seed
stringlengths
25
2.89k
seed_api
stringlengths
14
102
index
int64
0
14.8k
import tensorflow as tf (total_loss, per_example_loss, logits, probabilities) = create_model( bert_config, is_training, input_ids, input_mask, segment_ids, label_ids, num_labels, use_one_hot_embeddings) tvars = tf.trainable_variables() initialized_variable_names = {} scaffold_fn = None if init_checkpoint: (assignment_map, initialized_variable_names ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint, different_vocabulary=False) if use_tpu: def tpu_scaffold(): tf.train.init_from_checkpoint(init_checkpoint, assignment_map) return tf.train.Scaffold() scaffold_fn = tpu_scaffold else: tf.train.init_from_checkpoint(init_checkpoint, assignment_map) tf.logging.info("**** Trainable Variables ****") for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string) output_spec = None
tensorflow.train.Scaffold
800
import tensorflow as tf aspect_ratio_range=[0.75, 1.33], area_range=[0.08, 1.0], max_attempts=10, use_image_if_no_bounding_boxes=True) is_bad = tf.reduce_sum(tf.cast(tf.equal(bbox_size, jpeg_shape), tf.int32)) >= 2 def good(): offset_y, offset_x, _ = tf.unstack(bbox_begin) target_height, target_width, _ = tf.unstack(bbox_size) crop_window = tf.stack([offset_y, offset_x, target_height, target_width]) image = tf.image.decode_and_crop_jpeg( byte, crop_window, channels=3, **JPEG_OPT) image = uint8_resize_bicubic(image, [224, 224]) return image def bad(): image = tf.image.decode_jpeg( tf.reshape(byte, shape=[]), 3, **JPEG_OPT)
tensorflow.stack
801
import tensorflow as tf if self.is_summary: train_writer.close() validation_writer.close() def _feature_matching_loss(self, real_data_features, fake_data_features): real_data_mean = tf.reduce_mean(real_data_features, axis=0) fake_data_mean = tf.reduce_mean(fake_data_features, axis=0) feature_loss = tf.reduce_mean(tf.abs(tf.subtract(real_data_mean, fake_data_mean))) return feature_loss def _tower_loss_semi_supervised(self, inputs, targets, gpu_idx=0, num_classes=11, is_fm_loss=False): with tf.variable_scope("train_specific"):
tensorflow.subtract
802
import tensorflow as tf res = sess.run(dec) self.assertEqual(3, len(res)) self.assertEqual((2, 4), res[0].shape) res = sess.run([mem]) self.assertEqual((2, 2), res[0].shape) def testAttentionDecoderStateIsTuple(self): with self.test_session() as sess: with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=True) cell = tf.nn.rnn_cell.MultiRNNCell(cells=[cell] * 2, state_is_tuple=True) inp = [tf.constant(0.5, shape=[2, 2])] * 2 enc_outputs, enc_state = tf.nn.rnn(cell, inp, dtype=tf.float32) attn_states = tf.concat(1, [tf.reshape(e, [-1, 1, cell.output_size]) for e in enc_outputs]) dec_inp = [tf.constant(0.4, shape=[2, 2])] * 3 dec, mem = tf.nn.seq2seq.attention_decoder( dec_inp, enc_state, attn_states, cell, output_size=4) sess.run([tf.global_variables_initializer()])
tensorflow.nn.rnn_cell.MultiRNNCell
803
import tensorflow as tf mask = tf.expand_dims(mask, -1)
tensorflow.expand_dims
804
import tensorflow as tf save_dir = self._TestDir("abs_paths") abs_path = os.path.join(save_dir, "model-0") ckpt = tf.train.generate_checkpoint_state_proto(save_dir, abs_path) self.assertEqual(ckpt.model_checkpoint_path, abs_path) self.assertTrue(os.path.isabs(ckpt.model_checkpoint_path)) self.assertEqual(len(ckpt.all_model_checkpoint_paths), 1) self.assertEqual(ckpt.all_model_checkpoint_paths[-1], abs_path) def testRelPath(self): train_dir = "train" model = os.path.join(train_dir, "model-0") # model_checkpoint_path should have no "train" directory part. new_rel_path = "model-0" ckpt = tf.train.generate_checkpoint_state_proto(train_dir, model) self.assertEqual(ckpt.model_checkpoint_path, new_rel_path) self.assertEqual(len(ckpt.all_model_checkpoint_paths), 1) self.assertEqual(ckpt.all_model_checkpoint_paths[-1], new_rel_path) def testAllModelCheckpointPaths(self): save_dir = self._TestDir("all_models_test") abs_path = os.path.join(save_dir, "model-0") for paths in [None, [], ["model-2"]]: ckpt = tf.train.generate_checkpoint_state_proto( save_dir, abs_path, all_model_checkpoint_paths=paths)
tensorflow.train.generate_checkpoint_state_proto
805
import tensorflow as tf with tf.device(self.cpu_device): if self.task_index == 0 and FLAGS.summary_verbosity > 0: tf.summary.scalar('learning_rate', learning_rate) tf.summary.scalar('total_loss', total_loss) for grad, var in avg_grads: if grad is not None: tf.summary.histogram(var.op.name + '/gradients', grad) for var in tf.trainable_variables(): tf.summary.histogram(var.op.name, var) fetches = [train_op, total_loss] + enqueue_ops return (enqueue_ops, fetches) def add_forward_pass_and_gradients( self, host_images, host_labels, nclass, phase_train, device_num, input_data_type, data_type, input_nchan, use_synthetic_gpu_images, gpu_copy_stage_ops, gpu_compute_stage_ops, gpu_grad_stage_ops): """Add ops for forward-pass and gradient computations."""
tensorflow.summary.histogram
806
import tensorflow as tf x0 = tf.minimum(tf.maximum(x[:, :, :, 0], -1.), 1.) x1 = tf.minimum(tf.maximum( x[:, :, :, 1] + coeffs[:, :, :, 0] * x0, -1.), 1.) x2 = tf.minimum(tf.maximum( x[:, :, :, 2] + coeffs[:, :, :, 1] * x0 + coeffs[:, :, :, 2] * x1, -1.), 1.) return tf.concat([tf.reshape(x0, xs[:-1] + [1]), tf.reshape(x1, xs[:-1] + [1]), tf.reshape(x2, xs[:-1] + [1])], 3)
tensorflow.reshape
807
import tensorflow as tf filtered_value_node, vocab_filename=vocab_filename, store_frequency=store_frequency, fingerprint_shuffle=fingerprint_shuffle, input_dtype=input_dtype, file_format=file_format, # LINT.IfChange(input_is_sorted) input_is_sorted=(top_k is not None and key_fn is None and not fingerprint_shuffle) # LINT.ThenChange(beam/analyzer_impls.py:top_k_impl) ) scope = tf.compat.v1.get_default_graph().get_name_scope() unfiltered_vocab_size_node = nodes.apply_operation( analyzer_nodes.VocabularyCount, merge_output_value_node, label=f'VocabularyCountUnfiltered[{scope}]') unfiltered_vocab_size = analyzer_nodes.bind_future_as_tensor( unfiltered_vocab_size_node, analyzer_nodes.TensorInfo(tf.int64, [], None), name=f'{vocab_filename}_unpruned_vocab_size') filtered_vocab_size_node = nodes.apply_operation( analyzer_nodes.VocabularyCount, filtered_value_node,
tensorflow.compat.v1.get_default_graph
808
import tensorflow as tf def sparse_categorical_crossentropy(output, target, from_logits=False): """Categorical crossentropy between an output tensor and a target tensor, where the target is an integer tensor. """ # Note: tf.nn.softmax_cross_entropy_with_logits # expects logits, Keras expects probabilities. if not from_logits: epsilon = _to_tensor(_EPSILON, output.dtype.base_dtype) output = tf.clip_by_value(output, epsilon, 1 - epsilon) output = tf.log(output) output_shape = output.get_shape() targets = cast(flatten(target), 'int64') logits = tf.reshape(output, [-1, int(output_shape[-1])]) try: res = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=targets, logits=logits) except TypeError: res = tf.nn.sparse_softmax_cross_entropy_with_logits(
tensorflow.log
809
