title
stringlengths 1
250
| url
stringlengths 37
44
| text
stringlengths 1
4.81k
|
---|---|---|
Albert Einstein | https://vi.wikipedia.org/wiki?curid=2432 | Điều này không đúng về mặt vật lý, nhưng lý thuyết vẫn tiên đoán giá trị hữu hạn nhiệt dung riêng là 3"Nk"B, do số các dao động độc lập đều giống nhau.
Einstein từ đó giả sử là chuyển động trong mô hình này bị lượng tử hóa, tuân theo định luật Planck, do vậy mỗi chuyển động độc lập của lò xo có năng lượng bằng một số nguyên lần hf, trong đó f là tần số dao động. Với giả sử này, ông áp dụng phương pháp thống kê của Boltzmann để tính ra năng lượng trung bình của mỗi lò xo trong một khoảng thời gian. Kết quả thu được giống với kết quả của Planck cho ánh sáng: tại nhiệt độ mà "k"B"T" nhỏ hơn "hf", chuyển động bị ngưng lại (đóng băng), và nhiệt dung riêng tiến về 0.
Và Einstein kết luận là cơ học lượng tử có thể giải quyết được các vấn đề lớn trong vật lý cổ điển, như tính dị thường của nhiệt dung riêng. Các hạt hàm ý trong công thức trên bây giờ được gọi là photon. Vì mọi lò xo trong lý thuyết của Einstein đều có độ cứng như nhau, nên chúng dao động như nhau tại cùng một nhiệt độ, và điều này dẫn đến tiên đoán là nhiệt dung riêng tiến về 0 theo hàm lũy thừa khi nhiệt độ giảm đi về 0K.
Nghiên cứu này là nền tảng của vật lý vật chất ngưng tụ sau này.
Nguyên lý đoạn nhiệt và các biến tác động góc.
Trong thập niên 1910, lý thuyết lượng tử đã mở rộng phạm vi áp dụng cho nhiều hệ thống khác nhau. Sau khi Ernest Rutherford khám phá ra sự tồn tại các hạt nhân và đề xuất các electron có quỹ đạo quanh hạt nhân giống như quỹ đạo của các hành tinh, Niels Bohr đã áp dụng các tiên đề của cơ học lượng tử được Planck và Einstein đưa ra và phát triển để giải thích chuyển động của electron trong nguyên tử, và của bảng tuần hoàn các nguyên tố.
Einstein đã đóng góp vào những phát triển này bằng liên hệ chúng với các tư tưởng của Wilhelm Wien năm 1898. Wien đã đưa ra giả thuyết về "bất biến đoạn nhiệt" của trạng thái cân bằng nhiệt cho phép mọi bức xạ của vật đen tại các nhiệt độ khác nhau được dẫn ra từ 'định luật dịch chuyển Wien. Einstein năm 1911 đã chú ý đến là cùng nguyên lý đoạn nhiệt này cũng chỉ ra các đại lượng bị lượng tử hóa trong chuyển động cơ học bất kì phải là bất biến đoạn nhiệt. |
Albert Einstein | https://vi.wikipedia.org/wiki?curid=2432 | Arnold Sommerfeld đã đồng nhất bất biến đoạn nhiệt này là biến tác dụng của cơ học cổ điển. Định luật tác dụng thay đổi được bị lượng tử hóa là nguyên lý cơ sở của thuyết lượng tử khi nó được biết từ 1900 đến 1925. (hay lý thuyết lượng tử cổ điển)
Lưỡng tính sóng - hạt.
Mặc dù cục cấp bằng sáng chế đã bổ nhiệm Einstein làm nhân viên kĩ thuật kiểm tra hạng hai năm 1906, nhưng ông không hề từ bỏ sự nghiệp khoa học của mình. Năm 1908, ông trở thành "giảng viên thỉnh giảng" (privatdozent) tại trường Đại học Bern.
Trong "über die Entwicklung unserer Anschauungen über das Wesen und die Konstitution der Strahlung" (""), về sự lượng tử hóa của ánh sáng, và trong một bài báo đầu năm 1909, Einstein chỉ ra rằng lượng tử năng lượng của Planck phải có động lượng và có thể cư xử như các hạt điểm độc lập. Bài báo này đưa ra khái niệm "photon" (mặc dù Gilbert N. Lewis đặt tên gọi photon mãi tới năm 1926) và mở ra khái niệm lưỡng tính sóng-hạt trong cơ học lượng tử. Dựa trên ý tưởng của Planck và của Einstein về sóng có bản chất hạt, nhà vật lý Louis de Broglie đặt ra vấn đề ngược là hạt vật chất có bản chất sóng và khai sinh ra nguyên lý lưỡng tính sóng hạt của vật chất.
Lý thuyết giới hạn trắng đục.
Einstein đã quay trở lại vấn đề nhiễu loạn nhiệt động học, với suy nghĩ tìm cách giải quyết những sự thay đổi mật độ trong chất lỏng tại điểm giới hạn của nó. Thông thường, nhiễu loạn mật độ được khử bởi đạo hàm bậc hai của năng lượng tự do theo mật độ. Tại điểm giới hạn này, đạo hàm bằng không, dẫn đến những nhiễu loạn lớn. Hiệu ứng nhiễu loạn mật độ mà theo đó mọi bước sóng của ánh sáng bị tán xạ khi đi vào môi trường khác, làm cho chất lỏng nhìn trắng như sữa. Einstein liên hệ hiện tượng này với hiện tượng tán xạ Raleigh, mà xảy ra khi độ lớn nhiễu loạn nhỏ hơn bước sóng, và hiện tượng này đã giải thích hiện tượng tại sao bầu trời có màu xanh.
Năng lượng điểm không.
Trực giác vật lý của Einstein đã dẫn ông chú ý đến các năng lượng dao động Planck không thể có điểm không. Ông sửa lại giả thuyết Planck bằng cách cho trạng thái năng lượng thấp nhất của một đối tượng dao động bằng với "hf", bằng một nửa khoảng năng lượng giữa hai mức. |
Albert Einstein | https://vi.wikipedia.org/wiki?curid=2432 | Sự thay đổi này được nghiên cứu cùng với Otto Stern, trên cơ sở của nhiệt động học phân tử hai nguyên tử mà có thể tách ra thành hai nguyên tử tự do.
Nguyên lý tương đương.
Năm 1907, khi còn đang làm việc tại cuc bằng sáng chế, Einstein đã có cái mà ông gọi là "ý tưởng hạnh phúc nhất" trong đời ông. Ông nhận ra là nguyên lý tương đối có thể mở rộng sang trường hấp dẫn.
Ông suy nghĩ về trường hợp thang máy chuyển động với gia tốc đều nhưng không phải đặt trong trường hấp dẫn, và ông nhận ra là nó không thể khác biệt so với trường hợp thang máy im trong trường hấp dẫn không thay đổi. Ông áp dụng thuyết tương đối hẹp để thấy tốc độ của các đồng hồ tại đỉnh thang máy gia tốc lên trên sẽ nhanh hơn tốc độ của đồng hồ ở sàn thang máy. Ông kết luận là tốc độ của đồng hồ phụ thuộc vào vị trí của chúng trong trường hấp dẫn, và hiệu giữa hai tốc độ đồng hồ tỉ lệ với thế năng hấp dẫn theo xấp xỉ bậc nhất.
Mặc du sự xấp xỉ này là thô, nó cho phép ông tính được độ lệch của tia sáng do hấp dẫn. Điều này làm cho ông tin tưởng rằng lý thuyết vô hướng về hấp dẫn được đề xuất bởi Gunnar Nordström là không đúng. Nhưng giá trị thực cho độ lệch mà ông tính ra nhỏ đi 2 lần so với giá trị thực, do xấp xỉ ông sử dụng không còn thỏa mãn đối với các vật thể di chuyển gần vận tốc của ánh sáng. Khi Einstein hoàn thiện thuyết tương đối tổng quát, ông đã sửa lại thiếu sót này và tiên đoán được giá trị đúng của độ lệch tia sáng đi gần Mặt Trời.
Từ Praha, Einstein đăng một bài báo về các hiệu ứng của hấp dẫn tác động lên ánh sáng, đặc biệt là dịch chuyển đỏ do hấp dẫn và độ lệch ánh sáng do hấp dẫn. Bài báo đã thúc đẩy các nhà thiên văn học xác định độ lệch tia sáng trong quá trình quan sát nhật thực.
Nhà thiên văn người Đức Erwin Finlay-Freundlich đã công bố tiên đoán của Einstein ra toàn thế giới để cộng đồng các nhà khoa học được biết đến.
Einstein đã suy nghĩ về bản chất trường hấp dẫn trong các năm 1909-1912, nghiên cứu các tính chất của chúng bằng các thí nghiệm tưởng tượng đơn giản. |
Albert Einstein | https://vi.wikipedia.org/wiki?curid=2432 | Trong đó có thí nghiệm về một cái đĩa quay. Einstein tưởng tượng ra một quan sát viên thực hiện các thí nghiệm trên một cái bàn quay. Ông chú ý rằng quan sát viên có thể đo được một giá trị khác cho hằng số toán học pi so với trong hình học Euclid. Lý do là vì bán kính của một đường tròn là không đổi do được đo với một cái thước không bị co độ dài, nhưng theo thuyết tương đối hẹp chu vi của đường tròn dường như lớn hơn do cái thước dùng để đo chu vi bị co ngắn lại.
Mặt khác Einstein tin tưởng rằng các định luật vật lý là cục bộ, được miêu tả bởi các hệ tọa độ cục bộ, ông kết luận rằng không thời gian có thể bị cong. Điều này dẫn ông đến nghiên cứu hình học Riemann, và hình thành lên ngôn ngữ của thuyết tương đối tổng quát.
Thuyết tương đối rộng.
Năm 1912, Einstein trở lại Thụy Sĩ để nhận chức danh giáo sư tại nơi ông từng học, trường ETH. Khi ông trở lại Zurich, ngay lập tức ông đến thăm người bạn cùng lớp đại học ETH là Marcel Grossmann, bây giờ trở thành giáo sư toán học. Einstein đã hỏi Grossmann có thứ hình học miêu tả không gian cong không và ông ta đã giới thiệu cho ông hình học Riemann và tổng quát hơn là hình học vi phân. Theo đề nghị của nhà toán học người Ý Tullio Levi-Civita, Einstein bắt đầu khám phá ra sự hữu ích của nguyên lý hiệp biến tổng quát (cơ bản là sử dụng tenxơ) cho lý thuyết hấp dẫn mới của ông. Có lúc Einstein nghĩ rằng có một số sai lầm với cách tiếp cận này, nhưng sau đó ông đã quay trở lại với nó, và cuối năm 1915, ông đã công bố thuyết tương đối rộng theo dạng ngày nay của lý thuyết. Lý thuyết này giải thích hấp dẫn là do sự cong của không thời gian do vật chất, ảnh hưởng tới chuyển động quán tính của các vật chất khác. Trong chiến tranh thế giới lần thứ nhất, nghiên cứu của các nhà khoa học thuộc Liên minh trung tâm chỉ có thể được thực hiện tại các viện Hàn lâm của liên minh này, vì lý do an ninh quốc gia. Một vài nghiên cứu của Einstein đã đến được Vương quốc Anh và Hoa Kỳ thông qua nỗ lỗ lực của nhà vật lý người Áo Paul Ehrenfest và của các nhà vật lý người Hà Lan, đặc biệt là Nobel gia Hendrik Lorentz và Willem de Sitter của Đại học Leiden. |
Albert Einstein | https://vi.wikipedia.org/wiki?curid=2432 | Sau khi chiến tranh kết thúc, Einstein vẫn duy trì mối liên hệ của ông với trường Đại học Leiden, và nhận làm giáo sư đặc biệt cho trường này trong mười năm, từ 1920 đến 1930, Einstein thường xuyên đến Hà Lan để giảng dạy.
Năm 1917, một vài nhà thiên văn học chấp nhận lời đề xuất năm 1911 của Einstein khi ông ở Praha. Đài quan sát núi Wilson ở California, Hoa Kỳ, công bố kết quả phân tích phổ của Mặt Trời cho thấy không có sự dịch chuyển đỏ do hấp dẫn. Năm 1918, Đài quan sát Lick, cũng ở California, thông báo rằng rất khó có thể bác bỏ được tiên đoán của Einstein, mặc dù kết quả của họ không được công bố.
Tuy nhiên vào tháng 5 năm 1919, một đội các nhà thiên văn học do Arthur Stanley Eddington dẫn đầu đã xác nhận rằng tiên đoán của Einstein về sự bẻ cong của tia sáng do hấp dẫn của Mặt Trời trong khi chụp các bức ảnh trong quá trình nhật thực tại Príncipe, một hòn đảo nằm phía tây châu Phi đồng thời với một đoàn thám hiểm ở Sobral, phía bắc Brasil. Nobel gia Max Born tán dương thuyết tương đối tổng quát như là "một kỳ công lớn nhất của tư duy con người về tự nhiên"; và Nobel gia người Anh Paul Dirac nói "nó có thể là khám phá khoa học lớn nhất đã từng được phát hiện". Các phương tiện thông tin quốc tế lan truyền khám phá này khiến Einstein trở nên nổi tiếng khắp thế giới.
Đã có những ý kiến cho rằng việc kiểm tra lại các bức ảnh của đoàn thám hiểm Eddington cho thấy độ lớn sai số của thí nghiệm bằng với kết quả thu được từ hiệu ứng mà Eddington đã đo để chứng minh, và đoàn thám hiểm người Anh năm 1962 đã kết luận là phương pháp đã đo là không đủ tin cậy. Sự bẻ cong của tia sáng trong quá trình nhật thực đã được xác nhận bởi các quan sát chính xác hơn sau đó. Về sau, nhiều thí nghiệm sau này đã xác nhận các tiên đoán của thuyết tương đối rộng. Cùng với sự mới nổi tiếng của Einstein, nhiều nhà khoa học Đức thời đó đã có những động thái để chống lại Einstein cũng như các công trình của ông.
Sóng hấp dẫn.
Năm 1916, Einstein dự đoán tồn tại sóng hấp dẫn, những gợn sóng hình thành từ độ cong của không thời gian mà lan truyền từ nguồn ra bên ngoài như các sóng, chúng mang theo năng lượng dưới dạng bức xạ hấp dẫn. |
Albert Einstein | https://vi.wikipedia.org/wiki?curid=2432 | Sự tồn tại của sóng hấp dẫn theo khuôn khổ của thuyết tương đối tổng quát là do bất biến Lorentz đưa đến hệ quả của vận tốc lan truyền hữu hạn đối với các tương tác vật lý mà hấp dẫn tham gia. Ngược lại, sóng hấp dẫn không thể tồn tại trong lý thuyết hấp dẫn của Newton, khi cho rằng tương tác hấp dẫn lan truyền một cách tức thì hay với vận tốc lớn vô hạn.
Sự phát hiện ra sóng hấp dẫn lần đầu tiên, một cách gián tiếp, đến từ những quan sát trong thập niên 1970 về cặp sao neutron quay trên quỹ đạo hẹp quanh nhau, PSR B1913+16. Quan sát cho thấy chu kỳ quỹ đạo của hệ giảm dần chứng tỏ hệ đang phát ra sóng hấp dẫn đúng như miêu tả của thuyết tương đối rộng. Dự đoán của Einstein đã được xác nhận vào ngày 11 tháng 2 năm 2016, khi các nhà khoa học thuộc nhóm LIGO công bố đã đo được trực tiếp sóng hấp dẫn lần đầu tiên, vào ngày 14 tháng 9 năm 2015, gần một trăm năm sau ngày ông đăng bài báo về sóng hấp dẫn.
Vũ trụ học.
Năm 1917, Einstein đã áp dụng thuyết tương đối rộng cho mô hình cấu trúc của vũ trụ trên toàn bộ. Theo dòng suy nghĩ đương thời, ông muốn vũ trụ là vĩnh hằng và bất biến, nhưng trong thuyết mới của ông, sau một thời gian dài lực hấp dẫn có thể hút vật chất về nhau dẫn tới vũ trụ co lại. Để sửa điều này, Einstein đã thay đổi nhỏ thuyết tương đối tổng quát bằng cách đưa ra một khái niệm mới, hằng số vũ trụ học. Với một hằng số vũ trụ dương, cân bằng chống lại lực hấp dẫn, vũ trụ có thể là quả cầu tĩnh vĩnh hằng
Einstein tin tưởng rằng một vũ trụ tĩnh có tính đối xứng cầu sẽ phù hợp về mặt triết học, bởi vì nó tuân theo nguyên lý Mach. Ông đã chỉ ra rằng thuyết tương đối tổng quát gắn chặt với nguyên lý Mach trong trường hợp mở rộng hiệu ứng kéo hệ quy chiếu bằng trường hấp dẫn từ, nhưng ông biết rằng ý tưởng của Mach sẽ không đúng nếu vũ trụ cứ mở rộng ra vô hạn. Trong một vũ trụ đóng, ông tin rằng nguyên lý Mach sẽ được thỏa mãn.
Nguyên lý Mach cũng đã gây ra rất nhiều tranh cãi trong nhiều năm. |
Albert Einstein | https://vi.wikipedia.org/wiki?curid=2432 | Thuyết lượng tử hiện đại.
Năm 1917, tại đỉnh cao của công việc nghiên cứu thuyết tương đối, Einstein xuất bản một bài báo trong ""Physikalische Zeitschrift" đề xuất khả năng tồn tại phát xạ kích thích, một quá trình vật lý giúp hiện thực được maser và laser. Bài báo này chỉ ra rằng tính thống kê của sự hấp thụ và bức xạ ánh sáng chỉ có thể phù hợp với định luật phân bố Planck khi sự bức xạ của ánh sáng trong một chế độ với n photon sẽ gần với tính thống kê hơn so với sự bức xạ của ánh sáng trong chế độ không có photon. Bài báo này có ảnh hưởng lớn đến sự phát triển sau này của cơ học lượng tử, bởi vì nó là bài báo đầu tiên chỉ ra tính thống kê của sự chuyển dịch trạng thái nguyên tử tuân theo những định luật đơn giản. Einstein đã phát hiện ra nghiên cứu của Louis de Broglie, và đã ủng hộ những ý tưởng của ông, khi Einstein lần đầu tiên nhận được những ý tưởng phác thảo này. Một bài báo lớn khác trong thời kì này, Einstein đã viết ra phương trình sóng cho các sóng de Broglie, trong đó Einstein đã đề xuất từ phương trình Hamilton–Jacobi của cơ học. Bài báo này đã khích lệ các nghiên cứu của Schrödinger năm 1926.
Thống kê Bose–Einstein.
Năm 1924, Einstein nhận được một miêu tả về mô hình thống kê từ nhà vật lý người Ấn Độ Satyendra Nath Bose, trên cơ sở một phương pháp đếm với giả sử ánh sáng có thể được hiểu là khí của các hạt không thể phân biệt được. Einstein chú ý tới rằng thống kê của Bose có thể áp dụng cho một số nguyên tử có tính chất tương tự các hạt ánh sáng được đề xuất, và ông gửi bản dịch bài báo của Bose tới tạp chí "Zeitschrift für Physik". Einstein cũng tự viết các bài báo miêu tả mô hình thống kê này và những hệ quả của nó, bao gồm hiện tượng ngưng tụ Bose-Einstein mà trong một số trường hợp đặc biệt có thể xuất hiện tại nhiệt độ rất thấp.. Cho đến tận năm 1995, vật chất ngưng tụ lần đầu tiên đã được tạo ra bằng thực nghiệm bởi Eric Allin Cornell và Carl Wieman nhờ sử dụng các thiết bị siêu lạnh được lắp đặt tại NIST–phòng thí nghiệm JILA tại Đại học Colorado ở Boulder. Thống kê Bose-Einstein bây giờ được sử dụng để miêu tả hành xử của những hạt có spin nguyên, các boson. Những phác thảo của Einstein cho nghiên cứu này có thể xem tại "Einstein Archive" trong thư viện của đại học Leiden.
Giả tenxơ năng lượng động lượng. |
Albert Einstein | https://vi.wikipedia.org/wiki?curid=2432 | Giả tenxơ năng lượng động lượng.
Thuyết tương đối rộng bao gồm một không thời gian động lực, do vậy nó rất khó để tìm cách thống nhất các đại lượng bảo toàn năng lượng và động lượng. Định lý Noether cho phép những đại lượng được xác định từ hàm Lagrangian với bất biến tịnh tiến, nhưng hiệp biến tổng quát làm cho bất biến tịnh tiến trở thành một phần của đối xứng gauge. Tenxơ ứng suất - năng lượng trong phương trình trường Einstein không chứa năng lượng trường hấp dẫn, bởi vì theo nguyên lý tương đương bằng việc lựa chọn hệ quy chiếu cục bộ thích hợp, trường hấp dẫn sẽ biết mất. Năng lượng và động lượng bao hàm cả năng lượng hấp dẫn được dẫn ra từ thuyết tương đối rộng theo định lý Noether không phải là một tenxơ thực vì lý do như vậy.
Einstein lập luận rằng điều này là đúng với những lý do cơ bản, bởi vì trường hấp dẫn có thể xuất hiện hoặc biến mất bằng cách chọn các tọa độ. Ông ủng hộ rằng giả tenxơ không hiệp biến năng lượng động lượng thực chất là cách miêu tả tốt nhất sự phân bố năng lượng và động lượng trong một trường hấp dẫn. Cách tiếp cận này đã được phát triển bởi Lev Landau và Evgeny Lifshitz, và những người khác, và đã trở thành một tiêu chuẩn.
Việc sử dụng các đối tượng không-hiệp biến như các giả tenxơ đã bị phê phán nhiều bởi Erwin Schrödinger và những người khác năm 1917.
Thuyết trường thống nhất.
Tiếp theo nghiên cứu của ông về thuyết tương đối tổng quát, Einstein bắt tay vào chuỗi những cố gắng để tổng quát hóa lý thuyết hình học của ông về hấp dẫn, cho phép kết hợp được với tương tác điện từ. Năm 1950, ông miêu tả "thuyết trường thống nhất" của ông trong tạp chí "Scientific American" với tiêu đề "Về lý thuyết tổng quát của hấp dẫn". Mặc dù ông tiếp tục được ca ngợi cho các công trình của ông, Einstein đã dần dần bị đơn độc trong con đường nghiên cứu thuyết thống nhất này, và những nỗ lực của ông đã hoàn toàn bị thất bại. |
Albert Einstein | https://vi.wikipedia.org/wiki?curid=2432 | Trong việc theo đuổi một lý thuyết thống nhất các lực cơ bản của tự nhiên, Einstein đã bỏ qua một số hướng phát triển chính của vật lý thời đó, điển hình nhất là việc nghiên cứu các lực hạt nhân mạnh và lực hạt nhân yếu, chúng chưa được hiểu triệt để cho đến tận nhiều năm sau khi ông mất. Mặt khác, các xu hướng vật lý lại chủ yếu bỏ qua các phương pháp tiếp cận của ông đối với lý thuyết thống nhất; với cơ học lượng tử là khuôn khổ chính, lý thuyết mà ông không chấp nhận hoàn toàn về tính mô tả thực tại của nó. Giấc mơ của Einstein để thống nhất mọi định luật vật lý khác với hấp dẫn đã thôi thúc một cuộc tìm kiếm hiện đại cho một lý thuyết của mọi vật và đặc biệt là thuyết dây, trong đấy các trường hình học được kết hợp với lý thuyết trường lượng tử hay hấp dẫn lượng tử.
Lỗ sâu.
Trong nghiên cứu thuyết trường thống nhất, Einstein đã hợp tác với các nhà khoa học khác để đưa ra mô hình về một lỗ sâu. Mục đích của ông là thiết lập mô hình các hạt cơ bản với các tích (điện tích) của chúng như là một nghiệm của phương trình trường hấp dẫn, được đăng trong một bài báo với tiêu đề "Liệu trường hấp dẫn đóng một vai trò quan trọng trong cấu tạo của các hạt cơ bản?". Những nghiệm này cắt và dán các lỗ đen Schwarzschild để tạo ra một cầu nối giữa hai miền không gian.
Nếu cuối một lỗ sâu mang điện tích dương, thì đầu kia của lỗ sâu phải mang điện tích âm. Những tính chất này dẫn Einstein đến sự tin tưởng rằng cặp các hạt và phản hạt có thể được miêu tả theo cách này.
Lý thuyết Einstein–Cartan.
Để có thể kết hợp spin của các hạt điểm vào trong thuyết tương đối tổng quát, liên thông aphin cần được tổng quát hóa để bao gồm được phần phản xứng, gọi là tenxơ xoắn. Năm 1922 nhà toán học Élie Cartan lần đầu tiên tiếp cận với đề xuất này và tiếp tục mở rộng lý thuyết trong các năm sau. Einstein cũng tham gia vào phát triển lý thuyết này vào năm 1928 với những nỗ lực không thành công khi sử dụng tenxơ xoắn để miêu tả trường điện từ trong thuyết trường thống nhất của ông.
Nghịch lý Einstein–Podolsky–Rosen.
Năm 1935, Einstein trở lại với cơ học lượng tử. |
Albert Einstein | https://vi.wikipedia.org/wiki?curid=2432 | Ông đã xét sự ảnh hưởng như thế nào của một hạt trong hệ hai hạt vướng víu với nhau đối với hạt kia. Ông đưa ra cùng với các cộng sự của ông rằng, bằng cách thực hiện các phép đo khác nhau trên một hạt ở rất xa, hoặc là về vị trí hoặc về động lượng, và các tính chất của hạt đối tác trong cặp vướng víu này có thể được khám phá mà không làm ảnh hưởng đến trạng thái của chính nó.
Einstein do vậy đã sử dụng tính thực tại cục bộ để kết luận là những hạt khác có những tính chất này đã được định sẵn. Nguyên lý ông đề xuất là nếu có thể xác định được câu trả lời về vị trí hay động lượng qua phép đo một hạt đối tác, mà không ảnh hưởng đến hạt kia, thì các hạt thực sự có giá trị chính xác về vị trí hoặc động lượng, điều này mâu thuẫn với nguyên lý bất định Heisenberg.
Nguyên lý này được rút ra từ quá trình phản bác của Einstein về cơ học lượng tử. Là một nguyên lý vật lý, nó đã được chứng minh là không tương thích với các kết quả thí nghiệm.
Các phương trình chuyển động.
Thuyết tương đối rộng có hai định luật cơ bản; - phương trình trường Einstein miêu tả sự cong của không gian, và phương trình trắc địa miêu tả sự di chuyển của các hạt trong trường hấp dẫn.
Do các phương trình trong thuyết tương đôi tổng quát là phi tuyến, một lượng năng lượng xác định một trường hấp dẫn thuần túy, giống như hố đen, sẽ di chuyển trên một quỹ đạo được xác định bởi chính phương trình trường Einstein, không cần tới các định luật mới. Vì thế EInstein đề xuất rằng quỹ đạo của một nghiệm kì dị, giống như hố đen, có thể được xác định là một đường trắc địa từ chính thuyết tương đối rộng.
Phương trình này được Einstein, Infeld và Hoffmann viết ra cho các vật thể hạt điểm không có mô men động lượng, và bởi Roy Kerr cho các vật thể quay.
Cộng tác với những nhà khoa học khác.
Ngoài sự cộng tác trong một thời gian dài với các nhà khoa học Leopold Infeld, Nathan Rosen, Peter Bergmann và những người khác, Einstein cũng từng cộng tác trong một thời gian ngắn với nhiều nhà khoa học.
Tranh luận Bohr-Einstein.
Tranh luận Bohr-Einstein là chuỗi các sự kiện phê bình giữa hai trong số những người sáng lập ra cơ học lượng tử là Albert Einstein và Niels Bohr về bản chất thực tại của lý thuyết này. |
Albert Einstein | https://vi.wikipedia.org/wiki?curid=2432 | Tranh luận của hai người không chỉ có ý nghĩa trong triết học của khoa học mà còn là động lực để các nhà lý thuyết và thực nghiệm lượng tử khám phá ra những tính chất mới đồng thời bổ sung cho nền tảng lý thuyết.
Thí nghiệm Einstein-de Haas.
Einstein và De Haas đã chứng tỏ rằng sự từ hóa là do chuyển động của các electron mà ngày nay được biết là spin. Để chỉ ra điều này, họ đảo ngược sự từ hóa trong một thanh thép treo trên một con lắc xoắn. Hai người quan sát thấy rằng thanh thép bị quay đi một góc, bởi vì mô men động lượng của electron bị thay đổi khi thay đổi sự từ hóa. Thí nghiệm này cần sự tinh tế, bởi vì mô men động lượng gắn với electron là nhỏ, nhưng nó cũng đủ để chứng minh chuyển động của electron vì một lý do nào đó ảnh hưởng đến sự từ hóa.
Mô hình khí Schrödinger.
Einstein gợi ý cho Erwin Schrödinger rằng ông có thể suy lại được sự thống kê của khí Bose–Einstein bằng xét đến một hộp. Sau đó mỗi chuyển động lượng tử khả dĩ của một hạt trong một hộp được gắn với một dao động tử điều hòa độc lập. Lượng tử hóa những dao động tử này, mỗi mức có một số nguyên tương ứng, sẽ là số các hạt trong hộp.
Phương pháp này là một phần của lượng tử hóa chính tắc, nhưng nó đi ngược lại cơ học lượng tử hiện đại. Erwin Schrödinger áp dụng điều này để dẫn ra các tính chất nhiệt động của khí lý tưởng bán cổ điển. Schrödinger đã đề nghị Einstein để đưa thêm ông vào đồng tác giả, nhưng Einstein đã từ chối lời mời này.
Tình yêu âm nhạc.
Einstein bắt đầu cảm thụ âm nhạc từ khi còn nhỏ tuổi. Mẹ ông chơi dương cầm khá giỏi và muốn ông học đàn vĩ cầm, không chỉ để truyền dẫn cho ông niềm yêu thích âm nhạc mà còn giúp ông hòa nhập với nền văn hóa Đức. Theo nhạc trưởng Leon Botstein, Einstein có thể đã bắt đầu chơi nhạc từ lúc 5 tuổi nhưng chưa thể hiện niềm thích thú với âm nhạc khi đó.
Tuy nhiên, bước sang tuổi 13, ông được học bản sonata vĩ cầm của Mozart. "Einstein trở nên yêu thích" âm nhạc Mozart, Botstein viết, và học chơi vĩ cầm một cách tự nguyện hơn. |
Albert Einstein | https://vi.wikipedia.org/wiki?curid=2432 | Theo Einstein, ông tự học chơi đàn bằng cách "thực hành có hệ thống", và nói rằng "say mê là một người thầy tốt hơn ý thức trách nhiệm." Khi 17 tuổi, ông trình bày bản sonata vĩ cầm của Beethoven trong một kỳ kiểm tra âm nhạc ở Aarau, và giáo viên chấm điểm đã nhận xét khi ông kết thúc là "xuất sắc và thể hiện nội dung tuyệt vời." Điều gây ấn tượng cho người giáo viên là, theo Botstein, Einstein "thể hiện sâu sắc tình yêu âm nhạc, một phẩm chất vẫn còn đang được hình thành. Âm nhạc có một ý nghĩa kỳ lạ đối với sinh viên này."
