seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
import tensorflow as tf
losses[loss_name] = mean_loss
return losses
def summarize_features(features, num_shards=1):
with tf.name_scope("input_stats"):
for (k, v) in six.iteritems(features):
if isinstance(v, tf.Tensor) and v.get_shape().ndims > 1:
tf.summary.scalar("%s_batch" % k, tf.shape(v)[0] // num_shards)
tf.summary.scalar("%s_length" % k, tf.shape(v)[1])
nonpadding = tf.to_float(tf.not_equal(v, 0))
nonpadding_tokens = tf.reduce_sum(nonpadding)
tf.summary.scalar("%s_nonpadding_tokens" % k, nonpadding_tokens)
tf.summary.scalar("%s_nonpadding_fraction" % k,
tf.reduce_mean(nonpadding))
_already_logged = set()
def _eager_log(level, *args):
if context.in_eager_mode() and args in _already_logged:
return
_already_logged.add(args)
| tensorflow.summary.scalar | 300 |
import tensorflow as tf
def binary_mask(shape, p=0.7):
samples = tf.random_uniform(shape, minval=0.0, maxval=1.0)
mask = tf.less_equal(samples, p)
return tf.cast(mask, tf.float32)
def weighted_arithmetic_mean(w, x):
numer = tf.reduce_sum(w*x)
denom = tf.reduce_sum(w)
return tf.div(numer, denom)
| tensorflow.reduce_sum | 301 |
import tensorflow as tf
masked_lm_mean_loss = tf.metrics.mean(
values=masked_lm_example_loss, weights=masked_lm_weights)
next_sentence_log_probs = tf.reshape(
next_sentence_log_probs, [-1, next_sentence_log_probs.shape[-1]])
next_sentence_predictions = tf.argmax(
next_sentence_log_probs, axis=-1, output_type=tf.int32)
next_sentence_labels = tf.reshape(next_sentence_labels, [-1])
next_sentence_accuracy = tf.metrics.accuracy(
labels=next_sentence_labels, predictions=next_sentence_predictions)
| tensorflow.argmax | 302 |
import tensorflow as tf
f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
return f
features = collections.OrderedDict()
features["input_ids"] = create_int_feature(feature.input_ids)
features["input_mask"] = create_int_feature(feature.input_mask)
features["segment_ids"] = create_int_feature(feature.segment_ids)
features["label_ids"] = create_int_feature([feature.label_id])
features["is_real_example"] = create_int_feature(
[int(feature.is_real_example)])
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
writer.write(tf_example.SerializeToString())
writer.close()
def file_based_input_fn_builder(input_file, seq_length, is_training,
drop_remainder):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
name_to_features = {
"input_ids": tf.FixedLenFeature([seq_length], tf.int64),
| tensorflow.train.Features | 303 |
import tensorflow as tf
with tf.Graph().as_default():
initializer = tf.random_uniform_initializer(-config.init_scale,
config.init_scale)
with tf.name_scope("Train"):
train_input = PTBInput(config=config, data=train_data, name="TrainInput")
with tf.variable_scope("Model", reuse=None, initializer=initializer):
m = PTBModel(is_training=True, config=config, input_=train_input)
tf.summary.scalar("Training Loss", m.cost)
| tensorflow.name_scope | 304 |
import tensorflow as tf
"""
idx_iter_beg = int(self.nb_iters_train * FLAGS.ws_iter_ratio_beg)
idx_iter_end = int(self.nb_iters_train * FLAGS.ws_iter_ratio_end)
base = tf.cast(self.global_step - idx_iter_beg, tf.float32) / (idx_iter_end - idx_iter_beg)
base = tf.minimum(1.0, tf.maximum(0.0, base))
prune_ratio_dyn = prune_ratio_fnl * (1.0 - tf.pow(1.0 - base, FLAGS.ws_prune_ratio_exp))
return prune_ratio_dyn
def __calc_grads_pruned(self, grads_origin):
"""Calculate the mask-pruned gradients.
| tensorflow.pow | 305 |
import tensorflow as tf
# image_size,
# num_channels
# )
centered_grouped_image = tf.subtract(
x=grouped_image, y=grouped_mean, name="centered_grouped_image"
)
| tensorflow.subtract | 306 |
from tensorflow.python.training import moving_averages
"""Builds the exponential moving average update ops."""
update_mean_op = moving_averages.assign_moving_average(
variable=self._moving_mean,
value=mean,
decay=self._decay_rate,
name="update_moving_mean").op
update_variance_op = moving_averages.assign_moving_average(
variable=self._moving_variance,
value=variance,
decay=self._decay_rate,
name="update_moving_variance").op
return update_mean_op, update_variance_op
| tensorflow.python.training.moving_averages.assign_moving_average | 307 |
import tensorflow as tf
'The nearest distance of the crop border to al keypoints.')
tf.app.flags.DEFINE_integer(
'train_epochs', 50,
'The number of epochs to use for training.')
tf.app.flags.DEFINE_integer(
'epochs_per_eval', 20,
'The number of training epochs to run between evaluations.')
tf.app.flags.DEFINE_integer(
'batch_size', 10,
'Batch size for training and evaluation.')
tf.app.flags.DEFINE_integer(
'xt_batch_size', 10,
'Batch size for training and evaluation.')
tf.app.flags.DEFINE_boolean(
| tensorflow.app.flags.DEFINE_integer | 308 |
import tensorflow as tf
with tf.variable_scope('conv1_x'):
print('Building unit: conv1')
self.conv1 = self._conv('conv1', self.x_preprocessed, padding= [[0,0],[3,3],[3,3],[0,0]],
num_filters=64, kernel_size=(7, 7), stride=(2, 2), l2_strength=self.wd,
bias=self.bias)
self.conv1 = self._bn('bn1', self.conv1)
self.conv1 = self._relu('relu1', self.conv1)
_debug(self.conv1)
self.conv1= tf.pad(self.conv1, tf.constant([[0,0],[1,1],[1,1],[0,0]]), "CONSTANT")
self.conv1 = tf.nn.max_pool(self.conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='VALID',
name='max_pool1')
_debug(self.conv1)
print('conv1-shape: ' + str(self.conv1.shape.as_list()))
with tf.variable_scope('conv2_x'):
self.conv2 = self._residual_block('conv2_1', self.conv1, 64)
_debug(self.conv2)
self.conv2 = self._residual_block('conv2_2', self.conv2, 64)
_debug(self.conv2)
| tensorflow.constant | 309 |
import tensorflow as tf
def _conv_nonzero():
# Gather patches.
p = tf.gather_nd(x_, blk_indices_)
# Reshape patches.
p = tf.reshape(p, [blk_shape[0], blk_shape[1], blk_shape[2], -1])
# Convolution on patches.
q = tf.nn.conv2d(p, w, strides, 'VALID', use_cudnn_on_gpu=True)
# Paste convolution results.
q_shape = tf.shape(q)
def _strides_gt_one():
# Calculate output indices when strides > 1.
blk_indices_crop = tf.strided_slice(blk_indices, [0, 0, 0, 0], [
blk_shape[0], q_shape[1] * strides[1], q_shape[2] * strides[2], 3
], strides)
blk_indices_crop = blk_indices_crop // tf.stack([1, strides[1], strides[2]])
return blk_indices_crop
def _strides_one():
| tensorflow.shape | 310 |
import tensorflow as tf
global_step = tf.get_variable("global_step", [],
dtype=tf.int32,
initializer=tf.constant_initializer(0),
trainable=False)
# Loss value
reg_item = tf.contrib.layers.l1_l2_regularizer(L1_reg,
L2_reg)
reg_term = tf.contrib.layers.apply_regularization(reg_item, self.nnweights)
loss_fun = self._negative_log_likelihood(y_, y)
loss = loss_fun + reg_term
# SGD Optimizer
if optimizer == 'sgd':
lr = tf.train.exponential_decay(
learning_rate,
| tensorflow.contrib.layers.apply_regularization | 311 |
import tensorflow as tf
else:
graph_def.ParseFromString(f.read())
with graph.as_default():
tf.import_graph_def(graph_def, name='')
tf.io.write_graph(graph_def, '/tmp/', 'optimized_graph.pb',as_text=False)
return graph
| tensorflow.io.write_graph | 312 |
import tensorflow as tf
[1, 0]], dtype=tf.float32)
masks = tf.stack([mask0, mask1, mask2, mask3, mask4, mask5])
| tensorflow.stack | 313 |
from tensorflow.python.framework import constant_op
label = constant_op.constant([[1], [0], [0]], dtype=dtypes.int32)
return features, label
def _ranking_train_input_fn():
features = {
"a.f1": constant_op.constant([[3.], [0.3], [1.]]),
"a.f2": constant_op.constant([[0.1], [3.], [1.]]),
"b.f1": constant_op.constant([[13.], [0.4], [5.]]),
"b.f2": constant_op.constant([[1.], [3.], [0.01]]),
}
label = constant_op.constant([[0], [0], [1]], dtype=dtypes.int32)
return features, label
def _eval_input_fn():
features = {"x": constant_op.constant([[1.], [2.], [2.]])}
label = constant_op.constant([[0], [1], [1]], dtype=dtypes.int32)
return features, label
def _infer_ranking_train_input_fn():
| tensorflow.python.framework.constant_op.constant | 314 |
import tensorflow as tf
tf.summary.scalar('policy_loss', policy_loss)
tf.summary.scalar('qf1_loss', qf1_loss)
tf.summary.scalar('qf2_loss', qf2_loss)
tf.summary.scalar('value_loss', value_loss)
tf.summary.scalar("Imitation_loss",self.actor_loss_di)
tf.summary.scalar('entropy', self.entropy)
tf.summary.scalar('importance weight',tf.reduce_mean(self.weight_ph))
if ent_coef_loss is not None:
tf.summary.scalar('ent_coef_loss', ent_coef_loss)
tf.summary.scalar('ent_coef', self.ent_coef)
tf.summary.scalar('learning_rate', tf.reduce_mean(self.learning_rate_ph))
# Retrieve parameters that must be saved
self.params = tf_util.get_trainable_vars("model")
self.target_params = tf_util.get_trainable_vars("target/values_fn/vf")
# Initialize Variables and target network
| tensorflow.summary.scalar | 315 |
import tensorflow as tf
data = self.dropout_layer(data)
data = self.layer_normalization_layer(data)
with tf.variable_scope("task_dependent"):
logits = self.dense_layer(data, num_tags)
crf_params = tf.get_variable("crf", [num_tags, num_tags], dtype=tf.float32)
| tensorflow.variable_scope | 316 |
import tensorflow as tf
x = _conv(
'conv2',
x,
ksize_list[1],
_stride_arr(1, data_format),
padding,
data_format=data_format)
with tf.variable_scope('sub3'):
x = _batch_norm('bn3', x, is_training, data_format)
x = _relu('relu3', x)
x = _conv(
'conv3',
x,
ksize_list[2],
_stride_arr(1, data_format),
| tensorflow.variable_scope | 317 |
import tensorflow as tf
with tf.variable_scope(target_modality.name):
new_features["targets"] = target_modality.targets_bottom_sharded(
new_targets, dp)
with tf.variable_scope("body"):
body_outputs, losses = model.model_fn_sharded(new_features)
if not isinstance(losses, dict): # If it's a single extra loss.
