seed
stringlengths
25
2.89k
seed_api
stringlengths
14
102
index
int64
0
14.8k
import tensorflow as tf tf.summary.scalar('Var/Policy Sigma', tf.reduce_mean(pi.stddev())) tf.summary.scalar('Var/Value', tf.reduce_mean(self.vf)) self.summarise = tf.summary.merge(tf.get_collection(tf.GraphKeys.SUMMARIES)) # AC net def build_anet(self, state_in, name, reuse=False): reg = tf.contrib.layers.l2_regularizer(1e-3) with tf.variable_scope(name, reuse=reuse): layer_a1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg) layer_a2 = tf.layers.dense(layer_a1, 256, tf.nn.relu, kernel_regularizer=reg) mu = tf.layers.dense(layer_a2, self.a_dim, tf.nn.tanh, kernel_regularizer=reg) # sigma = tf.layers.dense(layer_a2, self.a_dim, tf.nn.softplus, kernel_regularizer=reg) sigma = tf.get_variable(name='pi_sigma', shape=self.a_dim, initializer=tf.constant_initializer(0.5)) sigma = tf.clip_by_value(sigma, 0.0, 1.0) norm_dist = tf.distributions.Normal(loc=mu * self.a_bound, scale=sigma) params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=name) return norm_dist, params
tensorflow.layers.dense
2,500
import tensorflow as tf global_step=global_step) with tf.control_dependencies(update_ops): train_op = minimize_op
tensorflow.control_dependencies
2,501
import tensorflow as tf if width % n_factor != 0: raise ValueError("Width not divisible by %d." % n_factor) res = tf.reshape( input_, [batch_size, height // n_factor, n_factor, width // n_factor, n_factor, channels]) res = tf.transpose(res, [0, 1, 3, 5, 2, 4]) res = tf.reshape( res, [batch_size, height // n_factor, width // n_factor, channels * n_factor * n_factor])
tensorflow.transpose
2,502
import tensorflow as tf """Computes listwise softmax loss with propensity weighting. Args: propensity: (tf.Tensor) A tensor of the same shape as `output` containing the weight of each element. Returns: (tf.Tensor) A tensor containing the propensity weights. """ propensity_list = tf.unstack(propensity, axis=1) # Compute propensity weights pw_list = [] for i in range(len(propensity_list)): pw_i = propensity_list[0] / propensity_list[i] pw_list.append(pw_i) propensity_weights = tf.stack(pw_list, axis=1) if self.hparams.max_propensity_weight > 0: propensity_weights = tf.clip_by_value(propensity_weights, clip_value_min=0, clip_value_max=self.hparams.max_propensity_weight)
tensorflow.unstack
2,503
import tensorflow as tf elif z_dim == 2: return cw_2d elif z_dim >= 20: return cw else: raise ValueError('Not defined for this latent dimension') def cw_sampling(X, y=None): def phi_sampling(s, D): return tf.pow(1.0 + 4.0*s/(2.0*D-3), -0.5) D = tf.cast(tf.shape(X)[1], tf.float32) N = tf.cast(tf.shape(X)[0], tf.float32) D_int = tf.cast(D, tf.int32) N_int = tf.cast(N, tf.int32) if y is None: y = silverman_rule_of_thumb(N) YDistr = tf.contrib.distributions.MultivariateNormalDiag(loc=tf.zeros(D_int, tf.float32),
tensorflow.pow
2,504
import tensorflow.contrib.slim as slim num_gpu = len(cfgs.GPU_GROUP.strip().split(',')) global_step = slim.get_or_create_global_step()
tensorflow.contrib.slim.get_or_create_global_step
2,505
import tensorflow as tf tf.app.flags.DEFINE_string('ws_save_path', './models_ws/model.ckpt', 'WS: model\'s save path') tf.app.flags.DEFINE_float('ws_prune_ratio', 0.75, 'WS: target pruning ratio')
tensorflow.app.flags.DEFINE_float
2,506
import tensorflow as tf #def rnn_cell(rnn_input, state): #with tf.variable_scope('rnn_cell', reuse=True): #W = tf.get_variable('W', [num_classes+state_size, state_size]) #b = tf.get_variable('b', [state_size], initializer=tf.constant_initializer(0.0)) #return tf.tanh(tf.matmul(tf.concat([rnn_input, state],1),W) + b) #'''将rnn cell添加到计算图中''' #state = init_state #rnn_outputs = [] #for rnn_input in rnn_inputs: #state = rnn_cell(rnn_input, state) # state会重复使用,循环 #rnn_outputs.append(state) #final_state = rnn_outputs[-1] # 得到最后的state cell = tf.contrib.rnn.BasicRNNCell(num_units=state_size) rnn_outputs, final_state = tf.nn.dynamic_rnn(cell, rnn_inputs, initial_state=init_state) '''预测,损失,优化''' with tf.variable_scope('softmax'): W = tf.get_variable('W', [state_size, num_classes]) b = tf.get_variable('b', [num_classes], initializer=tf.constant_initializer(0.0)) '''因为rnn_outputs是三维的,这里需要将其转成2维的, 矩阵运算后再转换回来[batch_size, num_steps, num_classes]''' logits = tf.reshape(tf.matmul(tf.reshape(rnn_outputs, [-1, state_size]), W) +b, \ shape=[batch_size, num_steps, num_classes]) predictions = tf.nn.softmax(logits) y_as_list = tf.unstack(y, num=num_steps, axis=1) losses = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y,logits=logits)
tensorflow.nn.dynamic_rnn
2,507
import tensorflow as tf with tf.variable_scope(scope) as sc: num_in_channels = inputs.get_shape()[-1].value kernel_shape = [kernel_size, num_in_channels, num_output_channels] kernel = _variable_with_weight_decay('weights', shape=kernel_shape, use_xavier=use_xavier, stddev=stddev, wd=weight_decay) outputs = tf.nn.conv1d(inputs, kernel, stride=stride, padding=padding) biases = _variable_on_cpu('biases', [num_output_channels], tf.constant_initializer(0.0)) outputs = tf.nn.bias_add(outputs, biases) if bn: outputs = batch_norm_for_conv1d(outputs, is_training, bn_decay=bn_decay, scope='bn') if activation_fn is not None: outputs = activation_fn(outputs) return outputs def conv2d(inputs, num_output_channels,
tensorflow.constant_initializer
2,508
from tensorflow.python.framework import ops with ops.op_scope([value, filter, output_shape], name, "conv2d_transpose") as name: value = ops.convert_to_tensor(value, name="value") filter = ops.convert_to_tensor(filter, name="filter") if not value.get_shape()[3].is_compatible_with(filter.get_shape()[3]): raise ValueError(
tensorflow.python.framework.ops.convert_to_tensor
2,509
import tensorflow as tf # sigma = tf.layers.dense(layer_a2, self.a_dim, tf.nn.softplus, kernel_regularizer=reg) sigma = tf.get_variable(name='pi_sigma', shape=self.a_dim, initializer=tf.constant_initializer(0.5)) sigma = tf.clip_by_value(sigma, 0.0, 1.0) norm_dist = tf.distributions.Normal(loc=mu * self.a_bound, scale=sigma)
tensorflow.clip_by_value
2,510
import tensorflow as tf return x def pool(layer_name, x, kernel_size=[1,2,2,1], strides=[1,2,2,1], is_max_pool=True): ''' Pooling op Args: Returns: ''' if is_max_pool: # May Name Conflict x = tf.nn.max_pool(x,kernel_size,strides=strides,padding='SAME',name=layer_name) else: x = tf.nn.avg_pool(x,kernel_size,strides=strides,padding='SAME',name=layer_name) return x def pool3d(layer_name, x, kernel_size=[1,1,2,2,1], strides=[1,1,2,2,1], is_max_pool=True): ''' Pooling 3D op ''' if is_max_pool: x = tf.nn.max_pool3d(x, ksize=kernel_size, strides=strides, padding='VALID', name=layer_name) else: x = tf.nn.avg_pool3d(x, ksize=kernel_size, strides=strides, padding='VALID', name=layer_name)
tensorflow.nn.max_pool
2,511
import tensorflow as tf should be passed to outer variable scope and returns a tensor of shape (batch_size, num_actions) with values of every action. num_actions: int number of actions. scope: str or VariableScope optional scope for variable_scope. reuse: bool or None whether or not the variables should be reused. To be able to reuse the scope must be given. Returns ------- act: (tf.Variable, bool, float) -> tf.Variable function to select and action given observation. ` See the top of the file for details. """ with tf.variable_scope(scope, reuse=reuse): observations_ph = make_obs_ph("observation") stochastic_ph = tf.placeholder(tf.bool, (), name="stochastic") update_eps_ph = tf.placeholder(tf.float32, (), name="update_eps") eps = tf.get_variable("eps", (), initializer=tf.constant_initializer(0)) q_values = q_func(observations_ph.get(), num_actions, scope="q_func") deterministic_actions = tf.argmax(q_values, axis=1) batch_size = tf.shape(observations_ph.get())[0] random_actions = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=num_actions, dtype=tf.int64) chose_random = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=1, dtype=tf.float32) < eps stochastic_actions = tf.where(chose_random, random_actions, deterministic_actions)
