text
stringlengths 50
141k
| meta
dict |
---|---|
As the value and use of information continues to increase, individuals and businesses seek additional ways to process and store information. One option available to users is information handling systems. An information handling system generally processes, compiles, stores, and/or communicates information or data for business, personal, or other purposes thereby allowing users to take advantage of the value of the information. Because technology and information handling needs and requirements vary between different users or applications, information handling systems may also vary regarding what information is handled, how the information is handled, how much information is processed, stored, or communicated, and how quickly and efficiently the information may be processed, stored, or communicated. The variations in information handling systems allow for information handling systems to be general or configured for a specific user or specific use such as financial transaction processing, airline reservations, enterprise data storage, or global communications. In addition, information handling systems may include a variety of hardware and software components that may be configured to process, store, and communicate information and may include one or more computer systems, data storage systems, and networking systems.
Numerous solutions exist for backup and restore of data on an information handling system. Solutions that execute in the information handling system are deemed in-band solutions. Conventional in-band backup and restore operations are managed and performed by a software application executing with a host operating system on a host central processing unit (CPU). | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a mould for moulding an elastomeric glazing profile in situ on a sheet of glazing material, and to a method for moulding the profile. It also relates to a glazing comprising a sheet of glazing material with an elastomeric glazing profile moulded on it; the glazing may be a vehicle glazing for glazing a vehicle window, e.g. a backlight for glazing a rear window.
2. Description of the Related Art
It is known to provide a unitary glazing comprising a sheet of glazing material with an elastomeric glazing profile moulded in situ on the sheet by a technique known as edge encapsulation. Materials in sheet form have two major faces and one or more peripheral edge faces, and as the term edge encapsulation implies, in this known technique, the material from which the profile is moulded extends over a marginal portion of one major face, over the peripheral edge, and onto the other major face. A simple mould for edge encapsulation generally comprises two mating segments which define the mould cavity together with the sheet of glazing material.
Some of the glazings (“parts”) required by vehicle manufacturers include an “undercut” portion, i.e. in cross-sectional view the part includes a recessed portion. The recessed portion (also known as a re-entrant portion) may be within the profile or at the meeting-point of the sheet glazing material and the profile. It is known to incorporate moving mould segments into the mould design for such parts, the reasons generally being either so that the mould can actually be machined in the first place, and/or so that the part can be removed after moulding. These moving mould segments are frequently termed “sliding cores”, and an example is described in EP 156 882 B1 (corresponding to U.S. Pat. No. 4,561,625 and partially corresponding to U.S. Pat. No. 4,839,122) in column 5 at line 22 et seq.
For some years, it has been an important consideration in the motor industry to reduce the fuel consumption of vehicles, and reducing the drag coefficient (i.e. the air resistance) of vehicles can make a significant contribution to this. One way to reduce a vehicle's drag coefficient is to arrange the vehicle glazing to be flush with the bodywork to give the vehicle a smooth external contour; this is termed “flush glazing”. It will be appreciated that edge encapsulation as taught in EP 156 882 B1 is incompatible with flush glazing, because the portion of the glazing profile on the outside face of a window-pane protrudes from it. Vehicle manufacturers therefore demand that a glazing profile should be present on only one of the two major faces of a window-pane; these products are referred to as “single sided”.
Extrusion lends itself to the manufacture of such products, but is not without disadvantages. For instance, it is difficult (and requires expensive measures) to obtain a satisfactory joint between the beginning and the end of the extruded profile; materials suitable for extrusion which are also sufficiently durable to give an adequate service life are expensive, and one cannot extrude around a sharp corner.
Attempts have therefore been made to develop moulding techniques to make single sided products, and one example is known from WO 98/05487. However. some shortcomings remain, as will now be explained. A surface of a glazing profile which is visible when the glazing is installed in a vehicle is termed a “show face” (this is normally the outward-facing surface). One consequence of the move to flush glazing is that the show face is no longer wholly positioned on the outside of the window-pane, rather, it may be at least partly positioned inwardly of the inside face, and is generally on a member such as a lip or tongue which extends beyond the inside face.
Frequently, the area of contact between the glazing profile and the pane is positioned adjacent the peripheral edge of the window-pane, but slightly displaced towards the centre of the latter. This results in a recess defined by the glazing profile and the pane together, i.e. the part includes an undercut. The recess is positioned adjacent the contact area between the pane and the profile on one side, and adjacent the peripheral edge of the pane on the other side. A conventional mould for such a part needs to include sliding cores to allow removal of the part, generally one per side so that a generally rectangular pane would require four sliding cores meeting at the corners.
Unfortunately it is usually the case that lines are left on the moulded profile at the joints where the sliding cores meet; with single sided moulding these mould lines are on the show face and hence objectionably visible. This was not so for the true edge encapsulated products made in the mould of EP 156 882 B1; although mould lines occurred, they were not positioned on the show face and hence could be tolerated. A related disadvantage of sliding cores is that the liquid moulding material may penetrate the joints and then set to a solid, i.e. limited leakage may occur. The resulting flap or fringe of elastomer (known as “flash” in the industry) on the curved profile must be removed, generally by a manual trimming operation, leaving a mould line as mentioned above. Furthermore, it is generally the case that the complexity of moulds with multiple sliding cores adds to their cost and makes them prone to such leakage. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates generally to the fabrication of wearing apparel and, more particularly, to the construction of shirts and methods for producing the same, especially shirts fabricated from knitted fabrics.
As is well known, virtually all shirts, whether formal or informal and whether made of woven, knitted or other fabric, are produced by a so-called cut-and-sewn methodology wherein individual fabric pieces are cut from the selected fabric and then sewn together into a configuration forming a shirt body for covering a wearer""s torso and sleeves for covering the wearer""s arms. Necessarily, this cut-and-sewn process produces a number of individual seams in the resultant garment, typically including at least seams along each shoulder, vertical seams along one or both sides of the torso portion of the shirt body, seams encircling each arm at the juncture with the shirt body, and seams providing a finished edge to the various openings (e.g., the neck, arm and waist openings) in the garment. This process is highly labor intensive and, in turn, adds a greater element of expense to the cost of producing the garment than the fabric itself. In addition, seams tend to be weaker and, hence, more subject to separation, tearing or other damage, than unseamed portions of the fabric from which the shirt is made.
Accordingly, there is a need and desire within the apparel industry to provide shirts in which seams are minimized so as to reduce the cost of manufacture and also improve the overall strength and durability of the garment, particularly garments such as sports jerseys which must endure more rigorous conditions of use and abuse than other types of shirts.
It is accordingly an object of the present invention to provide a novel method of fabricating shirts in general by which the formation of seams is minimized. A more particular object of the present invention is to employ circularly knitted fabrics in such process. Another object of the present invention is to provide a methodology of fabricating shirts which may be applicable in various embodiments to many different types of shirt garments, but the present invention seeks to provide in one particular embodiment a methodology specifically applicable to the fabrication of sports jerseys, especially football jerseys. A still further specific object of the present invention is to provide a method of fabricating shirts which eliminates the seams normally formed in conventional cut-and-sewn shirts at the top of the shoulders, between the shirt body and the sleeves, and along one or both sides of the shirt body. It is additionally an object of the present invention to provide a novel structure of shirt as a result of the methodology of the invention.
Basically, the present invention utilizes two lengths of circularly knitted tubular seamless fabric, one of which will form the body of the shirt and the other of which will form the shoulders and sleeves. The fabric tube which will form the body of the shirt is knitted to a diameter and predetermined length suitable for the shirt body, with the lower end of the fabric being formed with a turned welt to form a folded finished annular edge defining the waist opening of the shirt body and with the upper end of the fabric tube left with an unfinished edge for sewing to the other fabric tube which will form the shoulders and sleeves. This latter fabric tube for forming the shoulders and sleeves is similarly knitted (either on the same or a different knitting machine) to a predetermined length (depending upon the size of the garment and whether the sleeves will be short, mid-length or long sleeves), with each opposite end of the tube formed with a turned welt to form a folded finished edge defining the arm openings in the shirt.
The present method basically forms the garment by orienting the shoulder/sleeve tube perpendicularly with respect to the upper end of the body tube and sewing the two tubes together. The shoulder/sleeve tube is cut appropriately in preparation for this sewing operation, which cutting may be performed in differing ways according to how the shoulders and sleeves are to be sized and shaped. For example, in a simplified embodiment, the shoulder/sleeve tube may be slit axially along only an intermediate length of the tube sufficient to be sewn along the upper unfinished annular edge of the body tube, but otherwise leaving the sleeves seamless. Alternatively, the shoulder/sleeve tube may be slit axially along its entire length, following which the resultant cut edges are sewn midway along their length to the upper annular edge of the body tube and the cut edges of the shoulder/sleeve tube extending outwardly beyond either side of the body tube are then sewn together, e.g., taperingly, to shape and size the sleeves. A neck opening is also cut in the shoulder/sleeve tube opposite the side thereof sewn to the body tube, and a neck band is sewn along this opening to form a finished neck to the garment.
Advantageously, the above-described process results in the complete elimination of any seam along the top of the shoulders of the garment, any seam encircling the sleeves, and any seam along the sides or otherwise along the length of the shirt body. | {
"pile_set_name": "USPTO Backgrounds"
} |
There has not been any significant prior work on related signaling details of periodic channel state information (CSI) with multiple parallel configurations in the case of multiple component carriers (CCs). Contributions in the Third Generation Partnership Project (3GPP) tend to focus on extending the physical uplink control channel (PUCCH) payload beyond 11 bits, which would permit new, larger CSI formats.
Activation and deactivation of component carriers has been discussed. There has also been some discussion about the concept of primary and secondary component carriers in radio access network 2 (RAN2): primary component carrier (PCC), and secondary component carrier (SCC), respectively. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The invention relates to jet receivers for electrohydraulic servovalves or the like and refers more specifically to a method of producing a laminated receiver plug assembly and the laminated receiver plug assembly produced by the method.
2. Description of the Prior Art
In the past, jet pipe receivers have generally been solid members having passages machined therein which passages usually have extended first axially into one end of the receiver structure and then radially through opposite sides thereof. The axially extending portions of the receiver structure passages have generally been round in cross section and separated by an extremely thin divider portion at the point of receiving fluid from a jet pipe. The divider portion has necessarily been required to be constructed to close tolerances. Such tolerances are difficult to maintain, particularly in view of the relatively small dimensions of some jet pipe receivers, their passages, and the divider portion between some passages therein. Further, the round cross section of the axially extending portions of the prior receiver structure passages have made prior jet pipe receivers sensitive to nozzle misalignment in the direction of extent of the divider portion.
Therefore, a good deal of waste material and machining hours have been accumulated in production of prior jet pipe receivers due to the tolerance limitations and size of such receivers and the usual method of production of the receivers by conventional machining. Also, the jet pipe receivers produced by conventional machining from solid metal have not been as uniform and therefore as efficient as desired and have been more expensive than necessary. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to the production of cellular organic silicate products produced by the chemical reaction of an alkali oxidated silicon compound, a substituted organic compound and a peroxide compound. The product produced by this invention will be referred to as a cellular organic silicate product.
Epoxy foam products were produced by the process found in U.S. patent application Ser. No. 06/892,834, filed by David H. Blount, M.D., solid organic alkali metal silicate compound by the process illustrated in U.S. Pat. Nos. 4,303,768; 4,321,184; 4,3332,578; 4,332,926; 4,346,180; 4,346,192 and 4,361,696. The epihalohydrin used in U.S. patent application No. 06/892,834 will not be used in this invention. In the process of this invention, the foam is produced by the release of oxygen from the peroxide which also oxidizes the oxidated silicon compound and initiates the reaction between the substituted compound and the alkali oxidated silicon compound. | {
"pile_set_name": "USPTO Backgrounds"
} |
Technical Field
The present invention relates to an optical element for use in an optical system of such equipment as various camera devices, projectors, and the like, a mold for preparing the optical element, and an optical device employing the optical element.
Related Art
The optical element for use in an optical system of the optical device is in general subjected to reflection prevention or antireflection treatment to minimize ghosting and flare. Typically, an antireflection film is formed on the surface of the optical element.
However, the antireflection film must be formed as multiple layers for higher performance. Multiple layer formation of antireflection film requires a number of processes, preparing time, and processing cost. That is, it is difficult to design and manufacture a high-quality antireflection film.
Recently, various approaches have been tried to provide resinous optical devices at reduced cost. However, forming an antireflection film on the resinous material adversely affects heat and humidity resistance due to poor adhesion compared to formation of the antireflection film on glass.
Accordingly, a subwavelength structure (SWS) as a reflection prevention structure has been explored as an alternative to the antireflection film. The subwavelength structure has a microstructure with a pitch or width smaller than the wavelength of the light whose reflection is to be prevented. The optical effect of the subwavelength structure depends on the shape and material of the specific microstructure employed. The microstructure is formed by a dry process alone and is appropriate for a cost-effective production.
In order to produce an optical element having a minute concavo-convex structure, use of a nanoparticle etching method is conceivable. Considering the antireflection effect with regard to light with a wide wavelength area or light of infrared wavelength (i.e., longer wavelength than visible light), an interval of a lattice having a minute concavo-convex shape should be defined so that the diffraction light does not occur due to the microstructure up to a specific incident angle in the permeation reflection. Specifically, the interval of the microstructure should be preferably shorter than 200 nm. On the other hand, the height of the lattice of the microstructure should be defined so that the refractive index changes more smoothly for the higher performance. As a result, the height of the microstructure should preferably be more than 200 nm. Accordingly, an effective antireflection effect relative to light with a wide wavelength or the long wavelength longer than the visible light requires an aspect ratio greater than 1 and a height greater than 200 nm. Such a microstructure is difficult to produce with. | {
"pile_set_name": "USPTO Backgrounds"
} |
This application claims the benefit of Korean Application No. 2000-4373, filed Jan. 28, 2000, in the Korean Patent Office, the disclosure of which is incorporated herein by reference.
1. Field of the Invention
The present invention relates to a cathode ray tube, and more particularly, to a beam index type cathode ray tube in which an optical detector and an index circuit part are protected from the influence of high frequency noises which are generated during the operation of the cathode ray tube, such that the distortion of index signals due to the high frequency noises may be prevented.
2. Description of the Related Art
In general, a beam index type cathode ray tube operates under a common principle that electron beams are generated, focused and accelerated in an electron gun and the beams are radiated on a phosphor screen to form images, except that functions per color section are performed through index stripes instead of a shadow mask.
FIG. 1 is a cross-sectional view of a related art beam index type cathode ray tube. The beam index type cathode ray tube includes a phosphor screen 3, and a pair of optical detectors 11 receiving index light signals through respective transparent light receiving windows 25 connected to a funnel 30. The phosphor screen 3 is formed with index stripes 7 having a predetermined interval therebetween. In FIG. 1, if an electron gun 1 emits an electron beam 5 toward the phosphor screen 3, the electron beam 5 excites one of the index stripes 7 so as to generate an optical pulse (an index light signal) 9 of an ultraviolet ray range, and the index light signal is detected by one of the optical detectors 11 to be converted to an index current signal. An index circuit part 13 controls deflection degrees and a current value of the electron beam by synchronizing the index current signal with a color signal, so that it realizes a desired color.
The index circuit part 13 comprises an index signal processing part 131 which processes the index current signal received from the optical detector 11, a deflection control circuit 133 which performs deflection control on the processed index current signal and provides the output to the deflection yoke 15, and a current density control circuit 135 which performs current density control on the processed index current signal and provides the output to the electron gun 1.
In the beam index type cathode ray tube as described above, the optical detectors 11, which are formed of general photo diodes, positioned in the vicinity of a deflection yoke 15 for effectively focusing the index light signals emitted from the index stripes 7, and the index circuit part 13 are connected to each other via either a wire having no ability to accomplish high frequency shut-off or a high frequency cable to transmit electrical signals.
Accordingly, the optical detector 11 for converting the index light signal 9 into an electrical signal and the wire or the high frequency cable for transmitting the electrical signal to the index circuit part 13 are subject to the influence of various high frequency noises including deflection signals of about 15.75 kHz, which are applied to the deflection yoke 15. Generally, these high frequency noises are above 10 kHz.
Therefore, when the cathode ray tube is operating, the index current signal is apt to be distorted due to the high frequency noises, disturbing precise output of a color switching signal, thereby resulting in the degradation of the quality of an image displayed on the beam index type cathode ray tube.
Further, the related art has a disadvantage in that the beam index type cathode ray tube includes one or two pairs of the optical detectors 11 for a large size cathode ray tube such that the index circuit part 13 should carry out another process for summing the index current signals provided from the respective optical detectors 11.
Also, there are further disadvantages in that the manufacturing cost is increased due to the use of expensive photo diodes and the outer structure of the cathode ray tube set is limited due to the problems relating to the size of the optical detector 11, attachment position thereof, and connection with the index circuit part 13.
It is an object of the present invention to provide a beam index type cathode ray tube in which an optical index circuit part may be protected from the influence of high frequency noises such that an index current signal is prevented from being distorted by high frequency noises.
It is another object to provide a beam index type cathode ray tube in which a single optical detector is employed such that a process for summing two or four index signals in an index circuit part may be omitted, thereby simplifying the arrangement of the index circuit part and reducing the manufacturing cost thereof.
It is a further object to provide a beam index type cathode ray tube in which positions of an optical detector and an index circuit part may be freely set, thereby simplifying and optimizing the design of the structure of the cathode ray tube.
Additional objects and advantages of the invention will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the invention.
In order to achieve the above and further objects of the present invention, a beam index type cathode ray tube includes a phosphor screen formed on an inner surface of a panel and having index stripes, an electron gun emitting electron beams toward the phosphor screen, an index light incident part formed on an outer peripheral surface of a light receiving window of a funnel to be provided with index light signals emitted from the index stripes via the light receiving window, an optical cable, connected to the index light incident part, transmitting an optical signal, an optical detector converting the light signal provided from the optical cable to an index current signal, and an index circuit part, synchronizing the index current signal with a color switching signal, transmitting a precise color switching signal to the electron gun, wherein a high frequency shut-off part is further included which shuts off the optical detector and the index circuit part to block influence of high frequency noises.
In the present invention described above, index light signals are provided via the index light incident part formed on the outer surface of the light receiving window, and transmitted to the optical detector via an optical cable without loss of light signals, and the optical detector is mounted in the high frequency shut-off part with the index circuit part.
Therefore, the optical detector and the index circuit part are shielding from the influence of the high frequency noises including the deflection signals, the arrangement of the index circuit part is simplified by using the single optical detector, and the construction of the cathode ray tube and TV set is optimized without any limitation in the attachment position of the high frequency shut-off part. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention concerns that of a new and improved portable tool storage apparatus for use by individuals to have both tool storage capabilities and easy mobility to move tools to various locations as needed. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
The embodiments disclosed herein generally relate to a device for driving a touch sensor. More specifically, the embodiments herein relate to a method and device for labeling a touch region of a display device which can reduce the time required for sensing multi-touch as well as reduce the required memory size for the touch region labeling.
2. Discussion of the Related Art
A touch sensor receives information as a result of a user touching a screen of various display devices. Touch sensors are widely applied to computer systems as an information input device. Touch sensors enables users to move or select displayed information by simple touch of the screen with a finger or a stylus.
The touch sensor senses a touch and a position on the screen of the display device corresponding to the touch. The touch sensor provides the touch information to a computer system that analyzes the touch information to carry out an associated action. Depending on sensing principles, in touch sensing technologies, there are various types of touch sensors such as a resistance membrane type, a capacitive type, optical type, an infrared type, an ultrasonic type, and an electro-magnetic type.
The touch sensor may be an on-cell touch sensor which is fabricated in a display panel and attached on an upper side of the display device, or an in-cell touch sensor which is built in a pixel matrix of the display device. A photo touch sensor perceives touch with a photo-transistor according to intensity of a light whereas a capacitive touch sensor perceives touch according to capacitive variation. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention is concerned primarily with crop roll forming machines. Specifically it is concerned with such apparatus which improve the core formation of crop material rolls and collect crop material particles lost from the crop package or loose crop material during the roll formation process and recycle those particles back into the roll forming region for inclusion within the completed roll package.
Historically it has been the custom to harvest forage crops by moving the crops, letting them dry in the field, forming the dried crop material into windows and passing a hay-baling machine over and along those windrows to form the crop material into rectangular bales. Recent practice has shown that the formation of crop materials into large compact rolls, rather than rectangular bales as formerly done, permitted the crop material to be deposited in roll form and left in fields for extended periods of time since the rolled material tends to provide a self-shedding protective covering from inclement weather. The ability to leave these rolled bales in fields thus obviated the additional steps of gathering the rectangular bales and transporting them to a storage area protected from the elements.
Several methods for forming compact rolls of crop material have evolved through the years. In one of these methods, a machine rolls a swath or windrow of crop material along the ground until a roll of desired size is obtained. Examples of machines utilizing this principle are shown in prior U.S. Pat. No. 3,110,145, dated Nov. 12, 1963. Another similar machine comprises the subject matter of prior U.S. Pat. No. 3,650,100, dated Mar. 21, 1972. One of the principal difficulties in using this method of forming rolls of crop material is that a certain amount of the material remains upon the ground without being included in the roll. Furthermore, dirt, clods of earth, stones and the like can also be picked up by the roll and included therein. This is undesirable under certain circumstances.
A later, and more successful, method of forming crop rolls comprises a machine in which a swath or windrow of material is picked up from the field and directed onto a lower conveyor. This conveyor transports the material to a roll forming region where an upper apron or flight of belts, usually positioned above and adjacent the conveyor, moves in a suitable direction to rotate the crop material with which it contacts. It has been a continuing problem for this type of roll forming machine to obtain an easily started compact roll core. Similarly, the loss of crop particles from this type of machine has been a lingering concern. Variations of this type of crop roll forming machine are illustrated in U.S. Pat. No. 3,859,909 to Mast, dated Jan. 14, 1975 and U.S. Pat. No. 3,722,197 dated Mar. 27, 1973. An improvement of the former type of machine as shown in prior U.S. Pat. No. 3,866,531 to Todd, dated Feb. 18, 1975, attempted to solve these problems through the use of leaf springs.
The increasing popularity of crop roll forming machines has seen their use broaden from rolling wintering forage for livestock to rolling high protein crops, such as alfalfa, for dairy livestock where the amount of crop material loss is critical. In this latter area especially, interest in the amount of high nutrient crop material lost during roll formation has intensified.
Additionally, crop roll forming machines have been used in a wider range of crop materials, thus presenting varying core formation problems peculiar to each type of crop. Roll forming machines of the type taught in Todd with leaf springs have proven extremely effective in virtually all types of crops. However, minor difficulties have been experienced with some crops that are short and extremely dry and brittle. Since the leaf springs are motionless they occasionally form a dead area where these extremely short, dry, and brittle crops accumulate since the crops are too brittle to withstand being raised through the vertical distance required for them to come to contact with the live, motion-imparting bale forming means. Such brittle crops occasionally will continue to build up until the roll forming machine becomes less efficient. A similar core forming problem can occur in this type of machine when used in loosely packed, low windrows. Such conditions will delay the formation of a core for the rolled crop material since there will be insufficient crop material being fed by the pickup means onto the floor and transported back to the leaf springs to be forced up and over the leaf springs into contact with the live bale forming means. Crop material, in this instance, will remain on the leaf springs until sufficient quantities of material are fed back to force the material up and over the leaf springs into contact with the bale forming means.
The foregoing problems are solved in the design of the machine comprising the present invention by substantially decreasing the amount of crop material lost during the roll formation process and by allowing the usage of the roll forming machine in a wider range of crops, such as corn, maize stubs and hay, with improved core formation. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field
One embodiment of the invention relates to a spatial light modulator unit, an illumination optical system, an exposure device, and a device manufacturing method.
2. Description of the Related Art
In a typical exposure device of this kind, a light beam outputted from a light source travels through a fly's eye lens as an optical integrator to form a secondary light source (in general, a predetermined light intensity distribution on an illumination pupil) as a substantial surface illuminant consisting of a large number of light sources. In the description hereinafter, the light intensity distribution on the illumination pupil will be referred to as “pupil intensity distribution.” The illumination pupil is defined as a position such that an illumination target surface becomes a Fourier transform plane of the illumination pupil by action of an optical system between the illumination pupil and the illumination target surface (which is a mask or a wafer in the case of the exposure device).
Rays from the secondary light source are condensed by a condenser optical system to illuminate the mask with a predetermined pattern thereon in a superimposed manner. The light passing through the mask is focused through a projection optical system on the wafer and the mask pattern is projected and exposed (transferred) onto the wafer. Since the pattern formed on the mask is a highly integrated one, it is essential to obtain a uniform illuminance distribution on the wafer, in order to accurately transfer the fine pattern onto the wafer.
There is a conventionally proposed illumination optical system capable of continuously changing the pupil intensity distribution (and the illumination condition eventually) (cf. U.S. Patent Application Laid-Open No. 2009/0116093). The illumination optical system disclosed in U.S. Patent Application Laid-Open No. 2009/0116093 uses a movable multi-mirror system consisting of a large number of microscopic mirror elements arranged in an array form and individually driven and controlled in their inclination angle and inclination direction, to divide an incident beam into small unit rays by respective reflecting faces thereof and deflect the small unit rays, whereby the cross section of the beam is converted into a desired shape or a desired size, so as to realize a desired pupil intensity distribution. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates mainly to a digital subscriber set, a subscriber terminal for use in a time shared bidirectional digital communication network, such as a time shared two-wire digital communication network.
As described in, for example, an article contributed by Jan Meyer, Terje Roste, and Roald Torbergsen to IEEE Transactions on Communications, Vol. COM-27, No. 7 (July 1979), pages 1096-1103, under the title of "A Digital Subscriber Set," with reference to FIGS. 2, 3, 8, and 14 thereof in particular, a time shared two-wire digital communication network comprises a plurality of master terminals, a plurality of subscriber terminals, and a plurality of conventional two-wire communication or subscriber lines between the master and the subscriber terminals. The master terminal may be a line circuit (subscriber circuit) of a digital telecommunication exchange or a like circuit.
As will become clear as the description proceeds, a subscriber terminal according to this invention is usable in a more general time shared bidirectional digital communication network. The subscriber terminal may be connected to a master terminal through a more general communication channel. Merely for brevity of description, the network and the master terminal will be restricted in the following to a time shared two-wire digital communication network and to a line circuit in a central office of the network. The communication channel will be called a communication line.
Speech and/or data information to be exchanged between a pair of subscriber terminals and consequently between each subscriber terminal and a counterpart master terminal, is bidirectionally transmitted as digital signal bursts through an interconnecting communication line. The data information may be given by facsimile signals. Inasmuch as this invention relates mainly to a subscriber terminal, the signal bursts received thereby from and sent therefrom to the communication line will be referred to as digital "receive" signal bursts and digital "send" signal bursts.
In order to separate the two transmission types on the communication line by time division, the receive and the send signal bursts are alternately received from the communication line and sent thereto by a subscriber terminal at a predetermined repetition frequency, herein called a frame frequency. In other words, the communication line transmits successive receive or send signal bursts, one in each frame period. Each signal burst consists of a predetermined number of consecutive signal bits of a bit rate defined by clocks. The information is encoded into the signal bits and decoded therefrom at the subscriber terminal. Such operation of the subscriber terminal must be timed by the frame periods and the clocks. In other words, the operation must be synchronized with phases of the frame periods and the clocks, herein termed a frame phase and a bit phase.
On initiating a call from a subscriber terminal, a call originating signal is sent to a master terminal as at least one send signal burst. It has been the practice that the central office always delivers receive signal bursts to all subscriber terminals in the network in order to synchronize the call originating signal with the frame and the bit phases. This is objectionable in view of the power consumption at the central office, which usually remotely feeds the subscriber terminals in the network.
An improved subscriber terminal has therefore been proposed to reduce the power consumption. However, the improved subscriber terminal is bulky and heavy and must comprise a hook switch pair as will later be described with reference to one of of the accompanying drawing.
However much the subscriber terminal might be improved, the receive and the send signal bursts will still be out of frame and/or clock synchronism at the beginning of call origination. Even during communication, the signal bursts may go out of synchronism. For the best possible performance of a time shared two-wire digital communication network, such loss of synchronism must be corrected within the shortest possible interval of time.
Hook switch pairs have been used since very early stages of development of telephones (and are still called by the name of "hook" even in a telephone set where an actual hook is no longer used). Although the hook switch pair is highly reliable, it often causes trouble in the telephone network. The trouble occurs when a handset of the subscriber terminal is misplaced on the "hook." In a telephone set in which a microphone and a loudspeaker are substituted for a conventional handset, the hook switch pair is no longer indispensable. | {
"pile_set_name": "USPTO Backgrounds"
} |
Photodegradable plastic films have also been known are known and more recently so-called biodegradable plastic films. The photodegradable plastic films are are obtained by introducing photoactive additives into a basic material which can be a polyolefin, for example. Generally, these additives are form by molecules containing oxygen and/or heavy metals the role of which is to initiate the formation of free radicals under the action of ultraviolet (UV) radiation; these radicals cause a rupture of the chains of the polymer and therefore make the polymer fragile, by making it weak and therefore mechanically degradable.
However, the use of certain additives which are strongly oxidizing causes the degradation to start immediately after the manufacture of the films, which has for consequence to reduce the storage capacity either of the master mixtures or of the films.
It should be noted that in agricultural uses of photodegradable films, portions of the films which are buried in the ground are protected from UV radiation and therefore not altered and not mechanically degradable, which has for its consequence to increase the scraps.
With respect to the biodegradable plastic films, they are obtained by the introduction of a so-called biodegradable organic filler such as starch which, consumed by the microorganisms, will make in turn the film fragile and therefore more easily degradable under the influence of the UV radiation.
The addition of starch as a consumable filler for microorganisms has consequences both concerning the fabrication of the film and in its mechanical properties; actually: starch is partially decomposed as soon as a temperature of 180.degree. C. is reached during the extrusion operation used in making the film; starch is not compatible with the polymers and therefore embrittles the films. Finally, the granulometry of the industrially available starch does not permit making films of small thickness. Yet, the thickness is an element of the cost price of the film, but also a parameter which governs the degradation speed of the film. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a portable nature stand, and more particularly to a stand of the type which can be transported into an area such as a forest having many trees and which can be easily mounted in operative position so as to provide a safe and comfortable vantage point from which to observe nature. Such stands are used by photographers or hunters and are often referred to as a deer stand or tree stand.
Stands of this type can, of course, also be employed with upright wooden poles or the like, but the most common use is with trees having a diameter on the order of five inches or more. The stand should be of lightweight construction and be capable of being readily assembled and disassembled without the use of any tools. Nature stands are utilized with trees of many different sizes and configurations. Prior art stands have the disadvantage that they often are not suitable for use with trees having unusual shapes and trees that have many low branches or divided trunks. Furthermore, prior art stands make undesired noises or may have components thereof damaged upon movement of the associated tree caused by wind. It is therefore desirable to eliminate any undesired noises and possible damage to the stand irrespective of movement of the tree to which it is attached. | {
"pile_set_name": "USPTO Backgrounds"
} |
An important class of problems amenable to machine learning is classification, that is, the unique assignment of input samples to a finite number of categories (or associated output labels) to which they belong. For example, in optical character recognition (OCR), input images assumed to represent characters, such as letters or numbers, receive distinct labels from a finite list of characters (e.g., alphanumeric characters). As another example, in speech recognition tasks, human voice recordings are transcribed into unambiguous text. These and other classification tasks can be automated using a suitable classifier model that either predicts unique output labels for the input samples directly, or specifies a probability distribution over all output labels for each input sample (allowing unique output labels to be determined, e.g., by selecting the label with the greatest probability). In machine learning, the model is initially provided in parametric form, and the parameters of the model are adjusted based on training data. Supervised machine learning utilizes labeled training data in which each of a set of training input samples is paired with a corresponding known output label. Providing a sufficiently large set of such pairs of input sample and output label often requires a significant manual labeling effort. Accordingly, there is a strong interest in unsupervised machine learning approaches that allow training classifiers without labeled training data. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
Embodiments disclosed herein generally relate to wellbore fluids for forming and subsequently removing filtercake residue from subterranean formations.
2. Background Art
During the drilling or completion of an oil and gas well, the walls of oil and gas formations are often exposed to wellbore fluids which may damage producing formations. To prevent such damage, a wellbore often requires the deposit of a low-permeability filtercake on the walls of the wellbore to seal the permeable formation exposed by the drilling operation. The filtercake functions to limit drilling fluid losses from the wellbore as well as protect the formation from possible damage by the fluids filtering into the walls of the wellbore. Solids, such as particulate fines, suspended in the drilling fluid may also contribute to damaging hydrocarbon producing formations.
