context
stringlengths
151
3.71k
answer
stringlengths
1
239
question
stringlengths
1
25.7k
text
stringlengths
227
26.3k
Different fields of science use the term matter in different, and sometimes incompatible, ways. Some of these ways are based on loose historical meanings, from a time when there was no reason to distinguish mass and matter. As such, there is no single universally agreed scientific meaning of the word "matter". Scientifically, the term "mass" is well-defined, but "matter" is not. Sometimes in the field of physics "matter" is simply equated with particles that exhibit rest mass (i.e., that cannot travel at the speed of light), such as quarks and leptons. However, in both physics and chemistry, matter exhibits both wave-like and particle-like properties, the so-called wave–particle duality.
not found
What is the combination of mass and matter called in chemistry?
###context: Different fields of science use the term matter in different, and sometimes incompatible, ways. Some of these ways are based on loose historical meanings, from a time when there was no reason to distinguish mass and matter. As such, there is no single universally agreed scientific meaning of the word "matter". Scientifically, the term "mass" is well-defined, but "matter" is not. Sometimes in the field of physics "matter" is simply equated with particles that exhibit rest mass (i.e., that cannot travel at the speed of light), such as quarks and leptons. However, in both physics and chemistry, matter exhibits both wave-like and particle-like properties, the so-called wave–particle duality. ###question: What is the combination of mass and matter called in chemistry? ###answer: not found
Different fields of science use the term matter in different, and sometimes incompatible, ways. Some of these ways are based on loose historical meanings, from a time when there was no reason to distinguish mass and matter. As such, there is no single universally agreed scientific meaning of the word "matter". Scientifically, the term "mass" is well-defined, but "matter" is not. Sometimes in the field of physics "matter" is simply equated with particles that exhibit rest mass (i.e., that cannot travel at the speed of light), such as quarks and leptons. However, in both physics and chemistry, matter exhibits both wave-like and particle-like properties, the so-called wave–particle duality.
not found
What speed does matter travel at in physics?
###context: Different fields of science use the term matter in different, and sometimes incompatible, ways. Some of these ways are based on loose historical meanings, from a time when there was no reason to distinguish mass and matter. As such, there is no single universally agreed scientific meaning of the word "matter". Scientifically, the term "mass" is well-defined, but "matter" is not. Sometimes in the field of physics "matter" is simply equated with particles that exhibit rest mass (i.e., that cannot travel at the speed of light), such as quarks and leptons. However, in both physics and chemistry, matter exhibits both wave-like and particle-like properties, the so-called wave–particle duality. ###question: What speed does matter travel at in physics? ###answer: not found
In the context of relativity, mass is not an additive quantity, in the sense that one can add the rest masses of particles in a system to get the total rest mass of the system. Thus, in relativity usually a more general view is that it is not the sum of rest masses, but the energy–momentum tensor that quantifies the amount of matter. This tensor gives the rest mass for the entire system. "Matter" therefore is sometimes considered as anything that contributes to the energy–momentum of a system, that is, anything that is not purely gravity. This view is commonly held in fields that deal with general relativity such as cosmology. In this view, light and other massless particles and fields are part of matter.
not found
What type of quantity is mass?
###context: In the context of relativity, mass is not an additive quantity, in the sense that one can add the rest masses of particles in a system to get the total rest mass of the system. Thus, in relativity usually a more general view is that it is not the sum of rest masses, but the energy–momentum tensor that quantifies the amount of matter. This tensor gives the rest mass for the entire system. "Matter" therefore is sometimes considered as anything that contributes to the energy–momentum of a system, that is, anything that is not purely gravity. This view is commonly held in fields that deal with general relativity such as cosmology. In this view, light and other massless particles and fields are part of matter. ###question: What type of quantity is mass? ###answer: not found
In the context of relativity, mass is not an additive quantity, in the sense that one can add the rest masses of particles in a system to get the total rest mass of the system. Thus, in relativity usually a more general view is that it is not the sum of rest masses, but the energy–momentum tensor that quantifies the amount of matter. This tensor gives the rest mass for the entire system. "Matter" therefore is sometimes considered as anything that contributes to the energy–momentum of a system, that is, anything that is not purely gravity. This view is commonly held in fields that deal with general relativity such as cosmology. In this view, light and other massless particles and fields are part of matter.
not found
One can add the rest masses of particles in a system to get what?
###context: In the context of relativity, mass is not an additive quantity, in the sense that one can add the rest masses of particles in a system to get the total rest mass of the system. Thus, in relativity usually a more general view is that it is not the sum of rest masses, but the energy–momentum tensor that quantifies the amount of matter. This tensor gives the rest mass for the entire system. "Matter" therefore is sometimes considered as anything that contributes to the energy–momentum of a system, that is, anything that is not purely gravity. This view is commonly held in fields that deal with general relativity such as cosmology. In this view, light and other massless particles and fields are part of matter. ###question: One can add the rest masses of particles in a system to get what? ###answer: not found
In the context of relativity, mass is not an additive quantity, in the sense that one can add the rest masses of particles in a system to get the total rest mass of the system. Thus, in relativity usually a more general view is that it is not the sum of rest masses, but the energy–momentum tensor that quantifies the amount of matter. This tensor gives the rest mass for the entire system. "Matter" therefore is sometimes considered as anything that contributes to the energy–momentum of a system, that is, anything that is not purely gravity. This view is commonly held in fields that deal with general relativity such as cosmology. In this view, light and other massless particles and fields are part of matter.
not found
What can the energy-momentum tensor not do?
###context: In the context of relativity, mass is not an additive quantity, in the sense that one can add the rest masses of particles in a system to get the total rest mass of the system. Thus, in relativity usually a more general view is that it is not the sum of rest masses, but the energy–momentum tensor that quantifies the amount of matter. This tensor gives the rest mass for the entire system. "Matter" therefore is sometimes considered as anything that contributes to the energy–momentum of a system, that is, anything that is not purely gravity. This view is commonly held in fields that deal with general relativity such as cosmology. In this view, light and other massless particles and fields are part of matter. ###question: What can the energy-momentum tensor not do? ###answer: not found
In the context of relativity, mass is not an additive quantity, in the sense that one can add the rest masses of particles in a system to get the total rest mass of the system. Thus, in relativity usually a more general view is that it is not the sum of rest masses, but the energy–momentum tensor that quantifies the amount of matter. This tensor gives the rest mass for the entire system. "Matter" therefore is sometimes considered as anything that contributes to the energy–momentum of a system, that is, anything that is not purely gravity. This view is commonly held in fields that deal with general relativity such as cosmology. In this view, light and other massless particles and fields are part of matter.
not found
What does gravity contribute to in a system?
###context: In the context of relativity, mass is not an additive quantity, in the sense that one can add the rest masses of particles in a system to get the total rest mass of the system. Thus, in relativity usually a more general view is that it is not the sum of rest masses, but the energy–momentum tensor that quantifies the amount of matter. This tensor gives the rest mass for the entire system. "Matter" therefore is sometimes considered as anything that contributes to the energy–momentum of a system, that is, anything that is not purely gravity. This view is commonly held in fields that deal with general relativity such as cosmology. In this view, light and other massless particles and fields are part of matter. ###question: What does gravity contribute to in a system? ###answer: not found
In the context of relativity, mass is not an additive quantity, in the sense that one can add the rest masses of particles in a system to get the total rest mass of the system. Thus, in relativity usually a more general view is that it is not the sum of rest masses, but the energy–momentum tensor that quantifies the amount of matter. This tensor gives the rest mass for the entire system. "Matter" therefore is sometimes considered as anything that contributes to the energy–momentum of a system, that is, anything that is not purely gravity. This view is commonly held in fields that deal with general relativity such as cosmology. In this view, light and other massless particles and fields are part of matter.
not found
What field does not view matter as a contributor to energy-momentum?
###context: In the context of relativity, mass is not an additive quantity, in the sense that one can add the rest masses of particles in a system to get the total rest mass of the system. Thus, in relativity usually a more general view is that it is not the sum of rest masses, but the energy–momentum tensor that quantifies the amount of matter. This tensor gives the rest mass for the entire system. "Matter" therefore is sometimes considered as anything that contributes to the energy–momentum of a system, that is, anything that is not purely gravity. This view is commonly held in fields that deal with general relativity such as cosmology. In this view, light and other massless particles and fields are part of matter. ###question: What field does not view matter as a contributor to energy-momentum? ###answer: not found
The reason for this is that in this definition, electromagnetic radiation (such as light) as well as the energy of electromagnetic fields contributes to the mass of systems, and therefore appears to add matter to them. For example, light radiation (or thermal radiation) trapped inside a box would contribute to the mass of the box, as would any kind of energy inside the box, including the kinetic energy of particles held by the box. Nevertheless, isolated individual particles of light (photons) and the isolated kinetic energy of massive particles, are normally not considered to be matter.[citation needed]
not found
What type of radiation does not contribute mass?
###context: The reason for this is that in this definition, electromagnetic radiation (such as light) as well as the energy of electromagnetic fields contributes to the mass of systems, and therefore appears to add matter to them. For example, light radiation (or thermal radiation) trapped inside a box would contribute to the mass of the box, as would any kind of energy inside the box, including the kinetic energy of particles held by the box. Nevertheless, isolated individual particles of light (photons) and the isolated kinetic energy of massive particles, are normally not considered to be matter.[citation needed] ###question: What type of radiation does not contribute mass? ###answer: not found
The reason for this is that in this definition, electromagnetic radiation (such as light) as well as the energy of electromagnetic fields contributes to the mass of systems, and therefore appears to add matter to them. For example, light radiation (or thermal radiation) trapped inside a box would contribute to the mass of the box, as would any kind of energy inside the box, including the kinetic energy of particles held by the box. Nevertheless, isolated individual particles of light (photons) and the isolated kinetic energy of massive particles, are normally not considered to be matter.[citation needed]
not found
What is another name for electromagnetic radiation?
###context: The reason for this is that in this definition, electromagnetic radiation (such as light) as well as the energy of electromagnetic fields contributes to the mass of systems, and therefore appears to add matter to them. For example, light radiation (or thermal radiation) trapped inside a box would contribute to the mass of the box, as would any kind of energy inside the box, including the kinetic energy of particles held by the box. Nevertheless, isolated individual particles of light (photons) and the isolated kinetic energy of massive particles, are normally not considered to be matter.[citation needed] ###question: What is another name for electromagnetic radiation? ###answer: not found
The reason for this is that in this definition, electromagnetic radiation (such as light) as well as the energy of electromagnetic fields contributes to the mass of systems, and therefore appears to add matter to them. For example, light radiation (or thermal radiation) trapped inside a box would contribute to the mass of the box, as would any kind of energy inside the box, including the kinetic energy of particles held by the box. Nevertheless, isolated individual particles of light (photons) and the isolated kinetic energy of massive particles, are normally not considered to be matter.[citation needed]
not found
What is another name for isolated kinetic energy of massive particles?
###context: The reason for this is that in this definition, electromagnetic radiation (such as light) as well as the energy of electromagnetic fields contributes to the mass of systems, and therefore appears to add matter to them. For example, light radiation (or thermal radiation) trapped inside a box would contribute to the mass of the box, as would any kind of energy inside the box, including the kinetic energy of particles held by the box. Nevertheless, isolated individual particles of light (photons) and the isolated kinetic energy of massive particles, are normally not considered to be matter.[citation needed] ###question: What is another name for isolated kinetic energy of massive particles? ###answer: not found
A source of definition difficulty in relativity arises from two definitions of mass in common use, one of which is formally equivalent to total energy (and is thus observer dependent), and the other of which is referred to as rest mass or invariant mass and is independent of the observer. Only "rest mass" is loosely equated with matter (since it can be weighed). Invariant mass is usually applied in physics to unbound systems of particles. However, energies which contribute to the "invariant mass" may be weighed also in special circumstances, such as when a system that has invariant mass is confined and has no net momentum (as in the box example above). Thus, a photon with no mass may (confusingly) still add mass to a system in which it is trapped. The same is true of the kinetic energy of particles, which by definition is not part of their rest mass, but which does add rest mass to systems in which these particles reside (an example is the mass added by the motion of gas molecules of a bottle of gas, or by the thermal energy of any hot object).
not found
How many difficulties are there in defining mass?
###context: A source of definition difficulty in relativity arises from two definitions of mass in common use, one of which is formally equivalent to total energy (and is thus observer dependent), and the other of which is referred to as rest mass or invariant mass and is independent of the observer. Only "rest mass" is loosely equated with matter (since it can be weighed). Invariant mass is usually applied in physics to unbound systems of particles. However, energies which contribute to the "invariant mass" may be weighed also in special circumstances, such as when a system that has invariant mass is confined and has no net momentum (as in the box example above). Thus, a photon with no mass may (confusingly) still add mass to a system in which it is trapped. The same is true of the kinetic energy of particles, which by definition is not part of their rest mass, but which does add rest mass to systems in which these particles reside (an example is the mass added by the motion of gas molecules of a bottle of gas, or by the thermal energy of any hot object). ###question: How many difficulties are there in defining mass? ###answer: not found
A source of definition difficulty in relativity arises from two definitions of mass in common use, one of which is formally equivalent to total energy (and is thus observer dependent), and the other of which is referred to as rest mass or invariant mass and is independent of the observer. Only "rest mass" is loosely equated with matter (since it can be weighed). Invariant mass is usually applied in physics to unbound systems of particles. However, energies which contribute to the "invariant mass" may be weighed also in special circumstances, such as when a system that has invariant mass is confined and has no net momentum (as in the box example above). Thus, a photon with no mass may (confusingly) still add mass to a system in which it is trapped. The same is true of the kinetic energy of particles, which by definition is not part of their rest mass, but which does add rest mass to systems in which these particles reside (an example is the mass added by the motion of gas molecules of a bottle of gas, or by the thermal energy of any hot object).
not found
What is invariant mass equivalent to?
###context: A source of definition difficulty in relativity arises from two definitions of mass in common use, one of which is formally equivalent to total energy (and is thus observer dependent), and the other of which is referred to as rest mass or invariant mass and is independent of the observer. Only "rest mass" is loosely equated with matter (since it can be weighed). Invariant mass is usually applied in physics to unbound systems of particles. However, energies which contribute to the "invariant mass" may be weighed also in special circumstances, such as when a system that has invariant mass is confined and has no net momentum (as in the box example above). Thus, a photon with no mass may (confusingly) still add mass to a system in which it is trapped. The same is true of the kinetic energy of particles, which by definition is not part of their rest mass, but which does add rest mass to systems in which these particles reside (an example is the mass added by the motion of gas molecules of a bottle of gas, or by the thermal energy of any hot object). ###question: What is invariant mass equivalent to? ###answer: not found
A source of definition difficulty in relativity arises from two definitions of mass in common use, one of which is formally equivalent to total energy (and is thus observer dependent), and the other of which is referred to as rest mass or invariant mass and is independent of the observer. Only "rest mass" is loosely equated with matter (since it can be weighed). Invariant mass is usually applied in physics to unbound systems of particles. However, energies which contribute to the "invariant mass" may be weighed also in special circumstances, such as when a system that has invariant mass is confined and has no net momentum (as in the box example above). Thus, a photon with no mass may (confusingly) still add mass to a system in which it is trapped. The same is true of the kinetic energy of particles, which by definition is not part of their rest mass, but which does add rest mass to systems in which these particles reside (an example is the mass added by the motion of gas molecules of a bottle of gas, or by the thermal energy of any hot object).
not found
What type of systems is rest mass applied to?