Botstein lưu ý rằng âm nhạc đảm nhận một vai trò quan trọng và lâu dài trong cuộc sống kể từ thời gian đó của Einstein. Mặc dù chưa lúc nào ông nghĩ rằng sẽ theo đuổi sự nghiệp âm nhạc, nhưng ông thường tham gia chơi nhạc thính phòng với một vài nghệ sĩ, thường trình diễn cho nhóm vài người bạn. Âm nhạc thính phòng là một phần trong cuộc sống của ông khi còn ở Bern, Zurich, và Berlin, nơi ông chơi nhạc cùng Max Planck và những người khác. Năm 1931, trong thời gian đến Viện Công nghệ California, ông đến thăm gia đình Zoellner ở Los Angeles và chơi một số bản nhạc của Beethoven và Mozart cùng với các thành viên của nhóm tứ tấu Zoellner. Einstein sau đó trao cho người đại diện gia đình một bức ảnh lưu niệm chụp ông cùng với chữ ký. Âm nhạc không chỉ là niềm vui thích mà còn giúp ông trong công việc. Bà Elsa nói "âm nhạc giúp ông khi đang suy nghĩ về các lý thuyết. Ông mải mê nghiên cứu, quay trở ra giải trí bằng đánh vài đoạn hợp âm piano, rồi tiếp tục trở lại công việc".
Quan điểm chính trị.
Einstein là người ủng hộ chủ nghĩa xã hội và phê phán chủ nghĩa tư bản. Ông phản đối phong trào Quốc xã đang tăng lúc bấy giờ và sau đó cố gắng lên tiếng giảm bớt sự náo động của việc hình thành nước Israel. Fred Jerome trong quyển "Quan điểm của Einstein về nhà nước Israel và chủ nghĩa phục quốc Do Thái" cho rằng Einstein là một nhà văn hóa phục quốc Do Thái, người ủng hộ ý tưởng về một tổ quốc Do Thái nhưng phản đối việc hình thành một nhà nước Do Thái ở Palestine "với đường biên giới, quân đội, và một hệ thống pháp quyền riêng." |
Albert Einstein | https://vi.wikipedia.org/wiki?curid=2432 | Thay vào đó, ông ủng hộ một nhà nước liên bang gồm 2 quốc gia với "cơ cấu chức năng liên tục, hỗn hợp, quản trị, kinh tế, và xã hội."
Trong cuộc Cách mạng tháng 11 ở Đức, Einstein đã ký vào một kháng nghị làm tiền đề cho đại hội tự do và dân chủ toàn quốc, được công bố ở tờ tin tức Berliner Tageblatt vào ngày 16 tháng 11 năm 1918 và ông trở thành Đảng viên của Đảng Dân chủ Đức.
Sau Thế chiến thứ II, khi sự thù hằn giữa các nước đồng minh cũ trở nên căng thẳng, Einstein viết, "Tôi không biết Chiến tranh Thế giới lần thứ III người ta sẽ dùng vũ khí gì, nhưng tôi có thể nói với bạn con người có thể sử dụng vũ khí gì ở Chiến tranh Thế giới thứ IV - đá! Cùng với With Albert Schweitzer và Bertrand Russell, Einstein đã vận động để dừng việc thử nghiệm hạt nhân và bom trong tương lai. Trước lúc mất, Einstein đã ký vào bản tuyên ngôn Russell–Einstein, mà sau đó đã dẫn tới hội nghị Pugwash về Khoa học và Hòa bình Thế giới.
Einstein là thành viên của nhiều nhóm quyền công dân, bao gồm đại hội Princeton của Hiệp hội quốc gia vì sự tiến bộ của người da màu (NAACP). khi W. E. B. Du Bois bị cáo buộc làm gián điệp Cộng sản, Einstein đã tình nguyện làm nhân chứng, và cáo buộc đã được bác bỏ ngay sau đó. Tình bạn của Einstein với nhà hoạt động Paul Robeson, người cùng với ông giữ chức đồng chủ tịch của Cuộc vận động người Mỹ chấm dứt kiểu hành hình Lynch phân biệt đối xử với người da đen, kéo dài đến 20 năm.
Einstein từng nói "Chính trị là nhất thời, còn phương trình là vĩnh cửu." Ông đã từ chối lời đề nghị làm tổng thống Israel vào năm 1952.
Quan điểm tôn giáo.
Trên nghi vấn của quan điểm khoa học (quyết định luận) dẫn tới câu hỏi về lập trường của Einstein về quyết định luận thần học, liệu ông có tin vào Chúa, hay vào một vị thần nào đó hay không. Năm 1929, Einstein đã nói với giáo sĩ Do Thái Herbert S. Goldstein rằng ""Tôi tin vào Chúa của Spinoza, người mà biểu lộ chính mình trong nguyên lý hài hòa của thế giới, không phải là một vị Chúa có số mệnh và hành động của một con người". " Trong một bức thư năm 1954, ông viết, ""Tôi không tin vào một Chúa nhân cách hóa và tôi không bao giờ phủ định điều này và tôi đã biểu thị điều đó một cách rõ ràng"." |
Albert Einstein | https://vi.wikipedia.org/wiki?curid=2432 | Trong một bức thư gửi triết gia Erik Gutkind, Einstein nói rõ, "Danh từ Chúa đối với tôi không gì khác ngoài sự thể hiện và là sản phẩm của sự yếu đuối của loài người, Kinh thánh là tập hợp những điều đáng kính, nhưng vẫn còn nguyên sơ, huyền ảo tuy nhiên khá là ngây ngô."
Báo chí đã cho đăng tải lặp đi lặp lại để thể hiện Albert Einstein là một người "khiêu khích" tôn giáo với phát biểu như sau của ông:
Nhận xết về tôn giáo trên tờ New York Times số ra 09.11 năm 1930 như sau:
Giải thưởng.
Trong cuộc đời cống hiến nghiên cứu khoa học, Albert Einstein đã nhận được nhiều giải thưởng quốc tế. Tên của ông cũng được lấy để đặt cho nhiều giải thưởng.
Vinh danh.
Để ghi nhớ công lao của Einstein, ngoài những công thức, phương trình và hiện tượng trong vật lý đều mang tên ông (như phương trình trường Einstein, vành Einstein...) còn có rất nhiều thứ khác được gán cho tên của ông như:
Trong văn hóa đại chúng.
Einstein trở thành một trong những danh nhân khoa học nổi tiếng nhất, bắt đầu từ việc công bố thuyết tương đối rộng vào năm 1919. Mặc dù công chúng còn ít hiểu biết về những công trình của ông, Einstein vẫn được công nhận rộng rãi và nhận được sự tán dương. Trong giai đoạn trước Thế chiến thứ hai, tờ "The New Yorker" đã đăng một đoạn mô tả trong bài báo "The Talk of the Town" của họ nói rằng Einstein nổi tiếng ở Mỹ đến nỗi bị mọi người chặn lại trên đường phố vì muốn ông giải thích về "lý thuyết đó". Cuối cùng, ông cũng tìm ra cách để giải quyết những câu hỏi không ngừng. Ông nói với những người có mặt: "Xin lỗi, xin lỗi! Tôi luôn luôn bị nhầm lẫn với Giáo sư Einstein."
Einstein là chủ đề hoặc là nguồn cảm hứng cho nhiều tiểu thuyết, phim, vở kịch và tác phẩm âm nhạc. Ông là một hình mẫu quen thuộc cho những mô tả về các giáo sư lơ đãng; khuôn mặt biểu cảm và kiểu tóc đặc biệt của ông đã bị sao chép và phóng đại rộng rãi. Frederic Golden của tạp chí "Time" đã viết rằng Einstein là "giấc mơ của một họa sĩ hoạt hình đã trở thành hiện thực".
Nhiều câu trích dẫn phổ biến của ông thường được ghi sai. |
Isaac Newton | https://vi.wikipedia.org/wiki?curid=2433 | Sir Isaac Newton (25 tháng 12 năm 1642 – 20 tháng 3 năm 1726 (lịch cũ)) là một nhà toán học, nhà vật lý, nhà thiên văn học, nhà thần học, và tác giả (ở thời của ông được gọi là "nhà triết học tự nhiên") người Anh, người được công nhận rộng rãi là một trong những nhà toán học vĩ đại nhất và nhà khoa học ảnh hưởng nhất mọi thời đại và là một hình ảnh điển hình trong cách mạng khoa học. Luận thuyết của ông "Philosophiæ Naturalis Principia Mathematica" ( "Các Nguyên lý Toán học của Triết học Tự nhiên"), xuất bản lần đầu năm 1687, đã đặt ra nền tảng cho cơ học cổ điển. Newton cũng có các đóng góp quan trọng cho quang học, và cùng với Gottfried Wilhelm Leibniz là những người phát triển lên phép tính vi tích phân vô cùng bé.
Trong "Principia", Newton thiết lập các định luật về chuyển động và định luật vạn vật hấp dẫn đã thống trị các quan điểm vật lý học và khoa học trong hơn hai trăm năm trước khi bị thay thế bởi thuyết tương đối. Newton đã sử dụng công cụ toán học của ông để miêu tả lực hấp dẫn và suy luận ra các định luật Kepler về chuyển động thiên thể, giải thích hiện tượng thủy triều, tính toán đường đi của các sao chổi, sự tiến động của điểm xuân phân và các hiện tượng khác, loại bỏ hết các nghi ngờ về thuyết nhật tâm của hệ Mặt Trời. Ông chứng minh rằng chuyển động của các vật thể trên Trái Đất và các thiên thể được miêu tả bởi cùng các nguyên lý. Lập luận của Newton về Trái Đất là một hình phỏng cầu sau đó đã được xác nhận bằng các đo đạc trắc địa bởi Maupertuis, La Condamine, và những người khác, thuyết phục hầu hết các nhà khoa học châu Âu về tính ưu việt của cơ học Newton so với các hệ thống trước đó.
Newton đã chế tạo kính thiên văn phản xạ thực tế đầu tiên và phát triển một lý thuyết phức tạp về màu sắc dựa trên quan sát rằng một lăng kính phân tách ánh sáng trắng thành các màu của quang phổ nhìn thấy được. Công trình nghiên cứu về ánh sáng của ông đã được tập hợp trong cuốn sách có ảnh hưởng lớn "Opticks", xuất bản năm 1704. Ông cũng đưa ra định luật thực nghiệm về sự tiêu tán nhiệt, thực hiện phép tính lý thuyết đầu tiên về tốc độ âm thanh và đưa ra khái niệm về chất lỏng Newton. |
Isaac Newton | https://vi.wikipedia.org/wiki?curid=2433 | Ngoài nghiên cứu về phép tính vi tích phân, nhà toán học Newton đã đóng góp vào việc nghiên cứu chuỗi lũy thừa, khái quát định lý nhị thức cho số mũ không nguyên, phát triển phương pháp tính gần đúng tìm nghiệm thực của một hàm số và phân loại hầu hết các đường cong phẳng bậc ba.
Newton là một thành viên của trường Trinity College và đảm nhiệm chức danh giáo sư toán học Lucas thứ hai tại đại học Cambridge. Ông là một người sùng đạo Kitô hữu không chính thống, và cũng không thừa nhận học thuyết về chúa Ba Ngôi một cách kín đáo. Không như những thành viên khác của khoa Cambridge thời đó, ông đã từ chối nhận chức Thánh trong Giáo hội Anh. Ngoài nghiên cứu về khoa học toán học, Newton đã dành phần lớn thời gian của mình cho việc nghiên cứu về thuật giả kim và niên đại Kinh thánh, nhưng hầu hết các công trình của ông trong các lĩnh vực đó vẫn chưa được xuất bản cho đến rất lâu sau khi ông qua đời. Về mặt chính trị và cá nhân gắn liền với đảng Whig, Newton đã phục vụ hai nhiệm kỳ ngắn với tư cách là nghị sĩ Quốc hội của đại học Cambridge, vào các năm 1689–1690 và 1701–1702. Ông được Nữ vương Anne phong tước hiệp sĩ vào năm 1705 và trải qua ba thập kỷ cuối cùng của cuộc đời mình ở Luân Đôn, phục vụ với tư cách là người đứng đầu (Warden of the Mint) (1696–1699) và chủ tịch (Master of the Mint) (1699–1727) của Sở đúc tiền Hoàng gia (Royal Mint), cũng như là chủ tịch của Hội Hoàng gia (1703 –1727).
Cuộc đời.
Tuổi trẻ.
Isaac Newton được sinh ra (theo lịch Julius, đang được sử dụng ở Anh vào thời điểm đó) vào ngày Giáng sinh, 25 tháng 12 năm 1642 (lịch mới là ngày 4 tháng 1 năm 1643) "một hoặc hai giờ sau nửa đêm", tại trang viên Woolsthorpe ở Woolsthorpe-by-Colsterworth, một ngôi làng ở hạt Lincolnshire. Cậu bé bị sinh non và những người có mặt lúc ấy nghĩ rằng Newton không thể sống được. Cậu chưa một lần nhìn thấy mặt cha, do cha mình – một nông dân cũng tên là Isaac Newton, mất trước khi cậu sinh ra ba tháng. Newton là một trẻ sơ sinh bé nhỏ, theo mẹ của ông là bà Hannah Ayscough thì cậu có thể cho vừa vào một chiếc cốc to bằng một quart (hơn 1 lít). |
Isaac Newton | https://vi.wikipedia.org/wiki?curid=2433 | Khi Newton lên ba, mẹ cậu tái hôn và đến sống với người chồng mới, mục sư Barnabas Smith, để lại con trai cho bà ngoại, Margery Ayscough (nhũ danh Blythe) chăm sóc. Newton không thích cha dượng của mình và có ác cảm với mẹ mình, dựa trên một tội trong danh sách những tội lỗi cậu đã phạm cho đến tuổi 19: "Threatening my father and mother Smith to burn them and the house over them" (Doạ cha tôi và mẹ tôi — Smith sẽ thiêu sống họ và đốt nhà của họ). Mẹ của Newton có ba người con (Mary, Benjamin và Hannah) từ cuộc hôn nhân thứ hai.
Khi cậu ở tuổi từ khoảng 12 đến 17, cậu học tại King's School, Grantham, nơi mà cậu học tiếng Latinh và tiếng Hy Lạp và có thể là một nền tảng quan trọng cho việc học toán. Sau đó, Newton rời khỏi trường và đến tháng 10 năm 1659, cậu có mặt tại Woolsthorpe-by-Colsterworth, nơi mà mẹ cậu, lần thứ hai góa bụa, đã cố gắng thuyết phục cậu trở thành một nông dân. Nhưng Newton lại ghét việc đồng áng. Henry Stocks, thầy của cậu tại King's School, đã thuyết phục mẹ ông cho cậu quay trở lại trường học để cậu có thể tiếp tục việc học của mình. Newton đã trở thành một trong những học sinh đứng đầu trường, một phần vì muốn trả đũa những học sinh đã bắt nạt cậu vượt lên thành một học sinh ưu tú bằng việc làm ra những đồng hồ Mặt Trời và tạo các mô hình cối xay gió.
Vào tháng 6 năm 1661, Newton được gửi tới Trường đại học Trinity, Cambridge theo như đề xuất của một người thân và cũng là cựu sinh viên của trường này – William Ayscough. Ban đầu ông làm các công việc lặt vặt được trả thù lao như một người giúp việc cho đến khi cậu được trao học bổng vào năm 1664, đảm bảo cho cậu thêm bốn năm cho đến khi có thể lấy được bằng tốt nghiệp đại học. Vào thời điểm đó, giáo trình của ngôi trường dựa trên triết học của Aristoteles, nhưng cậu nhanh chóng bị cuốn hút bởi toán học của Descartes, thiên văn học của Galileo và Thomas Street mà qua đó cậu đọc được các nghiên cứu của Kepler. Newton đã viết một loạt các câu hỏi ("Quaestiones") về triết học cơ học trong thời gian này. Năm 1665, cậu phát hiện ra định lý nhị thức tổng quát và bắt đầu phát triển một lý thuyết toán học mà sau này trở thành vi tích phân. |
Isaac Newton | https://vi.wikipedia.org/wiki?curid=2433 | Ngay sau khi Newton lấy bằng cử nhân vào tháng 8 năm 1665, trường đại học tạm thời đóng cửa để đề phòng đại dịch hạch. Mặc dù cậu không được đánh giá cao khi còn là sinh viên Cambridge, các nghiên cứu riêng của Newton tại nhà ở Woolsthorpe trong hai năm sau đó đã chứng kiến sự phát triển các lý thuyết của ông về vi tích phân, quang học và định luật hấp dẫn.
Vào tháng 4 năm 1667, cậu quay trở lại Cambridge và vào tháng 10 được nhận làm giảng viên của Trinity. Các nghiên cứu sinh được yêu cầu trở thành linh mục được thụ phong, mặc dù điều này không được thực hiện trong những năm tái thiết và chỉ cần họ tuân theo giáo hội Anh là đủ. Tuy nhiên, đến năm 1675, vấn đề này không thể tránh khỏi và lúc đó những quan điểm khác thường của cậu đã gây cản trở. Tuy nhiên, Newton đã tránh được điều đó bằng cách xin phép đặc biệt từ nhà vua Charles II của Anh.
Các nghiên cứu của cậu đã gây ấn tượng với giáo sư Lucas Isaac Barrow, người luôn lo lắng để phát triển tiềm năng quản trị và tôn giáo của riêng mình (ông trở thành hiệu trưởng của trường Trinity hai năm sau đó); năm 1669 Newton kế nhiệm chức danh giáo sư Lucas của ông, chỉ một năm sau khi nhận bằng Thạc sĩ. Ông được bầu làm thành viên của Hội Hoàng gia London (FRS) vào năm 1672.
Trung niên.
Toán học.
Công trình của Newton đã được cho là "thúc đẩy rõ rệt mọi ngành toán học được nghiên cứu sau đó." Công trình của ông về chủ đề này thường được gọi là thông lượng ("fluxion") hoặc phép tính ("calculus"), được thấy trong một bản thảo vào tháng 10 năm 1666, hiện đã được xuất bản trong số các bài báo toán học của Newton. Tác giả của bản thảo "De analysi per aequationes numro terminorum infinitas", do Isaac Barrow gửi đến nhà toán học John Collins vào tháng 6 năm 1669, được Barrow xác nhận trong một bức thư gửi cho Collins vào tháng 8 năm đó là "[...] của một thiên tài phi thường và thành thạo những thứ này."
Newton sau đó đã tham gia vào một cuộc tranh luận với Leibniz về ai là người đầu tiên phát triển phép tính vi tích phân (cuộc tranh luận về phép tính vi tích phân Leibniz–Newton). Hầu hết các nhà sử học hiện đại tin rằng Newton và Leibniz đã phát triển phép tính một cách độc lập, mặc dù với các ký hiệu toán học rất khác nhau. |
Isaac Newton | https://vi.wikipedia.org/wiki?curid=2433 | Đôi khi người ta cho rằng Newton hầu như không công bố gì về nó cho đến năm 1693, và không đưa ra miêu tả đầy đủ cho đến năm 1704, trong khi Leibniz bắt đầu xuất bản một bản thảo đầy đủ về các phương pháp của mình vào năm 1684. Ký hiệu của Leibniz và "phương pháp vi phân", ngày nay được sử dụng và công nhận rộng rãi hơn, được chấp nhận bởi các nhà toán học lục địa châu Âu, và sau 1820 hoặc hơn, cũng bởi các nhà toán học Anh.
Nghiên cứu của ông sử dụng rộng rãi phép tính vi tích phân ở dạng hình học dựa trên các giá trị giới hạn của tỷ số các đại lượng vô cùng bé: trong chính quyển "Principia", Newton đã chứng minh điều này dưới tên "phương pháp của tỷ lệ đầu tiên và tỷ lệ cuối cùng" và giải thích lý do tại sao ông trình bày ở dạng này, với ghi chú rằng "tại đây điều tương tự được thực hiện như bằng phương pháp phân chia."
Bởi vì điều này, "Principia" đã được gọi là "một cuốn sách dày về lý thuyết và ứng dụng của phép tính vô cùng bé" trong thời hiện đại và trong thời của Newton là "gần như tất tần tật về phép tính này." Việc sử dụng của ông về các phương pháp liên quan đến "một hoặc nhiều bậc của đại lượng nhỏ vô cùng nhỏ" được trình bày trong "De motu corporum in gyrum" của ông năm 1684 và trong các bài báo về chuyển động của ông "trong hai thập kỷ trước năm 1684".
Newton đã miễn cưỡng xuất bản phép tính của mình vì ông sợ các tranh cãi và chỉ trích. Ông thân thiết với nhà toán học Thụy Sĩ Nicolas Fatio de Duillier. Năm 1691, Duillier bắt đầu viết một ấn bản mới của "Principia", và trao đổi thư từ với Leibniz. Năm 1693, mối quan hệ giữa Duillier và Newton trở nên xấu đi và cuốn sách không bao giờ được hoàn thành.
Bắt đầu từ năm 1699, các thành viên khác của Hội Hoàng gia đã buộc tội Leibniz sao chép các nghiên cứu của Newton. Cuộc tranh cãi sau đó bùng phát mạnh mẽ vào năm 1711 khi Hội Hoàng gia tuyên bố trong một nghiên cứu rằng chính Newton mới là người phát hiện ra và gán cho Leibniz là một kẻ lừa đảo; sau đó người ta thấy rằng Newton đã viết các nhận xét kết luận của nghiên cứu về Leibniz. |
Isaac Newton | https://vi.wikipedia.org/wiki?curid=2433 | Do đó, cuộc tranh cãi gay gắt bắt đầu đã làm cuộc đời của cả Newton và Leibniz bị hủy hoại cho đến khi Leibniz qua đời vào năm 1716.
Newton được công nhận với khám phá về định lý nhị thức tổng quát, áp dụng đối với bất kỳ số mũ nào. Ông cũng khám phá ra đồng nhất thức Newton, phương pháp Newton, phân loại các đường cong phẳng bậc ba (đa thức bậc ba có hai biến số), đóng góp đáng kể vào lý thuyết sai phân hữu hạn và là người đầu tiên sử dụng chỉ số phân số và sử dụng hệ tọa độ để tìm ra các nghiệm của phương trình Diophantos. Ông đã tính gần đúng tổng từng phần của chuỗi điều hòa bằng logarit (tiền thân của công thức tính tổng của Euler) và là người đầu tiên tự tin sử dụng chuỗi lũy thừa và nghịch đảo của chuỗi. Công trình của Newton về chuỗi vô hạn được lấy cảm hứng từ số thập phân của Simon Stevin.
Khi Newton nhận bằng thạc sĩ và trở thành thành viên của "Hội Chúa Ba Ngôi Thần Thánh và Không phân chia" vào năm 1667, ông đã cam kết rằng "Tôi sẽ đặt Thần học làm đối tượng nghiên cứu của mình và sẽ thực hiện các mệnh lệnh thánh trong thời gian quy định của các quy chế này [7 năm] có hiệu lực, nếu không tôi sẽ từ chức khỏi hội." Cho đến thời điểm này, ông vẫn chưa nghĩ nhiều về tôn giáo và đã hai lần ký vào thỏa thuận với ba mươi chín điều khoản, cơ sở của học thuyết Giáo hội Anh.
Ông được bổ nhiệm chức danh giáo sư toán học Lucas vào năm 1669, theo đề nghị của Barrow. Trong thời gian đó, bất kỳ thành viên nào của một trường cao đẳng tại Cambridge hoặc Oxford đều phải nhận chức thánh và trở thành một linh mục Anh giáo được truyền chức. Tuy nhiên, các điều khoản của chức vụ giáo sư Lucas yêu cầu người nắm giữ chức danh không được hoạt động trong nhà thờ - có lẽ là để có nhiều thời gian hơn cho khoa học. Newton lập luận rằng từ điều này nên miễn cho ông ta khỏi yêu cầu trở thành linh mục, và vua Charles II, người quyết định đặc ân, đã chấp nhận đề xuất này. Do đó, xung đột giữa quan điểm tôn giáo của Newton và chính thống của Anh giáo đã không xảy ra.
Quang học. |
Isaac Newton | https://vi.wikipedia.org/wiki?curid=2433 | Quang học.
Năm 1666, Newton quan sát thấy quang phổ của màu sắc thoát ra khỏi lăng kính ở vị trí có độ lệch cực tiểu là thuôn dài, ngay cả khi tia sáng đi vào lăng kính là hình tròn, nghĩa là lăng kính khúc xạ các màu khác nhau theo các góc khác nhau. Điều này khiến ông kết luận rằng màu sắc là một thuộc tính nội tại của ánh sáng - một điểm mà cho đến lúc đó vẫn còn là một vấn đề tranh luận.
Từ 1670 đến 1672, Newton giảng về quang học. Trong thời kỳ này, ông đã nghiên cứu sự khúc xạ của ánh sáng, chứng minh rằng quang phổ nhiều màu do lăng kính tạo ra có thể được tổng hợp bằng thấu kính và lăng kính thứ hai để chuyển thành ánh sáng trắng. Các học giả hiện đại đã phát hiện ra rằng nghiên cứu phân tích và tái tổng hợp ánh sáng trắng của Newton có liên hệ với thuật giả kim cũng được ông nghiên cứu.
Ông đã chỉ ra rằng ánh sáng có màu không thay đổi tính chất của nó bằng cách tách ra một chùm màu và chiếu nó lên các vật thể khác nhau, và bất kể là phản xạ, tán xạ hay truyền đi, ánh sáng vẫn có cùng một màu. Do đó, ông nhận thấy rằng màu sắc là kết quả của các vật thể tương tác với ánh sáng đã có màu chứ không phải là các vật thể tự tạo ra màu sắc. Đây được gọi là lý thuyết về màu sắc của Newton.
Từ công trình nghiên cứu này, ông kết luận rằng thấu kính của bất kỳ kính thiên văn khúc xạ nào cũng sẽ bị phân tán ánh sáng thành nhiều màu sắc (sắc sai, chromatic aberration). Để chứng minh cho khái niệm này, ông đã chế tạo một kính thiên văn bằng cách sử dụng gương phản chiếu thay vì thấu kính làm vật kính để vượt qua vấn đề đó. Dựa vào thiết kế, kính thiên văn có chức năng phản xạ đầu tiên được xây dựng, ngày nay được gọi là kính thiên văn Newton, liên quan đến việc giải quyết vấn đề về vật liệu gương phù hợp và kỹ thuật tạo hình. Newton đã tự mài gương từ một thành phần tùy chỉnh của miếng gương kim loại có độ phản xạ cao, sử dụng hiện tượng các vòng Newton để đánh giá chất lượng quang học cho kính thiên văn của ông. Cuối năm 1668, ông làm xong chiếc kính thiên văn phản xạ đầu tiên này. |
Isaac Newton | https://vi.wikipedia.org/wiki?curid=2433 | Nó dài khoảng 8 inch và cho hình ảnh rõ ràng và lớn hơn. Năm 1671, hội Hoàng gia yêu cầu trình diễn kính thiên văn phản xạ của ông. Sự quan tâm của họ đã khuyến khích ông xuất bản các ghi chú của mình, thành cuốn "Of Colors", mà sau này ông mở rộng thành tác phẩm "Opticks". Khi Robert Hooke phê bình một số ý tưởng của Newton, Newton đã bị xúc phạm đến mức ông rút lui khỏi cuộc tranh luận công khai. Newton và Hooke đã có những cuộc trao đổi ngắn vào năm 1679–80, khi Hooke, được chỉ định quản lý thông tấn của hội Hoàng gia, mở ra một loạt trao đổi thư từ nhằm gợi ý những đóng góp từ Newton cho các tạp chí của hội Hoàng gia, đã có tác dụng thúc đẩy Newton nghiên cứu chứng minh rằng dạng elip của quỹ đạo hành tinh sẽ là kết quả của lực hướng tâm tỷ lệ nghịch với bình phương của vectơ bán kính. Nhưng hai người nói chung vẫn giữ quan hệ không tốt cho đến khi Hooke qua đời.
Newton lập luận rằng ánh sáng bao gồm các hạt hoặc tiểu thể, mà chúng bị khúc xạ bằng cách gia tốc vào một môi trường đặc hơn. Ông dựa vào các sóng giống như âm thanh để giải thích các phần phản xạ và truyền lặp đi lặp lại của các màng mỏng (Opticks Bk.II, Props. 12), nhưng vẫn giữ lý thuyết của mình về 'sự phù hợp' sắp xếp các tiểu thể được phản xạ hoặc truyền đi (Props.13). Tuy nhiên, các nhà vật lý sau này ủng hộ cách giải thích ánh sáng thuần túy như dao động sóng để giải thích các vân giao thoa và hiện tượng nhiễu xạ nói chung. Cơ học lượng tử, photon ngày nay và ý tưởng về lưỡng tính sóng-hạt chỉ còn có một điểm tương đồng nhỏ với hiểu biết của Newton về ánh sáng trước đây.
Trong "Giả thuyết về ánh sáng" ("Hypothesis of Light") năm 1675 của mình, Newton đã đặt ra sự tồn tại của "ête" để truyền lực giữa các hạt. Việc trao đổi với nhà triết học theo thuyết Platon ở Cambridge, Henry More đã làm sống lại mối quan tâm của ông đối với thuật giả kim. Ông đã thay thế "ête" bằng các lực huyền bí dựa trên ý tưởng của chủ nghĩa giáo điều ("Hermeticism") về lực hút và lực đẩy giữa các hạt. |
Isaac Newton | https://vi.wikipedia.org/wiki?curid=2433 | John Maynard Keynes, người đã đọc nhiều bài viết của Newton về thuật giả kim, tuyên bố rằng "Newton không phải là người đầu tiên của thời đại lý tính: Ông là nhà ảo thuật cuối cùng." Sự quan tâm của Newton đối với thuật giả kim không thể tách rời khỏi những đóng góp của ông cho khoa học. Đây là thời điểm mà không có sự phân biệt rõ ràng giữa giả kim thuật và khoa học. Nếu ông không dựa vào ý tưởng huyền bí về tác dụng ở khoảng cách xa, xuyên qua chân không, ông có thể đã không phát triển lý thuyết về lực hấp dẫn của mình.
Năm 1704, Newton xuất bản cuốn "Opticks", trong đó ông đã giải thích lý thuyết hạt ánh sáng của mình. Ông cho rằng ánh sáng được tạo thành từ các tiểu thể cực kỳ nhỏ, vật chất thông thường được tạo thành từ các tiểu thể thô hơn và suy đoán rằng thông qua một loại biến đổi giả kim "phải chăng Vật thể thô và vật thể Ánh sáng có thể chuyển đổi thành một vật thể khác... và liệu Vật thể nhận được nhiều Hoạt động từ các Hạt ánh sáng đi vào Thành phần của chúng?" Newton cũng chế tạo một dạng nguyên thủy của máy phát tĩnh điện chà sát, sử dụng một quả cầu thủy tinh.
Trong cuốn sách "Opticks", Newton là người đầu tiên đưa ra một sơ đồ sử dụng lăng kính làm bộ mở rộng chùm và cũng sử dụng mảng nhiều lăng kính. Khoảng 278 năm sau thảo luận của Newton, bộ mở rộng chùm tia đa lăng kính đã trở thành trung tâm cho sự phát triển của laser có thể điều chỉnh độ rộng đường hẹp. Ngoài ra, việc sử dụng các bộ mở rộng chùm này đã dẫn đến lý thuyết tán sắc đa lăng kính.
Sau Newton, nhiều điều đã được sửa đổi. Young và Fresnel đã kết hợp lý thuyết hạt của Newton với lý thuyết sóng của Huygens để chỉ ra rằng màu sắc là biểu hiện nhìn thấy được của bước sóng ánh sáng. Khoa học cũng dần dần nhận ra sự khác biệt giữa nhận thức về màu sắc và quang học miêu tả bằng toán học. Nhà thơ và nhà khoa học người Đức, Goethe, không thể làm rung chuyển nền tảng Newton nhưng "một lỗ hổng mà Goethe đã tìm thấy trong áo giáp của Newton, ... Newton đã tự kết luận với học thuyết rằng sự khúc xạ mà không xuất hiện màu sắc là không thể. |
Isaac Newton | https://vi.wikipedia.org/wiki?curid=2433 | Do vậy ông nghĩ rằng vật kính của kính thiên văn phải mãi mãi không hoàn hảo, hiện tượng vô sắc và khúc xạ không tương thích. Suy luận này được Dollond chứng minh là sai."