To protect formations from damaging fluids and solids, a filtercake is formed and/or deposited on the surface of the subterranean formation. Filtercakes are formed when particles suspended in a wellbore fluid coat and plug the pores in the subterranean formation such that the filtercake prevents or reduce both the loss of fluids into the formation and the influx of fluids present in the formation. A number of ways of forming filtercakes are known in the art, including the use of bridging particles, cuttings created by the drilling process, polymeric additives, and precipitates. Fluid loss pills may also be used where a viscous pill comprising a polymer may be used to reduce the rate of loss of a wellbore fluid to the formation through its viscosity
After drilling or completion operations have been completed, removal of filtercake (formed during drilling and/or completion) remaining on the sidewalls of the wellbore may be necessary. Although filtercake formation and use of fluid loss pills are essential to drilling and completion operations, the barriers can be a significant impediment to the production of hydrocarbon or other fluids from the well if, for example, the rock formation is still plugged by the barrier. Because filtercake is compact, it often adheres strongly to the formation and may not be readily or completely flushed out of the formation by fluid action alone.
Typically filtercake residue is removed by filling the open hole section with a clean up fluid (often referred to as a breaker fluid) that attacks the filtercake. In some situations, such as wells with gravel packed completions or other types of screen/slotted liners, ensuring that the treatment effectively contacts the filtercake on the wellbore face can present challenges. For example, in the case of unconsolidated formations, where it is often desirable to gravel pack the wellbore after drilling an interval but before the filtercake is completely removed, the act of gravel packing the wellbore may further limit the fluid's contact with the filtercake, as it both reduces the physical volume of fluid that can be present in the zone and restricts direct flow to the filtercake. As a consequence, the effectiveness of the breaking of the filtercake is dramatically reduced.
One of the most problematic issues that exist with many of the methods used by the prior art references in removing the filtercake downhole, includes the problem of controlling the breaking of the filtercake so that production fluids may not enter the wellbore before the entire, or at least most, of the filtercake is degraded. When degrading a filtercake with a breaker fluid, the breaker fluid may not have completely covered the entire interval of exposed formation, causing premature flowing of production fluids or the loss of breaker fluids into the formation from one portion of the interval before another portion has even been exposed to breaker fluid.
Accordingly, there exists a continuing need for wellbore fluids that effectively remove filtercake residue and debris in subterranean formations after drilling or completing a well. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a printed circuit board having fuse housings; and an electric junction box for vehicles that houses a printed circuit board having fuse housings. More particularly, output terminals, which project into the fuse housings provided in a plurality of tiers in the electric junction box, include terminals projecting from the printed circuit board housed in the electric junction box; and input terminals include terminals extending from bus bars.
2. Description of Related Art
Japanese Patent Laid-open Publication No. 2006-187052 discloses a conventional electric junction box of such a type, wherein terminals connected to a printed circuit board housed therein project inside a fuse housing. For such an electric junction box, the terminals are fixed to a fuse holder in advance, and the fuse holder to which the terminals are fixed is mounted on the printed circuit board. When mounted on the printed circuit board, the fuse holder is positioned thereon, thereby allowing the terminals fixed to the fuse holder to accurately fit onto and pass through terminal holes in the printed circuit board. The terminals passed through the respective terminal holes are then fixed with soldering, press-fitting, or the like.
Further, when the printed circuit board is positioned horizontally in the electric junction box, and the terminals projecting into the fuse housing project into the fuse housing provided on a side surface of the electric junction box, the terminals are passed through and fixed to the fuse holder, and then are bent orthogonally, so that the other end is connected to the printed circuit board.
When fuse housings are provided in a plurality of tiers, and a fuse is included having an allowable current capacity of 15 A or less, however, it is difficult to form an input terminal of the fuse as a terminal projecting from the printed circuit board, since the current capacity of the terminal connected to the printed circuit board is small. Conversely, when a fuse having greater than 15 A is used, an input terminal, similar to an output terminal, can be formed of a terminal connected to the printed circuit board and project into the fuse housings. As described above, when fuses having different capacities are provided in the fuse housings having a plurality of vertically-stacked tiers, it is difficult to press-fit or insert-form a bus bar terminal, which has a large and complicated shape, into a fuse holder (fuse case) in advance, and then to bend the bus bar to into an L shape. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates generally to brake systems, and more specifically to devices for positioning discs within brake systems.
Most conventional disc brake systems have a fixed brake disc and a caliper configuration with a piston and a cylinder. The caliper includes a sliding bridge which slides on pins and a pair of brake pads. An outer brake pad is on an outboard end (wheel side) of the bridge, and an inner brake pad is on an inboard end (chassis side) of the bridge. The fixed brake disc is located between the outer brake pad and the inner brake pad and is fixed rotatably and axially fast with a shaft connected to a wheel.
When the brake is operated, the piston engages and slides the inner brake pad along the bridge into contact with an inside face of the fixed brake disc. A reaction force causes the slidable caliper to slide on the pins and force the outer brake pad into contact with an outer side of the fixed brake disc. Equal forces are applied to the brake disc from the outer pad and the inner pad. Frictional engagement of the brake disc with the brake pads causes deceleration of the clamped disc and therefore decelerates the connected wheel and consequently the vehicle. When the brake is released, the brake pads return to a position where there is a running clearance between the brake pads and the fixed brake disc.
Therefore, the present invention provides an improved braking system. | {
"pile_set_name": "USPTO Backgrounds"
} |
The preparation of 5-chlorocarbonyl-5H-dibenz[b,f]azepine (CCDA) (I) from iminostilbene or 5H-dibenz[b,f]azepine of formula (III) ##STR3## was described for the first time by W. Schindler in German DAS No. 1,136,707, and in Swiss patent No. 54,023.
According to this method, the iminostilbene of formula (III) is suspended in toluene. Phosgene is introduced into the suspension while heating the reaction mixture to 70.degree. C. Then the reaction mixture is refluxed during the further addition of phosgene, and is kept at boiling until the iminostilbene completely reacted and the evolution of hydrogen chloride has ceased. The introduction of phosgene is discontinued as soon as the reaction solution is free of iminostilbene. Excess phosgene is removed from the reaction mixture with dry nitrogen or dry air, such as is described in German DAS No. 1,001,271, in which the excess phosgene is blown out with dry air at the end of the phosgenation of 5H-10,11-dihydro-dibenz[b,f]azepine, or iminodibenzyl.
The so detoxified reaction solution, is worked up in a manner known per se and then the CCDA of formula (I) is recovered by crystallization is amidized in a manner known per se to the carbamazepine of formula (II). The known methods all use an inert, anhydrous solvent such as toluene, chlorobenzene or o-dichlorobenzene at temperatures above 100.degree. C. See, for example, the patents referred to in the survey article by B. Renfroe, C. Harrington and G. R. Proctor in "Heterocyclic Compounds", Vol. 43, "Azepines", part I, published by John Wiley & Sons, NY, 1984, page 524, Table 118.
In all known industrial methods the iminostilbene hydrochloride formed by the phosgenation is thermally dissociated into hydrogen chloride gas and free iminostilbene. This is carried out by heating the reaction mixture to the boiling point in an inert solvent, and introducting phosgene under reflux conditions.
The known high temperature phosgenations are all carried out at 100.degree. C. and higher temperatures, to achieve a complete phosgenation of the iminostilbene, or the iminodibenzyl.
The known methods of synthesizing carbamic acid chlorides from secondary amines are summarized in a table in the Houben-Weyl organic chemistry methodology mannual (vol. E 4pages 46-50, Georg Thieme Verlag, Stuttgart, N.Y., Publisher, 1983). Usually especially aromatic hydrocarbons, such as benzene, toluene or chlorobenzene are used as solvent. Methods have also been described, in which the reaction is carried out in chloroform, in 1,4-dioxane, and in ethyl acetate. If the reaction is carried out at low temperatures, only half of the amine is converted into the desired carbamic acid chloride when the phosgene is passed into a solution of the secondary amine in an inert solvent. This is because the hydrogen chloride liberated during the reaction, converts the other half of the amine into the hydrochloride. The amine hydrochloride precipitates in crystalline form. Therefore, the yield of the carbamic acid chloride can even in the most favorable case amount only to 50%.
Since the work of H. Erdmann and P. Huth (J. Prakt. Chem. (2) 56, 7, 1897), it is known that the conversion can be completed if an inert, anhydrous base, such as pyridine, is used in an at least equimolar amount.
According to Houben-Weyl (see above) in addition to pyridine, triethylamine and of course, the amine itself that is to be reacted are suitable as inert bases. The cold phosgenation becomes more costly since at least equimolar amounts of inert base are always required. The process is costly because the amine hydrochloride has to be separated out for recovering the inert base. Therefore, the cold phosgenation in the presence of inert auxiliary bases is of importance only for the reaction of temperature sensitive, secondary amines, which increasingly tend to undergo undersirable side reactions at the high temperatures of the hot phosgenation.
In industry, the reaction is preferably carried out at temperatures above 100.degree. C. In this connection Houben-Weyl (see above) states that "[A]dvantageously, the reaction mixture is heated to temperatures above 100.degree. C. while further phosgene is introduced, and the entire amine chloride is converted into the carbamic acid chloride." In this thermal dissociation the hydrogen chloride gas carries along appreciable amounts of phosgene. Therefore, the off-gas decontamination must be detoxified and destroyed in special off-gas equipment. Such a procedure can seriously endanger the environment in the case of an accident, because of the danger presented by the extremely poisonous nature of phosgene which is a gas under ambient conditions.
The procedure of high temperature phosgenation has, the following more significant serious disadvantages:
the burden of having to deal with large amounts of liberated hydrogen chloride off-gas, including phosgene, and the entrained solvent vapors, and the resulting environmental protection problems; PA0 long reaction times of more than 18-24 hours in contact with highly corrosive media; PA0 a number of side reactions, and the dark coloration of the reaction product resulting in a low quality of the carbamazepine end product; and PA0 increasing formation of unwanted 9-methylacridine byproduct temperatures above 90.degree. C. represents a contraction of the 7-membered ring of the iminostilbene.
Only at temperatures of about 90.degree. C. does the thermal dissociation of the iminostilbene hydrochloride into free iminostilbene and hydrogen chloride gas proceed sufficiently rapidly to achieve reaction times, which are acceptable for industrial purposes. However, iminostilbene is a temperature sensitive amine. Therefore, iminostilbene is suitably phosgenated by the method of Schnidler described in the aforementioned German DAS No. 1,136,707.
The process variant preferred by Schindler is dividing the phosgenation into two stages, a cold phosgenation stage resulting in an about 50% conversion in the first phase, and a hot phosgenating stage. Conversion carried out in a second stage has clear advantages over a direct single stage hot phosgenation, because the yields are appreciably increased in this manner, the side reactions that take place above 90.degree. C. are suppressed, and the quality and color of the end product are improved. Nevertheless, the aforementioned disadvantages continue to exist in the second stage of the reaction, i.e. from the start of the heating to 90.degree. C. and during the thermal dissociation of the iminostilbene hydrochloride until the end of the reaction.
An excess of phosgene is introduced into the reaction mixture to utilize the gentle reaction conditions of the first, the cold phosgenating stage as much as possible. A pressure surge can occur if the reaction mixture is heated subsequently to dissociate thermally the iminostilbene hydrochloride. This dangerous possibility is also mentioned in Houben-Weyl (volume E 4, page 744).
When a pressure surge occurs, the spontaneously released hydrogen chloride gas also carries along appreciable amounts of phosgene. Therefore, the apparatus for destroying or detoxifying the off-gases must be sufficiently large to avoid the release of phosgene into the atmosphere.
The reaction is advisably carried out at temperatures of between 90.degree. C. and 100.degree. C. to suppress the unwanted side reactions and the formation of the methylacridine byproduct. The phosgenation proceeds sufficiently rapidly at this temperature. However, the partial pressure of the phosgene is appreciably increased at the higher temperature, compared to that of the cold phosgenation, therefore it is not possible to prevent the steady escape of large quantities of phosgene being carried along by the liberated hydrogen chloride. This can, of course, be also realized from the fact that appreciably less time is required for the conversion of the first half of the iminostilbene in the cold phosgenation stage, than for the conversion of the second half in the hot phosgenation stage.
The reaciton solution has to be detoxified after the complete conversion of the iminostilbene. The excess phosgene is blown out of the reaction solution with dry nitrogen as a rule, or a portion of the solvent is distilled off until the reaction mixture is free of phosgene. This detoxification method has the disadvantage that phosgene can leak into the atmosphere if there are any leaks due to the high gas pressure in the apparatus. Therefore, in the long run there is a constant danger of atmospheric contamination by the escaping phosgene.
Other methods are also known for preparing CCDA. These other methods start from 10,11-dihydro-5H-dibenz[b,f]azepine, or iminodibenzyl of formula (IV) ##STR4## In this connection see British patent No. 1,246,606 and East German patents Nos. 82,719; 100,948; 101,671; 102,149; 102,150; 102,151; 108,535; 133,052; 234,862 Al: and 234,863 Al. According to the methods described in these references, iminodibenzyl is reacted with phosgene in a boiling, inert, aromatic solvent, preferably toluene, or chlorobenzene. Phosgene is introduced into the refluxing material. Thus these methods also employ hot phosgenation with all of its attendant disadvantages.
The resulting 5-chlorocarbonyl-5H-10,11-dibenz[b,f]-azepine of formula (V) ##STR5## is reacted in an inert organic solvent with elemental bromine, or is otherwise subjected to selective bromination and the corresponding 10-monobromo derivative formula (VI) ##STR6## and/or the 10,11-dibromo-derivative formula (VII) ##STR7## is formed.
The bromo compounds (VI) and/or (VII) are subsequently dehydrobrominated and/or are thermally debrominated. A partial exchange (30-40%) of the chlorine atom of the 5-chlorocarbonyl group for a bromine atom takes place during such a thermal process. Due to the required high reaction temperatures (150.degree. C.-170.degree. C.) and because of the liberated bromine, these drastic reaction conditions necessarily lead to uncontrollable side reactions, such as bromination of the ring, resinification, cracking, and discoloration.
Thus the CCDA prepared by these processes contains, in addition to numerous, particularly bromine-containing, byproducts also some greasy, tarry, colored contaminants, the removal of which requires an undue effort.
The nature and structure of these byproducts is not known. The customary purification methods lead to appreciable losses.
No purification method was known until now, which can economically solve the problem of the residual bromine content. Thus, as determinedly high pressure liquid chromatography, the CCDA so prepared is present the average in an amount of 90%, and the precursor for the carbamazepine end product, contains about 10% impurities. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a material for a Bi—In—Sn thermal fuse element, and also to an alloy type thermal fuse.
An alloy type thermal fuse is widely used as a thermo-protector for an electrical appliance or a circuit element, for example, a semiconductor device, a capacitor, or a resistor.
Such an alloy type thermal fuse has a configuration in which an alloy of a predetermined melting point is used as a fuse element, the fuse element is bonded between a pair of lead conductors, a flux is applied to the fuse element, and the flux-applied fuse element is sealed by an insulator.
The alloy type thermal fuse has the following operation mechanism.
The alloy type thermal fuse is disposed so as to thermally contact an electrical appliance or a circuit element which is to be protected. When the electrical appliance or the circuit element is caused to generate heat by any abnormality, the fuse element alloy of the thermal fuse is melted by the generated heat, and the molten alloy is divided and spheroidized because of the wettability with respect to the lead conductors or electrodes under the coexistence with the activated flux that has already melted. The power supply is finally interrupted as a result of advancement of the spheroid division. The temperature of the appliance is lowered by the power supply interruption, and the divided molten alloys are solidified, whereby the non-return cut-off operation is completed.
2. Description of the Prior Art
Conventionally, a technique in which an alloy composition having a narrow solid-liquid coexisting region between the solidus and liquidus temperatures, and ideally a eutectic composition is used as such a fuse element is usually employed, so that the fuse element is fused off at approximately the liquidus temperature (in a eutectic composition, the solidus temperature is equal to the liquidus temperature). In a fuse element having an alloy composition in which there is a solid-liquid coexisting region, namely, there is the possibility that the fuse element is fused off at an uncertain temperature in the solid-liquid coexisting region. When an alloy composition has a wide solid-liquid coexisting region, the uncertain temperature width in which a fuse element is fused off in the solid-liquid coexisting region becomes large, and the operating temperature is largely dispersed. In order to reduce the dispersion, therefore, the technique in which an alloy composition having a narrow solid-liquid coexisting region, and ideally a eutectic composition is used is usually employed.
Because of increased awareness of environment conservation, the trend to prohibit the use of materials harmful to a living body is recently growing as a requirement on an alloy type thermal fuse. Also an element for such a thermal fuse is requested not to contain a harmful material.
As an alloy composition for such a thermal fuse element, known is a Bi—In—Sn system. Conventionally, known are alloy compositions such as that of 47 to 49% Sn, 51 to 53% In, and the balance Bi (Japanese Patent Application Laying-Open No. 56-114237), that of 42 to 44% Sn, 51 to 53% In, and 4 to 6% Bi (Japanese Patent Application Laying-Open No. 59-8229), that of 44 to 48% Sn, 48 to 52% In, and 2 to 6% Bi (Japanese Patent Application Laying-Open No. 3-236130), that of 0.3 to 1.5% Sn, 51 to 54% In, and the balance Bi (Japanese Patent Application Laying-Open No. 6-325670), that of 33 to 43% Sn, 0.5 to 10% In, the balance Bi (Japanese Patent Application Laying-Open No. 2001-266723), that of 40 to 46% Sn, 7 to 12% Bi, the balance In (Japanese Patent Application Laying-Open No. 2001-266724), that of 2.5 to 10% Sn, 25 to 35% Bi, the balance In (Japanese Patent Application Laying-Open No. 2001-291459), and that of 1 to 15% Sn, 20 to 33% Bi, and the balance In (Japanese Patent Application Laying-Open No. 2001-325867).
When the liquidus phase diagram of a ternary Bi—In—Sn alloy is obtained, there are a binary eutectic point of 52In-48Sn and a ternary eutectic point of 21Sn-48In-31Bi, and the binary eutectic curve which elongates from the binary eutectic point toward the ternary eutectic point passes approximately through a frame of 24 to 47 Sn, 50 to 47 In, and 0 to 28 Bi.
As well known, when a heat energy is applied to an alloy at a constant rate, the heat energy is spent only in raising the temperature of the alloy as far as the solidus or liquidus state is maintained. When the alloy starts to melt, however, the temperature is raised while part of the energy is spent in the phase change. When the liquidification is then completed, the heat energy is spent only in temperature rise while the phase state is unchanged. The temperature rise/heat energy state can be obtained by a differential scanning calorimetry analysis [in which a reference specimen (unchanged) and a measurement specimen are housed in an N2 gas-filled vessel, an electric power is supplied to a heater of the vessel to heat the samples at a constant rate, and a variation of the heat energy input amount due to a state change of the measurement specimen is detected by a differential thermocouple, and which is called a DSC].
Results of the DSC measurement are varied depending on the alloy composition. The inventor measured and eagerly studied DSCs of Bi—In—Sn alloys of various compositions, and unexpectedly found the following phenomenon. When an alloy composition in a specific region which is separated from the binary eutectic curve is used as fuse elements, the fuse elements can be concentrically fused off in the vicinity of the maximum endothermic peak, and excellent overload characteristic and dielectric breakdown characteristic are obtained.
By contrast, also the followings were known. In the case where a composition which is along or in the vicinity of the binary eutectic curve is used as fuse elements, even when the fuse elements can be concentrically fused off at concentrated temperatures by the usual technique, satisfactory overload characteristic and dielectric breakdown characteristic are hardly obtained.
The overload characteristic means external stability in which, even when a thermal fuse operates in an raised ambient temperature under the state where a current and a voltage of a specified degree are applied to the thermal fuse, the fuse is not damaged or does not generate an arc, a flame, or the like, thereby preventing a dangerous condition from occurring. The dielectric breakdown characteristic means insulation stability in which, even at a specified high voltage, a thermal fuse that has operated does not cause dielectric breakdown and the insulation can be maintained.
A method of evaluating the overload characteristic and the dielectric breakdown characteristic is specified in IEC (International Electrotechnical Commission) Standard 60691 which is a typical standard, as follows. When, while a rated voltage×1.1 and a rated current×1.5 are applied to a thermal fuse, the temperature is raised at a rate of 2±1 K/min, to cause the thermal fuse to operate, the fuse does not generate an arc, a flame, or the like, thereby preventing a dangerous condition from occurring. After the thermal fuse operates, even when a voltage of the rated voltage×2+1,000 V is applied for 1 min. between a metal foil wrapped around the body of the fuse and lead conductors, and, even when a voltage of the rated voltage×2 is applied for 1 min. between the lead conductors, discharge or dielectric breakdown does not occur. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to an image forming apparatus with document size detection and, more particularly, to an image forming apparatus most suitable for, e.g., an electronic copying machine which optically scans a document to obtain image data to be formed.
As is well known, in electronic copying machines, a detection means for detecting a document size placed on a document table (transparent glass) has been developed. The detecting means has a plurality of light emitting elements and light receiving elements installed at the back surface side of the document table along the longitudinal direction thereof. A document cover is closed and light is radiated from the light emitting elements onto the document table. Light reflected from a document placed on the document table and the document cover is detected by the light receiving elements. A document size is determined by detecting level changes in output signals of the light receiving elements.
In the conventional arrangement, the light emitting and receiving elements corresponding to a document size must be installed at the back surface side of the document table. Therefore, a large number of light emitting and receiving elements are required. In addition, space for installing these elements must be guaranteed.
Furthermore, a surface of the document cover facing the document table is normally white. When the above detection operation is performed while the document cover is closed, there is no significant difference between amounts of light reflected from a document and the document cover. Therefore, it is difficult to reliably detect the document size.
An electronic copying machine normally has a function for copying a document image on a copying sheet with or without a reduction or enlargement mode. If a document image has an unnecessary portion for image formation, a conventional copying machine cannot copy an image without the unnecessary portion. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to nuclear magnetic resonance (NMR) imaging methods and systems. More specifically, this invention relates to radio frequency (RF) coils used with such apparatus for transmitting and receiving RF signals.
In NMR imaging, a uniform magnetic field B.sub.O is applied to the imaged object along the z axis of a Cartesian coordinate system, the origin of which is centered within the imaged object. The effect of the magnetic field B.sub.0 is to align the object's nuclear spins along the z axis. In response to an RF magnetic signal of the proper frequency, oriented within the x-y plane, the nuclei precess about the z-axis at their Larmor frequencies according to the following equation: EQU .omega.=.gamma. B.sub.0
where .omega. is the Larmor frequency, and .gamma. is the gyromagnetic ratio which is constant and a property of the particular nuclei. Water, because of its relative abundance in biological tissue and the properties of its nuclei, is of principle concern in such imaging. The value of the gyromagnetic ratio .gamma. for water is 4.26 khz/gauss and therefore in a 1.5 Tesla polarizing magnetic field B.sub.0 the resonant or Larmor frequency of water is approximately 63.9 Mhz.
In a typical imaging sequence, the RF signal centered at the Larmor frequency .omega., is applied to the imaged object by means of a radio frequency (RF) coil. A magnetic field gradient G.sub.z is applied at the time of this RF signal so that only the nuclei in a slice through the object along the x-y plane, which have a resonant frequency .omega., are excited into resonance.
After the excitation of the nuclei in this slice, magnetic field gradients are applied along the x and y axes. The gradient along the x axis, G.sub.x, causes the nuclei to precess at different resonant frequencies depending on their position along the x axis, that is, G.sub.x spatially encodes the precessing nuclei by frequency Similarly, the y axis gradient, G.sub.y, is incremented through a series of values and encodes y position into the rate of change of phase as a function of gradient amplitude, a process typically referred to as phase encoding.
A weak RF signal is generated by the precessing nuclei may be sensed by the RF coil and recorded as an NMR signal. From this NMR signal, a slice image may be derived according to well known reconstruction techniques. An overview NMR image reconstruction is contained in the book "Magnetic Resonance Imaging, Principles and Applications" by D. N. Kean and M. A. Smith.
The quality of the image produced by NMR imaging techniques is dependent, in part, on the strength and uniformity of the RF signal used to excite the nuclei. The strength of the RF magnetic signal directly affects the signal-to-noise ratio of the resultant image. The strength of the RF magnetic field is limited, in practice, by the efficiency of power transfer from the RF generator to the RF coil, the optimum level of NMR excitation, and by the tolerance of the patient to RF power deposition. The uniformity of the magnetic field affects both the slice selectivity of the G.sub.z gradient and the severity of image artifacts that may be produced from phase differences in the excited nuclei introduced by variations in the RF signal.
Referring to FIG. 1, a nucleus 10 has a magnetic moment 12 which may be excited into precession 18 about a static magnetic field B.sub.0 by an RF magnetic signal producing magnetic vector 14 along a plane perpendicular to the static magnetic field B.sub.0.
The excitating RF magnetic field 14 may oscillate along a single axis within the x-y plane. Such an oscillating field may be generated by a "saddle" coil (not shown) comprised of two conductive loops disposed along the axis of oscillation and perpendicular to the static magnetic field B.sub.0 as is known in the art.
A more effective excitation of the nuclear moments 12 may be achieved with a circularly polarized RF magnetic field, i.e. one that produces a rotating magnetic vector 14. Preferably, the magnetic vector 14 rotates within the x-y plane at an angular velocity equal to the Larmor frequency .omega. as shown by arrow 20 in FIG. 1.
It is known that a rotating RF magnetic vector may be generated with certain RF coil structures when the coil structure is excited at its "resonant" frequency. Referring to FIG. 2, one such coil structure 28 for creating a rotating magnetic field is comprised of a pair of conductive hoops 22 spaced along the axis of the static magnetic field B.sub.0. The hoops 22 are joined with a series of conductive segments 24 parallel to axis of the static magnetic field B.sub.0. The hoops 22 and conductive segments 24 have an intrinsic inductance and may be broken along their length with capacitive elements 30 to promote the desired pattern of current flow through the conductive segments 24 when the coil is driven by an external RF generator 26.
When the coil structure 28 is driven a particular frequency, the phase of the current distribution in each axial segment 24 will equal the transverse angle .theta. of the segment 24 measured around the axis of the static magnetic field B.sub.0. This phase distribution is the result of a "delay line" effect of the intrinsic inductance of the hoop elements 22 and the capacitance of the axial segments 24. At the driving frequency the delay line produces a full 360.degree. of phase shift, in the current flowing though the conductive segments 24, for 360.degree. of angular displacement .theta. of the conductive segments 24. As is understood in the art, this current distribution circularly polarizes the RF magnetic field 14 as described above.
Detailed descriptions of several RF coil structures which use the phase shifting properties of various coil geometries at a given frequency, are given in the following U.S. Pat. Nos. assigned to the assignee of the present application and hereby incorporated by reference: 4,680,548, entitled: "Radio Frequency Field Coil for NMR" and issued Jul., 14, 1987; 4,692,705, entitled: "Radio Frequency Field Coil for NMR" and issued Sep. 8, 1987; and, 4,694,255, entitled: "Radio Frequency Field Coil for NMR" and issued Sep. 15, 1987. These designs will be referred to collectively as "resonant RF coils".
Referring still to FIG. 2, the coil structure 28 may be driven by a RF generator directly connected across one of the capacitive elements 30 in an conductive segment 24. Alternatively, U.S. Pat. No. 4,638,253, entitled: "Mutual Inductance NMR RF Coil Matching Device, issued Jan. 20, 1987, teaches a method of inductively coupling an RF source 26 to the coil structure 28. This patent is also assigned to the assignee of the present application and hereby incorporated by reference.
It will be apparent, by application of the law of superposition, that in the resonant coil design, considerable current will flow circumferentially through the conductive hoops 22 which connect the conductive segments 24. This current is the sum of currents flowing through each conductive segments 24 on opposite sides of the coil 28. The circumferential currents produce longitudinal magnetic field components along the B.sub.0 axis (not shown) in distinction from the desired transverse rotating magnetic field 14. These longitudinal field component may adversely affect the axial homogeneity of the generated transverse magnetic field 14.
During an MR imaging sequence, the object to be imaged (also not shown) is placed within the coil volume as defined by the hoops 22 and conductive segments 24. The proximity of the imaged object to the coil structure results in capacitive coupling between the coil 28 and the imaged object and therefore an increased loss of RF power within the imaged object from dielectric heating.
To the extent that the imaged object is not uniform in cross section or is unevenly centered within the RF coil 28, the capacitive coupling to the imaged object will vary among different coil elements as will the dielectric losses coupled to these different coil structures. The effect of this uneven loading on the RF coil 28 will be to "detune" the coil structure upsetting the delay line of the coil structure and hence distorting the phase distribution of the currents in the conductive segments 24. A change in the phase distribution of the axial currents may produce distortion in the reconstructed NMR image and reduce the RF power coupled from the RF generator 26. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to an actuator capable of operating in three dimensions, having more than two actuating arms and being driven by a piezo or other smart material device, and which may be adapted for use as an actuator, an energy capture device, or a sensor. In certain embodiments, the smart material actuator can also operate as the driver for an audio speaker.
Smart material actuators are known in the art. However, such actuators have one or two actuating arms. Known actuators have limited applications as the actuator-driven arms are intended to move in a single plane and are not well adapted to applications such as grapplers that require compression on multiple planes or in applications where motion in a plane orthogonal to that of the arms is desired. The present invention overcomes such limitations by providing an actuator with more than two arms in which the arms move in independent planes but are operated by a common smart material device. The result is an actuator apparatus that is not only adaptable for use in applications for which one-arm or two-arm smart material actuators were not suitable and which also can be more efficient than one- or two-arm actuators in terms of work output.
A further objective of the present invention is to provide an actuator apparatus capable of operation at high frequencies. Known smart material actuators tend to fail when operated at very high frequencies of repeated activation and deactivation. One reason for such failures is that the actuating arms tend to overextend during high speed operation and especially when operating at resonant frequencies. Certain embodiments of the actuator of the present invention, however, are designed to overcome such limitations both by reducing the weight of the actuating arms and by providing dampeners adapted to prevent such overextensions without hindering high speed operation. The result is a multi-arm actuator capable of operation at very high frequencies, including, without limitation, embodiments capable of operating at frequencies that allow the actuator to serve as a driver of an efficient audio speaker.
A still further objective of the present invention is to provide a smart material actuator capable of being operated with actuating arms at a variety of angles. Allowing use of actuating arms of varying angles allows for great flexibility as arm angles can be selected to meet physical constraints imposed by differing applications. At the same time, it is disclosed that certain ranges of arm angles result in more efficient operation than others in terms of actuator work output. Accordingly, by providing an actuator apparatus capable of use with multiple arm angles, it becomes possible to optimize efficiency by adjusting arm angles.
In addition, the present invention is adapted such that common components can be utilized to assemble actuators of several configurations. This allows for flexibility and efficiency in manufacturing, as common components may be manufactured in bulk and then assembled in wide range of configurations adapted to different applications. | {
"pile_set_name": "USPTO Backgrounds"
} |
Dielectric resonating cavities are components of filters, reflection-type amplifiers, and oscillators. A dielectric resonating cavity refers to a space bounded by an electrically conducting surface in which oscillating electromagnetic energy is stored. Resonating cavities are typically rectangular or cylindrical in shape with conducting side walls and an input and output couple for electromagnetic energy. Dielectric blocks or pucks may be positioned in the cavity to provide a desired resonant frequency of the resonating cavity (i.e., the cavity resonant frequency). The desired cavity resonant frequency determines the frequency characteristics of the electromagnetic energy output by the cavity.
The cavity resonant frequency is determined by the resonant mode and dimensions of the resonating cavity and the electric permittivity of the dielectric block or puck located in the cavity. The cavity resonant frequency can vary in response to thermal expansion/contraction of the resonating cavity, thermally induced fluctuations in the electric permittivity of the dielectric block or puck, and/or dimensional tolerances of the resonating cavity and its placement in the circuit.
One method for fine tuning a cavity in response to fluctuations in the cavity resonant frequency is to use a metal or dielectric material to selectively perturb the electromagnetic energy distribution in the resonating cavity. Typically, this is accomplished either by manually or mechanically turning a number of tuning screws in the cavity or by altering the position or shape of the dielectric block or puck in the cavity. This method can have a slow tuning speed, a low degree of tuning precision, and, for mechanical tuning, a high rate of mechanical problems.
Another method for fine tuning a cavity is to alter the permeability of a ferromagnetic or ferrimagnetic material, such as yttrium iron garnet, located in the cavity. The permeability is controlled by controlling the strength of a magnetic field applied to the material. This method can have a slow tuning speed, a high hysteresis loss (especially at frequencies used for cellular and Personal Communications Systems (PCS) wireless system), and a permeability that is strongly dependent upon temperature fluctuations. An additional problem which limits the use of ferrite tuning is that the magnetic field used to tune a first cavity often has an adverse effect on other adjacent cavities located in close proximity to the first cavity.