import tensorflow as tf # argument prediction # first encode decoded action template and teh true action template choice = tf.floor(tf.random_uniform([1], self.use_inputs_prob, 1 + self.use_inputs_prob, tf.float32)) prediction_action_argmax = tf.stop_gradient(tf.argmax(self.predictions_action, 1)) predicted_action_templates_embedding = embedding( input=prediction_action_argmax, length=action_templates_vocabulary_length, size=action_templates_embedding_size, name='action_templates_embedding' ) true_action_template_embedding = tf.gather(predicted_action_templates_embedding.embedding_table, actions_template) predicted_action_templates_embedding = tf.stop_gradient(predicted_action_templates_embedding) action_templates_embedding = choice * true_action_template_embedding + (1.0 - choice) * predicted_action_templates_embedding dialogue_state_action_template = tf.concat( 1, [ dialogue_state, action_templates_embedding ], name='dialogue_state_action_template' ) dialogue_state_action_template_size = ( dialogue_state_size +
tensorflow.stop_gradient
810
import tensorflow as tf with tf.device(self.devices[device_num]): # Rescale to [0, 1) images *= 1. / 256 # Rescale to [-1,1] instead of [0, 1) images = tf.subtract(images, 0.5) images = tf.multiply(images, 2.0) if self.data_format == 'NCHW': images = tf.transpose(images, [0, 3, 1, 2]) if input_data_type != data_type:
tensorflow.multiply
811
import tensorflow as tf ch_emb = tf.reduce_max(ch_emb, axis = 1) qh_emb = tf.reduce_max(qh_emb, axis = 1) ch_emb = tf.reshape(ch_emb, [N, PL, ch_emb.shape[-1]]) qh_emb = tf.reshape(qh_emb, [N, QL, ch_emb.shape[-1]])
tensorflow.reshape
812
from tensorflow.python.framework import tensor_util name: `String`. The name to give this op. Returns: sample_dims: `Tensor` (1D, `int32`). batch_dims: `Tensor` (1D, `int32`). event_dims: `Tensor` (1D, `int32`). """ with self._name_scope(name, values=[x]): def make_dims(start_sum, size, name): """Closure to make dims range.""" start_sum = start_sum if start_sum else ( array_ops.zeros((), dtype=dtypes.int32, name="zero"),) if self._is_all_constant_helper(size, *start_sum): start = sum(tensor_util.constant_value(s) for s in start_sum) stop = start + tensor_util.constant_value(size) return ops.convert_to_tensor( list(range(start, stop)), dtype=dtypes.int32, name=name) else: start = sum(start_sum) return math_ops.range(start, start + size) sample_ndims = self.get_sample_ndims(x, name=name) return (make_dims((), sample_ndims, name="sample_dims"), make_dims((sample_ndims,), self.batch_ndims, name="batch_dims"), make_dims((sample_ndims, self.batch_ndims), self.event_ndims, name="event_dims")) def get_shape(self, x, name="get_shape"): """Returns `Tensor`'s shape partitioned into `sample`, `batch`, `event`.
tensorflow.python.framework.tensor_util.constant_value
813
import tensorflow as tf self._aug_color_drop_prob = aug_color_drop_prob # To safe memory ModularGAN supports feeding real and fake samples # separately through the discriminator. CLGAN does not support this to # avoid additional additional complexity in create_loss(). assert not self._deprecated_split_disc_calls, \ "Splitting discriminator calls is not supported in CLGAN." def _latent_projections(self, latents): bs, dim = latents.get_shape().as_list() with tf.variable_scope("discriminator_z_projection", reuse=tf.AUTO_REUSE) as scope: k1 = tf.get_variable("kernel1", [dim, dim * 4]) k2 = tf.get_variable("kernel2", [dim * 4, dim]) z_proj = tf.matmul(tf.nn.leaky_relu(tf.matmul(latents, k1), name=scope.name), k2) z_proj = z_proj / tf.reshape(tf.norm(z_proj, ord=2, axis=-1), [bs, 1]) return z_proj def create_loss(self, features, labels, params, is_training=True): """Build the loss tensors for discriminator and generator. This method will set self.d_loss and self.g_loss.
tensorflow.variable_scope
814
import tensorflow as tf """Base class for translation problems.""" def is_generate_per_split(self): return True def example_reading_spec(self): data_fields = {"dist_targets": tf.VarLenFeature(tf.int64)} if self.has_inputs: data_fields["inputs"] = tf.VarLenFeature(tf.int64) # hack: ignoring true targets and putting dist_targets in targets data_items_to_decoders = { "inputs": tf.contrib.slim.tfexample_decoder.Tensor("inputs"), "targets": tf.contrib.slim.tfexample_decoder.Tensor("dist_targets"), } return (data_fields, data_items_to_decoders)
tensorflow.VarLenFeature
815
import tensorflow as tf with tf.variable_scope('output', reuse=forward_only): with tf.variable_scope('softmax'): W = tf.get_variable('W', [self.num_hidden, self.num_classes], # initializer=tf.random_uniform_initializer(-0.003, 0.003)) initializer=tf.contrib.layers.xavier_initializer()) # initializer=tf.truncated_normal_initializer(stddev=0.1)) b = tf.get_variable('b', [self.num_classes], initializer=tf.constant_initializer(0.1)) logits = tf.matmul(last_outputs, W) + b self.embed_inputs = embed_inputs return logits def loss(self, logits, forward_only=None): cost = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=tf.cast(self.y, tf.float32)) mean_cost = tf.reduce_mean(cost) y_pred = tf.argmax(logits, 1) correct_pred = tf.equal(y_pred, tf.argmax(self.y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) if forward_only: str_summary_type = 'eval' loss_summ = tf.summary.scalar("{0}_loss".format(str_summary_type), mean_cost) acc_summ = tf.summary.scalar("{0}_accuracy".format(str_summary_type), accuracy) merged = tf.summary.merge([loss_summ, acc_summ]) return mean_cost, accuracy, y_pred, merged else: return mean_cost, accuracy, y_pred
tensorflow.reduce_mean
816
import tensorflow as tf # add histograms if not reuse: tf.histogram_summary(weights1.name, weights1) tf.histogram_summary(weights2.name, weights2)
tensorflow.histogram_summary
817
import tensorflow as tf pred_annotation, logits = inference(image, keep_probability) tf.summary.image("input_image", image, max_outputs=2) tf.summary.image("ground_truth", tf.cast(annotation, tf.uint8), max_outputs=2) tf.summary.image("pred_annotation", tf.cast(pred_annotation, tf.uint8), max_outputs=2)
tensorflow.cast
818
import tensorflow as tf # otherwise not_eos will crash) tf.not_equal(length, 0), fn_not_eos, lambda: True, ) return tf.cond( tf.equal(batch_size, 1), # If batch_size == 1, we check EOS for early stoping lambda: tf.logical_and(not_overflow, not_eos), # Else, just wait for max length lambda: not_overflow) return not_overflow result, logits, loss = tf.while_loop( while_exit_cond, infer_step, [result, logits, loss], shape_invariants=[
tensorflow.logical_and
819
import tensorflow as tf def testModelWithBucketsScopeAndLoss(self): """Test that variable scope reuse is not reset after model_with_buckets.""" classes = 10 buckets = [(4, 4), (8, 8)] with self.test_session(): # Here comes a sample Seq2Seq model using GRU cells. def SampleGRUSeq2Seq(enc_inp, dec_inp, weights, per_example_loss): """Example sequence-to-sequence model that uses GRU cells.""" def GRUSeq2Seq(enc_inp, dec_inp): cell = tf.nn.rnn_cell.MultiRNNCell([tf.nn.rnn_cell.GRUCell(24)] * 2, state_is_tuple=True) return tf.nn.seq2seq.embedding_attention_seq2seq( enc_inp, dec_inp, cell, num_encoder_symbols=classes, num_decoder_symbols=classes, embedding_size=24) targets = [dec_inp[i+1] for i in range(len(dec_inp) - 1)] + [0] return tf.nn.seq2seq.model_with_buckets( enc_inp, dec_inp, targets, weights, buckets, GRUSeq2Seq, per_example_loss=per_example_loss) # Now we construct the copy model. inp = [tf.placeholder(tf.int32, shape=[None]) for _ in range(8)] out = [tf.placeholder(tf.int32, shape=[None]) for _ in range(8)] weights = [tf.ones_like(inp[0], dtype=tf.float32) for _ in range(8)] with tf.variable_scope("root"):
tensorflow.nn.seq2seq.embedding_attention_seq2seq
820