tensorflow.variable_scope
2,512
import tensorflow as tf
tensorflow.name_scope
2,513
import tensorflow as tf ) logits = clip_logits(logits, self.hparams) logits = tf.expand_dims(logits, axis=1) value = tf.layers.dense(x, self.distributional_value_size) return {"target_policy": logits, "target_value": value} @registry.register_model class FeedForwardCnnSmallCategoricalPolicyNew(PolicyBase): """Small cnn network with categorical output.""" def body(self, features): observations = features["inputs"] x = tf.transpose(observations, [0, 2, 3, 1, 4]) x_shape = common_layers.shape_list(x) x = tf.reshape(x, x_shape[:-2] + [-1]) dropout = getattr(self.hparams, "dropout_ppo", 0.0) with tf.variable_scope("feed_forward_cnn_small"): x = tf.cast(x, tf.float32) / 255.0 x = tf.nn.dropout(x, rate=dropout) x = tf.layers.conv2d( x, 32, (4, 4), strides=(2, 2), name="conv1", activation=common_layers.belu, padding="SAME") x = tf.nn.dropout(x, rate=dropout) x = tf.layers.conv2d( x, 64, (4, 4), strides=(2, 2), name="conv2", activation=common_layers.belu, padding="SAME") x = tf.nn.dropout(x, rate=dropout) x = tf.layers.conv2d( x, 128, (4, 4), strides=(2, 2), name="conv3",
tensorflow.reshape
2,514
import tensorflow as tf x_shape = tf.shape(logits) logits = tf.reshape(logits, (x_shape[0], x_shape[1], x_shape[2], len(anchors), num_classes + 5)) box_xy, box_wh, obj, cls = tf.split(logits, (2, 2, 1, num_classes), axis=-1) box_xy = tf.sigmoid(box_xy) obj = tf.sigmoid(obj)
tensorflow.split
2,515
from tensorflow.python.ops import math_ops false_positives = _create_local('false_positives', shape=[num_thresholds]) is_true_positive = math_ops.to_float( math_ops.logical_and(label_is_pos, pred_is_pos)) is_false_negative = math_ops.to_float( math_ops.logical_and(label_is_pos, pred_is_neg)) is_false_positive = math_ops.to_float( math_ops.logical_and(label_is_neg, pred_is_pos)) is_true_negative = math_ops.to_float( math_ops.logical_and(label_is_neg, pred_is_neg)) if weights is not None: weights = math_ops.to_float(weights) weights_tiled = array_ops.tile(array_ops.reshape(
tensorflow.python.ops.math_ops.logical_and
2,516
import tensorflow as tf small_constant_for_finite_diff: a `float`, Small constant for finite difference method perturb_norm_length: a `float`, Norm length of adversarial perturbation to be optimized with validatio Returns: a `float` `scalar`, KL divergence. """ logits = tf.stop_gradient(logits) weights = _end_of_seq_mask(labels, vocab_size) perturbs = [_mask_by_length(tf.random_normal(shape=tf.shape(emb)), length) for emb in embedded] for _ in range(num_power_iteration): perturbs = [_scale_l2(d, small_constant_for_finite_diff) for d in perturbs] d_logits = logits_from_embedding_fn([emb + d for (emb, d) in zip(embedded, perturbs)]) kl = _kl_divergence_with_logits(logits, d_logits, weights, num_classes) perturbs = tf.gradients( kl, perturbs, aggregation_method=tf.AggregationMethod.EXPERIMENTAL_ACCUMULATE_N) perturbs = [tf.stop_gradient(d) for d in perturbs] perturbs = [_scale_l2(_mask_by_length(d, length), perturb_norm_length) for d in perturbs] vadv_logits = logits_from_embedding_fn([emb + d for (emb, d) in zip(embedded, perturbs)]) return _kl_divergence_with_logits(logits, vadv_logits, weights, num_classes) def _mask_by_length(t, length): maxlen = t.get_shape().as_list()[1] mask = tf.sequence_mask(length, maxlen=maxlen) mask = tf.expand_dims(tf.cast(mask, tf.float32), -1) return t * mask
tensorflow.gradients
2,517
import tensorflow as tf """ mode = global_mode() return tf.equal(mode, tf.estimator.ModeKeys.EVAL)
tensorflow.equal
2,518
from tensorflow.python.layers import pooling as pooling_layers mode='VALID', input_layer=None, num_channels_in=None): """Construct a max pooling layer.""" if input_layer is None: input_layer = self.top_layer else: self.top_size = num_channels_in name = 'mpool' + str(self.counts['mpool']) self.counts['mpool'] += 1 pool = pooling_layers.max_pooling2d( input_layer, [k_height, k_width], [d_height, d_width], padding=mode, data_format=self.channel_pos, name=name) self.top_layer = pool return pool def apool(self, k_height,
tensorflow.python.layers.pooling.max_pooling2d
2,519
import tensorflow as tf 'Model scope name used to replace the name_scope in checkpoint.') tf.app.flags.DEFINE_string( 'checkpoint_exclude_scopes', 'xdet_resnet/xdet_head, xdet_resnet/xdet_multi_path, xdet_resnet/xdet_additional_conv',#None 'Comma-separated list of scopes of variables to exclude when restoring from a checkpoint.') tf.app.flags.DEFINE_boolean( 'ignore_missing_vars', True, 'When restoring a checkpoint would ignore missing variables.') tf.app.flags.DEFINE_boolean( 'run_on_cloud', True, 'Wether we will train on cloud (pre-trained model will be placed in the "data_dir/cloud_checkpoint_path").') tf.app.flags.DEFINE_string( 'cloud_checkpoint_path', 'resnet50/model.ckpt', 'The path to a checkpoint from which to fine-tune.') FLAGS = tf.app.flags.FLAGS def input_pipeline(): image_preprocessing_fn = lambda image_, shape_, glabels_, gbboxes_ : preprocessing_factory.get_preprocessing( 'xdet_resnet', is_training=True)(image_, glabels_, gbboxes_, out_shape=[FLAGS.train_image_size] * 2, data_format=('NCHW' if FLAGS.data_format=='channels_first' else 'NHWC'))
tensorflow.app.flags.DEFINE_string
2,520
import tensorflow as tf if input_batch.dtype == tf.float16: raise base.NotSupportedError( "BatchNorm does not support `tf.float16`, insufficient " "precision for calculating sufficient statistics.") self._mean_shape = input_batch.get_shape().as_list() for index in reduction_indices: self._mean_shape[index] = 1 use_batch_stats = is_training | test_local_stats # Use the legacy moving second moment if the flag is set. if self._use_legacy_moving_second_moment: tf.logging.warning( "nn.BatchNorm `use_legacy_second_moment=True` is deprecated.") mean, variance, second_moment = self._build_statistics_second_moment( input_batch, reduction_indices, use_batch_stats) self._build_update_ops_second_moment(mean, second_moment, is_training) else: mean, variance = self._build_statistics_variance( input_batch, reduction_indices, use_batch_stats)
tensorflow.logging.warning
2,521
import tensorflow as tf """ pass def encode(self, boxes, anchors): """Encode a box list relative to an anchor collection. Args: boxes: BoxList holding N boxes to be encoded anchors: BoxList of N anchors Returns: a tensor representing N relative-encoded boxes """ with tf.name_scope('Encode'): return self._encode(boxes, anchors) def decode(self, rel_codes, anchors): """Decode boxes that are encoded relative to an anchor collection. Args: rel_codes: a tensor representing N relative-encoded boxes anchors: BoxList of anchors Returns: boxlist: BoxList holding N boxes encoded in the ordinary way (i.e., with corners y_min, x_min, y_max, x_max)
tensorflow.name_scope
2,522
import tensorflow as tf save = tf.train.Saver({"v0": v0}) # Generates MetaGraphDef. meta_graph_def = meta_graph_pb2.MetaGraphDef() # Verifies that collection with unsupported key will not be added. tf.add_to_collection(save, 3) save._add_collection_def(meta_graph_def, save) self.assertEqual(len(meta_graph_def.collection_def), 0) # Verifies that collection where item type does not match expected # type will not be added. tf.add_to_collection("int_collection", 3) tf.add_to_collection("int_collection", 3.5) save._add_collection_def(meta_graph_def, "int_collection") self.assertEqual(len(meta_graph_def.collection_def), 0) def _testMultiSaverCollectionSave(self): test_dir = self._TestDir("saver_collection") filename = os.path.join(test_dir, "metafile") saver0_ckpt = os.path.join(test_dir, "saver0.ckpt") saver1_ckpt = os.path.join(test_dir, "saver1.ckpt") with self.test_session(graph=tf.Graph()) as sess: # Creates a graph. v0 = tf.Variable(10.0, name="v0")
tensorflow.add_to_collection
2,523