| tensorflow.variable_scope | 318 |
import tensorflow as tf
return initial_learning_rate + (
maximal_learning_rate - initial_learning_rate
) * tf.maximum(tf.cast(0, dtype), (1 - x)) * self.scale_fn(mode_step)
def get_config(self):
| tensorflow.cast | 319 |
import tensorflow as tf
with tf.variable_scope("lstm"):
self.w_lstm = []
for layer_id in range(self.lstm_num_layers):
with tf.variable_scope("layer_{}".format(layer_id)):
w = tf.get_variable("w", [2 * self.lstm_size, 4 * self.lstm_size])
self.w_lstm.append(w)
self.g_emb = tf.get_variable("g_emb", [1, self.lstm_size])
with tf.variable_scope("emb"):
self.w_emb = tf.get_variable("w", [self.num_branches, self.lstm_size])
with tf.variable_scope("softmax"):
self.w_soft = tf.get_variable("w", [self.lstm_size, self.num_branches])
b_init = np.array([10.0, 10.0] + [0] * (self.num_branches - 2),
dtype=np.float32)
self.b_soft = tf.get_variable(
"b", [1, self.num_branches],
initializer=tf.constant_initializer(b_init))
b_soft_no_learn = np.array(
[0.25, 0.25] + [-0.25] * (self.num_branches - 2), dtype=np.float32)
b_soft_no_learn = np.reshape(b_soft_no_learn, [1, self.num_branches])
self.b_soft_no_learn = tf.constant(b_soft_no_learn, dtype=tf.float32)
| tensorflow.get_variable | 320 |
import tensorflow as tf
# // --- Generate a toyMC sample from composite PDF ---
# RooDataSet *data = sum.generate(mes,2000) ;
def sum_pdf(mes, nsig, sigmean, sigwidth, nbkg, m0, argpar, mes_low, mes_high):
add = tf.add(nsig * gaussian_pdf(mes, sigmean, sigwidth),
nbkg * argus_pdf_phalf_WN(mes, m0, argpar, mes_low, mes_high),
name="sum_pdf")
return tf.div(add, nsig + nbkg, name="sum_pdf_normalized")
# data in RooFit genereren en importeren
# draai dit in ROOT:
# data.write("roofit_demo_random_data_values.dat");
# om het weer in te lezen:
# RooDataSet *data;
# data->RooDataSet.read("roofit_demo_random_data_values.dat", RooArgList(mes))
| tensorflow.div | 321 |
import tensorflow as tf
wh = tf.get_variable("wh", [nh, nh*4], initializer=ortho_init(init_scale))
b = tf.get_variable("b", [nh*4], initializer=tf.constant_initializer(0.0))
c, h = tf.split(axis=1, num_or_size_splits=2, value=s)
for idx, (x, m) in enumerate(zip(xs, ms)):
c = c*(1-m)
h = h*(1-m)
z = tf.matmul(x, wx) + tf.matmul(h, wh) + b
i, f, o, u = tf.split(axis=1, num_or_size_splits=4, value=z)
i = tf.nn.sigmoid(i)
f = tf.nn.sigmoid(f)
o = tf.nn.sigmoid(o)
u = tf.tanh(u)
c = f*c + i*u
h = o*tf.tanh(c)
xs[idx] = h
s = tf.concat(axis=1, values=[c, h])
return xs, s
def _ln(x, g, b, e=1e-5, axes=[1]):
u, s = tf.nn.moments(x, axes=axes, keep_dims=True)
x = (x-u)/tf.sqrt(s+e)
x = x*g+b
return x
| tensorflow.tanh | 322 |
import tensorflow as tf
if gpu_idx == 0:
G_means = tf.reduce_mean(self.end_points_G['softmax'], 0, keep_dims=True)
G_vars = tf.reduce_mean(tf.square(self.end_points_G['softmax'] - G_means), 0, keep_dims=True)
G = tf.Print(
self.end_points_G['softmax'],
[tf.reduce_mean(G_means), tf.reduce_mean(G_vars)],
"generator mean and average var",
first_n=1)
inputs_means = tf.reduce_mean(inputs, 0, keep_dims=True)
inputs_vars = tf.reduce_mean(tf.square(inputs - inputs_means), 0, keep_dims=True)
inputs = tf.Print(
inputs,
[tf.reduce_mean(inputs_means), tf.reduce_mean(inputs_vars)],
"image mean and average var",
first_n=1)
| tensorflow.reduce_mean | 323 |
from tensorflow.python.framework import op_def_library as _op_def_library
"""
result = _op_def_lib.apply_op("UnpackPath", path=path,
path_values=path_values, name=name)
return result
def _InitOpDefLibrary():
op_list = _op_def_pb2.OpList()
_text_format.Merge(_InitOpDefLibrary.op_list_ascii, op_list)
_op_def_registry.register_op_list(op_list)
op_def_lib = _op_def_library.OpDefLibrary()
op_def_lib.add_op_list(op_list)
return op_def_lib
_InitOpDefLibrary.op_list_ascii = """op {
name: "HardRoutingFunction"
input_arg {
name: "input_data"
type: DT_FLOAT
| tensorflow.python.framework.op_def_library.OpDefLibrary | 324 |
import tensorflow as tf
states = self.states
dxt_list = tf.gradients(self.error, states)
#dxt_list[0] = tf.Print(dxt_list[0], [dxt_list[0]], "dxt 0: ")
test = tf.gradients(states[0], states[-1])
dxt = tf.stack(dxt_list)
xt = tf.stack(states)
num = (1 - self.alpha) * dxt + tf.tensordot(self.alpha * dxt ,
tf.transpose(
tf.matmul(tf.abs(self.W_rec) * self.rec_Connectivity,self.Dale_rec)),
axes=1) * \
tf.where(tf.greater(xt, 0), tf.ones_like(xt), tf.zeros_like(xt))
denom = dxt
# sum over hidden units
num = tf.reduce_sum(tf.square(num), axis=2)
denom = tf.reduce_sum(tf.square(denom), axis=2)
bounded = tf.where(tf.greater(denom, 1e-20), tf.div(num, 1.0 * denom), tf.ones_like(num))
nelems = tf.reduce_mean(tf.where(tf.greater(denom, 1e-20), 1.0 * tf.ones_like(num), 1.0 * tf.zeros_like(num)), axis=1)
| tensorflow.abs | 325 |
import tensorflow as tf
lr = tf.Variable(0.0, trainable=False)
self._lr = lr
self._lr_summary = tf.summary.scalar('learning_rate', self._lr)
tvars = tf.trainable_variables()
grads = tf.gradients(avg_neg_log_lhood, tvars)
if grad_clip > 0.0:
grads, _ = tf.clip_by_global_norm(grads, grad_clip)
if opt == 'sgd':
optimizer = tf.train.GradientDescentOptimizer(lr)
else:
raise NotImplementedError()
| tensorflow.clip_by_global_norm | 326 |
import tensorflow as tf
l1 = tf.contrib.layers.l1_regularizer(alpha)(val)
l2 = tf.contrib.layers.l2_regularizer(alpha)(val)
A = [[0.8, 0.6, 0.3], [0.1, 0.6, 0.4]]
B = [1, 1]
top_k = tf.nn.top_k(A, 2)
in_top_k = tf.nn.in_top_k(A, B, 1)
sess.run(tf.global_variables_initializer())
print(f'\nl1={sess.run(l1)} l2={sess.run(l2)}')
a = np.array([1, 2, 3], dtype=np.float32)
tf_v = tf.Variable(5, dtype=tf.float32)
sess.run(tf.global_variables_initializer())
| tensorflow.global_variables_initializer | 327 |
import tensorflow as tf
self.EPS_LEN = 100000
# GPU setup
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False, device_count={'GPU': gpu})
config.gpu_options.allow_growth = True
config.gpu_options.per_process_gpu_memory_fraction = 0.5
| tensorflow.ConfigProto | 328 |
import tensorflow as tf
import numpy as np
import tensorflow as tf
from evaluation import factory
def write_summary(logs, summary_writer, current_step):
"""Write out summaries of current training step for the checkpoint."""