import tensorflow as tf Returns ------- A tensor with the variance of elements of `x`. """ axis = _normalize_axis(axis, get_ndim(x)) if x.dtype.base_dtype == tf.bool: x = tf.cast(x, tf.float32) m = tf.reduce_mean(x, axis=axis, keep_dims=True) devs_squared = tf.square(x - m) return tf.reduce_mean(devs_squared, axis=axis, keep_dims=keepdims)
tensorflow.cast
821
from tensorflow.python.framework import ops return self.read_value() # Register a conversion function which reads the value of the variable, # allowing instances of the class to be used as tensors. def _tensor_conversion(var, dtype=None, name=None, as_ref=False): return var._dense_var_to_tensor(dtype=dtype, name=name, as_ref=as_ref) # pylint: disable=protected-access ops.register_tensor_conversion_function(ReplicatedVariable, _tensor_conversion) if not TF_23: ops.register_dense_tensor_like_type(ReplicatedVariable)
tensorflow.python.framework.ops.register_dense_tensor_like_type
822
import tensorflow as tf def gather_indexes(sequence_tensor, positions): """Gathers the vectors at the specific positions over a minibatch.""" sequence_shape = get_shape_list(sequence_tensor, expected_rank=3) batch_size = sequence_shape[0] seq_length = sequence_shape[1] width = sequence_shape[2] flat_offsets = tf.reshape( tf.range(0, batch_size, dtype=tf.int32) * seq_length, [-1, 1]) flat_positions = tf.reshape(positions + flat_offsets, [-1]) flat_sequence_tensor = tf.reshape(sequence_tensor, [batch_size * seq_length, width]) output_tensor = tf.gather(flat_sequence_tensor, flat_positions) return output_tensor # add sequence mask for: # 1. random shuffle lm modeling---xlnet with random shuffled input # 2. left2right and right2left language modeling # 3. conditional generation def generate_seq2seq_mask(attention_mask, mask_sequence, seq_type, **kargs): if seq_type == 'seq2seq':
tensorflow.reshape
823
import tensorflow as tf train_examples, label_list, FLAGS.max_seq_length, tokenizer, train_file) tf.logging.info("***** Running training *****") tf.logging.info(" Num examples = %d", len(train_examples)) tf.logging.info(" Batch size = %d", FLAGS.train_batch_size) tf.logging.info(" Num steps = %d", num_train_steps) train_input_fn = file_based_input_fn_builder(
tensorflow.logging.info
824
import tensorflow as tf context_vectors = [] weights = [] attn_heads = encoder.attn_heads or 1 scope = scope or 'attention_{}'.format(encoder.name) for i in range(attn_heads): scope_ = scope if i == 0 else scope + '_{}'.format(i + 1) context_vector, weights_ = attention_function(encoder=encoder, scope=scope_, **kwargs) context_vectors.append(context_vector) weights.append(weights_) context_vector = tf.concat(context_vectors, axis=-1) weights = sum(weights) / len(weights) if encoder.attn_mapping: with tf.variable_scope(scope): context_vector = dense(context_vector, encoder.attn_mapping, use_bias=False, name='output') return context_vector, weights def multi_attention(state, hidden_states, encoders, encoder_input_length, pos=None, aggregation_method='sum', prev_weights=None, **kwargs):
tensorflow.concat
825
import tensorflow as tf Returns: Minibatch standard deviation feature map image added to channels of shape [cur_batch_size, image_size, image_size, 1]. """ with tf.variable_scope( "{}/grouped_minibatch_stddev".format(self.name)): # The group size should be less than or equal to the batch size. # shape = () group_size = tf.minimum( x=group_size, y=cur_batch_size, name="group_size" ) print_obj("grouped_minibatch_stddev", "group_size", group_size) # Split minibatch into M groups of size group_size, rank 5 tensor. # shape = ( # group_size, # cur_batch_size / group_size, # image_size,
tensorflow.minimum
826
import tensorflow as tf ) with tf.variable_scope("loss"): if is_training: output_layer = tf.nn.dropout(output_layer, keep_prob=0.9) output_layer = tf.reshape(output_layer, [-1, hidden_size]) logits = tf.matmul(output_layer, output_weight, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) logits = tf.reshape(logits, [-1, FLAGS.max_seq_length, 11])
tensorflow.reshape
827
from tensorflow.python.framework import ops If the default graph is being used to define a function, the returned list of tensors are those accessed inside the function body but defined outside the function body so far. Otherwise, returns an empty list. """ g = ops.get_default_graph() if isinstance(g, _FuncGraph): return g.extra_inputs else: return []
tensorflow.python.framework.ops.get_default_graph
828
import tensorflow as tf name_to_features = { "input_ids": tf.FixedLenFeature([seq_length], tf.int64), "input_mask": tf.FixedLenFeature([seq_length], tf.int64), "segment_ids": tf.FixedLenFeature([seq_length], tf.int64), "label_ids": tf.FixedLenFeature([], tf.int64), }
tensorflow.FixedLenFeature
829
import tensorflow as tf def neural_net(self, X, weights, biases): num_layers = len(weights) + 1 H = 2.0*(X - self.lb)/(self.ub - self.lb) - 1.0 for l in range(0,num_layers-2): W = weights[l] b = biases[l] H = tf.tanh(tf.add(tf.matmul(H, W), b)) W = weights[-1] b = biases[-1] Y = tf.add(tf.matmul(H, W), b) return Y def fwd_gradients_0(self, U, x): g = tf.gradients(U, x, grad_ys=self.dummy_x0_tf)[0]
tensorflow.matmul
830
import tensorflow as tf shape = out.get_shape() print('pool{}'.format(l + 1)) print('\t{} --> {}'.format(bottom.name, out.name)) print('\t{} --> {}'.format(bottom.get_shape(), out.get_shape())) with tf.variable_scope('scale'): bottom = out if FLAGS.pm[l + 1] == FLAGS.pm[l]: kernel_size = 1 # useless 1x1 pooling elif int(FLAGS.pm[l + 1]) < int(FLAGS.pm[l]): num_scales_prev = int(FLAGS.pm[l]) num_scales_current = int(FLAGS.pm[l + 1]) kernel_size = (num_scales_prev - num_scales_current) + 1 else: raise ValueError('Number of scales must stay constant or decrease, got {}'.format(FLAGS.pm)) out = tf.nn.max_pool3d(bottom, ksize=[1,kernel_size,1,1,1], strides=[1,1,1,1,1], padding='VALID') shape = out.get_shape() print('scale{}'.format(l + 1)) print('\t{} --> {}'.format(bottom.name, out.name)) print('\t{} --> {}'.format(bottom.get_shape(), out.get_shape())) with tf.variable_scope('fully_connected'): bottom = out bottom_shape = bottom.get_shape().as_list() reshape = tf.reshape( bottom, [-1, bottom_shape[1] * bottom_shape[2] * bottom_shape[3] * bottom_shape[4]]) W_fc1 = weight_variable([bottom_shape[1] * bottom_shape[2] * bottom_shape[3] * bottom_shape[4], NUM_CLASSES()])
tensorflow.nn.max_pool3d
831
import tensorflow as tf return res class ptr_net: def __init__(self, batch, hidden, keep_prob=1.0, is_train=None, scope="ptr_net"): self.gru = tf.contrib.rnn.GRUCell(hidden) self.batch = batch self.scope = scope self.keep_prob = keep_prob self.is_train = is_train self.dropout_mask = dropout(tf.ones( [batch, hidden], dtype=tf.float32), keep_prob=keep_prob, is_train=is_train) def __call__(self, init, match, d, mask): with tf.variable_scope(self.scope): d_match = dropout(match, keep_prob=self.keep_prob, is_train=self.is_train) inp, logits1 = pointer(d_match, init * self.dropout_mask, d, mask) d_inp = dropout(inp, keep_prob=self.keep_prob, is_train=self.is_train)
tensorflow.ones
832
import tensorflow as tf # TRAINING PROGRESS EVENTS def _on_training_start(self, sess): # Writers and savers self.summary_writer = tf.summary.FileWriter(FLAGS.logdir, sess.graph) self.saver = tf.train.Saver() self._build_embedding_saver(sess) self._restore_model(sess) # Loss summaries self._build_summaries() self.epoch_stats = get_stats_template() self.stats = Bunch(
tensorflow.train.Saver
833
