module if given_value is None: func = default_func # Transform: value to function that returns the value elif isinstance(given_value, (int, float)): given_value = float(given_value) def func(atom): return given_value # Passthrough: value itself is a function else: func = given_value return func
0.737725
0.556882
def use_edge_def_or_str(given_value, default_func): """Transform a value of type (None, str, Callable) to an edge annotation function.""" # Default: use pre-defined function from this module if given_value is None: func = default_func # Transform: value to function that returns the value elif isinstance(given_value, str): given_value = str(given_value) def func(atom1, atom2): return given_value # Passthrough: value itself is a function else: func = given_value return func
0.752559
0.546436
def use_edge_def_or_num(given_value, default_func): """Transform a value of type (None, int, float, Callable) to an edge annotation function.""" # Default: use pre-defined function from this module if given_value is None: func = default_func # Transform: value to function that returns the value elif isinstance(given_value, (int, float)): given_value = float(given_value) def func(atom1, atom2): return given_value # Passthrough: value itself is a function else: func = given_value return func
0.761361
0.562177
import torch def gnmt_length_penalty(lengths, alpha=0.8): """Calculate a length penalty from https://arxiv.org/pdf/1609.08144.pdf The paper states the penalty as (5 + |Y|)^a / (5 + 1)^a. This is implemented as ((5 + |Y|) / 6)^a for a (very) tiny performance boost :param lengths: `torch.LongTensor`: [B, K] The lengths of the beams. :param alpha: `float`: A hyperparameter. See Table 2 for a search on this parameter. :returns: `torch.FloatTensor`: [B, K, 1] The penalties. """ lengths = lengths.to(torch.float) penalty = torch.pow(((5 + lengths) / 6), alpha) return penalty.unsqueeze(-1)
0.913342
0.563798
def repeat_batch(t, K, dim=0): """Repeat a tensor while keeping the concept of a batch. :param t: `torch.Tensor`: The tensor to repeat. :param K: `int`: The number of times to repeat the tensor. :param dim: `int`: The dimension to repeat in. This should be the batch dimension. :returns: `torch.Tensor`: The repeated tensor. The new shape will be batch size * K at dim, the rest of the shapes will be the same. Example:: >>> a = torch.arange(10).view(2, -1) >>> a tensor([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]) >>> a.repeat(2, 1) tensor([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9], [0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]) >>> repeat_batch(a, 2) tensor([[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [5, 6, 7, 8, 9], [5, 6, 7, 8, 9]]) """ shape = t.shape tiling = [1] * (len(shape) + 1) tiling[dim + 1] = K tiled = t.unsqueeze(dim + 1).repeat(tiling) old_bsz = shape[dim] new_bsz = old_bsz * K new_shape = list(shape[:dim]) + [new_bsz] + list(shape[dim + 1 :]) return tiled.view(new_shape)
0.946076
0.911928
import torch def bilinear_interpolate_torch(im, x, y): """ Args: im: (H, W, C) [y, x] x: (N) y: (N) Returns: """ x0 = torch.floor(x).long() x1 = x0 + 1 y0 = torch.floor(y).long() y1 = y0 + 1 x0 = torch.clamp(x0, 0, im.shape[1] - 1) x1 = torch.clamp(x1, 0, im.shape[1] - 1) y0 = torch.clamp(y0, 0, im.shape[0] - 1) y1 = torch.clamp(y1, 0, im.shape[0] - 1) Ia = im[y0, x0] Ib = im[y1, x0] Ic = im[y0, x1] Id = im[y1, x1] wa = (x1.type_as(x) - x) * (y1.type_as(y) - y) wb = (x1.type_as(x) - x) * (y - y0.type_as(y)) wc = (x - x0.type_as(x)) * (y1.type_as(y) - y) wd = (x - x0.type_as(x)) * (y - y0.type_as(y)) ans = torch.t((torch.t(Ia) * wa)) + torch.t(torch.t(Ib) * wb) + torch.t(torch.t(Ic) * wc) + torch.t(torch.t(Id) * wd) return ans
0.806396
0.580798
def int_parameter(level, maxval): """Helper function to scale `val` between 0 and maxval . Args: level: Level of the operation that will be between [0, `PARAMETER_MAX`]. maxval: Maximum value that the operation can have. This will be scaled to level/PARAMETER_MAX. Returns: An int that results from scaling `maxval` according to `level`. """ return int(level * maxval / 10)
0.768386
0.610802
def float_parameter(level, maxval): """Helper function to scale `val` between 0 and maxval. Args: level: Level of the operation that will be between [0, `PARAMETER_MAX`]. maxval: Maximum value that the operation can have. This will be scaled to level/PARAMETER_MAX. Returns: A float that results from scaling `maxval` according to `level`. """ return float(level) * maxval / 10.
