repo_name
stringlengths
7
81
path
stringlengths
4
224
copies
stringclasses
221 values
size
stringlengths
4
7
content
stringlengths
975
1.04M
license
stringclasses
15 values
ericmckean/nacl-llvm-branches.llvm-gcc-trunk
gcc/testsuite/gfortran.dg/auto_char_pointer_array_result_1.f90
188
1056
! { dg-do run } ! Tests the fixes for PR25597 and PR27096. ! ! This test combines the PR testcases. ! character(10), dimension (2) :: implicit_result character(10), dimension (2) :: explicit_result character(10), dimension (2) :: source source = "abcdefghij" explicit_result = join_1(source) if (any (explicit_result .ne. source)) call abort () implicit_result = reallocate_hnv (source, size(source, 1), LEN (source)) if (any (implicit_result .ne. source)) call abort () contains ! This function would cause an ICE in gfc_trans_deferred_array. function join_1(self) result(res) character(len=*), dimension(:) :: self character(len=len(self)), dimension(:), pointer :: res allocate (res(2)) res = self end function ! This function originally ICEd and latterly caused a runtime error. FUNCTION reallocate_hnv(p, n, LEN) CHARACTER(LEN=LEN), DIMENSION(:), POINTER :: reallocate_hnv character(*), dimension(:) :: p ALLOCATE (reallocate_hnv(n)) reallocate_hnv = p END FUNCTION reallocate_hnv end
gpl-2.0
yaowee/libflame
lapack-test/3.5.0/EIG/zsbmv.f
32
10745
*> \brief \b ZSBMV * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE ZSBMV( UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y, * INCY ) * * .. Scalar Arguments .. * CHARACTER UPLO * INTEGER INCX, INCY, K, LDA, N * COMPLEX*16 ALPHA, BETA * .. * .. Array Arguments .. * COMPLEX*16 A( LDA, * ), X( * ), Y( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZSBMV performs the matrix-vector operation *> *> y := alpha*A*x + beta*y, *> *> where alpha and beta are scalars, x and y are n element vectors and *> A is an n by n symmetric band matrix, with k super-diagonals. *> \endverbatim * * Arguments: * ========== * *> \verbatim *> UPLO - CHARACTER*1 *> On entry, UPLO specifies whether the upper or lower *> triangular part of the band matrix A is being supplied as *> follows: *> *> UPLO = 'U' or 'u' The upper triangular part of A is *> being supplied. *> *> UPLO = 'L' or 'l' The lower triangular part of A is *> being supplied. *> *> Unchanged on exit. *> *> N - INTEGER *> On entry, N specifies the order of the matrix A. *> N must be at least zero. *> Unchanged on exit. *> *> K - INTEGER *> On entry, K specifies the number of super-diagonals of the *> matrix A. K must satisfy 0 .le. K. *> Unchanged on exit. *> *> ALPHA - COMPLEX*16 *> On entry, ALPHA specifies the scalar alpha. *> Unchanged on exit. *> *> A - COMPLEX*16 array, dimension( LDA, N ) *> Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) *> by n part of the array A must contain the upper triangular *> band part of the symmetric matrix, supplied column by *> column, with the leading diagonal of the matrix in row *> ( k + 1 ) of the array, the first super-diagonal starting at *> position 2 in row k, and so on. The top left k by k triangle *> of the array A is not referenced. *> The following program segment will transfer the upper *> triangular part of a symmetric band matrix from conventional *> full matrix storage to band storage: *> *> DO 20, J = 1, N *> M = K + 1 - J *> DO 10, I = MAX( 1, J - K ), J *> A( M + I, J ) = matrix( I, J ) *> 10 CONTINUE *> 20 CONTINUE *> *> Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) *> by n part of the array A must contain the lower triangular *> band part of the symmetric matrix, supplied column by *> column, with the leading diagonal of the matrix in row 1 of *> the array, the first sub-diagonal starting at position 1 in *> row 2, and so on. The bottom right k by k triangle of the *> array A is not referenced. *> The following program segment will transfer the lower *> triangular part of a symmetric band matrix from conventional *> full matrix storage to band storage: *> *> DO 20, J = 1, N *> M = 1 - J *> DO 10, I = J, MIN( N, J + K ) *> A( M + I, J ) = matrix( I, J ) *> 10 CONTINUE *> 20 CONTINUE *> *> Unchanged on exit. *> *> LDA - INTEGER *> On entry, LDA specifies the first dimension of A as declared *> in the calling (sub) program. LDA must be at least *> ( k + 1 ). *> Unchanged on exit. *> *> X - COMPLEX*16 array, dimension at least *> ( 1 + ( N - 1 )*abs( INCX ) ). *> Before entry, the incremented array X must contain the *> vector x. *> Unchanged on exit. *> *> INCX - INTEGER *> On entry, INCX specifies the increment for the elements of *> X. INCX must not be zero. *> Unchanged on exit. *> *> BETA - COMPLEX*16 *> On entry, BETA specifies the scalar beta. *> Unchanged on exit. *> *> Y - COMPLEX*16 array, dimension at least *> ( 1 + ( N - 1 )*abs( INCY ) ). *> Before entry, the incremented array Y must contain the *> vector y. On exit, Y is overwritten by the updated vector y. *> *> INCY - INTEGER *> On entry, INCY specifies the increment for the elements of *> Y. INCY must not be zero. *> Unchanged on exit. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup complex16_eig * * ===================================================================== SUBROUTINE ZSBMV( UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y, $ INCY ) * * -- LAPACK test routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. CHARACTER UPLO INTEGER INCX, INCY, K, LDA, N COMPLEX*16 ALPHA, BETA * .. * .. Array Arguments .. COMPLEX*16 A( LDA, * ), X( * ), Y( * ) * .. * * ===================================================================== * * .. Parameters .. COMPLEX*16 ONE PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) ) COMPLEX*16 ZERO PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) ) * .. * .. Local Scalars .. INTEGER I, INFO, IX, IY, J, JX, JY, KPLUS1, KX, KY, L COMPLEX*16 TEMP1, TEMP2 * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = 1 ELSE IF( N.LT.0 ) THEN INFO = 2 ELSE IF( K.LT.0 ) THEN INFO = 3 ELSE IF( LDA.LT.( K+1 ) ) THEN INFO = 6 ELSE IF( INCX.EQ.0 ) THEN INFO = 8 ELSE IF( INCY.EQ.0 ) THEN INFO = 11 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZSBMV ', INFO ) RETURN END IF * * Quick return if possible. * IF( ( N.EQ.0 ) .OR. ( ( ALPHA.EQ.ZERO ) .AND. ( BETA.EQ.ONE ) ) ) $ RETURN * * Set up the start points in X and Y. * IF( INCX.GT.0 ) THEN KX = 1 ELSE KX = 1 - ( N-1 )*INCX END IF IF( INCY.GT.0 ) THEN KY = 1 ELSE KY = 1 - ( N-1 )*INCY END IF * * Start the operations. In this version the elements of the array A * are accessed sequentially with one pass through A. * * First form y := beta*y. * IF( BETA.NE.ONE ) THEN IF( INCY.EQ.1 ) THEN IF( BETA.EQ.ZERO ) THEN DO 10 I = 1, N Y( I ) = ZERO 10 CONTINUE ELSE DO 20 I = 1, N Y( I ) = BETA*Y( I ) 20 CONTINUE END IF ELSE IY = KY IF( BETA.EQ.ZERO ) THEN DO 30 I = 1, N Y( IY ) = ZERO IY = IY + INCY 30 CONTINUE ELSE DO 40 I = 1, N Y( IY ) = BETA*Y( IY ) IY = IY + INCY 40 CONTINUE END IF END IF END IF IF( ALPHA.EQ.ZERO ) $ RETURN IF( LSAME( UPLO, 'U' ) ) THEN * * Form y when upper triangle of A is stored. * KPLUS1 = K + 1 IF( ( INCX.EQ.1 ) .AND. ( INCY.EQ.1 ) ) THEN DO 60 J = 1, N TEMP1 = ALPHA*X( J ) TEMP2 = ZERO L = KPLUS1 - J DO 50 I = MAX( 1, J-K ), J - 1 Y( I ) = Y( I ) + TEMP1*A( L+I, J ) TEMP2 = TEMP2 + A( L+I, J )*X( I ) 50 CONTINUE Y( J ) = Y( J ) + TEMP1*A( KPLUS1, J ) + ALPHA*TEMP2 60 CONTINUE ELSE JX = KX JY = KY DO 80 J = 1, N TEMP1 = ALPHA*X( JX ) TEMP2 = ZERO IX = KX IY = KY L = KPLUS1 - J DO 70 I = MAX( 1, J-K ), J - 1 Y( IY ) = Y( IY ) + TEMP1*A( L+I, J ) TEMP2 = TEMP2 + A( L+I, J )*X( IX ) IX = IX + INCX IY = IY + INCY 70 CONTINUE Y( JY ) = Y( JY ) + TEMP1*A( KPLUS1, J ) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY IF( J.GT.K ) THEN KX = KX + INCX KY = KY + INCY END IF 80 CONTINUE END IF ELSE * * Form y when lower triangle of A is stored. * IF( ( INCX.EQ.1 ) .AND. ( INCY.EQ.1 ) ) THEN DO 100 J = 1, N TEMP1 = ALPHA*X( J ) TEMP2 = ZERO Y( J ) = Y( J ) + TEMP1*A( 1, J ) L = 1 - J DO 90 I = J + 1, MIN( N, J+K ) Y( I ) = Y( I ) + TEMP1*A( L+I, J ) TEMP2 = TEMP2 + A( L+I, J )*X( I ) 90 CONTINUE Y( J ) = Y( J ) + ALPHA*TEMP2 100 CONTINUE ELSE JX = KX JY = KY DO 120 J = 1, N TEMP1 = ALPHA*X( JX ) TEMP2 = ZERO Y( JY ) = Y( JY ) + TEMP1*A( 1, J ) L = 1 - J IX = JX IY = JY DO 110 I = J + 1, MIN( N, J+K ) IX = IX + INCX IY = IY + INCY Y( IY ) = Y( IY ) + TEMP1*A( L+I, J ) TEMP2 = TEMP2 + A( L+I, J )*X( IX ) 110 CONTINUE Y( JY ) = Y( JY ) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY 120 CONTINUE END IF END IF * RETURN * * End of ZSBMV * END
bsd-3-clause
yaowee/libflame
lapack-test/3.4.2/LIN/ztzt01.f
29
4638
*> \brief \b ZTZT01 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * DOUBLE PRECISION FUNCTION ZTZT01( M, N, A, AF, LDA, TAU, WORK, * LWORK ) * * .. Scalar Arguments .. * INTEGER LDA, LWORK, M, N * .. * .. Array Arguments .. * COMPLEX*16 A( LDA, * ), AF( LDA, * ), TAU( * ), * $ WORK( LWORK ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZTZT01 returns *> || A - R*Q || / ( M * eps * ||A|| ) *> for an upper trapezoidal A that was factored with ZTZRQF. *> \endverbatim * * Arguments: * ========== * *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows of the matrices A and AF. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns of the matrices A and AF. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is COMPLEX*16 array, dimension (LDA,N) *> The original upper trapezoidal M by N matrix A. *> \endverbatim *> *> \param[in] AF *> \verbatim *> AF is COMPLEX*16 array, dimension (LDA,N) *> The output of ZTZRQF for input matrix A. *> The lower triangle is not referenced. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the arrays A and AF. *> \endverbatim *> *> \param[in] TAU *> \verbatim *> TAU is COMPLEX*16 array, dimension (M) *> Details of the Householder transformations as returned by *> ZTZRQF. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX*16 array, dimension (LWORK) *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The length of the array WORK. LWORK >= m*n + m. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup complex16_lin * * ===================================================================== DOUBLE PRECISION FUNCTION ZTZT01( M, N, A, AF, LDA, TAU, WORK, $ LWORK ) * * -- LAPACK test routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. INTEGER LDA, LWORK, M, N * .. * .. Array Arguments .. COMPLEX*16 A( LDA, * ), AF( LDA, * ), TAU( * ), $ WORK( LWORK ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) * .. * .. Local Scalars .. INTEGER I, J DOUBLE PRECISION NORMA * .. * .. Local Arrays .. DOUBLE PRECISION RWORK( 1 ) * .. * .. External Functions .. DOUBLE PRECISION DLAMCH, ZLANGE EXTERNAL DLAMCH, ZLANGE * .. * .. External Subroutines .. EXTERNAL XERBLA, ZAXPY, ZLASET, ZLATZM * .. * .. Intrinsic Functions .. INTRINSIC DBLE, DCMPLX, MAX * .. * .. Executable Statements .. * ZTZT01 = ZERO * IF( LWORK.LT.M*N+M ) THEN CALL XERBLA( 'ZTZT01', 8 ) RETURN END IF * * Quick return if possible * IF( M.LE.0 .OR. N.LE.0 ) $ RETURN * NORMA = ZLANGE( 'One-norm', M, N, A, LDA, RWORK ) * * Copy upper triangle R * CALL ZLASET( 'Full', M, N, DCMPLX( ZERO ), DCMPLX( ZERO ), WORK, $ M ) DO 20 J = 1, M DO 10 I = 1, J WORK( ( J-1 )*M+I ) = AF( I, J ) 10 CONTINUE 20 CONTINUE * * R = R * P(1) * ... *P(m) * DO 30 I = 1, M CALL ZLATZM( 'Right', I, N-M+1, AF( I, M+1 ), LDA, TAU( I ), $ WORK( ( I-1 )*M+1 ), WORK( M*M+1 ), M, $ WORK( M*N+1 ) ) 30 CONTINUE * * R = R - A * DO 40 I = 1, N CALL ZAXPY( M, DCMPLX( -ONE ), A( 1, I ), 1, $ WORK( ( I-1 )*M+1 ), 1 ) 40 CONTINUE * ZTZT01 = ZLANGE( 'One-norm', M, N, WORK, M, RWORK ) * ZTZT01 = ZTZT01 / ( DLAMCH( 'Epsilon' )*DBLE( MAX( M, N ) ) ) IF( NORMA.NE.ZERO ) $ ZTZT01 = ZTZT01 / NORMA * RETURN * * End of ZTZT01 * END
bsd-3-clause
yaowee/libflame
lapack-test/3.4.2/EIG/dlarhs.f
32
12467
*> \brief \b DLARHS * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE DLARHS( PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, * A, LDA, X, LDX, B, LDB, ISEED, INFO ) * * .. Scalar Arguments .. * CHARACTER TRANS, UPLO, XTYPE * CHARACTER*3 PATH * INTEGER INFO, KL, KU, LDA, LDB, LDX, M, N, NRHS * .. * .. Array Arguments .. * INTEGER ISEED( 4 ) * DOUBLE PRECISION A( LDA, * ), B( LDB, * ), X( LDX, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DLARHS chooses a set of NRHS random solution vectors and sets *> up the right hand sides for the linear system *> op( A ) * X = B, *> where op( A ) may be A or A' (transpose of A). *> \endverbatim * * Arguments: * ========== * *> \param[in] PATH *> \verbatim *> PATH is CHARACTER*3 *> The type of the real matrix A. PATH may be given in any *> combination of upper and lower case. Valid types include *> xGE: General m x n matrix *> xGB: General banded matrix *> xPO: Symmetric positive definite, 2-D storage *> xPP: Symmetric positive definite packed *> xPB: Symmetric positive definite banded *> xSY: Symmetric indefinite, 2-D storage *> xSP: Symmetric indefinite packed *> xSB: Symmetric indefinite banded *> xTR: Triangular *> xTP: Triangular packed *> xTB: Triangular banded *> xQR: General m x n matrix *> xLQ: General m x n matrix *> xQL: General m x n matrix *> xRQ: General m x n matrix *> where the leading character indicates the precision. *> \endverbatim *> *> \param[in] XTYPE *> \verbatim *> XTYPE is CHARACTER*1 *> Specifies how the exact solution X will be determined: *> = 'N': New solution; generate a random X. *> = 'C': Computed; use value of X on entry. *> \endverbatim *> *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> Specifies whether the upper or lower triangular part of the *> matrix A is stored, if A is symmetric. *> = 'U': Upper triangular *> = 'L': Lower triangular *> \endverbatim *> *> \param[in] TRANS *> \verbatim *> TRANS is CHARACTER*1 *> Specifies the operation applied to the matrix A. *> = 'N': System is A * x = b *> = 'T': System is A'* x = b *> = 'C': System is A'* x = b *> \endverbatim *> *> \param[in] M *> \verbatim *> M is INTEGER *> The number or rows of the matrix A. M >= 0. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns of the matrix A. N >= 0. *> \endverbatim *> *> \param[in] KL *> \verbatim *> KL is INTEGER *> Used only if A is a band matrix; specifies the number of *> subdiagonals of A if A is a general band matrix or if A is *> symmetric or triangular and UPLO = 'L'; specifies the number *> of superdiagonals of A if A is symmetric or triangular and *> UPLO = 'U'. 0 <= KL <= M-1. *> \endverbatim *> *> \param[in] KU *> \verbatim *> KU is INTEGER *> Used only if A is a general band matrix or if A is *> triangular. *> *> If PATH = xGB, specifies the number of superdiagonals of A, *> and 0 <= KU <= N-1. *> *> If PATH = xTR, xTP, or xTB, specifies whether or not the *> matrix has unit diagonal: *> = 1: matrix has non-unit diagonal (default) *> = 2: matrix has unit diagonal *> \endverbatim *> *> \param[in] NRHS *> \verbatim *> NRHS is INTEGER *> The number of right hand side vectors in the system A*X = B. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is DOUBLE PRECISION array, dimension (LDA,N) *> The test matrix whose type is given by PATH. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. *> If PATH = xGB, LDA >= KL+KU+1. *> If PATH = xPB, xSB, xHB, or xTB, LDA >= KL+1. *> Otherwise, LDA >= max(1,M). *> \endverbatim *> *> \param[in,out] X *> \verbatim *> X is or output) DOUBLE PRECISION array, dimension(LDX,NRHS) *> On entry, if XTYPE = 'C' (for 'Computed'), then X contains *> the exact solution to the system of linear equations. *> On exit, if XTYPE = 'N' (for 'New'), then X is initialized *> with random values. *> \endverbatim *> *> \param[in] LDX *> \verbatim *> LDX is INTEGER *> The leading dimension of the array X. If TRANS = 'N', *> LDX >= max(1,N); if TRANS = 'T', LDX >= max(1,M). *> \endverbatim *> *> \param[out] B *> \verbatim *> B is DOUBLE PRECISION array, dimension (LDB,NRHS) *> The right hand side vector(s) for the system of equations, *> computed from B = op(A) * X, where op(A) is determined by *> TRANS. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. If TRANS = 'N', *> LDB >= max(1,M); if TRANS = 'T', LDB >= max(1,N). *> \endverbatim *> *> \param[in,out] ISEED *> \verbatim *> ISEED is INTEGER array, dimension (4) *> The seed vector for the random number generator (used in *> DLATMS). Modified on exit. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup double_eig * * ===================================================================== SUBROUTINE DLARHS( PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, $ A, LDA, X, LDX, B, LDB, ISEED, INFO ) * * -- LAPACK test routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. CHARACTER TRANS, UPLO, XTYPE CHARACTER*3 PATH INTEGER INFO, KL, KU, LDA, LDB, LDX, M, N, NRHS * .. * .. Array Arguments .. INTEGER ISEED( 4 ) DOUBLE PRECISION A( LDA, * ), B( LDB, * ), X( LDX, * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE, ZERO PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) * .. * .. Local Scalars .. LOGICAL BAND, GEN, NOTRAN, QRS, SYM, TRAN, TRI CHARACTER C1, DIAG CHARACTER*2 C2 INTEGER J, MB, NX * .. * .. External Functions .. LOGICAL LSAME, LSAMEN EXTERNAL LSAME, LSAMEN * .. * .. External Subroutines .. EXTERNAL DGBMV, DGEMM, DLACPY, DLARNV, DSBMV, DSPMV, $ DSYMM, DTBMV, DTPMV, DTRMM, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 C1 = PATH( 1: 1 ) C2 = PATH( 2: 3 ) TRAN = LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' ) NOTRAN = .NOT.TRAN GEN = LSAME( PATH( 2: 2 ), 'G' ) QRS = LSAME( PATH( 2: 2 ), 'Q' ) .OR. LSAME( PATH( 3: 3 ), 'Q' ) SYM = LSAME( PATH( 2: 2 ), 'P' ) .OR. LSAME( PATH( 2: 2 ), 'S' ) TRI = LSAME( PATH( 2: 2 ), 'T' ) BAND = LSAME( PATH( 3: 3 ), 'B' ) IF( .NOT.LSAME( C1, 'Double precision' ) ) THEN INFO = -1 ELSE IF( .NOT.( LSAME( XTYPE, 'N' ) .OR. LSAME( XTYPE, 'C' ) ) ) $ THEN INFO = -2 ELSE IF( ( SYM .OR. TRI ) .AND. .NOT. $ ( LSAME( UPLO, 'U' ) .OR. LSAME( UPLO, 'L' ) ) ) THEN INFO = -3 ELSE IF( ( GEN .OR. QRS ) .AND. .NOT. $ ( TRAN .OR. LSAME( TRANS, 'N' ) ) ) THEN INFO = -4 ELSE IF( M.LT.0 ) THEN INFO = -5 ELSE IF( N.LT.0 ) THEN INFO = -6 ELSE IF( BAND .AND. KL.LT.0 ) THEN INFO = -7 ELSE IF( BAND .AND. KU.LT.0 ) THEN INFO = -8 ELSE IF( NRHS.LT.0 ) THEN INFO = -9 ELSE IF( ( .NOT.BAND .AND. LDA.LT.MAX( 1, M ) ) .OR. $ ( BAND .AND. ( SYM .OR. TRI ) .AND. LDA.LT.KL+1 ) .OR. $ ( BAND .AND. GEN .AND. LDA.LT.KL+KU+1 ) ) THEN INFO = -11 ELSE IF( ( NOTRAN .AND. LDX.LT.MAX( 1, N ) ) .OR. $ ( TRAN .AND. LDX.LT.MAX( 1, M ) ) ) THEN INFO = -13 ELSE IF( ( NOTRAN .AND. LDB.LT.MAX( 1, M ) ) .OR. $ ( TRAN .AND. LDB.LT.MAX( 1, N ) ) ) THEN INFO = -15 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'DLARHS', -INFO ) RETURN END IF * * Initialize X to NRHS random vectors unless XTYPE = 'C'. * IF( TRAN ) THEN NX = M MB = N ELSE NX = N MB = M END IF IF( .NOT.LSAME( XTYPE, 'C' ) ) THEN DO 10 J = 1, NRHS CALL DLARNV( 2, ISEED, N, X( 1, J ) ) 10 CONTINUE END IF * * Multiply X by op( A ) using an appropriate * matrix multiply routine. * IF( LSAMEN( 2, C2, 'GE' ) .OR. LSAMEN( 2, C2, 'QR' ) .OR. $ LSAMEN( 2, C2, 'LQ' ) .OR. LSAMEN( 2, C2, 'QL' ) .OR. $ LSAMEN( 2, C2, 'RQ' ) ) THEN * * General matrix * CALL DGEMM( TRANS, 'N', MB, NRHS, NX, ONE, A, LDA, X, LDX, $ ZERO, B, LDB ) * ELSE IF( LSAMEN( 2, C2, 'PO' ) .OR. LSAMEN( 2, C2, 'SY' ) ) THEN * * Symmetric matrix, 2-D storage * CALL DSYMM( 'Left', UPLO, N, NRHS, ONE, A, LDA, X, LDX, ZERO, $ B, LDB ) * ELSE IF( LSAMEN( 2, C2, 'GB' ) ) THEN * * General matrix, band storage * DO 20 J = 1, NRHS CALL DGBMV( TRANS, MB, NX, KL, KU, ONE, A, LDA, X( 1, J ), $ 1, ZERO, B( 1, J ), 1 ) 20 CONTINUE * ELSE IF( LSAMEN( 2, C2, 'PB' ) ) THEN * * Symmetric matrix, band storage * DO 30 J = 1, NRHS CALL DSBMV( UPLO, N, KL, ONE, A, LDA, X( 1, J ), 1, ZERO, $ B( 1, J ), 1 ) 30 CONTINUE * ELSE IF( LSAMEN( 2, C2, 'PP' ) .OR. LSAMEN( 2, C2, 'SP' ) ) THEN * * Symmetric matrix, packed storage * DO 40 J = 1, NRHS CALL DSPMV( UPLO, N, ONE, A, X( 1, J ), 1, ZERO, B( 1, J ), $ 1 ) 40 CONTINUE * ELSE IF( LSAMEN( 2, C2, 'TR' ) ) THEN * * Triangular matrix. Note that for triangular matrices, * KU = 1 => non-unit triangular * KU = 2 => unit triangular * CALL DLACPY( 'Full', N, NRHS, X, LDX, B, LDB ) IF( KU.EQ.2 ) THEN DIAG = 'U' ELSE DIAG = 'N' END IF CALL DTRMM( 'Left', UPLO, TRANS, DIAG, N, NRHS, ONE, A, LDA, B, $ LDB ) * ELSE IF( LSAMEN( 2, C2, 'TP' ) ) THEN * * Triangular matrix, packed storage * CALL DLACPY( 'Full', N, NRHS, X, LDX, B, LDB ) IF( KU.EQ.2 ) THEN DIAG = 'U' ELSE DIAG = 'N' END IF DO 50 J = 1, NRHS CALL DTPMV( UPLO, TRANS, DIAG, N, A, B( 1, J ), 1 ) 50 CONTINUE * ELSE IF( LSAMEN( 2, C2, 'TB' ) ) THEN * * Triangular matrix, banded storage * CALL DLACPY( 'Full', N, NRHS, X, LDX, B, LDB ) IF( KU.EQ.2 ) THEN DIAG = 'U' ELSE DIAG = 'N' END IF DO 60 J = 1, NRHS CALL DTBMV( UPLO, TRANS, DIAG, N, KL, A, LDA, B( 1, J ), 1 ) 60 CONTINUE * ELSE * * If PATH is none of the above, return with an error code. * INFO = -1 CALL XERBLA( 'DLARHS', -INFO ) END IF * RETURN * * End of DLARHS * END
bsd-3-clause
yaowee/libflame
lapack-test/3.5.0/LIN/dtbt06.f
32
5802
*> \brief \b DTBT06 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE DTBT06( RCOND, RCONDC, UPLO, DIAG, N, KD, AB, LDAB, * WORK, RAT ) * * .. Scalar Arguments .. * CHARACTER DIAG, UPLO * INTEGER KD, LDAB, N * DOUBLE PRECISION RAT, RCOND, RCONDC * .. * .. Array Arguments .. * DOUBLE PRECISION AB( LDAB, * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DTBT06 computes a test ratio comparing RCOND (the reciprocal *> condition number of a triangular matrix A) and RCONDC, the estimate *> computed by DTBCON. Information about the triangular matrix A is *> used if one estimate is zero and the other is non-zero to decide if *> underflow in the estimate is justified. *> \endverbatim * * Arguments: * ========== * *> \param[in] RCOND *> \verbatim *> RCOND is DOUBLE PRECISION *> The estimate of the reciprocal condition number obtained by *> forming the explicit inverse of the matrix A and computing *> RCOND = 1/( norm(A) * norm(inv(A)) ). *> \endverbatim *> *> \param[in] RCONDC *> \verbatim *> RCONDC is DOUBLE PRECISION *> The estimate of the reciprocal condition number computed by *> DTBCON. *> \endverbatim *> *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER *> Specifies whether the matrix A is upper or lower triangular. *> = 'U': Upper triangular *> = 'L': Lower triangular *> \endverbatim *> *> \param[in] DIAG *> \verbatim *> DIAG is CHARACTER *> Specifies whether or not the matrix A is unit triangular. *> = 'N': Non-unit triangular *> = 'U': Unit triangular *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix A. N >= 0. *> \endverbatim *> *> \param[in] KD *> \verbatim *> KD is INTEGER *> The number of superdiagonals or subdiagonals of the *> triangular band matrix A. KD >= 0. *> \endverbatim *> *> \param[in] AB *> \verbatim *> AB is DOUBLE PRECISION array, dimension (LDAB,N) *> The upper or lower triangular band matrix A, stored in the *> first kd+1 rows of the array. The j-th column of A is stored *> in the j-th column of the array AB as follows: *> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). *> \endverbatim *> *> \param[in] LDAB *> \verbatim *> LDAB is INTEGER *> The leading dimension of the array AB. LDAB >= KD+1. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is DOUBLE PRECISION array, dimension (N) *> \endverbatim *> *> \param[out] RAT *> \verbatim *> RAT is DOUBLE PRECISION *> The test ratio. If both RCOND and RCONDC are nonzero, *> RAT = MAX( RCOND, RCONDC )/MIN( RCOND, RCONDC ) - 1. *> If RAT = 0, the two estimates are exactly the same. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup double_lin * * ===================================================================== SUBROUTINE DTBT06( RCOND, RCONDC, UPLO, DIAG, N, KD, AB, LDAB, $ WORK, RAT ) * * -- LAPACK test routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. CHARACTER DIAG, UPLO INTEGER KD, LDAB, N DOUBLE PRECISION RAT, RCOND, RCONDC * .. * .. Array Arguments .. DOUBLE PRECISION AB( LDAB, * ), WORK( * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) * .. * .. Local Scalars .. DOUBLE PRECISION ANORM, BIGNUM, EPS, RMAX, RMIN, SMLNUM * .. * .. External Functions .. DOUBLE PRECISION DLAMCH, DLANTB EXTERNAL DLAMCH, DLANTB * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. External Subroutines .. EXTERNAL DLABAD * .. * .. Executable Statements .. * EPS = DLAMCH( 'Epsilon' ) RMAX = MAX( RCOND, RCONDC ) RMIN = MIN( RCOND, RCONDC ) * * Do the easy cases first. * IF( RMIN.LT.ZERO ) THEN * * Invalid value for RCOND or RCONDC, return 1/EPS. * RAT = ONE / EPS * ELSE IF( RMIN.GT.ZERO ) THEN * * Both estimates are positive, return RMAX/RMIN - 1. * RAT = RMAX / RMIN - ONE * ELSE IF( RMAX.EQ.ZERO ) THEN * * Both estimates zero. * RAT = ZERO * ELSE * * One estimate is zero, the other is non-zero. If the matrix is * ill-conditioned, return the nonzero estimate multiplied by * 1/EPS; if the matrix is badly scaled, return the nonzero * estimate multiplied by BIGNUM/TMAX, where TMAX is the maximum * element in absolute value in A. * SMLNUM = DLAMCH( 'Safe minimum' ) BIGNUM = ONE / SMLNUM CALL DLABAD( SMLNUM, BIGNUM ) ANORM = DLANTB( 'M', UPLO, DIAG, N, KD, AB, LDAB, WORK ) * RAT = RMAX*( MIN( BIGNUM / MAX( ONE, ANORM ), ONE / EPS ) ) END IF * RETURN * * End of DTBT06 * END
bsd-3-clause
ericmckean/nacl-llvm-branches.llvm-gcc-trunk
libgomp/testsuite/libgomp.fortran/vla2.f90
202
5316
! { dg-do run } call test contains subroutine check (x, y, l) integer :: x, y logical :: l l = l .or. x .ne. y end subroutine check subroutine foo (c, d, e, f, g, h, i, j, k, n) use omp_lib integer :: n character (len = *) :: c character (len = n) :: d integer, dimension (2, 3:5, n) :: e integer, dimension (2, 3:n, n) :: f character (len = *), dimension (5, 3:n) :: g character (len = n), dimension (5, 3:n) :: h real, dimension (:, :, :) :: i double precision, dimension (3:, 5:, 7:) :: j integer, dimension (:, :, :) :: k logical :: l integer :: p, q, r character (len = n) :: s integer, dimension (2, 3:5, n) :: t integer, dimension (2, 3:n, n) :: u character (len = n), dimension (5, 3:n) :: v character (len = 2 * n + 24) :: w integer :: x character (len = 1) :: y l = .false. !$omp parallel default (none) private (c, d, e, f, g, h, i, j, k) & !$omp & private (s, t, u, v) reduction (.or.:l) num_threads (6) & !$omp private (p, q, r, w, x, y) x = omp_get_thread_num () w = '' if (x .eq. 0) w = 'thread0thr_number_0THREAD0THR_NUMBER_0' if (x .eq. 1) w = 'thread1thr_number_1THREAD1THR_NUMBER_1' if (x .eq. 2) w = 'thread2thr_number_2THREAD2THR_NUMBER_2' if (x .eq. 3) w = 'thread3thr_number_3THREAD3THR_NUMBER_3' if (x .eq. 4) w = 'thread4thr_number_4THREAD4THR_NUMBER_4' if (x .eq. 5) w = 'thread5thr_number_5THREAD5THR_NUMBER_5' c = w(8:19) d = w(1:7) forall (p = 1:2, q = 3:5, r = 1:7) e(p, q, r) = 5 * x + p + q + 2 * r forall (p = 1:2, q = 3:7, r = 1:7) f(p, q, r) = 25 * x + p + q + 2 * r forall (p = 1:5, q = 3:7, p + q .le. 8) g(p, q) = w(8:19) forall (p = 1:5, q = 3:7, p + q .gt. 8) g(p, q) = w(27:38) forall (p = 1:5, q = 3:7, p + q .le. 8) h(p, q) = w(1:7) forall (p = 1:5, q = 3:7, p + q .gt. 8) h(p, q) = w(20:26) forall (p = 3:5, q = 2:6, r = 1:7) i(p - 2, q - 1, r) = (7.5 + x) * p * q * r forall (p = 3:5, q = 2:6, r = 1:7) j(p, q + 3, r + 6) = (9.5 + x) * p * q * r forall (p = 1:5, q = 7:7, r = 4:6) k(p, q - 6, r - 3) = 19 + x + p + q + 3 * r s = w(20:26) forall (p = 1:2, q = 3:5, r = 1:7) t(p, q, r) = -10 + x + p - q + 2 * r forall (p = 1:2, q = 3:7, r = 1:7) u(p, q, r) = 30 - x - p + q - 2 * r forall (p = 1:5, q = 3:7, p + q .le. 8) v(p, q) = w(1:7) forall (p = 1:5, q = 3:7, p + q .gt. 8) v(p, q) = w(20:26) !$omp barrier y = '' if (x .eq. 0) y = '0' if (x .eq. 1) y = '1' if (x .eq. 2) y = '2' if (x .eq. 3) y = '3' if (x .eq. 4) y = '4' if (x .eq. 5) y = '5' l = l .or. w(7:7) .ne. y l = l .or. w(19:19) .ne. y l = l .or. w(26:26) .ne. y l = l .or. w(38:38) .ne. y l = l .or. c .ne. w(8:19) l = l .or. d .ne. w(1:7) l = l .or. s .ne. w(20:26) do 103, p = 1, 2 do 103, q = 3, 7 do 103, r = 1, 7 if (q .lt. 6) l = l .or. e(p, q, r) .ne. 5 * x + p + q + 2 * r l = l .or. f(p, q, r) .ne. 25 * x + p + q + 2 * r if (r .lt. 6 .and. q + r .le. 8) l = l .or. g(r, q) .ne. w(8:19) if (r .lt. 6 .and. q + r .gt. 8) l = l .or. g(r, q) .ne. w(27:38) if (r .lt. 6 .and. q + r .le. 8) l = l .or. h(r, q) .ne. w(1:7) if (r .lt. 6 .and. q + r .gt. 8) l = l .or. h(r, q) .ne. w(20:26) if (q .lt. 6) l = l .or. t(p, q, r) .ne. -10 + x + p - q + 2 * r l = l .or. u(p, q, r) .ne. 30 - x - p + q - 2 * r if (r .lt. 6 .and. q + r .le. 8) l = l .or. v(r, q) .ne. w(1:7) if (r .lt. 6 .and. q + r .gt. 8) l = l .or. v(r, q) .ne. w(20:26) 103 continue do 104, p = 3, 5 do 104, q = 2, 6 do 104, r = 1, 7 l = l .or. i(p - 2, q - 1, r) .ne. (7.5 + x) * p * q * r l = l .or. j(p, q + 3, r + 6) .ne. (9.5 + x) * p * q * r 104 continue do 105, p = 1, 5 do 105, q = 4, 6 l = l .or. k(p, 1, q - 3) .ne. 19 + x + p + 7 + 3 * q 105 continue call check (size (e, 1), 2, l) call check (size (e, 2), 3, l) call check (size (e, 3), 7, l) call check (size (e), 42, l) call check (size (f, 1), 2, l) call check (size (f, 2), 5, l) call check (size (f, 3), 7, l) call check (size (f), 70, l) call check (size (g, 1), 5, l) call check (size (g, 2), 5, l) call check (size (g), 25, l) call check (size (h, 1), 5, l) call check (size (h, 2), 5, l) call check (size (h), 25, l) call check (size (i, 1), 3, l) call check (size (i, 2), 5, l) call check (size (i, 3), 7, l) call check (size (i), 105, l) call check (size (j, 1), 4, l) call check (size (j, 2), 5, l) call check (size (j, 3), 7, l) call check (size (j), 140, l) call check (size (k, 1), 5, l) call check (size (k, 2), 1, l) call check (size (k, 3), 3, l) call check (size (k), 15, l) !$omp end parallel if (l) call abort end subroutine foo subroutine test character (len = 12) :: c character (len = 7) :: d integer, dimension (2, 3:5, 7) :: e integer, dimension (2, 3:7, 7) :: f character (len = 12), dimension (5, 3:7) :: g character (len = 7), dimension (5, 3:7) :: h real, dimension (3:5, 2:6, 1:7) :: i double precision, dimension (3:6, 2:6, 1:7) :: j integer, dimension (1:5, 7:7, 4:6) :: k integer :: p, q, r call foo (c, d, e, f, g, h, i, j, k, 7) end subroutine test end
gpl-2.0
lesserwhirls/scipy-cwt
scipy/fftpack/src/dfftpack/zffti1.f
18
1504
SUBROUTINE ZFFTI1 (N,WA,IFAC) IMPLICIT DOUBLE PRECISION (A-H,O-Z) DIMENSION WA(*) ,IFAC(*) ,NTRYH(4) DATA NTRYH(1),NTRYH(2),NTRYH(3),NTRYH(4)/3,4,2,5/ NL = N NF = 0 J = 0 101 J = J+1 IF (J.le.4) GO TO 102 GO TO 103 102 NTRY = NTRYH(J) GO TO 104 103 NTRY = NTRY+2 104 NQ = NL/NTRY NR = NL-NTRY*NQ IF (NR.eq.0) GO TO 105 GO TO 101 105 NF = NF+1 IFAC(NF+2) = NTRY NL = NQ IF (NTRY .NE. 2) GO TO 107 IF (NF .EQ. 1) GO TO 107 DO 106 I=2,NF IB = NF-I+2 IFAC(IB+2) = IFAC(IB+1) 106 CONTINUE IFAC(3) = 2 107 IF (NL .NE. 1) GO TO 104 IFAC(1) = N IFAC(2) = NF TPI = 6.28318530717958647692D0 ARGH = TPI/FLOAT(N) I = 2 L1 = 1 DO 110 K1=1,NF IP = IFAC(K1+2) LD = 0 L2 = L1*IP IDO = N/L2 IDOT = IDO+IDO+2 IPM = IP-1 DO 109 J=1,IPM I1 = I WA(I-1) = 1.0D0 WA(I) = 0.0D0 LD = LD+L1 FI = 0.0D0 ARGLD = FLOAT(LD)*ARGH DO 108 II=4,IDOT,2 I = I+2 FI = FI+1.D0 ARG = FI*ARGLD WA(I-1) = COS(ARG) WA(I) = SIN(ARG) 108 CONTINUE IF (IP .LE. 5) GO TO 109 WA(I1-1) = WA(I-1) WA(I1) = WA(I) 109 CONTINUE L1 = L2 110 CONTINUE RETURN END
bsd-3-clause
CavendishAstrophysics/anmap
nmr_tools/nmr_d2sp.f
1
1651
C size, centre pixel of output region and loop counters integer nddd parameter (nddd = 20000) real*4 dout( nddd ) integer din( nddd ) integer status C prompt for file and open status = 0 call io_initio call dowork( dout, din, status ) end C C subroutine dowork( dout, din, status ) C file name and user name character infile*(64), outfile*(64) integer iun, iuo, n, m, nx real*4 xpix, xpixl, xpixr, x real*4 dout(*) integer din(*) integer chr_lenb, status call io_getfil('Input file name : ',' ',infile,status) call io_getfil('Output file name : ',' ',outfile,status) call io_geti( 'Dimension : ','1024',nx,status) call io_getr('X-scale : ','1.0',xpix,status) if (xpix.lt.0.0) then call io_getr('X-left : ','1.0',xpixl,status) call io_getr('X-right : ','1.0',xpixr,status) endif n = nx call io_operan(iun,infile(1:chr_lenb(infile)), * 'READ',n*4,0,status) call io_rdfile(iun,1,din,n,status) close (iun) if (xpix.gt.0.0) then xpixl = (-float(nx)/2.0)*xpix else xpix = (xpixr - xpixl)/float(nx - 1) endif do m=1,nx dout(m) = din(m) enddo call io_opefil(iuo,outfile(1:chr_lenb(outfile)), * 'WRITE',0,status) write(iuo,*)'%ndata ',nx write(iuo,*)'%ncols ',2 do m=1,nx x=(m-1)*xpix + xpixl write(iuo,*) x, dout(m) enddo close (iuo) end
bsd-3-clause
CavendishAstrophysics/anmap
anm_lib/scratch_sys.f
1
11765
*+ scratch_sys subroutine scratch_sys( interp, cdata, map_array, status ) C ---------------------------------------------------------- C C Sub-system to manipulate scratch graphic objects C C Updated: C command interpreter data structure integer interp(*) C command language data structure integer cdata(*) C map data array real*4 map_array(*) C Returned: C error status integer status C C This sub-system uses the object-oriented Anmap graphics model to display C scratch data produced in various routines within Anmap. C C P. Alexander, MRAO, Cambridge C Version 1.0. March 1993 C- C include standard include definitions include '../include/anmap_sys_pars.inc' include '/mrao/include/iolib_constants.inc' include '/mrao/include/iolib_errors.inc' include '/mrao/include/chrlib_functions.inc' include '/mrao/include/iolib_functions.inc' C sub-system specific includes include '../include/plt_buffer_defn.inc' include '../include/plt_basic_defn.inc' include '../include/plt_scratch_defn.inc' C Local variables C --------------- C command line, length and initial check character*120 command_line integer len_com, i_comm_done logical exit_on_completion C command line interpretation integer number_commands, icom parameter (number_commands = 11) character*80 liscom(number_commands), * opt, opts(6) C define commands data liscom(1) / * 'set-frame-style .......... set style options for frame' * / data liscom(2) / * 'set-text-style ........... set style for text' * / data liscom(3) / * 'set-line-style ........... set style for lines' * / data liscom(4) / * 'title .................... specify title for the plot' * / data liscom(5) / * 'x-title .................. specify x-title for the plot' * / data liscom(6) / * 'y-title .................. specify y-title for the plot' * / data liscom(7) / * 'view-port ................ (sub) view-port for scratch graphic' * / data liscom(8) / * 'plot ..................... plot previous scratch graphic' * / data liscom(9) / * 'initialise ............... initialise options for scratch' * / data liscom(10)/ * 'annotate ................. annotate the scratch graphic' * / data liscom(11)/ * 'get ...................... get information for the graphic' * / C counters and pointers integer n, l character string*80, number*20 C check status on entry if (status.ne.0) return call io_enqcli( command_line, len_com ) exit_on_completion = len_com.ne.0 i_comm_done = 0 C initialise the text drawing graphic call graphic_init(graphic_scratch, scratch_defn, status) call graphic_copy_graphic(scratch_defn, graphic, status) annot_data(1) = len_annot_data C command loop-back 100 continue if (exit_on_completion .and. i_comm_done.gt.0) then cdata(1) = 100 call graphic_end(graphic_scratch, scratch_defn, status) return end if status = 0 call cmd_getcmd( 'Scratch> ',liscom,number_commands, * icom,status) if (status.ne.0) then call cmd_err(status,'Scratch',' ') goto 100 else i_comm_done = i_comm_done + 1 end if if (icom.le.0) then status = 0 cdata(1) = icom call graphic_end(graphic_scratch, scratch_defn, status) return end if C decode command if (chr_cmatch('set-frame-style',liscom(icom))) then call graphic_get_frame_opt( scratch_frame_opt, status) elseif (chr_cmatch('set-text-style',liscom(icom))) then call graphic_get_text_opt( scratch_text_opt, status) call io_geti('Symbol-type : ','*',scratch_symbol,status) elseif (chr_cmatch('set-line-style',liscom(icom))) then call graphic_get_line_opt( scratch_line_opt, status) elseif (chr_cmatch('title',liscom(icom))) then call io_getstr('Title : ',' ',main_title,status) elseif (chr_cmatch('x-title',liscom(icom))) then call io_getstr('X-title : ',' ',x_title,status) elseif (chr_cmatch('y-title',liscom(icom))) then call io_getstr('Y-title : ',' ',y_title,status) elseif (chr_cmatch('view-port',liscom(icom))) then call io_getnr( 'View-port : ','*', * scratch_view_port,4,status) if (scratch_view_port(1).lt.0.0 .or. * scratch_view_port(1).gt.1.0) then scratch_view_port(1) = 0.1 endif if (scratch_view_port(2).lt.0.0 .or. * scratch_view_port(2).gt.1.0) then scratch_view_port(2) = 0.9 endif if (scratch_view_port(3).lt.0.0 .or. * scratch_view_port(3).gt.1.0) then scratch_view_port(3) = 0.1 endif if (scratch_view_port(4).lt.0.0 .or. * scratch_view_port(4).gt.1.0) then scratch_view_port(4) = 0.1 endif scratch_view_port_opt = 1 elseif (chr_cmatch('plot',liscom(icom))) then opts(1)='all ........... plot everyting' opts(2)='annotations ... plot all annotations' opts(3)='refresh ....... refresh the whole graph' call io_getopt( 'Plot-option (?=list) : ','all', * opts, 3, opt, status ) if (chr_cmatch(opt,'all').or.chr_cmatch(opt,'refresh')) then plot_refresh = .true. call cmd_exec(scratch_command,status) call annotate_plot( annot_data, 'all', status ) plot_refresh = .false. elseif (chr_cmatch(opt,'annotations')) then call scratch_setup_coords( status ) call annotate_plot( annot_data, 'all', status ) endif elseif (chr_cmatch('initialise',liscom(icom))) then opts(1)='all ........... initialise everything' opts(2)='options ....... initialise options' opts(3)='annotations ... initialise annotation' opts(4)='titles ........ initialise titles' call io_getopt( 'Initialise-option (?=list) : ','all', * opts, 4, opt, status ) if (.not.chr_cmatch('annotations',opt)) then call scratch_init( opt, status ) call annotate_init( annot_data, opt, status ) else call annotate_init( annot_data, 'all', status ) endif elseif (chr_cmatch('get',liscom(icom))) then call scratch_setup_coords( status ) opts(1)='cursor-input .. cursor input from device' opts(2)='coordinates ... current coordinates' opts(3)='command ....... command associated with object' opts(4)='scratch ....... return information for definition' call io_getopt( 'Get-option (?=list) : ','cursor-input', * opts, 4, opt, status ) string = ' ' if (chr_cmatch(opt,'cursor-input')) then call graphic_cursor( status ) elseif (chr_cmatch(opt,'coordinates')) then call cmd_defparam(.false.,'%coordinates','real',4,status) do n=1,4 number = ' ' string = ' ' write(string,'(''%coordinates{'',i1,''}'')') n call chr_chrtoc( scratch_coords(n),number,l) call cmd_setlocal(string(1:chr_lenb(string)), * number(1:l), status ) enddo elseif (chr_cmatch(opt,'command')) then call cmd_setlocal('%command',scratch_command,status) elseif (chr_cmatch(opt,'scratch')) then call graphic_pars_line_opt(scratch_line_opt,status) call graphic_pars_text_opt(scratch_text_opt,status) call graphic_pars_frame(scratch_frame_opt,status) call chr_chitoc(scratch_symbol,number,l) call cmd_setlocal('%scratch-symbol',number,status) call cmd_defparam(.false.,'%scratch-vp','real',4,status) do n=1,4 number = ' ' string = ' ' write(string,'(''%scratch-vp{'',i1,''}'')') n call chr_chrtoc( scratch_view_port(n),number,l) call cmd_setlocal(string(1:chr_lenb(string)), * number(1:l), status ) enddo endif elseif (chr_cmatch('annotate',liscom(icom))) then call scratch_setup_coords( status ) call annotate( annot_data, status ) end if goto 100 end C C *+ scratch_setup_coords subroutine scratch_setup_coords( status ) C ----------------------------------------- C C Establish the scratch coordinate system on the current device C C Updated: C error status integer status C C- include '../include/plt_buffer_defn.inc' include '../include/plt_basic_defn.inc' include '../include/plt_scratch_defn.inc' C local variables real*4 xr, yr, x1, x2, y1, y2 if (status.ne.0) return C initialise view-port call graphic_copy_graphic(scratch_defn,graphic,status) if (scratch_view_port_opt.eq.1) then xr = (graphic_view_port(2)-graphic_view_port(1)) yr = (graphic_view_port(4)-graphic_view_port(3)) x1 = graphic_view_port(1) + scratch_view_port(1)*xr x2 = graphic_view_port(1) + scratch_view_port(2)*xr y1 = graphic_view_port(3) + scratch_view_port(3)*yr y2 = graphic_view_port(3) + scratch_view_port(4)*yr call pgsetvp( x1,x2,y1,y2 ) else call pgsetvp( graphic_view_port(1), graphic_view_port(2), * graphic_view_port(3), graphic_view_port(4) ) endif C setup coordinates on the view-port if (scratch_coord_opt.ne.0) then call pgsetwin(scratch_coords(1),scratch_coords(2), * scratch_coords(3),scratch_coords(4)) else call pgsetwin(0.0,1.0,0.0,1.0) endif call cmd_err(status,'scratch_setup_coords',' ') end C C *+ scratch_init subroutine scratch_init( opt, s ) C ------------------------------- C C Initialise graph-specific options C C Given: C option for initialisation character*(*) opt C Updated: C error status integer s C C- include '../include/plt_buffer_defn.inc' include '../include/plt_basic_defn.inc' include '../include/plt_scratch_defn.inc' include '/mrao/include/chrlib_functions.inc' if (s.ne.0) return if (chr_cmatch('all',opt).or.chr_cmatch('titles',opt)) then x_title = ' ' y_title = ' ' main_title = ' ' endif if (chr_cmatch('all',opt)) then scratch_command = ' ' scratch_coord_opt = 0 scratch_view_port_opt = 0 scratch_view_port(1) = 0.15 scratch_view_port(2) = 0.85 scratch_view_port(3) = 0.15 scratch_view_port(4) = 0.85 endif if (chr_cmatch('all',opt).or.chr_cmatch('options',opt)) then call graphic_default_frame_opt(scratch_frame_opt,s) call graphic_default_text_opt(scratch_text_opt,s) call graphic_default_line_opt(scratch_line_opt,s) scratch_symbol = 1 endif call cmd_err(s,'scratch_init',' ') end
bsd-3-clause
zuloloxi/mecrisp-stellaris
stm32l152rb/rtc.f
4
5330
\ \ rtc.f v1.0 \ stm32l152rb \ Ilya Abdrahimov \ REQUIRE st32l152.f \ REQUIRE interrupts.f \ Words: \ rtc-init - rtc initialization \ rtc-set-time - set time ( hh mm ss -- ) \ rtc-set-date - set date ( yy wd mm dd -- ) \ rtc-get-time - get time ( -- hh mm ss ) \ rtc-get-date - get date ( -- yy wd mm dd ) \ rtc-alarm-init - rtc initialization ( addra addrb -- ) \ addra&addrb - Address your words alarm handlers \ rtc-alarma-set - initialization alarm A ( hh mm -- ) \ hh - hour, mm - minutes \ rtc-alarmb-set - initialization alarm B ( hh mm -- ) \ hh - hour, mm - minutes \ rtc-alarma-disable - disable Alarm A \ rtc-alarmb-disable - disable Alarm B \ rtc-alarma-gt - Get Alarm A time ( -- hh mm ) \ rtc-alarmb-gt - Get Alarm B time ( -- hh mm ) $10000000 constant RCC_APB1ENR_PWREN \ Power interface clock enable $100 constant PWR_CR_DBP \ Disable Backup Domain write protection $400000 constant RCC_CSR_RTCEN \ RTC clock enable $0 constant RCC_CSR_RTCSEL_NOCLOCK \ No clock $10000 constant RCC_CSR_RTCSEL_LSE \ LSE oscillator clock used as RTC clock $20000 constant RCC_CSR_RTCSEL_LSI \ LSI oscillator clock used as RTC clock $30000 constant RCC_CSR_RTCSEL_HSE \ HSE oscillator clock divided by 2, 4, 8 or 16 by RTCPRE used as RTC clock : dec>bcd #10 /mod 4 lshift or ; : bcd>dec dup $f and swap 4 rshift 10 * + ; \ RTC initialization : rtc-init ( -- ) \ $20 RTC_ISR bit@ 0= \ Calendar has been initialized ? \ IF RCC_APB1ENR @ RCC_APB1ENR_PWREN or RCC_APB1ENR ! \ Power interface clock enable PWR_CR_DBP PWR_CR bis! \ Disable Backup Domain write protection \ $800000 rcc_csr bis! \ $800000 rcc_csr bic! \ $1 RCC_CSR bis! \ LSI on \ begin $2 RCC_CSR bit@ until \ wait LSI ready 1 8 lshift RCC_CSR bis! \ LSE on begin $200 RCC_CSR bit@ until \ wait LSE ready RCC_CSR @ RCC_CSR_RTCSEL_LSE or RCC_CSR ! \ 10: LSI oscillator clock used as RTC/LCD clock RCC_CSR_RTCEN RCC_CSR bis! \ RTC clock enable $ca RTC_WPR c! $53 RTC_WPR c! \ THEN ; : rtc-cal-set-on $80 RTC_ISR bis! begin $40 rtc_isr bit@ until \ Calendar registers update is allowed. $7f00ff RTC_PRER ! \ From LSI, LSE - $ff $7f00ff RTC_PRER ! ; : rtc-cal-set-off $80 RTC_ISR bic! ; \ Set 12/24 time notation : rtc-12/24 ( n -- ) \ 1 - am/pm, 0 -24h $20 RTC_ISR bit@ \ Calendar has been initialized ? if rtc-cal-set-on if #400000 RTC_TR bis! else #400000 RTC_TR bic! then rtc-cal-set-off else drop then ; : rtc-set-time ( h m s -- ) $20 RTC_ISR bit@ \ Calendar has been initialized ? if rtc-cal-set-on dec>bcd swap dec>bcd 8 lshift or swap dec>bcd 16 lshift or RTC_TR ! rtc-cal-set-off else drop 2drop \ clear stack then ; : rtc-set-date ( yy wd mm dd -- ) $20 RTC_ISR bit@ \ Calendar has been initialized ? if rtc-cal-set-on dec>bcd swap dec>bcd 8 lshift or swap 13 lshift or swap dec>bcd 16 lshift or RTC_DR ! rtc-cal-set-off else 2drop 2drop \ clear stack then ; : rtc-get-time ( -- h m s ) rtc_tr @ dup >r 16 rshift bcd>dec r@ 8 rshift $ff and bcd>dec r> $ff and bcd>dec ; : rtc-get-date ( -- yy wd mm dd ) rtc_dr @ dup >r 16 rshift bcd>dec r@ 8 rshift dup $e0 and 5 rshift swap $1f and bcd>dec r> $ff and bcd>dec ; \ rtc-alarm \ SAMPLE: \ ' youalarmAhandler ' youalarmBhandler rtc-alarm-init \ 4 26 set-alarma \ 0 variable alarma-addr \ Alarm A interrupt handler 0 variable alarmb-addr \ Alarm B interrupt handler : irq-alarm RTC_ISR @ $300 and case $100 of alarma-addr @ $100 RTC_ISR bic! endof $200 of alarmb-addr @ $200 RTC_ISR bic! endof endcase ?dup if execute then 1 17 lshift exti_pr bis! ; : rtc-alarm-time ( hh mm -- n ) 0 1 31 lshift or \ date/day don't care Alarm comparison swap dec>bcd 8 lshift or \ mm swap dec>bcd 16 lshift or \ hh ; : alarma-mask 1 21 lshift \ Alarm A output enabled 1 12 lshift or \ Alarm A interrupt enbled 1 8 lshift or \ Alarm A enabled ; : alarmb-mask 1 22 lshift \ Alarm B output enabled 1 13 lshift or \ Alarm B interrupt enbled 1 9 lshift or \ Alarm B enabled ; : rtc-alarma-disable ( -- ) alarma-mask RTC_CR bic! ; : rtc-alarmb-disable ( -- ) alarmb-mask RTC_CR bic! ; : rtc-alarma-set ( hh mm -- ) rtc-cal-set-on rtc-alarmb-disable 1 8 lshift RTC_ISR bic! $100 rtc_isr bic! \ rtc-alarm-time RTC_ALRMAR ! 1 22 lshift RTC_CR bic! \ Alarm B output disabled alarma-mask RTC_CR bis! rtc-cal-set-off ; : rtc-alarmb-set ( hh mm -- ) rtc-cal-set-on rtc-alarma-disable 1 9 lshift RTC_ISR bic! $200 rtc_isr bic! \ rtc-alarm-time RTC_ALRMBR ! 1 21 lshift RTC_CR bic! \ Alarm A output disabled alarmb-mask RTC_CR bis! rtc-cal-set-off ; \ Get Alarm A time : rtc-alarma-gt ( -- hh mm ) RTC_ALRMAR @ dup 16 rshift $ff and bcd>dec swap 8 rshift $ff and bcd>dec ; \ Get Alarm B time : rtc-alarmb-gt ( -- hh mm ) RTC_ALRMBR @ dup 16 rshift $ff and bcd>dec swap 8 rshift $ff and bcd>dec ; : rtc-alarm-init ( addra addrb -- ) alarmb-addr ! alarma-addr ! ['] irq-alarm irq-rtc_alarm ! RCC_APB2ENR_SYSCFGEN RCC_APB2ENR bis! RTC_Alarm_IRQn nvic-enable 1 17 lshift exti_rtsr bis! 1 17 lshift exti_imr bis! ; \ sample \ : t rtc-get-time cr rot . ." :" swap . ." :" . ; \ : d rtc-get-date cr . ." / " . drop ." /" . ; \ : re cr ." isr:" rtc_isr @ hex. space ." cr:" rtc_cr @ hex. ; \ : mya cr ." Alarm A:" t cr ; \ : myb cr ." Alarm B:" t cr ; rtc-init \ ' mya ' myb rtc-alarm-init \ 12 34 56 rtc-set-time \ 12 36 rtc-alarma-set
gpl-3.0
yaowee/libflame
lapack-test/3.5.0/LIN/xlaenv.f
31
3489
*> \brief \b XLAENV * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE XLAENV( ISPEC, NVALUE ) * * .. Scalar Arguments .. * INTEGER ISPEC, NVALUE * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> XLAENV sets certain machine- and problem-dependent quantities *> which will later be retrieved by ILAENV. *> \endverbatim * * Arguments: * ========== * *> \param[in] ISPEC *> \verbatim *> ISPEC is INTEGER *> Specifies the parameter to be set in the COMMON array IPARMS. *> = 1: the optimal blocksize; if this value is 1, an unblocked *> algorithm will give the best performance. *> = 2: the minimum block size for which the block routine *> should be used; if the usable block size is less than *> this value, an unblocked routine should be used. *> = 3: the crossover point (in a block routine, for N less *> than this value, an unblocked routine should be used) *> = 4: the number of shifts, used in the nonsymmetric *> eigenvalue routines *> = 5: the minimum column dimension for blocking to be used; *> rectangular blocks must have dimension at least k by m, *> where k is given by ILAENV(2,...) and m by ILAENV(5,...) *> = 6: the crossover point for the SVD (when reducing an m by n *> matrix to bidiagonal form, if max(m,n)/min(m,n) exceeds *> this value, a QR factorization is used first to reduce *> the matrix to a triangular form) *> = 7: the number of processors *> = 8: another crossover point, for the multishift QR and QZ *> methods for nonsymmetric eigenvalue problems. *> = 9: maximum size of the subproblems at the bottom of the *> computation tree in the divide-and-conquer algorithm *> (used by xGELSD and xGESDD) *> =10: ieee NaN arithmetic can be trusted not to trap *> =11: infinity arithmetic can be trusted not to trap *> \endverbatim *> *> \param[in] NVALUE *> \verbatim *> NVALUE is INTEGER *> The value of the parameter specified by ISPEC. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup aux_lin * * ===================================================================== SUBROUTINE XLAENV( ISPEC, NVALUE ) * * -- LAPACK test routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. INTEGER ISPEC, NVALUE * .. * * ===================================================================== * * .. Arrays in Common .. INTEGER IPARMS( 100 ) * .. * .. Common blocks .. COMMON / CLAENV / IPARMS * .. * .. Save statement .. SAVE / CLAENV / * .. * .. Executable Statements .. * IF( ISPEC.GE.1 .AND. ISPEC.LE.9 ) THEN IPARMS( ISPEC ) = NVALUE END IF * RETURN * * End of XLAENV * END
bsd-3-clause
CavendishAstrophysics/anmap
graphic_lib/plot_sys.f
2
14597
*$ Map-Display Routine Library * =========================== C C P. Alexander MRAO, Cambridge. C *+ plot_sys subroutine plot_sys(interp,cdata,map_array,status) C -------------------------------------------------- C C Interactive system to display images C C Updated: C command interpreter data structure integer interp(*) C command language data structure integer cdata(*) C map work space real*4 map_array(*) C error status integer status C C A command line driven image plotting sub-system. The calling program C must use the MAP-CATALOGUE and stack system. The work array is C passed by argument to this routine. All plotting uses the PGPLOT library. *- include '../include/plt_basic_defn.inc' include '../include/plt_image_defn.inc' include '../include/anmap_sys_pars.inc' include '/mrao/include/chrlib_functions.inc' include '/mrao/include/iolib_functions.inc' include '/mrao/include/cmd_lang_data.inc' C define variables to access commands integer number_commands, i_com_done, icomm, * number_options parameter (number_commands = 26, number_options=10) character*70 liscom(number_commands), * option_list(number_options), option C parameters holds information on the command line character*80 parameters integer len_cli C map allocation integer ip_map C logical flag set if the sub-system is called in the form: C map-display command-name options C from another sub-system logical exit_at_end C counter integer i C define commands data liscom(1) * / 'set-map .................. define map to display'/ data liscom(2) * / 'overlay-map .............. define second map to display'/ data liscom(3) * / 'set-pips ................. turn pips on/off [on]'/ data liscom(4) * / 'set-grid ................. turn grid on/off [off,off]'/ data liscom(5) * / 'set-uv-range ............. define uv-range to plot [full]'/ data liscom(6) * / 'set-interpolation ........ interpolation option [off]'/ data liscom(7) * / 'set-style ................ set various style options'/ data liscom(8) * / 'grey-scale ............... define (overlay) of grey scale'/ data liscom(9) * / 'vector-plot .............. define (overlay) of vectors'/ data liscom(10) * / 'symbol-plot .............. define (overlay) of symbols'/ data liscom(11) * / 'contours ................. specify a list of contours'/ data liscom(12) * / 'linear-contours .......... define linear contour levels'/ data liscom(13) * / 'logarithmic-contours ..... define log. contour levels'/ data liscom(14) * / 'reset-contour-levels ..... reset all contour levels'/ data liscom(15) * / 'clear-contour-levels ..... clear all contour levels'/ data liscom(16) * / 'plot ..................... plot portions of the plot'/ data liscom(17) * / 'initialise ............... initialise aspects of plot'/ data liscom(18) * / 'display .................. display options and levels'/ data liscom(19) * / 'title-plot ............... add title to plot'/ data liscom(20) * / 'modify-lookup-table ...... modify LUT for non-TV device'/ data liscom(21) * / 'cursor-position .......... return map position and value'/ data liscom(22) * / 'get ...................... read options into parameters'/ data liscom(23) * / 'surface-plot ............. plot a map as a surface relief'/ data liscom(24) * / 'isometric-plot ........... plot map as isometric surface'/ data liscom(25) * / 'annotate ................. annotate the plot'/ data liscom(26) * / 'crosses-file ............. specify a crosses file'/ C check whether to exit on completion of command call io_enqcli(parameters,len_cli) exit_at_end = len_cli.ne.0 i_com_done = 0 do i=1,cmd_data_len cmd_data(i) = cdata(i) enddo C initialise graphic structure call graphic_init( graphic_image, image_defn, status) annot_data(1) = len_annot_data 1000 continue status = 0 if (exit_at_end .and. i_com_done.ne.0) then do i=1,cmd_data_len cdata(i) = cmd_data(i) enddo cdata(1) = 100 call graphic_end( graphic_image, image_defn, status) return end if C decode commmands call plot_frset(status) call cmd_getcmd('Map-Display> ',liscom, * number_commands,icomm,status) C check for error if (status.ne.0) then call cmd_err(status,'MAP-DISPLAY',' ') goto 1000 end if C exit for basic command if (icomm.le.0) then do i=1,cmd_data_len cdata(i) = cmd_data(i) enddo cdata(1) = icomm call graphic_end( graphic_image, image_defn, status) return end if C increment command counter i_com_done = i_com_done + 1 C decode command if (chr_cmatch('set-map',liscom(icomm))) then call plot_setmap(.false.,map_array,status) cmd_results = plotsys_setmap_command elseif (chr_cmatch('overlay-map',liscom(icomm))) then option_list(1) = 'set ........... specify an overlay-map' option_list(2) = 'off ........... turn overlay-map off' option_list(3) = 'on ............ turn overlay-map on' option_list(4) = 'current-main .. select main map as current' option_list(5) = 'current-overlay select overlay as current' call io_getopt('Overlay-option (?=help) : ','ALL', * option_list,5,option,status) if (chr_cmatch('set',option)) then call plot_setmap(.true.,map_array,status) overlay_defined = .true. overlay_map = .true. elseif (chr_cmatch('off',option)) then overlay_map = .false. elseif (chr_cmatch('on',option)) then overlay_map = .true. elseif (chr_cmatch('current-main',option)) then imap_current = 1 elseif (chr_cmatch('current-overlay',option)) then imap_current = 2 endif elseif (chr_cmatch('set-pips',liscom(icomm))) then pips_opt = io_onoff('Pips on/off : ','on',status) if (pips_opt) then call plot_getpip(.true.,status) endif if (pips_opt) then uvpip_opt = io_onoff('UV-pips on/off : ','off',status) else uvpip_opt = io_onoff('UV-pips on/off : ','on',status) endif elseif (chr_cmatch('set-grid',liscom(icomm))) then grid_opt = io_onoff('RA/DEC grid on/off : ','off',status) uvgrid_opt = io_onoff('UV grid on/off : ','off',status) if (uvgrid_opt) then call io_getr('Spacing in U (0=default) : ','0',grid_u,status) call io_getr('Spacing in V (0=default) : ','0',grid_v,status) end if elseif (chr_cmatch('set-uv-range',liscom(icomm))) then call plot_getuv('UV-range : ','*',uv_range,status) call plot_getpip(.false.,status) call cmd_exec(plotsys_setuv_command,status) cmd_results = plotsys_setuv_command elseif (chr_cmatch('set-interpolation',liscom(icomm))) then interpolate_opt = * io_onoff('Interpolation on/off : ','off',status) elseif (chr_cmatch('set-style',liscom(icomm))) then call plot_style(status) elseif (chr_cmatch('grey-scale',liscom(icomm))) then image_opt = io_onoff('Grey-scaling on/off : ','off',status) if (image_opt) then image_min = data_range(1,imap_current) image_max = data_range(2,imap_current) call io_getr('Image-min : ','*',image_min,status) call io_getr('Image-max : ','*',image_max,status) end if elseif (chr_cmatch('vector-plot',liscom(icomm))) then call plot_vectors(status) elseif (chr_cmatch('symbol-plot',liscom(icomm))) then call plot_symbols(status) elseif (chr_cmatch('contours',liscom(icomm))) then call plot_ctdefine(status) elseif (chr_cmatch('linear-contours',liscom(icomm))) then call plot_ctlin(status) elseif (chr_cmatch('logarithmic-contours',liscom(icomm))) then call plot_ctlog(status) elseif (chr_cmatch('clear-contour-levels',liscom(icomm))) then option_list(1) = 'all ........... clear all levels' option_list(2) = 'type .......... clear specific type' call io_getopt('Clear-option (?=help) : ','ALL', * option_list,2,option,status) if (chr_cmatch('all',option)) then i = 0 else call io_geti('Contour-type (0=all) : ','0',i,status) endif call plot_ctclear(i,status) elseif (chr_cmatch('reset-contour-levels',liscom(icomm))) then option_list(1) = 'all ........... clear all levels' option_list(2) = 'type .......... clear specific type' call io_getopt('Reset-option (?=help) : ','ALL', * option_list,2,option,status) if (chr_cmatch('all',option)) then i = 0 else call io_geti('Contour-type (0=all) : ','0',i,status) endif call plot_ctreset(i,status) elseif (chr_cmatch('plot',liscom(icomm))) then option_list(1) = 'all .......... plot everything' option_list(2) = 'refresh ...... refresh current plot' option_list(3) = 'grey ......... plot grey scale' option_list(4) = 'frame ........ plot frame' option_list(5) = 'contours ..... plot contours' option_list(6) = 'symbol ....... plot symbols' option_list(7) = 'vectors ...... plot vectors' option_list(8) = 'text ......... plot text and titles' option_list(9) = 'annotations .. plot annotations' option_list(10)= 'crosses ...... plot crosses file' call io_getopt('Plot-option (?=help) : ','ALL', * option_list,10,option,status) call plot_doplot(option,map_array,status) call cmd_err(status,'PLOT',' ') elseif (chr_cmatch('initialise',liscom(icomm))) then option_list(1) = 'all .......... initialise everything' option_list(2) = 'plot ......... initialise for (re-)plotting' option_list(3) = 'options ...... options for the plot' option_list(4) = 'setup ........ definition of maps etc.' option_list(5) = 'annotations .. initailise annotations' option_list(6) = 'title ........ title for plot' call io_getopt('Initialise-option (?=help) : ','ALL', * option_list,6,option,status) if ( chr_cmatch(option,'plot') .or. * chr_cmatch(option,'all') ) then call plot_init_plot( status ) call annotate_init( annot_data, option, status ) endif if ( chr_cmatch(option,'options') .or. * chr_cmatch(option,'all') ) then call plot_init_opt( status ) call annotate_init( annot_data, option, status ) endif if ( chr_cmatch(option,'setup') .or. * chr_cmatch(option,'all') ) then call plot_init_setup( status ) call annotate_init( annot_data, option, status ) endif if ( chr_cmatch(option,'annotations') .or. * chr_cmatch(option,'all') ) then call annotate_init( annot_data, 'all', status ) endif if ( chr_cmatch(option,'title') .or. * chr_cmatch(option,'all') ) then title_plot = ' ' title_opt = .false. title_done = .false. endif elseif (chr_cmatch('display',liscom(icomm))) then call plot_display(status) elseif (chr_cmatch('title-plot',liscom(icomm))) then call io_getstr('Plot-title : ',' ',title_plot,status) title_opt = chr_lenb(title_plot).gt.0 title_done = .false. elseif (chr_cmatch('modify-lookup-table',liscom(icomm))) then call plot_TVmod(status) elseif (chr_cmatch('cursor-position',liscom(icomm))) then call map_alloc_in(imap,'DIRECT',map_array,ip_map,status) call redt_load( imap, status ) call plot_cursor_read( map_array(ip_map), .true., status ) call map_end_alloc( imap, map_array, status ) elseif (chr_cmatch('get',liscom(icomm))) then call plot_get( map_array, status ) elseif (chr_cmatch('surface-plot',liscom(icomm))) then call plot_surface( map_array, status ) elseif (chr_cmatch('isometric-plot',liscom(icomm))) then call plot_isometric( map_array, status ) elseif (chr_cmatch('annotate',liscom(icomm))) then call graphic_open( image_defn, status ) call plot_frinit( .true., status ) call annotate( annot_data, status ) elseif (chr_cmatch('crosses-file',liscom(icomm))) then option_list(1) = 'on ........... crosses file plotting on' option_list(2) = 'off .......... crosses file plotting off' option_list(3) = 'file ......... set name of crosses file' option_list(4) = 'size ......... set size of crosses' option_list(5) = 'extended ..... file contains style info.' call io_getopt('Crosses-option (?=help) : ','off', * option_list,5,option,status) if ( chr_cmatch(option,'on') ) then crosses_opt = 1 if (chr_lenb(crosses_file).eq.0) then call io_getfil('Crosses-file : ',' ',crosses_file,status) endif elseif ( chr_cmatch(option,'extended') ) then crosses_opt = 2 if (chr_lenb(crosses_file).eq.0) then call io_getfil('Crosses-file : ',' ',crosses_file,status) endif elseif ( chr_cmatch(option,'off') ) then crosses_opt = 0 elseif ( chr_cmatch(option,'file') ) then call io_getfil('Crosses-file : ',' ',crosses_file,status) elseif ( chr_cmatch(option,'size') ) then call io_getr('Cross-size : ','*',crosses_size,status) endif endif goto 1000 end
bsd-3-clause
yaowee/libflame
src/flablas/f2c/cgemv.f
17
8170
SUBROUTINE CGEMV ( TRANS, M, N, ALPHA, A, LDA, X, INCX, $ BETA, Y, INCY ) * .. Scalar Arguments .. COMPLEX ALPHA, BETA INTEGER INCX, INCY, LDA, M, N CHARACTER*1 TRANS * .. Array Arguments .. COMPLEX A( LDA, * ), X( * ), Y( * ) * .. * * Purpose * ======= * * CGEMV performs one of the matrix-vector operations * * y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or * * y := alpha*conjg( A' )*x + beta*y, * * where alpha and beta are scalars, x and y are vectors and A is an * m by n matrix. * * Parameters * ========== * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' y := alpha*A*x + beta*y. * * TRANS = 'T' or 't' y := alpha*A'*x + beta*y. * * TRANS = 'C' or 'c' y := alpha*conjg( A' )*x + beta*y. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of the matrix A. * M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - COMPLEX . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - COMPLEX array of DIMENSION ( LDA, n ). * Before entry, the leading m by n part of the array A must * contain the matrix of coefficients. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, m ). * Unchanged on exit. * * X - COMPLEX array of DIMENSION at least * ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' * and at least * ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. * Before entry, the incremented array X must contain the * vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * BETA - COMPLEX . * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then Y need not be set on input. * Unchanged on exit. * * Y - COMPLEX array of DIMENSION at least * ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' * and at least * ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. * Before entry with BETA non-zero, the incremented array Y * must contain the vector y. On exit, Y is overwritten by the * updated vector y. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * * .. Parameters .. COMPLEX ONE PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) ) COMPLEX ZERO PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) ) * .. Local Scalars .. COMPLEX TEMP INTEGER I, INFO, IX, IY, J, JX, JY, KX, KY, LENX, LENY LOGICAL NOCONJ * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. External Subroutines .. EXTERNAL XERBLA * .. Intrinsic Functions .. INTRINSIC CONJG, MAX * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 IF ( .NOT.LSAME( TRANS, 'N' ).AND. $ .NOT.LSAME( TRANS, 'T' ).AND. $ .NOT.LSAME( TRANS, 'C' ) )THEN INFO = 1 ELSE IF( M.LT.0 )THEN INFO = 2 ELSE IF( N.LT.0 )THEN INFO = 3 ELSE IF( LDA.LT.MAX( 1, M ) )THEN INFO = 6 ELSE IF( INCX.EQ.0 )THEN INFO = 8 ELSE IF( INCY.EQ.0 )THEN INFO = 11 END IF IF( INFO.NE.0 )THEN CALL XERBLA( 'CGEMV ', INFO ) RETURN END IF * * Quick return if possible. * IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR. $ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) ) $ RETURN * NOCONJ = LSAME( TRANS, 'T' ) * * Set LENX and LENY, the lengths of the vectors x and y, and set * up the start points in X and Y. * IF( LSAME( TRANS, 'N' ) )THEN LENX = N LENY = M ELSE LENX = M LENY = N END IF IF( INCX.GT.0 )THEN KX = 1 ELSE KX = 1 - ( LENX - 1 )*INCX END IF IF( INCY.GT.0 )THEN KY = 1 ELSE KY = 1 - ( LENY - 1 )*INCY END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * * First form y := beta*y. * IF( BETA.NE.ONE )THEN IF( INCY.EQ.1 )THEN IF( BETA.EQ.ZERO )THEN DO 10, I = 1, LENY Y( I ) = ZERO 10 CONTINUE ELSE DO 20, I = 1, LENY Y( I ) = BETA*Y( I ) 20 CONTINUE END IF ELSE IY = KY IF( BETA.EQ.ZERO )THEN DO 30, I = 1, LENY Y( IY ) = ZERO IY = IY + INCY 30 CONTINUE ELSE DO 40, I = 1, LENY Y( IY ) = BETA*Y( IY ) IY = IY + INCY 40 CONTINUE END IF END IF END IF IF( ALPHA.EQ.ZERO ) $ RETURN IF( LSAME( TRANS, 'N' ) )THEN * * Form y := alpha*A*x + y. * JX = KX IF( INCY.EQ.1 )THEN DO 60, J = 1, N IF( X( JX ).NE.ZERO )THEN TEMP = ALPHA*X( JX ) DO 50, I = 1, M Y( I ) = Y( I ) + TEMP*A( I, J ) 50 CONTINUE END IF JX = JX + INCX 60 CONTINUE ELSE DO 80, J = 1, N IF( X( JX ).NE.ZERO )THEN TEMP = ALPHA*X( JX ) IY = KY DO 70, I = 1, M Y( IY ) = Y( IY ) + TEMP*A( I, J ) IY = IY + INCY 70 CONTINUE END IF JX = JX + INCX 80 CONTINUE END IF ELSE * * Form y := alpha*A'*x + y or y := alpha*conjg( A' )*x + y. * JY = KY IF( INCX.EQ.1 )THEN DO 110, J = 1, N TEMP = ZERO IF( NOCONJ )THEN DO 90, I = 1, M TEMP = TEMP + A( I, J )*X( I ) 90 CONTINUE ELSE DO 100, I = 1, M TEMP = TEMP + CONJG( A( I, J ) )*X( I ) 100 CONTINUE END IF Y( JY ) = Y( JY ) + ALPHA*TEMP JY = JY + INCY 110 CONTINUE ELSE DO 140, J = 1, N TEMP = ZERO IX = KX IF( NOCONJ )THEN DO 120, I = 1, M TEMP = TEMP + A( I, J )*X( IX ) IX = IX + INCX 120 CONTINUE ELSE DO 130, I = 1, M TEMP = TEMP + CONJG( A( I, J ) )*X( IX ) IX = IX + INCX 130 CONTINUE END IF Y( JY ) = Y( JY ) + ALPHA*TEMP JY = JY + INCY 140 CONTINUE END IF END IF * RETURN * * End of CGEMV . * END
bsd-3-clause
ericmckean/nacl-llvm-branches.llvm-gcc-trunk
gcc/testsuite/gfortran.dg/used_types_5.f90
52
1378
! { dg-do compile } ! Tests the fix for a further regression caused by the ! fix for PR28788, as noted in reply #9 in the Bugzilla ! entry by Martin Reinecke <martin@mpa-garching.mpg.de>. ! The problem was caused by certain types of references ! that point to a deleted derived type symbol, after the ! type has been associated to another namespace. An ! example of this is the specification expression for x ! in subroutine foo below. At the same time, this tests ! the correct association of typeaa between a module ! procedure and a new definition of the type in MAIN. ! module types type :: typea sequence integer :: i end type typea type :: typeaa sequence integer :: i end type typeaa type(typea) :: it = typea(2) end module types !------------------------------ module global use types, only: typea, it contains subroutine foo (x) use types type(typeaa) :: ca real :: x(it%i) common /c/ ca x = 42.0 ca%i = 99 end subroutine foo end module global !------------------------------ use global, only: typea, foo type :: typeaa sequence integer :: i end type typeaa type(typeaa) :: cam real :: x(4) common /c/ cam x = -42.0 call foo(x) if (any (x .ne. (/42.0, 42.0, -42.0, -42.0/))) call abort () if (cam%i .ne. 99) call abort () end ! { dg-final { cleanup-modules "types global" } }
gpl-2.0
yaowee/libflame
lapack-test/3.5.0/MATGEN/dlatme.f
33
22677
*> \brief \b DLATME * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE DLATME( N, DIST, ISEED, D, MODE, COND, DMAX, EI, * RSIGN, * UPPER, SIM, DS, MODES, CONDS, KL, KU, ANORM, * A, * LDA, WORK, INFO ) * * .. Scalar Arguments .. * CHARACTER DIST, RSIGN, SIM, UPPER * INTEGER INFO, KL, KU, LDA, MODE, MODES, N * DOUBLE PRECISION ANORM, COND, CONDS, DMAX * .. * .. Array Arguments .. * CHARACTER EI( * ) * INTEGER ISEED( 4 ) * DOUBLE PRECISION A( LDA, * ), D( * ), DS( * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DLATME generates random non-symmetric square matrices with *> specified eigenvalues for testing LAPACK programs. *> *> DLATME operates by applying the following sequence of *> operations: *> *> 1. Set the diagonal to D, where D may be input or *> computed according to MODE, COND, DMAX, and RSIGN *> as described below. *> *> 2. If complex conjugate pairs are desired (MODE=0 and EI(1)='R', *> or MODE=5), certain pairs of adjacent elements of D are *> interpreted as the real and complex parts of a complex *> conjugate pair; A thus becomes block diagonal, with 1x1 *> and 2x2 blocks. *> *> 3. If UPPER='T', the upper triangle of A is set to random values *> out of distribution DIST. *> *> 4. If SIM='T', A is multiplied on the left by a random matrix *> X, whose singular values are specified by DS, MODES, and *> CONDS, and on the right by X inverse. *> *> 5. If KL < N-1, the lower bandwidth is reduced to KL using *> Householder transformations. If KU < N-1, the upper *> bandwidth is reduced to KU. *> *> 6. If ANORM is not negative, the matrix is scaled to have *> maximum-element-norm ANORM. *> *> (Note: since the matrix cannot be reduced beyond Hessenberg form, *> no packing options are available.) *> \endverbatim * * Arguments: * ========== * *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns (or rows) of A. Not modified. *> \endverbatim *> *> \param[in] DIST *> \verbatim *> DIST is CHARACTER*1 *> On entry, DIST specifies the type of distribution to be used *> to generate the random eigen-/singular values, and for the *> upper triangle (see UPPER). *> 'U' => UNIFORM( 0, 1 ) ( 'U' for uniform ) *> 'S' => UNIFORM( -1, 1 ) ( 'S' for symmetric ) *> 'N' => NORMAL( 0, 1 ) ( 'N' for normal ) *> Not modified. *> \endverbatim *> *> \param[in,out] ISEED *> \verbatim *> ISEED is INTEGER array, dimension ( 4 ) *> On entry ISEED specifies the seed of the random number *> generator. They should lie between 0 and 4095 inclusive, *> and ISEED(4) should be odd. The random number generator *> uses a linear congruential sequence limited to small *> integers, and so should produce machine independent *> random numbers. The values of ISEED are changed on *> exit, and can be used in the next call to DLATME *> to continue the same random number sequence. *> Changed on exit. *> \endverbatim *> *> \param[in,out] D *> \verbatim *> D is DOUBLE PRECISION array, dimension ( N ) *> This array is used to specify the eigenvalues of A. If *> MODE=0, then D is assumed to contain the eigenvalues (but *> see the description of EI), otherwise they will be *> computed according to MODE, COND, DMAX, and RSIGN and *> placed in D. *> Modified if MODE is nonzero. *> \endverbatim *> *> \param[in] MODE *> \verbatim *> MODE is INTEGER *> On entry this describes how the eigenvalues are to *> be specified: *> MODE = 0 means use D (with EI) as input *> MODE = 1 sets D(1)=1 and D(2:N)=1.0/COND *> MODE = 2 sets D(1:N-1)=1 and D(N)=1.0/COND *> MODE = 3 sets D(I)=COND**(-(I-1)/(N-1)) *> MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND) *> MODE = 5 sets D to random numbers in the range *> ( 1/COND , 1 ) such that their logarithms *> are uniformly distributed. Each odd-even pair *> of elements will be either used as two real *> eigenvalues or as the real and imaginary part *> of a complex conjugate pair of eigenvalues; *> the choice of which is done is random, with *> 50-50 probability, for each pair. *> MODE = 6 set D to random numbers from same distribution *> as the rest of the matrix. *> MODE < 0 has the same meaning as ABS(MODE), except that *> the order of the elements of D is reversed. *> Thus if MODE is between 1 and 4, D has entries ranging *> from 1 to 1/COND, if between -1 and -4, D has entries *> ranging from 1/COND to 1, *> Not modified. *> \endverbatim *> *> \param[in] COND *> \verbatim *> COND is DOUBLE PRECISION *> On entry, this is used as described under MODE above. *> If used, it must be >= 1. Not modified. *> \endverbatim *> *> \param[in] DMAX *> \verbatim *> DMAX is DOUBLE PRECISION *> If MODE is neither -6, 0 nor 6, the contents of D, as *> computed according to MODE and COND, will be scaled by *> DMAX / max(abs(D(i))). Note that DMAX need not be *> positive: if DMAX is negative (or zero), D will be *> scaled by a negative number (or zero). *> Not modified. *> \endverbatim *> *> \param[in] EI *> \verbatim *> EI is CHARACTER*1 array, dimension ( N ) *> If MODE is 0, and EI(1) is not ' ' (space character), *> this array specifies which elements of D (on input) are *> real eigenvalues and which are the real and imaginary parts *> of a complex conjugate pair of eigenvalues. The elements *> of EI may then only have the values 'R' and 'I'. If *> EI(j)='R' and EI(j+1)='I', then the j-th eigenvalue is *> CMPLX( D(j) , D(j+1) ), and the (j+1)-th is the complex *> conjugate thereof. If EI(j)=EI(j+1)='R', then the j-th *> eigenvalue is D(j) (i.e., real). EI(1) may not be 'I', *> nor may two adjacent elements of EI both have the value 'I'. *> If MODE is not 0, then EI is ignored. If MODE is 0 and *> EI(1)=' ', then the eigenvalues will all be real. *> Not modified. *> \endverbatim *> *> \param[in] RSIGN *> \verbatim *> RSIGN is CHARACTER*1 *> If MODE is not 0, 6, or -6, and RSIGN='T', then the *> elements of D, as computed according to MODE and COND, will *> be multiplied by a random sign (+1 or -1). If RSIGN='F', *> they will not be. RSIGN may only have the values 'T' or *> 'F'. *> Not modified. *> \endverbatim *> *> \param[in] UPPER *> \verbatim *> UPPER is CHARACTER*1 *> If UPPER='T', then the elements of A above the diagonal *> (and above the 2x2 diagonal blocks, if A has complex *> eigenvalues) will be set to random numbers out of DIST. *> If UPPER='F', they will not. UPPER may only have the *> values 'T' or 'F'. *> Not modified. *> \endverbatim *> *> \param[in] SIM *> \verbatim *> SIM is CHARACTER*1 *> If SIM='T', then A will be operated on by a "similarity *> transform", i.e., multiplied on the left by a matrix X and *> on the right by X inverse. X = U S V, where U and V are *> random unitary matrices and S is a (diagonal) matrix of *> singular values specified by DS, MODES, and CONDS. If *> SIM='F', then A will not be transformed. *> Not modified. *> \endverbatim *> *> \param[in,out] DS *> \verbatim *> DS is DOUBLE PRECISION array, dimension ( N ) *> This array is used to specify the singular values of X, *> in the same way that D specifies the eigenvalues of A. *> If MODE=0, the DS contains the singular values, which *> may not be zero. *> Modified if MODE is nonzero. *> \endverbatim *> *> \param[in] MODES *> \verbatim *> MODES is INTEGER *> \endverbatim *> *> \param[in] CONDS *> \verbatim *> CONDS is DOUBLE PRECISION *> Same as MODE and COND, but for specifying the diagonal *> of S. MODES=-6 and +6 are not allowed (since they would *> result in randomly ill-conditioned eigenvalues.) *> \endverbatim *> *> \param[in] KL *> \verbatim *> KL is INTEGER *> This specifies the lower bandwidth of the matrix. KL=1 *> specifies upper Hessenberg form. If KL is at least N-1, *> then A will have full lower bandwidth. KL must be at *> least 1. *> Not modified. *> \endverbatim *> *> \param[in] KU *> \verbatim *> KU is INTEGER *> This specifies the upper bandwidth of the matrix. KU=1 *> specifies lower Hessenberg form. If KU is at least N-1, *> then A will have full upper bandwidth; if KU and KL *> are both at least N-1, then A will be dense. Only one of *> KU and KL may be less than N-1. KU must be at least 1. *> Not modified. *> \endverbatim *> *> \param[in] ANORM *> \verbatim *> ANORM is DOUBLE PRECISION *> If ANORM is not negative, then A will be scaled by a non- *> negative real number to make the maximum-element-norm of A *> to be ANORM. *> Not modified. *> \endverbatim *> *> \param[out] A *> \verbatim *> A is DOUBLE PRECISION array, dimension ( LDA, N ) *> On exit A is the desired test matrix. *> Modified. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> LDA specifies the first dimension of A as declared in the *> calling program. LDA must be at least N. *> Not modified. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is DOUBLE PRECISION array, dimension ( 3*N ) *> Workspace. *> Modified. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> Error code. On exit, INFO will be set to one of the *> following values: *> 0 => normal return *> -1 => N negative *> -2 => DIST illegal string *> -5 => MODE not in range -6 to 6 *> -6 => COND less than 1.0, and MODE neither -6, 0 nor 6 *> -8 => EI(1) is not ' ' or 'R', EI(j) is not 'R' or 'I', or *> two adjacent elements of EI are 'I'. *> -9 => RSIGN is not 'T' or 'F' *> -10 => UPPER is not 'T' or 'F' *> -11 => SIM is not 'T' or 'F' *> -12 => MODES=0 and DS has a zero singular value. *> -13 => MODES is not in the range -5 to 5. *> -14 => MODES is nonzero and CONDS is less than 1. *> -15 => KL is less than 1. *> -16 => KU is less than 1, or KL and KU are both less than *> N-1. *> -19 => LDA is less than N. *> 1 => Error return from DLATM1 (computing D) *> 2 => Cannot scale to DMAX (max. eigenvalue is 0) *> 3 => Error return from DLATM1 (computing DS) *> 4 => Error return from DLARGE *> 5 => Zero singular value from DLATM1. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup double_matgen * * ===================================================================== SUBROUTINE DLATME( N, DIST, ISEED, D, MODE, COND, DMAX, EI, $ RSIGN, $ UPPER, SIM, DS, MODES, CONDS, KL, KU, ANORM, $ A, $ LDA, WORK, INFO ) * * -- LAPACK computational routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. CHARACTER DIST, RSIGN, SIM, UPPER INTEGER INFO, KL, KU, LDA, MODE, MODES, N DOUBLE PRECISION ANORM, COND, CONDS, DMAX * .. * .. Array Arguments .. CHARACTER EI( * ) INTEGER ISEED( 4 ) DOUBLE PRECISION A( LDA, * ), D( * ), DS( * ), WORK( * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER ( ZERO = 0.0D0 ) DOUBLE PRECISION ONE PARAMETER ( ONE = 1.0D0 ) DOUBLE PRECISION HALF PARAMETER ( HALF = 1.0D0 / 2.0D0 ) * .. * .. Local Scalars .. LOGICAL BADEI, BADS, USEEI INTEGER I, IC, ICOLS, IDIST, IINFO, IR, IROWS, IRSIGN, $ ISIM, IUPPER, J, JC, JCR, JR DOUBLE PRECISION ALPHA, TAU, TEMP, XNORMS * .. * .. Local Arrays .. DOUBLE PRECISION TEMPA( 1 ) * .. * .. External Functions .. LOGICAL LSAME DOUBLE PRECISION DLANGE, DLARAN EXTERNAL LSAME, DLANGE, DLARAN * .. * .. External Subroutines .. EXTERNAL DCOPY, DGEMV, DGER, DLARFG, DLARGE, DLARNV, $ DLASET, DLATM1, DSCAL, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MOD * .. * .. Executable Statements .. * * 1) Decode and Test the input parameters. * Initialize flags & seed. * INFO = 0 * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * * Decode DIST * IF( LSAME( DIST, 'U' ) ) THEN IDIST = 1 ELSE IF( LSAME( DIST, 'S' ) ) THEN IDIST = 2 ELSE IF( LSAME( DIST, 'N' ) ) THEN IDIST = 3 ELSE IDIST = -1 END IF * * Check EI * USEEI = .TRUE. BADEI = .FALSE. IF( LSAME( EI( 1 ), ' ' ) .OR. MODE.NE.0 ) THEN USEEI = .FALSE. ELSE IF( LSAME( EI( 1 ), 'R' ) ) THEN DO 10 J = 2, N IF( LSAME( EI( J ), 'I' ) ) THEN IF( LSAME( EI( J-1 ), 'I' ) ) $ BADEI = .TRUE. ELSE IF( .NOT.LSAME( EI( J ), 'R' ) ) $ BADEI = .TRUE. END IF 10 CONTINUE ELSE BADEI = .TRUE. END IF END IF * * Decode RSIGN * IF( LSAME( RSIGN, 'T' ) ) THEN IRSIGN = 1 ELSE IF( LSAME( RSIGN, 'F' ) ) THEN IRSIGN = 0 ELSE IRSIGN = -1 END IF * * Decode UPPER * IF( LSAME( UPPER, 'T' ) ) THEN IUPPER = 1 ELSE IF( LSAME( UPPER, 'F' ) ) THEN IUPPER = 0 ELSE IUPPER = -1 END IF * * Decode SIM * IF( LSAME( SIM, 'T' ) ) THEN ISIM = 1 ELSE IF( LSAME( SIM, 'F' ) ) THEN ISIM = 0 ELSE ISIM = -1 END IF * * Check DS, if MODES=0 and ISIM=1 * BADS = .FALSE. IF( MODES.EQ.0 .AND. ISIM.EQ.1 ) THEN DO 20 J = 1, N IF( DS( J ).EQ.ZERO ) $ BADS = .TRUE. 20 CONTINUE END IF * * Set INFO if an error * IF( N.LT.0 ) THEN INFO = -1 ELSE IF( IDIST.EQ.-1 ) THEN INFO = -2 ELSE IF( ABS( MODE ).GT.6 ) THEN INFO = -5 ELSE IF( ( MODE.NE.0 .AND. ABS( MODE ).NE.6 ) .AND. COND.LT.ONE ) $ THEN INFO = -6 ELSE IF( BADEI ) THEN INFO = -8 ELSE IF( IRSIGN.EQ.-1 ) THEN INFO = -9 ELSE IF( IUPPER.EQ.-1 ) THEN INFO = -10 ELSE IF( ISIM.EQ.-1 ) THEN INFO = -11 ELSE IF( BADS ) THEN INFO = -12 ELSE IF( ISIM.EQ.1 .AND. ABS( MODES ).GT.5 ) THEN INFO = -13 ELSE IF( ISIM.EQ.1 .AND. MODES.NE.0 .AND. CONDS.LT.ONE ) THEN INFO = -14 ELSE IF( KL.LT.1 ) THEN INFO = -15 ELSE IF( KU.LT.1 .OR. ( KU.LT.N-1 .AND. KL.LT.N-1 ) ) THEN INFO = -16 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -19 END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'DLATME', -INFO ) RETURN END IF * * Initialize random number generator * DO 30 I = 1, 4 ISEED( I ) = MOD( ABS( ISEED( I ) ), 4096 ) 30 CONTINUE * IF( MOD( ISEED( 4 ), 2 ).NE.1 ) $ ISEED( 4 ) = ISEED( 4 ) + 1 * * 2) Set up diagonal of A * * Compute D according to COND and MODE * CALL DLATM1( MODE, COND, IRSIGN, IDIST, ISEED, D, N, IINFO ) IF( IINFO.NE.0 ) THEN INFO = 1 RETURN END IF IF( MODE.NE.0 .AND. ABS( MODE ).NE.6 ) THEN * * Scale by DMAX * TEMP = ABS( D( 1 ) ) DO 40 I = 2, N TEMP = MAX( TEMP, ABS( D( I ) ) ) 40 CONTINUE * IF( TEMP.GT.ZERO ) THEN ALPHA = DMAX / TEMP ELSE IF( DMAX.NE.ZERO ) THEN INFO = 2 RETURN ELSE ALPHA = ZERO END IF * CALL DSCAL( N, ALPHA, D, 1 ) * END IF * CALL DLASET( 'Full', N, N, ZERO, ZERO, A, LDA ) CALL DCOPY( N, D, 1, A, LDA+1 ) * * Set up complex conjugate pairs * IF( MODE.EQ.0 ) THEN IF( USEEI ) THEN DO 50 J = 2, N IF( LSAME( EI( J ), 'I' ) ) THEN A( J-1, J ) = A( J, J ) A( J, J-1 ) = -A( J, J ) A( J, J ) = A( J-1, J-1 ) END IF 50 CONTINUE END IF * ELSE IF( ABS( MODE ).EQ.5 ) THEN * DO 60 J = 2, N, 2 IF( DLARAN( ISEED ).GT.HALF ) THEN A( J-1, J ) = A( J, J ) A( J, J-1 ) = -A( J, J ) A( J, J ) = A( J-1, J-1 ) END IF 60 CONTINUE END IF * * 3) If UPPER='T', set upper triangle of A to random numbers. * (but don't modify the corners of 2x2 blocks.) * IF( IUPPER.NE.0 ) THEN DO 70 JC = 2, N IF( A( JC-1, JC ).NE.ZERO ) THEN JR = JC - 2 ELSE JR = JC - 1 END IF CALL DLARNV( IDIST, ISEED, JR, A( 1, JC ) ) 70 CONTINUE END IF * * 4) If SIM='T', apply similarity transformation. * * -1 * Transform is X A X , where X = U S V, thus * * it is U S V A V' (1/S) U' * IF( ISIM.NE.0 ) THEN * * Compute S (singular values of the eigenvector matrix) * according to CONDS and MODES * CALL DLATM1( MODES, CONDS, 0, 0, ISEED, DS, N, IINFO ) IF( IINFO.NE.0 ) THEN INFO = 3 RETURN END IF * * Multiply by V and V' * CALL DLARGE( N, A, LDA, ISEED, WORK, IINFO ) IF( IINFO.NE.0 ) THEN INFO = 4 RETURN END IF * * Multiply by S and (1/S) * DO 80 J = 1, N CALL DSCAL( N, DS( J ), A( J, 1 ), LDA ) IF( DS( J ).NE.ZERO ) THEN CALL DSCAL( N, ONE / DS( J ), A( 1, J ), 1 ) ELSE INFO = 5 RETURN END IF 80 CONTINUE * * Multiply by U and U' * CALL DLARGE( N, A, LDA, ISEED, WORK, IINFO ) IF( IINFO.NE.0 ) THEN INFO = 4 RETURN END IF END IF * * 5) Reduce the bandwidth. * IF( KL.LT.N-1 ) THEN * * Reduce bandwidth -- kill column * DO 90 JCR = KL + 1, N - 1 IC = JCR - KL IROWS = N + 1 - JCR ICOLS = N + KL - JCR * CALL DCOPY( IROWS, A( JCR, IC ), 1, WORK, 1 ) XNORMS = WORK( 1 ) CALL DLARFG( IROWS, XNORMS, WORK( 2 ), 1, TAU ) WORK( 1 ) = ONE * CALL DGEMV( 'T', IROWS, ICOLS, ONE, A( JCR, IC+1 ), LDA, $ WORK, 1, ZERO, WORK( IROWS+1 ), 1 ) CALL DGER( IROWS, ICOLS, -TAU, WORK, 1, WORK( IROWS+1 ), 1, $ A( JCR, IC+1 ), LDA ) * CALL DGEMV( 'N', N, IROWS, ONE, A( 1, JCR ), LDA, WORK, 1, $ ZERO, WORK( IROWS+1 ), 1 ) CALL DGER( N, IROWS, -TAU, WORK( IROWS+1 ), 1, WORK, 1, $ A( 1, JCR ), LDA ) * A( JCR, IC ) = XNORMS CALL DLASET( 'Full', IROWS-1, 1, ZERO, ZERO, A( JCR+1, IC ), $ LDA ) 90 CONTINUE ELSE IF( KU.LT.N-1 ) THEN * * Reduce upper bandwidth -- kill a row at a time. * DO 100 JCR = KU + 1, N - 1 IR = JCR - KU IROWS = N + KU - JCR ICOLS = N + 1 - JCR * CALL DCOPY( ICOLS, A( IR, JCR ), LDA, WORK, 1 ) XNORMS = WORK( 1 ) CALL DLARFG( ICOLS, XNORMS, WORK( 2 ), 1, TAU ) WORK( 1 ) = ONE * CALL DGEMV( 'N', IROWS, ICOLS, ONE, A( IR+1, JCR ), LDA, $ WORK, 1, ZERO, WORK( ICOLS+1 ), 1 ) CALL DGER( IROWS, ICOLS, -TAU, WORK( ICOLS+1 ), 1, WORK, 1, $ A( IR+1, JCR ), LDA ) * CALL DGEMV( 'C', ICOLS, N, ONE, A( JCR, 1 ), LDA, WORK, 1, $ ZERO, WORK( ICOLS+1 ), 1 ) CALL DGER( ICOLS, N, -TAU, WORK, 1, WORK( ICOLS+1 ), 1, $ A( JCR, 1 ), LDA ) * A( IR, JCR ) = XNORMS CALL DLASET( 'Full', 1, ICOLS-1, ZERO, ZERO, A( IR, JCR+1 ), $ LDA ) 100 CONTINUE END IF * * Scale the matrix to have norm ANORM * IF( ANORM.GE.ZERO ) THEN TEMP = DLANGE( 'M', N, N, A, LDA, TEMPA ) IF( TEMP.GT.ZERO ) THEN ALPHA = ANORM / TEMP DO 110 J = 1, N CALL DSCAL( N, ALPHA, A( 1, J ), 1 ) 110 CONTINUE END IF END IF * RETURN * * End of DLATME * END
bsd-3-clause
yaowee/libflame
lapack-test/3.5.0/EIG/clctes.f
32
2782
*> \brief \b CLCTES * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * LOGICAL FUNCTION CLCTES( Z, D ) * * .. Scalar Arguments .. * COMPLEX D, Z * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CLCTES returns .TRUE. if the eigenvalue Z/D is to be selected *> (specifically, in this subroutine, if the real part of the *> eigenvalue is negative), and otherwise it returns .FALSE.. *> *> It is used by the test routine CDRGES to test whether the driver *> routine CGGES succesfully sorts eigenvalues. *> \endverbatim * * Arguments: * ========== * *> \param[in] Z *> \verbatim *> Z is COMPLEX *> The numerator part of a complex eigenvalue Z/D. *> \endverbatim *> *> \param[in] D *> \verbatim *> D is COMPLEX *> The denominator part of a complex eigenvalue Z/D. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup complex_eig * * ===================================================================== LOGICAL FUNCTION CLCTES( Z, D ) * * -- LAPACK test routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. COMPLEX D, Z * .. * * ===================================================================== * * .. Parameters .. * REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) COMPLEX CZERO PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ) ) * .. * .. Local Scalars .. REAL ZMAX * .. * .. Intrinsic Functions .. INTRINSIC ABS, AIMAG, MAX, REAL, SIGN * .. * .. Executable Statements .. * IF( D.EQ.CZERO ) THEN CLCTES = ( REAL( Z ).LT.ZERO ) ELSE IF( REAL( Z ).EQ.ZERO .OR. REAL( D ).EQ.ZERO ) THEN CLCTES = ( SIGN( ONE, AIMAG( Z ) ).NE. $ SIGN( ONE, AIMAG( D ) ) ) ELSE IF( AIMAG( Z ).EQ.ZERO .OR. AIMAG( D ).EQ.ZERO ) THEN CLCTES = ( SIGN( ONE, REAL( Z ) ).NE. $ SIGN( ONE, REAL( D ) ) ) ELSE ZMAX = MAX( ABS( REAL( Z ) ), ABS( AIMAG( Z ) ) ) CLCTES = ( ( REAL( Z ) / ZMAX )*REAL( D )+ $ ( AIMAG( Z ) / ZMAX )*AIMAG( D ).LT.ZERO ) END IF END IF * RETURN * * End of CLCTES * END
bsd-3-clause
yaowee/libflame
lapack-test/3.4.2/LIN/zpot06.f
31
6004
*> \brief \b ZPOT06 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE ZPOT06( UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, * RWORK, RESID ) * * .. Scalar Arguments .. * CHARACTER UPLO * INTEGER LDA, LDB, LDX, N, NRHS * DOUBLE PRECISION RESID * .. * .. Array Arguments .. * DOUBLE PRECISION RWORK( * ) * COMPLEX*16 A( LDA, * ), B( LDB, * ), X( LDX, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZPOT06 computes the residual for a solution of a system of linear *> equations A*x = b : *> RESID = norm(B - A*X,inf) / ( norm(A,inf) * norm(X,inf) * EPS ), *> where EPS is the machine epsilon. *> \endverbatim * * Arguments: * ========== * *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> Specifies whether the upper or lower triangular part of the *> symmetric matrix A is stored: *> = 'U': Upper triangular *> = 'L': Lower triangular *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of rows and columns of the matrix A. N >= 0. *> \endverbatim *> *> \param[in] NRHS *> \verbatim *> NRHS is INTEGER *> The number of columns of B, the matrix of right hand sides. *> NRHS >= 0. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is COMPLEX*16 array, dimension (LDA,N) *> The original M x N matrix A. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,N). *> \endverbatim *> *> \param[in] X *> \verbatim *> X is COMPLEX*16 array, dimension (LDX,NRHS) *> The computed solution vectors for the system of linear *> equations. *> \endverbatim *> *> \param[in] LDX *> \verbatim *> LDX is INTEGER *> The leading dimension of the array X. If TRANS = 'N', *> LDX >= max(1,N); if TRANS = 'T' or 'C', LDX >= max(1,N). *> \endverbatim *> *> \param[in,out] B *> \verbatim *> B is COMPLEX*16 array, dimension (LDB,NRHS) *> On entry, the right hand side vectors for the system of *> linear equations. *> On exit, B is overwritten with the difference B - A*X. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. IF TRANS = 'N', *> LDB >= max(1,M); if TRANS = 'T' or 'C', LDB >= max(1,N). *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is DOUBLE PRECISION array, dimension (N) *> \endverbatim *> *> \param[out] RESID *> \verbatim *> RESID is DOUBLE PRECISION *> The maximum over the number of right hand sides of *> norm(B - A*X) / ( norm(A) * norm(X) * EPS ). *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup complex16_lin * * ===================================================================== SUBROUTINE ZPOT06( UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, $ RWORK, RESID ) * * -- LAPACK test routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. CHARACTER UPLO INTEGER LDA, LDB, LDX, N, NRHS DOUBLE PRECISION RESID * .. * .. Array Arguments .. DOUBLE PRECISION RWORK( * ) COMPLEX*16 A( LDA, * ), B( LDB, * ), X( LDX, * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) COMPLEX*16 CONE, NEGCONE PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) ) PARAMETER ( NEGCONE = ( -1.0D+0, 0.0D+0 ) ) * .. * .. Local Scalars .. INTEGER IFAIL, J DOUBLE PRECISION ANORM, BNORM, EPS, XNORM COMPLEX*16 ZDUM * .. * .. External Functions .. LOGICAL LSAME INTEGER IZAMAX DOUBLE PRECISION DLAMCH, ZLANSY EXTERNAL LSAME, IZAMAX, DLAMCH, ZLANSY * .. * .. External Subroutines .. EXTERNAL ZHEMM * .. * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, DIMAG, MAX * .. * .. Statement Functions .. DOUBLE PRECISION CABS1 * .. * .. Statement Function definitions .. CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) ) * .. * .. * .. Executable Statements .. * * Quick exit if N = 0 or NRHS = 0 * IF( N.LE.0 .OR. NRHS.EQ.0 ) THEN RESID = ZERO RETURN END IF * * Exit with RESID = 1/EPS if ANORM = 0. * EPS = DLAMCH( 'Epsilon' ) ANORM = ZLANSY( 'I', UPLO, N, A, LDA, RWORK ) IF( ANORM.LE.ZERO ) THEN RESID = ONE / EPS RETURN END IF * * Compute B - A*X and store in B. IFAIL=0 * CALL ZHEMM( 'Left', UPLO, N, NRHS, NEGCONE, A, LDA, X, $ LDX, CONE, B, LDB ) * * Compute the maximum over the number of right hand sides of * norm(B - A*X) / ( norm(A) * norm(X) * EPS ) . * RESID = ZERO DO 10 J = 1, NRHS BNORM = CABS1(B(IZAMAX( N, B( 1, J ), 1 ),J)) XNORM = CABS1(X(IZAMAX( N, X( 1, J ), 1 ),J)) IF( XNORM.LE.ZERO ) THEN RESID = ONE / EPS ELSE RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) / EPS ) END IF 10 CONTINUE * RETURN * * End of ZPOT06 * END
bsd-3-clause
njwilson23/scipy
scipy/fftpack/src/fftpack/cosqb.f
116
1086
SUBROUTINE COSQB (N,X,WSAVE) DIMENSION X(*) ,WSAVE(*) DATA TSQRT2 /2.82842712474619/ IF (N.lt.2) GO TO 101 IF (N.eq.2) GO TO 102 GO TO 103 101 X(1) = 4.*X(1) RETURN 102 X1 = 4.*(X(1)+X(2)) X(2) = TSQRT2*(X(1)-X(2)) X(1) = X1 RETURN 103 CALL COSQB1 (N,X,WSAVE,WSAVE(N+1)) RETURN END SUBROUTINE COSQB1 (N,X,W,XH) DIMENSION X(1) ,W(1) ,XH(1) NS2 = (N+1)/2 NP2 = N+2 DO 101 I=3,N,2 XIM1 = X(I-1)+X(I) X(I) = X(I)-X(I-1) X(I-1) = XIM1 101 CONTINUE X(1) = X(1)+X(1) MODN = MOD(N,2) IF (MODN .EQ. 0) X(N) = X(N)+X(N) CALL RFFTB (N,X,XH) DO 102 K=2,NS2 KC = NP2-K XH(K) = W(K-1)*X(KC)+W(KC-1)*X(K) XH(KC) = W(K-1)*X(K)-W(KC-1)*X(KC) 102 CONTINUE IF (MODN .EQ. 0) X(NS2+1) = W(NS2)*(X(NS2+1)+X(NS2+1)) DO 103 K=2,NS2 KC = NP2-K X(K) = XH(K)+XH(KC) X(KC) = XH(K)-XH(KC) 103 CONTINUE X(1) = X(1)+X(1) RETURN END
bsd-3-clause
lesserwhirls/scipy-cwt
scipy/fftpack/src/fftpack/cosqb.f
116
1086
SUBROUTINE COSQB (N,X,WSAVE) DIMENSION X(*) ,WSAVE(*) DATA TSQRT2 /2.82842712474619/ IF (N.lt.2) GO TO 101 IF (N.eq.2) GO TO 102 GO TO 103 101 X(1) = 4.*X(1) RETURN 102 X1 = 4.*(X(1)+X(2)) X(2) = TSQRT2*(X(1)-X(2)) X(1) = X1 RETURN 103 CALL COSQB1 (N,X,WSAVE,WSAVE(N+1)) RETURN END SUBROUTINE COSQB1 (N,X,W,XH) DIMENSION X(1) ,W(1) ,XH(1) NS2 = (N+1)/2 NP2 = N+2 DO 101 I=3,N,2 XIM1 = X(I-1)+X(I) X(I) = X(I)-X(I-1) X(I-1) = XIM1 101 CONTINUE X(1) = X(1)+X(1) MODN = MOD(N,2) IF (MODN .EQ. 0) X(N) = X(N)+X(N) CALL RFFTB (N,X,XH) DO 102 K=2,NS2 KC = NP2-K XH(K) = W(K-1)*X(KC)+W(KC-1)*X(K) XH(KC) = W(K-1)*X(K)-W(KC-1)*X(KC) 102 CONTINUE IF (MODN .EQ. 0) X(NS2+1) = W(NS2)*(X(NS2+1)+X(NS2+1)) DO 103 K=2,NS2 KC = NP2-K X(K) = XH(K)+XH(KC) X(KC) = XH(K)-XH(KC) 103 CONTINUE X(1) = X(1)+X(1) RETURN END
bsd-3-clause
njwilson23/scipy
scipy/special/cdflib/exparg.f
151
1233
DOUBLE PRECISION FUNCTION exparg(l) C-------------------------------------------------------------------- C IF L = 0 THEN EXPARG(L) = THE LARGEST POSITIVE W FOR WHICH C EXP(W) CAN BE COMPUTED. C C IF L IS NONZERO THEN EXPARG(L) = THE LARGEST NEGATIVE W FOR C WHICH THE COMPUTED VALUE OF EXP(W) IS NONZERO. C C NOTE... ONLY AN APPROXIMATE VALUE FOR EXPARG(L) IS NEEDED. C-------------------------------------------------------------------- C .. Scalar Arguments .. INTEGER l C .. C .. Local Scalars .. DOUBLE PRECISION lnb INTEGER b,m C .. C .. External Functions .. INTEGER ipmpar EXTERNAL ipmpar C .. C .. Intrinsic Functions .. INTRINSIC dble,dlog C .. C .. Executable Statements .. C b = ipmpar(4) IF (b.NE.2) GO TO 10 lnb = .69314718055995D0 GO TO 40 10 IF (b.NE.8) GO TO 20 lnb = 2.0794415416798D0 GO TO 40 20 IF (b.NE.16) GO TO 30 lnb = 2.7725887222398D0 GO TO 40 30 lnb = dlog(dble(b)) C 40 IF (l.EQ.0) GO TO 50 m = ipmpar(9) - 1 exparg = 0.99999D0* (m*lnb) RETURN 50 m = ipmpar(10) exparg = 0.99999D0* (m*lnb) RETURN END
bsd-3-clause
yaowee/libflame
lapack-test/3.4.2/EIG/cerrst.f
32
30896