import tensorflow as tf 'model_scope', None, 'Model scope name used to replace the name_scope in checkpoint.') tf.app.flags.DEFINE_string( 'checkpoint_exclude_scopes', None, 'Comma-separated list of scopes of variables to exclude when restoring from a checkpoint.') tf.app.flags.DEFINE_boolean( 'ignore_missing_vars', True, 'When restoring a checkpoint would ignore missing variables.') tf.app.flags.DEFINE_boolean( 'run_on_cloud', False, 'Wether we will train on cloud.') tf.app.flags.DEFINE_boolean( 'seq_train', False, 'Wether we will train a sequence model.') tf.app.flags.DEFINE_string(# 'model_to_train', 'blouse, dress, outwear, skirt, trousers', #'all, blouse, dress, outwear, skirt, trousers', 'skirt, dress, outwear, trousers', 'The sub-model to train (comma-separated list).') FLAGS = tf.app.flags.FLAGS #--model_scope=blouse --checkpoint_path=./logs/all --data_format=channels_last --batch_size=1 def input_pipeline(is_training=True, model_scope=FLAGS.model_scope, num_epochs=FLAGS.epochs_per_eval): if 'all' in model_scope: lnorm_table = tf.contrib.lookup.HashTable(tf.contrib.lookup.KeyValueTensorInitializer(tf.constant(config.global_norm_key, dtype=tf.int64), tf.constant(config.global_norm_lvalues, dtype=tf.int64)), 0) rnorm_table = tf.contrib.lookup.HashTable(tf.contrib.lookup.KeyValueTensorInitializer(tf.constant(config.global_norm_key, dtype=tf.int64), tf.constant(config.global_norm_rvalues, dtype=tf.int64)), 1) else: lnorm_table = tf.contrib.lookup.HashTable(tf.contrib.lookup.KeyValueTensorInitializer(tf.constant(config.local_norm_key, dtype=tf.int64),
tensorflow.app.flags.DEFINE_string
834
import tensorflow as tf import tensorflow as tf import numpy as np class Model(object): def __init__(self, vars): self.saver = tf.train.Saver(vars) def session(self, sess): if sess is not None: self.sess = sess else:
tensorflow.train.Saver
835
import tensorflow as tf A tensor with the same format as the input with the data either intact (if kernel_size == 1) or padded (if kernel_size > 1). """ pad_total = kernel_size - 1 pad_beg = pad_total // 2 pad_end = pad_total - pad_beg if data_format == 'channels_first': padded_inputs = tf.pad(inputs, [[0, 0], [0, 0], [pad_beg, pad_end], [pad_beg, pad_end]]) else: padded_inputs = tf.pad(inputs, [[0, 0], [pad_beg, pad_end], [pad_beg, pad_end], [0, 0]]) return padded_inputs def conv2d_fixed_padding(inputs, filters, kernel_size, strides, data_format): """Strided 2-D convolution with explicit padding.""" # The padding is consistent and is based only on `kernel_size`, not on the # dimensions of `inputs` (as opposed to using `tf.layers.conv2d` alone). if strides > 1: inputs = fixed_padding(inputs, kernel_size, data_format)
tensorflow.pad
836
import tensorflow as tf act_values_dict = {} feed_dict = {ul_u_eval_train: random_sphere_numpy(ul_u_eval_train.shape)} for key, _ in losses_eval_train.iteritems(): act_values_dict[key] = 0 n_iter_per_epoch = NUM_EVAL_EXAMPLES / FLAGS.eval_batch_size for i in range(n_iter_per_epoch): values = losses_eval_train.values() act_values = sess.run(values, feed_dict=feed_dict) for key, value in zip(act_values_dict.keys(), act_values): act_values_dict[key] += value summary = tf.Summary() current_global_step = sess.run(global_step) for key, value in act_values_dict.iteritems(): print("train-" + key, value / n_iter_per_epoch) summary.value.add(tag=key, simple_value=value / n_iter_per_epoch) if writer_train is not None: writer_train.add_summary(summary, current_global_step) # Eval on test data act_values_dict = {}
tensorflow.Summary
837
import tensorflow as tf kernel_initializer=initializer, name="dense_1", use_bias=False) cls_logits = tf.squeeze(cls_logits, -1) return_dict["cls_logits"] = cls_logits
tensorflow.squeeze
838
import tensorflow as tf b_soft_no_learn = np.array( [0.25, 0.25] + [-0.25] * (self.num_branches - 2), dtype=np.float32) b_soft_no_learn = np.reshape(b_soft_no_learn, [1, self.num_branches]) self.b_soft_no_learn = tf.constant(b_soft_no_learn, dtype=tf.float32) with tf.variable_scope("attention"): self.w_attn_1 = tf.get_variable("w_1", [self.lstm_size, self.lstm_size])
tensorflow.constant
839
import tensorflow as tf method=0) gtboxes_in_img_r = self.drawer.draw_boxes_with_categories(img_batch=img, boxes=gtboxes_and_label_r[ :, :-1], labels=gtboxes_and_label_r[ :, -1], method=1, is_csl=True) tf.summary.image('Compare/gtboxes_h_gpu:%d' % i, gtboxes_in_img_h) tf.summary.image('Compare/gtboxes_r_gpu:%d' % i, gtboxes_in_img_r) if cfgs.ADD_BOX_IN_TENSORBOARD: detections_in_img = self.drawer.draw_boxes_with_categories_and_scores( img_batch=img, boxes=outputs[0], scores=outputs[1],
tensorflow.summary.image
840
import tensorflow as tf tf.app.flags.DEFINE_string('eval_dir', '', 'Directory to keep eval outputs.') tf.app.flags.DEFINE_integer('eval_batch_count', 10, 'Number of batches to eval.') tf.app.flags.DEFINE_bool('eval_once', False, 'Whether evaluate the model only once.') tf.app.flags.DEFINE_string('log_root', '', 'Directory to keep the checkpoints. Should be a ' 'parent directory of FLAGS.train_dir/eval_dir.') tf.app.flags.DEFINE_integer('num_gpus', 0, 'Number of gpus used for training. (0 or 1)') tf.app.flags.DEFINE_integer('num_residual_units', 5,
tensorflow.app.flags.DEFINE_string
841
import tensorflow as tf self.loss = tf.reduce_mean(tf.square(tf.subtract(self.value_estimate, self.target))) self.optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) self.train_op = self.optimizer.minimize( self.loss, global_step=tf.contrib.framework.get_global_step()) def predict(self, state, sess=None): sess = sess or tf.get_default_session() return sess.run(self.value_estimate, { self.state: [state] })[0][0] def update(self, state, target, sess=None): sess = sess or tf.get_default_session() feed_dict = { self.state: state, self.target: target }
tensorflow.get_default_session
842
import tensorflow as tf l2=tf.nn.relu(l2) l3=tf.matmul(l2, self.w3)+self.b3 l3=tf.nn.relu(l3) out=tf.matmul(l3, self.w4)+self.b4 return out def test_inference(self,images): images=tf.cast(images,tf.float32)/255.0 l1 = tf.matmul(images, self.w1)+self.b1 l1=tf.nn.relu(l1) l2 = tf.matmul(l1, self.w2)+self.b2 l2=tf.nn.relu(l2) l3=tf.matmul(l2, self.w3)+self.b3 l3=tf.nn.relu(l3) out=tf.matmul(l3, self.w4)+self.b4 return out def valid_inference(self,images): images=tf.cast(images,tf.float32)/255.0 l1 = tf.matmul(images, self.w1)+self.b1 l1=tf.nn.relu(l1) l2 = tf.matmul(l1, self.w2)+self.b2 l2=tf.nn.relu(l2) l3=tf.matmul(l2, self.w3)+self.b3
tensorflow.matmul
843
from tensorflow.contrib.rnn import BasicLSTMCell, RNNCell, DropoutWrapper, MultiRNNCell state_keep_prob=decoder.rnn_state_keep_prob) else: cell = GRUCell(decoder.cell_size, reuse=reuse, layer_norm=decoder.layer_norm) if decoder.use_dropout and decoder.cell_type.lower() != 'dropoutgru': cell = DropoutWrapper(cell, input_keep_prob=decoder.rnn_input_keep_prob, output_keep_prob=decoder.rnn_output_keep_prob, state_keep_prob=decoder.rnn_state_keep_prob, variational_recurrent=decoder.pervasive_dropout, dtype=tf.float32, input_size=input_size_) cells.append(cell) if len(cells) == 1: return cells[0] else: return CellWrapper(MultiRNNCell(cells)) def look(time, state, input_, prev_weights=None, pos=None, context=None): prev_weights_ = [prev_weights if i == align_encoder_id else None for i in range(len(encoders))] pos_ = None if decoder.pred_edits: pos_ = [pos if i == align_encoder_id else None for i in range(len(encoders))] if decoder.attn_prev_word: state = tf.concat([state, input_], axis=1) if decoder.attn_prev_attn and context is not None: state = tf.concat([state, context], axis=1) if decoder.hidden_state_scaling: attention_states_ = [states * decoder.hidden_state_scaling for states in attention_states]