0.862207
0.820397
def normalize(image): """Normalize input image channel-wise to zero mean and unit variance.""" return image - 127
0.792223
0.963746
def MakeMetadataLine(label, value, indent=1): """Returns a string with a vertically aligned label and value. Labels of the same indentation level will start at the same column. Values will all start at the same column (unless the combined left-indent and label length is excessively long). If a value spans multiple lines, indentation will only be applied to the first line. Example output from several calls: Label1: Value (default indent of 1 was used) Sublabel1: Value (used indent of 2 here) Label2: Value Args: label: The label to print in the first column. value: The value to print in the second column. indent: (4 * indent) spaces will be placed before the label. Returns: A string with a vertically aligned label and value. """ return '{}{}'.format(((' ' * indent * 4) + label + ':').ljust(28), value)
0.90532
0.670947
def to_label(name, capitalize=True): """Converts `name` into label by replacing underscores by spaces. If `capitalize` is ``True`` (default) then the first letter of the label is capitalized.""" label = name.replace("_", " ") if capitalize: label = label.capitalize() return label
0.731538
0.581273
def closest_ref_length(ref_lens, hyp_len): """ This function finds the reference that is the closest length to the hypothesis. The closest reference length is referred to as *r* variable from the brevity penalty formula in Papineni et. al. (2002) :param references: A list of reference translations. :type references: list(list(str)) :param hyp_len: The length of the hypothesis. :type hyp_len: int :return: The length of the reference that's closest to the hypothesis. :rtype: int """ closest_ref_len = min( ref_lens, key=lambda ref_len: (abs(ref_len - hyp_len), ref_len) ) return closest_ref_len
0.776708
0.756897
def firing_rate(spike_train, duration): """Calculate firing rate for a spike train. If either temporal bound is not specified, the first and last spike time are used by default. Inputs: ------- spike_train : array of spike times (in seconds) duration : length of recording (in seconds) Outputs: -------- fr : float Firing rate in Hz """ fr = spike_train.size / duration return fr
0.788176
0.967132
def get_unit_pcs(these_pc_features, index_mask, channel_mask): """ Use the index_mask and channel_mask to return PC features for one unit Inputs: ------- these_pc_features : numpy.ndarray (float) Array of pre-computed PC features (num_spikes x num_PCs x num_channels) index_mask : numpy.ndarray (boolean) Mask for spike index dimension of pc_features array channel_mask : numpy.ndarray (boolean) Mask for channel index dimension of pc_features array Output: ------- unit_PCs : numpy.ndarray (float) PCs for one unit (num_spikes x num_PCs x num_channels) """ unit_PCs = these_pc_features[index_mask, :, :] unit_PCs = unit_PCs[:, :, channel_mask] return unit_PCs
0.794863
0.76291
def capitalize(text): """capitalizes a word, for use in rendering template Args: text (str): word to capitalize Returns: capitalized (str): capitalized word """ return text[0].upper() + text[1:]
0.821116
0.759839
def rule_separation(value: float, layer1: str, layer2: str): """Min space between different layers""" error = f"min {layer1} {layer2} separation {value}um" return f"{layer1}.separation({layer2}, {value})" f".output('{error}', '{error}')"
0.76454
0.723187
def remove_alpha(pic): """ Removes the alpha channel from an image, if it exists. Necessary for OCR. Args: pic: PIL.Image object to convert. Returns: The PIL.Image object in RGB format. """ return pic.convert("RGB")
0.805288
0.673809
def is_array(signature): """Return True if this argument is an array. A dictionary is considered an array.""" return signature[0] == "a"
0.758332
0.624007
def to_row_vec(col_vec): """ :param col_vec: 2d np array :return: """ return col_vec.reshape(1, -1)