*> \brief \b CERRST * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE CERRST( PATH, NUNIT ) * * .. Scalar Arguments .. * CHARACTER*3 PATH * INTEGER NUNIT * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CERRST tests the error exits for CHETRD, CUNGTR, CUNMTR, CHPTRD, *> CUNGTR, CUPMTR, CSTEQR, CSTEIN, CPTEQR, CHBTRD, *> CHEEV, CHEEVX, CHEEVD, CHBEV, CHBEVX, CHBEVD, *> CHPEV, CHPEVX, CHPEVD, and CSTEDC. *> \endverbatim * * Arguments: * ========== * *> \param[in] PATH *> \verbatim *> PATH is CHARACTER*3 *> The LAPACK path name for the routines to be tested. *> \endverbatim *> *> \param[in] NUNIT *> \verbatim *> NUNIT is INTEGER *> The unit number for output. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup complex_eig * * ===================================================================== SUBROUTINE CERRST( PATH, NUNIT ) * * -- LAPACK test routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. CHARACTER*3 PATH INTEGER NUNIT * .. * * ===================================================================== * * .. Parameters .. INTEGER NMAX, LIW, LW PARAMETER ( NMAX = 3, LIW = 12*NMAX, LW = 20*NMAX ) * .. * .. Local Scalars .. CHARACTER*2 C2 INTEGER I, INFO, J, M, N, NT * .. * .. Local Arrays .. INTEGER I1( NMAX ), I2( NMAX ), I3( NMAX ), IW( LIW ) REAL D( NMAX ), E( NMAX ), R( LW ), RW( LW ), $ X( NMAX ) COMPLEX A( NMAX, NMAX ), C( NMAX, NMAX ), $ Q( NMAX, NMAX ), TAU( NMAX ), W( LW ), $ Z( NMAX, NMAX ) * .. * .. External Functions .. LOGICAL LSAMEN EXTERNAL LSAMEN * .. * .. External Subroutines .. EXTERNAL CHBEV, CHBEVD, CHBEVX, CHBTRD, CHEEV, CHEEVD, $ CHEEVR, CHEEVX, CHETRD, CHKXER, CHPEV, CHPEVD, $ CHPEVX, CHPTRD, CPTEQR, CSTEDC, CSTEIN, CSTEQR, $ CUNGTR, CUNMTR, CUPGTR, CUPMTR * .. * .. Scalars in Common .. LOGICAL LERR, OK CHARACTER*32 SRNAMT INTEGER INFOT, NOUT * .. * .. Common blocks .. COMMON / INFOC / INFOT, NOUT, OK, LERR COMMON / SRNAMC / SRNAMT * .. * .. Intrinsic Functions .. INTRINSIC REAL * .. * .. Executable Statements .. * NOUT = NUNIT WRITE( NOUT, FMT = * ) C2 = PATH( 2: 3 ) * * Set the variables to innocuous values. * DO 20 J = 1, NMAX DO 10 I = 1, NMAX A( I, J ) = 1. / REAL( I+J ) 10 CONTINUE 20 CONTINUE DO 30 J = 1, NMAX D( J ) = REAL( J ) E( J ) = 0.0 I1( J ) = J I2( J ) = J TAU( J ) = 1. 30 CONTINUE OK = .TRUE. NT = 0 * * Test error exits for the ST path. * IF( LSAMEN( 2, C2, 'ST' ) ) THEN * * CHETRD * SRNAMT = 'CHETRD' INFOT = 1 CALL CHETRD( '/', 0, A, 1, D, E, TAU, W, 1, INFO ) CALL CHKXER( 'CHETRD', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHETRD( 'U', -1, A, 1, D, E, TAU, W, 1, INFO ) CALL CHKXER( 'CHETRD', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHETRD( 'U', 2, A, 1, D, E, TAU, W, 1, INFO ) CALL CHKXER( 'CHETRD', INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CHETRD( 'U', 0, A, 1, D, E, TAU, W, 0, INFO ) CALL CHKXER( 'CHETRD', INFOT, NOUT, LERR, OK ) NT = NT + 4 * * CUNGTR * SRNAMT = 'CUNGTR' INFOT = 1 CALL CUNGTR( '/', 0, A, 1, TAU, W, 1, INFO ) CALL CHKXER( 'CUNGTR', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CUNGTR( 'U', -1, A, 1, TAU, W, 1, INFO ) CALL CHKXER( 'CUNGTR', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CUNGTR( 'U', 2, A, 1, TAU, W, 1, INFO ) CALL CHKXER( 'CUNGTR', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CUNGTR( 'U', 3, A, 3, TAU, W, 1, INFO ) CALL CHKXER( 'CUNGTR', INFOT, NOUT, LERR, OK ) NT = NT + 4 * * CUNMTR * SRNAMT = 'CUNMTR' INFOT = 1 CALL CUNMTR( '/', 'U', 'N', 0, 0, A, 1, TAU, C, 1, W, 1, INFO ) CALL CHKXER( 'CUNMTR', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CUNMTR( 'L', '/', 'N', 0, 0, A, 1, TAU, C, 1, W, 1, INFO ) CALL CHKXER( 'CUNMTR', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CUNMTR( 'L', 'U', '/', 0, 0, A, 1, TAU, C, 1, W, 1, INFO ) CALL CHKXER( 'CUNMTR', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CUNMTR( 'L', 'U', 'N', -1, 0, A, 1, TAU, C, 1, W, 1, $ INFO ) CALL CHKXER( 'CUNMTR', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CUNMTR( 'L', 'U', 'N', 0, -1, A, 1, TAU, C, 1, W, 1, $ INFO ) CALL CHKXER( 'CUNMTR', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CUNMTR( 'L', 'U', 'N', 2, 0, A, 1, TAU, C, 2, W, 1, INFO ) CALL CHKXER( 'CUNMTR', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CUNMTR( 'R', 'U', 'N', 0, 2, A, 1, TAU, C, 1, W, 1, INFO ) CALL CHKXER( 'CUNMTR', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CUNMTR( 'L', 'U', 'N', 2, 0, A, 2, TAU, C, 1, W, 1, INFO ) CALL CHKXER( 'CUNMTR', INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CUNMTR( 'L', 'U', 'N', 0, 2, A, 1, TAU, C, 1, W, 1, INFO ) CALL CHKXER( 'CUNMTR', INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CUNMTR( 'R', 'U', 'N', 2, 0, A, 1, TAU, C, 2, W, 1, INFO ) CALL CHKXER( 'CUNMTR', INFOT, NOUT, LERR, OK ) NT = NT + 10 * * CHPTRD * SRNAMT = 'CHPTRD' INFOT = 1 CALL CHPTRD( '/', 0, A, D, E, TAU, INFO ) CALL CHKXER( 'CHPTRD', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHPTRD( 'U', -1, A, D, E, TAU, INFO ) CALL CHKXER( 'CHPTRD', INFOT, NOUT, LERR, OK ) NT = NT + 2 * * CUPGTR * SRNAMT = 'CUPGTR' INFOT = 1 CALL CUPGTR( '/', 0, A, TAU, Z, 1, W, INFO ) CALL CHKXER( 'CUPGTR', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CUPGTR( 'U', -1, A, TAU, Z, 1, W, INFO ) CALL CHKXER( 'CUPGTR', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CUPGTR( 'U', 2, A, TAU, Z, 1, W, INFO ) CALL CHKXER( 'CUPGTR', INFOT, NOUT, LERR, OK ) NT = NT + 3 * * CUPMTR * SRNAMT = 'CUPMTR' INFOT = 1 CALL CUPMTR( '/', 'U', 'N', 0, 0, A, TAU, C, 1, W, INFO ) CALL CHKXER( 'CUPMTR', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CUPMTR( 'L', '/', 'N', 0, 0, A, TAU, C, 1, W, INFO ) CALL CHKXER( 'CUPMTR', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CUPMTR( 'L', 'U', '/', 0, 0, A, TAU, C, 1, W, INFO ) CALL CHKXER( 'CUPMTR', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CUPMTR( 'L', 'U', 'N', -1, 0, A, TAU, C, 1, W, INFO ) CALL CHKXER( 'CUPMTR', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CUPMTR( 'L', 'U', 'N', 0, -1, A, TAU, C, 1, W, INFO ) CALL CHKXER( 'CUPMTR', INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CUPMTR( 'L', 'U', 'N', 2, 0, A, TAU, C, 1, W, INFO ) CALL CHKXER( 'CUPMTR', INFOT, NOUT, LERR, OK ) NT = NT + 6 * * CPTEQR * SRNAMT = 'CPTEQR' INFOT = 1 CALL CPTEQR( '/', 0, D, E, Z, 1, RW, INFO ) CALL CHKXER( 'CPTEQR', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CPTEQR( 'N', -1, D, E, Z, 1, RW, INFO ) CALL CHKXER( 'CPTEQR', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CPTEQR( 'V', 2, D, E, Z, 1, RW, INFO ) CALL CHKXER( 'CPTEQR', INFOT, NOUT, LERR, OK ) NT = NT + 3 * * CSTEIN * SRNAMT = 'CSTEIN' INFOT = 1 CALL CSTEIN( -1, D, E, 0, X, I1, I2, Z, 1, RW, IW, I3, INFO ) CALL CHKXER( 'CSTEIN', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSTEIN( 0, D, E, -1, X, I1, I2, Z, 1, RW, IW, I3, INFO ) CALL CHKXER( 'CSTEIN', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSTEIN( 0, D, E, 1, X, I1, I2, Z, 1, RW, IW, I3, INFO ) CALL CHKXER( 'CSTEIN', INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CSTEIN( 2, D, E, 0, X, I1, I2, Z, 1, RW, IW, I3, INFO ) CALL CHKXER( 'CSTEIN', INFOT, NOUT, LERR, OK ) NT = NT + 4 * * CSTEQR * SRNAMT = 'CSTEQR' INFOT = 1 CALL CSTEQR( '/', 0, D, E, Z, 1, RW, INFO ) CALL CHKXER( 'CSTEQR', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSTEQR( 'N', -1, D, E, Z, 1, RW, INFO ) CALL CHKXER( 'CSTEQR', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CSTEQR( 'V', 2, D, E, Z, 1, RW, INFO ) CALL CHKXER( 'CSTEQR', INFOT, NOUT, LERR, OK ) NT = NT + 3 * * CSTEDC * SRNAMT = 'CSTEDC' INFOT = 1 CALL CSTEDC( '/', 0, D, E, Z, 1, W, 1, RW, 1, IW, 1, INFO ) CALL CHKXER( 'CSTEDC', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSTEDC( 'N', -1, D, E, Z, 1, W, 1, RW, 1, IW, 1, INFO ) CALL CHKXER( 'CSTEDC', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CSTEDC( 'V', 2, D, E, Z, 1, W, 4, RW, 23, IW, 28, INFO ) CALL CHKXER( 'CSTEDC', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CSTEDC( 'N', 2, D, E, Z, 1, W, 0, RW, 1, IW, 1, INFO ) CALL CHKXER( 'CSTEDC', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CSTEDC( 'V', 2, D, E, Z, 2, W, 0, RW, 23, IW, 28, INFO ) CALL CHKXER( 'CSTEDC', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CSTEDC( 'N', 2, D, E, Z, 1, W, 1, RW, 0, IW, 1, INFO ) CALL CHKXER( 'CSTEDC', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CSTEDC( 'I', 2, D, E, Z, 2, W, 1, RW, 1, IW, 12, INFO ) CALL CHKXER( 'CSTEDC', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CSTEDC( 'V', 2, D, E, Z, 2, W, 4, RW, 1, IW, 28, INFO ) CALL CHKXER( 'CSTEDC', INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CSTEDC( 'N', 2, D, E, Z, 1, W, 1, RW, 1, IW, 0, INFO ) CALL CHKXER( 'CSTEDC', INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CSTEDC( 'I', 2, D, E, Z, 2, W, 1, RW, 23, IW, 0, INFO ) CALL CHKXER( 'CSTEDC', INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CSTEDC( 'V', 2, D, E, Z, 2, W, 4, RW, 23, IW, 0, INFO ) CALL CHKXER( 'CSTEDC', INFOT, NOUT, LERR, OK ) NT = NT + 11 * * CHEEVD * SRNAMT = 'CHEEVD' INFOT = 1 CALL CHEEVD( '/', 'U', 0, A, 1, X, W, 1, RW, 1, IW, 1, INFO ) CALL CHKXER( 'CHEEVD', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHEEVD( 'N', '/', 0, A, 1, X, W, 1, RW, 1, IW, 1, INFO ) CALL CHKXER( 'CHEEVD', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHEEVD( 'N', 'U', -1, A, 1, X, W, 1, RW, 1, IW, 1, INFO ) CALL CHKXER( 'CHEEVD', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CHEEVD( 'N', 'U', 2, A, 1, X, W, 3, RW, 2, IW, 1, INFO ) CALL CHKXER( 'CHEEVD', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CHEEVD( 'N', 'U', 1, A, 1, X, W, 0, RW, 1, IW, 1, INFO ) CALL CHKXER( 'CHEEVD', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CHEEVD( 'N', 'U', 2, A, 2, X, W, 2, RW, 2, IW, 1, INFO ) CALL CHKXER( 'CHEEVD', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CHEEVD( 'V', 'U', 2, A, 2, X, W, 3, RW, 25, IW, 12, INFO ) CALL CHKXER( 'CHEEVD', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CHEEVD( 'N', 'U', 1, A, 1, X, W, 1, RW, 0, IW, 1, INFO ) CALL CHKXER( 'CHEEVD', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CHEEVD( 'N', 'U', 2, A, 2, X, W, 3, RW, 1, IW, 1, INFO ) CALL CHKXER( 'CHEEVD', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CHEEVD( 'V', 'U', 2, A, 2, X, W, 8, RW, 18, IW, 12, INFO ) CALL CHKXER( 'CHEEVD', INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CHEEVD( 'N', 'U', 1, A, 1, X, W, 1, RW, 1, IW, 0, INFO ) CALL CHKXER( 'CHEEVD', INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CHEEVD( 'V', 'U', 2, A, 2, X, W, 8, RW, 25, IW, 11, INFO ) CALL CHKXER( 'CHEEVD', INFOT, NOUT, LERR, OK ) NT = NT + 12 * * CHEEV * SRNAMT = 'CHEEV ' INFOT = 1 CALL CHEEV( '/', 'U', 0, A, 1, X, W, 1, RW, INFO ) CALL CHKXER( 'CHEEV ', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHEEV( 'N', '/', 0, A, 1, X, W, 1, RW, INFO ) CALL CHKXER( 'CHEEV ', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHEEV( 'N', 'U', -1, A, 1, X, W, 1, RW, INFO ) CALL CHKXER( 'CHEEV ', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CHEEV( 'N', 'U', 2, A, 1, X, W, 3, RW, INFO ) CALL CHKXER( 'CHEEV ', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CHEEV( 'N', 'U', 2, A, 2, X, W, 2, RW, INFO ) CALL CHKXER( 'CHEEV ', INFOT, NOUT, LERR, OK ) NT = NT + 5 * * CHEEVX * SRNAMT = 'CHEEVX' INFOT = 1 CALL CHEEVX( '/', 'A', 'U', 0, A, 1, 0.0, 0.0, 0, 0, 0.0, M, X, $ Z, 1, W, 1, RW, IW, I3, INFO ) CALL CHKXER( 'CHEEVX', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHEEVX( 'V', '/', 'U', 0, A, 1, 0.0, 1.0, 1, 0, 0.0, M, X, $ Z, 1, W, 1, RW, IW, I3, INFO ) CALL CHKXER( 'CHEEVX', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHEEVX( 'V', 'A', '/', 0, A, 1, 0.0, 0.0, 0, 0, 0.0, M, X, $ Z, 1, W, 1, RW, IW, I3, INFO ) INFOT = 4 CALL CHEEVX( 'V', 'A', 'U', -1, A, 1, 0.0, 0.0, 0, 0, 0.0, M, $ X, Z, 1, W, 1, RW, IW, I3, INFO ) CALL CHKXER( 'CHEEVX', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CHEEVX( 'V', 'A', 'U', 2, A, 1, 0.0, 0.0, 0, 0, 0.0, M, X, $ Z, 2, W, 3, RW, IW, I3, INFO ) CALL CHKXER( 'CHEEVX', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CHEEVX( 'V', 'V', 'U', 1, A, 1, 0.0, 0.0, 0, 0, 0.0, M, X, $ Z, 1, W, 1, RW, IW, I3, INFO ) CALL CHKXER( 'CHEEVX', INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CHEEVX( 'V', 'I', 'U', 1, A, 1, 0.0, 0.0, 0, 0, 0.0, M, X, $ Z, 1, W, 1, RW, IW, I3, INFO ) CALL CHKXER( 'CHEEVX', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CHEEVX( 'V', 'I', 'U', 2, A, 2, 0.0, 0.0, 2, 1, 0.0, M, X, $ Z, 2, W, 3, RW, IW, I3, INFO ) CALL CHKXER( 'CHEEVX', INFOT, NOUT, LERR, OK ) INFOT = 15 CALL CHEEVX( 'V', 'A', 'U', 2, A, 2, 0.0, 0.0, 0, 0, 0.0, M, X, $ Z, 1, W, 3, RW, IW, I3, INFO ) CALL CHKXER( 'CHEEVX', INFOT, NOUT, LERR, OK ) INFOT = 17 CALL CHEEVX( 'V', 'A', 'U', 2, A, 2, 0.0, 0.0, 0, 0, 0.0, M, X, $ Z, 2, W, 2, RW, IW, I1, INFO ) CALL CHKXER( 'CHEEVX', INFOT, NOUT, LERR, OK ) NT = NT + 10 * * CHEEVR * SRNAMT = 'CHEEVR' N = 1 INFOT = 1 CALL CHEEVR( '/', 'A', 'U', 0, A, 1, 0.0, 0.0, 1, 1, 0.0, M, R, $ Z, 1, IW, Q, 2*N, RW, 24*N, IW( 2*N+1 ), 10*N, $ INFO ) CALL CHKXER( 'CHEEVR', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHEEVR( 'V', '/', 'U', 0, A, 1, 0.0, 0.0, 1, 1, 0.0, M, R, $ Z, 1, IW, Q, 2*N, RW, 24*N, IW( 2*N+1 ), 10*N, $ INFO ) CALL CHKXER( 'CHEEVR', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHEEVR( 'V', 'A', '/', -1, A, 1, 0.0, 0.0, 1, 1, 0.0, M, $ R, Z, 1, IW, Q, 2*N, RW, 24*N, IW( 2*N+1 ), 10*N, $ INFO ) CALL CHKXER( 'CHEEVR', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHEEVR( 'V', 'A', 'U', -1, A, 1, 0.0, 0.0, 1, 1, 0.0, M, $ R, Z, 1, IW, Q, 2*N, RW, 24*N, IW( 2*N+1 ), 10*N, $ INFO ) CALL CHKXER( 'CHEEVR', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CHEEVR( 'V', 'A', 'U', 2, A, 1, 0.0, 0.0, 1, 1, 0.0, M, R, $ Z, 1, IW, Q, 2*N, RW, 24*N, IW( 2*N+1 ), 10*N, $ INFO ) CALL CHKXER( 'CHEEVR', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CHEEVR( 'V', 'V', 'U', 1, A, 1, 0.0E0, 0.0E0, 1, 1, 0.0, $ M, R, Z, 1, IW, Q, 2*N, RW, 24*N, IW( 2*N+1 ), $ 10*N, INFO ) CALL CHKXER( 'CHEEVR', INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CHEEVR( 'V', 'I', 'U', 1, A, 1, 0.0E0, 0.0E0, 0, 1, 0.0, $ M, R, Z, 1, IW, Q, 2*N, RW, 24*N, IW( 2*N+1 ), $ 10*N, INFO ) CALL CHKXER( 'CHEEVR', INFOT, NOUT, LERR, OK ) INFOT = 10 * CALL CHEEVR( 'V', 'I', 'U', 2, A, 2, 0.0E0, 0.0E0, 2, 1, 0.0, $ M, R, Z, 1, IW, Q, 2*N, RW, 24*N, IW( 2*N+1 ), $ 10*N, INFO ) CALL CHKXER( 'CHEEVR', INFOT, NOUT, LERR, OK ) INFOT = 15 CALL CHEEVR( 'V', 'I', 'U', 1, A, 1, 0.0E0, 0.0E0, 1, 1, 0.0, $ M, R, Z, 0, IW, Q, 2*N, RW, 24*N, IW( 2*N+1 ), $ 10*N, INFO ) CALL CHKXER( 'CHEEVR', INFOT, NOUT, LERR, OK ) INFOT = 18 CALL CHEEVR( 'V', 'I', 'U', 1, A, 1, 0.0E0, 0.0E0, 1, 1, 0.0, $ M, R, Z, 1, IW, Q, 2*N-1, RW, 24*N, IW( 2*N+1 ), $ 10*N, INFO ) CALL CHKXER( 'CHEEVR', INFOT, NOUT, LERR, OK ) INFOT = 20 CALL CHEEVR( 'V', 'I', 'U', 1, A, 1, 0.0E0, 0.0E0, 1, 1, 0.0, $ M, R, Z, 1, IW, Q, 2*N, RW, 24*N-1, IW( 2*N-1 ), $ 10*N, INFO ) CALL CHKXER( 'CHEEVR', INFOT, NOUT, LERR, OK ) INFOT = 22 CALL CHEEVR( 'V', 'I', 'U', 1, A, 1, 0.0E0, 0.0E0, 1, 1, 0.0, $ M, R, Z, 1, IW, Q, 2*N, RW, 24*N, IW, 10*N-1, $ INFO ) CALL CHKXER( 'CHEEVR', INFOT, NOUT, LERR, OK ) NT = NT + 12 * * CHPEVD * SRNAMT = 'CHPEVD' INFOT = 1 CALL CHPEVD( '/', 'U', 0, A, X, Z, 1, W, 1, RW, 1, IW, 1, $ INFO ) CALL CHKXER( 'CHPEVD', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHPEVD( 'N', '/', 0, A, X, Z, 1, W, 1, RW, 1, IW, 1, $ INFO ) CALL CHKXER( 'CHPEVD', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHPEVD( 'N', 'U', -1, A, X, Z, 1, W, 1, RW, 1, IW, 1, $ INFO ) CALL CHKXER( 'CHPEVD', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHPEVD( 'V', 'U', 2, A, X, Z, 1, W, 4, RW, 25, IW, 12, $ INFO ) CALL CHKXER( 'CHPEVD', INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CHPEVD( 'N', 'U', 1, A, X, Z, 1, W, 0, RW, 1, IW, 1, $ INFO ) CALL CHKXER( 'CHPEVD', INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CHPEVD( 'N', 'U', 2, A, X, Z, 2, W, 1, RW, 2, IW, 1, $ INFO ) CALL CHKXER( 'CHPEVD', INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CHPEVD( 'V', 'U', 2, A, X, Z, 2, W, 2, RW, 25, IW, 12, $ INFO ) CALL CHKXER( 'CHPEVD', INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CHPEVD( 'N', 'U', 1, A, X, Z, 1, W, 1, RW, 0, IW, 1, $ INFO ) CALL CHKXER( 'CHPEVD', INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CHPEVD( 'N', 'U', 2, A, X, Z, 2, W, 2, RW, 1, IW, 1, $ INFO ) CALL CHKXER( 'CHPEVD', INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CHPEVD( 'V', 'U', 2, A, X, Z, 2, W, 4, RW, 18, IW, 12, $ INFO ) CALL CHKXER( 'CHPEVD', INFOT, NOUT, LERR, OK ) INFOT = 13 CALL CHPEVD( 'N', 'U', 1, A, X, Z, 1, W, 1, RW, 1, IW, 0, $ INFO ) CALL CHKXER( 'CHPEVD', INFOT, NOUT, LERR, OK ) INFOT = 13 CALL CHPEVD( 'N', 'U', 2, A, X, Z, 2, W, 2, RW, 2, IW, 0, $ INFO ) CALL CHKXER( 'CHPEVD', INFOT, NOUT, LERR, OK ) INFOT = 13 CALL CHPEVD( 'V', 'U', 2, A, X, Z, 2, W, 4, RW, 25, IW, 2, $ INFO ) CALL CHKXER( 'CHPEVD', INFOT, NOUT, LERR, OK ) NT = NT + 13 * * CHPEV * SRNAMT = 'CHPEV ' INFOT = 1 CALL CHPEV( '/', 'U', 0, A, X, Z, 1, W, RW, INFO ) CALL CHKXER( 'CHPEV ', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHPEV( 'N', '/', 0, A, X, Z, 1, W, RW, INFO ) CALL CHKXER( 'CHPEV ', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHPEV( 'N', 'U', -1, A, X, Z, 1, W, RW, INFO ) CALL CHKXER( 'CHPEV ', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHPEV( 'V', 'U', 2, A, X, Z, 1, W, RW, INFO ) CALL CHKXER( 'CHPEV ', INFOT, NOUT, LERR, OK ) NT = NT + 4 * * CHPEVX * SRNAMT = 'CHPEVX' INFOT = 1 CALL CHPEVX( '/', 'A', 'U', 0, A, 0.0, 0.0, 0, 0, 0.0, M, X, Z, $ 1, W, RW, IW, I3, INFO ) CALL CHKXER( 'CHPEVX', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHPEVX( 'V', '/', 'U', 0, A, 0.0, 1.0, 1, 0, 0.0, M, X, Z, $ 1, W, RW, IW, I3, INFO ) CALL CHKXER( 'CHPEVX', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHPEVX( 'V', 'A', '/', 0, A, 0.0, 0.0, 0, 0, 0.0, M, X, Z, $ 1, W, RW, IW, I3, INFO ) CALL CHKXER( 'CHPEVX', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHPEVX( 'V', 'A', 'U', -1, A, 0.0, 0.0, 0, 0, 0.0, M, X, $ Z, 1, W, RW, IW, I3, INFO ) CALL CHKXER( 'CHPEVX', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHPEVX( 'V', 'V', 'U', 1, A, 0.0, 0.0, 0, 0, 0.0, M, X, Z, $ 1, W, RW, IW, I3, INFO ) CALL CHKXER( 'CHPEVX', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CHPEVX( 'V', 'I', 'U', 1, A, 0.0, 0.0, 0, 0, 0.0, M, X, Z, $ 1, W, RW, IW, I3, INFO ) CALL CHKXER( 'CHPEVX', INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CHPEVX( 'V', 'I', 'U', 2, A, 0.0, 0.0, 2, 1, 0.0, M, X, Z, $ 2, W, RW, IW, I3, INFO ) CALL CHKXER( 'CHPEVX', INFOT, NOUT, LERR, OK ) INFOT = 14 CALL CHPEVX( 'V', 'A', 'U', 2, A, 0.0, 0.0, 0, 0, 0.0, M, X, Z, $ 1, W, RW, IW, I3, INFO ) CALL CHKXER( 'CHPEVX', INFOT, NOUT, LERR, OK ) NT = NT + 8 * * Test error exits for the HB path. * ELSE IF( LSAMEN( 2, C2, 'HB' ) ) THEN * * CHBTRD * SRNAMT = 'CHBTRD' INFOT = 1 CALL CHBTRD( '/', 'U', 0, 0, A, 1, D, E, Z, 1, W, INFO ) CALL CHKXER( 'CHBTRD', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHBTRD( 'N', '/', 0, 0, A, 1, D, E, Z, 1, W, INFO ) CALL CHKXER( 'CHBTRD', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHBTRD( 'N', 'U', -1, 0, A, 1, D, E, Z, 1, W, INFO ) CALL CHKXER( 'CHBTRD', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHBTRD( 'N', 'U', 0, -1, A, 1, D, E, Z, 1, W, INFO ) CALL CHKXER( 'CHBTRD', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CHBTRD( 'N', 'U', 1, 1, A, 1, D, E, Z, 1, W, INFO ) CALL CHKXER( 'CHBTRD', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CHBTRD( 'V', 'U', 2, 0, A, 1, D, E, Z, 1, W, INFO ) CALL CHKXER( 'CHBTRD', INFOT, NOUT, LERR, OK ) NT = NT + 6 * * CHBEVD * SRNAMT = 'CHBEVD' INFOT = 1 CALL CHBEVD( '/', 'U', 0, 0, A, 1, X, Z, 1, W, 1, RW, 1, IW, 1, $ INFO ) CALL CHKXER( 'CHBEVD', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHBEVD( 'N', '/', 0, 0, A, 1, X, Z, 1, W, 1, RW, 1, IW, 1, $ INFO ) CALL CHKXER( 'CHBEVD', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHBEVD( 'N', 'U', -1, 0, A, 1, X, Z, 1, W, 1, RW, 1, IW, $ 1, INFO ) CALL CHKXER( 'CHBEVD', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHBEVD( 'N', 'U', 0, -1, A, 1, X, Z, 1, W, 1, RW, 1, IW, $ 1, INFO ) CALL CHKXER( 'CHBEVD', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CHBEVD( 'N', 'U', 2, 1, A, 1, X, Z, 1, W, 2, RW, 2, IW, 1, $ INFO ) CALL CHKXER( 'CHBEVD', INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CHBEVD( 'V', 'U', 2, 1, A, 2, X, Z, 1, W, 8, RW, 25, IW, $ 12, INFO ) CALL CHKXER( 'CHBEVD', INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CHBEVD( 'N', 'U', 1, 0, A, 1, X, Z, 1, W, 0, RW, 1, IW, 1, $ INFO ) CALL CHKXER( 'CHBEVD', INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CHBEVD( 'N', 'U', 2, 1, A, 2, X, Z, 2, W, 1, RW, 2, IW, 1, $ INFO ) CALL CHKXER( 'CHBEVD', INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CHBEVD( 'V', 'U', 2, 1, A, 2, X, Z, 2, W, 2, RW, 25, IW, $ 12, INFO ) CALL CHKXER( 'CHBEVD', INFOT, NOUT, LERR, OK ) INFOT = 13 CALL CHBEVD( 'N', 'U', 1, 0, A, 1, X, Z, 1, W, 1, RW, 0, IW, 1, $ INFO ) CALL CHKXER( 'CHBEVD', INFOT, NOUT, LERR, OK ) INFOT = 13 CALL CHBEVD( 'N', 'U', 2, 1, A, 2, X, Z, 2, W, 2, RW, 1, IW, 1, $ INFO ) CALL CHKXER( 'CHBEVD', INFOT, NOUT, LERR, OK ) INFOT = 13 CALL CHBEVD( 'V', 'U', 2, 1, A, 2, X, Z, 2, W, 8, RW, 2, IW, $ 12, INFO ) CALL CHKXER( 'CHBEVD', INFOT, NOUT, LERR, OK ) INFOT = 15 CALL CHBEVD( 'N', 'U', 1, 0, A, 1, X, Z, 1, W, 1, RW, 1, IW, 0, $ INFO ) CALL CHKXER( 'CHBEVD', INFOT, NOUT, LERR, OK ) INFOT = 15 CALL CHBEVD( 'N', 'U', 2, 1, A, 2, X, Z, 2, W, 2, RW, 2, IW, 0, $ INFO ) CALL CHKXER( 'CHBEVD', INFOT, NOUT, LERR, OK ) INFOT = 15 CALL CHBEVD( 'V', 'U', 2, 1, A, 2, X, Z, 2, W, 8, RW, 25, IW, $ 2, INFO ) CALL CHKXER( 'CHBEVD', INFOT, NOUT, LERR, OK ) NT = NT + 15 * * CHBEV * SRNAMT = 'CHBEV ' INFOT = 1 CALL CHBEV( '/', 'U', 0, 0, A, 1, X, Z, 1, W, RW, INFO ) CALL CHKXER( 'CHBEV ', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHBEV( 'N', '/', 0, 0, A, 1, X, Z, 1, W, RW, INFO ) CALL CHKXER( 'CHBEV ', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHBEV( 'N', 'U', -1, 0, A, 1, X, Z, 1, W, RW, INFO ) CALL CHKXER( 'CHBEV ', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHBEV( 'N', 'U', 0, -1, A, 1, X, Z, 1, W, RW, INFO ) CALL CHKXER( 'CHBEV ', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CHBEV( 'N', 'U', 2, 1, A, 1, X, Z, 1, W, RW, INFO ) CALL CHKXER( 'CHBEV ', INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CHBEV( 'V', 'U', 2, 0, A, 1, X, Z, 1, W, RW, INFO ) CALL CHKXER( 'CHBEV ', INFOT, NOUT, LERR, OK ) NT = NT + 6 * * CHBEVX * SRNAMT = 'CHBEVX' INFOT = 1 CALL CHBEVX( '/', 'A', 'U', 0, 0, A, 1, Q, 1, 0.0, 0.0, 0, 0, $ 0.0, M, X, Z, 1, W, RW, IW, I3, INFO ) CALL CHKXER( 'CHBEVX', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHBEVX( 'V', '/', 'U', 0, 0, A, 1, Q, 1, 0.0, 1.0, 1, 0, $ 0.0, M, X, Z, 1, W, RW, IW, I3, INFO ) CALL CHKXER( 'CHBEVX', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHBEVX( 'V', 'A', '/', 0, 0, A, 1, Q, 1, 0.0, 0.0, 0, 0, $ 0.0, M, X, Z, 1, W, RW, IW, I3, INFO ) INFOT = 4 CALL CHBEVX( 'V', 'A', 'U', -1, 0, A, 1, Q, 1, 0.0, 0.0, 0, 0, $ 0.0, M, X, Z, 1, W, RW, IW, I3, INFO ) CALL CHKXER( 'CHBEVX', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CHBEVX( 'V', 'A', 'U', 0, -1, A, 1, Q, 1, 0.0, 0.0, 0, 0, $ 0.0, M, X, Z, 1, W, RW, IW, I3, INFO ) CALL CHKXER( 'CHBEVX', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHBEVX( 'V', 'A', 'U', 2, 1, A, 1, Q, 2, 0.0, 0.0, 0, 0, $ 0.0, M, X, Z, 2, W, RW, IW, I3, INFO ) CALL CHKXER( 'CHBEVX', INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CHBEVX( 'V', 'A', 'U', 2, 0, A, 1, Q, 1, 0.0, 0.0, 0, 0, $ 0.0, M, X, Z, 2, W, RW, IW, I3, INFO ) CALL CHKXER( 'CHBEVX', INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CHBEVX( 'V', 'V', 'U', 1, 0, A, 1, Q, 1, 0.0, 0.0, 0, 0, $ 0.0, M, X, Z, 1, W, RW, IW, I3, INFO ) CALL CHKXER( 'CHBEVX', INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CHBEVX( 'V', 'I', 'U', 1, 0, A, 1, Q, 1, 0.0, 0.0, 0, 0, $ 0.0, M, X, Z, 1, W, RW, IW, I3, INFO ) CALL CHKXER( 'CHBEVX', INFOT, NOUT, LERR, OK ) INFOT = 13 CALL CHBEVX( 'V', 'I', 'U', 1, 0, A, 1, Q, 1, 0.0, 0.0, 1, 2, $ 0.0, M, X, Z, 1, W, RW, IW, I3, INFO ) CALL CHKXER( 'CHBEVX', INFOT, NOUT, LERR, OK ) INFOT = 18 CALL CHBEVX( 'V', 'A', 'U', 2, 0, A, 1, Q, 2, 0.0, 0.0, 0, 0, $ 0.0, M, X, Z, 1, W, RW, IW, I3, INFO ) CALL CHKXER( 'CHBEVX', INFOT, NOUT, LERR, OK ) NT = NT + 11 END IF * * Print a summary line. * IF( OK ) THEN WRITE( NOUT, FMT = 9999 )PATH, NT ELSE WRITE( NOUT, FMT = 9998 )PATH END IF * 9999 FORMAT( 1X, A3, ' routines passed the tests of the error exits', $ ' (', I3, ' tests done)' ) 9998 FORMAT( ' *** ', A3, ' routines failed the tests of the error ', $ 'exits ***' ) * RETURN * * End of CERRST * END
bsd-3-clause
ericmckean/nacl-llvm-branches.llvm-gcc-trunk
gcc/testsuite/gfortran.dg/write_rewind_2.f
14
1165
! { dg-do run } ! PR 26499 Test write with rewind sequences to make sure buffering and ! end-of-file conditions are handled correctly. Derived from test case by Dale ! Ranta. Submitted by Jerry DeLisle <jvdelisle@gcc.gnu.org>. program test dimension idata(1011) open(unit=11,form='unformatted') idata(1) = -705 idata( 1011) = -706 write(11)idata idata(1) = -706 idata( 1011) = -707 write(11)idata idata(1) = -707 idata( 1011) = -708 write(11)idata read(11,end= 1000 )idata call abort() 1000 continue rewind 11 read(11,end= 1001 )idata if(idata(1).ne. -705.or.idata( 1011).ne. -706)call abort() 1001 continue close(11,status='keep') open(unit=11,form='unformatted') rewind 11 read(11)idata if(idata(1).ne.-705)then call abort() endif read(11)idata if(idata(1).ne.-706)then call abort() endif read(11)idata if(idata(1).ne.-707)then call abort() endif close(11,status='delete') stop end
gpl-2.0
njwilson23/scipy
scipy/integrate/odepack/zvode.f
93
158986
*DECK ZVODE SUBROUTINE ZVODE (F, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, ITASK, 1 ISTATE, IOPT, ZWORK, LZW, RWORK, LRW, IWORK, LIW, 2 JAC, MF, RPAR, IPAR) EXTERNAL F, JAC DOUBLE COMPLEX Y, ZWORK DOUBLE PRECISION T, TOUT, RTOL, ATOL, RWORK INTEGER NEQ, ITOL, ITASK, ISTATE, IOPT, LZW, LRW, IWORK, LIW, 1 MF, IPAR DIMENSION Y(*), RTOL(*), ATOL(*), ZWORK(LZW), RWORK(LRW), 1 IWORK(LIW), RPAR(*), IPAR(*) C----------------------------------------------------------------------- C ZVODE: Variable-coefficient Ordinary Differential Equation solver, C with fixed-leading-coefficient implementation. C This version is in complex double precision. C C ZVODE solves the initial value problem for stiff or nonstiff C systems of first order ODEs, C dy/dt = f(t,y) , or, in component form, C dy(i)/dt = f(i) = f(i,t,y(1),y(2),...,y(NEQ)) (i = 1,...,NEQ). C Here the y vector is treated as complex. C ZVODE is a package based on the EPISODE and EPISODEB packages, and C on the ODEPACK user interface standard, with minor modifications. C C NOTE: When using ZVODE for a stiff system, it should only be used for C the case in which the function f is analytic, that is, when each f(i) C is an analytic function of each y(j). Analyticity means that the C partial derivative df(i)/dy(j) is a unique complex number, and this C fact is critical in the way ZVODE solves the dense or banded linear C systems that arise in the stiff case. For a complex stiff ODE system C in which f is not analytic, ZVODE is likely to have convergence C failures, and for this problem one should instead use DVODE on the C equivalent real system (in the real and imaginary parts of y). C----------------------------------------------------------------------- C Authors: C Peter N. Brown and Alan C. Hindmarsh C Center for Applied Scientific Computing C Lawrence Livermore National Laboratory C Livermore, CA 94551 C and C George D. Byrne (Prof. Emeritus) C Illinois Institute of Technology C Chicago, IL 60616 C----------------------------------------------------------------------- C For references, see DVODE. C----------------------------------------------------------------------- C Summary of usage. C C Communication between the user and the ZVODE package, for normal C situations, is summarized here. This summary describes only a subset C of the full set of options available. See the full description for C details, including optional communication, nonstandard options, C and instructions for special situations. See also the example C problem (with program and output) following this summary. C C A. First provide a subroutine of the form: C SUBROUTINE F (NEQ, T, Y, YDOT, RPAR, IPAR) C DOUBLE COMPLEX Y(NEQ), YDOT(NEQ) C DOUBLE PRECISION T C which supplies the vector function f by loading YDOT(i) with f(i). C C B. Next determine (or guess) whether or not the problem is stiff. C Stiffness occurs when the Jacobian matrix df/dy has an eigenvalue C whose real part is negative and large in magnitude, compared to the C reciprocal of the t span of interest. If the problem is nonstiff, C use a method flag MF = 10. If it is stiff, there are four standard C choices for MF (21, 22, 24, 25), and ZVODE requires the Jacobian C matrix in some form. In these cases (MF .gt. 0), ZVODE will use a C saved copy of the Jacobian matrix. If this is undesirable because of C storage limitations, set MF to the corresponding negative value C (-21, -22, -24, -25). (See full description of MF below.) C The Jacobian matrix is regarded either as full (MF = 21 or 22), C or banded (MF = 24 or 25). In the banded case, ZVODE requires two C half-bandwidth parameters ML and MU. These are, respectively, the C widths of the lower and upper parts of the band, excluding the main C diagonal. Thus the band consists of the locations (i,j) with C i-ML .le. j .le. i+MU, and the full bandwidth is ML+MU+1. C C C. If the problem is stiff, you are encouraged to supply the Jacobian C directly (MF = 21 or 24), but if this is not feasible, ZVODE will C compute it internally by difference quotients (MF = 22 or 25). C If you are supplying the Jacobian, provide a subroutine of the form: C SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD, RPAR, IPAR) C DOUBLE COMPLEX Y(NEQ), PD(NROWPD,NEQ) C DOUBLE PRECISION T C which supplies df/dy by loading PD as follows: C For a full Jacobian (MF = 21), load PD(i,j) with df(i)/dy(j), C the partial derivative of f(i) with respect to y(j). (Ignore the C ML and MU arguments in this case.) C For a banded Jacobian (MF = 24), load PD(i-j+MU+1,j) with C df(i)/dy(j), i.e. load the diagonal lines of df/dy into the rows of C PD from the top down. C In either case, only nonzero elements need be loaded. C C D. Write a main program which calls subroutine ZVODE once for C each point at which answers are desired. This should also provide C for possible use of logical unit 6 for output of error messages C by ZVODE. On the first call to ZVODE, supply arguments as follows: C F = Name of subroutine for right-hand side vector f. C This name must be declared external in calling program. C NEQ = Number of first order ODEs. C Y = Double complex array of initial values, of length NEQ. C T = The initial value of the independent variable. C TOUT = First point where output is desired (.ne. T). C ITOL = 1 or 2 according as ATOL (below) is a scalar or array. C RTOL = Relative tolerance parameter (scalar). C ATOL = Absolute tolerance parameter (scalar or array). C The estimated local error in Y(i) will be controlled so as C to be roughly less (in magnitude) than C EWT(i) = RTOL*abs(Y(i)) + ATOL if ITOL = 1, or C EWT(i) = RTOL*abs(Y(i)) + ATOL(i) if ITOL = 2. C Thus the local error test passes if, in each component, C either the absolute error is less than ATOL (or ATOL(i)), C or the relative error is less than RTOL. C Use RTOL = 0.0 for pure absolute error control, and C use ATOL = 0.0 (or ATOL(i) = 0.0) for pure relative error C control. Caution: Actual (global) errors may exceed these C local tolerances, so choose them conservatively. C ITASK = 1 for normal computation of output values of Y at t = TOUT. C ISTATE = Integer flag (input and output). Set ISTATE = 1. C IOPT = 0 to indicate no optional input used. C ZWORK = Double precision complex work array of length at least: C 15*NEQ for MF = 10, C 8*NEQ + 2*NEQ**2 for MF = 21 or 22, C 10*NEQ + (3*ML + 2*MU)*NEQ for MF = 24 or 25. C LZW = Declared length of ZWORK (in user's DIMENSION statement). C RWORK = Real work array of length at least 20 + NEQ. C LRW = Declared length of RWORK (in user's DIMENSION statement). C IWORK = Integer work array of length at least: C 30 for MF = 10, C 30 + NEQ for MF = 21, 22, 24, or 25. C If MF = 24 or 25, input in IWORK(1),IWORK(2) the lower C and upper half-bandwidths ML,MU. C LIW = Declared length of IWORK (in user's DIMENSION statement). C JAC = Name of subroutine for Jacobian matrix (MF = 21 or 24). C If used, this name must be declared external in calling C program. If not used, pass a dummy name. C MF = Method flag. Standard values are: C 10 for nonstiff (Adams) method, no Jacobian used. C 21 for stiff (BDF) method, user-supplied full Jacobian. C 22 for stiff method, internally generated full Jacobian. C 24 for stiff method, user-supplied banded Jacobian. C 25 for stiff method, internally generated banded Jacobian. C RPAR = user-defined real or complex array passed to F and JAC. C IPAR = user-defined integer array passed to F and JAC. C Note that the main program must declare arrays Y, ZWORK, RWORK, IWORK, C and possibly ATOL, RPAR, and IPAR. RPAR may be declared REAL, DOUBLE, C COMPLEX, or DOUBLE COMPLEX, depending on the user's needs. C C E. The output from the first call (or any call) is: C Y = Array of computed values of y(t) vector. C T = Corresponding value of independent variable (normally TOUT). C ISTATE = 2 if ZVODE was successful, negative otherwise. C -1 means excess work done on this call. (Perhaps wrong MF.) C -2 means excess accuracy requested. (Tolerances too small.) C -3 means illegal input detected. (See printed message.) C -4 means repeated error test failures. (Check all input.) C -5 means repeated convergence failures. (Perhaps bad C Jacobian supplied or wrong choice of MF or tolerances.) C -6 means error weight became zero during problem. (Solution C component i vanished, and ATOL or ATOL(i) = 0.) C C F. To continue the integration after a successful return, simply C reset TOUT and call ZVODE again. No other parameters need be reset. C C----------------------------------------------------------------------- C EXAMPLE PROBLEM C C The program below uses ZVODE to solve the following system of 2 ODEs: C dw/dt = -i*w*w*z, dz/dt = i*z; w(0) = 1/2.1, z(0) = 1; t = 0 to 2*pi. C Solution: w = 1/(z + 1.1), z = exp(it). As z traces the unit circle, C w traces a circle of radius 10/2.1 with center at 11/2.1. C For convenience, Main passes RPAR = (imaginary unit i) to FEX and JEX. C C EXTERNAL FEX, JEX C DOUBLE COMPLEX Y(2), ZWORK(24), RPAR, WTRU, ERR C DOUBLE PRECISION ABERR, AEMAX, ATOL, RTOL, RWORK(22), T, TOUT C DIMENSION IWORK(32) C NEQ = 2 C Y(1) = 1.0D0/2.1D0 C Y(2) = 1.0D0 C T = 0.0D0 C DTOUT = 0.1570796326794896D0 C TOUT = DTOUT C ITOL = 1 C RTOL = 1.D-9 C ATOL = 1.D-8 C ITASK = 1 C ISTATE = 1 C IOPT = 0 C LZW = 24 C LRW = 22 C LIW = 32 C MF = 21 C RPAR = DCMPLX(0.0D0,1.0D0) C AEMAX = 0.0D0 C WRITE(6,10) C 10 FORMAT(' t',11X,'w',26X,'z') C DO 40 IOUT = 1,40 C CALL ZVODE(FEX,NEQ,Y,T,TOUT,ITOL,RTOL,ATOL,ITASK,ISTATE,IOPT, C 1 ZWORK,LZW,RWORK,LRW,IWORK,LIW,JEX,MF,RPAR,IPAR) C WTRU = 1.0D0/DCMPLX(COS(T) + 1.1D0, SIN(T)) C ERR = Y(1) - WTRU C ABERR = ABS(DREAL(ERR)) + ABS(DIMAG(ERR)) C AEMAX = MAX(AEMAX,ABERR) C WRITE(6,20) T, DREAL(Y(1)),DIMAG(Y(1)), DREAL(Y(2)),DIMAG(Y(2)) C 20 FORMAT(F9.5,2X,2F12.7,3X,2F12.7) C IF (ISTATE .LT. 0) THEN C WRITE(6,30) ISTATE C 30 FORMAT(//'***** Error halt. ISTATE =',I3) C STOP C ENDIF C 40 TOUT = TOUT + DTOUT C WRITE(6,50) IWORK(11), IWORK(12), IWORK(13), IWORK(20), C 1 IWORK(21), IWORK(22), IWORK(23), AEMAX C 50 FORMAT(/' No. steps =',I4,' No. f-s =',I5, C 1 ' No. J-s =',I4,' No. LU-s =',I4/ C 2 ' No. nonlinear iterations =',I4/ C 3 ' No. nonlinear convergence failures =',I4/ C 4 ' No. error test failures =',I4/ C 5 ' Max. abs. error in w =',D10.2) C STOP C END C C SUBROUTINE FEX (NEQ, T, Y, YDOT, RPAR, IPAR) C DOUBLE COMPLEX Y(NEQ), YDOT(NEQ), RPAR C DOUBLE PRECISION T C YDOT(1) = -RPAR*Y(1)*Y(1)*Y(2) C YDOT(2) = RPAR*Y(2) C RETURN C END C C SUBROUTINE JEX (NEQ, T, Y, ML, MU, PD, NRPD, RPAR, IPAR) C DOUBLE COMPLEX Y(NEQ), PD(NRPD,NEQ), RPAR C DOUBLE PRECISION T C PD(1,1) = -2.0D0*RPAR*Y(1)*Y(2) C PD(1,2) = -RPAR*Y(1)*Y(1) C PD(2,2) = RPAR C RETURN C END C C The output of this example program is as follows: C C t w z C 0.15708 0.4763242 -0.0356919 0.9876884 0.1564345 C 0.31416 0.4767322 -0.0718256 0.9510565 0.3090170 C 0.47124 0.4774351 -0.1088651 0.8910065 0.4539906 C 0.62832 0.4784699 -0.1473206 0.8090170 0.5877853 C 0.78540 0.4798943 -0.1877789 0.7071067 0.7071069 C 0.94248 0.4817938 -0.2309414 0.5877852 0.8090171 C 1.09956 0.4842934 -0.2776778 0.4539904 0.8910066 C 1.25664 0.4875766 -0.3291039 0.3090169 0.9510566 C 1.41372 0.4919177 -0.3866987 0.1564343 0.9876884 C 1.57080 0.4977376 -0.4524889 -0.0000001 1.0000000 C 1.72788 0.5057044 -0.5293524 -0.1564346 0.9876883 C 1.88496 0.5169274 -0.6215400 -0.3090171 0.9510565 C 2.04204 0.5333540 -0.7356275 -0.4539906 0.8910065 C 2.19911 0.5586542 -0.8823669 -0.5877854 0.8090169 C 2.35619 0.6004188 -1.0806013 -0.7071069 0.7071067 C 2.51327 0.6764486 -1.3664281 -0.8090171 0.5877851 C 2.67035 0.8366909 -1.8175245 -0.8910066 0.4539904 C 2.82743 1.2657121 -2.6260146 -0.9510566 0.3090168 C 2.98451 3.0284506 -4.2182180 -0.9876884 0.1564343 C 3.14159 10.0000699 0.0000663 -1.0000000 -0.0000002 C 3.29867 3.0284170 4.2182053 -0.9876883 -0.1564346 C 3.45575 1.2657041 2.6260067 -0.9510565 -0.3090172 C 3.61283 0.8366878 1.8175205 -0.8910064 -0.4539907 C 3.76991 0.6764469 1.3664259 -0.8090169 -0.5877854 C 3.92699 0.6004178 1.0806000 -0.7071066 -0.7071069 C 4.08407 0.5586535 0.8823662 -0.5877851 -0.8090171 C 4.24115 0.5333535 0.7356271 -0.4539903 -0.8910066 C 4.39823 0.5169271 0.6215398 -0.3090168 -0.9510566 C 4.55531 0.5057041 0.5293523 -0.1564343 -0.9876884 C 4.71239 0.4977374 0.4524890 0.0000002 -1.0000000 C 4.86947 0.4919176 0.3866988 0.1564347 -0.9876883 C 5.02655 0.4875765 0.3291040 0.3090172 -0.9510564 C 5.18363 0.4842934 0.2776780 0.4539907 -0.8910064 C 5.34071 0.4817939 0.2309415 0.5877854 -0.8090169 C 5.49779 0.4798944 0.1877791 0.7071069 -0.7071066 C 5.65487 0.4784700 0.1473208 0.8090171 -0.5877850 C 5.81195 0.4774352 0.1088652 0.8910066 -0.4539903 C 5.96903 0.4767324 0.0718257 0.9510566 -0.3090168 C 6.12611 0.4763244 0.0356920 0.9876884 -0.1564342 C 6.28319 0.4761907 0.0000000 1.0000000 0.0000003 C C No. steps = 542 No. f-s = 610 No. J-s = 10 No. LU-s = 47 C No. nonlinear iterations = 607 C No. nonlinear convergence failures = 0 C No. error test failures = 13 C Max. abs. error in w = 0.13E-03 C C----------------------------------------------------------------------- C Full description of user interface to ZVODE. C C The user interface to ZVODE consists of the following parts. C C i. The call sequence to subroutine ZVODE, which is a driver C routine for the solver. This includes descriptions of both C the call sequence arguments and of user-supplied routines. C Following these descriptions is C * a description of optional input available through the C call sequence, C * a description of optional output (in the work arrays), and C * instructions for interrupting and restarting a solution. C C ii. Descriptions of other routines in the ZVODE package that may be C (optionally) called by the user. These provide the ability to C alter error message handling, save and restore the internal C COMMON, and obtain specified derivatives of the solution y(t). C C iii. Descriptions of COMMON blocks to be declared in overlay C or similar environments. C C iv. Description of two routines in the ZVODE package, either of C which the user may replace with his own version, if desired. C these relate to the measurement of errors. C C----------------------------------------------------------------------- C Part i. Call Sequence. C C The call sequence parameters used for input only are C F, NEQ, TOUT, ITOL, RTOL, ATOL, ITASK, IOPT, LRW, LIW, JAC, MF, C and those used for both input and output are C Y, T, ISTATE. C The work arrays ZWORK, RWORK, and IWORK are also used for conditional C and optional input and optional output. (The term output here refers C to the return from subroutine ZVODE to the user's calling program.) C C The legality of input parameters will be thoroughly checked on the C initial call for the problem, but not checked thereafter unless a C change in input parameters is flagged by ISTATE = 3 in the input. C C The descriptions of the call arguments are as follows. C C F = The name of the user-supplied subroutine defining the C ODE system. The system must be put in the first-order C form dy/dt = f(t,y), where f is a vector-valued function C of the scalar t and the vector y. Subroutine F is to C compute the function f. It is to have the form C SUBROUTINE F (NEQ, T, Y, YDOT, RPAR, IPAR) C DOUBLE COMPLEX Y(NEQ), YDOT(NEQ) C DOUBLE PRECISION T C where NEQ, T, and Y are input, and the array YDOT = f(t,y) C is output. Y and YDOT are double complex arrays of length C NEQ. Subroutine F should not alter Y(1),...,Y(NEQ). C F must be declared EXTERNAL in the calling program. C C Subroutine F may access user-defined real/complex and C integer work arrays RPAR and IPAR, which are to be C dimensioned in the calling program. C C If quantities computed in the F routine are needed C externally to ZVODE, an extra call to F should be made C for this purpose, for consistent and accurate results. C If only the derivative dy/dt is needed, use ZVINDY instead. C C NEQ = The size of the ODE system (number of first order C ordinary differential equations). Used only for input. C NEQ may not be increased during the problem, but C can be decreased (with ISTATE = 3 in the input). C C Y = A double precision complex array for the vector of dependent C variables, of length NEQ or more. Used for both input and C output on the first call (ISTATE = 1), and only for output C on other calls. On the first call, Y must contain the C vector of initial values. In the output, Y contains the C computed solution evaluated at T. If desired, the Y array C may be used for other purposes between calls to the solver. C C This array is passed as the Y argument in all calls to C F and JAC. C C T = The independent variable. In the input, T is used only on C the first call, as the initial point of the integration. C In the output, after each call, T is the value at which a C computed solution Y is evaluated (usually the same as TOUT). C On an error return, T is the farthest point reached. C C TOUT = The next value of t at which a computed solution is desired. C Used only for input. C C When starting the problem (ISTATE = 1), TOUT may be equal C to T for one call, then should .ne. T for the next call. C For the initial T, an input value of TOUT .ne. T is used C in order to determine the direction of the integration C (i.e. the algebraic sign of the step sizes) and the rough C scale of the problem. Integration in either direction C (forward or backward in t) is permitted. C C If ITASK = 2 or 5 (one-step modes), TOUT is ignored after C the first call (i.e. the first call with TOUT .ne. T). C Otherwise, TOUT is required on every call. C C If ITASK = 1, 3, or 4, the values of TOUT need not be C monotone, but a value of TOUT which backs up is limited C to the current internal t interval, whose endpoints are C TCUR - HU and TCUR. (See optional output, below, for C TCUR and HU.) C C ITOL = An indicator for the type of error control. See C description below under ATOL. Used only for input. C C RTOL = A relative error tolerance parameter, either a scalar or C an array of length NEQ. See description below under ATOL. C Input only. C C ATOL = An absolute error tolerance parameter, either a scalar or C an array of length NEQ. Input only. C C The input parameters ITOL, RTOL, and ATOL determine C the error control performed by the solver. The solver will C control the vector e = (e(i)) of estimated local errors C in Y, according to an inequality of the form C rms-norm of ( e(i)/EWT(i) ) .le. 1, C where EWT(i) = RTOL(i)*abs(Y(i)) + ATOL(i), C and the rms-norm (root-mean-square norm) here is C rms-norm(v) = sqrt(sum v(i)**2 / NEQ). Here EWT = (EWT(i)) C is a vector of weights which must always be positive, and C the values of RTOL and ATOL should all be non-negative. C The following table gives the types (scalar/array) of C RTOL and ATOL, and the corresponding form of EWT(i). C C ITOL RTOL ATOL EWT(i) C 1 scalar scalar RTOL*ABS(Y(i)) + ATOL C 2 scalar array RTOL*ABS(Y(i)) + ATOL(i) C 3 array scalar RTOL(i)*ABS(Y(i)) + ATOL C 4 array array RTOL(i)*ABS(Y(i)) + ATOL(i) C C When either of these parameters is a scalar, it need not C be dimensioned in the user's calling program. C C If none of the above choices (with ITOL, RTOL, and ATOL C fixed throughout the problem) is suitable, more general C error controls can be obtained by substituting C user-supplied routines for the setting of EWT and/or for C the norm calculation. See Part iv below. C C If global errors are to be estimated by making a repeated C run on the same problem with smaller tolerances, then all C components of RTOL and ATOL (i.e. of EWT) should be scaled C down uniformly. C C ITASK = An index specifying the task to be performed. C Input only. ITASK has the following values and meanings. C 1 means normal computation of output values of y(t) at C t = TOUT (by overshooting and interpolating). C 2 means take one step only and return. C 3 means stop at the first internal mesh point at or C beyond t = TOUT and return. C 4 means normal computation of output values of y(t) at C t = TOUT but without overshooting t = TCRIT. C TCRIT must be input as RWORK(1). TCRIT may be equal to C or beyond TOUT, but not behind it in the direction of C integration. This option is useful if the problem C has a singularity at or beyond t = TCRIT. C 5 means take one step, without passing TCRIT, and return. C TCRIT must be input as RWORK(1). C C Note: If ITASK = 4 or 5 and the solver reaches TCRIT C (within roundoff), it will return T = TCRIT (exactly) to C indicate this (unless ITASK = 4 and TOUT comes before TCRIT, C in which case answers at T = TOUT are returned first). C C ISTATE = an index used for input and output to specify the C the state of the calculation. C C In the input, the values of ISTATE are as follows. C 1 means this is the first call for the problem C (initializations will be done). See note below. C 2 means this is not the first call, and the calculation C is to continue normally, with no change in any input C parameters except possibly TOUT and ITASK. C (If ITOL, RTOL, and/or ATOL are changed between calls C with ISTATE = 2, the new values will be used but not C tested for legality.) C 3 means this is not the first call, and the C calculation is to continue normally, but with C a change in input parameters other than C TOUT and ITASK. Changes are allowed in C NEQ, ITOL, RTOL, ATOL, IOPT, LRW, LIW, MF, ML, MU, C and any of the optional input except H0. C (See IWORK description for ML and MU.) C Note: A preliminary call with TOUT = T is not counted C as a first call here, as no initialization or checking of C input is done. (Such a call is sometimes useful to include C the initial conditions in the output.) C Thus the first call for which TOUT .ne. T requires C ISTATE = 1 in the input. C C In the output, ISTATE has the following values and meanings. C 1 means nothing was done, as TOUT was equal to T with C ISTATE = 1 in the input. C 2 means the integration was performed successfully. C -1 means an excessive amount of work (more than MXSTEP C steps) was done on this call, before completing the C requested task, but the integration was otherwise C successful as far as T. (MXSTEP is an optional input C and is normally 500.) To continue, the user may C simply reset ISTATE to a value .gt. 1 and call again. C (The excess work step counter will be reset to 0.) C In addition, the user may increase MXSTEP to avoid C this error return. (See optional input below.) C -2 means too much accuracy was requested for the precision C of the machine being used. This was detected before C completing the requested task, but the integration C was successful as far as T. To continue, the tolerance C parameters must be reset, and ISTATE must be set C to 3. The optional output TOLSF may be used for this C purpose. (Note: If this condition is detected before C taking any steps, then an illegal input return C (ISTATE = -3) occurs instead.) C -3 means illegal input was detected, before taking any C integration steps. See written message for details. C Note: If the solver detects an infinite loop of calls C to the solver with illegal input, it will cause C the run to stop. C -4 means there were repeated error test failures on C one attempted step, before completing the requested C task, but the integration was successful as far as T. C The problem may have a singularity, or the input C may be inappropriate. C -5 means there were repeated convergence test failures on C one attempted step, before completing the requested C task, but the integration was successful as far as T. C This may be caused by an inaccurate Jacobian matrix, C if one is being used. C -6 means EWT(i) became zero for some i during the C integration. Pure relative error control (ATOL(i)=0.0) C was requested on a variable which has now vanished. C The integration was successful as far as T. C C Note: Since the normal output value of ISTATE is 2, C it does not need to be reset for normal continuation. C Also, since a negative input value of ISTATE will be C regarded as illegal, a negative output value requires the C user to change it, and possibly other input, before C calling the solver again. C C IOPT = An integer flag to specify whether or not any optional C input is being used on this call. Input only. C The optional input is listed separately below. C IOPT = 0 means no optional input is being used. C Default values will be used in all cases. C IOPT = 1 means optional input is being used. C C ZWORK = A double precision complex working array. C The length of ZWORK must be at least C NYH*(MAXORD + 1) + 2*NEQ + LWM where C NYH = the initial value of NEQ, C MAXORD = 12 (if METH = 1) or 5 (if METH = 2) (unless a C smaller value is given as an optional input), C LWM = length of work space for matrix-related data: C LWM = 0 if MITER = 0, C LWM = 2*NEQ**2 if MITER = 1 or 2, and MF.gt.0, C LWM = NEQ**2 if MITER = 1 or 2, and MF.lt.0, C LWM = NEQ if MITER = 3, C LWM = (3*ML+2*MU+2)*NEQ if MITER = 4 or 5, and MF.gt.0, C LWM = (2*ML+MU+1)*NEQ if MITER = 4 or 5, and MF.lt.0. C (See the MF description for METH and MITER.) C Thus if MAXORD has its default value and NEQ is constant, C this length is: C 15*NEQ for MF = 10, C 15*NEQ + 2*NEQ**2 for MF = 11 or 12, C 15*NEQ + NEQ**2 for MF = -11 or -12, C 16*NEQ for MF = 13, C 17*NEQ + (3*ML+2*MU)*NEQ for MF = 14 or 15, C 16*NEQ + (2*ML+MU)*NEQ for MF = -14 or -15, C 8*NEQ for MF = 20, C 8*NEQ + 2*NEQ**2 for MF = 21 or 22, C 8*NEQ + NEQ**2 for MF = -21 or -22, C 9*NEQ for MF = 23, C 10*NEQ + (3*ML+2*MU)*NEQ for MF = 24 or 25. C 9*NEQ + (2*ML+MU)*NEQ for MF = -24 or -25. C C LZW = The length of the array ZWORK, as declared by the user. C (This will be checked by the solver.) C C RWORK = A real working array (double precision). C The length of RWORK must be at least 20 + NEQ. C The first 20 words of RWORK are reserved for conditional C and optional input and optional output. C C The following word in RWORK is a conditional input: C RWORK(1) = TCRIT = critical value of t which the solver C is not to overshoot. Required if ITASK is C 4 or 5, and ignored otherwise. (See ITASK.) C C LRW = The length of the array RWORK, as declared by the user. C (This will be checked by the solver.) C C IWORK = An integer work array. The length of IWORK must be at least C 30 if MITER = 0 or 3 (MF = 10, 13, 20, 23), or C 30 + NEQ otherwise (abs(MF) = 11,12,14,15,21,22,24,25). C The first 30 words of IWORK are reserved for conditional and C optional input and optional output. C C The following 2 words in IWORK are conditional input: C IWORK(1) = ML These are the lower and upper C IWORK(2) = MU half-bandwidths, respectively, of the C banded Jacobian, excluding the main diagonal. C The band is defined by the matrix locations C (i,j) with i-ML .le. j .le. i+MU. ML and MU C must satisfy 0 .le. ML,MU .le. NEQ-1. C These are required if MITER is 4 or 5, and C ignored otherwise. ML and MU may in fact be C the band parameters for a matrix to which C df/dy is only approximately equal. C C LIW = the length of the array IWORK, as declared by the user. C (This will be checked by the solver.) C C Note: The work arrays must not be altered between calls to ZVODE C for the same problem, except possibly for the conditional and C optional input, and except for the last 2*NEQ words of ZWORK and C the last NEQ words of RWORK. The latter space is used for internal C scratch space, and so is available for use by the user outside ZVODE C between calls, if desired (but not for use by F or JAC). C C JAC = The name of the user-supplied routine (MITER = 1 or 4) to C compute the Jacobian matrix, df/dy, as a function of C the scalar t and the vector y. It is to have the form C SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD, C RPAR, IPAR) C DOUBLE COMPLEX Y(NEQ), PD(NROWPD,NEQ) C DOUBLE PRECISION T C where NEQ, T, Y, ML, MU, and NROWPD are input and the array C PD is to be loaded with partial derivatives (elements of the C Jacobian matrix) in the output. PD must be given a first C dimension of NROWPD. T and Y have the same meaning as in C Subroutine F. C In the full matrix case (MITER = 1), ML and MU are C ignored, and the Jacobian is to be loaded into PD in C columnwise manner, with df(i)/dy(j) loaded into PD(i,j). C In the band matrix case (MITER = 4), the elements C within the band are to be loaded into PD in columnwise C manner, with diagonal lines of df/dy loaded into the rows C of PD. Thus df(i)/dy(j) is to be loaded into PD(i-j+MU+1,j). C ML and MU are the half-bandwidth parameters. (See IWORK). C The locations in PD in the two triangular areas which C correspond to nonexistent matrix elements can be ignored C or loaded arbitrarily, as they are overwritten by ZVODE. C JAC need not provide df/dy exactly. A crude C approximation (possibly with a smaller bandwidth) will do. C In either case, PD is preset to zero by the solver, C so that only the nonzero elements need be loaded by JAC. C Each call to JAC is preceded by a call to F with the same C arguments NEQ, T, and Y. Thus to gain some efficiency, C intermediate quantities shared by both calculations may be C saved in a user COMMON block by F and not recomputed by JAC, C if desired. Also, JAC may alter the Y array, if desired. C JAC must be declared external in the calling program. C Subroutine JAC may access user-defined real/complex and C integer work arrays, RPAR and IPAR, whose dimensions are set C by the user in the calling program. C C MF = The method flag. Used only for input. The legal values of C MF are 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 25, C -11, -12, -14, -15, -21, -22, -24, -25. C MF is a signed two-digit integer, MF = JSV*(10*METH + MITER). C JSV = SIGN(MF) indicates the Jacobian-saving strategy: C JSV = 1 means a copy of the Jacobian is saved for reuse C in the corrector iteration algorithm. C JSV = -1 means a copy of the Jacobian is not saved C (valid only for MITER = 1, 2, 4, or 5). C METH indicates the basic linear multistep method: C METH = 1 means the implicit Adams method. C METH = 2 means the method based on backward C differentiation formulas (BDF-s). C MITER indicates the corrector iteration method: C MITER = 0 means functional iteration (no Jacobian matrix C is involved). C MITER = 1 means chord iteration with a user-supplied C full (NEQ by NEQ) Jacobian. C MITER = 2 means chord iteration with an internally C generated (difference quotient) full Jacobian C (using NEQ extra calls to F per df/dy value). C MITER = 3 means chord iteration with an internally C generated diagonal Jacobian approximation C (using 1 extra call to F per df/dy evaluation). C MITER = 4 means chord iteration with a user-supplied C banded Jacobian. C MITER = 5 means chord iteration with an internally C generated banded Jacobian (using ML+MU+1 extra C calls to F per df/dy evaluation). C If MITER = 1 or 4, the user must supply a subroutine JAC C (the name is arbitrary) as described above under JAC. C For other values of MITER, a dummy argument can be used. C C RPAR User-specified array used to communicate real or complex C parameters to user-supplied subroutines. If RPAR is an C array, it must be dimensioned in the user's calling program; C if it is unused or it is a scalar, then it need not be C dimensioned. The type of RPAR may be REAL, DOUBLE, COMPLEX, C or DOUBLE COMPLEX, depending on the user program's needs. C RPAR is not type-declared within ZVODE, but simply passed C (by address) to the user's F and JAC routines. C C IPAR User-specified array used to communicate integer parameter C to user-supplied subroutines. If IPAR is an array, it must C be dimensioned in the user's calling program. C----------------------------------------------------------------------- C Optional Input. C C The following is a list of the optional input provided for in the C call sequence. (See also Part ii.) For each such input variable, C this table lists its name as used in this documentation, its C location in the call sequence, its meaning, and the default value. C The use of any of this input requires IOPT = 1, and in that C case all of this input is examined. A value of zero for any C of these optional input variables will cause the default value to be C used. Thus to use a subset of the optional input, simply preload C locations 5 to 10 in RWORK and IWORK to 0.0 and 0 respectively, and C then set those of interest to nonzero values. C C NAME LOCATION MEANING AND DEFAULT VALUE C C H0 RWORK(5) The step size to be attempted on the first step. C The default value is determined by the solver. C C HMAX RWORK(6) The maximum absolute step size allowed. C The default value is infinite. C C HMIN RWORK(7) The minimum absolute step size allowed. C The default value is 0. (This lower bound is not C enforced on the final step before reaching TCRIT C when ITASK = 4 or 5.) C C MAXORD IWORK(5) The maximum order to be allowed. The default C value is 12 if METH = 1, and 5 if METH = 2. C If MAXORD exceeds the default value, it will C be reduced to the default value. C If MAXORD is changed during the problem, it may C cause the current order to be reduced. C C MXSTEP IWORK(6) Maximum number of (internally defined) steps C allowed during one call to the solver. C The default value is 500. C C MXHNIL IWORK(7) Maximum number of messages printed (per problem) C warning that T + H = T on a step (H = step size). C This must be positive to result in a non-default C value. The default value is 10. C C----------------------------------------------------------------------- C Optional Output. C C As optional additional output from ZVODE, the variables listed C below are quantities related to the performance of ZVODE C which are available to the user. These are communicated by way of C the work arrays, but also have internal mnemonic names as shown. C Except where stated otherwise, all of this output is defined C on any successful return from ZVODE, and on any return with C ISTATE = -1, -2, -4, -5, or -6. On an illegal input return C (ISTATE = -3), they will be unchanged from their existing values C (if any), except possibly for TOLSF, LENZW, LENRW, and LENIW. C On any error return, output relevant to the error will be defined, C as noted below. C C NAME LOCATION MEANING C C HU RWORK(11) The step size in t last used (successfully). C C HCUR RWORK(12) The step size to be attempted on the next step. C C TCUR RWORK(13) The current value of the independent variable C which the solver has actually reached, i.e. the C current internal mesh point in t. In the output, C TCUR will always be at least as far from the C initial value of t as the current argument T, C but may be farther (if interpolation was done). C C TOLSF RWORK(14) A tolerance scale factor, greater than 1.0, C computed when a request for too much accuracy was C detected (ISTATE = -3 if detected at the start of C the problem, ISTATE = -2 otherwise). If ITOL is C left unaltered but RTOL and ATOL are uniformly C scaled up by a factor of TOLSF for the next call, C then the solver is deemed likely to succeed. C (The user may also ignore TOLSF and alter the C tolerance parameters in any other way appropriate.) C C NST IWORK(11) The number of steps taken for the problem so far. C C NFE IWORK(12) The number of f evaluations for the problem so far. C C NJE IWORK(13) The number of Jacobian evaluations so far. C C NQU IWORK(14) The method order last used (successfully). C C NQCUR IWORK(15) The order to be attempted on the next step. C C IMXER IWORK(16) The index of the component of largest magnitude in C the weighted local error vector ( e(i)/EWT(i) ), C on an error return with ISTATE = -4 or -5. C C LENZW IWORK(17) The length of ZWORK actually required. C This is defined on normal returns and on an illegal C input return for insufficient storage. C C LENRW IWORK(18) The length of RWORK actually required. C This is defined on normal returns and on an illegal C input return for insufficient storage. C C LENIW IWORK(19) The length of IWORK actually required. C This is defined on normal returns and on an illegal C input return for insufficient storage. C C NLU IWORK(20) The number of matrix LU decompositions so far. C C NNI IWORK(21) The number of nonlinear (Newton) iterations so far. C C NCFN IWORK(22) The number of convergence failures of the nonlinear C solver so far. C C NETF IWORK(23) The number of error test failures of the integrator C so far. C C The following two arrays are segments of the ZWORK array which C may also be of interest to the user as optional output. C For each array, the table below gives its internal name, C its base address in ZWORK, and its description. C C NAME BASE ADDRESS DESCRIPTION C C YH 1 The Nordsieck history array, of size NYH by C (NQCUR + 1), where NYH is the initial value C of NEQ. For j = 0,1,...,NQCUR, column j+1 C of YH contains HCUR**j/factorial(j) times C the j-th derivative of the interpolating C polynomial currently representing the C solution, evaluated at t = TCUR. C C ACOR LENZW-NEQ+1 Array of size NEQ used for the accumulated C corrections on each step, scaled in the output C to represent the estimated local error in Y C on the last step. This is the vector e in C the description of the error control. It is C defined only on a successful return from ZVODE. C C----------------------------------------------------------------------- C Interrupting and Restarting C C If the integration of a given problem by ZVODE is to be C interrrupted and then later continued, such as when restarting C an interrupted run or alternating between two or more ODE problems, C the user should save, following the return from the last ZVODE call C prior to the interruption, the contents of the call sequence C variables and internal COMMON blocks, and later restore these C values before the next ZVODE call for that problem. To save C and restore the COMMON blocks, use subroutine ZVSRCO, as C described below in part ii. C C In addition, if non-default values for either LUN or MFLAG are C desired, an extra call to XSETUN and/or XSETF should be made just C before continuing the integration. See Part ii below for details. C C----------------------------------------------------------------------- C Part ii. Other Routines Callable. C C The following are optional calls which the user may make to C gain additional capabilities in conjunction with ZVODE. C (The routines XSETUN and XSETF are designed to conform to the C SLATEC error handling package.) C C FORM OF CALL FUNCTION C CALL XSETUN(LUN) Set the logical unit number, LUN, for C output of messages from ZVODE, if C the default is not desired. C The default value of LUN is 6. C C CALL XSETF(MFLAG) Set a flag to control the printing of C messages by ZVODE. C MFLAG = 0 means do not print. (Danger: C This risks losing valuable information.) C MFLAG = 1 means print (the default). C C Either of the above calls may be made at C any time and will take effect immediately. C C CALL ZVSRCO(RSAV,ISAV,JOB) Saves and restores the contents of C the internal COMMON blocks used by C ZVODE. (See Part iii below.) C RSAV must be a real array of length 51 C or more, and ISAV must be an integer C array of length 40 or more. C JOB=1 means save COMMON into RSAV/ISAV. C JOB=2 means restore COMMON from RSAV/ISAV. C ZVSRCO is useful if one is C interrupting a run and restarting C later, or alternating between two or C more problems solved with ZVODE. C C CALL ZVINDY(,,,,,) Provide derivatives of y, of various C (See below.) orders, at a specified point T, if C desired. It may be called only after C a successful return from ZVODE. C C The detailed instructions for using ZVINDY are as follows. C The form of the call is: C C CALL ZVINDY (T, K, ZWORK, NYH, DKY, IFLAG) C C The input parameters are: C C T = Value of independent variable where answers are desired C (normally the same as the T last returned by ZVODE). C For valid results, T must lie between TCUR - HU and TCUR. C (See optional output for TCUR and HU.) C K = Integer order of the derivative desired. K must satisfy C 0 .le. K .le. NQCUR, where NQCUR is the current order C (see optional output). The capability corresponding C to K = 0, i.e. computing y(T), is already provided C by ZVODE directly. Since NQCUR .ge. 1, the first C derivative dy/dt is always available with ZVINDY. C ZWORK = The history array YH. C NYH = Column length of YH, equal to the initial value of NEQ. C C The output parameters are: C C DKY = A double complex array of length NEQ containing the C computed value of the K-th derivative of y(t). C IFLAG = Integer flag, returned as 0 if K and T were legal, C -1 if K was illegal, and -2 if T was illegal. C On an error return, a message is also written. C----------------------------------------------------------------------- C Part iii. COMMON Blocks. C If ZVODE is to be used in an overlay situation, the user C must declare, in the primary overlay, the variables in: C (1) the call sequence to ZVODE, C (2) the two internal COMMON blocks C /ZVOD01/ of length 83 (50 double precision words C followed by 33 integer words), C /ZVOD02/ of length 9 (1 double precision word C followed by 8 integer words), C C If ZVODE is used on a system in which the contents of internal C COMMON blocks are not preserved between calls, the user should C declare the above two COMMON blocks in his calling program to insure C that their contents are preserved. C C----------------------------------------------------------------------- C Part iv. Optionally Replaceable Solver Routines. C C Below are descriptions of two routines in the ZVODE package which C relate to the measurement of errors. Either routine can be C replaced by a user-supplied version, if desired. However, since such C a replacement may have a major impact on performance, it should be C done only when absolutely necessary, and only with great caution. C (Note: The means by which the package version of a routine is C superseded by the user's version may be system-dependent.) C C (a) ZEWSET. C The following subroutine is called just before each internal C integration step, and sets the array of error weights, EWT, as C described under ITOL/RTOL/ATOL above: C SUBROUTINE ZEWSET (NEQ, ITOL, RTOL, ATOL, YCUR, EWT) C where NEQ, ITOL, RTOL, and ATOL are as in the ZVODE call sequence, C YCUR contains the current (double complex) dependent variable vector, C and EWT is the array of weights set by ZEWSET. C C If the user supplies this subroutine, it must return in EWT(i) C (i = 1,...,NEQ) a positive quantity suitable for comparison with C errors in Y(i). The EWT array returned by ZEWSET is passed to the C ZVNORM routine (See below.), and also used by ZVODE in the computation C of the optional output IMXER, the diagonal Jacobian approximation, C and the increments for difference quotient Jacobians. C C In the user-supplied version of ZEWSET, it may be desirable to use C the current values of derivatives of y. Derivatives up to order NQ C are available from the history array YH, described above under C Optional Output. In ZEWSET, YH is identical to the YCUR array, C extended to NQ + 1 columns with a column length of NYH and scale C factors of h**j/factorial(j). On the first call for the problem, C given by NST = 0, NQ is 1 and H is temporarily set to 1.0. C NYH is the initial value of NEQ. The quantities NQ, H, and NST C can be obtained by including in ZEWSET the statements: C DOUBLE PRECISION RVOD, H, HU C COMMON /ZVOD01/ RVOD(50), IVOD(33) C COMMON /ZVOD02/ HU, NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST C NQ = IVOD(28) C H = RVOD(21) C Thus, for example, the current value of dy/dt can be obtained as C YCUR(NYH+i)/H (i=1,...,NEQ) (and the division by H is C unnecessary when NST = 0). C C (b) ZVNORM. C The following is a real function routine which computes the weighted C root-mean-square norm of a vector v: C D = ZVNORM (N, V, W) C where: C N = the length of the vector, C V = double complex array of length N containing the vector, C W = real array of length N containing weights, C D = sqrt( (1/N) * sum(abs(V(i))*W(i))**2 ). C ZVNORM is called with N = NEQ and with W(i) = 1.0/EWT(i), where C EWT is as set by subroutine ZEWSET. C C If the user supplies this function, it should return a non-negative C value of ZVNORM suitable for use in the error control in ZVODE. C None of the arguments should be altered by ZVNORM. C For example, a user-supplied ZVNORM routine might: C -substitute a max-norm of (V(i)*W(i)) for the rms-norm, or C -ignore some components of V in the norm, with the effect of C suppressing the error control on those components of Y. C----------------------------------------------------------------------- C REVISION HISTORY (YYYYMMDD) C 20060517 DATE WRITTEN, modified from DVODE of 20020430. C 20061227 Added note on use for analytic f. C----------------------------------------------------------------------- C Other Routines in the ZVODE Package. C C In addition to Subroutine ZVODE, the ZVODE package includes the C following subroutines and function routines: C ZVHIN computes an approximate step size for the initial step. C ZVINDY computes an interpolated value of the y vector at t = TOUT. C ZVSTEP is the core integrator, which does one step of the C integration and the associated error control. C ZVSET sets all method coefficients and test constants. C ZVNLSD solves the underlying nonlinear system -- the corrector. C ZVJAC computes and preprocesses the Jacobian matrix J = df/dy C and the Newton iteration matrix P = I - (h/l1)*J. C ZVSOL manages solution of linear system in chord iteration. C ZVJUST adjusts the history array on a change of order. C ZEWSET sets the error weight vector EWT before each step. C ZVNORM computes the weighted r.m.s. norm of a vector. C ZABSSQ computes the squared absolute value of a double complex z. C ZVSRCO is a user-callable routine to save and restore C the contents of the internal COMMON blocks. C ZACOPY is a routine to copy one two-dimensional array to another. C ZGETRF and ZGETRS are routines from LAPACK for solving full C systems of linear algebraic equations. C ZGBTRF and ZGBTRS are routines from LAPACK for solving banded C linear systems. C DZSCAL scales a double complex array by a double prec. scalar. C DZAXPY adds a D.P. scalar times one complex vector to another. C ZCOPY is a basic linear algebra module from the BLAS. C DUMACH sets the unit roundoff of the machine. C XERRWD, XSETUN, XSETF, IXSAV, and IUMACH handle the printing of all C error messages and warnings. XERRWD is machine-dependent. C Note: ZVNORM, ZABSSQ, DUMACH, IXSAV, and IUMACH are function routines. C All the others are subroutines. C The intrinsic functions called with double precision complex arguments C are: ABS, DREAL, and DIMAG. All of these are expected to return C double precision real values. C C----------------------------------------------------------------------- C C Type declarations for labeled COMMON block ZVOD01 -------------------- C DOUBLE PRECISION ACNRM, CCMXJ, CONP, CRATE, DRC, EL, 1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HRL1, HSCAL, PRL1, 2 RC, RL1, SRUR, TAU, TQ, TN, UROUND INTEGER ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH, 1 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM, 2 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP, 3 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ, 4 NSLP, NYH C C Type declarations for labeled COMMON block ZVOD02 -------------------- C DOUBLE PRECISION HU INTEGER NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST C C Type declarations for local variables -------------------------------- C EXTERNAL ZVNLSD LOGICAL IHIT DOUBLE PRECISION ATOLI, BIG, EWTI, FOUR, H0, HMAX, HMX, HUN, ONE, 1 PT2, RH, RTOLI, SIZE, TCRIT, TNEXT, TOLSF, TP, TWO, ZERO INTEGER I, IER, IFLAG, IMXER, JCO, KGO, LENIW, LENJ, LENP, LENZW, 1 LENRW, LENWM, LF0, MBAND, MFA, ML, MORD, MU, MXHNL0, MXSTP0, 2 NITER, NSLAST CHARACTER*80 MSG C C Type declaration for function subroutines called --------------------- C DOUBLE PRECISION DUMACH, ZVNORM C DIMENSION MORD(2) C----------------------------------------------------------------------- C The following Fortran-77 declaration is to cause the values of the C listed (local) variables to be saved between calls to ZVODE. C----------------------------------------------------------------------- SAVE MORD, MXHNL0, MXSTP0 SAVE ZERO, ONE, TWO, FOUR, PT2, HUN C----------------------------------------------------------------------- C The following internal COMMON blocks contain variables which are C communicated between subroutines in the ZVODE package, or which are C to be saved between calls to ZVODE. C In each block, real variables precede integers. C The block /ZVOD01/ appears in subroutines ZVODE, ZVINDY, ZVSTEP, C ZVSET, ZVNLSD, ZVJAC, ZVSOL, ZVJUST and ZVSRCO. C The block /ZVOD02/ appears in subroutines ZVODE, ZVINDY, ZVSTEP, C ZVNLSD, ZVJAC, and ZVSRCO. C C The variables stored in the internal COMMON blocks are as follows: C C ACNRM = Weighted r.m.s. norm of accumulated correction vectors. C CCMXJ = Threshhold on DRC for updating the Jacobian. (See DRC.) C CONP = The saved value of TQ(5). C CRATE = Estimated corrector convergence rate constant. C DRC = Relative change in H*RL1 since last ZVJAC call. C EL = Real array of integration coefficients. See ZVSET. C ETA = Saved tentative ratio of new to old H. C ETAMAX = Saved maximum value of ETA to be allowed. C H = The step size. C HMIN = The minimum absolute value of the step size H to be used. C HMXI = Inverse of the maximum absolute value of H to be used. C HMXI = 0.0 is allowed and corresponds to an infinite HMAX. C HNEW = The step size to be attempted on the next step. C HRL1 = Saved value of H*RL1. C HSCAL = Stepsize in scaling of YH array. C PRL1 = The saved value of RL1. C RC = Ratio of current H*RL1 to value on last ZVJAC call. C RL1 = The reciprocal of the coefficient EL(1). C SRUR = Sqrt(UROUND), used in difference quotient algorithms. C TAU = Real vector of past NQ step sizes, length 13. C TQ = A real vector of length 5 in which ZVSET stores constants C used for the convergence test, the error test, and the C selection of H at a new order. C TN = The independent variable, updated on each step taken. C UROUND = The machine unit roundoff. The smallest positive real number C such that 1.0 + UROUND .ne. 1.0 C ICF = Integer flag for convergence failure in ZVNLSD: C 0 means no failures. C 1 means convergence failure with out of date Jacobian C (recoverable error). C 2 means convergence failure with current Jacobian or C singular matrix (unrecoverable error). C INIT = Saved integer flag indicating whether initialization of the C problem has been done (INIT = 1) or not. C IPUP = Saved flag to signal updating of Newton matrix. C JCUR = Output flag from ZVJAC showing Jacobian status: C JCUR = 0 means J is not current. C JCUR = 1 means J is current. C JSTART = Integer flag used as input to ZVSTEP: C 0 means perform the first step. C 1 means take a new step continuing from the last. C -1 means take the next step with a new value of MAXORD, C HMIN, HMXI, N, METH, MITER, and/or matrix parameters. C On return, ZVSTEP sets JSTART = 1. C JSV = Integer flag for Jacobian saving, = sign(MF). C KFLAG = A completion code from ZVSTEP with the following meanings: C 0 the step was succesful. C -1 the requested error could not be achieved. C -2 corrector convergence could not be achieved. C -3, -4 fatal error in VNLS (can not occur here). C KUTH = Input flag to ZVSTEP showing whether H was reduced by the C driver. KUTH = 1 if H was reduced, = 0 otherwise. C L = Integer variable, NQ + 1, current order plus one. C LMAX = MAXORD + 1 (used for dimensioning). C LOCJS = A pointer to the saved Jacobian, whose storage starts at C WM(LOCJS), if JSV = 1. C LYH, LEWT, LACOR, LSAVF, LWM, LIWM = Saved integer pointers C to segments of ZWORK, RWORK, and IWORK. C MAXORD = The maximum order of integration method to be allowed. C METH/MITER = The method flags. See MF. C MSBJ = The maximum number of steps between J evaluations, = 50. C MXHNIL = Saved value of optional input MXHNIL. C MXSTEP = Saved value of optional input MXSTEP. C N = The number of first-order ODEs, = NEQ. C NEWH = Saved integer to flag change of H. C NEWQ = The method order to be used on the next step. C NHNIL = Saved counter for occurrences of T + H = T. C NQ = Integer variable, the current integration method order. C NQNYH = Saved value of NQ*NYH. C NQWAIT = A counter controlling the frequency of order changes. C An order change is about to be considered if NQWAIT = 1. C NSLJ = The number of steps taken as of the last Jacobian update. C NSLP = Saved value of NST as of last Newton matrix update. C NYH = Saved value of the initial value of NEQ. C HU = The step size in t last used. C NCFN = Number of nonlinear convergence failures so far. C NETF = The number of error test failures of the integrator so far. C NFE = The number of f evaluations for the problem so far. C NJE = The number of Jacobian evaluations so far. C NLU = The number of matrix LU decompositions so far. C NNI = Number of nonlinear iterations so far. C NQU = The method order last used. C NST = The number of steps taken for the problem so far. C----------------------------------------------------------------------- COMMON /ZVOD01/ ACNRM, CCMXJ, CONP, CRATE, DRC, EL(13), ETA, 1 ETAMAX, H, HMIN, HMXI, HNEW, HRL1, HSCAL, PRL1, 2 RC, RL1, SRUR, TAU(13), TQ(5), TN, UROUND, 3 ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH, 4 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM, 5 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP, 6 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ, 7 NSLP, NYH COMMON /ZVOD02/ HU, NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST C DATA MORD(1) /12/, MORD(2) /5/, MXSTP0 /500/, MXHNL0 /10/ DATA ZERO /0.0D0/, ONE /1.0D0/, TWO /2.0D0/, FOUR /4.0D0/, 1 PT2 /0.2D0/, HUN /100.0D0/ C----------------------------------------------------------------------- C Block A. C This code block is executed on every call. C It tests ISTATE and ITASK for legality and branches appropriately. C If ISTATE .gt. 1 but the flag INIT shows that initialization has C not yet been done, an error return occurs. C If ISTATE = 1 and TOUT = T, return immediately. C----------------------------------------------------------------------- IF (ISTATE .LT. 1 .OR. ISTATE .GT. 3) GO TO 601 IF (ITASK .LT. 1 .OR. ITASK .GT. 5) GO TO 602 IF (ISTATE .EQ. 1) GO TO 10 IF (INIT .NE. 1) GO TO 603 IF (ISTATE .EQ. 2) GO TO 200 GO TO 20 10 INIT = 0 IF (TOUT .EQ. T) RETURN C----------------------------------------------------------------------- C Block B. C The next code block is executed for the initial call (ISTATE = 1), C or for a continuation call with parameter changes (ISTATE = 3). C It contains checking of all input and various initializations. C C First check legality of the non-optional input NEQ, ITOL, IOPT, C MF, ML, and MU. C----------------------------------------------------------------------- 20 IF (NEQ .LE. 0) GO TO 604 IF (ISTATE .EQ. 1) GO TO 25 IF (NEQ .GT. N) GO TO 605 25 N = NEQ IF (ITOL .LT. 1 .OR. ITOL .GT. 4) GO TO 606 IF (IOPT .LT. 0 .OR. IOPT .GT. 1) GO TO 607 JSV = SIGN(1,MF) MFA = ABS(MF) METH = MFA/10 MITER = MFA - 10*METH IF (METH .LT. 1 .OR. METH .GT. 2) GO TO 608 IF (MITER .LT. 0 .OR. MITER .GT. 5) GO TO 608 IF (MITER .LE. 3) GO TO 30 ML = IWORK(1) MU = IWORK(2) IF (ML .LT. 0 .OR. ML .GE. N) GO TO 609 IF (MU .LT. 0 .OR. MU .GE. N) GO TO 610 30 CONTINUE C Next process and check the optional input. --------------------------- IF (IOPT .EQ. 1) GO TO 40 MAXORD = MORD(METH) MXSTEP = MXSTP0 MXHNIL = MXHNL0 IF (ISTATE .EQ. 1) H0 = ZERO HMXI = ZERO HMIN = ZERO GO TO 60 40 MAXORD = IWORK(5) IF (MAXORD .LT. 0) GO TO 611 IF (MAXORD .EQ. 0) MAXORD = 100 MAXORD = MIN(MAXORD,MORD(METH)) MXSTEP = IWORK(6) IF (MXSTEP .LT. 0) GO TO 612 IF (MXSTEP .EQ. 0) MXSTEP = MXSTP0 MXHNIL = IWORK(7) IF (MXHNIL .LT. 0) GO TO 613 IF (MXHNIL .EQ. 0) MXHNIL = MXHNL0 IF (ISTATE .NE. 1) GO TO 50 H0 = RWORK(5) IF ((TOUT - T)*H0 .LT. ZERO) GO TO 614 50 HMAX = RWORK(6) IF (HMAX .LT. ZERO) GO TO 615 HMXI = ZERO IF (HMAX .GT. ZERO) HMXI = ONE/HMAX HMIN = RWORK(7) IF (HMIN .LT. ZERO) GO TO 616 C----------------------------------------------------------------------- C Set work array pointers and check lengths LZW, LRW, and LIW. C Pointers to segments of ZWORK, RWORK, and IWORK are named by prefixing C L to the name of the segment. E.g., segment YH starts at ZWORK(LYH). C Segments of ZWORK (in order) are denoted YH, WM, SAVF, ACOR. C Besides optional inputs/outputs, RWORK has only the segment EWT. C Within WM, LOCJS is the location of the saved Jacobian (JSV .gt. 0). C----------------------------------------------------------------------- 60 LYH = 1 IF (ISTATE .EQ. 1) NYH = N LWM = LYH + (MAXORD + 1)*NYH JCO = MAX(0,JSV) IF (MITER .EQ. 0) LENWM = 0 IF (MITER .EQ. 1 .OR. MITER .EQ. 2) THEN LENWM = (1 + JCO)*N*N LOCJS = N*N + 1 ENDIF IF (MITER .EQ. 3) LENWM = N IF (MITER .EQ. 4 .OR. MITER .EQ. 5) THEN MBAND = ML + MU + 1 LENP = (MBAND + ML)*N LENJ = MBAND*N LENWM = LENP + JCO*LENJ LOCJS = LENP + 1 ENDIF LSAVF = LWM + LENWM LACOR = LSAVF + N LENZW = LACOR + N - 1 IWORK(17) = LENZW LEWT = 21 LENRW = 20 + N IWORK(18) = LENRW LIWM = 1 LENIW = 30 + N IF (MITER .EQ. 0 .OR. MITER .EQ. 3) LENIW = 30 IWORK(19) = LENIW IF (LENZW .GT. LZW) GO TO 628 IF (LENRW .GT. LRW) GO TO 617 IF (LENIW .GT. LIW) GO TO 618 C Check RTOL and ATOL for legality. ------------------------------------ RTOLI = RTOL(1) ATOLI = ATOL(1) DO 70 I = 1,N IF (ITOL .GE. 3) RTOLI = RTOL(I) IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I) IF (RTOLI .LT. ZERO) GO TO 619 IF (ATOLI .LT. ZERO) GO TO 620 70 CONTINUE IF (ISTATE .EQ. 1) GO TO 100 C If ISTATE = 3, set flag to signal parameter changes to ZVSTEP. ------- JSTART = -1 IF (NQ .LE. MAXORD) GO TO 200 C MAXORD was reduced below NQ. Copy YH(*,MAXORD+2) into SAVF. --------- CALL ZCOPY (N, ZWORK(LWM), 1, ZWORK(LSAVF), 1) GO TO 200 C----------------------------------------------------------------------- C Block C. C The next block is for the initial call only (ISTATE = 1). C It contains all remaining initializations, the initial call to F, C and the calculation of the initial step size. C The error weights in EWT are inverted after being loaded. C----------------------------------------------------------------------- 100 UROUND = DUMACH() TN = T IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 110 TCRIT = RWORK(1) IF ((TCRIT - TOUT)*(TOUT - T) .LT. ZERO) GO TO 625 IF (H0 .NE. ZERO .AND. (T + H0 - TCRIT)*H0 .GT. ZERO) 1 H0 = TCRIT - T 110 JSTART = 0 IF (MITER .GT. 0) SRUR = SQRT(UROUND) CCMXJ = PT2 MSBJ = 50 NHNIL = 0 NST = 0 NJE = 0 NNI = 0 NCFN = 0 NETF = 0 NLU = 0 NSLJ = 0 NSLAST = 0 HU = ZERO NQU = 0 C Initial call to F. (LF0 points to YH(*,2).) ------------------------- LF0 = LYH + NYH CALL F (N, T, Y, ZWORK(LF0), RPAR, IPAR) NFE = 1 C Load the initial value vector in YH. --------------------------------- CALL ZCOPY (N, Y, 1, ZWORK(LYH), 1) C Load and invert the EWT array. (H is temporarily set to 1.0.) ------- NQ = 1 H = ONE CALL ZEWSET (N, ITOL, RTOL, ATOL, ZWORK(LYH), RWORK(LEWT)) DO 120 I = 1,N IF (RWORK(I+LEWT-1) .LE. ZERO) GO TO 621 120 RWORK(I+LEWT-1) = ONE/RWORK(I+LEWT-1) IF (H0 .NE. ZERO) GO TO 180 C Call ZVHIN to set initial step size H0 to be attempted. -------------- CALL ZVHIN (N, T, ZWORK(LYH), ZWORK(LF0), F, RPAR, IPAR, TOUT, 1 UROUND, RWORK(LEWT), ITOL, ATOL, Y, ZWORK(LACOR), H0, 2 NITER, IER) NFE = NFE + NITER IF (IER .NE. 0) GO TO 622 C Adjust H0 if necessary to meet HMAX bound. --------------------------- 180 RH = ABS(H0)*HMXI IF (RH .GT. ONE) H0 = H0/RH C Load H with H0 and scale YH(*,2) by H0. ------------------------------ H = H0 CALL DZSCAL (N, H0, ZWORK(LF0), 1) GO TO 270 C----------------------------------------------------------------------- C Block D. C The next code block is for continuation calls only (ISTATE = 2 or 3) C and is to check stop conditions before taking a step. C----------------------------------------------------------------------- 200 NSLAST = NST KUTH = 0 GO TO (210, 250, 220, 230, 240), ITASK 210 IF ((TN - TOUT)*H .LT. ZERO) GO TO 250 CALL ZVINDY (TOUT, 0, ZWORK(LYH), NYH, Y, IFLAG) IF (IFLAG .NE. 0) GO TO 627 T = TOUT GO TO 420 220 TP = TN - HU*(ONE + HUN*UROUND) IF ((TP - TOUT)*H .GT. ZERO) GO TO 623 IF ((TN - TOUT)*H .LT. ZERO) GO TO 250 GO TO 400 230 TCRIT = RWORK(1) IF ((TN - TCRIT)*H .GT. ZERO) GO TO 624 IF ((TCRIT - TOUT)*H .LT. ZERO) GO TO 625 IF ((TN - TOUT)*H .LT. ZERO) GO TO 245 CALL ZVINDY (TOUT, 0, ZWORK(LYH), NYH, Y, IFLAG) IF (IFLAG .NE. 0) GO TO 627 T = TOUT GO TO 420 240 TCRIT = RWORK(1) IF ((TN - TCRIT)*H .GT. ZERO) GO TO 624 245 HMX = ABS(TN) + ABS(H) IHIT = ABS(TN - TCRIT) .LE. HUN*UROUND*HMX IF (IHIT) GO TO 400 TNEXT = TN + HNEW*(ONE + FOUR*UROUND) IF ((TNEXT - TCRIT)*H .LE. ZERO) GO TO 250 H = (TCRIT - TN)*(ONE - FOUR*UROUND) KUTH = 1 C----------------------------------------------------------------------- C Block E. C The next block is normally executed for all calls and contains C the call to the one-step core integrator ZVSTEP. C C This is a looping point for the integration steps. C C First check for too many steps being taken, update EWT (if not at C start of problem), check for too much accuracy being requested, and C check for H below the roundoff level in T. C----------------------------------------------------------------------- 250 CONTINUE IF ((NST-NSLAST) .GE. MXSTEP) GO TO 500 CALL ZEWSET (N, ITOL, RTOL, ATOL, ZWORK(LYH), RWORK(LEWT)) DO 260 I = 1,N IF (RWORK(I+LEWT-1) .LE. ZERO) GO TO 510 260 RWORK(I+LEWT-1) = ONE/RWORK(I+LEWT-1) 270 TOLSF = UROUND*ZVNORM (N, ZWORK(LYH), RWORK(LEWT)) IF (TOLSF .LE. ONE) GO TO 280 TOLSF = TOLSF*TWO IF (NST .EQ. 0) GO TO 626 GO TO 520 280 IF ((TN + H) .NE. TN) GO TO 290 NHNIL = NHNIL + 1 IF (NHNIL .GT. MXHNIL) GO TO 290 MSG = 'ZVODE-- Warning: internal T (=R1) and H (=R2) are' CALL XERRWD (MSG, 50, 101, 1, 0, 0, 0, 0, ZERO, ZERO) MSG=' such that in the machine, T + H = T on the next step ' CALL XERRWD (MSG, 60, 101, 1, 0, 0, 0, 0, ZERO, ZERO) MSG = ' (H = step size). solver will continue anyway' CALL XERRWD (MSG, 50, 101, 1, 0, 0, 0, 2, TN, H) IF (NHNIL .LT. MXHNIL) GO TO 290 MSG = 'ZVODE-- Above warning has been issued I1 times. ' CALL XERRWD (MSG, 50, 102, 1, 0, 0, 0, 0, ZERO, ZERO) MSG = ' it will not be issued again for this problem' CALL XERRWD (MSG, 50, 102, 1, 1, MXHNIL, 0, 0, ZERO, ZERO) 290 CONTINUE C----------------------------------------------------------------------- C CALL ZVSTEP (Y, YH, NYH, YH, EWT, SAVF, VSAV, ACOR, C WM, IWM, F, JAC, F, ZVNLSD, RPAR, IPAR) C----------------------------------------------------------------------- CALL ZVSTEP (Y, ZWORK(LYH), NYH, ZWORK(LYH), RWORK(LEWT), 1 ZWORK(LSAVF), Y, ZWORK(LACOR), ZWORK(LWM), IWORK(LIWM), 2 F, JAC, F, ZVNLSD, RPAR, IPAR) KGO = 1 - KFLAG C Branch on KFLAG. Note: In this version, KFLAG can not be set to -3. C KFLAG .eq. 0, -1, -2 GO TO (300, 530, 540), KGO C----------------------------------------------------------------------- C Block F. C The following block handles the case of a successful return from the C core integrator (KFLAG = 0). Test for stop conditions. C----------------------------------------------------------------------- 300 INIT = 1 KUTH = 0 GO TO (310, 400, 330, 340, 350), ITASK C ITASK = 1. If TOUT has been reached, interpolate. ------------------- 310 IF ((TN - TOUT)*H .LT. ZERO) GO TO 250 CALL ZVINDY (TOUT, 0, ZWORK(LYH), NYH, Y, IFLAG) T = TOUT GO TO 420 C ITASK = 3. Jump to exit if TOUT was reached. ------------------------ 330 IF ((TN - TOUT)*H .GE. ZERO) GO TO 400 GO TO 250 C ITASK = 4. See if TOUT or TCRIT was reached. Adjust H if necessary. 