tensorflow.contrib.rnn.MultiRNNCell
844
import tensorflow as tf print("***************") print("Training done!!") save_path = saver.save(sess, ckpt_name) print("Model saved in file: %s" % save_path) print ("creating protobuf...") g_1 = tf.get_default_graph() with tf.Session(graph = g_1) as sess: saver = tf.train.import_meta_graph('save/model.ckpt.meta', clear_devices=True) saver.restore(sess, ckpt_name) graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, dst_nodes) tf.train.write_graph(tf.graph_util.extract_sub_graph(graph_def, dst_nodes), path, fname, as_text=False)
tensorflow.train.import_meta_graph
845
import tensorflow as tf mag = tf.norm(self.s_diff, axis=1) * tf.norm(gcut, axis=1) + .0001 dcos = dot / mag manager_loss = -tf.reduce_sum((self.r - cutoff_vf_manager) * dcos)
tensorflow.reduce_sum
846
import tensorflow as tf else: is_real_example = tf.ones(tf.shape(label_ids), dtype=tf.float32) is_training = (mode == tf.estimator.ModeKeys.TRAIN) (total_loss, per_example_loss, logits, probabilities) = create_model( bert_config, is_training, input_ids, input_mask, segment_ids, label_ids, num_labels, use_one_hot_embeddings) tvars = tf.trainable_variables() initialized_variable_names = {} scaffold_fn = None if init_checkpoint: (assignment_map, initialized_variable_names ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint) if use_tpu: def tpu_scaffold():
tensorflow.trainable_variables
847
import tensorflow as tf # sigma = tf.layers.dense(layer_a2, self.a_dim, tf.nn.softplus, kernel_regularizer=reg) sigma = tf.get_variable(name='pi_sigma', shape=self.a_dim, initializer=tf.constant_initializer(0.5)) sigma = tf.clip_by_value(sigma, 0.0, 1.0) norm_dist = tf.distributions.Normal(loc=mu * self.a_bound, scale=sigma) params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=name) return norm_dist, params def build_cnet(self, state_in, name, reuse=False): reg = tf.contrib.layers.l2_regularizer(1e-3) with tf.variable_scope(name, reuse=reuse): layer_c1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg) layer_c2 = tf.layers.dense(layer_c1, 256, tf.nn.relu, kernel_regularizer=reg) vf = tf.layers.dense(layer_c2, 1, kernel_regularizer=reg) params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=name) return vf, params # Update the network def train(self, s, a, r, adv):
tensorflow.variable_scope
848
import tensorflow as tf loss = tf.map_fn(fn=lambda inp: sample_compute(inp), elems=tf.range(resample), dtype=tf.float32, parallel_iterations=32) final_loss = tf.reduce_mean(loss) return final_loss def contra_traj_lossV6(pred, tgt, horizon=12): horizon_pred, horizon_tgt = horizon_sumV1(pred, horizon), horizon_sumV1(tgt, horizon) # horizon_pred, horizon_tgt = horizon_sumV2(pred, tgt, horizon) pred_flat1, pred_flat2 = tf.reshape(horizon_pred, [-1, 1]), tf.reshape(horizon_pred, [1, -1]) tgt_flat1, tgt_flat2 = tf.reshape(horizon_tgt, [-1, 1]), tf.reshape(horizon_tgt, [1, -1]) tgt_dif = tgt_flat1 - tgt_flat2 pred_dif = pred_flat1 - pred_flat2 geq = tf.cast(tgt_dif > 0, tf.bool) tgt_posi_dif = tf.where(geq, tgt_dif, -tgt_dif) pred_posi_dif = tf.where(geq, pred_dif, -pred_dif) loss = tf.maximum(0., tgt_posi_dif - pred_posi_dif) cstr_pct = tf.math.count_nonzero(loss, dtype=tf.float32) / tf.cast(tf.reduce_prod(tf.shape(loss)), tf.float32) final_loss = tf.reduce_mean(loss)
tensorflow.reshape
849
import tensorflow as tf loss = tf.metrics.mean(
tensorflow.metrics.mean
850
from tensorflow.python.training import device_setter self._model_dir = model_dir if self._model_dir is None: self._model_dir = tempfile.mkdtemp() logging.info('Using temporary folder as model directory: %s', self._model_dir) # Create a run configuration self._config = BaseEstimator._Config() # Set device function depending if there are replicas or not. if self._config.num_ps_replicas > 0: ps_ops = ['Variable', 'AutoReloadVariable'] self._device_fn = device_setter.replica_device_setter( ps_tasks=self._config.num_ps_replicas, merge_devices=False, ps_ops=ps_ops) else: self._device_fn = None # Features and targets TensorSingature objects. self._features_info = None self._targets_info = None @abc.abstractproperty def _get_train_ops(self, features, targets):
tensorflow.python.training.device_setter.replica_device_setter
851
import tensorflow as tf with tf.variable_scope(name): w = tf.get_variable( name="kernel", shape=[hidden_size, num_attention_heads * head_size], initializer=initializer) w = tf.reshape(w, [hidden_size, num_attention_heads, head_size]) b = tf.get_variable( name="bias", shape=[num_attention_heads * head_size], initializer=tf.zeros_initializer) b = tf.reshape(b, [num_attention_heads, head_size]) ret = tf.einsum("BFH,HND->BFND", input_tensor, w) ret += b if activation is not None: return activation(ret) else: return ret def dense_layer_3d_proj(input_tensor, hidden_size,
tensorflow.reshape
852
import tensorflow as tf self.assertAllEqual(x - y, op_value) if tf.test.is_built_with_cuda() and dtype in [np.float32, np.float64]:
tensorflow.test.is_built_with_cuda
853
from tensorflow.python.framework import tensor_util segment_ids_shape = op.inputs[1].get_shape() mid = segment_ids_shape.ndims if mid is None: return [tensor_shape.unknown_shape()] else: num_segments = tensor_util.ConstantValue(op.inputs[2]) return [tensor_shape.TensorShape([num_segments]).concatenate( data_shape[mid:])] @ops.RegisterShape("LinSpace") def _LinspaceShape(op): num = tensor_util.ConstantValue(op.inputs[2]) return [tensor_shape.vector(num)]
tensorflow.python.framework.tensor_util.ConstantValue
854
import tensorflow as tf blk_shape[0], q_shape[1] * strides[1], q_shape[2] * strides[2], 3 ], strides) blk_indices_crop = blk_indices_crop // tf.stack([1, strides[1], strides[2]]) return blk_indices_crop def _strides_one(): # Calculate otuput indices when strides = 1. return blk_indices[:, :q_shape[1], :q_shape[2], :] strides_gt_one = tf.logical_or(tf.greater(strides[1], 1), tf.greater(strides[2], 1)) blk_indices_crop = tf.cond(strides_gt_one, _strides_gt_one, _strides_one) y = tf.scatter_nd(blk_indices_crop, q, out_shape) return y return tf.cond( tf.equal(tf.size(blk_indices_), 0), lambda: tf.zeros(out_shape, dtype=x.dtype), _conv_nonzero) # returns an int64 start timer handle that should be passed to cuda_timer_end_op def cuda_timer_start_op(): return sbnet_module.cuda_timer_start()
tensorflow.scatter_nd
855
import tensorflow as tf def weight_variable(self,name, shape): with tf.variable_scope(name) as scope: weights = tf.get_variable('weights', shape=shape, dtype=tf.float32, initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32)) return weights def bias_variable(self,name, shape):
tensorflow.truncated_normal_initializer
856
import tensorflow as tf if FLAGS.do_train: train_file = os.path.join(FLAGS.output_dir, "train.tf_record") file_based_convert_examples_to_features( train_examples, label_list, FLAGS.max_seq_length, tokenizer, train_file) tf.logging.info("***** Running training *****") tf.logging.info(" Num examples = %d", len(train_examples)) tf.logging.info(" Batch size = %d", FLAGS.train_batch_size) tf.logging.info(" Num steps = %d", num_train_steps) train_input_fn = file_based_input_fn_builder( input_file=train_file, seq_length=FLAGS.max_seq_length, is_training=True, drop_remainder=True) estimator.train(input_fn=train_input_fn, max_steps=num_train_steps)