###context: A source of definition difficulty in relativity arises from two definitions of mass in common use, one of which is formally equivalent to total energy (and is thus observer dependent), and the other of which is referred to as rest mass or invariant mass and is independent of the observer. Only "rest mass" is loosely equated with matter (since it can be weighed). Invariant mass is usually applied in physics to unbound systems of particles. However, energies which contribute to the "invariant mass" may be weighed also in special circumstances, such as when a system that has invariant mass is confined and has no net momentum (as in the box example above). Thus, a photon with no mass may (confusingly) still add mass to a system in which it is trapped. The same is true of the kinetic energy of particles, which by definition is not part of their rest mass, but which does add rest mass to systems in which these particles reside (an example is the mass added by the motion of gas molecules of a bottle of gas, or by the thermal energy of any hot object). ###question: What type of systems is rest mass applied to? ###answer: not found
A source of definition difficulty in relativity arises from two definitions of mass in common use, one of which is formally equivalent to total energy (and is thus observer dependent), and the other of which is referred to as rest mass or invariant mass and is independent of the observer. Only "rest mass" is loosely equated with matter (since it can be weighed). Invariant mass is usually applied in physics to unbound systems of particles. However, energies which contribute to the "invariant mass" may be weighed also in special circumstances, such as when a system that has invariant mass is confined and has no net momentum (as in the box example above). Thus, a photon with no mass may (confusingly) still add mass to a system in which it is trapped. The same is true of the kinetic energy of particles, which by definition is not part of their rest mass, but which does add rest mass to systems in which these particles reside (an example is the mass added by the motion of gas molecules of a bottle of gas, or by the thermal energy of any hot object).
not found
Invariant mass cannot be weighed when a system has no what?
###context: A source of definition difficulty in relativity arises from two definitions of mass in common use, one of which is formally equivalent to total energy (and is thus observer dependent), and the other of which is referred to as rest mass or invariant mass and is independent of the observer. Only "rest mass" is loosely equated with matter (since it can be weighed). Invariant mass is usually applied in physics to unbound systems of particles. However, energies which contribute to the "invariant mass" may be weighed also in special circumstances, such as when a system that has invariant mass is confined and has no net momentum (as in the box example above). Thus, a photon with no mass may (confusingly) still add mass to a system in which it is trapped. The same is true of the kinetic energy of particles, which by definition is not part of their rest mass, but which does add rest mass to systems in which these particles reside (an example is the mass added by the motion of gas molecules of a bottle of gas, or by the thermal energy of any hot object). ###question: Invariant mass cannot be weighed when a system has no what? ###answer: not found
A source of definition difficulty in relativity arises from two definitions of mass in common use, one of which is formally equivalent to total energy (and is thus observer dependent), and the other of which is referred to as rest mass or invariant mass and is independent of the observer. Only "rest mass" is loosely equated with matter (since it can be weighed). Invariant mass is usually applied in physics to unbound systems of particles. However, energies which contribute to the "invariant mass" may be weighed also in special circumstances, such as when a system that has invariant mass is confined and has no net momentum (as in the box example above). Thus, a photon with no mass may (confusingly) still add mass to a system in which it is trapped. The same is true of the kinetic energy of particles, which by definition is not part of their rest mass, but which does add rest mass to systems in which these particles reside (an example is the mass added by the motion of gas molecules of a bottle of gas, or by the thermal energy of any hot object).
not found
Kinetic energy cannot add what kind of mass to a system?
###context: A source of definition difficulty in relativity arises from two definitions of mass in common use, one of which is formally equivalent to total energy (and is thus observer dependent), and the other of which is referred to as rest mass or invariant mass and is independent of the observer. Only "rest mass" is loosely equated with matter (since it can be weighed). Invariant mass is usually applied in physics to unbound systems of particles. However, energies which contribute to the "invariant mass" may be weighed also in special circumstances, such as when a system that has invariant mass is confined and has no net momentum (as in the box example above). Thus, a photon with no mass may (confusingly) still add mass to a system in which it is trapped. The same is true of the kinetic energy of particles, which by definition is not part of their rest mass, but which does add rest mass to systems in which these particles reside (an example is the mass added by the motion of gas molecules of a bottle of gas, or by the thermal energy of any hot object). ###question: Kinetic energy cannot add what kind of mass to a system? ###answer: not found
Since such mass (kinetic energies of particles, the energy of trapped electromagnetic radiation and stored potential energy of repulsive fields) is measured as part of the mass of ordinary matter in complex systems, the "matter" status of "massless particles" and fields of force becomes unclear in such systems. These problems contribute to the lack of a rigorous definition of matter in science, although mass is easier to define as the total stress–energy above (this is also what is weighed on a scale, and what is the source of gravity).[citation needed]
not found
What is electromagnetic radiation stored in?
###context: Since such mass (kinetic energies of particles, the energy of trapped electromagnetic radiation and stored potential energy of repulsive fields) is measured as part of the mass of ordinary matter in complex systems, the "matter" status of "massless particles" and fields of force becomes unclear in such systems. These problems contribute to the lack of a rigorous definition of matter in science, although mass is easier to define as the total stress–energy above (this is also what is weighed on a scale, and what is the source of gravity).[citation needed] ###question: What is electromagnetic radiation stored in? ###answer: not found
Since such mass (kinetic energies of particles, the energy of trapped electromagnetic radiation and stored potential energy of repulsive fields) is measured as part of the mass of ordinary matter in complex systems, the "matter" status of "massless particles" and fields of force becomes unclear in such systems. These problems contribute to the lack of a rigorous definition of matter in science, although mass is easier to define as the total stress–energy above (this is also what is weighed on a scale, and what is the source of gravity).[citation needed]
not found
The mass of kinetic energy particles is not considered part of what?
###context: Since such mass (kinetic energies of particles, the energy of trapped electromagnetic radiation and stored potential energy of repulsive fields) is measured as part of the mass of ordinary matter in complex systems, the "matter" status of "massless particles" and fields of force becomes unclear in such systems. These problems contribute to the lack of a rigorous definition of matter in science, although mass is easier to define as the total stress–energy above (this is also what is weighed on a scale, and what is the source of gravity).[citation needed] ###question: The mass of kinetic energy particles is not considered part of what? ###answer: not found
Since such mass (kinetic energies of particles, the energy of trapped electromagnetic radiation and stored potential energy of repulsive fields) is measured as part of the mass of ordinary matter in complex systems, the "matter" status of "massless particles" and fields of force becomes unclear in such systems. These problems contribute to the lack of a rigorous definition of matter in science, although mass is easier to define as the total stress–energy above (this is also what is weighed on a scale, and what is the source of gravity).[citation needed]
not found
What tends to be clear in complex systems?
###context: Since such mass (kinetic energies of particles, the energy of trapped electromagnetic radiation and stored potential energy of repulsive fields) is measured as part of the mass of ordinary matter in complex systems, the "matter" status of "massless particles" and fields of force becomes unclear in such systems. These problems contribute to the lack of a rigorous definition of matter in science, although mass is easier to define as the total stress–energy above (this is also what is weighed on a scale, and what is the source of gravity).[citation needed] ###question: What tends to be clear in complex systems? ###answer: not found
Since such mass (kinetic energies of particles, the energy of trapped electromagnetic radiation and stored potential energy of repulsive fields) is measured as part of the mass of ordinary matter in complex systems, the "matter" status of "massless particles" and fields of force becomes unclear in such systems. These problems contribute to the lack of a rigorous definition of matter in science, although mass is easier to define as the total stress–energy above (this is also what is weighed on a scale, and what is the source of gravity).[citation needed]
not found
What field has a clear definition of matter?
###context: Since such mass (kinetic energies of particles, the energy of trapped electromagnetic radiation and stored potential energy of repulsive fields) is measured as part of the mass of ordinary matter in complex systems, the "matter" status of "massless particles" and fields of force becomes unclear in such systems. These problems contribute to the lack of a rigorous definition of matter in science, although mass is easier to define as the total stress–energy above (this is also what is weighed on a scale, and what is the source of gravity).[citation needed] ###question: What field has a clear definition of matter? ###answer: not found
Since such mass (kinetic energies of particles, the energy of trapped electromagnetic radiation and stored potential energy of repulsive fields) is measured as part of the mass of ordinary matter in complex systems, the "matter" status of "massless particles" and fields of force becomes unclear in such systems. These problems contribute to the lack of a rigorous definition of matter in science, although mass is easier to define as the total stress–energy above (this is also what is weighed on a scale, and what is the source of gravity).[citation needed]
not found
Mass is harder to define as being what?
###context: Since such mass (kinetic energies of particles, the energy of trapped electromagnetic radiation and stored potential energy of repulsive fields) is measured as part of the mass of ordinary matter in complex systems, the "matter" status of "massless particles" and fields of force becomes unclear in such systems. These problems contribute to the lack of a rigorous definition of matter in science, although mass is easier to define as the total stress–energy above (this is also what is weighed on a scale, and what is the source of gravity).[citation needed] ###question: Mass is harder to define as being what? ###answer: not found
A definition of "matter" more fine-scale than the atoms and molecules definition is: matter is made up of what atoms and molecules are made of, meaning anything made of positively charged protons, neutral neutrons, and negatively charged electrons. This definition goes beyond atoms and molecules, however, to include substances made from these building blocks that are not simply atoms or molecules, for example white dwarf matter—typically, carbon and oxygen nuclei in a sea of degenerate electrons. At a microscopic level, the constituent "particles" of matter such as protons, neutrons, and electrons obey the laws of quantum mechanics and exhibit wave–particle duality. At an even deeper level, protons and neutrons are made up of quarks and the force fields (gluons) that bind them together (see Quarks and leptons definition below).
not found
What is made out of negatively charged protons?
###context: A definition of "matter" more fine-scale than the atoms and molecules definition is: matter is made up of what atoms and molecules are made of, meaning anything made of positively charged protons, neutral neutrons, and negatively charged electrons. This definition goes beyond atoms and molecules, however, to include substances made from these building blocks that are not simply atoms or molecules, for example white dwarf matter—typically, carbon and oxygen nuclei in a sea of degenerate electrons. At a microscopic level, the constituent "particles" of matter such as protons, neutrons, and electrons obey the laws of quantum mechanics and exhibit wave–particle duality. At an even deeper level, protons and neutrons are made up of quarks and the force fields (gluons) that bind them together (see Quarks and leptons definition below). ###question: What is made out of negatively charged protons? ###answer: not found
A definition of "matter" more fine-scale than the atoms and molecules definition is: matter is made up of what atoms and molecules are made of, meaning anything made of positively charged protons, neutral neutrons, and negatively charged electrons. This definition goes beyond atoms and molecules, however, to include substances made from these building blocks that are not simply atoms or molecules, for example white dwarf matter—typically, carbon and oxygen nuclei in a sea of degenerate electrons. At a microscopic level, the constituent "particles" of matter such as protons, neutrons, and electrons obey the laws of quantum mechanics and exhibit wave–particle duality. At an even deeper level, protons and neutrons are made up of quarks and the force fields (gluons) that bind them together (see Quarks and leptons definition below).
not found
What type of charge do atoms have?
###context: A definition of "matter" more fine-scale than the atoms and molecules definition is: matter is made up of what atoms and molecules are made of, meaning anything made of positively charged protons, neutral neutrons, and negatively charged electrons. This definition goes beyond atoms and molecules, however, to include substances made from these building blocks that are not simply atoms or molecules, for example white dwarf matter—typically, carbon and oxygen nuclei in a sea of degenerate electrons. At a microscopic level, the constituent "particles" of matter such as protons, neutrons, and electrons obey the laws of quantum mechanics and exhibit wave–particle duality. At an even deeper level, protons and neutrons are made up of quarks and the force fields (gluons) that bind them together (see Quarks and leptons definition below). ###question: What type of charge do atoms have? ###answer: not found
A definition of "matter" more fine-scale than the atoms and molecules definition is: matter is made up of what atoms and molecules are made of, meaning anything made of positively charged protons, neutral neutrons, and negatively charged electrons. This definition goes beyond atoms and molecules, however, to include substances made from these building blocks that are not simply atoms or molecules, for example white dwarf matter—typically, carbon and oxygen nuclei in a sea of degenerate electrons. At a microscopic level, the constituent "particles" of matter such as protons, neutrons, and electrons obey the laws of quantum mechanics and exhibit wave–particle duality. At an even deeper level, protons and neutrons are made up of quarks and the force fields (gluons) that bind them together (see Quarks and leptons definition below).
not found
This definition does not include what type of matter?
###context: A definition of "matter" more fine-scale than the atoms and molecules definition is: matter is made up of what atoms and molecules are made of, meaning anything made of positively charged protons, neutral neutrons, and negatively charged electrons. This definition goes beyond atoms and molecules, however, to include substances made from these building blocks that are not simply atoms or molecules, for example white dwarf matter—typically, carbon and oxygen nuclei in a sea of degenerate electrons. At a microscopic level, the constituent "particles" of matter such as protons, neutrons, and electrons obey the laws of quantum mechanics and exhibit wave–particle duality. At an even deeper level, protons and neutrons are made up of quarks and the force fields (gluons) that bind them together (see Quarks and leptons definition below). ###question: This definition does not include what type of matter? ###answer: not found
A definition of "matter" more fine-scale than the atoms and molecules definition is: matter is made up of what atoms and molecules are made of, meaning anything made of positively charged protons, neutral neutrons, and negatively charged electrons. This definition goes beyond atoms and molecules, however, to include substances made from these building blocks that are not simply atoms or molecules, for example white dwarf matter—typically, carbon and oxygen nuclei in a sea of degenerate electrons. At a microscopic level, the constituent "particles" of matter such as protons, neutrons, and electrons obey the laws of quantum mechanics and exhibit wave–particle duality. At an even deeper level, protons and neutrons are made up of quarks and the force fields (gluons) that bind them together (see Quarks and leptons definition below).
not found
What is located in a sea of protons?
###context: A definition of "matter" more fine-scale than the atoms and molecules definition is: matter is made up of what atoms and molecules are made of, meaning anything made of positively charged protons, neutral neutrons, and negatively charged electrons. This definition goes beyond atoms and molecules, however, to include substances made from these building blocks that are not simply atoms or molecules, for example white dwarf matter—typically, carbon and oxygen nuclei in a sea of degenerate electrons. At a microscopic level, the constituent "particles" of matter such as protons, neutrons, and electrons obey the laws of quantum mechanics and exhibit wave–particle duality. At an even deeper level, protons and neutrons are made up of quarks and the force fields (gluons) that bind them together (see Quarks and leptons definition below). ###question: What is located in a sea of protons? ###answer: not found
A definition of "matter" more fine-scale than the atoms and molecules definition is: matter is made up of what atoms and molecules are made of, meaning anything made of positively charged protons, neutral neutrons, and negatively charged electrons. This definition goes beyond atoms and molecules, however, to include substances made from these building blocks that are not simply atoms or molecules, for example white dwarf matter—typically, carbon and oxygen nuclei in a sea of degenerate electrons. At a microscopic level, the constituent "particles" of matter such as protons, neutrons, and electrons obey the laws of quantum mechanics and exhibit wave–particle duality. At an even deeper level, protons and neutrons are made up of quarks and the force fields (gluons) that bind them together (see Quarks and leptons definition below).
not found
What are made up of leptons?
###context: A definition of "matter" more fine-scale than the atoms and molecules definition is: matter is made up of what atoms and molecules are made of, meaning anything made of positively charged protons, neutral neutrons, and negatively charged electrons. This definition goes beyond atoms and molecules, however, to include substances made from these building blocks that are not simply atoms or molecules, for example white dwarf matter—typically, carbon and oxygen nuclei in a sea of degenerate electrons. At a microscopic level, the constituent "particles" of matter such as protons, neutrons, and electrons obey the laws of quantum mechanics and exhibit wave–particle duality. At an even deeper level, protons and neutrons are made up of quarks and the force fields (gluons) that bind them together (see Quarks and leptons definition below). ###question: What are made up of leptons? ###answer: not found
Leptons (the most famous being the electron), and quarks (of which baryons, such as protons and neutrons, are made) combine to form atoms, which in turn form molecules. Because atoms and molecules are said to be matter, it is natural to phrase the definition as: ordinary matter is anything that is made of the same things that atoms and molecules are made of. (However, notice that one also can make from these building blocks matter that is not atoms or molecules.) Then, because electrons are leptons, and protons, and neutrons are made of quarks, this definition in turn leads to the definition of matter as being quarks and leptons, which are the two types of elementary fermions. Carithers and Grannis state: Ordinary matter is composed entirely of first-generation particles, namely the [up] and [down] quarks, plus the electron and its neutrino. (Higher generations particles quickly decay into first-generation particles, and thus are not commonly encountered.)
not found
What is the most famous electron?