340 IF ((TN - TOUT)*H .LT. ZERO) GO TO 345 CALL ZVINDY (TOUT, 0, ZWORK(LYH), NYH, Y, IFLAG) T = TOUT GO TO 420 345 HMX = ABS(TN) + ABS(H) IHIT = ABS(TN - TCRIT) .LE. HUN*UROUND*HMX IF (IHIT) GO TO 400 TNEXT = TN + HNEW*(ONE + FOUR*UROUND) IF ((TNEXT - TCRIT)*H .LE. ZERO) GO TO 250 H = (TCRIT - TN)*(ONE - FOUR*UROUND) KUTH = 1 GO TO 250 C ITASK = 5. See if TCRIT was reached and jump to exit. --------------- 350 HMX = ABS(TN) + ABS(H) IHIT = ABS(TN - TCRIT) .LE. HUN*UROUND*HMX C----------------------------------------------------------------------- C Block G. C The following block handles all successful returns from ZVODE. C If ITASK .ne. 1, Y is loaded from YH and T is set accordingly. C ISTATE is set to 2, and the optional output is loaded into the work C arrays before returning. C----------------------------------------------------------------------- 400 CONTINUE CALL ZCOPY (N, ZWORK(LYH), 1, Y, 1) T = TN IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 420 IF (IHIT) T = TCRIT 420 ISTATE = 2 RWORK(11) = HU RWORK(12) = HNEW RWORK(13) = TN IWORK(11) = NST IWORK(12) = NFE IWORK(13) = NJE IWORK(14) = NQU IWORK(15) = NEWQ IWORK(20) = NLU IWORK(21) = NNI IWORK(22) = NCFN IWORK(23) = NETF RETURN C----------------------------------------------------------------------- C Block H. C The following block handles all unsuccessful returns other than C those for illegal input. First the error message routine is called. C if there was an error test or convergence test failure, IMXER is set. C Then Y is loaded from YH, and T is set to TN. C The optional output is loaded into the work arrays before returning. C----------------------------------------------------------------------- C The maximum number of steps was taken before reaching TOUT. ---------- 500 MSG = 'ZVODE-- At current T (=R1), MXSTEP (=I1) steps ' CALL XERRWD (MSG, 50, 201, 1, 0, 0, 0, 0, ZERO, ZERO) MSG = ' taken on this call before reaching TOUT ' CALL XERRWD (MSG, 50, 201, 1, 1, MXSTEP, 0, 1, TN, ZERO) ISTATE = -1 GO TO 580 C EWT(i) .le. 0.0 for some i (not at start of problem). ---------------- 510 EWTI = RWORK(LEWT+I-1) MSG = 'ZVODE-- At T (=R1), EWT(I1) has become R2 .le. 0.' CALL XERRWD (MSG, 50, 202, 1, 1, I, 0, 2, TN, EWTI) ISTATE = -6 GO TO 580 C Too much accuracy requested for machine precision. ------------------- 520 MSG = 'ZVODE-- At T (=R1), too much accuracy requested ' CALL XERRWD (MSG, 50, 203, 1, 0, 0, 0, 0, ZERO, ZERO) MSG = ' for precision of machine: see TOLSF (=R2) ' CALL XERRWD (MSG, 50, 203, 1, 0, 0, 0, 2, TN, TOLSF) RWORK(14) = TOLSF ISTATE = -2 GO TO 580 C KFLAG = -1. Error test failed repeatedly or with ABS(H) = HMIN. ----- 530 MSG = 'ZVODE-- At T(=R1) and step size H(=R2), the error' CALL XERRWD (MSG, 50, 204, 1, 0, 0, 0, 0, ZERO, ZERO) MSG = ' test failed repeatedly or with abs(H) = HMIN' CALL XERRWD (MSG, 50, 204, 1, 0, 0, 0, 2, TN, H) ISTATE = -4 GO TO 560 C KFLAG = -2. Convergence failed repeatedly or with ABS(H) = HMIN. ---- 540 MSG = 'ZVODE-- At T (=R1) and step size H (=R2), the ' CALL XERRWD (MSG, 50, 205, 1, 0, 0, 0, 0, ZERO, ZERO) MSG = ' corrector convergence failed repeatedly ' CALL XERRWD (MSG, 50, 205, 1, 0, 0, 0, 0, ZERO, ZERO) MSG = ' or with abs(H) = HMIN ' CALL XERRWD (MSG, 30, 205, 1, 0, 0, 0, 2, TN, H) ISTATE = -5 C Compute IMXER if relevant. ------------------------------------------- 560 BIG = ZERO IMXER = 1 DO 570 I = 1,N SIZE = ABS(ZWORK(I+LACOR-1))*RWORK(I+LEWT-1) IF (BIG .GE. SIZE) GO TO 570 BIG = SIZE IMXER = I 570 CONTINUE IWORK(16) = IMXER C Set Y vector, T, and optional output. -------------------------------- 580 CONTINUE CALL ZCOPY (N, ZWORK(LYH), 1, Y, 1) T = TN RWORK(11) = HU RWORK(12) = H RWORK(13) = TN IWORK(11) = NST IWORK(12) = NFE IWORK(13) = NJE IWORK(14) = NQU IWORK(15) = NQ IWORK(20) = NLU IWORK(21) = NNI IWORK(22) = NCFN IWORK(23) = NETF RETURN C----------------------------------------------------------------------- C Block I. C The following block handles all error returns due to illegal input C (ISTATE = -3), as detected before calling the core integrator. C First the error message routine is called. If the illegal input C is a negative ISTATE, the run is aborted (apparent infinite loop). C----------------------------------------------------------------------- 601 MSG = 'ZVODE-- ISTATE (=I1) illegal ' CALL XERRWD (MSG, 30, 1, 1, 1, ISTATE, 0, 0, ZERO, ZERO) IF (ISTATE .LT. 0) GO TO 800 GO TO 700 602 MSG = 'ZVODE-- ITASK (=I1) illegal ' CALL XERRWD (MSG, 30, 2, 1, 1, ITASK, 0, 0, ZERO, ZERO) GO TO 700 603 MSG='ZVODE-- ISTATE (=I1) .gt. 1 but ZVODE not initialized ' CALL XERRWD (MSG, 60, 3, 1, 1, ISTATE, 0, 0, ZERO, ZERO) GO TO 700 604 MSG = 'ZVODE-- NEQ (=I1) .lt. 1 ' CALL XERRWD (MSG, 30, 4, 1, 1, NEQ, 0, 0, ZERO, ZERO) GO TO 700 605 MSG = 'ZVODE-- ISTATE = 3 and NEQ increased (I1 to I2) ' CALL XERRWD (MSG, 50, 5, 1, 2, N, NEQ, 0, ZERO, ZERO) GO TO 700 606 MSG = 'ZVODE-- ITOL (=I1) illegal ' CALL XERRWD (MSG, 30, 6, 1, 1, ITOL, 0, 0, ZERO, ZERO) GO TO 700 607 MSG = 'ZVODE-- IOPT (=I1) illegal ' CALL XERRWD (MSG, 30, 7, 1, 1, IOPT, 0, 0, ZERO, ZERO) GO TO 700 608 MSG = 'ZVODE-- MF (=I1) illegal ' CALL XERRWD (MSG, 30, 8, 1, 1, MF, 0, 0, ZERO, ZERO) GO TO 700 609 MSG = 'ZVODE-- ML (=I1) illegal: .lt.0 or .ge.NEQ (=I2)' CALL XERRWD (MSG, 50, 9, 1, 2, ML, NEQ, 0, ZERO, ZERO) GO TO 700 610 MSG = 'ZVODE-- MU (=I1) illegal: .lt.0 or .ge.NEQ (=I2)' CALL XERRWD (MSG, 50, 10, 1, 2, MU, NEQ, 0, ZERO, ZERO) GO TO 700 611 MSG = 'ZVODE-- MAXORD (=I1) .lt. 0 ' CALL XERRWD (MSG, 30, 11, 1, 1, MAXORD, 0, 0, ZERO, ZERO) GO TO 700 612 MSG = 'ZVODE-- MXSTEP (=I1) .lt. 0 ' CALL XERRWD (MSG, 30, 12, 1, 1, MXSTEP, 0, 0, ZERO, ZERO) GO TO 700 613 MSG = 'ZVODE-- MXHNIL (=I1) .lt. 0 ' CALL XERRWD (MSG, 30, 13, 1, 1, MXHNIL, 0, 0, ZERO, ZERO) GO TO 700 614 MSG = 'ZVODE-- TOUT (=R1) behind T (=R2) ' CALL XERRWD (MSG, 40, 14, 1, 0, 0, 0, 2, TOUT, T) MSG = ' integration direction is given by H0 (=R1) ' CALL XERRWD (MSG, 50, 14, 1, 0, 0, 0, 1, H0, ZERO) GO TO 700 615 MSG = 'ZVODE-- HMAX (=R1) .lt. 0.0 ' CALL XERRWD (MSG, 30, 15, 1, 0, 0, 0, 1, HMAX, ZERO) GO TO 700 616 MSG = 'ZVODE-- HMIN (=R1) .lt. 0.0 ' CALL XERRWD (MSG, 30, 16, 1, 0, 0, 0, 1, HMIN, ZERO) GO TO 700 617 CONTINUE MSG='ZVODE-- RWORK length needed, LENRW (=I1), exceeds LRW (=I2)' CALL XERRWD (MSG, 60, 17, 1, 2, LENRW, LRW, 0, ZERO, ZERO) GO TO 700 618 CONTINUE MSG='ZVODE-- IWORK length needed, LENIW (=I1), exceeds LIW (=I2)' CALL XERRWD (MSG, 60, 18, 1, 2, LENIW, LIW, 0, ZERO, ZERO) GO TO 700 619 MSG = 'ZVODE-- RTOL(I1) is R1 .lt. 0.0 ' CALL XERRWD (MSG, 40, 19, 1, 1, I, 0, 1, RTOLI, ZERO) GO TO 700 620 MSG = 'ZVODE-- ATOL(I1) is R1 .lt. 0.0 ' CALL XERRWD (MSG, 40, 20, 1, 1, I, 0, 1, ATOLI, ZERO) GO TO 700 621 EWTI = RWORK(LEWT+I-1) MSG = 'ZVODE-- EWT(I1) is R1 .le. 0.0 ' CALL XERRWD (MSG, 40, 21, 1, 1, I, 0, 1, EWTI, ZERO) GO TO 700 622 CONTINUE MSG='ZVODE-- TOUT (=R1) too close to T(=R2) to start integration' CALL XERRWD (MSG, 60, 22, 1, 0, 0, 0, 2, TOUT, T) GO TO 700 623 CONTINUE MSG='ZVODE-- ITASK = I1 and TOUT (=R1) behind TCUR - HU (= R2) ' CALL XERRWD (MSG, 60, 23, 1, 1, ITASK, 0, 2, TOUT, TP) GO TO 700 624 CONTINUE MSG='ZVODE-- ITASK = 4 or 5 and TCRIT (=R1) behind TCUR (=R2) ' CALL XERRWD (MSG, 60, 24, 1, 0, 0, 0, 2, TCRIT, TN) GO TO 700 625 CONTINUE MSG='ZVODE-- ITASK = 4 or 5 and TCRIT (=R1) behind TOUT (=R2) ' CALL XERRWD (MSG, 60, 25, 1, 0, 0, 0, 2, TCRIT, TOUT) GO TO 700 626 MSG = 'ZVODE-- At start of problem, too much accuracy ' CALL XERRWD (MSG, 50, 26, 1, 0, 0, 0, 0, ZERO, ZERO) MSG=' requested for precision of machine: see TOLSF (=R1) ' CALL XERRWD (MSG, 60, 26, 1, 0, 0, 0, 1, TOLSF, ZERO) RWORK(14) = TOLSF GO TO 700 627 MSG='ZVODE-- Trouble from ZVINDY. ITASK = I1, TOUT = R1. ' CALL XERRWD (MSG, 60, 27, 1, 1, ITASK, 0, 1, TOUT, ZERO) GO TO 700 628 CONTINUE MSG='ZVODE-- ZWORK length needed, LENZW (=I1), exceeds LZW (=I2)' CALL XERRWD (MSG, 60, 17, 1, 2, LENZW, LZW, 0, ZERO, ZERO) C 700 CONTINUE ISTATE = -3 RETURN C 800 MSG = 'ZVODE-- Run aborted: apparent infinite loop ' CALL XERRWD (MSG, 50, 303, 2, 0, 0, 0, 0, ZERO, ZERO) RETURN C----------------------- End of Subroutine ZVODE ----------------------- END *DECK ZVHIN SUBROUTINE ZVHIN (N, T0, Y0, YDOT, F, RPAR, IPAR, TOUT, UROUND, 1 EWT, ITOL, ATOL, Y, TEMP, H0, NITER, IER) EXTERNAL F DOUBLE COMPLEX Y0, YDOT, Y, TEMP DOUBLE PRECISION T0, TOUT, UROUND, EWT, ATOL, H0 INTEGER N, IPAR, ITOL, NITER, IER DIMENSION Y0(*), YDOT(*), EWT(*), ATOL(*), Y(*), 1 TEMP(*), RPAR(*), IPAR(*) C----------------------------------------------------------------------- C Call sequence input -- N, T0, Y0, YDOT, F, RPAR, IPAR, TOUT, UROUND, C EWT, ITOL, ATOL, Y, TEMP C Call sequence output -- H0, NITER, IER C COMMON block variables accessed -- None C C Subroutines called by ZVHIN: F C Function routines called by ZVHIN: ZVNORM C----------------------------------------------------------------------- C This routine computes the step size, H0, to be attempted on the C first step, when the user has not supplied a value for this. C C First we check that TOUT - T0 differs significantly from zero. Then C an iteration is done to approximate the initial second derivative C and this is used to define h from w.r.m.s.norm(h**2 * yddot / 2) = 1. C A bias factor of 1/2 is applied to the resulting h. C The sign of H0 is inferred from the initial values of TOUT and T0. C C Communication with ZVHIN is done with the following variables: C C N = Size of ODE system, input. C T0 = Initial value of independent variable, input. C Y0 = Vector of initial conditions, input. C YDOT = Vector of initial first derivatives, input. C F = Name of subroutine for right-hand side f(t,y), input. C RPAR, IPAR = User's real/complex and integer work arrays. C TOUT = First output value of independent variable C UROUND = Machine unit roundoff C EWT, ITOL, ATOL = Error weights and tolerance parameters C as described in the driver routine, input. C Y, TEMP = Work arrays of length N. C H0 = Step size to be attempted, output. C NITER = Number of iterations (and of f evaluations) to compute H0, C output. C IER = The error flag, returned with the value C IER = 0 if no trouble occurred, or C IER = -1 if TOUT and T0 are considered too close to proceed. C----------------------------------------------------------------------- C C Type declarations for local variables -------------------------------- C DOUBLE PRECISION AFI, ATOLI, DELYI, H, HALF, HG, HLB, HNEW, HRAT, 1 HUB, HUN, PT1, T1, TDIST, TROUND, TWO, YDDNRM INTEGER I, ITER C C Type declaration for function subroutines called --------------------- C DOUBLE PRECISION ZVNORM C----------------------------------------------------------------------- C The following Fortran-77 declaration is to cause the values of the C listed (local) variables to be saved between calls to this integrator. C----------------------------------------------------------------------- SAVE HALF, HUN, PT1, TWO DATA HALF /0.5D0/, HUN /100.0D0/, PT1 /0.1D0/, TWO /2.0D0/ C NITER = 0 TDIST = ABS(TOUT - T0) TROUND = UROUND*MAX(ABS(T0),ABS(TOUT)) IF (TDIST .LT. TWO*TROUND) GO TO 100 C C Set a lower bound on h based on the roundoff level in T0 and TOUT. --- HLB = HUN*TROUND C Set an upper bound on h based on TOUT-T0 and the initial Y and YDOT. - HUB = PT1*TDIST ATOLI = ATOL(1) DO 10 I = 1, N IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I) DELYI = PT1*ABS(Y0(I)) + ATOLI AFI = ABS(YDOT(I)) IF (AFI*HUB .GT. DELYI) HUB = DELYI/AFI 10 CONTINUE C C Set initial guess for h as geometric mean of upper and lower bounds. - ITER = 0 HG = SQRT(HLB*HUB) C If the bounds have crossed, exit with the mean value. ---------------- IF (HUB .LT. HLB) THEN H0 = HG GO TO 90 ENDIF C C Looping point for iteration. ----------------------------------------- 50 CONTINUE C Estimate the second derivative as a difference quotient in f. -------- H = SIGN (HG, TOUT - T0) T1 = T0 + H DO 60 I = 1, N 60 Y(I) = Y0(I) + H*YDOT(I) CALL F (N, T1, Y, TEMP, RPAR, IPAR) DO 70 I = 1, N 70 TEMP(I) = (TEMP(I) - YDOT(I))/H YDDNRM = ZVNORM (N, TEMP, EWT) C Get the corresponding new value of h. -------------------------------- IF (YDDNRM*HUB*HUB .GT. TWO) THEN HNEW = SQRT(TWO/YDDNRM) ELSE HNEW = SQRT(HG*HUB) ENDIF ITER = ITER + 1 C----------------------------------------------------------------------- C Test the stopping conditions. C Stop if the new and previous h values differ by a factor of .lt. 2. C Stop if four iterations have been done. Also, stop with previous h C if HNEW/HG .gt. 2 after first iteration, as this probably means that C the second derivative value is bad because of cancellation error. C----------------------------------------------------------------------- IF (ITER .GE. 4) GO TO 80 HRAT = HNEW/HG IF ( (HRAT .GT. HALF) .AND. (HRAT .LT. TWO) ) GO TO 80 IF ( (ITER .GE. 2) .AND. (HNEW .GT. TWO*HG) ) THEN HNEW = HG GO TO 80 ENDIF HG = HNEW GO TO 50 C C Iteration done. Apply bounds, bias factor, and sign. Then exit. ---- 80 H0 = HNEW*HALF IF (H0 .LT. HLB) H0 = HLB IF (H0 .GT. HUB) H0 = HUB 90 H0 = SIGN(H0, TOUT - T0) NITER = ITER IER = 0 RETURN C Error return for TOUT - T0 too small. -------------------------------- 100 IER = -1 RETURN C----------------------- End of Subroutine ZVHIN ----------------------- END *DECK ZVINDY SUBROUTINE ZVINDY (T, K, YH, LDYH, DKY, IFLAG) DOUBLE COMPLEX YH, DKY DOUBLE PRECISION T INTEGER K, LDYH, IFLAG DIMENSION YH(LDYH,*), DKY(*) C----------------------------------------------------------------------- C Call sequence input -- T, K, YH, LDYH C Call sequence output -- DKY, IFLAG C COMMON block variables accessed: C /ZVOD01/ -- H, TN, UROUND, L, N, NQ C /ZVOD02/ -- HU C C Subroutines called by ZVINDY: DZSCAL, XERRWD C Function routines called by ZVINDY: None C----------------------------------------------------------------------- C ZVINDY computes interpolated values of the K-th derivative of the C dependent variable vector y, and stores it in DKY. This routine C is called within the package with K = 0 and T = TOUT, but may C also be called by the user for any K up to the current order. C (See detailed instructions in the usage documentation.) C----------------------------------------------------------------------- C The computed values in DKY are gotten by interpolation using the C Nordsieck history array YH. This array corresponds uniquely to a C vector-valued polynomial of degree NQCUR or less, and DKY is set C to the K-th derivative of this polynomial at T. C The formula for DKY is: C q C DKY(i) = sum c(j,K) * (T - TN)**(j-K) * H**(-j) * YH(i,j+1) C j=K C where c(j,K) = j*(j-1)*...*(j-K+1), q = NQCUR, TN = TCUR, H = HCUR. C The quantities NQ = NQCUR, L = NQ+1, N, TN, and H are C communicated by COMMON. The above sum is done in reverse order. C IFLAG is returned negative if either K or T is out of bounds. C C Discussion above and comments in driver explain all variables. C----------------------------------------------------------------------- C C Type declarations for labeled COMMON block ZVOD01 -------------------- C DOUBLE PRECISION ACNRM, CCMXJ, CONP, CRATE, DRC, EL, 1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HRL1, HSCAL, PRL1, 2 RC, RL1, SRUR, TAU, TQ, TN, UROUND INTEGER ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH, 1 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM, 2 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP, 3 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ, 4 NSLP, NYH C C Type declarations for labeled COMMON block ZVOD02 -------------------- C DOUBLE PRECISION HU INTEGER NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST C C Type declarations for local variables -------------------------------- C DOUBLE PRECISION C, HUN, R, S, TFUZZ, TN1, TP, ZERO INTEGER I, IC, J, JB, JB2, JJ, JJ1, JP1 CHARACTER*80 MSG C----------------------------------------------------------------------- C The following Fortran-77 declaration is to cause the values of the C listed (local) variables to be saved between calls to this integrator. C----------------------------------------------------------------------- SAVE HUN, ZERO C COMMON /ZVOD01/ ACNRM, CCMXJ, CONP, CRATE, DRC, EL(13), ETA, 1 ETAMAX, H, HMIN, HMXI, HNEW, HRL1, HSCAL, PRL1, 2 RC, RL1, SRUR, TAU(13), TQ(5), TN, UROUND, 3 ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH, 4 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM, 5 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP, 6 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ, 7 NSLP, NYH COMMON /ZVOD02/ HU, NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST C DATA HUN /100.0D0/, ZERO /0.0D0/ C IFLAG = 0 IF (K .LT. 0 .OR. K .GT. NQ) GO TO 80 TFUZZ = HUN*UROUND*SIGN(ABS(TN) + ABS(HU), HU) TP = TN - HU - TFUZZ TN1 = TN + TFUZZ IF ((T-TP)*(T-TN1) .GT. ZERO) GO TO 90 C S = (T - TN)/H IC = 1 IF (K .EQ. 0) GO TO 15 JJ1 = L - K DO 10 JJ = JJ1, NQ 10 IC = IC*JJ 15 C = REAL(IC) DO 20 I = 1, N 20 DKY(I) = C*YH(I,L) IF (K .EQ. NQ) GO TO 55 JB2 = NQ - K DO 50 JB = 1, JB2 J = NQ - JB JP1 = J + 1 IC = 1 IF (K .EQ. 0) GO TO 35 JJ1 = JP1 - K DO 30 JJ = JJ1, J 30 IC = IC*JJ 35 C = REAL(IC) DO 40 I = 1, N 40 DKY(I) = C*YH(I,JP1) + S*DKY(I) 50 CONTINUE IF (K .EQ. 0) RETURN 55 R = H**(-K) CALL DZSCAL (N, R, DKY, 1) RETURN C 80 MSG = 'ZVINDY-- K (=I1) illegal ' CALL XERRWD (MSG, 30, 51, 1, 1, K, 0, 0, ZERO, ZERO) IFLAG = -1 RETURN 90 MSG = 'ZVINDY-- T (=R1) illegal ' CALL XERRWD (MSG, 30, 52, 1, 0, 0, 0, 1, T, ZERO) MSG=' T not in interval TCUR - HU (= R1) to TCUR (=R2) ' CALL XERRWD (MSG, 60, 52, 1, 0, 0, 0, 2, TP, TN) IFLAG = -2 RETURN C----------------------- End of Subroutine ZVINDY ---------------------- END *DECK ZVSTEP SUBROUTINE ZVSTEP (Y, YH, LDYH, YH1, EWT, SAVF, VSAV, ACOR, 1 WM, IWM, F, JAC, PSOL, VNLS, RPAR, IPAR) EXTERNAL F, JAC, PSOL, VNLS DOUBLE COMPLEX Y, YH, YH1, SAVF, VSAV, ACOR, WM DOUBLE PRECISION EWT INTEGER LDYH, IWM, IPAR DIMENSION Y(*), YH(LDYH,*), YH1(*), EWT(*), SAVF(*), VSAV(*), 1 ACOR(*), WM(*), IWM(*), RPAR(*), IPAR(*) C----------------------------------------------------------------------- C Call sequence input -- Y, YH, LDYH, YH1, EWT, SAVF, VSAV, C ACOR, WM, IWM, F, JAC, PSOL, VNLS, RPAR, IPAR C Call sequence output -- YH, ACOR, WM, IWM C COMMON block variables accessed: C /ZVOD01/ ACNRM, EL(13), H, HMIN, HMXI, HNEW, HSCAL, RC, TAU(13), C TQ(5), TN, JCUR, JSTART, KFLAG, KUTH, C L, LMAX, MAXORD, N, NEWQ, NQ, NQWAIT C /ZVOD02/ HU, NCFN, NETF, NFE, NQU, NST C C Subroutines called by ZVSTEP: F, DZAXPY, ZCOPY, DZSCAL, C ZVJUST, VNLS, ZVSET C Function routines called by ZVSTEP: ZVNORM C----------------------------------------------------------------------- C ZVSTEP performs one step of the integration of an initial value C problem for a system of ordinary differential equations. C ZVSTEP calls subroutine VNLS for the solution of the nonlinear system C arising in the time step. Thus it is independent of the problem C Jacobian structure and the type of nonlinear system solution method. C ZVSTEP returns a completion flag KFLAG (in COMMON). C A return with KFLAG = -1 or -2 means either ABS(H) = HMIN or 10 C consecutive failures occurred. On a return with KFLAG negative, C the values of TN and the YH array are as of the beginning of the last C step, and H is the last step size attempted. C C Communication with ZVSTEP is done with the following variables: C C Y = An array of length N used for the dependent variable vector. C YH = An LDYH by LMAX array containing the dependent variables C and their approximate scaled derivatives, where C LMAX = MAXORD + 1. YH(i,j+1) contains the approximate C j-th derivative of y(i), scaled by H**j/factorial(j) C (j = 0,1,...,NQ). On entry for the first step, the first C two columns of YH must be set from the initial values. C LDYH = A constant integer .ge. N, the first dimension of YH. C N is the number of ODEs in the system. C YH1 = A one-dimensional array occupying the same space as YH. C EWT = An array of length N containing multiplicative weights C for local error measurements. Local errors in y(i) are C compared to 1.0/EWT(i) in various error tests. C SAVF = An array of working storage, of length N. C also used for input of YH(*,MAXORD+2) when JSTART = -1 C and MAXORD .lt. the current order NQ. C VSAV = A work array of length N passed to subroutine VNLS. C ACOR = A work array of length N, used for the accumulated C corrections. On a successful return, ACOR(i) contains C the estimated one-step local error in y(i). C WM,IWM = Complex and integer work arrays associated with matrix C operations in VNLS. C F = Dummy name for the user-supplied subroutine for f. C JAC = Dummy name for the user-supplied Jacobian subroutine. C PSOL = Dummy name for the subroutine passed to VNLS, for C possible use there. C VNLS = Dummy name for the nonlinear system solving subroutine, C whose real name is dependent on the method used. C RPAR, IPAR = User's real/complex and integer work arrays. C----------------------------------------------------------------------- C C Type declarations for labeled COMMON block ZVOD01 -------------------- C DOUBLE PRECISION ACNRM, CCMXJ, CONP, CRATE, DRC, EL, 1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HRL1, HSCAL, PRL1, 2 RC, RL1, SRUR, TAU, TQ, TN, UROUND INTEGER ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH, 1 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM, 2 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP, 3 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ, 4 NSLP, NYH C C Type declarations for labeled COMMON block ZVOD02 -------------------- C DOUBLE PRECISION HU INTEGER NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST C C Type declarations for local variables -------------------------------- C DOUBLE PRECISION ADDON, BIAS1,BIAS2,BIAS3, CNQUOT, DDN, DSM, DUP, 1 ETACF, ETAMIN, ETAMX1, ETAMX2, ETAMX3, ETAMXF, 2 ETAQ, ETAQM1, ETAQP1, FLOTL, ONE, ONEPSM, 3 R, THRESH, TOLD, ZERO INTEGER I, I1, I2, IBACK, J, JB, KFC, KFH, MXNCF, NCF, NFLAG C C Type declaration for function subroutines called --------------------- C DOUBLE PRECISION ZVNORM C----------------------------------------------------------------------- C The following Fortran-77 declaration is to cause the values of the C listed (local) variables to be saved between calls to this integrator. C----------------------------------------------------------------------- SAVE ADDON, BIAS1, BIAS2, BIAS3, 1 ETACF, ETAMIN, ETAMX1, ETAMX2, ETAMX3, ETAMXF, ETAQ, ETAQM1, 2 KFC, KFH, MXNCF, ONEPSM, THRESH, ONE, ZERO C----------------------------------------------------------------------- COMMON /ZVOD01/ ACNRM, CCMXJ, CONP, CRATE, DRC, EL(13), ETA, 1 ETAMAX, H, HMIN, HMXI, HNEW, HRL1, HSCAL, PRL1, 2 RC, RL1, SRUR, TAU(13), TQ(5), TN, UROUND, 3 ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH, 4 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM, 5 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP, 6 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ, 7 NSLP, NYH COMMON /ZVOD02/ HU, NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST C DATA KFC/-3/, KFH/-7/, MXNCF/10/ DATA ADDON /1.0D-6/, BIAS1 /6.0D0/, BIAS2 /6.0D0/, 1 BIAS3 /10.0D0/, ETACF /0.25D0/, ETAMIN /0.1D0/, 2 ETAMXF /0.2D0/, ETAMX1 /1.0D4/, ETAMX2 /10.0D0/, 3 ETAMX3 /10.0D0/, ONEPSM /1.00001D0/, THRESH /1.5D0/ DATA ONE/1.0D0/, ZERO/0.0D0/ C KFLAG = 0 TOLD = TN NCF = 0 JCUR = 0 NFLAG = 0 IF (JSTART .GT. 0) GO TO 20 IF (JSTART .EQ. -1) GO TO 100 C----------------------------------------------------------------------- C On the first call, the order is set to 1, and other variables are C initialized. ETAMAX is the maximum ratio by which H can be increased C in a single step. It is normally 10, but is larger during the C first step to compensate for the small initial H. If a failure C occurs (in corrector convergence or error test), ETAMAX is set to 1 C for the next increase. C----------------------------------------------------------------------- LMAX = MAXORD + 1 NQ = 1 L = 2 NQNYH = NQ*LDYH TAU(1) = H PRL1 = ONE RC = ZERO ETAMAX = ETAMX1 NQWAIT = 2 HSCAL = H GO TO 200 C----------------------------------------------------------------------- C Take preliminary actions on a normal continuation step (JSTART.GT.0). C If the driver changed H, then ETA must be reset and NEWH set to 1. C If a change of order was dictated on the previous step, then C it is done here and appropriate adjustments in the history are made. C On an order decrease, the history array is adjusted by ZVJUST. C On an order increase, the history array is augmented by a column. C On a change of step size H, the history array YH is rescaled. C----------------------------------------------------------------------- 20 CONTINUE IF (KUTH .EQ. 1) THEN ETA = MIN(ETA,H/HSCAL) NEWH = 1 ENDIF 50 IF (NEWH .EQ. 0) GO TO 200 IF (NEWQ .EQ. NQ) GO TO 150 IF (NEWQ .LT. NQ) THEN CALL ZVJUST (YH, LDYH, -1) NQ = NEWQ L = NQ + 1 NQWAIT = L GO TO 150 ENDIF IF (NEWQ .GT. NQ) THEN CALL ZVJUST (YH, LDYH, 1) NQ = NEWQ L = NQ + 1 NQWAIT = L GO TO 150 ENDIF C----------------------------------------------------------------------- C The following block handles preliminaries needed when JSTART = -1. C If N was reduced, zero out part of YH to avoid undefined references. C If MAXORD was reduced to a value less than the tentative order NEWQ, C then NQ is set to MAXORD, and a new H ratio ETA is chosen. C Otherwise, we take the same preliminary actions as for JSTART .gt. 0. C In any case, NQWAIT is reset to L = NQ + 1 to prevent further C changes in order for that many steps. C The new H ratio ETA is limited by the input H if KUTH = 1, C by HMIN if KUTH = 0, and by HMXI in any case. C Finally, the history array YH is rescaled. C----------------------------------------------------------------------- 100 CONTINUE LMAX = MAXORD + 1 IF (N .EQ. LDYH) GO TO 120 I1 = 1 + (NEWQ + 1)*LDYH I2 = (MAXORD + 1)*LDYH IF (I1 .GT. I2) GO TO 120 DO 110 I = I1, I2 110 YH1(I) = ZERO 120 IF (NEWQ .LE. MAXORD) GO TO 140 FLOTL = REAL(LMAX) IF (MAXORD .LT. NQ-1) THEN DDN = ZVNORM (N, SAVF, EWT)/TQ(1) ETA = ONE/((BIAS1*DDN)**(ONE/FLOTL) + ADDON) ENDIF IF (MAXORD .EQ. NQ .AND. NEWQ .EQ. NQ+1) ETA = ETAQ IF (MAXORD .EQ. NQ-1 .AND. NEWQ .EQ. NQ+1) THEN ETA = ETAQM1 CALL ZVJUST (YH, LDYH, -1) ENDIF IF (MAXORD .EQ. NQ-1 .AND. NEWQ .EQ. NQ) THEN DDN = ZVNORM (N, SAVF, EWT)/TQ(1) ETA = ONE/((BIAS1*DDN)**(ONE/FLOTL) + ADDON) CALL ZVJUST (YH, LDYH, -1) ENDIF ETA = MIN(ETA,ONE) NQ = MAXORD L = LMAX 140 IF (KUTH .EQ. 1) ETA = MIN(ETA,ABS(H/HSCAL)) IF (KUTH .EQ. 0) ETA = MAX(ETA,HMIN/ABS(HSCAL)) ETA = ETA/MAX(ONE,ABS(HSCAL)*HMXI*ETA) NEWH = 1 NQWAIT = L IF (NEWQ .LE. MAXORD) GO TO 50 C Rescale the history array for a change in H by a factor of ETA. ------ 150 R = ONE DO 180 J = 2, L R = R*ETA CALL DZSCAL (N, R, YH(1,J), 1 ) 180 CONTINUE H = HSCAL*ETA HSCAL = H RC = RC*ETA NQNYH = NQ*LDYH C----------------------------------------------------------------------- C This section computes the predicted values by effectively C multiplying the YH array by the Pascal triangle matrix. C ZVSET is called to calculate all integration coefficients. C RC is the ratio of new to old values of the coefficient H/EL(2)=h/l1. C----------------------------------------------------------------------- 200 TN = TN + H I1 = NQNYH + 1 DO 220 JB = 1, NQ I1 = I1 - LDYH DO 210 I = I1, NQNYH 210 YH1(I) = YH1(I) + YH1(I+LDYH) 220 CONTINUE CALL ZVSET RL1 = ONE/EL(2) RC = RC*(RL1/PRL1) PRL1 = RL1 C C Call the nonlinear system solver. ------------------------------------ C CALL VNLS (Y, YH, LDYH, VSAV, SAVF, EWT, ACOR, IWM, WM, 1 F, JAC, PSOL, NFLAG, RPAR, IPAR) C IF (NFLAG .EQ. 0) GO TO 450 C----------------------------------------------------------------------- C The VNLS routine failed to achieve convergence (NFLAG .NE. 0). C The YH array is retracted to its values before prediction. C The step size H is reduced and the step is retried, if possible. C Otherwise, an error exit is taken. C----------------------------------------------------------------------- NCF = NCF + 1 NCFN = NCFN + 1 ETAMAX = ONE TN = TOLD I1 = NQNYH + 1 DO 430 JB = 1, NQ I1 = I1 - LDYH DO 420 I = I1, NQNYH 420 YH1(I) = YH1(I) - YH1(I+LDYH) 430 CONTINUE IF (NFLAG .LT. -1) GO TO 680 IF (ABS(H) .LE. HMIN*ONEPSM) GO TO 670 IF (NCF .EQ. MXNCF) GO TO 670 ETA = ETACF ETA = MAX(ETA,HMIN/ABS(H)) NFLAG = -1 GO TO 150 C----------------------------------------------------------------------- C The corrector has converged (NFLAG = 0). The local error test is C made and control passes to statement 500 if it fails. C----------------------------------------------------------------------- 450 CONTINUE DSM = ACNRM/TQ(2) IF (DSM .GT. ONE) GO TO 500 C----------------------------------------------------------------------- C After a successful step, update the YH and TAU arrays and decrement C NQWAIT. If NQWAIT is then 1 and NQ .lt. MAXORD, then ACOR is saved C for use in a possible order increase on the next step. C If ETAMAX = 1 (a failure occurred this step), keep NQWAIT .ge. 2. C----------------------------------------------------------------------- KFLAG = 0 NST = NST + 1 HU = H NQU = NQ DO 470 IBACK = 1, NQ I = L - IBACK 470 TAU(I+1) = TAU(I) TAU(1) = H DO 480 J = 1, L CALL DZAXPY (N, EL(J), ACOR, 1, YH(1,J), 1 ) 480 CONTINUE NQWAIT = NQWAIT - 1 IF ((L .EQ. LMAX) .OR. (NQWAIT .NE. 1)) GO TO 490 CALL ZCOPY (N, ACOR, 1, YH(1,LMAX), 1 ) CONP = TQ(5) 490 IF (ETAMAX .NE. ONE) GO TO 560 IF (NQWAIT .LT. 2) NQWAIT = 2 NEWQ = NQ NEWH = 0 ETA = ONE HNEW = H GO TO 690 C----------------------------------------------------------------------- C The error test failed. KFLAG keeps track of multiple failures. C Restore TN and the YH array to their previous values, and prepare C to try the step again. Compute the optimum step size for the C same order. After repeated failures, H is forced to decrease C more rapidly. C----------------------------------------------------------------------- 500 KFLAG = KFLAG - 1 NETF = NETF + 1 NFLAG = -2 TN = TOLD I1 = NQNYH + 1 DO 520 JB = 1, NQ I1 = I1 - LDYH DO 510 I = I1, NQNYH 510 YH1(I) = YH1(I) - YH1(I+LDYH) 520 CONTINUE IF (ABS(H) .LE. HMIN*ONEPSM) GO TO 660 ETAMAX = ONE IF (KFLAG .LE. KFC) GO TO 530 C Compute ratio of new H to current H at the current order. ------------ FLOTL = REAL(L) ETA = ONE/((BIAS2*DSM)**(ONE/FLOTL) + ADDON) ETA = MAX(ETA,HMIN/ABS(H),ETAMIN) IF ((KFLAG .LE. -2) .AND. (ETA .GT. ETAMXF)) ETA = ETAMXF GO TO 150 C----------------------------------------------------------------------- C Control reaches this section if 3 or more consecutive failures C have occurred. It is assumed that the elements of the YH array C have accumulated errors of the wrong order. The order is reduced C by one, if possible. Then H is reduced by a factor of 0.1 and C the step is retried. After a total of 7 consecutive failures, C an exit is taken with KFLAG = -1. C----------------------------------------------------------------------- 530 IF (KFLAG .EQ. KFH) GO TO 660 IF (NQ .EQ. 1) GO TO 540 ETA = MAX(ETAMIN,HMIN/ABS(H)) CALL ZVJUST (YH, LDYH, -1) L = NQ NQ = NQ - 1 NQWAIT = L GO TO 150 540 ETA = MAX(ETAMIN,HMIN/ABS(H)) H = H*ETA HSCAL = H TAU(1) = H CALL F (N, TN, Y, SAVF, RPAR, IPAR) NFE = NFE + 1 DO 550 I = 1, N 550 YH(I,2) = H*SAVF(I) NQWAIT = 10 GO TO 200 C----------------------------------------------------------------------- C If NQWAIT = 0, an increase or decrease in order by one is considered. C Factors ETAQ, ETAQM1, ETAQP1 are computed by which H could C be multiplied at order q, q-1, or q+1, respectively. C The largest of these is determined, and the new order and C step size set accordingly. C A change of H or NQ is made only if H increases by at least a C factor of THRESH. If an order change is considered and rejected, C then NQWAIT is set to 2 (reconsider it after 2 steps). C----------------------------------------------------------------------- C Compute ratio of new H to current H at the current order. ------------ 560 FLOTL = REAL(L) ETAQ = ONE/((BIAS2*DSM)**(ONE/FLOTL) + ADDON) IF (NQWAIT .NE. 0) GO TO 600 NQWAIT = 2 ETAQM1 = ZERO IF (NQ .EQ. 1) GO TO 570 C Compute ratio of new H to current H at the current order less one. --- DDN = ZVNORM (N, YH(1,L), EWT)/TQ(1) ETAQM1 = ONE/((BIAS1*DDN)**(ONE/(FLOTL - ONE)) + ADDON) 570 ETAQP1 = ZERO IF (L .EQ. LMAX) GO TO 580 C Compute ratio of new H to current H at current order plus one. ------- CNQUOT = (TQ(5)/CONP)*(H/TAU(2))**L DO 575 I = 1, N 575 SAVF(I) = ACOR(I) - CNQUOT*YH(I,LMAX) DUP = ZVNORM (N, SAVF, EWT)/TQ(3) ETAQP1 = ONE/((BIAS3*DUP)**(ONE/(FLOTL + ONE)) + ADDON) 580 IF (ETAQ .GE. ETAQP1) GO TO 590 IF (ETAQP1 .GT. ETAQM1) GO TO 620 GO TO 610 590 IF (ETAQ .LT. ETAQM1) GO TO 610 600 ETA = ETAQ NEWQ = NQ GO TO 630 610 ETA = ETAQM1 NEWQ = NQ - 1 GO TO 630 620 ETA = ETAQP1 NEWQ = NQ + 1 CALL ZCOPY (N, ACOR, 1, YH(1,LMAX), 1) C Test tentative new H against THRESH, ETAMAX, and HMXI, then exit. ---- 630 IF (ETA .LT. THRESH .OR. ETAMAX .EQ. ONE) GO TO 640 ETA = MIN(ETA,ETAMAX) ETA = ETA/MAX(ONE,ABS(H)*HMXI*ETA) NEWH = 1 HNEW = H*ETA GO TO 690 640 NEWQ = NQ NEWH = 0 ETA = ONE HNEW = H GO TO 690 C----------------------------------------------------------------------- C All returns are made through this section. C On a successful return, ETAMAX is reset and ACOR is scaled. C----------------------------------------------------------------------- 660 KFLAG = -1 GO TO 720 670 KFLAG = -2 GO TO 720 680 IF (NFLAG .EQ. -2) KFLAG = -3 IF (NFLAG .EQ. -3) KFLAG = -4 GO TO 720 690 ETAMAX = ETAMX3 IF (NST .LE. 10) ETAMAX = ETAMX2 700 R = ONE/TQ(2) CALL DZSCAL (N, R, ACOR, 1) 720 JSTART = 1 RETURN C----------------------- End of Subroutine ZVSTEP ---------------------- END *DECK ZVSET SUBROUTINE ZVSET C----------------------------------------------------------------------- C Call sequence communication: None C COMMON block variables accessed: C /ZVOD01/ -- EL(13), H, TAU(13), TQ(5), L(= NQ + 1), C METH, NQ, NQWAIT C C Subroutines called by ZVSET: None C Function routines called by ZVSET: None C----------------------------------------------------------------------- C ZVSET is called by ZVSTEP and sets coefficients for use there. C C For each order NQ, the coefficients in EL are calculated by use of C the generating polynomial lambda(x), with coefficients EL(i). C lambda(x) = EL(1) + EL(2)*x + ... + EL(NQ+1)*(x**NQ). C For the backward differentiation formulas, C NQ-1 C lambda(x) = (1 + x/xi*(NQ)) * product (1 + x/xi(i) ) . C i = 1 C For the Adams formulas, C NQ-1 C (d/dx) lambda(x) = c * product (1 + x/xi(i) ) , C i = 1 C lambda(-1) = 0, lambda(0) = 1, C where c is a normalization constant. C In both cases, xi(i) is defined by C H*xi(i) = t sub n - t sub (n-i) C = H + TAU(1) + TAU(2) + ... TAU(i-1). C C C In addition to variables described previously, communication C with ZVSET uses the following: C TAU = A vector of length 13 containing the past NQ values C of H. C EL = A vector of length 13 in which vset stores the C coefficients for the corrector formula. C TQ = A vector of length 5 in which vset stores constants C used for the convergence test, the error test, and the C selection of H at a new order. C METH = The basic method indicator. C NQ = The current order. C L = NQ + 1, the length of the vector stored in EL, and C the number of columns of the YH array being used. C NQWAIT = A counter controlling the frequency of order changes. C An order change is about to be considered if NQWAIT = 1. C----------------------------------------------------------------------- C C Type declarations for labeled COMMON block ZVOD01 -------------------- C DOUBLE PRECISION ACNRM, CCMXJ, CONP, CRATE, DRC, EL, 1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HRL1, HSCAL, PRL1, 2 RC, RL1, SRUR, TAU, TQ, TN, UROUND INTEGER ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH, 1 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM, 2 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP, 3 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ, 4 NSLP, NYH C C Type declarations for local variables -------------------------------- C DOUBLE PRECISION AHATN0, ALPH0, CNQM1, CORTES, CSUM, ELP, EM, 1 EM0, FLOTI, FLOTL, FLOTNQ, HSUM, ONE, RXI, RXIS, S, SIX, 2 T1, T2, T3, T4, T5, T6, TWO, XI, ZERO INTEGER I, IBACK, J, JP1, NQM1, NQM2 C DIMENSION EM(13) C----------------------------------------------------------------------- C The following Fortran-77 declaration is to cause the values of the C listed (local) variables to be saved between calls to this integrator. C----------------------------------------------------------------------- SAVE CORTES, ONE, SIX, TWO, ZERO C COMMON /ZVOD01/ ACNRM, CCMXJ, CONP, CRATE, DRC, EL(13), ETA, 1 ETAMAX, H, HMIN, HMXI, HNEW, HRL1, HSCAL, PRL1, 2 RC, RL1, SRUR, TAU(13), TQ(5), TN, UROUND, 3 ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH, 4 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM, 5 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP, 6 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ, 7 NSLP, NYH C DATA CORTES /0.1D0/ DATA ONE /1.0D0/, SIX /6.0D0/, TWO /2.0D0/, ZERO /0.0D0/ C FLOTL = REAL(L) NQM1 = NQ - 1 NQM2 = NQ - 2 GO TO (100, 200), METH C C Set coefficients for Adams methods. ---------------------------------- 100 IF (NQ .NE. 1) GO TO 110 EL(1) = ONE EL(2) = ONE TQ(1) = ONE TQ(2) = TWO TQ(3) = SIX*TQ(2) TQ(5) = ONE GO TO 300 110 HSUM = H EM(1) = ONE FLOTNQ = FLOTL - ONE DO 115 I = 2, L 115 EM(I) = ZERO DO 150 J = 1, NQM1 IF ((J .NE. NQM1) .OR. (NQWAIT .NE. 1)) GO TO 130 S = ONE CSUM = ZERO DO 120 I = 1, NQM1 CSUM = CSUM + S*EM(I)/REAL(I+1) 120 S = -S TQ(1) = EM(NQM1)/(FLOTNQ*CSUM) 130 RXI = H/HSUM DO 140 IBACK = 1, J I = (J + 2) - IBACK 140 EM(I) = EM(I) + EM(I-1)*RXI HSUM = HSUM + TAU(J) 150 CONTINUE C Compute integral from -1 to 0 of polynomial and of x times it. ------- S = ONE EM0 = ZERO CSUM = ZERO DO 160 I = 1, NQ FLOTI = REAL(I) EM0 = EM0 + S*EM(I)/FLOTI CSUM = CSUM + S*EM(I)/(FLOTI+ONE) 160 S = -S C In EL, form coefficients of normalized integrated polynomial. -------- S = ONE/EM0 EL(1) = ONE DO 170 I = 1, NQ 170 EL(I+1) = S*EM(I)/REAL(I) XI = HSUM/H TQ(2) = XI*EM0/CSUM TQ(5) = XI/EL(L) IF (NQWAIT .NE. 1) GO TO 300 C For higher order control constant, multiply polynomial by 1+x/xi(q). - RXI = ONE/XI DO 180 IBACK = 1, NQ I = (L + 1) - IBACK 180 EM(I) = EM(I) + EM(I-1)*RXI C Compute integral of polynomial. -------------------------------------- S = ONE CSUM = ZERO DO 190 I = 1, L CSUM = CSUM + S*EM(I)/REAL(I+1) 190 S = -S TQ(3) = FLOTL*EM0/CSUM GO TO 300 C C Set coefficients for BDF methods. ------------------------------------ 200 DO 210 I = 3, L 210 EL(I) = ZERO EL(1) = ONE EL(2) = ONE ALPH0 = -ONE AHATN0 = -ONE HSUM = H RXI = ONE RXIS = ONE IF (NQ .EQ. 1) GO TO 240 DO 230 J = 1, NQM2 C In EL, construct coefficients of (1+x/xi(1))*...*(1+x/xi(j+1)). ------ HSUM = HSUM + TAU(J) RXI = H/HSUM JP1 = J + 1 ALPH0 = ALPH0 - ONE/REAL(JP1) DO 220 IBACK = 1, JP1 I = (J + 3) - IBACK 220 EL(I) = EL(I) + EL(I-1)*RXI 230 CONTINUE ALPH0 = ALPH0 - ONE/REAL(NQ) RXIS = -EL(2) - ALPH0 HSUM = HSUM + TAU(NQM1) RXI = H/HSUM AHATN0 = -EL(2) - RXI DO 235 IBACK = 1, NQ I = (NQ + 2) - IBACK 235 EL(I) = EL(I) + EL(I-1)*RXIS 240 T1 = ONE - AHATN0 + ALPH0 T2 = ONE + REAL(NQ)*T1 TQ(2) = ABS(ALPH0*T2/T1) TQ(5) = ABS(T2/(EL(L)*RXI/RXIS)) IF (NQWAIT .NE. 1) GO TO 300 CNQM1 = RXIS/EL(L) T3 = ALPH0 + ONE/REAL(NQ) T4 = AHATN0 + RXI ELP = T3/(ONE - T4 + T3) TQ(1) = ABS(ELP/CNQM1) HSUM = HSUM + TAU(NQ) RXI = H/HSUM T5 = ALPH0 - ONE/REAL(NQ+1) T6 = AHATN0 - RXI ELP = T2/(ONE - T6 + T5) TQ(3) = ABS(ELP*RXI*(FLOTL + ONE)*T5) 300 TQ(4) = CORTES*TQ(2) RETURN C----------------------- End of Subroutine ZVSET ----------------------- END *DECK ZVJUST SUBROUTINE ZVJUST (YH, LDYH, IORD) DOUBLE COMPLEX YH INTEGER LDYH, IORD DIMENSION YH(LDYH,*) C----------------------------------------------------------------------- C Call sequence input -- YH, LDYH, IORD C Call sequence output -- YH C COMMON block input -- NQ, METH, LMAX, HSCAL, TAU(13), N C COMMON block variables accessed: C /ZVOD01/ -- HSCAL, TAU(13), LMAX, METH, N, NQ, C C Subroutines called by ZVJUST: DZAXPY C Function routines called by ZVJUST: None C----------------------------------------------------------------------- C This subroutine adjusts the YH array on reduction of order, C and also when the order is increased for the stiff option (METH = 2). C Communication with ZVJUST uses the following: C IORD = An integer flag used when METH = 2 to indicate an order C increase (IORD = +1) or an order decrease (IORD = -1). C HSCAL = Step size H used in scaling of Nordsieck array YH. C (If IORD = +1, ZVJUST assumes that HSCAL = TAU(1).) C See References 1 and 2 for details. C----------------------------------------------------------------------- C C Type declarations for labeled COMMON block ZVOD01 -------------------- C DOUBLE PRECISION ACNRM, CCMXJ, CONP, CRATE, DRC, EL, 1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HRL1, HSCAL, PRL1, 2 RC, RL1, SRUR, TAU, TQ, TN, UROUND INTEGER ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH, 1 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM, 2 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP, 3 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ, 4 NSLP, NYH C C Type declarations for local variables -------------------------------- C DOUBLE PRECISION ALPH0, ALPH1, HSUM, ONE, PROD, T1, XI,XIOLD, ZERO INTEGER I, IBACK, J, JP1, LP1, NQM1, NQM2, NQP1 C----------------------------------------------------------------------- C The following Fortran-77 declaration is to cause the values of the C listed (local) variables to be saved between calls to this integrator. C----------------------------------------------------------------------- SAVE ONE, ZERO C COMMON /ZVOD01/ ACNRM, CCMXJ, CONP, CRATE, DRC, EL(13), ETA, 1 ETAMAX, H, HMIN, HMXI, HNEW, HRL1, HSCAL, PRL1, 2 RC, RL1, SRUR, TAU(13), TQ(5), TN, UROUND, 3 ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH, 4 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM, 5 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP, 6 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ, 7 NSLP, NYH C DATA ONE /1.0D0/, ZERO /0.0D0/ C IF ((NQ .EQ. 2) .AND. (IORD .NE. 1)) RETURN NQM1 = NQ - 1 NQM2 = NQ - 2 GO TO (100, 200), METH C----------------------------------------------------------------------- C Nonstiff option... C Check to see if the order is being increased or decreased. C----------------------------------------------------------------------- 100 CONTINUE IF (IORD .EQ. 1) GO TO 180 C Order decrease. ------------------------------------------------------ DO 110 J = 1, LMAX 110 EL(J) = ZERO EL(2) = ONE HSUM = ZERO DO 130 J = 1, NQM2 C Construct coefficients of x*(x+xi(1))*...*(x+xi(j)). ----------------- HSUM = HSUM + TAU(J) XI = HSUM/HSCAL JP1 = J + 1 DO 120 IBACK = 1, JP1 I = (J + 3) - IBACK 120 EL(I) = EL(I)*XI + EL(I-1) 130 CONTINUE C Construct coefficients of integrated polynomial. --------------------- DO 140 J = 2, NQM1 140 EL(J+1) = REAL(NQ)*EL(J)/REAL(J) C Subtract correction terms from YH array. ----------------------------- DO 170 J = 3, NQ DO 160 I = 1, N 160 YH(I,J) = YH(I,J) - YH(I,L)*EL(J) 170 CONTINUE RETURN C Order increase. ------------------------------------------------------ C Zero out next column in YH array. ------------------------------------ 180 CONTINUE LP1 = L + 1 DO 190 I = 1, N 190 YH(I,LP1) = ZERO RETURN C----------------------------------------------------------------------- C Stiff option... C Check to see if the order is being increased or decreased. C----------------------------------------------------------------------- 200 CONTINUE IF (IORD .EQ. 1) GO TO 300 C Order decrease. ------------------------------------------------------ DO 210 J = 1, LMAX 210 EL(J) = ZERO EL(3) = ONE HSUM = ZERO DO 230 J = 1,NQM2 C Construct coefficients of x*x*(x+xi(1))*...*(x+xi(j)). --------------- HSUM = HSUM + TAU(J) XI = HSUM/HSCAL JP1 = J + 1 DO 220 IBACK = 1, JP1 I = (J + 4) - IBACK 220 EL(I) = EL(I)*XI + EL(I-1) 230 CONTINUE C Subtract correction terms from YH array. ----------------------------- DO 250 J = 3,NQ DO 240 I = 1, N 240 YH(I,J) = YH(I,J) - YH(I,L)*EL(J) 250 CONTINUE RETURN C Order increase. ------------------------------------------------------ 300 DO 310 J = 1, LMAX 310 EL(J) = ZERO EL(3) = ONE ALPH0 = -ONE ALPH1 = ONE PROD = ONE XIOLD = ONE HSUM = HSCAL IF (NQ .EQ. 1) GO TO 340 DO 330 J = 1, NQM1 C Construct coefficients of x*x*(x+xi(1))*...*(x+xi(j)). --------------- JP1 = J + 1 HSUM = HSUM + TAU(JP1) XI = HSUM/HSCAL PROD = PROD*XI ALPH0 = ALPH0 - ONE/REAL(JP1) ALPH1 = ALPH1 + ONE/XI DO 320 IBACK = 1, JP1 I = (J + 4) - IBACK 320 EL(I) = EL(I)*XIOLD + EL(I-1) XIOLD = XI 330 CONTINUE 340 CONTINUE T1 = (-ALPH0 - ALPH1)/PROD C Load column L + 1 in YH array. --------------------------------------- LP1 = L + 1 DO 350 I = 1, N 350 YH(I,LP1) = T1*YH(I,LMAX) C Add correction terms to YH array. ------------------------------------ NQP1 = NQ + 1 DO 370 J = 3, NQP1 CALL DZAXPY (N, EL(J), YH(1,LP1), 1, YH(1,J), 1 ) 370 CONTINUE RETURN C----------------------- End of Subroutine ZVJUST ---------------------- END *DECK ZVNLSD SUBROUTINE ZVNLSD (Y, YH, LDYH, VSAV, SAVF, EWT, ACOR, IWM, WM, 1 F, JAC, PDUM, NFLAG, RPAR, IPAR) EXTERNAL F, JAC, PDUM DOUBLE COMPLEX Y, YH, VSAV, SAVF, ACOR, WM DOUBLE PRECISION EWT INTEGER LDYH, IWM, NFLAG, IPAR DIMENSION Y(*), YH(LDYH,*), VSAV(*), SAVF(*), EWT(*), ACOR(*), 1 IWM(*), WM(*), RPAR(*), IPAR(*) C----------------------------------------------------------------------- C Call sequence input -- Y, YH, LDYH, SAVF, EWT, ACOR, IWM, WM, C F, JAC, NFLAG, RPAR, IPAR C Call sequence output -- YH, ACOR, WM, IWM, NFLAG C COMMON block variables accessed: C /ZVOD01/ ACNRM, CRATE, DRC, H, RC, RL1, TQ(5), TN, ICF, C JCUR, METH, MITER, N, NSLP C /ZVOD02/ HU, NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST C C Subroutines called by ZVNLSD: F, DZAXPY, ZCOPY, DZSCAL, ZVJAC, ZVSOL C Function routines called by ZVNLSD: ZVNORM C----------------------------------------------------------------------- C Subroutine ZVNLSD is a nonlinear system solver, which uses functional C iteration or a chord (modified Newton) method. For the chord method C direct linear algebraic system solvers are used. Subroutine ZVNLSD C then handles the corrector phase of this integration package. C C Communication with ZVNLSD is done with the following variables. (For C more details, please see the comments in the driver subroutine.) C C Y = The dependent variable, a vector of length N, input. C YH = The Nordsieck (Taylor) array, LDYH by LMAX, input C and output. On input, it contains predicted values. C LDYH = A constant .ge. N, the first dimension of YH, input. C VSAV = Unused work array. C SAVF = A work array of length N. C EWT = An error weight vector of length N, input. C ACOR = A work array of length N, used for the accumulated C corrections to the predicted y vector. C WM,IWM = Complex and integer work arrays associated with matrix C operations in chord iteration (MITER .ne. 0). C F = Dummy name for user-supplied routine for f. C JAC = Dummy name for user-supplied Jacobian routine. C PDUM = Unused dummy subroutine name. Included for uniformity C over collection of integrators. C NFLAG = Input/output flag, with values and meanings as follows: C INPUT C 0 first call for this time step. C -1 convergence failure in previous call to ZVNLSD. C -2 error test failure in ZVSTEP. C OUTPUT C 0 successful completion of nonlinear solver. C -1 convergence failure or singular matrix. C -2 unrecoverable error in matrix preprocessing C (cannot occur here). C -3 unrecoverable error in solution (cannot occur C here). C RPAR, IPAR = User's real/complex and integer work arrays. C C IPUP = Own variable flag with values and meanings as follows: C 0, do not update the Newton matrix. C MITER .ne. 0, update Newton matrix, because it is the C initial step, order was changed, the error C test failed, or an update is indicated by C the scalar RC or step counter NST. C C For more details, see comments in driver subroutine. C----------------------------------------------------------------------- C Type declarations for labeled COMMON block ZVOD01 -------------------- C DOUBLE PRECISION ACNRM, CCMXJ, CONP, CRATE, DRC, EL, 1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HRL1, HSCAL, PRL1, 2 RC, RL1, SRUR, TAU, TQ, TN, UROUND INTEGER ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH, 1 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM, 2 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP, 3 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ, 4 NSLP, NYH C C Type declarations for labeled COMMON block ZVOD02 -------------------- C DOUBLE PRECISION HU INTEGER NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST C C Type declarations for local variables -------------------------------- C DOUBLE PRECISION CCMAX, CRDOWN, CSCALE, DCON, DEL, DELP, ONE, 1 RDIV, TWO, ZERO INTEGER I, IERPJ, IERSL, M, MAXCOR, MSBP C C Type declaration for function subroutines called --------------------- C DOUBLE PRECISION ZVNORM C----------------------------------------------------------------------- C The following Fortran-77 declaration is to cause the values of the C listed (local) variables to be saved between calls to this integrator. C----------------------------------------------------------------------- SAVE CCMAX, CRDOWN, MAXCOR, MSBP, RDIV, ONE, TWO, ZERO C COMMON /ZVOD01/ ACNRM, CCMXJ, CONP, CRATE, DRC, EL(13), ETA, 1 ETAMAX, H, HMIN, HMXI, HNEW, HRL1, HSCAL, PRL1, 2 RC, RL1, SRUR, TAU(13), TQ(5), TN, UROUND, 3 ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH, 4 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM, 5 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP, 6 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ, 7 NSLP, NYH COMMON /ZVOD02/ HU, NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST C DATA CCMAX /0.3D0/, CRDOWN /0.3D0/, MAXCOR /3/, MSBP /20/, 1 RDIV /2.0D0/ DATA ONE /1.0D0/, TWO /2.0D0/, ZERO /0.0D0/ C----------------------------------------------------------------------- C On the first step, on a change of method order, or after a C nonlinear convergence failure with NFLAG = -2, set IPUP = MITER C to force a Jacobian update when MITER .ne. 0. C----------------------------------------------------------------------- IF (JSTART .EQ. 0) NSLP = 0 IF (NFLAG .EQ. 0) ICF = 0 IF (NFLAG .EQ. -2) IPUP = MITER IF ( (JSTART .EQ. 0) .OR. (JSTART .EQ. -1) ) IPUP = MITER C If this is functional iteration, set CRATE .eq. 1 and drop to 220 IF (MITER .EQ. 0) THEN CRATE = ONE GO TO 220 ENDIF C----------------------------------------------------------------------- C RC is the ratio of new to old values of the coefficient H/EL(2)=h/l1. C When RC differs from 1 by more than CCMAX, IPUP is set to MITER C to force ZVJAC to be called, if a Jacobian is involved. C In any case, ZVJAC is called at least every MSBP steps. C----------------------------------------------------------------------- DRC = ABS(RC-ONE) IF (DRC .GT. CCMAX .OR. NST .GE. NSLP+MSBP) IPUP = MITER C----------------------------------------------------------------------- C Up to MAXCOR corrector iterations are taken. A convergence test is C made on the r.m.s. norm of each correction, weighted by the error C weight vector EWT. The sum of the corrections is accumulated in the C vector ACOR(i). The YH array is not altered in the corrector loop. C----------------------------------------------------------------------- 220 M = 0 DELP = ZERO CALL ZCOPY (N, YH(1,1), 1, Y, 1 ) CALL F (N, TN, Y, SAVF, RPAR, IPAR) NFE = NFE + 1 IF (IPUP .LE. 0) GO TO 250 C----------------------------------------------------------------------- C If indicated, the matrix P = I - h*rl1*J is reevaluated and C preprocessed before starting the corrector iteration. IPUP is set C to 0 as an indicator that this has been done. C----------------------------------------------------------------------- CALL ZVJAC (Y, YH, LDYH, EWT, ACOR, SAVF, WM, IWM, F, JAC, IERPJ, 1 RPAR, IPAR) IPUP = 0 RC = ONE DRC = ZERO CRATE = ONE NSLP = NST C If matrix is singular, take error return to force cut in step size. -- IF (IERPJ .NE. 0) GO TO 430 250 DO 260 I = 1,N 260 ACOR(I) = ZERO C This is a looping point for the corrector iteration. ----------------- 270 IF (MITER .NE. 0) GO TO 350 C----------------------------------------------------------------------- C In the case of functional iteration, update Y directly from C the result of the last function evaluation. C----------------------------------------------------------------------- DO 280 I = 1,N 280 SAVF(I) = RL1*(H*SAVF(I) - YH(I,2)) DO 290 I = 1,N 290 Y(I) = SAVF(I) - ACOR(I) DEL = ZVNORM (N, Y, EWT) DO 300 I = 1,N 300 Y(I) = YH(I,1) + SAVF(I) CALL ZCOPY (N, SAVF, 1, ACOR, 1) GO TO 400 C----------------------------------------------------------------------- C In the case of the chord method, compute the corrector error, C and solve the linear system with that as right-hand side and C P as coefficient matrix. The correction is scaled by the factor C 2/(1+RC) to account for changes in h*rl1 since the last ZVJAC call. C----------------------------------------------------------------------- 350 DO 360 I = 1,N 360 Y(I) = (RL1*H)*SAVF(I) - (RL1*YH(I,2) + ACOR(I)) CALL ZVSOL (WM, IWM, Y, IERSL) NNI = NNI + 1 IF (IERSL .GT. 0) GO TO 410 IF (METH .EQ. 2 .AND. RC .NE. ONE) THEN CSCALE = TWO/(ONE + RC) CALL DZSCAL (N, CSCALE, Y, 1) ENDIF DEL = ZVNORM (N, Y, EWT) CALL DZAXPY (N, ONE, Y, 1, ACOR, 1) DO 380 I = 1,N 380 Y(I) = YH(I,1) + ACOR(I) C----------------------------------------------------------------------- C Test for convergence. If M .gt. 0, an estimate of the convergence C rate constant is stored in CRATE, and this is used in the test. C----------------------------------------------------------------------- 400 IF (M .NE. 0) CRATE = MAX(CRDOWN*CRATE,DEL/DELP) DCON = DEL*MIN(ONE,CRATE)/TQ(4) IF (DCON .LE. ONE) GO TO 450 M = M + 1 IF (M .EQ. MAXCOR) GO TO 410 IF (M .GE. 2 .AND. DEL .GT. RDIV*DELP) GO TO 410 DELP = DEL CALL F (N, TN, Y, SAVF, RPAR, IPAR) NFE = NFE + 1 GO TO 270 C 410 IF (MITER .EQ. 0 .OR. JCUR .EQ. 1) GO TO 430 ICF = 1 IPUP = MITER GO TO 220 C 430 CONTINUE NFLAG = -1 ICF = 2 IPUP = MITER RETURN C C Return for successful step. ------------------------------------------ 450 NFLAG = 0 JCUR = 0 ICF = 0 IF (M .EQ. 0) ACNRM = DEL IF (M .GT. 0) ACNRM = ZVNORM (N, ACOR, EWT) RETURN C----------------------- End of Subroutine ZVNLSD ---------------------- END *DECK ZVJAC SUBROUTINE ZVJAC (Y, YH, LDYH, EWT, FTEM, SAVF, WM, IWM, F, JAC, 1 IERPJ, RPAR, IPAR) EXTERNAL F, JAC DOUBLE COMPLEX Y, YH, FTEM, SAVF, WM DOUBLE PRECISION EWT INTEGER LDYH, IWM, IERPJ, IPAR DIMENSION Y(*), YH(LDYH,*), EWT(*), FTEM(*), SAVF(*), 1 WM(*), IWM(*), RPAR(*), IPAR(*) C----------------------------------------------------------------------- C Call sequence input -- Y, YH, LDYH, EWT, FTEM, SAVF, WM, IWM, C F, JAC, RPAR, IPAR C Call sequence output -- WM, IWM, IERPJ C COMMON block variables accessed: C /ZVOD01/ CCMXJ, DRC, H, HRL1, RL1, SRUR, TN, UROUND, ICF, JCUR, C LOCJS, MITER, MSBJ, N, NSLJ C /ZVOD02/ NFE, NST, NJE, NLU C C Subroutines called by ZVJAC: F, JAC, ZACOPY, ZCOPY, ZGBTRF, ZGETRF, C DZSCAL C Function routines called by ZVJAC: ZVNORM C----------------------------------------------------------------------- C ZVJAC is called by ZVNLSD to compute and process the matrix C P = I - h*rl1*J , where J is an approximation to the Jacobian. C Here J is computed by the user-supplied routine JAC if C MITER = 1 or 4, or by finite differencing if MITER = 2, 3, or 5. C If MITER = 3, a diagonal approximation to J is used. C If JSV = -1, J is computed from scratch in all cases. C If JSV = 1 and MITER = 1, 2, 4, or 5, and if the saved value of J is C considered acceptable, then P is constructed from the saved J. C J is stored in wm and replaced by P. If MITER .ne. 3, P is then C subjected to LU decomposition in preparation for later solution C of linear systems with P as coefficient matrix. This is done C by ZGETRF if MITER = 1 or 2, and by ZGBTRF if MITER = 4 or 5. C C Communication with ZVJAC is done with the following variables. (For C more details, please see the comments in the driver subroutine.) C Y = Vector containing predicted values on entry. C YH = The Nordsieck array, an LDYH by LMAX array, input. C LDYH = A constant .ge. N, the first dimension of YH, input. C EWT = An error weight vector of length N. C SAVF = Array containing f evaluated at predicted y, input. C WM = Complex work space for matrices. In the output, it C contains the inverse diagonal matrix if MITER = 3 and C the LU decomposition of P if MITER is 1, 2 , 4, or 5. C Storage of the saved Jacobian starts at WM(LOCJS). C IWM = Integer work space containing pivot information, C starting at IWM(31), if MITER is 1, 2, 4, or 5. C IWM also contains band parameters ML = IWM(1) and C MU = IWM(2) if MITER is 4 or 5. C F = Dummy name for the user-supplied subroutine for f. C JAC = Dummy name for the user-supplied Jacobian subroutine. C RPAR, IPAR = User's real/complex and integer work arrays. C RL1 = 1/EL(2) (input). C IERPJ = Output error flag, = 0 if no trouble, 1 if the P C matrix is found to be singular. C JCUR = Output flag to indicate whether the Jacobian matrix C (or approximation) is now current. C JCUR = 0 means J is not current. C JCUR = 1 means J is current. C----------------------------------------------------------------------- C C Type declarations for labeled COMMON block ZVOD01 -------------------- C DOUBLE PRECISION ACNRM, CCMXJ, CONP, CRATE, DRC, EL, 1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HRL1, HSCAL, PRL1, 2 RC, RL1, SRUR, TAU, TQ, TN, UROUND INTEGER ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH, 1 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM, 2 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP, 3 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ, 4 NSLP, NYH C C Type declarations for labeled COMMON block ZVOD02 -------------------- C DOUBLE PRECISION HU INTEGER NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST C C Type declarations for local variables -------------------------------- C DOUBLE COMPLEX DI, R1, YI, YJ, YJJ DOUBLE PRECISION CON, FAC, ONE, PT1, R, R0, THOU, ZERO INTEGER I, I1, I2, IER, II, J, J1, JJ, JOK, LENP, MBA, MBAND, 1 MEB1, MEBAND, ML, ML1, MU, NP1 C C Type declaration for function subroutines called --------------------- C DOUBLE PRECISION ZVNORM C----------------------------------------------------------------------- C The following Fortran-77 declaration is to cause the values of the C listed (local) variables to be saved between calls to this subroutine. C----------------------------------------------------------------------- SAVE ONE, PT1, THOU, ZERO C----------------------------------------------------------------------- COMMON /ZVOD01/ ACNRM, CCMXJ, CONP, CRATE, DRC, EL(13), ETA, 1 ETAMAX, H, HMIN, HMXI, HNEW, HRL1, HSCAL, PRL1, 2 RC, RL1, SRUR, TAU(13), TQ(5), TN, UROUND, 3 ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH, 4 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM, 5 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP, 6 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ, 7 NSLP, NYH COMMON /ZVOD02/ HU, NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST C DATA ONE /1.0D0/, THOU /1000.0D0/, ZERO /0.0D0/, PT1 /0.1D0/ C IERPJ = 0 HRL1 = H*RL1 C See whether J should be evaluated (JOK = -1) or not (JOK = 1). ------- JOK = JSV IF (JSV .EQ. 1) THEN IF (NST .EQ. 0 .OR. NST .GT. NSLJ+MSBJ) JOK = -1 IF (ICF .EQ. 1 .AND. DRC .LT. CCMXJ) JOK = -1 IF (ICF .EQ. 2) JOK = -1 ENDIF C End of setting JOK. -------------------------------------------------- C IF (JOK .EQ. -1 .AND. MITER .EQ. 1) THEN C If JOK = -1 and MITER = 1, call JAC to evaluate Jacobian. ------------ NJE = NJE + 1 NSLJ = NST JCUR = 1 LENP = N*N DO 110 I = 1,LENP 110 WM(I) = ZERO CALL JAC (N, TN, Y, 0, 0, WM, N, RPAR, IPAR) IF (JSV .EQ. 1) CALL ZCOPY (LENP, WM, 1, WM(LOCJS), 1) ENDIF C IF (JOK .EQ. -1 .AND. MITER .EQ. 2) THEN C If MITER = 2, make N calls to F to approximate the Jacobian. --------- NJE = NJE + 1 NSLJ = NST JCUR = 1 FAC = ZVNORM (N, SAVF, EWT) R0 = THOU*ABS(H)*UROUND*REAL(N)*FAC IF (R0 .EQ. ZERO) R0 = ONE J1 = 0 DO 230 J = 1,N YJ = Y(J) R = MAX(SRUR*ABS(YJ),R0/EWT(J)) Y(J) = Y(J) + R FAC = ONE/R CALL F (N, TN, Y, FTEM, RPAR, IPAR) DO 220 I = 1,N 220 WM(I+J1) = (FTEM(I) - SAVF(I))*FAC Y(J) = YJ J1 = J1 + N 230 CONTINUE NFE = NFE + N LENP = N*N IF (JSV .EQ. 1) CALL ZCOPY (LENP, WM, 1, WM(LOCJS), 1) ENDIF C IF (JOK .EQ. 1 .AND. (MITER .EQ. 1 .OR. MITER .EQ. 2)) THEN JCUR = 0 LENP = N*N CALL ZCOPY (LENP, WM(LOCJS), 1, WM, 1) ENDIF C IF (MITER .EQ. 1 .OR. MITER .EQ. 2) THEN C Multiply Jacobian by scalar, add identity, and do LU decomposition. -- CON = -HRL1 CALL DZSCAL (LENP, CON, WM, 1) J = 1 NP1 = N + 1 DO 250 I = 1,N WM(J) = WM(J) + ONE 250 J = J + NP1 NLU = NLU + 1 c Replaced LINPACK zgefa with LAPACK zgetrf c CALL ZGEFA (WM, N, N, IWM(31), IER) CALL ZGETRF (N, N, WM, N, IWM(31), IER) IF (IER .NE. 0) IERPJ = 1 RETURN ENDIF C End of code block for MITER = 1 or 2. -------------------------------- C IF (MITER .EQ. 3) THEN C If MITER = 3, construct a diagonal approximation to J and P. --------- NJE = NJE + 1 JCUR = 1 R = RL1*PT1 DO 310 I = 1,N 310 Y(I) = Y(I) + R*(H*SAVF(I) - YH(I,2)) CALL F (N, TN, Y, WM, RPAR, IPAR) NFE = NFE + 1 DO 320 I = 1,N R1 = H*SAVF(I) - YH(I,2) DI = PT1*R1 - H*(WM(I) - SAVF(I)) WM(I) = ONE IF (ABS(R1) .LT. UROUND/EWT(I)) GO TO 320 IF (ABS(DI) .EQ. ZERO) GO TO 330 WM(I) = PT1*R1/DI 320 CONTINUE RETURN 330 IERPJ = 1 RETURN ENDIF C End of code block for MITER = 3. ------------------------------------- C C Set constants for MITER = 4 or 5. ------------------------------------ ML = IWM(1) MU = IWM(2) ML1 = ML + 1 MBAND = ML + MU + 1 MEBAND = MBAND + ML LENP = MEBAND*N C IF (JOK .EQ. -1 .AND. MITER .EQ. 4) THEN C If JOK = -1 and MITER = 4, call JAC to evaluate Jacobian. ------------ NJE = NJE + 1 NSLJ = NST JCUR = 1 DO 410 I = 1,LENP 410 WM(I) = ZERO CALL JAC (N, TN, Y, ML, MU, WM(ML1), MEBAND, RPAR, IPAR) IF (JSV .EQ. 1) 1 CALL ZACOPY (MBAND, N, WM(ML1), MEBAND, WM(LOCJS), MBAND) ENDIF C IF (JOK .EQ. -1 .AND. MITER .EQ. 5) THEN C If MITER = 5, make ML+MU+1 calls to F to approximate the Jacobian. --- NJE = NJE + 1 NSLJ = NST JCUR = 1 MBA = MIN(MBAND,N) MEB1 = MEBAND - 1 FAC = ZVNORM (N, SAVF, EWT) R0 = THOU*ABS(H)*UROUND*REAL(N)*FAC IF (R0 .EQ. ZERO) R0 = ONE DO 560 J = 1,MBA DO 530 I = J,N,MBAND YI = Y(I) R = MAX(SRUR*ABS(YI),R0/EWT(I)) 530 Y(I) = Y(I) + R CALL F (N, TN, Y, FTEM, RPAR, IPAR) DO 550 JJ = J,N,MBAND Y(JJ) = YH(JJ,1) YJJ = Y(JJ) R = MAX(SRUR*ABS(YJJ),R0/EWT(JJ)) FAC = ONE/R I1 = MAX(JJ-MU,1) I2 = MIN(JJ+ML,N) II = JJ*MEB1 - ML DO 540 I = I1,I2 540 WM(II+I) = (FTEM(I) - SAVF(I))*FAC 550 CONTINUE 560 CONTINUE NFE = NFE + MBA IF (JSV .EQ. 1) 1 CALL ZACOPY (MBAND, N, WM(ML1), MEBAND, WM(LOCJS), MBAND) ENDIF C IF (JOK .EQ. 1) THEN JCUR = 0 CALL ZACOPY (MBAND, N, WM(LOCJS), MBAND, WM(ML1), MEBAND) ENDIF C C Multiply Jacobian by scalar, add identity, and do LU decomposition. CON = -HRL1 CALL DZSCAL (LENP, CON, WM, 1 ) II = MBAND DO 580 I = 1,N WM(II) = WM(II) + ONE 580 II = II + MEBAND NLU = NLU + 1 c Replaced LINPACK zgbfa with LAPACK zgbtrf c CALL ZGBFA (WM, MEBAND, N, ML, MU, IWM(31), IER) CALL ZGBTRF (N, N, ML, MU, WM, MEBAND, IWM(31), IER) IF (IER .NE. 0) IERPJ = 1 RETURN C End of code block for MITER = 4 or 5. -------------------------------- C C----------------------- End of Subroutine ZVJAC ----------------------- END *DECK ZACOPY SUBROUTINE ZACOPY (NROW, NCOL, A, NROWA, B, NROWB) DOUBLE COMPLEX A, B INTEGER NROW, NCOL, NROWA, NROWB DIMENSION A(NROWA,NCOL), B(NROWB,NCOL) C----------------------------------------------------------------------- C Call sequence input -- NROW, NCOL, A, NROWA, NROWB C Call sequence output -- B C COMMON block variables accessed -- None C C Subroutines called by ZACOPY: ZCOPY C Function routines called by ZACOPY: None C----------------------------------------------------------------------- C This routine copies one rectangular array, A, to another, B, C where A and B may have different row dimensions, NROWA and NROWB. C The data copied consists of NROW rows and NCOL columns. C----------------------------------------------------------------------- INTEGER IC C DO 20 IC = 1,NCOL CALL ZCOPY (NROW, A(1,IC), 1, B(1,IC), 1) 20 CONTINUE C RETURN C----------------------- End of Subroutine ZACOPY ---------------------- END *DECK ZVSOL SUBROUTINE ZVSOL (WM, IWM, X, IERSL) DOUBLE COMPLEX WM, X INTEGER IWM, IERSL DIMENSION WM(*), IWM(*), X(*) C----------------------------------------------------------------------- C Call sequence input -- WM, IWM, X C Call sequence output -- X, IERSL C COMMON block variables accessed: C /ZVOD01/ -- H, HRL1, RL1, MITER, N C C Subroutines called by ZVSOL: ZGETRS, ZGBTRS C Function routines called by ZVSOL: None C----------------------------------------------------------------------- C This routine manages the solution of the linear system arising from C a chord iteration. It is called if MITER .ne. 0. C If MITER is 1 or 2, it calls ZGETRS to accomplish this. C If MITER = 3 it updates the coefficient H*RL1 in the diagonal C matrix, and then computes the solution. C If MITER is 4 or 5, it calls ZGBTRS. C Communication with ZVSOL uses the following variables: C WM = Real work space containing the inverse diagonal matrix if C MITER = 3 and the LU decomposition of the matrix otherwise. C IWM = Integer work space containing pivot information, starting at C IWM(31), if MITER is 1, 2, 4, or 5. IWM also contains band C parameters ML = IWM(1) and MU = IWM(2) if MITER is 4 or 5. C X = The right-hand side vector on input, and the solution vector C on output, of length N. C IERSL = Output flag. IERSL = 0 if no trouble occurred. C IERSL = 1 if a singular matrix arose with MITER = 3. C----------------------------------------------------------------------- C C Type declarations for labeled COMMON block ZVOD01 -------------------- C DOUBLE PRECISION ACNRM, CCMXJ, CONP, CRATE, DRC, EL, 1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HRL1, HSCAL, PRL1, 2 RC, RL1, SRUR, TAU, TQ, TN, UROUND INTEGER ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH, 1 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM, 2 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP, 3 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ, 4 NSLP, NYH C C Type declarations for local variables -------------------------------- C DOUBLE COMPLEX DI DOUBLE PRECISION ONE, PHRL1, R, ZERO INTEGER I, MEBAND, ML, MU C----------------------------------------------------------------------- C The following Fortran-77 declaration is to cause the values of the C listed (local) variables to be saved between calls to this integrator. C----------------------------------------------------------------------- SAVE ONE, ZERO C COMMON /ZVOD01/ ACNRM, CCMXJ, CONP, CRATE, DRC, EL(13), ETA, 1 ETAMAX, H, HMIN, HMXI, HNEW, HRL1, HSCAL, PRL1, 2 RC, RL1, SRUR, TAU(13), TQ(5), TN, UROUND, 3 ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH, 4 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM, 5 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP, 6 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ, 7 NSLP, NYH C DATA ONE /1.0D0/, ZERO /0.0D0/ C IERSL = 0 GO TO (100, 100, 300, 400, 400), MITER c Replaced LINPACK zgesl with LAPACK zgetrs c 100 CALL ZGESL (WM, N, N, IWM(31), X, 0) 100 CALL ZGETRS ('N', N, 1, WM, N, IWM(31), X, N, IER) RETURN C 300 PHRL1 = HRL1 HRL1 = H*RL1 IF (HRL1 .EQ. PHRL1) GO TO 330 R = HRL1/PHRL1 DO 320 I = 1,N DI = ONE - R*(ONE - ONE/WM(I)) IF (ABS(DI) .EQ. ZERO) GO TO 390 320 WM(I) = ONE/DI C 330 DO 340 I = 1,N 340 X(I) = WM(I)*X(I) RETURN 390 IERSL = 1 RETURN C 400 ML = IWM(1) MU = IWM(2) MEBAND = 2*ML + MU + 1 c Replaced LINPACK zgbsl with LAPACK zgbtrs c CALL ZGBSL (WM, MEBAND, N, ML, MU, IWM(31), X, 0) CALL ZGBTRS ('N', N, ML, MU, 1, WM, MEBAND, IWM(31), X, N, IER) RETURN C----------------------- End of Subroutine ZVSOL ----------------------- END *DECK ZVSRCO SUBROUTINE ZVSRCO (RSAV, ISAV, JOB) DOUBLE PRECISION RSAV INTEGER ISAV, JOB DIMENSION RSAV(*), ISAV(*) C----------------------------------------------------------------------- C Call sequence input -- RSAV, ISAV, JOB C Call sequence output -- RSAV, ISAV C COMMON block variables accessed -- All of /ZVOD01/ and /ZVOD02/ C C Subroutines/functions called by ZVSRCO: None C----------------------------------------------------------------------- C This routine saves or restores (depending on JOB) the contents of the C COMMON blocks ZVOD01 and ZVOD02, which are used internally by ZVODE. C C RSAV = real array of length 51 or more. C ISAV = integer array of length 41 or more. C JOB = flag indicating to save or restore the COMMON blocks: C JOB = 1 if COMMON is to be saved (written to RSAV/ISAV). C JOB = 2 if COMMON is to be restored (read from RSAV/ISAV). C A call with JOB = 2 presumes a prior call with JOB = 1. C----------------------------------------------------------------------- DOUBLE PRECISION RVOD1, RVOD2 INTEGER IVOD1, IVOD2 INTEGER I, LENIV1, LENIV2, LENRV1, LENRV2 C----------------------------------------------------------------------- C The following Fortran-77 declaration is to cause the values of the C listed (local) variables to be saved between calls to this integrator. C----------------------------------------------------------------------- SAVE LENRV1, LENIV1, LENRV2, LENIV2 C COMMON /ZVOD01/ RVOD1(50), IVOD1(33) COMMON /ZVOD02/ RVOD2(1), IVOD2(8) DATA LENRV1/50/, LENIV1/33/, LENRV2/1/, LENIV2/8/ C IF (JOB .EQ. 2) GO TO 100 DO 10 I = 1,LENRV1 10 RSAV(I) = RVOD1(I) DO 15 I = 1,LENRV2 15 RSAV(LENRV1+I) = RVOD2(I) C DO 20 I = 1,LENIV1 20 ISAV(I) = IVOD1(I) DO 25 I = 1,LENIV2 25 ISAV(LENIV1+I) = IVOD2(I) C RETURN C 100 CONTINUE DO 110 I = 1,LENRV1 110 RVOD1(I) = RSAV(I) DO 115 I = 1,LENRV2 115 RVOD2(I) = RSAV(LENRV1+I) C DO 120 I = 1,LENIV1 120 IVOD1(I) = ISAV(I) DO 125 I = 1,LENIV2 125 IVOD2(I) = ISAV(LENIV1+I) C RETURN C----------------------- End of Subroutine ZVSRCO ---------------------- END *DECK ZEWSET SUBROUTINE ZEWSET (N, ITOL, RTOL, ATOL, YCUR, EWT) C***BEGIN PROLOGUE ZEWSET C***SUBSIDIARY C***PURPOSE Set error weight vector. C***TYPE DOUBLE PRECISION (SEWSET-S, DEWSET-D, ZEWSET-Z) C***AUTHOR Hindmarsh, Alan C., (LLNL) C***DESCRIPTION C C This subroutine sets the error weight vector EWT according to C EWT(i) = RTOL(i)*ABS(YCUR(i)) + ATOL(i), i = 1,...,N, C with the subscript on RTOL and/or ATOL possibly replaced by 1 above, C depending on the value of ITOL. C C***SEE ALSO DLSODE C***ROUTINES CALLED (NONE) C***REVISION HISTORY (YYMMDD) C 060502 DATE WRITTEN, modified from DEWSET of 930809. C***END PROLOGUE ZEWSET DOUBLE COMPLEX YCUR DOUBLE PRECISION RTOL, ATOL, EWT INTEGER N, ITOL INTEGER I DIMENSION RTOL(*), ATOL(*), YCUR(N), EWT(N) C C***FIRST EXECUTABLE STATEMENT ZEWSET GO TO (10, 20, 30, 40), ITOL 10 CONTINUE DO 15 I = 1,N 15 EWT(I) = RTOL(1)*ABS(YCUR(I)) + ATOL(1) RETURN 20 CONTINUE DO 25 I = 1,N 25 EWT(I) = RTOL(1)*ABS(YCUR(I)) + ATOL(I) RETURN 30 CONTINUE DO 35 I = 1,N 35 EWT(I) = RTOL(I)*ABS(YCUR(I)) + ATOL(1) RETURN 40 CONTINUE DO 45 I = 1,N 45 EWT(I) = RTOL(I)*ABS(YCUR(I)) + ATOL(I) RETURN C----------------------- END OF SUBROUTINE ZEWSET ---------------------- END *DECK ZVNORM DOUBLE PRECISION FUNCTION ZVNORM (N, V, W) C***BEGIN PROLOGUE ZVNORM C***SUBSIDIARY C***PURPOSE Weighted root-mean-square vector norm. C***TYPE DOUBLE COMPLEX (SVNORM-S, DVNORM-D, ZVNORM-Z) C***AUTHOR Hindmarsh, Alan C., (LLNL) C***DESCRIPTION C C This function routine computes the weighted root-mean-square norm C of the vector of length N contained in the double complex array V, C with weights contained in the array W of length N: C ZVNORM = SQRT( (1/N) * SUM( abs(V(i))**2 * W(i)**2 ) C The squared absolute value abs(v)**2 is computed by ZABSSQ. C C***SEE ALSO DLSODE C***ROUTINES CALLED ZABSSQ C***REVISION HISTORY (YYMMDD) C 060502 DATE WRITTEN, modified from DVNORM of 930809. C***END PROLOGUE ZVNORM DOUBLE COMPLEX V DOUBLE PRECISION W, SUM, ZABSSQ INTEGER N, I DIMENSION V(N), W(N) C C***FIRST EXECUTABLE STATEMENT ZVNORM SUM = 0.0D0 DO 10 I = 1,N 10 SUM = SUM + ZABSSQ(V(I)) * W(I)**2 ZVNORM = SQRT(SUM/N) RETURN C----------------------- END OF FUNCTION ZVNORM ------------------------ END *DECK ZABSSQ DOUBLE PRECISION FUNCTION ZABSSQ(Z) C***BEGIN PROLOGUE ZABSSQ C***SUBSIDIARY C***PURPOSE Squared absolute value of a double complex number. C***TYPE DOUBLE PRECISION (ZABSSQ-Z) C***AUTHOR Hindmarsh, Alan C., (LLNL) C***DESCRIPTION C C This function routine computes the square of the absolute value of C a double precision complex number Z, C ZABSSQ = DREAL(Z)**2 * DIMAG(Z)**2 C***REVISION HISTORY (YYMMDD) C 060502 DATE WRITTEN. C***END PROLOGUE ZABSSQ DOUBLE COMPLEX Z ZABSSQ = DREAL(Z)**2 + DIMAG(Z)**2 RETURN C----------------------- END OF FUNCTION ZABSSQ ------------------------ END *DECK DZSCAL SUBROUTINE DZSCAL(N, DA, ZX, INCX) C***BEGIN PROLOGUE DZSCAL C***SUBSIDIARY C***PURPOSE Scale a double complex vector by a double prec. constant. C***TYPE DOUBLE PRECISION (DZSCAL-Z) C***AUTHOR Hindmarsh, Alan C., (LLNL) C***DESCRIPTION C Scales a double complex vector by a double precision constant. C Minor modification of BLAS routine ZSCAL. C***REVISION HISTORY (YYMMDD) C 060530 DATE WRITTEN. C***END PROLOGUE DZSCAL DOUBLE COMPLEX ZX(*) DOUBLE PRECISION DA INTEGER I,INCX,IX,N C IF( N.LE.0 .OR. INCX.LE.0 )RETURN IF(INCX.EQ.1)GO TO 20 C Code for increment not equal to 1 IX = 1 DO 10 I = 1,N ZX(IX) = DA*ZX(IX) IX = IX + INCX 10 CONTINUE RETURN C Code for increment equal to 1 20 DO 30 I = 1,N ZX(I) = DA*ZX(I) 30 CONTINUE RETURN END *DECK DZAXPY SUBROUTINE DZAXPY(N, DA, ZX, INCX, ZY, INCY) C***BEGIN PROLOGUE DZAXPY C***PURPOSE Real constant times a complex vector plus a complex vector. C***TYPE DOUBLE PRECISION (DZAXPY-Z) C***AUTHOR Hindmarsh, Alan C., (LLNL) C***DESCRIPTION C Add a D.P. real constant times a complex vector to a complex vector. C Minor modification of BLAS routine ZAXPY. C***REVISION HISTORY (YYMMDD) C 060530 DATE WRITTEN. C***END PROLOGUE DZAXPY DOUBLE COMPLEX ZX(*),ZY(*) DOUBLE PRECISION DA INTEGER I,INCX,INCY,IX,IY,N IF(N.LE.0)RETURN IF (ABS(DA) .EQ. 0.0D0) RETURN IF (INCX.EQ.1.AND.INCY.EQ.1)GO TO 20 C Code for unequal increments or equal increments not equal to 1 IX = 1 IY = 1 IF(INCX.LT.0)IX = (-N+1)*INCX + 1 IF(INCY.LT.0)IY = (-N+1)*INCY + 1 DO 10 I = 1,N ZY(IY) = ZY(IY) + DA*ZX(IX) IX = IX + INCX IY = IY + INCY 10 CONTINUE RETURN C Code for both increments equal to 1 20 DO 30 I = 1,N ZY(I) = ZY(I) + DA*ZX(I) 30 CONTINUE RETURN END *DECK DUMACH DOUBLE PRECISION FUNCTION DUMACH () C***BEGIN PROLOGUE DUMACH C***PURPOSE Compute the unit roundoff of the machine. C***CATEGORY R1 C***TYPE DOUBLE PRECISION (RUMACH-S, DUMACH-D) C***KEYWORDS MACHINE CONSTANTS C***AUTHOR Hindmarsh, Alan C., (LLNL) C***DESCRIPTION C *Usage: C DOUBLE PRECISION A, DUMACH C A = DUMACH() C C *Function Return Values: C A : the unit roundoff of the machine. C C *Description: C The unit roundoff is defined as the smallest positive machine C number u such that 1.0 + u .ne. 1.0. This is computed by DUMACH C in a machine-independent manner. C C***REFERENCES (NONE) C***ROUTINES CALLED DUMSUM C***REVISION HISTORY (YYYYMMDD) C 19930216 DATE WRITTEN C 19930818 Added SLATEC-format prologue. (FNF) C 20030707 Added DUMSUM to force normal storage of COMP. (ACH) C***END PROLOGUE DUMACH C DOUBLE PRECISION U, COMP C***FIRST EXECUTABLE STATEMENT DUMACH U = 1.0D0 10 U = U*0.5D0 CALL DUMSUM(1.0D0, U, COMP) IF (COMP .NE. 1.0D0) GO TO 10 DUMACH = U*2.0D0 RETURN C----------------------- End of Function DUMACH ------------------------ END SUBROUTINE DUMSUM(A,B,C) C Routine to force normal storing of A + B, for DUMACH. DOUBLE PRECISION A, B, C C = A + B RETURN END
bsd-3-clause
lesserwhirls/scipy-cwt
scipy/special/cdflib/cdfchi.f
109
6534
SUBROUTINE cdfchi(which,p,q,x,df,status,bound) C********************************************************************** C C SUBROUTINE CDFCHI( WHICH, P, Q, X, DF, STATUS, BOUND ) C Cumulative Distribution Function C CHI-Square distribution C C C Function C C C Calculates any one parameter of the chi-square C distribution given values for the others. C C C Arguments C C C WHICH --> Integer indicating which of the next three argument C values is to be calculated from the others. C Legal range: 1..3 C iwhich = 1 : Calculate P and Q from X and DF C iwhich = 2 : Calculate X from P,Q and DF C iwhich = 3 : Calculate DF from P,Q and X C INTEGER WHICH C C P <--> The integral from 0 to X of the chi-square C distribution. C Input range: [0, 1]. C DOUBLE PRECISION P C C Q <--> 1-P. C Input range: (0, 1]. C P + Q = 1.0. C DOUBLE PRECISION Q C C X <--> Upper limit of integration of the non-central C chi-square distribution. C Input range: [0, +infinity). C Search range: [0,1E100] C DOUBLE PRECISION X C C DF <--> Degrees of freedom of the C chi-square distribution. C Input range: (0, +infinity). C Search range: [ 1E-100, 1E100] C DOUBLE PRECISION DF C C STATUS <-- 0 if calculation completed correctly C -I if input parameter number I is out of range C 1 if answer appears to be lower than lowest C search bound C 2 if answer appears to be higher than greatest C search bound C 3 if P + Q .ne. 1 C 10 indicates error returned from cumgam. See C references in cdfgam C INTEGER STATUS C C BOUND <-- Undefined if STATUS is 0 C C Bound exceeded by parameter number I if STATUS C is negative. C C Lower search bound if STATUS is 1. C C Upper search bound if STATUS is 2. C C C Method C C C Formula 26.4.19 of Abramowitz and Stegun, Handbook of C Mathematical Functions (1966) is used to reduce the chisqure C distribution to the incomplete distribution. C C Computation of other parameters involve a seach for a value that C produces the desired value of P. The search relies on the C monotinicity of P with the other parameter. C C********************************************************************** C .. Parameters .. DOUBLE PRECISION tol PARAMETER (tol=1.0D-8) DOUBLE PRECISION atol PARAMETER (atol=1.0D-50) DOUBLE PRECISION zero,inf PARAMETER (zero=1.0D-100,inf=1.0D100) C .. C .. Scalar Arguments .. DOUBLE PRECISION bound,df,p,q,x INTEGER status,which C .. C .. Local Scalars .. DOUBLE PRECISION ccum,cum,fx,porq,pq LOGICAL qhi,qleft,qporq C .. C .. External Functions .. DOUBLE PRECISION spmpar EXTERNAL spmpar C .. C .. External Subroutines .. EXTERNAL cumchi,dinvr,dstinv C .. C .. Intrinsic Functions .. INTRINSIC abs C .. IF (.NOT. ((which.LT.1).OR. (which.GT.3))) GO TO 30 IF (.NOT. (which.LT.1)) GO TO 10 bound = 1.0D0 GO TO 20 10 bound = 3.0D0 20 status = -1 RETURN 30 IF (which.EQ.1) GO TO 70 IF (.NOT. ((p.LT.0.0D0).OR. (p.GT.1.0D0))) GO TO 60 IF (.NOT. (p.LT.0.0D0)) GO TO 40 bound = 0.0D0 GO TO 50 40 bound = 1.0D0 50 status = -2 RETURN 60 CONTINUE 70 IF (which.EQ.1) GO TO 110 IF (.NOT. ((q.LE.0.0D0).OR. (q.GT.1.0D0))) GO TO 100 IF (.NOT. (q.LE.0.0D0)) GO TO 80 bound = 0.0D0 GO TO 90 80 bound = 1.0D0 90 status = -3 RETURN 100 CONTINUE 110 IF (which.EQ.2) GO TO 130 IF (.NOT. (x.LT.0.0D0)) GO TO 120 bound = 0.0D0 status = -4 RETURN 120 CONTINUE 130 IF (which.EQ.3) GO TO 150 IF (.NOT. (df.LE.0.0D0)) GO TO 140 bound = 0.0D0 status = -5 RETURN 140 CONTINUE 150 IF (which.EQ.1) GO TO 190 pq = p + q IF (.NOT. (abs(((pq)-0.5D0)-0.5D0).GT. + (3.0D0*spmpar(1)))) GO TO 180 IF (.NOT. (pq.LT.0.0D0)) GO TO 160 bound = 0.0D0 GO TO 170 160 bound = 1.0D0 170 status = 3 RETURN 180 CONTINUE 190 IF (which.EQ.1) GO TO 220 qporq = p .LE. q IF (.NOT. (qporq)) GO TO 200 porq = p GO TO 210 200 porq = q 210 CONTINUE 220 IF ((1).EQ. (which)) THEN status = 0 CALL cumchi(x,df,p,q) IF (porq.GT.1.5D0) THEN status = 10 RETURN END IF ELSE IF ((2).EQ. (which)) THEN x = 5.0D0 CALL dstinv(0.0D0,inf,0.5D0,0.5D0,5.0D0,atol,tol) status = 0 CALL dinvr(status,x,fx,qleft,qhi) 230 IF (.NOT. (status.EQ.1)) GO TO 270 CALL cumchi(x,df,cum,ccum) IF (.NOT. (qporq)) GO TO 240 fx = cum - p GO TO 250 240 fx = ccum - q 250 IF (.NOT. ((fx+porq).GT.1.5D0)) GO TO 260 status = 10 RETURN 260 CALL dinvr(status,x,fx,qleft,qhi) GO TO 230 270 IF (.NOT. (status.EQ.-1)) GO TO 300 IF (.NOT. (qleft)) GO TO 280 status = 1 bound = 0.0D0 GO TO 290 280 status = 2 bound = inf 290 CONTINUE 300 CONTINUE ELSE IF ((3).EQ. (which)) THEN df = 5.0D0 CALL dstinv(zero,inf,0.5D0,0.5D0,5.0D0,atol,tol) status = 0 CALL dinvr(status,df,fx,qleft,qhi) 310 IF (.NOT. (status.EQ.1)) GO TO 350 CALL cumchi(x,df,cum,ccum) IF (.NOT. (qporq)) GO TO 320 fx = cum - p GO TO 330 320 fx = ccum - q 330 IF (.NOT. ((fx+porq).GT.1.5D0)) GO TO 340 status = 10 RETURN 340 CALL dinvr(status,df,fx,qleft,qhi) GO TO 310 350 IF (.NOT. (status.EQ.-1)) GO TO 380 IF (.NOT. (qleft)) GO TO 360 status = 1 bound = zero GO TO 370 360 status = 2 bound = inf 370 CONTINUE 380 END IF RETURN END
bsd-3-clause
wilsonCernWq/Simula
fortran/utils/FoX-4.1.2/common/m_common_charset.F90
3
15016
module m_common_charset #ifndef DUMMYLIB ! Written to use ASCII charset only. Full UNICODE would ! take much more work and need a proper unicode library. use fox_m_fsys_string, only: toLower implicit none private !!$ character(len=1), parameter :: ASCII = & !!$achar(0)//achar(1)//achar(2)//achar(3)//achar(4)//achar(5)//achar(6)//achar(7)//achar(8)//achar(9)//& !!$achar(10)//achar(11)//achar(12)//achar(13)//achar(14)//achar(15)//achar(16)//achar(17)//achar(18)//achar(19)//& !!$achar(20)//achar(21)//achar(22)//achar(23)//achar(24)//achar(25)//achar(26)//achar(27)//achar(28)//achar(29)//& !!$achar(30)//achar(31)//achar(32)//achar(33)//achar(34)//achar(35)//achar(36)//achar(37)//achar(38)//achar(39)//& !!$achar(40)//achar(41)//achar(42)//achar(43)//achar(44)//achar(45)//achar(46)//achar(47)//achar(48)//achar(49)//& !!$achar(50)//achar(51)//achar(52)//achar(53)//achar(54)//achar(55)//achar(56)//achar(57)//achar(58)//achar(59)//& !!$achar(60)//achar(61)//achar(62)//achar(63)//achar(64)//achar(65)//achar(66)//achar(67)//achar(68)//achar(69)//& !!$achar(70)//achar(71)//achar(72)//achar(73)//achar(74)//achar(75)//achar(76)//achar(77)//achar(78)//achar(79)//& !!$achar(80)//achar(81)//achar(82)//achar(83)//achar(84)//achar(85)//achar(86)//achar(87)//achar(88)//achar(89)//& !!$achar(90)//achar(91)//achar(92)//achar(93)//achar(94)//achar(95)//achar(96)//achar(97)//achar(98)//achar(99)//& !!$achar(100)//achar(101)//achar(102)//achar(103)//achar(104)//achar(105)//achar(106)//achar(107)//achar(108)//achar(109)//& !!$achar(110)//achar(111)//achar(112)//achar(113)//achar(114)//achar(115)//achar(116)//achar(117)//achar(118)//achar(119)//& !!$achar(120)//achar(121)//achar(122)//achar(123)//achar(124)//achar(125)//achar(126)//achar(127) character(len=1), parameter :: SPACE = achar(32) character(len=1), parameter :: NEWLINE = achar(10) character(len=1), parameter :: CARRIAGE_RETURN = achar(13) character(len=1), parameter :: TAB = achar(9) character(len=*), parameter :: whitespace = SPACE//NEWLINE//CARRIAGE_RETURN//TAB character(len=*), parameter :: lowerCase = "abcdefghijklmnopqrstuvwxyz" character(len=*), parameter :: upperCase = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" character(len=*), parameter :: digits = "0123456789" character(len=*), parameter :: hexdigits = "0123456789abcdefABCDEF" character(len=*), parameter :: InitialNCNameChars = lowerCase//upperCase//"_" character(len=*), parameter :: NCNameChars = InitialNCNameChars//digits//".-" character(len=*), parameter :: InitialNameChars = InitialNCNameChars//":" character(len=*), parameter :: NameChars = NCNameChars//":" character(len=*), parameter :: PubIdChars = NameChars//whitespace//"'()+,/=?;!*#@$%" character(len=*), parameter :: validchars = & whitespace//"!""#$%&'()*+,-./"//digits// & ":;<=>?@"//upperCase//"[\]^_`"//lowerCase//"{|}~" ! these are all the standard ASCII printable characters: whitespace + (33-126) ! which are the only characters we can guarantee to know how to handle properly. integer, parameter :: XML1_0 = 10 ! NB 0x7F was legal in XML-1.0, but illegal in XML-1.1 integer, parameter :: XML1_1 = 11 character(len=*), parameter :: XML1_0_ILLEGALCHARS = achar(0) character(len=*), parameter :: XML1_1_ILLEGALCHARS = NameChars character(len=*), parameter :: XML1_0_INITIALNAMECHARS = InitialNameChars character(len=*), parameter :: XML1_1_INITIALNAMECHARS = InitialNameChars character(len=*), parameter :: XML1_0_NAMECHARS = NameChars character(len=*), parameter :: XML1_1_NAMECHARS = NameChars character(len=*), parameter :: XML1_0_INITIALNCNAMECHARS = InitialNCNameChars character(len=*), parameter :: XML1_1_INITIALNCNAMECHARS = InitialNCNameChars character(len=*), parameter :: XML1_0_NCNAMECHARS = NCNameChars character(len=*), parameter :: XML1_1_NCNAMECHARS = NCNameChars character(len=*), parameter :: XML_WHITESPACE = whitespace character(len=*), parameter :: XML_INITIALENCODINGCHARS = lowerCase//upperCase character(len=*), parameter :: XML_ENCODINGCHARS = lowerCase//upperCase//digits//'._-' public :: validchars public :: whitespace public :: uppercase public :: digits public :: hexdigits public :: XML1_0 public :: XML1_1 public :: XML1_0_NAMECHARS public :: XML1_1_NAMECHARS public :: XML1_0_INITIALNAMECHARS public :: XML1_1_INITIALNAMECHARS public :: XML_WHITESPACE public :: XML_INITIALENCODINGCHARS public :: XML_ENCODINGCHARS public :: isLegalChar public :: isLegalCharRef public :: isRepCharRef public :: isInitialNameChar public :: isNameChar public :: isInitialNCNameChar public :: isNCNameChar public :: isXML1_0_NameChar public :: isXML1_1_NameChar public :: checkChars public :: isUSASCII public :: allowed_encoding contains pure function isLegalChar(c, ascii_p, xml_version) result(p) character, intent(in) :: c ! really we should check the encoding here & be more intelligent ! for now we worry only about is it ascii or not. logical, intent(in) :: ascii_p integer, intent(in) :: xml_version logical :: p ! Is this character legal as a source character in the document? integer :: i i = iachar(c) if (i<0) then p = .false. return elseif (i>127) then p = .not.ascii_p return ! ie if we are ASCII, then >127 is definitely illegal. ! otherwise maybe it's ok endif select case(xml_version) case (XML1_0) p = (i==9.or.i==10.or.i==13.or.(i>31.and.i<128)) case (XML1_1) p = (i==9.or.i==10.or.i==13.or.(i>31.and.i<127)) ! NB 0x7F was legal in XML-1.0, but illegal in XML-1.1 end select end function isLegalChar pure function isLegalCharRef(i, xml_version) result(p) integer, intent(in) :: i integer, intent(in) :: xml_version logical :: p ! Is Unicode character #i legal as a character reference? if (xml_version==XML1_0) then p = (i==9).or.(i==10).or.(i==13).or.(i>31.and.i<55296).or.(i>57343.and.i<65534).or.(i>65535.and.i<1114112) elseif (xml_version==XML1_1) then p = (i>0.and.i<55296).or.(i>57343.and.i<65534).or.(i>65535.and.i<1114112) ! XML 1.1 made all control characters legal as character references. end if end function isLegalCharRef pure function isRepCharRef(i, xml_version) result(p) integer, intent(in) :: i integer, intent(in) :: xml_version logical :: p ! Is Unicode character #i legal and representable here? if (xml_version==XML1_0) then p = (i==9).or.(i==10).or.(i==13).or.(i>31.and.i<128) elseif (xml_version==XML1_1) then p = (i>0.and.i<128) ! XML 1.1 made all control characters legal as character references. end if end function isRepCharRef pure function isInitialNameChar(c, xml_version) result(p) character, intent(in) :: c integer, intent(in) :: xml_version logical :: p select case(xml_version) case (XML1_0) p = (verify(c, XML1_0_INITIALNAMECHARS)==0) case (XML1_1) p = (verify(c, XML1_1_INITIALNAMECHARS)==0) end select end function isInitialNameChar pure function isNameChar(c, xml_version) result(p) character(len=*), intent(in) :: c integer, intent(in) :: xml_version logical :: p select case(xml_version) case (XML1_0) p = (verify(c, XML1_0_NAMECHARS)==0) case (XML1_1) p = (verify(c, XML1_1_NAMECHARS)==0) end select end function isNameChar pure function isInitialNCNameChar(c, xml_version) result(p) character, intent(in) :: c integer, intent(in) :: xml_version logical :: p select case(xml_version) case (XML1_0) p = (verify(c, XML1_0_INITIALNCNAMECHARS)==0) case (XML1_1) p = (verify(c, XML1_1_INITIALNCNAMECHARS)==0) end select end function isInitialNCNameChar pure function isNCNameChar(c, xml_version) result(p) character(len=*), intent(in) :: c integer, intent(in) :: xml_version logical :: p select case(xml_version) case (XML1_0) p = (verify(c, XML1_0_NCNAMECHARS)==0) case (XML1_1) p = (verify(c, XML1_1_NCNAMECHARS)==0) end select end function isNCNameChar function isXML1_0_NameChar(c) result(p) character, intent(in) :: c logical :: p p = (verify(c, XML1_0_NAMECHARS)==0) end function isXML1_0_NameChar function isXML1_1_NameChar(c) result(p) character, intent(in) :: c logical :: p p = (verify(c, XML1_1_NAMECHARS)==0) end function isXML1_1_NameChar pure function checkChars(value, xv) result(p) character(len=*), intent(in) :: value integer, intent(in) :: xv logical :: p ! This checks if value only contains values ! legal to appear (escaped or unescaped) ! according to whichever XML version is in force. integer :: i p = .true. do i = 1, len(value) if (xv == XML1_0) then select case(iachar(value(i:i))) case (0,8) p = .false. case (11,12) p = .false. end select else if (iachar(value(i:i))==0) p =.false. endif enddo end function checkChars function isUSASCII(encoding) result(p) character(len=*), intent(in) :: encoding logical :: p character(len=len(encoding)) :: enc enc = toLower(encoding) p = (enc=="ansi_x3.4-1968" & .or. enc=="ansi_x3.4-1986" & .or. enc=="iso_646.irv:1991" & .or. enc=="ascii" & .or. enc=="iso646-us" & .or. enc=="us-ascii" & .or. enc=="us" & .or. enc=="ibm367" & .or. enc=="cp367" & .or. enc=="csascii") end function isUSASCII function allowed_encoding(encoding) result(p) character(len=*), intent(in) :: encoding logical :: p character(len=len(encoding)) :: enc logical :: utf8, usascii, iso88591, iso88592, iso88593, iso88594, & iso88595, iso88596, iso88597, iso88598, iso88599, iso885910, & iso885913, iso885914, iso885915, iso885916 enc = toLower(encoding) ! From http://www.iana.org/assignments/character-sets ! We can only reliably do US-ASCII (the below is mostly ! a list of synonyms for US-ASCII) but we also accept ! UTF-8 as a practicality. We bail out if any non-ASCII ! characters are used later on. utf8 = (enc=="utf-8") usascii = (enc=="ansi_x3.4-1968" & .or. enc=="ansi_x3.4-1986" & .or. enc=="iso_646.irv:1991" & .or. enc=="ascii" & .or. enc=="iso646-us" & .or. enc=="us-ascii" & .or. enc=="us" & .or. enc=="ibm367" & .or. enc=="cp367" & .or. enc=="csascii") ! As of FoX 4.0, we accept ISO-8859-??, also as practicality ! since we know it is identical to ASCII as far as 0x7F iso88591 = (enc =="iso_8859-1:1987" & .or. enc=="iso-ir-100" & .or. enc=="iso_8859-1" & .or. enc=="iso-8859-1" & .or. enc=="latin1" & .or. enc=="l1" & .or. enc=="ibm819" & .or. enc=="cp819" & .or. enc=="csisolatin1") iso88592 = (enc=="iso_8859-2:1987" & .or. enc=="iso-ir-101" & .or. enc=="iso_8859-2" & .or. enc=="iso-8859-2" & .or. enc=="latin2" & .or. enc=="l2" & .or. enc=="csisolatin2") iso88593 = (enc=="iso_8859-3:1988" & .or. enc=="iso-ir-109" & .or. enc=="iso_8859-3" & .or. enc=="iso-8859-3" & .or. enc=="latin3" & .or. enc=="l3" & .or. enc=="csisolatin3") iso88594 = (enc=="iso_8859-4:1988" & .or. enc=="iso-ir-110" & .or. enc=="iso_8859-4" & .or. enc=="iso-8859-4" & .or. enc=="latin4" & .or. enc=="l4" & .or. enc=="csisolatin4") iso88595 = (enc=="iso_8859-5:1988" & .or. enc=="iso-ir-144" & .or. enc=="iso_8859-5" & .or. enc=="iso-8859-5" & .or. enc=="cyrillic" & .or. enc=="csisolatincyrillic") iso88596 = (enc=="iso_8859-6:1987" & .or. enc=="iso-ir-127" & .or. enc=="iso_8859-6" & .or. enc=="iso-8859-6" & .or. enc=="ecma-114" & .or. enc=="asmo-708" & .or. enc=="arabic" & .or. enc=="csisolatinarabic") iso88597 = (enc=="iso_8859-7:1987" & .or. enc=="iso-ir-126" & .or. enc=="iso_8859-7" & .or. enc=="iso-8859-7" & .or. enc=="elot_928" & .or. enc=="ecma-118" & .or. enc=="greek" & .or. enc=="greek8" & .or. enc=="csisolatingreek") iso88598 = (enc=="iso_8859-8:1988" & .or. enc=="iso-ir-138" & .or. enc=="iso_8859-8" & .or. enc=="iso-8859-8" & .or. enc=="hebrew" & .or. enc=="csisolatinhebrew") iso88599 = (enc=="iso_8859-9:1989" & .or. enc=="iso-ir-148" & .or. enc=="iso_8859-9" & .or. enc=="iso-8859-9" & .or. enc=="latin5" & .or. enc=="l5" & .or. enc=="csisolatin5") iso885910 = (enc=="iso-8859-10" & .or. enc=="iso-ir-157" & .or. enc=="l6" & .or. enc=="iso_8859-10:1992" & .or. enc=="csisolatin6" & .or. enc=="latin6") ! ISO 6937 replaces $ sign with currency sign. ! JIS-X0201 has Yen instead of backslash, macron instead of tilde ! 16, 17, 18, 19 - Japanese encoding we can't use. ! BS 4730 replaces hash with UK pound sign, and tilde to macron ! 21, 22, 23, 24, 25, 26 - other variants of iso646, similar but not identical ! iso10646utf1 = (enc=="iso-10646-utf-1") ! FIXME check ! iso656basic1983 = (enc=="iso_646.basic:1983" & ! .or. enc=="csiso646basic1983") ! FIXME check ! INVARIANT - almost but not quite a subset of ASCII ! iso646irv = (enc=="iso_646.irv:1983" & ! .or. enc=="iso-ir-2" & ! .or. enc=="irv") ! 31, 32, 33, 34 - NATS scandinavian, different from ASCII ! 35 - another iso646 variant ! 36, 37, 38 Korean shifted/multibyte ! 39, 40 Japanese shifted/multibyte ! 41, 42, JIS (iso646inv 7 bits) ! 43 another iso646 variantt ! 44, 45 greek variants ! 46 another iso646 variant ! 47 greek ! 48 cyrillic ascii relationship unknown ! 49 JIS again ! 50 similar not identical ! 51, 52, 53 not identical ! 54 see 48 ! 55 see 47 ! 56 another iso646 variant ! 57 chinese ! ... to be continued iso885913 = (enc=="iso-8859-13") iso885914 = (enc=="iso-8859-14" & .or. enc=="iso-ir-199" & .or. enc=="iso_8859-14:1998" & .or. enc=="iso_8849-14" & .or. enc=="iso_latin8" & .or. enc=="iso-celtic" & .or. enc=="l8") iso885915 = (enc=="iso-8859-15" & .or. enc=="iso-8859-15" & .or. enc=="latin-9") iso885916 = (enc=="iso-8859-16" & .or. enc=="iso-ir226" & .or. enc=="iso_8859-16:2001" & .or. enc=="iso_8859-16" & .or. enc=="latin10" & .or. enc=="l10") p = utf8.or.usascii.or.iso88591.or.iso88592.or.iso88593 & .or.iso88594.or.iso88595.or.iso88596.or.iso88597 & .or.iso88598.or.iso88599.or.iso885910.or.iso885913 & .or.iso885914.or.iso885915.or.iso885916 end function allowed_encoding #endif end module m_common_charset
mit
yaowee/libflame
lapack-test/3.5.0/LIN/zchkqr.f
8
14003
*> \brief \b ZCHKQR * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE ZCHKQR( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL, * NRHS, THRESH, TSTERR, NMAX, A, AF, AQ, AR, AC, * B, X, XACT, TAU, WORK, RWORK, IWORK, NOUT ) * * .. Scalar Arguments .. * LOGICAL TSTERR * INTEGER NM, NMAX, NN, NNB, NOUT, NRHS * DOUBLE PRECISION THRESH * .. * .. Array Arguments .. * LOGICAL DOTYPE( * ) * INTEGER IWORK( * ), MVAL( * ), NBVAL( * ), NVAL( * ), * $ NXVAL( * ) * DOUBLE PRECISION RWORK( * ) * COMPLEX*16 A( * ), AC( * ), AF( * ), AQ( * ), AR( * ), * $ B( * ), TAU( * ), WORK( * ), X( * ), XACT( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZCHKQR tests ZGEQRF, ZUNGQR and CUNMQR. *> \endverbatim * * Arguments: * ========== * *> \param[in] DOTYPE *> \verbatim *> DOTYPE is LOGICAL array, dimension (NTYPES) *> The matrix types to be used for testing. Matrices of type j *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. *> \endverbatim *> *> \param[in] NM *> \verbatim *> NM is INTEGER *> The number of values of M contained in the vector MVAL. *> \endverbatim *> *> \param[in] MVAL *> \verbatim *> MVAL is INTEGER array, dimension (NM) *> The values of the matrix row dimension M. *> \endverbatim *> *> \param[in] NN *> \verbatim *> NN is INTEGER *> The number of values of N contained in the vector NVAL. *> \endverbatim *> *> \param[in] NVAL *> \verbatim *> NVAL is INTEGER array, dimension (NN) *> The values of the matrix column dimension N. *> \endverbatim *> *> \param[in] NNB *> \verbatim *> NNB is INTEGER *> The number of values of NB and NX contained in the *> vectors NBVAL and NXVAL. The blocking parameters are used *> in pairs (NB,NX). *> \endverbatim *> *> \param[in] NBVAL *> \verbatim *> NBVAL is INTEGER array, dimension (NNB) *> The values of the blocksize NB. *> \endverbatim *> *> \param[in] NXVAL *> \verbatim *> NXVAL is INTEGER array, dimension (NNB) *> The values of the crossover point NX. *> \endverbatim *> *> \param[in] NRHS *> \verbatim *> NRHS is INTEGER *> The number of right hand side vectors to be generated for *> each linear system. *> \endverbatim *> *> \param[in] THRESH *> \verbatim *> THRESH is DOUBLE PRECISION *> The threshold value for the test ratios. A result is *> included in the output file if RESULT >= THRESH. To have *> every test ratio printed, use THRESH = 0. *> \endverbatim *> *> \param[in] TSTERR *> \verbatim *> TSTERR is LOGICAL *> Flag that indicates whether error exits are to be tested. *> \endverbatim *> *> \param[in] NMAX *> \verbatim *> NMAX is INTEGER *> The maximum value permitted for M or N, used in dimensioning *> the work arrays. *> \endverbatim *> *> \param[out] A *> \verbatim *> A is COMPLEX*16 array, dimension (NMAX*NMAX) *> \endverbatim *> *> \param[out] AF *> \verbatim *> AF is COMPLEX*16 array, dimension (NMAX*NMAX) *> \endverbatim *> *> \param[out] AQ *> \verbatim *> AQ is COMPLEX*16 array, dimension (NMAX*NMAX) *> \endverbatim *> *> \param[out] AR *> \verbatim *> AR is COMPLEX*16 array, dimension (NMAX*NMAX) *> \endverbatim *> *> \param[out] AC *> \verbatim *> AC is COMPLEX*16 array, dimension (NMAX*NMAX) *> \endverbatim *> *> \param[out] B *> \verbatim *> B is COMPLEX*16 array, dimension (NMAX*NRHS) *> \endverbatim *> *> \param[out] X *> \verbatim *> X is COMPLEX*16 array, dimension (NMAX*NRHS) *> \endverbatim *> *> \param[out] XACT *> \verbatim *> XACT is COMPLEX*16 array, dimension (NMAX*NRHS) *> \endverbatim *> *> \param[out] TAU *> \verbatim *> TAU is COMPLEX*16 array, dimension (NMAX) *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX*16 array, dimension (NMAX*NMAX) *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is DOUBLE PRECISION array, dimension (NMAX) *> \endverbatim *> *> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (NMAX) *> \endverbatim *> *> \param[in] NOUT *> \verbatim *> NOUT is INTEGER *> The unit number for output. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup complex16_lin * * ===================================================================== SUBROUTINE ZCHKQR( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL, $ NRHS, THRESH, TSTERR, NMAX, A, AF, AQ, AR, AC, $ B, X, XACT, TAU, WORK, RWORK, IWORK, NOUT ) * * -- LAPACK test routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. LOGICAL TSTERR INTEGER NM, NMAX, NN, NNB, NOUT, NRHS DOUBLE PRECISION THRESH * .. * .. Array Arguments .. LOGICAL DOTYPE( * ) INTEGER IWORK( * ), MVAL( * ), NBVAL( * ), NVAL( * ), $ NXVAL( * ) DOUBLE PRECISION RWORK( * ) COMPLEX*16 A( * ), AC( * ), AF( * ), AQ( * ), AR( * ), $ B( * ), TAU( * ), WORK( * ), X( * ), XACT( * ) * .. * * ===================================================================== * * .. Parameters .. INTEGER NTESTS PARAMETER ( NTESTS = 9 ) INTEGER NTYPES PARAMETER ( NTYPES = 8 ) DOUBLE PRECISION ZERO PARAMETER ( ZERO = 0.0D0 ) * .. * .. Local Scalars .. CHARACTER DIST, TYPE CHARACTER*3 PATH INTEGER I, IK, IM, IMAT, IN, INB, INFO, K, KL, KU, LDA, $ LWORK, M, MINMN, MODE, N, NB, NERRS, NFAIL, NK, $ NRUN, NT, NX DOUBLE PRECISION ANORM, CNDNUM * .. * .. Local Arrays .. INTEGER ISEED( 4 ), ISEEDY( 4 ), KVAL( 4 ) DOUBLE PRECISION RESULT( NTESTS ) * .. * .. External Functions .. LOGICAL ZGENND EXTERNAL ZGENND * .. * .. External Subroutines .. EXTERNAL ALAERH, ALAHD, ALASUM, XLAENV, ZERRQR, ZGEQRS, $ ZGET02, ZLACPY, ZLARHS, ZLATB4, ZLATMS, ZQRT01, $ ZQRT01P, ZQRT02, ZQRT03 * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. Scalars in Common .. LOGICAL LERR, OK CHARACTER*32 SRNAMT INTEGER INFOT, NUNIT * .. * .. Common blocks .. COMMON / INFOC / INFOT, NUNIT, OK, LERR COMMON / SRNAMC / SRNAMT * .. * .. Data statements .. DATA ISEEDY / 1988, 1989, 1990, 1991 / * .. * .. Executable Statements .. * * Initialize constants and the random number seed. * PATH( 1: 1 ) = 'Zomplex precision' PATH( 2: 3 ) = 'QR' NRUN = 0 NFAIL = 0 NERRS = 0 DO 10 I = 1, 4 ISEED( I ) = ISEEDY( I ) 10 CONTINUE * * Test the error exits * IF( TSTERR ) $ CALL ZERRQR( PATH, NOUT ) INFOT = 0 CALL XLAENV( 2, 2 ) * LDA = NMAX LWORK = NMAX*MAX( NMAX, NRHS ) * * Do for each value of M in MVAL. * DO 70 IM = 1, NM M = MVAL( IM ) * * Do for each value of N in NVAL. * DO 60 IN = 1, NN N = NVAL( IN ) MINMN = MIN( M, N ) DO 50 IMAT = 1, NTYPES * * Do the tests only if DOTYPE( IMAT ) is true. * IF( .NOT.DOTYPE( IMAT ) ) $ GO TO 50 * * Set up parameters with ZLATB4 and generate a test matrix * with ZLATMS. * CALL ZLATB4( PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, $ CNDNUM, DIST ) * SRNAMT = 'ZLATMS' CALL ZLATMS( M, N, DIST, ISEED, TYPE, RWORK, MODE, $ CNDNUM, ANORM, KL, KU, 'No packing', A, LDA, $ WORK, INFO ) * * Check error code from ZLATMS. * IF( INFO.NE.0 ) THEN CALL ALAERH( PATH, 'ZLATMS', INFO, 0, ' ', M, N, -1, $ -1, -1, IMAT, NFAIL, NERRS, NOUT ) GO TO 50 END IF * * Set some values for K: the first value must be MINMN, * corresponding to the call of ZQRT01; other values are * used in the calls of ZQRT02, and must not exceed MINMN. * KVAL( 1 ) = MINMN KVAL( 2 ) = 0 KVAL( 3 ) = 1 KVAL( 4 ) = MINMN / 2 IF( MINMN.EQ.0 ) THEN NK = 1 ELSE IF( MINMN.EQ.1 ) THEN NK = 2 ELSE IF( MINMN.LE.3 ) THEN NK = 3 ELSE NK = 4 END IF * * Do for each value of K in KVAL * DO 40 IK = 1, NK K = KVAL( IK ) * * Do for each pair of values (NB,NX) in NBVAL and NXVAL. * DO 30 INB = 1, NNB NB = NBVAL( INB ) CALL XLAENV( 1, NB ) NX = NXVAL( INB ) CALL XLAENV( 3, NX ) DO I = 1, NTESTS RESULT( I ) = ZERO END DO NT = 2 IF( IK.EQ.1 ) THEN * * Test ZGEQRF * CALL ZQRT01( M, N, A, AF, AQ, AR, LDA, TAU, $ WORK, LWORK, RWORK, RESULT( 1 ) ) * * Test ZGEQRFP * CALL ZQRT01P( M, N, A, AF, AQ, AR, LDA, TAU, $ WORK, LWORK, RWORK, RESULT( 8 ) ) #ifndef __FLAME__ IF( .NOT. ZGENND( M, N, AF, LDA ) ) $ RESULT( 9 ) = 2*THRESH #endif NT = NT + 1 ELSE IF( M.GE.N ) THEN * * Test ZUNGQR, using factorization * returned by ZQRT01 * CALL ZQRT02( M, N, K, A, AF, AQ, AR, LDA, TAU, $ WORK, LWORK, RWORK, RESULT( 1 ) ) END IF IF( M.GE.K ) THEN * * Test ZUNMQR, using factorization returned * by ZQRT01 * CALL ZQRT03( M, N, K, AF, AC, AR, AQ, LDA, TAU, $ WORK, LWORK, RWORK, RESULT( 3 ) ) NT = NT + 4 * * If M>=N and K=N, call ZGEQRS to solve a system * with NRHS right hand sides and compute the * residual. * IF( K.EQ.N .AND. INB.EQ.1 ) THEN * * Generate a solution and set the right * hand side. * SRNAMT = 'ZLARHS' CALL ZLARHS( PATH, 'New', 'Full', $ 'No transpose', M, N, 0, 0, $ NRHS, A, LDA, XACT, LDA, B, LDA, $ ISEED, INFO ) * CALL ZLACPY( 'Full', M, NRHS, B, LDA, X, $ LDA ) SRNAMT = 'ZGEQRS' CALL ZGEQRS( M, N, NRHS, AF, LDA, TAU, X, $ LDA, WORK, LWORK, INFO ) * * Check error code from ZGEQRS. * IF( INFO.NE.0 ) $ CALL ALAERH( PATH, 'ZGEQRS', INFO, 0, ' ', $ M, N, NRHS, -1, NB, IMAT, $ NFAIL, NERRS, NOUT ) * CALL ZGET02( 'No transpose', M, N, NRHS, A, $ LDA, X, LDA, B, LDA, RWORK, $ RESULT( 7 ) ) NT = NT + 1 END IF END IF * * Print information about the tests that did not * pass the threshold. * DO 20 I = 1, NTESTS IF( RESULT( I ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) WRITE( NOUT, FMT = 9999 )M, N, K, NB, NX, $ IMAT, I, RESULT( I ) NFAIL = NFAIL + 1 END IF 20 CONTINUE NRUN = NRUN + NT 30 CONTINUE 40 CONTINUE 50 CONTINUE 60 CONTINUE 70 CONTINUE * * Print a summary of the results. * CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS ) * 9999 FORMAT( ' M=', I5, ', N=', I5, ', K=', I5, ', NB=', I4, ', NX=', $ I5, ', type ', I2, ', test(', I2, ')=', G12.5 ) RETURN * * End of ZCHKQR * END