tensorflow.logging.info
857
import tensorflow as tf def train(self): self.fetch_datasets() if FLAGS.model == AUTOENCODER: self.build_ae_model() elif FLAGS.model == PREDICTIVE: self.build_predictive_model() else: self.build_denoising_model() self._init_optimizer() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) self._on_training_start(sess) try: for current_epoch in range(FLAGS.max_epochs): start = time.time() full_set_blur = len(self.train_set) < 50000 ds = self._get_blurred_dataset() if full_set_blur else self.train_set if FLAGS.model == AUTOENCODER: # Autoencoder Training
tensorflow.Session
858
import tensorflow as tf def dynamic_batching(paths): spectrograms, max_x = [], 0 for path in paths: spectrograms.append(np.load("spectrogram/" + path + ".npy")) if spectrograms[-1].shape[0] > max_x: max_x = spectrograms[-1].shape[0] return spectrograms, max_x # In[4]: tf.reset_default_graph() sess = tf.InteractiveSession() model = Model() sess.run(tf.global_variables_initializer()) # In[5]: for e in range(30): pbar = tqdm(range(0, len(text_files), batch_size), desc="minibatch loop") total_cost, total_acc = 0, 0 for k in pbar:
tensorflow.reset_default_graph
859
import tensorflow as tf """ # Infer predictions using argmax decoded = tf.cast(tf.argmax(inputs, axis=-1), tf.int32) # Adjust event vals according to representation
tensorflow.argmax
860
import tensorflow as tf import tensorflow as tf import cifar10 FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_string('train_dir', '/tmp/cifar10_train', """Directory where to write event logs """ """and checkpoint.""") tf.app.flags.DEFINE_integer('max_steps', 1000000, """Number of batches to run.""") tf.app.flags.DEFINE_integer('num_gpus', 1, """How many GPUs to use.""") tf.app.flags.DEFINE_boolean('log_device_placement', False, """Whether to log device placement.""") def tower_loss(scope): """Calculate the total loss on a single tower running the CIFAR model. Args: scope: unique prefix string identifying the CIFAR tower, e.g. 'tower_0' Returns: Tensor of shape [] containing the total loss for a batch of data
tensorflow.app.flags.DEFINE_boolean
861
import tensorflow as tf optimizer = tf.train.AdamOptimizer(learning_rate=hparams.learning_rate) train_op, loss, _ = graph_step(dynamics, optimizer, x) # Single thread; fairer comparison against eager session_conf = tf.ConfigProto(inter_op_parallelism_threads=1) with tf.Session(config=session_conf) as sess: sess.run(tf.global_variables_initializer()) # Warmup to reduce initialization effect when timing for _ in range(hparams.n_warmup_iters): _, _ = sess.run([train_op, loss]) # Training
tensorflow.global_variables_initializer
862
import tensorflow as tf # forward pass if cfg.TEST.HAS_RPN: feed_dict={net.data: blobs['data'], net.im_info: blobs['im_info'], net.keep_prob: 1.0} else: feed_dict={net.data: blobs['data'], net.rois: blobs['rois'], net.keep_prob: 1.0} run_options = None run_metadata = None if cfg.TEST.DEBUG_TIMELINE: run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) run_metadata = tf.RunMetadata() #theta_tensor = tf.get_default_graph().get_tensor_by_name('spt_trans_theta') cls_score, cls_prob, bbox_pred, rois = sess.run([net.get_output('cls_score'), net.get_output('cls_prob'), net.get_output('bbox_pred'), net.get_output('rois')], feed_dict=feed_dict, options=run_options, run_metadata=run_metadata)
tensorflow.RunOptions
863
import tensorflow as tf FLAGS.rnn_num_layers = 2 model = graphs.VatxtModel() train_op, _, _ = model.classifier_training() # Pretrained vars: embedding + LSTM layers self.assertEqual( len(model.pretrained_variables), 1 + 2 * FLAGS.rnn_num_layers) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) tf.train.start_queue_runners(sess) sess.run(train_op) def testLanguageModelGraph(self): train_op, _, _ = graphs.VatxtModel().language_model_training() with self.test_session() as sess:
tensorflow.global_variables_initializer
864
import tensorflow as tf [cur_batch_size, image_size, image_size, num_channels]. params: dict, user passed parameters. group_size: int, size of image groups. Returns: Image with minibatch standard deviation feature map added to channels of shape [cur_batch_size, image_size, image_size, num_channels + 1]. """ with tf.variable_scope("{}/minibatch_stddev".format(self.name)): # Get dynamic shape of image. # shape = (4,) dynamic_image_shape = tf.shape( input=X, name="dynamic_image_shape" ) print_obj( "\nminibatch_stddev", "dynamic_image_shape", dynamic_image_shape ) # Extract current batch size (in case this is a partial batch). cur_batch_size = dynamic_image_shape[0]
tensorflow.shape
865
import tensorflow as tf updated_ema_count, axis=-1) with tf.control_dependencies([e_loss]): update_means = tf.assign(self.means, updated_ema_means) with tf.control_dependencies([update_means]): loss += self.hparams.beta * e_loss
tensorflow.assign
866
import tensorflow as tf K = 1/(2*D-3) A1 = euclidean_norm_squared(tf.subtract(tf.expand_dims(X, 0), tf.expand_dims(X, 1)), axis=2) A = (1/(N**2)) * tf.reduce_sum((1/tf.sqrt(y + K*A1))) B1 = euclidean_norm_squared(X, axis=1)
tensorflow.sqrt
867
import tensorflow as tf def get_dropout(self, dropout_rate, is_training): return 1 - (tf.to_float(is_training) * dropout_rate)
tensorflow.to_float
868
from tensorflow.contrib.framework import tensor_util update_op: An operation that increments the `total` and `count` variables appropriately. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ predictions, labels = tensor_util.remove_squeezable_dimensions( predictions, labels) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) radial_diffs = math_ops.mul(predictions, labels) radial_diffs = math_ops.reduce_sum(radial_diffs, reduction_indices=[dim,], keep_dims=True) mean_distance, update_op = streaming_mean(radial_diffs, weights, None,
tensorflow.contrib.framework.tensor_util.remove_squeezable_dimensions
869
import tensorflow as tf else: block = layer + inp block = tf.nn.relu(block, name='relu')
tensorflow.nn.relu
870
import tensorflow as tf else: os.environ['CUDA_VISIBLE_DEVICES'] = f'{args.gpu}' config = tf.ConfigProto() config.gpu_options.allow_growth = True
tensorflow.ConfigProto
871
import tensorflow as tf return server_test_data, decode_params def _non_adaptive_many_to_one_encode_decode(): """Implementation of the method for `EncodingStageInterface`.""" server_graph = tf.Graph() with server_graph.as_default(): shape = input_values[0].shape encode_params, decode_params = stage.get_params() with self.session(server_graph) as sess: encode_params, decode_params = self.evaluate_tf_py_list( [encode_params, decode_params], sess) client_test_data = [] for x in input_values: client_graph = tf.Graph() with client_graph.as_default(): encoded_x = stage.encode(x, encode_params) with self.session(client_graph): encoded_x = self.evaluate(encoded_x) client_test_data.append(TestData(x, encoded_x)) server_test_data = [] with server_graph.as_default(): with self.session(server_graph) as sess: for test_data in client_test_data: decoded_x = stage.decode( test_data.encoded_x, decode_params, shape=shape) server_test_data.append( test_data._replace(decoded_x=sess.run(decoded_x)))
tensorflow.Graph
872
import tensorflow as tf with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): enc_inp = [tf.constant(1, tf.int32, shape=[2]) for i in range(2)] dec_inp = [tf.constant(i, tf.int32, shape=[2]) for i in range(3)] cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=True)