Cơ học và lực hấp dẫn.
Năm 1679, Newton quay trở lại nghiên cứu về cơ học thiên thể bằng cách xem xét lực hấp dẫn và ảnh hưởng của nó lên quỹ đạo của các hành tinh có tham chiếu đến định luật Kepler về chuyển động của hành tinh. Điều này một phần từ sự gợi mở trong các trao đổi thư từ ngắn vào năm 1679–80 của ông với Hooke, người đã được bổ nhiệm quản lý thông tấn của hội Hoàng gia, và người đã viết thư nhằm thu hút sự đóng góp của Newton cho các tạp chí của hội Hoàng gia. Sự quan tâm trở lại của Newton đối với các vấn đề thiên văn càng nhận được sự phấn khích hơn nữa khi xuất hiện một sao chổi vào mùa đông năm 1680–1681, nơi ông đã trao đổi thư từ với John Flamsteed. Sau khi trao đổi với Hooke, Newton đã tìm cách chứng minh hình dạng elip của quỹ đạo hành tinh sẽ là kết quả của lực hướng tâm tỷ lệ nghịch với bình phương của vectơ bán kính. Newton đã thông báo kết quả của mình đến Edmond Halley và hội Hoàng gia trong "De motu corporum in gyrum", một bản thảo được viết trên khoảng chín trang đã được sao chép vào Sổ Đăng ký của hội Hoàng gia vào tháng 12 năm 1684. Bản thảo này chứa các ý tưởng trung tâm mà Newton đã phát triển và mở rộng để tạo thành "Principia".
"Principia" được xuất bản vào ngày 5 tháng 7 năm 1687 với sự khuyến khích và giúp đỡ tài chính từ Edmond Halley. Trong công trình này, Newton đã phát biểu ba định luật chuyển động phổ quát. Cùng với nhau, các định luật này mô tả mối quan hệ giữa các vật thể bất kỳ, các lực tác động lên nó và chuyển động kết quả, đặt nền tảng cho cơ học cổ điển. Chúng đã đóng góp vào nhiều tiến bộ trong cuộc cách mạng công nghiệp diễn ra ngay sau đó và các định luật đứng vững trong hơn 200 năm. Nhiều tiến bộ trong số này tiếp tục là nền tảng của các công nghệ phi tương đối tính (có vận tốc nhỏ so với tốc độ ánh sáng) trong thế giới hiện đại. Ông sử dụng từ tiếng Latinh "gravitas" (trọng lượng) để chỉ hiệu ứng mà sau này gọi là lực hấp dẫn, và thiết lập lên định luật vạn vật hấp dẫn. |
Isaac Newton | https://vi.wikipedia.org/wiki?curid=2433 | Cũng trong công trình này, Newton đã trình bày một phương pháp phân tích hình học giống như phép tính vi tích phân sử dụng 'tỷ lệ đầu tiên và tỷ lệ cuối cùng' cho quỹ đạo hành tinh, đưa ra kết quả phân tích đầu tiên (dựa trên định luật Boyle) về tốc độ âm thanh trong không khí, suy ra độ dẹt của hình cầu Trái đất, tính đến sự tiến động của điểm phân là kết quả của lực hấp dẫn giữa Mặt Trăng đối với phần phình ra của Trái đất, bắt đầu nghiên cứu lực hấp dẫn về những bất thường trong chuyển động của Mặt Trăng, cung cấp một lý thuyết để xác định quỹ đạo của sao chổi, và nhiều hơn nữa.
Newton đã làm rõ quan điểm nhật tâm của mình về hệ Mặt trời — được phát triển theo một cách gần hiện đại vì vào giữa những năm 1680, ông đã nhận ra "Mặt trời nằm lệch" khỏi khối tâm của hệ Mặt trời. Đối với Newton, trung tâm của Mặt trời hay bất kỳ thiên thể nào khác không thể được coi chính xác là ở trạng thái đứng yên, mà là "trọng tâm chung của Trái đất, Mặt trời và tất cả các Hành tinh được coi là trung tâm của hệ", và trọng tâm này "ở trạng thái nghỉ hoặc chuyển động đồng đều về phía trước theo một đường thẳng" (Newton đã chấp nhận thay thế "ở trạng thái nghỉ" theo quan điểm của sự đồng ý chung rằng trung tâm, dù nó ở đâu, đều ở trạng thái nghỉ).
Định đề của Newton về một lực vô hình có thể tác động trên một khoảng cách lớn dẫn đến việc ông bị phê bình vì giới thiệu các "khái niệm huyền bí" vào khoa học. Sau đó, trong ấn bản lần hai của quyển "Principia" (1713), Newton đã kiên quyết phản bác các chỉ trích như thế trong đoạn kết luận của bản thảo "General Scholium", viết rằng chỉ cần các hiện tượng hàm ý một lực hấp dẫn như chúng đã xảy ra là đủ; nhưng cho đến nay vẫn chưa chỉ ra nguyên nhân của hiện tượng, và việc khuôn khổ của giả thuyết về sự vật không được hiện tượng ngụ ý là không cần thiết và không phù hợp. (Ở đây Newton đã sử dụng câu nói nổi tiếng về sau "tôi không đặt ra các giả thuyết").
Với cuốn "Principia", Newton trở lên nổi tiếng khắp thế giới. Ông được cộng đồng các học giả ngưỡng mộ, bao gồm nhà toán học người Thụy Sĩ Nicolas Fatio de Duillier. |
Isaac Newton | https://vi.wikipedia.org/wiki?curid=2433 | Phân loại các đường cong phẳng bậc ba.
Năm 1710, Newton đã tìm thấy 72 trong 78 "kiểu" đường cong phẳng bậc ba và xếp chúng vào bốn loại khác nhau. Năm 1717, có khả năng từ sự giúp đỡ của Newton, James Stirling đã chứng minh được rằng mỗi đường cong phẳng bậc ba được xếp vào một trong bốn loại này. Newton cũng cho rằng bốn loại này có thể thu được từ phép chiếu xạ ảnh phẳng từ một trong bốn loại, và điều này đã được chứng minh vào năm 1731, bốn năm sau khi ông qua đời.
Cuối đời.
Vào những năm 1690, Newton đã viết một số tác phẩm tôn giáo liên quan đến việc giải thích Kinh thánh theo nghĩa phàm tục và biểu tượng. Một bản thảo mà Newton gửi cho John Locke, trong đó ông nghi ngờ sự tin cậy của của cuốn kinh — Johannine Comma — và sự tin cậy của nó với các bản thảo gốc của kinh Tân Ước, vẫn chưa được xuất bản cho đến tận năm 1785.
Newton cũng là thành viên của Nghị viện Anh cho Đại học Cambridge vào năm 1689 và 1701. Trong thời gian làm nghị sĩ, theo một số bản thảo ghi chép lại, ý kiến duy nhất của ông là phàn nàn về gió lạnh lùa vào trong phòng nghị viện và yêu cầu đóng cửa sổ lại. Tuy nhiên, như nhà khoa học người Cambridge Abraham de la Pryme ghi nhận là ông đã quở trách những sinh viên khi họ khiến người dân địa phương sợ hãi vì lan truyền đồn đại cho rằng một ngôi nhà bị ma ám.
Newton chuyển đến London để đảm nhận vị trí quản lý của Xưởng đúc tiền Hoàng gia vào năm 1696, một vị trí mà ông có được nhờ sự bảo trợ của Charles Montagu, Bá tước thứ nhất của Halifax, sau đó là Thủ hiến của Exchequer. Ông phụ trách công việc đúc lại tiền của nước Anh, theo sự giám sát của Huân tước Lucas, thống đốc của Tòa tháp, và đảm bảo công việc phó tổng điều hành chi nhánh Chester tạm thời cho Edmond Halley. Newton có lẽ được biết đến nhiều nhất khi trở thành chủ tịch của xưởng đúc tiền Hoàng gia vào năm 1699 khi Thomas Neale qua đời, vị trí ông giữ trong suốt 30 năm cuối của cuộc đời ông. Sự bổ nhiệm này tưởng chừng như chỉ trên danh nghĩa, nhưng Newton đã nghiêm túc thực hiện nhiệm vụ của mình. Ông kết thúc các nhiệm vụ ở Cambridge vào năm 1701, và thực hiện quyền hạn của mình để cải cách tiền tệ và trừng phạt những kẻ cắt xén và làm giả. |
Isaac Newton | https://vi.wikipedia.org/wiki?curid=2433 | Với tư cách là quản lý, và sau đó là Chủ tịch của Xưởng đúc tiền Hoàng gia, Newton ước tính rằng 20% số tiền xu được làm lại trong thời kỳ khôi phục đồng xu năm 1696 là hàng giả. Làm hàng giả là tội phản quốc nghiêm trọng, có thể bị trừng trị bằng hình phạt là treo cổ, xẻo thịt và phanh thây. Mặc dù vậy, việc kết án những tên tội phạm sừng sỏ nhất có thể cực kỳ khó khăn, tuy nhiên, Newton đã chứng minh được nhiệm vụ của mình.
Cải trang thành khách quen của các quán bar và quán rượu, ông đã tự mình thu thập nhiều bằng chứng liên quan đến tội phạm làm tiền xu giả. Về tất cả các rào cản được đặt ra để truy tố và phân tách trách nhiệm của các đơn vị trong chính phủ, luật pháp Anh vẫn có những phong tục thẩm quyền cổ xưa và khó từ bỏ. Newton đã tự mình trở thành một thẩm phán hòa giải ở tất cả các quận xung quanh Đại London. Một dự thảo liên quan đến vấn đề này được đưa vào ấn bản cá nhân đầu tiên của "Philosophiæ Naturalis Principia Mathematica" tự Newton chắp bút, mà chắc hẳn ông đã sửa đổi vào thời điểm đó. Sau đó, ông tiến hành hơn 100 cuộc kiểm tra chéo các nhân chứng, người đưa tin và nghi phạm từ tháng 6 năm 1698 đến Giáng sinh năm 1699. Newton đã truy tố thành công 28 kẻ lừa đảo.
Newton được bầu làm Chủ tịch Hội hoàng gia năm 1703 và thành viên của Viện Hàn lâm khoa học Pháp. Trên cương vị của mình tại hội Hoàng gia, Newton đã trở thành kẻ thù của John Flamsteed, nhà thiên văn học Hoàng gia, khi ông cho xuất bản quá sớm cuốn "Historia Coelestis Britannica" của Flamsteed, mà Newton đã sử dụng nội dung trong cuốn sách vào nghiên cứu của mình.
Vào tháng 4 năm 1705, Nữ vương Anne phong tước hiệp sĩ cho Newton trong một chuyến thăm hoàng gia tới Trinity College, Cambridge. Chức hiệp sĩ có thể được thúc đẩy bởi những cân nhắc chính trị liên quan đến cuộc bầu cử quốc hội vào tháng 5 năm 1705, hơn là bất kỳ sự công nhận nào về các nghiên cứu khoa học hoặc sự phụng sự của Newton với tư cách là chủ tịch xưởng đúc tiền. Newton là nhà khoa học thứ hai được phong hiệp sĩ, sau Francis Bacon. |
Isaac Newton | https://vi.wikipedia.org/wiki?curid=2433 | Theo kết quả của một báo cáo do Newton viết vào ngày 21 tháng 9 năm 1717 cho các ủy viên của Ngân khố Hoàng gia, mối quan hệ lưỡng kim giữa đồng tiền vàng và đồng xu bạc đã bị thay đổi bởi tuyên bố của hoàng gia vào ngày 22 tháng 12 năm 1717, cấm trao đổi đồng guineas vàng lấy nhiều hơn 21 shilling bạc. Điều này vô tình dẫn đến tình trạng thiếu bạc vì các đồng bạc được sử dụng để thanh toán cho hàng nhập khẩu, trong khi xuất khẩu được thanh toán bằng vàng, đưa Anh từ chế độ bản vị bạc sang bản vị vàng đầu tiên một cách hiệu quả. Đã có một tranh luận xem liệu Newton thực sự có định làm điều này hay không. Có ý kiến cho rằng Newton coi công việc của mình tại xưởng đúc tiền là sự tiếp nối công việc giả kim của ông.
Newton đã đầu tư vào Công ty South Sea và mất khoảng 20.000 bảng Anh (4,4 triệu bảng Anh vào năm 2020) khi nó sụp đổ vào khoảng năm 1720.
Về cuối đời, Newton cư trú ở công viên Cranbury, gần Winchester với cháu gái và chồng của cô, cho đến khi ông qua đời vào năm 1727. Cháu gái cùng cha khác mẹ của ông, Catherine Barton Conduitt, từng là quản gia của ông trong các hoạt động xã hội tại ngôi nhà của ông trên phố Jermyn ở London; ông là " người bác rất yêu thương" của cô, theo bức thư của ông gửi cho cô khi cô đang hồi phục sau bệnh đậu mùa.
Các quan hệ cá nhân.
Mặc dù có tuyên bố cho rằng ông đã từng đính hôn, Newton chưa bao giờ kết hôn. Nhà văn và nhà triết học người Pháp Voltaire, người đang ở London vào thời điểm tang lễ của Newton, nói rằng ông "không bao giờ nhạy cảm với bất kỳ niềm đam mê nào, không chịu sự yếu đuối chung của nhân loại, cũng như không có bất kỳ quan hệ nào với phụ nữ - một hoàn cảnh khiến tôi tin tưởng được đảm bảo bởi bác sĩ và bác sĩ phẫu thuật, những người đã theo dõi ông trong những giây phút cuối cùng của ông ấy". Hiện nay niềm tin phổ biến rộng rãi rằng ông là một người đàn ông chưa từng có quan hệ với phụ nữ như được bình luận bởi các nhà toán học Charles Hutton, nhà kinh tế học John Maynard Keynes và nhà vật lý học Carl Sagan bình luận. |
Isaac Newton | https://vi.wikipedia.org/wiki?curid=2433 | Newton đã có một tình bạn thân thiết với nhà toán học Thụy Sĩ Nicolas Fatio de Duillier, người mà ông đã gặp ở London vào khoảng năm 1689—một số thư từ của họ vẫn còn tồn tại. Mối quan hệ của họ kết thúc đột ngột và không giải thích được vào năm 1693, và cùng lúc đó Newton bị suy nhược thần kinh bao gồm việc gửi những bức thư vu cáo hoang đường cho những người bạn của mình là Samuel Pepys và John Locke - ghi chú của ông cho người sau bao gồm cáo buộc rằng Locke "đã cố gắng làm cho tôi khốn khổ".
Năm 2015, Steven Weinberg, người đoạt giải Nobel vật lý, đã gọi Newton là "một nhân vật phản diện khó chịu" và "một người xấu như một kẻ thù". Ông đặc biệt lưu ý thái độ của Newton đối với Robert Hooke và Gottfried Wilhelm Leibniz.
Qua đời.
Newton qua đời trong giấc ngủ ở London vào ngày 20 tháng 3 năm 1726 (lịch cũ: 20 tháng 3 năm 1726; lịch mới: 31 tháng 3 năm 1727). Thi hài của ông được chôn cất tại Tu viện Westminster. Voltaire có thể đã có mặt trong đám tang của ông. Là một người độc thân, ông đã chia phần lớn tài sản của mình cho người thân trong những năm cuối đời và qua đời không để lại di chúc. Giấy tờ của ông đã được chuyển cho John Conduitt và Catherine Barton. Sau khi ông qua đời, tóc của Newton đã được kiểm tra và phát hiện có chứa thủy ngân, có thể là do ông theo đuổi ngành giả kim thuật. Nhiễm độc thủy ngân có thể giải thích sự lập dị của Newton vào cuối đời.
Sau khi qua đời.
Danh tiếng.
Nhà toán học Joseph-Louis Lagrange nói rằng Newton là thiên tài vĩ đại nhất từng được biết đến, và một lần còn nói thêm rằng Newton cũng là "người có phúc nhất, vì chúng ta không thể tìm thấy nhiều hơn một hệ thống của thế giới để thiết lập." Nhà thơ người Anh Alexander Pope đã viết văn bia nổi tiếng:
Tự nhiên và các quy luật của tự nhiên nằm ẩn trong màn đêm;<br>Chúa nói "Hãy để Newton đến" và tất cả đều bừng sáng.
Newton tương đối khiêm tốn về những thành tựu của mình, ông viết trong một bức thư cho Robert Hooke vào tháng 2 năm 1676, nói rằng "Nếu tôi có thể nhìn xa hơn thì đó là bằng cách đứng trên vai của những người khổng lồ." |
Isaac Newton | https://vi.wikipedia.org/wiki?curid=2433 | Có hai nhà văn cho rằng đoạn trích dẫn ở trên, được viết vào thời điểm Newton và Hooke đang tranh cãi về những khám phá quang học, là một cuộc tấn công xoi mói vào Hooke (được cho là lùn và bị gù), chứ không phải - hoặc thêm vào đó - là một tuyên bố của khiêm tốn. Mặt khác, câu tục ngữ được biết đến rộng rãi về việc đứng trên vai những người khổng lồ, được nhà thơ thế kỷ XVII George Herbert (một nhà hùng biện trước đây của đại học Cambridge và là đồng nghiệp của Trinity College) viết trong "Jacula Prudentum" của ông (1651), vì điểm chính của nó là "một người lùn trên vai một người khổng lồ nhìn thấy xa hơn so với hai người đứng độc lập", và do đó tác dụng của nó như một phép loại suy sẽ đặt Newton chứ không phải Hooke là 'người lùn'.
Trong một cuốn hồi ký sau này, Newton đã viết:
Tôi không biết mình có thể xuất hiện với thế giới như thế nào, nhưng với bản thân tôi, tôi dường như chỉ giống như một cậu bé đang chơi trên bờ biển, và bản thân đột nhiên chuyển hướng và sau đó tìm thấy một viên sỏi nhẵn hơn hoặc một cái vỏ sò đẹp hơn bình thường, trong khi trước mắt tôi là một đại dương lớn chứa đựng tất cả sự thật chưa được khám phá.
Năm 1816, một chiếc răng được cho là của Newton đã được bán với giá £ 730 (3,633) ở London cho một nhà quý tộc, người đã đặt nó trong một chiếc nhẫn.Sách Kỷ lục Guinness năm 2002 đã xếp nó là chiếc răng có giá trị nhất, trị giá khoảng 25.000 bảng Anh (35.700 đô la Mỹ) vào cuối năm 2001. Ai đã mua nó và ai hiện giữ nó vẫn chưa được tiết lộ.
Albert Einstein đã giữ một bức ảnh của Newton trên bức tường trong phòng nghiên cứu của mình cùng với những bức ảnh của Michael Faraday và James Clerk Maxwell. Trong một cuộc khảo sát năm 2005 với các thành viên của Hội Hoàng gia Anh (trước đây do Newton đứng đầu) hỏi ai có ảnh hưởng lớn hơn đến lịch sử khoa học, Newton hay Einstein, các thành viên cho rằng Newton đã có đóng góp tổng thể lớn hơn. Năm 1999, một cuộc thăm dò ý kiến của 100 nhà vật lý hàng đầu trên thế giới đã bình chọn Einstein là "nhà vật lý vĩ đại nhất từ trước đến nay", với Newton xếp thứ hai, trong khi một cuộc khảo sát song song về xếp hạng các nhà vật lý của trang PhysicsWeb đã trao vị trí đầu bảng cho Newton. |
Isaac Newton | https://vi.wikipedia.org/wiki?curid=2433 | Đơn vị dẫn xuất SI của lực được đặt tên là Newton để vinh danh ông.
Tưởng niệm.
Tượng đài của Newton (1731) có thể được nhìn thấy ở Tu viện Westminster, ở phía bắc của lối vào dàn hợp xướng đối diện với sân khấu dàn hợp xướng, gần lăng mộ của ông. Nó được thực hiện bởi nhà điêu khắc Michael Rysbrack (1694–1770) bằng đá cẩm thạch trắng và xám với thiết kế của kiến trúc sư William Kent. Tượng đài có hình Newton nằm trên đỉnh quan tài, khuỷu tay phải đặt trên một số cuốn sách vĩ đại của ông và tay trái hướng về một cuộn giấy có các hình vẽ toán học. Phía trên ông là một kim tự tháp và một thiên cầu thể hiện các chòm sao trên Hoàng đạo và đường đi của sao chổi năm 1680. Bên dưới ông là một tấm phù điêu mô tả các thiên thần sử dụng các dụng cụ như kính thiên văn và lăng kính. Dòng chữ Latin ở chân đế lăng mộ dịch là:Nơi yên nghỉ của Isaac Newton, Hiệp sĩ, người bằng trí lực gần như thần thánh và các nguyên lý toán học đặc biệt của riêng mình, đã khám phá đường đi và hình dáng của các hành tinh, đường đi của sao chổi, thủy triều của biển, sự khác biệt trong tia sáng, và, điều mà không một học giả nào trước đây tưởng tượng, các đặc tính của màu sắc do đó tạo ra. Siêng năng, ngoan cường và trung thành, trong những lần giải thích thiên nhiên, sự cổ xưa và Kinh thánh, ông đã minh oan bằng triết lý của mình về sự uy nghi của Thiên Chúa hùng mạnh và tốt lành, đồng thời thể hiện sự đơn giản của Phúc âm trong cách cư xử của ông. Những người phàm trần vui mừng vì đã tồn tại một niềm vinh dự tuyệt vời như vậy cho loài người! Ông sinh ngày 25 tháng 12 năm 1642, và mất ngày 20 tháng 3 1726/1727.—Dịch từ G.L. Smyth, "The Monuments and Genii of St. Paul's Cathedral, and of Westminster Abbey" (1826), ii, 703–704.
Từ năm 1978 cho đến năm 1988, hình ảnh Newton do Harry Ecclestone thiết kế đã xuất hiện trên các tờ tiền Series D £ 1 do Ngân hàng Trung ương Anh phát hành (tờ 1 bảng Anh cuối cùng do Ngân hàng Anh phát hành). Newton xuất hiện trên mặt sau của các tờ giấy bạc với tay cầm một cuốn sách và đi kèm với một kính viễn vọng, một lăng kính và bản đồ của Hệ Mặt trời. |
Isaac Newton | https://vi.wikipedia.org/wiki?curid=2433 | Một bức tượng của Isaac Newton, đang nhìn vào các sơ đồ vẽ bằng compa trên cuộn giấy dưới chân của mình, có thể được nhìn thấy tại Bảo tàng Lịch sử Tự nhiên của Đại học Oxford. Một bức tượng lớn bằng đồng, Newton, theo tên của William Blake, của Eduardo Paolozzi, tạo tác năm 1995 và lấy cảm hứng từ tranh khắc của Blake, nổi bật trên quảng trường của Thư viện Anh ở Luân Đôn.
Quan điểm tôn giáo.
Mặc dù sinh ra trong một gia đình Anh giáo, ở tuổi ba mươi, Newton đã giữ một đức tin Cơ đốc giáo mà nếu nó được công khai, sẽ không được Cơ đốc giáo chính thống coi là chính thống, với một sử gia gán cho ông là một người dị giáo.
Đến năm 1672, ông bắt đầu ghi chép các nghiên cứu thần học của mình vào sổ tay mà ông không cho ai xem và chỉ mới được kiểm tra gần đây. Chúng chứng tỏ kiến thức sâu rộng của ông về các tác phẩm của Giáo hội sơ khai và cho thấy rằng trong cuộc xung đột giữa Athanasius và Arius, vốn định nghĩa Kinh Tin kính, ông đã đứng về phía Arius, kẻ thua cuộc, người đã bác bỏ quan điểm truyền thống về Chúa Ba Ngôi. Newton "công nhận Đấng Christ là đấng trung gian thần thánh giữa Đức Chúa Trời và con người, Đấng phục tùng Đức Chúa Cha, Đấng đã tạo ra Ngài." Ông đặc biệt quan tâm đến lời tiên tri, nhưng đối với ông, "sự bội đạo lớn là chủ nghĩa ba ngôi."
Newton đã cố gắng không thành công để có được một trong hai học bổng miễn trừ cho người nắm giữ khỏi yêu cầu phong chức thánh. Cuối cùng vào năm 1675, ông nhận được mệnh lệnh từ chính phủ miễn cho ông và tất cả những người nắm giữ vị trí giáo sư Lucas trong tương lai khỏi nghĩa vụ của Giáo hội.
Trong mắt Newton, việc tôn thờ Đấng Christ như Đức Chúa Trời là thờ ngẫu tượng, đối với ông là tội lỗi cơ bản. Năm 1999, nhà sử học Stephen D. Snobelen đã viết, "Isaac Newton là một người dị giáo. Nhưng... ông ấy chưa bao giờ tuyên bố công khai về đức tin riêng của mình - điều mà giới chính thống cho là cực kỳ cấp tiến. Ông ấy đã che giấu đức tin của mình rất tốt đến nỗi các học giả vẫn đang làm sáng tỏ niềm tin cá nhân của ông ấy. " |
Isaac Newton | https://vi.wikipedia.org/wiki?curid=2433 | Snobelen kết luận rằng Newton ít nhất là một người đồng tình với học thuyết của Socinus (ông sở hữu và đã đọc kỹ ít nhất tám cuốn sách của Socinus), có thể là một người theo học thuyết Arius và gần như chắc chắn là một chống thuyết Ba Ngôi.
Ở ý kiến thiểu số, T.C. Pfizenmaier đưa ra một quan điểm sắc thái hơn, cho rằng Newton gần gũi hơn với quan điểm của lí thuyết nửa-Arius về Chúa Ba Ngôi rằng Chúa Giê-su Kitô là một "bản thể tương tự" (homoiousios) từ Chúa Cha hơn là quan điểm chính thống rằng Chúa Giê-su Kitô là "bản chất giống nhau "của Chúa Cha (homoousios) như được chứng thực bởi Chính thống giáo Đông phương, Công giáo La Mã và Tin lành hiện đại. Tuy nhiên, kiểu quan điểm này 'cuối cùng đã mất đi sự ủng hộ với các nội dung sẵn có từ các tài liệu thần học của Newton', và bây giờ hầu hết các học giả đều xác định Newton là một người chống thuyết độc thần Ba Ngôi.
Mặc dù các định luật chuyển động và vạn vật hấp dẫn đã trở thành khám phá nổi tiếng nhất của Newton, ông cảnh báo không nên sử dụng chúng để coi Vũ trụ như một cỗ máy đơn thuần, giống như một chiếc đồng hồ vĩ đại. Ông nói, "Vậy thì lực hấp dẫn có thể đưa các hành tinh vào chuyển động, nhưng nếu không có Lực Siêu nhiên thì không bao giờ có thể đưa chúng vào chuyển động tròn như vậy, như chúng quay quanh mặt trời".
Cùng với danh tiếng khoa học của mình, những nghiên cứu của Newton về Kinh thánh và về các Giáo phụ thời đầu của Giáo hội cũng rất đáng chú ý. Newton đã viết các tác phẩm về phê bình văn bản, đáng chú ý nhất là "Bản tường thuật lịch sử về hai sự sai lầm đáng chú ý của Kinh thánh" ("An Historical Account of Two Notable Corruptions of Scripture") và "Những quan sát về lời tiên tri của Daniel, và Ngày tận thế của St. John" ("Observations upon the Prophecies of Daniel, and the Apocalypse of St. John"). Ông đã đặt sự kiện đóng đinh Chúa Giêsu Kitô vào ngày 3 tháng 4, năm 33 sau Công Nguyên, điều này đồng ý với một ngày đã được chấp nhận theo truyền thống.
Ông tin vào một thế giới nội tại hợp lý, nhưng ông bác bỏ thuyết vật hoạt (hylozoism) như được hàm ý bởi Leibniz and Baruch Spinoza. Tính trật tự và động lực cho thấy Vũ trụ có thể hiểu được, và phải được hiểu, bởi một lý do chủ động. |
Isaac Newton | https://vi.wikipedia.org/wiki?curid=2433 | Trong thư từ của mình, Newton tuyên bố rằng khi viết "Principia" "Tôi đã để mắt đến những Nguyên lí như vậy có thể có tác dụng với việc xem xét con người có niềm tin của Thần linh". Ông đã nhìn thấy bằng chứng về thiết kế trong hệ thống của thế giới: "Sự đồng nhất tuyệt vời như vậy trong hệ thống hành tinh phải được cho phép hiệu lực của sự lựa chọn". Nhưng Newton nhấn mạnh rằng cuối cùng cần có sự can thiệp của thần thánh để tái lập hệ thống, do tốc độ tăng trưởng chậm của các bất ổn định. Về điều này, Leibniz đã cảnh báo ông: "Chúa toàn năng muốn lên dây cót cho chiếc đồng hồ của ông: nếu không thì nó sẽ ngừng chuyển động. Có vẻ như ông đã không có đủ tầm nhìn xa để biến nó thành chuyển động vĩnh cửu."
Quan điểm của Newton đã được bảo vệ mạnh mẽ bởi người ủng hộ ông là Samuel Clarke trong một bức thư nổi tiếng gửi đến Leibniz. Một thế kỷ sau, công trình "Cơ học Thiên thể" của Pierre-Simon Laplace đã giải thích một cách tự nhiên cho lý do tại sao các hành tinh quay quanh quỹ đạo không cần đến sự can thiệp định kỳ của thần thánh. Sự tương phản giữa thế giới quan cơ học của Laplace và thế giới quan của Newton là khắc nghiệt nhất khi xem xét câu trả lời nổi tiếng mà nhà khoa học Pháp này đưa ra cho Napoléon, người đã chỉ trích ông vì sự vắng mặt của Đấng Tạo hóa trong "Mécanique céleste": "Sire, j'ai pu me passer de cette hypothese" ("Tôi không cần một giả thuyết như vậy ").
Các học giả đã tranh luận rất lâu về việc liệu Newton có phản bác học thuyết về Chúa Ba Ngôi hay không. Người viết tiểu sử đầu tiên của ông, David Brewster, người đã biên soạn các bản thảo của ông, giải thích rằng Newton đặt câu hỏi về tính xác thực của một số đoạn văn được sử dụng để ủng hộ Chúa Ba Ngôi, nhưng không bao giờ phủ nhận học thuyết về Chúa Ba Ngôi như vậy. Vào thế kỷ 20, những bản thảo được mã hóa do Newton viết mà John Maynard Keynes mua lại (và một số những người khác) đã được giải mã và người ta biết rằng Newton đã thực sự bác bỏ thuyết Ba Ngôi.
Ảnh hưởng đến tư tưởng tôn giáo. |
Isaac Newton | https://vi.wikipedia.org/wiki?curid=2433 | Ảnh hưởng đến tư tưởng tôn giáo.
Phương pháp tiếp cận triết học cơ học của Newton và Robert Boyle đã được những người theo thuyết duy lý quảng bá như một giải pháp thay thế khả thi cho thuyết phiếm thần và chủ nghĩa đam mê, và được chấp nhận một cách ngập ngừng bởi các nhà thuyết giáo chính thống cũng như những nhà thuyết giáo bất đồng chính kiến như những người theo chủ nghĩa tự do. Sự rõ ràng và đơn giản của khoa học được coi là một cách để chống lại những cảm xúc và sự cuồng nhiệt siêu hình học của cả sự mê tín và mối đe dọa của chủ nghĩa vô thần, đồng thời, làn sóng thần thánh thứ hai của thần giáo tự nhiên Anh đã sử dụng những khám phá của Newton để chứng minh khả năng của một "Tôn giáo Tự nhiên".