with tf.Graph().as_default():
summaries = [tf.Summary.Value(tag=tag, simple_value=value)
for tag, value in logs.items()]
tf_summary = tf.Summary(value=summaries)
summary_writer.add_summary(tf_summary, current_step)
class TpuExecutor(object):
"""An executor class for running jobs on TPUs."""
def __init__(self, model_fn, params):
self._model_dir = params.model_dir
# Sets up evaluator.
self._evaluator = factory.evaluator_generator(params.eval)
| tensorflow.Summary | 329 |
import tensorflow as tf
"""
with tf.name_scope(scope):
| tensorflow.name_scope | 330 |
import tensorflow.contrib as contrib
if cross_stitch_enabled:
with tf.variable_scope("cross_stitch_2"):
stitch2_1, stitch2_2 = apply_cross_stitch(fc2_1, fc2_2)
else:
stitch2_1, stitch2_2 = fc2_1, fc2_2
dropout2_1 = contrib.layers.dropout(stitch2_1, keep_prob=keep_prob, is_training=is_training,
scope="dropout2_1")
dropout2_2 = contrib.layers.dropout(stitch2_2, keep_prob=keep_prob, is_training=is_training,
scope="dropout2_2")
fc3_1 = contrib.layers.fully_connected(dropout2_1, 32, scope="fc3_1")
| tensorflow.contrib.layers.dropout | 331 |
import tensorflow as tf
# Performance tuning flags.
tf.flags.DEFINE_boolean('winograd_nonfused', True,
"""Enable/disable using the Winograd non-fused
algorithms.""")
tf.flags.DEFINE_boolean('sync_on_finish', False,
"""Enable/disable whether the devices are synced after
each step.""")
tf.flags.DEFINE_boolean('staged_vars', False,
"""whether the variables are staged from the main
| tensorflow.flags.DEFINE_boolean | 332 |
import tensorflow as tf
pi_loaded.append(load_pi_ckpt(pi_ckpt_path, agent))
return pi_loaded
def create_default_writer_and_save_dir(root_dir):
"""Creates default directories."""
base_dir = osp.expanduser(root_dir)
if not tf.io.gfile.exists(base_dir):
tf.io.gfile.makedirs(base_dir)
tag = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
tb_logdir = osp.join(base_dir, tag, 'tb')
save_dir = osp.join(base_dir, tag, 'train')
tf.io.gfile.makedirs(tb_logdir)
tf.io.gfile.makedirs(save_dir)
| tensorflow.io.gfile.exists | 333 |
from tensorflow.python.ops import math_ops
or if either `metrics_collections` or `updates_collections` are not a list
or tuple.
"""
with variable_scope.variable_scope(name, 'mean', [values, weights]):
values = math_ops.to_float(values)
total = _create_local('total', shape=[])
count = _create_local('count', shape=[])
| tensorflow.python.ops.math_ops.to_float | 334 |
import tensorflow as tf
Returns
-------
A Keras variable, filled with `1.0`.
"""
if dtype is None:
dtype = tf.float32
shape = tuple(map(int, shape))
return tf.Variable(
tf.constant_initializer(1., dtype=dtype)(shape), dtype, name)
def cast_to_floatx(x):
"""Cast a Numpy array to the default Keras float type.
Parameters
----------
| tensorflow.constant_initializer | 335 |
import tensorflow as tf
def global_avg_pool(input_data, output_length=1, padding='VALID', scope='gloval_avg_pool'):
input_dims = input_data.get_shape().as_list()
assert (len(input_dims) == 4) # batch_size, height, width, num_channels_in
num_channels_in = input_dims[-1]
height = input_dims[1]
width = input_dims[2]
with tf.variable_scope(scope):
if output_length == 1:
pool = tf.nn.avg_pool(input_data, [1, height, width, 1], strides=[1, 1, 1, 1], padding=padding)
pool = tf.reduce_mean(pool, axis=[1, 2])
pool = tf.squeeze(pool, axis=[1, 2])
return pool
else:
if num_channels_in != output_length:
| tensorflow.variable_scope | 336 |
import tensorflow as tf
with tf.control_dependencies([save_image_op]):
pred_x, pred_y = pred_x * 1., pred_y * 1.
return pred_x, pred_y
def gaussian_blur(inputs, inputs_filters, sigma, data_format, name=None):
with tf.name_scope(name, "gaussian_blur", [inputs]):
data_format_ = 'NHWC' if data_format=='channels_last' else 'NCHW'
if data_format_ == 'NHWC':
inputs = tf.transpose(inputs, [0, 2, 3, 1])
ksize = int(6 * sigma + 1.)
| tensorflow.name_scope | 337 |
import tensorflow as tf
weights=is_real_example)
return {"pred": concat1, "label_ids": concat2, "pearson": pearson,
"MSE": mse, "eval_loss": loss,}
elif task_name == "cola":
def metric_fn(per_example_loss, label_ids, logits, is_real_example):
"""Compute Matthew's correlations for STS-B."""
predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
# https://en.wikipedia.org/wiki/Matthews_correlation_coefficient
tp, tp_op = tf.metrics.true_positives(
predictions, label_ids, weights=is_real_example)
tn, tn_op = tf.metrics.true_negatives(
predictions, label_ids, weights=is_real_example)
fp, fp_op = tf.metrics.false_positives(
predictions, label_ids, weights=is_real_example)
fn, fn_op = tf.metrics.false_negatives(
predictions, label_ids, weights=is_real_example)
| tensorflow.metrics.true_positives | 338 |
import tensorflow as tf
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
label_id = label_map[example.label]
if ex_index < 5:
tf.logging.info("*** Example ***")
tf.logging.info("guid: %s" % (example.guid))
tf.logging.info("tokens: %s" % " ".join(
[tokenization.printable_text(x) for x in tokens]))
tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
tf.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
tf.logging.info("label: %s (id = %d)" % (example.label, label_id))
feature = InputFeatures(
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
| tensorflow.logging.info | 339 |
import tensorflow as tf
with argscope([Conv2D, FullyConnected], nl=tf.nn.relu):
with tf.variable_scope('STN1'):
sampled1 = get_stn(image)
with tf.variable_scope('STN2'):
sampled2 = get_stn(image)
# For visualization in tensorboard
with tf.name_scope('visualization'):
padded1 = tf.pad(sampled1, [[0, 0], [HALF_DIFF, HALF_DIFF], [HALF_DIFF, HALF_DIFF], [0, 0]])
padded2 = tf.pad(sampled2, [[0, 0], [HALF_DIFF, HALF_DIFF], [HALF_DIFF, HALF_DIFF], [0, 0]])
img_orig = tf.concat([image[:, :, :, 0], image[:, :, :, 1]], 1) # b x 2h x w
transform1 = tf.concat([padded1[:, :, :, 0], padded1[:, :, :, 1]], 1)
transform2 = tf.concat([padded2[:, :, :, 0], padded2[:, :, :, 1]], 1)
stacked = tf.concat([img_orig, transform1, transform2], 2, 'viz')
tf.summary.image('visualize',
tf.expand_dims(stacked, -1), max_outputs=30)
sampled = tf.concat([sampled1, sampled2], 3, 'sampled_concat')
logits = (LinearWrap(sampled)
.FullyConnected('fc1', out_dim=256, nl=tf.nn.relu)
| tensorflow.concat | 340 |
import tensorflow as tf
# instead.
output_layer = model.get_pooled_output()
hidden_size = output_layer.shape[-1].value
output_weights = tf.get_variable(
"output_weights", [num_labels, hidden_size],
initializer=tf.truncated_normal_initializer(stddev=0.02))
output_bias = tf.get_variable(
"output_bias", [num_labels], initializer=tf.zeros_initializer())
with tf.variable_scope("loss"):
if is_training:
# I.e., 0.1 dropout
output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
logits = tf.matmul(output_layer, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
probabilities = tf.nn.softmax(logits, axis=-1)