bsd-3-clause
ericmckean/nacl-llvm-branches.llvm-gcc-trunk
gcc/testsuite/gfortran.dg/continuation_5.f
14
1030
! { dg-do compile } ! { dg-options -pedantic } ! PR 19262 Test limit on line continuations. Test case derived form case in PR ! by Steve Kargl. Submitted by Jerry DeLisle <jvdelisle@gcc.gnu.org> print *, c "1" // ! 1 c "2" // ! 2 c "3" // ! 3 c "4" // ! 4 c "5" // ! 5 c "6" // ! 6 c "7" // ! 7 c "8" // ! 8 c "9" // ! 9 c "0" // ! 10 c "1" // ! 11 c "2" // ! 12 c "3" // ! 13 c "4" // ! 14 c "5" // ! 15 c "6" // ! 16 c "7" // ! 17 c "8" // ! 18 c "9" ! 19 print *, c "1" // ! 1 c "2" // ! 2 c "3" // ! 3 c "4" // ! 4 c "5" // ! 5 c "6" // ! 6 c "7" // ! 7 c "8" // ! 8 c "9" // ! 9 c "0" // ! 10 c "1" // ! 11 c "2" // ! 12 c "3" // ! 13 c "4" // ! 14 c "5" // ! 15 c "6" // ! 16 c "7" // ! 17 c "8" // ! 18 c "9" // ! 19 c "0" ! { dg-warning "Limit of 19 continuations exceeded" } end
gpl-2.0
pablooliveira/cere
tests/test_UI_Capture_Repr/x_solve.f
15
32740
c--------------------------------------------------------------------- c--------------------------------------------------------------------- subroutine x_solve c--------------------------------------------------------------------- c--------------------------------------------------------------------- c--------------------------------------------------------------------- c c Performs line solves in X direction by first factoring c the block-tridiagonal matrix into an upper triangular matrix, c and then performing back substitution to solve for the unknow c vectors of each line. c c Make sure we treat elements zero to cell_size in the direction c of the sweep. c c--------------------------------------------------------------------- include 'header.h' integer i,j,k,m,n,isize c--------------------------------------------------------------------- c--------------------------------------------------------------------- if (timeron) call timer_start(t_xsolve) c--------------------------------------------------------------------- c--------------------------------------------------------------------- c--------------------------------------------------------------------- c This function computes the left hand side in the xi-direction c--------------------------------------------------------------------- isize = grid_points(1)-1 c--------------------------------------------------------------------- c determine a (labeled f) and n jacobians c--------------------------------------------------------------------- do k = 1, grid_points(3)-2 do j = 1, grid_points(2)-2 do i = 0, isize tmp1 = rho_i(i,j,k) tmp2 = tmp1 * tmp1 tmp3 = tmp1 * tmp2 c--------------------------------------------------------------------- c c--------------------------------------------------------------------- fjac(1,1,i) = 0.0d+00 fjac(1,2,i) = 1.0d+00 fjac(1,3,i) = 0.0d+00 fjac(1,4,i) = 0.0d+00 fjac(1,5,i) = 0.0d+00 fjac(2,1,i) = -(u(2,i,j,k) * tmp2 * > u(2,i,j,k)) > + c2 * qs(i,j,k) fjac(2,2,i) = ( 2.0d+00 - c2 ) > * ( u(2,i,j,k) / u(1,i,j,k) ) fjac(2,3,i) = - c2 * ( u(3,i,j,k) * tmp1 ) fjac(2,4,i) = - c2 * ( u(4,i,j,k) * tmp1 ) fjac(2,5,i) = c2 fjac(3,1,i) = - ( u(2,i,j,k)*u(3,i,j,k) ) * tmp2 fjac(3,2,i) = u(3,i,j,k) * tmp1 fjac(3,3,i) = u(2,i,j,k) * tmp1 fjac(3,4,i) = 0.0d+00 fjac(3,5,i) = 0.0d+00 fjac(4,1,i) = - ( u(2,i,j,k)*u(4,i,j,k) ) * tmp2 fjac(4,2,i) = u(4,i,j,k) * tmp1 fjac(4,3,i) = 0.0d+00 fjac(4,4,i) = u(2,i,j,k) * tmp1 fjac(4,5,i) = 0.0d+00 fjac(5,1,i) = ( c2 * 2.0d0 * square(i,j,k) > - c1 * u(5,i,j,k) ) > * ( u(2,i,j,k) * tmp2 ) fjac(5,2,i) = c1 * u(5,i,j,k) * tmp1 > - c2 > * ( u(2,i,j,k)*u(2,i,j,k) * tmp2 > + qs(i,j,k) ) fjac(5,3,i) = - c2 * ( u(3,i,j,k)*u(2,i,j,k) ) > * tmp2 fjac(5,4,i) = - c2 * ( u(4,i,j,k)*u(2,i,j,k) ) > * tmp2 fjac(5,5,i) = c1 * ( u(2,i,j,k) * tmp1 ) njac(1,1,i) = 0.0d+00 njac(1,2,i) = 0.0d+00 njac(1,3,i) = 0.0d+00 njac(1,4,i) = 0.0d+00 njac(1,5,i) = 0.0d+00 njac(2,1,i) = - con43 * c3c4 * tmp2 * u(2,i,j,k) njac(2,2,i) = con43 * c3c4 * tmp1 njac(2,3,i) = 0.0d+00 njac(2,4,i) = 0.0d+00 njac(2,5,i) = 0.0d+00 njac(3,1,i) = - c3c4 * tmp2 * u(3,i,j,k) njac(3,2,i) = 0.0d+00 njac(3,3,i) = c3c4 * tmp1 njac(3,4,i) = 0.0d+00 njac(3,5,i) = 0.0d+00 njac(4,1,i) = - c3c4 * tmp2 * u(4,i,j,k) njac(4,2,i) = 0.0d+00 njac(4,3,i) = 0.0d+00 njac(4,4,i) = c3c4 * tmp1 njac(4,5,i) = 0.0d+00 njac(5,1,i) = - ( con43 * c3c4 > - c1345 ) * tmp3 * (u(2,i,j,k)**2) > - ( c3c4 - c1345 ) * tmp3 * (u(3,i,j,k)**2) > - ( c3c4 - c1345 ) * tmp3 * (u(4,i,j,k)**2) > - c1345 * tmp2 * u(5,i,j,k) njac(5,2,i) = ( con43 * c3c4 > - c1345 ) * tmp2 * u(2,i,j,k) njac(5,3,i) = ( c3c4 - c1345 ) * tmp2 * u(3,i,j,k) njac(5,4,i) = ( c3c4 - c1345 ) * tmp2 * u(4,i,j,k) njac(5,5,i) = ( c1345 ) * tmp1 enddo c--------------------------------------------------------------------- c now jacobians set, so form left hand side in x direction c--------------------------------------------------------------------- call lhsinit(lhs, isize) do i = 1, isize-1 tmp1 = dt * tx1 tmp2 = dt * tx2 lhs(1,1,aa,i) = - tmp2 * fjac(1,1,i-1) > - tmp1 * njac(1,1,i-1) > - tmp1 * dx1 lhs(1,2,aa,i) = - tmp2 * fjac(1,2,i-1) > - tmp1 * njac(1,2,i-1) lhs(1,3,aa,i) = - tmp2 * fjac(1,3,i-1) > - tmp1 * njac(1,3,i-1) lhs(1,4,aa,i) = - tmp2 * fjac(1,4,i-1) > - tmp1 * njac(1,4,i-1) lhs(1,5,aa,i) = - tmp2 * fjac(1,5,i-1) > - tmp1 * njac(1,5,i-1) lhs(2,1,aa,i) = - tmp2 * fjac(2,1,i-1) > - tmp1 * njac(2,1,i-1) lhs(2,2,aa,i) = - tmp2 * fjac(2,2,i-1) > - tmp1 * njac(2,2,i-1) > - tmp1 * dx2 lhs(2,3,aa,i) = - tmp2 * fjac(2,3,i-1) > - tmp1 * njac(2,3,i-1) lhs(2,4,aa,i) = - tmp2 * fjac(2,4,i-1) > - tmp1 * njac(2,4,i-1) lhs(2,5,aa,i) = - tmp2 * fjac(2,5,i-1) > - tmp1 * njac(2,5,i-1) lhs(3,1,aa,i) = - tmp2 * fjac(3,1,i-1) > - tmp1 * njac(3,1,i-1) lhs(3,2,aa,i) = - tmp2 * fjac(3,2,i-1) > - tmp1 * njac(3,2,i-1) lhs(3,3,aa,i) = - tmp2 * fjac(3,3,i-1) > - tmp1 * njac(3,3,i-1) > - tmp1 * dx3 lhs(3,4,aa,i) = - tmp2 * fjac(3,4,i-1) > - tmp1 * njac(3,4,i-1) lhs(3,5,aa,i) = - tmp2 * fjac(3,5,i-1) > - tmp1 * njac(3,5,i-1) lhs(4,1,aa,i) = - tmp2 * fjac(4,1,i-1) > - tmp1 * njac(4,1,i-1) lhs(4,2,aa,i) = - tmp2 * fjac(4,2,i-1) > - tmp1 * njac(4,2,i-1) lhs(4,3,aa,i) = - tmp2 * fjac(4,3,i-1) > - tmp1 * njac(4,3,i-1) lhs(4,4,aa,i) = - tmp2 * fjac(4,4,i-1) > - tmp1 * njac(4,4,i-1) > - tmp1 * dx4 lhs(4,5,aa,i) = - tmp2 * fjac(4,5,i-1) > - tmp1 * njac(4,5,i-1) lhs(5,1,aa,i) = - tmp2 * fjac(5,1,i-1) > - tmp1 * njac(5,1,i-1) lhs(5,2,aa,i) = - tmp2 * fjac(5,2,i-1) > - tmp1 * njac(5,2,i-1) lhs(5,3,aa,i) = - tmp2 * fjac(5,3,i-1) > - tmp1 * njac(5,3,i-1) lhs(5,4,aa,i) = - tmp2 * fjac(5,4,i-1) > - tmp1 * njac(5,4,i-1) lhs(5,5,aa,i) = - tmp2 * fjac(5,5,i-1) > - tmp1 * njac(5,5,i-1) > - tmp1 * dx5 lhs(1,1,bb,i) = 1.0d+00 > + tmp1 * 2.0d+00 * njac(1,1,i) > + tmp1 * 2.0d+00 * dx1 lhs(1,2,bb,i) = tmp1 * 2.0d+00 * njac(1,2,i) lhs(1,3,bb,i) = tmp1 * 2.0d+00 * njac(1,3,i) lhs(1,4,bb,i) = tmp1 * 2.0d+00 * njac(1,4,i) lhs(1,5,bb,i) = tmp1 * 2.0d+00 * njac(1,5,i) lhs(2,1,bb,i) = tmp1 * 2.0d+00 * njac(2,1,i) lhs(2,2,bb,i) = 1.0d+00 > + tmp1 * 2.0d+00 * njac(2,2,i) > + tmp1 * 2.0d+00 * dx2 lhs(2,3,bb,i) = tmp1 * 2.0d+00 * njac(2,3,i) lhs(2,4,bb,i) = tmp1 * 2.0d+00 * njac(2,4,i) lhs(2,5,bb,i) = tmp1 * 2.0d+00 * njac(2,5,i) lhs(3,1,bb,i) = tmp1 * 2.0d+00 * njac(3,1,i) lhs(3,2,bb,i) = tmp1 * 2.0d+00 * njac(3,2,i) lhs(3,3,bb,i) = 1.0d+00 > + tmp1 * 2.0d+00 * njac(3,3,i) > + tmp1 * 2.0d+00 * dx3 lhs(3,4,bb,i) = tmp1 * 2.0d+00 * njac(3,4,i) lhs(3,5,bb,i) = tmp1 * 2.0d+00 * njac(3,5,i) lhs(4,1,bb,i) = tmp1 * 2.0d+00 * njac(4,1,i) lhs(4,2,bb,i) = tmp1 * 2.0d+00 * njac(4,2,i) lhs(4,3,bb,i) = tmp1 * 2.0d+00 * njac(4,3,i) lhs(4,4,bb,i) = 1.0d+00 > + tmp1 * 2.0d+00 * njac(4,4,i) > + tmp1 * 2.0d+00 * dx4 lhs(4,5,bb,i) = tmp1 * 2.0d+00 * njac(4,5,i) lhs(5,1,bb,i) = tmp1 * 2.0d+00 * njac(5,1,i) lhs(5,2,bb,i) = tmp1 * 2.0d+00 * njac(5,2,i) lhs(5,3,bb,i) = tmp1 * 2.0d+00 * njac(5,3,i) lhs(5,4,bb,i) = tmp1 * 2.0d+00 * njac(5,4,i) lhs(5,5,bb,i) = 1.0d+00 > + tmp1 * 2.0d+00 * njac(5,5,i) > + tmp1 * 2.0d+00 * dx5 lhs(1,1,cc,i) = tmp2 * fjac(1,1,i+1) > - tmp1 * njac(1,1,i+1) > - tmp1 * dx1 lhs(1,2,cc,i) = tmp2 * fjac(1,2,i+1) > - tmp1 * njac(1,2,i+1) lhs(1,3,cc,i) = tmp2 * fjac(1,3,i+1) > - tmp1 * njac(1,3,i+1) lhs(1,4,cc,i) = tmp2 * fjac(1,4,i+1) > - tmp1 * njac(1,4,i+1) lhs(1,5,cc,i) = tmp2 * fjac(1,5,i+1) > - tmp1 * njac(1,5,i+1) lhs(2,1,cc,i) = tmp2 * fjac(2,1,i+1) > - tmp1 * njac(2,1,i+1) lhs(2,2,cc,i) = tmp2 * fjac(2,2,i+1) > - tmp1 * njac(2,2,i+1) > - tmp1 * dx2 lhs(2,3,cc,i) = tmp2 * fjac(2,3,i+1) > - tmp1 * njac(2,3,i+1) lhs(2,4,cc,i) = tmp2 * fjac(2,4,i+1) > - tmp1 * njac(2,4,i+1) lhs(2,5,cc,i) = tmp2 * fjac(2,5,i+1) > - tmp1 * njac(2,5,i+1) lhs(3,1,cc,i) = tmp2 * fjac(3,1,i+1) > - tmp1 * njac(3,1,i+1) lhs(3,2,cc,i) = tmp2 * fjac(3,2,i+1) > - tmp1 * njac(3,2,i+1) lhs(3,3,cc,i) = tmp2 * fjac(3,3,i+1) > - tmp1 * njac(3,3,i+1) > - tmp1 * dx3 lhs(3,4,cc,i) = tmp2 * fjac(3,4,i+1) > - tmp1 * njac(3,4,i+1) lhs(3,5,cc,i) = tmp2 * fjac(3,5,i+1) > - tmp1 * njac(3,5,i+1) lhs(4,1,cc,i) = tmp2 * fjac(4,1,i+1) > - tmp1 * njac(4,1,i+1) lhs(4,2,cc,i) = tmp2 * fjac(4,2,i+1) > - tmp1 * njac(4,2,i+1) lhs(4,3,cc,i) = tmp2 * fjac(4,3,i+1) > - tmp1 * njac(4,3,i+1) lhs(4,4,cc,i) = tmp2 * fjac(4,4,i+1) > - tmp1 * njac(4,4,i+1) > - tmp1 * dx4 lhs(4,5,cc,i) = tmp2 * fjac(4,5,i+1) > - tmp1 * njac(4,5,i+1) lhs(5,1,cc,i) = tmp2 * fjac(5,1,i+1) > - tmp1 * njac(5,1,i+1) lhs(5,2,cc,i) = tmp2 * fjac(5,2,i+1) > - tmp1 * njac(5,2,i+1) lhs(5,3,cc,i) = tmp2 * fjac(5,3,i+1) > - tmp1 * njac(5,3,i+1) lhs(5,4,cc,i) = tmp2 * fjac(5,4,i+1) > - tmp1 * njac(5,4,i+1) lhs(5,5,cc,i) = tmp2 * fjac(5,5,i+1) > - tmp1 * njac(5,5,i+1) > - tmp1 * dx5 enddo c--------------------------------------------------------------------- c--------------------------------------------------------------------- c--------------------------------------------------------------------- c performs guaussian elimination on this cell. c c assumes that unpacking routines for non-first cells c preload C' and rhs' from previous cell. c c assumed send happens outside this routine, but that c c'(IMAX) and rhs'(IMAX) will be sent to next cell c--------------------------------------------------------------------- c--------------------------------------------------------------------- c outer most do loops - sweeping in i direction c--------------------------------------------------------------------- c--------------------------------------------------------------------- c multiply c(0,j,k) by b_inverse and copy back to c c multiply rhs(0) by b_inverse(0) and copy to rhs c--------------------------------------------------------------------- call binvcrhs( lhs(1,1,bb,0), > lhs(1,1,cc,0), > rhs(1,0,j,k) ) c--------------------------------------------------------------------- c begin inner most do loop c do all the elements of the cell unless last c--------------------------------------------------------------------- do i=1,isize-1 c--------------------------------------------------------------------- c rhs(i) = rhs(i) - A*rhs(i-1) c--------------------------------------------------------------------- call matvec_sub(lhs(1,1,aa,i), > rhs(1,i-1,j,k),rhs(1,i,j,k)) c--------------------------------------------------------------------- c B(i) = B(i) - C(i-1)*A(i) c--------------------------------------------------------------------- call matmul_sub(lhs(1,1,aa,i), > lhs(1,1,cc,i-1), > lhs(1,1,bb,i)) c--------------------------------------------------------------------- c multiply c(i,j,k) by b_inverse and copy back to c c multiply rhs(1,j,k) by b_inverse(1,j,k) and copy to rhs c--------------------------------------------------------------------- call binvcrhs( lhs(1,1,bb,i), > lhs(1,1,cc,i), > rhs(1,i,j,k) ) enddo c--------------------------------------------------------------------- c rhs(isize) = rhs(isize) - A*rhs(isize-1) c--------------------------------------------------------------------- call matvec_sub(lhs(1,1,aa,isize), > rhs(1,isize-1,j,k),rhs(1,isize,j,k)) c--------------------------------------------------------------------- c B(isize) = B(isize) - C(isize-1)*A(isize) c--------------------------------------------------------------------- call matmul_sub(lhs(1,1,aa,isize), > lhs(1,1,cc,isize-1), > lhs(1,1,bb,isize)) c--------------------------------------------------------------------- c multiply rhs() by b_inverse() and copy to rhs c--------------------------------------------------------------------- call binvrhs( lhs(1,1,bb,isize), > rhs(1,isize,j,k) ) c--------------------------------------------------------------------- c back solve: if last cell, then generate U(isize)=rhs(isize) c else assume U(isize) is loaded in un pack backsub_info c so just use it c after call u(istart) will be sent to next cell c--------------------------------------------------------------------- do i=isize-1,0,-1 do m=1,BLOCK_SIZE do n=1,BLOCK_SIZE rhs(m,i,j,k) = rhs(m,i,j,k) > - lhs(m,n,cc,i)*rhs(n,i+1,j,k) enddo enddo enddo enddo enddo if (timeron) call timer_stop(t_xsolve) return end c--------------------------------------------------------------------- c--------------------------------------------------------------------- subroutine matvec_sub(ablock,avec,bvec) c--------------------------------------------------------------------- c--------------------------------------------------------------------- c--------------------------------------------------------------------- c subtracts bvec=bvec - ablock*avec c--------------------------------------------------------------------- implicit none double precision ablock,avec,bvec dimension ablock(5,5),avec(5),bvec(5) integer i do i=1,5 c--------------------------------------------------------------------- c rhs(i,ic,jc,kc) = rhs(i,ic,jc,kc) c $ - lhs(i,1,ablock,ia)* c--------------------------------------------------------------------- bvec(i) = bvec(i) - ablock(i,1)*avec(1) > - ablock(i,2)*avec(2) > - ablock(i,3)*avec(3) > - ablock(i,4)*avec(4) > - ablock(i,5)*avec(5) enddo return end c--------------------------------------------------------------------- c--------------------------------------------------------------------- subroutine matmul_sub(ablock, bblock, cblock) c--------------------------------------------------------------------- c--------------------------------------------------------------------- c--------------------------------------------------------------------- c subtracts a(i,j,k) X b(i,j,k) from c(i,j,k) c--------------------------------------------------------------------- implicit none double precision ablock, bblock, cblock dimension ablock(5,5), bblock(5,5), cblock(5,5) integer j do j=1,5 cblock(1,j) = cblock(1,j) - ablock(1,1)*bblock(1,j) > - ablock(1,2)*bblock(2,j) > - ablock(1,3)*bblock(3,j) > - ablock(1,4)*bblock(4,j) > - ablock(1,5)*bblock(5,j) cblock(2,j) = cblock(2,j) - ablock(2,1)*bblock(1,j) > - ablock(2,2)*bblock(2,j) > - ablock(2,3)*bblock(3,j) > - ablock(2,4)*bblock(4,j) > - ablock(2,5)*bblock(5,j) cblock(3,j) = cblock(3,j) - ablock(3,1)*bblock(1,j) > - ablock(3,2)*bblock(2,j) > - ablock(3,3)*bblock(3,j) > - ablock(3,4)*bblock(4,j) > - ablock(3,5)*bblock(5,j) cblock(4,j) = cblock(4,j) - ablock(4,1)*bblock(1,j) > - ablock(4,2)*bblock(2,j) > - ablock(4,3)*bblock(3,j) > - ablock(4,4)*bblock(4,j) > - ablock(4,5)*bblock(5,j) cblock(5,j) = cblock(5,j) - ablock(5,1)*bblock(1,j) > - ablock(5,2)*bblock(2,j) > - ablock(5,3)*bblock(3,j) > - ablock(5,4)*bblock(4,j) > - ablock(5,5)*bblock(5,j) enddo return end c--------------------------------------------------------------------- c--------------------------------------------------------------------- subroutine binvcrhs( lhs,c,r ) c--------------------------------------------------------------------- c--------------------------------------------------------------------- c--------------------------------------------------------------------- c c--------------------------------------------------------------------- implicit none double precision pivot, coeff, lhs dimension lhs(5,5) double precision c(5,5), r(5) c--------------------------------------------------------------------- c c--------------------------------------------------------------------- pivot = 1.00d0/lhs(1,1) lhs(1,2) = lhs(1,2)*pivot lhs(1,3) = lhs(1,3)*pivot lhs(1,4) = lhs(1,4)*pivot lhs(1,5) = lhs(1,5)*pivot c(1,1) = c(1,1)*pivot c(1,2) = c(1,2)*pivot c(1,3) = c(1,3)*pivot c(1,4) = c(1,4)*pivot c(1,5) = c(1,5)*pivot r(1) = r(1) *pivot coeff = lhs(2,1) lhs(2,2)= lhs(2,2) - coeff*lhs(1,2) lhs(2,3)= lhs(2,3) - coeff*lhs(1,3) lhs(2,4)= lhs(2,4) - coeff*lhs(1,4) lhs(2,5)= lhs(2,5) - coeff*lhs(1,5) c(2,1) = c(2,1) - coeff*c(1,1) c(2,2) = c(2,2) - coeff*c(1,2) c(2,3) = c(2,3) - coeff*c(1,3) c(2,4) = c(2,4) - coeff*c(1,4) c(2,5) = c(2,5) - coeff*c(1,5) r(2) = r(2) - coeff*r(1) coeff = lhs(3,1) lhs(3,2)= lhs(3,2) - coeff*lhs(1,2) lhs(3,3)= lhs(3,3) - coeff*lhs(1,3) lhs(3,4)= lhs(3,4) - coeff*lhs(1,4) lhs(3,5)= lhs(3,5) - coeff*lhs(1,5) c(3,1) = c(3,1) - coeff*c(1,1) c(3,2) = c(3,2) - coeff*c(1,2) c(3,3) = c(3,3) - coeff*c(1,3) c(3,4) = c(3,4) - coeff*c(1,4) c(3,5) = c(3,5) - coeff*c(1,5) r(3) = r(3) - coeff*r(1) coeff = lhs(4,1) lhs(4,2)= lhs(4,2) - coeff*lhs(1,2) lhs(4,3)= lhs(4,3) - coeff*lhs(1,3) lhs(4,4)= lhs(4,4) - coeff*lhs(1,4) lhs(4,5)= lhs(4,5) - coeff*lhs(1,5) c(4,1) = c(4,1) - coeff*c(1,1) c(4,2) = c(4,2) - coeff*c(1,2) c(4,3) = c(4,3) - coeff*c(1,3) c(4,4) = c(4,4) - coeff*c(1,4) c(4,5) = c(4,5) - coeff*c(1,5) r(4) = r(4) - coeff*r(1) coeff = lhs(5,1) lhs(5,2)= lhs(5,2) - coeff*lhs(1,2) lhs(5,3)= lhs(5,3) - coeff*lhs(1,3) lhs(5,4)= lhs(5,4) - coeff*lhs(1,4) lhs(5,5)= lhs(5,5) - coeff*lhs(1,5) c(5,1) = c(5,1) - coeff*c(1,1) c(5,2) = c(5,2) - coeff*c(1,2) c(5,3) = c(5,3) - coeff*c(1,3) c(5,4) = c(5,4) - coeff*c(1,4) c(5,5) = c(5,5) - coeff*c(1,5) r(5) = r(5) - coeff*r(1) pivot = 1.00d0/lhs(2,2) lhs(2,3) = lhs(2,3)*pivot lhs(2,4) = lhs(2,4)*pivot lhs(2,5) = lhs(2,5)*pivot c(2,1) = c(2,1)*pivot c(2,2) = c(2,2)*pivot c(2,3) = c(2,3)*pivot c(2,4) = c(2,4)*pivot c(2,5) = c(2,5)*pivot r(2) = r(2) *pivot coeff = lhs(1,2) lhs(1,3)= lhs(1,3) - coeff*lhs(2,3) lhs(1,4)= lhs(1,4) - coeff*lhs(2,4) lhs(1,5)= lhs(1,5) - coeff*lhs(2,5) c(1,1) = c(1,1) - coeff*c(2,1) c(1,2) = c(1,2) - coeff*c(2,2) c(1,3) = c(1,3) - coeff*c(2,3) c(1,4) = c(1,4) - coeff*c(2,4) c(1,5) = c(1,5) - coeff*c(2,5) r(1) = r(1) - coeff*r(2) coeff = lhs(3,2) lhs(3,3)= lhs(3,3) - coeff*lhs(2,3) lhs(3,4)= lhs(3,4) - coeff*lhs(2,4) lhs(3,5)= lhs(3,5) - coeff*lhs(2,5) c(3,1) = c(3,1) - coeff*c(2,1) c(3,2) = c(3,2) - coeff*c(2,2) c(3,3) = c(3,3) - coeff*c(2,3) c(3,4) = c(3,4) - coeff*c(2,4) c(3,5) = c(3,5) - coeff*c(2,5) r(3) = r(3) - coeff*r(2) coeff = lhs(4,2) lhs(4,3)= lhs(4,3) - coeff*lhs(2,3) lhs(4,4)= lhs(4,4) - coeff*lhs(2,4) lhs(4,5)= lhs(4,5) - coeff*lhs(2,5) c(4,1) = c(4,1) - coeff*c(2,1) c(4,2) = c(4,2) - coeff*c(2,2) c(4,3) = c(4,3) - coeff*c(2,3) c(4,4) = c(4,4) - coeff*c(2,4) c(4,5) = c(4,5) - coeff*c(2,5) r(4) = r(4) - coeff*r(2) coeff = lhs(5,2) lhs(5,3)= lhs(5,3) - coeff*lhs(2,3) lhs(5,4)= lhs(5,4) - coeff*lhs(2,4) lhs(5,5)= lhs(5,5) - coeff*lhs(2,5) c(5,1) = c(5,1) - coeff*c(2,1) c(5,2) = c(5,2) - coeff*c(2,2) c(5,3) = c(5,3) - coeff*c(2,3) c(5,4) = c(5,4) - coeff*c(2,4) c(5,5) = c(5,5) - coeff*c(2,5) r(5) = r(5) - coeff*r(2) pivot = 1.00d0/lhs(3,3) lhs(3,4) = lhs(3,4)*pivot lhs(3,5) = lhs(3,5)*pivot c(3,1) = c(3,1)*pivot c(3,2) = c(3,2)*pivot c(3,3) = c(3,3)*pivot c(3,4) = c(3,4)*pivot c(3,5) = c(3,5)*pivot r(3) = r(3) *pivot coeff = lhs(1,3) lhs(1,4)= lhs(1,4) - coeff*lhs(3,4) lhs(1,5)= lhs(1,5) - coeff*lhs(3,5) c(1,1) = c(1,1) - coeff*c(3,1) c(1,2) = c(1,2) - coeff*c(3,2) c(1,3) = c(1,3) - coeff*c(3,3) c(1,4) = c(1,4) - coeff*c(3,4) c(1,5) = c(1,5) - coeff*c(3,5) r(1) = r(1) - coeff*r(3) coeff = lhs(2,3) lhs(2,4)= lhs(2,4) - coeff*lhs(3,4) lhs(2,5)= lhs(2,5) - coeff*lhs(3,5) c(2,1) = c(2,1) - coeff*c(3,1) c(2,2) = c(2,2) - coeff*c(3,2) c(2,3) = c(2,3) - coeff*c(3,3) c(2,4) = c(2,4) - coeff*c(3,4) c(2,5) = c(2,5) - coeff*c(3,5) r(2) = r(2) - coeff*r(3) coeff = lhs(4,3) lhs(4,4)= lhs(4,4) - coeff*lhs(3,4) lhs(4,5)= lhs(4,5) - coeff*lhs(3,5) c(4,1) = c(4,1) - coeff*c(3,1) c(4,2) = c(4,2) - coeff*c(3,2) c(4,3) = c(4,3) - coeff*c(3,3) c(4,4) = c(4,4) - coeff*c(3,4) c(4,5) = c(4,5) - coeff*c(3,5) r(4) = r(4) - coeff*r(3) coeff = lhs(5,3) lhs(5,4)= lhs(5,4) - coeff*lhs(3,4) lhs(5,5)= lhs(5,5) - coeff*lhs(3,5) c(5,1) = c(5,1) - coeff*c(3,1) c(5,2) = c(5,2) - coeff*c(3,2) c(5,3) = c(5,3) - coeff*c(3,3) c(5,4) = c(5,4) - coeff*c(3,4) c(5,5) = c(5,5) - coeff*c(3,5) r(5) = r(5) - coeff*r(3) pivot = 1.00d0/lhs(4,4) lhs(4,5) = lhs(4,5)*pivot c(4,1) = c(4,1)*pivot c(4,2) = c(4,2)*pivot c(4,3) = c(4,3)*pivot c(4,4) = c(4,4)*pivot c(4,5) = c(4,5)*pivot r(4) = r(4) *pivot coeff = lhs(1,4) lhs(1,5)= lhs(1,5) - coeff*lhs(4,5) c(1,1) = c(1,1) - coeff*c(4,1) c(1,2) = c(1,2) - coeff*c(4,2) c(1,3) = c(1,3) - coeff*c(4,3) c(1,4) = c(1,4) - coeff*c(4,4) c(1,5) = c(1,5) - coeff*c(4,5) r(1) = r(1) - coeff*r(4) coeff = lhs(2,4) lhs(2,5)= lhs(2,5) - coeff*lhs(4,5) c(2,1) = c(2,1) - coeff*c(4,1) c(2,2) = c(2,2) - coeff*c(4,2) c(2,3) = c(2,3) - coeff*c(4,3) c(2,4) = c(2,4) - coeff*c(4,4) c(2,5) = c(2,5) - coeff*c(4,5) r(2) = r(2) - coeff*r(4) coeff = lhs(3,4) lhs(3,5)= lhs(3,5) - coeff*lhs(4,5) c(3,1) = c(3,1) - coeff*c(4,1) c(3,2) = c(3,2) - coeff*c(4,2) c(3,3) = c(3,3) - coeff*c(4,3) c(3,4) = c(3,4) - coeff*c(4,4) c(3,5) = c(3,5) - coeff*c(4,5) r(3) = r(3) - coeff*r(4) coeff = lhs(5,4) lhs(5,5)= lhs(5,5) - coeff*lhs(4,5) c(5,1) = c(5,1) - coeff*c(4,1) c(5,2) = c(5,2) - coeff*c(4,2) c(5,3) = c(5,3) - coeff*c(4,3) c(5,4) = c(5,4) - coeff*c(4,4) c(5,5) = c(5,5) - coeff*c(4,5) r(5) = r(5) - coeff*r(4) pivot = 1.00d0/lhs(5,5) c(5,1) = c(5,1)*pivot c(5,2) = c(5,2)*pivot c(5,3) = c(5,3)*pivot c(5,4) = c(5,4)*pivot c(5,5) = c(5,5)*pivot r(5) = r(5) *pivot coeff = lhs(1,5) c(1,1) = c(1,1) - coeff*c(5,1) c(1,2) = c(1,2) - coeff*c(5,2) c(1,3) = c(1,3) - coeff*c(5,3) c(1,4) = c(1,4) - coeff*c(5,4) c(1,5) = c(1,5) - coeff*c(5,5) r(1) = r(1) - coeff*r(5) coeff = lhs(2,5) c(2,1) = c(2,1) - coeff*c(5,1) c(2,2) = c(2,2) - coeff*c(5,2) c(2,3) = c(2,3) - coeff*c(5,3) c(2,4) = c(2,4) - coeff*c(5,4) c(2,5) = c(2,5) - coeff*c(5,5) r(2) = r(2) - coeff*r(5) coeff = lhs(3,5) c(3,1) = c(3,1) - coeff*c(5,1) c(3,2) = c(3,2) - coeff*c(5,2) c(3,3) = c(3,3) - coeff*c(5,3) c(3,4) = c(3,4) - coeff*c(5,4) c(3,5) = c(3,5) - coeff*c(5,5) r(3) = r(3) - coeff*r(5) coeff = lhs(4,5) c(4,1) = c(4,1) - coeff*c(5,1) c(4,2) = c(4,2) - coeff*c(5,2) c(4,3) = c(4,3) - coeff*c(5,3) c(4,4) = c(4,4) - coeff*c(5,4) c(4,5) = c(4,5) - coeff*c(5,5) r(4) = r(4) - coeff*r(5) return end c--------------------------------------------------------------------- c--------------------------------------------------------------------- subroutine binvrhs( lhs,r ) c--------------------------------------------------------------------- c--------------------------------------------------------------------- c--------------------------------------------------------------------- c c--------------------------------------------------------------------- implicit none double precision pivot, coeff, lhs dimension lhs(5,5) double precision r(5) c--------------------------------------------------------------------- c c--------------------------------------------------------------------- pivot = 1.00d0/lhs(1,1) lhs(1,2) = lhs(1,2)*pivot lhs(1,3) = lhs(1,3)*pivot lhs(1,4) = lhs(1,4)*pivot lhs(1,5) = lhs(1,5)*pivot r(1) = r(1) *pivot coeff = lhs(2,1) lhs(2,2)= lhs(2,2) - coeff*lhs(1,2) lhs(2,3)= lhs(2,3) - coeff*lhs(1,3) lhs(2,4)= lhs(2,4) - coeff*lhs(1,4) lhs(2,5)= lhs(2,5) - coeff*lhs(1,5) r(2) = r(2) - coeff*r(1) coeff = lhs(3,1) lhs(3,2)= lhs(3,2) - coeff*lhs(1,2) lhs(3,3)= lhs(3,3) - coeff*lhs(1,3) lhs(3,4)= lhs(3,4) - coeff*lhs(1,4) lhs(3,5)= lhs(3,5) - coeff*lhs(1,5) r(3) = r(3) - coeff*r(1) coeff = lhs(4,1) lhs(4,2)= lhs(4,2) - coeff*lhs(1,2) lhs(4,3)= lhs(4,3) - coeff*lhs(1,3) lhs(4,4)= lhs(4,4) - coeff*lhs(1,4) lhs(4,5)= lhs(4,5) - coeff*lhs(1,5) r(4) = r(4) - coeff*r(1) coeff = lhs(5,1) lhs(5,2)= lhs(5,2) - coeff*lhs(1,2) lhs(5,3)= lhs(5,3) - coeff*lhs(1,3) lhs(5,4)= lhs(5,4) - coeff*lhs(1,4) lhs(5,5)= lhs(5,5) - coeff*lhs(1,5) r(5) = r(5) - coeff*r(1) pivot = 1.00d0/lhs(2,2) lhs(2,3) = lhs(2,3)*pivot lhs(2,4) = lhs(2,4)*pivot lhs(2,5) = lhs(2,5)*pivot r(2) = r(2) *pivot coeff = lhs(1,2) lhs(1,3)= lhs(1,3) - coeff*lhs(2,3) lhs(1,4)= lhs(1,4) - coeff*lhs(2,4) lhs(1,5)= lhs(1,5) - coeff*lhs(2,5) r(1) = r(1) - coeff*r(2) coeff = lhs(3,2) lhs(3,3)= lhs(3,3) - coeff*lhs(2,3) lhs(3,4)= lhs(3,4) - coeff*lhs(2,4) lhs(3,5)= lhs(3,5) - coeff*lhs(2,5) r(3) = r(3) - coeff*r(2) coeff = lhs(4,2) lhs(4,3)= lhs(4,3) - coeff*lhs(2,3) lhs(4,4)= lhs(4,4) - coeff*lhs(2,4) lhs(4,5)= lhs(4,5) - coeff*lhs(2,5) r(4) = r(4) - coeff*r(2) coeff = lhs(5,2) lhs(5,3)= lhs(5,3) - coeff*lhs(2,3) lhs(5,4)= lhs(5,4) - coeff*lhs(2,4) lhs(5,5)= lhs(5,5) - coeff*lhs(2,5) r(5) = r(5) - coeff*r(2) pivot = 1.00d0/lhs(3,3) lhs(3,4) = lhs(3,4)*pivot lhs(3,5) = lhs(3,5)*pivot r(3) = r(3) *pivot coeff = lhs(1,3) lhs(1,4)= lhs(1,4) - coeff*lhs(3,4) lhs(1,5)= lhs(1,5) - coeff*lhs(3,5) r(1) = r(1) - coeff*r(3) coeff = lhs(2,3) lhs(2,4)= lhs(2,4) - coeff*lhs(3,4) lhs(2,5)= lhs(2,5) - coeff*lhs(3,5) r(2) = r(2) - coeff*r(3) coeff = lhs(4,3) lhs(4,4)= lhs(4,4) - coeff*lhs(3,4) lhs(4,5)= lhs(4,5) - coeff*lhs(3,5) r(4) = r(4) - coeff*r(3) coeff = lhs(5,3) lhs(5,4)= lhs(5,4) - coeff*lhs(3,4) lhs(5,5)= lhs(5,5) - coeff*lhs(3,5) r(5) = r(5) - coeff*r(3) pivot = 1.00d0/lhs(4,4) lhs(4,5) = lhs(4,5)*pivot r(4) = r(4) *pivot coeff = lhs(1,4) lhs(1,5)= lhs(1,5) - coeff*lhs(4,5) r(1) = r(1) - coeff*r(4) coeff = lhs(2,4) lhs(2,5)= lhs(2,5) - coeff*lhs(4,5) r(2) = r(2) - coeff*r(4) coeff = lhs(3,4) lhs(3,5)= lhs(3,5) - coeff*lhs(4,5) r(3) = r(3) - coeff*r(4) coeff = lhs(5,4) lhs(5,5)= lhs(5,5) - coeff*lhs(4,5) r(5) = r(5) - coeff*r(4) pivot = 1.00d0/lhs(5,5) r(5) = r(5) *pivot coeff = lhs(1,5) r(1) = r(1) - coeff*r(5) coeff = lhs(2,5) r(2) = r(2) - coeff*r(5) coeff = lhs(3,5) r(3) = r(3) - coeff*r(5) coeff = lhs(4,5) r(4) = r(4) - coeff*r(5) return end
lgpl-3.0
yaowee/libflame
lapack-test/3.4.2/LIN/derrps.f
32
3776
*> \brief \b DERRPS * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE DERRPS( PATH, NUNIT ) * * .. Scalar Arguments .. * INTEGER NUNIT * CHARACTER*3 PATH * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DERRPS tests the error exits for the DOUBLE PRECISION routines *> for DPSTRF. *> \endverbatim * * Arguments: * ========== * *> \param[in] PATH *> \verbatim *> PATH is CHARACTER*3 *> The LAPACK path name for the routines to be tested. *> \endverbatim *> *> \param[in] NUNIT *> \verbatim *> NUNIT is INTEGER *> The unit number for output. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup double_lin * * ===================================================================== SUBROUTINE DERRPS( PATH, NUNIT ) * * -- LAPACK test routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. INTEGER NUNIT CHARACTER*3 PATH * .. * * ===================================================================== * * .. Parameters .. INTEGER NMAX PARAMETER ( NMAX = 4 ) * .. * .. Local Scalars .. INTEGER I, INFO, J, RANK * .. * .. Local Arrays .. DOUBLE PRECISION A( NMAX, NMAX ), WORK( 2*NMAX ) INTEGER PIV( NMAX ) * .. * .. External Subroutines .. EXTERNAL ALAESM, CHKXER, DPSTF2, DPSTRF * .. * .. Scalars in Common .. INTEGER INFOT, NOUT LOGICAL LERR, OK CHARACTER*32 SRNAMT * .. * .. Common blocks .. COMMON / INFOC / INFOT, NOUT, OK, LERR COMMON / SRNAMC / SRNAMT * .. * .. Intrinsic Functions .. INTRINSIC DBLE * .. * .. Executable Statements .. * NOUT = NUNIT WRITE( NOUT, FMT = * ) * * Set the variables to innocuous values. * DO 110 J = 1, NMAX DO 100 I = 1, NMAX A( I, J ) = 1.D0 / DBLE( I+J ) * 100 CONTINUE PIV( J ) = J WORK( J ) = 0.D0 WORK( NMAX+J ) = 0.D0 * 110 CONTINUE OK = .TRUE. * * * Test error exits of the routines that use the Cholesky * decomposition of a symmetric positive semidefinite matrix. * * DPSTRF * SRNAMT = 'DPSTRF' INFOT = 1 CALL DPSTRF( '/', 0, A, 1, PIV, RANK, -1.D0, WORK, INFO ) CALL CHKXER( 'DPSTRF', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DPSTRF( 'U', -1, A, 1, PIV, RANK, -1.D0, WORK, INFO ) CALL CHKXER( 'DPSTRF', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL DPSTRF( 'U', 2, A, 1, PIV, RANK, -1.D0, WORK, INFO ) CALL CHKXER( 'DPSTRF', INFOT, NOUT, LERR, OK ) * * DPSTF2 * SRNAMT = 'DPSTF2' INFOT = 1 CALL DPSTF2( '/', 0, A, 1, PIV, RANK, -1.D0, WORK, INFO ) CALL CHKXER( 'DPSTF2', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DPSTF2( 'U', -1, A, 1, PIV, RANK, -1.D0, WORK, INFO ) CALL CHKXER( 'DPSTF2', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL DPSTF2( 'U', 2, A, 1, PIV, RANK, -1.D0, WORK, INFO ) CALL CHKXER( 'DPSTF2', INFOT, NOUT, LERR, OK ) * * * Print a summary line. * CALL ALAESM( PATH, OK, NOUT ) * RETURN * * End of DERRPS * END
bsd-3-clause
agarbuno/lbfgsb-matlab
src/linpack.f
16
6332
c c L-BFGS-B is released under the “New BSD License” (aka “Modified BSD c License” or “3-clause license”) c Please read attached file License.txt c subroutine dpofa(a,lda,n,info) integer lda,n,info double precision a(lda,*) c c dpofa factors a double precision symmetric positive definite c matrix. c c dpofa is usually called by dpoco, but it can be called c directly with a saving in time if rcond is not needed. c (time for dpoco) = (1 + 18/n)*(time for dpofa) . c c on entry c c a double precision(lda, n) c the symmetric matrix to be factored. only the c diagonal and upper triangle are used. c c lda integer c the leading dimension of the array a . c c n integer c the order of the matrix a . c c on return c c a an upper triangular matrix r so that a = trans(r)*r c where trans(r) is the transpose. c the strict lower triangle is unaltered. c if info .ne. 0 , the factorization is not complete. c c info integer c = 0 for normal return. c = k signals an error condition. the leading minor c of order k is not positive definite. c c linpack. this version dated 08/14/78 . c cleve moler, university of new mexico, argonne national lab. c c subroutines and functions c c blas ddot c fortran sqrt c c internal variables c double precision ddot,t double precision s integer j,jm1,k c begin block with ...exits to 40 c c do 30 j = 1, n info = j s = 0.0d0 jm1 = j - 1 if (jm1 .lt. 1) go to 20 do 10 k = 1, jm1 t = a(k,j) - ddot(k-1,a(1,k),1,a(1,j),1) t = t/a(k,k) a(k,j) = t s = s + t*t 10 continue 20 continue s = a(j,j) - s c ......exit if (s .le. 0.0d0) go to 40 a(j,j) = sqrt(s) 30 continue info = 0 40 continue return end c====================== The end of dpofa =============================== subroutine dtrsl(t,ldt,n,b,job,info) integer ldt,n,job,info double precision t(ldt,*),b(*) c c c dtrsl solves systems of the form c c t * x = b c or c trans(t) * x = b c c where t is a triangular matrix of order n. here trans(t) c denotes the transpose of the matrix t. c c on entry c c t double precision(ldt,n) c t contains the matrix of the system. the zero c elements of the matrix are not referenced, and c the corresponding elements of the array can be c used to store other information. c c ldt integer c ldt is the leading dimension of the array t. c c n integer c n is the order of the system. c c b double precision(n). c b contains the right hand side of the system. c c job integer c job specifies what kind of system is to be solved. c if job is c c 00 solve t*x=b, t lower triangular, c 01 solve t*x=b, t upper triangular, c 10 solve trans(t)*x=b, t lower triangular, c 11 solve trans(t)*x=b, t upper triangular. c c on return c c b b contains the solution, if info .eq. 0. c otherwise b is unaltered. c c info integer c info contains zero if the system is nonsingular. c otherwise info contains the index of c the first zero diagonal element of t. c c linpack. this version dated 08/14/78 . c g. w. stewart, university of maryland, argonne national lab. c c subroutines and functions c c blas daxpy,ddot c fortran mod c c internal variables c double precision ddot,temp integer case,j,jj c c begin block permitting ...exits to 150 c c check for zero diagonal elements. c do 10 info = 1, n c ......exit if (t(info,info) .eq. 0.0d0) go to 150 10 continue info = 0 c c determine the task and go to it. c case = 1 if (mod(job,10) .ne. 0) case = 2 if (mod(job,100)/10 .ne. 0) case = case + 2 go to (20,50,80,110), case c c solve t*x=b for t lower triangular c 20 continue b(1) = b(1)/t(1,1) if (n .lt. 2) go to 40 do 30 j = 2, n temp = -b(j-1) call daxpy(n-j+1,temp,t(j,j-1),1,b(j),1) b(j) = b(j)/t(j,j) 30 continue 40 continue go to 140 c c solve t*x=b for t upper triangular. c 50 continue b(n) = b(n)/t(n,n) if (n .lt. 2) go to 70 do 60 jj = 2, n j = n - jj + 1 temp = -b(j+1) call daxpy(j,temp,t(1,j+1),1,b(1),1) b(j) = b(j)/t(j,j) 60 continue 70 continue go to 140 c c solve trans(t)*x=b for t lower triangular. c 80 continue b(n) = b(n)/t(n,n) if (n .lt. 2) go to 100 do 90 jj = 2, n j = n - jj + 1 b(j) = b(j) - ddot(jj-1,t(j+1,j),1,b(j+1),1) b(j) = b(j)/t(j,j) 90 continue 100 continue go to 140 c c solve trans(t)*x=b for t upper triangular. c 110 continue b(1) = b(1)/t(1,1) if (n .lt. 2) go to 130 do 120 j = 2, n b(j) = b(j) - ddot(j-1,t(1,j),1,b(1),1) b(j) = b(j)/t(j,j) 120 continue 130 continue 140 continue 150 continue return end c====================== The end of dtrsl ===============================
gpl-3.0
pablooliveira/cere
tests/test_08/hsmoc.f
3
61797
c c======================================================================= c c \\\\\\\\\\ B E G I N S U B R O U T I N E ////////// c ////////// H S M O C \\\\\\\\\\ c c Developed by c Laboratory of Computational Astrophysics c University of Illinois at Urbana-Champaign c c======================================================================= c subroutine hsmoc ( emf1, emf2, emf3 ) c c dac:zeus3d.mocemfs <-------------------------- MoC estimate of emfs c october, 1992 c c written by: David Clarke c modified 1: Byung-Il Jun, July 1994 c implemented John Hawley and Jim Stone's scheme to c fix pt. explosion of magnetic field in passive field. c Basically, this scheme mixes emfs computed with simple c upwinding(Evans and Hawley) and MoC. c The upwinded values are used to compute the wave c speeds for the characteristic cones for the MoC part. c modified 2: Robert Fiedler, February 1995 c upgraded to ZEUS-3D version 3.4 -- improved cache c utilization and added parallelization directives for c multiprocessors. c modified 3: Mordecai-Mark Mac Low, December 1997 - March 1998 c rewritten for ZEUS-MP without overlapping. Calls to c interpolation routines have been inlined. c modified 4: PSLi, December 1999 c minor modications to prevent scratch arrays overwritten. c c PURPOSE: Uses the Method of Characteristics (MoC, invented by Jim c Stone, John Hawley, Chuck Evans, and Michael Norman; see Stone and c Norman, ApJS, v80, p791) to evaluate the velocity and magnetic field c needed to estimate emfs that are properly upwinded in the character- c istic velocities for the set of equations describing transverse c Alfven waves. This is *not* the full characteristic problem, but c a subset which has been found (reference above) to yield good results c for the propagation of Alfven waves. This routine differs from the c previous routines MOC1, MOC2, and MOC3 in version 3.1 in that the c Lorentz forces are computed *before* the emfs are estimated. Thus, c the emfs now use the velocities which have been updated with all the c source terms, including the transverse Lorenz forces. c c The characteristic equations governing the propagation of Alfven c waves in the 1-direction are (see ZEUS3D notes "Method of Character- c istics"): c c "plus" characteristic (C+): c c ( db1/dt + (v2 - a2) * db1/dx2 + (v3 - a3) * db1/dx3 ) / sqrt(d) c + ( dv1/dt + (v2 - a2) * dv1/dx2 + (v3 - a3) * dv1/dx3 ) = S (1) c c "minus" characteristic (C-): c c ( db1/dt + (v2 + a2) * db1/dx2 + (v3 + a3) * db1/dx3 ) / sqrt(d) c - ( dv1/dt + (v2 + a2) * dv1/dx2 + (v3 + a3) * dv1/dx3 ) = -S (2) c c where a2 = b2/sqrt(d) is the Alfven velocity in the 2-direction c a3 = b3/sqrt(d) is the Alfven velocity in the 3-direction c g1, g2, g3 are the metric factors c S = b1 * ( b2/g2 * dg1/dx2 + b3/g3 * dg1/dx3 ) c c Equations (1) and (2) can be written in Lagrangian form: c c 1 D+/- D+/- c ------- ----(b1) +/- ----(v1) = +/- S (3) c sqrt(d) Dt Dt c c where the Lagrangian derivatives are given by c c D+/- d d d c ---- = -- + (v2 -/+ a2) --- + (v3 -/+ a3) --- (4) c Dt dt dx2 dx3 c c Differencing equations (3) [e.g. D+(b1) = b* - b+; D-(b1) = b* - b-], c and then solving for the advanced time values of b* and v*, one gets: c _ _ c sqrt (d+ * d-) | b+ b- | c b* = ------------------- | -------- + --------- + v+ - v- | (5) c sqrt(d+) + sqrt(d-) |_ sqrt(d+) sqrt(d-) _| c c 1 c v* = ------------------- [ v+*sqrt(d+) + v-*sqrt(d-) + b+ - b- ] c sqrt(d+) + sqrt(d-) (6) c c + S Dt c c where b+(-), and v+(-) are the upwinded values of the magnetic field c and velocity interpolated to the time-averaged bases of C+ (C-), and c d+(-) are estimates of the density along each characteristic path c during the time interval Dt. c c Equations (1) and (2) would suggest that when estimating "emf2" for c example, that the interpolated values for "v1" and "b1" be upwinded c in both the 2- and 3- components of the characteristic velocity. It c turns out that this is impractical numerically, and so only the c "partial" characteristics are tracked. While estimating "emf2", "v1" c and "b1" are upwinded only in the 3-component of the characteristic c velocities. Conversely, while estimating "emf3", "v1" and "b1" are c upwinded only in the 2-component of the characteristic velocities. c Since updating "b1" requires both "emf2" and "emf3", the evolution of c "b1" will ultimately depend upon the full characteristics. This c amounts to nothing more than directionally splitting the full MoC c algorithm. The effects of such a directionally split implementation c are not fully known. What is known is: c c 1) A non-directionally split implementation of the MoC algorithm is c not possible without either relocating the emfs to the zone c corners or the magnetic field components to the zone centres. c The former has been tried (change deck mocemf) and was found to c generate intolerable diffusion of magnetic field. In addition, c the algorithm is not unconditionally stable. The latter has not c been tried, but is dismissed on the grounds that div(B) will be c determined by truncation errors rather than machine round-off c errors. c c 2) A directionally split algorithm that is not also operator split c (ie, performing the Lorentz updates of the velocities separately c from the MoC estimation of the emfs) does not allow stable Alfven c wave propagation in 2-D. Operator splitting the MoC algorithm so c that the transverse Lorentz forces are computed *before* the c magnetic field update does allow Alfven waves to propagate stably c in multi-dimensions but appears to introduce more diffusion for c sub-Alfvenic flow. On the other hand, super-Alfvenic flow does c *not* appear to be more diffusive in the operator split scheme. c c INPUT VARIABLES: c c OUTPUT VARIABLES: c emf1 emf along 1-edge computed using MoC estimates of v2, b2, c v3, and b3. c emf2 emf along 2-edge computed using MoC estimates of v3, b3, c v1, and b1. c emf3 emf along 3-edge computed using MoC estimates of v1, b1, c v2, and b2. c c LOCAL VARIABLES: c c 1-D variables c bave spatially averaged magnetic field at edge c srdp sqrt(density) along the plus characteristic (C+) c srdm sqrt(density) along the minus characteristic (C-) c vchp characteristic velocity along C+ (v - va) c vchm characteristic velocity along C- (v + va) c vpch velocity interpolated to the time-centred footpoint of C+ c vmch velocity interpolated to the time-centred footpoint of C- c bpch B-field interpolated to the time-centred footpoint of C+ c bmch B-field interpolated to the time-centred footpoint of C- c vsnm1 MoC estimate of v[n-1] used to evaluate emf[n], n=1,2,3 c bsnm1 MoC estimate of b[n-1] used to evaluate emf[n], n=1,2,3 c c 2-D variables c v3intj upwinded v3 in 2-direction c b3intj upwinded b3 in 2-direction c etc.. c c 3-D variables c srd[n] sqrt of spatially averaged density at [n]-face n=1,2,3 c vsnp1 MoC estimate of v[n+1] used to evaluate emf[n], n=1,2,3 c bsnp1 MoC estimate of b[n+1] used to evaluate emf[n], n=1,2,3 c vsnp1 is reused as the vsnp1*bsnm1 term in emf[n] c bsnp1 is reused as the vsnm1*bsnp1 term in emf[n] c c EXTERNALS: c BVALEMF1, BVALEMF2, BVALEMF3 c c I have inlined these M-MML 8.3.98 c X1ZC1D , X2ZC1D , X3ZC1D c X1INT1D , X2INT1D , X3INT1D c c----------------------------------------------------------------------- c implicit NONE integer in, jn, kn, ijkn, neqm parameter(in = 128+5 & , jn = 128+5 & , kn = 128+5) parameter(ijkn = 128+5) parameter(neqm = 1) c integer nbvar parameter(nbvar = 14) c real*8 pi, tiny, huge parameter(pi = 3.14159265358979324) parameter(tiny = 1.000d-99 ) parameter(huge = 1.000d+99 ) c real*8 zro, one, two, haf parameter(zro = 0.0 ) parameter(one = 1.0 ) parameter(two = 2.0 ) parameter(haf = 0.5 ) c integer nbuff,mreq parameter(nbuff = 40, mreq=300) real*8 d (in,jn,kn), e (in,jn,kn), 1 v1(in,jn,kn), v2(in,jn,kn), v3(in,jn,kn) real*8 b1(in,jn,kn), b2(in,jn,kn), b3(in,jn,kn) common /fieldr/ d, e, v1, v2, v3 common /fieldr/ b1, b2, b3 real*8 . b1floor ,b2floor ,b3floor ,ciso .,courno ,dfloor .,dtal ,dtcs ,dtv1 ,dtv2 ,dtv3 .,dtqq ,dtnew .,dtrd .,dt ,dtdump .,dthdf ,dthist ,dtmin ,dttsl CJH .,dtqqi2 .,dtqqi2 ,dtnri2 ,dtrdi2 ,dtimrdi2 .,dtusr .,efloor ,erfloor ,gamma ,gamm1 .,qcon ,qlin .,tdump .,thdf ,thist ,time ,tlim ,cpulim .,trem ,tsave ,ttsl .,tused ,tusr .,v1floor ,v2floor ,v3floor .,emf1floor ,emf2floor ,emf3floor .,gpfloor integer . ifsen(6) .,idebug .,iordb1 ,iordb2 ,iordb3 ,iordd .,iorde ,iorder ,iords1 ,iords2 .,iords3 .,istpb1 ,istpb2 ,istpb3 ,istpd ,istpe ,istper .,istps1 ,istps2 ,istps3 C .,isymm .,ix1x2x3 ,jx1x2x3 .,nhy ,nlim ,nred ,mbatch .,nwarn ,nseq ,flstat c output file handles (efh 04/15/99) .,ioinp ,iotsl ,iolog ,iohst ,iomov ,iores .,ioshl common /rootr/ . b1floor ,b2floor ,b3floor ,ciso ,courno .,dfloor .,dtal ,dtcs ,dtv1 ,dtv2 ,dtv3 .,dtqq ,dtnew .,dtrd .,dt ,dtdump ,dthdf .,dthist ,dtmin ,dttsl CJH .,dtqqi2 ,dtusr .,dtqqi2 ,dtusr ,dtnri2 ,dtrdi2 ,dtimrdi2 .,efloor ,erfloor ,gamma ,gamm1 .,qcon ,qlin .,tdump ,thdf ,thist .,time ,tlim ,cpulim ,trem ,tsave .,tused ,tusr ,ttsl .,v1floor ,v2floor ,v3floor .,emf1floor ,emf2floor ,emf3floor .,gpfloor common /rooti/ . ifsen ,idebug .,iordb1 ,iordb2 .,iordb3 ,iordd ,iorde ,iorder ,iords1 .,iords2 ,iords3 .,istpb1 ,istpb2 ,istpb3 ,istpd ,istpe ,istper .,istps1 ,istps2 ,istps3 C .,isymm .,ix1x2x3 ,jx1x2x3 .,nhy ,nlim ,nred ,mbatch .,nwarn ,nseq ,flstat .,ioinp ,iotsl ,iolog ,iohst ,iomov ,iores .,ioshl character*2 id character*15 hdffile, hstfile, resfile, usrfile character*8 tslfile common /chroot2/ id common /chroot1/ hdffile, hstfile, resfile, usrfile .,tslfile integer is, ie, js, je, ks, ke & , ia, ja, ka, igcon integer nx1z, nx2z, nx3z c common /gridcomi/ & is, ie, js, je, ks, ke & , ia, ja, ka, igcon & , nx1z, nx2z, nx3z c real*8 x1a (in), x2a (jn), x3a (kn) & , x1ai (in), x2ai (jn), x3ai (kn) & ,dx1a (in), dx2a (jn), dx3a (kn) & ,dx1ai (in), dx2ai (jn), dx3ai (kn) & ,vol1a (in), vol2a (jn), vol3a (kn) & ,dvl1a (in), dvl2a (jn), dvl3a (kn) & ,dvl1ai (in), dvl2ai (jn), dvl3ai (kn) real*8 g2a (in), g31a (in), dg2ad1 (in) & , g2ai (in), g31ai (in), dg31ad1(in) real*8 g32a (jn), g32ai (jn), dg32ad2(jn) & , g4 a (jn) c real*8 x1b (in), x2b (jn), x3b (kn) & , x1bi (in), x2bi (jn), x3bi (kn) & ,dx1b (in), dx2b (jn), dx3b (kn) & ,dx1bi (in), dx2bi (jn), dx3bi (kn) & ,vol1b (in), vol2b (jn), vol3b (kn) & ,dvl1b (in), dvl2b (jn), dvl3b (kn) & ,dvl1bi (in), dvl2bi (jn), dvl3bi (kn) real*8 g2b (in), g31b (in), dg2bd1 (in) & , g2bi (in), g31bi (in), dg31bd1(in) real*8 g32b (jn), g32bi (jn), dg32bd2(jn) & , g4 b (jn) c real*8 vg1 (in), vg2 (jn), vg3 (kn) real*8 x1fac, x2fac, x3fac c common /gridcomr/ & x1a , x2a , x3a & , x1ai , x2ai , x3ai & ,dx1a , dx2a , dx3a & ,dx1ai , dx2ai , dx3ai & ,vol1a , vol2a , vol3a & ,dvl1a , dvl2a , dvl3a & ,dvl1ai , dvl2ai , dvl3ai & , g2a , g31a , dg2ad1 & , g2ai , g31ai , dg31ad1 & , g32a , g32ai , dg32ad2 & , g4 a c common /gridcomr/ & x1b , x2b , x3b & , x1bi , x2bi , x3bi & ,dx1b , dx2b , dx3b & ,dx1bi , dx2bi , dx3bi & ,vol1b , vol2b , vol3b & ,dvl1b , dvl2b , dvl3b & ,dvl1bi , dvl2bi , dvl3bi & , g2b , g31b , dg2bd1 & , g2bi , g31bi , dg31bd1 & , g32b , g32bi , dg32bd2 & , g4 b c common /gridcomr/ & vg1 , vg2 , vg3 & , x1fac , x2fac , x3fac c real*8 w1da(ijkn ) , w1db(ijkn ) , w1dc(ijkn ) &, w1dd(ijkn ) , w1de(ijkn ) , w1df(ijkn ) &, w1dg(ijkn ) , w1dh(ijkn ) , w1di(ijkn ) &, w1dj(ijkn ) , w1dk(ijkn ) , w1dl(ijkn ) &, w1dm(ijkn ) , w1dn(ijkn ) , w1do(ijkn ) &, w1dp(ijkn ) , w1dq(ijkn ) , w1dr(ijkn ) &, w1ds(ijkn ) , w1dt(ijkn ) , w1du(ijkn ) c added 1D arrays w1dk through w1du for M-MML 4 Mar 98 real*8 w3da(in,jn,kn) , w3db(in,jn,kn) , w3dc(in,jn,kn) &, w3dd(in,jn,kn) , w3de(in,jn,kn) , w3df(in,jn,kn) &, w3dg(in,jn,kn) &, w3di(in,jn,kn) , w3dj(in,jn,kn) common /scratch/ w1da,w1db,w1dc,w1dd,w1de,w1df &, w1dg,w1dh,w1di,w1dj,w1dk,w1dl,w1dm &, w1dn,w1do,w1dp,w1dq,w1dr,w1ds,w1dt &, w1du common /scratch/ w3da,w3db,w3dc,w3dd,w3de,w3df,w3dg &, w3di,w3dj integer stat, req logical periodic(3) logical reorder integer myid, myid_w, nprocs, nprocs_w, coords(3) integer ierr, nreq, nsub integer comm3d integer ntiles(3) integer n1m, n1p, n2m, n2p, n3m, n3p integer i_slice,j_slice,k_slice integer ils_slice,jls_slice,kls_slice integer ilsm_slice,jlsm_slice,klsm_slice integer ibuf_in(nbuff), ibuf_out(nbuff) real*8 buf_in(nbuff), buf_out(nbuff) common /mpicomi/ myid, myid_w, nprocs, nprocs_w, coords & , comm3d, ntiles & , n1m, n1p, n2m, n2p, n3m, n3p & , i_slice, j_slice, k_slice & , ils_slice, jls_slice, kls_slice & , ilsm_slice, jlsm_slice, klsm_slice & , ibuf_in, ibuf_out & , stat, req, ierr, nreq, nsub common /mpicoml/ periodic, reorder common /mpicomr/ buf_in, buf_out c integer i , j , k real*8 absb , sgnp , sgnm 1 , q1 , q2 , src & , qv1, qv2, qb1, qb2, q3 ,dqm ,dqp ,xi ,fact & , dv(ijkn), db(ijkn) c real*8 bave (ijkn), srdp (ijkn), srdm (ijkn) 1 , srdpi (ijkn), srdmi (ijkn), vchp (ijkn) 1 , vchm (ijkn), vtmp (ijkn), btmp (ijkn) 2 , vpch (ijkn), vmch (ijkn), bpch (ijkn) 3 , bmch (ijkn), vsnm1 (ijkn), bsnm1 (ijkn) 4 , vave (ijkn), aave (ijkn) c real*8 vfl (ijkn), vt (ijkn), bt (ijkn) 1 , vint (ijkn), bint (ijkn) c real*8 v3intj (jn,kn), b3intj(jn,kn) 1 , v2intk (jn,kn), b2intk(jn,kn) 2 , v1intk (kn,in), b1intk(kn,in) 3 , v3inti (kn,in), b3inti(kn,in) 4 , v2inti (in,jn), b2inti(in,jn) 5 , v1intj (in,jn), b1intj(in,jn) c real*8 emf1 ( in, jn, kn), emf2 ( in, jn, kn) 1 , emf3 ( in, jn, kn) real*8 vsnp1 ( in, jn, kn), bsnp1 ( in, jn, kn) 1 , srd1 ( in, jn, kn), srd2 ( in, jn, kn) 1 , srd3 ( in, jn, kn) c c equivalence ( bave , w1da ), ( srdp , w1db ) 1 , ( srdm , w1dc ), ( srdpi , w1dd ) 1 , ( srdmi , w1de ), ( vchp , w1df ) 1 , ( vchm , w1dg ), ( vpch , w1dh ) 1 , ( vmch , w1di ), ( bpch , w1dj ) 1 , ( bmch , w1dk ) 1 , ( vtmp , w1dl ) 1 , ( btmp , w1dm ) 1 , ( vave , w1dn ) 1 , ( aave , w1do ) 1 , ( vsnm1 , w1dp ) 1 , ( bsnm1 , w1dq ) 1 , ( vt , w1dq ) 1 , ( bt , w1dr ) 1 , ( vint , w1ds ) 1 , ( bint , w1dt ) 1 , ( vfl , w1du ) c c there are no 2D scratch arrays like in ZEUS-3D, but these can all still c be equivalenced to each other. M-MML 4 Mar 98 equivalence ( v3intj, v2intk, v1intk, v3inti, v2inti 2 , v1intj ) 2 , ( b3intj, b2intk, b1intk, b3inti, b2inti 2 , b1intj ) c c Careful! "wa3d" through "wc3d" are equivalenced in CT. c wa3d -> emf1 wb3d -> emf2 wc3d -> emf3 c c The worker arrays "we3d" and "wf3d" should still contain "srd2" c and "srd3" from LORENTZ. The worker array "wd3d" will contain c "srd1", but "wd3d" is needed for "bsnp1" and "term2". Thus "srd1" c will be recomputed once "srd3" is no longer needed. c cRAF We have more array space with wg3d, so don't recompute srd1. cRAF SGIMP does not like equivalenced variables in the same loop nest, cRAF so eliminate term1 and term2. c CPS equivalence ( srd1 , w3di ) 1 , ( srd2 , w3dj ) 1 , ( srd3 , w3df ) 1 , ( bsnp1 , w3dg ) C c c External statements c external bvalemf1, bvalemf2, bvalemf3 c c----------------------------------------------------------------------- c c c----------------------------------------------------------------------- c---- 1. emf1 --------------------------------------------------------- c----------------------------------------------------------------------- c c BEGINNING OF I LOOPS c c c By following the characteristics of the flow in the 3-direction, c determine values for "v2" and "b2" ("vsnp1" and "bsnp1") to be used c in evaluating "emf1". c c Compute upwinded b3 and v3 in the 2-direction and use them to c compute the wave speeds for the characteristic cones for the MoC. c CPS Initialize vsnp1 do k=1,kn do j=1,jn do i=1,in vsnp1(i,j,k)=0. enddo enddo enddo C do 99 k=ks,ke+1 do 9 i=is,ie do 7 j=js-2,je+2 vfl (j) = 0.5 * (v2(i,j,k) + v2(i,j,k-1)) - vg2(j) vt (j) = v3(i,j,k) - vg3(k) bt (j) = b3(i,j,k) 7 continue c c call x2int1d ( bt, vfl, iordb3, istpb3, k, i c 1 , g2b, g2bi, bint ) c call x2int1d ( vt, vfl, iords3, istps3, k, i c 1 , g2b, g2bi, vint ) c subroutine x2int1d ( q, vp, iorder, isteep, k, i c 1 , g2, g2i , qp ) c 1. Evaluate monotonised, van Leer difference in "q" across the zone. c do 807 j=js-1,je+1 dqm = ( vt(j ) - vt(j-1) ) * dx2bi(j ) dqp = ( vt(j+1) - vt(j ) ) * dx2bi(j+1) dv (j ) = max ( dqm * dqp, zro ) 1 * sign ( one, dqm + dqp ) 2 / max ( abs ( dqm + dqp ), tiny ) dqm = ( bt(j ) - bt(j-1) ) * dx2bi(j ) dqp = ( bt(j+1) - bt(j ) ) * dx2bi(j+1) db (j ) = max ( dqm * dqp, zro ) 1 * sign ( one, dqm + dqp ) 2 / max ( abs ( dqm + dqp ), tiny ) 807 continue c c 2. Perform an upwinded interpolation of "q" to the time-centred c bases of the characteristics. c fact = dt * g2bi(i) do 808 j=js,je+1 qv1 = vt(j-1) + dx2a(j-1) * dv (j-1) qv2 = vt(j ) - dx2a(j ) * dv (j ) qb1 = bt(j-1) + dx2a(j-1) * db (j-1) qb2 = bt(j ) - dx2a(j ) * db (j ) c xi = vfl(j) * fact q3 = sign ( haf, xi ) vint(j)= ( 0.5 + q3 ) * ( qv1 - xi * dv (j-1) ) 1 + ( 0.5 - q3 ) * ( qv2 - xi * dv (j ) ) bint(j)= ( 0.5 + q3 ) * ( qb1 - xi * db (j-1) ) 1 + ( 0.5 - q3 ) * ( qb2 - xi * db (j ) ) 808 continue do 8 j=js,je+1 emf1(i,j,k) = vint(j) emf2(i,j,k) = bint(j) 8 continue 9 continue 99 continue c c Select an effective density and determine the characteristic c velocity using upwinded values for each characteristic in the c 3-direction. c do 50 j=js,je+1 do 40 i=is,ie do 10 k=ks,ke+1 vave (k) = emf1(i,j,k) bave (k) = emf2(i,j,k) c vave (k) = 0.5 * ( v3(i,j,k) + v3(i,jm1,k) ) - vg3(k) c bave (k) = 0.5 * ( b3(i,j,k) + b3(i,jm1,k) ) absb = abs ( bave(k) ) aave(k) = 0.5 * absb * ( srd2(i,j,k) + srd2(i,j,k-1) ) 1 / ( srd2(i,j,k) * srd2(i,j,k-1) ) sgnp = sign ( haf, vave(k) - aave(k) ) sgnm = sign ( haf, vave(k) + aave(k) ) srdp (k) = ( 0.5 + sgnp ) * srd2(i,j,k-1) 1 + ( 0.5 - sgnp ) * srd2(i,j,k ) srdm (k) = ( 0.5 + sgnm ) * srd2(i,j,k-1) 1 + ( 0.5 - sgnm ) * srd2(i,j,k ) srdpi(k) = 1.0 / srdp(k) srdmi(k) = 1.0 / srdm(k) vchp (k) = vave(k) - absb * srdpi(k) vchm (k) = vave(k) + absb * srdmi(k) 10 continue c c Interpolate 1-D vectors of "v2" and "b2" in the 3-direction to c the footpoints of both characteristics. c do 20 k=ks-2,ke+2 vtmp(k) = v2(i,j,k) - vg2(j) btmp(k) = b2(i,j,k) 20 continue c call x3zc1d ( vtmp, vchp, vchm, iords2, istps2, i, j c 1 , g31b, g31bi, g32a, g32ai, vpch, vmch ) c call x3zc1d ( btmp, vchp, vchm, iordb2, istpb2, i, j c 1 , g31b, g31bi, g32a, g32ai, bpch, bmch ) c subroutine x3zc1d ( q, vp, vm, iorder, isteep, i, j, g31, g31i c 1 , g32, g32i, qp, qm ) c 1. Evaluate monotonised, van Leer difference in "q" across the zone. c do 820 k=ks-1,ke+1 dqm = ( vtmp(k ) - vtmp(k-1) ) * dx3bi(k ) dqp = ( vtmp(k+1) - vtmp(k ) ) * dx3bi(k+1) dv (k ) = max ( dqm * dqp, zro ) 1 * sign ( one, dqm + dqp ) 2 / max ( abs ( dqm + dqp ), tiny ) dqm = ( btmp(k ) - btmp(k-1) ) * dx3bi(k ) dqp = ( btmp(k+1) - btmp(k ) ) * dx3bi(k+1) db (k ) = max ( dqm * dqp, zro ) 1 * sign ( one, dqm + dqp ) 2 / max ( abs ( dqm + dqp ), tiny ) 820 continue c c 2. Perform an upwinded interpolation of "q" to the time-centred c bases of the characteristics. c fact = dt * g31bi(i) * g32ai(j) do 830 k=ks,ke+1 qv1 = vtmp(k-1) + dx3a(k-1) * dv (k-1) qv2 = vtmp(k ) - dx3a(k ) * dv (k ) qb1 = btmp(k-1) + dx3a(k-1) * db (k-1) qb2 = btmp(k ) - dx3a(k ) * db (k ) c xi = vchp(k) * fact q3 = sign ( haf, xi ) vpch(k)= ( 0.5 + q3 ) * ( qv1 - xi * dv (k-1) ) 1 + ( 0.5 - q3 ) * ( qv2 - xi * dv (k ) ) bpch(k)= ( 0.5 + q3 ) * ( qb1 - xi * db (k-1) ) 1 + ( 0.5 - q3 ) * ( qb2 - xi * db (k ) ) c xi = vchm(k) * fact q3 = sign ( haf, xi ) vmch(k)= ( 0.5 + q3 ) * ( qv1 - xi * dv (k-1) ) 1 + ( 0.5 - q3 ) * ( qv2 - xi * dv (k ) ) bmch(k)= ( 0.5 + q3 ) * ( qb1 - xi * db (k-1) ) 1 + ( 0.5 - q3 ) * ( qb2 - xi * db (k ) ) 830 continue c c c Evaluate "vsnp1" and "bsnp1" by solving the characteristic c equations. There is no source term since the metric factor "g2" has c no explicit dependence on x3. c do 30 k=ks,ke+1 q2 = sign ( one, bave(k) ) vsnp1(i,j,k) = ( vpch (k) * srdp (k) + vmch (k) * srdm (k) 1 + q2 * ( bpch(k) - bmch(k) ) ) 2 / ( srdp (k) + srdm (k) ) bsnp1(i,j,k) = ( bpch (k) * srdpi(k) + bmch (k) * srdmi(k) 1 + q2 * ( vpch(k) - vmch(k) ) ) 2 / ( srdpi(k) + srdmi(k) ) vsnp1(i,j,k) = vsnp1(i,j,k) * bave(k) bsnp1(i,j,k) = bsnp1(i,j,k) * vave(k) 30 continue c 40 continue c 50 continue c c----------------------------------------------------------------------- c c By following the characteristics of the flow in the 2-direction, c determine values for "v3" and "b3" ("vsnm1" and "bsnm1") to be used c in evaluating "emf1". c src = 0.0 c c Compute upwinded b2 and v2 in the 3-direction and use them to c compute the wave speeds for the chracteristic cones for the MoC c do 199 j=js,je+1 do 59 i=is,ie do 57 k=ks-2,ke+2 vfl (k) = 0.5 * (v3(i,j,k) + v3(i,j-1,k)) - vg3(k) vt (k) = v2(i,j,k) - vg2(j) bt (k) = b2(i,j,k) 57 continue c call x3int1d ( bt, vfl, iordb2, istpb2, i, j c 1 , g31b, g31bi, g32a, g32ai, bint ) c call x3int1d ( vt, vfl, iords2, istps2, i, j c 1 , g31b, g31bi, g32a, g32ai, vint ) c 1. Evaluate monotonised, van Leer difference in "q" across the zone. c do 857 k=ks-1,ke+1 dqm = ( vt(k ) - vt(k-1) ) * dx3bi(k ) dqp = ( vt(k+1) - vt(k ) ) * dx3bi(k+1) dv (k ) = max ( dqm * dqp, zro ) 1 * sign ( one, dqm + dqp ) 2 / max ( abs ( dqm + dqp ), tiny ) dqm = ( bt(k ) - bt(k-1) ) * dx3bi(k ) dqp = ( bt(k+1) - bt(k ) ) * dx3bi(k+1) db (k ) = max ( dqm * dqp, zro ) 1 * sign ( one, dqm + dqp ) 2 / max ( abs ( dqm + dqp ), tiny ) 857 continue c c 2. Perform an upwinded interpolation of "q" to the time-centred c bases of the characteristics. c fact = dt * g31bi(i) * g32ai(j) do 858 k=ks,ke+1 qv1 = vt(k-1) + dx3a(k-1) * dv (k-1) qv2 = vt(k ) - dx3a(k ) * dv (k ) qb1 = bt(k-1) + dx3a(k-1) * db (k-1) qb2 = bt(k ) - dx3a(k ) * db (k ) c xi = vfl(k) * fact q3 = sign ( haf, xi ) vint(k)= ( 0.5 + q3 ) * ( qv1 - xi * dv (k-1) ) 1 + ( 0.5 - q3 ) * ( qv2 - xi * dv (k ) ) bint(k)= ( 0.5 + q3 ) * ( qb1 - xi * db (k-1) ) 1 + ( 0.5 - q3 ) * ( qb2 - xi * db (k ) ) 858 continue c do 58 k=ks,ke+1 emf1(i,j,k) = vint(k) emf2(i,j,k) = bint(k) 58 continue 59 continue 199 continue c c Select an effective density and determine the characteristic c velocity using upwinded values for each characteristic in the c 2-direction. c do 299 k=ks,ke+1 do 90 i=is,ie do 60 j=js,je+1 vave (j) = emf1(i,j,k) bave (j) = emf2(i,j,k) c vave (j) = 0.5 * ( v2(i,j,k) + v2(i,j,km1) ) - vg2(j) c bave (j) = 0.5 * ( b2(i,j,k) + b2(i,j,km1) ) absb = abs ( bave(j) ) aave (j) = 0.5 * absb * ( srd3(i,j,k) + srd3(i,j-1,k) ) 1 / ( srd3(i,j,k) * srd3(i,j-1,k) ) sgnp = sign ( haf, vave(j) - aave(j) ) sgnm = sign ( haf, vave(j) + aave(j) ) srdp (j) = ( 0.5 + sgnp ) * srd3(i,j-1,k) 1 + ( 0.5 - sgnp ) * srd3(i,j, k) srdm (j) = ( 0.5 + sgnm ) * srd3(i,j-1,k) 1 + ( 0.5 - sgnm ) * srd3(i,j, k) srdpi(j) = 1.0 / srdp(j) srdmi(j) = 1.0 / srdm(j) vchp (j) = vave(j) - absb * srdpi(j) vchm (j) = vave(j) + absb * srdmi(j) 60 continue c c Interpolate 1-D vectors of "v3" and "b3" in the 2-direction to c the footpoints of both characteristics. c do 70 j=js-2,je+2 vtmp(j) = v3(i,j,k) - vg3(k) btmp(j) = b3(i,j,k) 70 continue c call x2zc1d ( vtmp, vchp, vchm, iords3, istps3, k, i c 1 , g2b, g2bi, vpch, vmch ) c call x2zc1d ( btmp, vchp, vchm, iordb3, istpb3, k, i c 1 , g2b, g2bi, bpch, bmch ) c subroutine x2zc1d ( q, vp, vm, iorder, isteep, k, i, g2, g2i c 1 , qp, qm ) c do 870 j=js-1,je+1 dqm = ( vtmp(j ) - vtmp(j-1) ) * dx2bi(j ) dqp = ( vtmp(j+1) - vtmp(j ) ) * dx2bi(j+1) dv (j ) = max ( dqm * dqp, zro ) 1 * sign ( one, dqm + dqp ) 2 / max ( abs ( dqm + dqp ), tiny ) dqm = ( btmp(j ) - btmp(j-1) ) * dx2bi(j ) dqp = ( btmp(j+1) - btmp(j ) ) * dx2bi(j+1) db (j ) = max ( dqm * dqp, zro ) 1 * sign ( one, dqm + dqp ) 2 / max ( abs ( dqm + dqp ), tiny ) 870 continue c c 2. Perform an upwinded interpolation of "q" to the time-centred c bases of the characteristics. c fact = dt * g2bi(i) do 880 j=js,je+1 qv1 = vtmp(j-1) + dx2a(j-1) * dv (j-1) qv2 = vtmp(j ) - dx2a(j ) * dv (j ) qb1 = btmp(j-1) + dx2a(j-1) * db (j-1) qb2 = btmp(j ) - dx2a(j ) * db (j ) c xi = vchp(j) * fact q3 = sign ( haf, xi ) vpch(j)= ( 0.5 + q3 ) * ( qv1 - xi * dv (j-1) ) 1 + ( 0.5 - q3 ) * ( qv2 - xi * dv (j ) ) bpch(j)= ( 0.5 + q3 ) * ( qb1 - xi * db (j-1) ) 1 + ( 0.5 - q3 ) * ( qb2 - xi * db (j ) ) c xi = vchm(j) * fact q3 = sign ( haf, xi ) vmch(j)= ( 0.5 + q3 ) * ( qv1 - xi * dv (j-1) ) 1 + ( 0.5 - q3 ) * ( qv2 - xi * dv (j ) ) bmch(j)= ( 0.5 + q3 ) * ( qb1 - xi * db (j-1) ) 1 + ( 0.5 - q3 ) * ( qb2 - xi * db (j ) ) 880 continue c c Evaluate "vsnm1" and "bsnm1" by solving the characteristic c equations. The source term is non-zero for RTP and ZRP coordinates c since dg32/dx2 .ne. 0. Compute the two terms in "emf1". c q1 = dt * g2bi(i) do 80 j=js,je+1 q2 = sign ( one, bave(j) ) vsnm1( j ) = ( vpch (j) * srdp (j) + vmch (j) * srdm (j) 1 + q2 * ( bpch(j) - bmch(j) ) ) 3 / ( srdp (j) + srdm (j) ) + src bsnm1( j ) = ( bpch (j) * srdpi(j) + bmch (j) * srdmi(j) 1 + q2 * ( vpch(j) - vmch(j) ) ) 3 / ( srdpi(j) + srdmi(j) ) vsnm1( j ) = vsnm1(j) * bave(j) bsnm1( j ) = bsnm1(j) * vave(j) c vsnp1(i,j,k) = 0.5*( vsnp1(i,j,k) + bsnm1( j ) ) bsnp1(i,j,k) = 0.5*( vsnm1( j ) + bsnp1(i,j,k) ) 80 continue 90 continue 299 continue c c END OF I LOOP c 100 continue c c----------------------------------------------------------------------- c c Set boundary values for "term1" and "term2". c C#ifdef MPI_USED C nreq = 0 C nsub = nsub + 1 C#endif call bvalemf1 ( vsnp1, bsnp1 ) c c Compute "emf1" for all 1-edges, including the ghost zones. c do 130 k=ks-2,ke+3 do 120 j=js-2,je+3 do 110 i=is-2,ie+2 emf1(i,j,k) = ( vsnp1(i,j,k) - bsnp1(i,j,k) ) 1 * dx1a (i) 110 continue 120 continue 130 continue c c----------------------------------------------------------------------- c---- 2. emf2 --------------------------------------------------------- c----------------------------------------------------------------------- c c BEGINNING OF FIRST J LOOP c do 180 j=js,je c c By following the characteristics of the flow in the 1-direction, c determine values for "v3" and "b3" ("vsnp1" and "bsnp1") to be used c in evaluating "emf2". c src = 0.0 c c Compute upwinded b1 and v1 in the 3-direction and use them to c compute the wave speeds for the chracteristic cones for the MoC. c do 139 i=is,ie+1 do 137 k=ks-2,ke+2 vfl (k) = 0.5*(v3(i,j,k) + v3(i-1,j,k)) - vg3(k) vt (k) = v1(i,j,k) - vg1(i) bt (k) = b1(i,j,k) 137 continue c c c call x3int1d ( bt, vfl, iordb1, istpb1, i, j c 1 , g31b, g31bi, g32a, g32ai, bint ) c call x3int1d ( vt, vfl, iordb1, istpb1, i, j c 1 , g31b, g31bi, g32a, g32ai, vint ) c 1. Evaluate monotonised, van Leer difference in "q" across the zone. c do 937 k=ks-1,ke+1 dqm = ( vt(k ) - vt(k-1) ) * dx3bi(k ) dqp = ( vt(k+1) - vt(k ) ) * dx3bi(k+1) dv (k ) = max ( dqm * dqp, zro ) 1 * sign ( one, dqm + dqp ) 2 / max ( abs ( dqm + dqp ), tiny ) dqm = ( bt(k ) - bt(k-1) ) * dx3bi(k ) dqp = ( bt(k+1) - bt(k ) ) * dx3bi(k+1) db (k ) = max ( dqm * dqp, zro ) 1 * sign ( one, dqm + dqp ) 2 / max ( abs ( dqm + dqp ), tiny ) 937 continue c c 2. Perform an upwinded interpolation of "q" to the time-centred c bases of the characteristics. c fact = dt * g31bi(i) * g32ai(j) do 938 k=ks,ke+1 qv1 = vt(k-1) + dx3a(k-1) * dv (k-1) qv2 = vt(k ) - dx3a(k ) * dv (k ) qb1 = bt(k-1) + dx3a(k-1) * db (k-1) qb2 = bt(k ) - dx3a(k ) * db (k ) c xi = vfl(k) * fact q3 = sign ( haf, xi ) vint(k)= ( 0.5 + q3 ) * ( qv1 - xi * dv (k-1) ) 1 + ( 0.5 - q3 ) * ( qv2 - xi * dv (k ) ) bint(k)= ( 0.5 + q3 ) * ( qb1 - xi * db (k-1) ) 1 + ( 0.5 - q3 ) * ( qb2 - xi * db (k ) ) 938 continue c do 138 k=ks,ke+1 v1intk(k,i) = vint(k) b1intk(k,i) = bint(k) 138 continue 139 continue c c Select an effective density and determine the characteristic c velocity using upwinded values for each characteristic in the c 1-direction. c do 170 k=ks,ke+1 do 140 i=is,ie+1 vave (i) = v1intk(k,i) bave (i) = b1intk(k,i) c vave (i) = 0.5 * ( v1(i,j,k) + v1(i,j,km1) ) - vg1(i) c bave (i) = 0.5 * ( b1(i,j,k) + b1(i,j,km1) ) absb = abs ( bave(i) ) aave (i) = 0.5 * absb * ( srd3(i,j,k) + srd3(i-1,j,k) ) 1 / ( srd3(i,j,k) * srd3(i-1,j,k) ) sgnp = sign ( haf, vave(i) - aave(i) ) sgnm = sign ( haf, vave(i) + aave(i) ) srdp (i) = ( 0.5 + sgnp ) * srd3(i-1,j,k) 1 + ( 0.5 - sgnp ) * srd3(i ,j,k) srdm (i) = ( 0.5 + sgnm ) * srd3(i-1,j,k) 1 + ( 0.5 - sgnm ) * srd3(i ,j,k) srdpi(i) = 1.0 / srdp(i) srdmi(i) = 1.0 / srdm(i) vchp (i) = vave(i) - absb * srdpi(i) vchm (i) = vave(i) + absb * srdmi(i) 140 continue c c Interpolate 1-D vectors of "v3" and "b3" in the 1-direction to c the footpoints of both characteristics. c do 150 i=is-2,ie+2 vtmp(i) = v3(i,j,k) - vg3(k) btmp(i) = b3(i,j,k) 150 continue c call x1zc1d ( vtmp, vchp, vchm, iords3, istps3, j, k c 1 , vpch, vmch ) c call x1zc1d ( btmp, vchp, vchm, iordb3, istpb3, j, k c 1 , bpch, bmch ) c 1. Evaluate monotonised, van Leer difference in "q" across the zone. c do 950 i=is-1,ie+1 dqm = ( vtmp(i ) - vtmp(i-1) ) * dx1bi(i ) dqp = ( vtmp(i+1) - vtmp(i ) ) * dx1bi(i+1) dv (i ) = max ( dqm * dqp, zro ) 1 * sign ( one, dqm + dqp ) 2 / max ( abs ( dqm + dqp ), tiny ) dqm = ( btmp(i ) - btmp(i-1) ) * dx1bi(i ) dqp = ( btmp(i+1) - btmp(i ) ) * dx1bi(i+1) db (i ) = max ( dqm * dqp, zro ) 1 * sign ( one, dqm + dqp ) 2 / max ( abs ( dqm + dqp ), tiny ) 950 continue c c 2. Perform an upwinded interpolation of "q" to the time-centred c bases of the characteristics. c do 960 i=is,ie+1 qv1 = vtmp(i-1) + dx1a(i-1) * dv (i-1) qv2 = vtmp(i ) - dx1a(i ) * dv (i ) qb1 = btmp(i-1) + dx1a(i-1) * db (i-1) qb2 = btmp(i ) - dx1a(i ) * db (i ) c xi = vchp(i) * dt q3 = sign ( haf, xi ) vpch(i)= ( 0.5 + q3 ) * ( qv1 - xi * dv (i-1) ) 1 + ( 0.5 - q3 ) * ( qv2 - xi * dv (i ) ) bpch(i)= ( 0.5 + q3 ) * ( qb1 - xi * db (i-1) ) 1 + ( 0.5 - q3 ) * ( qb2 - xi * db (i ) ) c xi = vchm(i) * dt q3 = sign ( haf, xi ) vmch(i)= ( 0.5 + q3 ) * ( qv1 - xi * dv (i-1) ) 1 + ( 0.5 - q3 ) * ( qv2 - xi * dv (i ) ) bmch(i)= ( 0.5 + q3 ) * ( qb1 - xi * db (i-1) ) 1 + ( 0.5 - q3 ) * ( qb2 - xi * db (i ) ) 960 continue c c Evaluate "vsnp1" and "bsnp1" by solving the characteristic c equations. The source term is non-zero for RTP coordinates since c dg31/dx1 = 1.0. c do 160 i=is,ie+1 q2 = sign ( one, bave(i) ) vsnp1(i,j,k) = ( vpch (i) * srdp (i) + vmch (i) * srdm (i) 1 + q2 * ( bpch(i) - bmch(i) ) ) 3 / ( srdp (i) + srdm (i) ) + src bsnp1(i,j,k) = ( bpch (i) * srdpi(i) + bmch (i) * srdmi(i) 1 + q2 * ( vpch (i) - vmch (i) ) ) 3 / ( srdpi(i) + srdmi(i) ) vsnp1(i,j,k) = vsnp1(i,j,k) * bave(i) bsnp1(i,j,k) = bsnp1(i,j,k) * vave(i) 160 continue c 170 continue c c END OF FIRST J LOOP c 180 continue c c----------------------------------------------------------------------- c c c BEGINNING OF SECOND J LOOP c c do 230 j=js,je c c By following the characteristics of the flow in the 3-direction, c determine values for "v1" and "b1" ("vsnm1" and "bsnm1") to be used c in evaluating "emf2". c c Compute upwinded b3 and v3 in the 1-direction and use them to c compute the wave speeds for the chracteristic cones for the MoC c do 189 k=ks,ke+1 do 188 i=is-2,ie+2 vfl (i) = 0.5*(v1(i,j,k) + v1(i,j,k-1)) - vg1(i) vt (i) = v3(i,j,k) - vg3(k) bt (i) = b3(i,j,k) 188 continue c c call x1int1d ( bt, vfl, iordb1, istpb1, j, k c 1 , bint ) c call x1int1d ( vt, vfl, iords1, istps1, j, k c 1 , vint ) c 1. Evaluate monotonised, van Leer difference in "q" across the zone. c do 988 i=is-1,ie+1 dqm = ( vt(i ) - vt(i-1) ) * dx1bi(i ) dqp = ( vt(i+1) - vt(i ) ) * dx1bi(i+1) dv (i ) = max ( dqm * dqp, zro ) 1 * sign ( one, dqm + dqp ) 2 / max ( abs ( dqm + dqp ), tiny ) dqm = ( bt(i ) - bt(i-1) ) * dx1bi(i ) dqp = ( bt(i+1) - bt(i ) ) * dx1bi(i+1) db (i ) = max ( dqm * dqp, zro ) 1 * sign ( one, dqm + dqp ) 2 / max ( abs ( dqm + dqp ), tiny ) 988 continue c c 2. Perform an upwinded interpolation of "q" to the time-centred c bases of the characteristics. c do 987 i=is,ie+1 qv1 = vt(i-1) + dx1a(i-1) * dv (i-1) qv2 = vt(i ) - dx1a(i ) * dv (i ) qb1 = bt(i-1) + dx1a(i-1) * db (i-1) qb2 = bt(i ) - dx1a(i ) * db (i ) c xi = vfl(i) * dt q3 = sign ( haf, xi ) vint(i)= ( 0.5 + q3 ) * ( qv1 - xi * dv (i-1) ) 1 + ( 0.5 - q3 ) * ( qv2 - xi * dv (i ) ) bint(i)= ( 0.5 + q3 ) * ( qb1 - xi * db (i-1) ) 1 + ( 0.5 - q3 ) * ( qb2 - xi * db (i ) ) 987 continue c do 187 i=is,ie+1 v3inti(k,i) = vint(i) b3inti(k,i) = bint(i) 187 continue 189 continue c c c Select an effective density and determine the characteristic c velocity using upwinded values for each characteristic in the c 3-direction. c do 220 i=is,ie+1 do 190 k=ks,ke+1 vave (k) = v3inti(k,i) bave (k) = b3inti(k,i) c vave (k) = 0.5 * ( v3(i,j,k) + v3(im1,j,k) ) - vg3(k) c bave (k) = 0.5 * ( b3(i,j,k) + b3(im1,j,k) ) absb = abs ( bave(k) ) aave (k) = 0.5 * absb * ( srd1(i,j,k) + srd1(i,j,k-1) ) 1 / ( srd1(i,j,k) * srd1(i,j,k-1) ) sgnp = sign ( haf, vave(k) - aave(k) ) sgnm = sign ( haf, vave(k) + aave(k) ) srdp (k) = ( 0.5 + sgnp ) * srd1(i,j,k-1) 1 + ( 0.5 - sgnp ) * srd1(i,j,k ) srdm (k) = ( 0.5 + sgnm ) * srd1(i,j,k-1) 1 + ( 0.5 - sgnm ) * srd1(i,j,k ) srdpi(k) = 1.0 / srdp(k) srdmi(k) = 1.0 / srdm(k) vchp (k) = vave(k) - absb * srdpi(k) vchm (k) = vave(k) + absb * srdmi(k) 190 continue c c Interpolate 1-D vectors of "v1" and "b1" in the 3-direction to c the footpoints of both characteristics. c do 200 k=ks-2,ke+2 vtmp(k) = v1(i,j,k) - vg1(i) btmp(k) = b1(i,j,k) 200 continue c call x3zc1d ( vtmp, vchp, vchm, iords1, istps1, i, j c 1 , g31a, g31ai, g32b, g32bi, vpch, vmch ) c call x3zc1d ( btmp, vchp, vchm, iordb1, istpb1, i, j c 1 , g31a, g31ai, g32b, g32bi, bpch, bmch ) c subroutine x3zc1d ( q, vp, vm, iorder, isteep, i, j, g31, g31i c 1 , g32, g32i, qp, qm ) c 1. Evaluate monotonised, van Leer difference in "q" across the zone. c do 1000 k=ks-1,ke+1 dqm = ( vtmp(k ) - vtmp(k-1) ) * dx3bi(k ) dqp = ( vtmp(k+1) - vtmp(k ) ) * dx3bi(k+1) dv (k ) = max ( dqm * dqp, zro ) 1 * sign ( one, dqm + dqp ) 2 / max ( abs ( dqm + dqp ), tiny ) dqm = ( btmp(k ) - btmp(k-1) ) * dx3bi(k ) dqp = ( btmp(k+1) - btmp(k ) ) * dx3bi(k+1) db (k ) = max ( dqm * dqp, zro ) 1 * sign ( one, dqm + dqp ) 2 / max ( abs ( dqm + dqp ), tiny ) 1000 continue c c 2. Perform an upwinded interpolation of "q" to the time-centred c bases of the characteristics. c fact = dt * g31ai(i) * g32bi(j) do 1010 k=ks,ke+1 qv1 = vtmp(k-1) + dx3a(k-1) * dv (k-1) qv2 = vtmp(k ) - dx3a(k ) * dv (k ) qb1 = btmp(k-1) + dx3a(k-1) * db (k-1) qb2 = btmp(k ) - dx3a(k ) * db (k ) c xi = vchp(k) * fact q3 = sign ( haf, xi ) vpch(k)= ( 0.5 + q3 ) * ( qv1 - xi * dv (k-1) ) 1 + ( 0.5 - q3 ) * ( qv2 - xi * dv (k ) ) bpch(k)= ( 0.5 + q3 ) * ( qb1 - xi * db (k-1) ) 1 + ( 0.5 - q3 ) * ( qb2 - xi * db (k ) ) c xi = vchm(k) * fact q3 = sign ( haf, xi ) vmch(k)= ( 0.5 + q3 ) * ( qv1 - xi * dv (k-1) ) 1 + ( 0.5 - q3 ) * ( qv2 - xi * dv (k ) ) bmch(k)= ( 0.5 + q3 ) * ( qb1 - xi * db (k-1) ) 1 + ( 0.5 - q3 ) * ( qb2 - xi * db (k ) ) 1010 continue c c Evaluate "vsnm1" and "bsnm1" by solving the characteristic c equations. There is no source term since the metric factor "g1" has c no explicit dependence on x3. Compute the two terms in "emf2". c do 210 k=ks,ke+1 q2 = sign ( one, bave(k) ) vsnm1( k) = ( vpch (k) * srdp (k) + vmch (k) * srdm (k) 1 + q2 * ( bpch(k) - bmch(k) ) ) 2 / ( srdp (k) + srdm (k) ) bsnm1( k) = ( bpch (k) * srdpi(k) + bmch (k) * srdmi(k) 1 + q2 * ( vpch(k) - vmch(k) ) ) 2 / ( srdpi(k) + srdmi(k) ) vsnm1( k) = vsnm1(k) * bave(k) bsnm1( k) = bsnm1(k) * vave(k) c vsnp1(i,j,k) = 0.5*( vsnp1(i,j,k) + bsnm1(k) ) bsnp1(i,j,k) = 0.5*( vsnm1( k) + bsnp1(i,j,k) ) 210 continue 220 continue c c END OF SECOND J LOOP c 230 continue c c----------------------------------------------------------------------- c c Set boundary values for "term1" and "term2". c C#ifdef MPI_USED C nreq = 0 C nsub = nsub + 1 C#endif call bvalemf2 ( vsnp1, bsnp1 ) c c Compute "emf2" for all 2-edges, including the ghost zones. c do 260 k=ks-2,ke+3 do 250 j=js-2,je+2 do 240 i=is-2,ie+3 emf2(i,j,k) = ( vsnp1(i,j,k) - bsnp1(i,j,k) ) 1 * dx2a (j) * g2a (i) 240 continue 250 continue 260 continue c c----------------------------------------------------------------------- c---- 3. emf3 --------------------------------------------------------- c----------------------------------------------------------------------- c c BEGINNING OF K LOOP c do 360 k=ks,ke c c By following the characteristics of the flow in the 2-direction, c determine values for "v1" and "b1" ("vsnp1" and "bsnp1") to be used c in evaluating "emf3". c c Compute upwinded b2 and v2 in the 1-direction and use them to c compute the wave speeds for the chracteristic cones for MoC. c do 269 j=js,je+1 do 267 i=is-2,ie+2 vfl (i) = 0.5 * (v1(i,j,k) + v1(i,j-1,k)) - vg1(i) vt (i) = v2(i,j,k) - vg2(j) bt (i) = b2(i,j,k) 267 continue c call x1int1d ( bt, vfl, iordb2, istpb2, j, k c 1 , bint ) c call x1int1d ( vt, vfl, iords2, istps2, j, k c 1 , vint ) c 1. Evaluate monotonised, van Leer difference in "q" across the zone. c do 1067 i=is-1,ie+1 dqm = ( vt(i ) - vt(i-1) ) * dx1bi(i ) dqp = ( vt(i+1) - vt(i ) ) * dx1bi(i+1) dv (i ) = max ( dqm * dqp, zro ) 1 * sign ( one, dqm + dqp ) 2 / max ( abs ( dqm + dqp ), tiny ) dqm = ( bt(i ) - bt(i-1) ) * dx1bi(i ) dqp = ( bt(i+1) - bt(i ) ) * dx1bi(i+1) db (i ) = max ( dqm * dqp, zro ) 1 * sign ( one, dqm + dqp ) 2 / max ( abs ( dqm + dqp ), tiny ) 1067 continue c c 2. Perform an upwinded interpolation of "q" to the time-centred c bases of the characteristics. c do 1068 i=is,ie+1 qv1 = vt(i-1) + dx1a(i-1) * dv (i-1) qv2 = vt(i ) - dx1a(i ) * dv (i ) qb1 = bt(i-1) + dx1a(i-1) * db (i-1) qb2 = bt(i ) - dx1a(i ) * db (i ) c xi = vfl(i) * dt q3 = sign ( haf, xi ) vint(i)= ( 0.5 + q3 ) * ( qv1 - xi * dv (i-1) ) 1 + ( 0.5 - q3 ) * ( qv2 - xi * dv (i ) ) bint(i)= ( 0.5 + q3 ) * ( qb1 - xi * db (i-1) ) 1 + ( 0.5 - q3 ) * ( qb2 - xi * db (i ) ) 1068 continue c do 268 i=is,ie+1 v2inti(i,j) = vint(i) b2inti(i,j) = bint(i) 268 continue 269 continue c c Select an effective density and determine the characteristic c velocity using upwinded values for each characteristic in the c 2-direction. c do 300 i=is,ie+1 do 270 j=js,je+1 vave (j) = v2inti(i,j) bave (j) = b2inti(i,j) c vave (j) = 0.5 * ( v2(i,j,k) + v2(im1,j,k) ) - vg2(j) c bave (j) = 0.5 * ( b2(i,j,k) + b2(im1,j,k) ) absb = abs ( bave(j) ) aave (j) = 0.5 * absb * ( srd1(i,j,k) + srd1(i,j-1,k) ) 1 / ( srd1(i,j,k) * srd1(i,j-1,k) ) sgnp = sign ( haf, vave(j) - aave(j) ) sgnm = sign ( haf, vave(j) + aave(j) ) srdp (j) = ( 0.5 + sgnp ) * srd1(i,j-1,k) 1 + ( 0.5 - sgnp ) * srd1(i,j ,k) srdm (j) = ( 0.5 + sgnm ) * srd1(i,j-1,k) 1 + ( 0.5 - sgnm ) * srd1(i,j ,k) srdpi(j) = 1.0 / srdp(j) srdmi(j) = 1.0 / srdm(j) vchp (j) = vave(j) - absb * srdpi(j) vchm (j) = vave(j) + absb * srdmi(j) 270 continue c c Interpolate 1-D vectors of "v1" and "b1" in the 2-direction to c the footpoints of both characteristics. c do 280 j=js-2,je+2 vtmp(j) = v1(i,j,k) - vg1(i) btmp(j) = b1(i,j,k) 280 continue c call x2zc1d ( vtmp, vchp, vchm, iords1, istps1, k, i c 1 , g2a, g2ai, vpch, vmch ) c call x2zc1d ( btmp, vchp, vchm, iordb1, istpb1, k, i c 1 , g2a, g2ai, bpch, bmch ) c subroutine x2zc1d ( q, vp, vm, iorder, isteep, k, i, g2, g2i c 1 , qp, qm ) c do 1080 j=js-1,je+1 dqm = ( vtmp(j ) - vtmp(j-1) ) * dx2bi(j ) dqp = ( vtmp(j+1) - vtmp(j ) ) * dx2bi(j+1) dv (j ) = max ( dqm * dqp, zro ) 1 * sign ( one, dqm + dqp ) 2 / max ( abs ( dqm + dqp ), tiny ) dqm = ( btmp(j ) - btmp(j-1) ) * dx2bi(j ) dqp = ( btmp(j+1) - btmp(j ) ) * dx2bi(j+1) db (j ) = max ( dqm * dqp, zro ) 1 * sign ( one, dqm + dqp ) 2 / max ( abs ( dqm + dqp ), tiny ) 1080 continue c c 2. Perform an upwinded interpolation of "q" to the time-centred c bases of the characteristics. c fact = dt * g2ai(i) do 1090 j=js,je+1 qv1 = vtmp(j-1) + dx2a(j-1) * dv (j-1) qv2 = vtmp(j ) - dx2a(j ) * dv (j ) qb1 = btmp(j-1) + dx2a(j-1) * db (j-1) qb2 = btmp(j ) - dx2a(j ) * db (j ) c xi = vchp(j) * fact q3 = sign ( haf, xi ) vpch(j)= ( 0.5 + q3 ) * ( qv1 - xi * dv (j-1) ) 1 + ( 0.5 - q3 ) * ( qv2 - xi * dv (j ) ) bpch(j)= ( 0.5 + q3 ) * ( qb1 - xi * db (j-1) ) 1 + ( 0.5 - q3 ) * ( qb2 - xi * db (j ) ) c xi = vchm(j) * fact q3 = sign ( haf, xi ) vmch(j)= ( 0.5 + q3 ) * ( qv1 - xi * dv (j-1) ) 1 + ( 0.5 - q3 ) * ( qv2 - xi * dv (j ) ) bmch(j)= ( 0.5 + q3 ) * ( qb1 - xi * db (j-1) ) 1 + ( 0.5 - q3 ) * ( qb2 - xi * db (j ) ) 1090 continue c c Evaluate "vsnp1" and "bsnp1" by solving the characteristic c equations. There is no source term since the metric factor "g1" has c no explicit dependence on x2. c do 290 j=js,je+1 q2 = sign ( one, bave(j) ) vsnp1(i,j,k) = ( vpch (j) * srdp (j) + vmch (j) * srdm (j) 1 + q2 * ( bpch(j) - bmch(j) ) ) 2 / ( srdp (j) + srdm (j) ) bsnp1(i,j,k) = ( bpch (j) * srdpi(j) + bmch (j) * srdmi(j) 1 + q2 * ( vpch(j) - vmch(j) ) ) 2 / ( srdpi(j) + srdmi(j) ) vsnp1(i,j,k) = vsnp1(i,j,k) * bave(j) bsnp1(i,j,k) = bsnp1(i,j,k) * vave(j) 290 continue c 300 continue c c----------------------------------------------------------------------- c c By following the characteristics of the flow in the 1-direction, c determine values for "v2" and "b2" ("vsnm1" and "bsnm1") to be used c in evaluating "emf3". c src = 0.0 c c Compute upwinded b1 and v1 in the 2-direction and use them to c compute the wave speeds for the chracteristic cones for Moc c do 319 i=is,ie+1 do 317 j=js-2,je+2 vfl (j) = 0.5 * (v2(i,j,k) + v2(i-1,j,k)) - vg2(j) vt (j) = v1(i,j,k) - vg1(i) bt (j) = b1(i,j,k) 317 continue c call x2int1d ( bt, vfl, iordb1, istpb1, k, i c 1 , g2b, g2bi, bint ) c call x2int1d ( vt, vfl, iords1, istps1, k, i c 1 , g2b, g2bi, vint ) c do 1117 j=js-1,je+1 dqm = ( vt(j ) - vt(j-1) ) * dx2bi(j ) dqp = ( vt(j+1) - vt(j ) ) * dx2bi(j+1) dv (j ) = max ( dqm * dqp, zro ) 1 * sign ( one, dqm + dqp ) 2 / max ( abs ( dqm + dqp ), tiny ) dqm = ( bt(j ) - bt(j-1) ) * dx2bi(j ) dqp = ( bt(j+1) - bt(j ) ) * dx2bi(j+1) db (j ) = max ( dqm * dqp, zro ) 1 * sign ( one, dqm + dqp ) 2 / max ( abs ( dqm + dqp ), tiny ) 1117 continue c c 2. Perform an upwinded interpolation of "q" to the time-centred c bases of the characteristics. c fact = dt * g2bi(i) do 1118 j=js,je+1 qv1 = vt(j-1) + dx2a(j-1) * dv (j-1) qv2 = vt(j ) - dx2a(j ) * dv (j ) qb1 = bt(j-1) + dx2a(j-1) * db (j-1) qb2 = bt(j ) - dx2a(j ) * db (j ) c xi = vfl(j) * fact q3 = sign ( haf, xi ) vint(j)= ( 0.5 + q3 ) * ( qv1 - xi * dv (j-1) ) 1 + ( 0.5 - q3 ) * ( qv2 - xi * dv (j ) ) bint(j)= ( 0.5 + q3 ) * ( qb1 - xi * db (j-1) ) 1 + ( 0.5 - q3 ) * ( qb2 - xi * db (j ) ) 1118 continue c do 318 j=js,je+1 b1intj(i,j) = bint(j) v1intj(i,j) = vint(j) 318 continue 319 continue c c Select an effective density and determine the characteristic c velocity using upwinded values for each characteristic in the c 1-direction. c do 350 j=js,je+1 do 320 i=is,ie+1 vave (i) = v1intj(i,j) bave (i) = b1intj(i,j) c vave (i) = 0.5 * ( v1(i,j,k) + v1(i,jm1,k) ) - vg1(i) c bave (i) = 0.5 * ( b1(i,j,k) + b1(i,jm1,k) ) absb = abs ( bave(i) ) aave (i) = 0.5 * absb * ( srd2(i,j,k) + srd2(i-1,j,k) ) 1 / ( srd2(i,j,k) * srd2(i-1,j,k) ) sgnp = sign ( haf, vave(i) - aave(i) ) sgnm = sign ( haf, vave(i) + aave(i) ) srdp (i) = ( 0.5 + sgnp ) * srd2(i-1,j,k) 1 + ( 0.5 - sgnp ) * srd2(i ,j,k) srdm (i) = ( 0.5 + sgnm ) * srd2(i-1,j,k) 1 + ( 0.5 - sgnm ) * srd2(i ,j,k) srdpi(i) = 1.0 / srdp(i) srdmi(i) = 1.0 / srdm(i) vchp (i) = vave(i) - absb * srdpi(i) vchm (i) = vave(i) + absb * srdmi(i) 320 continue c c Interpolate 1-D vectors of "v2" and "b2" in the 1-direction to c the footpoints of both characteristics. c do 330 i=is-2,ie+2 vtmp(i) = v2(i,j,k) - vg2(j) btmp(i) = b2(i,j,k) 330 continue c call x1zc1d ( vtmp, vchp, vchm, iords2, istps2, j, k c 1 , vpch, vmch ) c call x1zc1d ( btmp, vchp, vchm, iordb2, istpb2, j, k c 1 , bpch, bmch ) c 1. Evaluate monotonised, van Leer difference in "q" across the zone. c do 1130 i=is-1,ie+1 dqm = ( vtmp(i ) - vtmp(i-1) ) * dx1bi(i ) dqp = ( vtmp(i+1) - vtmp(i ) ) * dx1bi(i+1) dv (i ) = max ( dqm * dqp, zro ) 1 * sign ( one, dqm + dqp ) 2 / max ( abs ( dqm + dqp ), tiny ) dqm = ( btmp(i ) - btmp(i-1) ) * dx1bi(i ) dqp = ( btmp(i+1) - btmp(i ) ) * dx1bi(i+1) db (i ) = max ( dqm * dqp, zro ) 1 * sign ( one, dqm + dqp ) 2 / max ( abs ( dqm + dqp ), tiny ) 1130 continue c c 2. Perform an upwinded interpolation of "q" to the time-centred c bases of the characteristics. c do 1140 i=is,ie+1 qv1 = vtmp(i-1) + dx1a(i-1) * dv (i-1) qv2 = vtmp(i ) - dx1a(i ) * dv (i ) qb1 = btmp(i-1) + dx1a(i-1) * db (i-1) qb2 = btmp(i ) - dx1a(i ) * db (i ) c xi = vchp(i) * dt q3 = sign ( haf, xi ) vpch(i)= ( 0.5 + q3 ) * ( qv1 - xi * dv (i-1) ) 1 + ( 0.5 - q3 ) * ( qv2 - xi * dv (i ) ) bpch(i)= ( 0.5 + q3 ) * ( qb1 - xi * db (i-1) ) 1 + ( 0.5 - q3 ) * ( qb2 - xi * db (i ) ) c xi = vchm(i) * dt q3 = sign ( haf, xi ) vmch(i)= ( 0.5 + q3 ) * ( qv1 - xi * dv (i-1) ) 1 + ( 0.5 - q3 ) * ( qv2 - xi * dv (i ) ) bmch(i)= ( 0.5 + q3 ) * ( qb1 - xi * db (i-1) ) 1 + ( 0.5 - q3 ) * ( qb2 - xi * db (i ) ) 1140 continue c c Evaluate "vsnm1" and "bsnm1" by solving the characteristic c equations. The source term is non-zero for RTP coordinates since c dg2/dx1 = 1.0. Compute the two terms in "emf3". c do 340 i=is,ie+1 q2 = sign ( one, bave(i) ) vsnm1(i ) = ( vpch (i) * srdp (i) + vmch (i) * srdm (i) 1 + q2 * ( bpch(i) - bmch(i) ) ) 3 / ( srdp (i) + srdm (i) ) + src bsnm1(i ) = ( bpch (i)* srdpi(i) + bmch (i)* srdmi(i) 1 + q2 * ( vpch(i) - vmch(i) ) ) 3 / ( srdpi(i) + srdmi(i) ) c vsnm1(i ) = vsnm1(i) * bave(i) bsnm1(i ) = bsnm1(i) * vave(i) c vsnp1(i,j,k) = 0.5*( vsnp1(i,j,k) + bsnm1(i) ) bsnp1(i,j,k) = 0.5*( vsnm1(i) + bsnp1(i,j,k) ) 340 continue 350 continue c c END OF K LOOP c 360 continue c c----------------------------------------------------------------------- c c Set boundary values for "term1" and "term2". c C#ifdef MPI_USED C nreq = 0 C nsub = nsub + 1 C#endif call bvalemf3 ( vsnp1, bsnp1 ) c c Compute "emf3" for all 3-edges, including the ghost zones. c do 390 k=ks-2,ke+2 do 380 j=js-2,je+3 do 370 i=is-2,ie+3 emf3(i,j,k) = ( vsnp1(i,j,k) - bsnp1(i,j,k) ) 1 * dx3a (k) * g31a (i) * g32a (j) 370 continue 380 continue 390 continue c return end c c======================================================================= c c \\\\\\\\\\ E N D S U B R O U T I N E ////////// c ////////// H S M O C \\\\\\\\\\ c c=======================================================================
lgpl-3.0
yaowee/libflame
lapack-test/lapack-timing/LIN/LINSRC/dopla2.f
8
6769
DOUBLE PRECISION FUNCTION DOPLA2( SUBNAM, OPTS, M, N, K, L, NB ) * * -- LAPACK timing routine (version 3.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * February 29, 1992 * * .. Scalar Arguments .. CHARACTER*6 SUBNAM CHARACTER*( * ) OPTS INTEGER K, L, M, N, NB * .. * * Purpose * ======= * * DOPLA2 computes an approximation of the number of floating point * operations used by the subroutine SUBNAM with character options * OPTS and parameters M, N, K, L, and NB. * * This version counts operations for the LAPACK subroutines that * call other LAPACK routines. * * Arguments * ========= * * SUBNAM (input) CHARACTER*6 * The name of the subroutine. * * OPTS (input) CHRACTER*(*) * A string of character options to subroutine SUBNAM. * * M (input) INTEGER * The number of rows of the coefficient matrix. * * N (input) INTEGER * The number of columns of the coefficient matrix. * * K (input) INTEGER * A third problem dimension, if needed. * * L (input) INTEGER * A fourth problem dimension, if needed. * * NB (input) INTEGER * The block size. If needed, NB >= 1. * * Notes * ===== * * In the comments below, the association is given between arguments * in the requested subroutine and local arguments. For example, * * xORMBR: VECT // SIDE // TRANS, M, N, K => OPTS, M, N, K * * means that the character string VECT // SIDE // TRANS is passed to * the argument OPTS, and the integer parameters M, N, and K are passed * to the arguments M, N, and K, * * ===================================================================== * * .. Local Scalars .. LOGICAL CORZ, SORD CHARACTER C1, SIDE, UPLO, VECT CHARACTER*2 C2 CHARACTER*3 C3 CHARACTER*6 SUB2 INTEGER IHI, ILO, ISIDE, MI, NI, NQ * .. * .. External Functions .. LOGICAL LSAME, LSAMEN DOUBLE PRECISION DOPLA EXTERNAL LSAME, LSAMEN, DOPLA * .. * .. Executable Statements .. * * --------------------------------------------------------- * Initialize DOPLA2 to 0 and do a quick return if possible. * --------------------------------------------------------- * DOPLA2 = 0 C1 = SUBNAM( 1: 1 ) C2 = SUBNAM( 2: 3 ) C3 = SUBNAM( 4: 6 ) SORD = LSAME( C1, 'S' ) .OR. LSAME( C1, 'D' ) CORZ = LSAME( C1, 'C' ) .OR. LSAME( C1, 'Z' ) IF( M.LE.0 .OR. .NOT.( SORD .OR. CORZ ) ) $ RETURN * * ------------------- * Orthogonal matrices * ------------------- * IF( ( SORD .AND. LSAMEN( 2, C2, 'OR' ) ) .OR. $ ( CORZ .AND. LSAMEN( 2, C2, 'UN' ) ) ) THEN * IF( LSAMEN( 3, C3, 'GBR' ) ) THEN * * -GBR: VECT, M, N, K => OPTS, M, N, K * VECT = OPTS( 1: 1 ) IF( LSAME( VECT, 'Q' ) ) THEN SUB2 = SUBNAM( 1: 3 ) // 'GQR' IF( M.GE.K ) THEN DOPLA2 = DOPLA( SUB2, M, N, K, 0, NB ) ELSE DOPLA2 = DOPLA( SUB2, M-1, M-1, M-1, 0, NB ) END IF ELSE SUB2 = SUBNAM( 1: 3 ) // 'GLQ' IF( K.LT.N ) THEN DOPLA2 = DOPLA( SUB2, M, N, K, 0, NB ) ELSE DOPLA2 = DOPLA( SUB2, N-1, N-1, N-1, 0, NB ) END IF END IF * ELSE IF( LSAMEN( 3, C3, 'MBR' ) ) THEN * * -MBR: VECT // SIDE // TRANS, M, N, K => OPTS, M, N, K * VECT = OPTS( 1: 1 ) SIDE = OPTS( 2: 2 ) IF( LSAME( SIDE, 'L' ) ) THEN NQ = M ISIDE = 0 ELSE NQ = N ISIDE = 1 END IF IF( LSAME( VECT, 'Q' ) ) THEN SUB2 = SUBNAM( 1: 3 ) // 'MQR' IF( NQ.GE.K ) THEN DOPLA2 = DOPLA( SUB2, M, N, K, ISIDE, NB ) ELSE IF( ISIDE.EQ.0 ) THEN DOPLA2 = DOPLA( SUB2, M-1, N, NQ-1, ISIDE, NB ) ELSE DOPLA2 = DOPLA( SUB2, M, N-1, NQ-1, ISIDE, NB ) END IF ELSE SUB2 = SUBNAM( 1: 3 ) // 'MLQ' IF( NQ.GT.K ) THEN DOPLA2 = DOPLA( SUB2, M, N, K, ISIDE, NB ) ELSE IF( ISIDE.EQ.0 ) THEN DOPLA2 = DOPLA( SUB2, M-1, N, NQ-1, ISIDE, NB ) ELSE DOPLA2 = DOPLA( SUB2, M, N-1, NQ-1, ISIDE, NB ) END IF END IF * ELSE IF( LSAMEN( 3, C3, 'GHR' ) ) THEN * * -GHR: N, ILO, IHI => M, N, K * ILO = N IHI = K SUB2 = SUBNAM( 1: 3 ) // 'GQR' DOPLA2 = DOPLA( SUB2, IHI-ILO, IHI-ILO, IHI-ILO, 0, NB ) * ELSE IF( LSAMEN( 3, C3, 'MHR' ) ) THEN * * -MHR: SIDE // TRANS, M, N, ILO, IHI => OPTS, M, N, K, L * SIDE = OPTS( 1: 1 ) ILO = K IHI = L IF( LSAME( SIDE, 'L' ) ) THEN MI = IHI - ILO NI = N ISIDE = -1 ELSE MI = M NI = IHI - ILO ISIDE = 1 END IF SUB2 = SUBNAM( 1: 3 ) // 'MQR' DOPLA2 = DOPLA( SUB2, MI, NI, IHI-ILO, ISIDE, NB ) * ELSE IF( LSAMEN( 3, C3, 'GTR' ) ) THEN * * -GTR: UPLO, N => OPTS, M * UPLO = OPTS( 1: 1 ) IF( LSAME( UPLO, 'U' ) ) THEN SUB2 = SUBNAM( 1: 3 ) // 'GQL' DOPLA2 = DOPLA( SUB2, M-1, M-1, M-1, 0, NB ) ELSE SUB2 = SUBNAM( 1: 3 ) // 'GQR' DOPLA2 = DOPLA( SUB2, M-1, M-1, M-1, 0, NB ) END IF * ELSE IF( LSAMEN( 3, C3, 'MTR' ) ) THEN * * -MTR: SIDE // UPLO // TRANS, M, N => OPTS, M, N * SIDE = OPTS( 1: 1 ) UPLO = OPTS( 2: 2 ) IF( LSAME( SIDE, 'L' ) ) THEN MI = M - 1 NI = N NQ = M ISIDE = -1 ELSE MI = M NI = N - 1 NQ = N ISIDE = 1 END IF * IF( LSAME( UPLO, 'U' ) ) THEN SUB2 = SUBNAM( 1: 3 ) // 'MQL' DOPLA2 = DOPLA( SUB2, MI, NI, NQ-1, ISIDE, NB ) ELSE SUB2 = SUBNAM( 1: 3 ) // 'MQR' DOPLA2 = DOPLA( SUB2, MI, NI, NQ-1, ISIDE, NB ) END IF * END IF END IF * RETURN * * End of DOPLA2 * END
bsd-3-clause
PPMLibrary/ppm
src/io/ppm_io_close.f
1
8780
!------------------------------------------------------------------------- ! Subroutine : ppm_io_close !------------------------------------------------------------------------- ! Copyright (c) 2012 CSE Lab (ETH Zurich), MOSAIC Group (ETH Zurich), ! Center for Fluid Dynamics (DTU) ! ! ! This file is part of the Parallel Particle Mesh Library (PPM). ! ! PPM is free software: you can redistribute it and/or modify ! it under the terms of the GNU Lesser General Public License ! as published by the Free Software Foundation, either ! version 3 of the License, or (at your option) any later ! version. ! ! PPM is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! and the GNU Lesser General Public License along with PPM. If not, ! see <http://www.gnu.org/licenses/>. ! ! Parallel Particle Mesh Library (PPM) ! ETH Zurich ! CH-8092 Zurich, Switzerland !------------------------------------------------------------------------- SUBROUTINE ppm_io_close(iUnit,info) !!! This routine closes an IO channel. !------------------------------------------------------------------------- ! Modules !------------------------------------------------------------------------- USE ppm_module_data USE ppm_module_data_io USE ppm_module_substart USE ppm_module_substop USE ppm_module_error USE ppm_module_alloc USE ppm_module_write IMPLICIT NONE !------------------------------------------------------------------------- ! Arguments !------------------------------------------------------------------------- INTEGER , INTENT(IN ) :: iUnit !!! IO unit to be closed. INTEGER , INTENT( OUT) :: info !!! Return status, 0 on success !------------------------------------------------------------------------- ! Local variables !------------------------------------------------------------------------- REAL(ppm_kind_double) :: t0 LOGICAL :: lopen INTEGER :: iou,iopt INTEGER, DIMENSION(1) :: ldc CHARACTER(LEN=ppm_char) :: mesg !------------------------------------------------------------------------- ! Externals !------------------------------------------------------------------------- !------------------------------------------------------------------------- ! Initialise !------------------------------------------------------------------------- CALL substart('ppm_io_close',t0,info) !------------------------------------------------------------------------- ! Check arguments !------------------------------------------------------------------------- IF (ppm_debug .GT. 0) THEN CALL check IF (info .NE. 0) GOTO 9999 ENDIF !------------------------------------------------------------------------- ! Check that the unit number is actually open !------------------------------------------------------------------------- lopen = .FALSE. IF (ASSOCIATED(ppm_io_unit)) THEN IF (SIZE(ppm_io_unit,1) .GE. iUnit) THEN IF (ppm_io_unit(iUnit) .GT. 0) lopen = .TRUE. ENDIF ENDIF IF (.NOT. lopen) THEN info = ppm_error_notice WRITE(mesg,'(A,I4,A)') 'Requested ppm I/O unit ',iUnit, & & ' is not open. Exiting.' CALL ppm_error(ppm_err_no_unit,'ppm_io_close',mesg,__LINE__,info) GOTO 9999 ENDIF !------------------------------------------------------------------------- ! Get internal unit number !------------------------------------------------------------------------- iou = ppm_io_unit(iUnit) !------------------------------------------------------------------------- ! Savely close the unit !------------------------------------------------------------------------- IF (ppm_io_mode(iou) .EQ. ppm_param_io_centralized) THEN IF (ppm_rank .EQ. 0) THEN INQUIRE(iUnit,OPENED=lopen) IF (.NOT. lopen) THEN info = ppm_error_notice WRITE(mesg,'(A,I4,A)') 'Requested Fortran I/O unit ',iUnit, & & ' is not open. Exiting.' CALL ppm_error(ppm_err_no_unit,'ppm_io_close',mesg, & & __LINE__,info) GOTO 9999 ENDIF CLOSE(iUnit,IOSTAT=info) IF (info .NE. 0) THEN info = ppm_error_error WRITE(mesg,'(A,I4)') 'Failed to close open I/O unit ',iUnit CALL ppm_error(ppm_err_close,'ppm_io_close',mesg, & & __LINE__,info) ENDIF ENDIF ELSE INQUIRE(iUnit,OPENED=lopen) IF (.NOT. lopen) THEN info = ppm_error_notice WRITE(mesg,'(A,I4,A)') 'Requested Fortran I/O unit ',iUnit, & & ' is not open. Exiting.' CALL ppm_error(ppm_err_no_unit,'ppm_io_close',mesg,__LINE__,info) GOTO 9999 ENDIF CLOSE(iUnit,IOSTAT=info) IF (info .NE. 0) THEN info = ppm_error_error WRITE(mesg,'(A,I4)') 'Failed to close open I/O unit ',iUnit CALL ppm_error(ppm_err_close,'ppm_io_close',mesg, & & __LINE__,info) ENDIF ENDIF !------------------------------------------------------------------------- ! Debug output !------------------------------------------------------------------------- IF (ppm_debug .GT. 1) THEN WRITE(mesg,'(A,I4,A)') 'I/O unit ',iUnit,' closed.' CALL ppm_write(ppm_rank,'ppm_io_close',mesg,info) ENDIF !------------------------------------------------------------------------- ! Mark the unit as unused in the internal list !------------------------------------------------------------------------- ppm_io_mode(iou) = ppm_param_undefined ppm_io_format(iou) = ppm_param_undefined ppm_io_unit(iUnit) = 0 !------------------------------------------------------------------------- ! If no more unit is open, deallocate the lists !------------------------------------------------------------------------- IF (MAXVAL(ppm_io_unit) .EQ. 0) THEN IF (ppm_debug .GT. 0) THEN CALL ppm_write(ppm_rank,'ppm_io_close', & & 'No more open units. Deallocating I/O control lists.',info) ENDIF iopt = ppm_param_dealloc CALL ppm_alloc(ppm_io_format,ldc,iopt,info) IF (info .NE. 0) THEN info = ppm_error_error CALL ppm_error(ppm_err_dealloc,'ppm_io_close', & & 'I/O format list PPM_IO_FORMAT',__LINE__,info) ENDIF CALL ppm_alloc(ppm_io_mode,ldc,iopt,info) IF (info .NE. 0) THEN info = ppm_error_error CALL ppm_error(ppm_err_dealloc,'ppm_io_close', & & 'I/O mode list PPM_IO_MODE',__LINE__,info) ENDIF CALL ppm_alloc(ppm_io_unit,ldc,iopt,info) IF (info .NE. 0) THEN info = ppm_error_error CALL ppm_error(ppm_err_dealloc,'ppm_io_close', & & 'I/O unit list PPM_IO_UNIT',__LINE__,info) ENDIF ENDIF !------------------------------------------------------------------------- ! Return !------------------------------------------------------------------------- 9999 CONTINUE CALL substop('ppm_io_close',t0,info) RETURN CONTAINS SUBROUTINE check IF (.NOT. ppm_initialized) THEN info = ppm_error_error CALL ppm_error(ppm_err_ppm_noinit,'ppm_io_close', & & 'Please call ppm_init first!',__LINE__,info) GOTO 8888 ENDIF IF (iUnit .LE. 0) THEN info = ppm_error_error CALL ppm_error(ppm_err_argument,'ppm_io_close', & & 'Unit number needs to be > 0',__LINE__,info) GOTO 8888 ENDIF 8888 CONTINUE END SUBROUTINE check END SUBROUTINE ppm_io_close
gpl-3.0
CavendishAstrophysics/anmap
graphic_lib/plot_doplot.f
2
4771
C C *+ plot_do_plot subroutine plot_doplot(option,map_array,status) C ----------------------------------------------- C C Plot/display using one of various options, passed via the call to the routine C C Given: C option character*(*) option C image data array real*4 map_array(*) C Updated: C error status integer status *- include '../include/anmap_sys_pars.inc' include '../include/plt_basic_defn.inc' include '../include/plt_image_defn.inc' include '/mrao/include/chrlib_functions.inc' C scratch map and pointers to maps integer iscr, ip_scr, ip_chi, ip_map, i, ii C logical flags logical all C check status on entry if (status.ne.0) return C ensure a map is defined if (.not.map_defined) then call cmd_wrerr('PLOT','No map set') return end if C sort out special options all = chr_cmatch(option,'all') plot_refresh = chr_cmatch(option,'refresh') C setup display and frame call graphic_open( image_defn, status ) call plot_frinit( .true., status ) if ( (all.and. .not.image_done) .or. * chr_cmatch(option,'GREY') .or. * (plot_refresh.and.image_done)) then call redt_load( imap, status ) call map_alloc_in( imap, 'DIRECT', map_array, ip_map, status ) call plot_dogrey(map_array(ip_map),status) call map_end_alloc( imap, map_array, status ) image_done = .true. endif if ( (all.and. .not.pframe_done) .or. * chr_cmatch(option,'FRAME') .or. * (plot_refresh.and.pframe_done)) then call redt_load( imap, status ) call plot_doframe(status) pframe_done = .true. endif if ( all .or. chr_cmatch(option,'CONTOURS') .or. * (plot_refresh)) then ii = imap_current do i=1,2 if ( (i.eq.1 .and. map_defined) .or. * (i.eq.2 .and. overlay_defined .and. overlay_map)) then imap_current = i call redt_load( imaps(i), status ) call map_alloc_scr(map_side_size*2, map_side_size*2, * 'DIRECT', iscr, ip_scr, status ) call map_alloc_in(imaps(i),'DIRECT',map_array, * ip_map,status) call plot_docont(map_array,ip_map,ip_scr,status) call map_end_alloc(imaps(i),map_array,status ) call map_end_alloc(iscr,map_array,status ) endif enddo imap_current = ii endif if ( (all.and. .not.symbol_done) .or. * chr_cmatch(option,'SYMBOLS') .or. * (plot_refresh.and.symbol_done)) then call redt_load( imap, status ) call map_alloc_in( imap, 'DIRECT', map_array, ip_map, status ) call plot_dosymb(map_array(ip_map),status) call map_end_alloc( imap, map_array, status ) symbol_done = .true. endif if ( (all.and. .not.vectors_done) .or. * chr_cmatch(option,'VECTORS') .or. * (plot_refresh.and.vectors_done)) then call redt_load( imap, status ) if (vec_chi_map.ne.0 .and. vectors_opt) then if (vec_int_map.ne.0 .and. vec_type.ne.2) then call map_alloc_in( vec_int_map, 'DIRECT', * map_array, ip_map, status ) end if call map_alloc_in( vec_chi_map, 'DIRECT', * map_array, ip_chi, status) call plot_dovecs(map_array(ip_chi),map_array(ip_map),status) if (vec_int_map.ne.0 .and. vec_type.ne.2) then call map_end_alloc( vec_int_map, map_array, status ) end if call map_end_alloc( vec_chi_map, map_array, status ) end if vectors_done = .true. endif if ( (all.and. .not.text_done) .or. * chr_cmatch(option,'TEXT') .or. * (plot_refresh.and.text_done)) then call redt_load( imap, status ) call plot_dotext(status) text_done = .true. endif if ( (all.and. .not.crosses_done) .or. * chr_cmatch(option,'CROSSES') .or. * (plot_refresh.and.crosses_done)) then call redt_load( imap, status ) call plot_crosses(status) crosses_done = .true. endif if ( (all) .or. * chr_cmatch(option,'ANNOTATIONS') .or. * (plot_refresh)) then call annotate_plot( annot_data, option, status ) endif C tidyup coordinates on exit to allow for routines changing them plot_refresh = .false. call plot_frset( status ) call cmd_err(status,'plot_doplot', ' ') end