Các cuộc tấn công chống lại "tư duy ma thuật" trước thời kỳ Khai sáng, và các yếu tố thần bí của Cơ đốc giáo, được đặt nền tảng từ quan niệm cơ học của Boyle về vũ trụ. Newton đã cung cấp cho việc hoàn thiện các ý tưởng của Boyle thông qua các chứng minh toán học và có lẽ quan trọng hơn là đã rất thành công trong việc phổ biến chúng.
Yếu tố huyền bí.
Trong một bản thảo mà ông viết vào năm 1704 (chưa bao giờ có ý định xuất bản), ông đề cập đến ngày 2060, nhưng nó không được coi là ngày cuối cùng. Nó đã bị nhầm lẫn khi cho rằng đây là một dự đoán. Đoạn văn trở lên rõ ràng khi ngày tháng được đọc trong ngữ cảnh. Ông đã chống lại việc thiết lập ngày cho cuối ngày, lo ngại rằng điều này sẽ khiến Cơ đốc giáo trở nên sai lệch.
Giả kim thuật.
Trong nhân vật Morton Opperly trong "Siêu nhân tội nghiệp" (1951), tác giả tiểu thuyết suy đoán Fritz Leiber nói về Newton, "Mọi người đều biết Newton như một nhà khoa học vĩ đại. Ít ai nhớ rằng ông đã dành cả nửa đời mình để nghiên cứu giả kim thuật, tìm kiếm hòn đá của các triết gia. Đó là viên sỏi bên bờ biển mà ông ấy thực sự muốn tìm."
Trong số khoảng mười triệu từ được viết trên các bài báo của Newton, khoảng một triệu là liên quan đến thuật giả kim. Nhiều bài viết của Newton về thuật giả kim là bản sao của các bản thảo khác, với các chú thích của riêng ông. |
Isaac Newton | https://vi.wikipedia.org/wiki?curid=2433 | Các văn bản giả kim kết hợp kiến thức thủ công với suy đoán triết học, thường ẩn sau các lớp chơi chữ, ngụ ngôn và hình ảnh để bảo vệ bí mật thủ công. Một số nội dung trong các bài báo của Newton có thể bị nhà thờ coi là dị giáo.
Năm 1888, sau mười sáu năm lập danh mục các bài báo của Newton, Đại học Cambridge đã giữ lại một số nhỏ và trả lại phần còn lại cho Bá tước Portsmouth. Năm 1936, một hậu duệ đã rao bán các giấy tờ tại Sotheby's. Bộ sưu tập đã được chia nhỏ và được bán với tổng giá khoảng 9.000 bảng Anh. John Maynard Keynes là một trong khoảng ba chục người đấu giá đã mua được một phần của bộ sưu tập tại cuộc đấu giá. Keynes tiếp tục tập hợp lại ước tính được một nửa bộ sưu tập các bài báo về thuật giả kim của Newton trước khi tặng lại bộ sưu tập của mình cho Đại học Cambridge vào năm 1946.
Tất cả các bài viết được biết đến của Newton về thuật giả kim hiện đang được đưa lên mạng trong một dự án do Đại học Indiana thực hiện: "The Chymistry of Isaac Newton" và được tóm tắt trong một cuốn sách.
Charles Coulston Gillispie phản đối rằng Newton đã từng thực hành thuật giả kim, nói rằng "hóa học của ông nằm trong tinh thần triết học vật thể của Boyle."
Vào tháng 6 năm 2020, hai trang ghi chú của Newton chưa được xuất bản trong cuốn sách của Jan Baptist van Helmont về bệnh dịch, "De Peste", đã được bán đấu giá trực tuyến bởi Bonham's. Theo Bonham's, phân tích của Newton về cuốn sách này, cuốn sách mà ông thực hiện ở Cambridge trong khi bảo vệ bản thân khỏi sự lây nhiễm từ năm 1665–1666 ở London, là tuyên bố bằng văn bản quan trọng nhất mà ông đã thực hiện về bệnh dịch hạch. Về phương pháp trị liệu có liên quan, Newton viết rằng "điều tốt nhất là một con cóc bị treo chân trong ống khói trong ba ngày, cuối cùng nó đã nôn ra đất với nhiều loại côn trùng trong đó, vào một đĩa sáp màu vàng, ngay sau khi nó chết. Kết hợp bột cóc với dịch tiết và huyết thanh làm thành viên ngậm, đắp vào chỗ bị đau để xua đuổi lây lan và hút hết chất độc ra ngoài ".
Các nhà triết học khai sáng. |
Isaac Newton | https://vi.wikipedia.org/wiki?curid=2433 | Các nhà triết học khai sáng.
Các nhà triết học Khai sáng đã chọn một lịch sử ngắn của những nhà khoa học trước đó — về cơ bản là Galileo, Boyle và Newton — làm người hướng dẫn và bảo đảm cho việc áp dụng duy nhất các khái niệm về tự nhiên và quy luật tự nhiên vào mọi lĩnh vực vật lí và xã hội thời nay. Về mặt này, những bài học về lịch sử và cấu trúc xã hội được xây dựng dựa trên nó có thể bị loại bỏ.
Chính nhận thức của Newton về vũ trụ dựa trên các quy luật tự nhiên và hợp lý có thể hiểu được đã trở thành một trong những mầm mống cho hệ tư tưởng Khai sáng. Locke và Voltaire áp dụng các khái niệm của định luật luật tự nhiên cho các hệ thống chính trị ủng hộ các quyền nội tại; những người theo chủ nghĩa trọng nông và Adam Smith đã áp dụng các quan niệm tự nhiên về tâm lý học và tư lợi cho các hệ thống kinh tế; và các nhà xã hội học chỉ trích trật tự xã hội hiện tại vì đã cố gắng đưa lịch sử vào các mô hình tiến bộ tự nhiên. Monboddo và Samuel Clarke chống lại các yếu tố trong công trình của Newton, nhưng cuối cùng đã hợp lý hóa nó để phù hợp với quan điểm tôn giáo mạnh mẽ của họ về tự nhiên.
Giai thoại quả táo rơi.
Bản thân Newton thường kể câu chuyện rằng ông đã được truyền cảm hứng để hình thành lý thuyết về lực hấp dẫn của mình khi quan sát và đặt câu hỏi về quả táo rơi từ trên cây. Câu chuyện này được cho là truyền vào kiến thức đại chúng sau khi được Catherine Barton, cháu gái của Newton, trao đổi với Voltaire. Voltaire sau đó đã viết trong cuốn "Essay on Epic Poetry" (1727), "Sir Isaac Newton đang đi dạo trong khu vườn của mình, đã có ý nghĩ đầu tiên về hệ thống hấp dẫn của mình, khi nhìn thấy một quả táo rơi từ trên cây xuống."
Mặc dù người ta nói rằng câu chuyện về quả táo là một giai thoại và nỗ lực đạt được lý thuyết về lực hấp dẫn của Newton không phải chỉ ở một thời điểm, những người quen của Newton (chẳng hạn như William Stukeley, người có một bản thảo viết năm 1752 đã được cung cấp bởi Hội Hoàng gia Anh) trên thực tế đã xác nhận vụ việc, mặc dù không phải là sự kiện ngụy tạo khi quả táo thực sự rơi trúng vào đầu Newton. |
Isaac Newton | https://vi.wikipedia.org/wiki?curid=2433 | Stukeley đã ghi lại trong "Hồi ký về Cuộc đời của Sir Isaac Newton" ("Memoirs of Sir Isaac Newton's Life") một cuộc trò chuyện với Newton ở Kensington vào ngày 15 tháng 4 năm 1726:
John Conduitt, trợ lý của Newton tại Xưởng đúc tiền Hoàng gia và là chồng của cháu gái Newton, cũng mô tả sự kiện này khi ông viết về cuộc đời của Newton:
Từ sổ tay của ông, người ta biết rằng vào cuối những năm 1660 Newton đã bắt đầu bám lấy ý tưởng rằng lực hấp dẫn trên mặt đất có ảnh hưởng mở rộng, theo một tỷ lệ nghịch bình phương, lên Mặt trăng; tuy nhiên, ông đã mất hai thập kỷ để phát triển thành lý thuyết chính thức. Câu hỏi đặt ra không phải là liệu lực hấp dẫn có tồn tại hay không, mà liệu nó có mở rộng ra xa khỏi Trái đất đến mức nó cũng có thể là lực giữ Mặt Trăng quay trên quỹ đạo của nó hay không. Newton đã chỉ ra rằng nếu lực giảm đi dưới dạng bình phương nghịch đảo của khoảng cách, có thể thực sự tính được chu kỳ quỹ đạo của Mặt trăng và nhận được kết quả khớp khá tốt với quan sát. Ông đoán lực tương tự cũng chịu trách nhiệm cho các chuyển động quỹ đạo khác, và do đó đặt tên cho nó là "vạn vật hấp dẫn".
Nhiều cây khác nhau được cho là "cây" mà Newton đã mô tả. Trường King, Grantham tuyên bố rằng cây đó đã được mua bởi trường học, nhổ gốc và vận chuyển đến khu vườn của hiệu trưởng vài năm sau đó. Các nhân viên của trang viên Woolsthorpe thuộc sở hữu của National Trust (hiện nay) phủ nhận điều này và cho rằng một cây táo có trong khu vườn của họ là cây được mô tả bởi Newton. Một hậu duệ của cây gốc còn tồn tại và trồng ở bên ngoài cổng chính của Đại học Trinity, Cambridge, bên dưới căn phòng mà Newton đã sống khi ông học ở đó. "Tổ chức sưu tập Trái cây Quốc gia" của Anh tại Brogdale ở Kent có thể cung cấp các cây ghép từ cây của họ, có vẻ giống với cây từ vùng Kent, một giống được dùng để nấu ăn. |
Hoạch định tài nguyên doanh nghiệp | https://vi.wikipedia.org/wiki?curid=2436 | Hoạch định tài nguyên doanh nghiệp (tiếng Anh: "enterprise resource planning – ERP") nguyên thủy ám chỉ một hệ thống dùng để hoạch định tài nguyên trong một tổ chức, một doanh nghiệp. Một hệ thống ERP điển hình là nó bao hàm tất cả những chức năng cơ bản của một tổ chức. Tổ chức đó có thể là doanh nghiệp, tổ chức phi lợi nhuận, tổ chức phi chính phủ v.v.
Một phần mềm ERP, nó tích hợp những chức năng chung của một tổ chức vào trong một hệ thống duy nhất. Thay vì phải sử dụng phần mềm kế toán, phần mềm nhân sự-tiền lương, quản trị sản xuất... song song, độc lập lẫn nhau thì ERP gom tất cả vào chung 1 gói phần mềm duy nhất mà giữa các chức năng đó có sự liên thông với nhau.
Chức năng.
Một phần mềm ERP cần phải thể hiện được tất cả các chu trình kinh doanh. Việc tích hợp một cách xuyên suốt và từ bỏ các giải pháp cô lập dẫn đến một hệ thống được trung tâm hóa trở lại mà qua đó các tài nguyên có thể được quản lý bởi toàn bộ doanh nghiệp.
Các chức năng tiêu biểu của một phần mềm hoạch định tài nguyên doanh nghiệp bao gồm:
Bên cạnh đó, do tính dây chuyền và phức tạp của hệ thống ERP, các doanh nghiệp cung cấp giải pháp ERP còn hỗ trợ khách hàng thông qua dịch vụ tư vấn, thiết kế theo đặc thù của doanh nghiệp.
Tác dụng.
Năng suất lao động sẽ tăng do các dữ liệu đầu vào chỉ phải nhập một lần cho mọi giao dịch có liên quan, đồng thời các báo cáo được thực hiện với tốc độ nhanh hơn, chính xác hơn. Doanh nghiệp (DN) có khả năng kiểm soát tốt hơn các hạn mức về tồn kho, công nợ, chi phí, doanh thu, lợi nhuận… đồng thời có khả năng tối ưu hóa các nguồn lực như nguyên vật liệu, nhân công, máy móc thi công… vừa đủ để sản xuất, kinh doanh.
Các thông tin của DN được tập trung, đầy đủ, kịp thời và có khả năng chia sẻ cho mọi đối tượng cần sử dụng thông tin như khách hàng, đối tác, cổ đông. Khách hàng sẽ hài lòng hơn do việc giao hàng sẽ được thực hiện chính xác và đúng hạn. |
Hoạch định tài nguyên doanh nghiệp | https://vi.wikipedia.org/wiki?curid=2436 | Ứng dụng ERP cũng đồng nghĩa với việc tổ chức lại các hoạt động của DN theo các quy trình chuyên nghiệp, phù hợp với các tiêu chuẩn quốc tế, do đó nó nâng cao chất lượng sản phẩm, tiết kiệm chi phí, tăng lợi nhuận, tăng năng lực cạnh tranh và phát triển thương hiệu của DN.
Ứng dụng ERP là công cụ quan trọng để DN nâng cao năng lực cạnh tranh, đồng thời nó cũng giúp DN tiếp cận tốt hơn với các tiêu chuẩn quốc tế. Một DN nếu ứng dụng ngay từ khi quy mô còn nhỏ sẽ có thuận lợi là dễ triển khai và DN sớm đi vào nề nếp. DN nào chậm trễ ứng dụng ERP, DN đó sẽ tự gây khó khăn cho mình và tạo lợi thế cho đối thủ.
Tuy nhiên, ứng dụng ERP không phải dễ, cần hội tụ nhiều điều kiện để có thể ứng dụng thành công như: nhận thức và quyết tâm cao của ban lãnh đạo DN; cần xác định đúng đắn mục tiêu, phạm vi và các bước triển khai; lựa chọn giải pháp phù hợp; lựa chọn đối tác triển khai đúng; phối hợp tốt với đối tác triển khai trong quá trình thực hiện dự án; sẵn sàng thay đổi các quy trình bất hợp lý hiện hữu trong DN (đây là việc thường xuyên gặp nhiều sự chống đối nhất); chú trọng công tác đào tạo cán bộ theo các quy trình mới; chú trọng đào tạo khai thác hệ thống cho cán bộ mọi cấp; có cán bộ chuyên trách tiếp thu quản trị hệ thống…
Phạm vi chức năng của các phần mềm ERP.
Một hệ thống ERP có thể bao hàm rất nhiều chức năng trong các lĩnh vực khác nhau. Trong rất nhiều hệ thống ERP, các chức năng đó được đóng gói lại với nhau thành từng bộ và được gọi là các mô đun ERP (ERP modules): |
Nhà vật lý | https://vi.wikipedia.org/wiki?curid=2439 | Một nhà vật lý hay vật lý gia là một nhà khoa học chuyên sâu vào lĩnh vực vật lý. Các nhà vật lý làm việc tại các trường Đại học với các chức vụ như giáo sư, giảng viên, nhà nghiên cứu, hoặc trong các phòng thí nghiệm. Các nhà vật lý chuyên nghiệp thường phải có bằng tiến sĩ. Một số nhà vật lý cũng sử dụng kiến thức của họ để làm việc trong các lĩnh vực khác như tin học hoặc tài chính. Thông thường, các nhà vật lý đều sử dụng kiến thức chuyên sâu hoặc có tham gia nghiên cứu về toán học.
Vinh danh và giải thưởng.
Vinh dự cao nhất của các nhà vật lý là Giải Nobel Vật lý, được trao kể từ năm 1901 bởi Viện Hàn lâm Khoa học Hoàng gia Thụy Điển. |
Danh sách nhà vật lý | https://vi.wikipedia.org/wiki?curid=2447 | Dưới đây là danh sách các nhà vật lý . |
Chúa | https://vi.wikipedia.org/wiki?curid=2451 | Chúa hay Chủ (Hán tự: 主) là người sở hữu, đứng đầu, cai trị hoặc có quyền lực rất cao đối với một vùng đất, một cộng đồng dân cư; hoặc người sáng lập, đứng đầu của một tổ chức, giáo phái, một thiết chế nào đó. Trong khi "Chủ" là âm Hán Việt tiêu chuẩn thì "Chúa" là âm Hán Việt đã được Nôm-hóa. Nhìn chung có một số cách dùng thông dụng sau:
Tham khảo.
__ĐỊNHHƯỚNG__ |
2004 | https://vi.wikipedia.org/wiki?curid=2477 | 2004 được chỉ định là Năm Quốc tế về Gạo (bởi Liên Hợp Quốc), Năm Quốc tế tưởng nhớ cuộc chống chế độ nô lệ và việc hủy bỏ nó (bởi UNESCO), và năm Giáp Thân trong lịch Trung Quốc.
Có 73 quốc gia tổ chức các cuộc bầu cử trong năm 2004.
Mất.
Xem thêm |
HIV/AIDS | https://vi.wikipedia.org/wiki?curid=2478 | Hội chứng nhiễm virut gây suy giảm miễn dịch ở người (viết tắt HIV/AIDS); ; hoặc SIDA theo tiếng Pháp '), còn gọi là bệnh liệt kháng (tê liệt khả năng đề kháng), là một dạng bệnh tấn công vào hệ miễn dịch, gây ra do bị nhiễm virus gây suy giảm miễn dịch ở người (HIV).
HIV lây truyền chủ yếu qua quan hệ tình dục không an toàn (bao gồm cả quan hệ tình dục qua đường hậu môn và thậm chí bằng miệng), qua việc truyền máu hoặc dùng chung kim tiêm với người nhiễm bệnh (tuy nhiên việc bị muỗi đốt không làm lây HIV), và từ mẹ sang con: trong khi mang thai, khi sinh (lây truyền chu sinh), hoặc khi cho con bú. Một số chất dịch của cơ thể như nước bọt và nước mắt không lây truyền HIV.
HIV truyền từ các loài linh trưởng khác sang con người ở tây-trung Phi vào đầu đến giữa thế kỉ 20. AIDS được công nhận đầu tiên bởi Trung tâm kiểm soát và phòng ngừa dịch bệnh Hoa Kỳ vào năm 1981 và nguyên nhân của nó—nhiễm HIV—được xác định vào đầu thập niên này. Nhiễm HIV ở người được Tổ chức Y tế Thế giới (WHO) xem như là đại dịch. Năm 2009, toàn thế giới có 1,8 triệu người mắc bệnh AIDS, đã giảm so với mức đỉnh là 2,1 triệu người trong năm 2004. Khoảng 260.000 trẻ em chết vì AIDS trong năm 2009. Ước tính vẫn có khoảng 2,6 triệu người mới bị nhiễm HIV trong năm 2009.
Giai đoạn đầu khi vừa nhiễm virus, người bệnh thường có những triệu chứng giống bệnh cúm trong một thời gian ngắn. Sau đó, bệnh nhân không có dấu hiệu gì trong một thời gian dài. Khi bệnh tiến triển, nó gây ảnh hưởng ngày càng nhiều đến hệ miễn dịch, làm cho bệnh nhân dễ mắc phải các nhiễm trùng, như các loại nhiễm trùng cơ hội hoặc các khối u, là những bệnh mà người có hệ miễn dịch hoạt động bình thường khó có thể mắc phải. Hầu hết những người nhiễm HIV-1 nếu không được chữa trị sẽ tiến triển sang giai đoạn AIDS. Người bệnh thường chết do nhiễm trùng cơ hội hoặc do các bệnh ác tính liên quan đến sự giảm sút của hệ thống miễn dịch. |
HIV/AIDS | https://vi.wikipedia.org/wiki?curid=2478 | HIV tiến triển sang AIDS theo một tỷ lệ biến thiên phụ thuộc vào sự tác động của các virus, cơ thể vật chủ, và yếu tố môi trường; hầu hết sẽ chuyển sang giai đoạn AIDS trong vòng 10 năm sau khi nhiễm HIV: một số trường hợp chuyển rất sớm, một số lại lâu hơn.
Hội chứng suy giảm miễn dịch mắc phải.
Hội chứng: nhóm các biểu hiện (triệu chứng) như: sốt, tiêu chảy, sụt cân, nổi hạch... do một căn bệnh nào đó gây ra.
Suy giảm miễn dịch: Hệ miễn dịch là hệ thống phòng ngự bảo vệ cơ thể chống lại các mầm bệnh từ ngoài xâm nhập vào cơ thể, suy giảm miễn dịch là tình trạng hệ miễn dịch trở nên yếu, giảm hoặc không có khả năng chống lại sự tấn công của các tác nhân gây bệnh.
Mắc phải: Không do di truyền mà do bị lây nhiễm trong cuộc sống. Tổ chức Y tế Thế giới ước tính rằng đến cuối năm 2009 sẽ có 37,2 triệu người lớn và 2,2 triệu trẻ em sống với HIV. Trong năm 2004, 4,9 triệu người đã bị nhiễm và 3,1 triệu chết vì AIDS. Từ năm 1981, AIDS đã giết 23,1 triệu người trong tổng cộng 79,9 triệu trường hợp. Ở Châu Phi, tuổi thọ đã giảm trong các thập kỉ vừa qua chỉ vì tử vong do AIDS và ung thư Kaposi, một khối u xuất hiện ở bệnh nhân AIDS, hiện nay là khối u phổ biến nhất được báo cáo ở các nước hạ Sahara.
AIDS được phát hiện lần đầu tiên ở những người đàn ông đồng tính luyến ái và những người tiêm ma tuý vào tĩnh mạch vào thập niên 1980. Sang thập niên 1990 hội chứng này đã trở thành một dịch bệnh toàn cầu và vào năm 2004 58 phần trăm người bị AIDS là phụ nữ. Mặc dù những người đồng tính luyến ái nam và những người gốc Phi tiếp tục hứng chịu tỉ lệ AIDS theo đầu người cao nhất, phần lớn nạn nhân hiện nay là những người dị tính luyến ái nam và nữ, và trẻ em, ở các nước đang phát triển.
Dấu hiệu và triệu chứng.
Nhiễm HIV-1 dẫn đến sự suy giảm cấp tiến số lượng tế bào T-CD4+ và tăng tải lượng virus cũng như nồng độ HIV trong máu. Có thể xác định giai đoạn nhiễm bệnh bằng cách đo số lượng tế bào T-CD4+ và tải lượng virus của bệnh nhân. |
HIV/AIDS | https://vi.wikipedia.org/wiki?curid=2478 | Nhiễm HIV có 3 giai đoạn: giai đoạn nhiễm trùng cấp tính (còn gọi là nhiễm trùng tiên phát), giai đoạn tiềm ẩn và giai đoạn AIDS. Nhiễm trùng cấp tính kéo dài trong vài tuần và có thể bao gồm các triệu chứng như nổi hạch (sưng hạch bạch huyết), sốt, viêm họng, phát ban, đau cơ, khó chịu, lở loét miệng và thực quản. Giai đoạn tiềm ẩn không có triệu chứng và có thể kéo dài từ hai tuần đến hai mươi năm hoặc hơn, tùy thuộc vào từng cá nhân. Giai đoạn AIDS là giai đoạn cuối của nhiễm HIV, được xác định bởi số lượng tế bào T-CD4+ thấp (ít hơn 200 trong một microlit), những bệnh nhiễm trùng cơ hội, ung thư và các tình trạng khác.
Một tỷ lệ nhỏ các cá thể bị nhiễm HIV-1 vẫn giữ số lượng tế bào T-CD4+ ở mức cao mà không cần liệu pháp kháng ritrovirus. Tuy nhiên, hầu hết vẫn có thể phát hiện thông qua tải lượng virus và cuối cùng cũng sẽ tiến triển thành AIDS, mặc dù chậm hơn so với những người khác. Những người này được phân loại là những "HIV controller" hoặc "long-term nonprogressor" (LTNP). Những bệnh nhân có thể duy trì số lượng tế bào T-CD4+ đồng thời có tải lượng virus thấp hoặc không thể phát hiện được trên lâm sàng mà không cần điều trị kháng retrovirus được gọi là những "elite controller" hoặc "elite suppressor" (ES).
Giai đoạn cấp tính.
Nhiễm HIV thường xảy ra bằng cách đưa các chất dịch cơ thể từ người bị nhiễm bệnh vào cơ thể của một người không bị nhiễm bệnh. Giai đoạn virus nhân lên một cách nhanh chóng xảy ra ngay sau đó, dẫn đến có nhiều virus trong máu ngoại biên. Ở giai đoạn này, mức HIV có thể lên đến vài triệu hạt virus trong mỗi ml máu.
Phản ứng này đi kèm với việc lưu lượng tế bào T-CD4+ bị giảm đáng kể. Trong tất cả các bệnh nhân, mức virus này thực tế là do sự hoạt hóa của các tế bào T-CD8+ đã giết chết những tế bào bị nhiễm HIV, sau đó sản sinh các kháng thể hoặc biến đổi huyết thanh. Phản ứng của tế bào T-CD8+ được cho là quan trọng trong việc kiểm soát mức virus từ mức cao trở thành suy giảm dần, và phục hồi số lượng tế bào T-CD4+. |
HIV/AIDS | https://vi.wikipedia.org/wiki?curid=2478 | Phản ứng của tế bào T-CD8+ tốt sẽ làm tiến triển bệnh chậm hơn và việc dự đoán bệnh tốt hơn, mặc dù nó không thể loại trừ được virus.
Trong thời gian này (thường là 2-4 tuần sau khi phơi nhiễm), hầu hết các bệnh nhân (80-90%) sẽ mắc bệnh cúm hoặc bệnh gần giống như bệnh bạch cầu đơn nhân, gọi chung là nhiễm HIV cấp tính, có thể với các triệu chứng phổ biến bao gồm sốt, nổi hạch, viêm họng, phát ban, đau cơ, khó chịu, lở miệng và thực quản, và ít phổ biến hơn còn có các triệu chứng như nhức đầu, buồn nôn và nôn, sưng gan/lá lách, giảm cân, bệnh tưa miệng, và các triệu chứng thần kinh. Từng cá thể bị nhiễm bệnh có thể có 1 hoặc vài triệu chứng này, cũng có trường hợp không xuất hiện bất cứ triệu chứng nào. Thời gian của các triệu chứng là khác nhau, trung bình kéo dài 28 ngày và ngắn nhất thường là một tuần.
Do tính chất không rõ ràng của những triệu chứng này, cho nên bệnh nhân thường không nhận ra việc bị nhiễm HIV. Ngay cả khi bệnh nhân đến khám bác sĩ hay bệnh viện, họ thường sẽ được chẩn đoán nhầm là bị một trong các bệnh nhiễm khuẩn thông thường với các triệu chứng tương tự. Hệ quả là, những triệu chứng tiên phát này không được sử dụng để chẩn đoán nhiễm HIV, vì không phải tất cả các trường hợp nhiễm HIV đều xuất hiện những triệu chứng này và phần lớn lại giống triệu chứng của các bệnh thông thường khác. Tuy nhiên, nhận biết hội chứng là việc rất quan trọng, bởi vì bệnh nhân có thể dễ lây bệnh cho nhiều người trong giai đoạn này.
Giai đoạn mãn tính.
Sự bảo vệ mạnh mẽ của hệ miễn dịch sẽ làm giảm số lượng của các hạt virus trong máu, chuyển sang giai đoạn nhiễm HIV mãn tính. Giai đoạn này có thể kéo dài từ 2 tuần cho đến 20 năm tùy theo từng trường hợp. Trong suốt giai đoạn mãn tính, HIV hoạt động trong các hạch bạch huyết, làm cho các hạch này thường bị sưng do phản ứng với một số lượng lớn virus bị kẹt trong mạng lưới các tế bào tua hình nang (FDC). Các mô giàu tế bào CD4+ xung quanh cũng có thể bị nhiễm bệnh, các hạt virus tích tụ cả trong các tế bào bị nhiễm và ở dạng virus tự do. |
HIV/AIDS | https://vi.wikipedia.org/wiki?curid=2478 | Trong giai đoạn này bệnh nhân vẫn có khả năng lây bệnh, tế bào T CD4+ CD45RO+ mang theo tải lượng virus nhiều nhất, và việc bắt đầu sớm điều trị kháng retrovirus sẽ cải thiện đáng kể thời gian sống.
Giai đoạn cuối (AIDS).
Khi số lượng các tế bào CD4+ giảm xuống dưới mức 200 tế bào trên 1uL máu, sự miễn dịch qua trung gian tế bào gần như đã bị vô hiệu. Khi đó, người bệnh sẽ xuất hiện nhiễm trùng do một loạt các vi sinh vật cơ hội gây ra. Các triệu chứng đầu tiên thường bao gồm giảm cân vừa phải và không giải thích được, nhiễm trùng đường hô hấp tái phát (như viêm xoang, viêm phế quản, viêm tai giữa, viêm họng), viêm tuyến tiền liệt, phát ban da, và loét miệng.
Nhiễm trùng cơ hội và các khối u phổ biến ở người bình thường sẽ bị tế bào miễn dịch trung gian CD4+ khống chế sau đó chúng mới ảnh hưởng đến người bệnh. Đặc trưng của mất sức đề kháng là sẽ nhanh chóng bị nhiễm vi nấm "Candida species" gây nên bệnh nấm miệng (còn gọi là đẹn trắng hay tưa miệng) hoặc nhiễm vi khuẩn hiếu khí "Mycobacterium tuberculosis" (MTB) gây bệnh lao. Sau đó, các virus herpes tiềm ẩn sẽ được kích hoạt gây tái phát ngày càng nặng hơn các tổn thương đau đớn phun trào do herpes simplex, bệnh zona, ung thư hạch bạch huyết do virus Epstein-Barr và ung thư Kaposi's sarcoma.
Viêm phổi do nấm "Pneumocystis jirovecii" cũng phổ biến và thường gây tử vong. Trong giai đoạn cuối của AIDS, đáng chú ý là những bệnh nhiễm "cytomegalovirus" (một loại virus herpes) hoặc nhiễm "Mycobacterium avium complex". Không phải tất cả các bệnh nhân AIDS đều bị tất cả các bệnh nhiễm trùng hoặc các khối u trên, nhưng có các loại khối u và các bệnh nhiễm trùng khác ít nổi bật hơn nhưng vẫn đáng kể.
Lây truyền.
Bệnh nhân AIDS và người nhiễm HIV là nguồn truyền nhiễm duy nhất của virus HIV. Không có ổ chứa nhiễm trùng ở động vật. |
HIV/AIDS | https://vi.wikipedia.org/wiki?curid=2478 | Tất cả mọi người điều có khả năng cảm nhiễm HIV, không phân biệt sắc tộc, tuổi tác, sức khoẻ...
HIV được phân lập từ máu, tinh dịch, dịch tiết âm đạo, nước bọt, nước mắt, sữa mẹ, nước tiểu và các dịch khác của cơ thể, nhưng nhiều nghiên cứu về dịch tể học cho thấy rằng chỉ có máu, tinh dịch và dịch tiết âm đạo đóng vai trò quan trọng trong việc lây truyền HIV. Do đó chỉ có 3 phương thức hay đường lây truyền chính của HIV, trong đó HIV-2 có xác suất truyền qua đường mẹ sang con và quan hệ tình dục ít hơn HIV-1.
Tình dục.