| tensorflow.zeros_initializer | 341 |
import tensorflow as tf
# There are two ways to obtain the final prediction results: (1) bilinear
# upsampling the logits followed by argmax, or (2) argmax followed by
# nearest neighbor upsampling. The second option may introduce the "blocking
# effect" but is computationally efficient.
if model_options.prediction_with_upsampled_logits:
logits = _resize_bilinear(logits,
#tf.shape(images)[1:3],
tf.TensorShape([512,512]),
scales_to_logits[MERGED_LOGITS_SCOPE].dtype)
predictions[output] = tf.argmax(logits, 3, output_type=tf.dtypes.int32)
#predictions[output + PROB_SUFFIX] = tf.nn.softmax(logits)
else:
argmax_results = tf.argmax(logits, 3, output_type=tf.dtypes.int32)
argmax_results = tf.image.resize_nearest_neighbor(
| tensorflow.TensorShape | 342 |
import tensorflow as tf
learnrate = tf.placeholder(tf.float32)
def getinputs(path):
filename_queue=tf.train.string_input_producer([path])
reader=tf.TFRecordReader()
_,serialized_example=reader.read(filename_queue)
| tensorflow.train.string_input_producer | 343 |
import tensorflow as tf
mask = tf.pad(mask_, [[0,0],[32,32],[32,32],[0,0]])
mask2__ = tf.ones([FLAGS.batch_size,78,78,3])
mask2_ = tf.pad(mask2__, [[0,0],[25,25],[25,25],[0,0]])
mask2 = mask2_ - mask
pred_annotation, logits = inference((1-mask)*image + mask*255, keep_probability,z)
tf.summary.image("input_image", image, max_outputs=2)
tf.summary.image("ground_truth", tf.cast(annotation, tf.uint8), max_outputs=2)
tf.summary.image("pred_annotation", tf.cast(pred_annotation, tf.uint8), max_outputs=2)
# loss0 = tf.reduce_mean(tf.abs(z))
loss = tf.reduce_mean(tf.sqrt(tf.reduce_sum(tf.square((image - logits)),[1,2,3])))
# loss2 = tf.reduce_mean(tf.square((image - logits)*mask2))
# loss = loss1 + loss2 + loss0
| tensorflow.summary.image | 344 |
import tensorflow as tf
return gtboxes_and_label_h[:int(num_objects), :].astype(np.float32), \
gtboxes_and_label_r[:int(num_objects), :].astype(np.float32)
def main(self):
with tf.Graph().as_default() as graph, tf.device('/cpu:0'):
num_gpu = len(cfgs.GPU_GROUP.strip().split(','))
global_step = slim.get_or_create_global_step()
lr = self.warmup_lr(cfgs.LR, global_step, cfgs.WARM_SETP, num_gpu)
tf.summary.scalar('lr', lr)
optimizer = tf.train.MomentumOptimizer(lr, momentum=cfgs.MOMENTUM)
r3det_dcl = build_whole_network.DetectionNetworkR3DetDCL(cfgs=self.cfgs,
is_training=True)
with tf.name_scope('get_batch'):
if cfgs.IMAGE_PYRAMID:
shortside_len_list = tf.constant(cfgs.IMG_SHORT_SIDE_LEN)
shortside_len = tf.random_shuffle(shortside_len_list)[0]
else:
shortside_len = cfgs.IMG_SHORT_SIDE_LEN
img_name_batch, img_batch, gtboxes_and_label_batch, num_objects_batch, img_h_batch, img_w_batch = \
self.reader.next_batch(dataset_name=cfgs.DATASET_NAME,
batch_size=cfgs.BATCH_SIZE * num_gpu,
shortside_len=shortside_len,
is_training=True)
# data processing
| tensorflow.name_scope | 345 |
import tensorflow as tf
opt_momentum = knobs['opt_momentum'] # Momentum optimizer momentum
grad_clip_norm = knobs['grad_clip_norm'] # L2 norm to clip gradients by
# Compute learning rate, gradients
tf_trainable_vars = tf.trainable_variables()
lr = self._get_learning_rate(step, **knobs)
grads = tf.gradients(loss, tf_trainable_vars)
self._mark_for_monitoring('lr', lr)
| tensorflow.trainable_variables | 346 |
import tensorflow as tf
return outputs
def highwaynet(inputs, num_units=None, scope="highwaynet"):
if not num_units:
num_units = inputs.get_shape()[-1]
with tf.variable_scope(scope):
H = tf.layers.dense(inputs, units=num_units, activation=tf.nn.relu, name="dense1")
T = tf.layers.dense(
inputs,
units=num_units,
activation=tf.nn.sigmoid,
bias_initializer=tf.constant_initializer(-1.0),
name="dense2",
)
outputs = H * T + inputs * (1.0 - T)
return outputs
def conv1d_banks(inputs, K=16, is_training=True, scope="conv1d_banks"):
with tf.variable_scope(scope):
outputs = tf.layers.conv1d(inputs, embed_size // 2, 1, padding="SAME")
for k in range(2, K + 1):
with tf.variable_scope("num_{}".format(k)):
| tensorflow.constant_initializer | 347 |
from tensorflow.core.protobuf import meta_graph_pb2
v0 = tf.Variable(10.0, name="v0")
# Creates a saver.
save = tf.train.Saver({"v0": v0})
# Generates MetaGraphDef.
meta_graph_def = meta_graph_pb2.MetaGraphDef()
# Verifies that collection with unsupported key will not be added.
tf.add_to_collection(save, 3)
| tensorflow.core.protobuf.meta_graph_pb2.MetaGraphDef | 348 |
import tensorflow as tf
tf.set_random_seed(1) # defines the seed of the random number generator
| tensorflow.set_random_seed | 349 |
import tensorflow as tf
return x
def read_and_decode(filename_queue, canvas_size, preemph=0.):
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
features={
'wav_raw': tf.FixedLenFeature([], tf.string),
'noisy_raw': tf.FixedLenFeature([], tf.string),
})
wave = tf.decode_raw(features['wav_raw'], tf.int32)
wave.set_shape(canvas_size)
wave = (2./65535.) * tf.cast((wave - 32767), tf.float32) + 1.
noisy = tf.decode_raw(features['noisy_raw'], tf.int32)
noisy.set_shape(canvas_size)
noisy = (2./65535.) * tf.cast((noisy - 32767), tf.float32) + 1.
| tensorflow.FixedLenFeature | 350 |
import tensorflow as tf
key_masks = tf.expand_dims(mask, 1) # [B, 1, T]
paddings = tf.ones_like(scores) * (-2 ** 32 + 1)
| tensorflow.ones_like | 351 |
import tensorflow as tf
act: (tf.Variable, bool, float, bool, float, bool) -> tf.Variable
function to select and action given observation.
` See the top of the file for details.
"""
if param_noise_filter_func is None:
param_noise_filter_func = default_param_noise_filter
with tf.variable_scope(scope, reuse=reuse):
observations_ph = U.ensure_tf_input(make_obs_ph("observation"))
stochastic_ph = tf.placeholder(tf.bool, (), name="stochastic")
update_eps_ph = tf.placeholder(tf.float32, (), name="update_eps")
update_param_noise_threshold_ph = tf.placeholder(tf.float32, (), name="update_param_noise_threshold")
update_param_noise_scale_ph = tf.placeholder(tf.bool, (), name="update_param_noise_scale")
reset_ph = tf.placeholder(tf.bool, (), name="reset")
| tensorflow.variable_scope | 352 |
import tensorflow as tf
m.a: 0.001
>>> print("m.b: {:.3f}".format(np.asscalar(m.b.value)))
m.b: 1.000
"""
X_key = X if isinstance(X, tf.Tensor) else None
Y_key = Y if isinstance(Y, tf.Tensor) else None
key = ("_Model__loss", X_key, Y_key)
if key not in self.cache:
X_tensor = (X if isinstance(X, tf.Tensor) else
tf.placeholder(tf.as_dtype(X.dtype)))
Y_tensor = (Y if isinstance(Y, tf.Tensor) else
tf.placeholder(tf.as_dtype(Y.dtype)))
self.cache[key] = (self._compile_loss(X_tensor, Y_tensor),
X_tensor, Y_tensor)
loss, X_tensor, Y_tensor = self.cache[key]
feed_dict = self.feed_dict
if not isinstance(X, tf.Tensor): feed_dict[X_tensor] = X
if not isinstance(Y, tf.Tensor): feed_dict[Y_tensor] = Y
variables = [p.free_state for p in self.params if not p.fixed]
variables = utils.unique(variables)
free_state = tf.concat(0, [tf.reshape(v, [-1]) for v in variables])
| tensorflow.as_dtype | 353 |
import tensorflow as tf
)
tf.summary.scalar('learning_rate', learning_rate)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops), tf.variable_scope('optimizer'):
optimizer = tf.train.AdamOptimizer(learning_rate)
grads_and_vars = optimizer.compute_gradients(total_loss)
train_op = optimizer.apply_gradients(grads_and_vars, global_step)
for g, v in grads_and_vars:
tf.summary.histogram(v.name[:-2] + '_hist', v)
tf.summary.histogram(v.name[:-2] + '_grad_hist', g)
with tf.control_dependencies([train_op]), tf.name_scope('ema'):
ema = tf.train.ExponentialMovingAverage(decay=MOVING_AVERAGE_DECAY, num_updates=global_step)
train_op = ema.apply(tf.trainable_variables())
return tf.estimator.EstimatorSpec(mode, loss=total_loss, train_op=train_op)
def add_weight_decay(weight_decay):
"""Add L2 regularization to all (or some) trainable kernel weights."""