bsd-3-clause
lesserwhirls/scipy-cwt
scipy/linalg/src/inv.f
6
1366
c c Calculate inverse of square matrix c Author: Pearu Peterson, March 2002 c c prefixes: d,z,s,c (double,complex double,float,complex float) c suffixes: _c,_r (column major order,row major order) subroutine dinv_c(a,n,piv,work,lwork,info) integer n,piv(n),lwork double precision a(n,n),work(lwork) cf2py callprotoargument double*,int*,int*,double*,int*,int* cf2py intent(in,copy,out,out=inv_a) :: a cf2py intent(out) :: info cf2py integer intent(hide,cache),depend(n),dimension(n) :: piv cf2py integer intent(hide),depend(a) :: n = shape(a,0) cf2py check(shape(a,0)==shape(a,1)) :: a cf2py intent(hide,cache) :: work cf2py depend(lwork) :: work cf2py integer intent(hide),depend(n) :: lwork = 30*n external dgetrf,dgetri call dgetrf(n,n,a,n,piv,info) if (info.ne.0) then return endif call dgetri(n,a,n,piv,work,lwork,info) end subroutine dinv_r(a,n,piv,info) integer n,piv(n) double precision a(n,n) cf2py callprotoargument double*,int*,int*,int* cf2py intent(c,in,copy,out,out=inv_a) :: a cf2py intent(out) :: info cf2py integer intent(hide,cache),depend(n),dimension(n) :: piv cf2py integer intent(hide),depend(a) :: n = shape(a,0) cf2py check(shape(a,0)==shape(a,1)) :: a external flinalg_dinv_r call flinalg_dinv_r(a,n,piv,info) end
bsd-3-clause
yaowee/libflame
lapack-test/3.4.2/LIN/ctbt03.f
32
8488
*> \brief \b CTBT03 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE CTBT03( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, * SCALE, CNORM, TSCAL, X, LDX, B, LDB, WORK, * RESID ) * * .. Scalar Arguments .. * CHARACTER DIAG, TRANS, UPLO * INTEGER KD, LDAB, LDB, LDX, N, NRHS * REAL RESID, SCALE, TSCAL * .. * .. Array Arguments .. * REAL CNORM( * ) * COMPLEX AB( LDAB, * ), B( LDB, * ), WORK( * ), * $ X( LDX, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CTBT03 computes the residual for the solution to a scaled triangular *> system of equations A*x = s*b, A**T *x = s*b, or A**H *x = s*b *> when A is a triangular band matrix. Here A**T denotes the transpose *> of A, A**H denotes the conjugate transpose of A, s is a scalar, and *> x and b are N by NRHS matrices. The test ratio is the maximum over *> the number of right hand sides of *> norm(s*b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ), *> where op(A) denotes A, A**T, or A**H, and EPS is the machine epsilon. *> \endverbatim * * Arguments: * ========== * *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> Specifies whether the matrix A is upper or lower triangular. *> = 'U': Upper triangular *> = 'L': Lower triangular *> \endverbatim *> *> \param[in] TRANS *> \verbatim *> TRANS is CHARACTER*1 *> Specifies the operation applied to A. *> = 'N': A *x = s*b (No transpose) *> = 'T': A**T *x = s*b (Transpose) *> = 'C': A**H *x = s*b (Conjugate transpose) *> \endverbatim *> *> \param[in] DIAG *> \verbatim *> DIAG is CHARACTER*1 *> Specifies whether or not the matrix A is unit triangular. *> = 'N': Non-unit triangular *> = 'U': Unit triangular *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix A. N >= 0. *> \endverbatim *> *> \param[in] KD *> \verbatim *> KD is INTEGER *> The number of superdiagonals or subdiagonals of the *> triangular band matrix A. KD >= 0. *> \endverbatim *> *> \param[in] NRHS *> \verbatim *> NRHS is INTEGER *> The number of right hand sides, i.e., the number of columns *> of the matrices X and B. NRHS >= 0. *> \endverbatim *> *> \param[in] AB *> \verbatim *> AB is COMPLEX array, dimension (LDAB,N) *> The upper or lower triangular band matrix A, stored in the *> first kd+1 rows of the array. The j-th column of A is stored *> in the j-th column of the array AB as follows: *> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). *> \endverbatim *> *> \param[in] LDAB *> \verbatim *> LDAB is INTEGER *> The leading dimension of the array AB. LDAB >= KD+1. *> \endverbatim *> *> \param[in] SCALE *> \verbatim *> SCALE is REAL *> The scaling factor s used in solving the triangular system. *> \endverbatim *> *> \param[in] CNORM *> \verbatim *> CNORM is REAL array, dimension (N) *> The 1-norms of the columns of A, not counting the diagonal. *> \endverbatim *> *> \param[in] TSCAL *> \verbatim *> TSCAL is REAL *> The scaling factor used in computing the 1-norms in CNORM. *> CNORM actually contains the column norms of TSCAL*A. *> \endverbatim *> *> \param[in] X *> \verbatim *> X is COMPLEX array, dimension (LDX,NRHS) *> The computed solution vectors for the system of linear *> equations. *> \endverbatim *> *> \param[in] LDX *> \verbatim *> LDX is INTEGER *> The leading dimension of the array X. LDX >= max(1,N). *> \endverbatim *> *> \param[in] B *> \verbatim *> B is COMPLEX array, dimension (LDB,NRHS) *> The right hand side vectors for the system of linear *> equations. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. LDB >= max(1,N). *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX array, dimension (N) *> \endverbatim *> *> \param[out] RESID *> \verbatim *> RESID is REAL *> The maximum over the number of right hand sides of *> norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ). *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup complex_lin * * ===================================================================== SUBROUTINE CTBT03( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, $ SCALE, CNORM, TSCAL, X, LDX, B, LDB, WORK, $ RESID ) * * -- LAPACK test routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. CHARACTER DIAG, TRANS, UPLO INTEGER KD, LDAB, LDB, LDX, N, NRHS REAL RESID, SCALE, TSCAL * .. * .. Array Arguments .. REAL CNORM( * ) COMPLEX AB( LDAB, * ), B( LDB, * ), WORK( * ), $ X( LDX, * ) * .. * * ===================================================================== * * * .. Parameters .. REAL ONE, ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) * .. * .. Local Scalars .. INTEGER IX, J REAL EPS, ERR, SMLNUM, TNORM, XNORM, XSCAL * .. * .. External Functions .. LOGICAL LSAME INTEGER ICAMAX REAL SLAMCH EXTERNAL LSAME, ICAMAX, SLAMCH * .. * .. External Subroutines .. EXTERNAL CAXPY, CCOPY, CSSCAL, CTBMV * .. * .. Intrinsic Functions .. INTRINSIC ABS, CMPLX, MAX, REAL * .. * .. Executable Statements .. * * Quick exit if N = 0 * IF( N.LE.0 .OR. NRHS.LE.0 ) THEN RESID = ZERO RETURN END IF EPS = SLAMCH( 'Epsilon' ) SMLNUM = SLAMCH( 'Safe minimum' ) * * Compute the norm of the triangular matrix A using the column * norms already computed by CLATBS. * TNORM = ZERO IF( LSAME( DIAG, 'N' ) ) THEN IF( LSAME( UPLO, 'U' ) ) THEN DO 10 J = 1, N TNORM = MAX( TNORM, TSCAL*ABS( AB( KD+1, J ) )+ $ CNORM( J ) ) 10 CONTINUE ELSE DO 20 J = 1, N TNORM = MAX( TNORM, TSCAL*ABS( AB( 1, J ) )+CNORM( J ) ) 20 CONTINUE END IF ELSE DO 30 J = 1, N TNORM = MAX( TNORM, TSCAL+CNORM( J ) ) 30 CONTINUE END IF * * Compute the maximum over the number of right hand sides of * norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ). * RESID = ZERO DO 40 J = 1, NRHS CALL CCOPY( N, X( 1, J ), 1, WORK, 1 ) IX = ICAMAX( N, WORK, 1 ) XNORM = MAX( ONE, ABS( X( IX, J ) ) ) XSCAL = ( ONE / XNORM ) / REAL( KD+1 ) CALL CSSCAL( N, XSCAL, WORK, 1 ) CALL CTBMV( UPLO, TRANS, DIAG, N, KD, AB, LDAB, WORK, 1 ) CALL CAXPY( N, CMPLX( -SCALE*XSCAL ), B( 1, J ), 1, WORK, 1 ) IX = ICAMAX( N, WORK, 1 ) ERR = TSCAL*ABS( WORK( IX ) ) IX = ICAMAX( N, X( 1, J ), 1 ) XNORM = ABS( X( IX, J ) ) IF( ERR*SMLNUM.LE.XNORM ) THEN IF( XNORM.GT.ZERO ) $ ERR = ERR / XNORM ELSE IF( ERR.GT.ZERO ) $ ERR = ONE / EPS END IF IF( ERR*SMLNUM.LE.TNORM ) THEN IF( TNORM.GT.ZERO ) $ ERR = ERR / TNORM ELSE IF( ERR.GT.ZERO ) $ ERR = ONE / EPS END IF RESID = MAX( RESID, ERR ) 40 CONTINUE * RETURN * * End of CTBT03 * END
bsd-3-clause
njwilson23/scipy
scipy/integrate/quadpack/dqk15i.f
92
7782
subroutine dqk15i(f,boun,inf,a,b,result,abserr,resabs,resasc) c***begin prologue dqk15i c***date written 800101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a3a2,h2a4a2 c***keywords 15-point transformed gauss-kronrod rules c***author piessens,robert,appl. math. & progr. div. - k.u.leuven c de doncker,elise,appl. math. & progr. div. - k.u.leuven c***purpose the original (infinite integration range is mapped c onto the interval (0,1) and (a,b) is a part of (0,1). c it is the purpose to compute c i = integral of transformed integrand over (a,b), c j = integral of abs(transformed integrand) over (a,b). c***description c c integration rule c standard fortran subroutine c double precision version c c parameters c on entry c f - double precision c fuction subprogram defining the integrand c function f(x). the actual name for f needs to be c declared e x t e r n a l in the calling program. c c boun - double precision c finite bound of original integration c range (set to zero if inf = +2) c c inf - integer c if inf = -1, the original interval is c (-infinity,bound), c if inf = +1, the original interval is c (bound,+infinity), c if inf = +2, the original interval is c (-infinity,+infinity) and c the integral is computed as the sum of two c integrals, one over (-infinity,0) and one over c (0,+infinity). c c a - double precision c lower limit for integration over subrange c of (0,1) c c b - double precision c upper limit for integration over subrange c of (0,1) c c on return c result - double precision c approximation to the integral i c result is computed by applying the 15-point c kronrod rule(resk) obtained by optimal addition c of abscissae to the 7-point gauss rule(resg). c c abserr - double precision c estimate of the modulus of the absolute error, c which should equal or exceed abs(i-result) c c resabs - double precision c approximation to the integral j c c resasc - double precision c approximation to the integral of c abs((transformed integrand)-i/(b-a)) over (a,b) c c***references (none) c***routines called d1mach c***end prologue dqk15i c double precision a,absc,absc1,absc2,abserr,b,boun,centr,dabs,dinf, * dmax1,dmin1,d1mach,epmach,f,fc,fsum,fval1,fval2,fv1,fv2,hlgth, * resabs,resasc,resg,resk,reskh,result,tabsc1,tabsc2,uflow,wg,wgk, * xgk integer inf,j external f c dimension fv1(7),fv2(7),xgk(8),wgk(8),wg(8) c c the abscissae and weights are supplied for the interval c (-1,1). because of symmetry only the positive abscissae and c their corresponding weights are given. c c xgk - abscissae of the 15-point kronrod rule c xgk(2), xgk(4), ... abscissae of the 7-point c gauss rule c xgk(1), xgk(3), ... abscissae which are optimally c added to the 7-point gauss rule c c wgk - weights of the 15-point kronrod rule c c wg - weights of the 7-point gauss rule, corresponding c to the abscissae xgk(2), xgk(4), ... c wg(1), wg(3), ... are set to zero. c data wg(1) / 0.0d0 / data wg(2) / 0.1294849661 6886969327 0611432679 082d0 / data wg(3) / 0.0d0 / data wg(4) / 0.2797053914 8927666790 1467771423 780d0 / data wg(5) / 0.0d0 / data wg(6) / 0.3818300505 0511894495 0369775488 975d0 / data wg(7) / 0.0d0 / data wg(8) / 0.4179591836 7346938775 5102040816 327d0 / c data xgk(1) / 0.9914553711 2081263920 6854697526 329d0 / data xgk(2) / 0.9491079123 4275852452 6189684047 851d0 / data xgk(3) / 0.8648644233 5976907278 9712788640 926d0 / data xgk(4) / 0.7415311855 9939443986 3864773280 788d0 / data xgk(5) / 0.5860872354 6769113029 4144838258 730d0 / data xgk(6) / 0.4058451513 7739716690 6606412076 961d0 / data xgk(7) / 0.2077849550 0789846760 0689403773 245d0 / data xgk(8) / 0.0000000000 0000000000 0000000000 000d0 / c data wgk(1) / 0.0229353220 1052922496 3732008058 970d0 / data wgk(2) / 0.0630920926 2997855329 0700663189 204d0 / data wgk(3) / 0.1047900103 2225018383 9876322541 518d0 / data wgk(4) / 0.1406532597 1552591874 5189590510 238d0 / data wgk(5) / 0.1690047266 3926790282 6583426598 550d0 / data wgk(6) / 0.1903505780 6478540991 3256402421 014d0 / data wgk(7) / 0.2044329400 7529889241 4161999234 649d0 / data wgk(8) / 0.2094821410 8472782801 2999174891 714d0 / c c c list of major variables c ----------------------- c c centr - mid point of the interval c hlgth - half-length of the interval c absc* - abscissa c tabsc* - transformed abscissa c fval* - function value c resg - result of the 7-point gauss formula c resk - result of the 15-point kronrod formula c reskh - approximation to the mean value of the transformed c integrand over (a,b), i.e. to i/(b-a) c c machine dependent constants c --------------------------- c c epmach is the largest relative spacing. c uflow is the smallest positive magnitude. c c***first executable statement dqk15i epmach = d1mach(4) uflow = d1mach(1) dinf = min0(1,inf) c centr = 0.5d+00*(a+b) hlgth = 0.5d+00*(b-a) tabsc1 = boun+dinf*(0.1d+01-centr)/centr fval1 = f(tabsc1) if(inf.eq.2) fval1 = fval1+f(-tabsc1) fc = (fval1/centr)/centr c c compute the 15-point kronrod approximation to c the integral, and estimate the error. c resg = wg(8)*fc resk = wgk(8)*fc resabs = dabs(resk) do 10 j=1,7 absc = hlgth*xgk(j) absc1 = centr-absc absc2 = centr+absc tabsc1 = boun+dinf*(0.1d+01-absc1)/absc1 tabsc2 = boun+dinf*(0.1d+01-absc2)/absc2 fval1 = f(tabsc1) fval2 = f(tabsc2) if(inf.eq.2) fval1 = fval1+f(-tabsc1) if(inf.eq.2) fval2 = fval2+f(-tabsc2) fval1 = (fval1/absc1)/absc1 fval2 = (fval2/absc2)/absc2 fv1(j) = fval1 fv2(j) = fval2 fsum = fval1+fval2 resg = resg+wg(j)*fsum resk = resk+wgk(j)*fsum resabs = resabs+wgk(j)*(dabs(fval1)+dabs(fval2)) 10 continue reskh = resk*0.5d+00 resasc = wgk(8)*dabs(fc-reskh) do 20 j=1,7 resasc = resasc+wgk(j)*(dabs(fv1(j)-reskh)+dabs(fv2(j)-reskh)) 20 continue result = resk*hlgth resasc = resasc*hlgth resabs = resabs*hlgth abserr = dabs((resk-resg)*hlgth) if(resasc.ne.0.0d+00.and.abserr.ne.0.d0) abserr = resasc* * dmin1(0.1d+01,(0.2d+03*abserr/resasc)**1.5d+00) if(resabs.gt.uflow/(0.5d+02*epmach)) abserr = dmax1 * ((epmach*0.5d+02)*resabs,abserr) return end
bsd-3-clause
lesserwhirls/scipy-cwt
scipy/integrate/quadpack/dqk15i.f
92
7782
subroutine dqk15i(f,boun,inf,a,b,result,abserr,resabs,resasc) c***begin prologue dqk15i c***date written 800101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a3a2,h2a4a2 c***keywords 15-point transformed gauss-kronrod rules c***author piessens,robert,appl. math. & progr. div. - k.u.leuven c de doncker,elise,appl. math. & progr. div. - k.u.leuven c***purpose the original (infinite integration range is mapped c onto the interval (0,1) and (a,b) is a part of (0,1). c it is the purpose to compute c i = integral of transformed integrand over (a,b), c j = integral of abs(transformed integrand) over (a,b). c***description c c integration rule c standard fortran subroutine c double precision version c c parameters c on entry c f - double precision c fuction subprogram defining the integrand c function f(x). the actual name for f needs to be c declared e x t e r n a l in the calling program. c c boun - double precision c finite bound of original integration c range (set to zero if inf = +2) c c inf - integer c if inf = -1, the original interval is c (-infinity,bound), c if inf = +1, the original interval is c (bound,+infinity), c if inf = +2, the original interval is c (-infinity,+infinity) and c the integral is computed as the sum of two c integrals, one over (-infinity,0) and one over c (0,+infinity). c c a - double precision c lower limit for integration over subrange c of (0,1) c c b - double precision c upper limit for integration over subrange c of (0,1) c c on return c result - double precision c approximation to the integral i c result is computed by applying the 15-point c kronrod rule(resk) obtained by optimal addition c of abscissae to the 7-point gauss rule(resg). c c abserr - double precision c estimate of the modulus of the absolute error, c which should equal or exceed abs(i-result) c c resabs - double precision c approximation to the integral j c c resasc - double precision c approximation to the integral of c abs((transformed integrand)-i/(b-a)) over (a,b) c c***references (none) c***routines called d1mach c***end prologue dqk15i c double precision a,absc,absc1,absc2,abserr,b,boun,centr,dabs,dinf, * dmax1,dmin1,d1mach,epmach,f,fc,fsum,fval1,fval2,fv1,fv2,hlgth, * resabs,resasc,resg,resk,reskh,result,tabsc1,tabsc2,uflow,wg,wgk, * xgk integer inf,j external f c dimension fv1(7),fv2(7),xgk(8),wgk(8),wg(8) c c the abscissae and weights are supplied for the interval c (-1,1). because of symmetry only the positive abscissae and c their corresponding weights are given. c c xgk - abscissae of the 15-point kronrod rule c xgk(2), xgk(4), ... abscissae of the 7-point c gauss rule c xgk(1), xgk(3), ... abscissae which are optimally c added to the 7-point gauss rule c c wgk - weights of the 15-point kronrod rule c c wg - weights of the 7-point gauss rule, corresponding c to the abscissae xgk(2), xgk(4), ... c wg(1), wg(3), ... are set to zero. c data wg(1) / 0.0d0 / data wg(2) / 0.1294849661 6886969327 0611432679 082d0 / data wg(3) / 0.0d0 / data wg(4) / 0.2797053914 8927666790 1467771423 780d0 / data wg(5) / 0.0d0 / data wg(6) / 0.3818300505 0511894495 0369775488 975d0 / data wg(7) / 0.0d0 / data wg(8) / 0.4179591836 7346938775 5102040816 327d0 / c data xgk(1) / 0.9914553711 2081263920 6854697526 329d0 / data xgk(2) / 0.9491079123 4275852452 6189684047 851d0 / data xgk(3) / 0.8648644233 5976907278 9712788640 926d0 / data xgk(4) / 0.7415311855 9939443986 3864773280 788d0 / data xgk(5) / 0.5860872354 6769113029 4144838258 730d0 / data xgk(6) / 0.4058451513 7739716690 6606412076 961d0 / data xgk(7) / 0.2077849550 0789846760 0689403773 245d0 / data xgk(8) / 0.0000000000 0000000000 0000000000 000d0 / c data wgk(1) / 0.0229353220 1052922496 3732008058 970d0 / data wgk(2) / 0.0630920926 2997855329 0700663189 204d0 / data wgk(3) / 0.1047900103 2225018383 9876322541 518d0 / data wgk(4) / 0.1406532597 1552591874 5189590510 238d0 / data wgk(5) / 0.1690047266 3926790282 6583426598 550d0 / data wgk(6) / 0.1903505780 6478540991 3256402421 014d0 / data wgk(7) / 0.2044329400 7529889241 4161999234 649d0 / data wgk(8) / 0.2094821410 8472782801 2999174891 714d0 / c c c list of major variables c ----------------------- c c centr - mid point of the interval c hlgth - half-length of the interval c absc* - abscissa c tabsc* - transformed abscissa c fval* - function value c resg - result of the 7-point gauss formula c resk - result of the 15-point kronrod formula c reskh - approximation to the mean value of the transformed c integrand over (a,b), i.e. to i/(b-a) c c machine dependent constants c --------------------------- c c epmach is the largest relative spacing. c uflow is the smallest positive magnitude. c c***first executable statement dqk15i epmach = d1mach(4) uflow = d1mach(1) dinf = min0(1,inf) c centr = 0.5d+00*(a+b) hlgth = 0.5d+00*(b-a) tabsc1 = boun+dinf*(0.1d+01-centr)/centr fval1 = f(tabsc1) if(inf.eq.2) fval1 = fval1+f(-tabsc1) fc = (fval1/centr)/centr c c compute the 15-point kronrod approximation to c the integral, and estimate the error. c resg = wg(8)*fc resk = wgk(8)*fc resabs = dabs(resk) do 10 j=1,7 absc = hlgth*xgk(j) absc1 = centr-absc absc2 = centr+absc tabsc1 = boun+dinf*(0.1d+01-absc1)/absc1 tabsc2 = boun+dinf*(0.1d+01-absc2)/absc2 fval1 = f(tabsc1) fval2 = f(tabsc2) if(inf.eq.2) fval1 = fval1+f(-tabsc1) if(inf.eq.2) fval2 = fval2+f(-tabsc2) fval1 = (fval1/absc1)/absc1 fval2 = (fval2/absc2)/absc2 fv1(j) = fval1 fv2(j) = fval2 fsum = fval1+fval2 resg = resg+wg(j)*fsum resk = resk+wgk(j)*fsum resabs = resabs+wgk(j)*(dabs(fval1)+dabs(fval2)) 10 continue reskh = resk*0.5d+00 resasc = wgk(8)*dabs(fc-reskh) do 20 j=1,7 resasc = resasc+wgk(j)*(dabs(fv1(j)-reskh)+dabs(fv2(j)-reskh)) 20 continue result = resk*hlgth resasc = resasc*hlgth resabs = resabs*hlgth abserr = dabs((resk-resg)*hlgth) if(resasc.ne.0.0d+00.and.abserr.ne.0.d0) abserr = resasc* * dmin1(0.1d+01,(0.2d+03*abserr/resasc)**1.5d+00) if(resabs.gt.uflow/(0.5d+02*epmach)) abserr = dmax1 * ((epmach*0.5d+02)*resabs,abserr) return end
bsd-3-clause
PPMLibrary/ppm
src/ppm_module_topo_copy.f
1
2341
!--*- f90 -*-------------------------------------------------------------- ! Module : ppm_module_topo_copy !------------------------------------------------------------------------- ! Copyright (c) 2012 CSE Lab (ETH Zurich), MOSAIC Group (ETH Zurich), ! Center for Fluid Dynamics (DTU) ! ! ! This file is part of the Parallel Particle Mesh Library (PPM). ! ! PPM is free software: you can redistribute it and/or modify ! it under the terms of the GNU Lesser General Public License ! as published by the Free Software Foundation, either ! version 3 of the License, or (at your option) any later ! version. ! ! PPM is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! and the GNU Lesser General Public License along with PPM. If not, ! see <http://www.gnu.org/licenses/>. ! ! Parallel Particle Mesh Library (PPM) ! ETH Zurich ! CH-8092 Zurich, Switzerland !------------------------------------------------------------------------- !------------------------------------------------------------------------- ! Define types !------------------------------------------------------------------------- #define __SINGLE_PRECISION 1 #define __DOUBLE_PRECISION 2 MODULE ppm_module_topo_copy !!! This module provides the routines to copy topology structures !---------------------------------------------------------------------- ! Define interfaces to topology copy routine !---------------------------------------------------------------------- INTERFACE ppm_topo_copy MODULE PROCEDURE ppm_topo_copy END INTERFACE !---------------------------------------------------------------------- ! include the source !---------------------------------------------------------------------- CONTAINS #include "topo/ppm_topo_copy.f" END MODULE ppm_module_topo_copy
gpl-3.0
yaowee/libflame
lapack-test/3.4.2/EIG/csgt01.f
32
6817
*> \brief \b CSGT01 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE CSGT01( ITYPE, UPLO, N, M, A, LDA, B, LDB, Z, LDZ, D, * WORK, RWORK, RESULT ) * * .. Scalar Arguments .. * CHARACTER UPLO * INTEGER ITYPE, LDA, LDB, LDZ, M, N * .. * .. Array Arguments .. * REAL D( * ), RESULT( * ), RWORK( * ) * COMPLEX A( LDA, * ), B( LDB, * ), WORK( * ), * $ Z( LDZ, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CSGT01 checks a decomposition of the form *> *> A Z = B Z D or *> A B Z = Z D or *> B A Z = Z D *> *> where A is a Hermitian matrix, B is Hermitian positive definite, *> Z is unitary, and D is diagonal. *> *> One of the following test ratios is computed: *> *> ITYPE = 1: RESULT(1) = | A Z - B Z D | / ( |A| |Z| n ulp ) *> *> ITYPE = 2: RESULT(1) = | A B Z - Z D | / ( |A| |Z| n ulp ) *> *> ITYPE = 3: RESULT(1) = | B A Z - Z D | / ( |A| |Z| n ulp ) *> \endverbatim * * Arguments: * ========== * *> \param[in] ITYPE *> \verbatim *> ITYPE is INTEGER *> The form of the Hermitian generalized eigenproblem. *> = 1: A*z = (lambda)*B*z *> = 2: A*B*z = (lambda)*z *> = 3: B*A*z = (lambda)*z *> \endverbatim *> *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> Specifies whether the upper or lower triangular part of the *> Hermitian matrices A and B is stored. *> = 'U': Upper triangular *> = 'L': Lower triangular *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix A. N >= 0. *> \endverbatim *> *> \param[in] M *> \verbatim *> M is INTEGER *> The number of eigenvalues found. M >= 0. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is COMPLEX array, dimension (LDA, N) *> The original Hermitian matrix A. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,N). *> \endverbatim *> *> \param[in] B *> \verbatim *> B is COMPLEX array, dimension (LDB, N) *> The original Hermitian positive definite matrix B. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. LDB >= max(1,N). *> \endverbatim *> *> \param[in] Z *> \verbatim *> Z is COMPLEX array, dimension (LDZ, M) *> The computed eigenvectors of the generalized eigenproblem. *> \endverbatim *> *> \param[in] LDZ *> \verbatim *> LDZ is INTEGER *> The leading dimension of the array Z. LDZ >= max(1,N). *> \endverbatim *> *> \param[in] D *> \verbatim *> D is REAL array, dimension (M) *> The computed eigenvalues of the generalized eigenproblem. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX array, dimension (N*N) *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is REAL array, dimension (N) *> \endverbatim *> *> \param[out] RESULT *> \verbatim *> RESULT is REAL array, dimension (1) *> The test ratio as described above. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup complex_eig * * ===================================================================== SUBROUTINE CSGT01( ITYPE, UPLO, N, M, A, LDA, B, LDB, Z, LDZ, D, $ WORK, RWORK, RESULT ) * * -- LAPACK test routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. CHARACTER UPLO INTEGER ITYPE, LDA, LDB, LDZ, M, N * .. * .. Array Arguments .. REAL D( * ), RESULT( * ), RWORK( * ) COMPLEX A( LDA, * ), B( LDB, * ), WORK( * ), $ Z( LDZ, * ) * .. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) COMPLEX CZERO, CONE PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ), $ CONE = ( 1.0E+0, 0.0E+0 ) ) * .. * .. Local Scalars .. INTEGER I REAL ANORM, ULP * .. * .. External Functions .. REAL CLANGE, CLANHE, SLAMCH EXTERNAL CLANGE, CLANHE, SLAMCH * .. * .. External Subroutines .. EXTERNAL CHEMM, CSSCAL * .. * .. Executable Statements .. * RESULT( 1 ) = ZERO IF( N.LE.0 ) $ RETURN * ULP = SLAMCH( 'Epsilon' ) * * Compute product of 1-norms of A and Z. * ANORM = CLANHE( '1', UPLO, N, A, LDA, RWORK )* $ CLANGE( '1', N, M, Z, LDZ, RWORK ) IF( ANORM.EQ.ZERO ) $ ANORM = ONE * IF( ITYPE.EQ.1 ) THEN * * Norm of AZ - BZD * CALL CHEMM( 'Left', UPLO, N, M, CONE, A, LDA, Z, LDZ, CZERO, $ WORK, N ) DO 10 I = 1, M CALL CSSCAL( N, D( I ), Z( 1, I ), 1 ) 10 CONTINUE CALL CHEMM( 'Left', UPLO, N, M, CONE, B, LDB, Z, LDZ, -CONE, $ WORK, N ) * RESULT( 1 ) = ( CLANGE( '1', N, M, WORK, N, RWORK ) / ANORM ) / $ ( N*ULP ) * ELSE IF( ITYPE.EQ.2 ) THEN * * Norm of ABZ - ZD * CALL CHEMM( 'Left', UPLO, N, M, CONE, B, LDB, Z, LDZ, CZERO, $ WORK, N ) DO 20 I = 1, M CALL CSSCAL( N, D( I ), Z( 1, I ), 1 ) 20 CONTINUE CALL CHEMM( 'Left', UPLO, N, M, CONE, A, LDA, WORK, N, -CONE, $ Z, LDZ ) * RESULT( 1 ) = ( CLANGE( '1', N, M, Z, LDZ, RWORK ) / ANORM ) / $ ( N*ULP ) * ELSE IF( ITYPE.EQ.3 ) THEN * * Norm of BAZ - ZD * CALL CHEMM( 'Left', UPLO, N, M, CONE, A, LDA, Z, LDZ, CZERO, $ WORK, N ) DO 30 I = 1, M CALL CSSCAL( N, D( I ), Z( 1, I ), 1 ) 30 CONTINUE CALL CHEMM( 'Left', UPLO, N, M, CONE, B, LDB, WORK, N, -CONE, $ Z, LDZ ) * RESULT( 1 ) = ( CLANGE( '1', N, M, Z, LDZ, RWORK ) / ANORM ) / $ ( N*ULP ) END IF * RETURN * * End of CSGT01 * END
bsd-3-clause
yaowee/libflame
lapack-test/3.5.0/EIG/zchkst.f
32
69064
*> \brief \b ZCHKST * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE ZCHKST( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH, * NOUNIT, A, LDA, AP, SD, SE, D1, D2, D3, D4, D5, * WA1, WA2, WA3, WR, U, LDU, V, VP, TAU, Z, WORK, * LWORK, RWORK, LRWORK, IWORK, LIWORK, RESULT, * INFO ) * * .. Scalar Arguments .. * INTEGER INFO, LDA, LDU, LIWORK, LRWORK, LWORK, NOUNIT, * $ NSIZES, NTYPES * DOUBLE PRECISION THRESH * .. * .. Array Arguments .. * LOGICAL DOTYPE( * ) * INTEGER ISEED( 4 ), IWORK( * ), NN( * ) * DOUBLE PRECISION D1( * ), D2( * ), D3( * ), D4( * ), D5( * ), * $ RESULT( * ), RWORK( * ), SD( * ), SE( * ), * $ WA1( * ), WA2( * ), WA3( * ), WR( * ) * COMPLEX*16 A( LDA, * ), AP( * ), TAU( * ), U( LDU, * ), * $ V( LDU, * ), VP( * ), WORK( * ), Z( LDU, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZCHKST checks the Hermitian eigenvalue problem routines. *> *> ZHETRD factors A as U S U* , where * means conjugate transpose, *> S is real symmetric tridiagonal, and U is unitary. *> ZHETRD can use either just the lower or just the upper triangle *> of A; ZCHKST checks both cases. *> U is represented as a product of Householder *> transformations, whose vectors are stored in the first *> n-1 columns of V, and whose scale factors are in TAU. *> *> ZHPTRD does the same as ZHETRD, except that A and V are stored *> in "packed" format. *> *> ZUNGTR constructs the matrix U from the contents of V and TAU. *> *> ZUPGTR constructs the matrix U from the contents of VP and TAU. *> *> ZSTEQR factors S as Z D1 Z* , where Z is the unitary *> matrix of eigenvectors and D1 is a diagonal matrix with *> the eigenvalues on the diagonal. D2 is the matrix of *> eigenvalues computed when Z is not computed. *> *> DSTERF computes D3, the matrix of eigenvalues, by the *> PWK method, which does not yield eigenvectors. *> *> ZPTEQR factors S as Z4 D4 Z4* , for a *> Hermitian positive definite tridiagonal matrix. *> D5 is the matrix of eigenvalues computed when Z is not *> computed. *> *> DSTEBZ computes selected eigenvalues. WA1, WA2, and *> WA3 will denote eigenvalues computed to high *> absolute accuracy, with different range options. *> WR will denote eigenvalues computed to high relative *> accuracy. *> *> ZSTEIN computes Y, the eigenvectors of S, given the *> eigenvalues. *> *> ZSTEDC factors S as Z D1 Z* , where Z is the unitary *> matrix of eigenvectors and D1 is a diagonal matrix with *> the eigenvalues on the diagonal ('I' option). It may also *> update an input unitary matrix, usually the output *> from ZHETRD/ZUNGTR or ZHPTRD/ZUPGTR ('V' option). It may *> also just compute eigenvalues ('N' option). *> *> ZSTEMR factors S as Z D1 Z* , where Z is the unitary *> matrix of eigenvectors and D1 is a diagonal matrix with *> the eigenvalues on the diagonal ('I' option). ZSTEMR *> uses the Relatively Robust Representation whenever possible. *> *> When ZCHKST is called, a number of matrix "sizes" ("n's") and a *> number of matrix "types" are specified. For each size ("n") *> and each type of matrix, one matrix will be generated and used *> to test the Hermitian eigenroutines. For each matrix, a number *> of tests will be performed: *> *> (1) | A - V S V* | / ( |A| n ulp ) ZHETRD( UPLO='U', ... ) *> *> (2) | I - UV* | / ( n ulp ) ZUNGTR( UPLO='U', ... ) *> *> (3) | A - V S V* | / ( |A| n ulp ) ZHETRD( UPLO='L', ... ) *> *> (4) | I - UV* | / ( n ulp ) ZUNGTR( UPLO='L', ... ) *> *> (5-8) Same as 1-4, but for ZHPTRD and ZUPGTR. *> *> (9) | S - Z D Z* | / ( |S| n ulp ) ZSTEQR('V',...) *> *> (10) | I - ZZ* | / ( n ulp ) ZSTEQR('V',...) *> *> (11) | D1 - D2 | / ( |D1| ulp ) ZSTEQR('N',...) *> *> (12) | D1 - D3 | / ( |D1| ulp ) DSTERF *> *> (13) 0 if the true eigenvalues (computed by sturm count) *> of S are within THRESH of *> those in D1. 2*THRESH if they are not. (Tested using *> DSTECH) *> *> For S positive definite, *> *> (14) | S - Z4 D4 Z4* | / ( |S| n ulp ) ZPTEQR('V',...) *> *> (15) | I - Z4 Z4* | / ( n ulp ) ZPTEQR('V',...) *> *> (16) | D4 - D5 | / ( 100 |D4| ulp ) ZPTEQR('N',...) *> *> When S is also diagonally dominant by the factor gamma < 1, *> *> (17) max | D4(i) - WR(i) | / ( |D4(i)| omega ) , *> i *> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4 *> DSTEBZ( 'A', 'E', ...) *> *> (18) | WA1 - D3 | / ( |D3| ulp ) DSTEBZ( 'A', 'E', ...) *> *> (19) ( max { min | WA2(i)-WA3(j) | } + *> i j *> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp ) *> i j *> DSTEBZ( 'I', 'E', ...) *> *> (20) | S - Y WA1 Y* | / ( |S| n ulp ) DSTEBZ, ZSTEIN *> *> (21) | I - Y Y* | / ( n ulp ) DSTEBZ, ZSTEIN *> *> (22) | S - Z D Z* | / ( |S| n ulp ) ZSTEDC('I') *> *> (23) | I - ZZ* | / ( n ulp ) ZSTEDC('I') *> *> (24) | S - Z D Z* | / ( |S| n ulp ) ZSTEDC('V') *> *> (25) | I - ZZ* | / ( n ulp ) ZSTEDC('V') *> *> (26) | D1 - D2 | / ( |D1| ulp ) ZSTEDC('V') and *> ZSTEDC('N') *> *> Test 27 is disabled at the moment because ZSTEMR does not *> guarantee high relatvie accuracy. *> *> (27) max | D6(i) - WR(i) | / ( |D6(i)| omega ) , *> i *> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4 *> ZSTEMR('V', 'A') *> *> (28) max | D6(i) - WR(i) | / ( |D6(i)| omega ) , *> i *> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4 *> ZSTEMR('V', 'I') *> *> Tests 29 through 34 are disable at present because ZSTEMR *> does not handle partial specturm requests. *> *> (29) | S - Z D Z* | / ( |S| n ulp ) ZSTEMR('V', 'I') *> *> (30) | I - ZZ* | / ( n ulp ) ZSTEMR('V', 'I') *> *> (31) ( max { min | WA2(i)-WA3(j) | } + *> i j *> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp ) *> i j *> ZSTEMR('N', 'I') vs. CSTEMR('V', 'I') *> *> (32) | S - Z D Z* | / ( |S| n ulp ) ZSTEMR('V', 'V') *> *> (33) | I - ZZ* | / ( n ulp ) ZSTEMR('V', 'V') *> *> (34) ( max { min | WA2(i)-WA3(j) | } + *> i j *> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp ) *> i j *> ZSTEMR('N', 'V') vs. CSTEMR('V', 'V') *> *> (35) | S - Z D Z* | / ( |S| n ulp ) ZSTEMR('V', 'A') *> *> (36) | I - ZZ* | / ( n ulp ) ZSTEMR('V', 'A') *> *> (37) ( max { min | WA2(i)-WA3(j) | } + *> i j *> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp ) *> i j *> ZSTEMR('N', 'A') vs. CSTEMR('V', 'A') *> *> The "sizes" are specified by an array NN(1:NSIZES); the value of *> each element NN(j) specifies one size. *> The "types" are specified by a logical array DOTYPE( 1:NTYPES ); *> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated. *> Currently, the list of possible types is: *> *> (1) The zero matrix. *> (2) The identity matrix. *> *> (3) A diagonal matrix with evenly spaced entries *> 1, ..., ULP and random signs. *> (ULP = (first number larger than 1) - 1 ) *> (4) A diagonal matrix with geometrically spaced entries *> 1, ..., ULP and random signs. *> (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP *> and random signs. *> *> (6) Same as (4), but multiplied by SQRT( overflow threshold ) *> (7) Same as (4), but multiplied by SQRT( underflow threshold ) *> *> (8) A matrix of the form U* D U, where U is unitary and *> D has evenly spaced entries 1, ..., ULP with random signs *> on the diagonal. *> *> (9) A matrix of the form U* D U, where U is unitary and *> D has geometrically spaced entries 1, ..., ULP with random *> signs on the diagonal. *> *> (10) A matrix of the form U* D U, where U is unitary and *> D has "clustered" entries 1, ULP,..., ULP with random *> signs on the diagonal. *> *> (11) Same as (8), but multiplied by SQRT( overflow threshold ) *> (12) Same as (8), but multiplied by SQRT( underflow threshold ) *> *> (13) Hermitian matrix with random entries chosen from (-1,1). *> (14) Same as (13), but multiplied by SQRT( overflow threshold ) *> (15) Same as (13), but multiplied by SQRT( underflow threshold ) *> (16) Same as (8), but diagonal elements are all positive. *> (17) Same as (9), but diagonal elements are all positive. *> (18) Same as (10), but diagonal elements are all positive. *> (19) Same as (16), but multiplied by SQRT( overflow threshold ) *> (20) Same as (16), but multiplied by SQRT( underflow threshold ) *> (21) A diagonally dominant tridiagonal matrix with geometrically *> spaced diagonal entries 1, ..., ULP. *> \endverbatim * * Arguments: * ========== * *> \param[in] NSIZES *> \verbatim *> NSIZES is INTEGER *> The number of sizes of matrices to use. If it is zero, *> ZCHKST does nothing. It must be at least zero. *> \endverbatim *> *> \param[in] NN *> \verbatim *> NN is INTEGER array, dimension (NSIZES) *> An array containing the sizes to be used for the matrices. *> Zero values will be skipped. The values must be at least *> zero. *> \endverbatim *> *> \param[in] NTYPES *> \verbatim *> NTYPES is INTEGER *> The number of elements in DOTYPE. If it is zero, ZCHKST *> does nothing. It must be at least zero. If it is MAXTYP+1 *> and NSIZES is 1, then an additional type, MAXTYP+1 is *> defined, which is to use whatever matrix is in A. This *> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and *> DOTYPE(MAXTYP+1) is .TRUE. . *> \endverbatim *> *> \param[in] DOTYPE *> \verbatim *> DOTYPE is LOGICAL array, dimension (NTYPES) *> If DOTYPE(j) is .TRUE., then for each size in NN a *> matrix of that size and of type j will be generated. *> If NTYPES is smaller than the maximum number of types *> defined (PARAMETER MAXTYP), then types NTYPES+1 through *> MAXTYP will not be generated. If NTYPES is larger *> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) *> will be ignored. *> \endverbatim *> *> \param[in,out] ISEED *> \verbatim *> ISEED is INTEGER array, dimension (4) *> On entry ISEED specifies the seed of the random number *> generator. The array elements should be between 0 and 4095; *> if not they will be reduced mod 4096. Also, ISEED(4) must *> be odd. The random number generator uses a linear *> congruential sequence limited to small integers, and so *> should produce machine independent random numbers. The *> values of ISEED are changed on exit, and can be used in the *> next call to ZCHKST to continue the same random number *> sequence. *> \endverbatim *> *> \param[in] THRESH *> \verbatim *> THRESH is DOUBLE PRECISION *> A test will count as "failed" if the "error", computed as *> described above, exceeds THRESH. Note that the error *> is scaled to be O(1), so THRESH should be a reasonably *> small multiple of 1, e.g., 10 or 100. In particular, *> it should not depend on the precision (single vs. double) *> or the size of the matrix. It must be at least zero. *> \endverbatim *> *> \param[in] NOUNIT *> \verbatim *> NOUNIT is INTEGER *> The FORTRAN unit number for printing out error messages *> (e.g., if a routine returns IINFO not equal to 0.) *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is COMPLEX*16 array of *> dimension ( LDA , max(NN) ) *> Used to hold the matrix whose eigenvalues are to be *> computed. On exit, A contains the last matrix actually *> used. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of A. It must be at *> least 1 and at least max( NN ). *> \endverbatim *> *> \param[out] AP *> \verbatim *> AP is COMPLEX*16 array of *> dimension( max(NN)*max(NN+1)/2 ) *> The matrix A stored in packed format. *> \endverbatim *> *> \param[out] SD *> \verbatim *> SD is DOUBLE PRECISION array of *> dimension( max(NN) ) *> The diagonal of the tridiagonal matrix computed by ZHETRD. *> On exit, SD and SE contain the tridiagonal form of the *> matrix in A. *> \endverbatim *> *> \param[out] SE *> \verbatim *> SE is DOUBLE PRECISION array of *> dimension( max(NN) ) *> The off-diagonal of the tridiagonal matrix computed by *> ZHETRD. On exit, SD and SE contain the tridiagonal form of *> the matrix in A. *> \endverbatim *> *> \param[out] D1 *> \verbatim *> D1 is DOUBLE PRECISION array of *> dimension( max(NN) ) *> The eigenvalues of A, as computed by ZSTEQR simlutaneously *> with Z. On exit, the eigenvalues in D1 correspond with the *> matrix in A. *> \endverbatim *> *> \param[out] D2 *> \verbatim *> D2 is DOUBLE PRECISION array of *> dimension( max(NN) ) *> The eigenvalues of A, as computed by ZSTEQR if Z is not *> computed. On exit, the eigenvalues in D2 correspond with *> the matrix in A. *> \endverbatim *> *> \param[out] D3 *> \verbatim *> D3 is DOUBLE PRECISION array of *> dimension( max(NN) ) *> The eigenvalues of A, as computed by DSTERF. On exit, the *> eigenvalues in D3 correspond with the matrix in A. *> \endverbatim *> *> \param[out] D4 *> \verbatim *> D4 is DOUBLE PRECISION array of *> dimension( max(NN) ) *> The eigenvalues of A, as computed by ZPTEQR(V). *> ZPTEQR factors S as Z4 D4 Z4* *> On exit, the eigenvalues in D4 correspond with the matrix in A. *> \endverbatim *> *> \param[out] D5 *> \verbatim *> D5 is DOUBLE PRECISION array of *> dimension( max(NN) ) *> The eigenvalues of A, as computed by ZPTEQR(N) *> when Z is not computed. On exit, the *> eigenvalues in D4 correspond with the matrix in A. *> \endverbatim *> *> \param[out] WA1 *> \verbatim *> WA1 is DOUBLE PRECISION array of *> dimension( max(NN) ) *> All eigenvalues of A, computed to high *> absolute accuracy, with different range options. *> as computed by DSTEBZ. *> \endverbatim *> *> \param[out] WA2 *> \verbatim *> WA2 is DOUBLE PRECISION array of *> dimension( max(NN) ) *> Selected eigenvalues of A, computed to high *> absolute accuracy, with different range options. *> as computed by DSTEBZ. *> Choose random values for IL and IU, and ask for the *> IL-th through IU-th eigenvalues. *> \endverbatim *> *> \param[out] WA3 *> \verbatim *> WA3 is DOUBLE PRECISION array of *> dimension( max(NN) ) *> Selected eigenvalues of A, computed to high *> absolute accuracy, with different range options. *> as computed by DSTEBZ. *> Determine the values VL and VU of the IL-th and IU-th *> eigenvalues and ask for all eigenvalues in this range. *> \endverbatim *> *> \param[out] WR *> \verbatim *> WR is DOUBLE PRECISION array of *> dimension( max(NN) ) *> All eigenvalues of A, computed to high *> absolute accuracy, with different options. *> as computed by DSTEBZ. *> \endverbatim *> *> \param[out] U *> \verbatim *> U is COMPLEX*16 array of *> dimension( LDU, max(NN) ). *> The unitary matrix computed by ZHETRD + ZUNGTR. *> \endverbatim *> *> \param[in] LDU *> \verbatim *> LDU is INTEGER *> The leading dimension of U, Z, and V. It must be at least 1 *> and at least max( NN ). *> \endverbatim *> *> \param[out] V *> \verbatim *> V is COMPLEX*16 array of *> dimension( LDU, max(NN) ). *> The Housholder vectors computed by ZHETRD in reducing A to *> tridiagonal form. The vectors computed with UPLO='U' are *> in the upper triangle, and the vectors computed with UPLO='L' *> are in the lower triangle. (As described in ZHETRD, the *> sub- and superdiagonal are not set to 1, although the *> true Householder vector has a 1 in that position. The *> routines that use V, such as ZUNGTR, set those entries to *> 1 before using them, and then restore them later.) *> \endverbatim *> *> \param[out] VP *> \verbatim *> VP is COMPLEX*16 array of *> dimension( max(NN)*max(NN+1)/2 ) *> The matrix V stored in packed format. *> \endverbatim *> *> \param[out] TAU *> \verbatim *> TAU is COMPLEX*16 array of *> dimension( max(NN) ) *> The Householder factors computed by ZHETRD in reducing A *> to tridiagonal form. *> \endverbatim *> *> \param[out] Z *> \verbatim *> Z is COMPLEX*16 array of *> dimension( LDU, max(NN) ). *> The unitary matrix of eigenvectors computed by ZSTEQR, *> ZPTEQR, and ZSTEIN. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX*16 array of *> dimension( LWORK ) *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The number of entries in WORK. This must be at least *> 1 + 4 * Nmax + 2 * Nmax * lg Nmax + 3 * Nmax**2 *> where Nmax = max( NN(j), 2 ) and lg = log base 2. *> \endverbatim *> *> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, *> Workspace. *> \endverbatim *> *> \param[out] LIWORK *> \verbatim *> LIWORK is INTEGER *> The number of entries in IWORK. This must be at least *> 6 + 6*Nmax + 5 * Nmax * lg Nmax *> where Nmax = max( NN(j), 2 ) and lg = log base 2. *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is DOUBLE PRECISION array *> \endverbatim *> *> \param[in] LRWORK *> \verbatim *> LRWORK is INTEGER *> The number of entries in LRWORK (dimension( ??? ) *> \endverbatim *> *> \param[out] RESULT *> \verbatim *> RESULT is DOUBLE PRECISION array, dimension (26) *> The values computed by the tests described above. *> The values are currently limited to 1/ulp, to avoid *> overflow. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> If 0, then everything ran OK. *> -1: NSIZES < 0 *> -2: Some NN(j) < 0 *> -3: NTYPES < 0 *> -5: THRESH < 0 *> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). *> -23: LDU < 1 or LDU < NMAX. *> -29: LWORK too small. *> If ZLATMR, CLATMS, ZHETRD, ZUNGTR, ZSTEQR, DSTERF, *> or ZUNMC2 returns an error code, the *> absolute value of it is returned. *> *>----------------------------------------------------------------------- *> *> Some Local Variables and Parameters: *> ---- ----- --------- --- ---------- *> ZERO, ONE Real 0 and 1. *> MAXTYP The number of types defined. *> NTEST The number of tests performed, or which can *> be performed so far, for the current matrix. *> NTESTT The total number of tests performed so far. *> NBLOCK Blocksize as returned by ENVIR. *> NMAX Largest value in NN. *> NMATS The number of matrices generated so far. *> NERRS The number of tests which have exceeded THRESH *> so far. *> COND, IMODE Values to be passed to the matrix generators. *> ANORM Norm of A; passed to matrix generators. *> *> OVFL, UNFL Overflow and underflow thresholds. *> ULP, ULPINV Finest relative precision and its inverse. *> RTOVFL, RTUNFL Square roots of the previous 2 values. *> The following four arrays decode JTYPE: *> KTYPE(j) The general type (1-10) for type "j". *> KMODE(j) The MODE value to be passed to the matrix *> generator for type "j". *> KMAGN(j) The order of magnitude ( O(1), *> O(overflow^(1/2) ), O(underflow^(1/2) ) *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup complex16_eig * * ===================================================================== SUBROUTINE ZCHKST( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH, $ NOUNIT, A, LDA, AP, SD, SE, D1, D2, D3, D4, D5, $ WA1, WA2, WA3, WR, U, LDU, V, VP, TAU, Z, WORK, $ LWORK, RWORK, LRWORK, IWORK, LIWORK, RESULT, $ INFO ) * * -- LAPACK test routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. INTEGER INFO, LDA, LDU, LIWORK, LRWORK, LWORK, NOUNIT, $ NSIZES, NTYPES DOUBLE PRECISION THRESH * .. * .. Array Arguments .. LOGICAL DOTYPE( * ) INTEGER ISEED( 4 ), IWORK( * ), NN( * ) DOUBLE PRECISION D1( * ), D2( * ), D3( * ), D4( * ), D5( * ), $ RESULT( * ), RWORK( * ), SD( * ), SE( * ), $ WA1( * ), WA2( * ), WA3( * ), WR( * ) COMPLEX*16 A( LDA, * ), AP( * ), TAU( * ), U( LDU, * ), $ V( LDU, * ), VP( * ), WORK( * ), Z( LDU, * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE, TWO, EIGHT, TEN, HUN PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0, $ EIGHT = 8.0D0, TEN = 10.0D0, HUN = 100.0D0 ) COMPLEX*16 CZERO, CONE PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ), $ CONE = ( 1.0D+0, 0.0D+0 ) ) DOUBLE PRECISION HALF PARAMETER ( HALF = ONE / TWO ) INTEGER MAXTYP PARAMETER ( MAXTYP = 21 ) LOGICAL CRANGE PARAMETER ( CRANGE = .FALSE. ) LOGICAL CREL PARAMETER ( CREL = .FALSE. ) * .. * .. Local Scalars .. LOGICAL BADNN, TRYRAC INTEGER I, IINFO, IL, IMODE, INDE, INDRWK, ITEMP, $ ITYPE, IU, J, JC, JR, JSIZE, JTYPE, LGN, $ LIWEDC, LOG2UI, LRWEDC, LWEDC, M, M2, M3, $ MTYPES, N, NAP, NBLOCK, NERRS, NMATS, NMAX, $ NSPLIT, NTEST, NTESTT DOUBLE PRECISION ABSTOL, ANINV, ANORM, COND, OVFL, RTOVFL, $ RTUNFL, TEMP1, TEMP2, TEMP3, TEMP4, ULP, $ ULPINV, UNFL, VL, VU * .. * .. Local Arrays .. INTEGER IDUMMA( 1 ), IOLDSD( 4 ), ISEED2( 4 ), $ KMAGN( MAXTYP ), KMODE( MAXTYP ), $ KTYPE( MAXTYP ) DOUBLE PRECISION DUMMA( 1 ) * .. * .. External Functions .. INTEGER ILAENV DOUBLE PRECISION DLAMCH, DLARND, DSXT1 EXTERNAL ILAENV, DLAMCH, DLARND, DSXT1 * .. * .. External Subroutines .. EXTERNAL DCOPY, DLABAD, DLASUM, DSTEBZ, DSTECH, DSTERF, $ XERBLA, ZCOPY, ZHET21, ZHETRD, ZHPT21, ZHPTRD, $ ZLACPY, ZLASET, ZLATMR, ZLATMS, ZPTEQR, ZSTEDC, $ ZSTEMR, ZSTEIN, ZSTEQR, ZSTT21, ZSTT22, ZUNGTR, $ ZUPGTR * .. * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, DCONJG, INT, LOG, MAX, MIN, SQRT * .. * .. Data statements .. DATA KTYPE / 1, 2, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 8, $ 8, 8, 9, 9, 9, 9, 9, 10 / DATA KMAGN / 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1, $ 2, 3, 1, 1, 1, 2, 3, 1 / DATA KMODE / 0, 0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0, $ 0, 0, 4, 3, 1, 4, 4, 3 / * .. * .. Executable Statements .. * * Keep ftnchek happy IDUMMA( 1 ) = 1 * * Check for errors * NTESTT = 0 INFO = 0 * * Important constants * BADNN = .FALSE. TRYRAC = .TRUE. NMAX = 1 DO 10 J = 1, NSIZES NMAX = MAX( NMAX, NN( J ) ) IF( NN( J ).LT.0 ) $ BADNN = .TRUE. 10 CONTINUE * NBLOCK = ILAENV( 1, 'ZHETRD', 'L', NMAX, -1, -1, -1 ) NBLOCK = MIN( NMAX, MAX( 1, NBLOCK ) ) * * Check for errors * IF( NSIZES.LT.0 ) THEN INFO = -1 ELSE IF( BADNN ) THEN INFO = -2 ELSE IF( NTYPES.LT.0 ) THEN INFO = -3 ELSE IF( LDA.LT.NMAX ) THEN INFO = -9 ELSE IF( LDU.LT.NMAX ) THEN INFO = -23 ELSE IF( 2*MAX( 2, NMAX )**2.GT.LWORK ) THEN INFO = -29 END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZCHKST', -INFO ) RETURN END IF * * Quick return if possible * IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 ) $ RETURN * * More Important constants * UNFL = DLAMCH( 'Safe minimum' ) OVFL = ONE / UNFL CALL DLABAD( UNFL, OVFL ) ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' ) ULPINV = ONE / ULP LOG2UI = INT( LOG( ULPINV ) / LOG( TWO ) ) RTUNFL = SQRT( UNFL ) RTOVFL = SQRT( OVFL ) * * Loop over sizes, types * DO 20 I = 1, 4 ISEED2( I ) = ISEED( I ) 20 CONTINUE NERRS = 0 NMATS = 0 * DO 310 JSIZE = 1, NSIZES N = NN( JSIZE ) IF( N.GT.0 ) THEN LGN = INT( LOG( DBLE( N ) ) / LOG( TWO ) ) IF( 2**LGN.LT.N ) $ LGN = LGN + 1 IF( 2**LGN.LT.N ) $ LGN = LGN + 1 LWEDC = 1 + 4*N + 2*N*LGN + 4*N**2 LRWEDC = 1 + 3*N + 2*N*LGN + 4*N**2 LIWEDC = 6 + 6*N + 5*N*LGN ELSE LWEDC = 8 LRWEDC = 7 LIWEDC = 12 END IF NAP = ( N*( N+1 ) ) / 2 ANINV = ONE / DBLE( MAX( 1, N ) ) * IF( NSIZES.NE.1 ) THEN MTYPES = MIN( MAXTYP, NTYPES ) ELSE MTYPES = MIN( MAXTYP+1, NTYPES ) END IF * DO 300 JTYPE = 1, MTYPES IF( .NOT.DOTYPE( JTYPE ) ) $ GO TO 300 NMATS = NMATS + 1 NTEST = 0 * DO 30 J = 1, 4 IOLDSD( J ) = ISEED( J ) 30 CONTINUE * * Compute "A" * * Control parameters: * * KMAGN KMODE KTYPE * =1 O(1) clustered 1 zero * =2 large clustered 2 identity * =3 small exponential (none) * =4 arithmetic diagonal, (w/ eigenvalues) * =5 random log Hermitian, w/ eigenvalues * =6 random (none) * =7 random diagonal * =8 random Hermitian * =9 positive definite * =10 diagonally dominant tridiagonal * IF( MTYPES.GT.MAXTYP ) $ GO TO 100 * ITYPE = KTYPE( JTYPE ) IMODE = KMODE( JTYPE ) * * Compute norm * GO TO ( 40, 50, 60 )KMAGN( JTYPE ) * 40 CONTINUE ANORM = ONE GO TO 70 * 50 CONTINUE ANORM = ( RTOVFL*ULP )*ANINV GO TO 70 * 60 CONTINUE ANORM = RTUNFL*N*ULPINV GO TO 70 * 70 CONTINUE * CALL ZLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA ) IINFO = 0 IF( JTYPE.LE.15 ) THEN COND = ULPINV ELSE COND = ULPINV*ANINV / TEN END IF * * Special Matrices -- Identity & Jordan block * * Zero * IF( ITYPE.EQ.1 ) THEN IINFO = 0 * ELSE IF( ITYPE.EQ.2 ) THEN * * Identity * DO 80 JC = 1, N A( JC, JC ) = ANORM 80 CONTINUE * ELSE IF( ITYPE.EQ.4 ) THEN * * Diagonal Matrix, [Eigen]values Specified * CALL ZLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND, $ ANORM, 0, 0, 'N', A, LDA, WORK, IINFO ) * * ELSE IF( ITYPE.EQ.5 ) THEN * * Hermitian, eigenvalues specified * CALL ZLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND, $ ANORM, N, N, 'N', A, LDA, WORK, IINFO ) * ELSE IF( ITYPE.EQ.7 ) THEN * * Diagonal, random eigenvalues * CALL ZLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, CONE, $ 'T', 'N', WORK( N+1 ), 1, ONE, $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0, $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO ) * ELSE IF( ITYPE.EQ.8 ) THEN * * Hermitian, random eigenvalues * CALL ZLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, CONE, $ 'T', 'N', WORK( N+1 ), 1, ONE, $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N, $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO ) * ELSE IF( ITYPE.EQ.9 ) THEN * * Positive definite, eigenvalues specified. * CALL ZLATMS( N, N, 'S', ISEED, 'P', RWORK, IMODE, COND, $ ANORM, N, N, 'N', A, LDA, WORK, IINFO ) * ELSE IF( ITYPE.EQ.10 ) THEN * * Positive definite tridiagonal, eigenvalues specified. * CALL ZLATMS( N, N, 'S', ISEED, 'P', RWORK, IMODE, COND, $ ANORM, 1, 1, 'N', A, LDA, WORK, IINFO ) DO 90 I = 2, N TEMP1 = ABS( A( I-1, I ) ) TEMP2 = SQRT( ABS( A( I-1, I-1 )*A( I, I ) ) ) IF( TEMP1.GT.HALF*TEMP2 ) THEN A( I-1, I ) = A( I-1, I )* $ ( HALF*TEMP2 / ( UNFL+TEMP1 ) ) A( I, I-1 ) = DCONJG( A( I-1, I ) ) END IF 90 CONTINUE * ELSE * IINFO = 1 END IF * IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) RETURN END IF * 100 CONTINUE * * Call ZHETRD and ZUNGTR to compute S and U from * upper triangle. * CALL ZLACPY( 'U', N, N, A, LDA, V, LDU ) * NTEST = 1 CALL ZHETRD( 'U', N, V, LDU, SD, SE, TAU, WORK, LWORK, $ IINFO ) * IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZHETRD(U)', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 1 ) = ULPINV GO TO 280 END IF END IF * CALL ZLACPY( 'U', N, N, V, LDU, U, LDU ) * NTEST = 2 CALL ZUNGTR( 'U', N, U, LDU, TAU, WORK, LWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZUNGTR(U)', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 2 ) = ULPINV GO TO 280 END IF END IF * * Do tests 1 and 2 * CALL ZHET21( 2, 'Upper', N, 1, A, LDA, SD, SE, U, LDU, V, $ LDU, TAU, WORK, RWORK, RESULT( 1 ) ) CALL ZHET21( 3, 'Upper', N, 1, A, LDA, SD, SE, U, LDU, V, $ LDU, TAU, WORK, RWORK, RESULT( 2 ) ) * * Call ZHETRD and ZUNGTR to compute S and U from * lower triangle, do tests. * CALL ZLACPY( 'L', N, N, A, LDA, V, LDU ) * NTEST = 3 CALL ZHETRD( 'L', N, V, LDU, SD, SE, TAU, WORK, LWORK, $ IINFO ) * IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZHETRD(L)', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 3 ) = ULPINV GO TO 280 END IF END IF * CALL ZLACPY( 'L', N, N, V, LDU, U, LDU ) * NTEST = 4 CALL ZUNGTR( 'L', N, U, LDU, TAU, WORK, LWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZUNGTR(L)', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 4 ) = ULPINV GO TO 280 END IF END IF * CALL ZHET21( 2, 'Lower', N, 1, A, LDA, SD, SE, U, LDU, V, $ LDU, TAU, WORK, RWORK, RESULT( 3 ) ) CALL ZHET21( 3, 'Lower', N, 1, A, LDA, SD, SE, U, LDU, V, $ LDU, TAU, WORK, RWORK, RESULT( 4 ) ) * * Store the upper triangle of A in AP * I = 0 DO 120 JC = 1, N DO 110 JR = 1, JC I = I + 1 AP( I ) = A( JR, JC ) 110 CONTINUE 120 CONTINUE * * Call ZHPTRD and ZUPGTR to compute S and U from AP * CALL ZCOPY( NAP, AP, 1, VP, 1 ) * NTEST = 5 CALL ZHPTRD( 'U', N, VP, SD, SE, TAU, IINFO ) * IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZHPTRD(U)', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 5 ) = ULPINV GO TO 280 END IF END IF * NTEST = 6 CALL ZUPGTR( 'U', N, VP, TAU, U, LDU, WORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZUPGTR(U)', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 6 ) = ULPINV GO TO 280 END IF END IF * * Do tests 5 and 6 * CALL ZHPT21( 2, 'Upper', N, 1, AP, SD, SE, U, LDU, VP, TAU, $ WORK, RWORK, RESULT( 5 ) ) CALL ZHPT21( 3, 'Upper', N, 1, AP, SD, SE, U, LDU, VP, TAU, $ WORK, RWORK, RESULT( 6 ) ) * * Store the lower triangle of A in AP * I = 0 DO 140 JC = 1, N DO 130 JR = JC, N I = I + 1 AP( I ) = A( JR, JC ) 130 CONTINUE 140 CONTINUE * * Call ZHPTRD and ZUPGTR to compute S and U from AP * CALL ZCOPY( NAP, AP, 1, VP, 1 ) * NTEST = 7 CALL ZHPTRD( 'L', N, VP, SD, SE, TAU, IINFO ) * IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZHPTRD(L)', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 7 ) = ULPINV GO TO 280 END IF END IF * NTEST = 8 CALL ZUPGTR( 'L', N, VP, TAU, U, LDU, WORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZUPGTR(L)', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 8 ) = ULPINV GO TO 280 END IF END IF * CALL ZHPT21( 2, 'Lower', N, 1, AP, SD, SE, U, LDU, VP, TAU, $ WORK, RWORK, RESULT( 7 ) ) CALL ZHPT21( 3, 'Lower', N, 1, AP, SD, SE, U, LDU, VP, TAU, $ WORK, RWORK, RESULT( 8 ) ) * * Call ZSTEQR to compute D1, D2, and Z, do tests. * * Compute D1 and Z * CALL DCOPY( N, SD, 1, D1, 1 ) IF( N.GT.0 ) $ CALL DCOPY( N-1, SE, 1, RWORK, 1 ) CALL ZLASET( 'Full', N, N, CZERO, CONE, Z, LDU ) * NTEST = 9 CALL ZSTEQR( 'V', N, D1, RWORK, Z, LDU, RWORK( N+1 ), $ IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZSTEQR(V)', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 9 ) = ULPINV GO TO 280 END IF END IF * * Compute D2 * CALL DCOPY( N, SD, 1, D2, 1 ) IF( N.GT.0 ) $ CALL DCOPY( N-1, SE, 1, RWORK, 1 ) * NTEST = 11 CALL ZSTEQR( 'N', N, D2, RWORK, WORK, LDU, RWORK( N+1 ), $ IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZSTEQR(N)', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 11 ) = ULPINV GO TO 280 END IF END IF * * Compute D3 (using PWK method) * CALL DCOPY( N, SD, 1, D3, 1 ) IF( N.GT.0 ) $ CALL DCOPY( N-1, SE, 1, RWORK, 1 ) * NTEST = 12 CALL DSTERF( N, D3, RWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'DSTERF', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 12 ) = ULPINV GO TO 280 END IF END IF * * Do Tests 9 and 10 * CALL ZSTT21( N, 0, SD, SE, D1, DUMMA, Z, LDU, WORK, RWORK, $ RESULT( 9 ) ) * * Do Tests 11 and 12 * TEMP1 = ZERO TEMP2 = ZERO TEMP3 = ZERO TEMP4 = ZERO * DO 150 J = 1, N TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) ) TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) ) TEMP3 = MAX( TEMP3, ABS( D1( J ) ), ABS( D3( J ) ) ) TEMP4 = MAX( TEMP4, ABS( D1( J )-D3( J ) ) ) 150 CONTINUE * RESULT( 11 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) ) RESULT( 12 ) = TEMP4 / MAX( UNFL, ULP*MAX( TEMP3, TEMP4 ) ) * * Do Test 13 -- Sturm Sequence Test of Eigenvalues * Go up by factors of two until it succeeds * NTEST = 13 TEMP1 = THRESH*( HALF-ULP ) * DO 160 J = 0, LOG2UI CALL DSTECH( N, SD, SE, D1, TEMP1, RWORK, IINFO ) IF( IINFO.EQ.0 ) $ GO TO 170 TEMP1 = TEMP1*TWO 160 CONTINUE * 170 CONTINUE RESULT( 13 ) = TEMP1 * * For positive definite matrices ( JTYPE.GT.15 ) call ZPTEQR * and do tests 14, 15, and 16 . * IF( JTYPE.GT.15 ) THEN * * Compute D4 and Z4 * CALL DCOPY( N, SD, 1, D4, 1 ) IF( N.GT.0 ) $ CALL DCOPY( N-1, SE, 1, RWORK, 1 ) CALL ZLASET( 'Full', N, N, CZERO, CONE, Z, LDU ) * NTEST = 14 CALL ZPTEQR( 'V', N, D4, RWORK, Z, LDU, RWORK( N+1 ), $ IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZPTEQR(V)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 14 ) = ULPINV GO TO 280 END IF END IF * * Do Tests 14 and 15 * CALL ZSTT21( N, 0, SD, SE, D4, DUMMA, Z, LDU, WORK, $ RWORK, RESULT( 14 ) ) * * Compute D5 * CALL DCOPY( N, SD, 1, D5, 1 ) IF( N.GT.0 ) $ CALL DCOPY( N-1, SE, 1, RWORK, 1 ) * NTEST = 16 CALL ZPTEQR( 'N', N, D5, RWORK, Z, LDU, RWORK( N+1 ), $ IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZPTEQR(N)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 16 ) = ULPINV GO TO 280 END IF END IF * * Do Test 16 * TEMP1 = ZERO TEMP2 = ZERO DO 180 J = 1, N TEMP1 = MAX( TEMP1, ABS( D4( J ) ), ABS( D5( J ) ) ) TEMP2 = MAX( TEMP2, ABS( D4( J )-D5( J ) ) ) 180 CONTINUE * RESULT( 16 ) = TEMP2 / MAX( UNFL, $ HUN*ULP*MAX( TEMP1, TEMP2 ) ) ELSE RESULT( 14 ) = ZERO RESULT( 15 ) = ZERO RESULT( 16 ) = ZERO END IF * * Call DSTEBZ with different options and do tests 17-18. * * If S is positive definite and diagonally dominant, * ask for all eigenvalues with high relative accuracy. * VL = ZERO VU = ZERO IL = 0 IU = 0 IF( JTYPE.EQ.21 ) THEN NTEST = 17 ABSTOL = UNFL + UNFL CALL DSTEBZ( 'A', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE, $ M, NSPLIT, WR, IWORK( 1 ), IWORK( N+1 ), $ RWORK, IWORK( 2*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'DSTEBZ(A,rel)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 17 ) = ULPINV GO TO 280 END IF END IF * * Do test 17 * TEMP2 = TWO*( TWO*N-ONE )*ULP*( ONE+EIGHT*HALF**2 ) / $ ( ONE-HALF )**4 * TEMP1 = ZERO DO 190 J = 1, N TEMP1 = MAX( TEMP1, ABS( D4( J )-WR( N-J+1 ) ) / $ ( ABSTOL+ABS( D4( J ) ) ) ) 190 CONTINUE * RESULT( 17 ) = TEMP1 / TEMP2 ELSE RESULT( 17 ) = ZERO END IF * * Now ask for all eigenvalues with high absolute accuracy. * NTEST = 18 ABSTOL = UNFL + UNFL CALL DSTEBZ( 'A', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE, M, $ NSPLIT, WA1, IWORK( 1 ), IWORK( N+1 ), RWORK, $ IWORK( 2*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'DSTEBZ(A)', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 18 ) = ULPINV GO TO 280 END IF END IF * * Do test 18 * TEMP1 = ZERO TEMP2 = ZERO DO 200 J = 1, N TEMP1 = MAX( TEMP1, ABS( D3( J ) ), ABS( WA1( J ) ) ) TEMP2 = MAX( TEMP2, ABS( D3( J )-WA1( J ) ) ) 200 CONTINUE * RESULT( 18 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) ) * * Choose random values for IL and IU, and ask for the * IL-th through IU-th eigenvalues. * NTEST = 19 IF( N.LE.1 ) THEN IL = 1 IU = N ELSE IL = 1 + ( N-1 )*INT( DLARND( 1, ISEED2 ) ) IU = 1 + ( N-1 )*INT( DLARND( 1, ISEED2 ) ) IF( IU.LT.IL ) THEN ITEMP = IU IU = IL IL = ITEMP END IF END IF * CALL DSTEBZ( 'I', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE, $ M2, NSPLIT, WA2, IWORK( 1 ), IWORK( N+1 ), $ RWORK, IWORK( 2*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'DSTEBZ(I)', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 19 ) = ULPINV GO TO 280 END IF END IF * * Determine the values VL and VU of the IL-th and IU-th * eigenvalues and ask for all eigenvalues in this range. * IF( N.GT.0 ) THEN IF( IL.NE.1 ) THEN VL = WA1( IL ) - MAX( HALF*( WA1( IL )-WA1( IL-1 ) ), $ ULP*ANORM, TWO*RTUNFL ) ELSE VL = WA1( 1 ) - MAX( HALF*( WA1( N )-WA1( 1 ) ), $ ULP*ANORM, TWO*RTUNFL ) END IF IF( IU.NE.N ) THEN VU = WA1( IU ) + MAX( HALF*( WA1( IU+1 )-WA1( IU ) ), $ ULP*ANORM, TWO*RTUNFL ) ELSE VU = WA1( N ) + MAX( HALF*( WA1( N )-WA1( 1 ) ), $ ULP*ANORM, TWO*RTUNFL ) END IF ELSE VL = ZERO VU = ONE END IF * CALL DSTEBZ( 'V', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE, $ M3, NSPLIT, WA3, IWORK( 1 ), IWORK( N+1 ), $ RWORK, IWORK( 2*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'DSTEBZ(V)', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 19 ) = ULPINV GO TO 280 END IF END IF * IF( M3.EQ.0 .AND. N.NE.0 ) THEN RESULT( 19 ) = ULPINV GO TO 280 END IF * * Do test 19 * TEMP1 = DSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL ) TEMP2 = DSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL ) IF( N.GT.0 ) THEN TEMP3 = MAX( ABS( WA1( N ) ), ABS( WA1( 1 ) ) ) ELSE TEMP3 = ZERO END IF * RESULT( 19 ) = ( TEMP1+TEMP2 ) / MAX( UNFL, TEMP3*ULP ) * * Call ZSTEIN to compute eigenvectors corresponding to * eigenvalues in WA1. (First call DSTEBZ again, to make sure * it returns these eigenvalues in the correct order.) * NTEST = 21 CALL DSTEBZ( 'A', 'B', N, VL, VU, IL, IU, ABSTOL, SD, SE, M, $ NSPLIT, WA1, IWORK( 1 ), IWORK( N+1 ), RWORK, $ IWORK( 2*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'DSTEBZ(A,B)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 20 ) = ULPINV RESULT( 21 ) = ULPINV GO TO 280 END IF END IF * CALL ZSTEIN( N, SD, SE, M, WA1, IWORK( 1 ), IWORK( N+1 ), Z, $ LDU, RWORK, IWORK( 2*N+1 ), IWORK( 3*N+1 ), $ IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZSTEIN', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 20 ) = ULPINV RESULT( 21 ) = ULPINV GO TO 280 END IF END IF * * Do tests 20 and 21 * CALL ZSTT21( N, 0, SD, SE, WA1, DUMMA, Z, LDU, WORK, RWORK, $ RESULT( 20 ) ) * * Call ZSTEDC(I) to compute D1 and Z, do tests. * * Compute D1 and Z * INDE = 1 INDRWK = INDE + N CALL DCOPY( N, SD, 1, D1, 1 ) IF( N.GT.0 ) $ CALL DCOPY( N-1, SE, 1, RWORK( INDE ), 1 ) CALL ZLASET( 'Full', N, N, CZERO, CONE, Z, LDU ) * NTEST = 22 CALL ZSTEDC( 'I', N, D1, RWORK( INDE ), Z, LDU, WORK, LWEDC, $ RWORK( INDRWK ), LRWEDC, IWORK, LIWEDC, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZSTEDC(I)', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 22 ) = ULPINV GO TO 280 END IF END IF * * Do Tests 22 and 23 * CALL ZSTT21( N, 0, SD, SE, D1, DUMMA, Z, LDU, WORK, RWORK, $ RESULT( 22 ) ) * * Call ZSTEDC(V) to compute D1 and Z, do tests. * * Compute D1 and Z * CALL DCOPY( N, SD, 1, D1, 1 ) IF( N.GT.0 ) $ CALL DCOPY( N-1, SE, 1, RWORK( INDE ), 1 ) CALL ZLASET( 'Full', N, N, CZERO, CONE, Z, LDU ) * NTEST = 24 CALL ZSTEDC( 'V', N, D1, RWORK( INDE ), Z, LDU, WORK, LWEDC, $ RWORK( INDRWK ), LRWEDC, IWORK, LIWEDC, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZSTEDC(V)', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 24 ) = ULPINV GO TO 280 END IF END IF * * Do Tests 24 and 25 * CALL ZSTT21( N, 0, SD, SE, D1, DUMMA, Z, LDU, WORK, RWORK, $ RESULT( 24 ) ) * * Call ZSTEDC(N) to compute D2, do tests. * * Compute D2 * CALL DCOPY( N, SD, 1, D2, 1 ) IF( N.GT.0 ) $ CALL DCOPY( N-1, SE, 1, RWORK( INDE ), 1 ) CALL ZLASET( 'Full', N, N, CZERO, CONE, Z, LDU ) * NTEST = 26 CALL ZSTEDC( 'N', N, D2, RWORK( INDE ), Z, LDU, WORK, LWEDC, $ RWORK( INDRWK ), LRWEDC, IWORK, LIWEDC, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZSTEDC(N)', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 26 ) = ULPINV GO TO 280 END IF END IF * * Do Test 26 * TEMP1 = ZERO TEMP2 = ZERO * DO 210 J = 1, N TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) ) TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) ) 210 CONTINUE * RESULT( 26 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) ) * * Only test ZSTEMR if IEEE compliant * IF( ILAENV( 10, 'ZSTEMR', 'VA', 1, 0, 0, 0 ).EQ.1 .AND. $ ILAENV( 11, 'ZSTEMR', 'VA', 1, 0, 0, 0 ).EQ.1 ) THEN * * Call ZSTEMR, do test 27 (relative eigenvalue accuracy) * * If S is positive definite and diagonally dominant, * ask for all eigenvalues with high relative accuracy. * VL = ZERO VU = ZERO IL = 0 IU = 0 IF( JTYPE.EQ.21 .AND. CREL ) THEN NTEST = 27 ABSTOL = UNFL + UNFL CALL ZSTEMR( 'V', 'A', N, SD, SE, VL, VU, IL, IU, $ M, WR, Z, LDU, N, IWORK( 1 ), TRYRAC, $ RWORK, LRWORK, IWORK( 2*N+1 ), LWORK-2*N, $ IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZSTEMR(V,A,rel)', $ IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 27 ) = ULPINV GO TO 270 END IF END IF * * Do test 27 * TEMP2 = TWO*( TWO*N-ONE )*ULP*( ONE+EIGHT*HALF**2 ) / $ ( ONE-HALF )**4 * TEMP1 = ZERO DO 220 J = 1, N TEMP1 = MAX( TEMP1, ABS( D4( J )-WR( N-J+1 ) ) / $ ( ABSTOL+ABS( D4( J ) ) ) ) 220 CONTINUE * RESULT( 27 ) = TEMP1 / TEMP2 * IL = 1 + ( N-1 )*INT( DLARND( 1, ISEED2 ) ) IU = 1 + ( N-1 )*INT( DLARND( 1, ISEED2 ) ) IF( IU.LT.IL ) THEN ITEMP = IU IU = IL IL = ITEMP END IF * IF( CRANGE ) THEN NTEST = 28 ABSTOL = UNFL + UNFL CALL ZSTEMR( 'V', 'I', N, SD, SE, VL, VU, IL, IU, $ M, WR, Z, LDU, N, IWORK( 1 ), TRYRAC, $ RWORK, LRWORK, IWORK( 2*N+1 ), $ LWORK-2*N, IINFO ) * IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZSTEMR(V,I,rel)', $ IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 28 ) = ULPINV GO TO 270 END IF END IF * * * Do test 28 * TEMP2 = TWO*( TWO*N-ONE )*ULP* $ ( ONE+EIGHT*HALF**2 ) / ( ONE-HALF )**4 * TEMP1 = ZERO DO 230 J = IL, IU TEMP1 = MAX( TEMP1, ABS( WR( J-IL+1 )-D4( N-J+ $ 1 ) ) / ( ABSTOL+ABS( WR( J-IL+1 ) ) ) ) 230 CONTINUE * RESULT( 28 ) = TEMP1 / TEMP2 ELSE RESULT( 28 ) = ZERO END IF ELSE RESULT( 27 ) = ZERO RESULT( 28 ) = ZERO END IF * * Call ZSTEMR(V,I) to compute D1 and Z, do tests. * * Compute D1 and Z * CALL DCOPY( N, SD, 1, D5, 1 ) IF( N.GT.0 ) $ CALL DCOPY( N-1, SE, 1, RWORK, 1 ) CALL ZLASET( 'Full', N, N, CZERO, CONE, Z, LDU ) * IF( CRANGE ) THEN NTEST = 29 IL = 1 + ( N-1 )*INT( DLARND( 1, ISEED2 ) ) IU = 1 + ( N-1 )*INT( DLARND( 1, ISEED2 ) ) IF( IU.LT.IL ) THEN ITEMP = IU IU = IL IL = ITEMP END IF CALL ZSTEMR( 'V', 'I', N, D5, RWORK, VL, VU, IL, IU, $ M, D1, Z, LDU, N, IWORK( 1 ), TRYRAC, $ RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ), $ LIWORK-2*N, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZSTEMR(V,I)', IINFO, $ N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 29 ) = ULPINV GO TO 280 END IF END IF * * Do Tests 29 and 30 * * * Call ZSTEMR to compute D2, do tests. * * Compute D2 * CALL DCOPY( N, SD, 1, D5, 1 ) IF( N.GT.0 ) $ CALL DCOPY( N-1, SE, 1, RWORK, 1 ) * NTEST = 31 CALL ZSTEMR( 'N', 'I', N, D5, RWORK, VL, VU, IL, IU, $ M, D2, Z, LDU, N, IWORK( 1 ), TRYRAC, $ RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ), $ LIWORK-2*N, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZSTEMR(N,I)', IINFO, $ N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 31 ) = ULPINV GO TO 280 END IF END IF * * Do Test 31 * TEMP1 = ZERO TEMP2 = ZERO * DO 240 J = 1, IU - IL + 1 TEMP1 = MAX( TEMP1, ABS( D1( J ) ), $ ABS( D2( J ) ) ) TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) ) 240 CONTINUE * RESULT( 31 ) = TEMP2 / MAX( UNFL, $ ULP*MAX( TEMP1, TEMP2 ) ) * * * Call ZSTEMR(V,V) to compute D1 and Z, do tests. * * Compute D1 and Z * CALL DCOPY( N, SD, 1, D5, 1 ) IF( N.GT.0 ) $ CALL DCOPY( N-1, SE, 1, RWORK, 1 ) CALL ZLASET( 'Full', N, N, CZERO, CONE, Z, LDU ) * NTEST = 32 * IF( N.GT.0 ) THEN IF( IL.NE.1 ) THEN VL = D2( IL ) - MAX( HALF* $ ( D2( IL )-D2( IL-1 ) ), ULP*ANORM, $ TWO*RTUNFL ) ELSE VL = D2( 1 ) - MAX( HALF*( D2( N )-D2( 1 ) ), $ ULP*ANORM, TWO*RTUNFL ) END IF IF( IU.NE.N ) THEN VU = D2( IU ) + MAX( HALF* $ ( D2( IU+1 )-D2( IU ) ), ULP*ANORM, $ TWO*RTUNFL ) ELSE VU = D2( N ) + MAX( HALF*( D2( N )-D2( 1 ) ), $ ULP*ANORM, TWO*RTUNFL ) END IF ELSE VL = ZERO VU = ONE END IF * CALL ZSTEMR( 'V', 'V', N, D5, RWORK, VL, VU, IL, IU, $ M, D1, Z, LDU, M, IWORK( 1 ), TRYRAC, $ RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ), $ LIWORK-2*N, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZSTEMR(V,V)', IINFO, $ N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 32 ) = ULPINV GO TO 280 END IF END IF * * Do Tests 32 and 33 * CALL ZSTT22( N, M, 0, SD, SE, D1, DUMMA, Z, LDU, WORK, $ M, RWORK, RESULT( 32 ) ) * * Call ZSTEMR to compute D2, do tests. * * Compute D2 * CALL DCOPY( N, SD, 1, D5, 1 ) IF( N.GT.0 ) $ CALL DCOPY( N-1, SE, 1, RWORK, 1 ) * NTEST = 34 CALL ZSTEMR( 'N', 'V', N, D5, RWORK, VL, VU, IL, IU, $ M, D2, Z, LDU, N, IWORK( 1 ), TRYRAC, $ RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ), $ LIWORK-2*N, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZSTEMR(N,V)', IINFO, $ N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 34 ) = ULPINV GO TO 280 END IF END IF * * Do Test 34 * TEMP1 = ZERO TEMP2 = ZERO * DO 250 J = 1, IU - IL + 1 TEMP1 = MAX( TEMP1, ABS( D1( J ) ), $ ABS( D2( J ) ) ) TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) ) 250 CONTINUE * RESULT( 34 ) = TEMP2 / MAX( UNFL, $ ULP*MAX( TEMP1, TEMP2 ) ) ELSE RESULT( 29 ) = ZERO RESULT( 30 ) = ZERO RESULT( 31 ) = ZERO RESULT( 32 ) = ZERO RESULT( 33 ) = ZERO RESULT( 34 ) = ZERO END IF * * * Call ZSTEMR(V,A) to compute D1 and Z, do tests. * * Compute D1 and Z * CALL DCOPY( N, SD, 1, D5, 1 ) IF( N.GT.0 ) $ CALL DCOPY( N-1, SE, 1, RWORK, 1 ) * NTEST = 35 * CALL ZSTEMR( 'V', 'A', N, D5, RWORK, VL, VU, IL, IU, $ M, D1, Z, LDU, N, IWORK( 1 ), TRYRAC, $ RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ), $ LIWORK-2*N, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZSTEMR(V,A)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 35 ) = ULPINV GO TO 280 END IF END IF * * Do Tests 35 and 36 * CALL ZSTT22( N, M, 0, SD, SE, D1, DUMMA, Z, LDU, WORK, M, $ RWORK, RESULT( 35 ) ) * * Call ZSTEMR to compute D2, do tests. * * Compute D2 * CALL DCOPY( N, SD, 1, D5, 1 ) IF( N.GT.0 ) $ CALL DCOPY( N-1, SE, 1, RWORK, 1 ) * NTEST = 37 CALL ZSTEMR( 'N', 'A', N, D5, RWORK, VL, VU, IL, IU, $ M, D2, Z, LDU, N, IWORK( 1 ), TRYRAC, $ RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ), $ LIWORK-2*N, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZSTEMR(N,A)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( 37 ) = ULPINV GO TO 280 END IF END IF * * Do Test 34 * TEMP1 = ZERO TEMP2 = ZERO * DO 260 J = 1, N TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) ) TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) ) 260 CONTINUE * RESULT( 37 ) = TEMP2 / MAX( UNFL, $ ULP*MAX( TEMP1, TEMP2 ) ) END IF 270 CONTINUE 280 CONTINUE NTESTT = NTESTT + NTEST * * End of Loop -- Check for RESULT(j) > THRESH * * * Print out tests which fail. * DO 290 JR = 1, NTEST IF( RESULT( JR ).GE.THRESH ) THEN * * If this is the first test to fail, * print a header to the data file. * IF( NERRS.EQ.0 ) THEN WRITE( NOUNIT, FMT = 9998 )'ZST' WRITE( NOUNIT, FMT = 9997 ) WRITE( NOUNIT, FMT = 9996 ) WRITE( NOUNIT, FMT = 9995 )'Hermitian' WRITE( NOUNIT, FMT = 9994 ) * * Tests performed * WRITE( NOUNIT, FMT = 9987 ) END IF NERRS = NERRS + 1 IF( RESULT( JR ).LT.10000.0D0 ) THEN WRITE( NOUNIT, FMT = 9989 )N, JTYPE, IOLDSD, JR, $ RESULT( JR ) ELSE WRITE( NOUNIT, FMT = 9988 )N, JTYPE, IOLDSD, JR, $ RESULT( JR ) END IF END IF 290 CONTINUE 300 CONTINUE 310 CONTINUE * * Summary * CALL DLASUM( 'ZST', NOUNIT, NERRS, NTESTT ) RETURN * 9999 FORMAT( ' ZCHKST: ', A, ' returned INFO=', I6, '.', / 9X, 'N=', $ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' ) * 9998 FORMAT( / 1X, A3, ' -- Complex Hermitian eigenvalue problem' ) 9997 FORMAT( ' Matrix types (see ZCHKST for details): ' ) * 9996 FORMAT( / ' Special Matrices:', $ / ' 1=Zero matrix. ', $ ' 5=Diagonal: clustered entries.', $ / ' 2=Identity matrix. ', $ ' 6=Diagonal: large, evenly spaced.', $ / ' 3=Diagonal: evenly spaced entries. ', $ ' 7=Diagonal: small, evenly spaced.', $ / ' 4=Diagonal: geometr. spaced entries.' ) 9995 FORMAT( ' Dense ', A, ' Matrices:', $ / ' 8=Evenly spaced eigenvals. ', $ ' 12=Small, evenly spaced eigenvals.', $ / ' 9=Geometrically spaced eigenvals. ', $ ' 13=Matrix with random O(1) entries.', $ / ' 10=Clustered eigenvalues. ', $ ' 14=Matrix with large random entries.', $ / ' 11=Large, evenly spaced eigenvals. ', $ ' 15=Matrix with small random entries.' ) 9994 FORMAT( ' 16=Positive definite, evenly spaced eigenvalues', $ / ' 17=Positive definite, geometrically spaced eigenvlaues', $ / ' 18=Positive definite, clustered eigenvalues', $ / ' 19=Positive definite, small evenly spaced eigenvalues', $ / ' 20=Positive definite, large evenly spaced eigenvalues', $ / ' 21=Diagonally dominant tridiagonal, geometrically', $ ' spaced eigenvalues' ) * 9989 FORMAT( ' Matrix order=', I5, ', type=', I2, ', seed=', $ 4( I4, ',' ), ' result ', I3, ' is', 0P, F8.2 ) 9988 FORMAT( ' Matrix order=', I5, ', type=', I2, ', seed=', $ 4( I4, ',' ), ' result ', I3, ' is', 1P, D10.3 ) * 9987 FORMAT( / 'Test performed: see ZCHKST for details.', / ) * End of ZCHKST * END
bsd-3-clause
yaowee/libflame
lapack-test/3.5.0/LIN/sqrt15.f
32
8352
*> \brief \b SQRT15 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE SQRT15( SCALE, RKSEL, M, N, NRHS, A, LDA, B, LDB, S, * RANK, NORMA, NORMB, ISEED, WORK, LWORK ) * * .. Scalar Arguments .. * INTEGER LDA, LDB, LWORK, M, N, NRHS, RANK, RKSEL, SCALE * REAL NORMA, NORMB * .. * .. Array Arguments .. * INTEGER ISEED( 4 ) * REAL A( LDA, * ), B( LDB, * ), S( * ), WORK( LWORK ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> SQRT15 generates a matrix with full or deficient rank and of various *> norms. *> \endverbatim * * Arguments: * ========== * *> \param[in] SCALE *> \verbatim *> SCALE is INTEGER *> SCALE = 1: normally scaled matrix *> SCALE = 2: matrix scaled up *> SCALE = 3: matrix scaled down *> \endverbatim *> *> \param[in] RKSEL *> \verbatim *> RKSEL is INTEGER *> RKSEL = 1: full rank matrix *> RKSEL = 2: rank-deficient matrix *> \endverbatim *> *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows of the matrix A. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns of A. *> \endverbatim *> *> \param[in] NRHS *> \verbatim *> NRHS is INTEGER *> The number of columns of B. *> \endverbatim *> *> \param[out] A *> \verbatim *> A is REAL array, dimension (LDA,N) *> The M-by-N matrix A. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. *> \endverbatim *> *> \param[out] B *> \verbatim *> B is REAL array, dimension (LDB, NRHS) *> A matrix that is in the range space of matrix A. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. *> \endverbatim *> *> \param[out] S *> \verbatim *> S is REAL array, dimension MIN(M,N) *> Singular values of A. *> \endverbatim *> *> \param[out] RANK *> \verbatim *> RANK is INTEGER *> number of nonzero singular values of A. *> \endverbatim *> *> \param[out] NORMA *> \verbatim *> NORMA is REAL *> one-norm of A. *> \endverbatim *> *> \param[out] NORMB *> \verbatim *> NORMB is REAL *> one-norm of B. *> \endverbatim *> *> \param[in,out] ISEED *> \verbatim *> ISEED is integer array, dimension (4) *> seed for random number generator. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is REAL array, dimension (LWORK) *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> length of work space required. *> LWORK >= MAX(M+MIN(M,N),NRHS*MIN(M,N),2*N+M) *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup single_lin * * ===================================================================== SUBROUTINE SQRT15( SCALE, RKSEL, M, N, NRHS, A, LDA, B, LDB, S, $ RANK, NORMA, NORMB, ISEED, WORK, LWORK ) * * -- LAPACK test routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. INTEGER LDA, LDB, LWORK, M, N, NRHS, RANK, RKSEL, SCALE REAL NORMA, NORMB * .. * .. Array Arguments .. INTEGER ISEED( 4 ) REAL A( LDA, * ), B( LDB, * ), S( * ), WORK( LWORK ) * .. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE, TWO, SVMIN PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0, $ SVMIN = 0.1E0 ) * .. * .. Local Scalars .. INTEGER INFO, J, MN REAL BIGNUM, EPS, SMLNUM, TEMP * .. * .. Local Arrays .. REAL DUMMY( 1 ) * .. * .. External Functions .. REAL SASUM, SLAMCH, SLANGE, SLARND, SNRM2 EXTERNAL SASUM, SLAMCH, SLANGE, SLARND, SNRM2 * .. * .. External Subroutines .. EXTERNAL SGEMM, SLAORD, SLARF, SLARNV, SLAROR, SLASCL, $ SLASET, SSCAL, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN * .. * .. Executable Statements .. * MN = MIN( M, N ) IF( LWORK.LT.MAX( M+MN, MN*NRHS, 2*N+M ) ) THEN CALL XERBLA( 'SQRT15', 16 ) RETURN END IF * SMLNUM = SLAMCH( 'Safe minimum' ) BIGNUM = ONE / SMLNUM EPS = SLAMCH( 'Epsilon' ) SMLNUM = ( SMLNUM / EPS ) / EPS BIGNUM = ONE / SMLNUM * * Determine rank and (unscaled) singular values * IF( RKSEL.EQ.1 ) THEN RANK = MN ELSE IF( RKSEL.EQ.2 ) THEN RANK = ( 3*MN ) / 4 DO 10 J = RANK + 1, MN S( J ) = ZERO 10 CONTINUE ELSE CALL XERBLA( 'SQRT15', 2 ) END IF * IF( RANK.GT.0 ) THEN * * Nontrivial case * S( 1 ) = ONE DO 30 J = 2, RANK 20 CONTINUE TEMP = SLARND( 1, ISEED ) IF( TEMP.GT.SVMIN ) THEN S( J ) = ABS( TEMP ) ELSE GO TO 20 END IF 30 CONTINUE CALL SLAORD( 'Decreasing', RANK, S, 1 ) * * Generate 'rank' columns of a random orthogonal matrix in A * CALL SLARNV( 2, ISEED, M, WORK ) CALL SSCAL( M, ONE / SNRM2( M, WORK, 1 ), WORK, 1 ) CALL SLASET( 'Full', M, RANK, ZERO, ONE, A, LDA ) CALL SLARF( 'Left', M, RANK, WORK, 1, TWO, A, LDA, $ WORK( M+1 ) ) * * workspace used: m+mn * * Generate consistent rhs in the range space of A * CALL SLARNV( 2, ISEED, RANK*NRHS, WORK ) CALL SGEMM( 'No transpose', 'No transpose', M, NRHS, RANK, ONE, $ A, LDA, WORK, RANK, ZERO, B, LDB ) * * work space used: <= mn *nrhs * * generate (unscaled) matrix A * DO 40 J = 1, RANK CALL SSCAL( M, S( J ), A( 1, J ), 1 ) 40 CONTINUE IF( RANK.LT.N ) $ CALL SLASET( 'Full', M, N-RANK, ZERO, ZERO, A( 1, RANK+1 ), $ LDA ) CALL SLAROR( 'Right', 'No initialization', M, N, A, LDA, ISEED, $ WORK, INFO ) * ELSE * * work space used 2*n+m * * Generate null matrix and rhs * DO 50 J = 1, MN S( J ) = ZERO 50 CONTINUE CALL SLASET( 'Full', M, N, ZERO, ZERO, A, LDA ) CALL SLASET( 'Full', M, NRHS, ZERO, ZERO, B, LDB ) * END IF * * Scale the matrix * IF( SCALE.NE.1 ) THEN NORMA = SLANGE( 'Max', M, N, A, LDA, DUMMY ) IF( NORMA.NE.ZERO ) THEN IF( SCALE.EQ.2 ) THEN * * matrix scaled up * CALL SLASCL( 'General', 0, 0, NORMA, BIGNUM, M, N, A, $ LDA, INFO ) CALL SLASCL( 'General', 0, 0, NORMA, BIGNUM, MN, 1, S, $ MN, INFO ) CALL SLASCL( 'General', 0, 0, NORMA, BIGNUM, M, NRHS, B, $ LDB, INFO ) ELSE IF( SCALE.EQ.3 ) THEN * * matrix scaled down * CALL SLASCL( 'General', 0, 0, NORMA, SMLNUM, M, N, A, $ LDA, INFO ) CALL SLASCL( 'General', 0, 0, NORMA, SMLNUM, MN, 1, S, $ MN, INFO ) CALL SLASCL( 'General', 0, 0, NORMA, SMLNUM, M, NRHS, B, $ LDB, INFO ) ELSE CALL XERBLA( 'SQRT15', 1 ) RETURN END IF END IF END IF * NORMA = SASUM( MN, S, 1 ) NORMB = SLANGE( 'One-norm', M, NRHS, B, LDB, DUMMY ) * RETURN * * End of SQRT15 * END
bsd-3-clause
PPMLibrary/ppm
src/neighlist/ppm_inl_vlist.f
1
34322
!------------------------------------------------------------------------- ! Subroutines : ppm_inl_vlist !------------------------------------------------------------------------- ! Copyright (c) 2012 CSE Lab (ETH Zurich), MOSAIC Group (ETH Zurich), ! Center for Fluid Dynamics (DTU) ! ! ! This file is part of the Parallel Particle Mesh Library (PPM). ! ! PPM is free software: you can redistribute it and/or modify ! it under the terms of the GNU Lesser General Public License ! as published by the Free Software Foundation, either ! version 3 of the License, or (at your option) any later ! version. ! ! PPM is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! and the GNU Lesser General Public License along with PPM. If not, ! see <http://www.gnu.org/licenses/>. ! ! Parallel Particle Mesh Library (PPM) ! ETH Zurich ! CH-8092 Zurich, Switzerland !------------------------------------------------------------------------- #if __KIND == __SINGLE_PRECISION SUBROUTINE inl_vlist_s(topoid, xp, Np, Mp, cutoff, skin, lsymm, & & ghostlayer, info, vlist, nvlist, lstore) #elif __KIND == __DOUBLE_PRECISION SUBROUTINE inl_vlist_d(topoid, xp, Np, Mp, cutoff, skin, lsymm, & & ghostlayer, info, vlist, nvlist, lstore) #endif !------------------------------------------------------------------------- ! Modules !------------------------------------------------------------------------- USE ppm_module_check_id IMPLICIT NONE #if __KIND == __SINGLE_PRECISION INTEGER, PARAMETER :: mk = ppm_kind_single #elif __KIND == __DOUBLE_PRECISION INTEGER, PARAMETER :: mk = ppm_kind_double #endif !------------------------------------------------------------------------- ! Arguments !------------------------------------------------------------------------- INTEGER, INTENT(IN) :: topoid !!! ID of the topology. REAL(MK), INTENT(IN), DIMENSION(:,:) :: xp !!! Particle coordinates array. F.e., xp(1, i) is the x-coor of particle i. INTEGER , INTENT(IN) :: Np !!! Number of real particles INTEGER , INTENT(IN) :: Mp !!! Number of all particles including ghost particles REAL(MK), INTENT(IN), DIMENSION(:) :: cutoff !!! Particle cutoff radii array REAL(MK), INTENT(IN) :: skin !!! Skin parameter LOGICAL, INTENT(IN) :: lsymm !!! If lsymm = TRUE, verlet lists are symmetric and we have ghost !!! layers only in (+) directions in all axes. Else, we have ghost !!! layers in all directions. REAL(MK), INTENT(IN), DIMENSION(2*ppm_dim) :: ghostlayer !!! Extra area/volume over the actual domain introduced by !!! ghost layers. INTEGER , INTENT(OUT) :: info !!! Info to be RETURNed. 0 if SUCCESSFUL. INTEGER , POINTER, DIMENSION(:, :) :: vlist !!! verlet lists. vlist(3, 6) is the 3rd neighbor of particle 6. INTEGER , POINTER, DIMENSION(:) :: nvlist !!! number of neighbors of particles. nvlist(i) is number of !!! neighbors particle i has. LOGICAL, INTENT(IN), OPTIONAL :: lstore !!! OPTIONAL logical parameter to choose whether to store !!! vlist or not. By default, it is set to TRUE. !------------------------------------------------------------------------- ! Local variables, arrays and counters !------------------------------------------------------------------------- REAL(MK), DIMENSION(2*ppm_dim) :: actual_subdomain REAL(MK), DIMENSION(:,:), POINTER :: xp_sub REAL(MK), DIMENSION(:) , POINTER :: cutoff_sub INTEGER , DIMENSION(:,:), POINTER :: vlist_sub INTEGER , DIMENSION(:) , POINTER :: nvlist_sub INTEGER , DIMENSION(:) , POINTER :: p_id INTEGER :: Np_sub INTEGER :: Mp_sub INTEGER :: rank_sub INTEGER :: neigh_max INTEGER :: n_part TYPE(ppm_t_topo) , POINTER :: topo LOGICAL :: lst INTEGER :: isub INTEGER :: i INTEGER :: j REAL(MK) :: t0 !------------------------------------------------------------------------- ! Variables and parameters for ppm_alloc !------------------------------------------------------------------------- INTEGER :: iopt INTEGER, DIMENSION(2) :: lda CALL substart('ppm_inl_vlist',t0,info) !------------------------------------------------------------------------- ! Check Arguments !------------------------------------------------------------------------- IF (ppm_debug .GT. 0) THEN CALL check IF (info .NE. 0) GOTO 9999 ENDIF topo => ppm_topo(topoid)%t !--------------------------------------------------------------------- ! In symmetric verlet lists, we need to allocate nvlist for all ! particles including ghost particles (Mp). Otherwise, we need to store ! verlet lists of real particles only, hence we allocate nvlist for ! real particles (Np) only. !--------------------------------------------------------------------- IF(lsymm) THEN lda(1) = Mp ELSE lda(1) = Np ENDIF iopt = ppm_param_alloc_fit CALL ppm_alloc(nvlist, lda, iopt, info) IF (info .NE. 0) THEN info = ppm_error_fatal CALL ppm_error(ppm_err_alloc,'ppm_inl_vlist','nvlist',__LINE__,info) END IF NULLIFY(xp_sub,cutoff_sub,vlist_sub,nvlist_sub,p_id) !--------------------------------------------------------------------- ! As no neighbors have been found yet, maximum number of neighbors ! (neigh_max) is set to 0. !--------------------------------------------------------------------- neigh_max = 0 !--------------------------------------------------------------------- ! For each subdomain !--------------------------------------------------------------------- DO rank_sub = 1, topo%nsublist isub = topo%isublist(rank_sub) !----------------------------------------------------------------- ! Get physical extent of subdomain without ghost layers !----------------------------------------------------------------- #if __KIND == __SINGLE_PRECISION DO i = 1, ppm_dim actual_subdomain(2*i-1) = topo%min_subs(i, isub) actual_subdomain(2*i) = topo%max_subs(i, isub) ENDDO #elif __KIND == __DOUBLE_PRECISION DO i = 1, ppm_dim actual_subdomain(2*i-1) = topo%min_subd(i, isub) actual_subdomain(2*i) = topo%max_subd(i, isub) ENDDO #endif !----------------------------------------------------------------- ! Get xp and cutoff arrays for the given subdomain. Also get number ! of real particles (Np_sub) and total number of particles (Mp_sub) ! of this subdomain. !----------------------------------------------------------------- CALL getSubdomainParticles(xp,Np,Mp,cutoff,lsymm,actual_subdomain,& & ghostlayer, xp_sub, cutoff_sub, Np_sub,Mp_sub,p_id) !----------------------------------------------------------------- ! Create verlet lists for particles of this subdomain which will ! be stored in vlist_sub and nvlist_sub. !----------------------------------------------------------------- IF(present(lstore)) THEN lst = lstore ELSE lst = .TRUE. END IF CALL create_inl_vlist(xp_sub, Np_sub, Mp_sub, cutoff_sub, & & skin, lsymm, actual_subdomain, ghostlayer, info, vlist_sub,& & nvlist_sub,lst) IF(lsymm) THEN n_part = Mp_sub ELSE n_part = Np_sub END IF DO i = 1, n_part nvlist(p_id(i)) = nvlist_sub(i) ENDDO IF(lst) THEN IF(neigh_max .LT. MAXVAL(nvlist_sub)) THEN neigh_max = MAXVAL(nvlist_sub) lda(1) = neigh_max IF(lsymm) THEN lda(2) = Mp ELSE lda(2) = Np ENDIF iopt = ppm_param_alloc_grow_preserve CALL ppm_alloc(vlist, lda, iopt, info) IF (info.NE.0) THEN info = ppm_error_fatal CALL ppm_error(ppm_err_alloc,'ppm_inl_vlist', & & 'vlist',__LINE__,info) END IF ENDIF IF(lsymm) THEN n_part = Mp_sub ELSE n_part = Np_sub ENDIF DO i = 1, n_part DO j = 1, nvlist_sub(i) vlist(j, p_id(i)) = p_id(vlist_sub(j, i)) END DO ENDDO END IF ENDDO ! Deallocate temporary arrays iopt=ppm_param_dealloc CALL ppm_alloc(xp_sub, lda, iopt, info) IF (info.NE.0) THEN info = ppm_error_fatal CALL ppm_error(ppm_err_dealloc,'ppm_inl_vlist','xp_sub',__LINE__,info) ENDIF CALL ppm_alloc(cutoff_sub, lda, iopt, info) IF (info.NE.0) THEN info = ppm_error_fatal CALL ppm_error(ppm_err_dealloc,'ppm_inl_vlist','cutoff_sub',__LINE__,info) ENDIF CALL ppm_alloc(vlist_sub, lda, iopt, info) IF (info.NE.0) THEN info = ppm_error_fatal CALL ppm_error(ppm_err_dealloc,'ppm_inl_vlist','vlist_sub',__LINE__,info) ENDIF CALL ppm_alloc(nvlist_sub, lda, iopt, info) IF (info.NE.0) THEN info = ppm_error_fatal CALL ppm_error(ppm_err_dealloc,'ppm_inl_vlist','nvlist_sub',__LINE__,info) ENDIF CALL ppm_alloc(p_id, lda, iopt, info) IF (info.NE.0) THEN info = ppm_error_fatal CALL ppm_error(ppm_err_dealloc,'ppm_inl_vlist','p_id',__LINE__,info) ENDIF 9999 CONTINUE CALL substop('ppm_inl_vlist',t0,info) RETURN CONTAINS SUBROUTINE check LOGICAL :: valid IF (.NOT. ppm_initialized) THEN info = ppm_error_error CALL ppm_error(ppm_err_ppm_noinit,'ppm_neighlist_vlist', & & 'Please call ppm_init first!',__LINE__,info) GOTO 8888 ENDIF IF (skin .LT. 0.0_MK) THEN info = ppm_error_error CALL ppm_error(ppm_err_argument,'ppm_neighlist_vlist', & & 'skin must be >= 0',__LINE__,info) GOTO 8888 ENDIF IF (topoid .EQ. ppm_param_topo_undefined) THEN info = ppm_error_error CALL ppm_error(ppm_err_argument,'ppm_neighlist_vlist', & & 'Geometric topology required',__LINE__,info) GOTO 8888 ENDIF IF (topoid .NE. ppm_param_topo_undefined) THEN CALL ppm_check_topoid(topoid,valid,info) IF (.NOT. valid) THEN info = ppm_error_error CALL ppm_error(ppm_err_argument,'ppm_neighlist_vlist', & & 'topoid out of range',__LINE__,info) GOTO 8888 ENDIF ENDIF 8888 CONTINUE END SUBROUTINE check #if __KIND == __SINGLE_PRECISION END SUBROUTINE inl_vlist_s #elif __KIND == __DOUBLE_PRECISION END SUBROUTINE inl_vlist_d #endif #if __KIND == __SINGLE_PRECISION SUBROUTINE create_inl_vlist_s(xp, Np, Mp, cutoff, skin, lsymm, & & actual_domain, ghostlayer, info, vlist, nvlist, lstore) #elif __KIND == __DOUBLE_PRECISION SUBROUTINE create_inl_vlist_d(xp, Np, Mp, cutoff, skin, lsymm, & & actual_domain, ghostlayer, info, vlist, nvlist, lstore) #endif !!! This subroutine creates verlet lists for particles whose coordinates !!! and cutoff radii are provided by xp and cutoff, respectively. !!! Here, Np denotes the number of real particles and Mp is the total !!! number of particles including ghost particles. Given these inputs and !!! others that are required, this subroutine allocates and fills nvlist. !!! If the OPTIONAL parameter lstore is set to TRUE or not passed, !!! vlist is also allocated and filled. IMPLICIT NONE #if __KIND == __SINGLE_PRECISION INTEGER, PARAMETER :: mk = ppm_kind_single #elif __KIND == __DOUBLE_PRECISION INTEGER, PARAMETER :: mk = ppm_kind_double #endif !--------------------------------------------------------------------- ! Arguments !--------------------------------------------------------------------- REAL(MK), INTENT(IN), DIMENSION(:,:) :: xp !!! Particle coordinates array. F.e., xp(1, i) is the x-coor of particle i. INTEGER , INTENT(IN) :: Np !!! Number of real particles INTEGER , INTENT(IN) :: Mp !!! Number of all particles including ghost particles REAL(MK), INTENT(IN), DIMENSION(:) :: cutoff !!! Particles cutoff radii REAL(MK), INTENT(IN) :: skin !!! Skin parameter LOGICAL, INTENT(IN) :: lsymm !!! If lsymm = TRUE, verlet lists are symmetric and we have ghost !!! layers only in (+) directions in all axes. Else, we have ghost !!! layers in all directions. REAL(MK), DIMENSION(2*ppm_dim) :: actual_domain ! Physical extent of actual domain without ghost layers. REAL(MK), INTENT(IN), DIMENSION(ppm_dim) :: ghostlayer !!! Extra area/volume over the actual domain introduced by !!! ghost layers. INTEGER , INTENT(OUT) :: info !!! Info to be RETURNed. 0 if SUCCESSFUL. INTEGER , POINTER, DIMENSION(:, :) :: vlist !!! verlet lists. vlist(3, 6) is the 3rd neighbor of particle 6. INTEGER , POINTER, DIMENSION(:) :: nvlist !!! number of neighbors of particles. nvlist(i) is number of !!! neighbors particle i has. LOGICAL, INTENT(IN), OPTIONAL :: lstore !!! OPTIONAL logical parameter to choose whether to store !!! vlist or not. By default, it is set to TRUE. !--------------------------------------------------------------------- ! Local variables and counters !--------------------------------------------------------------------- REAL(MK), DIMENSION(2*ppm_dim) :: whole_domain ! Physical extent of whole domain including ghost layers. INTEGER :: i INTEGER :: j REAL(MK) :: t0 LOGICAL :: lst REAL(MK) :: max_size REAL(MK) :: size_diff !--------------------------------------------------------------------- ! Variables and parameters for ppm_alloc !--------------------------------------------------------------------- INTEGER :: iopt INTEGER, DIMENSION(2) :: lda !<<<<<<<<<<<<<<<<<<<<<<<<< Start of the code >>>>>>>>>>>>>>>>>>>>>>>>>! CALL substart('ppm_neighlist_clist',t0,info) IF(lsymm .EQV. .TRUE.) THEN DO i = 1, ppm_dim whole_domain(2*i-1) = actual_domain(2*i-1) whole_domain(2*i) = actual_domain(2*i) + ghostlayer(i) max_size = MAX(max_size, (whole_domain(2*i) - whole_domain(2*i-1))) END DO ELSE DO i = 1, ppm_dim whole_domain(2*i-1) = actual_domain(2*i-1) - ghostlayer(i) whole_domain(2*i) = actual_domain(2*i) + ghostlayer(i) max_size = MAX(max_size, (whole_domain(2*i) - whole_domain(2*i-1))) END DO END IF DO i = 1, ppm_dim IF ((whole_domain(2*i) - whole_domain(2*i-1)) .LE. max_size/2.0_MK) THEN whole_domain(2*i) = whole_domain(2*i-1) + max_size END IF END DO clist%n_real_p = Np !Set number of real particles !------------------------------------------------------------------------- ! Create inhomogeneous cell list !------------------------------------------------------------------------- CALL ppm_create_inl_clist(xp, Np, Mp, cutoff, skin, actual_domain, & & ghostlayer, lsymm, clist, info) IF(info .NE. 0) THEN info = ppm_error_error CALL ppm_error(ppm_err_sub_failed,'create_inl_vlist', & & 'ppm_create_inl_clist',__LINE__,info) GOTO 9999 END IF !------------------------------------------------------------------------- ! Allocate own_plist array, which will be used to get list of particles ! that are located in the same cell. Even though its a temporary array, ! it will be used many times throughout the code, hence it is defined ! in the module and allocated here, then deallocated in the end when ! there is no more need for that. !------------------------------------------------------------------------- iopt = ppm_param_alloc_fit lda(1) = clist%n_all_p CALL ppm_alloc(own_plist, lda, iopt, info) IF (info.NE.0) THEN info = ppm_error_fatal CALL ppm_error(ppm_err_alloc,'create_inl_vlist', & & 'own_plist',__LINE__,info) GOTO 9999 END IF !------------------------------------------------------------------------- ! Allocate neigh_plist array, which will be used to get list of particles ! that are located in neighboring cells. Even though its a temporary ! array, it will be used many times throughout the code as own_plist, ! hence it is defined in the module and allocated here, then deallocated ! in the end when there is no more need for that. !------------------------------------------------------------------------- CALL ppm_alloc(neigh_plist, lda, iopt, info) IF (info.NE.0) THEN info = ppm_error_fatal CALL ppm_error(ppm_err_alloc,'create_inl_vlist', & & 'neigh_plist',__LINE__,info) GOTO 9999 END IF !------------------------------------------------------------------------- ! Allocate ncells array, which contains offset directions. !------------------------------------------------------------------------- lda(1) = 3**ppm_dim lda(2) = ppm_dim CALL ppm_alloc(ncells, lda, iopt, info) IF (info.NE.0) THEN info = ppm_error_fatal CALL ppm_error(ppm_err_alloc,'create_inl_vlist', & & 'ncells',__LINE__,info) GOTO 9999 END IF !------------------------------------------------------------------------- ! Fill in ncells array such that it contains offset directions. For ! example, ncell(1, :) in 2D will have (-1, -1) which is the bottom-left ! neighbor of the reference cell. Works for nD. !------------------------------------------------------------------------- DO j = 1,ppm_dim DO i = 1, 3**(ppm_dim) ncells(i,j) = MOD((i-1)/(3**(j-1)),3) - 1 END DO END DO !------------------------------------------------------------------------- ! Allocate empty_list array, which will be used to store empty cells. ! If not large enough, it will be regrowed in putInEmptyList subroutine. !------------------------------------------------------------------------- iopt = ppm_param_alloc_fit lda(1) = 10*clist%max_depth CALL ppm_alloc(empty_list, lda, iopt, info) IF (info.NE.0) THEN info = ppm_error_fatal CALL ppm_error(ppm_err_alloc,'create_inl_vlist', & & 'empty_list',__LINE__,info) GOTO 9999 END IF !------------------------------------------------------------------------- ! Call getVerletLists subroutine. If lstore is not present, default case ! which is lstore = TRUE is applied. !------------------------------------------------------------------------- IF(present(lstore)) THEN lst = lstore ELSE lst = .TRUE. END IF CALL getVerletLists(xp, cutoff, clist, skin, lsymm, whole_domain, & & actual_domain, vlist, nvlist, lst,info) IF (info.NE.0) THEN info = ppm_error_error CALL ppm_error(ppm_err_sub_failed,'create_inl_vlist', & & 'call to getVerletLists failed',__LINE__,info) GOTO 9999 END IF !------------------------------------------------------------------------- ! Deallocate empty_list. !------------------------------------------------------------------------- iopt = ppm_param_dealloc lda = 0 CALL ppm_alloc(empty_list, lda, iopt, info) IF (info.NE.0) THEN info = ppm_error_fatal CALL ppm_error(ppm_err_dealloc,'create_inl_vlist', & & 'empty_list',__LINE__,info) GOTO 9999 END IF !------------------------------------------------------------------------- ! Deallocate ncells array. !------------------------------------------------------------------------- CALL ppm_alloc(ncells, lda, iopt, info) IF (info.NE.0) THEN info = ppm_error_fatal CALL ppm_error(ppm_err_dealloc,'create_inl_vlist', & & 'ncells',__LINE__,info) GOTO 9999 END IF !------------------------------------------------------------------------- ! Deallocate own_plist. !------------------------------------------------------------------------- CALL ppm_alloc(own_plist, lda, iopt, info) IF (info.NE.0) THEN info = ppm_error_fatal CALL ppm_error(ppm_err_dealloc,'create_inl_vlist', & & 'own_plist',__LINE__,info) GOTO 9999 END IF !------------------------------------------------------------------------- ! Deallocate neigh_plist. !------------------------------------------------------------------------- CALL ppm_alloc(neigh_plist, lda, iopt, info) IF (info.NE.0) THEN info = ppm_error_fatal CALL ppm_error(ppm_err_dealloc,'create_inl_vlist', & & 'neigh_plist',__LINE__,info) GOTO 9999 END IF CALL ppm_destroy_inl_clist(clist,info) IF (info.NE.0) THEN info = ppm_error_fatal CALL ppm_error(ppm_err_sub_failed,'create_inl_vlist', & & 'ppm_destroy_inl_clist',__LINE__,info) GOTO 9999 END IF 9999 CONTINUE CALL substop('create_inl_vlist',t0,info) #if __KIND == __SINGLE_PRECISION END SUBROUTINE create_inl_vlist_s #elif __KIND == __DOUBLE_PRECISION END SUBROUTINE create_inl_vlist_d #endif #if __KIND == __SINGLE_PRECISION SUBROUTINE getVerletLists_s(xp, cutoff, clist, skin, lsymm, whole_domain, & & actual_domain, vlist, nvlist, lstore,info) #elif __KIND == __DOUBLE_PRECISION SUBROUTINE getVerletLists_d(xp, cutoff, clist, skin, lsymm, whole_domain, & & actual_domain, vlist, nvlist, lstore,info) #endif !!! This subroutine allocates nvlist and fills it with number of !!! neighbors of each particle. Then, if lstore is TRUE, it also allocates !!! vlist array and fills it with neighbor particles IDs for each !!! particle. Depending on lsymm parameter, it calls the appropriate !!! subroutine. IMPLICIT NONE #if __KIND == __SINGLE_PRECISION INTEGER, PARAMETER :: mk = ppm_kind_single #elif __KIND == __DOUBLE_PRECISION INTEGER, PARAMETER :: mk = ppm_kind_double #endif !------------------------------------------------------------------------- ! Arguments !------------------------------------------------------------------------- REAL(MK), INTENT(IN), DIMENSION(:,:) :: xp !!! Particle coordinates array. F.e., xp(1, i) is the x-coor of particle i. REAL(MK), INTENT(IN), DIMENSION(:) :: cutoff !!! Particles cutoff radii REAL(MK), INTENT(IN) :: skin !!! Skin parameter TYPE(ppm_clist), INTENT(IN) :: clist !!! cell list LOGICAL, INTENT(IN) :: lsymm !!! Logical parameter to define whether lists are symmetric or not !!! If lsymm = TRUE, verlet lists are symmetric and we have ghost !!! layers only in (+) directions in all axes. Else, we have ghost !!! layers in all directions. REAL(MK), DIMENSION(2*ppm_dim) :: whole_domain !!! Physical extent of whole domain including ghost layers. REAL(MK), DIMENSION(2*ppm_dim) :: actual_domain !!! Physical extent of actual domain without ghost layers. INTEGER , POINTER, DIMENSION(:, :) :: vlist !!! Verlet lists of particles. vlist(j, i) corresponds to jth neighbor !!! of particle i. INTEGER , POINTER, DIMENSION(: ) :: nvlist !!! Number of neighbors that particles have. nvlist(i) is the !!! number of neighbor particle i has. LOGICAL, INTENT(IN) :: lstore !!! Logical parameter to choose whether to store vlist or not. !------------------------------------------------------------------------- ! Local variables and counters !------------------------------------------------------------------------- INTEGER :: p_idx REAL(MK) :: t0 !------------------------------------------------------------------------- ! Variables and parameters for ppm_alloc !------------------------------------------------------------------------- INTEGER :: iopt INTEGER :: info INTEGER, DIMENSION(2) :: lda !------------------------------------------------------------------------- ! Allocate used array, which will be used as a mask for particles, ! to keep track of whether they were used before or not. Then, ! initialize it to FALSE. !------------------------------------------------------------------------- CALL substart('getVerletLists',t0,info) iopt = ppm_param_alloc_fit lda(1) = clist%n_all_p CALL ppm_alloc(used, lda, iopt, info) IF (info.NE.0) THEN info = ppm_error_fatal CALL ppm_error(ppm_err_alloc,'getVerletLists', & & 'used',__LINE__,info) GOTO 9999 END IF used = .FALSE. !------------------------------------------------------------------------- ! Set size of nvlist. If lsymm = TRUE, we also need to store number of ! neighbors of some ghost particles. !------------------------------------------------------------------------- IF(lsymm .EQV. .TRUE.) THEN lda(1) = clist%n_all_p ! Store number of neighbors also of ghost particles ELSE lda(1) = clist%n_real_p ! Store number of neighbors of real particles only ENDIF !------------------------------------------------------------------------- ! Allocate nvlist array and initialize it to 0. !------------------------------------------------------------------------- CALL ppm_alloc(nvlist, lda, iopt, info) IF (info.NE.0) THEN info = ppm_error_fatal CALL ppm_error(ppm_err_alloc,'getVerletLists', & & 'nvlist',__LINE__,info) GOTO 9999 END IF nvlist = 0 !------------------------------------------------------------------------- ! Fill nvlist array with number of neighbors. !------------------------------------------------------------------------- IF(lsymm .EQV. .TRUE.) THEN ! If lists are symmetric DO p_idx = 1, clist%n_all_p CALL count_neigh_sym(clist%rank(p_idx), clist, whole_domain,& & actual_domain, xp, cutoff, skin, nvlist) END DO ELSE ! If lists are not symmetric DO p_idx = 1, clist%n_all_p CALL count_neigh(clist%rank(p_idx), clist, whole_domain, & & xp, cutoff, skin, nvlist) END DO END IF !------------------------------------------------------------------------- ! If vlist will be stored, !------------------------------------------------------------------------- IF(lstore) THEN !----------------------------------------------------------------- ! Get maximum number of neighbors, for allocation of vlist !----------------------------------------------------------------- max_nneigh = MAXVAL(nvlist) !----------------------------------------------------------------- ! Initialize nvlist to 0, since it will be used again to ! keep track of where to put the next neighbor on vlist array. !----------------------------------------------------------------- nvlist = 0 !----------------------------------------------------------------- ! Initialize used to FALSE, since particles should be visited ! again. !----------------------------------------------------------------- used = .FALSE. !----------------------------------------------------------------- ! As maximum number of neighbors can be max_nneigh at most, ! number of rows in vlist can be this number. !----------------------------------------------------------------- lda(1) = max_nneigh !----------------------------------------------------------------- ! If we have symmetric lists, we also need to store verlet list ! of some ghost particles, so we allocate columns of vlist ! by number of all particles. !----------------------------------------------------------------- IF(lsymm .EQV. .TRUE.) THEN lda(2) = clist%n_all_p ELSE lda(2) = clist%n_real_p ENDIF !----------------------------------------------------------------- ! Allocate vlist !----------------------------------------------------------------- CALL ppm_alloc(vlist, lda, iopt, info) IF (info.NE.0) THEN info = ppm_error_fatal CALL ppm_error(ppm_err_alloc,'getVerletLists', & & 'vlist',__LINE__,info) GOTO 9999 END IF !----------------------------------------------------------------- ! Fill in verlet lists depending on whether lists will be ! symmetric or not. !----------------------------------------------------------------- IF(lsymm .EQV. .TRUE.) THEN ! If symmetric DO p_idx = 1, clist%n_all_p CALL get_neigh_sym(clist%rank(p_idx),clist, & & whole_domain, actual_domain, xp, cutoff, skin, vlist, nvlist) END DO ELSE ! If not symmetric DO p_idx = 1, clist%n_all_p CALL get_neigh(clist%rank(p_idx), clist,whole_domain, & & xp, cutoff, skin, vlist, nvlist) END DO END IF END IF 9999 CONTINUE CALL substop('getVerletLists',t0,info) RETURN #if __KIND == __SINGLE_PRECISION END SUBROUTINE getVerletLists_s #elif __KIND == __DOUBLE_PRECISION END SUBROUTINE getVerletLists_d #endif