import tensorflow as tf 1. / model_options.output_stride) image_feature = slim.avg_pool2d( features, [pool_height, pool_width], [pool_height, pool_width], padding='VALID') else: pool_height = tf.shape(features)[1] pool_width = tf.shape(features)[2] image_feature = tf.reduce_mean(features, axis=[1,2])[:, tf.newaxis, tf.newaxis, :] image_feature = slim.conv2d( image_feature, depth, 1, scope=_IMAGE_POOLING_SCOPE) image_feature = tf.image.resize_bilinear( image_feature, [pool_height, pool_width], align_corners=True)
tensorflow.shape
2,524
import tensorflow as tf w2 = tf.Variable(tf.random_normal([input_size, attention_size], stddev=0.1)) b = tf.Variable(tf.random_normal([attention_size], stddev=0.1)) v = tf.Variable(tf.random_normal([attention_size], stddev=0.1)) with tf.name_scope('v'): # Applying fully connected layer with non-linear activation to each of the B*T timestamps; # the shape of `tmp` is (B,T,D)*(D,A)=(B,T,A), where A=attention_size tmp1 = tf.tensordot(facts, w1, axes=1)
tensorflow.name_scope
2,525
from tensorflow.python.lib.io import file_io with file_io.FileIO(model_name, mode='rb') as input_f: with file_io.FileIO("gs://deeplearningteam11/" + model_name, mode='w+') as output_f:
tensorflow.python.lib.io.file_io.FileIO
2,526
import tensorflow as tf nfilt_last = audio_nchannels for i, ((ntime, nband, nfilt), (ptime, pband)) in enumerate(zip(cnn_filter_shapes, cnn_pool)): layer_name = 'cnn_{}'.format(i) with tf.variable_scope(layer_name): filters = tf.get_variable('filters', [ntime, nband, nfilt_last, nfilt], initializer=cnn_init, dtype=dtype) biases = tf.get_variable('biases', [nfilt], initializer=tf.constant_initializer(0.1), dtype=dtype) if cnn_rnn_zack: padding = 'SAME' else: padding = 'VALID' conv = tf.nn.conv2d(layer_last, filters, [1, 1, 1, 1], padding=padding) biased = tf.nn.bias_add(conv, biases) convolved = tf.nn.relu(biased) pool_shape = [1, ptime, pband, 1] pooled = tf.nn.max_pool(convolved, ksize=pool_shape, strides=pool_shape, padding='SAME') print('{}: {}'.format(layer_name, pooled.get_shape())) export_feat_tensors[layer_name] = pooled # TODO: CNN dropout? layer_last = pooled
tensorflow.nn.bias_add
2,527
import tensorflow as tf with tf.variable_scope(name): if reuse: tf.get_variable_scope().reuse_variables() else: assert tf.get_variable_scope().reuse is False def lrelu(x, alpha,name='lrelu'): with tf.variable_scope(name): if reuse: tf.get_variable_scope().reuse_variables() else: assert tf.get_variable_scope().reuse is False return tf.nn.relu(x) - alpha * tf.nn.relu(-x) def instance_norm(x,name='instance_norm'): with tf.variable_scope(name): if reuse: tf.get_variable_scope().reuse_variables() else: assert tf.get_variable_scope().reuse is False
tensorflow.get_variable_scope
2,528
import tensorflow as tf model_to_train = [s.strip() for s in FLAGS.model_to_train.split(',')] for m in model_to_train: sub_loop(keypoint_model_fn, m, detail_params[m]['model_dir'], run_config, detail_params[m]['train_epochs'], detail_params[m]['epochs_per_eval'], detail_params[m]['lr_decay_factors'], detail_params[m]['decay_boundaries'], detail_params[m]['checkpoint_path'], detail_params[m]['checkpoint_exclude_scopes'], detail_params[m]['checkpoint_model_scope'], detail_params[m]['ignore_missing_vars']) if __name__ == '__main__': tf.logging.set_verbosity(tf.logging.INFO) tf.app.run() # 0.04473711425469029 # blouse: 0.042138283111307795 # dress: 0.04147867224643174 # outwear: 0.04511445541161763 # skirt: 0.05388678376709799
tensorflow.app.run
2,529
import tensorflow as tf temp_loss = tf.reduce_mean(tf.reshape(tf.losses.mean_squared_error(targets_list[-1], pred_outputs[-1], weights=1.0, loss_collection=None, reduction=tf.losses.Reduction.NONE), [cur_batch_size, config.class_num_joints[(params['model_scope'] if 'all' not in params['model_scope'] else '*')], -1]), axis=-1) num_topk = config.class_num_joints[(params['model_scope'] if 'all' not in params['model_scope'] else '*')] // 2 gather_col = tf.nn.top_k(temp_loss, k=num_topk, sorted=True)[1] gather_row = tf.reshape(tf.tile(tf.reshape(tf.range(cur_batch_size), [-1, 1]), [1, num_topk]), [-1, 1]) gather_indcies = tf.stop_gradient(tf.stack([gather_row, tf.reshape(gather_col, [-1, 1])], axis=-1)) select_targets = tf.gather_nd(targets_list[-1], gather_indcies) select_heatmap = tf.gather_nd(pred_outputs[-1], gather_indcies)
tensorflow.reshape
2,530
from tensorflow.python.client import graph_util filter_shape.assert_is_fully_defined() output_shape = graph_util.tensor_shape_from_node_def_name(graph, node.name) output_shape.assert_is_fully_defined() filter_height = int(filter_shape[0]) filter_width = int(filter_shape[1]) filter_in_depth = int(filter_shape[2]) filter_out_depth = int(filter_shape[3]) return ops.OpStats("weight_parameters", (filter_height * filter_width * filter_in_depth * filter_out_depth)) @ops.RegisterStatistics("BiasAdd", "flops") def _calc_bias_add_flops(graph, node): """Calculates the computing needed for BiasAdd.""" input_shape = graph_util.tensor_shape_from_node_def_name(graph, node.input[0]) input_shape.assert_is_fully_defined() input_count = np.prod(input_shape.as_list()) return ops.OpStats("flops", input_count) @ops.RegisterStatistics("BiasAdd", "weight_parameters") def _calc_bias_add_weight_params(graph, node): """Calculates the on-disk weight parameters for BiasAdd.""" bias_shape = graph_util.tensor_shape_from_node_def_name(graph, node.input[1]) bias_shape.assert_is_fully_defined() bias_count = np.prod(bias_shape.as_list()) return ops.OpStats("weight_parameters", bias_count)
tensorflow.python.client.graph_util.tensor_shape_from_node_def_name
2,531
import tensorflow as tf input0_tensor = tf.get_default_graph().get_tensor_by_name( "TENSOR_INPUT0:0") input1_tensor = tf.get_default_graph().get_tensor_by_name( "TENSOR_INPUT1:0") output0_tensor = tf.get_default_graph().get_tensor_by_name( "TENSOR_OUTPUT0:0") output1_tensor = tf.get_default_graph().get_tensor_by_name( "TENSOR_OUTPUT1:0")
tensorflow.get_default_graph
2,532
import tensorflow as tf tsv_path = os.path.join(FLAGS.logdir, 'metadata.tsv') self.embedding_test_ph = tf.placeholder(tf.float32, embedding_shape, name='embedding') self.embedding_test = tf.Variable(tf.random_normal(embedding_shape), name='test_embedding', trainable=False) self.embedding_assign = self.embedding_test.assign(self.embedding_test_ph) self.embedding_saver = tf.train.Saver(var_list=[self.embedding_test]) config = projector.ProjectorConfig() embedding = config.embeddings.add() embedding.tensor_name = self.embedding_test.name
tensorflow.train.Saver
2,533
import tensorflow as tf config = tf.ConfigProto() if FLAGS.xla: config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1 if FLAGS.use_hvd: config.gpu_options.visible_device_list = str(hvd.local_rank()) config.gpu_options.allow_growth=True run_config = tf.estimator.RunConfig( model_dir=FLAGS.output_dir, keep_checkpoint_max=FLAGS.keep_checkpoint_max, save_checkpoints_steps=FLAGS.save_checkpoints_steps, log_step_count_steps=FLAGS.hooking_frequence, session_config=config)
tensorflow.estimator.RunConfig
2,534
import tensorflow as tf # In[15]: # Create the input to the network. This is a 4-dimensional tensor! X = tf.placeholder(name='X', shape=[None,data_x.shape[1], data_x.shape[2], data_x.shape[3]], dtype=tf.float32) # Create the output to the network. This is our one hot encoding of 2 possible values (TODO)! Y = tf.placeholder(name='Y', shape=[None,data_y.shape[1]], dtype=tf.float32)
tensorflow.placeholder
2,535