###context: Leptons (the most famous being the electron), and quarks (of which baryons, such as protons and neutrons, are made) combine to form atoms, which in turn form molecules. Because atoms and molecules are said to be matter, it is natural to phrase the definition as: ordinary matter is anything that is made of the same things that atoms and molecules are made of. (However, notice that one also can make from these building blocks matter that is not atoms or molecules.) Then, because electrons are leptons, and protons, and neutrons are made of quarks, this definition in turn leads to the definition of matter as being quarks and leptons, which are the two types of elementary fermions. Carithers and Grannis state: Ordinary matter is composed entirely of first-generation particles, namely the [up] and [down] quarks, plus the electron and its neutrino. (Higher generations particles quickly decay into first-generation particles, and thus are not commonly encountered.) ###question: What is the most famous electron? ###answer: not found
Leptons (the most famous being the electron), and quarks (of which baryons, such as protons and neutrons, are made) combine to form atoms, which in turn form molecules. Because atoms and molecules are said to be matter, it is natural to phrase the definition as: ordinary matter is anything that is made of the same things that atoms and molecules are made of. (However, notice that one also can make from these building blocks matter that is not atoms or molecules.) Then, because electrons are leptons, and protons, and neutrons are made of quarks, this definition in turn leads to the definition of matter as being quarks and leptons, which are the two types of elementary fermions. Carithers and Grannis state: Ordinary matter is composed entirely of first-generation particles, namely the [up] and [down] quarks, plus the electron and its neutrino. (Higher generations particles quickly decay into first-generation particles, and thus are not commonly encountered.)
not found
What are quarks made from?
###context: Leptons (the most famous being the electron), and quarks (of which baryons, such as protons and neutrons, are made) combine to form atoms, which in turn form molecules. Because atoms and molecules are said to be matter, it is natural to phrase the definition as: ordinary matter is anything that is made of the same things that atoms and molecules are made of. (However, notice that one also can make from these building blocks matter that is not atoms or molecules.) Then, because electrons are leptons, and protons, and neutrons are made of quarks, this definition in turn leads to the definition of matter as being quarks and leptons, which are the two types of elementary fermions. Carithers and Grannis state: Ordinary matter is composed entirely of first-generation particles, namely the [up] and [down] quarks, plus the electron and its neutrino. (Higher generations particles quickly decay into first-generation particles, and thus are not commonly encountered.) ###question: What are quarks made from? ###answer: not found
Leptons (the most famous being the electron), and quarks (of which baryons, such as protons and neutrons, are made) combine to form atoms, which in turn form molecules. Because atoms and molecules are said to be matter, it is natural to phrase the definition as: ordinary matter is anything that is made of the same things that atoms and molecules are made of. (However, notice that one also can make from these building blocks matter that is not atoms or molecules.) Then, because electrons are leptons, and protons, and neutrons are made of quarks, this definition in turn leads to the definition of matter as being quarks and leptons, which are the two types of elementary fermions. Carithers and Grannis state: Ordinary matter is composed entirely of first-generation particles, namely the [up] and [down] quarks, plus the electron and its neutrino. (Higher generations particles quickly decay into first-generation particles, and thus are not commonly encountered.)
not found
Who determined that electrons were leptons?
###context: Leptons (the most famous being the electron), and quarks (of which baryons, such as protons and neutrons, are made) combine to form atoms, which in turn form molecules. Because atoms and molecules are said to be matter, it is natural to phrase the definition as: ordinary matter is anything that is made of the same things that atoms and molecules are made of. (However, notice that one also can make from these building blocks matter that is not atoms or molecules.) Then, because electrons are leptons, and protons, and neutrons are made of quarks, this definition in turn leads to the definition of matter as being quarks and leptons, which are the two types of elementary fermions. Carithers and Grannis state: Ordinary matter is composed entirely of first-generation particles, namely the [up] and [down] quarks, plus the electron and its neutrino. (Higher generations particles quickly decay into first-generation particles, and thus are not commonly encountered.) ###question: Who determined that electrons were leptons? ###answer: not found
Leptons (the most famous being the electron), and quarks (of which baryons, such as protons and neutrons, are made) combine to form atoms, which in turn form molecules. Because atoms and molecules are said to be matter, it is natural to phrase the definition as: ordinary matter is anything that is made of the same things that atoms and molecules are made of. (However, notice that one also can make from these building blocks matter that is not atoms or molecules.) Then, because electrons are leptons, and protons, and neutrons are made of quarks, this definition in turn leads to the definition of matter as being quarks and leptons, which are the two types of elementary fermions. Carithers and Grannis state: Ordinary matter is composed entirely of first-generation particles, namely the [up] and [down] quarks, plus the electron and its neutrino. (Higher generations particles quickly decay into first-generation particles, and thus are not commonly encountered.)
not found
How many generation particles are there?
###context: Leptons (the most famous being the electron), and quarks (of which baryons, such as protons and neutrons, are made) combine to form atoms, which in turn form molecules. Because atoms and molecules are said to be matter, it is natural to phrase the definition as: ordinary matter is anything that is made of the same things that atoms and molecules are made of. (However, notice that one also can make from these building blocks matter that is not atoms or molecules.) Then, because electrons are leptons, and protons, and neutrons are made of quarks, this definition in turn leads to the definition of matter as being quarks and leptons, which are the two types of elementary fermions. Carithers and Grannis state: Ordinary matter is composed entirely of first-generation particles, namely the [up] and [down] quarks, plus the electron and its neutrino. (Higher generations particles quickly decay into first-generation particles, and thus are not commonly encountered.) ###question: How many generation particles are there? ###answer: not found
Leptons (the most famous being the electron), and quarks (of which baryons, such as protons and neutrons, are made) combine to form atoms, which in turn form molecules. Because atoms and molecules are said to be matter, it is natural to phrase the definition as: ordinary matter is anything that is made of the same things that atoms and molecules are made of. (However, notice that one also can make from these building blocks matter that is not atoms or molecules.) Then, because electrons are leptons, and protons, and neutrons are made of quarks, this definition in turn leads to the definition of matter as being quarks and leptons, which are the two types of elementary fermions. Carithers and Grannis state: Ordinary matter is composed entirely of first-generation particles, namely the [up] and [down] quarks, plus the electron and its neutrino. (Higher generations particles quickly decay into first-generation particles, and thus are not commonly encountered.)
not found
What type of fermions are protons and neutrons?
###context: Leptons (the most famous being the electron), and quarks (of which baryons, such as protons and neutrons, are made) combine to form atoms, which in turn form molecules. Because atoms and molecules are said to be matter, it is natural to phrase the definition as: ordinary matter is anything that is made of the same things that atoms and molecules are made of. (However, notice that one also can make from these building blocks matter that is not atoms or molecules.) Then, because electrons are leptons, and protons, and neutrons are made of quarks, this definition in turn leads to the definition of matter as being quarks and leptons, which are the two types of elementary fermions. Carithers and Grannis state: Ordinary matter is composed entirely of first-generation particles, namely the [up] and [down] quarks, plus the electron and its neutrino. (Higher generations particles quickly decay into first-generation particles, and thus are not commonly encountered.) ###question: What type of fermions are protons and neutrons? ###answer: not found
The quark–lepton definition of ordinary matter, however, identifies not only the elementary building blocks of matter, but also includes composites made from the constituents (atoms and molecules, for example). Such composites contain an interaction energy that holds the constituents together, and may constitute the bulk of the mass of the composite. As an example, to a great extent, the mass of an atom is simply the sum of the masses of its constituent protons, neutrons and electrons. However, digging deeper, the protons and neutrons are made up of quarks bound together by gluon fields (see dynamics of quantum chromodynamics) and these gluons fields contribute significantly to the mass of hadrons. In other words, most of what composes the "mass" of ordinary matter is due to the binding energy of quarks within protons and neutrons. For example, the sum of the mass of the three quarks in a nucleon is approximately 7001125000000000000♠12.5 MeV/c2, which is low compared to the mass of a nucleon (approximately 7002938000000000000♠938 MeV/c2). The bottom line is that most of the mass of everyday objects comes from the interaction energy of its elementary components.
not found
What are atoms and molecules elementary forms of?
###context: The quark–lepton definition of ordinary matter, however, identifies not only the elementary building blocks of matter, but also includes composites made from the constituents (atoms and molecules, for example). Such composites contain an interaction energy that holds the constituents together, and may constitute the bulk of the mass of the composite. As an example, to a great extent, the mass of an atom is simply the sum of the masses of its constituent protons, neutrons and electrons. However, digging deeper, the protons and neutrons are made up of quarks bound together by gluon fields (see dynamics of quantum chromodynamics) and these gluons fields contribute significantly to the mass of hadrons. In other words, most of what composes the "mass" of ordinary matter is due to the binding energy of quarks within protons and neutrons. For example, the sum of the mass of the three quarks in a nucleon is approximately 7001125000000000000♠12.5 MeV/c2, which is low compared to the mass of a nucleon (approximately 7002938000000000000♠938 MeV/c2). The bottom line is that most of the mass of everyday objects comes from the interaction energy of its elementary components. ###question: What are atoms and molecules elementary forms of? ###answer: not found
The quark–lepton definition of ordinary matter, however, identifies not only the elementary building blocks of matter, but also includes composites made from the constituents (atoms and molecules, for example). Such composites contain an interaction energy that holds the constituents together, and may constitute the bulk of the mass of the composite. As an example, to a great extent, the mass of an atom is simply the sum of the masses of its constituent protons, neutrons and electrons. However, digging deeper, the protons and neutrons are made up of quarks bound together by gluon fields (see dynamics of quantum chromodynamics) and these gluons fields contribute significantly to the mass of hadrons. In other words, most of what composes the "mass" of ordinary matter is due to the binding energy of quarks within protons and neutrons. For example, the sum of the mass of the three quarks in a nucleon is approximately 7001125000000000000♠12.5 MeV/c2, which is low compared to the mass of a nucleon (approximately 7002938000000000000♠938 MeV/c2). The bottom line is that most of the mass of everyday objects comes from the interaction energy of its elementary components.
not found
What holds building blocks together?
###context: The quark–lepton definition of ordinary matter, however, identifies not only the elementary building blocks of matter, but also includes composites made from the constituents (atoms and molecules, for example). Such composites contain an interaction energy that holds the constituents together, and may constitute the bulk of the mass of the composite. As an example, to a great extent, the mass of an atom is simply the sum of the masses of its constituent protons, neutrons and electrons. However, digging deeper, the protons and neutrons are made up of quarks bound together by gluon fields (see dynamics of quantum chromodynamics) and these gluons fields contribute significantly to the mass of hadrons. In other words, most of what composes the "mass" of ordinary matter is due to the binding energy of quarks within protons and neutrons. For example, the sum of the mass of the three quarks in a nucleon is approximately 7001125000000000000♠12.5 MeV/c2, which is low compared to the mass of a nucleon (approximately 7002938000000000000♠938 MeV/c2). The bottom line is that most of the mass of everyday objects comes from the interaction energy of its elementary components. ###question: What holds building blocks together? ###answer: not found
The quark–lepton definition of ordinary matter, however, identifies not only the elementary building blocks of matter, but also includes composites made from the constituents (atoms and molecules, for example). Such composites contain an interaction energy that holds the constituents together, and may constitute the bulk of the mass of the composite. As an example, to a great extent, the mass of an atom is simply the sum of the masses of its constituent protons, neutrons and electrons. However, digging deeper, the protons and neutrons are made up of quarks bound together by gluon fields (see dynamics of quantum chromodynamics) and these gluons fields contribute significantly to the mass of hadrons. In other words, most of what composes the "mass" of ordinary matter is due to the binding energy of quarks within protons and neutrons. For example, the sum of the mass of the three quarks in a nucleon is approximately 7001125000000000000♠12.5 MeV/c2, which is low compared to the mass of a nucleon (approximately 7002938000000000000♠938 MeV/c2). The bottom line is that most of the mass of everyday objects comes from the interaction energy of its elementary components.
not found
What is the mass of a proton?
###context: The quark–lepton definition of ordinary matter, however, identifies not only the elementary building blocks of matter, but also includes composites made from the constituents (atoms and molecules, for example). Such composites contain an interaction energy that holds the constituents together, and may constitute the bulk of the mass of the composite. As an example, to a great extent, the mass of an atom is simply the sum of the masses of its constituent protons, neutrons and electrons. However, digging deeper, the protons and neutrons are made up of quarks bound together by gluon fields (see dynamics of quantum chromodynamics) and these gluons fields contribute significantly to the mass of hadrons. In other words, most of what composes the "mass" of ordinary matter is due to the binding energy of quarks within protons and neutrons. For example, the sum of the mass of the three quarks in a nucleon is approximately 7001125000000000000♠12.5 MeV/c2, which is low compared to the mass of a nucleon (approximately 7002938000000000000♠938 MeV/c2). The bottom line is that most of the mass of everyday objects comes from the interaction energy of its elementary components. ###question: What is the mass of a proton? ###answer: not found
The quark–lepton definition of ordinary matter, however, identifies not only the elementary building blocks of matter, but also includes composites made from the constituents (atoms and molecules, for example). Such composites contain an interaction energy that holds the constituents together, and may constitute the bulk of the mass of the composite. As an example, to a great extent, the mass of an atom is simply the sum of the masses of its constituent protons, neutrons and electrons. However, digging deeper, the protons and neutrons are made up of quarks bound together by gluon fields (see dynamics of quantum chromodynamics) and these gluons fields contribute significantly to the mass of hadrons. In other words, most of what composes the "mass" of ordinary matter is due to the binding energy of quarks within protons and neutrons. For example, the sum of the mass of the three quarks in a nucleon is approximately 7001125000000000000♠12.5 MeV/c2, which is low compared to the mass of a nucleon (approximately 7002938000000000000♠938 MeV/c2). The bottom line is that most of the mass of everyday objects comes from the interaction energy of its elementary components.
not found
What binds an atom together?
###context: The quark–lepton definition of ordinary matter, however, identifies not only the elementary building blocks of matter, but also includes composites made from the constituents (atoms and molecules, for example). Such composites contain an interaction energy that holds the constituents together, and may constitute the bulk of the mass of the composite. As an example, to a great extent, the mass of an atom is simply the sum of the masses of its constituent protons, neutrons and electrons. However, digging deeper, the protons and neutrons are made up of quarks bound together by gluon fields (see dynamics of quantum chromodynamics) and these gluons fields contribute significantly to the mass of hadrons. In other words, most of what composes the "mass" of ordinary matter is due to the binding energy of quarks within protons and neutrons. For example, the sum of the mass of the three quarks in a nucleon is approximately 7001125000000000000♠12.5 MeV/c2, which is low compared to the mass of a nucleon (approximately 7002938000000000000♠938 MeV/c2). The bottom line is that most of the mass of everyday objects comes from the interaction energy of its elementary components. ###question: What binds an atom together? ###answer: not found
The quark–lepton definition of ordinary matter, however, identifies not only the elementary building blocks of matter, but also includes composites made from the constituents (atoms and molecules, for example). Such composites contain an interaction energy that holds the constituents together, and may constitute the bulk of the mass of the composite. As an example, to a great extent, the mass of an atom is simply the sum of the masses of its constituent protons, neutrons and electrons. However, digging deeper, the protons and neutrons are made up of quarks bound together by gluon fields (see dynamics of quantum chromodynamics) and these gluons fields contribute significantly to the mass of hadrons. In other words, most of what composes the "mass" of ordinary matter is due to the binding energy of quarks within protons and neutrons. For example, the sum of the mass of the three quarks in a nucleon is approximately 7001125000000000000♠12.5 MeV/c2, which is low compared to the mass of a nucleon (approximately 7002938000000000000♠938 MeV/c2). The bottom line is that most of the mass of everyday objects comes from the interaction energy of its elementary components.
not found
Most of the mass of binding energy is due to what?