weight_decay = tf.constant(
weight_decay, tf.float32,
[], 'weight_decay'
)
trainable_vars = tf.trainable_variables()
kernels = [
| tensorflow.train.ExponentialMovingAverage | 354 |
import tensorflow as tf
tf.app.flags.DEFINE_float('alpha', 10, 'Predictive reconstruction loss weight')
tf.app.flags.DEFINE_float('beta', 0.0005, 'Reconstruction from noisy data loss weight')
tf.app.flags.DEFINE_float('epsilon', 0.000001,
'Diameter of epsilon sphere comparing to distance to a neighbour. <= 0.5')
tf.app.flags.DEFINE_float('gamma', 50., 'Loss weight for large distances')
tf.app.flags.DEFINE_float('distance', 0.01, 'Maximum allowed interpoint distance')
tf.app.flags.DEFINE_float('delta', 1., 'Loss weight for stacked objective')
tf.app.flags.DEFINE_string('comment', '', 'Comment to leave by the model')
tf.app.flags.DEFINE_float('test_max', 10000, 'max number of examples in the test set')
tf.app.flags.DEFINE_integer('max_epochs', 0, 'Train for at most this number of epochs')
tf.app.flags.DEFINE_integer('save_every', 250, 'Save model state every INT epochs')
tf.app.flags.DEFINE_integer('eval_every', 25, 'Save encoding and visualizations every')
tf.app.flags.DEFINE_integer('visualiza_max', 10, 'Max pairs to show on visualization')
tf.app.flags.DEFINE_boolean('load_state', True, 'Load state if possible ')
tf.app.flags.DEFINE_boolean('kill_depth', False, 'Ignore depth information')
tf.app.flags.DEFINE_boolean('dev', False, 'Indicate development mode')
tf.app.flags.DEFINE_integer('batch_size', 128, 'Batch size')
tf.app.flags.DEFINE_float('learning_rate', 0.0001, 'Create visualization of ')
tf.app.flags.DEFINE_float('blur', 5.0, 'Max sigma value for Gaussian blur applied to training set')
tf.app.flags.DEFINE_boolean('new_blur', False, 'Use data augmentation as blur info')
tf.app.flags.DEFINE_integer('blur_decrease', 10000, 'Decrease image blur every X steps')
FLAGS = tf.app.flags.FLAGS
slim = tf.contrib.slim
| tensorflow.app.flags.DEFINE_integer | 355 |
import tensorflow as tf
tf.summary.scalar("model/entropy", entropy / bs)
tf.summary.image("model/state", pi.x)
| tensorflow.summary.image | 356 |
import tensorflow as tf
input_mask = features["input_mask"]
segment_ids = features["segment_ids"]
label_ids = features["label_ids"]
is_real_example = None
if "is_real_example" in features:
is_real_example = tf.cast(features["is_real_example"], dtype=tf.float32)
else:
is_real_example = tf.ones(tf.shape(label_ids), dtype=tf.float32)
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
| tensorflow.cast | 357 |
from tensorflow.python.platform import tf_logging as logging
@property
def best_value(self):
"""Returns the best early stopping metric value found so far."""
return self._best_value
def every_n_step_end(self, step, outputs):
super(ValidationMonitor, self).every_n_step_end(step, outputs)
# TODO(mdan): The use of step below is probably misleading.
# The code should probably use the step from the checkpoint, because
# that's what is being evaluated.
if self._estimator is None:
raise ValueError("Missing call to set_estimator.")
# Check that we are not running evaluation on the same checkpoint.
latest_path = saver_lib.latest_checkpoint(self._estimator.model_dir)
if latest_path is None:
logging.debug("Skipping evaluation since model has not been saved yet "
"at step %d.", step)
return False
if latest_path is not None and latest_path == self._latest_path:
logging.debug("Skipping evaluation due to same checkpoint %s for step %d "
"as for step %d.", latest_path, step,
self._latest_path_step)
return False
self._latest_path = latest_path
self._latest_path_step = step
# Run evaluation and log it.
validation_outputs = self._estimator.evaluate(
x=self.x, y=self.y, input_fn=self.input_fn, batch_size=self.batch_size,
steps=self.eval_steps, metrics=self.metrics, name=self.name)
| tensorflow.python.platform.tf_logging.debug | 358 |
import tensorflow as tf
# Test that previous-feeding model ignores inputs after the first.
dec_inp2 = [tf.constant(0, tf.int32, shape=[2]) for _ in range(3)]
with tf.variable_scope("other"):
d3, _ = tf.nn.seq2seq.embedding_attention_seq2seq(
enc_inp, dec_inp2, cell, num_encoder_symbols=2,
num_decoder_symbols=5, embedding_size=2,
feed_previous=tf.constant(True))
sess.run([tf.global_variables_initializer()])
tf.get_variable_scope().reuse_variables()
d1, _ = tf.nn.seq2seq.embedding_attention_seq2seq(
enc_inp, dec_inp, cell, num_encoder_symbols=2,
num_decoder_symbols=5, embedding_size=2, feed_previous=True)
d2, _ = tf.nn.seq2seq.embedding_attention_seq2seq(
enc_inp, dec_inp2, cell, num_encoder_symbols=2,
num_decoder_symbols=5, embedding_size=2, feed_previous=True)
res1 = sess.run(d1)
res2 = sess.run(d2)
| tensorflow.get_variable_scope | 359 |
import tensorflow as tf
tail_init = dense_maxnorm(tail_init, self.maxnorm)
self.head_embedding_vars = tf.Variable(head_init)
self.rel_embedding_vars = tf.Variable(rel_init)
self.tail_embedding_vars = tf.Variable(tail_init)
| tensorflow.Variable | 360 |
import tensorflow as tf
with tf.variable_scope("loss"):
if is_training:
# I.e., 0.1 dropout
output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
logits = tf.matmul(output_layer, output_weights, transpose_b=True)
| tensorflow.nn.dropout | 361 |
import tensorflow as tf
output_shape=shapes,
strides=self.strides,
padding='SAME',
data_format='NHWC')
mu,var = tf.nn.moments(t,axes=[0,1,2])
std = tf.sqrt(var+self.epsilon)
return [tf.assign(self.g,1/std),tf.assign(self.b,-1.*mu/std)]
require_init = tf.reduce_any(tf.is_nan(self.g))
init_ops = tf.cond(require_init,_init,lambda : [self.g,self.b])
with tf.control_dependencies(init_ops):
w = tf.reshape(self.g,[1,1,tf.shape(self.v)[2],1]) * tf.nn.l2_normalize(self.v,axis=[0,1,3])
return tf.nn.bias_add(
tf.nn.conv2d_transpose(input_var,w,
output_shape=shapes,
strides=self.strides,
padding='SAME',
data_format='NHWC'),
self.b,data_format='NHWC',name=name)
def get_variables(self):
#TODO: self.v should be l2-normalized or not? / currently not.
return {'v':self.v,'b':self.b,'g':self.g}
| tensorflow.nn.l2_normalize | 362 |
import tensorflow as tf
def train(loss, global_step):
"""Train eccentricity model.
Create an optimizer and apply to all trainable variables.
Args:
total_loss: Total loss from loss().
global_step: Integer Variable counting the number of training steps
processed.
Returns:
train_op: op for training.
"""
# Compute gradients.
tf.scalar_summary(loss.op.name, loss)
optimizer = tf.train.AdagradOptimizer(FLAGS.learning_rate)
# Use the optimizer to apply the gradients that minimize the loss
# (and also increment the global step counter) as a single training step.
train_op = optimizer.minimize(loss, global_step=global_step)
return train_op
return train_op
| tensorflow.scalar_summary | 363 |
import tensorflow.contrib as contrib
else:
stitch2_1, stitch2_2 = fc2_1, fc2_2
dropout2_1 = contrib.layers.dropout(stitch2_1, keep_prob=keep_prob, is_training=is_training,
scope="dropout2_1")
dropout2_2 = contrib.layers.dropout(stitch2_2, keep_prob=keep_prob, is_training=is_training,
scope="dropout2_2")
fc3_1 = contrib.layers.fully_connected(dropout2_1, 32, scope="fc3_1")
fc3_2 = contrib.layers.fully_connected(dropout2_2, 32, scope="fc3_2")
if cross_stitch_enabled:
with tf.variable_scope("cross_stitch_3"):
stitch3_1, stitch3_2 = apply_cross_stitch(fc3_1, fc3_2)
else:
stitch3_1, stitch3_2 = fc3_1, fc3_2
dropout3_1 = contrib.layers.dropout(stitch3_1, keep_prob=keep_prob, is_training=is_training,
| tensorflow.contrib.layers.fully_connected | 364 |
from tensorflow.python.framework import ops
if input_shape is not None:
return [tensor_shape.TensorShape(input_shape.tolist())]
else:
return [tensor_shape.unknown_shape(ndims=4)]
@ops.RegisterShape("MaxPoolGrad")
@ops.RegisterShape("MaxPoolGradWithArgmax")
def _MaxPoolGradShape(op):
"""Shape function for the MaxPoolGrad op."""