gpl-3.0
yaowee/libflame
lapack-test/lapack-timing/EIG/dprtbs.f
4
3890
SUBROUTINE DPRTBS( LAB1, LAB2, NTYPES, DOTYPE, NSIZES, NN, NPARMS, $ DOLINE, RESLTS, LDR1, LDR2, NOUT ) * * -- LAPACK timing routine (version 3.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * February 29, 1992 * * .. Scalar Arguments .. CHARACTER*( * ) LAB1, LAB2 INTEGER LDR1, LDR2, NOUT, NPARMS, NSIZES, NTYPES * .. * .. Array Arguments .. LOGICAL DOLINE( NPARMS ), DOTYPE( NTYPES ) INTEGER NN( NSIZES ) DOUBLE PRECISION RESLTS( LDR1, LDR2, * ) * .. * * Purpose * ======= * * DPRTBS prints a table of timing data for the timing programs. * The table has NTYPES block rows and NSIZES columns, with NPARMS * individual rows in each block row. * * Arguments (none are modified) * ========= * * LAB1 - CHARACTER*(*) * The label for the rows. * * LAB2 - CHARACTER*(*) * The label for the columns. * * NTYPES - INTEGER * The number of values of DOTYPE, and also the * number of sets of rows of the table. * * DOTYPE - LOGICAL array of dimension( NTYPES ) * If DOTYPE(j) is .TRUE., then block row j (which includes * data from RESLTS( i, j, k ), for all i and k) will be * printed. If DOTYPE(j) is .FALSE., then block row j will * not be printed. * * NSIZES - INTEGER * The number of values of NN, and also the * number of columns of the table. * * NN - INTEGER array of dimension( NSIZES ) * The values of N used to label each column. * * NPARMS - INTEGER * The number of values of LDA, hence the * number of rows for each value of DOTYPE. * * DOLINE - LOGICAL array of dimension( NPARMS ) * If DOLINE(i) is .TRUE., then row i (which includes data * from RESLTS( i, j, k ) for all j and k) will be printed. * If DOLINE(i) is .FALSE., then row i will not be printed. * * RESLTS - DOUBLE PRECISION array of dimension( LDR1, LDR2, NSIZES ) * The timing results. The first index indicates the row, * the second index indicates the block row, and the last * indicates the column. * * LDR1 - INTEGER * The first dimension of RESLTS. It must be at least * min( 1, NPARMS ). * * LDR2 - INTEGER * The second dimension of RESLTS. It must be at least * min( 1, NTYPES ). * * NOUT - INTEGER * The output unit number on which the table * is to be printed. If NOUT <= 0, no output is printed. * * ===================================================================== * * .. Local Scalars .. INTEGER I, ILINE, J, K * .. * .. Executable Statements .. * IF( NOUT.LE.0 ) $ RETURN IF( NPARMS.LE.0 ) $ RETURN WRITE( NOUT, FMT = 9999 )LAB2, ( NN( I ), I = 1, NSIZES ) WRITE( NOUT, FMT = 9998 )LAB1 * DO 20 J = 1, NTYPES ILINE = 0 IF( DOTYPE( J ) ) THEN DO 10 I = 1, NPARMS IF( DOLINE( I ) ) THEN ILINE = ILINE + 1 IF( ILINE.LE.1 ) THEN WRITE( NOUT, FMT = 9997 )J, $ ( RESLTS( I, J, K ), K = 1, NSIZES ) ELSE WRITE( NOUT, FMT = 9996 )( RESLTS( I, J, K ), $ K = 1, NSIZES ) END IF END IF 10 CONTINUE IF( ILINE.GT.1 .AND. J.LT.NTYPES ) $ WRITE( NOUT, FMT = * ) END IF 20 CONTINUE RETURN * 9999 FORMAT( 6X, A4, I6, 11I9 ) 9998 FORMAT( 3X, A4 ) 9997 FORMAT( 3X, I4, 4X, 1P, 12( 1X, G8.2 ) ) 9996 FORMAT( 11X, 1P, 12( 1X, G8.2 ) ) * * End of DPRTBS * END
bsd-3-clause
yaowee/libflame
lapack-test/lapack-timing/EIG/dopbl3.f
8
5015
DOUBLE PRECISION FUNCTION DOPBL3( SUBNAM, M, N, K ) * * -- LAPACK timing routine (version 3.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * June 30, 1999 * * .. Scalar Arguments .. CHARACTER*6 SUBNAM INTEGER K, M, N * .. * * Purpose * ======= * * DOPBL3 computes an approximation of the number of floating point * operations used by a subroutine SUBNAM with the given values * of the parameters M, N, and K. * * This version counts operations for the Level 3 BLAS. * * Arguments * ========= * * SUBNAM (input) CHARACTER*6 * The name of the subroutine. * * M (input) INTEGER * N (input) INTEGER * K (input) INTEGER * M, N, and K contain parameter values used by the Level 3 * BLAS. The output matrix is always M x N or N x N if * symmetric, but K has different uses in different * contexts. For example, in the matrix-matrix multiply * routine, we have * C = A * B * where C is M x N, A is M x K, and B is K x N. * In xSYMM, xTRMM, and xTRSM, K indicates whether the matrix * A is applied on the left or right. If K <= 0, the matrix * is applied on the left, if K > 0, on the right. * * ===================================================================== * * .. Local Scalars .. CHARACTER C1 CHARACTER*2 C2 CHARACTER*3 C3 DOUBLE PRECISION ADDS, EK, EM, EN, MULTS * .. * .. External Functions .. LOGICAL LSAME, LSAMEN EXTERNAL LSAME, LSAMEN * .. * .. Executable Statements .. * * Quick return if possible * IF( M.LE.0 .OR. .NOT.( LSAME( SUBNAM, 'S' ) .OR. LSAME( SUBNAM, $ 'D' ) .OR. LSAME( SUBNAM, 'C' ) .OR. LSAME( SUBNAM, 'Z' ) ) ) $ THEN DOPBL3 = 0 RETURN END IF * C1 = SUBNAM( 1: 1 ) C2 = SUBNAM( 2: 3 ) C3 = SUBNAM( 4: 6 ) MULTS = 0 ADDS = 0 EM = M EN = N EK = K * * ---------------------- * Matrix-matrix products * assume beta = 1 * ---------------------- * IF( LSAMEN( 3, C3, 'MM ' ) ) THEN * IF( LSAMEN( 2, C2, 'GE' ) ) THEN * MULTS = EM*EK*EN ADDS = EM*EK*EN * ELSE IF( LSAMEN( 2, C2, 'SY' ) .OR. $ LSAMEN( 3, SUBNAM, 'CHE' ) .OR. $ LSAMEN( 3, SUBNAM, 'ZHE' ) ) THEN * * IF K <= 0, assume A multiplies B on the left. * IF( K.LE.0 ) THEN MULTS = EM*EM*EN ADDS = EM*EM*EN ELSE MULTS = EM*EN*EN ADDS = EM*EN*EN END IF * ELSE IF( LSAMEN( 2, C2, 'TR' ) ) THEN * IF( K.LE.0 ) THEN MULTS = EN*EM*( EM+1.D0 ) / 2.D0 ADDS = EN*EM*( EM-1.D0 ) / 2.D0 ELSE MULTS = EM*EN*( EN+1.D0 ) / 2.D0 ADDS = EM*EN*( EN-1.D0 ) / 2.D0 END IF * END IF * * ------------------------------------------------ * Rank-K update of a symmetric or Hermitian matrix * ------------------------------------------------ * ELSE IF( LSAMEN( 3, C3, 'RK ' ) ) THEN * IF( LSAMEN( 2, C2, 'SY' ) .OR. LSAMEN( 3, SUBNAM, 'CHE' ) .OR. $ LSAMEN( 3, SUBNAM, 'ZHE' ) ) THEN * MULTS = EK*EM*( EM+1.D0 ) / 2.D0 ADDS = EK*EM*( EM+1.D0 ) / 2.D0 END IF * * ------------------------------------------------ * Rank-2K update of a symmetric or Hermitian matrix * ------------------------------------------------ * ELSE IF( LSAMEN( 3, C3, 'R2K' ) ) THEN * IF( LSAMEN( 2, C2, 'SY' ) .OR. LSAMEN( 3, SUBNAM, 'CHE' ) .OR. $ LSAMEN( 3, SUBNAM, 'ZHE' ) ) THEN * MULTS = EK*EM*EM ADDS = EK*EM*EM + EM END IF * * ----------------------------------------- * Solving system with many right hand sides * ----------------------------------------- * ELSE IF( LSAMEN( 5, SUBNAM( 2: 6 ), 'TRSM ' ) ) THEN * IF( K.LE.0 ) THEN MULTS = EN*EM*( EM+1.D0 ) / 2.D0 ADDS = EN*EM*( EM-1.D0 ) / 2.D0 ELSE MULTS = EM*EN*( EN+1.D0 ) / 2.D0 ADDS = EM*EN*( EN-1.D0 ) / 2.D0 END IF * END IF * * ------------------------------------------------ * Compute the total number of operations. * For real and double precision routines, count * 1 for each multiply and 1 for each add. * For complex and complex*16 routines, count * 6 for each multiply and 2 for each add. * ------------------------------------------------ * IF( LSAME( C1, 'S' ) .OR. LSAME( C1, 'D' ) ) THEN * DOPBL3 = MULTS + ADDS * ELSE * DOPBL3 = 6*MULTS + 2*ADDS * END IF * RETURN * * End of DOPBL3 * END
bsd-3-clause
ericmckean/nacl-llvm-branches.llvm-gcc-trunk
gcc/testsuite/gfortran.dg/actual_array_constructor_2.f90
185
1216
! { dg-do run } ! Tests the fix for pr28167, in which character array constructors ! with an implied do loop would cause an ICE, when used as actual ! arguments. ! ! Based on the testscase by Harald Anlauf <anlauf@gmx.de> ! character(4), dimension(4) :: c1, c2 integer m m = 4 ! Test the original problem call foo ((/( 'abcd',i=1,m )/), c2) if (any(c2(:) .ne. (/'abcd','abcd', & 'abcd','abcd'/))) call abort () ! Now get a bit smarter call foo ((/"abcd", "efgh", "ijkl", "mnop"/), c1) ! worked previously call foo ((/(c1(i), i = m,1,-1)/), c2) ! was broken if (any(c2(4:1:-1) .ne. c1)) call abort () ! gfc_todo: Not Implemented: complex character array constructors call foo ((/(c1(i)(i/2+1:i/2+2), i = 1,4)/), c2) ! Ha! take that..! if (any (c2 .ne. (/"ab ","fg ","jk ","op "/))) call abort () ! Check functions in the constructor call foo ((/(achar(64+i)//achar(68+i)//achar(72+i)// & achar(76+i),i=1,4 )/), c1) ! was broken if (any (c1 .ne. (/"AEIM","BFJN","CGKO","DHLP"/))) call abort () contains subroutine foo (chr1, chr2) character(*), dimension(:) :: chr1, chr2 chr2 = chr1 end subroutine foo end
gpl-2.0
yaowee/libflame
lapack-test/3.5.0/EIG/schkgk.f
32
6775
*> \brief \b SCHKGK * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE SCHKGK( NIN, NOUT ) * * .. Scalar Arguments .. * INTEGER NIN, NOUT * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> SCHKGK tests SGGBAK, a routine for backward balancing of *> a matrix pair (A, B). *> \endverbatim * * Arguments: * ========== * *> \param[in] NIN *> \verbatim *> NIN is INTEGER *> The logical unit number for input. NIN > 0. *> \endverbatim *> *> \param[in] NOUT *> \verbatim *> NOUT is INTEGER *> The logical unit number for output. NOUT > 0. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup single_eig * * ===================================================================== SUBROUTINE SCHKGK( NIN, NOUT ) * * -- LAPACK test routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. INTEGER NIN, NOUT * .. * * ===================================================================== * * .. Parameters .. INTEGER LDA, LDB, LDVL, LDVR PARAMETER ( LDA = 50, LDB = 50, LDVL = 50, LDVR = 50 ) INTEGER LDE, LDF, LDWORK PARAMETER ( LDE = 50, LDF = 50, LDWORK = 50 ) REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) * .. * .. Local Scalars .. INTEGER I, IHI, ILO, INFO, J, KNT, M, N, NINFO REAL ANORM, BNORM, EPS, RMAX, VMAX * .. * .. Local Arrays .. INTEGER LMAX( 4 ) REAL A( LDA, LDA ), AF( LDA, LDA ), B( LDB, LDB ), $ BF( LDB, LDB ), E( LDE, LDE ), F( LDF, LDF ), $ LSCALE( LDA ), RSCALE( LDA ), VL( LDVL, LDVL ), $ VLF( LDVL, LDVL ), VR( LDVR, LDVR ), $ VRF( LDVR, LDVR ), WORK( LDWORK, LDWORK ) * .. * .. External Functions .. REAL SLAMCH, SLANGE EXTERNAL SLAMCH, SLANGE * .. * .. External Subroutines .. EXTERNAL SGEMM, SGGBAK, SGGBAL, SLACPY * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX * .. * .. Executable Statements .. * * Initialization * LMAX( 1 ) = 0 LMAX( 2 ) = 0 LMAX( 3 ) = 0 LMAX( 4 ) = 0 NINFO = 0 KNT = 0 RMAX = ZERO * EPS = SLAMCH( 'Precision' ) * 10 CONTINUE READ( NIN, FMT = * )N, M IF( N.EQ.0 ) $ GO TO 100 * DO 20 I = 1, N READ( NIN, FMT = * )( A( I, J ), J = 1, N ) 20 CONTINUE * DO 30 I = 1, N READ( NIN, FMT = * )( B( I, J ), J = 1, N ) 30 CONTINUE * DO 40 I = 1, N READ( NIN, FMT = * )( VL( I, J ), J = 1, M ) 40 CONTINUE * DO 50 I = 1, N READ( NIN, FMT = * )( VR( I, J ), J = 1, M ) 50 CONTINUE * KNT = KNT + 1 * ANORM = SLANGE( 'M', N, N, A, LDA, WORK ) BNORM = SLANGE( 'M', N, N, B, LDB, WORK ) * CALL SLACPY( 'FULL', N, N, A, LDA, AF, LDA ) CALL SLACPY( 'FULL', N, N, B, LDB, BF, LDB ) * CALL SGGBAL( 'B', N, A, LDA, B, LDB, ILO, IHI, LSCALE, RSCALE, $ WORK, INFO ) IF( INFO.NE.0 ) THEN NINFO = NINFO + 1 LMAX( 1 ) = KNT END IF * CALL SLACPY( 'FULL', N, M, VL, LDVL, VLF, LDVL ) CALL SLACPY( 'FULL', N, M, VR, LDVR, VRF, LDVR ) * CALL SGGBAK( 'B', 'L', N, ILO, IHI, LSCALE, RSCALE, M, VL, LDVL, $ INFO ) IF( INFO.NE.0 ) THEN NINFO = NINFO + 1 LMAX( 2 ) = KNT END IF * CALL SGGBAK( 'B', 'R', N, ILO, IHI, LSCALE, RSCALE, M, VR, LDVR, $ INFO ) IF( INFO.NE.0 ) THEN NINFO = NINFO + 1 LMAX( 3 ) = KNT END IF * * Test of SGGBAK * * Check tilde(VL)'*A*tilde(VR) - VL'*tilde(A)*VR * where tilde(A) denotes the transformed matrix. * CALL SGEMM( 'N', 'N', N, M, N, ONE, AF, LDA, VR, LDVR, ZERO, WORK, $ LDWORK ) CALL SGEMM( 'T', 'N', M, M, N, ONE, VL, LDVL, WORK, LDWORK, ZERO, $ E, LDE ) * CALL SGEMM( 'N', 'N', N, M, N, ONE, A, LDA, VRF, LDVR, ZERO, WORK, $ LDWORK ) CALL SGEMM( 'T', 'N', M, M, N, ONE, VLF, LDVL, WORK, LDWORK, ZERO, $ F, LDF ) * VMAX = ZERO DO 70 J = 1, M DO 60 I = 1, M VMAX = MAX( VMAX, ABS( E( I, J )-F( I, J ) ) ) 60 CONTINUE 70 CONTINUE VMAX = VMAX / ( EPS*MAX( ANORM, BNORM ) ) IF( VMAX.GT.RMAX ) THEN LMAX( 4 ) = KNT RMAX = VMAX END IF * * Check tilde(VL)'*B*tilde(VR) - VL'*tilde(B)*VR * CALL SGEMM( 'N', 'N', N, M, N, ONE, BF, LDB, VR, LDVR, ZERO, WORK, $ LDWORK ) CALL SGEMM( 'T', 'N', M, M, N, ONE, VL, LDVL, WORK, LDWORK, ZERO, $ E, LDE ) * CALL SGEMM( 'N', 'N', N, M, N, ONE, B, LDB, VRF, LDVR, ZERO, WORK, $ LDWORK ) CALL SGEMM( 'T', 'N', M, M, N, ONE, VLF, LDVL, WORK, LDWORK, ZERO, $ F, LDF ) * VMAX = ZERO DO 90 J = 1, M DO 80 I = 1, M VMAX = MAX( VMAX, ABS( E( I, J )-F( I, J ) ) ) 80 CONTINUE 90 CONTINUE VMAX = VMAX / ( EPS*MAX( ANORM, BNORM ) ) IF( VMAX.GT.RMAX ) THEN LMAX( 4 ) = KNT RMAX = VMAX END IF * GO TO 10 * 100 CONTINUE * WRITE( NOUT, FMT = 9999 ) 9999 FORMAT( 1X, '.. test output of SGGBAK .. ' ) * WRITE( NOUT, FMT = 9998 )RMAX 9998 FORMAT( ' value of largest test error =', E12.3 ) WRITE( NOUT, FMT = 9997 )LMAX( 1 ) 9997 FORMAT( ' example number where SGGBAL info is not 0 =', I4 ) WRITE( NOUT, FMT = 9996 )LMAX( 2 ) 9996 FORMAT( ' example number where SGGBAK(L) info is not 0 =', I4 ) WRITE( NOUT, FMT = 9995 )LMAX( 3 ) 9995 FORMAT( ' example number where SGGBAK(R) info is not 0 =', I4 ) WRITE( NOUT, FMT = 9994 )LMAX( 4 ) 9994 FORMAT( ' example number having largest error =', I4 ) WRITE( NOUT, FMT = 9992 )NINFO 9992 FORMAT( ' number of examples where info is not 0 =', I4 ) WRITE( NOUT, FMT = 9991 )KNT 9991 FORMAT( ' total number of examples tested =', I4 ) * RETURN * * End of SCHKGK * END
bsd-3-clause
yaowee/libflame
lapack-test/lapack-timing/LIN/dopgb.f
4
3720
DOUBLE PRECISION FUNCTION DOPGB( SUBNAM, M, N, KL, KU, IPIV ) * * -- LAPACK timing routine (version 3.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * June 30, 1999 * * .. Scalar Arguments .. CHARACTER*6 SUBNAM INTEGER KL, KU, M, N * .. * .. Array Arguments .. INTEGER IPIV( * ) * .. * * Purpose * ======= * * DOPGB counts operations for the LU factorization of a band matrix * xGBTRF. * * Arguments * ========= * * SUBNAM (input) CHARACTER*6 * The name of the subroutine. * * M (input) INTEGER * The number of rows of the coefficient matrix. M >= 0. * * N (input) INTEGER * The number of columns of the coefficient matrix. N >= 0. * * KL (input) INTEGER * The number of subdiagonals of the matrix. KL >= 0. * * KU (input) INTEGER * The number of superdiagonals of the matrix. KU >= 0. * * IPIV (input) INTEGER array, dimension (min(M,N)) * The vector of pivot indices from DGBTRF or ZGBTRF. * * ===================================================================== * * .. Local Scalars .. LOGICAL CORZ, SORD CHARACTER C1 CHARACTER*2 C2 CHARACTER*3 C3 INTEGER I, J, JP, JU, KM DOUBLE PRECISION ADDFAC, ADDS, MULFAC, MULTS * .. * .. External Functions .. LOGICAL LSAME, LSAMEN EXTERNAL LSAME, LSAMEN * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. Executable Statements .. * DOPGB = 0 MULTS = 0 ADDS = 0 C1 = SUBNAM( 1: 1 ) C2 = SUBNAM( 2: 3 ) C3 = SUBNAM( 4: 6 ) SORD = LSAME( C1, 'S' ) .OR. LSAME( C1, 'D' ) CORZ = LSAME( C1, 'C' ) .OR. LSAME( C1, 'Z' ) IF( .NOT.( SORD .OR. CORZ ) ) $ RETURN IF( LSAME( C1, 'S' ) .OR. LSAME( C1, 'D' ) ) THEN ADDFAC = 1 MULFAC = 1 ELSE ADDFAC = 2 MULFAC = 6 END IF * * -------------------------- * GB: General Band matrices * -------------------------- * IF( LSAMEN( 2, C2, 'GB' ) ) THEN * * xGBTRF: M, N, KL, KU => M, N, KL, KU * IF( LSAMEN( 3, C3, 'TRF' ) ) THEN JU = 1 DO 10 J = 1, MIN( M, N ) KM = MIN( KL, M-J ) JP = IPIV( J ) JU = MAX( JU, MIN( JP+KU, N ) ) IF( KM.GT.0 ) THEN MULTS = MULTS + KM*( 1+JU-J ) ADDS = ADDS + KM*( JU-J ) END IF 10 CONTINUE END IF * * --------------------------------- * GT: General Tridiagonal matrices * --------------------------------- * ELSE IF( LSAMEN( 2, C2, 'GT' ) ) THEN * * xGTTRF: N => M * IF( LSAMEN( 3, C3, 'TRF' ) ) THEN MULTS = 2*( M-1 ) ADDS = M - 1 DO 20 I = 1, M - 2 IF( IPIV( I ).NE.I ) $ MULTS = MULTS + 1 20 CONTINUE * * xGTTRS: N, NRHS => M, N * ELSE IF( LSAMEN( 3, C3, 'TRS' ) ) THEN MULTS = 4*N*( M-1 ) ADDS = 3*N*( M-1 ) * * xGTSV: N, NRHS => M, N * ELSE IF( LSAMEN( 3, C3, 'SV ' ) ) THEN MULTS = ( 4*N+2 )*( M-1 ) ADDS = ( 3*N+1 )*( M-1 ) DO 30 I = 1, M - 2 IF( IPIV( I ).NE.I ) $ MULTS = MULTS + 1 30 CONTINUE END IF END IF * DOPGB = MULFAC*MULTS + ADDFAC*ADDS RETURN * * End of DOPGB * END
bsd-3-clause
astrofrog/hyperion
src/grid/grid_monochromatic.f90
3
5768
module grid_monochromatic ! The purpose of this module is to take care of the emission of photons for ! the monochromatic radiative transfer code. The ! setup_monochromatic_grid_pdfs subroutine takes care of pre-computing the ! probability distribution function for emission at the frequency index inu ! (using the frequencies from the radiative transfer settings), and by ! default the emission is weighted by the total luminosity from each cell at ! that frequency. In future it will be easy to add an option to weigh things ! differently, for example by total energy in the cell, or giving equal ! weight to each cell. The emit_from_monochromatic_grid_pdf function is then ! used to emit a photon from the pre-computed probability distribution ! function. The allocate_ and deallocate_ subroutines should be called at ! the start and end of the monochormatic radiative transfer respectively. use core_lib use type_photon, only : photon use grid_geometry, only : geo, grid_sample_pdf_map, random_position_cell use type_dust, only : dust_sample_emit_probability use dust_main, only : d, n_dust, prepare_photon, update_optconsts use grid_physics use settings, only : frequencies implicit none save private public :: allocate_monochromatic_grid_pdfs public :: deallocate_monochromatic_grid_pdfs public :: setup_monochromatic_grid_pdfs public :: emit_from_monochromatic_grid_pdf ! Variables for the monochromatic grid emission integer :: inu_current real(dp), allocatable :: mean_prob(:) type(pdf_discrete_dp), allocatable :: emiss_pdf(:) contains subroutine allocate_monochromatic_grid_pdfs() implicit none allocate(emiss_pdf(n_dust), mean_prob(n_dust)) end subroutine allocate_monochromatic_grid_pdfs subroutine deallocate_monochromatic_grid_pdfs() implicit none deallocate(emiss_pdf, mean_prob) end subroutine deallocate_monochromatic_grid_pdfs subroutine setup_monochromatic_grid_pdfs(inu, empty) ! Sets up the probability distribution functions to emit from for a specific ! frequency for all dust types. This subroutine takes nu, the frequency to ! compute the PDF at, and modifies local variables in the module implicit none integer, intent(in) :: inu real(dp) :: nu integer :: dust_id integer :: emiss_var_id real(dp) :: emiss_var_frac real(dp), allocatable :: energy(:), prob(:) integer :: icell logical,intent(out) :: empty nu = frequencies(inu) ! Allocate temporary arrays allocate(energy(geo%n_cells), prob(geo%n_cells)) ! Loop over dust types do dust_id=1, n_dust ! Find the total energy emitted inside each cell if (energy_abs_tot(dust_id) > 0._dp) then energy = specific_energy(:, dust_id) & & * density(:, dust_id) & & * geo%volume(:) & & * dble(geo%n_cells) & & / energy_abs_tot(dust_id) else energy = 0._dp end if ! Ensure that energy is zero in masked cells. Note that we can just ! work with all the cells here because the masked cells will get ! dropped out of the PDF anyway. if(geo%masked) then where(.not.geo%mask) energy = 0._dp end where end if ! Find in each cell the probability of emission at the desired frequency ! from the normalized emissivity PDF. do icell=1, geo%n_cells emiss_var_id = jnu_var_id(icell, dust_id) emiss_var_frac = jnu_var_frac(icell, dust_id) call dust_sample_emit_probability(d(dust_id), & & emiss_var_id, emiss_var_frac, & & nu, prob(icell)) end do ! Set the PDF to the probability of emission at the frequency nu mean_prob(dust_id) = mean(prob * energy) if(mean_prob(dust_id) > 0._dp) call set_pdf(emiss_pdf(dust_id), prob * energy) end do ! Deallocate temporary arrays deallocate(energy, prob) inu_current = inu empty = sum(mean_prob) == 0._dp end subroutine setup_monochromatic_grid_pdfs type(photon) function emit_from_monochromatic_grid_pdf(inu) result(p) ! Given a frequency index (inu), sample a position in the grid using the ! locally pre-computed PDFs and set up a photon. This function is meant to ! be used in conjunction with setup_monochromatic_grid_pdfs, which, given ! a frequency, pre-computes the probabilty distribution functon for ! emission from the grid. implicit none integer, intent(in) :: inu integer :: dust_id real(dp) :: xi if(inu /= inu_current) call error('emit_from_monochromatic_grid_pdf', 'incorrect inu') p%nu = frequencies(inu) p%inu = inu call prepare_photon(p) call update_optconsts(p) call random(xi) dust_id = ceiling(xi*real(n_dust, dp)) if(mean_prob(dust_id) == 0._dp) then p%energy = 0._dp return end if call grid_sample_pdf_map(emiss_pdf(dust_id), p%icell) p%in_cell = .true. ! Find random position inside cell call random_position_cell(p%icell, p%r) ! can probably make this a function ! Sample an isotropic direction call random_sphere_angle3d(p%a) call angle3d_to_vector3d(p%a, p%v) ! Set stokes parameters to unpolarized light p%s = stokes_dp(1._dp, 0._dp, 0._dp, 0._dp) ! Set the energy to 1., and it will be scaled in the main routine p%energy = mean_prob(dust_id) p%scattered = .false. p%reprocessed = .true. p%last_isotropic = .true. p%dust_id = dust_id p%last = 'de' end function emit_from_monochromatic_grid_pdf end module grid_monochromatic
bsd-2-clause
astrofrog/hyperion
src/grid/grid_geometry_cartesian_3d.f90
1
14729
module grid_geometry_specific use core_lib use mpi_core use mpi_hdf5_io use type_photon use type_grid_cell use type_grid use grid_io use counters implicit none save private ! Photon position routines public :: cell_width public :: grid_geometry_debug public :: find_cell public :: place_in_cell public :: in_correct_cell public :: random_position_cell public :: find_wall public :: distance_to_closest_wall logical :: debug = .false. real(dp) :: tmin, emin type(wall_id) :: imin, iext public :: escaped interface escaped module procedure escaped_photon module procedure escaped_cell end interface escaped public :: next_cell interface next_cell module procedure next_cell_int module procedure next_cell_wall_id end interface next_cell public :: setup_grid_geometry type(grid_geometry_desc),public,target :: geo contains real(dp) function cell_width(cell, idir) implicit none type(grid_cell),intent(in) :: cell integer,intent(in) :: idir select case(idir) case(1) cell_width = geo%dx(cell%i1) case(2) cell_width = geo%dy(cell%i2) case(3) cell_width = geo%dz(cell%i3) end select end function cell_width real(dp) function cell_area(cell, iface) implicit none type(grid_cell),intent(in) :: cell integer,intent(in) :: iface select case(iface) case(1,2) cell_area = geo%dy(cell%i2) * geo%dz(cell%i3) case(3,4) cell_area = geo%dz(cell%i3) * geo%dx(cell%i1) case(5,6) cell_area = geo%dx(cell%i1) * geo%dy(cell%i2) end select end function cell_area subroutine setup_grid_geometry(group) implicit none integer(hid_t),intent(in) :: group integer :: ic type(grid_cell) :: cell ! Read geometry file call mp_read_keyword(group, '.', "geometry", geo%id) call mp_read_keyword(group, '.', "grid_type", geo%type) if(trim(geo%type).ne.'car') call error("setup_grid_geometry","grid is not cartesian") if(main_process()) write(*,'(" [setup_grid_geometry] Reading cartesian grid")') call mp_table_read_column_auto(group, 'walls_1', 'x', geo%w1) call mp_table_read_column_auto(group, 'walls_2', 'y', geo%w2) call mp_table_read_column_auto(group, 'walls_3', 'z', geo%w3) geo%n1 = size(geo%w1) - 1 geo%n2 = size(geo%w2) - 1 geo%n3 = size(geo%w3) - 1 geo%n_cells = geo%n1 * geo%n2 * geo%n3 geo%n_masked = geo%n_cells allocate(geo%dx(geo%n1)) allocate(geo%dy(geo%n2)) allocate(geo%dz(geo%n3)) geo%dx = geo%w1(2:) - geo%w1(:geo%n1) geo%dy = geo%w2(2:) - geo%w2(:geo%n2) geo%dz = geo%w3(2:) - geo%w3(:geo%n3) allocate(geo%volume(geo%n_cells)) ! Compute cell volumes do ic=1,geo%n_cells cell = new_grid_cell(ic, geo) geo%volume(ic) = geo%dx(cell%i1) * geo%dy(cell%i2) * geo%dz(cell%i3) end do if(any(geo%volume==0._dp)) call error('setup_grid_geometry','all volumes should be greater than zero') if(any(geo%dx==0._dp)) call error('setup_grid_geometry','all dx values should be greater than zero') if(any(geo%dy==0._dp)) call error('setup_grid_geometry','all dy values should be greater than zero') if(any(geo%dz==0._dp)) call error('setup_grid_geometry','all dz values should be greater than zero') ! Compute other useful quantities geo%n_dim = 3 allocate(geo%ew1(geo%n1 + 1)) allocate(geo%ew2(geo%n2 + 1)) allocate(geo%ew3(geo%n3 + 1)) geo%ew1 = 3 * spacing(geo%w1) geo%ew2 = 3 * spacing(geo%w2) geo%ew3 = 3 * spacing(geo%w3) end subroutine setup_grid_geometry subroutine grid_geometry_debug(debug_flag) implicit none logical,intent(in) :: debug_flag debug = debug_flag end subroutine grid_geometry_debug type(grid_cell) function find_cell(p) result(icell) implicit none type(photon),intent(in) :: p integer :: i1, i2, i3 if(debug) write(*,'(" [debug] find_cell")') i1 = locate(geo%w1,p%r%x) i2 = locate(geo%w2,p%r%y) i3 = locate(geo%w3,p%r%z) if(i1<1.or.i1>geo%n1) then call warn("find_cell","photon not in cell (in x direction)") icell = invalid_cell return end if if(i2<1.or.i2>geo%n2) then call warn("find_cell","photon not in cell (in y direction)") icell = invalid_cell return end if if(i3<1.or.i3>geo%n3) then call warn("find_cell","photon not in cell (in z direction)") icell = invalid_cell return end if icell = new_grid_cell(i1, i2, i3, geo) end function find_cell subroutine adjust_wall(p) ! In future, this could be called at peeloff time instead of ! place_inside_cell, but if we want to do that, we need this subroutine to ! use locate to find the correct cell if the velocity is zero along one of ! the components, so that it is reset to the 'default' find_cell value. implicit none type(photon), intent(inout) :: p ! Initialize values p%on_wall = .false. p%on_wall_id = no_wall ! Find whether the photon is on an x-wall if(p%v%x > 0._dp) then if(p%r%x == geo%w1(p%icell%i1)) then p%on_wall_id%w1 = -1 else if(p%r%x == geo%w1(p%icell%i1 + 1)) then p%on_wall_id%w1 = -1 p%icell%i1 = p%icell%i1 + 1 end if else if(p%v%x < 0._dp) then if(p%r%x == geo%w1(p%icell%i1)) then p%on_wall_id%w1 = +1 p%icell%i1 = p%icell%i1 - 1 else if(p%r%x == geo%w1(p%icell%i1 + 1)) then p%on_wall_id%w1 = +1 end if end if ! Find whether the photon is on a y-wall if(p%v%y > 0._dp) then if(p%r%y == geo%w2(p%icell%i2)) then p%on_wall_id%w2 = -1 else if(p%r%y == geo%w2(p%icell%i2 + 1)) then p%on_wall_id%w2 = -1 p%icell%i2 = p%icell%i2 + 1 end if else if(p%v%y < 0._dp) then if(p%r%y == geo%w2(p%icell%i2)) then p%on_wall_id%w2 = +1 p%icell%i2 = p%icell%i2 - 1 else if(p%r%y == geo%w2(p%icell%i2 + 1)) then p%on_wall_id%w2 = +1 end if end if ! Find whether the photon is on a z-wall if(p%v%z > 0._dp) then if(p%r%z == geo%w3(p%icell%i3)) then p%on_wall_id%w3 = -1 else if(p%r%z == geo%w3(p%icell%i3 + 1)) then p%on_wall_id%w3 = -1 p%icell%i3 = p%icell%i3 + 1 end if else if(p%v%z < 0._dp) then if(p%r%z == geo%w3(p%icell%i3)) then p%on_wall_id%w3 = +1 p%icell%i3 = p%icell%i3 - 1 else if(p%r%z == geo%w3(p%icell%i3 + 1)) then p%on_wall_id%w3 = +1 end if end if p%on_wall = p%on_wall_id%w1 /= 0 .or. p%on_wall_id%w2 /= 0 .or. p%on_wall_id%w3 /= 0 end subroutine adjust_wall subroutine place_in_cell(p) implicit none type(photon),intent(inout) :: p p%icell = find_cell(p) if(p%icell == invalid_cell) then call warn("place_in_cell","place_in_cell failed - killing") killed_photons_geo = killed_photons_geo + 1 p%killed = .true. else p%in_cell = .true. end if call adjust_wall(p) end subroutine place_in_cell logical function escaped_photon(p) implicit none type(photon),intent(in) :: p escaped_photon = escaped_cell(p%icell) end function escaped_photon logical function escaped_cell(cell) implicit none type(grid_cell),intent(in) :: cell escaped_cell = .true. if(cell%i1 < 1 .or. cell%i1 > geo%n1) return if(cell%i2 < 1 .or. cell%i2 > geo%n2) return if(cell%i3 < 1 .or. cell%i3 > geo%n3) return escaped_cell = .false. end function escaped_cell type(grid_cell) function next_cell_int(cell, direction, intersection) implicit none type(grid_cell),intent(in) :: cell integer,intent(in) :: direction type(vector3d_dp),optional,intent(in) :: intersection integer :: i1, i2, i3 i1 = cell%i1 i2 = cell%i2 i3 = cell%i3 select case(direction) case(1) i1 = i1 - 1 case(2) i1 = i1 + 1 case(3) i2 = i2 - 1 case(4) i2 = i2 + 1 case(5) i3 = i3 - 1 case(6) i3 = i3 + 1 end select next_cell_int = new_grid_cell(i1, i2, i3, geo) end function next_cell_int type(grid_cell) function next_cell_wall_id(cell, direction, intersection) implicit none type(grid_cell),intent(in) :: cell type(wall_id),intent(in) :: direction type(vector3d_dp),optional,intent(in) :: intersection integer :: i1, i2, i3 i1 = cell%i1 i2 = cell%i2 i3 = cell%i3 if(direction%w1 == -1) then i1 = i1 - 1 else if(direction%w1 == +1) then i1 = i1 + 1 end if if(direction%w2 == -1) then i2 = i2 - 1 else if(direction%w2 == +1) then i2 = i2 + 1 end if if(direction%w3 == -1) then i3 = i3 - 1 else if(direction%w3 == +1) then i3 = i3 + 1 end if next_cell_wall_id = new_grid_cell(i1, i2, i3, geo) end function next_cell_wall_id logical function in_correct_cell(p) implicit none type(photon),intent(in) :: p type(grid_cell) :: icell_actual real(dp) :: frac real(dp),parameter :: threshold = 1.e-3_dp icell_actual = find_cell(p) if(p%on_wall) then in_correct_cell = .true. if(p%on_wall_id%w1 == -1) then frac = (p%r%x - geo%w1(p%icell%i1)) / (geo%w1(p%icell%i1+1) - geo%w1(p%icell%i1)) in_correct_cell = in_correct_cell .and. abs(frac) < threshold else if(p%on_wall_id%w1 == +1) then frac = (p%r%x - geo%w1(p%icell%i1+1)) / (geo%w1(p%icell%i1+1) - geo%w1(p%icell%i1)) in_correct_cell = in_correct_cell .and. abs(frac) < threshold else in_correct_cell = in_correct_cell .and. icell_actual%i1 == p%icell%i1 end if if(p%on_wall_id%w2 == -1) then frac = (p%r%y - geo%w2(p%icell%i2)) / (geo%w2(p%icell%i2+1) - geo%w2(p%icell%i2)) in_correct_cell = in_correct_cell .and. abs(frac) < threshold else if(p%on_wall_id%w2 == +1) then frac = (p%r%y - geo%w2(p%icell%i2+1)) / (geo%w2(p%icell%i2+1) - geo%w2(p%icell%i2)) in_correct_cell = in_correct_cell .and. abs(frac) < threshold else in_correct_cell = in_correct_cell .and. icell_actual%i2 == p%icell%i2 end if if(p%on_wall_id%w3 == -1) then frac = (p%r%z - geo%w3(p%icell%i3)) / (geo%w3(p%icell%i3+1) - geo%w3(p%icell%i3)) in_correct_cell = in_correct_cell .and. abs(frac) < threshold else if(p%on_wall_id%w3 == +1) then frac = (p%r%z - geo%w3(p%icell%i3+1)) / (geo%w3(p%icell%i3+1) - geo%w3(p%icell%i3)) in_correct_cell = in_correct_cell .and. abs(frac) < threshold else in_correct_cell = in_correct_cell .and. icell_actual%i3 == p%icell%i3 end if else in_correct_cell = icell_actual == p%icell end if end function in_correct_cell subroutine random_position_cell(icell,pos) implicit none type(grid_cell),intent(in) :: icell type(vector3d_dp), intent(out) :: pos real(dp) :: x,y,z call random(x) call random(y) call random(z) pos%x = x * (geo%w1(icell%i1+1) - geo%w1(icell%i1)) + geo%w1(icell%i1) pos%y = y * (geo%w2(icell%i2+1) - geo%w2(icell%i2)) + geo%w2(icell%i2) pos%z = z * (geo%w3(icell%i3+1) - geo%w3(icell%i3)) + geo%w3(icell%i3) end subroutine random_position_cell real(dp) function distance_to_closest_wall(p) result(d) implicit none type(photon),intent(in) :: p real(dp) :: d1,d2,d3,d4,d5,d6 d1 = p%r%x - geo%w1(p%icell%i1) d2 = geo%w1(p%icell%i1+1) - p%r%x d3 = p%r%y - geo%w2(p%icell%i2) d4 = geo%w2(p%icell%i2+1) - p%r%y d5 = p%r%z - geo%w3(p%icell%i3) d6 = geo%w3(p%icell%i3+1) - p%r%z ! Find the smallest of the distances d = min(d1,d2,d3,d4,d5,d6) ! The closest distance should never be negative if(d < 0._dp) then call warn("distance_to_closest_wall","distance to closest wall is negative (assuming zero)") d = 0._dp end if end function distance_to_closest_wall subroutine find_wall(p,radial,tnearest,id_min) implicit none type(photon), intent(inout) :: p ! Position and direction logical,intent(in) :: radial type(wall_id),intent(out) :: id_min ! ID of next wall real(dp),intent(out) :: tnearest ! tmin to nearest wall real(dp) :: t1, t2 logical :: pos_vx, pos_vy, pos_vz call reset_t() if(p%on_wall_id%w1 /= -1) then t1 = ( geo%w1(p%icell%i1) - p%r%x ) / p%v%x call insert_t(t1,1, -1, geo%ew1(p%icell%i1)) end if if(p%on_wall_id%w1 /= +1) then t2 = ( geo%w1(p%icell%i1+1) - p%r%x ) / p%v%x call insert_t(t2,1, +1, geo%ew1(p%icell%i1 + 1)) end if if(p%on_wall_id%w2 /= -1) then t1 = ( geo%w2(p%icell%i2) - p%r%y ) / p%v%y call insert_t(t1,2, -1, geo%ew2(p%icell%i2)) end if if(p%on_wall_id%w2 /= +1) then t2 = ( geo%w2(p%icell%i2+1) - p%r%y ) / p%v%y call insert_t(t2,2, +1, geo%ew2(p%icell%i2 + 1)) end if if(p%on_wall_id%w3 /= -1) then t1 = ( geo%w3(p%icell%i3) - p%r%z ) / p%v%z call insert_t(t1,3, -1, geo%ew1(p%icell%i3)) end if if(p%on_wall_id%w3 /= +1) then t2 = ( geo%w3(p%icell%i3+1) - p%r%z ) / p%v%z call insert_t(t2,3, +1, geo%ew1(p%icell%i3 + 1)) end if call find_next_wall(tnearest,id_min) end subroutine find_wall subroutine reset_t() implicit none tmin = +huge(tmin) emin = 0. imin = no_wall iext = no_wall end subroutine reset_t subroutine insert_t(t, iw, i, e) implicit none real(dp),intent(in) :: t, e integer,intent(in) :: i, iw real(dp) :: emax if(debug) print *,'[debug] inserting t,i=',t, e, iw, i if(t > 0._dp) then emax = max(e, emin) if(t < tmin - emax) then tmin = t imin = no_wall emin = emax if(iw == 1) then imin%w1 = i else if(iw == 2) then imin%w2 = i else imin%w3 = i end if else if(t < tmin + emax) then emin = emax if(iw == 1) then imin%w1 = i else if(iw == 2) then imin%w2 = i else imin%w3 = i end if end if end if end subroutine insert_t subroutine find_next_wall(t,i) implicit none real(dp),intent(out) :: t type(wall_id),intent(out) :: i t = tmin i = imin + iext if(debug) print *,'[debug] selecting t,i=',t,i end subroutine find_next_wall end module grid_geometry_specific
bsd-2-clause
yaowee/libflame
lapack-test/3.5.0/LIN/cerrtr.f
32
17199
*> \brief \b CERRTR * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE CERRTR( PATH, NUNIT ) * * .. Scalar Arguments .. * CHARACTER*3 PATH * INTEGER NUNIT * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CERRTR tests the error exits for the COMPLEX triangular routines. *> \endverbatim * * Arguments: * ========== * *> \param[in] PATH *> \verbatim *> PATH is CHARACTER*3 *> The LAPACK path name for the routines to be tested. *> \endverbatim *> *> \param[in] NUNIT *> \verbatim *> NUNIT is INTEGER *> The unit number for output. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup complex_lin * * ===================================================================== SUBROUTINE CERRTR( PATH, NUNIT ) * * -- LAPACK test routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. CHARACTER*3 PATH INTEGER NUNIT * .. * * ===================================================================== * * .. Parameters .. INTEGER NMAX PARAMETER ( NMAX = 2 ) * .. * .. Local Scalars .. CHARACTER*2 C2 INTEGER INFO REAL RCOND, SCALE * .. * .. Local Arrays .. REAL R1( NMAX ), R2( NMAX ), RW( NMAX ) COMPLEX A( NMAX, NMAX ), B( NMAX ), W( NMAX ), $ X( NMAX ) * .. * .. External Functions .. LOGICAL LSAMEN EXTERNAL LSAMEN * .. * .. External Subroutines .. EXTERNAL ALAESM, CHKXER, CLATBS, CLATPS, CLATRS, CTBCON, $ CTBRFS, CTBTRS, CTPCON, CTPRFS, CTPTRI, CTPTRS, $ CTRCON, CTRRFS, CTRTI2, CTRTRI, CTRTRS * .. * .. Scalars in Common .. LOGICAL LERR, OK CHARACTER*32 SRNAMT INTEGER INFOT, NOUT * .. * .. Common blocks .. COMMON / INFOC / INFOT, NOUT, OK, LERR COMMON / SRNAMC / SRNAMT * .. * .. Executable Statements .. * NOUT = NUNIT WRITE( NOUT, FMT = * ) C2 = PATH( 2: 3 ) A( 1, 1 ) = 1. A( 1, 2 ) = 2. A( 2, 2 ) = 3. A( 2, 1 ) = 4. OK = .TRUE. * * Test error exits for the general triangular routines. * IF( LSAMEN( 2, C2, 'TR' ) ) THEN * * CTRTRI * SRNAMT = 'CTRTRI' INFOT = 1 CALL CTRTRI( '/', 'N', 0, A, 1, INFO ) CALL CHKXER( 'CTRTRI', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CTRTRI( 'U', '/', 0, A, 1, INFO ) CALL CHKXER( 'CTRTRI', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CTRTRI( 'U', 'N', -1, A, 1, INFO ) CALL CHKXER( 'CTRTRI', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRTRI( 'U', 'N', 2, A, 1, INFO ) CALL CHKXER( 'CTRTRI', INFOT, NOUT, LERR, OK ) * * CTRTI2 * SRNAMT = 'CTRTI2' INFOT = 1 CALL CTRTI2( '/', 'N', 0, A, 1, INFO ) CALL CHKXER( 'CTRTI2', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CTRTI2( 'U', '/', 0, A, 1, INFO ) CALL CHKXER( 'CTRTI2', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CTRTI2( 'U', 'N', -1, A, 1, INFO ) CALL CHKXER( 'CTRTI2', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRTI2( 'U', 'N', 2, A, 1, INFO ) CALL CHKXER( 'CTRTI2', INFOT, NOUT, LERR, OK ) * * * CTRTRS * SRNAMT = 'CTRTRS' INFOT = 1 CALL CTRTRS( '/', 'N', 'N', 0, 0, A, 1, X, 1, INFO ) CALL CHKXER( 'CTRTRS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CTRTRS( 'U', '/', 'N', 0, 0, A, 1, X, 1, INFO ) CALL CHKXER( 'CTRTRS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CTRTRS( 'U', 'N', '/', 0, 0, A, 1, X, 1, INFO ) CALL CHKXER( 'CTRTRS', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CTRTRS( 'U', 'N', 'N', -1, 0, A, 1, X, 1, INFO ) CALL CHKXER( 'CTRTRS', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRTRS( 'U', 'N', 'N', 0, -1, A, 1, X, 1, INFO ) CALL CHKXER( 'CTRTRS', INFOT, NOUT, LERR, OK ) INFOT = 7 * * CTRRFS * SRNAMT = 'CTRRFS' INFOT = 1 CALL CTRRFS( '/', 'N', 'N', 0, 0, A, 1, B, 1, X, 1, R1, R2, W, $ RW, INFO ) CALL CHKXER( 'CTRRFS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CTRRFS( 'U', '/', 'N', 0, 0, A, 1, B, 1, X, 1, R1, R2, W, $ RW, INFO ) CALL CHKXER( 'CTRRFS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CTRRFS( 'U', 'N', '/', 0, 0, A, 1, B, 1, X, 1, R1, R2, W, $ RW, INFO ) CALL CHKXER( 'CTRRFS', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CTRRFS( 'U', 'N', 'N', -1, 0, A, 1, B, 1, X, 1, R1, R2, W, $ RW, INFO ) CALL CHKXER( 'CTRRFS', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRRFS( 'U', 'N', 'N', 0, -1, A, 1, B, 1, X, 1, R1, R2, W, $ RW, INFO ) CALL CHKXER( 'CTRRFS', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CTRRFS( 'U', 'N', 'N', 2, 1, A, 1, B, 2, X, 2, R1, R2, W, $ RW, INFO ) CALL CHKXER( 'CTRRFS', INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRRFS( 'U', 'N', 'N', 2, 1, A, 2, B, 1, X, 2, R1, R2, W, $ RW, INFO ) CALL CHKXER( 'CTRRFS', INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRRFS( 'U', 'N', 'N', 2, 1, A, 2, B, 2, X, 1, R1, R2, W, $ RW, INFO ) CALL CHKXER( 'CTRRFS', INFOT, NOUT, LERR, OK ) * * CTRCON * SRNAMT = 'CTRCON' INFOT = 1 CALL CTRCON( '/', 'U', 'N', 0, A, 1, RCOND, W, RW, INFO ) CALL CHKXER( 'CTRCON', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CTRCON( '1', '/', 'N', 0, A, 1, RCOND, W, RW, INFO ) CALL CHKXER( 'CTRCON', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CTRCON( '1', 'U', '/', 0, A, 1, RCOND, W, RW, INFO ) CALL CHKXER( 'CTRCON', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CTRCON( '1', 'U', 'N', -1, A, 1, RCOND, W, RW, INFO ) CALL CHKXER( 'CTRCON', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRCON( '1', 'U', 'N', 2, A, 1, RCOND, W, RW, INFO ) CALL CHKXER( 'CTRCON', INFOT, NOUT, LERR, OK ) * * CLATRS * SRNAMT = 'CLATRS' INFOT = 1 CALL CLATRS( '/', 'N', 'N', 'N', 0, A, 1, X, SCALE, RW, INFO ) CALL CHKXER( 'CLATRS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CLATRS( 'U', '/', 'N', 'N', 0, A, 1, X, SCALE, RW, INFO ) CALL CHKXER( 'CLATRS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CLATRS( 'U', 'N', '/', 'N', 0, A, 1, X, SCALE, RW, INFO ) CALL CHKXER( 'CLATRS', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CLATRS( 'U', 'N', 'N', '/', 0, A, 1, X, SCALE, RW, INFO ) CALL CHKXER( 'CLATRS', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CLATRS( 'U', 'N', 'N', 'N', -1, A, 1, X, SCALE, RW, INFO ) CALL CHKXER( 'CLATRS', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CLATRS( 'U', 'N', 'N', 'N', 2, A, 1, X, SCALE, RW, INFO ) CALL CHKXER( 'CLATRS', INFOT, NOUT, LERR, OK ) * * Test error exits for the packed triangular routines. * ELSE IF( LSAMEN( 2, C2, 'TP' ) ) THEN * * CTPTRI * SRNAMT = 'CTPTRI' INFOT = 1 CALL CTPTRI( '/', 'N', 0, A, INFO ) CALL CHKXER( 'CTPTRI', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CTPTRI( 'U', '/', 0, A, INFO ) CALL CHKXER( 'CTPTRI', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CTPTRI( 'U', 'N', -1, A, INFO ) CALL CHKXER( 'CTPTRI', INFOT, NOUT, LERR, OK ) * * CTPTRS * SRNAMT = 'CTPTRS' INFOT = 1 CALL CTPTRS( '/', 'N', 'N', 0, 0, A, X, 1, INFO ) CALL CHKXER( 'CTPTRS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CTPTRS( 'U', '/', 'N', 0, 0, A, X, 1, INFO ) CALL CHKXER( 'CTPTRS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CTPTRS( 'U', 'N', '/', 0, 0, A, X, 1, INFO ) CALL CHKXER( 'CTPTRS', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CTPTRS( 'U', 'N', 'N', -1, 0, A, X, 1, INFO ) CALL CHKXER( 'CTPTRS', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTPTRS( 'U', 'N', 'N', 0, -1, A, X, 1, INFO ) CALL CHKXER( 'CTPTRS', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CTPTRS( 'U', 'N', 'N', 2, 1, A, X, 1, INFO ) CALL CHKXER( 'CTPTRS', INFOT, NOUT, LERR, OK ) * * CTPRFS * SRNAMT = 'CTPRFS' INFOT = 1 CALL CTPRFS( '/', 'N', 'N', 0, 0, A, B, 1, X, 1, R1, R2, W, RW, $ INFO ) CALL CHKXER( 'CTPRFS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CTPRFS( 'U', '/', 'N', 0, 0, A, B, 1, X, 1, R1, R2, W, RW, $ INFO ) CALL CHKXER( 'CTPRFS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CTPRFS( 'U', 'N', '/', 0, 0, A, B, 1, X, 1, R1, R2, W, RW, $ INFO ) CALL CHKXER( 'CTPRFS', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CTPRFS( 'U', 'N', 'N', -1, 0, A, B, 1, X, 1, R1, R2, W, $ RW, INFO ) CALL CHKXER( 'CTPRFS', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTPRFS( 'U', 'N', 'N', 0, -1, A, B, 1, X, 1, R1, R2, W, $ RW, INFO ) CALL CHKXER( 'CTPRFS', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CTPRFS( 'U', 'N', 'N', 2, 1, A, B, 1, X, 2, R1, R2, W, RW, $ INFO ) CALL CHKXER( 'CTPRFS', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CTPRFS( 'U', 'N', 'N', 2, 1, A, B, 2, X, 1, R1, R2, W, RW, $ INFO ) CALL CHKXER( 'CTPRFS', INFOT, NOUT, LERR, OK ) * * CTPCON * SRNAMT = 'CTPCON' INFOT = 1 CALL CTPCON( '/', 'U', 'N', 0, A, RCOND, W, RW, INFO ) CALL CHKXER( 'CTPCON', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CTPCON( '1', '/', 'N', 0, A, RCOND, W, RW, INFO ) CALL CHKXER( 'CTPCON', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CTPCON( '1', 'U', '/', 0, A, RCOND, W, RW, INFO ) CALL CHKXER( 'CTPCON', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CTPCON( '1', 'U', 'N', -1, A, RCOND, W, RW, INFO ) CALL CHKXER( 'CTPCON', INFOT, NOUT, LERR, OK ) * * CLATPS * SRNAMT = 'CLATPS' INFOT = 1 CALL CLATPS( '/', 'N', 'N', 'N', 0, A, X, SCALE, RW, INFO ) CALL CHKXER( 'CLATPS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CLATPS( 'U', '/', 'N', 'N', 0, A, X, SCALE, RW, INFO ) CALL CHKXER( 'CLATPS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CLATPS( 'U', 'N', '/', 'N', 0, A, X, SCALE, RW, INFO ) CALL CHKXER( 'CLATPS', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CLATPS( 'U', 'N', 'N', '/', 0, A, X, SCALE, RW, INFO ) CALL CHKXER( 'CLATPS', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CLATPS( 'U', 'N', 'N', 'N', -1, A, X, SCALE, RW, INFO ) CALL CHKXER( 'CLATPS', INFOT, NOUT, LERR, OK ) * * Test error exits for the banded triangular routines. * ELSE IF( LSAMEN( 2, C2, 'TB' ) ) THEN * * CTBTRS * SRNAMT = 'CTBTRS' INFOT = 1 CALL CTBTRS( '/', 'N', 'N', 0, 0, 0, A, 1, X, 1, INFO ) CALL CHKXER( 'CTBTRS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CTBTRS( 'U', '/', 'N', 0, 0, 0, A, 1, X, 1, INFO ) CALL CHKXER( 'CTBTRS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CTBTRS( 'U', 'N', '/', 0, 0, 0, A, 1, X, 1, INFO ) CALL CHKXER( 'CTBTRS', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CTBTRS( 'U', 'N', 'N', -1, 0, 0, A, 1, X, 1, INFO ) CALL CHKXER( 'CTBTRS', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTBTRS( 'U', 'N', 'N', 0, -1, 0, A, 1, X, 1, INFO ) CALL CHKXER( 'CTBTRS', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTBTRS( 'U', 'N', 'N', 0, 0, -1, A, 1, X, 1, INFO ) CALL CHKXER( 'CTBTRS', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CTBTRS( 'U', 'N', 'N', 2, 1, 1, A, 1, X, 2, INFO ) CALL CHKXER( 'CTBTRS', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CTBTRS( 'U', 'N', 'N', 2, 0, 1, A, 1, X, 1, INFO ) CALL CHKXER( 'CTBTRS', INFOT, NOUT, LERR, OK ) * * CTBRFS * SRNAMT = 'CTBRFS' INFOT = 1 CALL CTBRFS( '/', 'N', 'N', 0, 0, 0, A, 1, B, 1, X, 1, R1, R2, $ W, RW, INFO ) CALL CHKXER( 'CTBRFS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CTBRFS( 'U', '/', 'N', 0, 0, 0, A, 1, B, 1, X, 1, R1, R2, $ W, RW, INFO ) CALL CHKXER( 'CTBRFS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CTBRFS( 'U', 'N', '/', 0, 0, 0, A, 1, B, 1, X, 1, R1, R2, $ W, RW, INFO ) CALL CHKXER( 'CTBRFS', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CTBRFS( 'U', 'N', 'N', -1, 0, 0, A, 1, B, 1, X, 1, R1, R2, $ W, RW, INFO ) CALL CHKXER( 'CTBRFS', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTBRFS( 'U', 'N', 'N', 0, -1, 0, A, 1, B, 1, X, 1, R1, R2, $ W, RW, INFO ) CALL CHKXER( 'CTBRFS', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTBRFS( 'U', 'N', 'N', 0, 0, -1, A, 1, B, 1, X, 1, R1, R2, $ W, RW, INFO ) CALL CHKXER( 'CTBRFS', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CTBRFS( 'U', 'N', 'N', 2, 1, 1, A, 1, B, 2, X, 2, R1, R2, $ W, RW, INFO ) CALL CHKXER( 'CTBRFS', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CTBRFS( 'U', 'N', 'N', 2, 1, 1, A, 2, B, 1, X, 2, R1, R2, $ W, RW, INFO ) CALL CHKXER( 'CTBRFS', INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CTBRFS( 'U', 'N', 'N', 2, 1, 1, A, 2, B, 2, X, 1, R1, R2, $ W, RW, INFO ) CALL CHKXER( 'CTBRFS', INFOT, NOUT, LERR, OK ) * * CTBCON * SRNAMT = 'CTBCON' INFOT = 1 CALL CTBCON( '/', 'U', 'N', 0, 0, A, 1, RCOND, W, RW, INFO ) CALL CHKXER( 'CTBCON', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CTBCON( '1', '/', 'N', 0, 0, A, 1, RCOND, W, RW, INFO ) CALL CHKXER( 'CTBCON', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CTBCON( '1', 'U', '/', 0, 0, A, 1, RCOND, W, RW, INFO ) CALL CHKXER( 'CTBCON', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CTBCON( '1', 'U', 'N', -1, 0, A, 1, RCOND, W, RW, INFO ) CALL CHKXER( 'CTBCON', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTBCON( '1', 'U', 'N', 0, -1, A, 1, RCOND, W, RW, INFO ) CALL CHKXER( 'CTBCON', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CTBCON( '1', 'U', 'N', 2, 1, A, 1, RCOND, W, RW, INFO ) CALL CHKXER( 'CTBCON', INFOT, NOUT, LERR, OK ) * * CLATBS * SRNAMT = 'CLATBS' INFOT = 1 CALL CLATBS( '/', 'N', 'N', 'N', 0, 0, A, 1, X, SCALE, RW, $ INFO ) CALL CHKXER( 'CLATBS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CLATBS( 'U', '/', 'N', 'N', 0, 0, A, 1, X, SCALE, RW, $ INFO ) CALL CHKXER( 'CLATBS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CLATBS( 'U', 'N', '/', 'N', 0, 0, A, 1, X, SCALE, RW, $ INFO ) CALL CHKXER( 'CLATBS', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CLATBS( 'U', 'N', 'N', '/', 0, 0, A, 1, X, SCALE, RW, $ INFO ) CALL CHKXER( 'CLATBS', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CLATBS( 'U', 'N', 'N', 'N', -1, 0, A, 1, X, SCALE, RW, $ INFO ) CALL CHKXER( 'CLATBS', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CLATBS( 'U', 'N', 'N', 'N', 1, -1, A, 1, X, SCALE, RW, $ INFO ) CALL CHKXER( 'CLATBS', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CLATBS( 'U', 'N', 'N', 'N', 2, 1, A, 1, X, SCALE, RW, $ INFO ) CALL CHKXER( 'CLATBS', INFOT, NOUT, LERR, OK ) END IF * * Print a summary line. * CALL ALAESM( PATH, OK, NOUT ) * RETURN * * End of CERRTR * END
bsd-3-clause
yaowee/libflame
lapack-test/lapack-timing/LIN/dtimbr.f
4
19586
SUBROUTINE DTIMBR( LINE, NM, MVAL, NVAL, NK, KVAL, NNB, NBVAL, $ NXVAL, NLDA, LDAVAL, TIMMIN, A, B, D, TAU, $ WORK, RESLTS, LDR1, LDR2, LDR3, NOUT ) * * -- LAPACK timing routine (version 3.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * March 31, 1993 * * .. Scalar Arguments .. CHARACTER*80 LINE INTEGER LDR1, LDR2, LDR3, NK, NLDA, NM, NNB, NOUT DOUBLE PRECISION TIMMIN * .. * .. Array Arguments .. INTEGER KVAL( * ), LDAVAL( * ), MVAL( * ), NBVAL( * ), $ NVAL( * ), NXVAL( * ) DOUBLE PRECISION A( * ), B( * ), D( * ), $ RESLTS( LDR1, LDR2, LDR3, * ), TAU( * ), $ WORK( * ) * .. * * Purpose * ======= * * DTIMBR times DGEBRD, DORGBR, and DORMBR. * * Arguments * ========= * * LINE (input) CHARACTER*80 * The input line that requested this routine. The first six * characters contain either the name of a subroutine or a * generic path name. The remaining characters may be used to * specify the individual routines to be timed. See ATIMIN for * a full description of the format of the input line. * * NM (input) INTEGER * The number of values of M and N contained in the vectors * MVAL and NVAL. The matrix sizes are used in pairs (M,N). * * MVAL (input) INTEGER array, dimension (NM) * The values of the matrix row dimension M. * * NVAL (input) INTEGER array, dimension (NM) * The values of the matrix column dimension N. * * NK (input) INTEGER * The number of values of K contained in the vector KVAL. * * KVAL (input) INTEGER array, dimension (NK) * The values of the matrix dimension K. * * NNB (input) INTEGER * The number of values of NB and NX contained in the * vectors NBVAL and NXVAL. The blocking parameters are used * in pairs (NB,NX). * * NBVAL (input) INTEGER array, dimension (NNB) * The values of the blocksize NB. * * NXVAL (input) INTEGER array, dimension (NNB) * The values of the crossover point NX. * * NLDA (input) INTEGER * The number of values of LDA contained in the vector LDAVAL. * * LDAVAL (input) INTEGER array, dimension (NLDA) * The values of the leading dimension of the array A. * * TIMMIN (input) DOUBLE PRECISION * The minimum time a subroutine will be timed. * * A (workspace) DOUBLE PRECISION array, dimension (LDAMAX*NMAX) * where LDAMAX and NMAX are the maximum values of LDA and N. * * B (workspace) DOUBLE PRECISION array, dimension (LDAMAX*NMAX) * * D (workspace) DOUBLE PRECISION array, dimension * (2*max(min(M,N))-1) * * TAU (workspace) DOUBLE PRECISION array, dimension * (2*max(min(M,N))) * * WORK (workspace) DOUBLE PRECISION array, dimension (LDAMAX*NBMAX) * where NBMAX is the maximum value of NB. * * RESLTS (output) DOUBLE PRECISION array, dimension (LDR1,LDR2,LDR3,6) * The timing results for each subroutine over the relevant * values of (M,N), (NB,NX), and LDA. * * LDR1 (input) INTEGER * The first dimension of RESLTS. LDR1 >= max(1,NNB). * * LDR2 (input) INTEGER * The second dimension of RESLTS. LDR2 >= max(1,NM). * * LDR3 (input) INTEGER * The third dimension of RESLTS. LDR3 >= max(1,NLDA). * * NOUT (input) INTEGER * The unit number for output. * * Internal Parameters * =================== * * MODE INTEGER * The matrix type. MODE = 3 is a geometric distribution of * eigenvalues. See ZLATMS for further details. * * COND DOUBLE PRECISION * The condition number of the matrix. The singular values are * set to values from DMAX to DMAX/COND. * * DMAX DOUBLE PRECISION * The magnitude of the largest singular value. * * ===================================================================== * * .. Parameters .. INTEGER NSUBS PARAMETER ( NSUBS = 3 ) INTEGER MODE DOUBLE PRECISION COND, DMAX PARAMETER ( MODE = 3, COND = 100.0D0, DMAX = 1.0D0 ) * .. * .. Local Scalars .. CHARACTER LABK, LABM, LABN, SIDE, TRANS, VECT CHARACTER*3 PATH CHARACTER*6 CNAME INTEGER I, I3, I4, IC, ICL, IK, ILDA, IM, INB, INFO, $ INFO2, ISIDE, ISUB, ITOFF, ITRAN, IVECT, K, K1, $ LDA, LW, M, M1, MINMN, N, N1, NB, NQ, NX DOUBLE PRECISION OPS, S1, S2, TIME, UNTIME * .. * .. Local Arrays .. LOGICAL TIMSUB( NSUBS ) CHARACTER SIDES( 2 ), TRANSS( 2 ), VECTS( 2 ) CHARACTER*6 SUBNAM( NSUBS ) INTEGER ISEED( 4 ), RESEED( 4 ) * .. * .. External Functions .. DOUBLE PRECISION DMFLOP, DOPLA, DSECND EXTERNAL DMFLOP, DOPLA, DSECND * .. * .. External Subroutines .. EXTERNAL ATIMCK, ATIMIN, DGEBRD, DLACPY, DLATMS, DORGBR, $ DORMBR, DPRTB4, DPRTB5, DTIMMG, ICOPY, XLAENV * .. * .. Intrinsic Functions .. INTRINSIC DBLE, MAX, MIN * .. * .. Data statements .. DATA SUBNAM / 'DGEBRD', 'DORGBR', 'DORMBR' / , $ SIDES / 'L', 'R' / , VECTS / 'Q', 'P' / , $ TRANSS / 'N', 'T' / DATA ISEED / 0, 0, 0, 1 / * .. * .. Executable Statements .. * * Extract the timing request from the input line. * PATH( 1: 1 ) = 'Double precision' PATH( 2: 3 ) = 'BR' CALL ATIMIN( PATH, LINE, NSUBS, SUBNAM, TIMSUB, NOUT, INFO ) IF( INFO.NE.0 ) $ GO TO 220 * * Check that M <= LDA for the input values. * CNAME = LINE( 1: 6 ) CALL ATIMCK( 1, CNAME, NM, MVAL, NLDA, LDAVAL, NOUT, INFO ) IF( INFO.GT.0 ) THEN WRITE( NOUT, FMT = 9999 )CNAME GO TO 220 END IF * * Check that N <= LDA and K <= LDA for DORMBR * IF( TIMSUB( 3 ) ) THEN CALL ATIMCK( 2, CNAME, NM, NVAL, NLDA, LDAVAL, NOUT, INFO ) CALL ATIMCK( 3, CNAME, NK, KVAL, NLDA, LDAVAL, NOUT, INFO2 ) IF( INFO.GT.0 .OR. INFO2.GT.0 ) THEN WRITE( NOUT, FMT = 9999 )SUBNAM( 3 ) TIMSUB( 3 ) = .FALSE. END IF END IF * * Do for each pair of values (M,N): * DO 140 IM = 1, NM M = MVAL( IM ) N = NVAL( IM ) MINMN = MIN( M, N ) CALL ICOPY( 4, ISEED, 1, RESEED, 1 ) * * Do for each value of LDA: * DO 130 ILDA = 1, NLDA LDA = LDAVAL( ILDA ) * * Do for each pair of values (NB, NX) in NBVAL and NXVAL. * DO 120 INB = 1, NNB NB = NBVAL( INB ) CALL XLAENV( 1, NB ) NX = NXVAL( INB ) CALL XLAENV( 3, NX ) LW = MAX( M+N, MAX( 1, NB )*( M+N ) ) * * Generate a test matrix of size M by N. * CALL ICOPY( 4, RESEED, 1, ISEED, 1 ) CALL DLATMS( M, N, 'Uniform', ISEED, 'Nonsym', TAU, MODE, $ COND, DMAX, M, N, 'No packing', B, LDA, $ WORK, INFO ) * IF( TIMSUB( 1 ) ) THEN * * DGEBRD: Block reduction to bidiagonal form * CALL DLACPY( 'Full', M, N, B, LDA, A, LDA ) IC = 0 S1 = DSECND( ) 10 CONTINUE CALL DGEBRD( M, N, A, LDA, D, D( MINMN ), TAU, $ TAU( MINMN+1 ), WORK, LW, INFO ) S2 = DSECND( ) TIME = S2 - S1 IC = IC + 1 IF( TIME.LT.TIMMIN ) THEN CALL DLACPY( 'Full', M, N, B, LDA, A, LDA ) GO TO 10 END IF * * Subtract the time used in DLACPY. * ICL = 1 S1 = DSECND( ) 20 CONTINUE S2 = DSECND( ) UNTIME = S2 - S1 ICL = ICL + 1 IF( ICL.LE.IC ) THEN CALL DLACPY( 'Full', M, N, A, LDA, B, LDA ) GO TO 20 END IF * TIME = ( TIME-UNTIME ) / DBLE( IC ) OPS = DOPLA( 'DGEBRD', M, N, 0, 0, NB ) RESLTS( INB, IM, ILDA, 1 ) = DMFLOP( OPS, TIME, INFO ) ELSE * * If DGEBRD was not timed, generate a matrix and reduce * it using DGEBRD anyway so that the orthogonal * transformations may be used in timing the other * routines. * CALL DLACPY( 'Full', M, N, B, LDA, A, LDA ) CALL DGEBRD( M, N, A, LDA, D, D( MINMN ), TAU, $ TAU( MINMN+1 ), WORK, LW, INFO ) * END IF * IF( TIMSUB( 2 ) ) THEN * * DORGBR: Generate one of the orthogonal matrices Q or * P' from the reduction to bidiagonal form * A = Q * B * P'. * DO 50 IVECT = 1, 2 IF( IVECT.EQ.1 ) THEN VECT = 'Q' M1 = M N1 = MIN( M, N ) K1 = N ELSE VECT = 'P' M1 = MIN( M, N ) N1 = N K1 = M END IF I3 = ( IVECT-1 )*NLDA LW = MAX( 1, MAX( 1, NB )*MIN( M, N ) ) CALL DLACPY( 'Full', M, N, A, LDA, B, LDA ) IC = 0 S1 = DSECND( ) 30 CONTINUE CALL DORGBR( VECT, M1, N1, K1, B, LDA, TAU, WORK, $ LW, INFO ) S2 = DSECND( ) TIME = S2 - S1 IC = IC + 1 IF( TIME.LT.TIMMIN ) THEN CALL DLACPY( 'Full', M, N, A, LDA, B, LDA ) GO TO 30 END IF * * Subtract the time used in DLACPY. * ICL = 1 S1 = DSECND( ) 40 CONTINUE S2 = DSECND( ) UNTIME = S2 - S1 ICL = ICL + 1 IF( ICL.LE.IC ) THEN CALL DLACPY( 'Full', M, N, A, LDA, B, LDA ) GO TO 40 END IF * TIME = ( TIME-UNTIME ) / DBLE( IC ) * * Op count for DORGBR: * IF( IVECT.EQ.1 ) THEN IF( M1.GE.K1 ) THEN OPS = DOPLA( 'DORGQR', M1, N1, K1, -1, NB ) ELSE OPS = DOPLA( 'DORGQR', M1-1, M1-1, M1-1, -1, $ NB ) END IF ELSE IF( K1.LT.N1 ) THEN OPS = DOPLA( 'DORGLQ', M1, N1, K1, -1, NB ) ELSE OPS = DOPLA( 'DORGLQ', N1-1, N1-1, N1-1, -1, $ NB ) END IF END IF * RESLTS( INB, IM, I3+ILDA, 2 ) = DMFLOP( OPS, TIME, $ INFO ) 50 CONTINUE END IF * IF( TIMSUB( 3 ) ) THEN * * DORMBR: Multiply an m by n matrix B by one of the * orthogonal matrices Q or P' from the reduction to * bidiagonal form A = Q * B * P'. * DO 110 IVECT = 1, 2 IF( IVECT.EQ.1 ) THEN VECT = 'Q' K1 = N NQ = M ELSE VECT = 'P' K1 = M NQ = N END IF I3 = ( IVECT-1 )*NLDA I4 = 2 DO 100 ISIDE = 1, 2 SIDE = SIDES( ISIDE ) DO 90 IK = 1, NK K = KVAL( IK ) IF( ISIDE.EQ.1 ) THEN M1 = NQ N1 = K LW = MAX( 1, MAX( 1, NB )*N1 ) ELSE M1 = K N1 = NQ LW = MAX( 1, MAX( 1, NB )*M1 ) END IF ITOFF = 0 DO 80 ITRAN = 1, 2 TRANS = TRANSS( ITRAN ) CALL DTIMMG( 0, M1, N1, B, LDA, 0, 0 ) IC = 0 S1 = DSECND( ) 60 CONTINUE CALL DORMBR( VECT, SIDE, TRANS, M1, N1, $ K1, A, LDA, TAU, B, LDA, $ WORK, LW, INFO ) S2 = DSECND( ) TIME = S2 - S1 IC = IC + 1 IF( TIME.LT.TIMMIN ) THEN CALL DTIMMG( 0, M1, N1, B, LDA, 0, 0 ) GO TO 60 END IF * * Subtract the time used in DTIMMG. * ICL = 1 S1 = DSECND( ) 70 CONTINUE S2 = DSECND( ) UNTIME = S2 - S1 ICL = ICL + 1 IF( ICL.LE.IC ) THEN CALL DTIMMG( 0, M1, N1, B, LDA, 0, 0 ) GO TO 70 END IF * TIME = ( TIME-UNTIME ) / DBLE( IC ) IF( IVECT.EQ.1 ) THEN * * Op count for DORMBR, VECT = 'Q': * IF( NQ.GE.K1 ) THEN OPS = DOPLA( 'DORMQR', M1, N1, K1, $ ISIDE-1, NB ) ELSE IF( ISIDE.EQ.1 ) THEN OPS = DOPLA( 'DORMQR', M1-1, N1, $ NQ-1, ISIDE-1, NB ) ELSE OPS = DOPLA( 'DORMQR', M1, N1-1, $ NQ-1, ISIDE-1, NB ) END IF ELSE * * Op count for DORMBR, VECT = 'P': * IF( NQ.GT.K1 ) THEN OPS = DOPLA( 'DORMLQ', M1, N1, K1, $ ISIDE-1, NB ) ELSE IF( ISIDE.EQ.1 ) THEN OPS = DOPLA( 'DORMLQ', M1-1, N1, $ NQ-1, ISIDE-1, NB ) ELSE OPS = DOPLA( 'DORMLQ', M1, N1-1, $ NQ-1, ISIDE-1, NB ) END IF END IF * RESLTS( INB, IM, I3+ILDA, $ I4+ITOFF+IK ) = DMFLOP( OPS, TIME, $ INFO ) ITOFF = NK 80 CONTINUE 90 CONTINUE I4 = 2*NK + 2 100 CONTINUE 110 CONTINUE END IF 120 CONTINUE 130 CONTINUE 140 CONTINUE * * Print a table of results for each timed routine. * DO 210 ISUB = 1, NSUBS IF( .NOT.TIMSUB( ISUB ) ) $ GO TO 210 WRITE( NOUT, FMT = 9998 )SUBNAM( ISUB ) IF( NLDA.GT.1 ) THEN DO 150 I = 1, NLDA WRITE( NOUT, FMT = 9997 )I, LDAVAL( I ) 150 CONTINUE END IF IF( ISUB.EQ.1 ) THEN WRITE( NOUT, FMT = * ) CALL DPRTB4( '( NB, NX)', 'M', 'N', NNB, NBVAL, NXVAL, NM, $ MVAL, NVAL, NLDA, RESLTS( 1, 1, 1, ISUB ), $ LDR1, LDR2, NOUT ) ELSE IF( ISUB.EQ.2 ) THEN DO 160 IVECT = 1, 2 I3 = ( IVECT-1 )*NLDA + 1 IF( IVECT.EQ.1 ) THEN LABK = 'N' LABM = 'M' LABN = 'K' ELSE LABK = 'M' LABM = 'K' LABN = 'N' END IF WRITE( NOUT, FMT = 9996 )SUBNAM( ISUB ), VECTS( IVECT ), $ LABK, LABM, LABN CALL DPRTB4( '( NB, NX)', LABM, LABN, NNB, NBVAL, $ NXVAL, NM, MVAL, NVAL, NLDA, $ RESLTS( 1, 1, I3, ISUB ), LDR1, LDR2, NOUT ) 160 CONTINUE ELSE IF( ISUB.EQ.3 ) THEN DO 200 IVECT = 1, 2 I3 = ( IVECT-1 )*NLDA + 1 I4 = 3 DO 190 ISIDE = 1, 2 IF( ISIDE.EQ.1 ) THEN IF( IVECT.EQ.1 ) THEN LABM = 'M' LABN = 'K' ELSE LABM = 'K' LABN = 'M' END IF LABK = 'N' ELSE IF( IVECT.EQ.1 ) THEN LABM = 'N' LABN = 'K' ELSE LABM = 'K' LABN = 'N' END IF LABK = 'M' END IF DO 180 ITRAN = 1, 2 DO 170 IK = 1, NK WRITE( NOUT, FMT = 9995 )SUBNAM( ISUB ), $ VECTS( IVECT ), SIDES( ISIDE ), $ TRANSS( ITRAN ), LABK, KVAL( IK ) CALL DPRTB5( 'NB', LABM, LABN, NNB, NBVAL, NM, $ MVAL, NVAL, NLDA, $ RESLTS( 1, 1, I3, I4 ), LDR1, LDR2, $ NOUT ) I4 = I4 + 1 170 CONTINUE 180 CONTINUE 190 CONTINUE 200 CONTINUE END IF 210 CONTINUE 220 CONTINUE 9999 FORMAT( 1X, A6, ' timing run not attempted', / ) 9998 FORMAT( / ' *** Speed of ', A6, ' in megaflops ***' ) 9997 FORMAT( 5X, 'line ', I2, ' with LDA = ', I5 ) 9996 FORMAT( / 5X, A6, ' with VECT = ''', A1, ''', ', A1, ' = MIN(', $ A1, ',', A1, ')', / ) 9995 FORMAT( / 5X, A6, ' with VECT = ''', A1, ''', SIDE = ''', A1, $ ''', TRANS = ''', A1, ''', ', A1, ' =', I6, / ) RETURN * * End of DTIMBR * END
bsd-3-clause
yaowee/libflame
lapack-test/lapack-timing/EIG/sprtbv.f
4
7402
SUBROUTINE SPRTBV( SUBNAM, NTYPES, DOTYPE, NSIZES, MM, NN, INPARM, $ PNAMES, NPARMS, NP1, NP2, OPS, LDO1, LDO2, $ TIMES, LDT1, LDT2, RWORK, LLWORK, NOUT ) * * -- LAPACK timing routine (version 3.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * February 29, 1992 * * .. Scalar Arguments .. CHARACTER*( * ) SUBNAM INTEGER INPARM, LDO1, LDO2, LDT1, LDT2, NOUT, NPARMS, $ NSIZES, NTYPES * .. * .. Array Arguments .. LOGICAL DOTYPE( NTYPES ), LLWORK( NPARMS ) CHARACTER*( * ) PNAMES( * ) INTEGER MM( NSIZES ), NN( NSIZES ), NP1( * ), NP2( * ) REAL OPS( LDO1, LDO2, * ), RWORK( * ), $ TIMES( LDT1, LDT2, * ) * .. * * Purpose * ======= * * SPRTBV prints out timing information for the eigenvalue routines. * The table has NTYPES block rows and NSIZES columns, with NPARMS * individual rows in each block row. There are INPARM quantities * which depend on rows (currently, INPARM <= 4). * * Arguments (none are modified) * ========= * * SUBNAM - CHARACTER*(*) * The label for the output. * * NTYPES - INTEGER * The number of values of DOTYPE, and also the * number of sets of rows of the table. * * DOTYPE - LOGICAL array of dimension( NTYPES ) * If DOTYPE(j) is .TRUE., then block row j (which includes * data from RESLTS( i, j, k ), for all i and k) will be * printed. If DOTYPE(j) is .FALSE., then block row j will * not be printed. * * NSIZES - INTEGER * The number of values of NN, and also the * number of columns of the table. * * MM - INTEGER array of dimension( NSIZES ) * The values of M used to label each column. * * NN - INTEGER array of dimension( NSIZES ) * The values of N used to label each column. * * INPARM - INTEGER * The number of different parameters which are functions of * the row number. At the moment, INPARM <= 4. * * PNAMES - CHARACTER*(*) array of dimension( INPARM ) * The label for the columns. * * NPARMS - INTEGER * The number of values for each "parameter", i.e., the * number of rows for each value of DOTYPE. * * NP1 - INTEGER array of dimension( NPARMS ) * The first quantity which depends on row number. * * NP2 - INTEGER array of dimension( NPARMS ) * The second quantity which depends on row number. * * OPS - REAL array of dimension( LDT1, LDT2, NSIZES ) * The operation counts. The first index indicates the row, * the second index indicates the block row, and the last * indicates the column. * * LDO1 - INTEGER * The first dimension of OPS. It must be at least * min( 1, NPARMS ). * * LDO2 - INTEGER * The second dimension of OPS. It must be at least * min( 1, NTYPES ). * * TIMES - REAL array of dimension( LDT1, LDT2, NSIZES ) * The times (in seconds). The first index indicates the row, * the second index indicates the block row, and the last * indicates the column. * * LDT1 - INTEGER * The first dimension of RESLTS. It must be at least * min( 1, NPARMS ). * * LDT2 - INTEGER * The second dimension of RESLTS. It must be at least * min( 1, NTYPES ). * * RWORK - REAL array of dimension( NSIZES*NTYPES*NPARMS ) * Real workspace. * Modified. * * LLWORK - LOGICAL array of dimension( NPARMS ) * Logical workspace. It is used to turn on or off specific * lines in the output. If LLWORK(i) is .TRUE., then row i * (which includes data from OPS(i,j,k) or TIMES(i,j,k) for * all j and k) will be printed. If LLWORK(i) is * .FALSE., then row i will not be printed. * Modified. * * NOUT - INTEGER * The output unit number on which the table * is to be printed. If NOUT <= 0, no output is printed. * * ===================================================================== * * .. Local Scalars .. LOGICAL LTEMP INTEGER I, IINFO, ILINE, ILINES, IPAR, J, JP, JS, JT * .. * .. External Functions .. REAL SMFLOP EXTERNAL SMFLOP * .. * .. External Subroutines .. EXTERNAL SPRTBR * .. * .. Executable Statements .. * * * First line * WRITE( NOUT, FMT = 9999 )SUBNAM * * Set up which lines are to be printed. * LLWORK( 1 ) = .TRUE. ILINES = 1 DO 20 IPAR = 2, NPARMS LLWORK( IPAR ) = .TRUE. DO 10 J = 1, IPAR - 1 LTEMP = .FALSE. IF( INPARM.GE.1 .AND. NP1( J ).NE.NP1( IPAR ) ) $ LTEMP = .TRUE. IF( INPARM.GE.2 .AND. NP2( J ).NE.NP2( IPAR ) ) $ LTEMP = .TRUE. IF( .NOT.LTEMP ) $ LLWORK( IPAR ) = .FALSE. 10 CONTINUE IF( LLWORK( IPAR ) ) $ ILINES = ILINES + 1 20 CONTINUE IF( ILINES.EQ.1 ) THEN IF( INPARM.EQ.1 ) THEN WRITE( NOUT, FMT = 9995 )PNAMES( 1 ), NP1( 1 ) ELSE IF( INPARM.EQ.2 ) THEN WRITE( NOUT, FMT = 9995 )PNAMES( 1 ), NP1( 1 ), $ PNAMES( 2 ), NP2( 1 ) END IF ELSE ILINE = 0 DO 30 J = 1, NPARMS IF( LLWORK( J ) ) THEN ILINE = ILINE + 1 IF( INPARM.EQ.1 ) THEN WRITE( NOUT, FMT = 9994 )ILINE, PNAMES( 1 ), NP1( J ) ELSE IF( INPARM.EQ.2 ) THEN WRITE( NOUT, FMT = 9994 )ILINE, PNAMES( 1 ), $ NP1( J ), PNAMES( 2 ), NP2( J ) END IF END IF 30 CONTINUE END IF * * Execution Times * WRITE( NOUT, FMT = 9996 ) CALL SPRTBR( 'Type', 'M,N ', NTYPES, DOTYPE, NSIZES, MM, NN, $ NPARMS, LLWORK, TIMES, LDT1, LDT2, NOUT ) * * Operation Counts * WRITE( NOUT, FMT = 9997 ) CALL SPRTBR( 'Type', 'M,N ', NTYPES, DOTYPE, NSIZES, MM, NN, $ NPARMS, LLWORK, OPS, LDO1, LDO2, NOUT ) * * Megaflop Rates * IINFO = 0 DO 60 JS = 1, NSIZES DO 50 JT = 1, NTYPES IF( DOTYPE( JT ) ) THEN DO 40 JP = 1, NPARMS I = JP + NPARMS*( JT-1+NTYPES*( JS-1 ) ) RWORK( I ) = SMFLOP( OPS( JP, JT, JS ), $ TIMES( JP, JT, JS ), IINFO ) 40 CONTINUE END IF 50 CONTINUE 60 CONTINUE * WRITE( NOUT, FMT = 9998 ) CALL SPRTBR( 'Type', 'M,N ', NTYPES, DOTYPE, NSIZES, MM, NN, $ NPARMS, LLWORK, RWORK, NPARMS, NTYPES, NOUT ) * 9999 FORMAT( / / / ' ****** Results for ', A, ' ******' ) 9998 FORMAT( / ' *** Speed in megaflops ***' ) 9997 FORMAT( / ' *** Number of floating-point operations ***' ) 9996 FORMAT( / ' *** Time in seconds ***' ) 9995 FORMAT( 5X, : 'with ', A, '=', I5, 3( : ', ', A, '=', I5 ) ) 9994 FORMAT( 5X, : 'line ', I2, ' with ', A, '=', I5, $ 3( : ', ', A, '=', I5 ) ) RETURN * * End of SPRTBV * END
bsd-3-clause
villevoutilainen/gcc
gcc/testsuite/gfortran.dg/widechar_5.f90
136
1864
! { dg-do run } ! { dg-options "-fbackslash" } module kinds implicit none integer, parameter :: one = 1, four = 4 end module kinds module inner use kinds implicit none character(kind=one,len=*), parameter :: inner1 = "abcdefg \xEF kl" character(kind=four,len=*), parameter :: & inner4 = 4_"\u9317x \U001298cef dea\u10De" end module inner module middle use inner implicit none character(kind=one,len=len(inner1)), dimension(2,2), parameter :: middle1 & = reshape ([ character(kind=one,len=len(inner1)) :: inner1, ""], & [ 2, 2 ], & [ character(kind=one,len=len(inner1)) :: "foo", "ba " ]) character(kind=four,len=len(inner4)), dimension(2,2), parameter :: middle4 & = reshape ([ character(kind=four,len=len(inner4)) :: inner4, 4_""], & [ 2, 2 ], & [ character(kind=four,len=len(inner4)) :: 4_"foo", 4_"ba " ]) end module middle module outer use middle implicit none character(kind=one,len=*), parameter :: my1(2) = middle1(1,:) character(kind=four,len=*), parameter :: my4(2) = middle4(1,:) end module outer program test_modules use outer, outer1 => my1, outer4 => my4 implicit none if (len (inner1) /= len(inner4)) call abort if (len (inner1) /= len_trim(inner1)) call abort if (len (inner4) /= len_trim(inner4)) call abort if (len(middle1) /= len(inner1)) call abort if (len(outer1) /= len(inner1)) call abort if (len(middle4) /= len(inner4)) call abort if (len(outer4) /= len(inner4)) call abort if (any (len_trim (middle1) /= reshape([len(middle1), 0, 3, 2], [2,2]))) & call abort if (any (len_trim (middle4) /= reshape([len(middle4), 0, 3, 2], [2,2]))) & call abort if (any (len_trim (outer1) /= [len(outer1), 3])) call abort if (any (len_trim (outer4) /= [len(outer4), 3])) call abort end program test_modules
gpl-2.0
wkjeong/ITK
Modules/ThirdParty/VNL/src/vxl/v3p/netlib/blas/sger.f
61
4366
SUBROUTINE SGER ( M, N, ALPHA, X, INCX, Y, INCY, A, LDA ) * .. Scalar Arguments .. REAL ALPHA INTEGER INCX, INCY, LDA, M, N * .. Array Arguments .. REAL A( LDA, * ), X( * ), Y( * ) * .. * * Purpose * ======= * * SGER performs the rank 1 operation * * A := alpha*x*y' + A, * * where alpha is a scalar, x is an m element vector, y is an n element * vector and A is an m by n matrix. * * Parameters * ========== * * M - INTEGER. * On entry, M specifies the number of rows of the matrix A. * M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - REAL . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * X - REAL array of dimension at least * ( 1 + ( m - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the m * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Y - REAL array of dimension at least * ( 1 + ( n - 1 )*abs( INCY ) ). * Before entry, the incremented array Y must contain the n * element vector y. * Unchanged on exit. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, n ). * Before entry, the leading m by n part of the array A must * contain the matrix of coefficients. On exit, A is * overwritten by the updated matrix. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, m ). * Unchanged on exit. * * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * * .. Parameters .. REAL ZERO PARAMETER ( ZERO = 0.0E+0 ) * .. Local Scalars .. REAL TEMP INTEGER I, INFO, IX, J, JY, KX * .. External Subroutines .. EXTERNAL XERBLA * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 IF ( M.LT.0 )THEN INFO = 1 ELSE IF( N.LT.0 )THEN INFO = 2 ELSE IF( INCX.EQ.0 )THEN INFO = 5 ELSE IF( INCY.EQ.0 )THEN INFO = 7 ELSE IF( LDA.LT.MAX( 1, M ) )THEN INFO = 9 END IF IF( INFO.NE.0 )THEN CALL XERBLA( 'SGER ', INFO ) RETURN END IF * * Quick return if possible. * IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.( ALPHA.EQ.ZERO ) ) $ RETURN * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * IF( INCY.GT.0 )THEN JY = 1 ELSE JY = 1 - ( N - 1 )*INCY END IF IF( INCX.EQ.1 )THEN DO 20, J = 1, N IF( Y( JY ).NE.ZERO )THEN TEMP = ALPHA*Y( JY ) DO 10, I = 1, M A( I, J ) = A( I, J ) + X( I )*TEMP 10 CONTINUE END IF JY = JY + INCY 20 CONTINUE ELSE IF( INCX.GT.0 )THEN KX = 1 ELSE KX = 1 - ( M - 1 )*INCX END IF DO 40, J = 1, N IF( Y( JY ).NE.ZERO )THEN TEMP = ALPHA*Y( JY ) IX = KX DO 30, I = 1, M A( I, J ) = A( I, J ) + X( IX )*TEMP IX = IX + INCX 30 CONTINUE END IF JY = JY + INCY 40 CONTINUE END IF * RETURN * * End of SGER . * END
apache-2.0
choderalab/ambermini
lapack/dsptrf.f
4
17312
SUBROUTINE DSPTRF( UPLO, N, AP, IPIV, INFO ) * * -- LAPACK routine (version 3.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2006 * * .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, N * .. * .. Array Arguments .. INTEGER IPIV( * ) DOUBLE PRECISION AP( * ) * .. * * Purpose * ======= * * DSPTRF computes the factorization of a real symmetric matrix A stored * in packed format using the Bunch-Kaufman diagonal pivoting method: * * A = U*D*U**T or A = L*D*L**T * * where U (or L) is a product of permutation and unit upper (lower) * triangular matrices, and D is symmetric and block diagonal with * 1-by-1 and 2-by-2 diagonal blocks. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * = 'U': Upper triangle of A is stored; * = 'L': Lower triangle of A is stored. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) * On entry, the upper or lower triangle of the symmetric matrix * A, packed columnwise in a linear array. The j-th column of A * is stored in the array AP as follows: * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; * if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. * * On exit, the block diagonal matrix D and the multipliers used * to obtain the factor U or L, stored as a packed triangular * matrix overwriting A (see below for further details). * * IPIV (output) INTEGER array, dimension (N) * Details of the interchanges and the block structure of D. * If IPIV(k) > 0, then rows and columns k and IPIV(k) were * interchanged and D(k,k) is a 1-by-1 diagonal block. * If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and * columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) * is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = * IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were * interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: if INFO = i, D(i,i) is exactly zero. The factorization * has been completed, but the block diagonal matrix D is * exactly singular, and division by zero will occur if it * is used to solve a system of equations. * * Further Details * =============== * * 5-96 - Based on modifications by J. Lewis, Boeing Computer Services * Company * * If UPLO = 'U', then A = U*D*U', where * U = P(n)*U(n)* ... *P(k)U(k)* ..., * i.e., U is a product of terms P(k)*U(k), where k decreases from n to * 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 * and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as * defined by IPIV(k), and U(k) is a unit upper triangular matrix, such * that if the diagonal block D(k) is of order s (s = 1 or 2), then * * ( I v 0 ) k-s * U(k) = ( 0 I 0 ) s * ( 0 0 I ) n-k * k-s s n-k * * If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). * If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), * and A(k,k), and v overwrites A(1:k-2,k-1:k). * * If UPLO = 'L', then A = L*D*L', where * L = P(1)*L(1)* ... *P(k)*L(k)* ..., * i.e., L is a product of terms P(k)*L(k), where k increases from 1 to * n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 * and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as * defined by IPIV(k), and L(k) is a unit lower triangular matrix, such * that if the diagonal block D(k) is of order s (s = 1 or 2), then * * ( I 0 0 ) k-1 * L(k) = ( 0 I 0 ) s * ( 0 v I ) n-k-s+1 * k-1 s n-k-s+1 * * If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). * If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), * and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1). * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) DOUBLE PRECISION EIGHT, SEVTEN PARAMETER ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 ) * .. * .. Local Scalars .. LOGICAL UPPER INTEGER I, IMAX, J, JMAX, K, KC, KK, KNC, KP, KPC, $ KSTEP, KX, NPP DOUBLE PRECISION ABSAKK, ALPHA, COLMAX, D11, D12, D21, D22, R1, $ ROWMAX, T, WK, WKM1, WKP1 * .. * .. External Functions .. LOGICAL LSAME INTEGER IDAMAX EXTERNAL LSAME, IDAMAX * .. * .. External Subroutines .. EXTERNAL DSCAL, DSPR, DSWAP, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, SQRT * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 UPPER = LSAME( UPLO, 'U' ) IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'DSPTRF', -INFO ) RETURN END IF * * Initialize ALPHA for use in choosing pivot block size. * ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT * IF( UPPER ) THEN * * Factorize A as U*D*U' using the upper triangle of A * * K is the main loop index, decreasing from N to 1 in steps of * 1 or 2 * K = N KC = ( N-1 )*N / 2 + 1 10 CONTINUE KNC = KC * * If K < 1, exit from loop * IF( K.LT.1 ) $ GO TO 110 KSTEP = 1 * * Determine rows and columns to be interchanged and whether * a 1-by-1 or 2-by-2 pivot block will be used * ABSAKK = ABS( AP( KC+K-1 ) ) * * IMAX is the row-index of the largest off-diagonal element in * column K, and COLMAX is its absolute value * IF( K.GT.1 ) THEN IMAX = IDAMAX( K-1, AP( KC ), 1 ) COLMAX = ABS( AP( KC+IMAX-1 ) ) ELSE COLMAX = ZERO END IF * IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN * * Column K is zero: set INFO and continue * IF( INFO.EQ.0 ) $ INFO = K KP = K ELSE IF( ABSAKK.GE.ALPHA*COLMAX ) THEN * * no interchange, use 1-by-1 pivot block * KP = K ELSE * * JMAX is the column-index of the largest off-diagonal * element in row IMAX, and ROWMAX is its absolute value * ROWMAX = ZERO JMAX = IMAX KX = IMAX*( IMAX+1 ) / 2 + IMAX DO 20 J = IMAX + 1, K IF( ABS( AP( KX ) ).GT.ROWMAX ) THEN ROWMAX = ABS( AP( KX ) ) JMAX = J END IF KX = KX + J 20 CONTINUE KPC = ( IMAX-1 )*IMAX / 2 + 1 IF( IMAX.GT.1 ) THEN JMAX = IDAMAX( IMAX-1, AP( KPC ), 1 ) ROWMAX = MAX( ROWMAX, ABS( AP( KPC+JMAX-1 ) ) ) END IF * IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN * * no interchange, use 1-by-1 pivot block * KP = K ELSE IF( ABS( AP( KPC+IMAX-1 ) ).GE.ALPHA*ROWMAX ) THEN * * interchange rows and columns K and IMAX, use 1-by-1 * pivot block * KP = IMAX ELSE * * interchange rows and columns K-1 and IMAX, use 2-by-2 * pivot block * KP = IMAX KSTEP = 2 END IF END IF * KK = K - KSTEP + 1 IF( KSTEP.EQ.2 ) $ KNC = KNC - K + 1 IF( KP.NE.KK ) THEN * * Interchange rows and columns KK and KP in the leading * submatrix A(1:k,1:k) * CALL DSWAP( KP-1, AP( KNC ), 1, AP( KPC ), 1 ) KX = KPC + KP - 1 DO 30 J = KP + 1, KK - 1 KX = KX + J - 1 T = AP( KNC+J-1 ) AP( KNC+J-1 ) = AP( KX ) AP( KX ) = T 30 CONTINUE T = AP( KNC+KK-1 ) AP( KNC+KK-1 ) = AP( KPC+KP-1 ) AP( KPC+KP-1 ) = T IF( KSTEP.EQ.2 ) THEN T = AP( KC+K-2 ) AP( KC+K-2 ) = AP( KC+KP-1 ) AP( KC+KP-1 ) = T END IF END IF * * Update the leading submatrix * IF( KSTEP.EQ.1 ) THEN * * 1-by-1 pivot block D(k): column k now holds * * W(k) = U(k)*D(k) * * where U(k) is the k-th column of U * * Perform a rank-1 update of A(1:k-1,1:k-1) as * * A := A - U(k)*D(k)*U(k)' = A - W(k)*1/D(k)*W(k)' * R1 = ONE / AP( KC+K-1 ) CALL DSPR( UPLO, K-1, -R1, AP( KC ), 1, AP ) * * Store U(k) in column k * CALL DSCAL( K-1, R1, AP( KC ), 1 ) ELSE * * 2-by-2 pivot block D(k): columns k and k-1 now hold * * ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) * * where U(k) and U(k-1) are the k-th and (k-1)-th columns * of U * * Perform a rank-2 update of A(1:k-2,1:k-2) as * * A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )' * = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )' * IF( K.GT.2 ) THEN * D12 = AP( K-1+( K-1 )*K / 2 ) D22 = AP( K-1+( K-2 )*( K-1 ) / 2 ) / D12 D11 = AP( K+( K-1 )*K / 2 ) / D12 T = ONE / ( D11*D22-ONE ) D12 = T / D12 * DO 50 J = K - 2, 1, -1 WKM1 = D12*( D11*AP( J+( K-2 )*( K-1 ) / 2 )- $ AP( J+( K-1 )*K / 2 ) ) WK = D12*( D22*AP( J+( K-1 )*K / 2 )- $ AP( J+( K-2 )*( K-1 ) / 2 ) ) DO 40 I = J, 1, -1 AP( I+( J-1 )*J / 2 ) = AP( I+( J-1 )*J / 2 ) - $ AP( I+( K-1 )*K / 2 )*WK - $ AP( I+( K-2 )*( K-1 ) / 2 )*WKM1 40 CONTINUE AP( J+( K-1 )*K / 2 ) = WK AP( J+( K-2 )*( K-1 ) / 2 ) = WKM1 50 CONTINUE * END IF * END IF END IF * * Store details of the interchanges in IPIV * IF( KSTEP.EQ.1 ) THEN IPIV( K ) = KP ELSE IPIV( K ) = -KP IPIV( K-1 ) = -KP END IF * * Decrease K and return to the start of the main loop * K = K - KSTEP KC = KNC - K GO TO 10 * ELSE * * Factorize A as L*D*L' using the lower triangle of A * * K is the main loop index, increasing from 1 to N in steps of * 1 or 2 * K = 1 KC = 1 NPP = N*( N+1 ) / 2 60 CONTINUE KNC = KC * * If K > N, exit from loop * IF( K.GT.N ) $ GO TO 110 KSTEP = 1 * * Determine rows and columns to be interchanged and whether * a 1-by-1 or 2-by-2 pivot block will be used * ABSAKK = ABS( AP( KC ) ) * * IMAX is the row-index of the largest off-diagonal element in * column K, and COLMAX is its absolute value * IF( K.LT.N ) THEN IMAX = K + IDAMAX( N-K, AP( KC+1 ), 1 ) COLMAX = ABS( AP( KC+IMAX-K ) ) ELSE COLMAX = ZERO END IF * IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN * * Column K is zero: set INFO and continue * IF( INFO.EQ.0 ) $ INFO = K KP = K ELSE IF( ABSAKK.GE.ALPHA*COLMAX ) THEN * * no interchange, use 1-by-1 pivot block * KP = K ELSE * * JMAX is the column-index of the largest off-diagonal * element in row IMAX, and ROWMAX is its absolute value * ROWMAX = ZERO KX = KC + IMAX - K DO 70 J = K, IMAX - 1 IF( ABS( AP( KX ) ).GT.ROWMAX ) THEN ROWMAX = ABS( AP( KX ) ) JMAX = J END IF KX = KX + N - J 70 CONTINUE KPC = NPP - ( N-IMAX+1 )*( N-IMAX+2 ) / 2 + 1 IF( IMAX.LT.N ) THEN JMAX = IMAX + IDAMAX( N-IMAX, AP( KPC+1 ), 1 ) ROWMAX = MAX( ROWMAX, ABS( AP( KPC+JMAX-IMAX ) ) ) END IF * IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN * * no interchange, use 1-by-1 pivot block * KP = K ELSE IF( ABS( AP( KPC ) ).GE.ALPHA*ROWMAX ) THEN * * interchange rows and columns K and IMAX, use 1-by-1 * pivot block * KP = IMAX ELSE * * interchange rows and columns K+1 and IMAX, use 2-by-2 * pivot block * KP = IMAX KSTEP = 2 END IF END IF * KK = K + KSTEP - 1 IF( KSTEP.EQ.2 ) $ KNC = KNC + N - K + 1 IF( KP.NE.KK ) THEN * * Interchange rows and columns KK and KP in the trailing * submatrix A(k:n,k:n) * IF( KP.LT.N ) $ CALL DSWAP( N-KP, AP( KNC+KP-KK+1 ), 1, AP( KPC+1 ), $ 1 ) KX = KNC + KP - KK DO 80 J = KK + 1, KP - 1 KX = KX + N - J + 1 T = AP( KNC+J-KK ) AP( KNC+J-KK ) = AP( KX ) AP( KX ) = T 80 CONTINUE T = AP( KNC ) AP( KNC ) = AP( KPC ) AP( KPC ) = T IF( KSTEP.EQ.2 ) THEN T = AP( KC+1 ) AP( KC+1 ) = AP( KC+KP-K ) AP( KC+KP-K ) = T END IF END IF * * Update the trailing submatrix * IF( KSTEP.EQ.1 ) THEN * * 1-by-1 pivot block D(k): column k now holds * * W(k) = L(k)*D(k) * * where L(k) is the k-th column of L * IF( K.LT.N ) THEN * * Perform a rank-1 update of A(k+1:n,k+1:n) as * * A := A - L(k)*D(k)*L(k)' = A - W(k)*(1/D(k))*W(k)' * R1 = ONE / AP( KC ) CALL DSPR( UPLO, N-K, -R1, AP( KC+1 ), 1, $ AP( KC+N-K+1 ) ) * * Store L(k) in column K * CALL DSCAL( N-K, R1, AP( KC+1 ), 1 ) END IF ELSE * * 2-by-2 pivot block D(k): columns K and K+1 now hold * * ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) * * where L(k) and L(k+1) are the k-th and (k+1)-th columns * of L * IF( K.LT.N-1 ) THEN * * Perform a rank-2 update of A(k+2:n,k+2:n) as * * A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )' * = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )' * D21 = AP( K+1+( K-1 )*( 2*N-K ) / 2 ) D11 = AP( K+1+K*( 2*N-K-1 ) / 2 ) / D21 D22 = AP( K+( K-1 )*( 2*N-K ) / 2 ) / D21 T = ONE / ( D11*D22-ONE ) D21 = T / D21 * DO 100 J = K + 2, N WK = D21*( D11*AP( J+( K-1 )*( 2*N-K ) / 2 )- $ AP( J+K*( 2*N-K-1 ) / 2 ) ) WKP1 = D21*( D22*AP( J+K*( 2*N-K-1 ) / 2 )- $ AP( J+( K-1 )*( 2*N-K ) / 2 ) ) * DO 90 I = J, N AP( I+( J-1 )*( 2*N-J ) / 2 ) = AP( I+( J-1 )* $ ( 2*N-J ) / 2 ) - AP( I+( K-1 )*( 2*N-K ) / $ 2 )*WK - AP( I+K*( 2*N-K-1 ) / 2 )*WKP1 90 CONTINUE * AP( J+( K-1 )*( 2*N-K ) / 2 ) = WK AP( J+K*( 2*N-K-1 ) / 2 ) = WKP1 * 100 CONTINUE END IF END IF END IF * * Store details of the interchanges in IPIV * IF( KSTEP.EQ.1 ) THEN IPIV( K ) = KP ELSE IPIV( K ) = -KP IPIV( K+1 ) = -KP END IF * * Increase K and return to the start of the main loop * K = K + KSTEP KC = KNC + N - K + 2 GO TO 60 * END IF * 110 CONTINUE RETURN * * End of DSPTRF * END
gpl-3.0
atsnyder/ITK
Modules/ThirdParty/VNL/src/vxl/v3p/netlib/lapack/complex16/ztgsy2.f
39
12580