tensorflow.constant
873
from tensorflow.contrib.eager.python.examples.l2hmc import l2hmc def benchmark_eager_defun(self): self._benchmark_eager(defun=True) def _benchmark_eager(self, defun=False): """Benchmark Eager performance.""" hparams = get_default_hparams() for sample_size in [10, 25, 50, 100, 200]: hparams.n_samples = sample_size energy_fn, _, _ = l2hmc.get_scg_energy_fn() dynamics = l2hmc.Dynamics( x_dim=hparams.x_dim, minus_loglikelihood_fn=energy_fn, n_steps=hparams.n_steps, eps=hparams.eps) optimizer = tf.train.AdamOptimizer(learning_rate=hparams.learning_rate) step_fn = tfe.defun(step) if defun else step # Warmup to reduce initialization effect when timing
tensorflow.contrib.eager.python.examples.l2hmc.l2hmc.get_scg_energy_fn
874
import tensorflow as tf from official.mnist import mnist_eager from official.utils.misc import keras_utils def device(): return "/device:GPU:0" if tfe.num_gpus() else "/device:CPU:0" def data_format(): return "channels_first" if tfe.num_gpus() else "channels_last" def random_dataset(): batch_size = 64 images = tf.random_normal([batch_size, 784]) labels = tf.random_uniform([batch_size], minval=0, maxval=10, dtype=tf.int32) return tf.data.Dataset.from_tensors((images, labels)) def train(defun=False): model = mnist.create_model(data_format()) if defun: model.call = tfe.defun(model.call) optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01) dataset = random_dataset() with tf.device(device()): mnist_eager.train(model, optimizer, dataset, step_counter=tf.train.get_or_create_global_step())
tensorflow.random_uniform
875
import tensorflow as tf def _get_lstm_cell(self, config, is_training): if config.rnn_mode == BASIC: return tf.contrib.rnn.BasicLSTMCell( config.hidden_size, forget_bias=0.0, state_is_tuple=True, reuse=not is_training)
tensorflow.contrib.rnn.BasicLSTMCell
876
from tensorflow.python.framework import ops ops.RegisterShape("Relu")(common_shapes.unchanged_shape) ops.RegisterShape("Relu6")(common_shapes.unchanged_shape)
tensorflow.python.framework.ops.RegisterShape
877
import tensorflow as tf tf.app.flags.DEFINE_integer( 'num_cpu_threads', 0, 'The number of cpu cores used to train.') tf.app.flags.DEFINE_float( 'gpu_memory_fraction', 1., 'GPU memory fraction to use.') # scaffold related configuration tf.app.flags.DEFINE_string( 'data_dir', '../PASCAL/VOC_TF/VOC0712TF/', 'The directory where the dataset input data is stored.') tf.app.flags.DEFINE_string( 'dataset_name', 'pascalvoc_0712', 'The name of the dataset to load.') tf.app.flags.DEFINE_integer(
tensorflow.app.flags.DEFINE_string
878
import tensorflow as tf q_func_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='q_func') target_q_func_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='target_q_func')
tensorflow.get_collection
879
import tensorflow as tf create_initializer(initializer_range), query_act, "query") # `key_layer` = [B, T, N, H] k = dense_layer_3d(to_tensor, num_attention_heads, size_per_head, create_initializer(initializer_range), key_act, "key") # `value_layer` = [B, T, N, H] v = dense_layer_3d(to_tensor, num_attention_heads, size_per_head, create_initializer(initializer_range), value_act, "value") q = tf.transpose(q, [0, 2, 1, 3]) k = tf.transpose(k, [0, 2, 1, 3]) v = tf.transpose(v, [0, 2, 1, 3]) if attention_mask is not None: attention_mask = tf.reshape( attention_mask, [batch_size, 1, to_seq_length, 1]) # 'new_embeddings = [B, N, F, H]' new_embeddings = dot_product_attention(q, k, v, attention_mask, attention_probs_dropout_prob)
tensorflow.transpose
880
import tensorflow as tf scaling = maxnorm / tf.maximum(row_norms, maxnorm) scaled = var_matrix * tf.expand_dims(scaling, 1)
tensorflow.expand_dims
881
import tensorflow as tf scores = tf.nn.softmax(scores) # [B, 1, T] # Weighted sum if mode == 'SUM': output = tf.matmul(scores, facts) # [B, 1, H] # output = tf.reshape(output, [-1, tf.shape(facts)[-1]]) else: scores = tf.reshape(scores, [-1, tf.shape(facts)[1]]) output = facts * tf.expand_dims(scores, -1) output = tf.reshape(output, tf.shape(facts)) return output def din_fcn_attention(query, facts, attention_size, mask, stag='null', mode='SUM', softmax_stag=1, time_major=False, return_alphas=False, forCnn=False): if isinstance(facts, tuple): # In case of Bi-RNN, concatenate the forward and the backward RNN outputs. facts = tf.concat(facts, 2)
tensorflow.expand_dims
882
import tensorflow as tf saver = tf.train.Saver() adv_images = adv_craft_func(hps, images, FLAGS.attack_method, eps=FLAGS.eps, RCE_train=FLAGS.RCE_train) model_nor = model_name.ResNet(hps, images, FLAGS.mode, Reuse=True) model_nor.build_graph() model_adv = model_name.ResNet(hps, adv_images, FLAGS.mode, Reuse=True) model_adv.build_graph() # Open session and restore checkpoint sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) tf.train.start_queue_runners(sess) sess.run(tf.global_variables_initializer()) ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root) # Choose dir according to rt tf.logging.info('Loading checkpoint %s', ckpt_state.model_checkpoint_path) saver.restore(sess, ckpt_state.model_checkpoint_path) logits_nor = model_nor.t_SNE_logits logits_adv = model_adv.t_SNE_logits dim_logits = logits_nor.shape[1] if hps.batch_size!=logits_nor.shape[0]: print('Error!!!!!') return logits_all = np.reshape(np.array([]),(0,dim_logits)) labels_all = np.array([]) is_adv_all = np.array([])
tensorflow.logging.info
883
from tensorflow.python.framework import ops Raises: ValueError: if the arguments are invalid. """ if len(inputs) != len(sig.input_arg): raise ValueError("Expected number of arguments: %d, received: %d" % (len(sig.input_arg), len(inputs))) name = kwargs.pop("name", None) attrs = _parse_kwargs_as_attrs(**kwargs) g = ops.get_default_graph() func_name = sig.name output_types = [dtypes.DType(x.type) for x in sig.output_arg] with ops.name_scope(name, func_name, inputs) as name: op = g.create_op( func_name, list(inputs), output_types,
tensorflow.python.framework.ops.get_default_graph
884
import tensorflow as tf @property def perm(self): return self._perm @property def rightmost_transposed_ndims(self): return self._rightmost_transposed_ndims def _forward(self, x): return self._transpose(x, self.perm) def _inverse(self, y): return self._transpose(y, tf.argsort(self.perm)) def _inverse_log_det_jacobian(self, y): return tf.constant(0, dtype=y.dtype) def _forward_log_det_jacobian(self, x): return tf.constant(0, dtype=x.dtype) def _transpose(self, x, perm): sample_batch_ndims = tf.rank(x) - self.rightmost_transposed_ndims perm = tf.concat([ tf.range(sample_batch_ndims),
tensorflow.argsort
885
import tensorflow as tf def parse(line): """Parse a line from the colors dataset.""" # Each line of the dataset is comma-separated and formatted as # color_name, r, g, b # so `items` is a list [color_name, r, g, b]. items = tf.string_split([line], ",").values rgb = tf.string_to_number(items[1:], out_type=tf.float32) / 255. # Represent the color name as a one-hot encoded character sequence. color_name = items[0] chars = tf.one_hot(tf.decode_raw(color_name, tf.uint8), depth=256) # The sequence length is needed by our RNN. length = tf.cast(tf.shape(chars)[0], dtype=tf.int64) return rgb, chars, length def maybe_download(filename, work_directory, source_url): """Download the data from source url, unless it's already here. Args: filename: string, name of the file in the directory.