orig_input_shape = op.inputs[0].get_shape().with_rank(4)
return [orig_input_shape]
| tensorflow.python.framework.ops.RegisterShape | 365 |
import tensorflow as tf
with tf.variable_scope(scope):
shape = tf.shape(inputs)
dim = inputs.get_shape().as_list()[-1]
out_shape = [shape[idx] for idx in range(
len(inputs.get_shape().as_list()) - 1)] + [hidden]
flat_inputs = tf.reshape(inputs, [-1, dim])
W = tf.get_variable("W", [dim, hidden])
res = tf.matmul(flat_inputs, W)
if use_bias:
b = tf.get_variable(
"b", [hidden], initializer=tf.constant_initializer(0.))
res = tf.nn.bias_add(res, b)
| tensorflow.get_variable | 366 |
import tensorflow as tf
tf.summary.histogram("mel_targets %d" % i, model.tower_linear_targets[i])
tf.summary.scalar("regularization_loss", model.regularization_loss)
tf.summary.scalar("stop_token_loss", model.stop_token_loss)
tf.summary.scalar("loss", model.loss)
tf.summary.scalar("learning_rate", model.learning_rate) # Control learning rate decay speed
| tensorflow.summary.scalar | 367 |
import tensorflow as tf
self.assertAllEqual(augmented_tensor_dict[fields.InputDataFields.image],
np_image + 1)
self.assertAllEqual(
augmented_tensor_dict[fields.InputDataFields.groundtruth_classes],
[[0, 0, 0, 1], [0, 1, 0, 0]])
def test_applies_data_augmentation_fn_before_model_preprocess_fn(self):
np_image = np.random.randint(256, size=(4, 4, 3))
tensor_dict = {
fields.InputDataFields.image:
tf.constant(np_image),
fields.InputDataFields.groundtruth_classes:
tf.constant(np.array([3, 1], np.int32))
}
def mul_two_model_preprocessor_fn(image):
return (image * 2, tf.expand_dims(tf.shape(image)[1:], axis=0))
def add_five_to_image_data_augmentation_fn(tensor_dict):
tensor_dict[fields.InputDataFields.image] += 5
return tensor_dict
| tensorflow.constant | 368 |
import tensorflow as tf
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
output_bias = tf.get_variable(
"output_bias",
shape=[bert_config.vocab_size],
initializer=tf.zeros_initializer(),
)
logits = tf.matmul(input_tensor, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
log_probs = tf.nn.log_softmax(logits, axis=-1)
label_ids = tf.reshape(label_ids, [-1])
label_weights = tf.reshape(label_weights, [-1])
one_hot_labels = tf.one_hot(
label_ids, depth=bert_config.vocab_size, dtype=tf.float32
)
| tensorflow.nn.log_softmax | 369 |
import tensorflow as tf
input_ids = features["input_ids"]
input_mask = features["input_mask"]
segment_ids = features["segment_ids"]
label_ids = features["label_ids"]
is_real_example = None
if "is_real_example" in features:
is_real_example = tf.cast(features["is_real_example"], dtype=tf.float32)
else:
is_real_example = tf.ones(tf.shape(label_ids), dtype=tf.float32)
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
(total_loss, per_example_loss, logits, probabilities) = create_model(
bert_config, is_training, input_ids, input_mask, segment_ids, label_ids,
num_labels, use_one_hot_embeddings)
tvars = tf.trainable_variables()
| tensorflow.shape | 370 |
import tensorflow as tf
with tf.variable_scope(layer_name):
w = tf.get_variable(name='weight',
trainable=is_pretrain,
shape=[kernel_size[0],kernel_size[1],kernel_size[2],in_channels,out_channels],
initializer=tf.contrib.layers.xavier_initializer())
b = tf.get_variable(name='bias',
trainable=is_pretrain,
shape=[out_channels],
initializer=tf.contrib.layers.xavier_initializer())
x = tf.nn.conv3d(x, w, strides=strides, padding='SAME', data_format=data_format, name='conv3d')
x = tf.nn.bias_add(x, b, name='bias_add')
x = tf.nn.relu(x, name='relu')
return x
def conv(layer_name, x, out_channels, kernel_size=[3,3], strides=[1,1,1,1], is_pretrain=True):
'''
Convolution op wrapper, use RELU activation after convolution
Args:
layer_name:
| tensorflow.nn.bias_add | 371 |
import tensorflow as tf
self.drop1 = tf.layers.dropout(self.conv1, self.config.cifar10_cnn["keep_prob"], training=self.train)
self.pool1 = tf.layers.max_pooling2d(self.drop1, 2, 2)
self.conv2 = tf.layers.conv2d(self.pool1,
self.config.cifar10_cnn["num_filters"],
self.config.cifar10_cnn["filter_size"],
| tensorflow.layers.conv2d | 372 |
import tensorflow as tf
# Restores from MetaGraphDef.
new_saver = tf.train.import_meta_graph(filename)
# Generates a new MetaGraphDef.
new_meta_graph_def = new_saver.export_meta_graph()
# It should be the same as the original.
self.assertProtoEquals(meta_graph_def, new_meta_graph_def)
def _testGraphExtensionSave(self):
test_dir = self._TestDir("graph_extension")
filename = os.path.join(test_dir, "metafile")
saver0_ckpt = os.path.join(test_dir, "saver0.ckpt")
with self.test_session(graph=tf.Graph()) as sess:
# Creates an inference graph.
# Hidden 1
images = tf.constant(1.2, tf.float32, shape=[100, 28])
with tf.name_scope("hidden1"):
weights = tf.Variable(
tf.truncated_normal([28, 128],
stddev=1.0 / math.sqrt(float(28))),
name="weights")
biases = tf.Variable(tf.zeros([128]),
name="biases")
hidden1 = tf.nn.relu(tf.matmul(images, weights) + biases)
# Hidden 2
with tf.name_scope("hidden2"):
weights = tf.Variable(
tf.truncated_normal([128, 32],
stddev=1.0 / math.sqrt(float(128))),
| tensorflow.constant | 373 |
import tensorflow as tf
Returns:
coverage_loss: scalar
"""
coverage = tf.zeros_like(attn_dists[0]) # shape (batch_size, attn_length). Initial coverage is zero.
covlosses = [] # Coverage loss per decoder timestep. Will be list length max_dec_steps containing shape (batch_size).
for a in attn_dists:
| tensorflow.zeros_like | 374 |
import tensorflow as tf
hidden = tf.layers.dense(inputs=_input,
units=self.vf_hidden_size,
activation=tf.nn.elu)
w = tf.get_variable("weights", (self.vf_hidden_size, 1))
return tf.matmul(hidden, w)
def build_loss(self):
cutoff_vf_manager = tf.reshape(tf.stop_gradient(self.manager_vf), [-1])
dot = tf.reduce_sum(tf.multiply(self.s_diff, self.g), axis=1)
gcut = tf.stop_gradient(self.g)
mag = tf.norm(self.s_diff, axis=1) * tf.norm(gcut, axis=1) + .0001
dcos = dot / mag
manager_loss = -tf.reduce_sum((self.r - cutoff_vf_manager) * dcos)
cutoff_vf_worker = tf.reshape(tf.stop_gradient(self.worker_vf), [-1])
log_p = tf.reduce_sum(self.log_pi * self.ac, [1])
worker_loss = (self.r + self.alpha * self.ri - cutoff_vf_worker) * log_p
worker_loss = -tf.reduce_sum(worker_loss, axis=0)
Am = self.r - self.manager_vf
manager_vf_loss = .5 * tf.reduce_sum(tf.square(Am))
| tensorflow.norm | 375 |
import tensorflow as tf
sample_masks = 1. * tf.cast(sample, tf.float32) / num_choices
sample_log_prob = tf.reduce_mean(dist.log_prob(sample))
return (dist_entropy, sample_masks, sample_log_prob)
def get_loss_weights(name=None):
"""Returns the weight for loss."""