SUBROUTINE ZTGSY2( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D, $ LDD, E, LDE, F, LDF, SCALE, RDSUM, RDSCAL, $ INFO ) * * -- LAPACK auxiliary routine (version 3.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2006 * * .. Scalar Arguments .. CHARACTER TRANS INTEGER IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF, M, N DOUBLE PRECISION RDSCAL, RDSUM, SCALE * .. * .. Array Arguments .. COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * ), $ D( LDD, * ), E( LDE, * ), F( LDF, * ) * .. * * Purpose * ======= * * ZTGSY2 solves the generalized Sylvester equation * * A * R - L * B = scale * C (1) * D * R - L * E = scale * F * * using Level 1 and 2 BLAS, where R and L are unknown M-by-N matrices, * (A, D), (B, E) and (C, F) are given matrix pairs of size M-by-M, * N-by-N and M-by-N, respectively. A, B, D and E are upper triangular * (i.e., (A,D) and (B,E) in generalized Schur form). * * The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output * scaling factor chosen to avoid overflow. * * In matrix notation solving equation (1) corresponds to solve * Zx = scale * b, where Z is defined as * * Z = [ kron(In, A) -kron(B', Im) ] (2) * [ kron(In, D) -kron(E', Im) ], * * Ik is the identity matrix of size k and X' is the transpose of X. * kron(X, Y) is the Kronecker product between the matrices X and Y. * * If TRANS = 'C', y in the conjugate transposed system Z'y = scale*b * is solved for, which is equivalent to solve for R and L in * * A' * R + D' * L = scale * C (3) * R * B' + L * E' = scale * -F * * This case is used to compute an estimate of Dif[(A, D), (B, E)] = * = sigma_min(Z) using reverse communicaton with ZLACON. * * ZTGSY2 also (IJOB >= 1) contributes to the computation in ZTGSYL * of an upper bound on the separation between to matrix pairs. Then * the input (A, D), (B, E) are sub-pencils of two matrix pairs in * ZTGSYL. * * Arguments * ========= * * TRANS (input) CHARACTER*1 * = 'N', solve the generalized Sylvester equation (1). * = 'T': solve the 'transposed' system (3). * * IJOB (input) INTEGER * Specifies what kind of functionality to be performed. * =0: solve (1) only. * =1: A contribution from this subsystem to a Frobenius * norm-based estimate of the separation between two matrix * pairs is computed. (look ahead strategy is used). * =2: A contribution from this subsystem to a Frobenius * norm-based estimate of the separation between two matrix * pairs is computed. (DGECON on sub-systems is used.) * Not referenced if TRANS = 'T'. * * M (input) INTEGER * On entry, M specifies the order of A and D, and the row * dimension of C, F, R and L. * * N (input) INTEGER * On entry, N specifies the order of B and E, and the column * dimension of C, F, R and L. * * A (input) COMPLEX*16 array, dimension (LDA, M) * On entry, A contains an upper triangular matrix. * * LDA (input) INTEGER * The leading dimension of the matrix A. LDA >= max(1, M). * * B (input) COMPLEX*16 array, dimension (LDB, N) * On entry, B contains an upper triangular matrix. * * LDB (input) INTEGER * The leading dimension of the matrix B. LDB >= max(1, N). * * C (input/output) COMPLEX*16 array, dimension (LDC, N) * On entry, C contains the right-hand-side of the first matrix * equation in (1). * On exit, if IJOB = 0, C has been overwritten by the solution * R. * * LDC (input) INTEGER * The leading dimension of the matrix C. LDC >= max(1, M). * * D (input) COMPLEX*16 array, dimension (LDD, M) * On entry, D contains an upper triangular matrix. * * LDD (input) INTEGER * The leading dimension of the matrix D. LDD >= max(1, M). * * E (input) COMPLEX*16 array, dimension (LDE, N) * On entry, E contains an upper triangular matrix. * * LDE (input) INTEGER * The leading dimension of the matrix E. LDE >= max(1, N). * * F (input/output) COMPLEX*16 array, dimension (LDF, N) * On entry, F contains the right-hand-side of the second matrix * equation in (1). * On exit, if IJOB = 0, F has been overwritten by the solution * L. * * LDF (input) INTEGER * The leading dimension of the matrix F. LDF >= max(1, M). * * SCALE (output) DOUBLE PRECISION * On exit, 0 <= SCALE <= 1. If 0 < SCALE < 1, the solutions * R and L (C and F on entry) will hold the solutions to a * slightly perturbed system but the input matrices A, B, D and * E have not been changed. If SCALE = 0, R and L will hold the * solutions to the homogeneous system with C = F = 0. * Normally, SCALE = 1. * * RDSUM (input/output) DOUBLE PRECISION * On entry, the sum of squares of computed contributions to * the Dif-estimate under computation by ZTGSYL, where the * scaling factor RDSCAL (see below) has been factored out. * On exit, the corresponding sum of squares updated with the * contributions from the current sub-system. * If TRANS = 'T' RDSUM is not touched. * NOTE: RDSUM only makes sense when ZTGSY2 is called by * ZTGSYL. * * RDSCAL (input/output) DOUBLE PRECISION * On entry, scaling factor used to prevent overflow in RDSUM. * On exit, RDSCAL is updated w.r.t. the current contributions * in RDSUM. * If TRANS = 'T', RDSCAL is not touched. * NOTE: RDSCAL only makes sense when ZTGSY2 is called by * ZTGSYL. * * INFO (output) INTEGER * On exit, if INFO is set to * =0: Successful exit * <0: If INFO = -i, input argument number i is illegal. * >0: The matrix pairs (A, D) and (B, E) have common or very * close eigenvalues. * * Further Details * =============== * * Based on contributions by * Bo Kagstrom and Peter Poromaa, Department of Computing Science, * Umea University, S-901 87 Umea, Sweden. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE INTEGER LDZ PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, LDZ = 2 ) * .. * .. Local Scalars .. LOGICAL NOTRAN INTEGER I, IERR, J, K DOUBLE PRECISION SCALOC COMPLEX*16 ALPHA * .. * .. Local Arrays .. INTEGER IPIV( LDZ ), JPIV( LDZ ) COMPLEX*16 RHS( LDZ ), Z( LDZ, LDZ ) * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA, ZAXPY, ZGESC2, ZGETC2, ZLATDF, ZSCAL * .. * .. Intrinsic Functions .. INTRINSIC DCMPLX, DCONJG, MAX * .. * .. Executable Statements .. * * Decode and test input parameters * INFO = 0 IERR = 0 NOTRAN = LSAME( TRANS, 'N' ) IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN INFO = -1 ELSE IF( NOTRAN ) THEN IF( ( IJOB.LT.0 ) .OR. ( IJOB.GT.2 ) ) THEN INFO = -2 END IF END IF IF( INFO.EQ.0 ) THEN IF( M.LE.0 ) THEN INFO = -3 ELSE IF( N.LE.0 ) THEN INFO = -4 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -5 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -8 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN INFO = -10 ELSE IF( LDD.LT.MAX( 1, M ) ) THEN INFO = -12 ELSE IF( LDE.LT.MAX( 1, N ) ) THEN INFO = -14 ELSE IF( LDF.LT.MAX( 1, M ) ) THEN INFO = -16 END IF END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZTGSY2', -INFO ) RETURN END IF * IF( NOTRAN ) THEN * * Solve (I, J) - system * A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J) * D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J) * for I = M, M - 1, ..., 1; J = 1, 2, ..., N * SCALE = ONE SCALOC = ONE DO 30 J = 1, N DO 20 I = M, 1, -1 * * Build 2 by 2 system * Z( 1, 1 ) = A( I, I ) Z( 2, 1 ) = D( I, I ) Z( 1, 2 ) = -B( J, J ) Z( 2, 2 ) = -E( J, J ) * * Set up right hand side(s) * RHS( 1 ) = C( I, J ) RHS( 2 ) = F( I, J ) * * Solve Z * x = RHS * CALL ZGETC2( LDZ, Z, LDZ, IPIV, JPIV, IERR ) IF( IERR.GT.0 ) $ INFO = IERR IF( IJOB.EQ.0 ) THEN CALL ZGESC2( LDZ, Z, LDZ, RHS, IPIV, JPIV, SCALOC ) IF( SCALOC.NE.ONE ) THEN DO 10 K = 1, N CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), $ C( 1, K ), 1 ) CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), $ F( 1, K ), 1 ) 10 CONTINUE SCALE = SCALE*SCALOC END IF ELSE CALL ZLATDF( IJOB, LDZ, Z, LDZ, RHS, RDSUM, RDSCAL, $ IPIV, JPIV ) END IF * * Unpack solution vector(s) * C( I, J ) = RHS( 1 ) F( I, J ) = RHS( 2 ) * * Substitute R(I, J) and L(I, J) into remaining equation. * IF( I.GT.1 ) THEN ALPHA = -RHS( 1 ) CALL ZAXPY( I-1, ALPHA, A( 1, I ), 1, C( 1, J ), 1 ) CALL ZAXPY( I-1, ALPHA, D( 1, I ), 1, F( 1, J ), 1 ) END IF IF( J.LT.N ) THEN CALL ZAXPY( N-J, RHS( 2 ), B( J, J+1 ), LDB, $ C( I, J+1 ), LDC ) CALL ZAXPY( N-J, RHS( 2 ), E( J, J+1 ), LDE, $ F( I, J+1 ), LDF ) END IF * 20 CONTINUE 30 CONTINUE ELSE * * Solve transposed (I, J) - system: * A(I, I)' * R(I, J) + D(I, I)' * L(J, J) = C(I, J) * R(I, I) * B(J, J) + L(I, J) * E(J, J) = -F(I, J) * for I = 1, 2, ..., M, J = N, N - 1, ..., 1 * SCALE = ONE SCALOC = ONE DO 80 I = 1, M DO 70 J = N, 1, -1 * * Build 2 by 2 system Z' * Z( 1, 1 ) = DCONJG( A( I, I ) ) Z( 2, 1 ) = -DCONJG( B( J, J ) ) Z( 1, 2 ) = DCONJG( D( I, I ) ) Z( 2, 2 ) = -DCONJG( E( J, J ) ) * * * Set up right hand side(s) * RHS( 1 ) = C( I, J ) RHS( 2 ) = F( I, J ) * * Solve Z' * x = RHS * CALL ZGETC2( LDZ, Z, LDZ, IPIV, JPIV, IERR ) IF( IERR.GT.0 ) $ INFO = IERR CALL ZGESC2( LDZ, Z, LDZ, RHS, IPIV, JPIV, SCALOC ) IF( SCALOC.NE.ONE ) THEN DO 40 K = 1, N CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), C( 1, K ), $ 1 ) CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), F( 1, K ), $ 1 ) 40 CONTINUE SCALE = SCALE*SCALOC END IF * * Unpack solution vector(s) * C( I, J ) = RHS( 1 ) F( I, J ) = RHS( 2 ) * * Substitute R(I, J) and L(I, J) into remaining equation. * DO 50 K = 1, J - 1 F( I, K ) = F( I, K ) + RHS( 1 )*DCONJG( B( K, J ) ) + $ RHS( 2 )*DCONJG( E( K, J ) ) 50 CONTINUE DO 60 K = I + 1, M C( K, J ) = C( K, J ) - DCONJG( A( I, K ) )*RHS( 1 ) - $ DCONJG( D( I, K ) )*RHS( 2 ) 60 CONTINUE * 70 CONTINUE 80 CONTINUE END IF RETURN * * End of ZTGSY2 * END
apache-2.0
szecsi/Gears
libs/eigen-eigen-07105f7124f9/blas/testing/sblat3.f
242
102977
PROGRAM SBLAT3 * * Test program for the REAL Level 3 Blas. * * The program must be driven by a short data file. The first 14 records * of the file are read using list-directed input, the last 6 records * are read using the format ( A6, L2 ). An annotated example of a data * file can be obtained by deleting the first 3 characters from the * following 20 lines: * 'SBLAT3.SUMM' NAME OF SUMMARY OUTPUT FILE * 6 UNIT NUMBER OF SUMMARY FILE * 'SBLAT3.SNAP' NAME OF SNAPSHOT OUTPUT FILE * -1 UNIT NUMBER OF SNAPSHOT FILE (NOT USED IF .LT. 0) * F LOGICAL FLAG, T TO REWIND SNAPSHOT FILE AFTER EACH RECORD. * F LOGICAL FLAG, T TO STOP ON FAILURES. * T LOGICAL FLAG, T TO TEST ERROR EXITS. * 16.0 THRESHOLD VALUE OF TEST RATIO * 6 NUMBER OF VALUES OF N * 0 1 2 3 5 9 VALUES OF N * 3 NUMBER OF VALUES OF ALPHA * 0.0 1.0 0.7 VALUES OF ALPHA * 3 NUMBER OF VALUES OF BETA * 0.0 1.0 1.3 VALUES OF BETA * SGEMM T PUT F FOR NO TEST. SAME COLUMNS. * SSYMM T PUT F FOR NO TEST. SAME COLUMNS. * STRMM T PUT F FOR NO TEST. SAME COLUMNS. * STRSM T PUT F FOR NO TEST. SAME COLUMNS. * SSYRK T PUT F FOR NO TEST. SAME COLUMNS. * SSYR2K T PUT F FOR NO TEST. SAME COLUMNS. * * See: * * Dongarra J. J., Du Croz J. J., Duff I. S. and Hammarling S. * A Set of Level 3 Basic Linear Algebra Subprograms. * * Technical Memorandum No.88 (Revision 1), Mathematics and * Computer Science Division, Argonne National Laboratory, 9700 * South Cass Avenue, Argonne, Illinois 60439, US. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. INTEGER NIN PARAMETER ( NIN = 5 ) INTEGER NSUBS PARAMETER ( NSUBS = 6 ) REAL ZERO, HALF, ONE PARAMETER ( ZERO = 0.0, HALF = 0.5, ONE = 1.0 ) INTEGER NMAX PARAMETER ( NMAX = 65 ) INTEGER NIDMAX, NALMAX, NBEMAX PARAMETER ( NIDMAX = 9, NALMAX = 7, NBEMAX = 7 ) * .. Local Scalars .. REAL EPS, ERR, THRESH INTEGER I, ISNUM, J, N, NALF, NBET, NIDIM, NOUT, NTRA LOGICAL FATAL, LTESTT, REWI, SAME, SFATAL, TRACE, $ TSTERR CHARACTER*1 TRANSA, TRANSB CHARACTER*6 SNAMET CHARACTER*32 SNAPS, SUMMRY * .. Local Arrays .. REAL AA( NMAX*NMAX ), AB( NMAX, 2*NMAX ), $ ALF( NALMAX ), AS( NMAX*NMAX ), $ BB( NMAX*NMAX ), BET( NBEMAX ), $ BS( NMAX*NMAX ), C( NMAX, NMAX ), $ CC( NMAX*NMAX ), CS( NMAX*NMAX ), CT( NMAX ), $ G( NMAX ), W( 2*NMAX ) INTEGER IDIM( NIDMAX ) LOGICAL LTEST( NSUBS ) CHARACTER*6 SNAMES( NSUBS ) * .. External Functions .. REAL SDIFF LOGICAL LSE EXTERNAL SDIFF, LSE * .. External Subroutines .. EXTERNAL SCHK1, SCHK2, SCHK3, SCHK4, SCHK5, SCHKE, SMMCH * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK CHARACTER*6 SRNAMT * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR COMMON /SRNAMC/SRNAMT * .. Data statements .. DATA SNAMES/'SGEMM ', 'SSYMM ', 'STRMM ', 'STRSM ', $ 'SSYRK ', 'SSYR2K'/ * .. Executable Statements .. * * Read name and unit number for summary output file and open file. * READ( NIN, FMT = * )SUMMRY READ( NIN, FMT = * )NOUT OPEN( NOUT, FILE = SUMMRY, STATUS = 'NEW' ) NOUTC = NOUT * * Read name and unit number for snapshot output file and open file. * READ( NIN, FMT = * )SNAPS READ( NIN, FMT = * )NTRA TRACE = NTRA.GE.0 IF( TRACE )THEN OPEN( NTRA, FILE = SNAPS, STATUS = 'NEW' ) END IF * Read the flag that directs rewinding of the snapshot file. READ( NIN, FMT = * )REWI REWI = REWI.AND.TRACE * Read the flag that directs stopping on any failure. READ( NIN, FMT = * )SFATAL * Read the flag that indicates whether error exits are to be tested. READ( NIN, FMT = * )TSTERR * Read the threshold value of the test ratio READ( NIN, FMT = * )THRESH * * Read and check the parameter values for the tests. * * Values of N READ( NIN, FMT = * )NIDIM IF( NIDIM.LT.1.OR.NIDIM.GT.NIDMAX )THEN WRITE( NOUT, FMT = 9997 )'N', NIDMAX GO TO 220 END IF READ( NIN, FMT = * )( IDIM( I ), I = 1, NIDIM ) DO 10 I = 1, NIDIM IF( IDIM( I ).LT.0.OR.IDIM( I ).GT.NMAX )THEN WRITE( NOUT, FMT = 9996 )NMAX GO TO 220 END IF 10 CONTINUE * Values of ALPHA READ( NIN, FMT = * )NALF IF( NALF.LT.1.OR.NALF.GT.NALMAX )THEN WRITE( NOUT, FMT = 9997 )'ALPHA', NALMAX GO TO 220 END IF READ( NIN, FMT = * )( ALF( I ), I = 1, NALF ) * Values of BETA READ( NIN, FMT = * )NBET IF( NBET.LT.1.OR.NBET.GT.NBEMAX )THEN WRITE( NOUT, FMT = 9997 )'BETA', NBEMAX GO TO 220 END IF READ( NIN, FMT = * )( BET( I ), I = 1, NBET ) * * Report values of parameters. * WRITE( NOUT, FMT = 9995 ) WRITE( NOUT, FMT = 9994 )( IDIM( I ), I = 1, NIDIM ) WRITE( NOUT, FMT = 9993 )( ALF( I ), I = 1, NALF ) WRITE( NOUT, FMT = 9992 )( BET( I ), I = 1, NBET ) IF( .NOT.TSTERR )THEN WRITE( NOUT, FMT = * ) WRITE( NOUT, FMT = 9984 ) END IF WRITE( NOUT, FMT = * ) WRITE( NOUT, FMT = 9999 )THRESH WRITE( NOUT, FMT = * ) * * Read names of subroutines and flags which indicate * whether they are to be tested. * DO 20 I = 1, NSUBS LTEST( I ) = .FALSE. 20 CONTINUE 30 READ( NIN, FMT = 9988, END = 60 )SNAMET, LTESTT DO 40 I = 1, NSUBS IF( SNAMET.EQ.SNAMES( I ) ) $ GO TO 50 40 CONTINUE WRITE( NOUT, FMT = 9990 )SNAMET STOP 50 LTEST( I ) = LTESTT GO TO 30 * 60 CONTINUE CLOSE ( NIN ) * * Compute EPS (the machine precision). * EPS = ONE 70 CONTINUE IF( SDIFF( ONE + EPS, ONE ).EQ.ZERO ) $ GO TO 80 EPS = HALF*EPS GO TO 70 80 CONTINUE EPS = EPS + EPS WRITE( NOUT, FMT = 9998 )EPS * * Check the reliability of SMMCH using exact data. * N = MIN( 32, NMAX ) DO 100 J = 1, N DO 90 I = 1, N AB( I, J ) = MAX( I - J + 1, 0 ) 90 CONTINUE AB( J, NMAX + 1 ) = J AB( 1, NMAX + J ) = J C( J, 1 ) = ZERO 100 CONTINUE DO 110 J = 1, N CC( J ) = J*( ( J + 1 )*J )/2 - ( ( J + 1 )*J*( J - 1 ) )/3 110 CONTINUE * CC holds the exact result. On exit from SMMCH CT holds * the result computed by SMMCH. TRANSA = 'N' TRANSB = 'N' CALL SMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX, $ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC, $ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. ) SAME = LSE( CC, CT, N ) IF( .NOT.SAME.OR.ERR.NE.ZERO )THEN WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR STOP END IF TRANSB = 'T' CALL SMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX, $ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC, $ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. ) SAME = LSE( CC, CT, N ) IF( .NOT.SAME.OR.ERR.NE.ZERO )THEN WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR STOP END IF DO 120 J = 1, N AB( J, NMAX + 1 ) = N - J + 1 AB( 1, NMAX + J ) = N - J + 1 120 CONTINUE DO 130 J = 1, N CC( N - J + 1 ) = J*( ( J + 1 )*J )/2 - $ ( ( J + 1 )*J*( J - 1 ) )/3 130 CONTINUE TRANSA = 'T' TRANSB = 'N' CALL SMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX, $ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC, $ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. ) SAME = LSE( CC, CT, N ) IF( .NOT.SAME.OR.ERR.NE.ZERO )THEN WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR STOP END IF TRANSB = 'T' CALL SMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX, $ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC, $ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. ) SAME = LSE( CC, CT, N ) IF( .NOT.SAME.OR.ERR.NE.ZERO )THEN WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR STOP END IF * * Test each subroutine in turn. * DO 200 ISNUM = 1, NSUBS WRITE( NOUT, FMT = * ) IF( .NOT.LTEST( ISNUM ) )THEN * Subprogram is not to be tested. WRITE( NOUT, FMT = 9987 )SNAMES( ISNUM ) ELSE SRNAMT = SNAMES( ISNUM ) * Test error exits. IF( TSTERR )THEN CALL SCHKE( ISNUM, SNAMES( ISNUM ), NOUT ) WRITE( NOUT, FMT = * ) END IF * Test computations. INFOT = 0 OK = .TRUE. FATAL = .FALSE. GO TO ( 140, 150, 160, 160, 170, 180 )ISNUM * Test SGEMM, 01. 140 CALL SCHK1( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, $ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C, $ CC, CS, CT, G ) GO TO 190 * Test SSYMM, 02. 150 CALL SCHK2( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, $ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C, $ CC, CS, CT, G ) GO TO 190 * Test STRMM, 03, STRSM, 04. 160 CALL SCHK3( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NMAX, AB, $ AA, AS, AB( 1, NMAX + 1 ), BB, BS, CT, G, C ) GO TO 190 * Test SSYRK, 05. 170 CALL SCHK4( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, $ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C, $ CC, CS, CT, G ) GO TO 190 * Test SSYR2K, 06. 180 CALL SCHK5( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, $ NMAX, AB, AA, AS, BB, BS, C, CC, CS, CT, G, W ) GO TO 190 * 190 IF( FATAL.AND.SFATAL ) $ GO TO 210 END IF 200 CONTINUE WRITE( NOUT, FMT = 9986 ) GO TO 230 * 210 CONTINUE WRITE( NOUT, FMT = 9985 ) GO TO 230 * 220 CONTINUE WRITE( NOUT, FMT = 9991 ) * 230 CONTINUE IF( TRACE ) $ CLOSE ( NTRA ) CLOSE ( NOUT ) STOP * 9999 FORMAT( ' ROUTINES PASS COMPUTATIONAL TESTS IF TEST RATIO IS LES', $ 'S THAN', F8.2 ) 9998 FORMAT( ' RELATIVE MACHINE PRECISION IS TAKEN TO BE', 1P, E9.1 ) 9997 FORMAT( ' NUMBER OF VALUES OF ', A, ' IS LESS THAN 1 OR GREATER ', $ 'THAN ', I2 ) 9996 FORMAT( ' VALUE OF N IS LESS THAN 0 OR GREATER THAN ', I2 ) 9995 FORMAT( ' TESTS OF THE REAL LEVEL 3 BLAS', //' THE F', $ 'OLLOWING PARAMETER VALUES WILL BE USED:' ) 9994 FORMAT( ' FOR N ', 9I6 ) 9993 FORMAT( ' FOR ALPHA ', 7F6.1 ) 9992 FORMAT( ' FOR BETA ', 7F6.1 ) 9991 FORMAT( ' AMEND DATA FILE OR INCREASE ARRAY SIZES IN PROGRAM', $ /' ******* TESTS ABANDONED *******' ) 9990 FORMAT( ' SUBPROGRAM NAME ', A6, ' NOT RECOGNIZED', /' ******* T', $ 'ESTS ABANDONED *******' ) 9989 FORMAT( ' ERROR IN SMMCH - IN-LINE DOT PRODUCTS ARE BEING EVALU', $ 'ATED WRONGLY.', /' SMMCH WAS CALLED WITH TRANSA = ', A1, $ ' AND TRANSB = ', A1, /' AND RETURNED SAME = ', L1, ' AND ', $ 'ERR = ', F12.3, '.', /' THIS MAY BE DUE TO FAULTS IN THE ', $ 'ARITHMETIC OR THE COMPILER.', /' ******* TESTS ABANDONED ', $ '*******' ) 9988 FORMAT( A6, L2 ) 9987 FORMAT( 1X, A6, ' WAS NOT TESTED' ) 9986 FORMAT( /' END OF TESTS' ) 9985 FORMAT( /' ******* FATAL ERROR - TESTS ABANDONED *******' ) 9984 FORMAT( ' ERROR-EXITS WILL NOT BE TESTED' ) * * End of SBLAT3. * END SUBROUTINE SCHK1( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX, $ A, AA, AS, B, BB, BS, C, CC, CS, CT, G ) * * Tests SGEMM. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. REAL ZERO PARAMETER ( ZERO = 0.0 ) * .. Scalar Arguments .. REAL EPS, THRESH INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. REAL A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), B( NMAX, NMAX ), $ BB( NMAX*NMAX ), BET( NBET ), BS( NMAX*NMAX ), $ C( NMAX, NMAX ), CC( NMAX*NMAX ), $ CS( NMAX*NMAX ), CT( NMAX ), G( NMAX ) INTEGER IDIM( NIDIM ) * .. Local Scalars .. REAL ALPHA, ALS, BETA, BLS, ERR, ERRMAX INTEGER I, IA, IB, ICA, ICB, IK, IM, IN, K, KS, LAA, $ LBB, LCC, LDA, LDAS, LDB, LDBS, LDC, LDCS, M, $ MA, MB, MS, N, NA, NARGS, NB, NC, NS LOGICAL NULL, RESET, SAME, TRANA, TRANB CHARACTER*1 TRANAS, TRANBS, TRANSA, TRANSB CHARACTER*3 ICH * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LSE, LSERES EXTERNAL LSE, LSERES * .. External Subroutines .. EXTERNAL SGEMM, SMAKE, SMMCH * .. Intrinsic Functions .. INTRINSIC MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICH/'NTC'/ * .. Executable Statements .. * NARGS = 13 NC = 0 RESET = .TRUE. ERRMAX = ZERO * DO 110 IM = 1, NIDIM M = IDIM( IM ) * DO 100 IN = 1, NIDIM N = IDIM( IN ) * Set LDC to 1 more than minimum value if room. LDC = M IF( LDC.LT.NMAX ) $ LDC = LDC + 1 * Skip tests if not enough room. IF( LDC.GT.NMAX ) $ GO TO 100 LCC = LDC*N NULL = N.LE.0.OR.M.LE.0 * DO 90 IK = 1, NIDIM K = IDIM( IK ) * DO 80 ICA = 1, 3 TRANSA = ICH( ICA: ICA ) TRANA = TRANSA.EQ.'T'.OR.TRANSA.EQ.'C' * IF( TRANA )THEN MA = K NA = M ELSE MA = M NA = K END IF * Set LDA to 1 more than minimum value if room. LDA = MA IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 80 LAA = LDA*NA * * Generate the matrix A. * CALL SMAKE( 'GE', ' ', ' ', MA, NA, A, NMAX, AA, LDA, $ RESET, ZERO ) * DO 70 ICB = 1, 3 TRANSB = ICH( ICB: ICB ) TRANB = TRANSB.EQ.'T'.OR.TRANSB.EQ.'C' * IF( TRANB )THEN MB = N NB = K ELSE MB = K NB = N END IF * Set LDB to 1 more than minimum value if room. LDB = MB IF( LDB.LT.NMAX ) $ LDB = LDB + 1 * Skip tests if not enough room. IF( LDB.GT.NMAX ) $ GO TO 70 LBB = LDB*NB * * Generate the matrix B. * CALL SMAKE( 'GE', ' ', ' ', MB, NB, B, NMAX, BB, $ LDB, RESET, ZERO ) * DO 60 IA = 1, NALF ALPHA = ALF( IA ) * DO 50 IB = 1, NBET BETA = BET( IB ) * * Generate the matrix C. * CALL SMAKE( 'GE', ' ', ' ', M, N, C, NMAX, $ CC, LDC, RESET, ZERO ) * NC = NC + 1 * * Save every datum before calling the * subroutine. * TRANAS = TRANSA TRANBS = TRANSB MS = M NS = N KS = K ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LBB BS( I ) = BB( I ) 20 CONTINUE LDBS = LDB BLS = BETA DO 30 I = 1, LCC CS( I ) = CC( I ) 30 CONTINUE LDCS = LDC * * Call the subroutine. * IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, $ TRANSA, TRANSB, M, N, K, ALPHA, LDA, LDB, $ BETA, LDC IF( REWI ) $ REWIND NTRA CALL SGEMM( TRANSA, TRANSB, M, N, K, ALPHA, $ AA, LDA, BB, LDB, BETA, CC, LDC ) * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9994 ) FATAL = .TRUE. GO TO 120 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = TRANSA.EQ.TRANAS ISAME( 2 ) = TRANSB.EQ.TRANBS ISAME( 3 ) = MS.EQ.M ISAME( 4 ) = NS.EQ.N ISAME( 5 ) = KS.EQ.K ISAME( 6 ) = ALS.EQ.ALPHA ISAME( 7 ) = LSE( AS, AA, LAA ) ISAME( 8 ) = LDAS.EQ.LDA ISAME( 9 ) = LSE( BS, BB, LBB ) ISAME( 10 ) = LDBS.EQ.LDB ISAME( 11 ) = BLS.EQ.BETA IF( NULL )THEN ISAME( 12 ) = LSE( CS, CC, LCC ) ELSE ISAME( 12 ) = LSERES( 'GE', ' ', M, N, CS, $ CC, LDC ) END IF ISAME( 13 ) = LDCS.EQ.LDC * * If data was incorrectly changed, report * and return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 120 END IF * IF( .NOT.NULL )THEN * * Check the result. * CALL SMMCH( TRANSA, TRANSB, M, N, K, $ ALPHA, A, NMAX, B, NMAX, BETA, $ C, NMAX, CT, G, CC, LDC, EPS, $ ERR, FATAL, NOUT, .TRUE. ) ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 120 END IF * 50 CONTINUE * 60 CONTINUE * 70 CONTINUE * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * 110 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 130 * 120 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME WRITE( NOUT, FMT = 9995 )NC, SNAME, TRANSA, TRANSB, M, N, K, $ ALPHA, LDA, LDB, BETA, LDC * 130 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',''', A1, ''',', $ 3( I3, ',' ), F4.1, ', A,', I3, ', B,', I3, ',', F4.1, ', ', $ 'C,', I3, ').' ) 9994 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of SCHK1. * END SUBROUTINE SCHK2( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX, $ A, AA, AS, B, BB, BS, C, CC, CS, CT, G ) * * Tests SSYMM. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. REAL ZERO PARAMETER ( ZERO = 0.0 ) * .. Scalar Arguments .. REAL EPS, THRESH INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. REAL A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), B( NMAX, NMAX ), $ BB( NMAX*NMAX ), BET( NBET ), BS( NMAX*NMAX ), $ C( NMAX, NMAX ), CC( NMAX*NMAX ), $ CS( NMAX*NMAX ), CT( NMAX ), G( NMAX ) INTEGER IDIM( NIDIM ) * .. Local Scalars .. REAL ALPHA, ALS, BETA, BLS, ERR, ERRMAX INTEGER I, IA, IB, ICS, ICU, IM, IN, LAA, LBB, LCC, $ LDA, LDAS, LDB, LDBS, LDC, LDCS, M, MS, N, NA, $ NARGS, NC, NS LOGICAL LEFT, NULL, RESET, SAME CHARACTER*1 SIDE, SIDES, UPLO, UPLOS CHARACTER*2 ICHS, ICHU * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LSE, LSERES EXTERNAL LSE, LSERES * .. External Subroutines .. EXTERNAL SMAKE, SMMCH, SSYMM * .. Intrinsic Functions .. INTRINSIC MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICHS/'LR'/, ICHU/'UL'/ * .. Executable Statements .. * NARGS = 12 NC = 0 RESET = .TRUE. ERRMAX = ZERO * DO 100 IM = 1, NIDIM M = IDIM( IM ) * DO 90 IN = 1, NIDIM N = IDIM( IN ) * Set LDC to 1 more than minimum value if room. LDC = M IF( LDC.LT.NMAX ) $ LDC = LDC + 1 * Skip tests if not enough room. IF( LDC.GT.NMAX ) $ GO TO 90 LCC = LDC*N NULL = N.LE.0.OR.M.LE.0 * * Set LDB to 1 more than minimum value if room. LDB = M IF( LDB.LT.NMAX ) $ LDB = LDB + 1 * Skip tests if not enough room. IF( LDB.GT.NMAX ) $ GO TO 90 LBB = LDB*N * * Generate the matrix B. * CALL SMAKE( 'GE', ' ', ' ', M, N, B, NMAX, BB, LDB, RESET, $ ZERO ) * DO 80 ICS = 1, 2 SIDE = ICHS( ICS: ICS ) LEFT = SIDE.EQ.'L' * IF( LEFT )THEN NA = M ELSE NA = N END IF * Set LDA to 1 more than minimum value if room. LDA = NA IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 80 LAA = LDA*NA * DO 70 ICU = 1, 2 UPLO = ICHU( ICU: ICU ) * * Generate the symmetric matrix A. * CALL SMAKE( 'SY', UPLO, ' ', NA, NA, A, NMAX, AA, LDA, $ RESET, ZERO ) * DO 60 IA = 1, NALF ALPHA = ALF( IA ) * DO 50 IB = 1, NBET BETA = BET( IB ) * * Generate the matrix C. * CALL SMAKE( 'GE', ' ', ' ', M, N, C, NMAX, CC, $ LDC, RESET, ZERO ) * NC = NC + 1 * * Save every datum before calling the * subroutine. * SIDES = SIDE UPLOS = UPLO MS = M NS = N ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LBB BS( I ) = BB( I ) 20 CONTINUE LDBS = LDB BLS = BETA DO 30 I = 1, LCC CS( I ) = CC( I ) 30 CONTINUE LDCS = LDC * * Call the subroutine. * IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, SIDE, $ UPLO, M, N, ALPHA, LDA, LDB, BETA, LDC IF( REWI ) $ REWIND NTRA CALL SSYMM( SIDE, UPLO, M, N, ALPHA, AA, LDA, $ BB, LDB, BETA, CC, LDC ) * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9994 ) FATAL = .TRUE. GO TO 110 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = SIDES.EQ.SIDE ISAME( 2 ) = UPLOS.EQ.UPLO ISAME( 3 ) = MS.EQ.M ISAME( 4 ) = NS.EQ.N ISAME( 5 ) = ALS.EQ.ALPHA ISAME( 6 ) = LSE( AS, AA, LAA ) ISAME( 7 ) = LDAS.EQ.LDA ISAME( 8 ) = LSE( BS, BB, LBB ) ISAME( 9 ) = LDBS.EQ.LDB ISAME( 10 ) = BLS.EQ.BETA IF( NULL )THEN ISAME( 11 ) = LSE( CS, CC, LCC ) ELSE ISAME( 11 ) = LSERES( 'GE', ' ', M, N, CS, $ CC, LDC ) END IF ISAME( 12 ) = LDCS.EQ.LDC * * If data was incorrectly changed, report and * return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 110 END IF * IF( .NOT.NULL )THEN * * Check the result. * IF( LEFT )THEN CALL SMMCH( 'N', 'N', M, N, M, ALPHA, A, $ NMAX, B, NMAX, BETA, C, NMAX, $ CT, G, CC, LDC, EPS, ERR, $ FATAL, NOUT, .TRUE. ) ELSE CALL SMMCH( 'N', 'N', M, N, N, ALPHA, B, $ NMAX, A, NMAX, BETA, C, NMAX, $ CT, G, CC, LDC, EPS, ERR, $ FATAL, NOUT, .TRUE. ) END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 110 END IF * 50 CONTINUE * 60 CONTINUE * 70 CONTINUE * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 120 * 110 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME WRITE( NOUT, FMT = 9995 )NC, SNAME, SIDE, UPLO, M, N, ALPHA, LDA, $ LDB, BETA, LDC * 120 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( 1X, I6, ': ', A6, '(', 2( '''', A1, ''',' ), 2( I3, ',' ), $ F4.1, ', A,', I3, ', B,', I3, ',', F4.1, ', C,', I3, ') ', $ ' .' ) 9994 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of SCHK2. * END SUBROUTINE SCHK3( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NMAX, A, AA, AS, $ B, BB, BS, CT, G, C ) * * Tests STRMM and STRSM. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0, ONE = 1.0 ) * .. Scalar Arguments .. REAL EPS, THRESH INTEGER NALF, NIDIM, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. REAL A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), B( NMAX, NMAX ), $ BB( NMAX*NMAX ), BS( NMAX*NMAX ), $ C( NMAX, NMAX ), CT( NMAX ), G( NMAX ) INTEGER IDIM( NIDIM ) * .. Local Scalars .. REAL ALPHA, ALS, ERR, ERRMAX INTEGER I, IA, ICD, ICS, ICT, ICU, IM, IN, J, LAA, LBB, $ LDA, LDAS, LDB, LDBS, M, MS, N, NA, NARGS, NC, $ NS LOGICAL LEFT, NULL, RESET, SAME CHARACTER*1 DIAG, DIAGS, SIDE, SIDES, TRANAS, TRANSA, UPLO, $ UPLOS CHARACTER*2 ICHD, ICHS, ICHU CHARACTER*3 ICHT * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LSE, LSERES EXTERNAL LSE, LSERES * .. External Subroutines .. EXTERNAL SMAKE, SMMCH, STRMM, STRSM * .. Intrinsic Functions .. INTRINSIC MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICHU/'UL'/, ICHT/'NTC'/, ICHD/'UN'/, ICHS/'LR'/ * .. Executable Statements .. * NARGS = 11 NC = 0 RESET = .TRUE. ERRMAX = ZERO * Set up zero matrix for SMMCH. DO 20 J = 1, NMAX DO 10 I = 1, NMAX C( I, J ) = ZERO 10 CONTINUE 20 CONTINUE * DO 140 IM = 1, NIDIM M = IDIM( IM ) * DO 130 IN = 1, NIDIM N = IDIM( IN ) * Set LDB to 1 more than minimum value if room. LDB = M IF( LDB.LT.NMAX ) $ LDB = LDB + 1 * Skip tests if not enough room. IF( LDB.GT.NMAX ) $ GO TO 130 LBB = LDB*N NULL = M.LE.0.OR.N.LE.0 * DO 120 ICS = 1, 2 SIDE = ICHS( ICS: ICS ) LEFT = SIDE.EQ.'L' IF( LEFT )THEN NA = M ELSE NA = N END IF * Set LDA to 1 more than minimum value if room. LDA = NA IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 130 LAA = LDA*NA * DO 110 ICU = 1, 2 UPLO = ICHU( ICU: ICU ) * DO 100 ICT = 1, 3 TRANSA = ICHT( ICT: ICT ) * DO 90 ICD = 1, 2 DIAG = ICHD( ICD: ICD ) * DO 80 IA = 1, NALF ALPHA = ALF( IA ) * * Generate the matrix A. * CALL SMAKE( 'TR', UPLO, DIAG, NA, NA, A, $ NMAX, AA, LDA, RESET, ZERO ) * * Generate the matrix B. * CALL SMAKE( 'GE', ' ', ' ', M, N, B, NMAX, $ BB, LDB, RESET, ZERO ) * NC = NC + 1 * * Save every datum before calling the * subroutine. * SIDES = SIDE UPLOS = UPLO TRANAS = TRANSA DIAGS = DIAG MS = M NS = N ALS = ALPHA DO 30 I = 1, LAA AS( I ) = AA( I ) 30 CONTINUE LDAS = LDA DO 40 I = 1, LBB BS( I ) = BB( I ) 40 CONTINUE LDBS = LDB * * Call the subroutine. * IF( SNAME( 4: 5 ).EQ.'MM' )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, $ SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, $ LDA, LDB IF( REWI ) $ REWIND NTRA CALL STRMM( SIDE, UPLO, TRANSA, DIAG, M, $ N, ALPHA, AA, LDA, BB, LDB ) ELSE IF( SNAME( 4: 5 ).EQ.'SM' )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, $ SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, $ LDA, LDB IF( REWI ) $ REWIND NTRA CALL STRSM( SIDE, UPLO, TRANSA, DIAG, M, $ N, ALPHA, AA, LDA, BB, LDB ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9994 ) FATAL = .TRUE. GO TO 150 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = SIDES.EQ.SIDE ISAME( 2 ) = UPLOS.EQ.UPLO ISAME( 3 ) = TRANAS.EQ.TRANSA ISAME( 4 ) = DIAGS.EQ.DIAG ISAME( 5 ) = MS.EQ.M ISAME( 6 ) = NS.EQ.N ISAME( 7 ) = ALS.EQ.ALPHA ISAME( 8 ) = LSE( AS, AA, LAA ) ISAME( 9 ) = LDAS.EQ.LDA IF( NULL )THEN ISAME( 10 ) = LSE( BS, BB, LBB ) ELSE ISAME( 10 ) = LSERES( 'GE', ' ', M, N, BS, $ BB, LDB ) END IF ISAME( 11 ) = LDBS.EQ.LDB * * If data was incorrectly changed, report and * return. * SAME = .TRUE. DO 50 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 50 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 150 END IF * IF( .NOT.NULL )THEN IF( SNAME( 4: 5 ).EQ.'MM' )THEN * * Check the result. * IF( LEFT )THEN CALL SMMCH( TRANSA, 'N', M, N, M, $ ALPHA, A, NMAX, B, NMAX, $ ZERO, C, NMAX, CT, G, $ BB, LDB, EPS, ERR, $ FATAL, NOUT, .TRUE. ) ELSE CALL SMMCH( 'N', TRANSA, M, N, N, $ ALPHA, B, NMAX, A, NMAX, $ ZERO, C, NMAX, CT, G, $ BB, LDB, EPS, ERR, $ FATAL, NOUT, .TRUE. ) END IF ELSE IF( SNAME( 4: 5 ).EQ.'SM' )THEN * * Compute approximation to original * matrix. * DO 70 J = 1, N DO 60 I = 1, M C( I, J ) = BB( I + ( J - 1 )* $ LDB ) BB( I + ( J - 1 )*LDB ) = ALPHA* $ B( I, J ) 60 CONTINUE 70 CONTINUE * IF( LEFT )THEN CALL SMMCH( TRANSA, 'N', M, N, M, $ ONE, A, NMAX, C, NMAX, $ ZERO, B, NMAX, CT, G, $ BB, LDB, EPS, ERR, $ FATAL, NOUT, .FALSE. ) ELSE CALL SMMCH( 'N', TRANSA, M, N, N, $ ONE, C, NMAX, A, NMAX, $ ZERO, B, NMAX, CT, G, $ BB, LDB, EPS, ERR, $ FATAL, NOUT, .FALSE. ) END IF END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 150 END IF * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * 110 CONTINUE * 120 CONTINUE * 130 CONTINUE * 140 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 160 * 150 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME WRITE( NOUT, FMT = 9995 )NC, SNAME, SIDE, UPLO, TRANSA, DIAG, M, $ N, ALPHA, LDA, LDB * 160 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( 1X, I6, ': ', A6, '(', 4( '''', A1, ''',' ), 2( I3, ',' ), $ F4.1, ', A,', I3, ', B,', I3, ') .' ) 9994 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of SCHK3. * END SUBROUTINE SCHK4( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX, $ A, AA, AS, B, BB, BS, C, CC, CS, CT, G ) * * Tests SSYRK. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. REAL ZERO PARAMETER ( ZERO = 0.0 ) * .. Scalar Arguments .. REAL EPS, THRESH INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. REAL A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), B( NMAX, NMAX ), $ BB( NMAX*NMAX ), BET( NBET ), BS( NMAX*NMAX ), $ C( NMAX, NMAX ), CC( NMAX*NMAX ), $ CS( NMAX*NMAX ), CT( NMAX ), G( NMAX ) INTEGER IDIM( NIDIM ) * .. Local Scalars .. REAL ALPHA, ALS, BETA, BETS, ERR, ERRMAX INTEGER I, IA, IB, ICT, ICU, IK, IN, J, JC, JJ, K, KS, $ LAA, LCC, LDA, LDAS, LDC, LDCS, LJ, MA, N, NA, $ NARGS, NC, NS LOGICAL NULL, RESET, SAME, TRAN, UPPER CHARACTER*1 TRANS, TRANSS, UPLO, UPLOS CHARACTER*2 ICHU CHARACTER*3 ICHT * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LSE, LSERES EXTERNAL LSE, LSERES * .. External Subroutines .. EXTERNAL SMAKE, SMMCH, SSYRK * .. Intrinsic Functions .. INTRINSIC MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICHT/'NTC'/, ICHU/'UL'/ * .. Executable Statements .. * NARGS = 10 NC = 0 RESET = .TRUE. ERRMAX = ZERO * DO 100 IN = 1, NIDIM N = IDIM( IN ) * Set LDC to 1 more than minimum value if room. LDC = N IF( LDC.LT.NMAX ) $ LDC = LDC + 1 * Skip tests if not enough room. IF( LDC.GT.NMAX ) $ GO TO 100 LCC = LDC*N NULL = N.LE.0 * DO 90 IK = 1, NIDIM K = IDIM( IK ) * DO 80 ICT = 1, 3 TRANS = ICHT( ICT: ICT ) TRAN = TRANS.EQ.'T'.OR.TRANS.EQ.'C' IF( TRAN )THEN MA = K NA = N ELSE MA = N NA = K END IF * Set LDA to 1 more than minimum value if room. LDA = MA IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 80 LAA = LDA*NA * * Generate the matrix A. * CALL SMAKE( 'GE', ' ', ' ', MA, NA, A, NMAX, AA, LDA, $ RESET, ZERO ) * DO 70 ICU = 1, 2 UPLO = ICHU( ICU: ICU ) UPPER = UPLO.EQ.'U' * DO 60 IA = 1, NALF ALPHA = ALF( IA ) * DO 50 IB = 1, NBET BETA = BET( IB ) * * Generate the matrix C. * CALL SMAKE( 'SY', UPLO, ' ', N, N, C, NMAX, CC, $ LDC, RESET, ZERO ) * NC = NC + 1 * * Save every datum before calling the subroutine. * UPLOS = UPLO TRANSS = TRANS NS = N KS = K ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA BETS = BETA DO 20 I = 1, LCC CS( I ) = CC( I ) 20 CONTINUE LDCS = LDC * * Call the subroutine. * IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, UPLO, $ TRANS, N, K, ALPHA, LDA, BETA, LDC IF( REWI ) $ REWIND NTRA CALL SSYRK( UPLO, TRANS, N, K, ALPHA, AA, LDA, $ BETA, CC, LDC ) * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9993 ) FATAL = .TRUE. GO TO 120 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = UPLOS.EQ.UPLO ISAME( 2 ) = TRANSS.EQ.TRANS ISAME( 3 ) = NS.EQ.N ISAME( 4 ) = KS.EQ.K ISAME( 5 ) = ALS.EQ.ALPHA ISAME( 6 ) = LSE( AS, AA, LAA ) ISAME( 7 ) = LDAS.EQ.LDA ISAME( 8 ) = BETS.EQ.BETA IF( NULL )THEN ISAME( 9 ) = LSE( CS, CC, LCC ) ELSE ISAME( 9 ) = LSERES( 'SY', UPLO, N, N, CS, $ CC, LDC ) END IF ISAME( 10 ) = LDCS.EQ.LDC * * If data was incorrectly changed, report and * return. * SAME = .TRUE. DO 30 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 30 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 120 END IF * IF( .NOT.NULL )THEN * * Check the result column by column. * JC = 1 DO 40 J = 1, N IF( UPPER )THEN JJ = 1 LJ = J ELSE JJ = J LJ = N - J + 1 END IF IF( TRAN )THEN CALL SMMCH( 'T', 'N', LJ, 1, K, ALPHA, $ A( 1, JJ ), NMAX, $ A( 1, J ), NMAX, BETA, $ C( JJ, J ), NMAX, CT, G, $ CC( JC ), LDC, EPS, ERR, $ FATAL, NOUT, .TRUE. ) ELSE CALL SMMCH( 'N', 'T', LJ, 1, K, ALPHA, $ A( JJ, 1 ), NMAX, $ A( J, 1 ), NMAX, BETA, $ C( JJ, J ), NMAX, CT, G, $ CC( JC ), LDC, EPS, ERR, $ FATAL, NOUT, .TRUE. ) END IF IF( UPPER )THEN JC = JC + LDC ELSE JC = JC + LDC + 1 END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 110 40 CONTINUE END IF * 50 CONTINUE * 60 CONTINUE * 70 CONTINUE * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 130 * 110 CONTINUE IF( N.GT.1 ) $ WRITE( NOUT, FMT = 9995 )J * 120 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, TRANS, N, K, ALPHA, $ LDA, BETA, LDC * 130 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 ) 9994 FORMAT( 1X, I6, ': ', A6, '(', 2( '''', A1, ''',' ), 2( I3, ',' ), $ F4.1, ', A,', I3, ',', F4.1, ', C,', I3, ') .' ) 9993 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of SCHK4. * END SUBROUTINE SCHK5( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX, $ AB, AA, AS, BB, BS, C, CC, CS, CT, G, W ) * * Tests SSYR2K. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. REAL ZERO PARAMETER ( ZERO = 0.0 ) * .. Scalar Arguments .. REAL EPS, THRESH INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. REAL AA( NMAX*NMAX ), AB( 2*NMAX*NMAX ), $ ALF( NALF ), AS( NMAX*NMAX ), BB( NMAX*NMAX ), $ BET( NBET ), BS( NMAX*NMAX ), C( NMAX, NMAX ), $ CC( NMAX*NMAX ), CS( NMAX*NMAX ), CT( NMAX ), $ G( NMAX ), W( 2*NMAX ) INTEGER IDIM( NIDIM ) * .. Local Scalars .. REAL ALPHA, ALS, BETA, BETS, ERR, ERRMAX INTEGER I, IA, IB, ICT, ICU, IK, IN, J, JC, JJ, JJAB, $ K, KS, LAA, LBB, LCC, LDA, LDAS, LDB, LDBS, $ LDC, LDCS, LJ, MA, N, NA, NARGS, NC, NS LOGICAL NULL, RESET, SAME, TRAN, UPPER CHARACTER*1 TRANS, TRANSS, UPLO, UPLOS CHARACTER*2 ICHU CHARACTER*3 ICHT * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LSE, LSERES EXTERNAL LSE, LSERES * .. External Subroutines .. EXTERNAL SMAKE, SMMCH, SSYR2K * .. Intrinsic Functions .. INTRINSIC MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICHT/'NTC'/, ICHU/'UL'/ * .. Executable Statements .. * NARGS = 12 NC = 0 RESET = .TRUE. ERRMAX = ZERO * DO 130 IN = 1, NIDIM N = IDIM( IN ) * Set LDC to 1 more than minimum value if room. LDC = N IF( LDC.LT.NMAX ) $ LDC = LDC + 1 * Skip tests if not enough room. IF( LDC.GT.NMAX ) $ GO TO 130 LCC = LDC*N NULL = N.LE.0 * DO 120 IK = 1, NIDIM K = IDIM( IK ) * DO 110 ICT = 1, 3 TRANS = ICHT( ICT: ICT ) TRAN = TRANS.EQ.'T'.OR.TRANS.EQ.'C' IF( TRAN )THEN MA = K NA = N ELSE MA = N NA = K END IF * Set LDA to 1 more than minimum value if room. LDA = MA IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 110 LAA = LDA*NA * * Generate the matrix A. * IF( TRAN )THEN CALL SMAKE( 'GE', ' ', ' ', MA, NA, AB, 2*NMAX, AA, $ LDA, RESET, ZERO ) ELSE CALL SMAKE( 'GE', ' ', ' ', MA, NA, AB, NMAX, AA, LDA, $ RESET, ZERO ) END IF * * Generate the matrix B. * LDB = LDA LBB = LAA IF( TRAN )THEN CALL SMAKE( 'GE', ' ', ' ', MA, NA, AB( K + 1 ), $ 2*NMAX, BB, LDB, RESET, ZERO ) ELSE CALL SMAKE( 'GE', ' ', ' ', MA, NA, AB( K*NMAX + 1 ), $ NMAX, BB, LDB, RESET, ZERO ) END IF * DO 100 ICU = 1, 2 UPLO = ICHU( ICU: ICU ) UPPER = UPLO.EQ.'U' * DO 90 IA = 1, NALF ALPHA = ALF( IA ) * DO 80 IB = 1, NBET BETA = BET( IB ) * * Generate the matrix C. * CALL SMAKE( 'SY', UPLO, ' ', N, N, C, NMAX, CC, $ LDC, RESET, ZERO ) * NC = NC + 1 * * Save every datum before calling the subroutine. * UPLOS = UPLO TRANSS = TRANS NS = N KS = K ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LBB BS( I ) = BB( I ) 20 CONTINUE LDBS = LDB BETS = BETA DO 30 I = 1, LCC CS( I ) = CC( I ) 30 CONTINUE LDCS = LDC * * Call the subroutine. * IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, UPLO, $ TRANS, N, K, ALPHA, LDA, LDB, BETA, LDC IF( REWI ) $ REWIND NTRA CALL SSYR2K( UPLO, TRANS, N, K, ALPHA, AA, LDA, $ BB, LDB, BETA, CC, LDC ) * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9993 ) FATAL = .TRUE. GO TO 150 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = UPLOS.EQ.UPLO ISAME( 2 ) = TRANSS.EQ.TRANS ISAME( 3 ) = NS.EQ.N ISAME( 4 ) = KS.EQ.K ISAME( 5 ) = ALS.EQ.ALPHA ISAME( 6 ) = LSE( AS, AA, LAA ) ISAME( 7 ) = LDAS.EQ.LDA ISAME( 8 ) = LSE( BS, BB, LBB ) ISAME( 9 ) = LDBS.EQ.LDB ISAME( 10 ) = BETS.EQ.BETA IF( NULL )THEN ISAME( 11 ) = LSE( CS, CC, LCC ) ELSE ISAME( 11 ) = LSERES( 'SY', UPLO, N, N, CS, $ CC, LDC ) END IF ISAME( 12 ) = LDCS.EQ.LDC * * If data was incorrectly changed, report and * return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 150 END IF * IF( .NOT.NULL )THEN * * Check the result column by column. * JJAB = 1 JC = 1 DO 70 J = 1, N IF( UPPER )THEN JJ = 1 LJ = J ELSE JJ = J LJ = N - J + 1 END IF IF( TRAN )THEN DO 50 I = 1, K W( I ) = AB( ( J - 1 )*2*NMAX + K + $ I ) W( K + I ) = AB( ( J - 1 )*2*NMAX + $ I ) 50 CONTINUE CALL SMMCH( 'T', 'N', LJ, 1, 2*K, $ ALPHA, AB( JJAB ), 2*NMAX, $ W, 2*NMAX, BETA, $ C( JJ, J ), NMAX, CT, G, $ CC( JC ), LDC, EPS, ERR, $ FATAL, NOUT, .TRUE. ) ELSE DO 60 I = 1, K W( I ) = AB( ( K + I - 1 )*NMAX + $ J ) W( K + I ) = AB( ( I - 1 )*NMAX + $ J ) 60 CONTINUE CALL SMMCH( 'N', 'N', LJ, 1, 2*K, $ ALPHA, AB( JJ ), NMAX, W, $ 2*NMAX, BETA, C( JJ, J ), $ NMAX, CT, G, CC( JC ), LDC, $ EPS, ERR, FATAL, NOUT, $ .TRUE. ) END IF IF( UPPER )THEN JC = JC + LDC ELSE JC = JC + LDC + 1 IF( TRAN ) $ JJAB = JJAB + 2*NMAX END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 140 70 CONTINUE END IF * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * 110 CONTINUE * 120 CONTINUE * 130 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 160 * 140 CONTINUE IF( N.GT.1 ) $ WRITE( NOUT, FMT = 9995 )J * 150 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, TRANS, N, K, ALPHA, $ LDA, LDB, BETA, LDC * 160 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 ) 9994 FORMAT( 1X, I6, ': ', A6, '(', 2( '''', A1, ''',' ), 2( I3, ',' ), $ F4.1, ', A,', I3, ', B,', I3, ',', F4.1, ', C,', I3, ') ', $ ' .' ) 9993 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of SCHK5. * END SUBROUTINE SCHKE( ISNUM, SRNAMT, NOUT ) * * Tests the error exits from the Level 3 Blas. * Requires a special version of the error-handling routine XERBLA. * ALPHA, BETA, A, B and C should not need to be defined. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. INTEGER ISNUM, NOUT CHARACTER*6 SRNAMT * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Local Scalars .. REAL ALPHA, BETA * .. Local Arrays .. REAL A( 2, 1 ), B( 2, 1 ), C( 2, 1 ) * .. External Subroutines .. EXTERNAL CHKXER, SGEMM, SSYMM, SSYR2K, SSYRK, STRMM, $ STRSM * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Executable Statements .. * OK is set to .FALSE. by the special version of XERBLA or by CHKXER * if anything is wrong. OK = .TRUE. * LERR is set to .TRUE. by the special version of XERBLA each time * it is called, and is then tested and re-set by CHKXER. LERR = .FALSE. GO TO ( 10, 20, 30, 40, 50, 60 )ISNUM 10 INFOT = 1 CALL SGEMM( '/', 'N', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 1 CALL SGEMM( '/', 'T', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SGEMM( 'N', '/', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SGEMM( 'T', '/', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SGEMM( 'N', 'N', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SGEMM( 'N', 'T', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SGEMM( 'T', 'N', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SGEMM( 'T', 'T', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL SGEMM( 'N', 'N', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL SGEMM( 'N', 'T', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL SGEMM( 'T', 'N', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL SGEMM( 'T', 'T', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL SGEMM( 'N', 'N', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL SGEMM( 'N', 'T', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL SGEMM( 'T', 'N', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL SGEMM( 'T', 'T', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL SGEMM( 'N', 'N', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL SGEMM( 'N', 'T', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL SGEMM( 'T', 'N', 0, 0, 2, ALPHA, A, 1, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL SGEMM( 'T', 'T', 0, 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL SGEMM( 'N', 'N', 0, 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL SGEMM( 'T', 'N', 0, 0, 2, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL SGEMM( 'N', 'T', 0, 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL SGEMM( 'T', 'T', 0, 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL SGEMM( 'N', 'N', 2, 0, 0, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL SGEMM( 'N', 'T', 2, 0, 0, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL SGEMM( 'T', 'N', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL SGEMM( 'T', 'T', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 70 20 INFOT = 1 CALL SSYMM( '/', 'U', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SSYMM( 'L', '/', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SSYMM( 'L', 'U', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SSYMM( 'R', 'U', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SSYMM( 'L', 'L', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SSYMM( 'R', 'L', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL SSYMM( 'L', 'U', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL SSYMM( 'R', 'U', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL SSYMM( 'L', 'L', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL SSYMM( 'R', 'L', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL SSYMM( 'L', 'U', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL SSYMM( 'R', 'U', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL SSYMM( 'L', 'L', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL SSYMM( 'R', 'L', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL SSYMM( 'L', 'U', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL SSYMM( 'R', 'U', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL SSYMM( 'L', 'L', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL SSYMM( 'R', 'L', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL SSYMM( 'L', 'U', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL SSYMM( 'R', 'U', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL SSYMM( 'L', 'L', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL SSYMM( 'R', 'L', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 70 30 INFOT = 1 CALL STRMM( '/', 'U', 'N', 'N', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL STRMM( 'L', '/', 'N', 'N', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL STRMM( 'L', 'U', '/', 'N', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL STRMM( 'L', 'U', 'N', '/', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL STRMM( 'L', 'U', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL STRMM( 'L', 'U', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL STRMM( 'R', 'U', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL STRMM( 'R', 'U', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL STRMM( 'L', 'L', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL STRMM( 'L', 'L', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL STRMM( 'R', 'L', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL STRMM( 'R', 'L', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL STRMM( 'L', 'U', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL STRMM( 'L', 'U', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL STRMM( 'R', 'U', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL STRMM( 'R', 'U', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL STRMM( 'L', 'L', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL STRMM( 'L', 'L', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL STRMM( 'R', 'L', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL STRMM( 'R', 'L', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL STRMM( 'L', 'U', 'N', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL STRMM( 'L', 'U', 'T', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL STRMM( 'R', 'U', 'N', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL STRMM( 'R', 'U', 'T', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL STRMM( 'L', 'L', 'N', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL STRMM( 'L', 'L', 'T', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL STRMM( 'R', 'L', 'N', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL STRMM( 'R', 'L', 'T', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL STRMM( 'L', 'U', 'N', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL STRMM( 'L', 'U', 'T', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL STRMM( 'R', 'U', 'N', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL STRMM( 'R', 'U', 'T', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL STRMM( 'L', 'L', 'N', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL STRMM( 'L', 'L', 'T', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL STRMM( 'R', 'L', 'N', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL STRMM( 'R', 'L', 'T', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 70 40 INFOT = 1 CALL STRSM( '/', 'U', 'N', 'N', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL STRSM( 'L', '/', 'N', 'N', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL STRSM( 'L', 'U', '/', 'N', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL STRSM( 'L', 'U', 'N', '/', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL STRSM( 'L', 'U', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL STRSM( 'L', 'U', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL STRSM( 'R', 'U', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL STRSM( 'R', 'U', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL STRSM( 'L', 'L', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL STRSM( 'L', 'L', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL STRSM( 'R', 'L', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL STRSM( 'R', 'L', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL STRSM( 'L', 'U', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL STRSM( 'L', 'U', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL STRSM( 'R', 'U', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL STRSM( 'R', 'U', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL STRSM( 'L', 'L', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL STRSM( 'L', 'L', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL STRSM( 'R', 'L', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL STRSM( 'R', 'L', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL STRSM( 'L', 'U', 'N', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL STRSM( 'L', 'U', 'T', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL STRSM( 'R', 'U', 'N', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL STRSM( 'R', 'U', 'T', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL STRSM( 'L', 'L', 'N', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL STRSM( 'L', 'L', 'T', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL STRSM( 'R', 'L', 'N', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL STRSM( 'R', 'L', 'T', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL STRSM( 'L', 'U', 'N', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL STRSM( 'L', 'U', 'T', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL STRSM( 'R', 'U', 'N', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL STRSM( 'R', 'U', 'T', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL STRSM( 'L', 'L', 'N', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL STRSM( 'L', 'L', 'T', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL STRSM( 'R', 'L', 'N', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL STRSM( 'R', 'L', 'T', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 70 50 INFOT = 1 CALL SSYRK( '/', 'N', 0, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SSYRK( 'U', '/', 0, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SSYRK( 'U', 'N', -1, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SSYRK( 'U', 'T', -1, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SSYRK( 'L', 'N', -1, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SSYRK( 'L', 'T', -1, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL SSYRK( 'U', 'N', 0, -1, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL SSYRK( 'U', 'T', 0, -1, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL SSYRK( 'L', 'N', 0, -1, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL SSYRK( 'L', 'T', 0, -1, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL SSYRK( 'U', 'N', 2, 0, ALPHA, A, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL SSYRK( 'U', 'T', 0, 2, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL SSYRK( 'L', 'N', 2, 0, ALPHA, A, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL SSYRK( 'L', 'T', 0, 2, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL SSYRK( 'U', 'N', 2, 0, ALPHA, A, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL SSYRK( 'U', 'T', 2, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL SSYRK( 'L', 'N', 2, 0, ALPHA, A, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL SSYRK( 'L', 'T', 2, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 70 60 INFOT = 1 CALL SSYR2K( '/', 'N', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SSYR2K( 'U', '/', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SSYR2K( 'U', 'N', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SSYR2K( 'U', 'T', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SSYR2K( 'L', 'N', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SSYR2K( 'L', 'T', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL SSYR2K( 'U', 'N', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL SSYR2K( 'U', 'T', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL SSYR2K( 'L', 'N', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL SSYR2K( 'L', 'T', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL SSYR2K( 'U', 'N', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL SSYR2K( 'U', 'T', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL SSYR2K( 'L', 'N', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL SSYR2K( 'L', 'T', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL SSYR2K( 'U', 'N', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL SSYR2K( 'U', 'T', 0, 2, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL SSYR2K( 'L', 'N', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL SSYR2K( 'L', 'T', 0, 2, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL SSYR2K( 'U', 'N', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL SSYR2K( 'U', 'T', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL SSYR2K( 'L', 'N', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL SSYR2K( 'L', 'T', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) * 70 IF( OK )THEN WRITE( NOUT, FMT = 9999 )SRNAMT ELSE WRITE( NOUT, FMT = 9998 )SRNAMT END IF RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE TESTS OF ERROR-EXITS' ) 9998 FORMAT( ' ******* ', A6, ' FAILED THE TESTS OF ERROR-EXITS *****', $ '**' ) * * End of SCHKE. * END SUBROUTINE SMAKE( TYPE, UPLO, DIAG, M, N, A, NMAX, AA, LDA, RESET, $ TRANSL ) * * Generates values for an M by N matrix A. * Stores the values in the array AA in the data structure required * by the routine, with unwanted elements set to rogue value. * * TYPE is 'GE', 'SY' or 'TR'. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0, ONE = 1.0 ) REAL ROGUE PARAMETER ( ROGUE = -1.0E10 ) * .. Scalar Arguments .. REAL TRANSL INTEGER LDA, M, N, NMAX LOGICAL RESET CHARACTER*1 DIAG, UPLO CHARACTER*2 TYPE * .. Array Arguments .. REAL A( NMAX, * ), AA( * ) * .. Local Scalars .. INTEGER I, IBEG, IEND, J LOGICAL GEN, LOWER, SYM, TRI, UNIT, UPPER * .. External Functions .. REAL SBEG EXTERNAL SBEG * .. Executable Statements .. GEN = TYPE.EQ.'GE' SYM = TYPE.EQ.'SY' TRI = TYPE.EQ.'TR' UPPER = ( SYM.OR.TRI ).AND.UPLO.EQ.'U' LOWER = ( SYM.OR.TRI ).AND.UPLO.EQ.'L' UNIT = TRI.AND.DIAG.EQ.'U' * * Generate data in array A. * DO 20 J = 1, N DO 10 I = 1, M IF( GEN.OR.( UPPER.AND.I.LE.J ).OR.( LOWER.AND.I.GE.J ) ) $ THEN A( I, J ) = SBEG( RESET ) + TRANSL IF( I.NE.J )THEN * Set some elements to zero IF( N.GT.3.AND.J.EQ.N/2 ) $ A( I, J ) = ZERO IF( SYM )THEN A( J, I ) = A( I, J ) ELSE IF( TRI )THEN A( J, I ) = ZERO END IF END IF END IF 10 CONTINUE IF( TRI ) $ A( J, J ) = A( J, J ) + ONE IF( UNIT ) $ A( J, J ) = ONE 20 CONTINUE * * Store elements in array AS in data structure required by routine. * IF( TYPE.EQ.'GE' )THEN DO 50 J = 1, N DO 30 I = 1, M AA( I + ( J - 1 )*LDA ) = A( I, J ) 30 CONTINUE DO 40 I = M + 1, LDA AA( I + ( J - 1 )*LDA ) = ROGUE 40 CONTINUE 50 CONTINUE ELSE IF( TYPE.EQ.'SY'.OR.TYPE.EQ.'TR' )THEN DO 90 J = 1, N IF( UPPER )THEN IBEG = 1 IF( UNIT )THEN IEND = J - 1 ELSE IEND = J END IF ELSE IF( UNIT )THEN IBEG = J + 1 ELSE IBEG = J END IF IEND = N END IF DO 60 I = 1, IBEG - 1 AA( I + ( J - 1 )*LDA ) = ROGUE 60 CONTINUE DO 70 I = IBEG, IEND AA( I + ( J - 1 )*LDA ) = A( I, J ) 70 CONTINUE DO 80 I = IEND + 1, LDA AA( I + ( J - 1 )*LDA ) = ROGUE 80 CONTINUE 90 CONTINUE END IF RETURN * * End of SMAKE. * END SUBROUTINE SMMCH( TRANSA, TRANSB, M, N, KK, ALPHA, A, LDA, B, LDB, $ BETA, C, LDC, CT, G, CC, LDCC, EPS, ERR, FATAL, $ NOUT, MV ) * * Checks the results of the computational tests. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0, ONE = 1.0 ) * .. Scalar Arguments .. REAL ALPHA, BETA, EPS, ERR INTEGER KK, LDA, LDB, LDC, LDCC, M, N, NOUT LOGICAL FATAL, MV CHARACTER*1 TRANSA, TRANSB * .. Array Arguments .. REAL A( LDA, * ), B( LDB, * ), C( LDC, * ), $ CC( LDCC, * ), CT( * ), G( * ) * .. Local Scalars .. REAL ERRI INTEGER I, J, K LOGICAL TRANA, TRANB * .. Intrinsic Functions .. INTRINSIC ABS, MAX, SQRT * .. Executable Statements .. TRANA = TRANSA.EQ.'T'.OR.TRANSA.EQ.'C' TRANB = TRANSB.EQ.'T'.OR.TRANSB.EQ.'C' * * Compute expected result, one column at a time, in CT using data * in A, B and C. * Compute gauges in G. * DO 120 J = 1, N * DO 10 I = 1, M CT( I ) = ZERO G( I ) = ZERO 10 CONTINUE IF( .NOT.TRANA.AND..NOT.TRANB )THEN DO 30 K = 1, KK DO 20 I = 1, M CT( I ) = CT( I ) + A( I, K )*B( K, J ) G( I ) = G( I ) + ABS( A( I, K ) )*ABS( B( K, J ) ) 20 CONTINUE 30 CONTINUE ELSE IF( TRANA.AND..NOT.TRANB )THEN DO 50 K = 1, KK DO 40 I = 1, M CT( I ) = CT( I ) + A( K, I )*B( K, J ) G( I ) = G( I ) + ABS( A( K, I ) )*ABS( B( K, J ) ) 40 CONTINUE 50 CONTINUE ELSE IF( .NOT.TRANA.AND.TRANB )THEN DO 70 K = 1, KK DO 60 I = 1, M CT( I ) = CT( I ) + A( I, K )*B( J, K ) G( I ) = G( I ) + ABS( A( I, K ) )*ABS( B( J, K ) ) 60 CONTINUE 70 CONTINUE ELSE IF( TRANA.AND.TRANB )THEN DO 90 K = 1, KK DO 80 I = 1, M CT( I ) = CT( I ) + A( K, I )*B( J, K ) G( I ) = G( I ) + ABS( A( K, I ) )*ABS( B( J, K ) ) 80 CONTINUE 90 CONTINUE END IF DO 100 I = 1, M CT( I ) = ALPHA*CT( I ) + BETA*C( I, J ) G( I ) = ABS( ALPHA )*G( I ) + ABS( BETA )*ABS( C( I, J ) ) 100 CONTINUE * * Compute the error ratio for this result. * ERR = ZERO DO 110 I = 1, M ERRI = ABS( CT( I ) - CC( I, J ) )/EPS IF( G( I ).NE.ZERO ) $ ERRI = ERRI/G( I ) ERR = MAX( ERR, ERRI ) IF( ERR*SQRT( EPS ).GE.ONE ) $ GO TO 130 110 CONTINUE * 120 CONTINUE * * If the loop completes, all results are at least half accurate. GO TO 150 * * Report fatal error. * 130 FATAL = .TRUE. WRITE( NOUT, FMT = 9999 ) DO 140 I = 1, M IF( MV )THEN WRITE( NOUT, FMT = 9998 )I, CT( I ), CC( I, J ) ELSE WRITE( NOUT, FMT = 9998 )I, CC( I, J ), CT( I ) END IF 140 CONTINUE IF( N.GT.1 ) $ WRITE( NOUT, FMT = 9997 )J * 150 CONTINUE RETURN * 9999 FORMAT( ' ******* FATAL ERROR - COMPUTED RESULT IS LESS THAN HAL', $ 'F ACCURATE *******', /' EXPECTED RESULT COMPU', $ 'TED RESULT' ) 9998 FORMAT( 1X, I7, 2G18.6 ) 9997 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 ) * * End of SMMCH. * END LOGICAL FUNCTION LSE( RI, RJ, LR ) * * Tests if two arrays are identical. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. INTEGER LR * .. Array Arguments .. REAL RI( * ), RJ( * ) * .. Local Scalars .. INTEGER I * .. Executable Statements .. DO 10 I = 1, LR IF( RI( I ).NE.RJ( I ) ) $ GO TO 20 10 CONTINUE LSE = .TRUE. GO TO 30 20 CONTINUE LSE = .FALSE. 30 RETURN * * End of LSE. * END LOGICAL FUNCTION LSERES( TYPE, UPLO, M, N, AA, AS, LDA ) * * Tests if selected elements in two arrays are equal. * * TYPE is 'GE' or 'SY'. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. INTEGER LDA, M, N CHARACTER*1 UPLO CHARACTER*2 TYPE * .. Array Arguments .. REAL AA( LDA, * ), AS( LDA, * ) * .. Local Scalars .. INTEGER I, IBEG, IEND, J LOGICAL UPPER * .. Executable Statements .. UPPER = UPLO.EQ.'U' IF( TYPE.EQ.'GE' )THEN DO 20 J = 1, N DO 10 I = M + 1, LDA IF( AA( I, J ).NE.AS( I, J ) ) $ GO TO 70 10 CONTINUE 20 CONTINUE ELSE IF( TYPE.EQ.'SY' )THEN DO 50 J = 1, N IF( UPPER )THEN IBEG = 1 IEND = J ELSE IBEG = J IEND = N END IF DO 30 I = 1, IBEG - 1 IF( AA( I, J ).NE.AS( I, J ) ) $ GO TO 70 30 CONTINUE DO 40 I = IEND + 1, LDA IF( AA( I, J ).NE.AS( I, J ) ) $ GO TO 70 40 CONTINUE 50 CONTINUE END IF * 60 CONTINUE LSERES = .TRUE. GO TO 80 70 CONTINUE LSERES = .FALSE. 80 RETURN * * End of LSERES. * END REAL FUNCTION SBEG( RESET ) * * Generates random numbers uniformly distributed between -0.5 and 0.5. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. LOGICAL RESET * .. Local Scalars .. INTEGER I, IC, MI * .. Save statement .. SAVE I, IC, MI * .. Executable Statements .. IF( RESET )THEN * Initialize local variables. MI = 891 I = 7 IC = 0 RESET = .FALSE. END IF * * The sequence of values of I is bounded between 1 and 999. * If initial I = 1,2,3,6,7 or 9, the period will be 50. * If initial I = 4 or 8, the period will be 25. * If initial I = 5, the period will be 10. * IC is used to break up the period by skipping 1 value of I in 6. * IC = IC + 1 10 I = I*MI I = I - 1000*( I/1000 ) IF( IC.GE.5 )THEN IC = 0 GO TO 10 END IF SBEG = ( I - 500 )/1001.0 RETURN * * End of SBEG. * END REAL FUNCTION SDIFF( X, Y ) * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. REAL X, Y * .. Executable Statements .. SDIFF = X - Y RETURN * * End of SDIFF. * END SUBROUTINE CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) * * Tests whether XERBLA has detected an error when it should. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. INTEGER INFOT, NOUT LOGICAL LERR, OK CHARACTER*6 SRNAMT * .. Executable Statements .. IF( .NOT.LERR )THEN WRITE( NOUT, FMT = 9999 )INFOT, SRNAMT OK = .FALSE. END IF LERR = .FALSE. RETURN * 9999 FORMAT( ' ***** ILLEGAL VALUE OF PARAMETER NUMBER ', I2, ' NOT D', $ 'ETECTED BY ', A6, ' *****' ) * * End of CHKXER. * END SUBROUTINE XERBLA( SRNAME, INFO ) * * This is a special version of XERBLA to be used only as part of * the test program for testing error exits from the Level 3 BLAS * routines. * * XERBLA is an error handler for the Level 3 BLAS routines. * * It is called by the Level 3 BLAS routines if an input parameter is * invalid. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. INTEGER INFO CHARACTER*6 SRNAME * .. Scalars in Common .. INTEGER INFOT, NOUT LOGICAL LERR, OK CHARACTER*6 SRNAMT * .. Common blocks .. COMMON /INFOC/INFOT, NOUT, OK, LERR COMMON /SRNAMC/SRNAMT * .. Executable Statements .. LERR = .TRUE. IF( INFO.NE.INFOT )THEN IF( INFOT.NE.0 )THEN WRITE( NOUT, FMT = 9999 )INFO, INFOT ELSE WRITE( NOUT, FMT = 9997 )INFO END IF OK = .FALSE. END IF IF( SRNAME.NE.SRNAMT )THEN WRITE( NOUT, FMT = 9998 )SRNAME, SRNAMT OK = .FALSE. END IF RETURN * 9999 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6, ' INSTEAD', $ ' OF ', I2, ' *******' ) 9998 FORMAT( ' ******* XERBLA WAS CALLED WITH SRNAME = ', A6, ' INSTE', $ 'AD OF ', A6, ' *******' ) 9997 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6, $ ' *******' ) * * End of XERBLA * END
gpl-2.0
jonycgn/scipy
scipy/special/cdflib/algdiv.f
151
1850
DOUBLE PRECISION FUNCTION algdiv(a,b) C----------------------------------------------------------------------- C C COMPUTATION OF LN(GAMMA(B)/GAMMA(A+B)) WHEN B .GE. 8 C C -------- C C IN THIS ALGORITHM, DEL(X) IS THE FUNCTION DEFINED BY C LN(GAMMA(X)) = (X - 0.5)*LN(X) - X + 0.5*LN(2*PI) + DEL(X). C C----------------------------------------------------------------------- C .. Scalar Arguments .. DOUBLE PRECISION a,b C .. C .. Local Scalars .. DOUBLE PRECISION c,c0,c1,c2,c3,c4,c5,d,h,s11,s3,s5,s7,s9,t,u,v,w, + x,x2 C .. C .. External Functions .. DOUBLE PRECISION alnrel EXTERNAL alnrel C .. C .. Intrinsic Functions .. INTRINSIC dlog C .. C .. Data statements .. DATA c0/.833333333333333D-01/,c1/-.277777777760991D-02/, + c2/.793650666825390D-03/,c3/-.595202931351870D-03/, + c4/.837308034031215D-03/,c5/-.165322962780713D-02/ C .. C .. Executable Statements .. C------------------------ IF (a.LE.b) GO TO 10 h = b/a c = 1.0D0/ (1.0D0+h) x = h/ (1.0D0+h) d = a + (b-0.5D0) GO TO 20 10 h = a/b c = h/ (1.0D0+h) x = 1.0D0/ (1.0D0+h) d = b + (a-0.5D0) C C SET SN = (1 - X**N)/(1 - X) C 20 x2 = x*x s3 = 1.0D0 + (x+x2) s5 = 1.0D0 + (x+x2*s3) s7 = 1.0D0 + (x+x2*s5) s9 = 1.0D0 + (x+x2*s7) s11 = 1.0D0 + (x+x2*s9) C C SET W = DEL(B) - DEL(A + B) C t = (1.0D0/b)**2 w = ((((c5*s11*t+c4*s9)*t+c3*s7)*t+c2*s5)*t+c1*s3)*t + c0 w = w* (c/b) C C COMBINE THE RESULTS C u = d*alnrel(a/b) v = a* (dlog(b)-1.0D0) IF (u.LE.v) GO TO 30 algdiv = (w-v) - u RETURN 30 algdiv = (w-u) - v RETURN END
bsd-3-clause
rmcgibbo/ambermini
lapack/zlarf.f
5
4578
SUBROUTINE ZLARF( SIDE, M, N, V, INCV, TAU, C, LDC, WORK ) IMPLICIT NONE * * -- LAPACK auxiliary routine (version 3.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2006 * * .. Scalar Arguments .. CHARACTER SIDE INTEGER INCV, LDC, M, N COMPLEX*16 TAU * .. * .. Array Arguments .. COMPLEX*16 C( LDC, * ), V( * ), WORK( * ) * .. * * Purpose * ======= * * ZLARF applies a complex elementary reflector H to a complex M-by-N * matrix C, from either the left or the right. H is represented in the * form * * H = I - tau * v * v' * * where tau is a complex scalar and v is a complex vector. * * If tau = 0, then H is taken to be the unit matrix. * * To apply H' (the conjugate transpose of H), supply conjg(tau) instead * tau. * * Arguments * ========= * * SIDE (input) CHARACTER*1 * = 'L': form H * C * = 'R': form C * H * * M (input) INTEGER * The number of rows of the matrix C. * * N (input) INTEGER * The number of columns of the matrix C. * * V (input) COMPLEX*16 array, dimension * (1 + (M-1)*abs(INCV)) if SIDE = 'L' * or (1 + (N-1)*abs(INCV)) if SIDE = 'R' * The vector v in the representation of H. V is not used if * TAU = 0. * * INCV (input) INTEGER * The increment between elements of v. INCV <> 0. * * TAU (input) COMPLEX*16 * The value tau in the representation of H. * * C (input/output) COMPLEX*16 array, dimension (LDC,N) * On entry, the M-by-N matrix C. * On exit, C is overwritten by the matrix H * C if SIDE = 'L', * or C * H if SIDE = 'R'. * * LDC (input) INTEGER * The leading dimension of the array C. LDC >= max(1,M). * * WORK (workspace) COMPLEX*16 array, dimension * (N) if SIDE = 'L' * or (M) if SIDE = 'R' * * ===================================================================== * * .. Parameters .. COMPLEX*16 ONE, ZERO PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ), $ ZERO = ( 0.0D+0, 0.0D+0 ) ) * .. * .. Local Scalars .. LOGICAL APPLYLEFT INTEGER I, LASTV, LASTC * .. * .. External Subroutines .. EXTERNAL ZGEMV, ZGERC * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAZLR, ILAZLC EXTERNAL LSAME, ILAZLR, ILAZLC * .. * .. Executable Statements .. * APPLYLEFT = LSAME( SIDE, 'L' ) LASTV = 0 LASTC = 0 IF( TAU.NE.ZERO ) THEN ! Set up variables for scanning V. LASTV begins pointing to the end ! of V. IF( APPLYLEFT ) THEN LASTV = M ELSE LASTV = N END IF IF( INCV.GT.0 ) THEN I = 1 + (LASTV-1) * INCV ELSE I = 1 END IF ! Look for the last non-zero row in V. DO WHILE( LASTV.GT.0 .AND. V( I ).EQ.ZERO ) LASTV = LASTV - 1 I = I - INCV END DO IF( APPLYLEFT ) THEN ! Scan for the last non-zero column in C(1:lastv,:). LASTC = ILAZLC(LASTV, N, C, LDC) ELSE ! Scan for the last non-zero row in C(:,1:lastv). LASTC = ILAZLR(M, LASTV, C, LDC) END IF END IF ! Note that lastc.eq.0 renders the BLAS operations null; no special ! case is needed at this level. IF( APPLYLEFT ) THEN * * Form H * C * IF( LASTV.GT.0 ) THEN * * w(1:lastc,1) := C(1:lastv,1:lastc)' * v(1:lastv,1) * CALL ZGEMV( 'Conjugate transpose', LASTV, LASTC, ONE, $ C, LDC, V, INCV, ZERO, WORK, 1 ) * * C(1:lastv,1:lastc) := C(...) - v(1:lastv,1) * w(1:lastc,1)' * CALL ZGERC( LASTV, LASTC, -TAU, V, INCV, WORK, 1, C, LDC ) END IF ELSE * * Form C * H * IF( LASTV.GT.0 ) THEN * * w(1:lastc,1) := C(1:lastc,1:lastv) * v(1:lastv,1) * CALL ZGEMV( 'No transpose', LASTC, LASTV, ONE, C, LDC, $ V, INCV, ZERO, WORK, 1 ) * * C(1:lastc,1:lastv) := C(...) - w(1:lastc,1) * v(1:lastv,1)' * CALL ZGERC( LASTC, LASTV, -TAU, WORK, 1, V, INCV, C, LDC ) END IF END IF RETURN * * End of ZLARF * END
gpl-3.0
PrasadG193/gcc_gimple_fe
gcc/testsuite/gfortran.dg/no_arg_check_3.f90
96
3578
! { dg-do compile } ! { dg-options "-fcoarray=single" } ! ! PR fortran/39505 ! ! Test NO_ARG_CHECK ! Copied from assumed_type_2.f90 ! subroutine one(a) ! { dg-error "may not have the ALLOCATABLE, CODIMENSION, POINTER or VALUE attribute" } !GCC$ attributes NO_ARG_CHECK :: a integer, value :: a end subroutine one subroutine two(a) ! { dg-error "may not have the ALLOCATABLE, CODIMENSION, POINTER or VALUE attribute" } !GCC$ attributes NO_ARG_CHECK :: a integer, pointer :: a end subroutine two subroutine three(a) ! { dg-error "may not have the ALLOCATABLE, CODIMENSION, POINTER or VALUE attribute" } !GCC$ attributes NO_ARG_CHECK :: a integer, allocatable :: a end subroutine three subroutine four(a) ! { dg-error "may not have the ALLOCATABLE, CODIMENSION, POINTER or VALUE attribute" } !GCC$ attributes NO_ARG_CHECK :: a integer :: a[*] end subroutine four subroutine five(a) ! { dg-error "with NO_ARG_CHECK attribute shall either be a scalar or an assumed-size array" } !GCC$ attributes NO_ARG_CHECK :: a integer :: a(3) end subroutine five subroutine six() !GCC$ attributes NO_ARG_CHECK :: nodum ! { dg-error "with NO_ARG_CHECK attribute shall be a dummy argument" } integer :: nodum end subroutine six subroutine seven(y) !GCC$ attributes NO_ARG_CHECK :: y integer :: y(*) call a7(y(3:5)) ! { dg-error "with NO_ARG_CHECK attribute shall not have a subobject reference" } contains subroutine a7(x) !GCC$ attributes NO_ARG_CHECK :: x integer :: x(*) end subroutine a7 end subroutine seven subroutine nine() interface one subroutine okay(x) !GCC$ attributes NO_ARG_CHECK :: x integer :: x end subroutine okay end interface interface two subroutine ambig1(x) !GCC$ attributes NO_ARG_CHECK :: x integer :: x end subroutine ambig1 subroutine ambig2(x) !GCC$ attributes NO_ARG_CHECK :: x integer :: x(*) end subroutine ambig2 ! { dg-error "Ambiguous interfaces 'ambig2' and 'ambig1' in generic interface 'two'" } end interface interface three subroutine ambig3(x) !GCC$ attributes NO_ARG_CHECK :: x integer :: x end subroutine ambig3 subroutine ambig4(x) integer :: x end subroutine ambig4 ! { dg-error "Ambiguous interfaces 'ambig4' and 'ambig3' in generic interface 'three'" } end interface end subroutine nine subroutine ten() interface subroutine bar() end subroutine end interface type t contains procedure, nopass :: proc => bar end type type(t) :: xx call sub(xx) ! { dg-error "is of derived type with type-bound or FINAL procedures" } contains subroutine sub(a) !GCC$ attributes NO_ARG_CHECK :: a integer :: a end subroutine sub end subroutine ten subroutine eleven(x) external bar !GCC$ attributes NO_ARG_CHECK :: x integer :: x call bar(x) ! { dg-error "Assumed-type argument x at .1. requires an explicit interface" } end subroutine eleven subroutine twelf(x) !GCC$ attributes NO_ARG_CHECK :: x integer :: x call bar(x) ! { dg-error "Type mismatch in argument" } contains subroutine bar(x) integer :: x end subroutine bar end subroutine twelf subroutine thirteen(x, y) !GCC$ attributes NO_ARG_CHECK :: x integer :: x integer :: y(:) print *, ubound(y, dim=x) ! { dg-error "Variable with NO_ARG_CHECK attribute at .1. is only permitted as argument to the intrinsic functions C_LOC and PRESENT" } end subroutine thirteen subroutine fourteen(x) !GCC$ attributes NO_ARG_CHECK :: x integer :: x x = x ! { dg-error "with NO_ARG_CHECK attribute may only be used as actual argument" } end subroutine fourteen
gpl-2.0
rmcgibbo/ambermini
lapack/dsytrf.f
6
9292
SUBROUTINE DSYTRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) * * -- LAPACK routine (version 3.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2006 * * .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, LDA, LWORK, N * .. * .. Array Arguments .. INTEGER IPIV( * ) DOUBLE PRECISION A( LDA, * ), WORK( * ) * .. * * Purpose * ======= * * DSYTRF computes the factorization of a real symmetric matrix A using * the Bunch-Kaufman diagonal pivoting method. The form of the * factorization is * * A = U*D*U**T or A = L*D*L**T * * where U (or L) is a product of permutation and unit upper (lower) * triangular matrices, and D is symmetric and block diagonal with * 1-by-1 and 2-by-2 diagonal blocks. * * This is the blocked version of the algorithm, calling Level 3 BLAS. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * = 'U': Upper triangle of A is stored; * = 'L': Lower triangle of A is stored. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * A (input/output) DOUBLE PRECISION array, dimension (LDA,N) * On entry, the symmetric matrix A. If UPLO = 'U', the leading * N-by-N upper triangular part of A contains the upper * triangular part of the matrix A, and the strictly lower * triangular part of A is not referenced. If UPLO = 'L', the * leading N-by-N lower triangular part of A contains the lower * triangular part of the matrix A, and the strictly upper * triangular part of A is not referenced. * * On exit, the block diagonal matrix D and the multipliers used * to obtain the factor U or L (see below for further details). * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * IPIV (output) INTEGER array, dimension (N) * Details of the interchanges and the block structure of D. * If IPIV(k) > 0, then rows and columns k and IPIV(k) were * interchanged and D(k,k) is a 1-by-1 diagonal block. * If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and * columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) * is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = * IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were * interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. * * WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) * On exit, if INFO = 0, WORK(1) returns the optimal LWORK. * * LWORK (input) INTEGER * The length of WORK. LWORK >=1. For best performance * LWORK >= N*NB, where NB is the block size returned by ILAENV. * * If LWORK = -1, then a workspace query is assumed; the routine * only calculates the optimal size of the WORK array, returns * this value as the first entry of the WORK array, and no error * message related to LWORK is issued by XERBLA. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: if INFO = i, D(i,i) is exactly zero. The factorization * has been completed, but the block diagonal matrix D is * exactly singular, and division by zero will occur if it * is used to solve a system of equations. * * Further Details * =============== * * If UPLO = 'U', then A = U*D*U', where * U = P(n)*U(n)* ... *P(k)U(k)* ..., * i.e., U is a product of terms P(k)*U(k), where k decreases from n to * 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 * and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as * defined by IPIV(k), and U(k) is a unit upper triangular matrix, such * that if the diagonal block D(k) is of order s (s = 1 or 2), then * * ( I v 0 ) k-s * U(k) = ( 0 I 0 ) s * ( 0 0 I ) n-k * k-s s n-k * * If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). * If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), * and A(k,k), and v overwrites A(1:k-2,k-1:k). * * If UPLO = 'L', then A = L*D*L', where * L = P(1)*L(1)* ... *P(k)*L(k)* ..., * i.e., L is a product of terms P(k)*L(k), where k increases from 1 to * n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 * and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as * defined by IPIV(k), and L(k) is a unit lower triangular matrix, such * that if the diagonal block D(k) is of order s (s = 1 or 2), then * * ( I 0 0 ) k-1 * L(k) = ( 0 I 0 ) s * ( 0 v I ) n-k-s+1 * k-1 s n-k-s+1 * * If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). * If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), * and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1). * * ===================================================================== * * .. Local Scalars .. LOGICAL LQUERY, UPPER INTEGER IINFO, IWS, J, K, KB, LDWORK, LWKOPT, NB, NBMIN * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV EXTERNAL LSAME, ILAENV * .. * .. External Subroutines .. EXTERNAL DLASYF, DSYTF2, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 UPPER = LSAME( UPLO, 'U' ) LQUERY = ( LWORK.EQ.-1 ) IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -4 ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN INFO = -7 END IF * IF( INFO.EQ.0 ) THEN * * Determine the block size * NB = ILAENV( 1, 'DSYTRF', UPLO, N, -1, -1, -1 ) LWKOPT = N*NB WORK( 1 ) = LWKOPT END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'DSYTRF', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * NBMIN = 2 LDWORK = N IF( NB.GT.1 .AND. NB.LT.N ) THEN IWS = LDWORK*NB IF( LWORK.LT.IWS ) THEN NB = MAX( LWORK / LDWORK, 1 ) NBMIN = MAX( 2, ILAENV( 2, 'DSYTRF', UPLO, N, -1, -1, -1 ) ) END IF ELSE IWS = 1 END IF IF( NB.LT.NBMIN ) $ NB = N * IF( UPPER ) THEN * * Factorize A as U*D*U' using the upper triangle of A * * K is the main loop index, decreasing from N to 1 in steps of * KB, where KB is the number of columns factorized by DLASYF; * KB is either NB or NB-1, or K for the last block * K = N 10 CONTINUE * * If K < 1, exit from loop * IF( K.LT.1 ) $ GO TO 40 * IF( K.GT.NB ) THEN * * Factorize columns k-kb+1:k of A and use blocked code to * update columns 1:k-kb * CALL DLASYF( UPLO, K, NB, KB, A, LDA, IPIV, WORK, LDWORK, $ IINFO ) ELSE * * Use unblocked code to factorize columns 1:k of A * CALL DSYTF2( UPLO, K, A, LDA, IPIV, IINFO ) KB = K END IF * * Set INFO on the first occurrence of a zero pivot * IF( INFO.EQ.0 .AND. IINFO.GT.0 ) $ INFO = IINFO * * Decrease K and return to the start of the main loop * K = K - KB GO TO 10 * ELSE * * Factorize A as L*D*L' using the lower triangle of A * * K is the main loop index, increasing from 1 to N in steps of * KB, where KB is the number of columns factorized by DLASYF; * KB is either NB or NB-1, or N-K+1 for the last block * K = 1 20 CONTINUE * * If K > N, exit from loop * IF( K.GT.N ) $ GO TO 40 * IF( K.LE.N-NB ) THEN * * Factorize columns k:k+kb-1 of A and use blocked code to * update columns k+kb:n * CALL DLASYF( UPLO, N-K+1, NB, KB, A( K, K ), LDA, IPIV( K ), $ WORK, LDWORK, IINFO ) ELSE * * Use unblocked code to factorize columns k:n of A * CALL DSYTF2( UPLO, N-K+1, A( K, K ), LDA, IPIV( K ), IINFO ) KB = N - K + 1 END IF * * Set INFO on the first occurrence of a zero pivot * IF( INFO.EQ.0 .AND. IINFO.GT.0 ) $ INFO = IINFO + K - 1 * * Adjust IPIV * DO 30 J = K, K + KB - 1 IF( IPIV( J ).GT.0 ) THEN IPIV( J ) = IPIV( J ) + K - 1 ELSE IPIV( J ) = IPIV( J ) - K + 1 END IF 30 CONTINUE * * Increase K and return to the start of the main loop * K = K + KB GO TO 20 * END IF * 40 CONTINUE WORK( 1 ) = LWKOPT RETURN * * End of DSYTRF * END
gpl-3.0
jonycgn/scipy
scipy/sparse/linalg/eigen/arpack/ARPACK/SRC/dsconv.f
141
3458
c----------------------------------------------------------------------- c\BeginDoc c c\Name: dsconv c c\Description: c Convergence testing for the symmetric Arnoldi eigenvalue routine. c c\Usage: c call dsconv c ( N, RITZ, BOUNDS, TOL, NCONV ) c c\Arguments c N Integer. (INPUT) c Number of Ritz values to check for convergence. c c RITZ Double precision array of length N. (INPUT) c The Ritz values to be checked for convergence. c c BOUNDS Double precision array of length N. (INPUT) c Ritz estimates associated with the Ritz values in RITZ. c c TOL Double precision scalar. (INPUT) c Desired relative accuracy for a Ritz value to be considered c "converged". c c NCONV Integer scalar. (OUTPUT) c Number of "converged" Ritz values. c c\EndDoc c c----------------------------------------------------------------------- c c\BeginLib c c\Routines called: c arscnd ARPACK utility routine for timing. c dlamch LAPACK routine that determines machine constants. c c\Author c Danny Sorensen Phuong Vu c Richard Lehoucq CRPC / Rice University c Dept. of Computational & Houston, Texas c Applied Mathematics c Rice University c Houston, Texas c c\SCCS Information: @(#) c FILE: sconv.F SID: 2.4 DATE OF SID: 4/19/96 RELEASE: 2 c c\Remarks c 1. Starting with version 2.4, this routine no longer uses the c Parlett strategy using the gap conditions. c c\EndLib c c----------------------------------------------------------------------- c subroutine dsconv (n, ritz, bounds, tol, nconv) c c %----------------------------------------------------% c | Include files for debugging and timing information | c %----------------------------------------------------% c include 'debug.h' include 'stat.h' c c %------------------% c | Scalar Arguments | c %------------------% c integer n, nconv Double precision & tol c c %-----------------% c | Array Arguments | c %-----------------% c Double precision & ritz(n), bounds(n) c c %---------------% c | Local Scalars | c %---------------% c integer i Double precision & temp, eps23 c c %-------------------% c | External routines | c %-------------------% c Double precision & dlamch external dlamch c %---------------------% c | Intrinsic Functions | c %---------------------% c intrinsic abs c c %-----------------------% c | Executable Statements | c %-----------------------% c call arscnd (t0) c eps23 = dlamch('Epsilon-Machine') eps23 = eps23**(2.0D+0 / 3.0D+0) c nconv = 0 do 10 i = 1, n c c %-----------------------------------------------------% c | The i-th Ritz value is considered "converged" | c | when: bounds(i) .le. TOL*max(eps23, abs(ritz(i))) | c %-----------------------------------------------------% c temp = max( eps23, abs(ritz(i)) ) if ( bounds(i) .le. tol*temp ) then nconv = nconv + 1 end if c 10 continue c call arscnd (t1) tsconv = tsconv + (t1 - t0) c return c c %---------------% c | End of dsconv | c %---------------% c end
bsd-3-clause
binghongcha08/pyQMD
QTM/MixQC/1.0.1/spo_2d/1.0.0/qmi.f
9
9940
program qm ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc ccccccc Coupled Morse oscillators ccccccccccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc implicit real*8 (a-h,o-z) integer*4 ni,nj parameter (ni=256, nj=256) real*8 ak2(ni,nj) complex*16 v(ni,nj) complex*16 im,psi(ni,nj) complex*16 psi0(ni,nj),c1,c2 common /params/ d,x0,z0,di,wi common /grid/ xmin,ymin,xmax,ymax,dx,dy C C im=(0.d0,1.d0) pi=4.d0*atan(1.d0) N2=ni*nj d=160.d0 X0=1.40083d0 c z0=1.04435d0 z0=1.0435d0 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC c open(15,file='cor1') c open(16,file='cor2') open(19,file='eni_qm') open(17,file='wf0') open(18,file='wft') open(5,file='INq',status='old') c time propagation parameters read(5,*) dt,kmax,nout c grid spacing read(5,*)dx,dy c initial wave packet parameters read(5,*) alfa,q0,p0,beta c potential surface parameters read(5,*)DI,WI close(5) c inverse mass prefactor 1/2/m c hydrogen am=1.0 c deuterium m=2*mh c am=0.5d0 c alfa=alfa*sqrt(2.d0) cc tritium=3*mh c am=1.d0/3.d0 cc alfa=alfa*sqrt(3.d0) cc xmin=0.1d0 xmax=xmin+ni*dx ymin=0.1d0 ymax=ymin+nj*dy ds=dx*dy q0=q0+x0 write(*,*)'initial state',alfa,q0,p0 write(*,*) 'kinetic energy coupling',beta c define vector ak2 consI=2.d0*pi/dx/ni consJ=2.d0*pi/dy/nj ni2=ni/2 nj2=nj/2 do 10 j=1,nj akj=(j-1)*consj if (j.gt.nj2) akj=-(nj+1-j)*consj do 20 i=1,ni aki=(i-1)*consi if (i.gt.ni2) aki=-(ni+1-i)*consi 20 ak2(i,j)=(aki*aki-2d0*beta*aki*akj+akj*akj)/2.d0/am 10 continue ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc c------------ set up the initial wavefunction ----------------------- an0=dsqrt(2d0*alfa/pi) ch_n=0d0 do 222 j=1,nj y=ymin+dy*(j-1) do 222 i=1,ni x=xmin+dx*(i-1) psi(i,j)=an0*exp(-alfa*((x-q0)**2+(y-q0)**2) & +im*p0*(x-q0+y-q0)) psi0(i,j)=psi(i,j) if(abs(psi(i,j)).gt.1d-3) write(17,*) x,y,abs(psi(i,j)) ch_n=ch_n+abs(psi(i,j))**2*ds 222 continue write(*,*) 'NORM=',ch_n cccccccccccccccccc propagate psi ccccccccccccccccccccccccccccccccc call ham(ni,nj,N2,ak2,psi,v,en0) call correl(ni,nj,psi0,psi,c1,c2) t=0.d0 write(19,*) t, en0 c write(15,1000) t,c1,abs(c1) c write(16,1000) 2d0*t,c2,abs(c2) call split(kmax,nout,ni,nj,N2,dt,t,v,ak2,psi0,psi) call ham(ni,nj,N2,ak2,psi,v,en0) write(*,*) 'FINAL ENERGY',en0 write(19,*) t, en0 c------------ print the final wavefunction ----------------------- do 23 j=1,nj y=ymin+(j-1)*dy do 23 i=1,ni x=xmin+dx*(i-1) if(abs(psi(i,j)).gt.1d-3) write(18,*) x,y,abs(psi(i,j)) 23 continue c-------------------------------------------------------------------- 1000 format(20(e14.7,1x)) stop end CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC subroutine ham(ni,nj,N2,ak2,psi,v,en0) implicit real*8(a-h,o-z) parameter(nij=256) complex*16 psi(nij,nij),tpsi(nij,nij),vpsi(nij,nij) dimension ak2(nij,nij) complex*16 v(nij,nij),c,anc common /grid/ xmin,ymin,xmax,ymax,dx,dy call aver(ni,nj,psi,psi,anC) call potpsi(ni,nj,v,psi,vpsi) call aver(ni,nj,psi,vpsi,C) c write(*,*) 'potential energy',C/anc en0=dreal(c) call kinpsi(ni,nj,N2,ak2,psi,tpsi) call aver(ni,nj,psi,tpsi,C) c write(*,*) 'kinetic energy', C/anc en0=(en0+dreal(c))/abs(anc) c write(*,*) 'TOTAL E', en0 return end CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC subroutine potpsi(ni,nj,v,psi,vpsi) implicit real*8(a-h,o-z) parameter(nij=256) complex*16 psi(nij,nij),vpsi(nij,nij),v(nij,nij),im common /params/ d,x0,z0,di,wi common /grid/ xmin,ymin,xmax,ymax,dx,dy c------------- set up potetial ------------------------------------------- im=(0d0,1d0) do 10 j=1,nj y=ymin+(j-1)*dy ry=exp(-z0*(y-x0)) do 10 i=1,ni x=xmin+(i-1)*dx rx=exp(-z0*(x-x0)) vr=d*(rx-1d0)**2+d*(ry-1d0)**2 if(vr.gt.5d0*d) vr=5d0*d vi=0d0 r=dsqrt(rx*rx+ry*ry) if(r.gt.wi) vi=vi+di*(r-wi)**2 v(i,j)=vr-im*vi vpsi(i,j)=psi(i,j)*v(i,j) 10 continue return end CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC subroutine kinpsi(ni,nj,N2,ak2,cx1,aux) implicit real*8(a-h,o-z) parameter(nij=256) dimension ak2(nij,nij) complex*16 cx1(nij,nij),aux(nij,nij) dimension nn(2) nn(1)=ni nn(2)=nj do 10 j=1,nj do 10 i=1,ni 10 aux(i,j)=cx1(i,j) call fourn(aux,nn,2,1) do 11 j=1,nj do 11 i=1,ni 11 aux(i,j)=aux(i,j)*ak2(i,j) isign=-1 call fourn(aux,nn,2,-1) do 12 j=1,nj do 12 i=1,ni 12 aux(i,j)=aux(i,j)/N2 return end c------------------------------------------------------- c------------------------------------------------------- subroutine split(kmax,nout,ni,nj,N2,dt,t,v,ak2,psi0,cwf) implicit real*8(a-h,o-z) parameter(ij=256) dimension ak2(ij,ij) dimension nn(2) complex*16 cwf(ij,ij),v(ij,ij) complex*16 psi0(ij,ij),hpsi(ij,ij),c1,c2 common /grid/ xmin,ymin,xmax,ymax,dx,dy ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc dt2=dt*0.5 n2=ni*nj nn(1)=ni nn(2)=nj do 11 k=1,kmax t=t+dt call fourn(cwf,nn,2,1) call diff(cwf,ak2,dt2,ni,nj) call fourn(cwf,nn,2,-1) do 12 j=1,nj do 12 i=1,ni 12 cwf(i,j)=cwf(i,j)/N2 call phase(cwf,v,dt2,ni,nj) call fourn(cwf,nn,2,1) call diff(cwf,ak2,dt2,ni,nj) call fourn(cwf,nn,2,-1) do 13 j=1,nj do 13 i=1,ni 13 cwf(i,j)=cwf(i,j)/N2 call phase(cwf,v,dt2,ni,nj) c call correl(ni,nj,psi0,cwf,c1,c2) call ham(ni,nj,N2,ak2,cwf,v,en0) c write(15,1000) t,c1,abs(c1) c write(16,1000) 2d0*t,c2,abs(c2) write(19,*) t,en0 11 continue 1000 format(20(e14.7,1x)) 15 return end c------------------------------------------------------- c------------------------------------------------------- subroutine diff(cwf,ak2,ts,ni,nj) implicit real*8(a-h,o-z) parameter(nij=256) complex*16 nim,cwf(nij,nij) dimension ak2(nij,nij) nim=(0.d0,-1.d0) do 11 j=1,nj do 11 i=1,ni c11 cwf(i,j)=cwf(i,j)*exp(nim*ts*ak2(i,j)) 11 cwf(i,j)=cwf(i,j)*exp(-ts*ak2(i,j)) return end subroutine phase(cwf,v,ts,ni,nj) implicit real*8(a-h,o-z) complex*16 nim,cwf(ni,nj) complex*16 v(ni,nj) nim=(0.d0,-1.d0) do 11 j=1,nj do 11 i=1,ni c if (ts.ge.0) cwf(i,j)=cwf(i,j)*exp(nim*ts*v(i,j)) c11 if (ts.lt.0) cwf(i,j)=cwf(i,j)*exp(nim*ts*conjg(v(i,j))) 11 cwf(i,j)=cwf(i,j)*exp(-ts*v(i,j)) return end c------------------------------------------------------- c------------------------------------------------------- subroutine correl(ni,nj,psi0,psi,c1,c2) implicit real*8(a-h,o-z) parameter(ij=256) complex*16 psi0(ij,ij),psi(ij,ij),c1,c2 common /grid/ xmin,ymin,xmax,ymax,dx,dy ccc---------- compute correlation functions ------------------------ c1=(0d0,0d0) c2=(0d0,0d0) do 10 j=1,nj y=ymin+(j-1)*dy do 10 i=1,ni x=xmin+(i-1)*dx c1=c1+conjg(psi0(i,j))*psi(i,j) c2=c2+psi(i,j)**2 10 continue c1=c1*dx*dy c2=c2*dx*dy return end c------------------------------------------------------- c------------------------------------------------------- subroutine aver(ni,nj,psi0,psi,c) implicit real*8(a-h,o-z) parameter(ij=256) complex*16 c,psi0(ij,ij),psi(ij,ij) common /grid/ xmin,ymin,xmax,ymax,dx,dy c=(0.d0,0.d0) ct=0.d0 do 11 j=1,nj do 11 i=1,ni ct=ct+abs(psi0(i,j))**2 11 c=c+psi(i,j)*conjg(psi0(i,j)) c=c/dx/dy return end SUBROUTINE fourn(data,nn,ndim,isign) INTEGER isign,ndim,nn(ndim) REAL*8 data(*) INTEGER i1,i2,i2rev,i3,i3rev,ibit,idim,ifp1,ifp2,ip1,ip2,ip3,k1, *k2,n,nprev,nrem,ntot REAL*8 tempi,tempr DOUBLE PRECISION theta,wi,wpi,wpr,wr,wtemp ntot=1 do 11 idim=1,ndim ntot=ntot*nn(idim) 11 continue nprev=1 do 18 idim=1,ndim n=nn(idim) nrem=ntot/(n*nprev) ip1=2*nprev ip2=ip1*n ip3=ip2*nrem i2rev=1 do 14 i2=1,ip2,ip1 if(i2.lt.i2rev)then do 13 i1=i2,i2+ip1-2,2 do 12 i3=i1,ip3,ip2 i3rev=i2rev+i3-i2 tempr=data(i3) tempi=data(i3+1) data(i3)=data(i3rev) data(i3+1)=data(i3rev+1) data(i3rev)=tempr data(i3rev+1)=tempi 12 continue 13 continue endif ibit=ip2/2 1 if ((ibit.ge.ip1).and.(i2rev.gt.ibit)) then i2rev=i2rev-ibit ibit=ibit/2 goto 1 endif i2rev=i2rev+ibit 14 continue ifp1=ip1 2 if(ifp1.lt.ip2)then ifp2=2*ifp1 theta=isign*6.28318530717959d0/(ifp2/ip1) wpr=-2.d0*sin(0.5d0*theta)**2 wpi=sin(theta) wr=1.d0 wi=0.d0 do 17 i3=1,ifp1,ip1 do 16 i1=i3,i3+ip1-2,2 do 15 i2=i1,ip3,ifp2 k1=i2 k2=k1+ifp1 tempr=sngl(wr)*data(k2)-sngl(wi)*data(k2+1) tempi=sngl(wr)*data(k2+1)+sngl(wi)*data(k2) data(k2)=data(k1)-tempr data(k2+1)=data(k1+1)-tempi data(k1)=data(k1)+tempr data(k1+1)=data(k1+1)+tempi 15 continue 16 continue wtemp=wr wr=wr*wpr-wi*wpi+wr wi=wi*wpr+wtemp*wpi+wi 17 continue ifp1=ifp2 goto 2 endif nprev=n*nprev 18 continue return END
gpl-3.0
binghongcha08/pyQMD
QTM/MixQC/spo_2d/1.0.0/qmi.f
9
9940
program qm ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc ccccccc Coupled Morse oscillators ccccccccccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc implicit real*8 (a-h,o-z) integer*4 ni,nj parameter (ni=256, nj=256) real*8 ak2(ni,nj) complex*16 v(ni,nj) complex*16 im,psi(ni,nj) complex*16 psi0(ni,nj),c1,c2 common /params/ d,x0,z0,di,wi common /grid/ xmin,ymin,xmax,ymax,dx,dy C C im=(0.d0,1.d0) pi=4.d0*atan(1.d0) N2=ni*nj d=160.d0 X0=1.40083d0 c z0=1.04435d0 z0=1.0435d0 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC c open(15,file='cor1') c open(16,file='cor2') open(19,file='eni_qm') open(17,file='wf0') open(18,file='wft') open(5,file='INq',status='old') c time propagation parameters read(5,*) dt,kmax,nout c grid spacing read(5,*)dx,dy c initial wave packet parameters read(5,*) alfa,q0,p0,beta c potential surface parameters read(5,*)DI,WI close(5) c inverse mass prefactor 1/2/m c hydrogen am=1.0 c deuterium m=2*mh c am=0.5d0 c alfa=alfa*sqrt(2.d0) cc tritium=3*mh c am=1.d0/3.d0 cc alfa=alfa*sqrt(3.d0) cc xmin=0.1d0 xmax=xmin+ni*dx ymin=0.1d0 ymax=ymin+nj*dy ds=dx*dy q0=q0+x0 write(*,*)'initial state',alfa,q0,p0 write(*,*) 'kinetic energy coupling',beta c define vector ak2 consI=2.d0*pi/dx/ni consJ=2.d0*pi/dy/nj ni2=ni/2 nj2=nj/2 do 10 j=1,nj akj=(j-1)*consj if (j.gt.nj2) akj=-(nj+1-j)*consj do 20 i=1,ni aki=(i-1)*consi if (i.gt.ni2) aki=-(ni+1-i)*consi 20 ak2(i,j)=(aki*aki-2d0*beta*aki*akj+akj*akj)/2.d0/am 10 continue ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc c------------ set up the initial wavefunction ----------------------- an0=dsqrt(2d0*alfa/pi) ch_n=0d0 do 222 j=1,nj y=ymin+dy*(j-1) do 222 i=1,ni x=xmin+dx*(i-1) psi(i,j)=an0*exp(-alfa*((x-q0)**2+(y-q0)**2) & +im*p0*(x-q0+y-q0)) psi0(i,j)=psi(i,j) if(abs(psi(i,j)).gt.1d-3) write(17,*) x,y,abs(psi(i,j)) ch_n=ch_n+abs(psi(i,j))**2*ds 222 continue write(*,*) 'NORM=',ch_n cccccccccccccccccc propagate psi ccccccccccccccccccccccccccccccccc call ham(ni,nj,N2,ak2,psi,v,en0) call correl(ni,nj,psi0,psi,c1,c2) t=0.d0 write(19,*) t, en0 c write(15,1000) t,c1,abs(c1) c write(16,1000) 2d0*t,c2,abs(c2) call split(kmax,nout,ni,nj,N2,dt,t,v,ak2,psi0,psi) call ham(ni,nj,N2,ak2,psi,v,en0) write(*,*) 'FINAL ENERGY',en0 write(19,*) t, en0 c------------ print the final wavefunction ----------------------- do 23 j=1,nj y=ymin+(j-1)*dy do 23 i=1,ni x=xmin+dx*(i-1) if(abs(psi(i,j)).gt.1d-3) write(18,*) x,y,abs(psi(i,j)) 23 continue c-------------------------------------------------------------------- 1000 format(20(e14.7,1x)) stop end CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC subroutine ham(ni,nj,N2,ak2,psi,v,en0) implicit real*8(a-h,o-z) parameter(nij=256) complex*16 psi(nij,nij),tpsi(nij,nij),vpsi(nij,nij) dimension ak2(nij,nij) complex*16 v(nij,nij),c,anc common /grid/ xmin,ymin,xmax,ymax,dx,dy call aver(ni,nj,psi,psi,anC) call potpsi(ni,nj,v,psi,vpsi) call aver(ni,nj,psi,vpsi,C) c write(*,*) 'potential energy',C/anc en0=dreal(c) call kinpsi(ni,nj,N2,ak2,psi,tpsi) call aver(ni,nj,psi,tpsi,C) c write(*,*) 'kinetic energy', C/anc en0=(en0+dreal(c))/abs(anc) c write(*,*) 'TOTAL E', en0 return end CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC subroutine potpsi(ni,nj,v,psi,vpsi) implicit real*8(a-h,o-z) parameter(nij=256) complex*16 psi(nij,nij),vpsi(nij,nij),v(nij,nij),im common /params/ d,x0,z0,di,wi common /grid/ xmin,ymin,xmax,ymax,dx,dy c------------- set up potetial ------------------------------------------- im=(0d0,1d0) do 10 j=1,nj y=ymin+(j-1)*dy ry=exp(-z0*(y-x0)) do 10 i=1,ni x=xmin+(i-1)*dx rx=exp(-z0*(x-x0)) vr=d*(rx-1d0)**2+d*(ry-1d0)**2 if(vr.gt.5d0*d) vr=5d0*d vi=0d0 r=dsqrt(rx*rx+ry*ry) if(r.gt.wi) vi=vi+di*(r-wi)**2 v(i,j)=vr-im*vi vpsi(i,j)=psi(i,j)*v(i,j) 10 continue return end CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC subroutine kinpsi(ni,nj,N2,ak2,cx1,aux) implicit real*8(a-h,o-z) parameter(nij=256) dimension ak2(nij,nij) complex*16 cx1(nij,nij),aux(nij,nij) dimension nn(2) nn(1)=ni nn(2)=nj do 10 j=1,nj do 10 i=1,ni 10 aux(i,j)=cx1(i,j) call fourn(aux,nn,2,1) do 11 j=1,nj do 11 i=1,ni 11 aux(i,j)=aux(i,j)*ak2(i,j) isign=-1 call fourn(aux,nn,2,-1) do 12 j=1,nj do 12 i=1,ni 12 aux(i,j)=aux(i,j)/N2 return end c------------------------------------------------------- c------------------------------------------------------- subroutine split(kmax,nout,ni,nj,N2,dt,t,v,ak2,psi0,cwf) implicit real*8(a-h,o-z) parameter(ij=256) dimension ak2(ij,ij) dimension nn(2) complex*16 cwf(ij,ij),v(ij,ij) complex*16 psi0(ij,ij),hpsi(ij,ij),c1,c2 common /grid/ xmin,ymin,xmax,ymax,dx,dy ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc dt2=dt*0.5 n2=ni*nj nn(1)=ni nn(2)=nj do 11 k=1,kmax t=t+dt call fourn(cwf,nn,2,1) call diff(cwf,ak2,dt2,ni,nj) call fourn(cwf,nn,2,-1) do 12 j=1,nj do 12 i=1,ni 12 cwf(i,j)=cwf(i,j)/N2 call phase(cwf,v,dt2,ni,nj) call fourn(cwf,nn,2,1) call diff(cwf,ak2,dt2,ni,nj) call fourn(cwf,nn,2,-1) do 13 j=1,nj do 13 i=1,ni 13 cwf(i,j)=cwf(i,j)/N2 call phase(cwf,v,dt2,ni,nj) c call correl(ni,nj,psi0,cwf,c1,c2) call ham(ni,nj,N2,ak2,cwf,v,en0) c write(15,1000) t,c1,abs(c1) c write(16,1000) 2d0*t,c2,abs(c2) write(19,*) t,en0 11 continue 1000 format(20(e14.7,1x)) 15 return end c------------------------------------------------------- c------------------------------------------------------- subroutine diff(cwf,ak2,ts,ni,nj) implicit real*8(a-h,o-z) parameter(nij=256) complex*16 nim,cwf(nij,nij) dimension ak2(nij,nij) nim=(0.d0,-1.d0) do 11 j=1,nj do 11 i=1,ni c11 cwf(i,j)=cwf(i,j)*exp(nim*ts*ak2(i,j)) 11 cwf(i,j)=cwf(i,j)*exp(-ts*ak2(i,j)) return end subroutine phase(cwf,v,ts,ni,nj) implicit real*8(a-h,o-z) complex*16 nim,cwf(ni,nj) complex*16 v(ni,nj) nim=(0.d0,-1.d0) do 11 j=1,nj do 11 i=1,ni c if (ts.ge.0) cwf(i,j)=cwf(i,j)*exp(nim*ts*v(i,j)) c11 if (ts.lt.0) cwf(i,j)=cwf(i,j)*exp(nim*ts*conjg(v(i,j))) 11 cwf(i,j)=cwf(i,j)*exp(-ts*v(i,j)) return end c------------------------------------------------------- c------------------------------------------------------- subroutine correl(ni,nj,psi0,psi,c1,c2) implicit real*8(a-h,o-z) parameter(ij=256) complex*16 psi0(ij,ij),psi(ij,ij),c1,c2 common /grid/ xmin,ymin,xmax,ymax,dx,dy ccc---------- compute correlation functions ------------------------ c1=(0d0,0d0) c2=(0d0,0d0) do 10 j=1,nj y=ymin+(j-1)*dy do 10 i=1,ni x=xmin+(i-1)*dx c1=c1+conjg(psi0(i,j))*psi(i,j) c2=c2+psi(i,j)**2 10 continue c1=c1*dx*dy c2=c2*dx*dy return end c------------------------------------------------------- c------------------------------------------------------- subroutine aver(ni,nj,psi0,psi,c) implicit real*8(a-h,o-z) parameter(ij=256) complex*16 c,psi0(ij,ij),psi(ij,ij) common /grid/ xmin,ymin,xmax,ymax,dx,dy c=(0.d0,0.d0) ct=0.d0 do 11 j=1,nj do 11 i=1,ni ct=ct+abs(psi0(i,j))**2 11 c=c+psi(i,j)*conjg(psi0(i,j)) c=c/dx/dy return end SUBROUTINE fourn(data,nn,ndim,isign) INTEGER isign,ndim,nn(ndim) REAL*8 data(*) INTEGER i1,i2,i2rev,i3,i3rev,ibit,idim,ifp1,ifp2,ip1,ip2,ip3,k1, *k2,n,nprev,nrem,ntot REAL*8 tempi,tempr DOUBLE PRECISION theta,wi,wpi,wpr,wr,wtemp ntot=1 do 11 idim=1,ndim ntot=ntot*nn(idim) 11 continue nprev=1 do 18 idim=1,ndim n=nn(idim) nrem=ntot/(n*nprev) ip1=2*nprev ip2=ip1*n ip3=ip2*nrem i2rev=1 do 14 i2=1,ip2,ip1 if(i2.lt.i2rev)then do 13 i1=i2,i2+ip1-2,2 do 12 i3=i1,ip3,ip2 i3rev=i2rev+i3-i2 tempr=data(i3) tempi=data(i3+1) data(i3)=data(i3rev) data(i3+1)=data(i3rev+1) data(i3rev)=tempr data(i3rev+1)=tempi 12 continue 13 continue endif ibit=ip2/2 1 if ((ibit.ge.ip1).and.(i2rev.gt.ibit)) then i2rev=i2rev-ibit ibit=ibit/2 goto 1 endif i2rev=i2rev+ibit 14 continue ifp1=ip1 2 if(ifp1.lt.ip2)then ifp2=2*ifp1 theta=isign*6.28318530717959d0/(ifp2/ip1) wpr=-2.d0*sin(0.5d0*theta)**2 wpi=sin(theta) wr=1.d0 wi=0.d0 do 17 i3=1,ifp1,ip1 do 16 i1=i3,i3+ip1-2,2 do 15 i2=i1,ip3,ifp2 k1=i2 k2=k1+ifp1 tempr=sngl(wr)*data(k2)-sngl(wi)*data(k2+1) tempi=sngl(wr)*data(k2+1)+sngl(wi)*data(k2) data(k2)=data(k1)-tempr data(k2+1)=data(k1+1)-tempi data(k1)=data(k1)+tempr data(k1+1)=data(k1+1)+tempi 15 continue 16 continue wtemp=wr wr=wr*wpr-wi*wpi+wr wi=wi*wpr+wtemp*wpi+wi 17 continue ifp1=ifp2 goto 2 endif nprev=n*nprev 18 continue return END