tensorflow.decode_raw
886
import tensorflow as tf with self.assertRaises(ValueError): schema_inference.infer_feature_schema(tensors, graph) def test_bucketization_annotation(self): # TODO(b/132098015): Schema annotations aren't yet supported in OSS builds. # pylint: disable=g-import-not-at-top try: from tensorflow_transform import annotations_pb2 except ImportError: return # pylint: enable=g-import-not-at-top with tf.compat.v1.Graph().as_default() as graph: inputs = { 'foo': tf.convert_to_tensor([0, 1, 2, 3]), 'bar': tf.convert_to_tensor([0, 2, 0, 2]), } boundaries_foo = tf.expand_dims(tf.convert_to_tensor([.5, 1.5]), axis=0) boundaries_bar = tf.expand_dims(tf.convert_to_tensor([.1, .2]), axis=0) outputs = {} # tft.apply_buckets will annotate the feature in the output schema to # indicate the bucket boundaries that were applied. outputs['Bucketized_foo'] = mappers.apply_buckets(inputs['foo'], boundaries_foo) outputs['Bucketized_bar'] = mappers.apply_buckets(inputs['bar'], boundaries_bar)
tensorflow.convert_to_tensor
887
import tensorflow as tf add=True, transpose=transpose) else: y = sbnet_module.sparse_scatter( q, indices.bin_counts, indices.active_block_indices, x, dynamic_bsize=tf.constant(block_params.bsize_out, dtype=tf.int32), dynamic_bstride=tf.constant(block_params.bsize_out, dtype=tf.int32), dynamic_boffset=tf.constant([0, 0], dtype=tf.int32), add=True, transpose=transpose) return y
tensorflow.constant
888
from tensorflow.python import debug as tf_debug hooks = [] if FLAGS.use_hvd: hooks.append(hvd.BroadcastGlobalVariablesHook(0)) if hvd.rank() == -1: #if debug, set 0 CLIDebugHook = tf_debug.LocalCLIDebugHook(ui_type='readline') CLIDebugHook.add_tensor_filter("has_inf_or_nan", tf_debug.has_inf_or_nan) hooks.append(CLIDebugHook) if FLAGS.profile and hvd.rank() == 0: ProfilerHook = tf.train.ProfilerHook(save_steps=FLAGS.hooking_frequence, output_dir=FLAGS.output_dir, show_dataflow=True, show_memory=True)
tensorflow.python.debug.LocalCLIDebugHook
889
from tensorflow.python.ops import control_flow_ops with tf.control_dependencies(update_ops): barrier = tf.no_op(name='update_barrier') self.d_losses[-1] = control_flow_ops.with_dependencies([barrier], self.d_losses[-1]) self.g_losses[-1] = control_flow_ops.with_dependencies([barrier], self.g_losses[-1]) self.d_loss_real = control_flow_ops.with_dependencies([barrier], self.d_loss_real) self.d_loss_fake = control_flow_ops.with_dependencies([barrier], self.d_loss_fake) self.d_loss_class = control_flow_ops.with_dependencies([barrier], self.d_loss_class) t_vars = self._get_vars_semi_supervised()
tensorflow.python.ops.control_flow_ops.with_dependencies
890
import tensorflow as tf """ with tf.name_scope(name):
tensorflow.name_scope
891
from tensorflow.python.platform import gfile self.assertTrue(gfile.Exists(s1)) self.assertTrue(gfile.Exists(save._MetaGraphFilename(s1))) # Exercise the second helper. # Adding s2 again (old s2 is removed first, then new s2 appended) s2 = save2.save(sess, os.path.join(save_dir, "s2")) self.assertEqual([s3, s2], save2.last_checkpoints) # Created by the first helper. self.assertTrue(gfile.Exists(s1)) self.assertTrue(gfile.Exists(save._MetaGraphFilename(s1))) # Deleted by the first helper. self.assertFalse(gfile.Exists(s3)) self.assertFalse(gfile.Exists(save._MetaGraphFilename(s3))) self.assertTrue(gfile.Exists(s2)) self.assertTrue(gfile.Exists(save._MetaGraphFilename(s2))) # Adding s1 (s3 should now be deleted as oldest in list)
tensorflow.python.platform.gfile.Exists
892
import tensorflow as tf tf.summary.image('Compare/final_detection_gpu:%d' % i, detections_in_img) loss_dict = outputs[-1] total_loss_dict, total_losses = self.loss_dict(loss_dict, num_gpu) if i == num_gpu - 1: regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) # weight_decay_loss = tf.add_n(slim.losses.get_regularization_losses()) total_losses = total_losses + tf.add_n(regularization_losses) tf.get_variable_scope().reuse_variables() grads = optimizer.compute_gradients(total_losses) if cfgs.GRADIENT_CLIPPING_BY_NORM is not None: grads = slim.learning.clip_gradient_norms(grads, cfgs.GRADIENT_CLIPPING_BY_NORM) tower_grads.append(grads) self.log_printer(fcos, optimizer, global_step, tower_grads, total_loss_dict, num_gpu*cfgs.BATCH_SIZE, graph)
tensorflow.add_n
893
import tensorflow as tf features['image'] = _cifar_augment_image(features['image']) return features, targets def flatten_image(features, targets): """Flatten the image.""" img = features['image'] flat = tf.cast(tf.reshape(img, [-1]), tf.int64) tgt = tf.expand_dims(targets, axis=0) flat_with_target = tf.concat([flat, tgt], axis=0) new_features = {} new_features['image'] = flat_with_target predict_image_weight = predict_image_train_weight if training else 0.0 mask_begin = tf.ones_like(flat) mask_begin = tf.cast(mask_begin, tf.float32) * predict_image_weight mask_end = tf.cast(tf.ones_like(tgt), tf.float32) new_features['mask'] = tf.concat([mask_begin, mask_end], axis=0) return new_features, flat_with_target if training: dataset = dataset.map(augment) dataset = dataset.map(flatten_image) return dataset @gin.configurable(module='trax.data', denylist=['dataset', 'training']) def downsampled_imagenet_flatten_bare_preprocess(dataset, training): """Preprocessing for downsampled_imagenet.
tensorflow.ones_like
894
import tensorflow as tf 'softmax_w', [hidden_size, vocab_size], dtype=tf.float32) softmax_b = tf.get_variable('softmax_b', [vocab_size], dtype=tf.float32) logits = tf.nn.xw_plus_b(output, softmax_w, softmax_b) logits = tf.reshape(logits, [self.batch_size, self.num_steps, vocab_size]) loss = tf.contrib.seq2seq.sequence_loss( logits, input_.targets, tf.ones([self.batch_size, self.num_steps], dtype=tf.float32), average_across_timesteps=False, average_across_batch=True) self._cost = tf.reduce_sum(loss) self._final_state = state if not is_training: return self._lr = tf.Variable(0., trainable=False) tvars = tf.trainable_variables() grads, _ = tf.clip_by_global_norm(tf.gradients(self._cost, tvars), config.max_grad_norm) optimizer = tf.train.GradientDescentOptimizer(self._lr) self._train_op = optimizer.apply_gradients(
tensorflow.reduce_sum
895
import tensorflow as tf stddev=1e-1, name='synthetic_images') labels = tf.random_uniform( [batch_size],
tensorflow.random_uniform
896
import tensorflow as tf init = tf.initialize_all_variables() config=tf.ConfigProto() config.gpu_options.allow_growth=True #init=tf.initialize_all_variables() def train(train_num=64,test_num=32,lr=1e-4,loop_count=10000,report_step=100,save_step=1000,restore=False): with tf.Session(config=config) as sess: sess.run(init) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) if restore: tf.train.Saver().restore(sess,path)
tensorflow.Session
897
import tensorflow as tf decode_normalize=False, validation="", references=[""], save_checkpoint_secs=0, save_checkpoint_steps=1000, ) return params def import_params(model_dir, model_name, params): model_dir = os.path.abspath(model_dir) p_name = os.path.join(model_dir, "params.json") m_name = os.path.join(model_dir, model_name + ".json") if not tf.gfile.Exists(p_name) or not tf.gfile.Exists(m_name): return params with tf.gfile.Open(p_name) as fd: tf.logging.info("Restoring hyper parameters from %s" % p_name) json_str = fd.readline() params.parse_json(json_str) with tf.gfile.Open(m_name) as fd: tf.logging.info("Restoring model parameters from %s" % m_name) json_str = fd.readline() params.parse_json(json_str) return params
tensorflow.gfile.Exists
898
import tensorflow as tf exp(Z) = (X / exp(mu))^(1/sigma) """ params = self.parameterizer(x1) mus, log_sigmas = params[:,:,:,0::2], params[:,:,:,1::2] # compute softplus activation z2, ldj = log_gaussianize(x2, mus, log_sigmas) z2 = tf.where(x2 > self.epsilon, z2, x2) ldj = tf.where(x2 > self.epsilon, ldj, tf.zeros_like(ldj)) return z2, tf.math.reduce_sum(ldj, axis=[1,2,3]) def _inverse(self, x1, z2, **kwargs): params = self.parameterizer(x1) mus, log_sigmas = params[:,:,:,0::2], params[:,:,:,1::2] x2, ldj = log_gaussianize(z2, mus, log_sigmas, inverse=tf.constant(True)) x2 = tf.where(z2 > self.epsilon, x2, z2) ldj = tf.where(z2 > self.epsilon, ldj, tf.zeros_like(ldj)) return x2, tf.math.reduce_sum(ldj, axis=[1,2,3]) def half_gaussianize(x, log_sigmas, inverse=tf.constant(False)): if inverse: z = tf.math.exp(log_sigmas)*x ldj = tf.math.reduce_sum(log_sigmas, axis=[1,2,3]) else: z = x*tf.math.exp(-log_sigmas) ldj = -tf.math.reduce_sum(log_sigmas, axis=[1,2,3]) return z, ldj class HalfGaussianize(Parameterize):
tensorflow.where
899