###context: The quark–lepton definition of ordinary matter, however, identifies not only the elementary building blocks of matter, but also includes composites made from the constituents (atoms and molecules, for example). Such composites contain an interaction energy that holds the constituents together, and may constitute the bulk of the mass of the composite. As an example, to a great extent, the mass of an atom is simply the sum of the masses of its constituent protons, neutrons and electrons. However, digging deeper, the protons and neutrons are made up of quarks bound together by gluon fields (see dynamics of quantum chromodynamics) and these gluons fields contribute significantly to the mass of hadrons. In other words, most of what composes the "mass" of ordinary matter is due to the binding energy of quarks within protons and neutrons. For example, the sum of the mass of the three quarks in a nucleon is approximately 7001125000000000000♠12.5 MeV/c2, which is low compared to the mass of a nucleon (approximately 7002938000000000000♠938 MeV/c2). The bottom line is that most of the mass of everyday objects comes from the interaction energy of its elementary components. ###question: Most of the mass of binding energy is due to what? ###answer: not found
The Standard Model groups matter particles into three generations, where each generation consists of two quarks and two leptons. The first generation is the up and down quarks, the electron and the electron neutrino; the second includes the charm and strange quarks, the muon and the muon neutrino; the third generation consists of the top and bottom quarks and the tau and tau neutrino. The most natural explanation for this would be that quarks and leptons of higher generations are excited states of the first generations. If this turns out to be the case, it would imply that quarks and leptons are composite particles, rather than elementary particles.
not found
What model has two generations?
###context: The Standard Model groups matter particles into three generations, where each generation consists of two quarks and two leptons. The first generation is the up and down quarks, the electron and the electron neutrino; the second includes the charm and strange quarks, the muon and the muon neutrino; the third generation consists of the top and bottom quarks and the tau and tau neutrino. The most natural explanation for this would be that quarks and leptons of higher generations are excited states of the first generations. If this turns out to be the case, it would imply that quarks and leptons are composite particles, rather than elementary particles. ###question: What model has two generations? ###answer: not found
The Standard Model groups matter particles into three generations, where each generation consists of two quarks and two leptons. The first generation is the up and down quarks, the electron and the electron neutrino; the second includes the charm and strange quarks, the muon and the muon neutrino; the third generation consists of the top and bottom quarks and the tau and tau neutrino. The most natural explanation for this would be that quarks and leptons of higher generations are excited states of the first generations. If this turns out to be the case, it would imply that quarks and leptons are composite particles, rather than elementary particles.
not found
Which generation has the up and down muon and muon neutrino?
###context: The Standard Model groups matter particles into three generations, where each generation consists of two quarks and two leptons. The first generation is the up and down quarks, the electron and the electron neutrino; the second includes the charm and strange quarks, the muon and the muon neutrino; the third generation consists of the top and bottom quarks and the tau and tau neutrino. The most natural explanation for this would be that quarks and leptons of higher generations are excited states of the first generations. If this turns out to be the case, it would imply that quarks and leptons are composite particles, rather than elementary particles. ###question: Which generation has the up and down muon and muon neutrino? ###answer: not found
The Standard Model groups matter particles into three generations, where each generation consists of two quarks and two leptons. The first generation is the up and down quarks, the electron and the electron neutrino; the second includes the charm and strange quarks, the muon and the muon neutrino; the third generation consists of the top and bottom quarks and the tau and tau neutrino. The most natural explanation for this would be that quarks and leptons of higher generations are excited states of the first generations. If this turns out to be the case, it would imply that quarks and leptons are composite particles, rather than elementary particles.
not found
What type of particles are tau and tau neutrino?
###context: The Standard Model groups matter particles into three generations, where each generation consists of two quarks and two leptons. The first generation is the up and down quarks, the electron and the electron neutrino; the second includes the charm and strange quarks, the muon and the muon neutrino; the third generation consists of the top and bottom quarks and the tau and tau neutrino. The most natural explanation for this would be that quarks and leptons of higher generations are excited states of the first generations. If this turns out to be the case, it would imply that quarks and leptons are composite particles, rather than elementary particles. ###question: What type of particles are tau and tau neutrino? ###answer: not found
The Standard Model groups matter particles into three generations, where each generation consists of two quarks and two leptons. The first generation is the up and down quarks, the electron and the electron neutrino; the second includes the charm and strange quarks, the muon and the muon neutrino; the third generation consists of the top and bottom quarks and the tau and tau neutrino. The most natural explanation for this would be that quarks and leptons of higher generations are excited states of the first generations. If this turns out to be the case, it would imply that quarks and leptons are composite particles, rather than elementary particles.
not found
What generation has charm and strange muon?
###context: The Standard Model groups matter particles into three generations, where each generation consists of two quarks and two leptons. The first generation is the up and down quarks, the electron and the electron neutrino; the second includes the charm and strange quarks, the muon and the muon neutrino; the third generation consists of the top and bottom quarks and the tau and tau neutrino. The most natural explanation for this would be that quarks and leptons of higher generations are excited states of the first generations. If this turns out to be the case, it would imply that quarks and leptons are composite particles, rather than elementary particles. ###question: What generation has charm and strange muon? ###answer: not found
The Standard Model groups matter particles into three generations, where each generation consists of two quarks and two leptons. The first generation is the up and down quarks, the electron and the electron neutrino; the second includes the charm and strange quarks, the muon and the muon neutrino; the third generation consists of the top and bottom quarks and the tau and tau neutrino. The most natural explanation for this would be that quarks and leptons of higher generations are excited states of the first generations. If this turns out to be the case, it would imply that quarks and leptons are composite particles, rather than elementary particles.
not found
How many electrons are there in the generations?
###context: The Standard Model groups matter particles into three generations, where each generation consists of two quarks and two leptons. The first generation is the up and down quarks, the electron and the electron neutrino; the second includes the charm and strange quarks, the muon and the muon neutrino; the third generation consists of the top and bottom quarks and the tau and tau neutrino. The most natural explanation for this would be that quarks and leptons of higher generations are excited states of the first generations. If this turns out to be the case, it would imply that quarks and leptons are composite particles, rather than elementary particles. ###question: How many electrons are there in the generations? ###answer: not found
Baryonic matter is the part of the universe that is made of baryons (including all atoms). This part of the universe does not include dark energy, dark matter, black holes or various forms of degenerate matter, such as compose white dwarf stars and neutron stars. Microwave light seen by Wilkinson Microwave Anisotropy Probe (WMAP), suggests that only about 4.6% of that part of the universe within range of the best telescopes (that is, matter that may be visible because light could reach us from it), is made of baryonic matter. About 23% is dark matter, and about 72% is dark energy.
not found
What is dark energy composed of?
###context: Baryonic matter is the part of the universe that is made of baryons (including all atoms). This part of the universe does not include dark energy, dark matter, black holes or various forms of degenerate matter, such as compose white dwarf stars and neutron stars. Microwave light seen by Wilkinson Microwave Anisotropy Probe (WMAP), suggests that only about 4.6% of that part of the universe within range of the best telescopes (that is, matter that may be visible because light could reach us from it), is made of baryonic matter. About 23% is dark matter, and about 72% is dark energy. ###question: What is dark energy composed of? ###answer: not found
Baryonic matter is the part of the universe that is made of baryons (including all atoms). This part of the universe does not include dark energy, dark matter, black holes or various forms of degenerate matter, such as compose white dwarf stars and neutron stars. Microwave light seen by Wilkinson Microwave Anisotropy Probe (WMAP), suggests that only about 4.6% of that part of the universe within range of the best telescopes (that is, matter that may be visible because light could reach us from it), is made of baryonic matter. About 23% is dark matter, and about 72% is dark energy.
not found
What probe saw white dwarf stars?
###context: Baryonic matter is the part of the universe that is made of baryons (including all atoms). This part of the universe does not include dark energy, dark matter, black holes or various forms of degenerate matter, such as compose white dwarf stars and neutron stars. Microwave light seen by Wilkinson Microwave Anisotropy Probe (WMAP), suggests that only about 4.6% of that part of the universe within range of the best telescopes (that is, matter that may be visible because light could reach us from it), is made of baryonic matter. About 23% is dark matter, and about 72% is dark energy. ###question: What probe saw white dwarf stars? ###answer: not found
Baryonic matter is the part of the universe that is made of baryons (including all atoms). This part of the universe does not include dark energy, dark matter, black holes or various forms of degenerate matter, such as compose white dwarf stars and neutron stars. Microwave light seen by Wilkinson Microwave Anisotropy Probe (WMAP), suggests that only about 4.6% of that part of the universe within range of the best telescopes (that is, matter that may be visible because light could reach us from it), is made of baryonic matter. About 23% is dark matter, and about 72% is dark energy.
not found
What percentage of the universe are black holes?
###context: Baryonic matter is the part of the universe that is made of baryons (including all atoms). This part of the universe does not include dark energy, dark matter, black holes or various forms of degenerate matter, such as compose white dwarf stars and neutron stars. Microwave light seen by Wilkinson Microwave Anisotropy Probe (WMAP), suggests that only about 4.6% of that part of the universe within range of the best telescopes (that is, matter that may be visible because light could reach us from it), is made of baryonic matter. About 23% is dark matter, and about 72% is dark energy. ###question: What percentage of the universe are black holes? ###answer: not found
Baryonic matter is the part of the universe that is made of baryons (including all atoms). This part of the universe does not include dark energy, dark matter, black holes or various forms of degenerate matter, such as compose white dwarf stars and neutron stars. Microwave light seen by Wilkinson Microwave Anisotropy Probe (WMAP), suggests that only about 4.6% of that part of the universe within range of the best telescopes (that is, matter that may be visible because light could reach us from it), is made of baryonic matter. About 23% is dark matter, and about 72% is dark energy.
not found
What percentage of the universe can be seen by telescope?
###context: Baryonic matter is the part of the universe that is made of baryons (including all atoms). This part of the universe does not include dark energy, dark matter, black holes or various forms of degenerate matter, such as compose white dwarf stars and neutron stars. Microwave light seen by Wilkinson Microwave Anisotropy Probe (WMAP), suggests that only about 4.6% of that part of the universe within range of the best telescopes (that is, matter that may be visible because light could reach us from it), is made of baryonic matter. About 23% is dark matter, and about 72% is dark energy. ###question: What percentage of the universe can be seen by telescope? ###answer: not found
Baryonic matter is the part of the universe that is made of baryons (including all atoms). This part of the universe does not include dark energy, dark matter, black holes or various forms of degenerate matter, such as compose white dwarf stars and neutron stars. Microwave light seen by Wilkinson Microwave Anisotropy Probe (WMAP), suggests that only about 4.6% of that part of the universe within range of the best telescopes (that is, matter that may be visible because light could reach us from it), is made of baryonic matter. About 23% is dark matter, and about 72% is dark energy.
not found
What type of light accounts for 72% of the universe?
###context: Baryonic matter is the part of the universe that is made of baryons (including all atoms). This part of the universe does not include dark energy, dark matter, black holes or various forms of degenerate matter, such as compose white dwarf stars and neutron stars. Microwave light seen by Wilkinson Microwave Anisotropy Probe (WMAP), suggests that only about 4.6% of that part of the universe within range of the best telescopes (that is, matter that may be visible because light could reach us from it), is made of baryonic matter. About 23% is dark matter, and about 72% is dark energy. ###question: What type of light accounts for 72% of the universe? ###answer: not found
In physics, degenerate matter refers to the ground state of a gas of fermions at a temperature near absolute zero. The Pauli exclusion principle requires that only two fermions can occupy a quantum state, one spin-up and the other spin-down. Hence, at zero temperature, the fermions fill up sufficient levels to accommodate all the available fermions—and in the case of many fermions, the maximum kinetic energy (called the Fermi energy) and the pressure of the gas becomes very large, and depends on the number of fermions rather than the temperature, unlike normal states of matter.
not found
What is the name of the principle for the ground state of gas?
###context: In physics, degenerate matter refers to the ground state of a gas of fermions at a temperature near absolute zero. The Pauli exclusion principle requires that only two fermions can occupy a quantum state, one spin-up and the other spin-down. Hence, at zero temperature, the fermions fill up sufficient levels to accommodate all the available fermions—and in the case of many fermions, the maximum kinetic energy (called the Fermi energy) and the pressure of the gas becomes very large, and depends on the number of fermions rather than the temperature, unlike normal states of matter. ###question: What is the name of the principle for the ground state of gas? ###answer: not found
In physics, degenerate matter refers to the ground state of a gas of fermions at a temperature near absolute zero. The Pauli exclusion principle requires that only two fermions can occupy a quantum state, one spin-up and the other spin-down. Hence, at zero temperature, the fermions fill up sufficient levels to accommodate all the available fermions—and in the case of many fermions, the maximum kinetic energy (called the Fermi energy) and the pressure of the gas becomes very large, and depends on the number of fermions rather than the temperature, unlike normal states of matter.
not found
What depends on the temperature at absolute zero?
###context: In physics, degenerate matter refers to the ground state of a gas of fermions at a temperature near absolute zero. The Pauli exclusion principle requires that only two fermions can occupy a quantum state, one spin-up and the other spin-down. Hence, at zero temperature, the fermions fill up sufficient levels to accommodate all the available fermions—and in the case of many fermions, the maximum kinetic energy (called the Fermi energy) and the pressure of the gas becomes very large, and depends on the number of fermions rather than the temperature, unlike normal states of matter. ###question: What depends on the temperature at absolute zero? ###answer: not found
In physics, degenerate matter refers to the ground state of a gas of fermions at a temperature near absolute zero. The Pauli exclusion principle requires that only two fermions can occupy a quantum state, one spin-up and the other spin-down. Hence, at zero temperature, the fermions fill up sufficient levels to accommodate all the available fermions—and in the case of many fermions, the maximum kinetic energy (called the Fermi energy) and the pressure of the gas becomes very large, and depends on the number of fermions rather than the temperature, unlike normal states of matter.
not found
What is the minimum kinetic energy called?
###context: In physics, degenerate matter refers to the ground state of a gas of fermions at a temperature near absolute zero. The Pauli exclusion principle requires that only two fermions can occupy a quantum state, one spin-up and the other spin-down. Hence, at zero temperature, the fermions fill up sufficient levels to accommodate all the available fermions—and in the case of many fermions, the maximum kinetic energy (called the Fermi energy) and the pressure of the gas becomes very large, and depends on the number of fermions rather than the temperature, unlike normal states of matter. ###question: What is the minimum kinetic energy called? ###answer: not found
In physics, degenerate matter refers to the ground state of a gas of fermions at a temperature near absolute zero. The Pauli exclusion principle requires that only two fermions can occupy a quantum state, one spin-up and the other spin-down. Hence, at zero temperature, the fermions fill up sufficient levels to accommodate all the available fermions—and in the case of many fermions, the maximum kinetic energy (called the Fermi energy) and the pressure of the gas becomes very large, and depends on the number of fermions rather than the temperature, unlike normal states of matter.
not found
What shrinks to accommodate fermions?
###context: In physics, degenerate matter refers to the ground state of a gas of fermions at a temperature near absolute zero. The Pauli exclusion principle requires that only two fermions can occupy a quantum state, one spin-up and the other spin-down. Hence, at zero temperature, the fermions fill up sufficient levels to accommodate all the available fermions—and in the case of many fermions, the maximum kinetic energy (called the Fermi energy) and the pressure of the gas becomes very large, and depends on the number of fermions rather than the temperature, unlike normal states of matter. ###question: What shrinks to accommodate fermions? ###answer: not found
In physics, degenerate matter refers to the ground state of a gas of fermions at a temperature near absolute zero. The Pauli exclusion principle requires that only two fermions can occupy a quantum state, one spin-up and the other spin-down. Hence, at zero temperature, the fermions fill up sufficient levels to accommodate all the available fermions—and in the case of many fermions, the maximum kinetic energy (called the Fermi energy) and the pressure of the gas becomes very large, and depends on the number of fermions rather than the temperature, unlike normal states of matter.
not found
What is the pressure of the gas called?