0.758689
0.970688
def concatenate_rounds(rounds_1, rounds_2): """ :param rounds_1: list - first rounds played. :param rounds_2: list - second set of rounds played. :return: list - all rounds played. """ return rounds_1 + rounds_2
0.799403
0.693077
def list_contains_round(rounds, number): """ :param rounds: list - rounds played. :param number: int - round number. :return: bool - was the round played? """ return number in rounds
0.702836
0.50116
def card_average(hand): """ :param hand: list - cards in hand. :return: float - average value of the cards in the hand. """ return sum(hand) / len(hand)
0.702938
0.841044
def split_num(line, chars=' ', maxsplits=1, empty=''): """/lazy/ wrapper, to stop us having to bounds-check when splitting. Arguments: line -- line to split chars -- character(s) to split line on maxsplits -- how many split items are returned empty -- character to put in place of nothing Returns: line.split(chars, items); return value is padded until `maxsplits + 1` number of values are present""" line = line.split(chars, maxsplits) while len(line) <= maxsplits: line.append(empty) return line
0.756178
0.555797
def const_rate(n, p1=0.0, p2=1.0, p3=1.0): """ Constant rate function. :param n: int - allele number (unused) :param p1: float - constant parameter :param p2: float - linear parameter (unused) :param p3: float - additional parameter (unused) :return: float - p1 """ return p1
0.76708
0.553143
def linear_rate(n, p1=0.0, p2=1.0, p3=1.0): """ Linear rate function. :param n: int - allele number :param p1: float - constant parameter :param p2: float - linear parameter :param p3: float - additional parameter (unused) :return: float - p1 + p2 * n """ return p1 + p2 * n
0.821939
0.580293
def n2_rate(n, p1=0.0, p2=1.0, p3=1.0): """ Quadratic rate function. :param n: int - allele number :param p1: float - constant parameter :param p2: float - linear parameter :param p3: float - quadratic parameter :return: float - p1 + p2 * n + p3 * n * n """ return p1 + p2 * n + p3 * n * n
0.752104
0.734881
def set_axis(ax, x, y, letter=None): """ Formats the plot's caption. Parameters ---------- ax: Axes object. x: float X-position of caption. y: float Y-position of caption. letter: string Caption of the plot. Default: None. Returns ------- ax: modyfied Axes object. """ ax.text( x, y, letter, fontsize=15, weight='bold', transform=ax.transAxes) return ax
0.923394
0.536374
def _airtovac(w): """Convert air wavelengths to vacuum wavelengths. Don't convert less than 2000 Å. Parameters ---------- w : :class:`float` Wavelength [Å] of the line in air. Returns ------- :class:`float` Wavelength [Å] of the line in vacuum. """ if w < 2000.0: return w; vac = w for iter in range(2): sigma2 = (1.0e4/vac)*(1.0e4/vac) fact = 1.0 + 5.792105e-2/(238.0185 - sigma2) + 1.67917e-3/(57.362 - sigma2) vac = w*fact return vac
0.943796
0.520862
def dict_zero(first_level_keys): """Initialise a dictionary with one level Parameters ---------- first_level_keys : list First level data Returns ------- one_level_dict : dict dictionary """ one_level_dict = dict.fromkeys(first_level_keys, 0) # set zero as argument return one_level_dict
0.761184
0.743215
import torch def get_dihedral_torch(c1, c2, c3, c4): """ Returns the dihedral angle in radians. Will use atan2 formula from: https://en.wikipedia.org/wiki/Dihedral_angle#In_polymer_physics Can't use torch.dot bc it does not broadcast Inputs: * c1: (batch, 3) or (3,) * c1: (batch, 3) or (3,) * c1: (batch, 3) or (3,) * c1: (batch, 3) or (3,) """ u1 = c2 - c1 u2 = c3 - c2 u3 = c4 - c3 return torch.atan2( ( (torch.norm(u2, dim=-1, keepdim=True) * u1) * torch.cross(u2,u3, dim=-1) ).sum(dim=-1) , ( torch.cross(u1,u2, dim=-1) * torch.cross(u2, u3, dim=-1) ).sum(dim=-1) )
0.86852
0.701728