Yet another method for fine tuning a cavity is to couple a semiconductor varactor to the electromagnetic energy in the cavity. Altering the capacitance of the varactor results in a change in the cavity's resonant frequency. Semiconductor varactors are rarely used at microwave or higher frequencies because such varactors can result in a high insertion loss and generate spurious signals at undesired frequencies. In signal transmission applications, the voltage and/or current breakdown strengths of semiconducting varactors can be exceeded when the power level of the cavity exceeds approximately one milliwatt. Filters used for signal transmission typically operate in the 1 to 800 watt range.
Another method for fine tuning a cavity is to alter the capacitance of a varactor diode coupled to the cavity via a coupling loop. The diode capacitance is varied by varying the d.c. voltage applied to the diode, which changes the width of the charge depletion layer in a semiconductor. At microwave and millimeter frequencies, the diode and coupling loop can produce high microwave attenuation due to the series resistance of the semiconductor areas adjacent to the charge-depleted portion of the semiconductor. The high attenuation can result in an undesirably low Q, and thus unacceptably high loss of the electromagnetic energy input into the cavity. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
Embodiments of the invention relate to a facilitated transport membrane (FTM), which is operable for separating aromatics from a hydrocarbon stream having both aromatics and aliphatic compounds.
2. Description of the Related Art
Aromatic hydrocarbons (e.g., benzene, toluene, xylenes (BTX)) serve as important precursors in the production of petrochemicals. Additionally, the separation of aromatics is useful in upgrading and conditioning aromatic-containing streams in petroleum refineries. Therefore, it would be helpful to provide a useful and economical method to help recover aromatics from all these streams.
Typical methods for separating aromatics from petroleum refineries can include liquid/liquid extraction and extractive or azeotropic distillation. However, these methods are typically very costly and capital intensive, For example, distillation columns are typically up to 300 feet tall and can contain over 200 trays. The reflux ratios are generally greater than 10 and the process is therefore very energy-intensive. As such, more economical separation processes are needed.
Membrane pervaporation processes have been used to separate various types of hydrocarbons. However, many of these conventional membranes suffer from low selectivity (i.e., 5 to 20) and/or a low flux rate (0.03-0.3 kg/m2/h). Therefore, the commercial viability of conventional membranes is limited, preventing them from competing with conventional membrane pervaporation processes, such as extractive distillation. Therefore, it would be advantageous to have a FTM that has improved flux rates and/or selectivities over conventional membranes. It would also be advantageous if the FTM provided more strength and more stability than conventional membranes. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to electronic lottery type games, and more particularly to a lotto game which provides the player with rapid acknowledgment of the win or loss status of the numbers played.
2. Description of Related Art
Generally, lotto is played as a state-wide governmental system where the player chooses to play the game by wagering money, usually in one dollar ($1.00) increments, and obtaining some form of lotto ticket with the player's lotto numbers selection printed thereon. During predetermined intervals, the game is open to any new players and is then closed, at a regularly scheduled selected period. At the time of the closing of the lotto game, a series of random numbers are selected by the agency running the lotto game and winners are determined by the players matching their selected numbers with those randomly selected by the lotto agency. Winners are notified only if they observe the announcements of the winning numbers through the mass media, or if they check the winning numbers posted at a lotto ticket dispensing facility.
Attempts have been made to automate lotto games, but in every case the automation has generally been limited to the mechanics of selection of numbers and issuance of tickets to players of the lotto game, or the computer visualization of the traditional lotto mechanical number selection apparatus. What is needed is a system for a lotto game that allows the player to initiate play of the lotto game with numbers selected by the player, and that provides the player with instant acknowledgment of the win or loss status of the numbers selected by the player against those randomly selected by the machine on which the game is being played, or by the agency administering the lotto game. This invention provides such a system for playing a lotto game. | {
"pile_set_name": "USPTO Backgrounds"
} |
The muscle mass in all people decreases by about 10-15% in 50-70 years of age and 30% or more in 70-80 years of age, resulting in decreases in muscle strength and function. This is called sarcopenia. Sarcopenia, a muscular disease that occurs in most elderly individuals, presents with the decrease in muscle mass with aging. When this senile sarcopenia is not treated, it causes a painful old age life due to a discomfort performance of physical function and can also cause various age-related diseases, including diabetes, obesity, cardiovascular diseases, osteoporosis and the like.
Various studies on the efficient control of sarcopenia have been conducted. It was found that treatment with, for example, growth hormone (GH), can increase muscle mass. However, this treatment is very expensive and cause some undesired side effects such as shortening average life expectancy. As one of the most efficient methods for delaying the progression of sarcopenia, exercise has been recommended, but it is very unsuitable for elderly or sickbed patients. Thus, there is an urgent need to develop a drug and technology for treating sarcopenia, which can induce the regeneration and differentiation of muscle.
Meanwhile, it was reported that diaminodiphenylsulfone (Dapsone; DDS) well-known as an antibiotic increases the life span of Caenorhabditis elegans by 20-30%. DDS is a substance synthesized one century ago, is well known as a therapeutic agent for leprosy and is used as an important drug for many other skin diseases. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a method and to an apparatus for making structural reinforcement preforms for resin transfer molding (RTM) and reaction injection molding (SRIM) processes for structural composites, and is more specifically concerned with techniques for making such structural reinforcement preforms in accordance with the directed fiber process.
2. Description of the Prior Art
As set forth in my aforementioned patent application Ser. No. 446,859, filed Dec. 6, 1989, and in my later application Ser. No. 552,253, filed Jul. 12, 1990, U.S. Pat. No. 5,217,656, issued Jun. 8, 1993, in making preforms according to the directed fiber process, it has been the practice to spray chopped fibers with a binder resin onto a form that has air pulled therethrough to locate and hold the fibers in place. The form with the fibers and the binder resin is then moved into a hot air plenum chamber, dried and/or cured to set the binder resin. Utilizing this process, a great deal of processing space is required for heating, drying, curing and cooling the preforms. The process has also therefore required large ovens and other equipment for handling the preforms.
In making thermoformed preforms, it has heretofore been the practice to coat a continuous strand fiber mat, during its manufacture, with a thermoplastic binder. The mat is supplied in roll form. The mat is unrolled and provided as a plurality of overlying flat sheets to vary the preform thicknesses and clamped into a holding frame at the edges thereof. The frame is then placed in an oven with radiant heaters which slowly heat the reinforcement mat and the thermoplastic binder from both sides. The thermoplastic binder softens in response to heating and, while soft, the frame is transferred into a cold mold which is then operated to press the reinforcement mat into the desired shape. Cooling causes the thermoplastic binder to stiffen and hold the thermorformable mat in its new shape.
As pointed out in my previous applications, these processes are slow, require a great deal of space and a large amount of energy for heating and cooling.
As also pointed out in my previously-mentioned applications, design flexibility is limited in that in order to meet the strength requirements of one area, an unnecessary use of material in other areas is required (layering) which also increases thickness and weight. Also, neither of the aforementioned processes permits the designer to add subassemblies such as ribs or closed sections to maximize design properties.
In my aforementioned applications, I proposed a new system which eliminates the necessity for large rooms and constantly operating ovens, cooled presses and the like and permits design flexibility with respect to the provision of subassemblies (reinforcement ribs, closed sections, and attachment and/or reinforcement members), while at the same time saving on energy and materials.
These new processes, as disclosed in the aforementioned applications, utilize specifically-developed and tailored binders along with directed energy systems for rigidizing the composite forms and attaching structural components to the preforms and is entirely compatible with RTM and SRIM resin systems, i.e. polyesters, vinyl esters, urethanes, epoxies, phenolics and acrylics. These new processes are designed to be fully automated and to enable specific distribution and placement of numerous types of reinforcements and the like, where necessary, for the required structural properties of a preform. There is also a complete freedom of design inherent in the process which permits the most desirable reinforcement type and/or structures including closed structural shapes and varied wall sections to meet design criteria.
In the process disclosed in the aforementioned application Ser. No. 446,859, filed Dec. 6, 1989, mats of reinforcement material are cut into a desired shape as a two-dimensional planar development of a desired preform. The cut mats are then coated with a binder which is responsive to electromagnetic energy, either microwave radiation or ultraviolet radiation, and the cut mats are placed in a three-dimensional mold and pressed to replicate the desired shape of the preform. While in the mold, the shaped mats are subjected to the appropriate electromagnetic radiation, either microwave or ultraviolet radiation, to cure the binder resin and provide rigidity in a matter of seconds, rather than minutes or hours as with the heat-curable processes. At this point, the preform may be considered a finished product for use in a further molding operation (RTM, SRIM) or may be viewed as a carrier preform for the attachment of subassemblies such as structural reinforcement members and the like before being used in a further molding operation (RTM, SRIM).
When the preform is considered to be a carrier preform, the same is removed from the mold to a station where a designated area or areas of its inner and/or outer surfaces or that of a subassembly or subassemblies are provided with a further coating of an electromagnetic energy-curable binder, a reinforcement member or the like is moved into intimate contact with the preform at the coated area or areas and the appropriate electromagnetic radiation (microwave or ultraviolet) is applied to energetically stitch (cure the binder) the member to the carrier preform. When the final attachment has been made by such energetic stitching, the preform is a finished product in itself ready for use as a structural reinforcement preform as a part of a further molding process for making a structural composite.
As pointed out in the latter application Ser. No. 552,253, particularly with respect to the handling of reinforcement material supplied on rolls that must be unrolled and individually cut into the desired shape and individually stacked in registry in the mold, handling is simplified and registration is inherent when such layers are tacked together prior to or contemporaneously with cutting (termed energetic basting) by applying the binder to superposed webs prior to cutting, pressing the superposed webs together to increase the surface contact of the binder with the fibers of adjacent webs and curing the binder in local spaced zones so as to tack the webs together either before or during the cutting operation.
This technique has also proved efficient in that the tacking is localized and there is sufficient binder remaining for curing to rigidize a multi-layer mat in a desired three-dimensional shape after first cutting a two-dimensional development of that shape from the tacked webs.
After the preform has been rigidized, energetic stitching techniques may still be employed to attach subassemblies, such as reinforcement and/or attachment members, thereto. | {
"pile_set_name": "USPTO Backgrounds"
} |
In such a hybrid vehicle, the layout for an engine, a generator/motor, and a transmission that is conventionally employed is in general of a so-called sandwiched generator/motor type in which a thin generator/motor is sandwiched between the engine and the transmission. In the layout of the sandwiched generator/motor type, since the generator/motor is joined to a crankshaft of the engine and an input shaft of the transmission and always rotates integrally therewith, when the generator/motor carries out regenerative braking during deceleration of the vehicle, there are the problems that friction in the engine and the transmission might degrade the energy recovery efficiency, and the friction of the engine is a load on the generator/motor when traveling by means of the generator/motor, thus increasing the power consumption.
A so-called leg shaft drive system hybrid vehicle is known from, for example, Patent Publication 1 below in which the above-mentioned problems have been solved by enabling a generator/motor to be isolated from a crankshaft of an engine and an input shaft of a transmission, and enabling the driving force of the generator/motor to be transmitted to a driven wheel side rather than an output shaft of the transmission.
In this hybrid vehicle, the generator/motor is connected in series via a clutch to an end of the input shaft of the transmission on the side opposite to the engine, and by isolating the generator/motor from the input shaft of the transmission and the crankshaft of the engine by disengaging the clutch, the driving force of the generator/motor can be transmitted directly to the output shaft of the transmission. Patent Publication 1: Japanese Patent Application Laid-open No. 2002-188716 | {
"pile_set_name": "USPTO Backgrounds"
} |
The present application claims priority to French Application No. 01/06534 filed 17 May 2001, the entire text of which is specifically incorporated by reference herein without disclaimer.
1. Field of the Invention
The present invention relates to the field of trimming glasses, more particularly ophthalmic glasses.
2. Description of Related Art
An ophthalmic glass results from a series of molding and/or surfacing/buffing operations determining the geometry of both convex and concave optical surfaces of said glass, followed by appropriate surface treatments.
The last finishing step of an ophthalmic glass is a trimming step consisting in machining the glass edge or periphery so as to conform it to the required dimensions for adapting the glass to the glass frame in which it is intended to be accommodated.
Trimming is generally carried out on a grinding machine comprising diamond abrasive wheels that perform the machining step as defined hereabove.
The glass is held during such a step by axially-acting clamping elements.
The relative movement of the glass relative to the abrasive wheel is controlled, generally digitally, so as to get the required shape.
As it is obvious, it is absolutely imperative that the glass be firmly held during such a movement.
Therefore, before any trimming step, a glass-holding step is performed, i.e. a holding means or acorn element is positioned onto the convex surface of the glass.
A holding pad, such as a self-adhesive sticker, for example a two-sided adhesive, is arranged between the acorn element and the glass convex surface.
The so-equipped glass is positioned onto one of the above-mentioned axial clamping members, the second axial clamping element thus clamping the glass onto its concave surface by means of an abutment, generally made in an elastomer.
During the machining step, a tangential torque stress is generated on the glass, which can result in the glass rotating relative to the acorn element if the glass-holding system is not efficient enough.
The efficient glass-holding mainly depends on the good adhesion at the interface between the holding pad and the glass convex surface.
The latest generation ophthalmic glasses most often comprise hydrophobic and/or oil-repellent anti-stain surface coatings associated with anti-reflection coatings.
These are most often fluorosilane-type materials that reduce the surface energy so as to prevent adhesive greasy stains which are thereby easier to remove.
One of the problems generated by this type of surface coating is that they achieve such an efficiency that the adhesion at the interface pad/convex surface is thereby altered, even compromised for the most efficient hydrophobic and/or oil-repellent coatings.
It becomes therefore more and more difficult to perform satisfactory trimming steps, more particularly for polycarbonate glasses the trimming of which results in much more important stresses than for other materials.
As a result of an inadequately performed trimming step, the glass is purely and simply ruined. | {
"pile_set_name": "USPTO Backgrounds"
} |
In the drilling of wells for oil-and gas by the rotary method, it is common to use a circulating fluid which is pumped down to the bottom of the well through a drill pipe, where the fluid emerges through ports in the drilling bit. The fluid rises to the surface in the annular space between the drill pipe and the walls of the hole, and at the surface it is treated to remove cuttings and the like to prepare it for recirculation into the drill pipe. The circulation is substantially continuous while the drill pipe is rotated.
The present invention pertains to oil base drilling fluids or oil base muds which includes water-in-oil (invert) emulsions as well as oil base fluids containing only small amounts or no emulsified water.
An important feature of well working fluids of the class described is their ability to resist filtration. In most instances, when they are in actual use, whether as drilling fluids, packer fluids, fracturing or completion fluids, the well working fluid is in contact with a more or less permeable formation, such as, for example, sandstone, sandy shale and the like, with an effective balance of pressure such that the fluid tends to be forced into the permeable formation. When a well working fluid is deficient in its ability to resist filtration, then the solids in the fluid are held back by the permeable formation and build up as a filter cake or sludge on its surfaces, while the liquid per se of the well working fluid filters into the permeable formation. The filter cake or sludge thus formed is generally very undesirable. Moreover, the loss of oil to the formation is very expensive, not only because of the cost of the oil itself, but also due to the cost of maintaining the properties and composition of the fluid.
Various additives have been used or suggested for use as fluid loss additives to prevent or decrease this loss of fluid by filtration from oil base muds. Some of the first materials used for this purpose were asphalt and various modified asphaltic materials. The following patents disclose various amine derivatives of various polyphenolic compounds for use as fluid loss control additives (hereinafter sometimes referred to as FLCA) for oil muds: Jordan et al. U.S. Pat. Nos. 3,168,475: Jordan et al. 3,281,458: Beasley et al. 3,379,650: Cowan et al. 3,232,870: Cowan et al. 3,425,953: Andrews et al. 3,494,865; Andrews et al. 3,671,427; Andrews et al. 3,775,447: Kim 3,538,071; Kim 3,671,428; Cowan 4,421,655: Connell et al. 4,501,672: and Frost European Pat. Application No. 049,484.
As noted in the examples in the aforementioned patents, the amount of the organic amine or amide compounds reacted with the polymeric phenolic compounds disclosed is quite high, generally of the order of 75%-100% or more, based on the weight of the polymeric phenolic compound, although amounts from 20% to 200% are disclosed to be useful. Most of these FLCA possess poor dispersibility in well working fluids unless elaborate procedures are undertaken, such as the addition of a dispersant, heating, agitating under high shear or for extended periods of time, drying under low temperature conditions, flushing, preparation in oleaginous liquids, and the like. Moreover, the amine and amide compounds are relatively expensive to prepare and/or purchase, and thus these FLCA are quite expensive to produce. | {
"pile_set_name": "USPTO Backgrounds"
} |
As the light source of a projector, a discharge lamp such as an ultra-high pressure mercury lamp has been widely used. However, in recent years, a projector, in which a solid state light source such as a LD (Laser Diode) is used instead of a discharge lamp, have been gaining attention. For example, Patent Document 1 discloses a projector that uses a solid state light source that emits linearly polarized light.
The solid state light source has a high durability and has an advantage that a time required for stabilizing the quantity of light is short, as compared with the discharge lamp. Further, since the solid state light source can output light that does not contain UV light rays, it is possible to prevent degradation of optical parts on which light enters.
Meanwhile, a projector in which polarized light is projected has been proposed recently. The projector of this kind is applied to, for example, a stereoscopic image display apparatus that makes the user view stereoscopic images, a secure display that makes only a particular user visually recognize particular information, and the like.
The stereoscopic display apparatus alternately projects two images taken from different points of view (image for right eye and image for left eye) onto the screen, by using two light beams whose polarization states are different from each other. When the user who wears polarized glasses, through which different polarized light is given for left and right eyes, views the projected image on the screen, the image light for right eye enters the right eye of the user and the image light for left eye enters the left eye of the user. As a result, the user can recognize the displayed image three-dimensionally.
On the other hand, the secure display projects, on the screen, an image that indicates particular info nation and its reversed image, each of which uses light having a different polarization direction. When the user who wears polarized glasses, that only allow light of a particularly polarization direction to pass, views the projected image on the screen, the user can visually recognize the particular information. On the other hand, since the user who does not wear the polarized glasses observes the state in which the particular information and the reversed image are overlapped, the user cannot visually recognize the particular information. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
The present invention relates generally to an improved data processing system and, in particular, to a method and apparatus for database or file accessing.
2. Description of Related Art
A directory service is a central point where network services, security services and applications can form an integrated distributed computing environment. Typical uses of a directory service may be classified into several categories. A xe2x80x9cnaming servicexe2x80x9d, such as Directory Naming Service (DNS) or Cell Directory Service (CDS), uses the directory as a source to locate an Internet Host address or the location of a given server. A xe2x80x9cuser registryxe2x80x9d, such as Novell Directory Services (NDS), stores information about users in a system comprised of a number of interconnected machines. Still another directory service is a xe2x80x9cwhite pagesxe2x80x9d lookup provided by some mail clients, such as Netscape Communicator or Lotus Notes.
Lightweight Directory Access Protocol (LDAP) is a software protocol for providing directory service enablement to a large number of applications. These applications range from e-mail to distributed system management tools. LDAP is an evolving protocol model based on the client-server model in which a client makes a TCP/IP connection to an LDAP server. LDAP is a xe2x80x9clightweightxe2x80x9d version of DAP (Directory Access Protocol), which is part of X.500, a standard for directory services in a network. More information about LDAP may found in xe2x80x9cLightweight Directory Access Protocol (v3)xe2x80x9d, http://ietf.org/rfc/rfc2251.txt.
The LDAP information model is based on an xe2x80x9centryxe2x80x9d, which contains information about some object. Entries are typically organized in a specified tree structure, and each entry is composed of attributes. LDAP entries are usually arranged in a tree structure that follows a geographical and organizational distribution. Each entry is named according to their position in the hierarchy by a distinguished name (DN). Each component of the distinguished name is called a Relative Distinguished Name (RDN).
An example LDAP directory is organized in a simple tree hierarchy consisting of the following levels:
The xe2x80x9crootxe2x80x9d directory is the starting place or the source of the tree.
Countries are designated by two letter codes, such as US for the United States of America.
Organizations can be private companies, government units, etc.
Organizational units are divisions, departments, etc.
Individuals include people, files, or shared resources, such as printers.
For example, John M. Smith, who is part of the marketing department at Acme Corporation, might have the following Distinguished Name: xe2x80x9ccn=John M. Smith, ou=Marketing, o=ACME Corporation, c=USxe2x80x9d, where xe2x80x9ccnxe2x80x9d stands for xe2x80x9ccommon namexe2x80x9d, xe2x80x9couxe2x80x9d is xe2x80x9corganizational unitxe2x80x9d, xe2x80x9coxe2x80x9d is xe2x80x9corganizationxe2x80x9d, and xe2x80x9ccxe2x80x9d is xe2x80x9ccountryxe2x80x9d.
An LDAP directory can be distributed among many servers, with parts of data residing on a set of machines. Another scenario has each server containing a replicated version of the total directory that is synchronized periodically. An LDAP server is called a Directory System Agent (DSA). An LDAP server that receives a request from a user takes responsibility for the request, passing it to other DSAs as necessary, either through server chaining or client referrals. Both cases ensure a single coordinated response for the user. Although directory structures can reside on a single server, there are several reasons for splitting directories across multiple machines. First, the directory may be too large to make it practical to store on a single server. Second, network administrators may want to keep the physical location of the server close to the expected clients to minimize network traffic.
With an increasing number of applications and system services demanding a central information repository, directory servers can provide system administrators with a data repository that can significantly ease administrative burdens. In the Internet/intranet environment, these services provide user access to information in a secure manner.
To perform operations on directory entries, distinguished names for the directory entries must be specified. However, it is generally difficult to remember full distinguished names. Manually specifying a full distinguished name is time-consuming and error-prone.
For example, in order to connect, i.e. bind, to a directory server, a user needs to specify a distinguished name in order for the bind operation to proceed. Other LDAP operations also require the entry of distinguished names, such as modifying a particular directory entry. In some circumstances, the user may not know the distinguished name of a directory entry on which the user desires to perform an operation, although the user might be able to discern a desired distinguished name from a set of distinguished names if the user could be presented with the ability to choose a particular distinguished name from a set of distinguished names.
Therefore, it would be advantageous to have an improved method and system for specifying distinguished names.
A method and system for an automated distinguished name lookup is provided for use in a Lightweight Directory Access Protocol (LDAP) directory operation. A user provides input via a dialog window for an identifier string which is not a distinguished name. An LDAP search filter string is generated that contains at least a portion of the identifier string. A directory search is requested using the LDAP search filter string. In response to the requested directory search, one or more distinguished names are received. In response to receiving a single distinguished name for the requested directory search, the received distinguished name is automatically applied in the LDAP directory operation. In response to receiving a plurality of distinguished names for the requested directory search, the plurality of distinguished names are presented to the user, and the user may select one of the plurality of distinguished names. The selected distinguished name is then applied in the LDAP directory operation, which may perform an authentication process for the user using a distinguished name received in response to the requested directory search. The user may also configure a dialog window for entry attributes and filters to be used while searching for potential distinguished names. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates generally to an improved mechanical snubber apparatus and, more particularly, to such a snubber which may be tested in place within a snubber system.
2. Description of the Prior Art
Shock absorbing or damping snubbers are widely used in electric power plants, particularly nuclear power plants, in which pipes or other structures are yieldably attached, by, for example, pipe hangers or other supports, to relatively fixed supporting structure, for example, power plant walls or ceilings. In such applications, the snubbers are operatively connected, usually as part of a strut assembly, between the pipe and the supporting structure. The snubber operates to permit relatively unrestricted motion or movement of the pipe relative to the supporting structure in response to normal slow movements of the pipe, such as might be induced by routine thermal expansion or contraction during plant start-up or shutdown, but to resist or damp rapid vibratory relative motion of the pipe, such as might be induced by seismic or other transient shock or vibration. A typical state-of-the-art snubber of the mechanical type is disclosed and claimed in my U.S. Pat. No. 4,286,693, issued Sept. 1, 1981, and entitled "Mechanical Snubber". While the service life of high quality mechanical snubers of the type described in the aforementioned U.S. patent should be on the order of several decades, their function and proper operation are so important to the safety of the power generating plants that such snubbers must be periodically tested to ensure that they are operating properly. Accordingly, in the past, it has been the general practice in the industry to have technicians periodically remove each snubber, or the snubber and strut assembly, from the system for examination and testing. If the snubber is located in a radiation contaminated area, such as in or near the reactor of a nuclear power plant, the technicians must wear protective clothing and the snubber must be decontaminated to reduce the absorbed radiation to a safe level prior to the testing thereof. Following testing, if the snubber is determined to operate within the limits of the applicable operating specification, the snubber is replaced in the system. If the testing indicates that the snubber is not performing properly, it must be replaced or repaired.
With large snubbers and large snubber and strut assemblies weighing hundreds of pounds, and with some power plants employing hundreds of snubbers, it is evident that the present test procedures are highly cumbersome, time-consuming, and extremely expensive to perform. The problems involved in current snubber test practices are overcome by the present invention which provides an improved mechanical snubber that lends itself to in-place testing. The present invention further provides an apparatus which may be retro-fitted to existing snubbers for testing such snubbers in their normal, operational location in a snubber system. In addition, the present invention is useful for positioning and aligning snubbers, particularly large sized snubbers having high drag forces, to facilitate their proper installation within a snubber system. | {
"pile_set_name": "USPTO Backgrounds"
} |
In the search for a workable ankle arthroplasty, various designs have been tried. As seen below in Table 1, certain published results relating to conventional total ankle arthroplasty were disappointing for both patients and surgeons (the typical clinical series of Table 1 includes 20-40 patients followed for an average of five years or less; only general observations can be made from this data).
TABLE 1Good-to-Excellent Satisfaction Rates After Total Ankle Replacements-Conventional Designs# ofAvg. F/UDeviceAuthor/YearAnkles(months)Satisfaction RateSmithDini/80212746%ICLHGoldie/82183660%TPRJensen/92235969%Bath & WessexCarlsson/93526081%TPRKumar/88376052%LCSBuechel/92407285%SmithKirkup/85188461%MayoKitaoka/9616010819%
As Table 1 reveals, patient satisfaction with conventional, cemented ankle implants has ranged from 19 percent to 85 percent (see, e.g., Dini A A, Bassett F H: Evaluation of the early result of Smith total ankle replacement. Clin Orthop 1980; 146:228-230; Goldie I F, Herberts P: Prosthetic replacement of the ankle joint. Reconstr Surg and Traumat 1981; 18:205-210; Jensen N C, Kroner K: Total ankle joint replacement: A clinical follow-up. Orthopedics 1992; 15:236-240; Carlsson A S, Henricson A, Linder L, Nilsson J A, Redlund-Johneur: A survival analysis of 52 Bath-Wessex ankle replacements. The Foot 1994; 4:34-40; Kumar D J R: Total ankle arthroplasty. A review of 37 cases. J Tn Med Assoc 1988; 81:682-685; Buechel F F, Pappas M, Iorio U: NJ low contact stress total ankle replacement: Biomechanical rationale and review of 23 cementless cases. Foot Ankle 1988; 8:270-290; Kirkup J: Richard Smith ankle arthroplasty. J Roy Soc Med 1985; 78:301-304; Kitaoka H B, Patzer G L: Clinical results of the Mayo total ankle arthroplasty. J Bone Joint Surg 1996; 78A: 1658-1664).
It is believed that length of follow-up was a major factor with patient satisfaction, as patients with longer follow-ups generally had declining degrees of satisfaction. As seen below in Table 2, the rates of radiographic loosening with these conventional implants were quite substantial, ranging from 22 percent to 75 percent (see, e.g., Goldie I F, Herberts P: Prosthetic replacement of the ankle joint. Reconstr Surg and Traumat 1981; 18:205-210; Jensen N C, Kroner K: Total ankle joint replacement: A clinical follow-up. Orthopedics 1992; 15:236-240; Carlsson A S, Henricson A, Linder L, Nilsson J A, Redlund-Johneur: A survival analysis of 52 Bath-Wessex ankle replacements. The Foot 1994; 4:34-40; Kumar D J R: Total ankle arthroplasty. A review of 37 cases. J Tn Med Assoc 1988; 81:682-685; Kirkup J: Richard Smith ankle arthroplasty. J Roy Soc Med 1985; 78:301-304; Kitaoka H B, Patzer G L: Clinical results of the Mayo total ankle arthroplasty. J Bone Joint Surg 1996; 78A: 1658-1664; Helm R, Stevens J: Long-term results of total ankle replacement. J Arthroplasty 1986; 1:271-277; Bolton-Maggs B G, Sudlow R A, Freeman M A R: Total ankle arthroplasty. A long-term review of the London Hospital experience. J Bone Joint Surg 1985; 67B: 785-790). Of note, it is believed that some of the major factors implicated with loosening were: 1) highly constrained designs; and 2) cement fixation (it might have been the use of cement alone, or the combination of the use of cement to create adequate space for cementation, which was a major contributing factor to increased loosening rates).
TABLE 2Radiographic Loosening After Total Ankle Replacement-Conventional DesignsAvg. F/UDeviceAuthor/Year# of Ankles(months)Loosening RateICLHGoldie/82183622%ICLHHe1m/86145457%TPRJensen/92235952%Bath & WessexCarlsson/93526067%TPRKumar/88376026%ICLHBolton-416632%Maggs/85SmithKirkup/85188439%MayoKitaoka/9616010875%
Further, conventional total ankle arthroplasty has also been plagued with unusually high wound problems. The soft tissues around the ankle region, especially in rheumatoid and elderly patients, provide a relatively thin envelope for arthroplasty containment. Problems with superficial and deep infections, resection arthroplasties, attempted re-implantations or arthrodeses and, occasionally, below-knee amputations have dampened the enthusiasm of many orthopaedic surgeons involved with conventional total ankle replacement. In this regard, see Table 3 below, relating to published “long-term”results after conventional ankle arthrodesis.
TABLE 3Published “Long-Term” Results After Conventional Ankle ArthrodesisAvg.Author/# ofF/UMajor **ContinuedHindfootYearPatients(years)ComplicationsPainDJDSaid/7836824%*>50%Mazur/79128*25%100%Morrey/8041848%76% 50%Ahlberg/81411232%68% 44%Boobbyer/81 58921%**Morgan/851011010%**Lynch/8862734%**Glick/96348 6%**
While somewhat better short term results associated with conventional implants have stimulated interest in total ankle replacement, such conventional implants have shown their deficiencies. For example, one conventional prosthesis (the AGILITY ankle replacement) has shown an overall high rate of satisfaction in early follow up but with evident problems (see, e.g., Pyevich M T, Saltzman C L, Callaghan J J, Alvine F G: Total ankle arthroplasty: A unique design. Two to twelve-year follow-up. J. Bone Joint Surg., Vol 80-A(10):1410-1420, October, 1998; Saltzman C L, Moss T, Brown T D, Buckwalter J A Total Ankle Replacement Revisited. JOSPT 30(2):56-67, February, 2000; Saltzman C L, Alvine F G, Sanders R W, Gall R J. Challenges with Initial Use of a Total Ankle. Clinical Orthopaedics and Related Research (Accepted)).
One issue in this regard is the large amount of bone that is typically resected during conventional surgery. This creates a problem if revision is required because the subsequent lack of bone makes revision or conversion to a fusion problematic. The difficulties caused by having to resect a large amount of bone will become more apparent over time as with longer follow up the need for revision becomes more common.
Another issue with this conventional AGILITY ankle replacement is the limited range of motion it allows after surgery. It is believed that in approximately fifty percent of the cases the patient's plantarflexion contracture remained with patients not being able to dorsiflex significantly beyond neutral position.
A second conventional prosthesis (the STAR), while believed to not require as much bone resection, has articular contact surfaces that are flat in the medial-lateral direction, thus making edge loading necessary when resisting the varus/valgus loads imposed upon the ankle during ordinary ambulation (see, e.g., Kofoed H, Danborg L: Biological fixation of ankle arthroplasty. Foot 1995; 5:27-3 1; Kofoed H, Toben S: Ankle arthroplasty for rheumatoid arthritis and osteoarthritis: Prospective long-term study of cemented replacements. J Bone Joint Surg 1998; 80B:328-332).
Further still, additional papers include the following: Morgan C D, Henke J A, Bailey R W, Kaufer H: Long-term results of tibiotalar arthrodesis. J Bone Joint Surg 1985; 7A:546-550; Glick T M, Morgan D D, Myerson M S, Sampson T O, Mann J A: Ankle arthrodesis using an arthroscopic method: Long-term follow-up of 34 cases. Arthroscopy 1996; 12:428-434; Money B F, Wiedeman G P: Complications in long-term results of ankle arthrodeses following trauma. J Bone Joint Surg 1980; 62A:777-784; Ahlberg A, Henricson A S: Late results of ankle fusion. Acta Orthop Scand 1981; 52:103-105; Mazur J M, Schwartz E, Simon S R: Ankle arthrodesis; long-term follow-up with gait analysis. J Bone Joint Surg 1979; 61A:964-975; Boobbyer G N: The long-term results of ankle arthrodesis. Acta Orthop Scand 1981; 52:107-110; Said B, Hunka L, Siller T N: Where ankle fusion stands today. J Bone Joint Surg 1978; 60B:211-214; Lynch A F, Bourne R B, Rorabeck C H: The long-term results of ankle arthrodesis. J Bone Joint Surg 1988; 70B:113-116.