Phần lớn HIV lây qua đường quan hệ tình dục không an toàn. Ước tính tỷ lệ nhiễm HIV/AIDS trên thế giới qua đường tình dục chiếm khoảng 75%. Việc chủ quan đối với HIV đóng một vai trò quan trọng trong nguy cơ bị lây bệnh. Lây truyền qua đường tình dục có thể xảy ra khi chất tiết sinh dục của một bạn tình có chứa virus, tiếp xúc với niêm mạc sinh dục, miệng, hoặc trực tràng của người còn lại. Nguy cơ lây nhiễm qua một lần giao hợp với người nhiễm HIV là 0,1% đến 1%. Ở các quốc gia có thu nhập cao, nguy cơ nữ lây truyền cho nam là 0,04% cho mỗi lần quan hệ và nam truyền cho nữ là 0,08%. Vì những lý do khác nhau, nguy cơ này cao hơn từ 4 đến 10 lần ở các nước có thu nhập thấp. Người nhận trong giao hợp qua đường hậu môn có nguy cơ bị lây nhiễm cao hơn nhiều, 1,7% cho mỗi lần quan hệ.
Người nào có nhiều bạn tình, đồng thời quan hệ tình dục không an toàn thì càng có nguy cơ lây nhiễm HIV. Mắc các bệnh lây truyền qua đường tình dục như giang mai, lậu... đều làm tăng nguy cơ lây nhiễm HIV lên gấp 20 lần.
Các nghiên cứu năm 1999 về việc sử dụng bao cao su cho thấy rằng nếu sử dụng bao cao su đúng cách sẽ làm giảm nguy cơ lây truyền qua đường tình dục của HIV khoảng 85%. Tuy nhiên, chất diệt tinh trùng thực sự có thể làm tăng tỷ lệ lây truyền. |
HIV/AIDS | https://vi.wikipedia.org/wiki?curid=2478 | Những thử nghiệm đối chứng ngẫu nhiên, trong đó, nam giới chưa cắt bao quy đầu được phân ngẫu nhiên để được giải phẫu cắt bao quy đầu trong điều kiện vô trùng và được tư vấn đã được thực hiện tại Nam Phi, Kenya, và Uganda, kết quả cho thấy mức độ lây nhiễm HIV trong đường tình dục nữ truyền cho nam giảm xuống 60%, 53%, và 51%, tương ứng với từng quốc gia. Từ kết quả này, WHO và Ban Thư ký UNAIDS đã triệu tập một nhóm chuyên gia để "khuyến cáo rằng nam giới cắt bao quy đầu được công nhận như là một sự can thiệp bổ sung quan trọng để giảm nguy cơ lây nhiễm HIV trong quan hệ tình dục dị tính luyến ái đối với nam giới". Đối với trường hợp nam có quan hệ tình dục với nam, không có đủ bằng chứng để chứng minh nam giới cắt bao quy đầu sẽ bảo vệ chống lại nhiễm HIV hoặc nhiễm những bệnh lây truyền qua đường tình dục khác.
Các nghiên cứu về lây truyền HIV ở phụ nữ đã cắt bộ phận sinh dục (FGC) đã báo cáo các kết quả khác nhau, nhưng với một số bằng chứng cho rằng việc này làm tăng nguy cơ lây truyền.
Theo báo cáo về các nghiên cứu trong năm 2007 của Cochrane Collaboration, thì các chương trình nhằm mục đích khuyến khích việc tiết chế tình dục trong giới trẻ ở những nước phát triển, đồng thời cũng thực hiện các chiến lược cổ động và giáo dục về tình dục an toàn cho những đối tượng đã có quan hệ tình dục, có thể làm giảm trong ngắn hạn và dài hạn những hành vi có rủi ro lây nhiễm HIV.
Đường máu.
HIV có trong máu toàn phần và các thành phần của máu như hồng cầu, tiểu cầu, huyết tương, các yếu tố đông máu. Do đó HIV có thể được truyền qua máu hay các sản phẩm của máu có nhiễm HIV. Nguy cơ lây truyền qua đường máu có tỷ lệ rất cao, trên 90%. Kể từ năm 1985, sau khi có các xét nghiệm sàng lọc phát hiện kháng thể kháng HIV, nguy cơ lây truyền theo đường máu ở nhiều nước đã giảm đi rõ rệt bởi các mẫu máu nhiễm HIV sẽ bị loại bỏ. Tuy nhiên ngay cả khi xét nghiệm máu cho kết quả âm tính, khả năng lây nhiễm HIV vẫn có thể xảy ra, do máu được lấy ở người mới bị nhiễm HIV, người đó đang ở trong "thời kỳ cửa sổ" của quá trình nhiễm HIV. |
HIV/AIDS | https://vi.wikipedia.org/wiki?curid=2478 | Nguy cơ này xảy ra nhiều ở những nơi có tỷ lệ nhiễm HIV cao, đặc biệt ở những nơi mà người cho máu chuyên nghiệp cao và họ thường thay đổi địa điểm cho máu.
Nếu vết thương hở tiếp xúc với máu bị nhiễm HIV thì sẽ bị lây truyền. Các đối tượng dễ bị lây nhiễm qua đường máu là những người tiêm chích ma túy, những bệnh nhân mắc bệnh rối loạn đông máu di truyền (bệnh ưa chảy máu), người nhận trong quá trình truyền máu (mặc dù tại hầu hết các nước thì máu khi dùng để truyền cho người bệnh đều đã được xét nghiệm HIV để loại bỏ từ trước) và các sản phẩm máu. Lây truyền HIV qua đường máu cũng là vấn đề lo ngại đối với những người được chăm sóc y tế tại các khu vực có vệ sinh không đạt tiêu chuẩn thông thường trong việc sử dụng các dụng cụ tiêm chích, chẳng hạn như việc tái sử dụng kim tiêm để dùng cho nhiều người ở các nước thế giới thứ ba.
HIV cũng truyền qua các dụng cụ xuyên, chích qua da chưa được tiệt trùng như bơm kim tiêm (tiêm chích ma túy), kim xâu tai, dao cạo râu... khi các dụng cụ đó có dính máu nhiễm HIV.
Lây truyền trong chăm sóc y tế: Nhân viên y tế như y tá, nhân viên phòng thí nghiệm, và các bác sĩ cũng là đối tượng rủi ro cao, mặc dù hiếm xảy ra hơn. Kể từ khi việc lây nhiễm HIV qua đường máu được phát hiện thì các nhân viên y tế cần tránh không tiếp xúc với máu bằng cách sử dụng các biện pháp dự phòng phổ quát. Trong quá trình xăm, xâu khuyên, và rạch da thì cả người thực hiện lẫn người được làm cũng đều dễ bị lây nhiễm HIV qua đường máu nếu các dụng cụ không được tiệt trùng kỹ càng.
HIV được tìm thấy với nồng độ thấp trong nước bọt, nước mắt, và nước tiểu của các cá nhân bị nhiễm bệnh, nhưng không có trường hợp nào bị lây nhiễm bởi những chất tiết này được ghi nhận và nguy cơ tiềm năng lây truyền là không đáng kể. Việc bị muỗi đốt không thể làm lây truyền HIV.
Mẹ lây truyền sang con.
Việc lây truyền virus từ mẹ sang con có thể xảy ra trong tử cung (trong thời kỳ mang thai), trong quá trình chuyển dạ (sinh con), hoặc thông qua việc cho con bú. |
HIV/AIDS | https://vi.wikipedia.org/wiki?curid=2478 | Trong trường hợp không điều trị, tỷ lệ lây truyền giữa mẹ và con lên đến khoảng 25%. Tuy nhiên, với sự kết hợp điều trị bằng thuốc kháng virus và mổ lấy thai thì nguy cơ này có thể được giảm xuống rất thấp, dưới 1%. Sau khi sinh thì có thể ngăn ngừa lây truyền bằng cách tránh hoàn toàn nuôi con bằng sữa mẹ, tuy nhiên, điều này liên quan đáng kể đến các bệnh khác. Cho con bú hoàn toàn bằng sữa mẹ và cung cấp điều trị dự phòng kháng virus mở rộng cho trẻ sơ sinh cũng có hiệu quả trong việc tránh lây truyền. UNAIDS ước tính có 430.000 trẻ em bị nhiễm HIV trên toàn thế giới trong năm 2008 (19% là các ca nhiễm mới), chủ yếu là từ đường mẹ sang con, và thêm 65.000 ca lây nhiễm đã được ngăn chặn thông qua việc cung cấp điều trị dự phòng kháng virus cho phụ nữ nhiễm HIV dương tính.
Sinh lí bệnh.
Sau khi virus xâm nhập vào cơ thể, có một giai đoạn nhân lên nhanh chóng, dẫn đến sự bùng phát của virus trong máu ngoại vi. Trong quá trình lây nhiễm tiên phát, mức độ HIV có thể đạt tới vài triệu hạt vi rút trên một mililít máu. Phản ứng này đi kèm với sự sụt giảm rõ rệt số lượng tế bào CD4+ T trong màu. Nhiễm virut cấp tính gần như liên quan đến việc kích hoạt tế bào CD8+ T, tiêu diệt tế bào nhiễm HIV và sau đó sản xuất kháng thể hoặc chuyển đảo huyết thanh. Phản ứng của tế bào CD8+ T được cho là rất quan trọng trong việc kiểm soát mức độ vi rút, đạt mức cao nhất và sau đó giảm dần, khi số lượng tế bào CD4+ T phục hồi. Đáp ứng tế bào CD8+ T tốt có liên quan đến tiến triển bệnh chậm hơn và tiên lượng tốt hơn, mặc dù nó không loại bỏ được virus.
Cuối cùng, HIV gây ra AIDS bằng cách làm cạn kiệt tế bào T CD4+. Điều này làm suy yếu hệ thống miễn dịch và dẫn đến nhiễm trùng cơ hội. Các tế bào T rất cần thiết cho phản ứng miễn dịch và không có chúng, cơ thể không thể chống lại nhiễm trùng hoặc tiêu diệt các tế bào ung thư. Cơ chế của sự suy giảm tế bào T CD4+ khác nhau trong các giai đoạn cấp tính và mãn tính. |
HIV/AIDS | https://vi.wikipedia.org/wiki?curid=2478 | Trong giai đoạn cấp tính, ly giải tế bào do HIV và tiêu diệt tế bào bị nhiễm bởi các tế bào T CD8+ chiếm sự suy giảm tế bào T CD4+, mặc dù sự chết rụng tế bào cũng có thể là một yếu tố. Trong giai đoạn mãn tính, hậu quả của việc kích hoạt miễn dịch tổng quát cùng với việc mất dần khả năng của hệ thống miễn dịch để tạo ra các tế bào T mới dường như giải thích cho sự suy giảm chậm số lượng tế bào T CD4+
Mặc dù các triệu chứng suy giảm miễn dịch đặc trưng của AIDS không xuất hiện trong nhiều năm, phần lớn sự mất tế bào T CD4+ xảy ra trong những tuần đầu tiên của nhiễm trùng, đặc biệt là ở niêm mạc ruột, nơi chứa phần lớn các tế bào lympho được tìm thấy trong cơ thể. Lý do làm mất các tế bào T CD4+ niêm mạc là do phần lớn các tế bào T CD4+ niêm mạc chứa thành phần protein CCR5 mà HIV sử dụng như một đồng thụ thể để tiếp cận các tế bào, trong khi chỉ một phần nhỏ các tế bào T CD4+ trong máu tương tự. Một thay đổi di truyền cụ thể làm thay đổi protein CCR5 khi có trong cả hai nhiễm sắc thể ngăn ngừa nhiễm HIV-1 rất hiệu quả.
HIV tìm kiếm và phá hủy CCR5 bộc phát bên trong tế bào T CD4+ trong khi nhiễm trùng cấp tính. Một sự phản ứng miễn dịch mạnh mẽ cuối cùng chuyển sang quá trình kiểm soát nhiễm trùng và bắt đầu giai đoạn tiềm ẩn lâm sàng. Các tế bào T CD4+ trong các mô niêm mạc đặc biệt vẫn bị ảnh hưởng. Sự sao chép liên tục của HIV xảy ra khiến cho tình trạng kích hoạt miễn dịch tổng quát vẫn tồn tại trong suốt giai đoạn mãn tính. Do đó, sự kích hoạt miễn dịch, được phản ánh bởi trạng thái kích hoạt tăng của các tế bào miễn dịch và giải phóng các cytokine tiền viêm, là kết quả từ hoạt động của một số sản phẩm gen HIV và đáp ứng miễn dịch đối với sự nhân lên của HIV đang diễn ra. Nó cũng liên quan đến sự phá vỡ hệ thống giám sát miễn dịch của hàng rào niêm mạc đường tiêu hóa gây ra bởi sự suy giảm của các tế bào T CD4+ trong giai đoạn cấp tính của căn bệnh.
Chẩn đoán. |
HIV/AIDS | https://vi.wikipedia.org/wiki?curid=2478 | Chẩn đoán.
Các xét nghiệm HIV được sử dụng để phát hiện sự hiện diện của virus HIV trong huyết thanh, nước bọt hoặc nước tiểu. Các xét nghiệm như vậy có thể phát hiện các kháng thể, kháng nguyên hoặc RNA. Giai đoạn cửa sổ là thời gian từ khi bị nhiễm trùng cho đến khi xét nghiệm có thể phát hiện bất kỳ thay đổi nào. Thời gian cửa sổ trung bình với xét nghiệm kháng thể HIV-1 là 25 ngày đối với phân nhóm B. Xét nghiệm kháng nguyên cắt giảm thời gian cửa sổ xuống còn khoảng 16 ngày và xét nghiệm axit nucleic (NAT) tiếp tục giảm thời gian này xuống còn 12 ngày.
Phòng ngừa.
Phòng chống lây nhiễm HIV, chủ yếu thông qua các chương trình trao đổi kim tiêm và tình dục an toàn, là một chiến dịch quan trọng để kiểm soát sự lây lan của căn bệnh này. Tăng cường việc nhận thức và các biện pháp phòng ngừa đối với người dân cũng đóng một vai trò quan trọng. Liệu pháp gen được đề nghị là biện pháp khả thi để ngăn ngừa hoặc điều trị nhiễm HIV.
Trước phơi nhiễm.
Theo nghiên cứu, dự phòng trước phơi nhiễm (tiếng Anh: "Pre-exposure prophylaxis", viết tắt là PrEP) mang lại hiệu quả phòng ngừa cao nếu được sử dụng đúng theo chỉ dẫn, làm giảm nguy cơ nhiễm HIV lên đến 99%.
Sau phơi nhiễm.
Năm 2007, Trung tâm Kiểm soát và Phòng ngừa Bệnh tật của Hoa Kì khuyến cáo phác đồ thuốc HIV 28 ngày cho những người tin là họ đã tiếp xúc với virus. Phác đồ này đã được chứng minh có hiệu quả ngăn ngừa virus gần 100% nếu bệnh nhân áp dụng điều trị trong vòng 24 giờ sau phơi nhiễm. Độ hiệu quả giảm còn 52% nếu áp dụng điều trị trong 48 giờ; phác đồ này không được khuyến cáo dùng nếu quá 48 giờ sau phơi nhiễm.
Vắc-xin HIV.
Hiện tại không có vaccine nào để phòng ngừa lây nhiễm HIV, và cũng không có một liệu pháp nào có thể loại bỏ hoàn toàn vi-rút HIV ra khỏi cơ thể. Hiện đang có các nghiên cứu tìm vắc-xin ngừa HIV và phát triển thuốc mới kháng retrovirus. Cũng đang có một số thử nghiệm ở người.
Điều trị. |
HIV/AIDS | https://vi.wikipedia.org/wiki?curid=2478 | Điều trị.
Tuy bệnh không thể chữa khỏi và cũng không có vắc-xin chủng ngừa, nhưng điều trị bằng thuốc kháng virus (ARV) có thể làm chậm tiến trình của bệnh và kéo dài tuổi thọ của người bệnh thêm 8-12 năm, thậm chí lâu hơn nếu uống đều đặn và đủ liều. Thuốc kháng HIV cần phải được uống mỗi ngày, nếu không thì virus có thể nhanh chóng vượt khỏi kiểm soát và trở nên kháng thuốc. Ngay cả khi HIV chuyển sang giai đoạn AIDS với những triệu chứng đặc trưng, thì việc điều trị bằng kháng retrovirus cũng có thể kéo dài tuổi thọ của bệnh nhân ước tính trung bình là hơn 5 năm (thống kê năm 2005). Trong khi đó, nếu không điều trị bằng kháng retrovirus thì bệnh nhân AIDS thường sẽ chết trong vòng 1 năm. Tuy điều trị bằng thuốc kháng virus có thể làm giảm nguy cơ tử vong và các biến chứng từ bệnh này, nhưng thuốc rất tốn kém và có thể gây ra các tác dụng phụ về sức khỏe cho người sử dụng.
Điều trị bằng thuốc kháng retrovirus có thể làm giảm cả hai tỉ lệ tử vong và bệnh tật ở người nhiễm HIV. Mặc dù thuốc kháng retrovirus vẫn không có sẵn để dùng rộng rãi, nhưng việc mở rộng các chương trình điều trị bằng thuốc kháng retrovirus từ năm 2004 đã làm giảm số lượng các ca tử vong do AIDS và số ca nhiễm mới ở nhiều nơi trên thế giới. Những người sống chung với AIDS hiện nay có thể kéo dài và cải thiện chất lượng cuộc sống bằng liệu pháp điều trị kháng vi-rút, hay còn gọi là ART (viết tắt của Anti- Retroviral Therapy). ART là liệu pháp điều trị sử dụng các thuốc kháng vi-rút, hay còn gọi là thuốc ARV (Anti-retrovirus). Các thuốc ARV này có tác dụng làm chậm sự nhân lên của HIV trong cơ thể, do đó làm tăng khả năng miễn dịch và giảm khả năng mắc các nhiễm trùng cơ hội.
Lựa chọn điều trị lý tưởng hiện tại bao gồm các kết hợp ("cocktail") hai hay nhiều loại thuốc kháng retrovirus như hai chất ức chế reverse transcriptase giống nucleoside (NRTI), và một chất ức chế protease hoặc một chất thuốc ức chế reverse transcriptase non-nucleoside (NNRTI). Với điều trị như vậy, kết quả cho thấy HIV không phát hiện được (âm tính) lặp đi lặp lại nhiều lần, nhưng nếu ngưng điều trị lượng virus trong cơ thể sẽ tăng nhanh chóng. |
HIV/AIDS | https://vi.wikipedia.org/wiki?curid=2478 | Cũng có lo ngại cuối cùng sẽ xuất hiện đề kháng thuốc với phác đồ đó. Những năm gần đây thuật ngữ "điều trị kháng retrovirus tích cực cao" (highly-active anti-retroviral therapy, HAART) thường được dùng để chỉ cách thức điều trị này. Tuy nhiên, điều không may là phần lớn số người bệnh trên thế giới không tiếp cận được các điều trị HIV và AIDS.
Tiên lượng.
HIV/AIDS đã trở thành mãn tính chứ không phải là một căn bệnh gây tử vong cấp tính ở nhiều khu vực trên thế giới. Tiên lượng khác nhau giữa từng người và cả số lượng CD4 và tải lượng vi-rút đều hữu ích cho các kết quả dự đoán. Nếu không điều trị, thời gian sống sót trung bình sau khi nhiễm HIV được ước tính là 9 đến 11 năm, tùy thuộc vào phân nhóm HIV. Sau khi chẩn đoán AIDS, nếu không có phương pháp điều trị, thời gian sống sót dao động từ 6 đến 19 tháng. Liệu pháp kháng retrovirus có hoạt tính cao (HAART) và phòng ngừa thích hợp các bệnh nhiễm trùng cơ hội giúp giảm 80% tỷ lệ tử vong và tăng tuổi thọ cho một thanh niên mới được chẩn đoán mắc bệnh lên 20–50 năm. Con số này nằm giữa hai phần ba và gần bằng tuổi thọ của dân số chung. ations Programme on HIV/AIDS Nếu bắt đầu điều trị muộn khi nhiễm trùng, tiên lượng sẽ không tốt: ví dụ, nếu bắt đầu điều trị sau khi chẩn đoán AIDS, kỳ vọng sống là ~10–40 năm. Một nửa số trẻ sơ sinh nhiễm HIV chết trước hai tuổi mà không được điều trị.
Dịch tễ học.
Từ khi phát hiện ra HIV vào năm 1981 cho đến năm 2006, AIDS đã giết chết hơn 25 triệu người. Theo số liệu năm 2006, khoảng 0,6% dân số thế giới bị nhiễm HIV. Năm 2009, toàn thế giới có 1,8 triệu người mắc bệnh AIDS, đã giảm so với mức đỉnh là 2,1 triệu người trong năm 2004. Khoảng 260.000 trẻ em chết vì AIDS trong năm 2009. Một con số không cân xứng của số người tử vong do AIDS ở vùng Châu Phi hạ Sahara đã làm chậm tăng trưởng kinh tế và làm trầm trọng thêm gánh nặng của nghèo đói. Trong năm 2005, ước tính ở châu Phi có khoảng 26 triệu người bị nhiễm HIV, kết quả là một ước lượng tối thiểu sẽ có 18 triệu trẻ mồ côi. Ước tính vẫn có khoảng 2,6 triệu người mới bị nhiễm HIV trong năm 2009.
Lịch sử. |
HIV/AIDS | https://vi.wikipedia.org/wiki?curid=2478 | Lịch sử.
HIV truyền từ các loài linh trưởng khác sang con người ở tây-trung Phi vào đầu đến giữa thế kỉ 20. AIDS được công nhận đầu tiên bởi Trung tâm kiểm soát và phòng ngừa dịch bệnh Hoa Kỳ vào năm 1981 và nguyên nhân của nó—nhiễm HIV—được xác định vào đầu thập niên này. Báo cáo khoa học đầu tiên về HIV/AIDS được công bố vào ngày 5 tháng 6 năm 1981, khi Trung tâm Kiểm soát và Phòng ngừa Dịch bệnh Hoa Kỳ mô tả những trường hợp nhiễm trùng phổi hiếm gặp ở nhóm nam đồng tính luyến ái tại Los Angeles. Sau đó, những ca nhiễm trùng hiếm gặp ở nam quan hệ tình dục đồng tính cũng được báo cáo từ các đô thị trên khắp nước Mỹ, thúc đẩy nhiều cuộc điều tra khoa học hơn AIDS chính thức được xác định bởi Trung tâm kiểm soát và phòng ngừa dịch bệnh Hoa Kỳ vào cùng năm đó và nguyên nhân của nó — nhiễm virus HIV — được xác định vào đầu thập niên 1980. Việc chủ quan đối với HIV càng làm tăng nguy cơ bị lây bệnh.
Xã hội và văn hóa.
Định kiến.
Sự kỳ thị AIDS tồn tại trên khắp thế giới theo nhiều cách khác nhau, bao gồm tẩy chay, từ chối, phân biệt đối xử và tránh những người nhiễm HIV; xét nghiệm HIV bắt buộc mà không có sự đồng ý trước hoặc bảo vệ bí mật cho họ; bạo lực đối với những người nhiễm HIV hoặc những người được coi là nhiễm HIV; và cách ly những người nhiễm HIV. Bạo lực liên quan đến kỳ thị hoặc nỗi sợ bạo lực ngăn cản nhiều người tìm kiếm xét nghiệm HIV, quay lại lấy kết quả hoặc đảm bảo điều trị, có thể biến một căn bệnh mãn tính có thể kiểm soát được thành bản án tử hình và tiếp tục lây lan HIV.
Quan niệm sai lầm.
Có nhiều quan niệm sai lầm về HIV và AIDS. Ba quan niệm sai lầm là AIDS có thể lây lan qua tiếp xúc thông thường, quan hệ tình dục với một trinh nữ sẽ chữa khỏi bệnh AIDS, và HIV chỉ có thể lây nhiễm cho những người đồng tính nam và những người sử dụng ma túy. Vào năm 2014, một số người dân Anh đã lầm tưởng rằng một người có thể bị nhiễm HIV khi hôn (16%), dùng chung ly (5%), khạc nhổ (16%), ngồi trong nhà vệ sinh công cộng (4%) và ho hoặc hắt hơi (5%).
Nghiên cứu. |
HIV/AIDS | https://vi.wikipedia.org/wiki?curid=2478 | Nghiên cứu.
Nghiên cứu về HIV/AIDS bao gồm tất cả nghiên cứu y học cố gắng ngăn ngừa, điều trị hoặc chữa khỏi HIV/AIDS, cùng với nghiên cứu cơ bản về bản chất của HIV như một tác nhân truyền nhiễm và về AIDS là căn bệnh do HIV gây ra.
Nhiều chính phủ và viện nghiên cứu tham gia nghiên cứu về HIV/AIDS. Nghiên cứu này bao gồm hành vi can thiệp sức khỏe như giáo dục giới tính và phát triển thuốc, như nghiên cứu về thuốc diệt vi khuẩn đối với các bệnh lây truyền qua đường tình dục, vắc-xin HIV và thuốc kháng virus. Các lĩnh vực nghiên cứu y học khác bao gồm các chủ đề dự phòng trước phơi nhiễm, dự phòng sau phơi nhiễm, cắt bao quy đầu và HIV. Các nhân viên y tế công cộng, nhà nghiên cứu và chương trình y tế công cộng có thể có được bức tranh toàn cảnh hơn về những rào cản mà họ gặp phải cũng như hiệu quả của các phương pháp điều trị và phòng ngừa HIV hiện tại bằng cách theo dõi các chỉ số HIV tiêu chuẩn. Việc sử dụng các chỉ báo chung ngày càng được các tổ chức phát triển và nhà nghiên cứu chú trọng. |
SIDA | https://vi.wikipedia.org/wiki?curid=2479 | SIDA có thể là: |
Giải Nobel | https://vi.wikipedia.org/wiki?curid=2488 | Giải thưởng Nobel, hay Giải Nobel (, , ), là một tập các giải thưởng quốc tế được tổ chức trao thưởng hằng năm kể từ năm 1901 cho những cá nhân đạt thành tựu trong lĩnh vực vật lý, hoá học, y học, văn học, kinh tế và hòa bình; đặc biệt là giải hoà bình có thể được trao cho tổ chức hay cho cá nhân. Vào năm 1968, Ngân hàng Thụy Điển đưa thêm vào một giải về lĩnh vực khoa học kinh tế, theo di chúc của nhà phát minh người Thụy Điển Alfred Nobel năm 1895. Từ năm 1901 đến năm 2020, các giải thưởng Nobel và giải thưởng về Khoa học Kinh tế được trao tặng 603 lần cho 962 người và tổ chức. Do một số cá nhân và tổ chức nhận giải Nobel nhiều hơn một lần, tổng cộng có 962 cá nhân (905 nam và 57 nữ) và 25 tổ chức đã nhận giải này.
Kết quả đoạt giải được công bố hằng năm vào tháng 10 và được trao (bao gồm tiền thưởng, một huy chương vàng và một giấy chứng nhận) vào ngày 10 tháng 12, ngày kỷ niệm ngày mất của Nobel. Giải Nobel được thừa nhận rộng rãi như là giải thưởng danh giá nhất một người có thể nhận được trong lĩnh vực được trao.
Giải Nobel Hòa bình được trao thưởng ở Oslo, Na Uy, trong khi các giải khác được trao ở Stockholm, Thụy Điển.
Viện Hàn lâm Khoa học Hoàng gia Thụy Điển trao giải Nobel Vật lý, giải Nobel Hóa học và giải Nobel Kinh tế; Hội Nobel ở Karolinska Institutet trao giải Nobel Sinh học và Y học; Viện Hàn lâm Thụy Điển trao giải Nobel Văn học; và giải thưởng Nobel Hòa bình được Ủy ban Nobel Na Uy (gồm 5 thành viên do Quốc hội Na Uy bầu ra ) trao tặng thay vì một tổ chức của Thụy Điển.
Các giải Nobel không bắt buộc phải được trao hàng năm, nhưng ít nhất phải được trao một lần cho mỗi 5 năm. Số tiền của giải thưởng mỗi năm một khác. Mỗi người đoạt giải nhận được một huy chương vàng, một chứng chỉ và một khoản tiền được Quỹ Nobel quyết định. Vào thời điểm năm 2020, mỗi giải thưởng trị giá 10.000.000 SEK (1,144 triệu USD, hoặc 968.000 €). Giải khi đã trao thì không bao giờ bị tước. Giải chỉ trao cho những người còn sống, không truy tặng. Tuy nhiên, nếu người đoạt giải mất sau khi công bố giải và trước khi nhận giải, giải vẫn sẽ được trao. Mặc dù tỷ lệ số người nhận trên mỗi giải có thay đổi, Giải Nobel được trao cho tối đa 3 người mỗi năm.
Lịch sử. |
Giải Nobel | https://vi.wikipedia.org/wiki?curid=2488 | Lịch sử.
Alfred Nobel sinh ngày 21 tháng 10 năm 1833 ở Stockholm, Thụy Điển, trong một gia đình toàn kỹ sư. Ông là một nhà hóa học, kỹ sư, và nhà phát minh. Năm 1894, Nobel mua sắt thép và nhà máy Bofors, tại đó ông đã trở thành một nhà sản xuất vũ khí lớn. Nobel cũng phát minh ra ballistite. Sáng chế này là tiền thân của nhiều vật liệu nổ không khói dùng trong quân đội, đặc biệt là bột chất nổ không khói của người Anh. Do tuyên bố bằng sáng chế của mình, Nobel cuối cùng đã tham gia vào một vụ kiện vi phạm bằng sáng chế về chất nổ không khói. Ông tích lũy được một tài sản khổng lồ trong suốt cuộc đời của mình, hầu hết số tiền bắt nguồn từ 355 phát minh của ông, trong đó có phát minh thuốc nổ (dynamite) là nổi tiếng nhất.
Khi người anh Ludvig của ông qua đời vào năm 1888, nhiều bài cáo phó đã nhầm lẫn và viết về cái chết của Alfred Nobel trong khi ông vẫn còn sống. Bản cáo phó trên một tờ báo Pháp viết "Le marchand de la mort est mort" (Nhà buôn cái chết đã chết) và tiếp tục viết, "Tiến sĩ Alfred Nobel, người đã trở nên giàu có sau khi phát minh ra cách thức giết con người nhanh chóng hơn bao giờ hết, đã qua đời ngày hôm qua." Bài viết này khiến Nobel bất ngờ và làm ông lo ngại về việc ông sẽ được ghi nhớ ra sao sau khi ông chết. Nó đã khiến ông muốn thay đổi di chúc của mình.
Ngày 10 tháng 12 năm 1896, Alfred Nobel đã chết trong biệt thự của ông ở San Remo, Ý vì xuất huyết não, thọ 63 tuổi, 8 năm sau bản cáo phó nhầm lẫn trên. Trong bản di chúc gây bất ngờ lớn cho công chúng thời đó, Nobel đã ghi rằng tài sản của ông sẽ được sử dụng để tạo ra một loạt các giải thưởng cho những người trao "lợi ích lớn nhất cho nhân loại" trong vật lý, hóa học, hòa bình, sinh học, y học và văn học. Alfred đã dành 94% trị giá tài sản, 31 triệu SEK (khoảng 186 triệu USD, 150 triệu € tính theo thời giá 2008) và lấy lãi hàng năm để lập nên 5 giải Nobel cho "những ai, trong năm mà giải sẽ được trao, đã đưa đến những lợi ích tốt nhất cho con người.".
Di chúc của ông ghi rõ:
Do sự nghi ngờ về tính chân thực của bản di chúc này, đến ngày 26 tháng 4 năm 1897 bản di chúc mới được Tòa án Na Uy chấp nhận. |
Giải Nobel | https://vi.wikipedia.org/wiki?curid=2488 | Chấp hành di chúc của Nobel, Ragnar Sohlman và Rudolf Lilljequist đã lập ra Quỹ Nobel (Nobel Foundation) để quản lý tài sản của Nobel và tổ chức các giải thưởng của quỹ.