###context: In physics, degenerate matter refers to the ground state of a gas of fermions at a temperature near absolute zero. The Pauli exclusion principle requires that only two fermions can occupy a quantum state, one spin-up and the other spin-down. Hence, at zero temperature, the fermions fill up sufficient levels to accommodate all the available fermions—and in the case of many fermions, the maximum kinetic energy (called the Fermi energy) and the pressure of the gas becomes very large, and depends on the number of fermions rather than the temperature, unlike normal states of matter. ###question: What is the pressure of the gas called? ###answer: not found
Strange matter is a particular form of quark matter, usually thought of as a liquid of up, down, and strange quarks. It is contrasted with nuclear matter, which is a liquid of neutrons and protons (which themselves are built out of up and down quarks), and with non-strange quark matter, which is a quark liquid that contains only up and down quarks. At high enough density, strange matter is expected to be color superconducting. Strange matter is hypothesized to occur in the core of neutron stars, or, more speculatively, as isolated droplets that may vary in size from femtometers (strangelets) to kilometers (quark stars).
not found
What is quark matter usually thought of as?
###context: Strange matter is a particular form of quark matter, usually thought of as a liquid of up, down, and strange quarks. It is contrasted with nuclear matter, which is a liquid of neutrons and protons (which themselves are built out of up and down quarks), and with non-strange quark matter, which is a quark liquid that contains only up and down quarks. At high enough density, strange matter is expected to be color superconducting. Strange matter is hypothesized to occur in the core of neutron stars, or, more speculatively, as isolated droplets that may vary in size from femtometers (strangelets) to kilometers (quark stars). ###question: What is quark matter usually thought of as? ###answer: not found
Strange matter is a particular form of quark matter, usually thought of as a liquid of up, down, and strange quarks. It is contrasted with nuclear matter, which is a liquid of neutrons and protons (which themselves are built out of up and down quarks), and with non-strange quark matter, which is a quark liquid that contains only up and down quarks. At high enough density, strange matter is expected to be color superconducting. Strange matter is hypothesized to occur in the core of neutron stars, or, more speculatively, as isolated droplets that may vary in size from femtometers (strangelets) to kilometers (quark stars).
not found
What is nuclear matter similar to?
###context: Strange matter is a particular form of quark matter, usually thought of as a liquid of up, down, and strange quarks. It is contrasted with nuclear matter, which is a liquid of neutrons and protons (which themselves are built out of up and down quarks), and with non-strange quark matter, which is a quark liquid that contains only up and down quarks. At high enough density, strange matter is expected to be color superconducting. Strange matter is hypothesized to occur in the core of neutron stars, or, more speculatively, as isolated droplets that may vary in size from femtometers (strangelets) to kilometers (quark stars). ###question: What is nuclear matter similar to? ###answer: not found
Strange matter is a particular form of quark matter, usually thought of as a liquid of up, down, and strange quarks. It is contrasted with nuclear matter, which is a liquid of neutrons and protons (which themselves are built out of up and down quarks), and with non-strange quark matter, which is a quark liquid that contains only up and down quarks. At high enough density, strange matter is expected to be color superconducting. Strange matter is hypothesized to occur in the core of neutron stars, or, more speculatively, as isolated droplets that may vary in size from femtometers (strangelets) to kilometers (quark stars).
not found
At low density, what is expected of strange matter?
###context: Strange matter is a particular form of quark matter, usually thought of as a liquid of up, down, and strange quarks. It is contrasted with nuclear matter, which is a liquid of neutrons and protons (which themselves are built out of up and down quarks), and with non-strange quark matter, which is a quark liquid that contains only up and down quarks. At high enough density, strange matter is expected to be color superconducting. Strange matter is hypothesized to occur in the core of neutron stars, or, more speculatively, as isolated droplets that may vary in size from femtometers (strangelets) to kilometers (quark stars). ###question: At low density, what is expected of strange matter? ###answer: not found
Strange matter is a particular form of quark matter, usually thought of as a liquid of up, down, and strange quarks. It is contrasted with nuclear matter, which is a liquid of neutrons and protons (which themselves are built out of up and down quarks), and with non-strange quark matter, which is a quark liquid that contains only up and down quarks. At high enough density, strange matter is expected to be color superconducting. Strange matter is hypothesized to occur in the core of neutron stars, or, more speculatively, as isolated droplets that may vary in size from femtometers (strangelets) to kilometers (quark stars).
not found
What kind of core does nuclear matter occur in?
###context: Strange matter is a particular form of quark matter, usually thought of as a liquid of up, down, and strange quarks. It is contrasted with nuclear matter, which is a liquid of neutrons and protons (which themselves are built out of up and down quarks), and with non-strange quark matter, which is a quark liquid that contains only up and down quarks. At high enough density, strange matter is expected to be color superconducting. Strange matter is hypothesized to occur in the core of neutron stars, or, more speculatively, as isolated droplets that may vary in size from femtometers (strangelets) to kilometers (quark stars). ###question: What kind of core does nuclear matter occur in? ###answer: not found
Strange matter is a particular form of quark matter, usually thought of as a liquid of up, down, and strange quarks. It is contrasted with nuclear matter, which is a liquid of neutrons and protons (which themselves are built out of up and down quarks), and with non-strange quark matter, which is a quark liquid that contains only up and down quarks. At high enough density, strange matter is expected to be color superconducting. Strange matter is hypothesized to occur in the core of neutron stars, or, more speculatively, as isolated droplets that may vary in size from femtometers (strangelets) to kilometers (quark stars).
not found
What has Strange matter been definitely proven to occur as?
###context: Strange matter is a particular form of quark matter, usually thought of as a liquid of up, down, and strange quarks. It is contrasted with nuclear matter, which is a liquid of neutrons and protons (which themselves are built out of up and down quarks), and with non-strange quark matter, which is a quark liquid that contains only up and down quarks. At high enough density, strange matter is expected to be color superconducting. Strange matter is hypothesized to occur in the core of neutron stars, or, more speculatively, as isolated droplets that may vary in size from femtometers (strangelets) to kilometers (quark stars). ###question: What has Strange matter been definitely proven to occur as? ###answer: not found
In bulk, matter can exist in several different forms, or states of aggregation, known as phases, depending on ambient pressure, temperature and volume. A phase is a form of matter that has a relatively uniform chemical composition and physical properties (such as density, specific heat, refractive index, and so forth). These phases include the three familiar ones (solids, liquids, and gases), as well as more exotic states of matter (such as plasmas, superfluids, supersolids, Bose–Einstein condensates, ...). A fluid may be a liquid, gas or plasma. There are also paramagnetic and ferromagnetic phases of magnetic materials. As conditions change, matter may change from one phase into another. These phenomena are called phase transitions, and are studied in the field of thermodynamics. In nanomaterials, the vastly increased ratio of surface area to volume results in matter that can exhibit properties entirely different from those of bulk material, and not well described by any bulk phase (see nanomaterials for more details).
not found
What are phases known as?
###context: In bulk, matter can exist in several different forms, or states of aggregation, known as phases, depending on ambient pressure, temperature and volume. A phase is a form of matter that has a relatively uniform chemical composition and physical properties (such as density, specific heat, refractive index, and so forth). These phases include the three familiar ones (solids, liquids, and gases), as well as more exotic states of matter (such as plasmas, superfluids, supersolids, Bose–Einstein condensates, ...). A fluid may be a liquid, gas or plasma. There are also paramagnetic and ferromagnetic phases of magnetic materials. As conditions change, matter may change from one phase into another. These phenomena are called phase transitions, and are studied in the field of thermodynamics. In nanomaterials, the vastly increased ratio of surface area to volume results in matter that can exhibit properties entirely different from those of bulk material, and not well described by any bulk phase (see nanomaterials for more details). ###question: What are phases known as? ###answer: not found
In bulk, matter can exist in several different forms, or states of aggregation, known as phases, depending on ambient pressure, temperature and volume. A phase is a form of matter that has a relatively uniform chemical composition and physical properties (such as density, specific heat, refractive index, and so forth). These phases include the three familiar ones (solids, liquids, and gases), as well as more exotic states of matter (such as plasmas, superfluids, supersolids, Bose–Einstein condensates, ...). A fluid may be a liquid, gas or plasma. There are also paramagnetic and ferromagnetic phases of magnetic materials. As conditions change, matter may change from one phase into another. These phenomena are called phase transitions, and are studied in the field of thermodynamics. In nanomaterials, the vastly increased ratio of surface area to volume results in matter that can exhibit properties entirely different from those of bulk material, and not well described by any bulk phase (see nanomaterials for more details).
not found
What is a phase not dependent on?
###context: In bulk, matter can exist in several different forms, or states of aggregation, known as phases, depending on ambient pressure, temperature and volume. A phase is a form of matter that has a relatively uniform chemical composition and physical properties (such as density, specific heat, refractive index, and so forth). These phases include the three familiar ones (solids, liquids, and gases), as well as more exotic states of matter (such as plasmas, superfluids, supersolids, Bose–Einstein condensates, ...). A fluid may be a liquid, gas or plasma. There are also paramagnetic and ferromagnetic phases of magnetic materials. As conditions change, matter may change from one phase into another. These phenomena are called phase transitions, and are studied in the field of thermodynamics. In nanomaterials, the vastly increased ratio of surface area to volume results in matter that can exhibit properties entirely different from those of bulk material, and not well described by any bulk phase (see nanomaterials for more details). ###question: What is a phase not dependent on? ###answer: not found
In bulk, matter can exist in several different forms, or states of aggregation, known as phases, depending on ambient pressure, temperature and volume. A phase is a form of matter that has a relatively uniform chemical composition and physical properties (such as density, specific heat, refractive index, and so forth). These phases include the three familiar ones (solids, liquids, and gases), as well as more exotic states of matter (such as plasmas, superfluids, supersolids, Bose–Einstein condensates, ...). A fluid may be a liquid, gas or plasma. There are also paramagnetic and ferromagnetic phases of magnetic materials. As conditions change, matter may change from one phase into another. These phenomena are called phase transitions, and are studied in the field of thermodynamics. In nanomaterials, the vastly increased ratio of surface area to volume results in matter that can exhibit properties entirely different from those of bulk material, and not well described by any bulk phase (see nanomaterials for more details).
not found
How many phases are there total?
###context: In bulk, matter can exist in several different forms, or states of aggregation, known as phases, depending on ambient pressure, temperature and volume. A phase is a form of matter that has a relatively uniform chemical composition and physical properties (such as density, specific heat, refractive index, and so forth). These phases include the three familiar ones (solids, liquids, and gases), as well as more exotic states of matter (such as plasmas, superfluids, supersolids, Bose–Einstein condensates, ...). A fluid may be a liquid, gas or plasma. There are also paramagnetic and ferromagnetic phases of magnetic materials. As conditions change, matter may change from one phase into another. These phenomena are called phase transitions, and are studied in the field of thermodynamics. In nanomaterials, the vastly increased ratio of surface area to volume results in matter that can exhibit properties entirely different from those of bulk material, and not well described by any bulk phase (see nanomaterials for more details). ###question: How many phases are there total? ###answer: not found
In bulk, matter can exist in several different forms, or states of aggregation, known as phases, depending on ambient pressure, temperature and volume. A phase is a form of matter that has a relatively uniform chemical composition and physical properties (such as density, specific heat, refractive index, and so forth). These phases include the three familiar ones (solids, liquids, and gases), as well as more exotic states of matter (such as plasmas, superfluids, supersolids, Bose–Einstein condensates, ...). A fluid may be a liquid, gas or plasma. There are also paramagnetic and ferromagnetic phases of magnetic materials. As conditions change, matter may change from one phase into another. These phenomena are called phase transitions, and are studied in the field of thermodynamics. In nanomaterials, the vastly increased ratio of surface area to volume results in matter that can exhibit properties entirely different from those of bulk material, and not well described by any bulk phase (see nanomaterials for more details).
not found
What are examples of paramagnetic phases?
###context: In bulk, matter can exist in several different forms, or states of aggregation, known as phases, depending on ambient pressure, temperature and volume. A phase is a form of matter that has a relatively uniform chemical composition and physical properties (such as density, specific heat, refractive index, and so forth). These phases include the three familiar ones (solids, liquids, and gases), as well as more exotic states of matter (such as plasmas, superfluids, supersolids, Bose–Einstein condensates, ...). A fluid may be a liquid, gas or plasma. There are also paramagnetic and ferromagnetic phases of magnetic materials. As conditions change, matter may change from one phase into another. These phenomena are called phase transitions, and are studied in the field of thermodynamics. In nanomaterials, the vastly increased ratio of surface area to volume results in matter that can exhibit properties entirely different from those of bulk material, and not well described by any bulk phase (see nanomaterials for more details). ###question: What are examples of paramagnetic phases? ###answer: not found
In bulk, matter can exist in several different forms, or states of aggregation, known as phases, depending on ambient pressure, temperature and volume. A phase is a form of matter that has a relatively uniform chemical composition and physical properties (such as density, specific heat, refractive index, and so forth). These phases include the three familiar ones (solids, liquids, and gases), as well as more exotic states of matter (such as plasmas, superfluids, supersolids, Bose–Einstein condensates, ...). A fluid may be a liquid, gas or plasma. There are also paramagnetic and ferromagnetic phases of magnetic materials. As conditions change, matter may change from one phase into another. These phenomena are called phase transitions, and are studied in the field of thermodynamics. In nanomaterials, the vastly increased ratio of surface area to volume results in matter that can exhibit properties entirely different from those of bulk material, and not well described by any bulk phase (see nanomaterials for more details).
not found
What field studies nanomaterials?
###context: In bulk, matter can exist in several different forms, or states of aggregation, known as phases, depending on ambient pressure, temperature and volume. A phase is a form of matter that has a relatively uniform chemical composition and physical properties (such as density, specific heat, refractive index, and so forth). These phases include the three familiar ones (solids, liquids, and gases), as well as more exotic states of matter (such as plasmas, superfluids, supersolids, Bose–Einstein condensates, ...). A fluid may be a liquid, gas or plasma. There are also paramagnetic and ferromagnetic phases of magnetic materials. As conditions change, matter may change from one phase into another. These phenomena are called phase transitions, and are studied in the field of thermodynamics. In nanomaterials, the vastly increased ratio of surface area to volume results in matter that can exhibit properties entirely different from those of bulk material, and not well described by any bulk phase (see nanomaterials for more details). ###question: What field studies nanomaterials? ###answer: not found
In particle physics and quantum chemistry, antimatter is matter that is composed of the antiparticles of those that constitute ordinary matter. If a particle and its antiparticle come into contact with each other, the two annihilate; that is, they may both be converted into other particles with equal energy in accordance with Einstein's equation E = mc2. These new particles may be high-energy photons (gamma rays) or other particle–antiparticle pairs. The resulting particles are endowed with an amount of kinetic energy equal to the difference between the rest mass of the products of the annihilation and the rest mass of the original particle–antiparticle pair, which is often quite large.
not found
What is composed of antimatter?
###context: In particle physics and quantum chemistry, antimatter is matter that is composed of the antiparticles of those that constitute ordinary matter. If a particle and its antiparticle come into contact with each other, the two annihilate; that is, they may both be converted into other particles with equal energy in accordance with Einstein's equation E = mc2. These new particles may be high-energy photons (gamma rays) or other particle–antiparticle pairs. The resulting particles are endowed with an amount of kinetic energy equal to the difference between the rest mass of the products of the annihilation and the rest mass of the original particle–antiparticle pair, which is often quite large. ###question: What is composed of antimatter? ###answer: not found
In particle physics and quantum chemistry, antimatter is matter that is composed of the antiparticles of those that constitute ordinary matter. If a particle and its antiparticle come into contact with each other, the two annihilate; that is, they may both be converted into other particles with equal energy in accordance with Einstein's equation E = mc2. These new particles may be high-energy photons (gamma rays) or other particle–antiparticle pairs. The resulting particles are endowed with an amount of kinetic energy equal to the difference between the rest mass of the products of the annihilation and the rest mass of the original particle–antiparticle pair, which is often quite large.
not found
What happens when two antiparticles collide?