import torch def distmat_loss_torch(X=None, Y=None, X_mat=None, Y_mat=None, p=2, q=2, custom=None, distmat_mask=None): """ Calculates a loss on the distance matrix - no need to align structs. Inputs: * X: (N, d) tensor. the predicted structure. One of (X, X_mat) is needed. * X_mat: (N, N) tensor. the predicted distance matrix. Optional () * Y: (N, d) tensor. the true structure. One of (Y, Y_mat) is needed. * Y_mat: (N, N) tensor. the predicted distance matrix. Optional () * p: int. power for the distance calculation (2 for euclidean) * q: float. power for the scaling of the loss (2 for MSE, 1 for MAE, etc) * custom: func or None. custom loss over distance matrices. ex: lambda x,y: 1 - 1/ (1 + ((x-y))**2) (1 is very bad. 0 is good) * distmat_mask: (N, N) mask (boolean or weights for each ij pos). optional. """ assert (X is not None or X_mat is not None) and \ (Y is not None or Y_mat is not None), "The true and predicted coords or dist mats must be provided" # calculate distance matrices if X_mat is None: X_mat = torch.cdist(X, X, p=p) if Y_mat is None: Y_mat = torch.cdist(Y, Y, p=p) if distmat_mask is None: distmat_mask = torch.ones_like(Y_mat).bool() # do custom expression if passed if custom is not None: loss = custom(X_mat, Y_mat).mean() # **2 ensures always positive. Later scale back to desired power else: loss = ( X_mat - Y_mat )**2 if q != 2: loss = loss**(q/2) return loss[distmat_mask].mean()
0.859752
0.665988
def Kabsch(A, B): """ Returns Kabsch-rotated matrices resulting from aligning A into B. Adapted from: https://github.com/charnley/rmsd/ * Inputs: * A,B are (3 x N) * backend: one of ["numpy", "torch", "auto"] for backend choice * Outputs: tensor/array of shape (3 x N) """ # run calcs - pick the 0th bc an additional dim was created return A, B
0.735167
0.770249
def RMSD(A, B): """ Returns RMSD score as defined here (lower is better): https://en.wikipedia.org/wiki/ Root-mean-square_deviation_of_atomic_positions * Inputs: * A,B are (B x 3 x N) or (3 x N) * backend: one of ["numpy", "torch", "auto"] for backend choice * Outputs: tensor/array of size (B,) """ return A, B
0.820073
0.903081
def TMscore(A, B): """ Returns TMscore as defined here (higher is better): >0.5 (likely) >0.6 (highly likely) same folding. = 0.2. https://en.wikipedia.org/wiki/Template_modeling_score Warning! It's not exactly the code in: https://zhanglab.ccmb.med.umich.edu/TM-score/TMscore.cpp but will suffice for now. Inputs: * A,B are (B x 3 x N) (np.array or torch.tensor) * mode: one of ["numpy", "torch", "auto"] for backend Outputs: tensor/array of size (B,) """ return A, B
0.788827
0.580352
def get_square(tracks, position): """Get square from tracks with position.""" row, col = position return tracks[row][col]
0.707203
0.526404
def split_history_and_current(windowed_ts): """ Returns the first n-1 columns as X, and the last column as y. Useful mainly for forecasting scenarios :param windowed_ts: a pd.DataFrame with a date index and a column per timestamp. see get_windowed_ts :return: """ X = windowed_ts.iloc[:, :-1].values y = windowed_ts.iloc[:, -1].values return (X, y)
0.744099
0.775009
def calc_accuracy(pred, real): """ A function to calculate the accuracy of a CNN when given a list of predicted classes and a list of the real classes Param: - pred, a numpy array of predicted classes - real, a numpy array of the real classes Return: - Accuracy as a decimal """ return sum(pred==real) / len(pred)
0.753104
0.988313
def convert_to_physical(a_coeffs, b_coeffs, logic_x, logic_y): """ Convert to physical coordinates from logical coordinates. Parameters ---------- a_coeffs : array Perspective transformation coefficients for alpha. b_coeffs : array Perspective transformation coefficients for beta. logic_x : float Logical point in the x direction. logic_y : float Logical point in the y direction. Returns ------- x, y : tuple The x and y physical values on the specified grid. """ # x = a(1) + a(2)*l + a(3)*m + a(4)*l*m x = (a_coeffs[0] + a_coeffs[1] * logic_x + a_coeffs[2] * logic_y + a_coeffs[3] * logic_x * logic_y) # y = b(1) + b(2)*l + b(3)*m + b(4)*l*m y = (b_coeffs[0] + b_coeffs[1] * logic_x + b_coeffs[2] * logic_y + b_coeffs[3] * logic_x * logic_y) return x, y