import tensorflow as tf self.fc1 = tf.nn.relu(out) # fc2 with tf.variable_scope('fc2'): w = tf.get_variable('w', [self.fc1.get_shape()[1], 2048], initializer=he_normal, regularizer=regularizer) b = tf.get_variable('b', [2048], initializer=tf.constant_initializer(1.0)) out = tf.matmul(self.fc1, w) + b self.fc2 = tf.nn.relu(out) # fc3 with tf.variable_scope('fc3'): w = tf.get_variable('w', [self.fc2.get_shape()[1], num_classes], initializer=initializer, regularizer=regularizer) b = tf.get_variable('b', [num_classes], initializer=tf.constant_initializer(1.0)) self.fc3 = tf.matmul(self.fc2, w) + b # Calculate Mean cross-entropy loss with tf.name_scope("loss"): self.predictions = tf.argmax(self.fc3, 1, name="predictions") losses = tf.nn.softmax_cross_entropy_with_logits(logits=self.fc3, labels=self.input_y) regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) self.loss = tf.reduce_mean(losses) + sum(regularization_losses) # Accuracy with tf.name_scope("accuracy"): correct_predictions = tf.equal(self.predictions, tf.argmax(self.input_y, 1)) self.accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy")
tensorflow.constant_initializer
2,536
import tensorflow as tf return a + b outputs = [] for _ in xrange(1000): outputs.append(f(tf.ones([1, 100000]), tf.ones([1, 100000]))) op_to_benchmark = tf.group(*outputs) tf.train.start_queue_runners()
tensorflow.ones
2,537
import tensorflow as tf networks._generator_alpha(block_id, tf.constant(1.2, tf.float32))) for block_id in range(1, 5) ] self.assertArrayNear(alpha_fixed_block_id, [0, 0.2, 1, 0.8, 0, 0, 0], 1.0e-6) self.assertArrayNear(alpha_fixed_progress, [0, 0.8, 0.2, 0], 1.0e-6) def test_discriminator_alpha(self): with self.test_session(use_gpu=True) as sess: alpha_fixed_block_id = [ sess.run( networks._discriminator_alpha(2, tf.constant( progress, tf.float32))) for progress in [0, 0.2, 1, 1.2, 2, 2.2, 3] ] alpha_fixed_progress = [ sess.run( networks._discriminator_alpha(block_id, tf.constant(1.2, tf.float32))) for block_id in range(1, 5) ] self.assertArrayNear(alpha_fixed_block_id, [1, 1, 1, 0.8, 0, 0, 0], 1.0e-6)
tensorflow.constant
2,538
import tensorflow as tf return if not color_name: return _, chars, length = parse(color_name) with tf.device(device): (chars, length) = (tf.identity(chars), tf.identity(length)) chars = tf.expand_dims(chars, 0) length = tf.expand_dims(length, 0) preds = tf.unstack(model((chars, length), training=False)[0]) # Predictions cannot be negative, as they are generated by a ReLU layer; # they may, however, be greater than 1. clipped_preds = tuple(min(float(p), 1.0) for p in preds) rgb = tuple(int(p * 255) for p in clipped_preds)
tensorflow.expand_dims
2,539
import tensorflow as tf return output_spec return model_fn def get_masked_lm_output(bert_config, input_tensor, output_weights, positions, label_ids, label_weights): """Get loss and log probs for the masked LM.""" input_tensor = gather_indexes(input_tensor, positions) with tf.variable_scope("cls/predictions"): # We apply one more non-linear transformation before the output layer. # This matrix is not used after pre-training. with tf.variable_scope("transform"): input_tensor = tf.layers.dense( input_tensor, units=bert_config.hidden_size, activation=modeling.get_activation(bert_config.hidden_act), kernel_initializer=modeling.create_initializer( bert_config.initializer_range)) input_tensor = modeling.layer_norm(input_tensor) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. output_bias = tf.get_variable( "output_bias",
tensorflow.variable_scope
2,540
import tensorflow as tf i_z0_y1_x1 = tf.gather(im_flat, idx_z0_y1_x1) i_z1_y0_x0 = tf.gather(im_flat, idx_z1_y0_x0) i_z1_y0_x1 = tf.gather(im_flat, idx_z1_y0_x1) i_z1_y1_x0 = tf.gather(im_flat, idx_z1_y1_x0) i_z1_y1_x1 = tf.gather(im_flat, idx_z1_y1_x1) # Finally calculate interpolated values. x0_f = tf.to_float(x0) x1_f = tf.to_float(x1) y0_f = tf.to_float(y0) y1_f = tf.to_float(y1) z0_f = tf.to_float(z0) z1_f = tf.to_float(z1) # Check the out-of-boundary case. x0_valid = tf.to_float( tf.less_equal(x0, max_x) & tf.greater_equal(x0, 0)) x1_valid = tf.to_float( tf.less_equal(x1, max_x) & tf.greater_equal(x1, 0)) y0_valid = tf.to_float( tf.less_equal(y0, max_y) & tf.greater_equal(y0, 0)) y1_valid = tf.to_float( tf.less_equal(y1, max_y) & tf.greater_equal(y1, 0)) z0_valid = tf.to_float( tf.less_equal(z0, max_z) & tf.greater_equal(z0, 0)) z1_valid = tf.to_float( tf.less_equal(z1, max_z) & tf.greater_equal(z1, 0)) w_z0_y0_x0 = tf.expand_dims(((x1_f - x) * (y1_f - y) * (z1_f - z) * x1_valid * y1_valid * z1_valid), 1)
tensorflow.less_equal
2,541
import tensorflow as tf if tf_util.is_image(self.observation_space): tf.summary.image('observation', train_model.obs_ph) else: tf.summary.histogram('observation', train_model.obs_ph) trainer = tf.train.RMSPropOptimizer(learning_rate=self.learning_rate_ph, decay=self.rprop_alpha, epsilon=self.rprop_epsilon) _opt_op = trainer.apply_gradients(grads) # so when you call _train, you first do the gradient step, then you apply ema
tensorflow.train.RMSPropOptimizer
2,542
import tensorflow as tf Tout=tf.float32) gtboxes_and_label_r = tf.reshape(gtboxes_and_label_r, [-1, 6]) gtboxes_and_label_h = get_horizen_minAreaRectangle(gtboxes_and_label_batch[i]) gtboxes_and_label_h = tf.reshape(gtboxes_and_label_h, [-1, 5]) num_objects = num_objects_batch[i] num_objects = tf.cast(tf.reshape(num_objects, [-1, ]), tf.float32)
tensorflow.reshape
2,543
import tensorflow as tf self.vars=self.vars[-1*NUM_VARS:]; self.train_op = self.optimizer.apply_gradients( self.grads_and_vars, global_step=tf.contrib.framework.get_global_step())
tensorflow.contrib.framework.get_global_step
2,544
import tensorflow as tf loss=loss, eval_metric_ops=eval_metric_ops) if output_type == "sess": return { "eval":{ "per_example_loss":per_example_loss, "logits":logits, "loss":tf.reduce_mean(per_example_loss) } } elif output_type == "estimator": return estimator_spec else: raise NotImplementedError() return model_fn
tensorflow.reduce_mean
2,545
from tensorflow.contrib.distributions.python.ops import distribution_util def _event_shape_tensor(self): return constant_op.constant([], dtype=dtypes.int32) def _event_shape(self): return tensor_shape.scalar() @distribution_util.AppendDocstring(_poisson_sample_note) def _log_prob(self, x): return self._log_unnormalized_prob(x) - self._log_normalization() @distribution_util.AppendDocstring(_poisson_sample_note) def _prob(self, x): return math_ops.exp(self._log_prob(x)) @distribution_util.AppendDocstring(_poisson_sample_note) def _log_cdf(self, x): return math_ops.log(self.cdf(x)) @distribution_util.AppendDocstring(_poisson_sample_note) def _cdf(self, x): x = self._assert_valid_sample(x, check_integer=False) return math_ops.igammac(math_ops.floor(x + 1), self.rate) def _log_normalization(self): return self.rate def _log_unnormalized_prob(self, x): x = self._assert_valid_sample(x, check_integer=True) return x * math_ops.log(self.rate) - math_ops.lgamma(x + 1)
tensorflow.contrib.distributions.python.ops.distribution_util.AppendDocstring
2,546
import tensorflow as tf vocab_dist: [batch_size, vsize] attn_dist: [batch_size, passage_length] p_gen: [batch_size, 1] passage_word_idx: [batch_size, passage_length] passage_mask: [batch_size, passage_length] ''' input_shape = tf.shape(vocab_dist) batch_size = input_shape[0] vsize = input_shape[1] passage_length = tf.shape(passage_word_idx)[1] with tf.variable_scope('final_distribution'): vocab_dist = p_gen * vocab_dist attn_dist = (1.0-p_gen) * attn_dist # Concatenate some zeros to each vocabulary dist, to hold the probabilities for phrases extended_vsize = vsize if self.max_phrase_size is not None: extended_vsize += self.max_phrase_size extra_zeros = tf.zeros((batch_size, self.max_phrase_size)) vocab_dist = tf.concat(values=[vocab_dist, extra_zeros], axis=1) # [batch_size, extended_vsize] if self.options.add_first_word_prob_for_phrase: # add prob of the first word to each phrase
tensorflow.variable_scope
2,547
import tensorflow as tf "gcp_project", None, "[Optional] Project name for the Cloud TPU-enabled project. If not " "specified, we will attempt to automatically detect the GCE project from " "metadata.") tf.flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.") flags.DEFINE_integer( "num_tpu_cores", 8, "Only used if `use_tpu` is True. Total number of TPU cores to use.")