Hướng dẫn của Nobel tạo ra một Ủy ban Nobel Na Uy trao giải Nobel Hòa bình, các thành viên của Ủy ban này đã được bổ nhiệm ngay sau khi di chúc đã được phê duyệt trong tháng 4 năm 1897. Không lâu sau đó, các tổ chức trao giải thưởng khác đã được chỉ định hoặc thành lập, bao gồm: Karolinska Institutet vào ngày 7 tháng 6, Học viện Thụy Điển vào ngày 9 tháng 6, và Viện Hàn lâm Khoa học Hoàng gia Thụy Điển vào ngày 11 tháng 6. Quỹ Nobel đã đạt được một thỏa thuận về tiêu chí trao các giải thưởng, và đến năm 1900, các tiêu chí trao giải của Quỹ Nobel đã được vua Oscar II ban hành chính thức. Năm 1905, các liên minh cá nhân giữa Thụy Điển và Na Uy đã bị giải tán. Sau đó, Ủy ban Nobel của Na Uy chịu trách nhiệm cho việc trao giải Nobel Hòa bình và các tổ chức Thụy Điển chịu trách nhiệm trao các giải còn lại.
Quỹ Nobel.
Quỹ Nobel được thành lập như một tổ chức tư nhân vào ngày 29 tháng 6 năm 1900. Chức năng của nó là quản lý tài chính và quản trị các giải thưởng Nobel. Tuân thủ theo di chúc của Nobel, nhiệm vụ chính của Quỹ là quản lý các tài sản Nobel để lại. Robert và Ludwig Nobel đã tham gia vào việc kinh doanh dầu ở Azerbaijan và theo nhà sử học Thụy Điển E. Bargengren, người truy cập các tài liệu lưu trữ của gia đình Nobel, "việc quyết định cho phép rút tiền của Alfred từ Baku đã trở thành yếu tố quyết định cho phép Quỹ Nobel được thành lập". Một nhiệm vụ quan trọng của Quỹ Nobel là quảng cáo các giải thưởng này trên bình diện quốc tế và giám sát các thủ tục liên quan đến giải thưởng. Quỹ không được tham gia vào quá trình lựa chọn người đoạt giải Nobel. Quỹ Nobel tương tự như một công ty đầu tư với việc đầu tư tiền Nobel để lại để tạo ra một nguồn tài chính vững chắc cho các giải thưởng và các hoạt động hành chính. Quỹ Nobel được miễn các loại thuế ở Thụy Điển (từ năm 1946) và các loại thuế đầu tư tại Hoa Kỳ (từ năm 1953). Từ những năm 1980, đầu tư của Quỹ đã có lợi nhuận nhiều hơn và tính đến 31 tháng 12 năm 2007, Quỹ Nobel kiểm soát các tài sản có giá trị lên tới 3.628 tỷ kronor Thụy Điển (khoảng 560 triệu USD). |
Giải Nobel | https://vi.wikipedia.org/wiki?curid=2488 | Theo luật, Quỹ bao gồm một hội đồng quản trị của năm công dân Thụy Điển hay Na Uy, với trụ sở tại Stockholm. Chủ tịch Hội đồng quản trị được Vua Thụy Điển bổ nhiệm, với bốn thành viên khác do ủy thác của các tổ chức trao giải thưởng bổ nhiệm. Một giám đốc điều hành được lựa chọn trong số các thành viên hội đồng quản trị, Phó giám đốc được Vua Thụy Điển bổ nhiệm, và hai phó chủ tịch được bổ nhiệm do người được ủy thác. Tuy nhiên, kể từ năm 1995, tất cả các thành viên của hội đồng quản trị được lựa chọn bởi các ủy viên quản trị; Giám đốc điều hành và các Phó Giám đốc chỉ định bởi chính hội đồng quản trị. Cũng như hội đồng quản trị, Quỹ Nobel được tạo thành từ các tổ chức trao giải (Viện Hàn lâm Khoa học Hoàng gia Thụy Điển, Đại hội đồng Nobel tại Viện Karolinska, Viện Hàn lâm Thụy Điển, và các Ủy ban Nobel Na Uy), người được ủy thác của các tổ chức trên, và các kiểm toán viên.
Huy chương Nobel.
Huy chương Nobel làm bằng 150 gram vàng 18 ca-ra chạm hình Alfred Nobel. Mặt sau của tấm huy chương giải Nobel Vật lý và Hóa học là hình một phụ nữ để ngực trần.
Một số tấm huy chương Nobel đã được chủ nhân mang ra bán đấu giá. Tấm huy chương Nobel Hòa bình được bán rẻ nhất trong đấu giá đó là của Aristide Briand, người Pháp đã có đóng góp lớn trong năm 1926 vào cuộc hoà hợp ngắn ngủi Đức – Pháp. Năm 2008 huy chương Nobel này được bảo tàng Ecomusée của Saint-Nazaire mua về với khoản tiền 12 nghìn euro. Khá hơn một chút, huy chương Nobel Hoà bình của người Anh William Randal Cremer vinh danh năm 1903 đã bán với giá 17.000 đô la tại một cuộc đấu giá năm 1985.
Từ năm 2014, việc bán huy chương Nobel trở nên phổ thông. Cho tới giờ 8 huy chương đã được bán kể từ đó. Cũng về giải Nobel Hoà bình, tấm huy chương của người Bỉ Auguste Beernaert (được trao năm 1909) đã đạt tới giá 661 nghìn đô la và huy chương Nobel của Carlos Saavedra Lamas, người Argentina, nhận năm 1936, thậm chí đã tìm được người mua với giá kỷ lục 1,16 triệu đô la.
Kỷ lục hiện nay là huy chương của James Watson, người Mỹ được nhận giải nobel Y học năm 1962 cho những phát hiện ra cấu trúc DNA. Ông đã bán được tấm huy chương Nobel của mình với giá 4,76 triệu đô la Mỹ vào tháng 12/2014. |
Giải Nobel | https://vi.wikipedia.org/wiki?curid=2488 | Trong khi đó chỉ trước đó có 20 tháng, những người được thừa kế của nhà khoa học Anh Francis Crick, nhận chung Nobel Y học với James Watson, lại chỉ bán được tấm huy chương với giá chưa bằng một nửa.
Những tranh cãi và phê bình.
Những người nhận gây tranh cãi.
Trong những lời chỉ trích, Ủy ban Nobel đã bị cáo buộc là có những chương trình nghị sự mang tính chất chính trị hoặc bỏ qua những người xứng đáng. Họ cũng bị cáo buộc bởi chủ nghĩa trung dung châu Âu, nhất là trong Giải Nobel Văn học.
Giải Nobel Hòa bình.
Một trong những trường hợp bị chỉ trích nhiều nhất là giải thưởng của Henry Kissinger và Lê Đức Thọ. Những tranh cãi nãy đã dẫn đến sự ra đi của nhiều thành viên của Ủy ban Nobel Na Uy. Lê Đức Thọ đã từ chối nhận giải. Cả Lê Đức Thọ và Kissinger đều được nhận giải vì những nỗ lực chấm dứt chiến tranh giữa Bắc Việt và Hoa Kỳ vào tháng 1 năm 1973. Tuy nhiên, khi giải thưởng của hai ông được tuyên bố, tất cả các bên liên quan đến chiến tranh Việt Nam đều bị kéo vào vòng chiến tranh. Nhiều ý kiến chỉ trích cho rằng Kissinger không phải là một người kiến tạo hòa bình mà là một người mở rộng cuộc chiến tranh.
Yasser Arafat, Shimon Peres và Yitzhak Rabin được trao giải Nobel Hòa bình vào năm 1994 trong những nỗ lực kiến tạo hòa bình giữa Israel và Palestine. Tức thì sau khi giải thưởng được tuyên bố, một trong năm thành viên của Ủy ban Nobel Na Uy đã cáo buộc Arafat là một tên khủng bố và xin từ chức. Những mối nghi ngờ mới về Arafat đã được lan truyền trên các trang báo phổ biến.
Một sự chỉ trích khác nhằm vào giải Nobel Hòa bình của Barack Obama vào năm 2009. Quyết định trao giải thưởng cho vị Tổng thống Mỹ da màu đầu tiên được đưa ra chỉ sau 7 ngày Obama nhậm chức, nhưng thực sự thì việc trao giải phải diễn ra 8 tháng sau đó. Obama tuyên bố ông không cảm thấy xứng đáng với giải thưởng này. Chuyện này đã gây ra hai luồng ý kiến khác nhau: một số người cho rằng Obama xứng đáng, số khác thì cho rằng ông chưa đạt được thành tựu nào để xứng đáng với điều đó như là một sự tưởng thưởng. Giải Nobel của ông, như của Jimmy Carter và Al Gore đã thúc đẩy sự những tố cáo của những người cánh tả.
Giải Nobel Văn học. |
Giải Nobel | https://vi.wikipedia.org/wiki?curid=2488 | Giải Nobel Văn học.
Giải thưởng năm 2004 được trao cho Elfriede Jelinek và nó đã gây ra một sự phản đối từ một thành viên của Viện hàn lâm Thụy Điển, Knut Ahnlund. Ông này quyết định từ chức, viện cớ rằng những ngôn từ của Jelinek là "một mớ văn bản được xúc vào mà không có các cấu trúc nghệ thuật". Giải thưởng năm 2009 dành cho Herta Müller cũng gây ra sự chỉ trích. Theo The Washington Post, những nhà phê bình và giáo sư người Mỹ đã trở nên ngu dốt vì tác phẩm của bà. Nó làm cho những nhà phê bình đó giải thưởng mang tính chất chủ nghĩa trung dung châu Âu.
Giải Nobel dành cho khoa học.
Năm 1948, nhà thần kinh học António Egas Moniz nhận Giải Nobel Sinh lý và Y khoa cho những phát triển của ông cho phẫu thuật tủy não. Năm trước, Walter Jackson Freeman II đã phát triển lĩnh vực này bằng một giải pháp nhanh hơn và dễ dàng hơn. Một phần của vấn đề là do khi công bố rộng rãi quy trình ban đầu, nó đã được mà không có sự cân nhắc xứng đáng hay sự quan tâm của đạo đức y học hiện đại. Có một sự thực được chứng thực bởi các ấn phẩm có ảnh hưởng như "The New England Journal of Medicine" rằng phẫu thuật tủy não đã được phổ biến khi có đến 5000 ca phẫu thuật trong vòng 3 năm và các ca này đều sử dụng phương pháp của Moniz.
Những thành tựu đã bị bỏ qua.
Giải Nobel Hòa bình.
Ủy ban Nobel Na Uy đã xác nhận rằng Mahatma Gandhi xứng đáng là người được nhận giải thưởng Nobel Hòa bình trong các năm 1937–1939 và 1947. Sự xác nhận cuối cùng chỉ diễn ra vài ngày trước khi người anh hùng dân tộc của Ấn Độ bị ám sát vào ngày 30 tháng 1 năm 1948. Sau đó, Ủy ban trên đã xác nhận Gandhi đã không được nhận giải thưởng. Geir Lundestad, thư ký của Ủy ban vào năm 2006, đã nói rằng:
Năm 1948, khi Gandhi qua đời, Ủy ban Nobel Na Uy đã từ chối ý định trao giải với ý rằng "không ứng viên nào xứng đáng" trong năm đó. Sau đó, khi Đạt Lai Lạt Ma thứ 14 được trao Giải Nobel Hòa bình vào năm 1989, chủ tịch của ủy ban đã nói rằng "đó là một sự tri ân dành cho Mahatma Gandhi".
Ngoài ra, có rất nhiều trường hợp khác đã bị bỏ qua. |
Giải Nobel | https://vi.wikipedia.org/wiki?curid=2488 | Theo Foreign Policy, những trường hợp như vậy gồm Eleanor Roosevelt, Václav Havel, Ken Saro-Wiwa, Sari Nusseibeh và Corazon Aquino, những người mà "không bao giờ được trao giải, nhưng họ xứng đáng".
Thống kê.
Malala Yousafzai; ở tuổi 17, nhận Giải Nobel Hòa bình (2014).
John B. Goodenough; ở tuổi 97, nhận Giải Nobel Hóa học (2019). |
Danh sách người đoạt giải Nobel | https://vi.wikipedia.org/wiki?curid=2506 | Giải Nobel (, ) là giải thưởng quốc tế do Viện Hàn lâm Khoa học Hoàng gia Thụy Điển, Viện Hàn lâm Thụy Điển, Học viện Karolinska và Ủy ban Nobel Na Uy trao hằng năm cho các cá nhân và tổ chức có đóng góp tiêu biểu trong các lĩnh vực hoá học, vật lý, văn học, hoà bình, và sinh lý học hoặc y học. Giải thưởng này được thành lập theo bản di chúc năm 1895 của Alfred Nobel; di chúc cũng ghi rõ giải sẽ do Quỹ Nobel quản lý. Năm 1968, Ngân hàng Trung ương Thụy Điển thành lập thêm Giải thưởng của Ngân hàng Thụy Điển cho khoa học kinh tế để tưởng nhớ Nobel, hay Giải Nobel Kinh tế, để vinh danh những đóng góp tiêu biểu trong lĩnh vực này. Mỗi người đoạt giải sẽ được nhận một huy chương vàng, một bằng chứng nhận cùng một khoản tiền thưởng (mỗi năm, Quỹ Nobel sẽ quyết định số tiền này).
Giải thưởng.
Mỗi giải được trao bởi một tổ chức riêng biệt. Viện Hàn lâm Khoa học Hoàng gia Thụy Điển trao giải Nobel Vật lý, Hoá học và Kinh tế; Học viện Karolinska trao giải Nobel Sinh lý học hoặc Y học; Viện Hàn lâm Thụy Điển trao giải Nobel Văn học; Ủy ban Nobel Na Uy trao giải Nobel Hoà bình. Mỗi người đoạt giải được nhận một huy chương, một bằng chứng nhận cùng một khoản tiền thưởng (khác nhau tùy theo năm). Năm 1901, những người đoạt giải Nobel đầu tiên được nhận 150.782 krona, tương đương với 8.763.633 krona theo thời giá tháng 12 năm 2021. Năm 2022, người nhận giải được trao phần thưởng tiền mặt trị giá 10 triệu krona. Lễ trao giải diễn ra tại Stockholm, Thụy Điển vào ngày 10 tháng 12 hằng năm, để tưởng niệm ngày mất của Nobel.
Trong những năm không trao giải Nobel do có sự kiện ngoài hoặc thiếu đề cử, tiền thưởng của giải sẽ được gửi trả lại về quỹ uỷ quyền cho giải đó. Từ năm 1940 đến 1942, không có giải Nobel nào được trao do Chiến tranh thế giới thứ hai bùng nổ.
Những người đoạt giải.
Từ năm 1901 đến năm 2022, các giải Nobel cùng với giải Nobel Kinh tế đã được trao 615 lần cho 989 cá nhân và tổ chức. Vì một số cá nhân và tổ chức đoạt giải Nobel nhiều lần, nên tổng cộng có 954 cá nhân và 27 tổ chức nhận giải. Có sáu người không được chính quyền sở tại cho phép nhận giải Nobel. |
Danh sách người đoạt giải Nobel | https://vi.wikipedia.org/wiki?curid=2506 | Chính quyền Adolf Hitler cấm bốn người Đức, Richard Kuhn (Nobel Hoá học 1938), Adolf Butenandt (Nobel Hoá học 1939), Gerhard Domagk (Nobel Sinh lý học hoặc Y học 1939), Carl von Ossietzky (Nobel Hoà bình 1935) nhận giải thưởng Nobel của mình. Chính phủ Trung Quốc không cho Lưu Hiểu Ba đến nhận giải Nobel Hoà bình 2010, và chính quyền Liên Xô gây áp lực buộc Boris Pasternak từ chối giải Nobel Văn học 1958. Lưu Hiểu Ba, Carl von Ossietzky và Aung San Suu Kyi đều được trao giải Nobel khi đang chịu án tù hoặc bị giam giữ. Có hai người đoạt giải Nobel, Jean-Paul Sartre (Nobel Văn học 1964) và Lê Đức Thọ (Nobel Hoà bình 1973), quyết định từ chối giải thưởng; Sartre khước từ giải Nobel cũng như mọi vinh dự chính thức khác, còn Lê Đức Thọ khước từ giải Nobel do tình hình Việt Nam thời điểm đó.
Có 7 cá nhân và tổ chức đoạt giải Nobel nhiều lần. Ủy ban Chữ thập đỏ Quốc tế được nhận giải Nobel Hoà bình ba lần, nhiều hơn bất kỳ cá nhân hoặc tổ chức nào khác. Cao ủy Liên Hợp Quốc về người tị nạn nhận giải Nobel Hoà bình hai lần, John Bardeen nhận giải Nobel Vật lý hai lần, còn Frederick Sanger và Karl Barry Sharpless nhận giải Nobel Hoá học hai lần. Có hai người đã được trao tặng giải Nobel hai lần ở hai lĩnh vực khác nhau: Marie Curie (Vật lý và Hoá học) và Linus Pauling (Hoá học và Hoà bình). Trong số 954 cá nhân nhận giải, có 60 người là nữ; người phụ nữ đầu tiên được trao giải Nobel là Marie Curie (Nobel Vật lý năm 1903). Với giải Nobel thứ hai về Hoá học năm 1911, bà trở thành người đầu tiên được trao hai giải Nobel. |
Vật chất | https://vi.wikipedia.org/wiki?curid=2512 | Vật chất cùng với không gian và thời gian là những vấn đề cơ bản mà tôn giáo, triết học và vật lý học nghiên cứu. Vật lý học và các ngành khoa học tự nhiên nghiên cứu cấu tạo cũng như những thuộc tính cụ thể của các dạng thực thể vật chất khác nhau trong thế giới tự nhiên. Các thực thể vật chất có thể ở dạng từ trường (cấu tạo bởi các hạt trường, thường không có khối lượng nghỉ, nhưng vẫn có khối lượng toàn phần), hoặc dạng chất (cấu tạo bởi các hạt chất, thường có khối lượng nghỉ) và chúng đều chiếm không gian. Với định nghĩa trên, các thực thể vật chất được hiểu khá rộng rãi, như một vật vĩ mô mà cũng có thể như bức xạ hoặc những hạt cơ bản cụ thể và ngay cả sự tác động qua lại của chúng. Đôi khi người ta nói đến thuật ngữ phản vật chất trong vật lý. Đó thực ra vẫn là những dạng thức vật chất theo định nghĩa trên, nhưng là một dạng vật chất đặc biệt ít gặp trong tự nhiên. Mọi thực thể vật chất đều tương tác lẫn nhau và những tương tác này cũng lại thông qua những dạng vật chất (cụ thể là những hạt tương tác trong các trường lực, ví dụ hạt photon trong trường điện từ).
Các tính chất cơ bản.
Khối lượng.
Khối lượng là một thuộc tính cơ bản của các thực thể vật chất trong tự nhiên.
Quán tính.
Theo lý thuyết của Isaac Newton mọi vật có khối lượng đều có quán tính (định luật 1 và 2 của Newton, xem thêm trang cơ học cổ điển), do đó cũng có thể nói mọi dạng thực thể của vật chất trong tự nhiên đều có quán tính.
Năng lượng.
Năng lượng là một thuộc tính cơ bản của tất cả các thực thể vật chất trong tự nhiên.
Theo lý thuyết của Albert Einstein mọi vật có khối lượng đều có năng lượng (công thức "E"="mc"², xem thêm trang lý thuyết tương đối), do đó cũng có thể nói mọi dạng thực thể của vật chất trong tự nhiên đều có năng lượng.
Công thức "ΔE"="Δmc"² không nói rằng khối lượng và năng lượng chuyển hóa lẫn nhau. Năng lượng và khối lượng đều là những thuộc tính của các thực thể vật chất trong tự nhiên. Không có năng lượng chuyển hóa thành khối lượng hay ngược lại. |
Vật chất | https://vi.wikipedia.org/wiki?curid=2512 | Công thức Einstein chỉ cho thấy rằng nếu một vật có khối lượng là "m" thì nó có năng lượng tương ứng là "E"="mc"². Trong phản ứng hạt nhân, nếu khối lượng thay đổi một lượng là "Δm" thì năng lượng cũng thay đổi một lượng tương ứng là "ΔE". Phần năng lượng thay đổi "ΔE" có thể là tỏa ra hay thu vào. Nếu là tỏa ra thì tồn tại dưới dạng năng lượng nhiệt và bức xạ ra các hạt cơ bản.
Lưỡng tính sóng-hạt.
Lưỡng tính sóng-hạt là một đặc tính cơ bản của vật chất, thể hiện ở điểm mọi vật chất di chuyển trong không gian đều có tính chất như là sự lan truyền của sóng tương ứng với vật chất đó, đồng thời cũng có tính chất của các hạt chuyển động.
Cụ thể, nếu một vật chất chuyển động giống như một hạt với động lượng "p" thì sự di chuyển của nó cũng giống như sự lan truyền của một sóng với bước sóng "λ" là:
với:
Các hạt có động lượng càng nhỏ thì tính sóng thể hiện càng mạnh. Ví dụ electron luôn thể hiện tính chất sóng khi nằm trong nguyên tử, và cũng bộc lộ tính chất di chuyển định hướng như các hạt khi nhận năng lượng cao trong máy gia tốc. Ánh sáng có động lượng nhỏ và thể hiện rõ tính sóng như nhiều bức xạ điện từ trong nhiều thí nghiệm, nhưng đôi lúc cũng thể hiện tính chất hạt như trong hiệu ứng quang điện.
Tác động lên không thời gian.
Vật chất, theo thuyết tương đối rộng, có quan hệ hữu cơ - biện chứng với không-thời gian. Cụ thể sự có mặt của vật chất gây ra độ cong của không thời gian và độ cong của không thời gian ảnh hưởng đến chuyển động tự do của vật chất. Không thời gian cong có những tính chất hình học đặc biệt được nghiên cứu trong hình học phi Euclid. Trong lý thuyết tương đối rộng, lực hấp dẫn được thay bằng hình dáng của không thời gian. Các hiện tượng mà cơ học cổ điển mô tả là tác động của lực hấp dẫn (như chuyển động của các hành tinh quanh Mặt Trời) thì lại được xem xét như là chuyển động theo quán tính trong không thời gian cong.
Một luận thuyết cho rằng vật chất là do các nguyên tử chịu tác động của sự rung động (vibration), hay chuyển động (motion), ở tần số hay vận tốc cao sinh từ trường (electro-magnetism) gây kết dính mà thành. |
Vật chất | https://vi.wikipedia.org/wiki?curid=2512 | Tất cả các dạng chất rắn, chất lỏng, chất khí; hay các dạng năng lượng như âm thanh, ánh sáng; cũng đều được tạo ra bằng các sóng rung động như thế. Albert Einstein đã phát biểu rằng: "Everything in life is vibration" (mọi thứ trên đời đều là rung động).
Vật chất tối.
Vật chất tối là phần vật chất mà con người chưa thể quan sát, cân đo được mà chỉ biết đến nó thông qua tác động tới những vật thể khác.
Có những tính toán cho thấy vật chất tối chiếm phần lớn khối lượng của các thực thể vật chất trong vũ trụ.
Phản vật chất.
Phản vật chất cũng là vật chất, nhưng cấu thành bởi các phản hạt... Năm 1928, trong khi nghên cứu kết hợp thuyết lượng tử vào trong thuyết tương đối rộng của Albert Einstein, Paul Dirac đã phát hiện ra rằng các tính toán không phản đối chuyện tồn tại các hạt cơ bản đặc biệt, có hầu hết mọi đặc tính cơ bản như các hạt cơ bản thông thường, nhưng mang điện tích trái dấu. Từ đó hình thành nên giả thiết tồn tại các hạt phản vật chất. Theo tính toán, nếu một hạt phản vật chất gặp (tương tác) hạt vật chất tương ứng, chúng sẽ nổ tung và tỏa ra 1 năng lượng rất lớn, theo phương trình Einstein. |
Tiên đề | https://vi.wikipedia.org/wiki?curid=2516 | Tiên đề, định đề là một phát biểu được coi là đúng, để làm tiền đề hoặc điểm xuất phát cho các suy luận và lập luận tiếp theo. Các từ gốc tiếng Latin của nó xuất phát từ tiếng Hy Lạp "axíōma" () 'điều đó được cho là xứng đáng hoặc phù hợp' hoặc 'tự coi mình là hiển nhiên.'
Thuật ngữ này có sự khác biệt nhỏ về định nghĩa khi được sử dụng trong bối cảnh của các lĩnh vực nghiên cứu khác nhau. Như được định nghĩa trong triết học cổ điển, tiên đề là một tuyên bố hiển nhiên hoặc có cơ sở rõ ràng, đến mức nó được chấp nhận mà không cần tranh cãi hay thắc mắc. Như được sử dụng trong lôgic học hiện đại, tiên đề là tiền đề hoặc điểm khởi đầu cho suy luận.
Khi được sử dụng trong toán học, thuật ngữ "tiên đề" được sử dụng theo hai nghĩa liên quan nhưng có thể phân biệt được: "tiên đề lôgic" và "tiên đề phi lôgic". Tiên đề logic thường là những phát biểu được coi là đúng trong hệ thống logic mà chúng xác định và thường được thể hiện dưới dạng ký hiệu (ví dụ, ("A" và "B") suy ra "A"), trong khi tiên đề phi logic (ví dụ: ) thực sự là những khẳng định cơ bản về các yếu tố thuộc miền của một lý thuyết toán học cụ thể (chẳng hạn như số học).
Khi được sử dụng theo nghĩa sau, "tiên đề" và "định đề" có thể được sử dụng thay thế cho nhau. Trong hầu hết các trường hợp, tiên đề phi lôgic chỉ đơn giản là một biểu thức lôgic hình thức được sử dụng trong phép suy diễn để xây dựng lý thuyết toán học và có thể có hoặc không hiển nhiên về bản chất (ví dụ, tiên đề song song trong hình học Euclid). Tiên đề hóa một hệ thống tri thức là chứng tỏ rằng các tuyên bố của nó có thể được rút ra từ một tập hợp các câu nhỏ, dễ hiểu (các tiên đề), và có thể có nhiều cách để tiên đề hóa một miền toán học nhất định.
Bất kỳ tiên đề nào cũng là một phát biểu đóng vai trò là điểm khởi đầu mà từ đó các phát biểu khác được suy ra một cách logic. Liệu nó có ý nghĩa hay không (và nếu đúng thì nó có nghĩa gì) để một tiên đề là "đúng" là một chủ đề tranh luận trong triết học toán học.
Phát triển trong lịch sử.
Hy Lạp cổ đại. |
Tiên đề | https://vi.wikipedia.org/wiki?curid=2516 | Phát triển trong lịch sử.
Hy Lạp cổ đại.
Phương pháp suy diễn logic theo đó kết luận sau (kiến thức mới) từ cơ sở (kiến thức cũ) thông qua việc áp dụng các lý luận hợp lý (tam đoạn luận, các quy tắc suy luận) được người Hy Lạp cổ đại phát triển, và điều này đã trở thành nguyên tắc cốt lõi của toán học hiện đại. Không có gì có thể được suy luận nếu không có gì được giả định. Do đó, tiên đề và định đề là những giả định cơ bản làm nền tảng cho một khối kiến thức suy diễn nhất định. Chúng được chấp nhận mà không cần chứng minh. Tất cả các khẳng định khác (định lý, trong trường hợp toán học) phải được chứng minh với sự hỗ trợ của các giả thiết cơ bản này. Tuy nhiên, cách giải thích kiến thức toán học đã thay đổi từ thời cổ đại sang hiện đại, và do đó các thuật ngữ "tiên đề" và "định đề" có một ý nghĩa hơi khác đối với nhà toán học ngày nay, so với những ý nghĩa của nó đối với Aristotle và Euclid.
Người Hy Lạp cổ đại coi hình học chỉ là một trong một số ngành khoa học, và coi các định lý của hình học ngang hàng với các sự kiện khoa học. Do đó, họ đã phát triển và sử dụng phương pháp suy luận logic như một phương tiện tránh sai sót, cũng như để cấu trúc và truyền đạt kiến thức. Phân tích hậu nghiệm của Aristotle là một sự trình bày rõ ràng của quan điểm cổ điển.
Sự cần thiết của tiên đề.
Tiên đề là điều kiện cần thiết để xây dựng bất cứ một lý thuyết nào. Bất cứ một khẳng định (hay đề xuất) nào đưa ra đều cần được giải thích hay xác minh bằng một khẳng định khác. Và vì nếu một khẳng định được giải thích hay xác minh bằng chính nó thì khẳng định đó sẽ không có giá trị, nên cần có một số vô hạn các khẳng định để giải thích bất kì một khẳng định nào. Vì thế cần phải có một (hay một số) khẳng định được công nhận là đúng để làm chỗ bắt đầu và đưa quá trình suy diễn từ vô hạn về hữu hạn.
Tương tự như vậy, bất cứ sự suy luận hay giao tiếp nào của con người cũng cần có điểm xuất phát chung. Tiên đề thuộc vào nhóm những yếu tố đầu tiên này. Một số yếu tố khác là: định nghĩa, quan hệ, v.v.
Tiên đề trong vật lý.
Tiên đề Bohr. |
Tiên đề | https://vi.wikipedia.org/wiki?curid=2516 | Tiên đề trong vật lý.
Tiên đề Bohr.
Các tiên đề Bohr là các tiên đề của mô hình Bohr, được sử dụng để giải thích các hiện tượng vật lý, ví dụ như công thức Rydberg về các vạch quang phổ của nguyên tử hydro.
Mô hình Bohr giữ nguyên mô hình hành tinh nguyên tử của Rutherford, nhưng bổ sung thêm hai tiên đề:
Tiên đề Einstein.
Trong thuyết tương đối hẹp, Einstein đưa ra hai tiên đề:
Trong thuyết tương đối rộng, ông đưa ra: |
Ánh sáng | https://vi.wikipedia.org/wiki?curid=2520 | Ánh sáng hay ánh sáng khả kiến là các bức xạ điện từ có bước sóng nằm trong vùng quang phổ nhìn thấy được bằng mắt thường của con người (tức là từ khoảng 380 nm đến 760 nm), còn gọi là vùng khả kiến. Giống như mọi bức xạ điện từ, ánh sáng có thể được mô tả như những đợt sóng hạt chuyển động gọi là photon. Ánh sáng có tốc độ rất nhanh, điều này dễ hiểu khi trời mưa, ta thấy ánh chớp xong rồi một lúc mới nghe thấy tiếng sấm.
Nguồn sáng chính trên Trái Đất là từ Mặt Trời. Ánh sáng mặt trời cung cấp năng lượng mà thực vật xanh sử dụng để tạo ra đường chủ yếu dưới dạng tinh bột, quá trình này được gọi là quang hợp. Trong lịch sử, một nguồn ánh sáng quan trọng khác đối với con người là lửa, từ lửa trại cổ xưa đến đèn dầu hỏa hiện đại. Với sự phát triển của đèn điện và hệ thống điện, ánh sáng điện đã thay thế ánh sáng nhiệt. Một số loài động vật tạo ra ánh sáng của riêng chúng, một quá trình gọi là phát quang sinh học. Ví dụ, đom đóm sử dụng ánh sáng để xác định vị trí bạn tình và mực quỷ sử dụng ánh sáng để ẩn mình khỏi con mồi.