Moreover, issued patents include the following: U.S. Pat. No. 6,183,519, entitled Ankle Prosthesis; U.S. Pat. No. 5,957,981, entitled Adjustable Prosthesis Joint; U.S. Pat. No. 5,824,106, entitled Ankle Prosthesis; U.S. Pat. No. 5,800,564, entitled Ankle Prosthesis With Angle Adjustment; U.S. Pat. No. 5,766,259, entitled Total Ankle Prosthesis And Method; U.S. Pat. No. 5,728,177, entitled Prosthesis With Foam Block Ankle; U.S. Pat. No. 5,312,216, entitled Artificial Joint Prosthesis; U.S. Pat. No. 5,156,630, entitled Ankle Joint Prosthesis Fixable In More Than One Orientation; U.S. Pat. No. 5,019,109, entitled Multi-Axial Rotation System For Artificial Ankle; U.S. Pat. No. 4,778,473, entitled Prosthesis Interface Surface And Method Of Implanting; U.S. Pat. No. 4,755,185, entitled Prosthetic Joint; U.S. Pat. No. 4,659,331, entitled Prosthesis Interface Surface And Method Of Implanting; U.S. Pat. No. 4,470,158, entitled Joint Endoprosthesis; U.S. Pat. No. 4,442,554, entitled Biomechanical Ankle Device; U.S. Pat. No. 4,360,931, entitled Prosthetic Ankle; U.S. Pat. No. 4,340,978, entitled New Jersey Meniscal Bearing Knee Replacement; U.S. Pat. No. 4,309,778, entitled New Jersey Meniscal Bearing Knee Replacement; U.S. Pat. No. 4,166,292, entitled Stressed Reinforced Artificial Joint Prosthesis; U.S. Pat. No. 4,156,944, entitled Total Ankle Prosthesis; U.S. Pat. No. 4,069,518, entitled Total Ankle Prosthesis; U.S. Pat. No. 4,021,864, entitled Ankle Prosthesis; U.S. Pat. No. D242,957, entitled Total Ankle Prosthesis; U.S. Pat. No. 3,987,500, entitled Surgically Implantable Total Ankle Prosthesis; and U.S. Pat. No. 3,975,778, entitled Total Ankle Arthroplasty.
Among those benefits and improvements that have been disclosed, other objects and advantages of this invention will become apparent from the following description taken in conjunction with the accompanying figures. The figures constitute a part of this specification and include an illustrative embodiment of the present invention and illustrate various objects and features thereof. | {
"pile_set_name": "USPTO Backgrounds"
} |
Packet-switched networks, such as networks based on the TCP/IP protocol suite, can distribute a rich array of digital content to a variety of client applications. One popular application is a personal computer browser for retrieving documents over the Internet written in the Hypertext Markup Language (HTML). Frequently, these documents include embedded content. Where once the digital content consisted primarily of text and static images, digital content has grown to include audio and video content as well as dynamic content customized for an individual user.
It is often advantageous when distributing digital content across a packet-switched network to divide the duty of answering content requests among a plurality of geographically dispersed servers. For example, popular Web sites on the Internet often provide links to “mirror” sites that replicate original content at a number of geographically dispersed locations. A more recent alternative to mirroring is content distribution networks (CDNs) that dynamically redirect content requests to an edge server situated closer to the client issuing the request. CDNs either co-locate edge servers within Internet Service Providers or deploy them within their own separate networks.
The use of the same reference symbols in different drawings indicates similar or identical items. | {
"pile_set_name": "USPTO Backgrounds"
} |
Fibrous structures, particularly sanitary tissue products comprising fibrous structures, are known to exhibit different values for particular properties. These differences may translate into one fibrous structure being softer or stronger or more absorbent or more flexible or less flexible or exhibit greater stretch or exhibit less stretch, for example, as compared to another fibrous structure.
One property of fibrous structures that is desirable to consumers is the Dry Burst of the fibrous structure. It has been found that at least some consumers desire fibrous structures that exhibit a Dry Burst of greater than 100 g as measured according to the Dry Burst Test Method.
Accordingly, there exists a need for fibrous structure that exhibit a Dry Burst of greater than 100 g as measured according to the Dry Burst Test Method. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a distributed element filter used in the RF (radio frequency) stage, etc. of mobile communication equipment as a bandpass filter or the like to suppress noise and interfering signals, and more particularly to a distributed element filter which has a flat amplitude characteristic and a flat group delay characteristic in the passband, and transmission zeros in the stopbands, and is simplified in configuration in order to minimize losses for the purpose of improvement in performance.
2. Description of the Related Art
In high frequency circuit sections such as the RF stage of transmitter and receiver circuits for mobile communication equipment represented by analog or digital portable telephones or wireless telephones are often used bandpass filters (BPFs), for example, to attenuate harmonics which are caused by the nonlinearity of amplifier circuits, or to remove undesired signal waves such as interfering waves, sidebands, etc. from the desired signal waves, or when using the same antenna for both the transmitter and receiver circuits, to separate out the transmitter frequency band and the receiver frequency band.
Such bandpass filters for use in communication apparatuses are generally realized and constructed as filter circuits with desired bandpass characteristics by connecting series or parallel resonant circuits constructed with various circuit elements in a plurality of stages. Since the filter circuit blocks can be made smaller in size and have good electrical characteristics as high frequency circuits, in many cases circuit blocks are constructed using unbalanced distributed element transmission lines such as microstrip transmission lines or strip transmission lines. Generally, in a bandpass filter, as shown in FIGS. 24A, 24B, is required a complex circuit design to realize both a flat amplitude characteristic and a flat group delay characteristic, and at the same time, provide transmission zeros in the stopbands.
Procedures for directly synthesizing a bandpass filter having such characteristics based on a clear design theory have not been known as yet, and it has been practiced to construct filters empirically by using various known procedures. For example, as shown in a block diagram of FIG. 25, focusing first only on amplitude characteristics, such a filter 1 is designed from a filter of a known configuration, as has desired amplitude characteristics, namely, a flat amplitude characteristic throughout the passband and transmission zeros in the stopbands, but does not take the group delay characteristic into account yet. Next, in order that the filter 1 has a desired group delay characteristic as a whole, the filter 1 is provided with a phase equalizer 2 with all-pass characteristics, which has an effect of flattening the group delay characteristic in the passband. According to this procedure, the phase or group delay characteristic is improved by adding the phase equalizer 2 to the filter 1.
Such approach, however, has a disadvantage that the phase equalization or correction as shown in FIG. 25 has a limited effect and can not provide a sufficient equalization effect. Additionally, since the circuit design is wasteful requiring more circuit elements than would otherwise be required, the approach involves more difficulties than it solves, such as an adverse effect on the amplitude characteristic produced by the imperfect all-pass characteristics of the phase equalizer 2 and the increased loss produced by the increased complexity of the circuit.
Two procedures are well known in the art to realize transmission zeros in a filter's stopband. One is to realize transmission zeros by inserting a parallel resonator or series resonator in parallel or series in the filter or by combining these resonators. For example, as shown in the circuit diagram of FIG. 26, transmission zeros are formed on both sides of the passband by adding a combination 5 of a parallel resonator 5a and a series resonator 5b to a bandpass filter realized by resonators 3, 4.
The other procedure is to realize transmission zeros by splitting the transmission line into two paths which have the same output amplitude and differs from each other by 180.degree. in phase, and combining the two paths together. For example, as shown in the block diagram of FIG. 27, the circuit is split into two paths which are led to a two-port 6 and a two-port 7, respectively, which provide at a certain frequency the same amplitude output and differ from each other by 180.degree. in phase, and their outputs are combined to obtain an output which provides a transmission zero at that frequency.
Generally, the procedure of FIG. 27 can realize a filter with a circuit configuration easier to implement and smaller in loss than the procedure of FIG. 26 can.
Further, as a modification of FIG. 27, a procedure is known which uses a simple reactance feedback path. For this procedure, an accurate design theory or method for synthesizing the filter from the target circuit network function is not known, and an approximation or an empirical method is used. For example, as shown in the circuit diagram of FIG. 28, transmission zeros are formed by combining a filter block 8 as a conventional filter with a coupling element 9 corresponding to a branch circuit or feedback path. Because of circuit simplicity, this procedure has the effect of reducing the loss, but since no accurate design procedures are known for synthesizing the filter, the design relies on an approximation, which, therefore, has the problem that only approximate characteristics can be obtained and the obtained characteristics are not sufficient.
Another procedure known in the art is to combine a circuit of ladder structure with one of the above-described transmission zero forming procedures, and to thereafter adjust the group delay using a phase equalizer. According to this procedure, it is claimed that a filter with conventional bandpass characteristics can be obtained which has both a flat amplitude characteristic and a flat group delay characteristic throughout the passband and also has transmission zeros in the stopbands.
However, this procedure also has the problem that accurate characteristics cannot be obtained because the design relies on an approximation; furthermore, the circuit configuration becomes complex. Moreover, such filters have the problem that the transmission loss increases or only approximate and insufficient characteristics can be obtained. The problem of transmission loss is particularly pronounced when the filter is constructed of a distributed element filter such as a microstrip line circuit. | {
"pile_set_name": "USPTO Backgrounds"
} |
Categorizers are often used in data mining applications, where data contained in a database (or multiple databases) is analyzed and used for various purposes (such as to determine customer purchasing habits and preferences or for other purposes). A categorizer looks at a data item (e.g., article, product, customer, stock, support call, and so forth), and decides, based on information associated with the item (e.g., text, cost, date, duration, buying history, trade volume, and so forth), whether the item should be associated with a particular category or multiple categories. The categorizer decides which of a set of potential categories most likely applies, describes, or should be associated with the data item in question. A “category” refers to a label, annotation, or some other form of identifying indicator.
A categorizer has to be trained to enable the categorizer to perform categorization tasks. Various conventional algorithms exist to train categorizers. The categorizer implemented according to a given algorithm is associated with a set of parameters that the categorizer uses to make its decision. Often, the parameters are in the form of weights attached to the presence or absence of various features (words, purchases, and so forth). The parameters can be set manually (e.g., by an expert creating categorization rules) or deduced automatically from data. Most conventional techniques for training categorizers rely on the notion of a labeled training set, which is a set of training cases each annotated with a category (or multiple categories). The annotated category, or categories, constitutes the “correct answer” for each training case. The correctness of the categorizer is judged based on the errors the categorizer makes with respect to the categorizations of cases in the training set. Often the correctness will be judged based on the errors the categorizer makes with respect to a subset of the cases in the training set, the subset (called a “validation set”) not being used otherwise in training the categorizer.
With many conventional approaches, training a categorizer involves two separate stages. In a first stage, a training set is acquired. Then, the training set is used to train the categorizer. To acquire a training set, several approaches are used. A first approach involves acquiring training sets where the “correct answer” can be ascertained at some point after a prediction is made. However, this training approach may not be useful for circumstances where the correct answer cannot be objectively ascertained at some later point in time.
A second approach to acquire a training set involves obtaining desired information about a subset of observed cases by asking people to divulge information about themselves, such as purchasing information or other information. In one example, people can be asked to complete surveys. Alternatively, the information can be purchased from a third party or some other data source, or by physically measuring an object or plural objects. This second approach is usually expensive in terms of time and effort. Additionally, if surveys or other techniques of acquiring information are not designed properly, the training set acquired may not provide the desired level of accuracy in training categorizers.
In an approach used in the customer service call center context for acquiring a training set, customer support representatives are asked to choose categorizations (also referred to as issue paths) from a set of possibilities at the time that a customer call occurs. However, many customer support representatives may not be properly trained to recognize all possible answers, so that the categorization performed by such customer support representatives may not be accurate. Also, it may be expensive to train people to properly recognize all possible categorizations. Additionally, customer support representatives may not be properly motivated to spend the time to provide accurate categorizations, since the performance of customer support representatives may be measured on how quickly they resolve calls, not on how accurately they categorize the calls. Also, the set of possibilities may not include a category that accurately describes the customer call.
Another approach for acquiring a training set involves asking an expert to provide a correct answer for a randomly drawn subset of cases. The expert usually has to be prepared to distinguish among all possible categories (dozens or even hundreds of possible categories) to find the correct answer for each particular case. Also, an expert may not be qualified to recognize cases for certain categories. In addition, an expert may have to look at a large number of cases to accurately find a sufficient number of examples for certain types of categories. This training approach can be relatively expensive and may not produce sufficiently accurate results for training categorizers. | {
"pile_set_name": "USPTO Backgrounds"
} |
Hearing deficiencies can range from partial hearing impairment to complete hearing loss. Often, an individual's hearing ability varies across the range of audible sound frequencies, and many individuals have hearing impairments with respect to only certain frequencies. For example, an individual's hearing loss may be greater at higher frequencies than at lower frequencies.
Hearing aids have been developed to compensate for hearing losses in individuals. Conventionally, hearing aids detect sound with the use of a microphone, which turns the sound into an analog signal. The analog signal must then be converted into a digital representation, such that it can be processed by a digital signal processor, as configured by an audiologist, to shape the sounds to compensate for the user's hearing deficiencies. However, in some instances, noise from the acoustic environment may interfere with the user's hearing experience.
In the following description, the use of the same reference numerals in different drawings indicates similar or identical items. | {
"pile_set_name": "USPTO Backgrounds"
} |
Many optical systems use a reticle—a pattern of fine lines, typically positioned in a focal plane of the system—for purposes of alignment, focusing and/or measurement. Reticles are most commonly used in the eyepieces of sighting devices, such camera viewfinders, telescopes and microscopes.
For example, U.S. Pat. No. 5,130,845, whose disclosure is incorporated herein by reference, describes a real image viewfinder with an objective having movable focusing lenses, a field lens, an eyepiece lens and image inverting optics. The field lens surface is at the focus of the eyepiece lens. A reticle pattern is located on the field lens surface. Since the objective forms a focus at the location of the reticle, observation of the reticle indicates when the objective is focused. | {
"pile_set_name": "USPTO Backgrounds"
} |
The recording of a nitrogen adsorption isotherm employing a known automatically-operating vacuum microbalance is effected by registering the values of the variation in the weight of the specimen under observation with a multi-channel compensation recorder. Different gas pressures in the vacuum micro-balance are then controlled through a manostat by a buoyancy manometer which permits various pressure stages to be adjusted according to a preselected programme. Pressure regulation is effected by means of a minor quantity of gas which is kept constant and admitted to the vacuum micro-balance. Once the desirable nominal pressure value is attained, the gas admitted to the vacuum micro-balance is partially removed by means of a pump until the preselected gas pressure remains constant.
This procedure has serious disadvantages in respect of the following points:
1. Preliminary tests are necessary in order to ascertain how much time is required for adjustment of the equilibrium. Depending upon the specimen used and the gas pressure, between 5 and 200 minutes are needed for adjustment of the equilibrium.
2. A certain safety margin for the time must be allowed in order to be sure that the equilibrium has adjusted.
3. The statement of the variation in weight of the specimen is made in the form of a graph from which the actual weight difference must be laboriously interpolated.
4. For large variations in weight of the specimen, the hundreds and thousands decades must be laboriously deduced from the record strip, because the decade is stepped up or stepped down automatically when the recorder carriage strikes the limit points. The relevant hundreds or thousands decade has to be reconstructed from the number of jumps.
5. The pressure indication can also only be obtained inaccurately, because only the width of the recorder is available for the entire range of pressure.
6. The association of the variation in weight with the corresponding gas pressure is likewise a time-consuming operation.
7. The pressure regulation is effected by a regulated exhaustion of inflowing gas. Due to the slight pressure variations which then occur, the highly sensitive vacuum micro-balance is set into oscillations which lead to inaccuracy in detecting the equilibrium state. | {
"pile_set_name": "USPTO Backgrounds"
} |
As a conventional wine dispenser, for example, “Device for Selling Wine by Cup” disclosed in Patent Document 1 which has been previously filed by the present applicant is known. In the device, a wine flow-out tube with a cock communicating with an inner space of an upright cylinder is provided at the bottom of the cylinder, a load lid having an outer circumferential face slidably coming into contact with an inner circumferential face of the cylinder is inserted into the cylinder and an upper end of the cylinder is opened to the atmosphere. The cylinder and the load lid are made of stainless steel. An upper face (bottom wall face of the inner space) of a bottom plate of the cylinder is flat, and a lower end of a butt side opening of the wine flow-out tube is provided at the same height as that of the upper face of the bottom plate of the cylinder so that wine in the cylinder can be entirely discharged.
Wine is poured into the cylinder, and the load lid is inserted into the cylinder with a bottom face of the load lid coming into contact with a surface of the wine. When the cock is opened in this state, the wine in the cylinder is poured into a glass through the wine flow-out tube by weight of the wine and static load of the load lid. Accordingly, the load lid gradually falls in accordance with the dispensing amount of the wine with the outer circumferential face of the load lid coming into contact with the inner circumferential face of the cylinder. Accordingly, during use of the wine dispenser, the wine hardly comes into contact with the atmosphere and can be prevented from oxidizing. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present disclosure relates to processing systems and more particularly to techniques for providing enhanced availability in single processor-based systems.
Achieving high-availability is an important design goal for any network architecture. Several networking technologies have been developed to achieve high-availability. Existing technologies facilitate high availability by providing redundant network devices or by providing multiple physical processors. For example, according to one architecture, redundant network devices are provided for forwarding data with one network device operating in active mode and the other operating in standby (or passive) mode. In this active-standby model, the active network device performs the data forwarding-related functions while the redundant second network device operates in standby mode. Upon a failover, which may occur, for example, due to an error on the active device, the standby device becomes the active device and takes over data forwarding functionality from the previously active device. The previous active device may then operate in standby mode. The active-standby model using two network devices thus strives to reduce interruptions in data forwarding.
Some network devices comprise multiple physical processors. For example, a network device may comprise two management cards, each having its own physical processor. One management card may be configured to operate in active mode while the other operates in standby mode. The active management card performs the data forwarding-related functions while the redundant second management card operates in standby mode. Upon a failover, the standby management card becomes the active card and takes over data forwarding-related functionality from the previously active management card. The previous active management card may then operate in standby mode. The active-standby model is typically used to enable various networking technologies such as graceful restart, non-stop routing (NSR), and the like.
As described above, conventional networks facilitate high-availability by providing redundant network devices or multiple physical processors. However, providing this redundancy increases the expense of the network or network device. Further, there are systems, including several network devices, and subsystems of a system that comprise only a single physical processor. These systems and subsystems cannot provide an active-standby capability. For example, line cards in a network device do not comprise redundant physical processors that can enable an active-standby model of operation. As another example, several network devices comprise only a single management card with a single physical CPU and thus do not support an active-standby model. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a device for sterilizing a fluid, including a container provided for receiving the fluid, at least one UV light source for the sterilization of the fluid and at least one measuring device for determining absorption properties and/or cloudiness of the fluid.
It is known in the art to sterilize microbiologically contaminated media, such as for example drinking water or purified waste water, by irradiation with ultraviolet light (UV light). A device of this type has become known from AT 411 250 B in the name of the Applicant, in which a UV reference sensor and an additional UV measuring sensor are provided for measuring the light passing through a reference medium or through the fluid, respectively. The evaluation of the light signals measured by the UV measuring sensor and the UV reference sensor delivers a measuring signal which is characteristic of the intensity and if appropriate of the spectral composition of the measured UV light. | {
"pile_set_name": "USPTO Backgrounds"
} |
By code, buildings such as industrial, school and public buildings require fire and smoke barrier opening protectives. Due to the simplistic operation and known designs of swing door exit hardware, side-hinged swinging doors are commonly used.
However, code rated side-hinged swinging doors are not always the desired design choice to meet code requirements. For structures needing higher occupancy fire/smoke protection requirements, multiple swing doors and/or banks of swing doors and their associated frame assemblies are used. The framing requirements of multiple doors and/or banks of doors present architectural challenges for building designers.
In an attempt to overcome these challenges, a variety of door designs have been developed. One known design uses up to two swinging fire door and frame assemblies that store in pockets perpendicular to the opening. A second known design includes a bank of swinging fire door and frame assemblies that are attached to the bottom of a coiling door. Although these designs include commonly accepted side-hinge swinging doors, they require significantly more head or side room clearances and cost more to manufacture than earlier designs.
Another known design uses commonly accepted side-hinge swinging doors in an accordion folding fire door configuration. However, this design requires side stack space for the folded accordion door and non-folding side-hinge swinging door(s). Because occupancy load determines the amount of door opening/number of required doors, each required side-hinge swinging door mandates additional side stack space, thereby reducing the overall free space and presenting construction challenges.
Accordingly, there remains a continuing need for improved combined emergency egress and fire/smoke barrier designs. The present invention fulfills this need and further provides related advantages. | {
"pile_set_name": "USPTO Backgrounds"
} |
A gas turbine engine generally includes a fan and a core arranged in flow communication with one another. Additionally, the core of the gas turbine engine general includes, in serial flow order, a compressor section, a combustion section, a turbine section, and an exhaust section. In operation, air is provided from the fan to an inlet of the compressor section where one or more axial compressors progressively compress the air until it reaches the combustion section. Fuel is mixed with the compressed air and burned within the combustion section to provide combustion gases. The combustion gases are routed from the combustion section to the turbine section. The flow of combustion gasses through the turbine section drives the turbine section and is then routed through the exhaust section, e.g., to atmosphere.
More commonly, non-traditional high temperature materials, such as ceramic matrix composite (CMC) materials, are being used as structural components within gas turbine engines. For example, given an ability for CMC materials to withstand relatively extreme temperatures, there is particular interest in replacing components within the combustion section of the gas turbine engine with CMC materials. For example, typical combustion sections include an inner liner, an outer liner, and a dome together defining a combustion chamber. More commonly, at least the inner and outer liners are being formed of CMC materials.
The inventors of the present disclosure have found that it may be also beneficial to form other components of the combustor assembly of CMC materials. However, presently problems exist with joining multiple components defining the combustion chamber of CMC materials. Accordingly, a combustor assembly capable of utilizing multiple components formed of CMC materials would be useful. Specifically, a combustor assembly capable of effectively joining multiple components formed of CMC materials would be particularly beneficial. | {
"pile_set_name": "USPTO Backgrounds"
} |
A multiple-garment hanger of the aforedescribed type generally can have five garment-carrying rods so that respective pairs of trousers or other garments can be placed over these rods and, upon release of one of the hooks from the closet rod, can have the garments lie in close relation as the support bar hangs substantially vertically.
The garment-carrying rods in the prior art arrangement of this type, while being slidable relative to the support bar transversely of the latter, are of U-shaped configuration so that upon the hanging of a garment on a rod or removal of a garment from a rod, there is a certain degree of interference with the garment-carrying rods with the result that usually additional garments are removed or interfere with the emplacement of a garment on the rod. The fork-shaped garment-carrying rods are indeed pivotally mounted on the support bar, but do not significantly prevent the interference described above.
In German utility Model No. DE GM 87 12 870, a clothes hanger is described and illustrated which has a plurality of U-shaped garment-carrying rods which telescopingly are shiftable in the support member provided with the two hooks so as to move horizontally and so as to allow a swinging movement in the support member.
With this system, the desired garment-carrying rod can be drawn out of the garment-storage position to allow a garment to be applied to the rod without interference or to allow a garment to be removed without interference and without simultaneous removal of other garments. The garment-carrying rod can thus be returned to its original position with or without a pair of trousers or other garment.
Because of the arrangement of a number of garment-carrying rods with respective garments in this system, the entire system remains in equilibrium so that the multiple-garment hanger as a whole is easy to handle. By releasing one of the two hooks, the entire multi-garment hanger can be brought into a position in which the space requirements are reduced, the support bar which lies parallel to the closet rod hanging then substantially in an upright position.
Because of the U-shaped configuration of the garment-carrying rods in the latter construction, the upper limb of the garment-carrying rod is slidable in the support bar so that when one of the rods is drawn out for removal or hanging of a garment, it can engage other garments so that use of the hanger can be interfered with. This is especially a problem with voluminous garments such as lined trousers. | {
"pile_set_name": "USPTO Backgrounds"
} |
In the modern economy, reliable identification of products has been accorded increasing importance not only for improved logistics, but also for preventing product piracy. Recently, “luminescent nano-pigments” (LNPs) have been utilized to provide products with a permanent, distinguishable, spectral fingerprint that is visible only upon appropriate optical stimulation. Such LNPs can be provided as non-toxic, bio-compatible, stable and very long-lasting inorganic materials that are introduced into the product surfaces and are not modifiable therein. The LNPs are stable at high and low temperatures, are insensitive to solar radiation and are available in particle sizes of, e.g., 0.3 μm to 60 μm. When irradiated, e.g., with laser radiation, they can be excited to luminesce. The delay or lag of the luminescent radiation relative to the excitation irradiation can be practically zero (fluorescence) or can have predetermined values that are characteristic for the respective LNPs.
An apparatus for detecting laser-stimulated luminescent radiation is known from European Patent Application No. 0 802 499 A2. This apparatus has an opening designed for the emission of excitation irradiation, generally in the UV-range, generated by a semiconductor diode housed in the housing of the apparatus and for the admission of luminescent radiation, generally in the visible range, that emanates from a surface of an object as a result the excitation radiation applied thereto. However, this apparatus lacks a safety mechanism for preventing, e.g., the user's eyes from being accidentally exposed to harmful excitation irradiation.
An apparatus for examining objects such as currency, paintings, stamps, etc. using UV-light is known from German patent publication no. 1 673 140. This apparatus has a downward-opening housing for irradiating the object and for monitoring the luminescence emanating therefrom. During the inspection process, the UV-lamp and the object are disposed in the apparatus housing so that the UV-light is confined therein. Consequently, the design of this apparatus does not lend itself to convenient, e.g., portable, inspection of a wide-variety of product sizes. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of Invention
The present invention relates to liquid crystal panels and liquid crystal panels, and in particular, a technology suitable for active matrix liquid crystal panels in which pixel electrodes are switched with switching elements formed on a semiconductor substrate or an insulating substrate. The present invention also relates to an electronic device and a projection display device using the same.
2. Description of Related Art
Liquid crystal panels having a structure in which a thin film transistor (TFT) array using amorphous silicon is formed on a glass substrate have been conventionally used as reflective active matrix liquid crystal panels which are used in light valves of projection display devices.
The active matrix liquid crystal panel using the TFT is a transmissive liquid crystal panel, and a pixel electrode is formed with a transparent conductive film. In transmissive liquid crystal panels, since the switching element-forming region, such as a TFT, which is provided in each pixel is not a transparent region, it has a serious defect that the aperture ratio is low and decreases as the resolution of the panel is improved to XGA, or S-VGA.
As a liquid crystal panel having a smaller size than the transmissive active matrix liquid crystal panel, a reflective active matrix liquid crystal panel in which pixel electrodes, as reflecting electrodes, are switched with transistors formed on a semiconductor substrate or an insulating substrate has been proposed.
In such a reflective liquid crystal panel, the formation of a passivation film as a protective film on the substrate in which the reflecting electrodes are formed is often omitted since it is not always necessary. The present inventor has studied the formation of a passivation film on a reflective liquid crystal panel substrate.
In general, a silicon nitride film formed by a low pressure CVD process or a plasma CVD process is often used as a passivation film in semiconductor devices. The passivation film formed by a current CVD process inevitably has some variation of the thickness of approximately 10%. Accordingly, the reflective liquid crystal panel has disadvantages, e.g. the reflectance noticeably varies with variation of the thickness of the passivation film. | {
"pile_set_name": "USPTO Backgrounds"
} |
An XML list of multi-dimensional data is usually associated with a schema to assist in defining the data. However processing a schema and an XML data file to create a XML payload for export to a software application or a web page is very computational intensive. A large amount of computer processing power is consumed in applying the schema to the XML data file. It is very desirable to be able to receive imported XML data or enter XML data, then optionally modify XML data and finally export the data without use a schema during import, modification and export.
It is with respect to these considerations and others that the present invention has been made. | {
"pile_set_name": "USPTO Backgrounds"
} |
Multiple-unit dental restorations (i.e., bridges or pontics) have for many years been made by preparing a metal base or coping and then adding several layers of dental porcelain over the metal to simulate, as closely as possible, the appearance of natural teeth. The metal base for the bridge is usually assembled on a master cast and the individual units (teeth) are fastened together with wax containing rosin, known in the dental profession as "sticky wax". The assembly of individual units bonded together with wax is then carefully removed from the master cast and is embedded in a unitary mass of refractory cement ("soldering investment"), with only the portions of the units that are to be joined to the adjacent units exposed. After the cement has hardened, the wax is removed, as by flushing with boiling water. Next, the units are soldered together. After the soldering operation, the assembly is removed from the investment and is ready for the addition of the porcelain layers.
Recently, all-ceramic dental restorations have become commercially available. Because no metal is used in their fabrication, all-ceramic restorations can be made to more closely resemble natural dentition. Such all-ceramic dental restorations are disclosed, for instance, by Starling et al. in U.S. Pat. No. 4,265,669. Naturally, the techniques for producing an all-ceramic dental restoration must differ in some respects from those used to produce a metal-based restoration. For instance, in the preparation of an all-ceramic multiple unit restoration, the individual units cannot be soldered together as they are in a metal-based restoration. This invention is directed to a procedure that is particularly applicable for joining the individual units to each other in the production of an all-ceramic multiple unit dental restoration, although the invention is more widely applicable to the joining of all types of ceramic components that must be joined in precise spatial relationship. | {
"pile_set_name": "USPTO Backgrounds"
} |
FIELD OF THE INVENTION
The field of this invention relates to household appliances and, more particularly, to controlling the performance of household appliances. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present disclosure relates generally to healing of wounds and wound-treatment therapies. More particularly, but not by way of limitation, the present disclosure relates to modified materials, for example, silyl modified polyurethane foam for the reversible binding of factors in a wound bed.
2. Background Information
Clinical studies and practice have shown that providing a reduced pressure in proximity to a tissue site augments and accelerates the growth of new tissue at the tissue site. The applications of this phenomenon are numerous, but application of reduced pressure has been particularly successful in treating wounds. This treatment (frequently referred to in the medical community as “negative pressure wound therapy,” “reduced pressure therapy,” or “vacuum therapy”) provides a number of benefits, including faster healing and increased formulation of granulation tissue. One of the major clinical benefits of negative pressure wound therapy is its ability to effectively eliminate wound exudate, thereby reducing edema and allowing tissue decompression. Negative pressure wound therapy may not always be able to differentiate between harmful and beneficial factors removed from the wound. Coating used to address this such as collagen, PVA, PEG, and fibrinogen often suffer from not being covalent, uniform, or target specific. Typically they cannot bind proteins at a specific site and present them to cells in a manner that allows the active site to retain its function. Improvements that would allow the binding of molecules in a covalent manner, specify the types of compounds that could be bound, the chemical reactions with which to bind them, and/or the orientation with which the protein is presented to the cells, e.g., for use in a dressing, wound insert, pad, etc., would therefore be highly desirable. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an internal combustion engine having a nutating member. The engine also has provision for continuously varying engine parameters such as displacement, compression ratio, valve timing, and valve lift.
2. Description of the Prior Art
It has been known in the art that the traditional fixed-geometry internal combustion engines cannot perform optimally over their entire operational rpm and torque range. For this reason, many designs have been proposed in the prior art that allow the variation of one or several of the more important engine parameters such as compression ratio, displacement, and valve timing.
U.S. Pat. No. 5,165,368, issued to Schechter, shows a variable compression ratio engine where the compression ratio is varied by varying the crank radius using a mechanical and hydraulic mechanism responsive to the torsional impulses applied through the connecting rod. The Schechter system cannot vary the compression ratio independent of the piston stroke.
U.S. Pat. No. 5,136,987, issued to Schechter et al., shows a variable piston stroke engine where the piston stroke is varied by varying the length of an arm extending between the connecting rod pivot, distal from the piston, and the engine block. Again the Schechter et al. system does not permit the independent variation of the compression ratio and the piston stroke.
U.S. Pat. No. 4,270,495, issued to Freudenstein et al., shows a variable stroke engine where the stroke is varied by changing the pivot point of a rocker arm extending between the connecting rods of two adjacent cylinders.
U.S. Pat. No. 4,131,094, issued to Crise, shows a variable stroke engine where the stroke is varied by varying the crank radius. Again the Crise system does not permit the independent variation of the compression ratio and the piston stroke.