tensorflow.flags.DEFINE_string
2,548
import tensorflow as tf # reshape back to time dimension out = tf.reshape(out, shape=original_tensor_shape)
tensorflow.reshape
2,549
import tensorflow as tf tf.ones([self.batch_size, self.num_steps], dtype=data_type()), average_across_timesteps=False, average_across_batch=True) # Update the cost self._cost = tf.reduce_sum(loss) self._final_state = state if not is_training: return
tensorflow.reduce_sum
2,550
import tensorflow as tf sequence_shape = modeling.get_shape_list(sequence_tensor, expected_rank=3) batch_size = sequence_shape[0] seq_length = sequence_shape[1] width = sequence_shape[2] flat_offsets = tf.reshape( tf.range(0, batch_size, dtype=tf.int32) * seq_length, [-1, 1]) flat_positions = tf.reshape(positions + flat_offsets, [-1]) flat_sequence_tensor = tf.reshape(sequence_tensor, [batch_size * seq_length, width]) output_tensor = tf.gather(flat_sequence_tensor, flat_positions) return output_tensor def input_fn_builder(input_files, max_seq_length,
tensorflow.reshape
2,551
import tensorflow as tf model.components.synthesis.run(self.initial_dlatents, randomize_noise=randomize_noise, minibatch_size=self.batch_size, custom_inputs=[partial(create_variable_for_generator, batch_size=batch_size), partial(create_stub, batch_size=batch_size)], structure='fixed') self.sess = tf.get_default_session() self.graph = tf.get_default_graph() self.dlatent_variable = next(v for v in tf.global_variables() if 'learnable_dlatents' in v.name) self.set_dlatents(self.initial_dlatents)
tensorflow.get_default_session
2,552
import tensorflow as tf span_head_scores = tf.gather(self.head_scores, span_indices) # [k, max_span_width, 1] span_mask = tf.expand_dims(tf.sequence_mask(span_width, self.config["max_span_width"], dtype=tf.float32), 2) # [k, max_span_width, 1] span_head_scores += tf.log(span_mask) # [k, max_span_width, 1] span_attention = tf.nn.softmax(span_head_scores, 1) # [k, max_span_width, 1] span_head_emb = tf.reduce_sum(span_attention * span_text_emb, 1) # [k, emb] span_emb_list.append(span_head_emb)
tensorflow.nn.softmax
2,553
from tensorflow.python.framework import sparse_tensor linear_feature_columns=(bucketized_feature,), dnn_feature_columns=(cont_feature,), dnn_hidden_units=(3, 3)) input_fn = test_data.iris_input_multiclass_fn metrics = classifier.fit(input_fn=input_fn, steps=_ITERS).evaluate( input_fn=input_fn, steps=100) self._assertCommonMetrics(metrics) def benchmarkPartitionedVariables(self): def _input_fn(): features = { 'language': sparse_tensor.SparseTensor( values=('en', 'fr', 'zh'), indices=((0, 0), (0, 1), (2, 0)), dense_shape=(3, 2)) } labels = constant_op.constant(((1,), (0,), (0,))) return features, labels # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. sparse_feature = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=2e7) embedding_feature = feature_column.embedding_column( sparse_feature, dimension=1)
tensorflow.python.framework.sparse_tensor.SparseTensor
2,554
import tensorflow as tf def get_loss_weights(name=None): """Returns the weight for loss.""" with tf.variable_scope(name, 'rl_op_selection'): logits = tf.get_variable( name='loss_logits_rl_w', initializer=tf.initializers.zeros(), shape=[ FLAGS.num_choices, ], dtype=tf.float32) dist = tfp.distributions.Categorical(logits=logits) dist_entropy = tf.reduce_sum(dist.entropy())
tensorflow.initializers.zeros
2,555
import tensorflow as tf self.sync_queue_counter % len(self.sync_queue_devices)]): sync_queues = [ tf.FIFOQueue(num_workers, [tf.bool], shapes=[[]], shared_name='%s%s' % (name_prefix, i)) for i in range(num_workers)] queue_ops = [] # For each other worker, add an entry in a queue, signaling that it can # finish this step. token = tf.constant(False) with tf.control_dependencies(enqueue_after_list): for i, q in enumerate(sync_queues): if i == self.task_index: queue_ops.append(tf.no_op()) else: queue_ops.append(q.enqueue(token))
tensorflow.constant
2,556
import tensorflow as tf math.log(float(max_timescale) / float(min_timescale)) / (tf.to_float(num_timescales) - 1))
tensorflow.to_float
2,557
import tensorflow as tf perm_mask = tf.transpose(features["perm_mask"], [1, 2, 0]) if FLAGS.num_predict is not None: # [num_predict x tgt_len x bsz] target_mapping = tf.transpose(features["target_mapping"], [1, 2, 0]) else: target_mapping = None # target for LM loss tgt = tf.transpose(features["target"], [1, 0]) # target mask for LM loss tgt_mask = tf.transpose(features["target_mask"], [1, 0]) # construct xlnet config and save to model_dir xlnet_config = xlnet.XLNetConfig(FLAGS=FLAGS) xlnet_config.to_json(os.path.join(FLAGS.model_dir, "config.json"))
tensorflow.transpose
2,558
import tensorflow as tf scope_name += '/' + '_'.join(encoder.name for encoder in encoders) def embed(input_): embedded_input = tf.nn.embedding_lookup(embedding, input_) if decoder.use_dropout and decoder.word_keep_prob is not None: noise_shape = [1, 1] if decoder.pervasive_dropout else [tf.shape(input_)[0], 1] embedded_input = tf.nn.dropout(embedded_input, keep_prob=decoder.word_keep_prob, noise_shape=noise_shape) if decoder.use_dropout and decoder.embedding_keep_prob is not None: size = tf.shape(embedded_input)[1] noise_shape = [1, size] if decoder.pervasive_dropout else [tf.shape(input_)[0], size] embedded_input = tf.nn.dropout(embedded_input, keep_prob=decoder.embedding_keep_prob, noise_shape=noise_shape) return embedded_input def get_cell(input_size=None, reuse=False): cells = [] for j in range(decoder.layers):
tensorflow.shape
2,559
import tensorflow as tf def mean_var_with_update(): ema_apply_op = ema.apply([batch_mean, batch_var]) with tf.control_dependencies([ema_apply_op]): return tf.identity(batch_mean), tf.identity(batch_var)
tensorflow.control_dependencies
2,560
import tensorflow as tf """ eps = tf.get_variable("eps", (), initializer=tf.constant_initializer(0)) policy = q_func(sess, ob_space, ac_space, 1, 1, None, layers=layers) obs_phs = (policy.obs_ph, policy.processed_obs) deterministic_actions = tf.argmax(policy.q_values, axis=1) ######################### ### KEVIN UPDATE ######## ### GIMME DAT PRINTS ####
tensorflow.argmax
2,561
import tensorflow as tf def _evaluate_legendre_polynomial_loop_body(x, n, l, m, pmm, pmm1): n_float = tf.cast(n, dtype=x.dtype) m_float = tf.cast(m, dtype=x.dtype) pmn = (x * (2.0 * n_float - 1.0) * pmm1 - (n_float + m_float - 1) * pmm) / (
tensorflow.cast
2,562
from tensorflow.python.ops import array_ops @property def beta(self): """Scale parameter.""" return self._beta def _batch_shape(self): return array_ops.broadcast_dynamic_shape( array_ops.shape(self.alpha), array_ops.shape(self.beta)) def _get_batch_shape(self): return array_ops.broadcast_static_shape( self.alpha.get_shape(), self.beta.get_shape()) def _event_shape(self): return constant_op.constant([], dtype=dtypes.int32)
tensorflow.python.ops.array_ops.shape
2,563