with tf.variable_scope(name, 'rl_op_selection'):
logits = tf.get_variable(
name='loss_logits_rl_w',
initializer=tf.initializers.zeros(),
shape=[
FLAGS.num_choices,
],
| tensorflow.variable_scope | 376 |
import tensorflow as tf
return tf.estimator.EstimatorSpec(
mode, loss=total_loss,
eval_metric_ops=eval_metric_ops
)
assert mode == tf.estimator.ModeKeys.TRAIN
with tf.variable_scope('learning_rate'):
global_step = tf.train.get_global_step()
learning_rate = tf.train.cosine_decay(
params['initial_learning_rate'],
global_step, decay_steps=params['num_steps']
)
tf.summary.scalar('learning_rate', learning_rate)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops), tf.variable_scope('optimizer'):
optimizer = tf.train.AdamOptimizer(learning_rate)
grads_and_vars = optimizer.compute_gradients(total_loss)
train_op = optimizer.apply_gradients(grads_and_vars, global_step)
for g, v in grads_and_vars:
tf.summary.histogram(v.name[:-2] + '_hist', v)
tf.summary.histogram(v.name[:-2] + '_grad_hist', g)
| tensorflow.summary.scalar | 377 |
import tensorflow as tf
self.g_dim,
step_size=tf.shape(self.obs)[:1])
g_hat = self.manager_lstm.output
self.g = tf.nn.l2_normalize(g_hat, dim=1)
self.manager_vf = self.build_value(g_hat)
def build_worker(self):
with tf.variable_scope('worker'):
num_acts = self.act_space
# Calculate U
self.worker_lstm = SingleStepLSTM(tf.expand_dims(self.z, [0]),
size=num_acts * self.k,
step_size=tf.shape(self.obs)[:1])
flat_logits = self.worker_lstm.output
self.worker_vf = self.build_value(flat_logits)
U = tf.reshape(flat_logits, [-1, num_acts, self.k])
# Calculate w
cut_g = tf.stop_gradient(self.g)
cut_g = tf.expand_dims(cut_g, [1])
| tensorflow.expand_dims | 378 |
import tensorflow as tf
def build_anet(self, state_in, name, reuse=False, batch_size=64):
reg = None
with tf.variable_scope(name, reuse=reuse):
layer_a1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg)
layer_a2 = tf.layers.dense(layer_a1, 256, tf.nn.relu, kernel_regularizer=reg)
lstm_a = tf.nn.rnn_cell.LSTMCell(num_units=256)
lstm_a = tf.nn.rnn_cell.DropoutWrapper(lstm_a, output_keep_prob=self.keep_prob)
state_init_a = lstm_a.zero_state(batch_size=batch_size, dtype=tf.float32)
lstm_ain = tf.expand_dims(layer_a2, axis=1)
out_a, state_final_a = tf.nn.dynamic_rnn(cell=lstm_a, inputs=lstm_ain, initial_state=state_init_a)
cell_out_a = tf.reshape(out_a, [-1, 256])
mu = tf.layers.dense(cell_out_a, self.a_dim, tf.nn.tanh, kernel_regularizer=reg)
sigma = tf.layers.dense(cell_out_a, self.a_dim, tf.nn.softplus, kernel_regularizer=reg)
# sigma = tf.get_variable(name='pi_sigma', shape=self.a_dim, initializer=tf.constant_initializer(0.5))
sigma = tf.clip_by_value(sigma, 0.0, 1.0)
norm_dist = tf.distributions.Normal(loc=mu * self.a_bound, scale=sigma)
params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=name)
return norm_dist, params, state_init_a, state_final_a
| tensorflow.nn.dynamic_rnn | 379 |
import tensorflow as tf
val = save.save(sess, save_path, global_step=global_step_int)
expected_save_path = "%s-%d" % (save_path, global_step_int)
self.assertEqual(expected_save_path, val)
class SaveRestoreShardedTest(tf.test.TestCase):
def testBasics(self):
save_path = os.path.join(self.get_temp_dir(), "sharded")
# Build a graph with 2 parameter nodes on different devices.
with tf.Session(
target="",
config=tf.ConfigProto(device_count={"CPU": 2})) as sess:
with sess.graph.device("/cpu:0"):
v0 = tf.Variable(10, name="v0")
with sess.graph.device("/cpu:1"):
v1 = tf.Variable(20, name="v1")
save = tf.train.Saver({"v0": v0, "v1": v1}, sharded=True)
tf.initialize_all_variables().run()
val = save.save(sess, save_path)
self.assertEqual(save_path + "-?????-of-00002", val)
meta_graph_filename = save._MetaGraphFilename(val)
self.assertEqual(save_path + ".meta", meta_graph_filename)
# Restore a different "v0" from shard 0 of the saved files.
with tf.Session(
target="",
config=tf.ConfigProto(device_count={"CPU": 2})) as sess:
with sess.graph.device("/cpu:0"):
| tensorflow.Variable | 380 |
import tensorflow as tf
self.assertEqual((2, 4), res[0].shape)
res = sess.run([mem])
self.assertEqual(2, len(res[0]))
self.assertEqual((2, 2), res[0][0].c.shape)
self.assertEqual((2, 2), res[0][0].h.shape)
self.assertEqual((2, 2), res[0][1].c.shape)
self.assertEqual((2, 2), res[0][1].h.shape)
def testEmbeddingAttentionDecoder(self):
with self.test_session() as sess:
with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)):
inp = [tf.constant(0.5, shape=[2, 2])] * 2
cell = tf.nn.rnn_cell.GRUCell(2)
enc_outputs, enc_state = tf.nn.rnn(cell, inp, dtype=tf.float32)
attn_states = tf.concat(1, [tf.reshape(e, [-1, 1, cell.output_size])
for e in enc_outputs])
dec_inp = [tf.constant(i, tf.int32, shape=[2]) for i in range(3)]
dec, mem = tf.nn.seq2seq.embedding_attention_decoder(
dec_inp, enc_state, attn_states, cell, num_symbols=4,
embedding_size=2, output_size=3)
sess.run([tf.global_variables_initializer()])
res = sess.run(dec)
self.assertEqual(3, len(res))
| tensorflow.constant | 381 |
import tensorflow as tf
if tf_util.is_image(obs_phs[0]):
tf.summary.image('observation', obs_phs[0])
| tensorflow.summary.image | 382 |
import tensorflow as tf
class ObjectDetector:
def __init__(self, model_path='./model', label_file='./model/label.names',
num_classes=2, score_threshold=0.5, image_sz=(416, 416, 3)):
self._model_path = model_path
self._label_file = label_file
self._num_classes = num_classes
self._score_threshold = score_threshold
self._image_sz = image_sz[0:2]
self._config = ConfigProto()
self._config.gpu_options.allow_growth = True
self._graph = tf.Graph()
with self._graph.as_default():
self._sess = tf.Session(config=self._config)
tf.saved_model.load(
self._sess, [tag_constants.SERVING], self._model_path)
self._image_tensor = self._sess.graph.get_tensor_by_name(
'serving_default_input_1:0')
self._output_tensor = self._sess.graph.get_tensor_by_name(
'StatefulPartitionedCall:0')
| tensorflow.Graph | 383 |
import tensorflow as tf
if FLAGS.do_serve:
def serving_input_fn():
with tf.variable_scope("foo"):
feature_spec = {
"input_ids": tf.FixedLenFeature([FLAGS.max_seq_length], tf.int64),
"input_mask": tf.FixedLenFeature([FLAGS.max_seq_length], tf.int64),
"segment_ids": tf.FixedLenFeature([FLAGS.max_seq_length], tf.int64),
"label_ids": tf.FixedLenFeature([], tf.int64),
}
serialized_tf_example = tf.placeholder(dtype=tf.string,
shape=[None],
name='input_example_tensor')
receiver_tensors = {'examples': serialized_tf_example}
features = tf.parse_example(serialized_tf_example, feature_spec)
return tf.estimator.export.ServingInputReceiver(features, receiver_tensors)
| tensorflow.FixedLenFeature | 384 |
import tensorflow as tf
i0,
x,
l1_h2,
l2_h2,
l3_h2
]
returned = tf.while_loop(
self.condition,
self.full,
loop_vars=elems,
back_prop=True,
swap_memory=False)
| tensorflow.while_loop | 385 |
import tensorflow as tf
return tuple(restored)
def import_ops(self):
if self._is_training:
self._train_op = tf.get_collection_ref('train_op')[0]
self._lr = tf.get_collection_ref('lr')[0]
self._new_lr = tf.get_collection_ref('new_lr')[0]
self._lr_update = tf.get_collection_ref('lr_update')[0]
rnn_params = tf.get_collection_ref('rnn_params')
if self._cell and rnn_params:
params_saveable = tf.contrib.cudnn_rnn.RNNParamsSaveable(
| tensorflow.get_collection_ref | 386 |
import tensorflow as tf
self.logger.info("applying optimize %s" % self.optim_type)
trainable_vars = tf.trainable_variables()
if self.config.clip_weight:
| tensorflow.trainable_variables | 387 |
import tensorflow as tf
self.generated_image = tflib.convert_images_to_uint8(self.generator_output, nchw_to_nhwc=True, uint8_cast=False)
self.generated_image_uint8 = tf.saturate_cast(self.generated_image, tf.uint8)
| tensorflow.saturate_cast | 388 |
import tensorflow as tf
# define train_op
gen_optimizer = tf.train.RMSPropOptimizer(learning_rate=0.05)
dis_optimizer = tf.train.RMSPropOptimizer(learning_rate=0.05)
# wrapper to make the optimizer work with TPUs
if params['use_tpu']:
gen_optimizer = tf.contrib.tpu.CrossShardOptimizer(gen_optimizer)
dis_optimizer = tf.contrib.tpu.CrossShardOptimizer(dis_optimizer)
gan_train_ops = tf.contrib.gan.gan_train_ops(gan_model, gan_loss, gen_optimizer, dis_optimizer)