U.S. Pat. No. 4,100,815, issued to Kemper, shows a variable displacement engine where the displacement is varied by the rotation of an eccentric sleeve relative to a nutating member. The Kemper engine suffers from the serious drawback that the nutating member is constrained from rotation about the output shaft only by the forces exerted on the pistons by the cylinder walls. Thus the reaction torque on the nutating member is borne entirely by the piston sides and cylinder walls. For this reason the Kemper engine would suffer from rapid wear damage to the cylinder walls and piston sides resulting in their premature failure. Further, in the Kemper engine the forces of the pistons act at a distance from the axis of the output shaft, which is greater than the distance, from the axis of the output shaft, of the forces between the nutating member and the rotating support member. The greater moment arm of the piston forces greatly amplifies the forces on the bearing surfaces of the nutating member and the rotating support member, thus leading to faster wear and consequent mechanical failure.
U.S. Pat. No. 4,066,049, issued to Teodorescu et al., shows a variable displacement engine where the displacement is varied by moving the bracket supporting the nutating member relative to the cylinder block. The Teodorescu et al. engine suffers from the same drawbacks enumerated with respect to the Kemper engine. In addition, there are no discernable means in the Teodorescu et al. engine for counteracting the torque on the output shaft of the engine. Although Teodorescu et al. do not explicitly state how the connecting rods attach to the pistons, the geometric constraints imposed by nutation of the equatorial band of the Teodorescu et al. engine would dictate that the piston rods should be ball-jointed at both ends. Therefore, the only rotational constraint on the equatorial band of the Teodorescu et al. engine would be the piston rods crashing into the bottoms of the cylinder bores. It should be readily apparent that such an arrangement would lead to rapid wear and consequent premature mechanical failure of the piston rods and the cylinder bore bottoms.
French Patent Document Number 2 647 508, by Jurkovic, shows a variable compression ratio engine where the compression ratio is varied by moving the axis of rotation of the crank shaft relative to the cylinder block.
German Patent Document Number 27 53 563, by Zeilinger, shows a variable compression ratio engine where the compression ratio is varied by varying the connecting rod length.
Netherlands Patent Document Number 8901197, by Van Hoeven, shows a variable compression ratio engine where the compression ratio is varied by moving the pivot point of a rocker arm extending between the piston rod and a connecting rod engaging the throw of the crankshaft.
United Kingdom Patent Document Number 2 219 836 A, by Heniges, shows a variable stroke engine where the stroke is varied by changing the crank radius using an eccentric mounted on the crank throw.
United Kingdom Patent Document Number 286,075, by Myers, shows a variable stroke engine where the stroke is varied by a pivoting plate extending between the piston rod and a rod connected to the crankshaft throw. The Myers design does not allow for dynamic control of the piston stroke and compression ratio in response to engine load conditions.
None of the above inventions and patents, taken either singly or in combination, is seen to describe the instant invention as claimed. | {
"pile_set_name": "USPTO Backgrounds"
} |
In the formation of integrated circuits (IC's), thin films containing metal and metalloid elements are often deposited upon the surface of a substrate, such as a semiconductor wafer. Thin films are deposited to provide conductive and ohmic contacts in the circuits and between the various devices of an IC. For example, a desired thin film might be applied to the exposed surface of a contact or via hole on a semiconductor wafer, with the film passing through the insulative layers on the wafer to provide plugs of conductive material for the purpose of making interconnections across the insulating layers.
One well known process for depositing thin metal films is chemical vapor deposition (CVD) in which a thin film is deposited using chemical reactions between various deposition or reactant gases at the surface of the substrate. In CVD, reactant gases are pumped into proximity to a substrate inside a reaction chamber, and the gases subsequently react at the substrate surface resulting in one or more reaction by-products which form a film on the substrate surface. Any by-products remaining after the deposition are removed from the chamber. While CVD is a useful technique for depositing films, many of the traditional CVD processes are basically thermal processes and require temperatures in excess of 1000.degree. C. in order to obtain the necessary reactions. Such a deposition temperature is often far too high to be practically useful in IC fabrication due to the effects that high temperatures have on various other aspects and layers of the electrical devices making up the IC.
Particularly, certain aspects of IC components are degraded by exposure to the high temperatures normally related to traditional thermal CVD processes. For example, at the device level of an IC, there are shallow diffusions of semiconductor dopants which form the junctions of the electrical devices within the IC. The dopants are often initially diffused using heat during a diffusion step, and therefore, the dopants will continue to diffuse when the IC is subjected to a high temperature during CVD. Such further diffusion is undesirable because it causes the junction of the device to shift, and thus alters the resulting electrical characteristics of the IC. Therefore, for certain IC devices, exposing the substrate to processing temperatures of above 800.degree. C. is avoided, and the upper temperature limit may be as low as 650.degree. C. for other more temperature sensitive devices.
Furthermore, such temperature limitations may become even more severe if thermal CVD is performed after metal interconnection or wiring has been applied to the IC. For example, many IC's utilize aluminum as an interconnection metal. However, various undesirable voids and extrusions occur in aluminum when it is subjected to high processing temperatures. Therefore, once interconnecting aluminum has been deposited onto an IC, the maximum temperature to which it can be exposed is approximately 500.degree. C., and the preferred upper temperature limit is 400.degree. C. Therefore, as may be appreciated, it is desirable during CVD processes to maintain low deposition temperatures whenever possible.
Consequently, the upper temperature limit to which a substrate must be exposed precludes the use of some traditional thermal CVD processes which might otherwise be very useful in fabricating IC's. A good example of one such useful process is the chemical vapor deposition of titanium. Titanium is typically used to provide ohmic contact between the silicon contacts of an IC device and a metal interconnection. Titanium may be deposited from TiBr.sub.4, TiCl.sub.4 or TiI.sub.4 by using CVD methods such as unimolecular pyrolysis or hydrogen reduction. However, the temperatures necessary for these thermal processes are in excess of 1000.degree. C., and such a deposition temperature is much to high to be practically useful in IC fabrication. Therefore, the deposition of titanium and titanium-containing rims presents a problem in formation of integrated circuits.
There are low temperature physical techniques available for depositing titanium on temperature sensitive substrates. Sputtering is one such technique involving the use of a target of layer material and an ionized plasma. To sputter deposit a film, the target is electrically biased and ions from the plasma are attracted to the target to bombard the target and dislodge target material particles. The particles then deposit themselves cumulatively as a film upon the substrate. Titanium may be sputtered, for example, over a silicon substrate after various contacts or via openings are cut into a level of the substrate. The substrate might then be heated to about 800.degree. C. to allow the silicon and titanium to alloy and form a layer of titanium silicide TiSi.sub.2). After the deposition of the titanium layer, the excess titanium is etched away from the top surface of the substrate leaving TiSi.sub.2 at the bottom of each contact or via. A metal interconnection is then deposited directly over the TiSi.sub.2.
While physical sputtering provides deposition of a titanium film at a lower temperature, sputtering processes have various drawbacks. Sputtering normally yields very poor step coverage. Step coverage is defined as the ratio of film thickness on the bottom of a contact on a substrate wafer to the film thickness on the sides of the contact or the top surface of the substrate. Consequently, to sputter deposit a predetermined amount of titanium at the bottom of a contact or via, a larger amount of the sputtered titanium must be deposited on the top surface of the substrate or the sides of the contact. For example, in order to deposit a 200 .ANG. film at the bottom of a contact using sputtering, a 600 .ANG. to 1000 .ANG. film layer may have to be deposited onto the top surface of the substrate or the sides of the contact. Since the excess titanium has to be etched away, sputtering is wasteful and costly when depositing layers containing titanium.
Furthermore, the step coverage of the contact with sputtering techniques decreases as the aspect ratio of the contact or via increases. The aspect ratio of a contact is defined as the ratio of contact depth to the width of the contact. Therefore, a thicker sputtered film must be deposited on the top or sides of a contact that is narrow and deep (high aspect ratio) in order to obtain a particular film thickness at the bottom of the contact than would be necessary with a shallow and wide contact (low aspect ratio). In other words, for smaller device dimensions in an IC, corresponding to high aspect ratio contacts and vias, sputtering is even more inefficient and wasteful. The decreased step coverage during sputter deposition over smaller devices results in an increased amount of titanium that must be deposited, thus increasing the amount of titanium applied and etched away, increasing the titanium deposition time, and increasing the etching time that is necessary to remove excess titanium. Accordingly, as IC device geometries continue to shrink and aspect ratios increase, deposition of titanium-containing layers by sputtering becomes very costly.
On the other hand, using a CVD process for depositing a titanium-containing film layer may be accomplished with nearly 100% step coverage. That is, the film thickness at the bottom of the contact would approximately equal the thickness on the top surface almost regardless of the aspect ratio of the contact or via being filled. However, as discussed above, the temperatures necessary for such CVD processes are too high and would degrade Other aspects of the IC. Consequently, it would be desirable to achieve titanium CVD at a temperature less than 800.degree. C., and preferably less than 650.degree. C. Further, it is generally desirable to reduce the deposition temperature for any CVD process which is utilized to deposit a film in IC fabrication.
One approach which has been utilized in CVD processes to lower the reaction temperature is to ionize one or more of the reactant gases. Such a technique is generally referred to as plasma enhanced chemical vapor deposition (PECVD). While it has been possible with such an approach to somewhat lower the deposition temperatures, the high sticking coefficient of the ionized plasma particles degrades the step coverage of the film. That is, ions of the reactant gases are highly reactive and have a tendency to contact and stick to the walls of the vias or contacts in the substrate. The ion particles do not migrate downwardly to the bottom surface of the contact where the coating is desired but rather non-conformally coat the sides of the contact. This results in increased material usage, deposition times and etch times. Therefore, PECVD using ionized reactant gases has not been a completely adequate solution to lowering traditional high CVD temperatures and achieving good step coverage and film conformality.
Additionally, when using a CVD process to apply a film, it is desirable to uniformly deposit the film. To do so, such as to apply a uniform film of tungsten (W), for example, a uniform supply of reactant gases must be supplied across the surface of the substrate and the spent gases and reaction by-products should be removed from the surface being coated. In this respect, prior art CVD processes have again performed with limited success. Specifically, in known CVD processes, turbulence in the flow of reaction gases inhibits the efficiency and uniformity of the coating process and aggravates the deposition and migration of contaminants within the reaction chamber. In tungsten CVD processes, tungsten hexafluoride (WF.sub.6) is employed as a reactant gas. Tungsten hexafluoride is very costly and thus, when reactant gas utilization efficiency is low, as it is in prior art CVD processes, the overall process costs are significantly increased. Accordingly, there is a need for CVD processes which have improved gas flow and reduced gas flow turbulence to more efficiently and more uniformly supply reaction gases to and remove reaction by-products from the surfaces of the substrate being coated.
Therefore, CVD processes which may be accomplished at lower effective temperatures are desired. It is further desirable to have a low temperature deposition which provides good step coverage. It is still further desirable to have a PECVD process which produces uniform film thickness and effective utilization of reactant gases. Accordingly, the present invention addresses these objectives and the shortcomings of the various CVD and PECVD processes currently available. Further, the present invention, particularly addresses the difficulties associated with depositing titanium and titanium-containing films using CVD. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention is directed to an implantable arrangement for defibrillation or cardioversion of a heart.
2. Related Application
The subject matter of the present application is related to that of application Ser. No. 07/895,810, filed simultaneously herewith, of the same inventors and assigned to the same Assignee as the present application.
3. Description of the Prior Art
An implantable system for in vivo defibrillation or cardioversion of a heart is disclosed in U.S. Pat. No. 4,662,377. This known system includes two intravascular electrodes, which are both carried on a catheter which is introduced into the right half of the heart. The intravascular electrodes are spaced from each other along the cathode so that when the cathode is properly in place within the heart, one electrode is disposed in the right ventricle of the heart and the other electrode is disposed in the superior vena cava. A planar electrode is disposed outside of the heart, opposite the left ventricle and is subcutaneously implanted at that location. The planar electrode is connected to the electrode in the superior vena cava and is connected to an output terminal of an implantable defibrillation pulse generator. The other output terminal of the pulse generator is connected to the electrode disposed in the ventricle so that, when defibrillating the heart, the current surge is divided into a first sub-current between the electrode in the ventricle and the electrode in the superior vena cava, and a second sub-current between the electrode in the ventricle and the planar electrode.
Another arrangement for defibrillation or cardioversion of a heart is disclosed in U.S. Pat. No. 4,708,145 which also uses a catheter having an electrode disposed in the right ventricle and another electrode in the superior vena cava, and a planar electrode which can be either subcutaneously disposed or epicardially disposed in the proximity of the diaphragm. Defibrillation pulses are supplied sequentially between the electrode and the superior vena cava and the electrode in the ventricle, and the planar electrode and the electrode in the ventricle. Thus, only two electrodes simultaneously participate in the delivery of pulses, and a true distribution of the current density into different zones of the heart muscle therefore does not occur. As an alternative to the aforementioned electrode placement, the electrode in the superior vena cava may be disposed in the inferior vena cava. Another electrode arrangement is disclosed in this patent wherein only planar electrodes are arranged on the heart.
A defibrillation arrangement is disclosed in European Application 0 373 953 wherein, when employing three electrodes, one electrode is arranged in the right ventricle via a catheter, another electrode is arranged in the vena cordis magna (great coronary vein) via a further catheter, and a third planar electrode is subcutaneously arranged disposed opposite the left ventricle. Defibrillation pulses are supplied either between one of these electrodes and the two other electrodes, which are connected to each other to achieve this purpose, or alternatively the electrodes may be successively charged with a defibrillation pulse in pairs.
Lastly, German OS 39 19 498 discloses an implantable arrangement for defibrillation or cardioversion of a heart, wherein one of a plurality of electrodes is disposed in the right ventricle, and the other electrodes, which are planar electrodes, are placed outside the heart or implanted subcutaneously. Defibrillation pulses are supplied between the electrode in the ventricle and the outer electrodes, which are connected to each other, so that the electrical current density is divided according to the spatial arrangement of the electrodes, and thus tends to penetrate the thickest zones of the heart muscle. If the defibrillation energy is to be optimally exploited, it is then necessary that the outer electrodes be applied directly to the epicardium. This requires, however, surgical opening of the thorax. | {
"pile_set_name": "USPTO Backgrounds"
} |
Unbalance type exciter serve for generating exciting forces changing over time, by means of which components coupled to the exciter can be caused to vibrate. They are employed in many technical fields, e.g. in vibrating conveyors, in vibrating screens, in compacting devices like e.g. vibratory plates or vibratory rollers, in vibratory pile driving devices and in vibration excited drilling and cutting devices.
For generating the exciting forces, depending on the design concept, one or more shafts, at which unbalance weights are arranged, are put into rotation.
In vibratory rollers it is preferred to arrange the unbalance type exciter within the roller drum and to decouple the rest of the machine with respect to vibrations in order to keep the vibrating masses and therewith the energy requirement as low as possible.
However, especially in case of relative narrow soil compacting devices like trench rollers, there is the problem that the unbalance type exciters known today, when providing a suitable exciting power comprise an overall length which makes it difficult or even impossible to arrange them axial in line with the roller drive in the rotational centre of the roller, what is desirable since in that case the starting point of the exciting forces substantially coincides with the centre of mass of the roller arrangement formed in this way so that an optimal vibration behaviour of the rollers can be achieved and the remaining structure of the machine is exposed only to minor additional load due to the exciting forces.
Hence, it is an object of the invention to provide an unbalance type exciter for soil compaction devices which has a substantially reduced overall length compared to known unbalance type exciters.
This object is achieved by the present invention. | {
"pile_set_name": "USPTO Backgrounds"
} |
Perpendicular magnetic recording, wherein the recorded bits are stored in the generally planar recording layer in a generally perpendicular or out-of-plane orientation (i.e., other than parallel to the surface of the recording layer), is a promising path toward ultra-high recording densities in magnetic recording systems, such as hard disk drives. The perpendicular magnetic recording layer is typically a continuous layer on the disk substrate, like in conventional perpendicular magnetic recording disk drives. However, magnetic recording disk drives with patterned perpendicular magnetic recording layers have been proposed to increase data density. In patterned media the perpendicular magnetic recording layer on the disk is patterned into small isolated data islands arranged in concentric data tracks. To produce the magnetic isolation of the patterned data islands, the magnetic moment of the spaces or regions between the data islands is destroyed or substantially reduced to render these regions essentially nonmagnetic. Alternatively, the media may be fabricated so that there is no magnetic material in the regions between the data islands.
A problem associated with continuous perpendicular magnetic recording media is the thermal instability of the recorded magnetization patterns. In continuous perpendicular magnetic recording layers, the magnetic material (or media) for the recording layer on the disk is chosen to have sufficient coercivity such that the magnetized data bits are written precisely and retain their magnetization state until written over by new data bits. As the areal data density (the number of bits that can be recorded on a unit surface area of the disk) increases, the magnetic grains that make up the data bits can be so small that they can be demagnetized simply from thermal instability or agitation within the magnetized bit (the so-called “superparamagnetic” effect). To avoid thermal instabilities of the stored magnetization, media with high magneto-crystalline anisotropy (KU) may be required. However, increasing KU in recording media also increases the switching field, H0, which is proportional to the ratio KU/MS, where MS is the saturation magnetization (the magnetic moment per unit volume). The switching field H0 is the field required to reverse the magnetization direction at short time scales on the order of 1 ns relevant for the data rates achieved in modern hard disk drives. For most magnetic media H0 is greater but of similar magnitude than the coercivity or coercive field HC of the material measured at time scales of 1 s that are easily accessible in magnetometry experiments. H0 cannot exceed the write field capability of the recording head, which currently is limited to about 15 kOe for perpendicular recording.
One approach to addressing this problem is thermally-assisted recording (TAR) using a magnetic recording disk like that described in U.S. Pat. No. 6,834,026 B2, assigned to the same assignee as this application. This disk has a bilayer medium of a high-coercivity, high-anisotropy ferromagnetic material like FePt as the storage or recording layer and a material like FeRh or Fe(RhX) (where X is Ir, Pt, Ru, Re or Os) as a “transition” layer that exhibits a transition or switch from antiferromagnetic to ferromagnetic (AF-F) at a transition temperature less than the Curie temperature of the high-coercivity, high-anisotropy material of the recording layer. The recording layer and the transition layer are ferromagnetically exchange-coupled when the transition layer is in its ferromagnetic state. To write data the bilayer medium is heated above the transition temperature of the transition layer with a separate heat source, such as a laser or electrically resistive heater. When the transition layer becomes ferromagnetic, the total magnetization of the bilayer is increased, and consequently the switching field required to reverse a magnetized bit is decreased without lowering the anisotropy of the recording layer. The magnetic bit pattern is recorded in both the recording layer and the transition layer. When the media is cooled to below the transition temperature of the transition layer, the transition layer becomes antiferromagnetic and the bit pattern remains in the high-anisotropy recording layer.
However, the FeRh or Fe(RhX) transition layer required for this type of TAR must be grown at high temperatures, i.e., greater than 500° C., and is difficult to deposit on the substrate in a manner that assures reliable and repeatable magnetic properties.
A problem associated with patterned perpendicular media is broadening of the switching field distribution (SFD). During the writing of an individual data island, the dipolar interaction of fields from neighboring data islands causes a relatively wide distribution of the switching field, i.e., the write field required to switch the magnetization of the data island from one state to the other state. The SFD broadens (that is, the bit-to-bit variation in the switching field increases) as the size of the data islands is reduced, which limits the achievable data density of patterned perpendicular media.
What is needed is improved perpendicular magnetic recording media, usable for either continuous or patterned media, that takes advantage of heating the recording layer to address the problems of thermal instability and SFD. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to mechanisms for providing security in networked computing systems. More specifically, the present invention relates to a method and an apparatus that uses a portable security token (PST) to facilitate cross-certification between certification authorities (CAs) associated with separate public-key infrastructure (PKI) domains.
2. Related Art
Public key cryptography provides a powerful tool that can be used to encrypt data and to authenticate digital signatures. However, widespread use of public key cryptography requires that a practical solution be found for the problem of associating public keys with their owners in a trusted (authenticated) manner.
One solution to this problem is to construct a Public Key Infrastructure (PKI). A PKI supports a collection of well-known trusted public keys, which can be hierarchically organized. In a PKI, the owner of a trusted key is usually referred to as a “Certification Authority,” or “CA.” A CA can use a private key corresponding to its trusted public key to authenticate the keys of other members (users and devices) in the PKI by signing the keys for the members, and creating “digital certificates.” A digital certificate typically links a public key to information indicating who owns the key (an identity certificate), or what the key is allowed to be used for (an attribute certificate), or at a minimum, that the bearer of the corresponding private key is a valid member of this particular PKI or some other trust system. A PKI simplifies the key management problem because it eliminates the need to exchange keys between all the members of a trusted network. Instead, in a PKI, only the trusted public keys need to be publicized.
It was initially envisioned that a single “global” PKI would eventually be adopted, which would enable any device on the Internet to authenticate itself to any other device on the Internet. Unfortunately, such a global PKI has not been adopted. Instead, there presently exist many separate PKI domains. For example, a separate PKI domain often exists for computing devices within a company or within a governmental organization. Because of absence of a single global PKI, it is difficult for devices on the Internet to establish trust with other devices on the Internet.
A number of schemes have been developed to enable devices from different PKI domains to interoperate with each other. In particular, a technique known as “cross-certification” allows two separate PKI domains to be merged into a single combined PKI domain. For example, consider a scenario with two PKI domains: a first PKI domain, with an associated first root CA, and a second PKI domain, with an associated second root CA. In the cross-certification process, the second root CA issues a “cross-certificate” to the first root CA. The cross-certificate is then propagated to devices in the first PKI domain, thereby allowing these devices to authenticate themselves to devices in the second PKI domain. In addition, cross-certification can also take place in the other direction, in which the first root CA issues a cross-certificate to the second root CA, thereby achieving full cross-certification.
Unfortunately, cross-certification is a complicated and time-consuming process. Cross-certification typically requires a meeting between administrators of the different domains, and certification information has to somehow be transferred securely between the root CAs for the different domains. Note that secure communications between the root CAs cannot take place across a public network, such as the Internet, until the cross-certificate is completed. Consequently, the certification information has to be exchanged through some other communication channel. For example, disks carrying this certification information can be hand-carried between the CAs.
Hence, what is needed is a method and an apparatus that simplifies the process of performing cross-certification between different PKI domains. | {
"pile_set_name": "USPTO Backgrounds"
} |
Work described herein was funded by Cold Spring Harbor Laboratory.
Focal adhesion plaques are specialized regions of the plasma membrane through which cells in culture adhere to the external substrate (Burridge, K. et al., Ann Rev. Cell. Biol., 4:487-525 (1988); Burridge, K. and K. Fath, BioEssays, 10:104-108 (1989)). On their internal face these structures anchor actin stress fibers, which are important in determining cell shape. Similar, but less well-characterized structures have been implicated in attachment between neighboring cells and adherence to extracellular matrix in vivo. Oncogenic transformation is frequently accompanied by a less-adherent, rounded morphology resulting from reorganization of the cytoskeleton (Ben Ze""ev, A., Biochem. Biophys. Acta., 780:197-212 (1985; Felice, G. R. et al., Eur. J. Cell Biol., 52:47-49 (1990)). In Rous Sarcoma Virus (RSV) transformed cells, for instance, it has been postulated that a contributing factor is the aberrant phosphorylation by pp60v-src of tyrosyl residues in key focal adhesion proteins (Burr, J. G. et al., Proc. Natl. Acad. Sci. USA, 77:3484-3488 (1980); Parsons, J. T. and M. J. Weber, Curr. Topics in Microbiol. and Immunol., 147:79-127 (1989)). Phosphotyrosine has also been detected in focal adhesions (Maher, P. A. et al., Proc. Natl. Acad. Sci. USA, 82:6576-6580 (1985)) and apical junctions (Takata, K. and S. J. Singer, J. Cell Biol., 106:1757-1764 (1988)) in nontransformed cells, raising the possibility that tyrosine phosphorylation at these sites may regulate normal cellular function. Such phosphorylation events must be tightly controlled and an understanding of the mechanism(s) involved would be very useful in furthering our understanding of control of normal and neoplastic cell growth.
The present invention relates to DNA which encodes a protein homologous to the protein tyrosine phosphatases (PTPases) which catalyze the dephosphorylation of proteins in which tyrosyl residues have been phosphorylated through the action of a protein kinase. The protein, which appears as if it will localize to focal adhesions, is also the subject of the present invention. In particular, it relates to cDNA encoding a protein, referred to as PTPH1, which was obtained from HeLa cells and characterized. PTPH1 has also been identified in other cell types. The structure of PTPH1 includes three segments: 1) an N-terminal segment of approximately 320 residues, which shows homology with the N-terminal segments of the talin family in the region known to be important for localization to focal adhesions; 2) a central segment, in which there are sequences with the features of sites of phosphorylation by casein kinase 2 and p34cdc2, which may be important for regulation of phosphatase activity; and 3) a C-terminal segment of approximately 250 residues, which shows homology to the known members of the PTPase family. PTPH1 has a single putative catalytic domain.
Because of its homology with the talin family of proteins, which are known to participate in linkage of intracellular actin filaments to the extracellular matrix at focal adhesions, it is likely that PTPH1 localizes to the focal adhesions, which is a major site ofaction. for oncogenic protein tyrosine kinases (PTK). Thus, overexpression of PTPH1 may be a powerful approach to countering the effects of oncogenic protein tyrosine kinases, such as those of transforming viruses, and interfering with or reversing cell transformation. This would provide a means of preventing or reversing abnormally high levels of phosphotyrosine associated with any disease or condition, such as preventing or reversing malignancy associated with the activity of a protein tyrosine kinase. Such protein tyrosine kinase may be of viral origin or be a cellular protein tyrosine kinase whose normal cellular function is disrupted, resulting in abnormal phosphorylation of tyrosyl residues. Such a method of preventing or reversing malignancy caused by or associated with the activity of a protein tyrosine kinase is also the subject of the present invention. In the present method, DNA or RNA encoding PTPH1 or a functional equivalent of PTPHl is administered to an individual in an appropriate gene transfer vehicle which can infect mammalian cells and, once inside the mammalian cells, express and make available PTPH1 or its functional equivalent in sufficient quantities to overcome or counteract the protein tyrosine kinase activity. As a result, phosphorylation of tyrosine residues at abnormal levels is prevented or reversed, resulting in turn in prevention or reversal of malignancy of cells. Suitable gene transfer vehicles are those which contain DNA or RNA encoding PTPH1 or a PTPH1 functional equivalent, can infect mammalian cells and express the encoded protein within the infected mammalian cells. Such vehicles include recombinant retroviruses and recombinant vaccinia virus.
The method of the present invention is useful in treating or preventing a wide variety of conditions in which abnormally high levels of phosphotyrosine occur and particularly in treating or preventing malignancies in which tyrosyl phosphorylation by a protein tyrosine kinase occurs at an abnormal rate or level and in which dephosphorylation of tyrosyl residues by PTPH1 or its functional equivalent results in prevention or reversal of a malignant phenotype. | {
"pile_set_name": "USPTO Backgrounds"
} |
Conventionally there is a permanent mold casting machine that manufactures casting products by pouring the molten metal from a holding furnace via a stoke into a cavity that is formed within the horizontally split molds that consist of the upper and lower molds.
For example, the permanent mold casting machine disclosed in the publication of the Japanese Patent Application, Publication No. S63-273561, belongs to this type of machine. In this permanent mold casting machine, the upper mold is attached to the lower surface of the upper mold base. It is movable up and down and is supported by four supporting frames that are installed around a holding furnace placed on a base table, wherein both (1) contacting the upper mold with the lower mold so as to form a product cavity between the upper mold and the lower mold that is disposed on the lower mold base that is fixed to the supporting frames, and (2) lifting the upper mold so as to form the space for setting of a core and for taking out products between the upper and lower molds, are carried out by the operation of lifting and lowering the upper mold base alone.
The permanent mold casting machine of the conventional structure as described above has a long distance for an upper mold base to travel when it is lifted or lowered. So, the four supporting frames must be very high. Accordingly the supporting frames are apt to bend if they are to support a large weight. Further, when the upper mold and the lower mold are separated, a large load presses the supporting frames. As a result, the supporting frames are apt to bend when the upper mold is opened (mold opening), causing the upper mold to slide in a horizontal direction so that the casting product that is lifted with the upper mold may interfere with the lower mold and be damaged or the washing that is disposed on the lower mold may come off. These problems are particularly conspicuous when the upper and the lower molds have a number of product cavities or complex product cavities. Further, the distance of travel of the upper mold base is long such that the hydraulic cylinder and hydraulic unit that lift and lower the upper mold base should have higher capacities. They become expensive.
In view of these problems, the present invention provides a method to move an upper mold in a permanent mold casting machine and the permanent mold casting machine used for the method, wherein the contact of the upper mold with the lower mold and its separation from the lower mold are carried out by means of a mold clamping mechanism, to which the upper mold is attached, so that the upper mold can carry out the scheduled work even if the distance of travel of the lifting and lowering frame becomes longer, and wherein, further, forming the space for setting of a core and for taking out a product between the upper and lower molds is achieved by the lifting of the mold clamping mechanism, and the upper mold (see the publication of Japanese Patent Application, Publication No. 2004-255406).
However, for the method and the permanent mold casting machine of Publication No. 2004-255406 a hydraulic cylinder and hydraulic unit having higher capacities are not required because of the use of the mold clamping mechanism. But the actuator of the mold clamping mechanism is required to generate a greater power than that required to lift the mold clamping mechanism and the upper mold so that the lifting and lowering frame should not be moved by the force generated at the time of the mold opening. There still remains a problem. Namely, the method and the permanent mold casting machine used for the method must have a very high capacity, especially if the actuator is operated by an electric cylinder, thus making it difficult to increase the speed of the machine. | {
"pile_set_name": "USPTO Backgrounds"
} |
Semiconductor components, such as, for example, micromechanical heat transfer sensors, may be manufactured by bulk or surface micromechanical methods. Manufacturing bulk micromechanical components may be relatively complex and therefore may be expensive. With surface micromechanical components, it may be complicated to manufacture a cavern. A process sequence for manufacturing a cavern by surface micromechanics may involve, for example, depositing a sacrificial layer, depositing of a membrane layer (such as, for example, polysilicon), creating openings in the membrane layer and/or opening a lateral etching channel, etching out the sacrificial layer and sealing the openings, with the inside pressure of the cavern being defined during sealing. | {
"pile_set_name": "USPTO Backgrounds"
} |
The use of multiple antennas at a transmitter and/or a receiver of a node in a wireless communication system may significantly boost the capacity and coverage of the wireless communication system. Such Multiple Input Multiple Output (MIMO) systems exploit the spatial dimension of the communication channel to improve performance by for example transmitting several parallel information carrying signals, so-called spatial multiplexing. By adapting the transmission to the current channel conditions, significant additional gains may be achieved. One form of adaptation is to dynamically, from one Transmission Time Interval (TTI) to another, adjust the number of simultaneously transmitted information carrying signals to what the channel may support. This is commonly referred to as transmission rank adaptation. Precoding is another related form of adaptation where the phases and amplitudes of the aforementioned signals are adjusted to better fit the current channel properties. Classical beam-forming is a special case of precoding in which the phase of an information-carrying signal is adjusted on each transmit antenna so that all the transmitted signals add constructively at the receiver.
The signals form a vector-valued signal and the adjustment may be thought of as multiplication by a precoder matrix. The precoder matrix is chosen based on information about the channel properties. A common approach is to select the precoder matrix from a finite and countable set, a so-called codebook. Such codebook based precoding is an integral part of the Long Term Evolution LTE standard and will be supported in MIMO for High Speed Downlink Packet Access (HSDPA) in Wideband Code Division Multiple Access (WCDMA) as well. The receiver (e.g. User Equipment, UE) would then typically evaluate all the different precoder matrices in the codebook and signal to the transmitter (e.g. Node B) which element is preferred. The transmitter would then use the signalled information, when deciding which precoder matrix to apply. Since codebook indices need to be signalled and the receiver needs to select a suitable codebook element, it is important to keep the codebook size as small as possible. On the other hand, larger codebooks ensure that it is possible to find an entry that matches the current channel conditions more closely.
Codebook based precoding may be seen as a form of channel quantization. Alternatively, methods may be used that compute the precoder matrix without resorting to quantization.
The fundamental goal of precoder codebook design is to keep the codebook size small while still achieving as high performance as possible. Design of the elements in the codebook thus becomes crucial in order to achieve the intended performance.
Different antenna array configurations influence how the codebook elements should be designed. Many existing solutions are designed with spatially uncorrelated channel fading in mind and where each channel coefficient fades with the same average power. However, such a channel model is not sufficiently accurate when cross-polarized antenna arrays are used. Consequently, the existing designs are ill-suited for such a configuration—an antenna configuration which is deemed important in practice.