import tensorflow as tf with tf.variable_scope(scope): if output_length == 1: pool = tf.nn.avg_pool(input_data, [1, height, width, 1], strides=[1, 1, 1, 1], padding=padding) pool = tf.reduce_mean(pool, axis=[1, 2]) pool = tf.squeeze(pool, axis=[1, 2]) return pool else: if num_channels_in != output_length: conv_weight = tf.Variable(tf.truncated_normal([1, 1, num_channels_in, output_length], stddev=0.1, dtype=tf.float32)) conv = tf.nn.conv2d(input_data, conv_weight, strides=[1, 1, 1, 1], padding='SAME') pool = tf.nn.avg_pool(conv, ksize=[1, height, width, 1], strides=[1, 1, 1, 1], padding=padding) else: pool = tf.nn.avg_pool(input_data, ksize=[1, height, width, 1], strides=[1, 1, 1, 1], padding=padding) pool = tf.squeeze(pool, axis=[1, 2]) return pool def avg_pool(input, scope, filter_dims, stride_dims, padding='SAME'): assert (len(filter_dims) == 2) # filter height and width assert (len(stride_dims) == 2) # stride height and width
tensorflow.nn.avg_pool
2,564
import tensorflow as tf output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, loss=total_loss, train_op=train_op, scaffold_fn=scaffold_fn) elif mode == tf.estimator.ModeKeys.EVAL: def metric_fn(masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids, masked_lm_weights, next_sentence_example_loss, next_sentence_log_probs, next_sentence_labels): """Computes the loss and accuracy of the model.""" masked_lm_log_probs = tf.reshape(masked_lm_log_probs, [-1, masked_lm_log_probs.shape[-1]]) masked_lm_predictions = tf.argmax( masked_lm_log_probs, axis=-1, output_type=tf.int32) masked_lm_example_loss = tf.reshape(masked_lm_example_loss, [-1]) masked_lm_ids = tf.reshape(masked_lm_ids, [-1]) masked_lm_weights = tf.reshape(masked_lm_weights, [-1]) masked_lm_accuracy = tf.metrics.accuracy( labels=masked_lm_ids, predictions=masked_lm_predictions, weights=masked_lm_weights) masked_lm_mean_loss = tf.metrics.mean( values=masked_lm_example_loss, weights=masked_lm_weights) next_sentence_log_probs = tf.reshape( next_sentence_log_probs, [-1, next_sentence_log_probs.shape[-1]]) next_sentence_predictions = tf.argmax( next_sentence_log_probs, axis=-1, output_type=tf.int32) next_sentence_labels = tf.reshape(next_sentence_labels, [-1])
tensorflow.reshape
2,565
from tensorflow.python.framework import ops Args: func: the operator op_name: name of the operator being overridden """ def binary_op_wrapper(x, y): with ops.op_scope([x, y], None, op_name) as name: assert isinstance(x, ops.Tensor) y = ops.convert_to_tensor(y, dtype=x.dtype.base_dtype, name="y") return func(x, y, name=name) ops.Tensor._override_operator("__%s__" % op_name, binary_op_wrapper) del binary_op_wrapper def r_binary_op_wrapper(y, x): with ops.op_scope([x, y], None, op_name) as name: assert isinstance(y, ops.Tensor) x = ops.convert_to_tensor(x, dtype=y.dtype.base_dtype, name="x") return func(x, y, name=name) ops.Tensor._override_operator("__r%s__" % op_name, r_binary_op_wrapper) del r_binary_op_wrapper # Conversion table for __truediv__. None entries mean no conversion required. _TRUEDIV_TABLE = { types.uint8: types.float32, types.int8: types.float32, types.int16: types.float32, types.int32: types.float64,
tensorflow.python.framework.ops.op_scope
2,566
import tensorflow as tf biases = _variable_on_cpu('biases', [num_outputs], tf.constant_initializer(0.0))
tensorflow.constant_initializer
2,567
import tensorflow as tf norm_grads_q = tf.global_norm(grads_q) norm_grads_policy = tf.global_norm(grads_policy) else: grads = tf.gradients(loss, self.params) norm_grads = None if self.max_grad_norm is not None: grads, norm_grads = tf.clip_by_global_norm(grads, self.max_grad_norm) grads = list(zip(grads, self.params)) with tf.variable_scope("input_info", reuse=False): tf.summary.scalar('rewards', tf.reduce_mean(self.reward_ph)) tf.summary.scalar('learning_rate', tf.reduce_mean(self.learning_rate)) tf.summary.scalar('advantage', tf.reduce_mean(adv))
tensorflow.clip_by_global_norm
2,568
import tensorflow as tf #def rnn_cell(rnn_input, state): #with tf.variable_scope('rnn_cell', reuse=True): #W = tf.get_variable('W', [num_classes+state_size, state_size]) #b = tf.get_variable('b', [state_size], initializer=tf.constant_initializer(0.0)) #return tf.tanh(tf.matmul(tf.concat([rnn_input, state],1),W) + b) #'''将rnn cell添加到计算图中''' #state = init_state #rnn_outputs = [] #for rnn_input in rnn_inputs: #state = rnn_cell(rnn_input, state) # state会重复使用,循环 #rnn_outputs.append(state) #final_state = rnn_outputs[-1] # 得到最后的state cell = tf.contrib.rnn.BasicRNNCell(num_units=state_size) rnn_outputs, final_state = tf.nn.dynamic_rnn(cell, rnn_inputs, initial_state=init_state) '''预测,损失,优化''' with tf.variable_scope('softmax'): W = tf.get_variable('W', [state_size, num_classes]) b = tf.get_variable('b', [num_classes], initializer=tf.constant_initializer(0.0)) '''因为rnn_outputs是三维的,这里需要将其转成2维的, 矩阵运算后再转换回来[batch_size, num_steps, num_classes]''' logits = tf.reshape(tf.matmul(tf.reshape(rnn_outputs, [-1, state_size]), W) +b, \ shape=[batch_size, num_steps, num_classes]) predictions = tf.nn.softmax(logits)
tensorflow.contrib.rnn.BasicRNNCell
2,569
import tensorflow as tf enc_inp, dec_inp, cell, num_encoder_symbols, num_decoder_symbols, embedding_size=2, feed_previous=feed_previous) def EmbeddingTiedRNNSeq2Seq(enc_inp, dec_inp, feed_previous): cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=True) return tf.nn.seq2seq.embedding_tied_rnn_seq2seq( enc_inp, dec_inp, cell, num_decoder_symbols, embedding_size=2, feed_previous=feed_previous)
tensorflow.nn.rnn_cell.BasicLSTMCell
2,570
import tensorflow as tf # pred_outputs = [tf.boolean_mask(pred_outputs[ind], all_visible, name='boolean_mask_{}'.format(ind)) for ind in list(range(len(pred_outputs)))] all_visible = tf.expand_dims(tf.expand_dims(tf.cast(tf.logical_and(key_v>0, isvalid>0), tf.float32), axis=-1), axis=-1) targets_list = [targets_list[ind] * all_visible for ind in list(range(len(targets_list)))] pred_outputs = [pred_outputs[ind] * all_visible for ind in list(range(len(pred_outputs)))] sq_diff = tf.reduce_sum(tf.squared_difference(targets, pred_outputs[-1]), axis=-1) last_pred_mse = tf.metrics.mean_absolute_error(sq_diff, tf.zeros_like(sq_diff), name='last_pred_mse') metrics = {'normalized_error': ne_mertric, 'last_pred_mse':last_pred_mse} predictions = {'normalized_error': ne_mertric[1]} ne_mertric = tf.identity(ne_mertric[1], name='ne_mertric') base_learning_rate = params['learning_rate'] mse_loss_list = [] if params['use_ohkm']: base_learning_rate = 1. * base_learning_rate for pred_ind in list(range(len(pred_outputs) - 1)): mse_loss_list.append(0.5 * tf.losses.mean_squared_error(targets_list[pred_ind], pred_outputs[pred_ind], weights=1.0 / tf.cast(cur_batch_size, tf.float32), scope='loss_{}'.format(pred_ind),
tensorflow.identity
2,571
import tensorflow as tf if isinstance(grad, tf.IndexedSlices): grad_values = grad.values else: grad_values = grad summaries.append(tf.histogram_summary(var.op.name + ':gradient', grad_values)) summaries.append(tf.histogram_summary(var.op.name + ':gradient_norm', tf.global_norm([grad_values])))
tensorflow.histogram_summary
2,572
from tensorflow.python.framework import ops ValueError: If `weights` is not `None` and has an incomptable shape. """ default_name = _at_k_name('true_positive', k, class_id=class_id) with ops.name_scope(name, default_name, (predictions_idx, labels)) as scope: tp = _sparse_true_positive_at_k( predictions_idx=predictions_idx, labels=labels, class_id=class_id,