Các tính chất cơ bản của ánh sáng nhìn thấy được như cường độ, hướng lan truyền, tần số hoặc bước sóng quang phổ và phân cực. tốc độ của nó trong chân không, 299.792.458 mét mỗi giây, là một trong những hằng số nền tảng của thiên nhiên. Ánh sáng nhìn thấy được, như với tất cả các loại bức xạ điện từ (EMR), được tìm thấy bằng thực nghiệm luôn luôn di chuyển ở tốc độ này trong chân không.
Trong vật lý, thuật ngữ "ánh sáng" đôi khi dùng để chỉ bức xạ điện từ ở bất kỳ bước sóng nào, dù nhìn thấy hay không. Theo nghĩa này, tia gamma, tia X, sóng vi ba và sóng vô tuyến cũng là ánh sáng. Giống như tất cả các loại bức xạ EM, ánh sáng nhìn thấy lan truyền dưới dạng sóng. Tuy nhiên, năng lượng được truyền bởi sóng được hấp thụ tại các vị trí đơn lẻ theo cách các hạt được hấp thụ. Năng lượng hấp thụ của sóng EM được gọi là photon và đại diện cho lượng tử ánh sáng. |
Ánh sáng | https://vi.wikipedia.org/wiki?curid=2520 | Khi một sóng ánh sáng được biến đổi và hấp thụ dưới dạng photon, năng lượng của sóng ngay lập tức sụp đổ xuống một vị trí và vị trí này là nơi photon "đến". Đây là những gì được gọi là sự sụp đổ chức năng sóng. Bản chất ánh sáng giống như hạt và giống như sóng kép này được gọi là lưỡng tính sóng hạt. Nghiên cứu về ánh sáng, được gọi là quang học, là một lĩnh vực nghiên cứu quan trọng trong vật lý hiện đại.
Quang phổ điện từ và ánh sáng khả kiến.
Nói chung, bức xạ EM (ký hiệu "bức xạ" không bao gồm điện tĩnh, từ trường và trường gần), hoặc EMR, được phân loại theo bước sóng thành sóng vô tuyến, vi sóng, hồng ngoại, phổ khả kiến mà chúng ta cảm nhận được như ánh sáng, tia cực tím, tia X., và tia gamma.
Hành vi của EMR phụ thuộc vào bước sóng của nó. Tần số cao hơn có bước sóng ngắn hơn, và tần số thấp hơn có bước sóng dài hơn. Khi EMR tương tác với các nguyên tử và phân tử đơn lẻ, hành vi của nó phụ thuộc vào lượng năng lượng trên mỗi lượng tử mà nó mang theo.
EMR trong vùng ánh sáng khả kiến bao gồm các lượng tử (gọi là photon) nằm ở đầu dưới của năng lượng có khả năng gây ra kích thích điện tử trong phân tử, dẫn đến những thay đổi trong liên kết hoặc hóa học của phân tử. Ở phần cuối thấp hơn của phổ ánh sáng nhìn thấy, EMR trở nên vô hình đối với con người (tia hồng ngoại) vì các photon của nó không còn đủ năng lượng riêng lẻ để gây ra sự thay đổi phân tử lâu dài (sự thay đổi về cấu trúc) trong phân tử thị giác võng mạc của con người, mà thay đổi kích hoạt cảm giác thị giác.
Có những loài động vật nhạy cảm với nhiều loại tia hồng ngoại khác nhau, nhưng không phải bằng phương pháp hấp thụ lượng tử. Cảm biến tia hồng ngoại ở rắn phụ thuộc vào một loại hình ảnh nhiệt tự nhiên, trong đó các gói nhỏ nước tế bào được tăng nhiệt độ bởi bức xạ hồng ngoại. EMR trong phạm vi này gây ra rung động phân tử và hiệu ứng sưởi ấm, đó là cách những động vật này phát hiện ra nó. |
Ánh sáng | https://vi.wikipedia.org/wiki?curid=2520 | Trên phạm vi của ánh sáng nhìn thấy, ánh sáng cực tím trở nên vô hình đối với con người, chủ yếu là do nó được hấp thụ bởi giác mạc dưới 360 nm và thấu kính bên trong dưới 400 nm. Hơn nữa, các tế bào hình que và tế bào hình nón nằm trong võng mạc của mắt người không thể phát hiện ra khoảng cách rất ngắn (dưới 360 nm) bước sóng tia cực tím và thực tế là bị tia cực tím làm hỏng. Nhiều động vật có mắt không cần thấu kính (chẳng hạn như côn trùng và tôm) có thể phát hiện tia cực tím, bằng cơ chế hấp thụ photon lượng tử, giống như cách thức hóa học mà con người phát hiện ánh sáng nhìn thấy.
Các nguồn khác nhau xác định ánh sáng nhìn thấy trong phạm vi hẹp 420–680 nm rộng tới 380–800 nm. Trong điều kiện phòng thí nghiệm lý tưởng, mọi người có thể nhìn thấy tia hồng ngoại lên đến ít nhất 1050 nm; trẻ em và thanh niên có thể cảm nhận bước sóng cực tím xuống khoảng 310–313 nm.
Sự phát triển của thực vật cũng bị ảnh hưởng bởi quang phổ màu của ánh sáng, một quá trình được gọi là quá trình photomorphogenesis.
Tốc độ ánh sáng.
Tốc độ ánh sáng trong chân không được xác định chính xác là 299.792.458m/s (xấp xỉ 186.282 dặm mỗi giây). Giá trị cố định của tốc độ ánh sáng tính bằng đơn vị SI là kết quả của thực tế rằng mét hiện được định nghĩa theo tốc độ ánh sáng. Tất cả các dạng bức xạ điện từ đều chuyển động với tốc độ chính xác như nhau trong chân không.
Các nhà vật lý khác nhau đã cố gắng đo tốc độ ánh sáng trong suốt lịch sử. Galileo đã cố gắng đo tốc độ ánh sáng vào thế kỷ XVII. Một thí nghiệm ban đầu để đo tốc độ ánh sáng được tiến hành bởi Ole Rømer, một nhà vật lý người Đan Mạch, vào năm 1676. Sử dụng kính thiên văn, Rømer quan sát chuyển động của Sao Mộc và một trong những mặt trăng của nó, Io. Nhận thấy sự khác biệt trong chu kỳ biểu kiến của quỹ đạo Io, ông tính toán rằng ánh sáng mất khoảng 22 phút để đi qua đường kính của quỹ đạo Trái Đất. Tuy nhiên, kích thước của nó vẫn chưa được biết đến vào thời điểm đó. |
Ánh sáng | https://vi.wikipedia.org/wiki?curid=2520 | Nếu Rømer biết đường kính của quỹ đạo Trái Đất, Rømer sẽ tính được tốc độ ánh sáng là 227.000.000 m/s.
Một phép đo khác chính xác hơn về tốc độ ánh sáng đã được Hippolyte Fizeau thực hiện ở châu Âu vào năm 1849. Fizeau hướng một chùm ánh sáng vào một tấm gương cách đó vài km. Một bánh răng quay được đặt trên đường truyền của chùm sáng khi nó đi từ nguồn, đến gương rồi quay trở lại điểm gốc. Fizeau nhận thấy rằng tại một tốc độ quay nhất định, chùm tia sẽ đi qua một khe hở trên bánh xe trên đường đi và khe hở tiếp theo trên đường quay trở lại. Biết khoảng cách đến gương, số răng trên bánh xe và tốc độ quay, Fizeau có thể tính được tốc độ ánh sáng là 313.000.000 m/s.
Léon Foucault đã thực hiện một thí nghiệm sử dụng gương quay để thu được giá trị 298.000.000 m/s vào năm 1862. Albert A. Michelson đã tiến hành các thí nghiệm về tốc độ ánh sáng từ năm 1877 cho đến khi ông qua đời năm 1931. Ông đã cải tiến các phương pháp của Foucault vào năm 1926 bằng cách sử dụng gương xoay cải tiến để đo thời gian cần ánh sáng để thực hiện một chuyến đi vòng từ Núi Wilson đến Núi San Antonio ở California. Các phép đo chính xác mang lại tốc độ 299.796.000 m/s.
Vận tốc hiệu quả của ánh sáng trong các chất trong suốt khác nhau chứa vật chất thông thường, là chậm hơn trong chân không. Ví dụ, tốc độ ánh sáng trong nước bằng 3/4 tốc độ trong chân không.
Hai nhóm các nhà vật lý độc lập được cho là đã đưa ánh sáng đến tốc độ "hoàn toàn bế tắc" bằng cách truyền nó qua chất ngưng tụ Bose – Einstein của nguyên tố rubidium, một nhóm tại Đại học Harvard và Viện Khoa học Rowland ở Cambridge, Massachusetts, và nhóm kia tại Trung tâm Vật lý Thiên văn Harvard – Smithsonian, cũng ở Cambridge. Tuy nhiên, mô tả phổ biến về việc ánh sáng bị "dừng lại" trong các thí nghiệm này chỉ đề cập đến việc ánh sáng được lưu giữ trong trạng thái kích thích của nguyên tử, sau đó được phát ra lại vào một thời điểm tùy ý sau đó, như được kích thích bởi xung laser thứ hai. Trong thời gian nó đã "dừng lại" nó đã không còn là ánh sáng nữa.
Quang học.
Nghiên cứu về ánh sáng và sự tương tác của ánh sáng và vật chất được gọi là quang học. |
Ánh sáng | https://vi.wikipedia.org/wiki?curid=2520 | Việc quan sát và nghiên cứu các hiện tượng quang học như cầu vồng và cực quang cung cấp nhiều manh mối về bản chất của ánh sáng.
Khúc xạ.
Khúc xạ là sự bẻ cong của các tia sáng khi đi qua một bề mặt giữa vật liệu trong suốt này và vật liệu khác. Nó được mô tả bởi Định luật Snell:
formula_1
trong đó θ1 là góc giữa tia và bề mặt pháp tuyến trong môi trường thứ nhất, θ2 là góc giữa tia và bề mặt pháp tuyến trong môi trường thứ hai, và n1 và n2 là chiết suất, "n" = 1 trong chân không và "n" > 1 trong chất trong suốt.
Khi một chùm ánh sáng đi qua ranh giới giữa chân không và môi trường khác, hoặc giữa hai môi trường khác nhau, thì bước sóng của ánh sáng thay đổi, nhưng tần số không đổi. Nếu chùm ánh sáng không trực giao (hoặc đúng hơn là pháp tuyến) với biên, thì sự thay đổi bước sóng dẫn đến thay đổi hướng của chùm. Sự thay đổi hướng này được gọi là sự khúc xạ.
Chất lượng khúc xạ của thấu kính thường được sử dụng để điều khiển ánh sáng nhằm thay đổi kích thước biểu kiến của hình ảnh. Kính lúp, kính cận, kính áp tròng, kính hiển vi và kính thiên văn khúc xạ đều là những ví dụ về thao tác này.
Nguồn sáng.
Có nhiều loại nguồn sáng. Một vật thể ở nhiệt độ nhất định phát ra một quang phổ đặc trưng của bức xạ vật đen. Một nguồn nhiệt đơn giản là ánh sáng mặt trời, bức xạ do sắc quyển của Mặt trời phát ra ở khoảng đạt cực đại trong vùng nhìn thấy của quang phổ điện từ khi được vẽ bằng đơn vị bước sóng và khoảng 44% năng lượng ánh sáng mặt trời chiếu tới mặt đất có thể nhìn thấy được. Một ví dụ khác là bóng đèn sợi đốt, chỉ phát ra khoảng 10% năng lượng dưới dạng ánh sáng nhìn thấy và phần còn lại là tia hồng ngoại. Nguồn ánh sáng nhiệt phổ biến trong lịch sử là các hạt rắn phát sáng trong ngọn lửa, nhưng chúng cũng phát ra phần lớn bức xạ của chúng trong tia hồng ngoại, và chỉ một phần nhỏ trong quang phổ nhìn thấy được.
Đỉnh của quang phổ vật đen nằm trong vùng hồng ngoại sâu, ở bước sóng khoảng 10 micromet, đối với các vật thể tương đối mát như con người. |
Ánh sáng | https://vi.wikipedia.org/wiki?curid=2520 | Khi nhiệt độ tăng, đỉnh chuyển sang các bước sóng ngắn hơn, đầu tiên tạo ra ánh sáng màu đỏ, sau đó là màu trắng, và cuối cùng là màu trắng xanh khi cực điểm di chuyển ra khỏi phần nhìn thấy của quang phổ và đi vào vùng tử ngoại. Những màu này có thể được nhìn thấy khi kim loại được nung nóng đến "nóng đỏ" hoặc "nóng trắng". Sự phát xạ nhiệt màu trắng xanh không thường được nhìn thấy, ngoại trừ ở các ngôi sao (màu xanh lam tinh khiết thường thấy trong ngọn lửa khí hoặc ngọn đuốc của thợ hàn trên thực tế là do phát xạ phân tử, đặc biệt là bởi các gốc CH (phát ra dải bước sóng khoảng 425 nm, và không được nhìn thấy trong các ngôi sao hoặc bức xạ nhiệt thuần túy).
Nguyên tử phát ra và hấp thụ ánh sáng với năng lượng đặc trưng. Điều này tạo ra " vạch phát xạ " trong quang phổ của mỗi nguyên tử. Sự phát xạ có thể là tự phát, như trong điốt phát sáng, đèn phóng điện (như đèn neon và bảng hiệu đèn neon, đèn hơi thủy ngân, v.v.) và ngọn lửa (ánh sáng từ chính khí nóng — vì vậy, ví dụ, natri trong ngọn lửa khí phát ra ánh sáng vàng đặc trưng). Sự phát xạ cũng có thể được kích thích, như trong tia laser hoặc máy nghiền vi sóng.
Sự giảm tốc của một hạt mang điện tự do, chẳng hạn như một electron, có thể tạo ra bức xạ nhìn thấy được: bức xạ cyclotron, bức xạ synchrotron và bức xạ bremsstrahlung đều là những ví dụ về điều này. Các hạt di chuyển trong môi trường nhanh hơn vận tốc pha của ánh sáng trong môi trường đó có thể tạo ra bức xạ Cherenkov nhìn thấy được. Một số hóa chất tạo ra bức xạ có thể nhìn thấy bằng phát quang hóa học. Ở các sinh vật, quá trình này được gọi là quá trình phát quang sinh học. Ví dụ, đom đóm tạo ra ánh sáng bằng phương tiện này, và thuyền di chuyển trong nước có thể làm nhiễu động sinh vật phù du tạo ra ánh sáng hắt lên.
Một số chất nhất định tạo ra ánh sáng khi chúng được chiếu sáng bởi bức xạ có năng lượng cao hơn, một quá trình được gọi là huỳnh quang. Một số chất phát ra ánh sáng chậm sau khi bị kích thích bởi bức xạ có năng lượng lớn hơn. Đây được gọi là hiện tượng lân quang. |
Ánh sáng | https://vi.wikipedia.org/wiki?curid=2520 | Đây được gọi là hiện tượng lân quang. Các vật liệu lân quang cũng có thể bị kích thích bằng cách bắn phá chúng bằng các hạt hạ nguyên tử. Cathodoluminescence là một ví dụ. Cơ chế này được sử dụng trong máy thu hình ống tia âm cực và màn hình máy tính.
Một số cơ chế khác có thể tạo ra ánh sáng:
Khi khái niệm ánh sáng được dự định bao gồm các photon năng lượng rất cao (tia gamma), các cơ chế tạo ra bổ sung bao gồm:
Đơn vị và phép đo.
Ánh sáng được đo bằng hai bộ đơn vị thay thế chính: đo bức xạ bao gồm các phép đo công suất ánh sáng ở tất cả các bước sóng, trong khi trắc quang đo ánh sáng có bước sóng có trọng số đối với mô hình chuẩn hóa về nhận thức độ sáng của con người. Phép đo quang rất hữu ích, ví dụ, để định lượng Độ chiếu sáng (chiếu sáng) dành cho con người. Các đơn vị SI của cả hai hệ thống được tóm tắt trong bảng sau.
Các đơn vị đo quang khác với hầu hết các hệ thống đơn vị vật lý ở chỗ chúng tính đến cách mắt người phản ứng với ánh sáng. Các tế bào hình nón trong mắt người có ba loại phản ứng khác nhau trên phổ khả kiến và phản ứng tích lũy đạt cực đại ở bước sóng khoảng 555 nm. Do đó, hai nguồn sáng tạo ra cùng cường độ (W/m²) ánh sáng nhìn thấy không nhất thiết phải xuất hiện sáng như nhau. Các đơn vị đo quang được thiết kế để tính đến điều này, và do đó, là sự thể hiện tốt hơn mức độ "sáng" của một ánh sáng so với cường độ thô. Chúng liên quan đến nguồn điện thô bằng một đại lượng gọi là hiệu suất phát sáng và được sử dụng cho các mục đích như xác định cách tốt nhất để đạt được đủ ánh sáng cho các nhiệm vụ khác nhau ở các cài đặt trong nhà và ngoài trời. Độ chiếu sáng được đo bằng cảm biến tế bào quang học không nhất thiết phải tương ứng với những gì mắt người cảm nhận được và không có bộ lọc có thể tốn kém, tế bào quang điện và thiết bị tích điện (CCD) có xu hướng phản ứng với một số tia hồng ngoại, tia cực tím hoặc cả hai.
Áp lực ánh sáng. |
Ánh sáng | https://vi.wikipedia.org/wiki?curid=2520 | Áp lực ánh sáng.
Ánh sáng gây áp lực vật lý lên các vật thể trên đường đi của nó, một hiện tượng có thể được suy ra bằng phương trình Maxwell, nhưng có thể dễ dàng giải thích hơn bằng bản chất hạt của ánh sáng: các photon va chạm và truyền động lượng của chúng. Áp suất ánh sáng bằng công suất của chùm sáng chia cho "c", tốc độ ánh sáng. Do độ lớn của "c" nên tác dụng của áp suất ánh sáng đối với các vật hàng ngày là không đáng kể. Ví dụ, một con trỏ laser một miliwatt tác động một lực khoảng 3,3 piconewton lên vật thể được chiếu sáng; do đó, người ta có thể nâng một đồng xu bằng con trỏ laser, nhưng làm như vậy sẽ cần khoảng 30 tỷ con trỏ laser 1 mW. Tuy nhiên, trong các ứng dụng quy mô nanomet như hệ thống cơ điện tử nano (NEMS), ảnh hưởng của áp suất ánh sáng là đáng kể hơn, và việc khai thác áp suất ánh sáng để điều khiển các cơ chế NEMS và lật công tắc vật lý quy mô nanomet trong các mạch tích hợp là một lĩnh vực nghiên cứu tích cực. Ở quy mô lớn hơn, áp suất ánh sáng có thể khiến các tiểu hành tinh quay nhanh hơn, tác động lên các hình dạng bất thường của chúng như trên các cánh của cối xay gió. Khả năng tạo ra những cánh buồm mặt trời có thể tăng tốc tàu vũ trụ trong không gian cũng đang được điều tra.
Mặc dù chuyển động của máy đo bức xạ Crookes ban đầu được cho là do áp suất ánh sáng, cách giải thích này không chính xác; sự quay Crookes đặc trưng là kết quả của chân không một phần. Điều này không nên nhầm lẫn với các máy đo bức xạ Nichols, trong đó (nhẹ) chuyển động gây ra bởi mô-men xoắn (mặc dù không đủ để xoay đầy đủ chống lại ma sát) "được" trực tiếp gây ra bởi áp lực ánh sáng. Do hệ quả của áp suất ánh sáng, Einstein vào năm 1909 đã tiên đoán về sự tồn tại của "ma sát bức xạ" sẽ chống lại sự chuyển động của vật chất. Ông viết, "bức xạ sẽ gây áp lực lên cả hai mặt của tấm. Lực tác dụng lên hai mặt bằng nhau nếu tấm ở trạng thái nghỉ. |
Ánh sáng | https://vi.wikipedia.org/wiki?curid=2520 | Tuy nhiên, nếu nó đang chuyển động, nhiều bức xạ sẽ được phản xạ trên bề mặt phía trước trong quá trình chuyển động (bề mặt phía trước) hơn bề mặt phía sau. Do đó, lực tác dụng ngược của áp suất tác dụng lên bề mặt phía trước lớn hơn lực tác động lên mặt sau. Do đó, là kết quả của hai lực, vẫn còn một lực chống lại chuyển động của tấm và lực đó tăng lên theo vận tốc của tấm. Chúng ta sẽ gọi ngắn gọn kết quả này là 'ma sát bức xạ'. "
Thông thường động lượng ánh sáng phù hợp với hướng chuyển động của nó. Tuy nhiên, ví dụ trong sóng phát ra xung lượng là phương ngang với hướng truyền.
Các lý thuyết lịch sử về ánh sáng, theo trình tự thời gian.
Trong lịch sử khám phá, đã có nhiều lý thuyết để giải thích các hiện tượng tự nhiên liên quan đến ánh sáng. Dưới đây trình bày các lý thuyết quan trọng, theo trình tự lịch sử.
Hy Lạp cổ đại và Hellenism.
Vào thế kỷ thứ năm trước Công nguyên, Empedocles đã mặc định rằng mọi thứ đều được cấu tạo từ bốn yếu tố; lửa, không khí, đất và nước. Ông tin rằng Aphrodite đã tạo ra mắt người từ bốn yếu tố và cô ấy đã thắp sáng ngọn lửa trong mắt mà ánh sáng đó sẽ tỏa ra từ mắt giúp cho thị giác có thể nhìn thấy được. Nếu điều này là đúng, thì người ta có thể nhìn thấy vào ban đêm cũng như ban ngày, vì vậy Empedocles đã giả định sự tương tác giữa các tia từ mắt và các tia từ một nguồn như mặt trời.
Vào khoảng 300 năm trước Công nguyên, Euclid đã viết "Optica", trong đó ông nghiên cứu các đặc tính của ánh sáng. Euclid giả định rằng ánh sáng truyền theo đường thẳng và ông mô tả các định luật phản xạ và nghiên cứu chúng bằng toán học. Anh ta đặt câu hỏi rằng thị giác là kết quả của một chùm tia từ mắt, vì anh ta hỏi làm thế nào người ta nhìn thấy các ngôi sao ngay lập tức, nếu một người nhắm mắt, rồi mở chúng ra vào ban đêm. Nếu chùm tia từ mắt truyền đi nhanh vô hạn thì đây không phải là vấn đề. |
Ánh sáng | https://vi.wikipedia.org/wiki?curid=2520 | Vào năm 55 trước Công nguyên, Lucretius, một người La Mã tiếp nối ý tưởng của các nhà nguyên tử Hy Lạp trước đó, đã viết rằng "Ánh sáng và sức nóng của mặt trời; chúng bao gồm các nguyên tử nhỏ, khi chúng bị đẩy ra, không mất thời gian bắn qua khoảng không khí theo hướng được truyền qua bởi xô đẩy. " (từ "Về bản chất của Vũ trụ"). Mặc dù tương tự với các lý thuyết hạt sau này, quan điểm của Lucretius thường không được chấp nhận. Ptolemy (khoảng thế kỷ thứ 2) đã viết về sự khúc xạ ánh sáng trong cuốn sách "Quang học" của mình.
Ấn Độ cổ đại.
Ở Ấn Độ cổ đại, các trường phái Hindu Samkhya và Vaishedhika, từ khoảng những thế kỷ đầu sau Công nguyên đã phát triển các lý thuyết về ánh sáng. Theo trường phái Samkhya, ánh sáng là một trong năm yếu tố cơ bản "vi tế" ("tanmatra") trong đó nổi lên các yếu tố thô. Tính nguyên tử của những nguyên tố này không được đề cập cụ thể và có vẻ như chúng thực sự được coi là liên tục. Mặt khác, trường phái Vaishedhika đưa ra lý thuyết nguyên tử về thế giới vật chất trên mặt đất phi nguyên tử của ête, không gian và thời gian. (Xem "thuyết nguyên tử của Ấn Độ".) Các nguyên tử cơ bản là của đất ("prthivi"), nước ("pani"), lửa ("agni") và không khí ("vayu") Các tia sáng được coi là một dòng nguyên tử "tejas" (lửa) vận tốc cao. Các hạt ánh sáng có thể thể hiện các đặc điểm khác nhau tùy thuộc vào tốc độ và sự sắp xếp của các nguyên tử "tejas". "Vishnu Purana" gọi ánh sáng mặt trời là "bảy tia sáng của mặt trời".
Các Phật tử Ấn Độ, chẳng hạn như Dignāga vào thế kỷ thứ 5 và Dharmakirti vào thế kỷ thứ 7, đã phát triển một loại thuyết nguyên tử là một triết lý về thực tại bao gồm các thực thể nguyên tử là những tia sáng hoặc năng lượng chớp nhoáng nhất thời. Họ coi ánh sáng là một thực thể nguyên tử tương đương với năng lượng.
Descartes.
René Descartes (1596–1650) cho rằng ánh sáng là đặc tính cơ học của vật thể phát sáng, bác bỏ "dạng" của Ibn al-Haytham và Witelo cũng như "loài" của Bacon, Grosseteste và Kepler. |
Ánh sáng | https://vi.wikipedia.org/wiki?curid=2520 | Năm 1637, ông công bố lý thuyết về sự khúc xạ ánh sáng, giả định rằng ánh sáng truyền đi nhanh hơn trong môi trường đặc hơn so với trong môi trường ít đặc hơn. Descartes đưa ra kết luận này bằng cách tương tự với hành vi của sóng âm thanh. Mặc dù Descartes không chính xác về tốc độ tương đối, nhưng ông đã đúng khi cho rằng ánh sáng hoạt động giống như sóng và kết luận rằng khúc xạ có thể được giải thích bằng tốc độ ánh sáng trong các phương tiện khác nhau.
Descartes không phải là người đầu tiên sử dụng phép loại suy cơ học nhưng vì ông khẳng định rõ ràng rằng ánh sáng chỉ là đặc tính cơ học của vật thể phát sáng và môi trường truyền dẫn, lý thuyết về ánh sáng của Descartes được coi là khởi đầu của quang học vật lý hiện đại.
Lý thuyết hạt ánh sáng.
Pierre Gassendi (1592–1655), một nhà nguyên tử học, đã đề xuất một lý thuyết về hạt của ánh sáng được công bố sau những năm 1660. Isaac Newton đã nghiên cứu công trình của Gassendi ngay từ khi còn nhỏ, và thích quan điểm của ông hơn lý thuyết của Descartes về "plenum". Ông tuyên bố trong "Giả thuyết về ánh sáng" năm 1675 của mình rằng ánh sáng bao gồm các tiểu thể (các hạt vật chất) được phát ra theo mọi hướng từ một nguồn. Một trong những lập luận của Newton chống lại bản chất sóng của ánh sáng là sóng được biết là có thể uốn cong quanh các chướng ngại vật, trong khi ánh sáng chỉ truyền theo đường thẳng. Tuy nhiên, ông đã giải thích được hiện tượng nhiễu xạ ánh sáng (đã được Francesco Grimaldi quan sát thấy) bằng cách cho phép một hạt ánh sáng có thể tạo ra một làn sóng cục bộ trong aether.
Lý thuyết của Newton có thể được sử dụng để dự đoán sự phản xạ của ánh sáng, nhưng chỉ có thể giải thích sự khúc xạ bằng cách giả định không chính xác rằng ánh sáng được gia tốc khi đi vào một môi trường đặc hơn vì lực hấp dẫn lớn hơn. Newton đã xuất bản phiên bản cuối cùng của lý thuyết của mình trong tác phẩm "Opticks" năm 1704. Danh tiếng của ông đã giúp lý thuyết hạt ánh sáng tiếp tục giữ uy tín trong thế kỷ 18. Lý thuyết hạt của ánh sáng khiến Laplace lập luận rằng một vật thể có khối lượng lớn đến mức ánh sáng không thể thoát ra khỏi nó. |
Ánh sáng | https://vi.wikipedia.org/wiki?curid=2520 | Nói cách khác, nó sẽ trở thành cái mà bây giờ được gọi là lỗ đen. Laplace đã rút lại đề xuất của mình sau đó, sau khi lý thuyết sóng của ánh sáng đã được thiết lập vững chắc như là mô hình cho ánh sáng (như đã được giải thích, cả lý thuyết hạt hay sóng đều không hoàn toàn đúng). Bản dịch bài luận của Newton về ánh sáng xuất hiện trong "Cấu trúc quy mô lớn của không-thời gian", của Stephen Hawking và George F. R. Ellis.
Thực tế là ánh sáng có thể bị phân cực lần đầu tiên được Newton giải thích một cách định tính bằng lý thuyết hạt. Étienne-Louis Malus năm 1810 đã tạo ra một lý thuyết hạt toán học về sự phân cực. Jean-Baptiste Biot năm 1812 đã chỉ ra rằng lý thuyết này giải thích tất cả các hiện tượng phân cực ánh sáng đã biết. Lúc đó sự phân cực được coi là bằng chứng của lý thuyết hạt.
Lý thuyết sóng ánh sáng.
Để giải thích nguồn gốc của màu sắc, Robert Hooke (1635–1703) đã phát triển một "lý thuyết xung" và so sánh sự lan truyền của ánh sáng với sự lan truyền của sóng trong nước trong tác phẩm năm 1665 của ông là "Micrographia" ("Quan sát IX"). Năm 1672, Hooke cho rằng dao động của ánh sáng có thể vuông góc với hướng truyền. Christiaan Huygens (1629–1695) đã đưa ra lý thuyết sóng toán học của ánh sáng vào năm 1678, và xuất bản nó trong "cuốn luận thuyết về ánh sáng" vào năm 1690. Ông đề xuất rằng ánh sáng được phát ra theo mọi hướng dưới dạng một chuỗi sóng trong một môi trường được gọi là "Luminiferous ether". Vì sóng không bị ảnh hưởng bởi lực hấp dẫn, nên người ta cho rằng chúng chậm lại khi đi vào một môi trường dày đặc hơn.
Lý thuyết sóng dự đoán rằng sóng ánh sáng có thể giao thoa với nhau giống như sóng âm thanh (như được ghi nhận vào khoảng năm 1800 bởi Thomas Young). Young đã chỉ ra bằng một thí nghiệm nhiễu xạ rằng ánh sáng hoạt động như sóng. Ông cũng đề xuất rằng các màu sắc khác nhau là do các bước sóng ánh sáng khác nhau tạo ra và giải thích khả năng nhìn màu về các thụ thể ba màu trong mắt. Một người ủng hộ lý thuyết sóng là Leonhard Euler. Ông lập luận trong "Nova theoria lucis et colorum" (1746) rằng nhiễu xạ có thể dễ dàng giải thích hơn bằng lý thuyết sóng. |
Ánh sáng | https://vi.wikipedia.org/wiki?curid=2520 | Năm 1816, André-Marie Ampère đã đưa ra ý tưởng cho Augustin-Jean Fresnel rằng sự phân cực của ánh sáng có thể được giải thích bằng lý thuyết sóng nếu ánh sáng là sóng ngang.
Sau đó, Fresnel đã độc lập nghiên cứu lý thuyết sóng ánh sáng của riêng mình, và trình bày nó cho Académie des Sciences năm 1817. Siméon Denis Poisson đã bổ sung vào công trình toán học của Fresnel để đưa ra một lập luận thuyết phục ủng hộ lý thuyết sóng, giúp lật ngược lý thuyết phân tử của Newton. Đến năm 1821, Fresnel đã có thể chỉ ra bằng các phương pháp toán học rằng sự phân cực có thể được giải thích bằng lý thuyết sóng của ánh sáng nếu và chỉ khi ánh sáng hoàn toàn là phương ngang, không có dao động dọc nào.