To understand why existing designs tailored for equal powered channel coefficients are not efficient for a cross-polarized antenna array setup, consider for simplicity a 2x2 MIMO system in which both the transmitter and the receiver use cross-polarized arrays and the two orthogonal polarizations are aligned on the transmit and receive side, e.g. a pair of vertically and horizontally polarized antennas on both sides of the link. The MIMO channel matrix will then be diagonally heavy, meaning that the on-diagonal elements on average have substantially more power than the off-diagonal ones, since the vertical and horizontal polarizations are on average fairly well-separated even after experiencing the radio channel and reaching the receiver. For such a channel, an appropriate codebook of minimal size contains the unit vectors and the identity matrix. This ensures that when one-stream transmission (rank-one transmission) is performed, all the transmit power may be allocated to the antenna with the strong channel and no power is wasted on the other antenna, which on average will not be able to convey significant power to the receiver. The reason for the latter is because of the cross-polarized setup in conjunction with the selection of rank-one transmission, which means the channel matrix will typically have only one element with a power substantially larger than zero and that element will lie on the diagonal.
All power should hence be allocated to the antenna which corresponds to the aforementioned non-zero diagonal element. For a design which targets a scenario with equal powered channel coefficients, this is however typically not the case. Existing codebook designs do however not address this issue for the case of more than two antennas and also do not consider the structure of the codebook for various transmission ranks. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to an image forming apparatus which forms an image on a transfer material by use of an electrophotographic process, and a charger installed in this image forming apparatus.
2. Description of the Related Art
A corona discharge type fixing device installed in an image forming apparatus using an electrophotographic process is classified broadly into a wire electric discharge type (Corotron, Scorotron, etc.) or pin discharge type (pin electrode, sawtooth electrode, etc.).
In a method generally known, a cleaning member such as felt provided to wrap around a wire electrode is moved in a longitudinal direction (axial direction of a photoconductor drum) of a charger, as a means to clean the wire electric discharge type wire electrode.
Another method is known in which a cylindrical cleaning member provided movably along the sawtooth electrode is moved while being pressed against the edge of the sawtooth electrode, as a means to clean the pin discharge type sawtooth electrode (Jpn. Pat. Appln. KOKAI Publication No. 9-211940).
Still another method is known in which the sawtooth electrode is rotatably provided, and electric discharge products deposited on the edge of the sawtooth electrode are scraped against the cleaning member (Jpn. Pat. Appln. KOKAI Publication No. 11-327265).
Furthermore, apparatuses or methods are known in which a driving force generator such as a motor is used to automatically clean the electrode of the charger (Jpn. Pat. Appln. KOKAI Publication No. 6-194934, Jpn. Pat. Appln. KOKAI Publication No. 7-49606, U.S. Pat. No. 3,842,273).
However, the abovementioned method using the cylindrical cleaning member in which cleaning is achieved by the rolling and contacting of a roller has the disadvantage that the electric discharge products, toner, dust and the like deposited on the edge of the sawtooth electrode are not adequately removed because of insufficient cleaning power.
Moreover, the problem of the above-described method of cleaning the rotatably provided sawtooth electrode is that the edge of the sawtooth electrode warps and deforms when it contacts the cleaning member, and the cleaning power decreases as the cleaning is performed time and time again. Further, the warping and deforming of the sawtooth edge cause improper corona discharge and insufficient electric discharge to an image carrier. | {
"pile_set_name": "USPTO Backgrounds"
} |
In my copending application, I describe an electrolysis cell having particular utility as a means for generating hypochlorites and chlorine in swimming pool waters circulated through the cell. The waters contain a low concentration of a chloride salt such as sodium chloride. My application Ser. No. 525,882 is hereby incorporated by reference into this disclosure. In the accompanying drawings, FIGS. 1, 2, 3, and 4 depict the apparatus of my copending application.
As described in my copending application, a combination of steel negative electrode faces and rapid velocities was discovered to be adequate to avoid the accumulation of hardness deposits on the steel negative electrode faces. Moreover, as described in my copending application, baffles, or shields, 40 (FIG. 4a) were found necessary. It was determined that these baffles should extend parallel to the flow path of said liquid and for a distance on either side of each bipolar electrode face 38 or 39 (FIG. 3a) equal to at least 10 times the distance between opposing faces of adjacent electrodes. To accomplish this important but difficult arrangement, I disclose the filling of slots 37a and 37b with inner and outer conducting clips 42 and 43 respectively and that the resulting joints could be sealed by caps 44 with sealing cement 45. Examples I and II of my original application show how this structure worked 34 and 64 days, respectively, with no visible indications of problems at these joints. However, the required perfection of these joints was found difficult to retain with the further production of large numbers of cell assemblies. Joints which appeared to be perfect initially, subsequently would reveal a weak point or imperfection. At these points of imperfection, which were perhaps only a microscopic opening at the start, anodic corrosion of the conduction clip 42 and/or 44 would begin. As attack at these points continued, small areas of high resistance formed and tended to reduce the current going through all bipolar electrodes in series. The voltage drops existing at these imperfections increased and accelerated the deterioration of the imperfect joint. Towards the end of this process, nearly all of the rectified 120 ac line voltage might appear across just one or two joints. An electrical arcing, or scintillations, could be observed as current dropped toward zero and the cell assembly failed. Subsequent examination would show only one or a few electrodes to be bad. All other electrodes and joints would appear still to be in perfect condition.
Continued experience with the apparatus of my copending application revealed new and unexpected problems. One problem appeared where the tab from extreme positive electrode 30 and extreme negative electrode 31 come through cover 22. In my original specification, I disclose the use of "soft sealants," "bathtub sealants," and "silicone sealants." These common sealing materials were subsequently found not to be completely satisfactory because they tended to leak after an extended time of use. The metal electrodes and surrounding plastic expand and contract at different rates, thereby causing a leak over a period of time during which ambient or water temperatures varied. The physical insertion and removal of connectors to the tabs on electrodes 30 and 31 sometimes also helped to create small leaks by the physical flexing of these critical joints. Solvent cements are too brittle. Thick pastes and putties are too bulky for the precision of assembly needed and would not always adhere to the metal. Consultation with sales representatives from companies making sealants quickly showed there was no obvious answer to this problem with terminal electrodes. Numbers of sealants were suggested for trial and were subsequently tested for this invention.
Another problem appeared where the unshielded bottoms of terminal electrodes 30 and 31 sometimes became exposed to electrolyte. Because those bottome edges of these electrodes were cut and uncoated, corrosive attack began to eat away at the bottom of the terminal electrodes. The mere painting of bottom joints between terminal electrodes and bipolar electrodes was not satisfactory.
Another problem appeared which is known to the prior art of electrolysis of sea water and other dilute or concentrated brines. It is well known that hardness deposits will build up on most negative electrode surfaces. Those working in the art have reported these hardness deposits can easily be removed by periodically reversing the direction of current flow. This current reversal technique seems to work satisfactorily with carbon electrodes but when hydrogen is cathodically evolved on titanium, or evolved on porous coatings on titanium, some of the hydrogen tends to enter the titanium metal lattice forming titanium hydride. Titanium hydride is brittle and its lattice is about 13 percent expanded beyond that of the titanium lattice. When the current is reversed back to its original anodic direction, this titanium hydride surface is oxidized, which further deteriorates the titanium structure and tends to remove the conductive coatings which were so carefully placed there to permit the use of coated titanium as positive electrodes in the first place. These hydriding and oxidizing effects with coated titanium electrodes were so well established and well known that, when I approached the major producers of coated titanium electrodes for their recommendation on materials to be used in my electrode assembly, I was told no known electrodes would withstand current reversals under the conditions planned and desired for the utilization of my invention. One supplier said he had seen coated titanium electrodes become brittle and start to lose their coating in as short a time as one-half hour. Another said I could expect to see hydrides and surface deterioration within 24 hours. Another supplier of coated titanium electrodes said there was no way to tell whether his electrodes would withstand current reversals under the conditions I proposed. Thus, some experts in the art of electrolyzing hard brines reported that I should get rid of hardness deposits on coated titanium electrodes by some other way than by current reversals. Other experts were not sure as to how to eliminate hardness deposits. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to communications technologies. In particular, this invention relates to a multimode multicarrier modem.
2. Description of Related Art
The role out of broadband services over telephone lines using Digital Subscriber Lines (DSL) technology is occurring around the globe. In order to achieve reliable communications over DSL links, a technique known as Discrete Multitone (DMT) modulation is used. Discrete Multitone Modulation has been standardized for DSL transmission by the ANSI standards body for full-rate ADSL (T1E1.4/97-007R6 Interface between network and customer installation Asymmetric Digital Subscriber Line (ADSL) metallic interface, Sep. 26, 1997, i.e., T1.413 Issue 2, incorporated herein by reference in its entirety, and by the International Telecommunication Union (ITU) in the G.992.1 (full-rate ADSL) and G.992.2 (G.lite) standards, both incorporated herein by reference in their entirety. These standards specify that hundreds of 4.3125 kHz sub-channels are assigned for DSL transmissions between a telephone company Central Office (CO) and a Remote Terminal (RT), such as a home or business. Data is transmitted between the CO and RT in both the downstream direction, i.e., from the CO to the RT, and in the upstream direction, i.e., from the RT to the CO. The aggregate bandwidth, i.e., the bandwidth that is used by both the upstream and the downstream communications, of a full-rate ADSL system is over 1 MHz and that of G.lite is over 500 kHz. The systems typically transmit 1.5 Mbps (G.lite) or 6 Mbps (full-rate ADSL) data rates downstream. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates broadly to measuring temperatures. More particularly, this invention relates to a method and apparatus for measuring surface temperature of product moving through a spray cooling chamber. Reference will be made herein to measuring the surface temperature of strand moving through a spray cooling chamber in a continuous metal caster, but the invention may be used inside a spray chamber in other manufacturing processes.
2. Description of the Prior Art
A variety of continuous casting machines are used in the basic metals industry to continuously produce semifinished billets, slabs and other types of strands. In each type machine, freezing of molten metal occurs in a one-step solidification process. Successful caster operation in each case involves casting strands without cracks or defects while optimizing throughput. Overall caster operation is based on a number of key parameters, one of which is secondary cooling inside a spray cooling chamber of the caster. Therefore, it is important that good control of secondary cooling be achieved in order that a hot metal skin surrounding a molten core be properly solidified and cooled in this region of the caster.
Proper control of secondary cooling in the caster can only be made by determining the degree of strand cooling occurring inside the spray cooling chamber. Most caster operators would prefer to make this determination by actually measuring strand surface temperature at several locations inside the spray cooling chamber. However, after many attempts there is still no satisfactory method and/or apparatus for measuring strand surface temperature inside the spray cooling chamber of commercially available casting machines.
On numerous occasions, conventional radiation pyrometers have been used to measure strand surface temperature inside the spray cooling chamber. The results of such trials were too inaccurate and unreliable for caster operators to use. A major reason for such poor results is the difficulty of facilitating strand surface temperature measurements under severe environmental conditions constantly present in the spray chamber during caster operation.
The severe environment in the spray chamber is caused by a combination of factors such as liquid water, water mist, steam and foreign particles in cooling water as well as from mill scale flaked away from the metal surface being spray cooled. Each of these environmental factors cause a reduction in radiant energy to the temperature sensor used in the spray cooling chamber. Consequently, this produces corresponding erratic and inaccurate slab surface temperature measurements that vary unpredictably according to the effects of any one or a combination of the environmental factors.
For example, when using a radiation pyrometer that is responsive to only a single color, the measurement error is on the low side of normal. For two-color radiation pyrometers, the measurement error is usually on the high side. The latter instance is due to unequal energy losses of the different wavelengths of radiation passing through the severe environment inside the spray cooling chamber. Known prior art attempts to overcome these measurement difficulties has been limited to three areas. First, air blasts were used to physically blow liquid water, water mist and steam out of the pyrometer sight path. Second, two-color pyrometers were used to cancel out the effect of energy losses. Third, to a limited extent, light pipes and sighting tubes were used for the purpose of minimizing the length of path where optical interference occurs. Each of these three methods have met with only partial success for various reasons. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a power storage device and a method for manufacturing the power storage device.
Note that the power storage device indicates all elements and devices which have a function of storing power.
2. Description of the Related Art
In recent years, power storage devices such as lithium-ion secondary batteries, lithium-ion capacitors, and air cells have been developed.
An electrode for the power storage device is manufactured by providing an active material over a surface of a current collector. As the active material, a material which can adsorb and release ions functioning as carriers, such as carbon or silicon, is used. For example, silicon or phosphorus-doped silicon has an advantage of larger theoretical capacity than carbon and larger capacity of a power storage device (e.g., Patent Document 1). | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates generally to clip designs for use in securing interior and exterior vehicle moldings, and particularly plasticized moldings, to a vehicle frame.
2. Description of the Prior Art
Clip assemblies are well known in the art for retaining plasticized molding, trim and impact strips to a vehicle frame. As the moldings and trim are typically constructed of very different polymerized or synthetic materials as compared to the steel vehicle frame, it is important that an effective retaining means be employed as adhesives and the like are typically ineffective for holding to the trim and moldings to the frame.
Referring to FIG. 6, an example of a prior art fastener clip is illustrated at 2 and includes a body with flattened base plates 4 and 6, upwardly extending sides 8 and 10 and a curved and interconnecting top edge 12. The upwardly extending sides 8 and 10 each are machined and fabricated so that a center is open and first and second spring biased members, 14 and 16 respectively, extend in generally downwardly and multiple reverse bended or undulated fashion from the top edge 12 to the vicinity of the base plates 4 and 6. Additional pairs of tangs 18 and 20 extend in upwardly and generally inwardly fashion from inner opposing surfaces of the base plates 4 and 6 and terminate in pointed ends.
The purpose of the pairs of tangs is to fixedly secure the fastener clip in upwardly extending fashion to a projecting ridge formed along a reverse side of such items as plastic moldings and trim pieces. The spring biased members serve to initially inwardly deflect upon insertion of the clip through an aperture in the vehicle frame and subsequently outwardly deflect to hold the clip and attached trim piece in place.
While effective to a limited degree in securing a trim piece to a vehicle frame, the configuration of the prior art clip of FIG. 6 suffers from the shortcoming of tending to jiggle or rock within both its mount to the polymerized trim piece and the metal frame, as well as being able to only exert a limited degree of holding force, typically 20 lbs per square inch. Accordingly, it is commonplace for the clip and trim piece to become disengaged from its securing position to the vehicle frame.
Additional examples of molding clips are shown in such prior art references as U.S. Pat. No. 4,630,338, issued to Osterland et al., No. 4,103,400, issued to Munse, No. 5,263,233, issued to Kim et al., and No. 5,367,751, issued to DeWitt. In each case, the reference illustrated includes a pair of first and second spring-biased members which are reverse bent for biasingly engaging a trim piece or molding to a typically metallic frame. A further unique example of a fastener clip assembly is illustrated in U.S. Pat. No. 5,722,124, issued to Wisniewski, and which shows four interlocking and upwardly extending interengaging members for securing an interior vehicle panel to a metal bracket. | {
"pile_set_name": "USPTO Backgrounds"
} |
One of the known technologies related to the present invention is a technology for converting power energy obtained through solar electricity generation in space, into a microwave and transmitting the microwave to a specific point of the ground. This technology is applied to the development of a technology for supplying electric energy necessary for a light aircraft and the like.
These technologies are schemes for converting power energy itself only into a microwave and transmitting/receiving the microwave, and are used for transmitting a large capacity of power obtained from space, to the ground. Here, the used converted microwave is of a linear type close to light and has a disadvantage that it is available within a visible distance only. Also, the converted microwave has a limitation of a wireless distance range, needs separate transmission/reception devices and base station or relay station construction, and has a disadvantage that its use is restricted to a special use. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to energy absorbing bumpers specifically, a light weight bumper presenting a soft collision interface to objects on impact, and having a relatively wide, effective angle of collision acceptance. Although various fluids may be employed in such bumpers, the utilization of air as the working fluid not only produces a lighter weight assembly, but also obviates the need for seasonal maintenance which is necessary in some climates where liquids are employed.
Recent Department of Transportation (DOT) requirements have stimulated development of a suitable energy absorbing bumper system for motor vehicles. Although pneumatic energy absorbing bumper designs have been known since 1898, when they were first utilized with railway carriages, many of the present design proposals do not differ appreciably from the early configurations.
Generally, pneumatic bumpers absorb energy as they are compressed. Bumpers which are entirely closed offer increased resistance to compression, as they are subjected to increased forces of impact or peak loads, inasmuch as the latent air therein must actually expand the flexible structure. For this reason, static pressure within the bumper cannot be too high or the structure may rupture on impact. Alternatively, if the structure does not rupture, its lack of compression may permit damage to occur since the forces of impact will be transferred to both the impacted and the impacting object. Insofar as such bumpers contain no energy dissipating valving, whereby the compressed air may be released, they function primarily as energy storing devices rather than energy dissipating systems and as such tend to act as a spring, imparting a potentially harmful rebound effect immediately subsequent to impact with another object.
One relatively recent design involving a type of closed system pneumatic bumper is embodied in U.S. Pat. No. 3,810,668 and includes an inflatable bumper portion which is vented directly to a storage tank through suitable conduits. Prior to impact, pressures within the bumper and the tank are at equilibrium and immediately following impact, most of the working fluid is driven from the bumper to the tank with an increase in pressure therein. The fluid subsequently bleeds back into the bumper until equilibrium is again obtained.
A pneumatic bumper which vents its air to another closed system such as a tank may be considered an improvement over the totally closed structure in some respects; however, certain problems with the former system are merely lessened and not eliminated. For example, upon compression of the flexible bumper, air is driven therefrom, but as more of that air is transferred to the tank and the pressure increases therein, the bumper itself resists further compression thereby limiting its capacity to absorb energy. Nor, can relatively higher static pressures be maintained in the bumper to tank system, inasmuch as both pressures must be at equilibrium prior to impact. If the air pressure within the bumper and tank are both relatively high in this context, e.g., greater than 10 psig, transfer of the air from the bumper to the tank becomes more difficult. Furthermore, the tank itself must be strong enough to resist rupturing, adding even more weight to the vehicle. Increased bumper weight, particularly when it is in the front bumper which necessarily is located forward of the front axle of a vehicle, contributes to problems such as increased tire wear and sluggish steering response.
Another relatively recent design involving a pneumatic bumper is embodied in U.S. Pat. No. 3,768,850 and includes a resiliently deformable bumper shell mounted on a supporting plate. A plurality of ribs extend from the inner walls of the bumper shell to the supporting plate where they are removably connected in grooves. Mounting of the ribs in the grooves and the bumper shell itself to the supporting plate produces a plurality of individual chambers, normally closed to the atmosphere. At the rear of each chamber is a pressure relief valve which vents increasing chamber pressures, encountered during impact, directly to the atmosphere. Subsequent to impact, the bumper slowly returns to its original shape by restricted flow of air through the valves and into the chambers.
Despite the ability of such a bumper to dissipate energy, i.e., by exhausting the air under pressure to the atmosphere, peak loading forces which compress the bumper are undesirably high due to its internal structure. That is, the configuration of the ribs, effectively connecting the front impacting face of the bumper shell to the rear supporting plate, inhibits the rate at which the bumper shell will collapse as well as increases the forces necessary to cause total collapse of the bumper. Insofar as energy absorption and dissipation are functionally dependent upon the compression, or rapid decrease of internal bumper volume, it is believed that absorption of energy in such a system will be performed primarily by the resilient bumper with a relatively small amount of the energy being absorbed by the air contained therein. Based upon experimental work and development of the present bumper system, as well as the system set forth in our parent application, Ser. No. 426,615, now U.S. Pat. No. 3,902,748, it has been found that greater amounts of energy may be dissipated by proper use of the air contained therein rather than relying solely on the elastomer itself.
Thus, it is believed that a bumper such as embodied in U.S. Pat. No. 3,638,985, which may be characterized as nonpneumatic in the sense that the interior of the bumper is always in direct communication with the atmosphere, would be incapable of dissipating a satisfactory amount of the energy that it absorbs upon impact inasmuch as neither air nor other working fluid could be utilized to any appreciable degree in such capacity. Total energy absorption and whatever dissipation may be obtained would be solely dependent upon the elastomeric nature of the material forming the bumper.
As pneumatic bumpers of either of the foregoing types inherently absorb energy during compression, the problem has been that to obtain a maximum degree of compression, the impacting or peak loading force which compresses the bumper is often so high that harmful forces are transferred during collision rather than absorbed because the bumper cannot be readily compressed. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a retrofittable mailbox light system and more particularly pertains to providing an unobtrusive housing adapted to light a mailbox only when opened.
2. Description of the Prior Art
The use of mailbox light apparatuses is known in the prior art. More specifically, mailbox light apparatuses heretofore devised and utilized for the purpose of lighting a mailbox are known to consist basically of familiar, expected and obvious structural configurations, notwithstanding the myriad of designs encompassed by the crowded prior art which have been developed for the fulfillment of countless objectives and requirements.
By way of example, the prior art includes U.S. Pat. No. 4,648,012; U.S. Pat. No. 4,755,915; U.S. Pat. No. 3,935,994; U.S. Pat. No. Des. 313,106; U.S. Pat. No. 4,442,278; and U.S. Pat. No. 5,385,295.
In this respect, the retrofittable mailbox light system according to the present invention substantially departs from the conventional concepts and designs of the prior art, and in so doing provides an apparatus primarily developed for the purpose of providing an unobtrusive housing adapted to light a mailbox only when opened.
Therefore, it can be appreciated that there exists a continuing need for a new and improved retrofittable mailbox light system which can be used for providing an unobtrusive housing adapted to light a mailbox only when opened. In this regard, the present invention substantially fulfills this need. | {
"pile_set_name": "USPTO Backgrounds"
} |
The prior art has disclosed conventional safety apparatuses for elevators which use electrical or electromechanical contacts and switches in order to determine the locking or closing state of an elevator door. The intention here is for an elevator cab to only be allowed to travel when all the doors are locked.
The object of the invention is to propose a sensor, a safety apparatus and an elevator apparatus in which the susceptibility to the need for maintenance can be improved. | {
"pile_set_name": "USPTO Backgrounds"
} |
(a) Field of the Invention
The invention relates to a PDP (plasma display panel) driving circuit for generating ramp pulses. More specifically, the invention relates to a PDP driving circuit for compensating for temperature variation of parts installed for generating ramp pulses, and allowing stable operation of the ramp pulses.
(b) Description of the Related Art
A PDP has a plurality of discharge tubes in a matrix pattern, and selectively has them emit to restore image data input as electrical signals.
FIG. 1 shows a PDP electrode arrangement diagram.
As shown, the PDP electrodes have an (m x n) matrix pattern. Generally, the m address electrodes A1 through Am are arranged in columns and the n scan electrodes Y1 through Yn and then sustain electrodes X1 through Xn are alternately arranged in rows. Hereinafter, the scan electrodes will be referred to as Y electrodes and the sustain electrodes as X electrodes. The reference numeral 12 in FIG. 1 represents a discharge cell.
In this instance, a number of respective electrodes on the PDP is determined according to its resolution. The PDP realizes gradation so as to output color display performance.
Realization of gradation on the PDP is executed, for example, by dividing one TV field into six subfields and performing time-division control on each of the subfields.
FIG. 2 shows a method for realizing gray sales in a PDP. As shown, the PDP divides a single TV field into six subfields to represent 6-bit grays, and each single subfield has an address interval and a sustain interval.
Current commercial PDPs generally have ten to twelve or more subfields in a single TV field rather than six subfields. Since an increase in the number of subfields in a PDP reduces the contour noise, which is an important factor of image quality, studies for increasing the number of subfields using various methods have been undertaken.
PDPs can use a ramp reset to obtain operational margins. When using a ramp reset to drive a PDP, wall charges are erased except the amount of wall charges that will be used for a subsequent address operation. Wall charges for a subsequent address are accumulated on the panel because of weak discharging, thereby allowing a low-voltage address operation.
FIG. 3 shows a PDP driving waveform using a ramp pulse, and FIG. 4 shows a PDP driving circuit for the driving waveform of FIG. 3. Dotted parts in FIGS. 3 and 4 respectively indicate a ramp pulse waveform and a simple ramp pulse generation part.
One of the methods for generating ramp pulses is by operating a switch of a driving circuit as a static current source so as to output ramp waveforms in the PDP modeled as a capacitive load.
When the voltage at the panel is set to be Vc, the voltage linearly increases with respect to the time axis in the case of a ramp pulse according to Equation 1. Accordingly, a differential value of Vc is a constant.
V c = 1 C ∫ i ⅆ t ⅆ V c ⅆ t = 1 C · i = Constant Equation 1
In Equation 1, C is a capacitance of the panel. Because the capacitance value C is constant, in order to output a ramp pulse, the current (i) applied to the panel also needs to be constant.
FIG. 5 shows a ramp pulse generation circuit using a capacitor. As shown in FIG. 5, a capacitor C1 is arranged between a gate and a drain of an FET (field-effect transistor) to generate a ramp pulse. That is, in order to completely turn on the FET, it is required to charge a parasitic capacitance Cgs between the gate and the source of the FET, and to charge a parasitic capacitance Cgd between the gate and the drain thereof.
In this instance, when the capacitor C1 is added to the parasitic capacitance Cgd to charge the parasitic capacitance Cgs, a time frame from a time when the FET having a voltage greater than a threshold value starts being turned on to a time when the FET is completely turned on can be extended to some degree.
Accordingly, the parasitic capacitance Cgs is charged through a path {circle around (1)} to slightly open the FET, the gate current is applied to the panel through a path {circle around (2)}, and the charged parasitic capacitance Cgs is discharged to close the FET. In this instance, path {circle around (1)} and path {circle around (2)} cause a negative feedback effect to each other to allow the FET to operate as a constant current source.
FIG. 6 shows a ramp pulse generation circuit using a resistor. As shown in FIG. 6, a resistor R2 is arranged between a source of the FET and a terminal Vs of a FET drive IC to generate a constant current source.
As shown in FIG. 5, when the gate current charges the parasitic capacitance Cgs to open the FET, the current Id starts flowing. The current Id charges the parasitic capacitance Cgd and steeply rises, but it generates a voltage drop of Vr at the resistor R2 to reduce the intensity of the voltage charged to the parasitic capacitance Cgs, because the potential difference between the terminal Vs of the FET drive IC and a terminal HO for outputting a gate signal has a constant voltage Vcc (generally about 12 to 18V).
When the voltage at Cgs reduces, the FET is closed to reduce the current Id. When the current Id reduces, the voltage drop Vr also reduces, and the voltage at Cgs increases to open the FET again.
The above-noted operation is a negative feedback effect to allow the FET to operate as a constant current source.
FIG. 7 shows gradients of the ramp pulse generated by the ramp pulse generation circuits in FIGS. 5 and 6.
When a switch on the PDP modeled as a capacitance load is operated using the constant current source, the ramp pulse shown in FIG. 7 is obtained.
In this instance, the gradients of the ramp pulse can be adjusted in the direction of arrow {circle around (1)} and arrow {circle around (2)} using resistor R1 and capacitor C1 of FIG. 5, and resistor R1 and resistor R2 of FIG. 6. The gradients of the ramp pulse increase or decrease depending on the time constants of parts and the surrounding temperatures, because the gradients depend on the temperature characteristics of the parts.
Application of the ramp pulse for execution of weak discharging in the PDP closely relates to the operational margin of the panel. When the gradient of the ramp pulse varies according to the surrounding temperature of the PDP, the discharging of the panel becomes unstable, and bad discharging occurs.
Therefore, it is required to maintain the gradient of the ramp pulse regardless of the surrounding temperature and other conditions so as to acquire stable discharging on the PDP. | {
"pile_set_name": "USPTO Backgrounds"
} |
Coin dispensers used as coin returners in recreational machines, vending machines, etc. are already known.
In the current state of the art the following documents can be mentioned as background.
The document EP 1020818 describes a coin return mechanism based on a rotary disk in which the coins are transported to the outlet, once they are measured. Close to the outlet there exists a deflector so that in the event that the coin extraction is not desired, the coin is sent back to the inside of the device. This system has the inconvenience that it does not allow vertical growth in order to increase coin capacity. In some applications the capacity is increased by supplementary containers, but they have the inconvenience of their high volume compared to the obtained capacity. Another problem of this type of devices is that the coins are not extracted, they come back to the interior in a position close to the coin collection point, which is inconvenient since the coins which have not been extracted, since they do not correspond to the appropriate value, are better recycled as far away from coin collection by the extractor mechanisms as possible, thus enabling the arrival of different coins and therefore an appropriate coin recycling. By contrast, in the event the coins are rejected, the coins that have been rejected may be collected and rejected again.
The document WO 9813792 describes a coin roll or coin packet conveyor through a chain, to which buckets have been added to enable said transport. This mechanism is not fit for individual coin transport, nor is the function to discriminate between different types of coins described.
In the mechanism of WO 2006003212 a chain is used for coin extraction, said chain having links which are perpendicular to the plane defined by said chain. The coins are transported individually on the inner face of each one of the links and rest on a sloping ramp engraved on each link. The gears to allow the chain traction are located on the outer edge of the links. This mechanism has the inconveniences that the coin is extracted under the maximum elevation of the mechanism and at the outlet in a vertical plane a wide outlet mouth is needed, which complicates the corresponding coin guides. On the other hand, lateral transmission considerably increases the friction of the chain with the guides, resulting in a life reduction for the device and greater power of the track motor.
The document U.S. Pat. No. 3,910,295 refers to a coin vending machine where a chain is used for its transport, in the links of which there are alternating longer axes which serve as support for the chains. Therefore, the coins fit perpendicularly into the chain between two axes and rest on the sides of a vertical guide, in which the chain is centered. This system has the inconveniences that it allows a small range of coin sizes, upwardly limited by the width of the guide and downwardly limited by half said width. There also exists instability in the coin position which would make difficult its measuring before its extraction or recycling.
The document U.S. Pat. No. 3,703,903 refers to a coin vending machine consisting of a rigid cylinder having coin housings in the outer border. This system has problems to work with coins having an important range of diameters or thicknesses. It does not allow vertical growth without increasing the other dimensions, which is not useful when a considerably capacity and low volume are needed.
Finally, the document EP 1283505 B1 describes a conventional coin returning device, of the disk type, in which a supplementary storage unit is used to increase its capacity. The storage unit has a chain transport system similar to the previously described one in WO 2006003212. This system has the inconveniences of needing an important volume together with a considerable increase in the complexity of the mechanisms. | {
"pile_set_name": "USPTO Backgrounds"
} |
A spark plug is mounted to an internal combustion engine or the like and used for igniting an air-fuel mixture or the like in a combustion chamber. Generally, a spark plug includes an insulator having an axial hole, a center electrode inserted into a forward portion of the axial hole, a terminal electrode inserted into a rear end portion of the axial hole, a metallic shell provided on the outer circumference of the insulator, and a ground electrode fixed to a forward end portion of the metallic shell. Also, a gap is formed between a forward end portion of the center electrode and a distal end portion of the ground electrode, and voltage is applied to the center electrode (gap) for generating spark discharges across the gap, thereby igniting the air-fuel mixture or the like.
Also, in order to restrain radio noise generated in association with operation of an internal combustion engine or the like, a resistor can be provided in the axial hole between the center electrode and the terminal electrode (refer to, for example, Japanese Patent Application Laid-Open (kokai) No. 2006-66086, Japanese Patent Application Laid-Open (kokai) No. 2005-327743, etc.). Generally, the resistor is formed through compressional heating of a resistor composition which contains carbon as an electrically conductive material, glass powder, ceramic particles, etc. The formed resistor contains glass and carbon and is in a state of phase separation in which an interstitial phase composed primarily of molten glass exists around a particulate aggregate phase, and the interstitial phase contains carbon and ceramic particles. The center electrode and the terminal electrode are electrically connected through electrically conductive paths formed of carbon in the interstitial phase.
In recent years, in order to improve ignitability, there has been proposed a spark plug in which an interelectrode insert (including a resistor) disposed between the forward end of the terminal electrode and the rear end of the center electrode has a relatively low resistance. In such a spark plug, since relatively large current flows through the interelectrode insert (resistor) at the time of occurrence of spark discharges, the electrically conductive paths formed in the resistor are likely to have a high temperature. Furthermore, particularly, at the forward portion of the interelectrode insert which is disposed toward a combustion chamber and is particularly likely to have a high temperature in the course of use, coupled with flow of a relatively large current, the electrically conductive paths have a very high temperature, potentially resulting in rapid oxidation. As a result, in the course of use, the resistance of the interelectrode insert (resistor) may abruptly increase. That is, a spark plug having the interelectrode insert of a relatively low resistance encounters difficulty in securing a good under-load life characteristic.
Also, in association with recent tendency toward higher outputs of engines, etc., demand has been rising for further improvement of durability and restraint of radio noise.