tensorflow.python.framework.ops.name_scope
2,573
import tensorflow as tf if out_shp[-1] > in_shp[-1]: x = tf.pad(x, [[0, 0], [0, 0], [0, 0], [0, int(dim[0] - in_shp[-1])]]) elif out_shp[-1] < in_shp[-1]: warnings.warn("The input has more feature maps than the output. There will be no residual connection.") residual = False if residual: out += x return out def deconv2d(x, dim=(32, [3, 3], [1, 1]), pad='SAME', scope="deconv2d", training=True, ema=None, init=False, bias_initializer=tf.constant_initializer(0.)): num_filters, filter_size, stride = dim xs = x.get_shape().as_list() if pad=='SAME': target_shape = [tf.shape(x)[0], xs[1]*stride[0], xs[2]*stride[1], num_filters] else: target_shape = [tf.shape(x)[0], xs[1]*stride[0] + filter_size[0]-1, xs[2]*stride[1] + filter_size[1]-1, num_filters] with tf.variable_scope(scope): V = tf.get_variable("V", shape=list(filter_size) + [num_filters, int(x.get_shape()[-1])], dtype=tf.float32, initializer=tf.random_normal_initializer(0, 0.05), trainable=True) g = tf.get_variable("g", shape=[num_filters], dtype=tf.float32, initializer=tf.constant_initializer(1.), trainable=True)
tensorflow.constant_initializer
2,574
import tensorflow as tf data_fields["inputs"] = tf.VarLenFeature(tf.int64) # hack: ignoring true targets and putting dist_targets in targets data_items_to_decoders = { "inputs": tf.contrib.slim.tfexample_decoder.Tensor("inputs"), "targets": tf.contrib.slim.tfexample_decoder.Tensor("dist_targets"), }
tensorflow.contrib.slim.tfexample_decoder.Tensor
2,575
import tensorflow as tf if not self.model_initialized: initialize_interdependent_variables(self.session, tf.global_variables(), {self.obs_t_ph : obs_batch, self.obs_tp1_ph : obs_tp1_batch}) self.model_initialized = True self.session.run(self.train_fn, {self.obs_t_ph: obs_batch, self.act_t_ph: act_batch, self.rew_t_ph: rew_batch, self.obs_tp1_ph: obs_tp1_batch, self.done_mask_ph: done_mask, self.learning_rate : self.optimizer_spec.lr_schedule.value(self.t)}, options=tf.RunOptions(report_tensor_allocations_upon_oom=True)) if self.num_param_updates % self.target_update_freq == 0: self.session.run(self.update_target_fn) self.num_param_updates += 1 self.t += 1
tensorflow.RunOptions
2,576
import tensorflow as tf model = create_model("Tacotron", hparams) model.initialize(feeder.inputs, feeder.input_lengths, feeder.speaker_embeddings, feeder.mel_targets, feeder.token_targets, targets_lengths=feeder.targets_lengths, global_step=global_step, is_training=True, split_infos=feeder.split_infos) model.add_loss() model.add_optimizer(global_step) stats = add_train_stats(model, hparams) return model, stats def model_test_mode(args, feeder, hparams, global_step): with tf.variable_scope("Tacotron_model", reuse=tf.AUTO_REUSE) as scope: model = create_model("Tacotron", hparams) model.initialize(feeder.eval_inputs, feeder.eval_input_lengths, feeder.eval_speaker_embeddings, feeder.eval_mel_targets, feeder.eval_token_targets, targets_lengths=feeder.eval_targets_lengths, global_step=global_step, is_training=False, is_evaluating=True, split_infos=feeder.eval_split_infos) model.add_loss() return model def train(log_dir, args, hparams):
tensorflow.variable_scope
2,577
import tensorflow as tf shape = np.array([3, 4]).astype(np.int64) return tf.SparseTensorValue(ind, val, shape) def _SparseTensorValue_1x1x1(self): ind = np.array([[0, 0, 0]]).astype(np.int64) val = np.array([0]).astype(np.int32) shape = np.array([3, 4, 5]).astype(np.int64) return tf.SparseTensorValue(ind, val, shape) def testAddTakeMany(self): with self.test_session(graph=tf.Graph(), use_gpu=False) as sess: sp_input0 = self._SparseTensorValue_5x6(np.arange(6)) sp_input1 = self._SparseTensorValue_3x4(np.arange(6)) handle0 = add_sparse_to_tensors_map(sp_input0, shared_name="a")
tensorflow.SparseTensorValue
2,578
import tensorflow as tf drop_remainder): """Creates an `input_fn` closure to be passed to TPUEstimator.""" name_to_features = { "input_ids": tf.FixedLenFeature([seq_length], tf.int64), "input_mask": tf.FixedLenFeature([seq_length], tf.int64), "segment_ids": tf.FixedLenFeature([seq_length], tf.int64), "label_ids": tf.FixedLenFeature([], tf.int64), "is_real_example": tf.FixedLenFeature([], tf.int64), } def _decode_record(record, name_to_features):
tensorflow.FixedLenFeature
2,579
import tensorflow as tf rand = tf.random.uniform([x_shape[0]]) epoch = tf.where(rand < 0.1, tf.zeros_like(epoch), epoch) # Embed the epoch number. emb_epoch = common_layers.embedding(epoch, 32, 32) # [batch, 32] flat_x = tf.concat([flat_x, emb_epoch], axis=1) flat_x = tf.layers.dropout(flat_x, rate=dropout) x = tf.layers.dense(flat_x, 128, activation=tf.nn.relu) logits = tf.layers.dense( x, self.hparams.problem.num_actions, name="dense2" ) logits = clip_logits(logits, self.hparams) logits = tf.expand_dims(logits, axis=1) value = tf.layers.dense(x, self.distributional_value_size) return {"target_policy": logits, "target_value": value}
tensorflow.layers.dense
2,580
import tensorflow as tf tf.io.FixedLenFeature((), tf.int64), 'image/width': tf.io.FixedLenFeature((), tf.int64), 'image/object/bbox/xmin': tf.io.VarLenFeature(tf.float32), 'image/object/bbox/xmax': tf.io.VarLenFeature(tf.float32), 'image/object/bbox/ymin': tf.io.VarLenFeature(tf.float32), 'image/object/bbox/ymax': tf.io.VarLenFeature(tf.float32), 'image/object/class/label': tf.io.VarLenFeature(tf.int64), 'image/object/area': tf.io.VarLenFeature(tf.float32), 'image/object/is_crowd':
tensorflow.io.VarLenFeature
2,581
import tensorflow as tf self.unweighted_xent = _SafeXEnt(self.y, self.probs) self._xent = _SafeXEnt(self.y, self.probs, class_weights=weights) self.cost = tf.reduce_mean(self.example_weights * self._xent) class TweetSeqModel(BaseModel): #formerly SeqModel
tensorflow.reduce_mean
2,582
import tensorflow as tf for layer_id in range(self.lstm_num_layers): with tf.variable_scope("layer_{}".format(layer_id)): w = tf.get_variable("w", [2 * self.lstm_size, 4 * self.lstm_size]) self.w_lstm.append(w) self.g_emb = tf.get_variable("g_emb", [1, self.lstm_size]) with tf.variable_scope("emb"): self.w_emb = tf.get_variable("w", [self.num_branches, self.lstm_size]) with tf.variable_scope("softmax"): self.w_soft = tf.get_variable("w", [self.lstm_size, self.num_branches]) b_init = np.array([10.0, 10.0] + [0] * (self.num_branches - 2), dtype=np.float32) self.b_soft = tf.get_variable( "b", [1, self.num_branches], initializer=tf.constant_initializer(b_init)) b_soft_no_learn = np.array( [0.25, 0.25] + [-0.25] * (self.num_branches - 2), dtype=np.float32) b_soft_no_learn = np.reshape(b_soft_no_learn, [1, self.num_branches]) self.b_soft_no_learn = tf.constant(b_soft_no_learn, dtype=tf.float32) with tf.variable_scope("attention"): self.w_attn_1 = tf.get_variable("w_1", [self.lstm_size, self.lstm_size]) self.w_attn_2 = tf.get_variable("w_2", [self.lstm_size, self.lstm_size]) self.v_attn = tf.get_variable("v", [self.lstm_size, 1]) def _build_sampler(self, prev_c=None, prev_h=None, use_bias=False): """Build the sampler ops and the log_prob ops."""