0.926877
0.884888
def drop_disregard(df): """ If one token in a note is marked 'disregard', remove the whole note from df. Parameters ---------- df: DataFrame parsed token-level annotations df (created by `parse_annotations.py`) Returns ------- DataFrame df without 'disregard' notes """ df['disregard_note'] = df.groupby('NotitieID').disregard.transform('any') return df.query( "not disregard_note" ).drop(columns=['disregard', 'disregard_note'])
0.802517
0.611527
def fix_week_14(df): """ For annotations from week 14: - Replace MBW values with `False` - Replace MBW-lvl values with NaN We remove this domain from week 14 since the guidelines for it were changed after this week. Parameters ---------- df: DataFrame parsed token-level annotations df (created by `parse_annotations.py`) Returns ------- DataFrame df without MBW and MBW_lvl labels for week 14 """ df['MBW'] = df.MBW.mask(df.batch == 'week_14', other=False) df['MBW_lvl'] = df.MBW_lvl.mask(df.batch == 'week_14') return df
0.868576
0.586079
def gaussian_product_center(alpha1,A,alpha2,B): """ The center of the Gaussian resulting from the product of two Gaussians: >>> gaussian_product_center(1,array((0,0,0),'d'),1,array((0,0,0),'d')) array([ 0., 0., 0.]) """ return (alpha1*A+alpha2*B)/(alpha1+alpha2)
0.734501
0.534005
def smoothing_error(x, x_a, A): """Return the smoothing error through the averaging kernel. Parameters: x (ndarray): Atmospherice profile. x_a (ndarray): A priori profile. A (ndarray): Averaging kernel matrix. Returns: ndarray: Smoothing error due to correlation between layers. """ return A @ (x - x_a)
0.917935
0.960584
def get_f_min(f_max, cents_per_value, v_min, v_max): """ This function takes in a y value max and min, a maximum frequency and a y scale parameter in units of cents/y value, and returns the minimum frequency that fits to such a scale. Cents are a logarithmic unit of tone intervals (https://en.wikipedia.org/wiki/Cent_(music)). Parameters ---------- f_max : float Maximum frequency. cents_per_value : float A y scale parameter in units of cents/y value. v_min : float Minimum y value. v_max : float Maximum y value. Returns ------- float Minimum frequency. """ f_min = f_max / (2 ** ((v_max - v_min) * cents_per_value / 1200)) return f_min
0.937168
0.675141
def get_f_max(f_min, cents_per_value, v_min, v_max): """ This function takes in a y value max and min, a minimum frequency and a y scale parameter in units of cents/y value, and returns the maximum frequency that fits to such a scale. Cents are a logarithmic unit of tone intervals (https://en.wikipedia.org/wiki/Cent_(music)). Parameters ---------- f_min : float Minimum frequency. cents_per_value : float A y scale parameter in units of cents/y value. v_min : float Minimum y value. v_max : float Maximum y value. Returns ------- float Maximum frequency. """ f_max = f_min * (2 ** ((v_max - v_min) * cents_per_value / 1200)) return f_max
0.934189
0.710622
def flatten(tensor): """Flattens a given tensor such that the channel axis is first. The shapes are transformed as follows: (N, C, D, H, W) -> (C, N * D * H * W) """ # number of channels C = tensor.size(1) # new axis order axis_order = (1, 0) + tuple(range(2, tensor.dim())) # Transpose: (N, C, D, H, W) -> (C, N, H, W) transposed = tensor.permute(axis_order) # Flatten: (C, N, D, H, W) -> (C, N * H * W) return transposed.contiguous().view(C, -1)
0.85741
0.681264