The present disclosure has been conceived in view of the above circumstances, and a first advantage thereof is to reliably implement an excellent under-load life characteristic for a spark plug whose interelectrode insert has a relatively low resistance and which thus encounters difficulty in securing a good under-load life characteristic. A second advantage of the present disclosure is to improve restraint of radio noise and the life of a resistor. | {
"pile_set_name": "USPTO Backgrounds"
} |
Field of the Invention
The present invention relates to content browsing and more particularly to frequent content management in content browsing.
Description of the Related Art
The advent of the global Internet has facilitated access to an unimaginable quantity of information to even the most casual end user. Concurrently with the development of the Internet, developers have produced several content retrieval systems, most famously the world wide web (the “Web”). In the Web, just as in other content retrieval systems, content is stored in different content servers and retrieved into a content browser upon specifying a network location of the content within the content browser. Initially unique to the Web, however, was the notion of hyperlinking in which content pages incorporate activatable references—namely hyperlinks—such that the selection of a hyperlink in one content page led to the loading and display in the content browser of the content referenced by the hyperlink.
In the early years of the Web, Web content and its presentation remained static, with both the formatting and positioning of the content specified according to the hypertext markup language (HTML). As such, modifying either content or the presentation of the content in a Web page involved the direct editing of the Web page—a tedious and error prone process. As the Web has evolved, however, content is no longer static and often is defined according to dynamic methodologies, and programmatic code including scripts. Further, the content and presentation of a Web page are no longer composite elements of a Web page. Rather, the presentation has been separate from the content, most notably through the use of style sheets and other templated presentation technologies. Consequently, while content itself can remain static, the layout of the content in a Web page, or within a Web site can change quite often.
Given the vast expanse of the Web and other content repositories, several mechanisms have been developed for end users to repeatedly retrieve content of interest. Ranging from the venerable “bookmark” to the more sophisticated subscription oriented aggregative technologies such as portals and syndicated feeds, these frequent content retrieval mechanisms render the Web more manageable for end users. Even still, frequent content is not merely limited to a page of content, but often frequent content is more granular in nature such as a particular portion of a page of content, or even just a display field in a page of content. Thus, while the page itself may remain constant over time, the presentation and layout of a page can change so as to displace content of interest thereby obscuring its location from the end user. In that circumstance, conventional frequent content retrieval mechanisms will have failed. | {
"pile_set_name": "USPTO Backgrounds"
} |
Cushion connectors are used to cushion the shock created by the drill bit during drilling and passed through the drill string or drill steel to the drill head of the rig. Such cushion connectors are known and, in general, act to absorb the drilling shocks by moving so as to allow a certain amount of movement between the top of the drill string which is connected to the box end of the cushion connector and the drill drive head which is connected to the pin end of the cushion connector.
From that point of similarity, however, the tools act considerably differently and absorb the shock in a variety of different ways. In one connector, a resilient elastomeric material is inserted into the connector between the housing and the piston which moves relative to the housing and acts principally to absorb compression shocks which are passed from the drill bit to the drill drive head.
A problem with the use of elastomeric material as a compression absorber, however, is that the material inherently has a limited axial elasticity with the result that the stroke available in the connector is limited. It is desirable to have as long a stroke as possible in order to absorb the shocks from the drill bit with maximum efficiency.
A further disadvantage with known cushion connectors is that the drive splines do not act within the axial length of the springs. Rather, the springs are located above or below the drive splines. Such a configuration results in an increased axial length for the cushion connector which is undesirable when it is preferred to keep the axial length to a minimum for more convenient operating characteristics. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a push-button dial circuit for a push-button telephone set.
2. Description of the Prior Art
Since a dial circuit used in each of conventional push-button telephone sets for generating a multi-tone dial signal is, in principles, composed of a buffer transistor and a resistor connected in parallel thereto, the AC impedance of the dial circuit is substantially equal to the value of the parallel resistor due to a high AC impedance of the buffer transistor, and the DC resistance of the dial circuit is provided in the form of a combined resistance of the respective resistances of the buffer transistor and the parallel resistor.
Incidentally, the push-button dial circuit operates by a power source current supplied from the central office; therefore, in order to ensure its stable operation even in a case of a long subscriber's line, the push-button dial circuit is required to operate at a low voltage and its DC resistance must be small in value. On the other hand, the AC impedance of the push-button dial is required to have a large value for sending out a dial signal at a proper level.
In conventional push-button dial circuits, since the AC impedance and the DC resistance are determined by the resistor connected in parallel with the buffer transistor as described above, there is such a shorcoming that an increase in the AC impedance causes an increase in the DC resistance, whereas a decrease in the DC resistance causes a decrease in the AC impedance. Further, the AC impedance depends on the resistance value of the resistor connected in parallel to the buffer transistor and assumes a constance value irrespective of the length of the subscriber's line, with the result that the output signal from the dial circuit is also sent out at a constant level.
On the other hand, since the subscriber's line has an AC loss substantially determined by the line length, the level of the dial signal reaching the central office comes to have a value obtained by subtracting the AC loss of the subscriber's line from the output signal level of the dial circuit. In practice, since the loss of the subscriber's line is large, use is made of a manual or automatic signal level control circuit in the prior art push-button dial circuit for controlling the signal level in a case of a short-distance line, but in a case of a long-distance line, the signal level is not controlled, whereby the range of the level of the signal reaching the central office is made narrower than the range of loss of the subscriber's line. | {
"pile_set_name": "USPTO Backgrounds"
} |
(1) Field of the Invention
The present invention relates to a prepreg, a multilayer printed wiring board and a process for producing a multilayer printed wiring board. More particularly, the present invention relates to a prepreg which has high flexibility at room temperature, causes neither chipping nor peeling of resin, and is superior in heat resistance and electrical insulation after press molding; to a multilayer printed wiring board using said prepreg; and to a process for producing said multilayer printed wiring board.
(2) Description of the Prior Art
Prepregs obtained by impregnating a mat or roving made of a glass fiber or the like, with a thermosetting resin (e.g., an epoxy resin) which has been cured up to an extent slightly higher than the B-stage, are in use for molding or lamination in plastic industry. Other prepregs are also known in which the mat or roving made of a glass fiber or the like used for molding or lamination, is replaced by an aramid fiber, or the epoxy resin is replaced by a polyimide resin, a polyphenylene ether resin, a polytetrafluoroethylene resin or a polyaminobismaleimide resin.
The prepregs obtained by impregnating a glass cloth with a composition consisting of an epoxy resin and a curing agent and then semicuring the resulting material, have had problems in that they cause chipping or peeling of resin when bent.
The prepregs in which an aramid fiber is used in place of the glass cloth, are improved in bending strength but are higher in cost because the aramid fiber is expensive.
The prepregs in which a polyimide resin, a polyphenylene ether resin or a polytetrafluoroethylene resin is used in place of the epoxy resin, are relatively difficult to mold or process and moreover are expensive. The prepregs in which a polyaminobismaleimide resin is used in place of the epoxy resin, have high heat resistance; however, they are very hygroscopic and low in adhesivity and, moreover, because of the necessity of use of a high-boiling solvent when a varnish is made, contain a large amount of residual solvent and tend to generate voids during lamination.
The present invention aims at alleviating the above-mentioned problems of the prior art and providing (1) a prepreg which has high flexibility at room temperature, causes neither chipping nor peeling of resin, and is superior in heat resistance and electrical insulation after press molding, (2) a multilayer printed wiring board using such a prepreg of excellent properties, and (3) a process for producing such a multilayer printed wiring board.
The present invention provides:
a prepreg which is composed of a mixture of a polycarbodiimide resin and an epoxy resin and which has a film shape;
a prepreg composed of (1) a mixture of a polycarbodiimide resin and an epoxy resin and (2) a base material;
a multilayer printed wiring board obtained by alternately laminating an internal substrate and an insulating adhesive layer and adhering them to each other, wherein the above prepreg is used as the insulating adhesive layer; and
a process for producing a multilayer printed wiring board, which comprises alternately laminating an internal substrate and the above prepreg, adhering them to each other, and allowing all the internal substrates to communicate with each other at the required portions. | {
"pile_set_name": "USPTO Backgrounds"
} |
In German patent document 37 40 916, the application of a wear-reducing coating on the surface of a worm or screw for a plastifying device is disclosed in which molybdenum or a molybdenum-containing coating material is applied to a surface of the worm or screw body, the coating on the body is subjected to heat to effect fusion between the coating and the underlying base material, and the coated screw or worm is thereupon cooled.
As noted, the plastifying device can be an extruder, injection-molding machine or compounder and, for the purpose of this description, all such machines will be understood as comprised within the term "extruder" where that term is used to describe a machine or device embodying the invention.
An extruder can be used, for example, to produce articles of synthetic resin material, plastic or rubber and can comprise a housing and at least one worm or screw rotatable in this housing to displace the material to be processed through the housing. During the rotation of the worm or screw and the passage of the flow of the plastic or plastifiable material through the housing, the rib, thread or flight of the worm or screw may be subject to considerable and continuous wear.
In addition, there may be direct contact between the outer surface of the flight and the wall of the screw housing. To minimize mechanical deterioration of the parts in contact, good emergency running properties must be provided at the contact surfaces.
In the past this has generally been obtained by coating the outer surfaces of the flight or thread of the worm or screw with a suitable low-wear and low and reduced-friction material.
An appropriate material for this purpose is molybdenum. In Japanese patent document 61-139 682, molybdenum in pulverulent form is applied to the steel base material of the body and irradiated with laser energy. To ensure that the layer will bond firmly enough to the base material, before application of the powder, pits or depressions are generated in the surface to be coated. This pretreatment step makes the coating process complicated and expensive. Because molybdenum has a substantially higher melting point than the steel, a relatively large amount of thermal energy must be applied to the base body for effective bonding and this can give rise to deformation and cracking at the interface and surface.
Swiss patent 576,526 describes the application of a molybdenum coating to an extruder worm at the rib or thread surface by flame-spraying. According to German patent 37 18 779, this does not produce effective results because the layer with excessively high molybdenum content does not bond satisfactorily to the base body of the worm and has a tendency to spall off therefrom.
In German patent 37 18 779, an alloy is used as the material for the wear-reducing layer which contains between 40% and 70% molybdenum. This alloy can be applied to the base body by a special process, namely, plasma-powder deposition welding. The prior art process gives rise to useful results only upon the use of the expensive plasma-powder deposition welding which is of high capital cost. Furthermore, alloys are used with a molybdenum content of a maximum of 70%.
The advantageous characteristics of molybdenum, especially the good emergency running characteristics, can be utilized only with limitations. Even with this process, a relatively high amount of thermal energy must be transferred to the basic body and leading to unsatisfactory intrinsic stress characteristics with distortion and crack formation.
One could conclude that high molybdenum content with deposition welding utilizing coating materials available as powder would be obtainable by the method of German patent document 37 40 916. From the teachings of this document, the danger of crack formation in the generation of the wear-reducing coating of powder can be reduced by reduction of the molybdenum content in the coating material. In this conventional process, the protective coating is applied by thermal spraying onto the base body and by then melting the coating into the material of the base body by a laser beam remelting step. The coating material can be molybdenum or an alloy predominantly consisting of molybdenum. Even in this two-stage process, relatively high quantities of thermal energy must be applied to the base body during the thermal spraying and here as well the undesirable intrinsic stress conditions can result in distortion and crack formation. | {
"pile_set_name": "USPTO Backgrounds"
} |
Neurostimulation devices deliver therapy in the form of electrical stimulation pulses to treat symptoms and conditions, such as chronic pain, Parkinson's disease, or epilepsy, for example. Implantable neurostimulation devices, for example, deliver neurostimulation therapy via leads that include electrodes located proximate to the muscles and nerves of a patient.
Clinician programmers are used to control and program the neurostimulation devices with stimulation sequences to treat symptoms and conditions. These clinician programmers and devices of their type are relatively small to allow for easy transportation and storage. The portability has its price, however. It is difficult for more than one person to view the relatively small screen of a handheld programmer. People would have to crowd around the device to be able to attempt to see what is happening on the screen.
Further, even though the clinician programmer is portable, there are some areas where its use may be restricted. For instance, a clinician programmer may be covered under the drapes while a sales representative is talking to the patient. The clinician programmer thus may not be visible to the physician. As another example, the clinician programmer may not be a sterile device and cannot be taken into the sterile field in an operating room. Since the clinician programmer must remain outside of the sterile field, the physician is unable to read the screen while performing the procedure. Accordingly, the physician must verbally interact with and rely on someone (an external operator), who acts as his eyes and hands controlling the programmer outside of the sterile field. The situation could also be reversed, where the physician is doing the programming, and the staff is observing his/her actions, for example, talking to the patient at the head end of the surgery table. In any case, requiring an extra person results in additional time for the procedure to be completed as a result of the verbal communication of the programming device state and adjustments to be made between the physician and the external operator. The verbal interchange may also result in miscommunication which will add additional time to complete the procedure and possibly result in more severe consequences.
The present disclosure is directed to devices, systems, and methods that address one or more deficiencies in the prior art. | {
"pile_set_name": "USPTO Backgrounds"
} |
a) Field of the Invention
The invention is directed to a method for determining the image quality of an optical imaging system substantially comprising an illumination device, a sample holder with sample, imaging optics, and at least one spatially resolving detection device. The invention is further directed to the use of the method according to the invention for determining the influence of samples on the amplitude distribution and phase front distribution of the illumination light, of which, in particular, the amplitude distribution is known.
b) Description of the Related Art
In connection with the manufacture of high-quality imaging optics, particularly for use in microscopy, an assessment of the achievable image quality is required.
It is known to determine, at least semi-quantitatively, the image quality of imaging systems which have few lenses and which can also comprise complex optical subassemblies. For this purpose, it is customary to carry out so-called star tests, wherein circular objects below the resolution limit of the specific optics are used as test samples. Based on the behavior of the diffraction patterns in the imaging of these samples with defocusing devices and the symmetries contained therein, the quality of imaging can be determined qualitatively to a degree of accuracy that is usually deficient.
For example, a closed first diffraction ring at the edge of the first Rayleigh region can be considered as a sign of diffraction-limited optics. It is disadvantageous that this assessment must be considered only as integral information. And more specific quantitative information about the distribution of the rest of the imaging errors to different error types, such as a spherical aberration, coma or astigmatism, can also not be gained in this way.
In another procedure, the fit of the individual optical components is checked by interferometry to arrive at assertions concerning the geometric errors, e.g., of a lens body, which can then be converted to system-dependent imaging errors.
In this connection, system-dependent influencing factors are also already detected insofar as the measurement wavelength of the interferometer conforms to the working wavelength or wavelength spectrum of the illumination light. In more complicated optical systems, specially adapted interferometers are also occasionally used to check the image quality under given constraints and at the correct working wavelength with respect to the total imaging system.
This is applied, for example, in imaging objectives for steppers or scanners to be used in semiconductor microlithography. This procedure requires a relatively high technical complexity and is therefore very cost-intensive and not usually employed in connection with microscope manufacture.
Further, it is known to measure the wavefront of optical imaging systems with so-called Hartmann or Shack-Hartmann wavefront sensors or with sensors operating on similar principles. This also calls for relatively elaborate technology and, for that reason, the corresponding measuring systems are usually only designed to provide measurements only for different subsystems which, however, have similar interfaces, e.g., microscope objectives for microscopy.
In this connection, a continual problem, particularly for microscope producers, is the lack of an available general testing procedure that would make it possible to determine the image quality as accurately as possible for the different optical imaging systems which differ from one another with respect to optical, geometric and mechanical parameters.
Also, this problem exists not only during the manufacture and adjustment processes, but also in connection with quality control of imaging systems that are already in use by the customer.
Further, the determination of the image quality for a plurality of field positions of the imaging system is uneconomical or inaccurate in all of the previously known procedures.
The following source literature is cited in this connection: Joseph Geary, “Wavefront sensors”, SPIE Press 1995, and Daniel Malacara, “Optical Shop Testing”, Wiley Verlag 1992. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention generally relates to automatically posting transactions associated with a transaction account or transaction card into a general ledger.
2. Related Art
Currently, accounting products used by small business owners allow for automatic migration of invoiced purchases associated with a transaction account and/or a transaction card into respective categories in a general ledger portion of the accounting product. This substantially reduces the time and effort needed by the small business owner to balance and reconcile invoiced accounts on a periodic basis. This also allows the small business owner to more freely use their transaction account/card to make business purchases, while substantially reducing their burden of having to manually review all the periods' purchases. This is because any charges associated with an invoiced vendor are automatically migrated by the accounting software into proper categories in the general ledger. Many of these transaction accounts/cards have associated rewards programs, so the small business owner benefits greatly from using them.
However, current accounting products do not allow for migration of non-invoice or point-of-sale transaction information associated with the transaction account/card into the general ledger. This can deter the small business owner from using the transaction account/card to make these kinds of purchases. This can also reduce the potential rewards the small business owner could receive.
Given the foregoing, what is needed is a system, method and computer program product for automatically posting substantially all transaction information associated with a transaction account into a general ledger. | {
"pile_set_name": "USPTO Backgrounds"
} |
Securing arrangements are known in prior art. For example, a screw terminal is known from DE 296 21 267 U1 in which the head of the screw is covered up by a housing cover, up to the screwdriver opening. Shaped ribs are provided which are axially distributed over the perimeter on the housing cover, which are a very short distance from one another, less than the diameter of the screw head. When screwing the terminal screw in, the ribs are deformed and abraded in this prior art. Due to the elasticity of the ribs, the screw is received partially countersunk into the cover housing.
It is a disadvantage in this prior art, though, that the ribs extending in the longitudinal direction of the screw to the housing cover have to be manufactured to correspond exactly to the screws to be used, in order to guarantee a secure operation. The tolerances to be met are dimensioned very narrowly, since the ribs, on the one hand, have to enable the screw to be screwed in without ruining the housing cover by overscrewing, while on the other hand, the screw has to be held securely after insertion.
This leads to the need to hold to the measurements exactly and causes high manufacturing expense and consequently higher production costs.
A series terminal is known from DE 30 28 958 C2, in which the terminal screw can be disposed sunk into a shaft of a body. In the shaft, a section is provided which allows elastic deformation when screwing in the screw and when painting over the head. After painting over the section, the section only partially deforms back again, so that the section executed serves as a locking device.
Also, in this arrangement known from prior art, very close coordination of the structural dimensions and the observance of very close manufacturing tolerances is required to reliably prevent ruining the component when screwing and to prevent loss of the screw inserted.
Furthermore, devices are known from prior art in which a rib is provided running around the shaft receiving the screw, which exhibits an open inside diameter smaller than the large outside diameter of the head of the screw. If a screw is inserted into such a shaft and goes past the ring-shaped rib, then it is received countersunk in the shaft. Also, for a functioning solution, this requires, however, precise coordination of the manufacturing tolerances, since with automated screw assembly, the screw shanks can be torn off otherwise, if the turning force exceeds the strength of the component when pressing on the head of the screw. Such a system works with slower assembly by hand or also when holding precisely to the tolerances, which in turn causes considerable manufacturing engineering expense and consequently higher costs. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates generally to polyolefin resin compositions containing a hindered amine light stabilizer (HALS) additive. A HALS additive can be used to prolong the stability of a polymer, or an article produced from the polymer, during exposure to sunlight and ultraviolet (UV) radiation.
These polyolefin compositions also can contain a polymer processing aid (PPA) additive to reduce or eliminate melt fracture. Melt fracture is a flow instability of a polymer during processing which often manifests as a sharkskin or orange-peel appearance on the surface of an article produced from the polymer. Melt fracture is generally more problematic with linear polyolefins having higher molecular weights or narrower molecular weight distributions, and during melt processing via narrow die gaps, at lower processing or melt temperatures, or at higher output or production rates.
PPA additives are used to improve the melt processing of polyolefins, for instance, to reduce or eliminate melt fracture. Generally, a PPA additive coats the metal surface that the polymer is in contact with during melt processing, for example, during extrusion through a metal die. By coating the metal surface of the die, the PPA additive can reduce the extrusion pressure and the shear stress on the polymer at the metal interface, resulting in a fabricated article with a smooth surface.
The ability of a PPA additive to reduce or eliminate melt fracture can be adversely affected by the presence of other additives. For instance, the addition of both a HALS additive and a PPA additive has a negative, or antagonistic, effect on melt fracture. See e.g., B. V. Johnson and J. M. Kunde, “The Influence of Polyolefin Additives on the Performance of Fluorocarbon Elastomer Process Aids,” Society of Plastics Engineers Annual Technical Conference (ANTEC) Proceedings, April 18-21, Atlanta, Ga. (1988). More specifically, additional PPA is needed to eliminate melt fracture than that required in the absence of a HALS additive, or a longer processing time is needed to completely eliminate melt fracture when a HALS additive is present. Further, the presence of colorants or pigments, such as titanium dioxide, can also have an antagonistic effect on the ability of a PPA to reduce or eliminate melt fracture.
Therefore, there is a need in the polymer industry for a polyolefin composition containing a HALS additive and a PPA additive which has improved resistance to melt fracture. Such a composition can contain both a HALS and a PPA additive, but beneficially, where the HALS additive does not negatively impact the ability of the processing aid to eliminate melt fracture during extrusion or other melt processing operation. Accordingly, it is to these ends that the present invention is directed. | {
"pile_set_name": "USPTO Backgrounds"
} |
One of the most fundamental characteristics of cancer cells is their ability to sustain chronic proliferation whereas in normal tissues the entry into and progression through the cell division cycle is tightly controlled to ensure a homeostasis of cell number and maintenance of normal tissue function. Loss of proliferation control was emphasized as one of the six hallmarks of cancer [Hanahan D and Weinberg R A, Cell 100, 57, 2000; Hanahan D and Weinberg R A, Cell 144, 646, 2011].
The eukaryotic cell division cycle (or cell cycle) ensures the duplication of the genome and its distribution to the daughter cells by passing through a coordinated and regulated sequence of events. The cell cycle is divided into four successive phases:
1. The G1 phase represents the time before the DNA replication, in which the cell grows and is sensitive to external stimuli.
2. In the S phase the cell replicates its DNA, and
3. in the G2 phase preparations are made for entry into mitosis.
4. In mitosis (M phase), the duplicated chromosomes get separated supported by a spindle device built from microtubules, and cell division into two daughter cells is completed.
To ensure the extraordinary high fidelity required for an accurate distribution of the chromosomes to the daughter cells, the passage through the cell cycle is strictly regulated and controlled. The enzymes that are necessary for the progression through the cycle must be activated at the correct time and are also turned off again as soon as the corresponding phase is passed. Corresponding control points (“checkpoints”) stop or delay the progression through the cell cycle if DNA damage is detected, or the DNA replication or the creation of the spindle device is not yet completed. The mitotic checkpoint (also known as spindle checkpoint or spindle assembly checkpoint) controls the accurate attachment of mircrotubules of the spindle device to the kinetochors (the attachment site for microtubules) of the duplicated chromosomes. The mitotic checkpoint is active as long as unattached kinetochores are present and generates a wait-signal to give the dividing cell the time to ensure that each kinetochore is attached to a spindle pole, and to correct attachment errors. Thus the mitotic checkpoint prevents a mitotic cell from completing cell division with unattached or erroneously attached chromosomes [Suijkerbuijk S J and Kops G J, Biochem. Biophys. Acta 1786, 24, 2008; Musacchio A and Salmon E D, Nat. Rev. Mol. Cell. Biol. 8, 379, 2007]. Once all kinetochores are attached with the mitotic spindle poles in a correct bipolar (amphitelic) fashion, the checkpoint is satisfied and the cell enters anaphase and proceeds through mitosis.
The mitotic checkpoint is established by a complex network of a number of essential proteins, including members of the MAD (mitotic arrest deficient, MAD 1-3) and Bub (Budding uninhibited by benzimidazole, Bub 1-3) families, Mps1 kinase, cdc20, as well as other components [reviewed in Bolanos-Garcia V M and Blundell T L, Trends Biochem. Sci. 36, 141, 2010], many of these being over-expressed in proliferating cells (e.g. cancer cells) and tissues [Yuan B et al., Clin. Cancer Res. 12, 405, 2006]. The major function of an unsatisfied mitotic checkpoint is to keep the anaphase-promoting complex/cyclosome (APC/C) in an inactive state. As soon as the checkpoint gets satisfied the APC/C ubiquitin-ligase targets cyclin B and securin for proteolytic degradation leading to separation of the paired chromosomes and exit from mitosis.
Inactive mutations of the Ser/Thr kinase Bub1 prevented the delay in progression through mitosis upon treatment of cells of the yeast S. cerevisiae with microtubule-destabilizing drugs, which led to the identification of Bub1 as a mitotic checkpoint protein [Roberts B T et al., Mol. Cell Biol., 14, 8282, 1994]. A number of recent publications provide evidence that Bub1 plays multiple roles during mitosis which, have been reviewed by Elowe [Elowe S, Mol. Cell. Biol. 31, 3085, 2011. In particular, Bub1 is one of the first mitotic checkpoint proteins that binds to the kinetochores of duplicated chromosomes and probably acts as a scaffolding protein to constitute the mitotic checkpoint complex. Furthermore, via phosphorylation of histone H2A, Bub1 localizes the protein shugoshin to the centromeric region of the chromosomes to prevent premature segregation of the paired chromosomes [Kawashima et al. Science 327, 172, 2010]. In addition, together with a Thr-3 phosphorylated Histone H3 the shugoshin protein functions as a binding site for the chromosomal passenger complex which includes the proteins survivin, borealin, INCENP and Aurora B. The chromosomal passenger complex is seen as a tension sensor within the mitotic checkpoint mechanism, which dissolves erroneously formed microtubule-kinetochor attachments such as syntelic (both sister kinetochors are attached to one spindle pole) or merotelic (one kinetochor is attached to two spindle poles) attachments [Watanabe Y, Cold Spring Harb. Symp. Quant. Biol. 75, 419, 2010]. Recent data suggest that the phosphorylation of histone H2A at Thr 121 by Bub1 kinase is sufficient to localize AuroraB kinase to fulfill the attachment error correction checkpoint [Ricke et al. J. Cell Biol. 199, 931-949, 2012].
Incomplete mitotic checkpoint function has been linked with aneuploidy and tumourigenesis [Weaver B A and Cleveland D W, Cancer Res. 67, 10103, 2007; King R W, Biochim Biophys Acta 1786, 4, 2008]. In contrast, complete inhibition of the mitotic checkpoint has been recognised to result in severe chromosome missegregation and induction of cell death and apoptosis in tumour cells [Kops G J et al., Nature Rev. Cancer 5, 773, 2005; Schmidt M and Medema R H, Cell Cycle 5, 159, 2006; Schmidt M and Bastians H, Drug Res. Updates 10, 162, 2007]. Thus, mitotic checkpoint abrogation through pharmacological inhibition of components of the mitotic checkpoint, such as Bub1 kinase, represents a new approach for the treatment of proliferative disorders, including solid tumours such as carcinomas, sarcomas, leukaemias and lymphoid malignancies or other disorders, associated with uncontrolled cellular proliferation.
The present invention relates to chemical compounds that inhibit Bub1 kinase. Established anti-mitotic drugs such as vinca alkaloids, taxanes or epothilones activate the mitotic checkpoint, inducing a mitotic arrest either by stabilising or destabilising microtubule dynamics. This arrest prevents separation of the duplicated chromosomes to form the two daughter cells. Prolonged arrest in mitosis forces a cell either into mitotic exit without cytokinesis (mitotic slippage or adaption) or into mitotic catastrophe leading to cell death [Rieder C L and Maiato H, Dev. Cell 7, 637, 2004]. In contrast, inhibitors of Bub1 prevent the establishment and/or functionality of the mitotic checkpoint, which finally results in severe chromosomal missegregation, induction of apoptosis and cell death.
These findings suggest that Bub1 inhibitors should be of therapeutic value for the treatment of proliferative disorders associated with enhanced uncontrolled proliferative cellular processes such as, for example, cancer, inflammation, arthritis, viral diseases, cardiovascular diseases, or fungal diseases in a warm-blooded animal such as man.
WO 2013/050438, WO 2013/092512, WO 2013/167698 disclose substituted benzylindazoles, substituted benzylpyrazoles and substituted benzylcycloalkylpyrazoles, respectively, which are Bub1 kinase inhibitors.
WO2012/003405, WO2013/101830, WO2014/047111, WO2014/047325 disclose substituted pyrazole derivatives that are structurally related to the compounds of the present invention. However, such compounds are sGC stimulators, i.e. they act on a different target/have a different mode of action and are used for a completely different purpose, namely for the prevention, management and treatment of disorders such as pulmonary hypertension, arterial hypertension, heart failure, atherosclerosis, inflammation, thrombosis, renal fibrosis and failure, liver cirrhosis, erectile dysfunction and other cardiovascular disorders.
Due to the fact that especially cancer disease as being expressed by uncontrolled proliferative cellular processes in tissues of different organs of the human- or animal body still is not considered to be a controlled disease in that sufficient drug therapies already exist, there is a strong need to provide further new therapeutically useful drugs, preferably inhibiting new targets and providing new therapeutic options (e.g. drugs with improved pharmacological properties). | {
"pile_set_name": "USPTO Backgrounds"
} |
Batch fermentation of an inoculated medium with Xanthomonas campestris NRRL B-1459 for 36-72 hours under aerobic conditions results in the formation of xanthan gum, which is separated from the other components of the medium by precipitation with acetone or methanol in a known manner. Because of time required to ferment each batch, the low biopolymer content of the fermented medium and the processing required for the recovery and purification of the product, xanthan gum produced by batch fermentation, hereinafter also referred to as xanthan, is relatively expensive.
Because continuous operation of a fermentation process offers a number of potential advantages over conventional batch methods that could be reflected in lower costs, considerable effort has been put forth in the past to perfect conditions that would support a reliable continuous process. But even with a continuous process a cheap medium from which xanthan can be produced is required. In addition to the necessity of an inexpensive medium in the manufacture of a low cost xanthan product, the ratio of xanthan to cells (bacteria) should be as high as possible in order to reduce subsequent filtration costs for cell removal. The specific productivity of the culture employed also should be as high as possible in order to maintain the aforesaid high ratio as well as to reduce vessel volume and capital costs. The expression "specific productivity" as used in the present description is intended to mean the number of grams of xanthan produced/grams of cells/hour. The culture should be stable under continuous culture conditions on a long term basis to avoid frequent restarts and lost productivity.
Although xanthan has been produced by continuous fermentation in the past, such methods have not met with unqualified success. In some cases, vitamins and/or amino acids had to be employed in the medium in substantial quantities in order to avoid culture degeneration or to improve specific productivity. Use of these additives, as well as soybean protein, cotton seed protein, etc., all tend to make the xanthan thus produced more costly.
It is well known that the continuous production of xanthan by the use of Xanthomonas campestris B-1459 has been hampered by a tendency of the culture to change or degenerate after a fairly small and specific number of turnovers, the time required during the fermentation to completely replace one volume of broth in the fermentation vessel. Normally, 6-9 turnovers are the maximum that can be obtained before degeneration of the culture occurs. At the same time, there is a decrease in viscosity, a loss in volumetric productivity of xanthan gum, i.e., grams of xanthan/liter of broth/hour, and appearance of a variety of culture variants or strains that no longer produce xanthan or else produce a xanthan of low quality. It has been demonstrated that culture degeneration occurs when dried distillers solubles (DDS) is used in the nutrient medium as the complex nitrogen source, whether in the whole form or as a water soluble extract. In other cases, certain strains of Xanthomonas have been grown successfully without culture degeneration in simple minimal media, but the xanthan:cell ratio and specific productivity have been low, on the order of 0.1-0.12 gm xanthan/gm of cells/hr.
Earlier work has indicated that heteropolysaccharides produced by the action of Xanthomonas bacteria on assimilable carbohydrate containing media have potential applications as film forming agents, as thickeners for body building agents in edible products, cosmetic preparations, pharmaceutical vehicles, oil field drilling fluids, fracturing liquids and similar compositions and as emulsifying, stabilizing and sizing agents. Heteropolysaccharides, particularly xanthan gum, have significant potential as a mobility control agent in micellar polymer flooding. This gum has excellent viscosifying properties at low concentration, is resistant to shear degradation and exhibits only minimal losses in viscosity as a function of temperature, pH and ionic strength. For these reasons, xanthan gum is an attractive alternative to synthetic polyacrylamides for enhanced oil recovery operations. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a method for the compaction of asphalt and a compaction apparatus. More particularly, the present invention relates to a method and apparatus for compacting hot mix asphalt under conditions which advantageously optimize binder flow within the asphalt during compaction.
2. Description of the Related Art
By the term “binder” as used throughout this specification is meant any thermoplastic visco-elastic material which may be used in hot mix asphalts. Generally the binder will be bitumen or bituminous, that is a bitumen incorporating, for example polymeric modifiers. It is also known for hot mix asphalt to incorporate polymer binders with no bitumen based binders present, and the present invention extends to the compaction of all such hot mix asphalts.