tensorflow.constant_initializer
2,583
import tensorflow as tf # (T,B,D) => (B,T,D) facts = tf.array_ops.transpose(facts, [1, 0, 2]) # Trainable parameters mask = tf.equal(mask, tf.ones_like(mask)) facts_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer querry_size = query.get_shape().as_list()[-1] query = tf.layers.dense(query, facts_size, activation=None, name='f1' + stag) query = prelu(query) queries = tf.tile(query, [1, tf.shape(facts)[1]]) queries = tf.reshape(queries, tf.shape(facts)) din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1) d_layer_1_all = tf.layers.dense(din_all, 80, activation=tf.nn.sigmoid, name='f1_att' + stag) d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att' + stag) d_layer_3_all = tf.layers.dense(d_layer_2_all, 1, activation=None, name='f3_att' + stag) d_layer_3_all = tf.reshape(d_layer_3_all, [-1, 1, tf.shape(facts)[1]]) scores = d_layer_3_all
tensorflow.shape
2,584
import tensorflow as tf def main(self): with tf.Graph().as_default() as graph, tf.device('/cpu:0'): num_gpu = len(cfgs.GPU_GROUP.strip().split(',')) global_step = slim.get_or_create_global_step() lr = self.warmup_lr(cfgs.LR, global_step, cfgs.WARM_SETP, num_gpu*cfgs.BATCH_SIZE) tf.summary.scalar('lr', lr) optimizer = tf.train.MomentumOptimizer(lr, momentum=cfgs.MOMENTUM) fcos = build_whole_network_batch_quad.DetectionNetworkFCOS(cfgs=self.cfgs, is_training=True) with tf.name_scope('get_batch'): if cfgs.IMAGE_PYRAMID: shortside_len_list = tf.constant(cfgs.IMG_SHORT_SIDE_LEN) shortside_len = tf.random_shuffle(shortside_len_list)[0]
tensorflow.train.MomentumOptimizer
2,585
import tensorflow as tf # image_size, # image_size, # num_channels # ) mean = tf.reduce_mean( input_tensor=X, axis=0, keepdims=True, name="mean" ) print_obj("ungrouped_minibatch_stddev", "mean", mean)
tensorflow.reduce_mean
2,586
import tensorflow as tf encoder_outputs = [] new_encoder_input_length = [] for i, encoder in enumerate(encoders): # create embeddings in the global scope (allows sharing between encoder and decoder) weight_scale = encoder.embedding_weight_scale or encoder.weight_scale if weight_scale is None: initializer = None # FIXME elif encoder.embedding_initializer == 'uniform' or (encoder.embedding_initializer is None and encoder.initializer == 'uniform'): initializer = tf.random_uniform_initializer(minval=-weight_scale, maxval=weight_scale) else: initializer = tf.random_normal_initializer(stddev=weight_scale) with tf.device('/cpu:0'): # embeddings can take a very large amount of memory, so # storing them in GPU memory can be impractical if encoder.binary: embeddings = None # inputs are token ids, which need to be mapped to vectors (embeddings) else: embedding_shape = [encoder.vocab_size, encoder.embedding_size] embeddings = get_variable('embedding_{}'.format(encoder.name), shape=embedding_shape,
tensorflow.random_uniform_initializer
2,587
import tensorflow as tf self.cs = self._mask / tf.reduce_sum(self._mask, 1, keep_dims=True) # The final prediction is the average of the predictions for each word # weighted by the individual confidence/utility scores. preds_weighted = tf.mul(tf.reshape(tf.transpose(self.cs), [-1, 1]), tf.reshape(self.preds_by_word, [-1, self._out_vocab_size])) preds_weighted_reshaped = tf.reshape(preds_weighted,
tensorflow.transpose
2,588
import tensorflow as tf or elem_shape[0] != elem_shapes[0][0]): return tf.map_fn(fn, elems, dtype, parallel_iterations, back_prop)
tensorflow.map_fn
2,589
import tensorflow as tf rec_Connectivity=self.rec_Connectivity.eval(session=sess), output_Connectivity=self.output_Connectivity.eval(session=sess)) print("Model saved in file: %s" % save_weights_path) return (t2 - t1) # use a trained model to get test outputs def test(self, sess, rnn_in, weights_path = None): if(weights_path): saver = tf.train.Saver() # Restore variables from disk. saver.restore(sess, weights_path) predictions, states = sess.run([self.predictions, self.states], feed_dict={self.x: rnn_in}) else: predictions, states = sess.run([self.predictions, self.states], feed_dict={self.x: rnn_in}) return predictions, states
tensorflow.train.Saver
2,590
import tensorflow as tf d_t_flat = tf.reshape(d_t, (1, -1)) ones = tf.ones_like(x_t_flat) grid = tf.concat([d_t_flat, y_t_flat, x_t_flat, ones], 0) return grid def _transform(theta, input_dim, out_size, z_near, z_far): with tf.variable_scope('_transform'): num_batch = input_dim.get_shape().as_list()[0] num_channels = input_dim.get_shape().as_list()[4] theta = tf.reshape(theta, (-1, 4, 4)) theta = tf.cast(theta, 'float32') out_depth = out_size[0] out_height = out_size[1] out_width = out_size[2] grid = _meshgrid(out_depth, out_height, out_width, z_near, z_far) grid = tf.expand_dims(grid, 0) grid = tf.reshape(grid, [-1]) grid = tf.tile(grid, tf.stack([num_batch])) grid = tf.reshape(grid, tf.stack([num_batch, 4, -1]))
tensorflow.cast
2,591
import tensorflow as tf """Layers used during downsampling""" with tf.variable_scope(name): if reuse: tf.get_variable_scope().reuse_variables() else: assert tf.get_variable_scope().reuse is False
tensorflow.get_variable_scope
2,592
import tensorflow as tf target_q_func_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,scope='target_q_func') # Bellman training error if double_q: q_max = gather_2d(q_target,tf.argmax(q_online_tp1,axis=1,output_type=tf.int32)) else: q_max = tf.reduce_max(q_target,axis=1)
tensorflow.argmax
2,593
import tensorflow as tf self.counts['affine'] += 1 with tf.variable_scope(name): init_factor = 2. if activation == 'relu' else 1. kernel = tf.get_variable( 'weights', [num_channels_in, num_out_channels], self.data_type, tf.random_normal_initializer(stddev=np.sqrt(init_factor / (num_channels_in)))) biases = tf.get_variable('biases', [num_out_channels], self.data_type, tf.constant_initializer(0.0)) logits = tf.matmul(input_layer, kernel) + biases if activation == 'relu': affine1 = tf.nn.relu(logits, name=name) elif activation == 'linear' or activation is None: affine1 = logits else: raise KeyError('Invalid activation type \'%s\'' % activation) self.top_layer = affine1 self.top_size = num_out_channels return affine1
tensorflow.matmul
2,594
from tensorflow.python.platform import gfile self.assertTrue(gfile.Exists(s1)) s2 = save.save(sess, os.path.join(save_dir, "s2")) self.assertEqual([s1, s2], save.last_checkpoints) self.assertTrue(gfile.Exists(s1)) self.assertTrue(gfile.Exists(s2)) s3 = save.save(sess, os.path.join(save_dir, "s3")) self.assertEqual([s2, s3], save.last_checkpoints) self.assertFalse(gfile.Exists(s1))
tensorflow.python.platform.gfile.Exists
2,595
import tensorflow as tf def get_race_loss(FLAGS, features, is_training): """Loss for downstream multi-choice QA tasks such as RACE.""" bsz_per_core = tf.shape(features["input_ids"])[0] def _transform_features(feature): out = tf.reshape(feature, [bsz_per_core, 4, -1]) out = tf.transpose(out, [2, 0, 1]) out = tf.reshape(out, [-1, bsz_per_core * 4]) return out inp = _transform_features(features["input_ids"])
tensorflow.reshape
2,596
import tensorflow as tf # TODO: add batch normalization def mlp_variational(x, dropout_mask_phs, hidden_sizes=(32,), activation=tf.tanh, output_activation=None, dropout_rate=0.1): # layer_sizes = (input_size, h1, h2, ..., output_size) layer_sizes = hidden_sizes.copy() layer_sizes.insert(0, x.shape.as_list()[1]) # tile x from shape (b_s * i_s) to (p_s * b_s * i_s) post_size = tf.shape(dropout_mask_phs[0])[0] x = tf.tile(tf.reshape(x, [1, tf.shape(x)[0], tf.shape(x)[1]]), [post_size, 1, 1]) # TODO: no dropout on input regularization = 0 # Create hidden layers for layer_i in range(1,len(layer_sizes)-1): hidden_layer = VariationalDense(n_in=layer_sizes[layer_i-1], n_out=layer_sizes[layer_i], dropout_mask_ph=dropout_mask_phs[layer_i-1], model_prob=1.0 - dropout_rate,
tensorflow.shape
2,597
import tensorflow as tf with tf.variable_scope("tweetff"): hidden = tf.get_variable("ff_hidden", [c2v.embedding_dims, out_vocab_size]) bias = tf.get_variable('ff_bias', [out_vocab_size]) #probably useless. at least I don't want to use it
tensorflow.get_variable
2,598
import tensorflow as tf name='conv_batch_norm_{}'.format(k)) if encoder.conv_activation is not None and encoder.conv_activation.lower() == 'relu': encoder_inputs_ = tf.nn.relu(encoder_inputs_) encoder_input_length_ = tf.to_int32(tf.ceil(encoder_input_length_ / strides[1])) feature_size = encoder_inputs_.shape[2].value channels = encoder_inputs_.shape[3].value
tensorflow.ceil
2,599