import torch def expand_as_one_hot(input, C, ignore_index=None): """ Converts NxHxW label image to NxCxDxHxW, where each label gets converted to its corresponding one-hot vector :param input: 4D input image (NxDxHxW) :param C: number of channels/labels :param ignore_index: ignore index to be kept during the expansion :return: 5D output image (NxCxDxHxW) """ assert input.dim() == 3 # expand the input tensor to Nx1xHxW before scattering input = input.unsqueeze(1) # create result tensor shape (NxCxDxHxW) shape = list(input.size()) shape[1] = C if ignore_index is not None: # create ignore_index mask for the result mask = input.expand(shape) == ignore_index # clone the src tensor and zero out ignore_index in the input input = input.clone() input[input == ignore_index] = 0 # scatter to get the one-hot tensor result = torch.zeros(shape).to(input.device).scatter_(1, input, 1) # bring back the ignore_index in the result result[mask] = ignore_index return result else: # scatter to get the one-hot tensor return torch.zeros(shape).to(input.device).scatter_(1, input, 1)
0.766992
0.659302
def batch_quat_to_rotmat(q, out=None): """ quaternion a + bi + cj + dk should be given in the form [a,b,c,d] :param q: :param out: :return: """ import torch batchsize = q.size(0) if out is None: out = q.new_empty(batchsize, 3, 3) # 2 / squared quaternion 2-norm s = 2 / torch.sum(q.pow(2), 1) # coefficients of the Hamilton product of the quaternion with itself h = torch.bmm(q.unsqueeze(2), q.unsqueeze(1)) out[:, 0, 0] = 1 - (h[:, 2, 2] + h[:, 3, 3]).mul(s) out[:, 0, 1] = (h[:, 1, 2] - h[:, 3, 0]).mul(s) out[:, 0, 2] = (h[:, 1, 3] + h[:, 2, 0]).mul(s) out[:, 1, 0] = (h[:, 1, 2] + h[:, 3, 0]).mul(s) out[:, 1, 1] = 1 - (h[:, 1, 1] + h[:, 3, 3]).mul(s) out[:, 1, 2] = (h[:, 2, 3] - h[:, 1, 0]).mul(s) out[:, 2, 0] = (h[:, 1, 3] - h[:, 2, 0]).mul(s) out[:, 2, 1] = (h[:, 2, 3] + h[:, 1, 0]).mul(s) out[:, 2, 2] = 1 - (h[:, 1, 1] + h[:, 2, 2]).mul(s) return out
0.855127
0.810216
import torch def cosine_distance(memory_matrix, cos_keys): """ compute the cosine similarity between keys to each of the memory slot. Parameters: ---------- memory_matrix: Tensor (batch_size, mem_slot, mem_size) the memory matrix to lookup in keys: Tensor (batch_size, mem_size, number_of_keys) the keys to query the memory with strengths: Tensor (batch_size, number_of_keys, ) the list of strengths for each lookup key Returns: Tensor (batch_size, mem_slot, number_of_keys) The list of lookup weightings for each provided key """ memory_norm = torch.norm(memory_matrix, 2, 2, keepdim=True) keys_norm = torch.norm(cos_keys, 2, 1, keepdim=True) normalized_mem = torch.div( memory_matrix, memory_norm.expand_as(memory_matrix) + 1e-8) normalized_keys = torch.div(cos_keys, keys_norm.expand_as(cos_keys) + 1e-8) out = torch.bmm(normalized_mem, normalized_keys) # print(normalized_keys) # print(out) # apply_dict(locals()) return out
0.803174
0.748168
def center_to_corner(boxes): """ Convert bounding boxes from center format (cx, cy, width, height) to corner format (xmin, ymin, xmax, ymax) Args: - boxes: numpy array of tensor containing all the boxes to be converted Returns: - A numpy array or tensor of converted boxes """ temp = boxes.copy() temp[..., 0] = boxes[..., 0] - (boxes[..., 2] / 2) # xmin temp[..., 1] = boxes[..., 1] - (boxes[..., 3] / 2) # ymin temp[..., 2] = boxes[..., 0] + (boxes[..., 2] / 2) # xmax temp[..., 3] = boxes[..., 1] + (boxes[..., 3] / 2) # ymax return temp
0.908541
0.767123
def exact_match(gt_s, gt_e, pr_s, pr_e): """ Evaluate exact match of a predicted span over a ground truth span. Args: gt_s: index of the ground truth start position gt_e: index of the ground truth end position pr_s: index of the predicted start position pr_e: index of the predicted end position """ return gt_s == pr_s and gt_e == pr_e
0.779741
0.658424
def Pluralize(num, word, plural=None): """Pluralize word based on num. Args: num: int, the number of objects to count. word: str, the word to pluralize. plural: str, the plural form of word if not "add s" Returns: str: the plural or singular form of word in accord with num. """ if num == 1: return word return plural or word + 's'
0.708213
0.614539