while_loop = tf.contrib.tpu.while_loop if params['use_tpu'] else tf.while_loop
# train the discriminator 100 steps
inputs = [tf.constant(0), tf.constant(0.0)]
cond = lambda i, x: tf.less(i, 100)
def body(i, x):
return tf.add(i, 1), gan_train_ops.discriminator_train_op
| tensorflow.contrib.gan.gan_train_ops | 389 |
import tensorflow as tf
flags.mark_flag_as_required("input_file")
flags.mark_flag_as_required("bert_config_file")
flags.mark_flag_as_required("output_dir")
tf.app.run()
| tensorflow.app.run | 390 |
import tensorflow as tf
Actor-Critics
"""
def mlp_actor_critic(x, a, hidden_sizes=(400,300), activation=tf.nn.relu,
output_activation=tf.tanh, action_space=None,
dropout_rate=0, nn_type='mlp_variational'):
act_dim = a.shape.as_list()[-1]
act_limit = action_space.high[0]
if nn_type == 'mlp':
with tf.variable_scope('pi'):
pi = act_limit * mlp(x, list(hidden_sizes) + [act_dim], activation, output_activation)
with tf.variable_scope('q1'):
q1 = tf.squeeze(mlp(tf.concat([x, a], axis=-1), list(hidden_sizes) + [1], activation, None), axis=1)
with tf.variable_scope('q2'):
q2 = tf.squeeze(mlp(tf.concat([x, a], axis=-1), list(hidden_sizes) + [1], activation, None), axis=1)
with tf.variable_scope('q1', reuse=True):
q1_pi = tf.squeeze(mlp(tf.concat([x, pi], axis=-1), list(hidden_sizes) + [1], activation, None), axis=1)
| tensorflow.variable_scope | 391 |
import tensorflow as tf
n_filters = sum(f[1] for f in filters)
max_chars = cnn_options['max_characters_per_token']
char_embed_dim = cnn_options['embedding']['dim']
n_chars = cnn_options['n_characters']
if n_chars != 262:
raise InvalidNumberOfCharacters(
"Set n_characters=262 after training see the README.md"
)
if cnn_options['activation'] == 'tanh':
activation = tf.nn.tanh
elif cnn_options['activation'] == 'relu':
activation = tf.nn.relu
# the character embeddings
with tf.device("/cpu:0"):
self.embedding_weights = tf.get_variable(
"char_embed", [n_chars, char_embed_dim],
dtype=DTYPE,
initializer=tf.random_uniform_initializer(-1.0, 1.0)
)
# shape (batch_size, unroll_steps, max_chars, embed_dim)
self.char_embedding = tf.nn.embedding_lookup(self.embedding_weights,
self.ids_placeholder)
# the convolutions
def make_convolutions(inp):
with tf.variable_scope('CNN') as scope:
convolutions = []
| tensorflow.device | 392 |
import tensorflow as tf
num_out_blocks = tf.size(unused_indices)
# Select only unused blocks
with tf.variable_scope('select'):
stacked_blocks = tf.stack(cell_inputs + blocks)
out_blocks = tf.gather(stacked_blocks, unused_indices, axis=0)
out_blocks = tf.transpose(out_blocks, (1, 2, 3, 0, 4))
# Combine to constant channels
with tf.variable_scope('combine'):
W = self._make_var('W', (ni, block_ch * block_ch))
W = tf.gather(W, unused_indices, axis=0)
| tensorflow.transpose | 393 |
import tensorflow as tf
return tf.nn.batch_normalization(inp, moving_mean, moving_variance, offset, scale, 0.01, name='norm')
def pool(inp, name, kind, size, stride, padding='SAME'):
assert kind in ['max', 'avg']
strides = [1, stride, stride, 1]
sizes = [1, size, size, 1]
with tf.variable_scope(name):
if kind == 'max':
out = tf.nn.max_pool(inp, sizes, strides=strides, padding=padding, name=kind)
else:
out = tf.nn.avg_pool(inp, sizes, strides=strides, padding=padding, name=kind)
return out
def ResNet18(inp, phase, num_outputs=1000, alpha=0.0):
def residual_block(inp, phase, alpha=0.0,nom='a',increase_dim=False,last=False):
input_num_filters = inp.get_shape().as_list()[3]
if increase_dim:
first_stride = [1, 2, 2, 1]
| tensorflow.nn.max_pool | 394 |
import tensorflow as tf
def singel_instance(x):
cur_passage_words = x[0] # [passage_length]
cur_phrase_starts = x[1] # [phrase_length]
cur_vocab_dist = x[2] # [vsize]
cur_attn_dist = x[3] # [passage_length]
# first: get the first word for each phrase
first_words = tf.gather(cur_passage_words, cur_phrase_starts) # [phrase_length]
# second: get the probs for each word
first_word_probs = tf.gather(cur_vocab_dist, first_words) # [phrase_length]
return cur_attn_dist + first_word_probs
elems = (in_passage_words, phrase_starts, vocab_dist, attn_dist)
return tf.map_fn(singel_instance, elems, dtype=tf.float32) # [batch_size, phrase_length]
class CovCopyAttenGen:
def __init__(self, placeholders, options, vocab):
self.options = options
self.vocab = vocab
self.cell = tf.contrib.rnn.LSTMCell(
options.gen_hidden_size,
initializer=tf.random_uniform_initializer(-0.1, 0.1, seed=113),
state_is_tuple=True)
| tensorflow.map_fn | 395 |
import tensorflow as tf
# Dense NN
dnn_output = rnn_output
dnn_output_size = rnn_output_size
if do_dnn:
last_layer = rnn_output
last_layer_size = rnn_output_size
for i, layer_size in enumerate(dnn_sizes):
layer_name = 'dnn_{}'.format(i)
with tf.variable_scope(layer_name):
dnn_w = tf.get_variable('W', shape=[last_layer_size, layer_size], initializer=dnn_init, dtype=dtype)
dnn_b = tf.get_variable('b', shape=[layer_size], initializer=tf.constant_initializer(0.0), dtype=dtype)
projected = tf.nn.bias_add(tf.matmul(last_layer, dnn_w), dnn_b)
# TODO: argument nonlinearity, change bias to 0.1 if relu
if dnn_nonlin == 'tanh':
last_layer = tf.nn.tanh(projected)
elif dnn_nonlin == 'sigmoid':
last_layer = tf.nn.sigmoid(projected)
elif dnn_nonlin == 'relu':
last_layer = tf.nn.relu(projected)
else:
raise NotImplementedError()
| tensorflow.constant_initializer | 396 |
import tensorflow as tf
progress = networks.compute_progress(
current_image_id_ph,
stable_stage_num_images,
transition_stage_num_images,
num_blocks=3)
x = tf.random_normal([2, 16, 16, 3])
logits, _ = networks.discriminator(
x, progress, _num_filters_stub,
networks.ResolutionSchedule(
start_resolutions=(4, 4), scale_base=2, num_resolutions=3))
fake_loss = tf.reduce_sum(tf.square(logits))
grad_norms = [
_get_grad_norm(
fake_loss, tf.trainable_variables('.*/progressive_gan_block_1/.*')),
_get_grad_norm(
fake_loss, tf.trainable_variables('.*/progressive_gan_block_2/.*')),
_get_grad_norm(
fake_loss, tf.trainable_variables('.*/progressive_gan_block_3/.*'))
]
| tensorflow.square | 397 |
import tensorflow as tf
def fc(input_data, out_dim, non_linear_fn=None, initial_value=None, use_bias=True, scope='fc'):
with tf.variable_scope(scope):
input_dims = input_data.get_shape().as_list()
if len(input_dims) == 4:
_, input_h, input_w, num_channels = input_dims
in_dim = input_h * input_w * num_channels
flat_input = tf.reshape(input_data, [-1, in_dim])
else:
in_dim = input_dims[-1]
flat_input = input_data
if initial_value is None:
fc_weight = tf.get_variable("weights", shape=[in_dim, out_dim], initializer=tf.random_normal_initializer(mean=0., stddev=0.01))
fc_bias = tf.get_variable("bias", shape=[out_dim], initializer=tf.constant_initializer(0.0))
else:
fc_weight = tf.get_variable("weights", initializer=initial_value[0])
fc_bias = tf.get_variable("bias", shape=[out_dim], initializer=initial_value[1])
if use_bias:
output = tf.add(tf.matmul(flat_input, fc_weight), fc_bias)
else:
output = tf.matmul(flat_input, fc_weight)
if non_linear_fn is None:
return output
else:
activation = non_linear_fn(output)
| tensorflow.constant_initializer | 398 |
import tensorflow as tf
self.assertTrue(tf.contrib.util.constant_value(mvn.is_scalar_batch()))
mvn = tfd.MultivariateNormalDiag([[mu]], [[sigma]], validate_args=True)
self.assertFalse(tf.contrib.util.constant_value(mvn.is_scalar_event()))
self.assertFalse(tf.contrib.util.constant_value(mvn.is_scalar_batch()))
# We now test every codepath within the underlying is_scalar_helper
# function.
# Test case 1, 2.
x = tf.placeholder_with_default(input=1, shape=[])
# None would fire an exception were it actually executed.
self.assertTrue(normal._is_scalar_helper(x.shape, lambda: None))
self.assertTrue(
normal._is_scalar_helper(tf.TensorShape(None), lambda: tf.shape(x)))
x = tf.placeholder_with_default(input=[1], shape=[1])
# None would fire an exception were it actually executed.
self.assertFalse(normal._is_scalar_helper(x.shape, lambda: None))
self.assertFalse(
normal._is_scalar_helper(tf.TensorShape(None), lambda: tf.shape(x)))
# There's no notion of partially known shapes in eager mode, so exit
# early.
if tf.executing_eagerly():
return
# Test case 3.
| tensorflow.TensorShape | 399 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.