###context: In particle physics and quantum chemistry, antimatter is matter that is composed of the antiparticles of those that constitute ordinary matter. If a particle and its antiparticle come into contact with each other, the two annihilate; that is, they may both be converted into other particles with equal energy in accordance with Einstein's equation E = mc2. These new particles may be high-energy photons (gamma rays) or other particle–antiparticle pairs. The resulting particles are endowed with an amount of kinetic energy equal to the difference between the rest mass of the products of the annihilation and the rest mass of the original particle–antiparticle pair, which is often quite large. ###question: What happens when two antiparticles collide? ###answer: not found
In particle physics and quantum chemistry, antimatter is matter that is composed of the antiparticles of those that constitute ordinary matter. If a particle and its antiparticle come into contact with each other, the two annihilate; that is, they may both be converted into other particles with equal energy in accordance with Einstein's equation E = mc2. These new particles may be high-energy photons (gamma rays) or other particle–antiparticle pairs. The resulting particles are endowed with an amount of kinetic energy equal to the difference between the rest mass of the products of the annihilation and the rest mass of the original particle–antiparticle pair, which is often quite large.
not found
What are particle-antiparticle pairs that are not high-energy called?
###context: In particle physics and quantum chemistry, antimatter is matter that is composed of the antiparticles of those that constitute ordinary matter. If a particle and its antiparticle come into contact with each other, the two annihilate; that is, they may both be converted into other particles with equal energy in accordance with Einstein's equation E = mc2. These new particles may be high-energy photons (gamma rays) or other particle–antiparticle pairs. The resulting particles are endowed with an amount of kinetic energy equal to the difference between the rest mass of the products of the annihilation and the rest mass of the original particle–antiparticle pair, which is often quite large. ###question: What are particle-antiparticle pairs that are not high-energy called? ###answer: not found
In particle physics and quantum chemistry, antimatter is matter that is composed of the antiparticles of those that constitute ordinary matter. If a particle and its antiparticle come into contact with each other, the two annihilate; that is, they may both be converted into other particles with equal energy in accordance with Einstein's equation E = mc2. These new particles may be high-energy photons (gamma rays) or other particle–antiparticle pairs. The resulting particles are endowed with an amount of kinetic energy equal to the difference between the rest mass of the products of the annihilation and the rest mass of the original particle–antiparticle pair, which is often quite large.
not found
What kind of energy do particle-antiparticle pairs have more of than they had originally?
###context: In particle physics and quantum chemistry, antimatter is matter that is composed of the antiparticles of those that constitute ordinary matter. If a particle and its antiparticle come into contact with each other, the two annihilate; that is, they may both be converted into other particles with equal energy in accordance with Einstein's equation E = mc2. These new particles may be high-energy photons (gamma rays) or other particle–antiparticle pairs. The resulting particles are endowed with an amount of kinetic energy equal to the difference between the rest mass of the products of the annihilation and the rest mass of the original particle–antiparticle pair, which is often quite large. ###question: What kind of energy do particle-antiparticle pairs have more of than they had originally? ###answer: not found
In particle physics and quantum chemistry, antimatter is matter that is composed of the antiparticles of those that constitute ordinary matter. If a particle and its antiparticle come into contact with each other, the two annihilate; that is, they may both be converted into other particles with equal energy in accordance with Einstein's equation E = mc2. These new particles may be high-energy photons (gamma rays) or other particle–antiparticle pairs. The resulting particles are endowed with an amount of kinetic energy equal to the difference between the rest mass of the products of the annihilation and the rest mass of the original particle–antiparticle pair, which is often quite large.
not found
Who discovered quantum chemistry?
###context: In particle physics and quantum chemistry, antimatter is matter that is composed of the antiparticles of those that constitute ordinary matter. If a particle and its antiparticle come into contact with each other, the two annihilate; that is, they may both be converted into other particles with equal energy in accordance with Einstein's equation E = mc2. These new particles may be high-energy photons (gamma rays) or other particle–antiparticle pairs. The resulting particles are endowed with an amount of kinetic energy equal to the difference between the rest mass of the products of the annihilation and the rest mass of the original particle–antiparticle pair, which is often quite large. ###question: Who discovered quantum chemistry? ###answer: not found
Antimatter is not found naturally on Earth, except very briefly and in vanishingly small quantities (as the result of radioactive decay, lightning or cosmic rays). This is because antimatter that came to exist on Earth outside the confines of a suitable physics laboratory would almost instantly meet the ordinary matter that Earth is made of, and be annihilated. Antiparticles and some stable antimatter (such as antihydrogen) can be made in tiny amounts, but not in enough quantity to do more than test a few of its theoretical properties.
not found
Where is antimatter found naturally in large quantities?
###context: Antimatter is not found naturally on Earth, except very briefly and in vanishingly small quantities (as the result of radioactive decay, lightning or cosmic rays). This is because antimatter that came to exist on Earth outside the confines of a suitable physics laboratory would almost instantly meet the ordinary matter that Earth is made of, and be annihilated. Antiparticles and some stable antimatter (such as antihydrogen) can be made in tiny amounts, but not in enough quantity to do more than test a few of its theoretical properties. ###question: Where is antimatter found naturally in large quantities? ###answer: not found
Antimatter is not found naturally on Earth, except very briefly and in vanishingly small quantities (as the result of radioactive decay, lightning or cosmic rays). This is because antimatter that came to exist on Earth outside the confines of a suitable physics laboratory would almost instantly meet the ordinary matter that Earth is made of, and be annihilated. Antiparticles and some stable antimatter (such as antihydrogen) can be made in tiny amounts, but not in enough quantity to do more than test a few of its theoretical properties.
not found
What does antimatter annihilate?
###context: Antimatter is not found naturally on Earth, except very briefly and in vanishingly small quantities (as the result of radioactive decay, lightning or cosmic rays). This is because antimatter that came to exist on Earth outside the confines of a suitable physics laboratory would almost instantly meet the ordinary matter that Earth is made of, and be annihilated. Antiparticles and some stable antimatter (such as antihydrogen) can be made in tiny amounts, but not in enough quantity to do more than test a few of its theoretical properties. ###question: What does antimatter annihilate? ###answer: not found
Antimatter is not found naturally on Earth, except very briefly and in vanishingly small quantities (as the result of radioactive decay, lightning or cosmic rays). This is because antimatter that came to exist on Earth outside the confines of a suitable physics laboratory would almost instantly meet the ordinary matter that Earth is made of, and be annihilated. Antiparticles and some stable antimatter (such as antihydrogen) can be made in tiny amounts, but not in enough quantity to do more than test a few of its theoretical properties.
not found
Where is ordinary matter created?
###context: Antimatter is not found naturally on Earth, except very briefly and in vanishingly small quantities (as the result of radioactive decay, lightning or cosmic rays). This is because antimatter that came to exist on Earth outside the confines of a suitable physics laboratory would almost instantly meet the ordinary matter that Earth is made of, and be annihilated. Antiparticles and some stable antimatter (such as antihydrogen) can be made in tiny amounts, but not in enough quantity to do more than test a few of its theoretical properties. ###question: Where is ordinary matter created? ###answer: not found
Antimatter is not found naturally on Earth, except very briefly and in vanishingly small quantities (as the result of radioactive decay, lightning or cosmic rays). This is because antimatter that came to exist on Earth outside the confines of a suitable physics laboratory would almost instantly meet the ordinary matter that Earth is made of, and be annihilated. Antiparticles and some stable antimatter (such as antihydrogen) can be made in tiny amounts, but not in enough quantity to do more than test a few of its theoretical properties.
not found
What is an example of an antiparticle?
###context: Antimatter is not found naturally on Earth, except very briefly and in vanishingly small quantities (as the result of radioactive decay, lightning or cosmic rays). This is because antimatter that came to exist on Earth outside the confines of a suitable physics laboratory would almost instantly meet the ordinary matter that Earth is made of, and be annihilated. Antiparticles and some stable antimatter (such as antihydrogen) can be made in tiny amounts, but not in enough quantity to do more than test a few of its theoretical properties. ###question: What is an example of an antiparticle? ###answer: not found
Antimatter is not found naturally on Earth, except very briefly and in vanishingly small quantities (as the result of radioactive decay, lightning or cosmic rays). This is because antimatter that came to exist on Earth outside the confines of a suitable physics laboratory would almost instantly meet the ordinary matter that Earth is made of, and be annihilated. Antiparticles and some stable antimatter (such as antihydrogen) can be made in tiny amounts, but not in enough quantity to do more than test a few of its theoretical properties.
not found
Large quantities of what can be created for testing?
###context: Antimatter is not found naturally on Earth, except very briefly and in vanishingly small quantities (as the result of radioactive decay, lightning or cosmic rays). This is because antimatter that came to exist on Earth outside the confines of a suitable physics laboratory would almost instantly meet the ordinary matter that Earth is made of, and be annihilated. Antiparticles and some stable antimatter (such as antihydrogen) can be made in tiny amounts, but not in enough quantity to do more than test a few of its theoretical properties. ###question: Large quantities of what can be created for testing? ###answer: not found
There is considerable speculation both in science and science fiction as to why the observable universe is apparently almost entirely matter, and whether other places are almost entirely antimatter instead. In the early universe, it is thought that matter and antimatter were equally represented, and the disappearance of antimatter requires an asymmetry in physical laws called the charge parity (or CP symmetry) violation. CP symmetry violation can be obtained from the Standard Model, but at this time the apparent asymmetry of matter and antimatter in the visible universe is one of the great unsolved problems in physics. Possible processes by which it came about are explored in more detail under baryogenesis.
not found
What is the disappearance of matter linked to?
###context: There is considerable speculation both in science and science fiction as to why the observable universe is apparently almost entirely matter, and whether other places are almost entirely antimatter instead. In the early universe, it is thought that matter and antimatter were equally represented, and the disappearance of antimatter requires an asymmetry in physical laws called the charge parity (or CP symmetry) violation. CP symmetry violation can be obtained from the Standard Model, but at this time the apparent asymmetry of matter and antimatter in the visible universe is one of the great unsolved problems in physics. Possible processes by which it came about are explored in more detail under baryogenesis. ###question: What is the disappearance of matter linked to? ###answer: not found
There is considerable speculation both in science and science fiction as to why the observable universe is apparently almost entirely matter, and whether other places are almost entirely antimatter instead. In the early universe, it is thought that matter and antimatter were equally represented, and the disappearance of antimatter requires an asymmetry in physical laws called the charge parity (or CP symmetry) violation. CP symmetry violation can be obtained from the Standard Model, but at this time the apparent asymmetry of matter and antimatter in the visible universe is one of the great unsolved problems in physics. Possible processes by which it came about are explored in more detail under baryogenesis.
not found
When was there more antimatter than matter?
###context: There is considerable speculation both in science and science fiction as to why the observable universe is apparently almost entirely matter, and whether other places are almost entirely antimatter instead. In the early universe, it is thought that matter and antimatter were equally represented, and the disappearance of antimatter requires an asymmetry in physical laws called the charge parity (or CP symmetry) violation. CP symmetry violation can be obtained from the Standard Model, but at this time the apparent asymmetry of matter and antimatter in the visible universe is one of the great unsolved problems in physics. Possible processes by which it came about are explored in more detail under baryogenesis. ###question: When was there more antimatter than matter? ###answer: not found
There is considerable speculation both in science and science fiction as to why the observable universe is apparently almost entirely matter, and whether other places are almost entirely antimatter instead. In the early universe, it is thought that matter and antimatter were equally represented, and the disappearance of antimatter requires an asymmetry in physical laws called the charge parity (or CP symmetry) violation. CP symmetry violation can be obtained from the Standard Model, but at this time the apparent asymmetry of matter and antimatter in the visible universe is one of the great unsolved problems in physics. Possible processes by which it came about are explored in more detail under baryogenesis.
not found
What problem has physics solved?
###context: There is considerable speculation both in science and science fiction as to why the observable universe is apparently almost entirely matter, and whether other places are almost entirely antimatter instead. In the early universe, it is thought that matter and antimatter were equally represented, and the disappearance of antimatter requires an asymmetry in physical laws called the charge parity (or CP symmetry) violation. CP symmetry violation can be obtained from the Standard Model, but at this time the apparent asymmetry of matter and antimatter in the visible universe is one of the great unsolved problems in physics. Possible processes by which it came about are explored in more detail under baryogenesis. ###question: What problem has physics solved? ###answer: not found
There is considerable speculation both in science and science fiction as to why the observable universe is apparently almost entirely matter, and whether other places are almost entirely antimatter instead. In the early universe, it is thought that matter and antimatter were equally represented, and the disappearance of antimatter requires an asymmetry in physical laws called the charge parity (or CP symmetry) violation. CP symmetry violation can be obtained from the Standard Model, but at this time the apparent asymmetry of matter and antimatter in the visible universe is one of the great unsolved problems in physics. Possible processes by which it came about are explored in more detail under baryogenesis.
not found
Where is the Standard Model found?
###context: There is considerable speculation both in science and science fiction as to why the observable universe is apparently almost entirely matter, and whether other places are almost entirely antimatter instead. In the early universe, it is thought that matter and antimatter were equally represented, and the disappearance of antimatter requires an asymmetry in physical laws called the charge parity (or CP symmetry) violation. CP symmetry violation can be obtained from the Standard Model, but at this time the apparent asymmetry of matter and antimatter in the visible universe is one of the great unsolved problems in physics. Possible processes by which it came about are explored in more detail under baryogenesis. ###question: Where is the Standard Model found? ###answer: not found
There is considerable speculation both in science and science fiction as to why the observable universe is apparently almost entirely matter, and whether other places are almost entirely antimatter instead. In the early universe, it is thought that matter and antimatter were equally represented, and the disappearance of antimatter requires an asymmetry in physical laws called the charge parity (or CP symmetry) violation. CP symmetry violation can be obtained from the Standard Model, but at this time the apparent asymmetry of matter and antimatter in the visible universe is one of the great unsolved problems in physics. Possible processes by which it came about are explored in more detail under baryogenesis.
not found
What field of study speculates about science fiction?
###context: There is considerable speculation both in science and science fiction as to why the observable universe is apparently almost entirely matter, and whether other places are almost entirely antimatter instead. In the early universe, it is thought that matter and antimatter were equally represented, and the disappearance of antimatter requires an asymmetry in physical laws called the charge parity (or CP symmetry) violation. CP symmetry violation can be obtained from the Standard Model, but at this time the apparent asymmetry of matter and antimatter in the visible universe is one of the great unsolved problems in physics. Possible processes by which it came about are explored in more detail under baryogenesis. ###question: What field of study speculates about science fiction? ###answer: not found
In astrophysics and cosmology, dark matter is matter of unknown composition that does not emit or reflect enough electromagnetic radiation to be observed directly, but whose presence can be inferred from gravitational effects on visible matter. Observational evidence of the early universe and the big bang theory require that this matter have energy and mass, but is not composed of either elementary fermions (as above) OR gauge bosons. The commonly accepted view is that most of the dark matter is non-baryonic in nature. As such, it is composed of particles as yet unobserved in the laboratory. Perhaps they are supersymmetric particles, which are not Standard Model particles, but relics formed at very high energies in the early phase of the universe and still floating about.
not found
What does dark matter emit to make it visible?
###context: In astrophysics and cosmology, dark matter is matter of unknown composition that does not emit or reflect enough electromagnetic radiation to be observed directly, but whose presence can be inferred from gravitational effects on visible matter. Observational evidence of the early universe and the big bang theory require that this matter have energy and mass, but is not composed of either elementary fermions (as above) OR gauge bosons. The commonly accepted view is that most of the dark matter is non-baryonic in nature. As such, it is composed of particles as yet unobserved in the laboratory. Perhaps they are supersymmetric particles, which are not Standard Model particles, but relics formed at very high energies in the early phase of the universe and still floating about. ###question: What does dark matter emit to make it visible? ###answer: not found
In astrophysics and cosmology, dark matter is matter of unknown composition that does not emit or reflect enough electromagnetic radiation to be observed directly, but whose presence can be inferred from gravitational effects on visible matter. Observational evidence of the early universe and the big bang theory require that this matter have energy and mass, but is not composed of either elementary fermions (as above) OR gauge bosons. The commonly accepted view is that most of the dark matter is non-baryonic in nature. As such, it is composed of particles as yet unobserved in the laboratory. Perhaps they are supersymmetric particles, which are not Standard Model particles, but relics formed at very high energies in the early phase of the universe and still floating about.
not found
What effect on other matter allows electromagnetic radiation to be visible?