Inherent in modern asphalt mix design for heavy duty applications is the use of components (aggregates and binders) which are purposely selected to resist compaction and loss of shape under heavy traffic. These properties will generally hinder the achievement of the desired compaction during laying of the asphalt.
The principal asphalt mix design element to resist compaction under heavy traffic is the use of aggregates with extremely rugose texture and cuboid shape, aimed at providing high shear resistance within the aggregate skeleton. In simple terms the objective is to ensure the physical properties of the aggregate inhibit particle movement and promote “lock up” in the structure under the applied load stress in operation. Stiffer binders such as polymer modified binders are increasingly being used to augment both the shear strength of the mix and also to improve the flexural or fatigue properties of the mix.
The achievement of lock up of the aggregate and the distribution of air voids in the mix on compaction and during laying determines asphalt durability and overall performance over the entire range of pavement loadings. Lock up of aggregate is advantageously achieved by displacing the aggregate within the binder during compaction of the asphalt mat.
The properties of the asphalt mix are also determined by the visco-elastic properties of its binder. At ambient service temperatures the binder desirably acts as a stiff elastic solid; the response to load in the asphalt mix is very nearly elastic and a rapid load pulse will result in a virtually instant elastic deformation which will recover almost the instant the load is removed. Thus, there is substantially no viscous flow and resultant permanent plastic strain. At the higher temperatures at which asphalt is laid and compacted, the binder in the mix is a visco-elastic fluid. The higher the temperature, the lower the viscosity of the binder and the more readily the binder will deform under any applied stress.
The compaction process begins with the laydown of hot asphalt by a paver on a prepared base, usually followed by pressure on the hot asphalt mat applied by a screed (with or without vibration). The screed is a plate or skid carried by the paver which slides over the surface of the asphalt mat desirably at or close to the temperature at which the mat is laid. The screed applies some initial compaction, but by its sliding action may undesirably cause shear stress in the mat leading to tearing of the mat. Typically the applied static screed pressure is in the order of 10 kPa (1.450 psi) to 20 kPa (2.901 psi) and the load duration may be as long as 10–15 seconds.
Conventionally, asphalt compaction has been carried out using equipment originally intended for compacting granular non-cohesive materials designed to maximize the compaction energy applied to the material, primarily by using large and heavy steel drum rollers, often in combination with high energy oscillation or vibration. Rubber-tired roller compaction is often used in conjunction with steel drum roller compaction, as described hereinafter.
The contact stress between the roller and the asphalt mat generally depends on the stiffness of the asphalt mix which is in turn strongly influenced by the stiffness of the binder. The contact area between the steel drum and the asphalt, that is the length of contact by the width of the roller drum, will diminish as a result of the compaction achievement and the increase in mix stiffness with the cooling of the mat. Typically the mix is at a temperature of about 150° C. (302° F.) when it is laid. In low temperature environments under adverse conditions such as when a strong wind is blowing, it is quite feasible the mix will cool to say 140° C. (284° F.) at the bottom of the layer and 120° C. (248° F.) at the surface before the first compaction pass.
The largest dual steel drum vibratory roller compactor presently in general use has a static mass of about 16 tonne (17.6 ton) with each drum having an axial length of about 2 m (6.56 ft). Assuming a nominal 100 mm (3.94 in) contact length in the roller direction (more in the initial pass, less in the final pass), each drum will apply a contact stress of about 400 kPa (58.015) static and considerably more with vibration. In fact, each drum may apply a contact stress from about 100 kPa (14.504 psi) in a first static breakdown pass to well over 1000 kPa (145.038 psi) as the asphalt mix stiffness and the contact area reduces. Compaction by the roller compactor usually occurs at varying distances, up to several hundred meters, behind the paver and at speeds of about 1.1 m/s (3.61 ft/s) (4 km/h (2.49 mph)) or more. The two drums of the roller compactor each having the above nominal contact length of 100 mm (3.94 in) and therefore the roller will typically be in contact with any part of the asphalt mat for about 0.2 seconds in each pass. Typically, about four steel roller passes are used, giving a total load time of about 0.8 seconds.
The roller compactor typically vibrates at about 20 Hz, which at temperatures of 140° C. (284° F.) and 120° C. (248° F.) corresponds to relatively high binder stiffness (shown by Van der Poel's nomograph) of about 0.2 kPa (0.029 psi) and 1 kPa (0.145 psi) respectively (each 20° C. (68° F.)) reduction in temperature has about a 5 fold increase in bitumen stiffness).
As described above, the surface temperature of the mat may fall to temperatures of about 120° C. (248° F.) before the roller compaction process is begun. The compaction process may typically include up to 4 roller compactor passes, by which time the mat surface temperature may be in the range 80 C (176° F.)–90° C. (194° F.). At mat temperatures below about 120° C. (248° F.) cracking of the mat may be initiated in the mat at high contact stresses, particularly at stresses induced using vibration-Mat cracking typically occurs when the applied stress induces strain in the binder in excess of its yield strength. At temperatures considerably above 120° C. (248° F.) conventional roller compaction may lead to significant shear failure in the mat, depending on the asphalt mix type. This may result in the mat being displaced laterally with loss of level and shape and ultimately in de-compaction of the mat.
Roller cracking resulting from low mat temperatures is usually manifest as fine, parallel cracks in the asphalt mat which are transverse to the direction of rolling. A multi-wheeled rubber-tired roller following the vibratory roller compactor is commonly used to apply a kneading/shearing action to at least the surface of the compacted asphalt mat, and thereby complete the compaction of the mat. Such rubber-tired rolling is thought to close steel roller induced cracks, at least at the surface of the asphalt mat, and increases surface texture by compressing the asphalt mortar between any coarse aggregate particles. Water is applied to the tires of the rubber-tired roller during rolling to alleviate material pick-up. However, although the cracks may be closed at the surface this water may inadvertently be injected into the cracks before they are sealed, forming encapsulated water deposits beneath the surface of the asphalt mat. Encapsulated water may inhibit healing or encourage stripping in the asphalt mat.
U.S. Pat. Nos. 4,661,011 and 4,737,050 claim to alleviate roller-induced cracking in the asphalt mat by use of an asphalt compaction machine in which pressure is applied to the asphalt mat through an endless elastomeric belt extending between two rollers. The machine is configured to apply a more uniform pressure over the area of the belt in contact with the asphalt mat.
It has now been recognized in accordance with the present invention that in a visco-elastic fluid, such as the binder in a hot mix asphalt, the response to load is not only temperature dependent but also time dependent. Thus, the application of a load of short duration will result in an asphalt response which is more elastic than viscous as the binder simply does not have time to flow. Therefore, using a vibratory roller compactor at an accepted loading rate in the order of 20 Hz, the binder in the asphalt mix reacts during compaction more as an elastic solid than as a viscous fluid and the compaction attempts to force the aggregate through the binder into a more compact arrangement, rather than causing the binder to flow around the aggregate with consequent movement of the aggregate.
The previously mentioned Van der Poel nomograph provides an estimate of the stiffness of standard bitumen grades at selected rates of load application and temperature. Even though the nomograph is well known to those skilled in the art of asphalt compaction, the disadvantages of applying compaction loads of short duration have not previously been fully recognized and short duration compaction using rollers with both steel and rubber interfaces, with or without vibration, has continued to be the accepted practice.
It may now be recognized that by using the belt compactor of the aforementioned U.S. Patents, improved compaction can be achieved by inducing viscous flow of the binder. Test uses of the belt compactor are described, for example, by Halim OAE et al in “Improving the Properties of Asphalt Pavement Through the Use of AMIR Compactor: Laboratory and Field Verification”, 7th International Conference on Asphalt Pavements, Nottingham, 1992. However, no recognition is given to the advantages of longer load times.
The described belt compactor may apply a load stress of only about 5% of the aforementioned 16 tonne (17.6 ton) roller compactor under static load, but assuming conventional advancement rates are used the load may be applied over a longer duration than a roller compactor due to the increased contact length of the belt. For a contact length of 1.25 m (4.10 ft) as described in the aforementioned paper and atypical compaction speed of about 1.1 m/s (3.61 ft/s), the load duration will be about 1.1 sec. Using Van der Poel's nomograph, this increased load duration can be shown to reduce the binder stiffness at 120° C. (248° F.) from about 1000 Pa (0.145038 psi) for the aforementioned conventional vibrating roller compaction to about 5 Pa (0.000725 psi) for the belt compactor. | {
"pile_set_name": "USPTO Backgrounds"
} |
There have been provided building elements which are principally limited to the construction of walls which when assembled together present hollow interiors intended to receive concrete or the like and the elements are provided with holes which afford internal communication between adjoining elements through which the concrete can flow. For example, German Specification DE C23003448 discloses the use of a large series of hollow square rectangular elements constructed from impregnated pressboard which are stood up side by side and then tied together by means of tie rods. The adjacent side walls of these blocks have holes therethrough so that when concrete is introduced therein it can flow therebetween to interconnect same. When such elements are used as ceilings, the holes therein are upwardly facing so that there is no provision for lateral concrete flow between adjoining elements. These hollow blocks or elements are awkward to assemble and require a great deal of handling of a large number of individual elements in their assembly into a wall formation. Moreover, their manufacture is relatively expensive requiring the assembly of the pressboard into square or rectangular form and the resulting wall does not present an impervious smooth aesthetic wall surface.
A similar brick-like building element is disclosed in German Specification DE C2324489 which also has similar disadvantages.
U.S. Pat. No. 5,216,863 discloses an elongated thin flexible walled cylinder-like shaped formwork elements with the elements being mutually interconnectable and when interconnected they provide a series of adjoining closed cylinders. These cylinders are internally connected through openings so that when concrete is poured therein it will flow therethrough to create a wall formed by a series of interconnected vertical concrete columns encompassed by the thin formwork walls which may be left in place or discarded.
The formwork walls may be formed of polyvinyl chloride (PVC) to give the columns an attractive surface coating.
Again, these individual formwork elements require a great deal of handling and, if they are formed of PVC, only virgin material can be used and the material cut out to provide the apertures becomes waste material.
These formwork elements do not have individual structural integrity but require mutual interconnection and their cylindrical form to give them any structural substance capable of withstanding the introduction therein of wet concrete. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention broadly relates to the field of electronic commerce and to global network job placement services. More particularly, the present invention relates to a system and method for gathering and disseminating information about employers, employment openings, and prospective employees, and a system and method for providing incentives to the prospective employees and employers encouraging the use of the employment service.
2. Background of the Invention
Fueled by a robust economy and a decreasing pool of qualified applicants, employers today expend considerable resources on attracting, screening, and hiring employees to fill manpower needs. Faced with staffing shortages, employers must evaluate their needs, advertise such needs to reach as many qualified recruits as possible, and screen potential employees through burdensome hiring interviews, all typically on very short notice. Further compounding this tedious process, employers searching for employees with highly specialized skills suffer from a limited number of qualified personnel, especially when restricted to a specific geographic region.
Since the advent of print media, the traditional method of job placement has been through classified advertisements. Although these newspaper advertisements may be sufficient for one-time searches for recruits in a particular location, advertisements in a single newspaper or series of newspapers fail to meet the needs of today's global economy, in which large regional, national, and even international employers are continually looking for employees. What is more, placing classified advertisements in newspapers is an expensive undertaking, often constituting an employer's single largest recruiting expense. Not surprisingly, most newspapers derive more than half of their revenue from classified advertisements.
In light of the great expense and limited effect of print advertisements, employers have embraced the global computer network, or “Internet,” for its powerful ability to gather and disseminate information. In the context of employment placement, early uses of the technology involved simply posting job openings on employer's individual websites. Although this technique avoids the cost of classified advertisements, it requires job seekers to visit individual websites without really knowing if a position is available. In addition to being time-consuming for the recruit, this employment placement method is unreliable for the employer, because the employer has no way of assuring its advertisement is reaching enough qualified personnel.
Seeing the need for centralized job listings, the next step in the evolution of Internet employment placement was to establish large websites that post open positions for multiple companies. These Internet job sites feature extensive lists of job openings organized by such criteria as company, location, and field of employment. Examples of such Internet job sites known in the prior art are HotJobs.com™, Hire.com™, Jobs.com™, JobOptions™, Monster.com™, CareerBuilder Network™, CareerPath.com™, America's Job Bank™, and IdealJobs.com™. Although some sites are free to employers, most typically charge for each listing or, perhaps, charge a monthly or annual fee. Through advertisement, each Internet job site strives to attract as many visits by potential applicants as possible. These advertisements, combined with the steadily increasing Internet usage by job applicants, enable employers to broadcast openings to many qualified applicants with relatively little effort and resources.
In addition to posting openings, some Internet job sites offer additional services that aid an employer's search and hiring process. Some sites give employers special access through which to directly create and edit job listings. Some sites provide means for applicants to forward résumés to the employers and, in turn, provide employers with tracking tools that organize incoming résumés into categories. Typically, the sites provide screening and searching tools that help employers target the most qualified recruits. Some sites offer anonymous résumé postings to accommodate a job seeker who does not want her current employer to know about her job search. Finally, some sites provide files in which to keep notes on individual recruits, such as whether a recruit has been contacted, interviewed, or rejected.
Related to Internet job sites, Internet recruiting services further expand an employer's reach by providing means to post open positions to several Internet job sites, while only having to enter the information once. Yahoo Recruiter™ is one example of such an Internet recruiting service. Once positions are posted, the recruiting service in turn collects the incoming résumés from the various job sites and organizes them into a single database for the employer. These Internet recruiting services therefore offer the advantage of a central place to manage the process of posting positions and filtering résumés.
Despite the many conveniences Internet job sites and recruiting sites provide, there are still significant drawbacks. First and foremost, employers have no guarantee that the fees they pay will result in the finding and hiring of a recruit. In fact, a considerable number of job listings languish on the job sites, costing the employers money and producing no results. Through advertisements and offers of ancillary job search services (such as résumé writing software), the Internet job sites attempt to attract as many applicants as possible. However, no single Internet job sites offer a unique incentive that would persuade an applicant to use its service instead of another.
Second, typical job listings provide candidates with only a limited amount of information about the position and an even more limited amount of information about the employer. Some job sites do offer hyperlinks to the employer's website. However, these hyperlinks require the candidate to exhaustingly browse the employer's website looking for recruiting information that is organized differently on each website. Such an inconvenience results in the candidate's losing patience and abandoning the search, thereby leaving the employer with no return on its investment.
Also, current Internet job sites typically use the same basic approach for all types of job openings. It is not surprising, therefore, that these “one size fits all” sites are not tailored to fit the specific needs of many professions.
Consider, for example, healthcare professionals such as hospital nurses. Unlike most other professions, hospital nurses have a skill set that is easily transportable. Since hospitals, unlike most service businesses, do not have a steady core of repeat business, it is easy for a nurse to take his or her skill set from one hospital to another or from one region to another. Thus, nursing is especially well-suited to temporary staffing. In contrast, other professions, such as engineering, require a significant investment in time to acclimate a new employee to the nuances of a new job. For this reason, one size fits all job websites are not optimal.
Thus, a third drawback is the inability of current Internet job sites to satisfy the needs of highly specialized fields, such as healthcare. Typically, healthcare job seekers desire a quick, easy to use service that presents information about healthcare facilities (e.g., hospitals and medical clinics) and their position openings in a clear and uniform manner. The information must be concise, addressing the concerns most job seekers express when searching for a job. For example, in the healthcare context, pertinent information would include such facts as the number of beds in a particular unit, the number of operating rooms, whether the facility has a trauma center, and whether the facility is a teaching hospital. In effect, the job seeker desires an employment service that offers not only job listing abilities, but integrates the postings with a data warehouse filled with information on employer facilities. This integration would enable the job seeker to focus on specific employer facility criteria and formulate quick, targeted searches.
From the employer's perspective, an employment service that accommodates highly specialized fields saves money. Because the job applicants are more focused and can better understand the needs of the employer's facility in reference to their own, such a specialized employment service integrated with a data warehouse appreciably reduces the time and effort employers waste on unqualified and incompatible applicants. | {
"pile_set_name": "USPTO Backgrounds"
} |
While not limited thereto, the present invention is particularly adapted for use as a dual mode transponder for a position location radar such as that used to guide an aircraft to an airborne tanker. In such a radar system, a transponder is provided on one of the aircraft which receives a signal modulated with range tones at the radar frequency from the other aircraft and transmits back a signal that is similarly modulated, but displaced in frequency with respect to the radar frequency. In the passive mode, the transponder behaves as a lossy frequency translator wherein a microwave mixer pumped by an oscillator at frequency f.sub.o generates two new signals on each side of that which is received by the frequency f.sub.o. One of these is transmitted back to the other aircraft and becomes the radar received signal. In the active mode, the transponder mixer is used to convert the received radar signal to an intermediate frequency where its modulation is detected, and processed for retransmission back to the radar with a net gain through the transponder. The dual mode apparatus described requires the radar range tone modulation to be either FM or phase modulation. Hereinafter, if neither is specifically mentioned it will be assumed that the modulation is phase modulation.
A transponder of the type described above preferably utilizes a four-port dual mode mixer which will perform the passive as well as the active mixer function. In the past, four-port dual mode mixers have been provided which will perform the passive as well as the active mixer function; however they require the use of RF and IF switches which increases size and costs and degrade the mixer-IF amplifier integration for noise performance, bandwidth and conversion loss. | {
"pile_set_name": "USPTO Backgrounds"
} |
Field
The present disclosure relates generally to a terminal, a server and event suggesting methods thereof, and for example, to a terminal, a server and event suggesting methods thereof, in which an event is recommended based on a user's intent.
Description of Related Art
With development of Internet, Web 2.0 age has come and the smart phone has widespread. This leads to a paradigm of openness, participation and sharing, and thus various pieces of information are being shared in real time between users through a blog, a social network service (SNS), etc.
For example, a variety of travel information offered by travelers is shared on the World Wide Web, and many people who plan a trip use the shared information. This information includes not only text information about reviews of visited destinations or famous restaurants but also pictures, sounds and moving pictures and the like data.
Accordingly, in light of analyzing this information to catch a traveler's interest and recommending him/her optimized events, destinations, food, etc., there is a growing demand for improving performance of recommendation.
Further, with recent development of text mining and big-data processing techniques, use of an intelligent recommendation system, where such techniques and various pieces of content are combined with each other, has been on the rise. | {
"pile_set_name": "USPTO Backgrounds"
} |
Unmanned aircraft systems (UAS), also known as unmanned aerial vehicles (UAV) or drones, are self-powered aircraft that do not carry a human operator, uses aerodynamic forces to provide vehicle lift, are autonomously and/or remotely operated, may be expendable or recoverable and may carry lethal or nonlethal payloads. Unmanned aircraft systems are commonly used in military, commercial, scientific, recreational and other applications. For example, military applications include intelligence, surveillance, reconnaissance and attack missions. Civil applications include aerial photography, search and rescue missions, inspection of utility lines and pipelines, humanitarian aid including delivering food, medicine and other supplies to inaccessible regions, environment monitoring, border patrol missions, cargo transportation, forest fire detection and monitoring, accident investigation and crowd monitoring, to name a few.
Certain unmanned aircraft systems have been networked together such that they are capable of cooperating with one another and even exhibit swarm behavior. Such swarm unmanned aircraft systems may have the ability to dynamically adapt responsive to changing conditions or parameters including the ability for group coordination, distributed control, distributed tactical group planning, distributed tactical group goals, distributed strategic group goals and/or fully autonomous swarming. Recent industry goals for deploying and recovering swarm unmanned aircraft systems include developing technologies and systems for enabling safe and reliable aerial launch and aerial recovery of unmanned aircraft systems. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to the testing of embedded memory devices. More specifically, the present invention relates to a method and apparatus for diagnosing memory devices using selfxe2x80x94testing circuits.
2. Background Information
Random access memory (RAM) devices are often tested by determining whether a value written to and a value later read from the same address space of the RAM match for all addresses specified within a predetermined test sequence. Various test sequences, or test algorithms, are known in the art including, for example, those defined in U.S. Pat. Nos. 4,061,908 and 5,377,148. A memory device is considered to be faultxe2x80x94free if, at the completion of a test, no value mismatches are found. If mismatches are found, however, additional information regarding the location and behavior of the one or more faulty cells may be desirable for several purposes. First, given the locations of the faulty cells, the RAM may be repaired by replacing the faulty cells with spare memory cells as described in U.S. Pat. No. 4,228,528. Additionally, the location and behavior of the one or more faulty cells may be mapped to physical defects to help pinpoint the cause of yield loss, as reported by S. Naik et al. in xe2x80x9cFailure Analysis of High Density CMOS SRAMsxe2x80x9d, published in the IEEE Design and Test of Computers, pg. 13-23, June 1993.
RAM that is incorporated inside logic circuits, as opposed to discrete stand-alone RAM, is often referred to as embedded memory. Embedded memories are more difficult to test through external means because their input and output terminals are usually directly connected to logic circuitry instead of being connected to input/output (I/O) terminals of the integrated circuit (IC). One mechanism used to facilitate embedded memory testing is known as a built-in self-test (BIST) circuit. BIST circuits are built into ICs to generate input vectors and analyze output data in response to the generated input vectors.
FIG. 1 illustrates a random access memory (RAM) device including built-in self-test (BIST) circuitry according to the prior art. Referring to FIG. 1, the BIST circuitry 2 is configured to test a RAM 1 containing a variable number of data blocks. During test execution, the BIST circuitry 2 generates input vectors which are input into RAM 1 through various input terminals including address input terminals 3, data input terminals 4, write enable terminal 5, and chip enable terminal 6. A bit comparator 9 is used to compare the data output 7 from the RAM 1, with the expected data output 8 generated by the BIST circuitry 2. A resulting initial fail vector 10, including data indicating whether a memory failure occurred, is output by the bit comparator 9 to I/O terminals 20. A value of xe2x80x9c1xe2x80x9d contained within any bit of the fail vector is referred to as a fail bit and indicates that the corresponding bit of data output does not match the expected value and therefore, may be faulty.
The bit-width, m, of the fail vector 10 is often larger than the number of output pins available on the IC. Thus, outputting the entire fail vector directly to I/O terminals, such as I/O terminals 20, is often difficult. Conventional fail vector analyses, observe the result of a logical xe2x80x9cORxe2x80x9d operation performed on the fail vector as a whole to merely detect whether any one or more bits of the data output is faulty. In order to repair faulty cells or analyze yield loss, however, the locations and behavior of the defective cells may need to be diagnosed, thereby requiring a more detailed observation of the fail vector than such conventional methods provide.
Several methodologies exist that attempt to address the problem of analyzing a large fail vector on an IC containing a relatively small number of I/O pads. First, additional I/O pads may be added to the IC to compensate for the large fail vector. This practice, however, often results in a substantial increase in circuit area and renders the IC diagnosable only before packaging. Another existing method used to analyze a large fail vector is to execute the relevant test m times (where m represents the bit-width of the fail vector), and during each test execution, one bit of the fail vector is multiplexed to the output pin. This method, however, multiplies the test duration by the bit-width of the fail vector. Another technique, disclosed in U.S. Pat. No. 5,148,398, halts test execution upon detecting a data mismatch to sequentially scan data and address information out of the chip. The interruption of test execution to scan out such information extends the time required for testing indefinitely, depending upon the number of faults encountered and the amount of data to be scanned out. Yet another technique has been reported by I. Schanstra et al. in a paper entitled xe2x80x9cSemiconductor Manufacturing Process Monitoring Using Built-In Self-Test for Embedded Memoriesxe2x80x9d published in the Proceedings of International Test Conference, Oct. 18-23, 1998. This technique recognizes faulty columns and faulty cells during testing and records their addresses and fail vectors in registers. At the end of the test, the data in the registers is serially outputted to the I/O terminals. This technique, however, is only effective at reporting the location of just a limited number of faulty cells. Furthermore, no information is provided to show whether the cell failed at reading a value of xe2x80x9c1xe2x80x9d or xe2x80x9c0xe2x80x9d, and the technique can only be used with limited test algorithms.
Thus, there is a need for a method and apparatus to diagnose failing location and behavior of RAM without significant increase in the IC area or test time.
In accordance with one aspect of the present invention, test data is generated and applied to an embedded memory. Actual data output from the embedded memory in response to the application of the test data is compared with expected responsive outputs to form a plurality of initial fail vectors. The initial fail vectors are compressed to form compressed fail vectors by performing a plurality of logical operations on groups of elements of a fail matrix logically formed from the initial fail vectors.
In accordance with another aspect of the present invention, a plurality of compressed fail vectors is received in which each of the plurality of compressed fail vectors comprises a plurality of representations formed in accordance with results of logical operations performed on logically grouped elements of a fail matrix which were formed from a plurality of initial fail vectors. The initial fail vectors are recovered from the compressed fail vectors by successively ascertaining values of the data elements of the fail matrix. The values are ascertained by successively examining the representations formed in accordance with the results of the logical operations and applying a plurality of determination rules specifying assignment values for the data elements of the fail matrix in accordance with at least the results of the logical operations.
In accordance with yet another aspect of the present invention, a computer system is programmed with software code to enable the computing device to receive a plurality of compressed fail vectors and to recover a plurality of initial fail vectors therefrom. The initial fail vectors are recovered by successively examining representations formed in accordance with results of logical operations performed on logically grouped elements of a fail matrix and applying a plurality of determination rules specifying assignment values for the elements of the fail matrix in accordance with at least the results of the logical operations.
In accordance with yet another aspect of the present invention, an integrated circuit comprises a comparator to logically generate a sequence of comparison outputs, a plurality of logical operation circuits, and a plurality of couplings to couple a plurality of combinations of data elements of the sequence of comparison outputs to the logical operation circuits. Such coupling enables a plurality of logical operations to be performed on the combinations of data elements to compress the comparison outputs. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to an electrographic apparatus comprising a photosensitive screen composed of an insulating layer, two electrically conductive layers coated on opposite sides of the insulating layer and a photosensitive layer coated on one of the electrically conductive layers, a corona discharge device arranged at one side of the photosensitive screen and emitting a flow of corona ions, and a dielectric coated record sheet arranged at the other side of the photosensitive screen, whereby an electrostatic latent image produced on the photosensitive layer of the photosensitive screen causes the flow of corona ions directed from the corona discharge device through the photosensitive screen toward the dielectric coated record sheet to modulate so as to produce, on the dielectric coated record sheet, an electrostatic charge image corresponding to the electrostatic latent image on the photosensitive layer of the photosensitive screen.
2. Description of the Prior Art
Various kinds of electrographic apparatus have been proposed which can modulate a flow of corona ions by an electrostatic latent image produced on a photosensitive screen so as to produce on a dielectric coated record sheet an electrostatic charge image.
One of these prior art apparatus makes use of a photosensitive screen of four layer construction composed of an insulating layer, two electrically conductive layers coated on opposite sides of the insulating layer and a photosensitive layer coated on one of the electrically conductive layers. Such apparatus can perform a first step of uniformly charging the photosensitive layer, a second step of illuminating the photosensitive screen with a light image and producing thereon an electrostatic latent image, and a third step of applying a high voltage between a field electrode arranged at the rear of a dielectric coated record sheet which is opposed to and spaced apart from the photosensitive layer of the photosensitive screen on the one hand and the photosensitive layer of the photosensitive screen on the other hand and directing a flow of corona ions from a corona discharge device arranged at the side of the electrically conductive layer of the photosensitive screen through the photosensitive screen toward the dielectric coated record sheet while applying a bias voltage between the two electrically conductive layers and producing on the dielectric coated record sheet an electrostatic charge image corresponding to the electrostatic latent image produced on the photosensitive layer of the photosensitive screen.
This apparatus has the advantage that the picture image can be controlled by adjusting the bias voltage applied between the two electrically conductive layers in dependence with the number of copies set beforehand and that a plurality of copies can be reproduced by repeating the third step after the electrostatic latent image has been produced on the photosensitive screen.
In practice, however, a concentration of the picture image becomes changed in dependence with the number of copies set beforehand owing to a dark decay characteristic of the photosensitive layer and to an undesirous detour of the flow of corona ions emitted from the corona discharge device. As a result, copies each having a picture image having a good quality are limited in number and it is impossible to obtain a large number of copies each of good quality.
In order to obviate such drawback, another prior art electrographic apparatus has been proposed. In this apparatus, in the above mentioned third step, the bias voltage applied between the electrically conductive layers of the photosensitive screen can be changed in response to the number of copies set beforehand and hence can compensate for the decay of the electrostatic latent image on the photosensitive layer. In such electrographic apparatus constructed as above described, in the case of obtaining a plurality of copies from the electrostatic latent image produced on the photosensitive screen by repeating the third step, if the concentration of the first picture image becomes incorrect, the concentration of subsequent picture images becomes also incorrect. | {
"pile_set_name": "USPTO Backgrounds"
} |
Over recent years, the computing community developed a strong set of tools and methods used to analyze and monitor run-time behavior of a program. Performance analysis tools include, for example, basis tools which allow for mapping of periodically taken snapshots during a program's execution to the program's source (e.g. sampling applications) and more complex tools which allow a broader range of program analysis (e.g. code instrumentation applications). Measurements such as basic-block coverage and function invocation counting can be accurately made using code instrumentation. One specific type of code instrumentation is referred to as dynamic binary instrumentation. Dynamic binary instrumentation allows program instructions to be changed on-the-fly. Additionally, dynamic binary instrumentation, as opposed to static instrumentation, is performed at run-time of a program and only instruments those parts of an executable that are actually executed. This minimizes the overhead imposed by the instrumentation process itself. Furthermore, performance analysis tools based on dynamic binary instrumentation require no special preparation of an executable such as, for example, a modified build or link process.
Unfortunately the benefits of conventional performance analysis tools are not available to all types of programs and functions. Specifically, conventional performance analysis tools will not work properly with inlined functions. As an explanation, many programming languages offer support for “inlining” functions. That is, many programming languages such as, for example, C++, allow the compiler to generate machine code for a function call such that the code from the function body gets directly inserted into the place where the call was made. The now inlined function causes the size of the text program to increase but removes the overhead of the function call. From the point of view of the programmer, there is some ambiguity as to whether a particular function has been inlined or not. For example, even if the programmer specifies in the source code that a certain function be inlined, that does not necessarily mean that the particular function will ultimately be inlined in the binary executable by the compiler. This ambiguity exists because there are certain cases where the compiler decides, on its own, not to inline a function even though the programmer has specified for the function to be inlined. Because conventional performance analysis tools correlate to the binary executable and the regular functions therein as opposed to the source code, and because conventional performance analysis tools do not take into account inlined function information, inlined functions can not be properly analyzed using existing performance analysis tools.
Thus, a need has arisen for a method and system for examining an inlined function using a performance analysis tool. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to a process for the manufacture of polyester fibers by spinning a polyester mass containing an oxalato complex and drawing of the resulting yarn, followed, as the case may be, by hydrosetting of the same in the presence of liquid water.
A previously developed process is described in U.S. Pat. Nos. 4,307,152 and 4,371,485. The process for the manufacture of hydrophilic polyester fibers described in the above referenced U.S. patents is characterized by the spinning of a polyester mass containing 1 to 20% by weight of one or several oxalato complexes of the general formula EQU Me.sub.n [Z(C.sub.2 O.sub.4)m],
drawing of the resulting yarn and hydrosetting in the presence of liquid water at temperatures within a range from 90.degree. to 170.degree. C., the meaning of the symbols in the formula being:
Me=at least one of the ions Li, Na, K, Rb, Cs or NH; PA0 Z=at least one complex-forming central atom from the group Mg, Ca, Sr, Ba, Zr, Hf, Ce, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, B, Al, Ga, In, Sn, Pb, and Sb; PA0 n=.about.1, .about.2, .about.3 or .about.4, and PA0 m=.about.2, .about.3 or .about.4.
By means of this process, one obtains polyester fibers having outstanding hydrophilic characteristics and excelling through a high moisture uptake and a very favorable water retentivity. In addition, they are flame-resistant. The corresponding hydrophilic characteristics will not come about without hydrosetting. However, in the spinning of such polyester masses, which, as a result of the transesterification of terephthalic esters with ethylene glycol, still contain metal compounds, in particular zinc, calcium, magnesium, or manganese salts, originating from the transesterification catalyst, there is a danger that the melt pressure ahead of the spinning plate will increase relatively rapidly. Thus, in the conventional melt spinning of polyester masses not containing oxalato complexes, the melt pressure ahead of the spinning plate rises only within a period of about 14 days to pressures of about 300 bar. When polyester masses are spun which contain the oxalato complexes referred to above, the time within which such a high pressure is reached is shortened considerably. After only about 60 to 70 hours, a pressure is reached, at which the spinning process has to be terminated. This makes the manufacturing process of the polyester fibers more expensive.
Consequently, there exists a need for an improved process for the manufacture of polyester fibers, in which such disadvantages will not occur. | {
"pile_set_name": "USPTO Backgrounds"
} |