Điểm yếu của lý thuyết sóng là sóng ánh sáng, giống như sóng âm thanh, sẽ cần một môi trường để truyền. Sự tồn tại của chất giả thuyết "aether phát sáng" do Huygens đề xuất năm 1678 đã bị nghi ngờ mạnh mẽ vào cuối thế kỷ XIX bởi thí nghiệm Michelson – Morley.
Lý thuyết phân tử của Newton ngụ ý rằng ánh sáng sẽ truyền đi nhanh hơn trong môi trường dày đặc hơn, trong khi lý thuyết sóng của Huygens và những người khác ngụ ý ngược lại. Vào thời điểm đó, tốc độ ánh sáng không thể được đo đủ chính xác để quyết định lý thuyết nào là đúng. Người đầu tiên thực hiện một phép đo đủ chính xác là Léon Foucault, vào năm 1850. Kết quả của ông đã ủng hộ lý thuyết sóng, và lý thuyết hạt cổ điển cuối cùng đã bị loại bỏ, chỉ một phần xuất hiện trở lại vào thế kỷ 20.
Lý thuyết điện từ.
Năm 1845, Michael Faraday phát hiện ra rằng mặt phẳng phân cực của ánh sáng phân cực tuyến tính quay khi các tia sáng truyền dọc theo hướng từ trường với sự có mặt của chất điện môi trong suốt, một hiệu ứng ngày nay được gọi là quay Faraday. Đây là bằng chứng đầu tiên cho thấy ánh sáng có liên quan đến điện từ. Năm 1846, ông suy đoán rằng ánh sáng có thể là một dạng nhiễu loạn nào đó lan truyền dọc theo các đường sức từ. Năm 1847, Faraday đề xuất rằng ánh sáng là một dao động điện từ tần số cao, có thể lan truyền ngay cả khi không có môi trường như ête.
Công việc của Faraday đã truyền cảm hứng cho James Clerk Maxwell nghiên cứu bức xạ điện từ và ánh sáng. |
Ánh sáng | https://vi.wikipedia.org/wiki?curid=2520 | Maxwell phát hiện ra rằng sóng điện từ tự lan truyền sẽ truyền trong không gian với một tốc độ không đổi, tương đương với tốc độ ánh sáng đã đo được trước đó. Từ đó, Maxwell kết luận rằng ánh sáng là một dạng bức xạ điện từ: lần đầu tiên ông phát biểu kết quả này vào năm 1862 trên tạp chí "On Physical Lines of Force". Năm 1873, ông xuất bản "một luận thuyết về điện và từ", trong đó có một mô tả toán học đầy đủ về hoạt động của điện trường và từ trường, vẫn được gọi là phương trình Maxwell. Ngay sau đó, Heinrich Hertz đã xác nhận lý thuyết của Maxwell bằng thực nghiệm bằng cách tạo và phát hiện các sóng vô tuyến trong phòng thí nghiệm, và chứng minh rằng những sóng này hoạt động chính xác như ánh sáng nhìn thấy, thể hiện các đặc tính như phản xạ, khúc xạ, nhiễu xạ và giao thoa. Lý thuyết của Maxwell và các thí nghiệm của Hertz đã trực tiếp dẫn đến sự phát triển của vô tuyến, radar, truyền hình, hình ảnh điện từ và truyền thông không dây hiện đại.
Trong lý thuyết lượng tử, các photon được xem như các gói sóng của các sóng được mô tả trong lý thuyết cổ điển của Maxwell. Lý thuyết lượng tử cần thiết để giải thích các hiệu ứng ngay cả với ánh sáng thị giác mà lý thuyết cổ điển của Maxwell không thể giải thích được (chẳng hạn như các vạch quang phổ).
Lý thuyết lượng tử ánh sáng.
Năm 1900, Max Planck, cố gắng giải thích bức xạ vật đen, cho rằng mặc dù ánh sáng là một sóng, nhưng những sóng này chỉ có thể thu được hoặc mất năng lượng với một lượng hữu hạn liên quan đến tần số của chúng. Planck gọi những "cục" năng lượng ánh sáng này là " lượng tử " (từ một từ tiếng Latinh có nghĩa là "bao nhiêu"). Năm 1905, Albert Einstein sử dụng ý tưởng về lượng tử ánh sáng để giải thích hiệu ứng quang điện, và cho rằng những lượng tử ánh sáng này có sự tồn tại "thực". Năm 1923, Arthur Holly Compton đã chỉ ra rằng sự dịch chuyển bước sóng khi tia X cường độ thấp tán xạ từ các electron (gọi là tán xạ Compton) có thể được giải thích bằng lý thuyết hạt của tia X, nhưng không phải là lý thuyết sóng. Năm 1926, Gilbert N. Lewis đặt tên cho các hạt lượng tử ánh sáng này là photon. |
Ánh sáng | https://vi.wikipedia.org/wiki?curid=2520 | Cuối cùng lý thuyết hiện đại của cơ học lượng tử đã hình dung ánh sáng (theo một nghĩa nào đó) vừa có tính chất của hạt vừa có tính chất của sóng hay còn gọi là lưỡng tính sóng-hạt, và (theo một nghĩa khác), như một hiện tượng "không phải" là hạt cũng không phải là sóng (thực chất là các hiện tượng vĩ mô, chẳng hạn như bóng chày hoặc sóng biển). Thay vào đó, vật lý hiện đại coi ánh sáng là thứ có thể được mô tả đôi khi bằng toán học thích hợp với một kiểu ẩn dụ vĩ mô (hạt), và đôi khi là một phép ẩn dụ vĩ mô khác (sóng nước), nhưng thực sự là một thứ không thể hình dung hết được. Như trong trường hợp đối với sóng vô tuyến và tia X liên quan đến tán xạ Compton, các nhà vật lý đã lưu ý rằng bức xạ điện từ có xu hướng hoạt động giống như sóng cổ điển ở tần số thấp hơn, nhưng giống hạt cổ điển hơn ở tần số cao hơn, nhưng không bao giờ mất đi hoàn toàn. phẩm chất của cái này hay cái khác. Ánh sáng nhìn thấy, chiếm tần số trung bình, có thể dễ dàng hiển thị trong các thí nghiệm để mô tả được bằng cách sử dụng mô hình sóng hoặc hạt, hoặc đôi khi cả hai.
Vào tháng 2 năm 2018, các nhà khoa học thông báo, lần đầu tiên, việc phát hiện ra một hình thức mới của ánh sáng, có thể liên quan đến polariton, đó có thể hữu ích trong việc phát triển các máy tính lượng tử. |
Tương tác hấp dẫn | https://vi.wikipedia.org/wiki?curid=2526 | Trong vật lý học, lực hấp dẫn, hay chính xác hơn là tương tác hấp dẫn, là một hiện tượng tự nhiên mà tất cả vật có khối lượng hoặc năng lượng - bao gồm các hành tinh, ngôi sao, thiên hà, và thậm chí cả ánh sáng đều bị hút về nhau. Trên Trái Đất, lực hấp dẫn tạo ra trọng lượng cho các vật thể và lực hấp dẫn của Mặt Trăng gây ra thủy triều. Lực hấp dẫn cũng chính là lực khiến các vật chất khí ban đầu có trong vũ trụ kết tụ và hình thành các ngôi sao và khiến các ngôi sao tập hợp lại thành các thiên hà, do đó lực hấp dẫn chịu trách nhiệm cho nhiều cấu trúc quy mô lớn trong Vũ trụ. Lực hấp dẫn có một phạm vi vô hạn, mặc dù tác dụng lực của nó sẽ yếu đi nếu các vật thể xa nhau.
Lực hấp dẫn được mô tả chính xác nhất bằng lý thuyết tương đối tổng quát (do Albert Einstein đề xuất năm 1915), mô tả lực hấp dẫn không phải là một lực, mà là kết quả của độ cong của không thời gian gây ra bởi sự phân bố khối lượng không đồng đều. Ví dụ cực đoan nhất về độ cong của không thời gian này là một lỗ đen, từ đó, không có gì mà ngay cả ánh sáng cũng không thể thoát ra được khi vượt qua chân trời sự kiện của lỗ đen. Tuy nhiên, đối với hầu hết các ứng dụng, lực hấp dẫn gần đúng theo định luật vạn vật hấp dẫn của Newton, mô tả lực hấp dẫn là một lực, khiến cho hai vật thể bị hút vào nhau, với lực tỷ lệ với sản phẩm của khối lượng của chúng và tỷ lệ nghịch với bình phương của khoảng cách giữa chúng.
Lực hấp dẫn là yếu nhất trong bốn tương tác cơ bản của vật lý, yếu hơn khoảng 1038 lần so với tương tác mạnh, yếu hơn 1036 lần so với lực điện từ và yếu hơn 1029 lần so với tương tác yếu. Kết quả là, nó không có ảnh hưởng đáng kể ở cấp độ của các hạt hạ nguyên tử. Ngược lại, nó là sự tương tác vượt trội ở quy mô vĩ mô, và là nguyên nhân của sự hình thành, tạo hình dạng và quỹ đạo (quỹ đạo thiên thể) của các thiên thể.
Trong cơ học cổ điển, lực hấp dẫn xuất hiện như một ngoại lực tác động lên vật thể. |
Tương tác hấp dẫn | https://vi.wikipedia.org/wiki?curid=2526 | Trong thuyết tương đối rộng, lực hấp dẫn là bản chất của không thời gian bị uốn cong bởi sự hiện diện của khối lượng, và không phải là một ngoại lực. Trong thuyết hấp dẫn lượng tử, hạt graviton được cho là hạt mang lực hấp dẫn.
Trường hợp đầu tiên của lực hấp dẫn trong Vũ trụ, có thể ở dạng hấp dẫn lượng tử, siêu trọng lực hoặc một điểm kỳ dị hấp dẫn, cùng với không gian và thời gian thông thường, được phát triển trong kỷ nguyên Planck (tối đa 10−43 giây sau khi Vũ trụ ra đời), có thể từ một trạng thái nguyên thủy, chẳng hạn như chân không giả, chân không lượng tử hoặc hạt ảo, theo cách hiện chưa biết. Nỗ lực phát triển một lý thuyết về lực hấp dẫn phù hợp với cơ học lượng tử, một lý thuyết hấp dẫn lượng tử, cho phép lực hấp dẫn được hợp nhất trong một khung toán học chung (một lý thuyết về mọi thứ) với ba tương tác cơ bản khác của vật lý, là một lĩnh vực nghiên cứu hiện tại.
Lịch sử lý thuyết về hấp dẫn.
Thế giới cổ đại.
Nhà triết học Hy Lạp cổ đại Archimedes đã phát hiện ra trọng tâm của một hình tam giác. Ông cũng cho rằng nếu hai trọng lượng bằng nhau không có cùng trọng tâm thì trọng tâm của hai vật liên kết với nhau sẽ ở giữa đường nối với trọng tâm của chúng.
Kiến trúc sư và kỹ sư La Mã Vitruvius trong tác phẩm "De Architectura" đã quy định rằng trọng lực của một vật thể không phụ thuộc vào khối lượng mà là "bản chất" của nó.
Ở Ấn Độ cổ đại, Aryabhata lần đầu tiên xác định lực lượng để giải thích tại sao các vật thể không bị ném ra ngoài khi Trái Đất quay. Brahmagupta mô tả trọng lực là một lực hấp dẫn và sử dụng thuật ngữ "gurutvaakarshan" cho trọng lực.
Cách mạng khoa học.
Công trình hiện đại về lý thuyết hấp dẫn bắt đầu với công trình của Galileo Galilei vào cuối thế kỷ 16 và đầu thế kỷ 17. Trong thí nghiệm nổi tiếng (mặc dù có thể ông đã ngụy tạo) thả bóng từ Tháp nghiêng Pisa, và sau đó với các phép đo cẩn thận của quả bóng lăn xuống theo mặt phẳng nghiêng, Galileo cho thấy gia tốc trọng trường là như nhau cho tất cả các vật thể. |
Tương tác hấp dẫn | https://vi.wikipedia.org/wiki?curid=2526 | Đây là một sự khởi đầu lớn từ niềm tin của Aristotle rằng các vật nặng hơn có gia tốc trọng trường cao hơn. Galileo cho rằng sức cản không khí là lý do khiến các vật thể có khối lượng nhỏ hơn rơi chậm hơn trong bầu khí quyển. Công trình của Galileo tạo tiền đề cho việc hình thành thuyết hấp dẫn của Newton.
Thuyết hấp dẫn của Newton.
Năm 1687, nhà toán học người Anh Sir Isaac Newton đã xuất bản tác phẩm "Principia", trong đó đưa ra giả thuyết về định luật nghịch đảo bình phương của trọng lực phổ quát. Newton viết, "Tôi đã suy luận rằng các lực giữ các hành tinh trong quỹ đạo của chúng phải tương ứng với nhau như bình phương khoảng cách của chúng từ các trung tâm mà chúng quay tròn: và do đó so sánh lực cần thiết để giữ Mặt trăng trong quỹ đạo của nó với lực hấp dẫn ở bề mặt Trái Đất và thấy chúng gần như vậy. " Phương trình như sau:
formula_1
Trong đó "F" là lực, "m1" và "m2" là khối lượng của các vật tương tác, "r" là khoảng cách giữa tâm của khối lượng và "G" là hằng số hấp dẫn.
Lý thuyết của Newton đã tận hưởng thành công lớn nhất của nó khi nó được sử dụng để dự đoán sự tồn tại của sao Hải Vương dựa trên các chuyển động của sao Thiên Vương không thể giải thích được bằng hành động của các hành tinh khác. Tính toán của cả John Couch Adams và Urbain Le Verrier đã dự đoán vị trí chung của hành tinh này và tính toán của Le Verrier là điều khiến Johann Gottfried Galle phát hiện ra sao Hải Vương.
Một sự khác biệt trong quỹ đạo của sao Thủy đã chỉ ra những sai sót trong lý thuyết của Newton. Vào cuối thế kỷ 19, người ta đã biết rằng quỹ đạo của nó cho thấy những nhiễu loạn nhỏ không thể giải thích hoàn toàn theo lý thuyết của Newton, nhưng tất cả các tìm kiếm cho một vật thể nhiễu loạn khác (như một hành tinh quay quanh Mặt trời thậm chí gần hơn Sao Thủy) đã được không có kết quả Vấn đề đã được giải quyết vào năm 1915 bởi thuyết tương đối mới của Albert Einstein, tính toán cho sự khác biệt nhỏ trong quỹ đạo của Sao Thủy. Sự khác biệt này là sự tiến bộ trong sự đi nhanh hơn của Sao Thủy với chênh lệch 42,98 giây cung trong mỗi thế kỷ. |
Tương tác hấp dẫn | https://vi.wikipedia.org/wiki?curid=2526 | Mặc dù lý thuyết của Newton đã được thay thế bởi thuyết tương đối rộng của Albert Einstein, nhưng hầu hết các phép tính hấp dẫn không tương đối hiện đại vẫn được thực hiện bằng lý thuyết của Newton bởi vì nó đơn giản hơn để làm việc và nó cho kết quả đủ chính xác cho hầu hết các ứng dụng có khối lượng, tốc độ và năng lượng đủ nhỏ.
Nguyên lý tương đương.
Nguyên lý tương đương, được khám phá bởi một loạt các nhà nghiên cứu bao gồm Galileo, Loránd Eötvös và Einstein, bày tỏ ý tưởng rằng tất cả các vật thể rơi theo cùng một cách, và các tác động của trọng lực không thể phân biệt được từ các khía cạnh nhất định của gia tốc và giảm tốc. Cách đơn giản nhất để kiểm tra nguyên lý tương đương yếu là thả hai vật có khối lượng hoặc thành phần khác nhau trong chân không và xem liệu chúng có chạm đất cùng một lúc không. Các thí nghiệm như vậy chứng minh rằng tất cả các vật thể rơi ở cùng một tốc độ khi các lực khác (như sức cản không khí và hiệu ứng điện từ) không đáng kể. Các thử nghiệm tinh vi hơn sử dụng cân bằng xoắn của một loại được phát minh bởi Eötvös. Các thí nghiệm vệ tinh, ví dụ STEP, được lên kế hoạch cho các thí nghiệm chính xác hơn trong không gian.
Các công thức của nguyên lý tương đương bao gồm:
Thuyết tương đối rộng.
Trong thuyết tương đối rộng, ảnh hưởng của trọng lực được gán cho độ cong không thời gian thay vì một lực. Điểm khởi đầu cho thuyết tương đối rộng là nguyên lý tương đương, đánh đồng sự rơi tự do với chuyển động quán tính và mô tả các vật thể quán tính rơi tự do khi được gia tốc so với các quan sát viên không quán tính trên mặt đất. Tuy nhiên, trong vật lý Newton, không có gia tốc như vậy có thể xảy ra trừ khi ít nhất một trong số các vật thể đang được vận hành bởi một lực.
Einstein đã đề xuất rằng không thời gian bị cong bởi vật chất và các vật thể rơi tự do đang di chuyển dọc theo các đường thẳng cục bộ trong không thời gian cong. Những đường thẳng này được gọi là trắc địa. Giống như định luật chuyển động đầu tiên của Newton, lý thuyết của Einstein nói rằng nếu một lực được tác dụng lên một vật thể, nó sẽ lệch khỏi một trắc địa. |
Tương tác hấp dẫn | https://vi.wikipedia.org/wiki?curid=2526 | Chẳng hạn, chúng ta không còn theo dõi trắc địa trong khi đứng vì sức cản cơ học của Trái Đất tác động lên một lực hướng lên chúng ta và kết quả là chúng ta không có quán tính trên mặt đất. Điều này giải thích tại sao di chuyển dọc theo trắc địa trong không thời gian được coi là quán tính.
Einstein đã khám phá ra các phương trình trường của thuyết tương đối rộng, liên quan đến sự hiện diện của vật chất và độ cong của không thời gian và được đặt theo tên ông. Các Phương trình trường Einstein là một tập hợp của 10 đồng thời, phi tuyến tính, phương trình vi phân. Các giải pháp của phương trình trường là các thành phần của thang đo hệ số không thời gian. Một tenxơ mét mô tả một hình học của không thời gian. Các đường trắc địa cho một không thời gian được tính từ thang đo hệ mét.
Cụ thể.
Lực hấp dẫn của Trái Đất.
Mọi hành tinh (bao gồm cả Trái Đất) được bao quanh bởi trường hấp dẫn của chính nó, có thể được khái niệm hóa với vật lý Newton như tác dụng một lực hấp dẫn lên tất cả các vật thể. Giả sử một hành tinh đối xứng hình cầu, sức mạnh của trường này tại bất kỳ điểm nào trên bề mặt tỷ lệ thuận với khối lượng của hành tinh và tỷ lệ nghịch với bình phương khoảng cách từ tâm của vật thể.
Độ mạnh của trường hấp dẫn bằng số với gia tốc của các vật dưới ảnh hưởng của nó. Tốc độ gia tốc của các vật rơi gần bề mặt Trái Đất thay đổi rất ít tùy thuộc vào vĩ độ, các đặc điểm bề mặt như núi và rặng núi, và có lẽ mật độ bề mặt dưới cao hoặc thấp bất thường. Đối với mục đích của khối lượng và thước đo, giá trị trọng lực tiêu chuẩn được xác định bởi Cục Trọng lượng và Đo lường Quốc tế, theo Hệ thống Đơn vị Quốc tế (SI).
Giá trị đó, ký hiệu là "g" = 9,80665 m/s2 (32,1740 ft/s2).
Giá trị tiêu chuẩn 9,80665 m/s2 là cái ban đầu được Ủy ban Quốc tế về Trọng lượng và Đo lường áp dụng vào năm 1901 cho vĩ độ 45°, mặc dù nó đã được chứng minh là cao hơn khoảng năm phần nghìn. Giá trị này đã tồn tại trong khí tượng học và trong một số khí quyển tiêu chuẩn là giá trị cho vĩ độ 45° mặc dù nó áp dụng chính xác hơn cho vĩ độ 45°32'33". |
Tương tác hấp dẫn | https://vi.wikipedia.org/wiki?curid=2526 | Giả sử giá trị chuẩn cho g và bỏ qua sức cản của không khí, điều này có nghĩa là một vật rơi tự do gần bề mặt Trái Đất làm tăng vận tốc của nó thêm 9,80665 m/s (32,1740 ft/s hoặc 22 mph) cho mỗi giây gốc của nó. Do đó, một vật bắt đầu từ phần còn lại sẽ đạt vận tốc 9,80665 m/s (32,1740 ft/s) sau một giây, khoảng 19,62 m/s (64,4 ft/s) sau hai giây, v.v., thêm 9,80665 m/s (32,1740 ft/s) đến từng vận tốc kết quả. Ngoài ra, nếu một lần nữa bỏ qua sức cản không khí, thì tất cả các vật thể, khi rơi từ cùng một độ cao, sẽ chạm đất cùng một lúc.
Theo Định luật 3 của Newton, bản thân Trái Đất trải qua một lực có độ lớn bằng nhau và ngược chiều với lực mà nó tác dụng lên một vật rơi. Điều này có nghĩa là Trái Đất cũng tăng tốc đi về phía vật thể cho đến khi chúng va chạm. Tuy nhiên, do khối lượng của Trái Đất là rất lớn, nên gia tốc truyền tới Trái Đất bởi lực đối nghịch này không đáng kể so với vật thể. Nếu vật thể không nảy sau khi nó va chạm với Trái Đất, thì mỗi vật thể sau đó sẽ tác dụng lực tiếp xúc lên vật kia để cân bằng hiệu quả lực hấp dẫn và ngăn cản gia tốc hơn nữa. Lực hấp dẫn trên Trái Đất là kết quả (tổng vectơ) của hai lực: (a) Lực hấp dẫn theo định luật vạn vật hấp dẫn của Newton và (b) lực ly tâm, kết quả từ sự lựa chọn của một Trái Đất, khung quay của tài liệu tham khảo. Lực hấp dẫn yếu nhất ở xích đạo do lực ly tâm gây ra bởi sự quay của Trái Đất và do các điểm trên đường xích đạo nằm xa nhất từ tâm Trái Đất. Lực hấp dẫn thay đổi theo vĩ độ và tăng từ khoảng 9.780 m/s2 tại xích đạo đến khoảng 9,832 m/s2 ở hai cực.
Phương trình cho một vật thể rơi xuống gần bề mặt Trái Đất.
Theo giả định về lực hấp dẫn không đổi, định luật vạn vật hấp dẫn của Newton đơn giản hóa thành "F" = "mg", trong đó "m" là khối lượng của cơ thể và "g" là một vectơ không đổi có cường độ trung bình 9,81 m/s2 trên Trái Đất. Lực kết quả này là do khối lượng của đối tượng. |
Tương tác hấp dẫn | https://vi.wikipedia.org/wiki?curid=2526 | Lực kết quả này là do khối lượng của đối tượng. Gia tốc do trọng lực bằng "g". Một vật thể đứng yên ban đầu được phép rơi tự do dưới trọng lực sẽ giảm một khoảng cách tỷ lệ với bình phương của thời gian trôi qua. Hình ảnh bên phải, kéo dài nửa giây, được chụp bằng đèn flash stroboscopic ở tốc độ 20 lần / giây. Trong quá trình đầu tiên của một giây bóng xuống một đơn vị khoảng cách (ở đây, một đơn vị khoảng 12 mm); bởi nó đã giảm tại tổng cộng 4 đơn vị; 9 đơn vị và vân vân.
Theo cùng một giả định trọng lực không đổi, thế năng, "E"p, của một cơ thể ở độ cao "h" được cho bởi "E" p = "mgh" (hoặc "E"p = "Wh", với "W" có nghĩa là trọng lượng). Biểu thức này chỉ có giá trị trong khoảng cách nhỏ "h" từ bề mặt Trái Đất. Tương tự, biểu thức formula_2 đối với chiều cao tối đa đạt được của một cơ thể chiếu thẳng đứng với vận tốc ban đầu "v" chỉ hữu ích cho các độ cao nhỏ và vận tốc ban đầu nhỏ.
Lực hấp dẫn và thiên văn học.
Việc áp dụng định luật hấp dẫn của Newton đã cho phép thu được nhiều thông tin chi tiết mà chúng ta có về các hành tinh trong Hệ Mặt trời, khối lượng Mặt trời và chi tiết về các quasar; ngay cả sự tồn tại của vật chất tối cũng được suy luận bằng định luật hấp dẫn của Newton. Mặc dù chúng ta chưa đi đến tất cả các hành tinh cũng như Mặt trời, chúng ta biết khối lượng của chúng. Những khối lượng này có được bằng cách áp dụng định luật hấp dẫn cho các đặc tính đo được của quỹ đạo. Trong không gian một vật thể duy trì quỹ đạo của nó do lực hấp dẫn tác dụng lên nó. Các hành tinh quay quanh các ngôi sao, các ngôi sao quay quanh các trung tâm thiên hà, các thiên hà quay quanh một tâm khối lượng trong các cụm và các quỹ đạo của các cụm trong các siêu sao. Lực hấp dẫn tác dụng lên vật này bằng vật khác tỷ lệ thuận với tích của khối lượng của vật đó và tỉ lệ nghịch với bình phương khoảng cách giữa chúng. |
Tương tác hấp dẫn | https://vi.wikipedia.org/wiki?curid=2526 | Trọng lực sớm nhất (có thể dưới dạng trọng lực lượng tử, siêu trọng lực hoặc một điểm kỳ dị hấp dẫn), cùng với không gian và thời gian thông thường, được phát triển trong kỷ nguyên Planck (tối đa 10 −43 giây sau khi vũ trụ ra đời), có thể từ một nguyên thủy trạng thái (như chân không giả, chân không lượng tử hoặc hạt ảo), theo cách hiện chưa biết.
Bức xạ hấp dẫn.
Thuyết tương đối rộng dự đoán rằng năng lượng có thể được vận chuyển ra khỏi hệ thống thông qua bức xạ hấp dẫn. Bất kỳ vật chất tăng tốc nào cũng có thể tạo ra độ cong trong chỉ số không-thời gian, đó là cách bức xạ hấp dẫn được vận chuyển ra khỏi hệ thống. Các vật thể cùng quỹ đạo có thể tạo ra độ cong trong không-thời gian như hệ Trái Đất-Mặt trời, các cặp sao neutron và cặp lỗ đen. Một hệ thống vật lý thiên văn khác dự đoán sẽ mất năng lượng dưới dạng bức xạ hấp dẫn đang phát nổ siêu tân tinh.
Bằng chứng gián tiếp đầu tiên cho bức xạ hấp dẫn là thông qua các phép đo nhị phân Hulse hè Taylor năm 1973. Hệ thống này bao gồm một sao xung và sao neutron trên quỹ đạo xung quanh nhau. Thời kỳ quỹ đạo của nó đã giảm kể từ khi phát hiện ban đầu do mất năng lượng, phù hợp với lượng năng lượng bị mất do bức xạ hấp dẫn. Nghiên cứu này đã được trao giải thưởng Nobel Vật lý năm 1993.
Bằng chứng trực tiếp đầu tiên về bức xạ hấp dẫn được đo vào ngày 14 tháng 9 năm 2015 bởi các máy dò LIGO. Các sóng hấp dẫn phát ra trong vụ va chạm của hai lỗ đen cách Trái Đất 1,3 tỷ năm ánh sáng đã được đo. Quan sát này xác nhận dự đoán lý thuyết của Einstein và những người khác rằng những sóng như vậy tồn tại. Nó cũng mở đường cho sự quan sát và hiểu biết thực tế về bản chất của lực hấp dẫn và các sự kiện trong Vũ trụ bao gồm cả Vụ nổ lớn. Sao neutron và sự hình thành lỗ đen cũng tạo ra lượng bức xạ hấp dẫn có thể phát hiện được. Nghiên cứu này đã được trao giải thưởng Nobel về vật lý năm 2017.
Tốc độ của lực hấp dẫn. |
Tương tác hấp dẫn | https://vi.wikipedia.org/wiki?curid=2526 | Tốc độ của lực hấp dẫn.
Vào tháng 12 năm 2012, một nhóm nghiên cứu ở Trung Quốc tuyên bố rằng họ đã thực hiện các phép đo độ trễ pha của thủy triều Trái Đất trong các mặt trăng đầy đủ và mới dường như chứng minh rằng tốc độ của trọng lực bằng tốc độ ánh sáng. Điều này có nghĩa là nếu Mặt trời đột nhiên biến mất, Trái Đất sẽ quay quanh nó bình thường trong 8 phút, đó là thời gian ánh sáng cần thiết để di chuyển quãng đường đó. Phát hiện của nhóm đã được công bố trong Bản tin Khoa học Trung Quốc vào tháng 2 năm 2013.
Vào tháng 10 năm 2017, các máy dò LIGO và Virgo đã nhận được tín hiệu sóng hấp dẫn trong vòng 2 giây của các vệ tinh tia gamma và kính viễn vọng quang học nhìn thấy các tín hiệu từ cùng một hướng. Điều này khẳng định rằng tốc độ của sóng hấp dẫn giống như tốc độ của ánh sáng.
Các bất thường và khác biệt.
Có một số quan sát không được tính toán đầy đủ, điều này có thể chỉ ra sự cần thiết phải có lý thuyết tốt hơn về lực hấp dẫn hoặc có thể được giải thích theo những cách khác. |
Khối lượng | https://vi.wikipedia.org/wiki?curid=2528 | Khối lượng vừa là một đặc tính của vật thể vật lý vừa là thước đo khả năng chống lại gia tốc của nó (sự thay đổi trạng thái chuyển động của nó) khi một lực ròng được áp dụng. Khối lượng của một vật thể cũng xác định sức mạnh của lực hấp dẫn của nó đối với các vật thể khác. Đơn vị khối lượng SI cơ bản là kilôgam (kg).
Trong vật lý, khối lượng khác trọng lượng, mặc dù khối lượng thường được đo bằng cân lò xo hơn là cân thăng bằng đòn bẩy so với một vật mẫu. Một vật sẽ nhẹ hơn khi ở trên mặt trăng so với Trái Đất, tuy vậy nó vẫn sẽ có cùng một lượng vật chất. Điều này là do trọng lượng là một lực, còn khối lượng là một tính chất (cùng với trọng lực) quyết định độ lớn của lực này.
Trong cơ học cổ điển, khái niệm khối lượng có thể hiểu là số vật chất có trong một vật. Mặc dù vậy, trong trường hợp vật di chuyển rất nhanh, thuyết tương đối hẹp phát biểu rằng động năng sẽ trở thành một phần lớn khối lượng. Do đó, tất cả các vật ở trạng thái nghỉ sẽ có cùng một mức năng lượng, và tất cả các trạng thái năng lượng cản trở gia tốc và các lực hấp dẫn. Trong vật lý hiện đại, vật chất không phải là một khái niệm cơ bản vì định nghĩa của nó khá là khó nắm bắt.
Hiện tượng.
Có một số hiện tượng khác biệt có thể được sử dụng để đo khối lượng. Mặc dù một số nhà lý thuyết đã suy đoán rằng một số hiện tượng có thể là độc lập với nhau, các bài kiểm tra hiện tại không tìm thấy sự khác nhau trong kết quả mặc dù được đo như thế nào:
Khối lượng của một vật quy định gia tốc của một vật nếu vật đó bị tác động bởi ngoại lực. Quán tính và khối lượng quán tính miêu tả cùng một tính chất vật lí cả về hai mặt định tính và định lượng. Theo như các định luật về chuyển động của Newton, nếu một vật có khối lượng "m" và bị tác động bởi lực "F", gia tốc của nó được tính bằng công thức "F"/"m". Khối lượng cũng quyết định tính chất hút vật và bị hấp dẫn bởi một trường hấp dẫn. |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.