###context: In astrophysics and cosmology, dark matter is matter of unknown composition that does not emit or reflect enough electromagnetic radiation to be observed directly, but whose presence can be inferred from gravitational effects on visible matter. Observational evidence of the early universe and the big bang theory require that this matter have energy and mass, but is not composed of either elementary fermions (as above) OR gauge bosons. The commonly accepted view is that most of the dark matter is non-baryonic in nature. As such, it is composed of particles as yet unobserved in the laboratory. Perhaps they are supersymmetric particles, which are not Standard Model particles, but relics formed at very high energies in the early phase of the universe and still floating about. ###question: What effect on other matter allows electromagnetic radiation to be visible? ###answer: not found
In astrophysics and cosmology, dark matter is matter of unknown composition that does not emit or reflect enough electromagnetic radiation to be observed directly, but whose presence can be inferred from gravitational effects on visible matter. Observational evidence of the early universe and the big bang theory require that this matter have energy and mass, but is not composed of either elementary fermions (as above) OR gauge bosons. The commonly accepted view is that most of the dark matter is non-baryonic in nature. As such, it is composed of particles as yet unobserved in the laboratory. Perhaps they are supersymmetric particles, which are not Standard Model particles, but relics formed at very high energies in the early phase of the universe and still floating about.
not found
What is baryonic in nature?
###context: In astrophysics and cosmology, dark matter is matter of unknown composition that does not emit or reflect enough electromagnetic radiation to be observed directly, but whose presence can be inferred from gravitational effects on visible matter. Observational evidence of the early universe and the big bang theory require that this matter have energy and mass, but is not composed of either elementary fermions (as above) OR gauge bosons. The commonly accepted view is that most of the dark matter is non-baryonic in nature. As such, it is composed of particles as yet unobserved in the laboratory. Perhaps they are supersymmetric particles, which are not Standard Model particles, but relics formed at very high energies in the early phase of the universe and still floating about. ###question: What is baryonic in nature? ###answer: not found
In astrophysics and cosmology, dark matter is matter of unknown composition that does not emit or reflect enough electromagnetic radiation to be observed directly, but whose presence can be inferred from gravitational effects on visible matter. Observational evidence of the early universe and the big bang theory require that this matter have energy and mass, but is not composed of either elementary fermions (as above) OR gauge bosons. The commonly accepted view is that most of the dark matter is non-baryonic in nature. As such, it is composed of particles as yet unobserved in the laboratory. Perhaps they are supersymmetric particles, which are not Standard Model particles, but relics formed at very high energies in the early phase of the universe and still floating about.
not found
What does dark matter form?
###context: In astrophysics and cosmology, dark matter is matter of unknown composition that does not emit or reflect enough electromagnetic radiation to be observed directly, but whose presence can be inferred from gravitational effects on visible matter. Observational evidence of the early universe and the big bang theory require that this matter have energy and mass, but is not composed of either elementary fermions (as above) OR gauge bosons. The commonly accepted view is that most of the dark matter is non-baryonic in nature. As such, it is composed of particles as yet unobserved in the laboratory. Perhaps they are supersymmetric particles, which are not Standard Model particles, but relics formed at very high energies in the early phase of the universe and still floating about. ###question: What does dark matter form? ###answer: not found
In astrophysics and cosmology, dark matter is matter of unknown composition that does not emit or reflect enough electromagnetic radiation to be observed directly, but whose presence can be inferred from gravitational effects on visible matter. Observational evidence of the early universe and the big bang theory require that this matter have energy and mass, but is not composed of either elementary fermions (as above) OR gauge bosons. The commonly accepted view is that most of the dark matter is non-baryonic in nature. As such, it is composed of particles as yet unobserved in the laboratory. Perhaps they are supersymmetric particles, which are not Standard Model particles, but relics formed at very high energies in the early phase of the universe and still floating about.
not found
Supersymmetric particles are part of what Model?
###context: In astrophysics and cosmology, dark matter is matter of unknown composition that does not emit or reflect enough electromagnetic radiation to be observed directly, but whose presence can be inferred from gravitational effects on visible matter. Observational evidence of the early universe and the big bang theory require that this matter have energy and mass, but is not composed of either elementary fermions (as above) OR gauge bosons. The commonly accepted view is that most of the dark matter is non-baryonic in nature. As such, it is composed of particles as yet unobserved in the laboratory. Perhaps they are supersymmetric particles, which are not Standard Model particles, but relics formed at very high energies in the early phase of the universe and still floating about. ###question: Supersymmetric particles are part of what Model? ###answer: not found
The pre-Socratics were among the first recorded speculators about the underlying nature of the visible world. Thales (c. 624 BC–c. 546 BC) regarded water as the fundamental material of the world. Anaximander (c. 610 BC–c. 546 BC) posited that the basic material was wholly characterless or limitless: the Infinite (apeiron). Anaximenes (flourished 585 BC, d. 528 BC) posited that the basic stuff was pneuma or air. Heraclitus (c. 535–c. 475 BC) seems to say the basic element is fire, though perhaps he means that all is change. Empedocles (c. 490–430 BC) spoke of four elements of which everything was made: earth, water, air, and fire. Meanwhile, Parmenides argued that change does not exist, and Democritus argued that everything is composed of minuscule, inert bodies of all shapes called atoms, a philosophy called atomism. All of these notions had deep philosophical problems.
not found
When did Socratics live?
###context: The pre-Socratics were among the first recorded speculators about the underlying nature of the visible world. Thales (c. 624 BC–c. 546 BC) regarded water as the fundamental material of the world. Anaximander (c. 610 BC–c. 546 BC) posited that the basic material was wholly characterless or limitless: the Infinite (apeiron). Anaximenes (flourished 585 BC, d. 528 BC) posited that the basic stuff was pneuma or air. Heraclitus (c. 535–c. 475 BC) seems to say the basic element is fire, though perhaps he means that all is change. Empedocles (c. 490–430 BC) spoke of four elements of which everything was made: earth, water, air, and fire. Meanwhile, Parmenides argued that change does not exist, and Democritus argued that everything is composed of minuscule, inert bodies of all shapes called atoms, a philosophy called atomism. All of these notions had deep philosophical problems. ###question: When did Socratics live? ###answer: not found
The pre-Socratics were among the first recorded speculators about the underlying nature of the visible world. Thales (c. 624 BC–c. 546 BC) regarded water as the fundamental material of the world. Anaximander (c. 610 BC–c. 546 BC) posited that the basic material was wholly characterless or limitless: the Infinite (apeiron). Anaximenes (flourished 585 BC, d. 528 BC) posited that the basic stuff was pneuma or air. Heraclitus (c. 535–c. 475 BC) seems to say the basic element is fire, though perhaps he means that all is change. Empedocles (c. 490–430 BC) spoke of four elements of which everything was made: earth, water, air, and fire. Meanwhile, Parmenides argued that change does not exist, and Democritus argued that everything is composed of minuscule, inert bodies of all shapes called atoms, a philosophy called atomism. All of these notions had deep philosophical problems.
not found
What did Parmenides believe was the fundamental material of the world?
###context: The pre-Socratics were among the first recorded speculators about the underlying nature of the visible world. Thales (c. 624 BC–c. 546 BC) regarded water as the fundamental material of the world. Anaximander (c. 610 BC–c. 546 BC) posited that the basic material was wholly characterless or limitless: the Infinite (apeiron). Anaximenes (flourished 585 BC, d. 528 BC) posited that the basic stuff was pneuma or air. Heraclitus (c. 535–c. 475 BC) seems to say the basic element is fire, though perhaps he means that all is change. Empedocles (c. 490–430 BC) spoke of four elements of which everything was made: earth, water, air, and fire. Meanwhile, Parmenides argued that change does not exist, and Democritus argued that everything is composed of minuscule, inert bodies of all shapes called atoms, a philosophy called atomism. All of these notions had deep philosophical problems. ###question: What did Parmenides believe was the fundamental material of the world? ###answer: not found
The pre-Socratics were among the first recorded speculators about the underlying nature of the visible world. Thales (c. 624 BC–c. 546 BC) regarded water as the fundamental material of the world. Anaximander (c. 610 BC–c. 546 BC) posited that the basic material was wholly characterless or limitless: the Infinite (apeiron). Anaximenes (flourished 585 BC, d. 528 BC) posited that the basic stuff was pneuma or air. Heraclitus (c. 535–c. 475 BC) seems to say the basic element is fire, though perhaps he means that all is change. Empedocles (c. 490–430 BC) spoke of four elements of which everything was made: earth, water, air, and fire. Meanwhile, Parmenides argued that change does not exist, and Democritus argued that everything is composed of minuscule, inert bodies of all shapes called atoms, a philosophy called atomism. All of these notions had deep philosophical problems.
not found
What is the name for the philosophical problems of understanding the nature of the world?
###context: The pre-Socratics were among the first recorded speculators about the underlying nature of the visible world. Thales (c. 624 BC–c. 546 BC) regarded water as the fundamental material of the world. Anaximander (c. 610 BC–c. 546 BC) posited that the basic material was wholly characterless or limitless: the Infinite (apeiron). Anaximenes (flourished 585 BC, d. 528 BC) posited that the basic stuff was pneuma or air. Heraclitus (c. 535–c. 475 BC) seems to say the basic element is fire, though perhaps he means that all is change. Empedocles (c. 490–430 BC) spoke of four elements of which everything was made: earth, water, air, and fire. Meanwhile, Parmenides argued that change does not exist, and Democritus argued that everything is composed of minuscule, inert bodies of all shapes called atoms, a philosophy called atomism. All of these notions had deep philosophical problems. ###question: What is the name for the philosophical problems of understanding the nature of the world? ###answer: not found
The pre-Socratics were among the first recorded speculators about the underlying nature of the visible world. Thales (c. 624 BC–c. 546 BC) regarded water as the fundamental material of the world. Anaximander (c. 610 BC–c. 546 BC) posited that the basic material was wholly characterless or limitless: the Infinite (apeiron). Anaximenes (flourished 585 BC, d. 528 BC) posited that the basic stuff was pneuma or air. Heraclitus (c. 535–c. 475 BC) seems to say the basic element is fire, though perhaps he means that all is change. Empedocles (c. 490–430 BC) spoke of four elements of which everything was made: earth, water, air, and fire. Meanwhile, Parmenides argued that change does not exist, and Democritus argued that everything is composed of minuscule, inert bodies of all shapes called atoms, a philosophy called atomism. All of these notions had deep philosophical problems.
not found
How many elements did Democritus name?
###context: The pre-Socratics were among the first recorded speculators about the underlying nature of the visible world. Thales (c. 624 BC–c. 546 BC) regarded water as the fundamental material of the world. Anaximander (c. 610 BC–c. 546 BC) posited that the basic material was wholly characterless or limitless: the Infinite (apeiron). Anaximenes (flourished 585 BC, d. 528 BC) posited that the basic stuff was pneuma or air. Heraclitus (c. 535–c. 475 BC) seems to say the basic element is fire, though perhaps he means that all is change. Empedocles (c. 490–430 BC) spoke of four elements of which everything was made: earth, water, air, and fire. Meanwhile, Parmenides argued that change does not exist, and Democritus argued that everything is composed of minuscule, inert bodies of all shapes called atoms, a philosophy called atomism. All of these notions had deep philosophical problems. ###question: How many elements did Democritus name? ###answer: not found
The pre-Socratics were among the first recorded speculators about the underlying nature of the visible world. Thales (c. 624 BC–c. 546 BC) regarded water as the fundamental material of the world. Anaximander (c. 610 BC–c. 546 BC) posited that the basic material was wholly characterless or limitless: the Infinite (apeiron). Anaximenes (flourished 585 BC, d. 528 BC) posited that the basic stuff was pneuma or air. Heraclitus (c. 535–c. 475 BC) seems to say the basic element is fire, though perhaps he means that all is change. Empedocles (c. 490–430 BC) spoke of four elements of which everything was made: earth, water, air, and fire. Meanwhile, Parmenides argued that change does not exist, and Democritus argued that everything is composed of minuscule, inert bodies of all shapes called atoms, a philosophy called atomism. All of these notions had deep philosophical problems.
not found
What did Parmenides say everything was made of?
###context: The pre-Socratics were among the first recorded speculators about the underlying nature of the visible world. Thales (c. 624 BC–c. 546 BC) regarded water as the fundamental material of the world. Anaximander (c. 610 BC–c. 546 BC) posited that the basic material was wholly characterless or limitless: the Infinite (apeiron). Anaximenes (flourished 585 BC, d. 528 BC) posited that the basic stuff was pneuma or air. Heraclitus (c. 535–c. 475 BC) seems to say the basic element is fire, though perhaps he means that all is change. Empedocles (c. 490–430 BC) spoke of four elements of which everything was made: earth, water, air, and fire. Meanwhile, Parmenides argued that change does not exist, and Democritus argued that everything is composed of minuscule, inert bodies of all shapes called atoms, a philosophy called atomism. All of these notions had deep philosophical problems. ###question: What did Parmenides say everything was made of? ###answer: not found
For example, a horse eats grass: the horse changes the grass into itself; the grass as such does not persist in the horse, but some aspect of it—its matter—does. The matter is not specifically described (e.g., as atoms), but consists of whatever persists in the change of substance from grass to horse. Matter in this understanding does not exist independently (i.e., as a substance), but exists interdependently (i.e., as a "principle") with form and only insofar as it underlies change. It can be helpful to conceive of the relationship of matter and form as very similar to that between parts and whole. For Aristotle, matter as such can only receive actuality from form; it has no activity or actuality in itself, similar to the way that parts as such only have their existence in a whole (otherwise they would be independent wholes).
not found
What exists independently?
###context: For example, a horse eats grass: the horse changes the grass into itself; the grass as such does not persist in the horse, but some aspect of it—its matter—does. The matter is not specifically described (e.g., as atoms), but consists of whatever persists in the change of substance from grass to horse. Matter in this understanding does not exist independently (i.e., as a substance), but exists interdependently (i.e., as a "principle") with form and only insofar as it underlies change. It can be helpful to conceive of the relationship of matter and form as very similar to that between parts and whole. For Aristotle, matter as such can only receive actuality from form; it has no activity or actuality in itself, similar to the way that parts as such only have their existence in a whole (otherwise they would be independent wholes). ###question: What exists independently? ###answer: not found
For example, a horse eats grass: the horse changes the grass into itself; the grass as such does not persist in the horse, but some aspect of it—its matter—does. The matter is not specifically described (e.g., as atoms), but consists of whatever persists in the change of substance from grass to horse. Matter in this understanding does not exist independently (i.e., as a substance), but exists interdependently (i.e., as a "principle") with form and only insofar as it underlies change. It can be helpful to conceive of the relationship of matter and form as very similar to that between parts and whole. For Aristotle, matter as such can only receive actuality from form; it has no activity or actuality in itself, similar to the way that parts as such only have their existence in a whole (otherwise they would be independent wholes).
not found
Who said matter had actuality in and of itself?
###context: For example, a horse eats grass: the horse changes the grass into itself; the grass as such does not persist in the horse, but some aspect of it—its matter—does. The matter is not specifically described (e.g., as atoms), but consists of whatever persists in the change of substance from grass to horse. Matter in this understanding does not exist independently (i.e., as a substance), but exists interdependently (i.e., as a "principle") with form and only insofar as it underlies change. It can be helpful to conceive of the relationship of matter and form as very similar to that between parts and whole. For Aristotle, matter as such can only receive actuality from form; it has no activity or actuality in itself, similar to the way that parts as such only have their existence in a whole (otherwise they would be independent wholes). ###question: Who said matter had actuality in and of itself? ###answer: not found
For example, a horse eats grass: the horse changes the grass into itself; the grass as such does not persist in the horse, but some aspect of it—its matter—does. The matter is not specifically described (e.g., as atoms), but consists of whatever persists in the change of substance from grass to horse. Matter in this understanding does not exist independently (i.e., as a substance), but exists interdependently (i.e., as a "principle") with form and only insofar as it underlies change. It can be helpful to conceive of the relationship of matter and form as very similar to that between parts and whole. For Aristotle, matter as such can only receive actuality from form; it has no activity or actuality in itself, similar to the way that parts as such only have their existence in a whole (otherwise they would be independent wholes).
not found
Aristotle said parts have existence outside of what?
###context: For example, a horse eats grass: the horse changes the grass into itself; the grass as such does not persist in the horse, but some aspect of it—its matter—does. The matter is not specifically described (e.g., as atoms), but consists of whatever persists in the change of substance from grass to horse. Matter in this understanding does not exist independently (i.e., as a substance), but exists interdependently (i.e., as a "principle") with form and only insofar as it underlies change. It can be helpful to conceive of the relationship of matter and form as very similar to that between parts and whole. For Aristotle, matter as such can only receive actuality from form; it has no activity or actuality in itself, similar to the way that parts as such only have their existence in a whole (otherwise they would be independent wholes). ###question: Aristotle said parts have existence outside of what? ###answer: not found
For example, a horse eats grass: the horse changes the grass into itself; the grass as such does not persist in the horse, but some aspect of it—its matter—does. The matter is not specifically described (e.g., as atoms), but consists of whatever persists in the change of substance from grass to horse. Matter in this understanding does not exist independently (i.e., as a substance), but exists interdependently (i.e., as a "principle") with form and only insofar as it underlies change. It can be helpful to conceive of the relationship of matter and form as very similar to that between parts and whole. For Aristotle, matter as such can only receive actuality from form; it has no activity or actuality in itself, similar to the way that parts as such only have their existence in a whole (otherwise they would be independent wholes).
not found
What does grass turn the horse into?
###context: For example, a horse eats grass: the horse changes the grass into itself; the grass as such does not persist in the horse, but some aspect of it—its matter—does. The matter is not specifically described (e.g., as atoms), but consists of whatever persists in the change of substance from grass to horse. Matter in this understanding does not exist independently (i.e., as a substance), but exists interdependently (i.e., as a "principle") with form and only insofar as it underlies change. It can be helpful to conceive of the relationship of matter and form as very similar to that between parts and whole. For Aristotle, matter as such can only receive actuality from form; it has no activity or actuality in itself, similar to the way that parts as such only have their existence in a whole (otherwise they would be independent wholes). ###question: What does grass turn the horse into? ###answer: not found
For Descartes, matter has only the property of extension, so its only activity aside from locomotion is to exclude other bodies: this is the mechanical philosophy. Descartes makes an absolute distinction between mind, which he defines as unextended, thinking substance, and matter, which he defines as unthinking, extended substance. They are independent things. In contrast, Aristotle defines matter and the formal/forming principle as complementary principles that together compose one independent thing (substance). In short, Aristotle defines matter (roughly speaking) as what things are actually made of (with a potential independent existence), but Descartes elevates matter to an actual independent thing in itself.
not found
What philosophy did Aristotle describe?
###context: For Descartes, matter has only the property of extension, so its only activity aside from locomotion is to exclude other bodies: this is the mechanical philosophy. Descartes makes an absolute distinction between mind, which he defines as unextended, thinking substance, and matter, which he defines as unthinking, extended substance. They are independent things. In contrast, Aristotle defines matter and the formal/forming principle as complementary principles that together compose one independent thing (substance). In short, Aristotle defines matter (roughly speaking) as what things are actually made of (with a potential independent existence), but Descartes elevates matter to an actual independent thing in itself. ###question: What philosophy did Aristotle describe? ###answer: not found
For Descartes, matter has only the property of extension, so its only activity aside from locomotion is to exclude other bodies: this is the mechanical philosophy. Descartes makes an absolute distinction between mind, which he defines as unextended, thinking substance, and matter, which he defines as unthinking, extended substance. They are independent things. In contrast, Aristotle defines matter and the formal/forming principle as complementary principles that together compose one independent thing (substance). In short, Aristotle defines matter (roughly speaking) as what things are actually made of (with a potential independent existence), but Descartes elevates matter to an actual independent thing in itself.
not found
What did Aristotle define as distinct from matter?
###context: For Descartes, matter has only the property of extension, so its only activity aside from locomotion is to exclude other bodies: this is the mechanical philosophy. Descartes makes an absolute distinction between mind, which he defines as unextended, thinking substance, and matter, which he defines as unthinking, extended substance. They are independent things. In contrast, Aristotle defines matter and the formal/forming principle as complementary principles that together compose one independent thing (substance). In short, Aristotle defines matter (roughly speaking) as what things are actually made of (with a potential independent existence), but Descartes elevates matter to an actual independent thing in itself. ###question: What did Aristotle define as distinct from matter? ###answer: not found
For Descartes, matter has only the property of extension, so its only activity aside from locomotion is to exclude other bodies: this is the mechanical philosophy. Descartes makes an absolute distinction between mind, which he defines as unextended, thinking substance, and matter, which he defines as unthinking, extended substance. They are independent things. In contrast, Aristotle defines matter and the formal/forming principle as complementary principles that together compose one independent thing (substance). In short, Aristotle defines matter (roughly speaking) as what things are actually made of (with a potential independent existence), but Descartes elevates matter to an actual independent thing in itself.
not found
How did Aristotle elevate matter?
###context: For Descartes, matter has only the property of extension, so its only activity aside from locomotion is to exclude other bodies: this is the mechanical philosophy. Descartes makes an absolute distinction between mind, which he defines as unextended, thinking substance, and matter, which he defines as unthinking, extended substance. They are independent things. In contrast, Aristotle defines matter and the formal/forming principle as complementary principles that together compose one independent thing (substance). In short, Aristotle defines matter (roughly speaking) as what things are actually made of (with a potential independent existence), but Descartes elevates matter to an actual independent thing in itself. ###question: How did Aristotle elevate matter? ###answer: not found
For Descartes, matter has only the property of extension, so its only activity aside from locomotion is to exclude other bodies: this is the mechanical philosophy. Descartes makes an absolute distinction between mind, which he defines as unextended, thinking substance, and matter, which he defines as unthinking, extended substance. They are independent things. In contrast, Aristotle defines matter and the formal/forming principle as complementary principles that together compose one independent thing (substance). In short, Aristotle defines matter (roughly speaking) as what things are actually made of (with a potential independent existence), but Descartes elevates matter to an actual independent thing in itself.
not found
What activity does locomotion have?
###context: For Descartes, matter has only the property of extension, so its only activity aside from locomotion is to exclude other bodies: this is the mechanical philosophy. Descartes makes an absolute distinction between mind, which he defines as unextended, thinking substance, and matter, which he defines as unthinking, extended substance. They are independent things. In contrast, Aristotle defines matter and the formal/forming principle as complementary principles that together compose one independent thing (substance). In short, Aristotle defines matter (roughly speaking) as what things are actually made of (with a potential independent existence), but Descartes elevates matter to an actual independent thing in itself. ###question: What activity does locomotion have? ###answer: not found
For Descartes, matter has only the property of extension, so its only activity aside from locomotion is to exclude other bodies: this is the mechanical philosophy. Descartes makes an absolute distinction between mind, which he defines as unextended, thinking substance, and matter, which he defines as unthinking, extended substance. They are independent things. In contrast, Aristotle defines matter and the formal/forming principle as complementary principles that together compose one independent thing (substance). In short, Aristotle defines matter (roughly speaking) as what things are actually made of (with a potential independent existence), but Descartes elevates matter to an actual independent thing in itself.
not found
How does Descartes use matter and the formal/forming principle?
###context: For Descartes, matter has only the property of extension, so its only activity aside from locomotion is to exclude other bodies: this is the mechanical philosophy. Descartes makes an absolute distinction between mind, which he defines as unextended, thinking substance, and matter, which he defines as unthinking, extended substance. They are independent things. In contrast, Aristotle defines matter and the formal/forming principle as complementary principles that together compose one independent thing (substance). In short, Aristotle defines matter (roughly speaking) as what things are actually made of (with a potential independent existence), but Descartes elevates matter to an actual independent thing in itself. ###question: How does Descartes use matter and the formal/forming principle? ###answer: not found
Isaac Newton (1643–1727) inherited Descartes' mechanical conception of matter. In the third of his "Rules of Reasoning in Philosophy", Newton lists the universal qualities of matter as "extension, hardness, impenetrability, mobility, and inertia". Similarly in Optics he conjectures that God created matter as "solid, massy, hard, impenetrable, movable particles", which were "...even so very hard as never to wear or break in pieces". The "primary" properties of matter were amenable to mathematical description, unlike "secondary" qualities such as color or taste. Like Descartes, Newton rejected the essential nature of secondary qualities.
not found
When was Descartes born?
###context: Isaac Newton (1643–1727) inherited Descartes' mechanical conception of matter. In the third of his "Rules of Reasoning in Philosophy", Newton lists the universal qualities of matter as "extension, hardness, impenetrability, mobility, and inertia". Similarly in Optics he conjectures that God created matter as "solid, massy, hard, impenetrable, movable particles", which were "...even so very hard as never to wear or break in pieces". The "primary" properties of matter were amenable to mathematical description, unlike "secondary" qualities such as color or taste. Like Descartes, Newton rejected the essential nature of secondary qualities. ###question: When was Descartes born? ###answer: not found
Isaac Newton (1643–1727) inherited Descartes' mechanical conception of matter. In the third of his "Rules of Reasoning in Philosophy", Newton lists the universal qualities of matter as "extension, hardness, impenetrability, mobility, and inertia". Similarly in Optics he conjectures that God created matter as "solid, massy, hard, impenetrable, movable particles", which were "...even so very hard as never to wear or break in pieces". The "primary" properties of matter were amenable to mathematical description, unlike "secondary" qualities such as color or taste. Like Descartes, Newton rejected the essential nature of secondary qualities.
not found
What did Descartes write?
###context: Isaac Newton (1643–1727) inherited Descartes' mechanical conception of matter. In the third of his "Rules of Reasoning in Philosophy", Newton lists the universal qualities of matter as "extension, hardness, impenetrability, mobility, and inertia". Similarly in Optics he conjectures that God created matter as "solid, massy, hard, impenetrable, movable particles", which were "...even so very hard as never to wear or break in pieces". The "primary" properties of matter were amenable to mathematical description, unlike "secondary" qualities such as color or taste. Like Descartes, Newton rejected the essential nature of secondary qualities. ###question: What did Descartes write? ###answer: not found
Isaac Newton (1643–1727) inherited Descartes' mechanical conception of matter. In the third of his "Rules of Reasoning in Philosophy", Newton lists the universal qualities of matter as "extension, hardness, impenetrability, mobility, and inertia". Similarly in Optics he conjectures that God created matter as "solid, massy, hard, impenetrable, movable particles", which were "...even so very hard as never to wear or break in pieces". The "primary" properties of matter were amenable to mathematical description, unlike "secondary" qualities such as color or taste. Like Descartes, Newton rejected the essential nature of secondary qualities.
not found
What did Newton reject that Descartes did not?
###context: Isaac Newton (1643–1727) inherited Descartes' mechanical conception of matter. In the third of his "Rules of Reasoning in Philosophy", Newton lists the universal qualities of matter as "extension, hardness, impenetrability, mobility, and inertia". Similarly in Optics he conjectures that God created matter as "solid, massy, hard, impenetrable, movable particles", which were "...even so very hard as never to wear or break in pieces". The "primary" properties of matter were amenable to mathematical description, unlike "secondary" qualities such as color or taste. Like Descartes, Newton rejected the essential nature of secondary qualities. ###question: What did Newton reject that Descartes did not? ###answer: not found
Isaac Newton (1643–1727) inherited Descartes' mechanical conception of matter. In the third of his "Rules of Reasoning in Philosophy", Newton lists the universal qualities of matter as "extension, hardness, impenetrability, mobility, and inertia". Similarly in Optics he conjectures that God created matter as "solid, massy, hard, impenetrable, movable particles", which were "...even so very hard as never to wear or break in pieces". The "primary" properties of matter were amenable to mathematical description, unlike "secondary" qualities such as color or taste. Like Descartes, Newton rejected the essential nature of secondary qualities.
not found
What did Descartes say were the universal qualities of matter?
###context: Isaac Newton (1643–1727) inherited Descartes' mechanical conception of matter. In the third of his "Rules of Reasoning in Philosophy", Newton lists the universal qualities of matter as "extension, hardness, impenetrability, mobility, and inertia". Similarly in Optics he conjectures that God created matter as "solid, massy, hard, impenetrable, movable particles", which were "...even so very hard as never to wear or break in pieces". The "primary" properties of matter were amenable to mathematical description, unlike "secondary" qualities such as color or taste. Like Descartes, Newton rejected the essential nature of secondary qualities. ###question: What did Descartes say were the universal qualities of matter? ###answer: not found
Isaac Newton (1643–1727) inherited Descartes' mechanical conception of matter. In the third of his "Rules of Reasoning in Philosophy", Newton lists the universal qualities of matter as "extension, hardness, impenetrability, mobility, and inertia". Similarly in Optics he conjectures that God created matter as "solid, massy, hard, impenetrable, movable particles", which were "...even so very hard as never to wear or break in pieces". The "primary" properties of matter were amenable to mathematical description, unlike "secondary" qualities such as color or taste. Like Descartes, Newton rejected the essential nature of secondary qualities.
not found
Both primary and secondary properties are suited to what form of description?
###context: Isaac Newton (1643–1727) inherited Descartes' mechanical conception of matter. In the third of his "Rules of Reasoning in Philosophy", Newton lists the universal qualities of matter as "extension, hardness, impenetrability, mobility, and inertia". Similarly in Optics he conjectures that God created matter as "solid, massy, hard, impenetrable, movable particles", which were "...even so very hard as never to wear or break in pieces". The "primary" properties of matter were amenable to mathematical description, unlike "secondary" qualities such as color or taste. Like Descartes, Newton rejected the essential nature of secondary qualities. ###question: Both primary and secondary properties are suited to what form of description? ###answer: not found
There is an entire literature concerning the "structure of matter", ranging from the "electrical structure" in the early 20th century, to the more recent "quark structure of matter", introduced today with the remark: Understanding the quark structure of matter has been one of the most important advances in contemporary physics.[further explanation needed] In this connection, physicists speak of matter fields, and speak of particles as "quantum excitations of a mode of the matter field". And here is a quote from de Sabbata and Gasperini: "With the word "matter" we denote, in this context, the sources of the interactions, that is spinor fields (like quarks and leptons), which are believed to be the fundamental components of matter, or scalar fields, like the Higgs particles, which are used to introduced mass in a gauge theory (and that, however, could be composed of more fundamental fermion fields)."[further explanation needed]
not found
When did de Sabbata and Gasperini write?
###context: There is an entire literature concerning the "structure of matter", ranging from the "electrical structure" in the early 20th century, to the more recent "quark structure of matter", introduced today with the remark: Understanding the quark structure of matter has been one of the most important advances in contemporary physics.[further explanation needed] In this connection, physicists speak of matter fields, and speak of particles as "quantum excitations of a mode of the matter field". And here is a quote from de Sabbata and Gasperini: "With the word "matter" we denote, in this context, the sources of the interactions, that is spinor fields (like quarks and leptons), which are believed to be the fundamental components of matter, or scalar fields, like the Higgs particles, which are used to introduced mass in a gauge theory (and that, however, could be composed of more fundamental fermion fields)."[further explanation needed] ###question: When did de Sabbata and Gasperini write? ###answer: not found