gpl-3.0
rmcgibbo/ambermini
lib/nxtsec.F
5
26146
SUBROUTINE NXTSEC(IUNIT,IOUT,IONERR,FMTOLD,FLAG,FMT,IOK) c c Subroutine NeXT SECtion c c This routine reads data from a new-format PARM file. It c searches for the section with a %FLAG header of FLAG. It returns c the format for the section of data and places the file pointer on c the first line of the data block. The actual data read is performed c by the calling routine. c c Data are read from the file on unit IUNIT, which is assumed c to already be open. c c IOK: 0, flag found and data read c -1, then no %VERSION line found. This is an old-format PARM file. c In this case, any call to NXTSEC will merely replace FMT with c FMTOLD. This simplifies the calling procedure in the main c routine, since FMT will contain the approprate FMT regardless c of whether a new or old format PARM file is used (as long c as FMTOLD was appropriately set in the call list). c -2, then this is a new-format PARM file, but the requested c FLAG was not found. (Only if IONERR = 1). c c Program stops if a specified flag is not found and this is a new-format c PARM file. c c IUNIT: Unit for reads, assumed to already be open. c IOUT: Unit for info/error writes c IONERR: 0, then if a requested flag is not found, the program c stops with an appropriate error c 1, then if a requested flag is not found, the routine c returns with IOK set to -2. c FMTOLD: Format to use if read takes place from an old-style PARM file c FLAG: Flag for data section to read. Must be large enough to hold c any format string. Suggested length = char*255. c FMT: Returned with format to use for data. File pointer will be c at first line of data to be read upon return c IOK: see above. c c IOUT: Unit for error prints c c Author: David Pearlman c Date: 09/00 c c Scott Brozell June 2004 c Converted loop control to Fortran 90; these changes are g77 compatible. c c The PARM file has the following format. c c %VERSION VERSION_STAMP = Vxxxx.yyy DATE = mm:dd:yy hh:mm:ss c c This line should appear as the first line in the file, but this c is not absolutely required. A search will be made for a line starting c with %VERSION and followed by the VERSION_STAMP field. c The version stamp is expected to be an F8.3 format field with c leading 0's in place. E.g. V0003.22. Leading 0s should also c be used for mm, dd, yy, hh, mm or ss fields that are < 10. c c %FLAG flag c This line specifies the name for the block of data to follow c FLAGS MUST NOT HAVE ANY EMBEDDED BLANKS. Use underscore characters c in place of blanks, e.g. "BOND_PARMS" not "BOND PARMS". c %FORMAT format c This line provides the FORTRAN format for the data to follow. c This should be specified using standard FORTRAN rules, and with the c surrounding brackets intact. E.g. c %FORMAT (8F10.3) c **> Data starts with the line immediately following the %FORMAT line. c The %FORMAT line and the data that follow will be associated with the c flag on the most recent %FLAG line read. c The actual data read is performed by the calling routine. c All text following the %FORMAT flag is considered the format string c and the string CAN have embedded blanks. c %COMMENT comment c Comment line. Will be ignored in parsing the file. A %COMMENT line c can appear anywhere in the file EXCEPT A) between the %FORMAT c line and the data; or B) interspersed with the data lines. c While it recommended you use the %COMMENT line for clarity, it is c not technically required for comment lines. Any line without c a type specifier at the beginning of the line and which does not c appear within the data block is assumed to be a comment. c c Note that in order to avoid confusion/mistakes, the above flags must c be left justified (start in column one) on a line to be recognized. c c On the first call to this routine, it will search the file for c %FLAG cards and store the lines they appear on. That way, on c subsequent calls we'll know immediately if we should read further c down the file, rewind, or exit with an error (flag not found). implicit none integer IUNIT integer IOUT integer IONERR character*(*) FMTOLD,FMT,FLAG integer IOK integer NNBCHR logical, save :: FIRST = .TRUE. logical, save :: PRINTINFO = .TRUE. c c MXNXFL is maximum number of %FLAG cards that can be specified c integer MXNXFL PARAMETER (MXNXFL = 500) CHARACTER*80 NXTFLG CHARACTER*8 PRDAT,PRTIM CHARACTER*255 AA integer IBLOCK integer INXTFL integer IPRVRR integer NUMFLG real RPVER COMMON /NXTLC1/INXTFL(2,MXNXFL),IPRVRR,NUMFLG,IBLOCK COMMON /NXTLC2/RPVER COMMON /NXTLC3/NXTFLG(MXNXFL),PRDAT,PRTIM ! carlos added this to avoid problem with data statement initilization ! need initprmtop here. Now located in a header file. (TL 2010/01/29) #include "nxtsec.h" integer I integer IPT integer IPT2 integer IPT3 integer IPT4 integer IPT5 integer IPT6 integer IPT7 integer IPT8 integer IPT9 integer IPT10 integer LFLAG integer IL2US integer IFIND integer MBLOCK integer ILFO IOK = 0 IF (FIRST.or.initprmtop) THEN c REWIND(IUNIT) c c First, see if this is a new format PARM file. That is, if the %VERSION c line exists. If not, then we assume it's an old format PARM file. In c this case, every call to NXTSEC will simply result in an immediate c return. This means all reads from the calling routine will be done c sequentially from the PARM file. Store the version number as a real c in RPVER. Store the date and time strings as character strings in c PRDAT and PRTIM. c do READ(IUNIT,11,END=20) AA 11 FORMAT(A) IF (AA(1:8).NE.'%VERSION') cycle c IPT = INDEX(AA,'VERSION_STAMP') IF (IPT.LE.0) cycle c IPT2 = NNBCHR(AA,IPT+13,0,0) IF (AA(IPT2:IPT2).NE.'=') GO TO 9000 c IPT3 = NNBCHR(AA,IPT2+1,0,0) IF (AA(IPT3:IPT3).NE.'V') GO TO 9001 c IPT4 = NNBCHR(AA,IPT3+1,0,1) IF (IPT4-1 - (IPT3+1) + 1 .NE.8) GO TO 9002 READ(AA(IPT3+1:IPT4-1),'(F8.3)') RPVER c IPT5 = INDEX(AA,'DATE') IF (IPT5.LE.0) THEN PRDAT = 'xx/xx/xx' PRTIM = 'xx:xx:xx' GO TO 50 END IF IPT6 = NNBCHR(AA,IPT5+4,0,0) IF (AA(IPT6:IPT6).NE.'=') GO TO 9003 IPT7 = NNBCHR(AA,IPT6+1,0,0) IPT8 = NNBCHR(AA,IPT7+1,0,1) IF (IPT8-1 - IPT7 + 1 .NE. 8) GO TO 9004 PRDAT = AA(IPT7:IPT8-1) IPT9 = NNBCHR(AA,IPT8+1,0,0) IPT10 = NNBCHR(AA,IPT9+1,0,1) IF (IPT10-1 - IPT9 + 1 .NE. 8) GO TO 9005 PRTIM = AA(IPT9:IPT10-1) IF (PRINTINFO) WRITE(IOUT,15) RPVER,PRDAT,PRTIM 15 FORMAT('| New format PARM file being parsed.',/, * '| Version = ',F8.3,' Date = ',A,' Time = ',A) IPRVRR = 0 GO TO 50 end do c c Get here if no VERSION flag read. Set IPRVRR = 1 and return. c On subsequent calls, if IPRVRR = 1, we return immediately. c 20 IPRVRR = 1 IOK = -1 IF (PRINTINFO) WRITE(IOUT,21) 21 FORMAT('| INFO: Old style PARM file read',/) fmt = fmtold rewind(iunit) first = .false. ! write (6,*) "setting initprmtop to F" initprmtop=.false. RETURN c c %VERSION line successfully read. Now load the flags into NXTFLG(I) c and the line pointer and lengths of the flags into c INXTFL(1,I) and INXTFL(2,I), respectively. NUMFLG will be the c total number of flags read. c 50 REWIND(IUNIT) NUMFLG = 0 I = 1 do READ(IUNIT,11,END=99) AA IF (AA(1:5).EQ.'%FLAG') THEN NUMFLG = NUMFLG + 1 IPT2 = NNBCHR(AA,6,0,0) IF (IPT2.EQ.-1) GO TO 9006 IPT3 = NNBCHR(AA,IPT2,0,1)-1 INXTFL(1,NUMFLG) = I INXTFL(2,NUMFLG) = IPT3-IPT2+1 NXTFLG(NUMFLG) = AA(IPT2:IPT3) END IF I = I + 1 end do 99 REWIND(IUNIT) IBLOCK = 0 FIRST = .FALSE. initprmtop=.false. END IF c c Start search for passed flag name c c If this is an old-style PARM file, we can't do the search. Simply c set IOK = -1, FMT to FMTOLD, and return c IF (IPRVRR.EQ.1) THEN IOK = -1 FMT = FMTOLD RETURN END IF c LFLAG = NNBCHR(FLAG,1,0,1)-1 IF (LFLAG.EQ.-2) LFLAG = LEN(FLAG) DO I = 1,NUMFLG IF (LFLAG.EQ.INXTFL(2,I)) THEN IF (FLAG(1:LFLAG).EQ.NXTFLG(I)(1:LFLAG)) THEN IL2US = INXTFL(1,I) GO TO 120 END IF END IF END DO c c Get here if flag does not correspond to any stored. Either stop c or return depending on IONERR flag. c IF (IONERR.EQ.0) THEN GO TO 9007 ELSE IF (IONERR.EQ.1) THEN IOK = -2 RETURN END IF c c Flag found. Set file pointer to the first line following the appropriate c %FLAG line and then search for %FORMAT field. c c IBLOCK keeps track of the last %FLAG found. If this preceeded the c one being read now, we read forward to find the current requested FLAG. c If this followed the current request, rewind and read forward the c necessary number of lines. This should speed things up a bit. c 120 IFIND = I MBLOCK = IBLOCK IF (IFIND.GT.IBLOCK) THEN do READ(IUNIT,11,END=9008) AA IF (AA(1:5).EQ.'%FLAG') THEN MBLOCK = MBLOCK + 1 IF (MBLOCK.EQ.IFIND) exit END IF end do ELSE REWIND(IUNIT) DO I = 1,IL2US READ(IUNIT,11,END=9008) END DO END IF DO READ(IUNIT,11,END=9009) AA IF (AA(1:7).EQ.'%FORMAT') exit END DO c c First %FORMAT found following appropriate %FLAG. Extract the c format and return. All non-blank characters following %FORMAT c comprise the format string (embedded blanks allowed). c IPT2 = NNBCHR(AA,8,0,0) IF (IPT2.EQ.-1) GO TO 9010 DO I = LEN(AA),IPT2,-1 IF (AA(I:I).NE.' ') exit END DO IPT3 = I c c Format string is in IPT2:IPT3. Make sure passed FMT string is large c enought to hold this and then return. c ILFO = IPT3-IPT2+1 IF (ILFO.GT.LEN(FMT)) GO TO 9011 FMT = ' ' FMT(1:ILFO) = AA(IPT2:IPT3) c c Update IBLOCK pointer and return c IBLOCK = IFIND RETURN ENTRY NXTSEC_SILENCE PRINTINFO = .FALSE. RETURN ENTRY NXTSEC_RESET FIRST = .TRUE. RETURN c c Errors: c 9000 WRITE(IOUT,9500) 9500 FORMAT('ERROR: No = sign after VERSION_STAMP field in PARM') STOP 9001 WRITE(IOUT,9501) 9501 FORMAT('ERROR: Version number in PARM does not start with V') STOP 9002 WRITE(IOUT,9502) 9502 FORMAT('ERROR: Mal-formed version number in PARM. ', * 'Should be 8 chars') STOP 9003 WRITE(IOUT,9503) 9503 FORMAT('ERROR: No = sign after DATE field in PARM') STOP 9004 WRITE(IOUT,9504) 9504 FORMAT('ERROR: Mal-formed date string in PARM. ', * 'Should be 8 characters & no embedded spaces.') STOP 9005 WRITE(IOUT,9505) 9505 FORMAT('ERROR: Mal-formed time string in PARM. ', * 'Should be 8 characters & no embedded spaces.') STOP 9006 WRITE(IOUT,9506) 9506 FORMAT('ERROR: No flag found following a %FLAG line in PARM') STOP 9007 WRITE(IOUT,9507) FLAG(1:LFLAG) 9507 FORMAT('ERROR: Flag "',A,'" not found in PARM file') STOP 9008 WRITE(IOUT,9508) FLAG(1:LFLAG) 9508 FORMAT('ERROR: Programming error in routine NXTSEC at "',A,'"') STOP 9009 WRITE(IOUT,9509) FLAG(1:LFLAG) 9509 FORMAT('ERROR: No %FORMAT field found following flag "',A,'"') STOP 9010 WRITE(IOUT,9510) FLAG(1:LFLAG) 9510 FORMAT('ERROR: No format string found following a %FORMAT ', * 'line in PARM',/, * 'Corresponding %FLAG is "',A,'"') STOP 9011 WRITE(IOUT,9511) FLAG(1:LFLAG) 9511 FORMAT('ERROR: Format string for flag "',A,'" too large',/, * ' for FMT call-list parameter') STOP c END c FUNCTION NNBCHR(AA,IBEG,IEND,IOPER) c c IOPER = 0: Find next non-blank character c IOPER = 1: Find next blank character c c On return, NNBCHR is set to the appropriate pointer, or to -1 c if no non-blank character found (IOPER = 0) or no blank c character found (IOPER = 1). c implicit none integer NNBCHR character*(*) AA integer IBEG integer IEND integer IOPER integer I integer IBG integer IEN IBG = IBEG IEN = IEND IF (IBEG.LE.0) IBG = 1 IF (IEND.LE.0) IEN = LEN(AA) c IF (IOPER.EQ.0) THEN DO I = IBG,IEN IF (AA(I:I).NE.' ') THEN NNBCHR = I RETURN END IF end do NNBCHR = -1 ELSE IF (IOPER.EQ.1) THEN do I = IBG,IEN IF (AA(I:I).EQ.' ') THEN NNBCHR = I RETURN END IF end do NNBCHR = -1 END IF c RETURN END !-------------------------------------------------------------- SUBROUTINE NXTSEC_crd(IUNIT,IOUT,IONERR,FMTOLD,FLAG,FMT,IOK) c c Subroutine NeXT SECtion c c This routine reads data from a new-format COORD file. It c searches for the section with a %FLAG header of FLAG. It returns c the format for the section of data and places the file pointer on c the first line of the data block. The actual data read is performed c by the calling routine. c c Data are read from the file on unit IUNIT, which is assumed c to already be open. c c IOK: 0, flag found and data read c -1, then no %VERSION line found. This is an old-format COORD file. c In this case, any call to NXTSEC will merely replace FMT with c FMTOLD. This simplifies the calling procedure in the main c routine, since FMT will contain the approprate FMT regardless c of whether a new or old format COORD file is used (as long c as FMTOLD was appropriately set in the call list). c -2, then this is a new-format COORD file, but the requested c FLAG was not found. (Only if IONERR = 1). c c Program stops if a specified flag is not found and this is a new-format c COORD file. c c IUNIT: Unit for reads, assumed to already be open. c IOUT: Unit for info/error writes c IONERR: 0, then if a requested flag is not found, the program c stops with an appropriate error c 1, then if a requested flag is not found, the routine c returns with IOK set to -2. c FMTOLD: Format to use if read takes place from an old-style COORD file c FLAG: Flag for data section to read. Must be large enough to hold c any format string. Suggested length = char*255. c FMT: Returned with format to use for data. File pointer will be c at first line of data to be read upon return c IOK: see above. c c IOUT: Unit for error prints c c Author: David Pearlman c Date: 09/00 c c Scott Brozell June 2004 c Converted loop control to Fortran 90; these changes are g77 compatible. c c The COORD file has the following format. c c %VERSION VERSION_STAMP = Vxxxx.yyy DATE = mm:dd:yy hh:mm:ss c c This line should appear as the first line in the file, but this c is not absolutely required. A search will be made for a line starting c with %VERSION and followed by the VERSION_STAMP field. c The version stamp is expected to be an F8.3 format field with c leading 0's in place. E.g. V0003.22. Leading 0s should also c be used for mm, dd, yy, hh, mm or ss fields that are < 10. c c %FLAG flag c This line specifies the name for the block of data to follow c FLAGS MUST NOT HAVE ANY EMBEDDED BLANKS. Use underscore characters c in place of blanks, e.g. "BOND_COORDS" not "BOND COORDS". c %FORMAT format c This line provides the FORTRAN format for the data to follow. c This should be specified using standard FORTRAN rules, and with the c surrounding brackets intact. E.g. c %FORMAT (8F10.3) c **> Data starts with the line immediately following the %FORMAT line. c The %FORMAT line and the data that follow will be associated with the c flag on the most recent %FLAG line read. c The actual data read is performed by the calling routine. c All text following the %FORMAT flag is considered the format string c and the string CAN have embedded blanks. c %COMMENT comment c Comment line. Will be ignored in parsing the file. A %COMMENT line c can appear anywhere in the file EXCEPT A) between the %FORMAT c line and the data; or B) interspersed with the data lines. c While it recommended you use the %COMMENT line for clarity, it is c not technically required for comment lines. Any line without c a type specifier at the beginning of the line and which does not c appear within the data block is assumed to be a comment. c c Note that in order to avoid confusion/mistakes, the above flags must c be left justified (start in column one) on a line to be recognized. c c On the first call to this routine, it will search the file for c %FLAG cards and store the lines they appear on. That way, on c subsequent calls we'll know immediately if we should read further c down the file, rewind, or exit with an error (flag not found). implicit none integer IUNIT integer IOUT integer IONERR character*(*) FMTOLD,FMT,FLAG integer IOK integer NNBCHR logical, save :: FIRST = .TRUE. logical, save :: PRINTINFO = .TRUE. c c MXNXFL is maximum number of %FLAG cards that can be specified c integer MXNXFL PARAMETER (MXNXFL = 500) CHARACTER*80 NXTFLG CHARACTER*8 PRDAT,PRTIM CHARACTER*255 AA integer IBLOCK integer INXTFL integer IPRVRR integer NUMFLG real RPVER COMMON /NXTLC1_crd/INXTFL(2,MXNXFL),IPRVRR,NUMFLG,IBLOCK COMMON /NXTLC2_crd/RPVER COMMON /NXTLC3_crd/NXTFLG(MXNXFL),PRDAT,PRTIM integer I integer IPT integer IPT2 integer IPT3 integer IPT4 integer IPT5 integer IPT6 integer IPT7 integer IPT8 integer IPT9 integer IPT10 integer LFLAG integer IL2US integer IFIND integer MBLOCK integer ILFO IOK = 0 IF (FIRST) THEN c REWIND(IUNIT) c c First, see if this is a new format COORD file. That is, if the %VERSION c line exists. If not, then we assume it's an old format COORD file. In c this case, every call to NXTSEC will simply result in an immediate c return. This means all reads from the calling routine will be done c sequentially from the COORD file. Store the version number as a real c in RPVER. Store the date and time strings as character strings in c PRDAT and PRTIM. c do READ(IUNIT,11,END=20) AA 11 FORMAT(A) IF (AA(1:8).NE.'%VERSION') cycle c IPT = INDEX(AA,'VERSION_STAMP') IF (IPT.LE.0) cycle c IPT2 = NNBCHR(AA,IPT+13,0,0) IF (AA(IPT2:IPT2).NE.'=') GO TO 9000 c IPT3 = NNBCHR(AA,IPT2+1,0,0) IF (AA(IPT3:IPT3).NE.'V') GO TO 9001 c IPT4 = NNBCHR(AA,IPT3+1,0,1) IF (IPT4-1 - (IPT3+1) + 1 .NE.8) GO TO 9002 READ(AA(IPT3+1:IPT4-1),'(F8.3)') RPVER c IPT5 = INDEX(AA,'DATE') IF (IPT5.LE.0) THEN PRDAT = 'xx/xx/xx' PRTIM = 'xx:xx:xx' GO TO 50 END IF IPT6 = NNBCHR(AA,IPT5+4,0,0) IF (AA(IPT6:IPT6).NE.'=') GO TO 9003 IPT7 = NNBCHR(AA,IPT6+1,0,0) IPT8 = NNBCHR(AA,IPT7+1,0,1) IF (IPT8-1 - IPT7 + 1 .NE. 8) GO TO 9004 PRDAT = AA(IPT7:IPT8-1) IPT9 = NNBCHR(AA,IPT8+1,0,0) IPT10 = NNBCHR(AA,IPT9+1,0,1) IF (IPT10-1 - IPT9 + 1 .NE. 8) GO TO 9005 PRTIM = AA(IPT9:IPT10-1) IF (PRINTINFO) WRITE(IOUT,15) RPVER,PRDAT,PRTIM 15 FORMAT('| New format inpcrd file being parsed.',/, * '| Version = ',F8.3,' Date = ',A,' Time = ',A) IPRVRR = 0 GO TO 50 end do c c Get here if no VERSION flag read. Set IPRVRR = 1 and return. c On subsequent calls, if IPRVRR = 1, we return immediately. c 20 IPRVRR = 1 IOK = -1 IF (PRINTINFO) WRITE(IOUT,21) 21 FORMAT('| INFO: Old style inpcrd file read',/) fmt = fmtold rewind(iunit) first = .false. RETURN c c %VERSION line successfully read. Now load the flags into NXTFLG(I) c and the line pointer and lengths of the flags into c INXTFL(1,I) and INXTFL(2,I), respectively. NUMFLG will be the c total number of flags read. c 50 REWIND(IUNIT) NUMFLG = 0 I = 1 do READ(IUNIT,11,END=99) AA IF (AA(1:5).EQ.'%FLAG') THEN NUMFLG = NUMFLG + 1 IPT2 = NNBCHR(AA,6,0,0) IF (IPT2.EQ.-1) GO TO 9006 IPT3 = NNBCHR(AA,IPT2,0,1)-1 INXTFL(1,NUMFLG) = I INXTFL(2,NUMFLG) = IPT3-IPT2+1 NXTFLG(NUMFLG) = AA(IPT2:IPT3) END IF I = I + 1 end do 99 REWIND(IUNIT) IBLOCK = 0 FIRST = .FALSE. END IF c c Start search for passed flag name c c If this is an old-style COORD file, we can't do the search. Simply c set IOK = -1, FMT to FMTOLD, and return c IF (IPRVRR.EQ.1) THEN IOK = -1 FMT = FMTOLD RETURN END IF c LFLAG = NNBCHR(FLAG,1,0,1)-1 IF (LFLAG.EQ.-2) LFLAG = LEN(FLAG) DO I = 1,NUMFLG IF (LFLAG.EQ.INXTFL(2,I)) THEN IF (FLAG(1:LFLAG).EQ.NXTFLG(I)(1:LFLAG)) THEN IL2US = INXTFL(1,I) GO TO 120 END IF END IF END DO c c Get here if flag does not correspond to any stored. Either stop c or return depending on IONERR flag. c IF (IONERR.EQ.0) THEN GO TO 9007 ELSE IF (IONERR.EQ.1) THEN IOK = -2 RETURN END IF c c Flag found. Set file pointer to the first line following the appropriate c %FLAG line and then search for %FORMAT field. c c IBLOCK keeps track of the last %FLAG found. If this preceeded the c one being read now, we read forward to find the current requested FLAG. c If this followed the current request, rewind and read forward the c necessary number of lines. This should speed things up a bit. c 120 IFIND = I MBLOCK = IBLOCK IF (IFIND.GT.IBLOCK) THEN do READ(IUNIT,11,END=9008) AA IF (AA(1:5).EQ.'%FLAG') THEN MBLOCK = MBLOCK + 1 IF (MBLOCK.EQ.IFIND) exit END IF end do ELSE REWIND(IUNIT) DO I = 1,IL2US READ(IUNIT,11,END=9008) END DO END IF DO READ(IUNIT,11,END=9009) AA IF (AA(1:7).EQ.'%FORMAT') exit END DO c c First %FORMAT found following appropriate %FLAG. Extract the c format and return. All non-blank characters following %FORMAT c comprise the format string (embedded blanks allowed). c IPT2 = NNBCHR(AA,8,0,0) IF (IPT2.EQ.-1) GO TO 9010 DO I = LEN(AA),IPT2,-1 IF (AA(I:I).NE.' ') exit END DO IPT3 = I c c Format string is in IPT2:IPT3. Make sure passed FMT string is large c enought to hold this and then return. c ILFO = IPT3-IPT2+1 IF (ILFO.GT.LEN(FMT)) GO TO 9011 FMT = ' ' FMT(1:ILFO) = AA(IPT2:IPT3) c c Update IBLOCK pointer and return c IBLOCK = IFIND RETURN ENTRY NXTSEC_CRD_SILENCE PRINTINFO = .FALSE. RETURN c c Errors: c 9000 WRITE(IOUT,9500) 9500 FORMAT('ERROR: No = sign after VERSION_STAMP field in COORD') STOP 9001 WRITE(IOUT,9501) 9501 FORMAT('ERROR: Version number in COORD does not start with V') STOP 9002 WRITE(IOUT,9502) 9502 FORMAT('ERROR: Mal-formed version number in COORD. ', * 'Should be 8 chars') STOP 9003 WRITE(IOUT,9503) 9503 FORMAT('ERROR: No = sign after DATE field in COORD') STOP 9004 WRITE(IOUT,9504) 9504 FORMAT('ERROR: Mal-formed date string in COORD. ', * 'Should be 8 characters & no embedded spaces.') STOP 9005 WRITE(IOUT,9505) 9505 FORMAT('ERROR: Mal-formed time string in COORD. ', * 'Should be 8 characters & no embedded spaces.') STOP 9006 WRITE(IOUT,9506) 9506 FORMAT('ERROR: No flag found following a %FLAG line in COORD') STOP 9007 WRITE(IOUT,9507) FLAG(1:LFLAG) 9507 FORMAT('ERROR: Flag "',A,'" not found in COORD file') STOP 9008 WRITE(IOUT,9508) FLAG(1:LFLAG) 9508 FORMAT('ERROR: Programming error in routine NXTSEC at "',A,'"') STOP 9009 WRITE(IOUT,9509) FLAG(1:LFLAG) 9509 FORMAT('ERROR: No %FORMAT field found following flag "',A,'"') STOP 9010 WRITE(IOUT,9510) FLAG(1:LFLAG) 9510 FORMAT('ERROR: No format string found following a %FORMAT ', * 'line in COORD',/, * 'Corresponding %FLAG is "',A,'"') STOP 9011 WRITE(IOUT,9511) FLAG(1:LFLAG) 9511 FORMAT('ERROR: Format string for flag "',A,'" too large',/, * ' for FMT call-list parameter') STOP c END subroutine nxtsec_crd_reset() implicit none integer INXTFL integer MXNXFL PARAMETER (MXNXFL = 500) integer IPRVRR integer NUMFLG integer IBLOCK COMMON /NXTLC1_crd/INXTFL(2,MXNXFL),IPRVRR,NUMFLG,IBLOCK iblock = 0 return end
gpl-3.0
binghongcha08/pyQMD
QTM/MixQC/1.0.1/pes/qm.f
8
7531
c QSATS version 1.0 (3 March 2011) c file name: eloc.f c ---------------------------------------------------------------------- c this computes the total energy and the expectation value of the c potential energy from the snapshots recorded by QSATS. c ---------------------------------------------------------------------- program eloc implicit double precision (a-h, o-z) include 'sizes.h' include 'qsats.h' common /bincom/ bin, binvrs, r2min character*4 :: atom(NATOMS) c --- this common block is used to enable interpolation in the potential c energy lookup table in the subroutine local below. dimension q(NATOM3), vtavg(NREPS), vtavg2(NREPS), + etavg(NREPS), etavg2(NREPS),dv(NATOM3) dimension idum(NATOM3) parameter (half=0.5d0) parameter (one=1.0d0) open(100, file='energy.dat') open(101, file='xoutput') open(102, file='traj4') open(103, file='pot.dat') open(104, file='force.dat') open(105, file='pes') open(106, file='temp.dat') Ndim = NATOM3 c --- initialization. ! call tstamp write (6, 6001) NREPS, NATOMS, NATOM3, NATOM6, NATOM7, + NVBINS, RATIO, NIP, NPAIRS 6001 format ('compile-time parameters:'//, + 'NREPS = ', i6/, + 'NATOMS = ', i6/, + 'NATOM3 = ', i6/, + 'NATOM6 = ', i6/, + 'NATOM7 = ', i6/, + 'NVBINS = ', i6/, + 'RATIO = ', f6.4/, + 'NIP = ', i6/, + 'NPAIRS = ', i6/) ! call input den = 4.61421d-3 call vinit(r2min, bin) !----------------------------------------------------- binvrs=one/bin c --- read crystal lattice points. ltfile = 'ltfile' write (6, 6200) ltfile 6200 format ('READING crystal lattice from ', a16/) open (8, file='lattice-file-180', status='old') read (8, *) nlpts if (nlpts.ne.NATOMS) then write (6, *) 'ERROR: number of atoms in lattice file = ', nlpts write (6, *) 'number of atoms in source code = ', NATOMS stop end if c --- read the edge lengths of the supercell. read (8, *) xlen, ylen, zlen c --- compute a distance scaling factor. den0=dble(NATOMS)/(xlen*ylen*zlen) c --- scale is a distance scaling factor, computed from the atomic c number density specified by the user. scale=exp(dlog(den/den0)/3.0d0) write (6, 6300) scale 6300 format ('supercell scaling factor computed from density = ', + f12.8/) xlen=xlen/scale ylen=ylen/scale zlen=zlen/scale write (6, 6310) xlen, ylen, zlen 6310 format ('supercell edge lengths [bohr] = ', 3f10.5/) dxmax=half*xlen dymax=half*ylen dzmax=half*zlen do i=1, NATOMS read (8, *) xtal(i, 1), xtal(i, 2), xtal(i, 3) xtal(i, 1)=xtal(i, 1)/scale xtal(i, 2)=xtal(i, 2)/scale xtal(i, 3)=xtal(i, 3)/scale end do close (8) write (6, 6320) xtal(NATOMS, 1), xtal(NATOMS, 2), + xtal(NATOMS, 3) 6320 format ('final lattice point [bohr] = ', 3f10.5/) c --- this variable helps us remember the nearest-neighbor distance. rnnmin=-1.0d0 do j=2, NATOMS dx=xtal(j, 1)-xtal(1, 1) dy=xtal(j, 2)-xtal(1, 2) dz=xtal(j, 3)-xtal(1, 3) c ------ this sequence of if-then-else statements enforces the c minimum image convention. if (dx.gt.dxmax) then dx=dx-xlen else if (dx.lt.-dxmax) then dx=dx+xlen end if if (dy.gt.dymax) then dy=dy-ylen else if (dy.lt.-dymax) then dy=dy+ylen end if if (dz.gt.dzmax) then dz=dz-zlen else if (dz.lt.-dzmax) then dz=dz+zlen end if r=sqrt(dx*dx+dy*dy+dz*dz) if (r.lt.rnnmin.or.rnnmin.le.0.0d0) rnnmin=r end do write (6, 6330) rnnmin 6330 format ('nearest neighbor (NN) distance [bohr] = ', f10.5/) write (6, 6340) xlen/rnnmin, ylen/rnnmin, zlen/rnnmin 6340 format ('supercell edge lengths [NN distances] = ', 3f10.5/) c --- compute interacting pairs. do i=1, NATOMS npair(i)=0 end do nvpair=0 do i=1, NATOMS do j=1, NATOMS if (j.ne.i) then dx=xtal(j, 1)-xtal(i, 1) dy=xtal(j, 2)-xtal(i, 2) dz=xtal(j, 3)-xtal(i, 3) c --------- this sequence of if-then-else statements enforces the c minimum image convention. if (dx.gt.dxmax) then dx=dx-xlen else if (dx.lt.-dxmax) then dx=dx+xlen end if if (dy.gt.dymax) then dy=dy-ylen else if (dy.lt.-dymax) then dy=dy+ylen end if if (dz.gt.dzmax) then dz=dz-zlen else if (dz.lt.-dzmax) then dz=dz+zlen end if r2=dx*dx+dy*dy+dz*dz r=sqrt(r2) c --------- interacting pairs are those for which r is less than a c certain cutoff amount. if (r/rnnmin.lt.RATIO) then nvpair=nvpair+1 ivpair(1, nvpair)=i ivpair(2, nvpair)=j vpvec(1, nvpair)=dx vpvec(2, nvpair)=dy vpvec(3, nvpair)=dz npair(i)=npair(i)+1 ipairs(npair(i), i)=nvpair end if end if end do end do write (6, 6400) npair(1), nvpair 6400 format ('atom 1 interacts with ', i3, ' other atoms'//, + 'total number of interacting pairs = ', i6/) c --- initialization. c loop=0 ! do k=1, NREPS ! vtavg(k)=0.0d0 ! etavg(k)=0.0d0 ! vtavg2(k)=0.0d0 ! etavg2(k)=0.0d0 ! end do ! open (10, file=spfile, form='unformatted') c --- this loops reads the snapshots saved by QSATS. !300 loop=loop+1 ! do k=1, NREPS, 11 ! read (10, end=600) (path(i, k), i=1, NATOM3) !------reduce the number of pairs------------- c call reduce('REDUCE') c print *,'nvpair2=',nvpair2 c print *,ivpair2(1,1),ivpair2(2,1) c ------ compute the local energy and the potential energy. dx = 0.01d0 q = 0d0 call local(q,v0) q(1) = dx call local(q,v1) q(1) = 0d0 q(4) = dx call local(q,v2) q = 0d0 q(1) = dx q(4) = dx call local(q,v3) coup = (v3+v0-v1-v2)/dx**2 write(*,1111) coup,v1-v0,v3-v0 1111 format('linear coupling coeff ',e14.6/, + 'deviation of one step ',e14.6/, + 'deviation of two steps',e14.6/) q = 0d0 do j=1,201 q(1) = -5d0+0.05d0*dble(j-1) call local(q,vloc) write(105,1000) q(1),vloc enddo 1000 format(20(e14.7,1x)) return end program c ---------------------------------------------------------------------- c quit is a subroutine used to terminate execution if there is c an error. c it is needed here because the subroutine that reads the parameters c (subroutine input) may call it. c ---------------------------------------------------------------------- subroutine quit write (6, *) 'termination via subroutine quit' stop end subroutine
gpl-3.0
binghongcha08/pyQMD
QTM/MixQC/1.0.0/pes/qm.f
8
7531
c QSATS version 1.0 (3 March 2011) c file name: eloc.f c ---------------------------------------------------------------------- c this computes the total energy and the expectation value of the c potential energy from the snapshots recorded by QSATS. c ---------------------------------------------------------------------- program eloc implicit double precision (a-h, o-z) include 'sizes.h' include 'qsats.h' common /bincom/ bin, binvrs, r2min character*4 :: atom(NATOMS) c --- this common block is used to enable interpolation in the potential c energy lookup table in the subroutine local below. dimension q(NATOM3), vtavg(NREPS), vtavg2(NREPS), + etavg(NREPS), etavg2(NREPS),dv(NATOM3) dimension idum(NATOM3) parameter (half=0.5d0) parameter (one=1.0d0) open(100, file='energy.dat') open(101, file='xoutput') open(102, file='traj4') open(103, file='pot.dat') open(104, file='force.dat') open(105, file='pes') open(106, file='temp.dat') Ndim = NATOM3 c --- initialization. ! call tstamp write (6, 6001) NREPS, NATOMS, NATOM3, NATOM6, NATOM7, + NVBINS, RATIO, NIP, NPAIRS 6001 format ('compile-time parameters:'//, + 'NREPS = ', i6/, + 'NATOMS = ', i6/, + 'NATOM3 = ', i6/, + 'NATOM6 = ', i6/, + 'NATOM7 = ', i6/, + 'NVBINS = ', i6/, + 'RATIO = ', f6.4/, + 'NIP = ', i6/, + 'NPAIRS = ', i6/) ! call input den = 4.61421d-3 call vinit(r2min, bin) !----------------------------------------------------- binvrs=one/bin c --- read crystal lattice points. ltfile = 'ltfile' write (6, 6200) ltfile 6200 format ('READING crystal lattice from ', a16/) open (8, file='lattice-file-180', status='old') read (8, *) nlpts if (nlpts.ne.NATOMS) then write (6, *) 'ERROR: number of atoms in lattice file = ', nlpts write (6, *) 'number of atoms in source code = ', NATOMS stop end if c --- read the edge lengths of the supercell. read (8, *) xlen, ylen, zlen c --- compute a distance scaling factor. den0=dble(NATOMS)/(xlen*ylen*zlen) c --- scale is a distance scaling factor, computed from the atomic c number density specified by the user. scale=exp(dlog(den/den0)/3.0d0) write (6, 6300) scale 6300 format ('supercell scaling factor computed from density = ', + f12.8/) xlen=xlen/scale ylen=ylen/scale zlen=zlen/scale write (6, 6310) xlen, ylen, zlen 6310 format ('supercell edge lengths [bohr] = ', 3f10.5/) dxmax=half*xlen dymax=half*ylen dzmax=half*zlen do i=1, NATOMS read (8, *) xtal(i, 1), xtal(i, 2), xtal(i, 3) xtal(i, 1)=xtal(i, 1)/scale xtal(i, 2)=xtal(i, 2)/scale xtal(i, 3)=xtal(i, 3)/scale end do close (8) write (6, 6320) xtal(NATOMS, 1), xtal(NATOMS, 2), + xtal(NATOMS, 3) 6320 format ('final lattice point [bohr] = ', 3f10.5/) c --- this variable helps us remember the nearest-neighbor distance. rnnmin=-1.0d0 do j=2, NATOMS dx=xtal(j, 1)-xtal(1, 1) dy=xtal(j, 2)-xtal(1, 2) dz=xtal(j, 3)-xtal(1, 3) c ------ this sequence of if-then-else statements enforces the c minimum image convention. if (dx.gt.dxmax) then dx=dx-xlen else if (dx.lt.-dxmax) then dx=dx+xlen end if if (dy.gt.dymax) then dy=dy-ylen else if (dy.lt.-dymax) then dy=dy+ylen end if if (dz.gt.dzmax) then dz=dz-zlen else if (dz.lt.-dzmax) then dz=dz+zlen end if r=sqrt(dx*dx+dy*dy+dz*dz) if (r.lt.rnnmin.or.rnnmin.le.0.0d0) rnnmin=r end do write (6, 6330) rnnmin 6330 format ('nearest neighbor (NN) distance [bohr] = ', f10.5/) write (6, 6340) xlen/rnnmin, ylen/rnnmin, zlen/rnnmin 6340 format ('supercell edge lengths [NN distances] = ', 3f10.5/) c --- compute interacting pairs. do i=1, NATOMS npair(i)=0 end do nvpair=0 do i=1, NATOMS do j=1, NATOMS if (j.ne.i) then dx=xtal(j, 1)-xtal(i, 1) dy=xtal(j, 2)-xtal(i, 2) dz=xtal(j, 3)-xtal(i, 3) c --------- this sequence of if-then-else statements enforces the c minimum image convention. if (dx.gt.dxmax) then dx=dx-xlen else if (dx.lt.-dxmax) then dx=dx+xlen end if if (dy.gt.dymax) then dy=dy-ylen else if (dy.lt.-dymax) then dy=dy+ylen end if if (dz.gt.dzmax) then dz=dz-zlen else if (dz.lt.-dzmax) then dz=dz+zlen end if r2=dx*dx+dy*dy+dz*dz r=sqrt(r2) c --------- interacting pairs are those for which r is less than a c certain cutoff amount. if (r/rnnmin.lt.RATIO) then nvpair=nvpair+1 ivpair(1, nvpair)=i ivpair(2, nvpair)=j vpvec(1, nvpair)=dx vpvec(2, nvpair)=dy vpvec(3, nvpair)=dz npair(i)=npair(i)+1 ipairs(npair(i), i)=nvpair end if end if end do end do write (6, 6400) npair(1), nvpair 6400 format ('atom 1 interacts with ', i3, ' other atoms'//, + 'total number of interacting pairs = ', i6/) c --- initialization. c loop=0 ! do k=1, NREPS ! vtavg(k)=0.0d0 ! etavg(k)=0.0d0 ! vtavg2(k)=0.0d0 ! etavg2(k)=0.0d0 ! end do ! open (10, file=spfile, form='unformatted') c --- this loops reads the snapshots saved by QSATS. !300 loop=loop+1 ! do k=1, NREPS, 11 ! read (10, end=600) (path(i, k), i=1, NATOM3) !------reduce the number of pairs------------- c call reduce('REDUCE') c print *,'nvpair2=',nvpair2 c print *,ivpair2(1,1),ivpair2(2,1) c ------ compute the local energy and the potential energy. dx = 0.01d0 q = 0d0 call local(q,v0) q(1) = dx call local(q,v1) q(1) = 0d0 q(4) = dx call local(q,v2) q = 0d0 q(1) = dx q(4) = dx call local(q,v3) coup = (v3+v0-v1-v2)/dx**2 write(*,1111) coup,v1-v0,v3-v0 1111 format('linear coupling coeff ',e14.6/, + 'deviation of one step ',e14.6/, + 'deviation of two steps',e14.6/) q = 0d0 do j=1,201 q(1) = -5d0+0.05d0*dble(j-1) call local(q,vloc) write(105,1000) q(1),vloc enddo 1000 format(20(e14.7,1x)) return end program c ---------------------------------------------------------------------- c quit is a subroutine used to terminate execution if there is c an error. c it is needed here because the subroutine that reads the parameters c (subroutine input) may call it. c ---------------------------------------------------------------------- subroutine quit write (6, *) 'termination via subroutine quit' stop end subroutine
gpl-3.0
binghongcha08/pyQMD
QTM/MixQC/1.0.3/pes/qm.f
8
7531
c QSATS version 1.0 (3 March 2011) c file name: eloc.f c ---------------------------------------------------------------------- c this computes the total energy and the expectation value of the c potential energy from the snapshots recorded by QSATS. c ---------------------------------------------------------------------- program eloc implicit double precision (a-h, o-z) include 'sizes.h' include 'qsats.h' common /bincom/ bin, binvrs, r2min character*4 :: atom(NATOMS) c --- this common block is used to enable interpolation in the potential c energy lookup table in the subroutine local below. dimension q(NATOM3), vtavg(NREPS), vtavg2(NREPS), + etavg(NREPS), etavg2(NREPS),dv(NATOM3) dimension idum(NATOM3) parameter (half=0.5d0) parameter (one=1.0d0) open(100, file='energy.dat') open(101, file='xoutput') open(102, file='traj4') open(103, file='pot.dat') open(104, file='force.dat') open(105, file='pes') open(106, file='temp.dat') Ndim = NATOM3 c --- initialization. ! call tstamp write (6, 6001) NREPS, NATOMS, NATOM3, NATOM6, NATOM7, + NVBINS, RATIO, NIP, NPAIRS 6001 format ('compile-time parameters:'//, + 'NREPS = ', i6/, + 'NATOMS = ', i6/, + 'NATOM3 = ', i6/, + 'NATOM6 = ', i6/, + 'NATOM7 = ', i6/, + 'NVBINS = ', i6/, + 'RATIO = ', f6.4/, + 'NIP = ', i6/, + 'NPAIRS = ', i6/) ! call input den = 4.61421d-3 call vinit(r2min, bin) !----------------------------------------------------- binvrs=one/bin c --- read crystal lattice points. ltfile = 'ltfile' write (6, 6200) ltfile 6200 format ('READING crystal lattice from ', a16/) open (8, file='lattice-file-180', status='old') read (8, *) nlpts if (nlpts.ne.NATOMS) then write (6, *) 'ERROR: number of atoms in lattice file = ', nlpts write (6, *) 'number of atoms in source code = ', NATOMS stop end if c --- read the edge lengths of the supercell. read (8, *) xlen, ylen, zlen c --- compute a distance scaling factor. den0=dble(NATOMS)/(xlen*ylen*zlen) c --- scale is a distance scaling factor, computed from the atomic c number density specified by the user. scale=exp(dlog(den/den0)/3.0d0) write (6, 6300) scale 6300 format ('supercell scaling factor computed from density = ', + f12.8/) xlen=xlen/scale ylen=ylen/scale zlen=zlen/scale write (6, 6310) xlen, ylen, zlen 6310 format ('supercell edge lengths [bohr] = ', 3f10.5/) dxmax=half*xlen dymax=half*ylen dzmax=half*zlen do i=1, NATOMS read (8, *) xtal(i, 1), xtal(i, 2), xtal(i, 3) xtal(i, 1)=xtal(i, 1)/scale xtal(i, 2)=xtal(i, 2)/scale xtal(i, 3)=xtal(i, 3)/scale end do close (8) write (6, 6320) xtal(NATOMS, 1), xtal(NATOMS, 2), + xtal(NATOMS, 3) 6320 format ('final lattice point [bohr] = ', 3f10.5/) c --- this variable helps us remember the nearest-neighbor distance. rnnmin=-1.0d0 do j=2, NATOMS dx=xtal(j, 1)-xtal(1, 1) dy=xtal(j, 2)-xtal(1, 2) dz=xtal(j, 3)-xtal(1, 3) c ------ this sequence of if-then-else statements enforces the c minimum image convention. if (dx.gt.dxmax) then dx=dx-xlen else if (dx.lt.-dxmax) then dx=dx+xlen end if if (dy.gt.dymax) then dy=dy-ylen else if (dy.lt.-dymax) then dy=dy+ylen end if if (dz.gt.dzmax) then dz=dz-zlen else if (dz.lt.-dzmax) then dz=dz+zlen end if r=sqrt(dx*dx+dy*dy+dz*dz) if (r.lt.rnnmin.or.rnnmin.le.0.0d0) rnnmin=r end do write (6, 6330) rnnmin 6330 format ('nearest neighbor (NN) distance [bohr] = ', f10.5/) write (6, 6340) xlen/rnnmin, ylen/rnnmin, zlen/rnnmin 6340 format ('supercell edge lengths [NN distances] = ', 3f10.5/) c --- compute interacting pairs. do i=1, NATOMS npair(i)=0 end do nvpair=0 do i=1, NATOMS do j=1, NATOMS if (j.ne.i) then dx=xtal(j, 1)-xtal(i, 1) dy=xtal(j, 2)-xtal(i, 2) dz=xtal(j, 3)-xtal(i, 3) c --------- this sequence of if-then-else statements enforces the c minimum image convention. if (dx.gt.dxmax) then dx=dx-xlen else if (dx.lt.-dxmax) then dx=dx+xlen end if if (dy.gt.dymax) then dy=dy-ylen else if (dy.lt.-dymax) then dy=dy+ylen end if if (dz.gt.dzmax) then dz=dz-zlen else if (dz.lt.-dzmax) then dz=dz+zlen end if r2=dx*dx+dy*dy+dz*dz r=sqrt(r2) c --------- interacting pairs are those for which r is less than a c certain cutoff amount. if (r/rnnmin.lt.RATIO) then nvpair=nvpair+1 ivpair(1, nvpair)=i ivpair(2, nvpair)=j vpvec(1, nvpair)=dx vpvec(2, nvpair)=dy vpvec(3, nvpair)=dz npair(i)=npair(i)+1 ipairs(npair(i), i)=nvpair end if end if end do end do write (6, 6400) npair(1), nvpair 6400 format ('atom 1 interacts with ', i3, ' other atoms'//, + 'total number of interacting pairs = ', i6/) c --- initialization. c loop=0 ! do k=1, NREPS ! vtavg(k)=0.0d0 ! etavg(k)=0.0d0 ! vtavg2(k)=0.0d0 ! etavg2(k)=0.0d0 ! end do ! open (10, file=spfile, form='unformatted') c --- this loops reads the snapshots saved by QSATS. !300 loop=loop+1 ! do k=1, NREPS, 11 ! read (10, end=600) (path(i, k), i=1, NATOM3) !------reduce the number of pairs------------- c call reduce('REDUCE') c print *,'nvpair2=',nvpair2 c print *,ivpair2(1,1),ivpair2(2,1) c ------ compute the local energy and the potential energy. dx = 0.01d0 q = 0d0 call local(q,v0) q(1) = dx call local(q,v1) q(1) = 0d0 q(4) = dx call local(q,v2) q = 0d0 q(1) = dx q(4) = dx call local(q,v3) coup = (v3+v0-v1-v2)/dx**2 write(*,1111) coup,v1-v0,v3-v0 1111 format('linear coupling coeff ',e14.6/, + 'deviation of one step ',e14.6/, + 'deviation of two steps',e14.6/) q = 0d0 do j=1,201 q(1) = -5d0+0.05d0*dble(j-1) call local(q,vloc) write(105,1000) q(1),vloc enddo 1000 format(20(e14.7,1x)) return end program c ---------------------------------------------------------------------- c quit is a subroutine used to terminate execution if there is c an error. c it is needed here because the subroutine that reads the parameters c (subroutine input) may call it. c ---------------------------------------------------------------------- subroutine quit write (6, *) 'termination via subroutine quit' stop end subroutine
gpl-3.0
wkramer/openda
core/native/external/lapack/slanhs.f
1
4116
REAL FUNCTION SLANHS( NORM, N, A, LDA, WORK ) * * -- LAPACK auxiliary routine (version 3.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * October 31, 1992 * * .. Scalar Arguments .. CHARACTER NORM INTEGER LDA, N * .. * .. Array Arguments .. REAL A( LDA, * ), WORK( * ) * .. * * Purpose * ======= * * SLANHS returns the value of the one norm, or the Frobenius norm, or * the infinity norm, or the element of largest absolute value of a * Hessenberg matrix A. * * Description * =========== * * SLANHS returns the value * * SLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm' * ( * ( norm1(A), NORM = '1', 'O' or 'o' * ( * ( normI(A), NORM = 'I' or 'i' * ( * ( normF(A), NORM = 'F', 'f', 'E' or 'e' * * where norm1 denotes the one norm of a matrix (maximum column sum), * normI denotes the infinity norm of a matrix (maximum row sum) and * normF denotes the Frobenius norm of a matrix (square root of sum of * squares). Note that max(abs(A(i,j))) is not a matrix norm. * * Arguments * ========= * * NORM (input) CHARACTER*1 * Specifies the value to be returned in SLANHS as described * above. * * N (input) INTEGER * The order of the matrix A. N >= 0. When N = 0, SLANHS is * set to zero. * * A (input) REAL array, dimension (LDA,N) * The n by n upper Hessenberg matrix A; the part of A below the * first sub-diagonal is not referenced. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(N,1). * * WORK (workspace) REAL array, dimension (LWORK), * where LWORK >= N when NORM = 'I'; otherwise, WORK is not * referenced. * * ===================================================================== * * .. Parameters .. REAL ONE, ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) * .. * .. Local Scalars .. INTEGER I, J REAL SCALE, SUM, VALUE * .. * .. External Subroutines .. EXTERNAL SLASSQ * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN, SQRT * .. * .. Executable Statements .. * IF( N.EQ.0 ) THEN VALUE = ZERO ELSE IF( LSAME( NORM, 'M' ) ) THEN * * Find max(abs(A(i,j))). * VALUE = ZERO DO 20 J = 1, N DO 10 I = 1, MIN( N, J+1 ) VALUE = MAX( VALUE, ABS( A( I, J ) ) ) 10 CONTINUE 20 CONTINUE ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN * * Find norm1(A). * VALUE = ZERO DO 40 J = 1, N SUM = ZERO DO 30 I = 1, MIN( N, J+1 ) SUM = SUM + ABS( A( I, J ) ) 30 CONTINUE VALUE = MAX( VALUE, SUM ) 40 CONTINUE ELSE IF( LSAME( NORM, 'I' ) ) THEN * * Find normI(A). * DO 50 I = 1, N WORK( I ) = ZERO 50 CONTINUE DO 70 J = 1, N DO 60 I = 1, MIN( N, J+1 ) WORK( I ) = WORK( I ) + ABS( A( I, J ) ) 60 CONTINUE 70 CONTINUE VALUE = ZERO DO 80 I = 1, N VALUE = MAX( VALUE, WORK( I ) ) 80 CONTINUE ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN * * Find normF(A). * SCALE = ZERO SUM = ONE DO 90 J = 1, N CALL SLASSQ( MIN( N, J+1 ), A( 1, J ), 1, SCALE, SUM ) 90 CONTINUE VALUE = SCALE*SQRT( SUM ) END IF * SLANHS = VALUE RETURN * * End of SLANHS * END
lgpl-3.0
wkramer/openda
core/native/external/lapack/cpteqr.f
1
6261
SUBROUTINE CPTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO ) * * -- LAPACK routine (version 3.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * October 31, 1999 * * .. Scalar Arguments .. CHARACTER COMPZ INTEGER INFO, LDZ, N * .. * .. Array Arguments .. REAL D( * ), E( * ), WORK( * ) COMPLEX Z( LDZ, * ) * .. * * Purpose * ======= * * CPTEQR computes all eigenvalues and, optionally, eigenvectors of a * symmetric positive definite tridiagonal matrix by first factoring the * matrix using SPTTRF and then calling CBDSQR to compute the singular * values of the bidiagonal factor. * * This routine computes the eigenvalues of the positive definite * tridiagonal matrix to high relative accuracy. This means that if the * eigenvalues range over many orders of magnitude in size, then the * small eigenvalues and corresponding eigenvectors will be computed * more accurately than, for example, with the standard QR method. * * The eigenvectors of a full or band positive definite Hermitian matrix * can also be found if CHETRD, CHPTRD, or CHBTRD has been used to * reduce this matrix to tridiagonal form. (The reduction to * tridiagonal form, however, may preclude the possibility of obtaining * high relative accuracy in the small eigenvalues of the original * matrix, if these eigenvalues range over many orders of magnitude.) * * Arguments * ========= * * COMPZ (input) CHARACTER*1 * = 'N': Compute eigenvalues only. * = 'V': Compute eigenvectors of original Hermitian * matrix also. Array Z contains the unitary matrix * used to reduce the original matrix to tridiagonal * form. * = 'I': Compute eigenvectors of tridiagonal matrix also. * * N (input) INTEGER * The order of the matrix. N >= 0. * * D (input/output) REAL array, dimension (N) * On entry, the n diagonal elements of the tridiagonal matrix. * On normal exit, D contains the eigenvalues, in descending * order. * * E (input/output) REAL array, dimension (N-1) * On entry, the (n-1) subdiagonal elements of the tridiagonal * matrix. * On exit, E has been destroyed. * * Z (input/output) COMPLEX array, dimension (LDZ, N) * On entry, if COMPZ = 'V', the unitary matrix used in the * reduction to tridiagonal form. * On exit, if COMPZ = 'V', the orthonormal eigenvectors of the * original Hermitian matrix; * if COMPZ = 'I', the orthonormal eigenvectors of the * tridiagonal matrix. * If INFO > 0 on exit, Z contains the eigenvectors associated * with only the stored eigenvalues. * If COMPZ = 'N', then Z is not referenced. * * LDZ (input) INTEGER * The leading dimension of the array Z. LDZ >= 1, and if * COMPZ = 'V' or 'I', LDZ >= max(1,N). * * WORK (workspace) REAL array, dimension (4*N) * * INFO (output) INTEGER * = 0: successful exit. * < 0: if INFO = -i, the i-th argument had an illegal value. * > 0: if INFO = i, and i is: * <= N the Cholesky factorization of the matrix could * not be performed because the i-th principal minor * was not positive definite. * > N the SVD algorithm failed to converge; * if INFO = N+i, i off-diagonal elements of the * bidiagonal factor did not converge to zero. * * ==================================================================== * * .. Parameters .. COMPLEX CZERO, CONE PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ), $ CONE = ( 1.0E+0, 0.0E+0 ) ) * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL CBDSQR, CLASET, SPTTRF, XERBLA * .. * .. Local Arrays .. COMPLEX C( 1, 1 ), VT( 1, 1 ) * .. * .. Local Scalars .. INTEGER I, ICOMPZ, NRU * .. * .. Intrinsic Functions .. INTRINSIC MAX, SQRT * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 * IF( LSAME( COMPZ, 'N' ) ) THEN ICOMPZ = 0 ELSE IF( LSAME( COMPZ, 'V' ) ) THEN ICOMPZ = 1 ELSE IF( LSAME( COMPZ, 'I' ) ) THEN ICOMPZ = 2 ELSE ICOMPZ = -1 END IF IF( ICOMPZ.LT.0 ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( ( LDZ.LT.1 ) .OR. ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1, $ N ) ) ) THEN INFO = -6 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CPTEQR', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * IF( N.EQ.1 ) THEN IF( ICOMPZ.GT.0 ) $ Z( 1, 1 ) = CONE RETURN END IF IF( ICOMPZ.EQ.2 ) $ CALL CLASET( 'Full', N, N, CZERO, CONE, Z, LDZ ) * * Call SPTTRF to factor the matrix. * CALL SPTTRF( N, D, E, INFO ) IF( INFO.NE.0 ) $ RETURN DO 10 I = 1, N D( I ) = SQRT( D( I ) ) 10 CONTINUE DO 20 I = 1, N - 1 E( I ) = E( I )*D( I ) 20 CONTINUE * * Call CBDSQR to compute the singular values/vectors of the * bidiagonal factor. * IF( ICOMPZ.GT.0 ) THEN NRU = N ELSE NRU = 0 END IF CALL CBDSQR( 'Lower', N, 0, NRU, 0, D, E, VT, 1, Z, LDZ, C, 1, $ WORK, INFO ) * * Square the singular values. * IF( INFO.EQ.0 ) THEN DO 30 I = 1, N D( I ) = D( I )*D( I ) 30 CONTINUE ELSE INFO = N + INFO END IF * RETURN * * End of CPTEQR * END
lgpl-3.0
villevoutilainen/gcc
gcc/testsuite/gfortran.dg/operator_5.f90
121
1147
! { dg-do compile } ! { dg-options "-c" } MODULE mod_t type :: t integer :: x end type ! user defined operator INTERFACE OPERATOR(.FOO.) MODULE PROCEDURE t_foo END INTERFACE INTERFACE OPERATOR(.FOO.) MODULE PROCEDURE t_foo ! { dg-error "already present" } END INTERFACE INTERFACE OPERATOR(.FOO.) MODULE PROCEDURE t_bar ! { dg-error "Ambiguous interfaces" } END INTERFACE ! intrinsic operator INTERFACE OPERATOR(==) MODULE PROCEDURE t_foo END INTERFACE INTERFACE OPERATOR(.eq.) MODULE PROCEDURE t_foo ! { dg-error "already present" } END INTERFACE INTERFACE OPERATOR(==) MODULE PROCEDURE t_bar ! { dg-error "Ambiguous interfaces" } END INTERFACE INTERFACE OPERATOR(.eq.) MODULE PROCEDURE t_bar ! { dg-error "already present" } END INTERFACE CONTAINS LOGICAL FUNCTION t_foo(this, other) TYPE(t), INTENT(in) :: this, other t_foo = .FALSE. END FUNCTION LOGICAL FUNCTION t_bar(this, other) TYPE(t), INTENT(in) :: this, other t_bar = .FALSE. END FUNCTION END MODULE
gpl-2.0
villevoutilainen/gcc
gcc/testsuite/gfortran.dg/block_name_1.f90
193
1700
! { dg-do compile } ! Verify that the compiler accepts the various legal combinations of ! using construct names. ! ! The correct behavior of EXIT and CYCLE is already established in ! the various DO related testcases, they're included here for ! completeness. dimension a(5) i = 0 ! construct name is optional on else clauses ia: if (i > 0) then i = 1 else i = 2 end if ia ib: if (i < 0) then i = 3 else ib i = 4 end if ib ic: if (i < 0) then i = 5 else if (i == 0) then ic i = 6 else if (i == 1) then i =7 else if (i == 2) then ic i = 8 end if ic fa: forall (i=1:5, a(i) > 0) a(i) = 9 end forall fa wa: where (a > 0) a = -a elsewhere wb: where (a == 0) a = a + 1. elsewhere wb a = 2*a end where wb end where wa j = 1 sa: select case (i) case (1) i = 2 case (2) sa i = 3 case default sa sb: select case (j) case (1) sb i = j case default j = i end select sb end select sa da: do i=1,10 cycle da cycle exit da exit db: do cycle da cycle db cycle exit da exit db exit j = i+1 end do db dc: do while (j>0) j = j-1 end do dc end do da end
gpl-2.0
binghongcha08/pyQMD
SPO/Morse/cor.f
9
1089
subroutine cor(ni,nj,psi0,psi,auto,au_x,au_y) implicit none integer*4 i,j,ni,nj real*8 :: xmin,ymin,xmax,ymax,dx,dy,x,y,wx,wy complex*16,intent(IN) :: psi0(ni,nj),psi(ni,nj) complex*16 :: im real*8,intent(out) :: auto real*8 :: qx0,qy0,ax,ay,au_x,au_y,px0,py0 real*8 cor_d common /grid/ xmin,ymin,xmax,ymax,dx,dy common /para1/ wx,wy common /ini/ qx0,qy0,px0,py0 common /wav/ ax,ay common /correlation/ cor_d ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc auto=0d0 au_x=0d0 au_y=0d0 im=(0d0,1d0) cor_d=0d0 c------correlation function------------------------------- do j=1,nj y=ymin+(j-1)*dy do i=1,ni x=xmin+(i-1)*dx auto=auto+conjg(psi(i,j))*psi0(i,j)*dx*dy au_x=au_x+conjg(psi(i,j))*exp(-ax*x**2+im*px0*(x-qx0))*dx*dy au_y=au_y+conjg(psi(i,j))*exp(-ay*y**2+im*py0*(x-qy0))*dx*dy cor_d=cor_d+abs(psi0(i,j))**2*abs(psi(i,j))**2*dx*dy enddo enddo c yy=yy+abs(psi(i,j))**2*dx*dy*y**2 c ex=ex+abs(psi(i,j))**2*dx*dy*(x**2*y-y**3/3d0) end subroutine
gpl-3.0
binghongcha08/pyQMD
QTM/MixQC/spo_2d/1.0.0/cor.f
9
1089
subroutine cor(ni,nj,psi0,psi,auto,au_x,au_y) implicit none integer*4 i,j,ni,nj real*8 :: xmin,ymin,xmax,ymax,dx,dy,x,y,wx,wy complex*16,intent(IN) :: psi0(ni,nj),psi(ni,nj) complex*16 :: im real*8,intent(out) :: auto real*8 :: qx0,qy0,ax,ay,au_x,au_y,px0,py0 real*8 cor_d common /grid/ xmin,ymin,xmax,ymax,dx,dy common /para1/ wx,wy common /ini/ qx0,qy0,px0,py0 common /wav/ ax,ay common /correlation/ cor_d ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc auto=0d0 au_x=0d0 au_y=0d0 im=(0d0,1d0) cor_d=0d0 c------correlation function------------------------------- do j=1,nj y=ymin+(j-1)*dy do i=1,ni x=xmin+(i-1)*dx auto=auto+conjg(psi(i,j))*psi0(i,j)*dx*dy au_x=au_x+conjg(psi(i,j))*exp(-ax*x**2+im*px0*(x-qx0))*dx*dy au_y=au_y+conjg(psi(i,j))*exp(-ay*y**2+im*py0*(x-qy0))*dx*dy cor_d=cor_d+abs(psi0(i,j))**2*abs(psi(i,j))**2*dx*dy enddo enddo c yy=yy+abs(psi(i,j))**2*dx*dy*y**2 c ex=ex+abs(psi(i,j))**2*dx*dy*(x**2*y-y**3/3d0) end subroutine
gpl-3.0
villevoutilainen/gcc
gcc/testsuite/gfortran.dg/namelist_27.f90
169
2851
! { dg-do run } ! PR31052 Bad IOSTAT values when readings NAMELISTs past EOF. ! Patch derived from PR, submitted by Jerry DeLisle <jvdelisle@gcc.gnu.org> program gfcbug61 implicit none integer :: stat open (12, status="scratch") write (12, '(a)')"!================" write (12, '(a)')"! Namelist REPORT" write (12, '(a)')"!================" write (12, '(a)')" &REPORT type = 'SYNOP' " write (12, '(a)')" use = 'active'" write (12, '(a)')" max_proc = 20" write (12, '(a)')" /" write (12, '(a)')"! Other namelists..." write (12, '(a)')" &OTHER i = 1 /" rewind (12) ! Read /REPORT/ the first time rewind (12) call position_nml (12, "REPORT", stat) if (stat.ne.0) call abort() if (stat == 0) call read_report (12, stat) ! Comment out the following lines to hide the bug rewind (12) call position_nml (12, "MISSING", stat) if (stat.ne.-1) call abort () ! Read /REPORT/ again rewind (12) call position_nml (12, "REPORT", stat) if (stat.ne.0) call abort() contains subroutine position_nml (unit, name, status) ! Check for presence of namelist 'name' integer :: unit, status character(len=*), intent(in) :: name character(len=255) :: line integer :: ios, idx, k logical :: first first = .true. status = 0 ios = 0 line = "" do k=1,10 read (unit,'(a)',iostat=ios) line if (first) then first = .false. end if if (ios < 0) then ! EOF encountered! backspace (unit) status = -1 return else if (ios > 0) then ! Error encountered! status = +1 return end if idx = index (line, "&"//trim (name)) if (idx > 0) then backspace (unit) return end if end do end subroutine position_nml subroutine read_report (unit, status) integer :: unit, status integer :: iuse, ios, k !------------------ ! Namelist 'REPORT' !------------------ character(len=12) :: type, use integer :: max_proc namelist /REPORT/ type, use, max_proc !------------------------------------- ! Loop to read namelist multiple times !------------------------------------- iuse = 0 do k=1,5 !---------------------------------------- ! Preset namelist variables with defaults !---------------------------------------- type = '' use = '' max_proc = -1 !-------------- ! Read namelist !-------------- read (unit, nml=REPORT, iostat=ios) if (ios /= 0) exit iuse = iuse + 1 end do if (iuse.ne.1) call abort() status = ios end subroutine read_report end program gfcbug61
gpl-2.0
wkramer/openda
core/native/external/lapack/dlasd1.f
1
8027
SUBROUTINE DLASD1( NL, NR, SQRE, D, ALPHA, BETA, U, LDU, VT, LDVT, $ IDXQ, IWORK, WORK, INFO ) * * -- LAPACK auxiliary routine (version 3.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * June 30, 1999 * * .. Scalar Arguments .. INTEGER INFO, LDU, LDVT, NL, NR, SQRE DOUBLE PRECISION ALPHA, BETA * .. * .. Array Arguments .. INTEGER IDXQ( * ), IWORK( * ) DOUBLE PRECISION D( * ), U( LDU, * ), VT( LDVT, * ), WORK( * ) * .. * * Purpose * ======= * * DLASD1 computes the SVD of an upper bidiagonal N-by-M matrix B, * where N = NL + NR + 1 and M = N + SQRE. DLASD1 is called from DLASD0. * * A related subroutine DLASD7 handles the case in which the singular * values (and the singular vectors in factored form) are desired. * * DLASD1 computes the SVD as follows: * * ( D1(in) 0 0 0 ) * B = U(in) * ( Z1' a Z2' b ) * VT(in) * ( 0 0 D2(in) 0 ) * * = U(out) * ( D(out) 0) * VT(out) * * where Z' = (Z1' a Z2' b) = u' VT', and u is a vector of dimension M * with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros * elsewhere; and the entry b is empty if SQRE = 0. * * The left singular vectors of the original matrix are stored in U, and * the transpose of the right singular vectors are stored in VT, and the * singular values are in D. The algorithm consists of three stages: * * The first stage consists of deflating the size of the problem * when there are multiple singular values or when there are zeros in * the Z vector. For each such occurence the dimension of the * secular equation problem is reduced by one. This stage is * performed by the routine DLASD2. * * The second stage consists of calculating the updated * singular values. This is done by finding the square roots of the * roots of the secular equation via the routine DLASD4 (as called * by DLASD3). This routine also calculates the singular vectors of * the current problem. * * The final stage consists of computing the updated singular vectors * directly using the updated singular values. The singular vectors * for the current problem are multiplied with the singular vectors * from the overall problem. * * Arguments * ========= * * NL (input) INTEGER * The row dimension of the upper block. NL >= 1. * * NR (input) INTEGER * The row dimension of the lower block. NR >= 1. * * SQRE (input) INTEGER * = 0: the lower block is an NR-by-NR square matrix. * = 1: the lower block is an NR-by-(NR+1) rectangular matrix. * * The bidiagonal matrix has row dimension N = NL + NR + 1, * and column dimension M = N + SQRE. * * D (input/output) DOUBLE PRECISION array, * dimension (N = NL+NR+1). * On entry D(1:NL,1:NL) contains the singular values of the * upper block; and D(NL+2:N) contains the singular values of * the lower block. On exit D(1:N) contains the singular values * of the modified matrix. * * ALPHA (input) DOUBLE PRECISION * Contains the diagonal element associated with the added row. * * BETA (input) DOUBLE PRECISION * Contains the off-diagonal element associated with the added * row. * * U (input/output) DOUBLE PRECISION array, dimension(LDU,N) * On entry U(1:NL, 1:NL) contains the left singular vectors of * the upper block; U(NL+2:N, NL+2:N) contains the left singular * vectors of the lower block. On exit U contains the left * singular vectors of the bidiagonal matrix. * * LDU (input) INTEGER * The leading dimension of the array U. LDU >= max( 1, N ). * * VT (input/output) DOUBLE PRECISION array, dimension(LDVT,M) * where M = N + SQRE. * On entry VT(1:NL+1, 1:NL+1)' contains the right singular * vectors of the upper block; VT(NL+2:M, NL+2:M)' contains * the right singular vectors of the lower block. On exit * VT' contains the right singular vectors of the * bidiagonal matrix. * * LDVT (input) INTEGER * The leading dimension of the array VT. LDVT >= max( 1, M ). * * IDXQ (output) INTEGER array, dimension(N) * This contains the permutation which will reintegrate the * subproblem just solved back into sorted order, i.e. * D( IDXQ( I = 1, N ) ) will be in ascending order. * * IWORK (workspace) INTEGER array, dimension( 4 * N ) * * WORK (workspace) DOUBLE PRECISION array, dimension( 3*M**2 + 2*M ) * * INFO (output) INTEGER * = 0: successful exit. * < 0: if INFO = -i, the i-th argument had an illegal value. * > 0: if INFO = 1, an singular value did not converge * * Further Details * =============== * * Based on contributions by * Ming Gu and Huan Ren, Computer Science Division, University of * California at Berkeley, USA * * ===================================================================== * * .. Parameters .. * DOUBLE PRECISION ONE, ZERO PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) * .. * .. Local Scalars .. INTEGER COLTYP, I, IDX, IDXC, IDXP, IQ, ISIGMA, IU2, $ IVT2, IZ, K, LDQ, LDU2, LDVT2, M, N, N1, N2 DOUBLE PRECISION ORGNRM * .. * .. External Subroutines .. EXTERNAL DLAMRG, DLASCL, DLASD2, DLASD3, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 * IF( NL.LT.1 ) THEN INFO = -1 ELSE IF( NR.LT.1 ) THEN INFO = -2 ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN INFO = -3 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'DLASD1', -INFO ) RETURN END IF * N = NL + NR + 1 M = N + SQRE * * The following values are for bookkeeping purposes only. They are * integer pointers which indicate the portion of the workspace * used by a particular array in DLASD2 and DLASD3. * LDU2 = N LDVT2 = M * IZ = 1 ISIGMA = IZ + M IU2 = ISIGMA + N IVT2 = IU2 + LDU2*N IQ = IVT2 + LDVT2*M * IDX = 1 IDXC = IDX + N COLTYP = IDXC + N IDXP = COLTYP + N * * Scale. * ORGNRM = MAX( ABS( ALPHA ), ABS( BETA ) ) D( NL+1 ) = ZERO DO 10 I = 1, N IF( ABS( D( I ) ).GT.ORGNRM ) THEN ORGNRM = ABS( D( I ) ) END IF 10 CONTINUE CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, INFO ) ALPHA = ALPHA / ORGNRM BETA = BETA / ORGNRM * * Deflate singular values. * CALL DLASD2( NL, NR, SQRE, K, D, WORK( IZ ), ALPHA, BETA, U, LDU, $ VT, LDVT, WORK( ISIGMA ), WORK( IU2 ), LDU2, $ WORK( IVT2 ), LDVT2, IWORK( IDXP ), IWORK( IDX ), $ IWORK( IDXC ), IDXQ, IWORK( COLTYP ), INFO ) * * Solve Secular Equation and update singular vectors. * LDQ = K CALL DLASD3( NL, NR, SQRE, K, D, WORK( IQ ), LDQ, WORK( ISIGMA ), $ U, LDU, WORK( IU2 ), LDU2, VT, LDVT, WORK( IVT2 ), $ LDVT2, IWORK( IDXC ), IWORK( COLTYP ), WORK( IZ ), $ INFO ) IF( INFO.NE.0 ) THEN RETURN END IF * * Unscale. * CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO ) * * Prepare the IDXQ sorting permutation. * N1 = K N2 = N - K CALL DLAMRG( N1, N2, D, 1, -1, IDXQ ) * RETURN * * End of DLASD1 * END
lgpl-3.0
wkjeong/ITK
Modules/ThirdParty/VNL/src/vxl/v3p/netlib/blas/ddot.f
89
1253
double precision function ddot(n,dx,incx,dy,incy) c c forms the dot product of two vectors. c uses unrolled loops for increments equal to one. c jack dongarra, linpack, 3/11/78. c modified 12/3/93, array(1) declarations changed to array(*) c double precision dx(*),dy(*),dtemp integer i,incx,incy,ix,iy,m,mp1,n c ddot = 0.0d0 dtemp = 0.0d0 if(n.le.0)return if(incx.eq.1.and.incy.eq.1)go to 20 c c code for unequal increments or equal increments c not equal to 1 c ix = 1 iy = 1 if(incx.lt.0)ix = (-n+1)*incx + 1 if(incy.lt.0)iy = (-n+1)*incy + 1 do 10 i = 1,n dtemp = dtemp + dx(ix)*dy(iy) ix = ix + incx iy = iy + incy 10 continue ddot = dtemp return c c code for both increments equal to 1 c c c clean-up loop c 20 m = mod(n,5) if( m .eq. 0 ) go to 40 do 30 i = 1,m dtemp = dtemp + dx(i)*dy(i) 30 continue if( n .lt. 5 ) go to 60 40 mp1 = m + 1 do 50 i = mp1,n,5 dtemp = dtemp + dx(i)*dy(i) + dx(i + 1)*dy(i + 1) + * dx(i + 2)*dy(i + 2) + dx(i + 3)*dy(i + 3) + dx(i + 4)*dy(i + 4) 50 continue 60 ddot = dtemp return end
apache-2.0
errx/carbonapi
vendor/github.com/gonum/lapack/internal/testdata/dlasqtest/dlamch.f
139
5329
*> \brief \b DLAMCH * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * DOUBLE PRECISION FUNCTION DLAMCH( CMACH ) * * *> \par Purpose: * ============= *> *> \verbatim *> *> DLAMCH determines double precision machine parameters. *> \endverbatim * * Arguments: * ========== * *> \param[in] CMACH *> \verbatim *> Specifies the value to be returned by DLAMCH: *> = 'E' or 'e', DLAMCH := eps *> = 'S' or 's , DLAMCH := sfmin *> = 'B' or 'b', DLAMCH := base *> = 'P' or 'p', DLAMCH := eps*base *> = 'N' or 'n', DLAMCH := t *> = 'R' or 'r', DLAMCH := rnd *> = 'M' or 'm', DLAMCH := emin *> = 'U' or 'u', DLAMCH := rmin *> = 'L' or 'l', DLAMCH := emax *> = 'O' or 'o', DLAMCH := rmax *> where *> eps = relative machine precision *> sfmin = safe minimum, such that 1/sfmin does not overflow *> base = base of the machine *> prec = eps*base *> t = number of (base) digits in the mantissa *> rnd = 1.0 when rounding occurs in addition, 0.0 otherwise *> emin = minimum exponent before (gradual) underflow *> rmin = underflow threshold - base**(emin-1) *> emax = largest exponent before overflow *> rmax = overflow threshold - (base**emax)*(1-eps) *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup auxOTHERauxiliary * * ===================================================================== DOUBLE PRECISION FUNCTION DLAMCH( CMACH ) * * -- LAPACK auxiliary routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. CHARACTER CMACH * .. * * .. Scalar Arguments .. DOUBLE PRECISION A, B * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE, ZERO PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) * .. * .. Local Scalars .. DOUBLE PRECISION RND, EPS, SFMIN, SMALL, RMACH * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. Intrinsic Functions .. INTRINSIC DIGITS, EPSILON, HUGE, MAXEXPONENT, $ MINEXPONENT, RADIX, TINY * .. * .. Executable Statements .. * * * Assume rounding, not chopping. Always. * RND = ONE * IF( ONE.EQ.RND ) THEN EPS = EPSILON(ZERO) * 0.5 ELSE EPS = EPSILON(ZERO) END IF * IF( LSAME( CMACH, 'E' ) ) THEN RMACH = EPS ELSE IF( LSAME( CMACH, 'S' ) ) THEN SFMIN = TINY(ZERO) SMALL = ONE / HUGE(ZERO) IF( SMALL.GE.SFMIN ) THEN * * Use SMALL plus a bit, to avoid the possibility of rounding * causing overflow when computing 1/sfmin. * SFMIN = SMALL*( ONE+EPS ) END IF RMACH = SFMIN ELSE IF( LSAME( CMACH, 'B' ) ) THEN RMACH = RADIX(ZERO) ELSE IF( LSAME( CMACH, 'P' ) ) THEN RMACH = EPS * RADIX(ZERO) ELSE IF( LSAME( CMACH, 'N' ) ) THEN RMACH = DIGITS(ZERO) ELSE IF( LSAME( CMACH, 'R' ) ) THEN RMACH = RND ELSE IF( LSAME( CMACH, 'M' ) ) THEN RMACH = MINEXPONENT(ZERO) ELSE IF( LSAME( CMACH, 'U' ) ) THEN RMACH = tiny(zero) ELSE IF( LSAME( CMACH, 'L' ) ) THEN RMACH = MAXEXPONENT(ZERO) ELSE IF( LSAME( CMACH, 'O' ) ) THEN RMACH = HUGE(ZERO) ELSE RMACH = ZERO END IF * DLAMCH = RMACH RETURN * * End of DLAMCH * END ************************************************************************ *> \brief \b DLAMC3 *> \details *> \b Purpose: *> \verbatim *> DLAMC3 is intended to force A and B to be stored prior to doing *> the addition of A and B , for use in situations where optimizers *> might hold one of these in a register. *> \endverbatim *> \author LAPACK is a software package provided by Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd.. *> \date November 2011 *> \ingroup auxOTHERauxiliary *> *> \param[in] A *> \verbatim *> A is a DOUBLE PRECISION *> \endverbatim *> *> \param[in] B *> \verbatim *> B is a DOUBLE PRECISION *> The values A and B. *> \endverbatim *> DOUBLE PRECISION FUNCTION DLAMC3( A, B ) * * -- LAPACK auxiliary routine (version 3.4.0) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2010 * * .. Scalar Arguments .. DOUBLE PRECISION A, B * .. * ===================================================================== * * .. Executable Statements .. * DLAMC3 = A + B * RETURN * * End of DLAMC3 * END * ************************************************************************
bsd-2-clause
wkramer/openda
core/native/external/blas/ctrsv.f
1
10866
SUBROUTINE CTRSV ( UPLO, TRANS, DIAG, N, A, LDA, X, INCX ) * .. Scalar Arguments .. INTEGER INCX, LDA, N CHARACTER*1 DIAG, TRANS, UPLO * .. Array Arguments .. COMPLEX A( LDA, * ), X( * ) * .. * * Purpose * ======= * * CTRSV solves one of the systems of equations * * A*x = b, or A'*x = b, or conjg( A' )*x = b, * * where b and x are n element vectors and A is an n by n unit, or * non-unit, upper or lower triangular matrix. * * No test for singularity or near-singularity is included in this * routine. Such tests must be performed before calling this routine. * * Parameters * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the equations to be solved as * follows: * * TRANS = 'N' or 'n' A*x = b. * * TRANS = 'T' or 't' A'*x = b. * * TRANS = 'C' or 'c' conjg( A' )*x = b. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit * triangular as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * A - COMPLEX array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array A must contain the upper * triangular matrix and the strictly lower triangular part of * A is not referenced. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array A must contain the lower * triangular matrix and the strictly upper triangular part of * A is not referenced. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced either, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, n ). * Unchanged on exit. * * X - COMPLEX array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element right-hand side vector b. On exit, X is overwritten * with the solution vector x. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * * .. Parameters .. COMPLEX ZERO PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) ) * .. Local Scalars .. COMPLEX TEMP INTEGER I, INFO, IX, J, JX, KX LOGICAL NOCONJ, NOUNIT * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. External Subroutines .. EXTERNAL XERBLA * .. Intrinsic Functions .. INTRINSIC CONJG, MAX * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 IF ( .NOT.LSAME( UPLO , 'U' ).AND. $ .NOT.LSAME( UPLO , 'L' ) )THEN INFO = 1 ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND. $ .NOT.LSAME( TRANS, 'T' ).AND. $ .NOT.LSAME( TRANS, 'C' ) )THEN INFO = 2 ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND. $ .NOT.LSAME( DIAG , 'N' ) )THEN INFO = 3 ELSE IF( N.LT.0 )THEN INFO = 4 ELSE IF( LDA.LT.MAX( 1, N ) )THEN INFO = 6 ELSE IF( INCX.EQ.0 )THEN INFO = 8 END IF IF( INFO.NE.0 )THEN CALL XERBLA( 'CTRSV ', INFO ) RETURN END IF * * Quick return if possible. * IF( N.EQ.0 ) $ RETURN * NOCONJ = LSAME( TRANS, 'T' ) NOUNIT = LSAME( DIAG , 'N' ) * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF( INCX.LE.0 )THEN KX = 1 - ( N - 1 )*INCX ELSE IF( INCX.NE.1 )THEN KX = 1 END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * IF( LSAME( TRANS, 'N' ) )THEN * * Form x := inv( A )*x. * IF( LSAME( UPLO, 'U' ) )THEN IF( INCX.EQ.1 )THEN DO 20, J = N, 1, -1 IF( X( J ).NE.ZERO )THEN IF( NOUNIT ) $ X( J ) = X( J )/A( J, J ) TEMP = X( J ) DO 10, I = J - 1, 1, -1 X( I ) = X( I ) - TEMP*A( I, J ) 10 CONTINUE END IF 20 CONTINUE ELSE JX = KX + ( N - 1 )*INCX DO 40, J = N, 1, -1 IF( X( JX ).NE.ZERO )THEN IF( NOUNIT ) $ X( JX ) = X( JX )/A( J, J ) TEMP = X( JX ) IX = JX DO 30, I = J - 1, 1, -1 IX = IX - INCX X( IX ) = X( IX ) - TEMP*A( I, J ) 30 CONTINUE END IF JX = JX - INCX 40 CONTINUE END IF ELSE IF( INCX.EQ.1 )THEN DO 60, J = 1, N IF( X( J ).NE.ZERO )THEN IF( NOUNIT ) $ X( J ) = X( J )/A( J, J ) TEMP = X( J ) DO 50, I = J + 1, N X( I ) = X( I ) - TEMP*A( I, J ) 50 CONTINUE END IF 60 CONTINUE ELSE JX = KX DO 80, J = 1, N IF( X( JX ).NE.ZERO )THEN IF( NOUNIT ) $ X( JX ) = X( JX )/A( J, J ) TEMP = X( JX ) IX = JX DO 70, I = J + 1, N IX = IX + INCX X( IX ) = X( IX ) - TEMP*A( I, J ) 70 CONTINUE END IF JX = JX + INCX 80 CONTINUE END IF END IF ELSE * * Form x := inv( A' )*x or x := inv( conjg( A' ) )*x. * IF( LSAME( UPLO, 'U' ) )THEN IF( INCX.EQ.1 )THEN DO 110, J = 1, N TEMP = X( J ) IF( NOCONJ )THEN DO 90, I = 1, J - 1 TEMP = TEMP - A( I, J )*X( I ) 90 CONTINUE IF( NOUNIT ) $ TEMP = TEMP/A( J, J ) ELSE DO 100, I = 1, J - 1 TEMP = TEMP - CONJG( A( I, J ) )*X( I ) 100 CONTINUE IF( NOUNIT ) $ TEMP = TEMP/CONJG( A( J, J ) ) END IF X( J ) = TEMP 110 CONTINUE ELSE JX = KX DO 140, J = 1, N IX = KX TEMP = X( JX ) IF( NOCONJ )THEN DO 120, I = 1, J - 1 TEMP = TEMP - A( I, J )*X( IX ) IX = IX + INCX 120 CONTINUE IF( NOUNIT ) $ TEMP = TEMP/A( J, J ) ELSE DO 130, I = 1, J - 1 TEMP = TEMP - CONJG( A( I, J ) )*X( IX ) IX = IX + INCX 130 CONTINUE IF( NOUNIT ) $ TEMP = TEMP/CONJG( A( J, J ) ) END IF X( JX ) = TEMP JX = JX + INCX 140 CONTINUE END IF ELSE IF( INCX.EQ.1 )THEN DO 170, J = N, 1, -1 TEMP = X( J ) IF( NOCONJ )THEN DO 150, I = N, J + 1, -1 TEMP = TEMP - A( I, J )*X( I ) 150 CONTINUE IF( NOUNIT ) $ TEMP = TEMP/A( J, J ) ELSE DO 160, I = N, J + 1, -1 TEMP = TEMP - CONJG( A( I, J ) )*X( I ) 160 CONTINUE IF( NOUNIT ) $ TEMP = TEMP/CONJG( A( J, J ) ) END IF X( J ) = TEMP 170 CONTINUE ELSE KX = KX + ( N - 1 )*INCX JX = KX DO 200, J = N, 1, -1 IX = KX TEMP = X( JX ) IF( NOCONJ )THEN DO 180, I = N, J + 1, -1 TEMP = TEMP - A( I, J )*X( IX ) IX = IX - INCX 180 CONTINUE IF( NOUNIT ) $ TEMP = TEMP/A( J, J ) ELSE DO 190, I = N, J + 1, -1 TEMP = TEMP - CONJG( A( I, J ) )*X( IX ) IX = IX - INCX 190 CONTINUE IF( NOUNIT ) $ TEMP = TEMP/CONJG( A( J, J ) ) END IF X( JX ) = TEMP JX = JX - INCX 200 CONTINUE END IF END IF END IF * RETURN * * End of CTRSV . * END
lgpl-3.0
PrasadG193/gcc_gimple_fe
gcc/testsuite/gfortran.dg/interface_5.f90
121
1379
! { dg-do compile } ! Tests the fix for the interface bit of PR29975, in which the ! interfaces bl_copy were rejected as ambiguous, even though ! they import different specific interfaces. In this testcase, ! it is verified that ambiguous specific interfaces are caught. ! ! Contributed by Joost VandeVondele <jv244@cam.ac.uk> and ! simplified by Tobias Burnus <burnus@gcc.gnu.org> ! SUBROUTINE RECOPY(N, c) real, INTENT(IN) :: N character(6) :: c print *, n c = "recopy" END SUBROUTINE RECOPY MODULE f77_blas_extra PUBLIC :: BL_COPY INTERFACE BL_COPY MODULE PROCEDURE SDCOPY END INTERFACE BL_COPY CONTAINS SUBROUTINE SDCOPY(N, c) REAL, INTENT(IN) :: N character(6) :: c print *, n c = "sdcopy" END SUBROUTINE SDCOPY END MODULE f77_blas_extra MODULE f77_blas_generic INTERFACE BL_COPY SUBROUTINE RECOPY(N, c) real, INTENT(IN) :: N character(6) :: c END SUBROUTINE RECOPY END INTERFACE BL_COPY END MODULE f77_blas_generic subroutine i_am_ok USE f77_blas_extra ! { dg-warning "ambiguous interfaces" } USE f77_blas_generic character(6) :: chr chr = "" if (chr /= "recopy") call abort () end subroutine i_am_ok program main USE f77_blas_extra ! { dg-error "Ambiguous interfaces" } USE f77_blas_generic character(6) :: chr chr = "" call bl_copy(1.0, chr) if (chr /= "recopy") call abort () end program main
gpl-2.0
choderalab/ambermini
lapack/dlasq1.f
7
4810
SUBROUTINE DLASQ1( N, D, E, WORK, INFO ) * * -- LAPACK routine (version 3.2) -- * * -- Contributed by Osni Marques of the Lawrence Berkeley National -- * -- Laboratory and Beresford Parlett of the Univ. of California at -- * -- Berkeley -- * -- November 2008 -- * * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INFO, N * .. * .. Array Arguments .. DOUBLE PRECISION D( * ), E( * ), WORK( * ) * .. * * Purpose * ======= * * DLASQ1 computes the singular values of a real N-by-N bidiagonal * matrix with diagonal D and off-diagonal E. The singular values * are computed to high relative accuracy, in the absence of * denormalization, underflow and overflow. The algorithm was first * presented in * * "Accurate singular values and differential qd algorithms" by K. V. * Fernando and B. N. Parlett, Numer. Math., Vol-67, No. 2, pp. 191-230, * 1994, * * and the present implementation is described in "An implementation of * the dqds Algorithm (Positive Case)", LAPACK Working Note. * * Arguments * ========= * * N (input) INTEGER * The number of rows and columns in the matrix. N >= 0. * * D (input/output) DOUBLE PRECISION array, dimension (N) * On entry, D contains the diagonal elements of the * bidiagonal matrix whose SVD is desired. On normal exit, * D contains the singular values in decreasing order. * * E (input/output) DOUBLE PRECISION array, dimension (N) * On entry, elements E(1:N-1) contain the off-diagonal elements * of the bidiagonal matrix whose SVD is desired. * On exit, E is overwritten. * * WORK (workspace) DOUBLE PRECISION array, dimension (4*N) * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: the algorithm failed * = 1, a split was marked by a positive value in E * = 2, current block of Z not diagonalized after 30*N * iterations (in inner while loop) * = 3, termination criterion of outer while loop not met * (program created more than N unreduced blocks) * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER ( ZERO = 0.0D0 ) * .. * .. Local Scalars .. INTEGER I, IINFO DOUBLE PRECISION EPS, SCALE, SAFMIN, SIGMN, SIGMX * .. * .. External Subroutines .. EXTERNAL DCOPY, DLAS2, DLASCL, DLASQ2, DLASRT, XERBLA * .. * .. External Functions .. DOUBLE PRECISION DLAMCH EXTERNAL DLAMCH * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, SQRT * .. * .. Executable Statements .. * INFO = 0 IF( N.LT.0 ) THEN INFO = -2 CALL XERBLA( 'DLASQ1', -INFO ) RETURN ELSE IF( N.EQ.0 ) THEN RETURN ELSE IF( N.EQ.1 ) THEN D( 1 ) = ABS( D( 1 ) ) RETURN ELSE IF( N.EQ.2 ) THEN CALL DLAS2( D( 1 ), E( 1 ), D( 2 ), SIGMN, SIGMX ) D( 1 ) = SIGMX D( 2 ) = SIGMN RETURN END IF * * Estimate the largest singular value. * SIGMX = ZERO DO 10 I = 1, N - 1 D( I ) = ABS( D( I ) ) SIGMX = MAX( SIGMX, ABS( E( I ) ) ) 10 CONTINUE D( N ) = ABS( D( N ) ) * * Early return if SIGMX is zero (matrix is already diagonal). * IF( SIGMX.EQ.ZERO ) THEN CALL DLASRT( 'D', N, D, IINFO ) RETURN END IF * DO 20 I = 1, N SIGMX = MAX( SIGMX, D( I ) ) 20 CONTINUE * * Copy D and E into WORK (in the Z format) and scale (squaring the * input data makes scaling by a power of the radix pointless). * EPS = DLAMCH( 'Precision' ) SAFMIN = DLAMCH( 'Safe minimum' ) SCALE = SQRT( EPS / SAFMIN ) CALL DCOPY( N, D, 1, WORK( 1 ), 2 ) CALL DCOPY( N-1, E, 1, WORK( 2 ), 2 ) CALL DLASCL( 'G', 0, 0, SIGMX, SCALE, 2*N-1, 1, WORK, 2*N-1, $ IINFO ) * * Compute the q's and e's. * DO 30 I = 1, 2*N - 1 WORK( I ) = WORK( I )**2 30 CONTINUE WORK( 2*N ) = ZERO * CALL DLASQ2( N, WORK, INFO ) * IF( INFO.EQ.0 ) THEN DO 40 I = 1, N D( I ) = SQRT( WORK( I ) ) 40 CONTINUE CALL DLASCL( 'G', 0, 0, SCALE, SIGMX, N, 1, D, N, IINFO ) END IF * RETURN * * End of DLASQ1 * END
gpl-3.0
wkramer/openda
core/native/external/lapack/ssbtrd.f
1
19233
SUBROUTINE SSBTRD( VECT, UPLO, N, KD, AB, LDAB, D, E, Q, LDQ, $ WORK, INFO ) * * -- LAPACK routine (version 3.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * June 30, 1999 * * .. Scalar Arguments .. CHARACTER UPLO, VECT INTEGER INFO, KD, LDAB, LDQ, N * .. * .. Array Arguments .. REAL AB( LDAB, * ), D( * ), E( * ), Q( LDQ, * ), $ WORK( * ) * .. * * Purpose * ======= * * SSBTRD reduces a real symmetric band matrix A to symmetric * tridiagonal form T by an orthogonal similarity transformation: * Q**T * A * Q = T. * * Arguments * ========= * * VECT (input) CHARACTER*1 * = 'N': do not form Q; * = 'V': form Q; * = 'U': update a matrix X, by forming X*Q. * * UPLO (input) CHARACTER*1 * = 'U': Upper triangle of A is stored; * = 'L': Lower triangle of A is stored. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * KD (input) INTEGER * The number of superdiagonals of the matrix A if UPLO = 'U', * or the number of subdiagonals if UPLO = 'L'. KD >= 0. * * AB (input/output) REAL array, dimension (LDAB,N) * On entry, the upper or lower triangle of the symmetric band * matrix A, stored in the first KD+1 rows of the array. The * j-th column of A is stored in the j-th column of the array AB * as follows: * if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; * if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). * On exit, the diagonal elements of AB are overwritten by the * diagonal elements of the tridiagonal matrix T; if KD > 0, the * elements on the first superdiagonal (if UPLO = 'U') or the * first subdiagonal (if UPLO = 'L') are overwritten by the * off-diagonal elements of T; the rest of AB is overwritten by * values generated during the reduction. * * LDAB (input) INTEGER * The leading dimension of the array AB. LDAB >= KD+1. * * D (output) REAL array, dimension (N) * The diagonal elements of the tridiagonal matrix T. * * E (output) REAL array, dimension (N-1) * The off-diagonal elements of the tridiagonal matrix T: * E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'. * * Q (input/output) REAL array, dimension (LDQ,N) * On entry, if VECT = 'U', then Q must contain an N-by-N * matrix X; if VECT = 'N' or 'V', then Q need not be set. * * On exit: * if VECT = 'V', Q contains the N-by-N orthogonal matrix Q; * if VECT = 'U', Q contains the product X*Q; * if VECT = 'N', the array Q is not referenced. * * LDQ (input) INTEGER * The leading dimension of the array Q. * LDQ >= 1, and LDQ >= N if VECT = 'V' or 'U'. * * WORK (workspace) REAL array, dimension (N) * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * Further Details * =============== * * Modified by Linda Kaufman, Bell Labs. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) * .. * .. Local Scalars .. LOGICAL INITQ, UPPER, WANTQ INTEGER I, I2, IBL, INCA, INCX, IQAEND, IQB, IQEND, J, $ J1, J1END, J1INC, J2, JEND, JIN, JINC, K, KD1, $ KDM1, KDN, L, LAST, LEND, NQ, NR, NRT REAL TEMP * .. * .. External Subroutines .. EXTERNAL SLAR2V, SLARGV, SLARTG, SLARTV, SLASET, SROT, $ XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. Executable Statements .. * * Test the input parameters * INITQ = LSAME( VECT, 'V' ) WANTQ = INITQ .OR. LSAME( VECT, 'U' ) UPPER = LSAME( UPLO, 'U' ) KD1 = KD + 1 KDM1 = KD - 1 INCX = LDAB - 1 IQEND = 1 * INFO = 0 IF( .NOT.WANTQ .AND. .NOT.LSAME( VECT, 'N' ) ) THEN INFO = -1 ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -3 ELSE IF( KD.LT.0 ) THEN INFO = -4 ELSE IF( LDAB.LT.KD1 ) THEN INFO = -6 ELSE IF( LDQ.LT.MAX( 1, N ) .AND. WANTQ ) THEN INFO = -10 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SSBTRD', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * * Initialize Q to the unit matrix, if needed * IF( INITQ ) $ CALL SLASET( 'Full', N, N, ZERO, ONE, Q, LDQ ) * * Wherever possible, plane rotations are generated and applied in * vector operations of length NR over the index set J1:J2:KD1. * * The cosines and sines of the plane rotations are stored in the * arrays D and WORK. * INCA = KD1*LDAB KDN = MIN( N-1, KD ) IF( UPPER ) THEN * IF( KD.GT.1 ) THEN * * Reduce to tridiagonal form, working with upper triangle * NR = 0 J1 = KDN + 2 J2 = 1 * DO 90 I = 1, N - 2 * * Reduce i-th row of matrix to tridiagonal form * DO 80 K = KDN + 1, 2, -1 J1 = J1 + KDN J2 = J2 + KDN * IF( NR.GT.0 ) THEN * * generate plane rotations to annihilate nonzero * elements which have been created outside the band * CALL SLARGV( NR, AB( 1, J1-1 ), INCA, WORK( J1 ), $ KD1, D( J1 ), KD1 ) * * apply rotations from the right * * * Dependent on the the number of diagonals either * SLARTV or SROT is used * IF( NR.GE.2*KD-1 ) THEN DO 10 L = 1, KD - 1 CALL SLARTV( NR, AB( L+1, J1-1 ), INCA, $ AB( L, J1 ), INCA, D( J1 ), $ WORK( J1 ), KD1 ) 10 CONTINUE * ELSE JEND = J1 + ( NR-1 )*KD1 DO 20 JINC = J1, JEND, KD1 CALL SROT( KDM1, AB( 2, JINC-1 ), 1, $ AB( 1, JINC ), 1, D( JINC ), $ WORK( JINC ) ) 20 CONTINUE END IF END IF * * IF( K.GT.2 ) THEN IF( K.LE.N-I+1 ) THEN * * generate plane rotation to annihilate a(i,i+k-1) * within the band * CALL SLARTG( AB( KD-K+3, I+K-2 ), $ AB( KD-K+2, I+K-1 ), D( I+K-1 ), $ WORK( I+K-1 ), TEMP ) AB( KD-K+3, I+K-2 ) = TEMP * * apply rotation from the right * CALL SROT( K-3, AB( KD-K+4, I+K-2 ), 1, $ AB( KD-K+3, I+K-1 ), 1, D( I+K-1 ), $ WORK( I+K-1 ) ) END IF NR = NR + 1 J1 = J1 - KDN - 1 END IF * * apply plane rotations from both sides to diagonal * blocks * IF( NR.GT.0 ) $ CALL SLAR2V( NR, AB( KD1, J1-1 ), AB( KD1, J1 ), $ AB( KD, J1 ), INCA, D( J1 ), $ WORK( J1 ), KD1 ) * * apply plane rotations from the left * IF( NR.GT.0 ) THEN IF( 2*KD-1.LT.NR ) THEN * * Dependent on the the number of diagonals either * SLARTV or SROT is used * DO 30 L = 1, KD - 1 IF( J2+L.GT.N ) THEN NRT = NR - 1 ELSE NRT = NR END IF IF( NRT.GT.0 ) $ CALL SLARTV( NRT, AB( KD-L, J1+L ), INCA, $ AB( KD-L+1, J1+L ), INCA, $ D( J1 ), WORK( J1 ), KD1 ) 30 CONTINUE ELSE J1END = J1 + KD1*( NR-2 ) IF( J1END.GE.J1 ) THEN DO 40 JIN = J1, J1END, KD1 CALL SROT( KD-1, AB( KD-1, JIN+1 ), INCX, $ AB( KD, JIN+1 ), INCX, $ D( JIN ), WORK( JIN ) ) 40 CONTINUE END IF LEND = MIN( KDM1, N-J2 ) LAST = J1END + KD1 IF( LEND.GT.0 ) $ CALL SROT( LEND, AB( KD-1, LAST+1 ), INCX, $ AB( KD, LAST+1 ), INCX, D( LAST ), $ WORK( LAST ) ) END IF END IF * IF( WANTQ ) THEN * * accumulate product of plane rotations in Q * IF( INITQ ) THEN * * take advantage of the fact that Q was * initially the Identity matrix * IQEND = MAX( IQEND, J2 ) I2 = MAX( 0, K-3 ) IQAEND = 1 + I*KD IF( K.EQ.2 ) $ IQAEND = IQAEND + KD IQAEND = MIN( IQAEND, IQEND ) DO 50 J = J1, J2, KD1 IBL = I - I2 / KDM1 I2 = I2 + 1 IQB = MAX( 1, J-IBL ) NQ = 1 + IQAEND - IQB IQAEND = MIN( IQAEND+KD, IQEND ) CALL SROT( NQ, Q( IQB, J-1 ), 1, Q( IQB, J ), $ 1, D( J ), WORK( J ) ) 50 CONTINUE ELSE * DO 60 J = J1, J2, KD1 CALL SROT( N, Q( 1, J-1 ), 1, Q( 1, J ), 1, $ D( J ), WORK( J ) ) 60 CONTINUE END IF * END IF * IF( J2+KDN.GT.N ) THEN * * adjust J2 to keep within the bounds of the matrix * NR = NR - 1 J2 = J2 - KDN - 1 END IF * DO 70 J = J1, J2, KD1 * * create nonzero element a(j-1,j+kd) outside the band * and store it in WORK * WORK( J+KD ) = WORK( J )*AB( 1, J+KD ) AB( 1, J+KD ) = D( J )*AB( 1, J+KD ) 70 CONTINUE 80 CONTINUE 90 CONTINUE END IF * IF( KD.GT.0 ) THEN * * copy off-diagonal elements to E * DO 100 I = 1, N - 1 E( I ) = AB( KD, I+1 ) 100 CONTINUE ELSE * * set E to zero if original matrix was diagonal * DO 110 I = 1, N - 1 E( I ) = ZERO 110 CONTINUE END IF * * copy diagonal elements to D * DO 120 I = 1, N D( I ) = AB( KD1, I ) 120 CONTINUE * ELSE * IF( KD.GT.1 ) THEN * * Reduce to tridiagonal form, working with lower triangle * NR = 0 J1 = KDN + 2 J2 = 1 * DO 210 I = 1, N - 2 * * Reduce i-th column of matrix to tridiagonal form * DO 200 K = KDN + 1, 2, -1 J1 = J1 + KDN J2 = J2 + KDN * IF( NR.GT.0 ) THEN * * generate plane rotations to annihilate nonzero * elements which have been created outside the band * CALL SLARGV( NR, AB( KD1, J1-KD1 ), INCA, $ WORK( J1 ), KD1, D( J1 ), KD1 ) * * apply plane rotations from one side * * * Dependent on the the number of diagonals either * SLARTV or SROT is used * IF( NR.GT.2*KD-1 ) THEN DO 130 L = 1, KD - 1 CALL SLARTV( NR, AB( KD1-L, J1-KD1+L ), INCA, $ AB( KD1-L+1, J1-KD1+L ), INCA, $ D( J1 ), WORK( J1 ), KD1 ) 130 CONTINUE ELSE JEND = J1 + KD1*( NR-1 ) DO 140 JINC = J1, JEND, KD1 CALL SROT( KDM1, AB( KD, JINC-KD ), INCX, $ AB( KD1, JINC-KD ), INCX, $ D( JINC ), WORK( JINC ) ) 140 CONTINUE END IF * END IF * IF( K.GT.2 ) THEN IF( K.LE.N-I+1 ) THEN * * generate plane rotation to annihilate a(i+k-1,i) * within the band * CALL SLARTG( AB( K-1, I ), AB( K, I ), $ D( I+K-1 ), WORK( I+K-1 ), TEMP ) AB( K-1, I ) = TEMP * * apply rotation from the left * CALL SROT( K-3, AB( K-2, I+1 ), LDAB-1, $ AB( K-1, I+1 ), LDAB-1, D( I+K-1 ), $ WORK( I+K-1 ) ) END IF NR = NR + 1 J1 = J1 - KDN - 1 END IF * * apply plane rotations from both sides to diagonal * blocks * IF( NR.GT.0 ) $ CALL SLAR2V( NR, AB( 1, J1-1 ), AB( 1, J1 ), $ AB( 2, J1-1 ), INCA, D( J1 ), $ WORK( J1 ), KD1 ) * * apply plane rotations from the right * * * Dependent on the the number of diagonals either * SLARTV or SROT is used * IF( NR.GT.0 ) THEN IF( NR.GT.2*KD-1 ) THEN DO 150 L = 1, KD - 1 IF( J2+L.GT.N ) THEN NRT = NR - 1 ELSE NRT = NR END IF IF( NRT.GT.0 ) $ CALL SLARTV( NRT, AB( L+2, J1-1 ), INCA, $ AB( L+1, J1 ), INCA, D( J1 ), $ WORK( J1 ), KD1 ) 150 CONTINUE ELSE J1END = J1 + KD1*( NR-2 ) IF( J1END.GE.J1 ) THEN DO 160 J1INC = J1, J1END, KD1 CALL SROT( KDM1, AB( 3, J1INC-1 ), 1, $ AB( 2, J1INC ), 1, D( J1INC ), $ WORK( J1INC ) ) 160 CONTINUE END IF LEND = MIN( KDM1, N-J2 ) LAST = J1END + KD1 IF( LEND.GT.0 ) $ CALL SROT( LEND, AB( 3, LAST-1 ), 1, $ AB( 2, LAST ), 1, D( LAST ), $ WORK( LAST ) ) END IF END IF * * * IF( WANTQ ) THEN * * accumulate product of plane rotations in Q * IF( INITQ ) THEN * * take advantage of the fact that Q was * initially the Identity matrix * IQEND = MAX( IQEND, J2 ) I2 = MAX( 0, K-3 ) IQAEND = 1 + I*KD IF( K.EQ.2 ) $ IQAEND = IQAEND + KD IQAEND = MIN( IQAEND, IQEND ) DO 170 J = J1, J2, KD1 IBL = I - I2 / KDM1 I2 = I2 + 1 IQB = MAX( 1, J-IBL ) NQ = 1 + IQAEND - IQB IQAEND = MIN( IQAEND+KD, IQEND ) CALL SROT( NQ, Q( IQB, J-1 ), 1, Q( IQB, J ), $ 1, D( J ), WORK( J ) ) 170 CONTINUE ELSE * DO 180 J = J1, J2, KD1 CALL SROT( N, Q( 1, J-1 ), 1, Q( 1, J ), 1, $ D( J ), WORK( J ) ) 180 CONTINUE END IF END IF * IF( J2+KDN.GT.N ) THEN * * adjust J2 to keep within the bounds of the matrix * NR = NR - 1 J2 = J2 - KDN - 1 END IF * DO 190 J = J1, J2, KD1 * * create nonzero element a(j+kd,j-1) outside the * band and store it in WORK * WORK( J+KD ) = WORK( J )*AB( KD1, J ) AB( KD1, J ) = D( J )*AB( KD1, J ) 190 CONTINUE 200 CONTINUE 210 CONTINUE END IF * IF( KD.GT.0 ) THEN * * copy off-diagonal elements to E * DO 220 I = 1, N - 1 E( I ) = AB( 2, I ) 220 CONTINUE ELSE * * set E to zero if original matrix was diagonal * DO 230 I = 1, N - 1 E( I ) = ZERO 230 CONTINUE END IF * * copy diagonal elements to D * DO 240 I = 1, N D( I ) = AB( 1, I ) 240 CONTINUE END IF * RETURN * * End of SSBTRD * END
lgpl-3.0
wkramer/openda
core/native/external/lapack/clarfg.f
1
4221
SUBROUTINE CLARFG( N, ALPHA, X, INCX, TAU ) * * -- LAPACK auxiliary routine (version 3.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * September 30, 1994 * * .. Scalar Arguments .. INTEGER INCX, N COMPLEX ALPHA, TAU * .. * .. Array Arguments .. COMPLEX X( * ) * .. * * Purpose * ======= * * CLARFG generates a complex elementary reflector H of order n, such * that * * H' * ( alpha ) = ( beta ), H' * H = I. * ( x ) ( 0 ) * * where alpha and beta are scalars, with beta real, and x is an * (n-1)-element complex vector. H is represented in the form * * H = I - tau * ( 1 ) * ( 1 v' ) , * ( v ) * * where tau is a complex scalar and v is a complex (n-1)-element * vector. Note that H is not hermitian. * * If the elements of x are all zero and alpha is real, then tau = 0 * and H is taken to be the unit matrix. * * Otherwise 1 <= real(tau) <= 2 and abs(tau-1) <= 1 . * * Arguments * ========= * * N (input) INTEGER * The order of the elementary reflector. * * ALPHA (input/output) COMPLEX * On entry, the value alpha. * On exit, it is overwritten with the value beta. * * X (input/output) COMPLEX array, dimension * (1+(N-2)*abs(INCX)) * On entry, the vector x. * On exit, it is overwritten with the vector v. * * INCX (input) INTEGER * The increment between elements of X. INCX > 0. * * TAU (output) COMPLEX * The value tau. * * ===================================================================== * * .. Parameters .. REAL ONE, ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) * .. * .. Local Scalars .. INTEGER J, KNT REAL ALPHI, ALPHR, BETA, RSAFMN, SAFMIN, XNORM * .. * .. External Functions .. REAL SCNRM2, SLAMCH, SLAPY3 COMPLEX CLADIV EXTERNAL SCNRM2, SLAMCH, SLAPY3, CLADIV * .. * .. Intrinsic Functions .. INTRINSIC ABS, AIMAG, CMPLX, REAL, SIGN * .. * .. External Subroutines .. EXTERNAL CSCAL, CSSCAL * .. * .. Executable Statements .. * IF( N.LE.0 ) THEN TAU = ZERO RETURN END IF * XNORM = SCNRM2( N-1, X, INCX ) ALPHR = REAL( ALPHA ) ALPHI = AIMAG( ALPHA ) * IF( XNORM.EQ.ZERO .AND. ALPHI.EQ.ZERO ) THEN * * H = I * TAU = ZERO ELSE * * general case * BETA = -SIGN( SLAPY3( ALPHR, ALPHI, XNORM ), ALPHR ) SAFMIN = SLAMCH( 'S' ) / SLAMCH( 'E' ) RSAFMN = ONE / SAFMIN * IF( ABS( BETA ).LT.SAFMIN ) THEN * * XNORM, BETA may be inaccurate; scale X and recompute them * KNT = 0 10 CONTINUE KNT = KNT + 1 CALL CSSCAL( N-1, RSAFMN, X, INCX ) BETA = BETA*RSAFMN ALPHI = ALPHI*RSAFMN ALPHR = ALPHR*RSAFMN IF( ABS( BETA ).LT.SAFMIN ) $ GO TO 10 * * New BETA is at most 1, at least SAFMIN * XNORM = SCNRM2( N-1, X, INCX ) ALPHA = CMPLX( ALPHR, ALPHI ) BETA = -SIGN( SLAPY3( ALPHR, ALPHI, XNORM ), ALPHR ) TAU = CMPLX( ( BETA-ALPHR ) / BETA, -ALPHI / BETA ) ALPHA = CLADIV( CMPLX( ONE ), ALPHA-BETA ) CALL CSCAL( N-1, ALPHA, X, INCX ) * * If ALPHA is subnormal, it may lose relative accuracy * ALPHA = BETA DO 20 J = 1, KNT ALPHA = ALPHA*SAFMIN 20 CONTINUE ELSE TAU = CMPLX( ( BETA-ALPHR ) / BETA, -ALPHI / BETA ) ALPHA = CLADIV( CMPLX( ONE ), ALPHA-BETA ) CALL CSCAL( N-1, ALPHA, X, INCX ) ALPHA = BETA END IF END IF * RETURN * * End of CLARFG * END
lgpl-3.0
siconos/siconos-deb
externals/netlib/dftemplates/double/CGSREVCOM.f
5
11578
* SUBROUTINE CGSREVCOM(N, B, X, WORK, LDW, ITER, RESID, INFO, $ NDX1, NDX2, SCLR1, SCLR2, IJOB) * * -- Iterative template routine -- * Univ. of Tennessee and Oak Ridge National Laboratory * October 1, 1993 * Details of this algorithm are described in "Templates for the * Solution of Linear Systems: Building Blocks for Iterative * Methods", Barrett, Berry, Chan, Demmel, Donato, Dongarra, * Eijkhout, Pozo, Romine, and van der Vorst, SIAM Publications, * 1993. (ftp netlib2.cs.utk.edu; cd linalg; get templates.ps). * * .. Scalar Arguments .. INTEGER N, LDW, ITER, INFO DOUBLE PRECISION RESID INTEGER NDX1, NDX2 DOUBLE PRECISION SCLR1, SCLR2 INTEGER IJOB * .. * .. Array Arguments .. DOUBLE PRECISION X( * ), B( * ), WORK( LDW,* ) * .. * * Purpose * ======= * * CGS solves the linear system Ax = b using the * Conjugate Gradient Squared iterative method with preconditioning. * * Convergence test: ( norm( b - A*x ) / norm( b ) ) < TOL. * For other measures, see the above reference. * * Arguments * ========= * * N (input) INTEGER. * On entry, the dimension of the matrix. * Unchanged on exit. * * B (input) DOUBLE PRECISION array, dimension N. * On entry, right hand side vector B. * Unchanged on exit. * * X (input/output) DOUBLE PRECISION array, dimension N. * On input, the initial guess. This is commonly set to * the zero vector. The user should be warned that for * this particular algorithm, an initial guess close to * the actual solution can result in divergence. * On exit, the iterated solution. * * WORK (workspace) DOUBLE PRECISION array, dimension (LDW,7) * Workspace for residual, direction vector, etc. * Note that vectors PHAT and QHAT, and UHAT and VHAT share * the same workspace. * * LDW (input) INTEGER * The leading dimension of the array WORK. LDW >= max(1,N). * * ITER (input/output) INTEGER * On input, the maximum iterations to be performed. * On output, actual number of iterations performed. * * RESID (input/output) DOUBLE PRECISION * On input, the allowable convergence measure for * norm( b - A*x ) / norm( b ). * On ouput, the final value of this measure. * * INFO (output) INTEGER * * = 0: Successful exit. * > 0: Convergence not achieved. This will be set * to the number of iterations performed. * * < 0: Illegal input parameter, or breakdown occured * during iteration. * * Illegal parameter: * * -1: matrix dimension N < 0 * -2: LDW < N * -3: Maximum number of iterations ITER <= 0. * -5: Erroneous NDX1/NDX2 in INIT call. * -6: Erroneous RLBL. * * BREAKDOWN: If RHO become smaller than some tolerance, * the program will terminate. Here we check * against tolerance BREAKTOL. * * -10: RHO < BREAKTOL: RHO and RTLD have become * orthogonal. * * NDX1 (input/output) INTEGER. * NDX2 On entry in INIT call contain indices required by interface * level for stopping test. * All other times, used as output, to indicate indices into * WORK[] for the MATVEC, PSOLVE done by the interface level. * * SCLR1 (output) DOUBLE PRECISION. * SCLR2 Used to pass the scalars used in MATVEC. Scalars are reqd because * original routines use dgemv. * * IJOB (input/output) INTEGER. * Used to communicate job code between the two levels. * * BLAS CALLS: DAXPY, DCOPY, DDOT, DNRM2, DSCAL * ============================================================= * * .. Parameters .. DOUBLE PRECISION ONE, ZERO PARAMETER ( ONE = 1.0D+0 , ZERO = 0.0D+0 ) * .. * .. Local Scalars .. INTEGER R, RTLD, P, PHAT, Q, QHAT, U, UHAT, VHAT, $ MAXIT, NEED1, NEED2 DOUBLE PRECISION TOL, ALPHA, BETA, BNRM2, RHO, RHO1, RHOTOL, $ GETBREAK, DDOT, DNRM2 * .. * indicates where to resume from. Only valid when IJOB = 2! INTEGER RLBL * * saving all. SAVE * * .. External Functions .. EXTERNAL GETBREAK, DAXPY, DCOPY, DDOT, DNRM2, DSCAL * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX * .. * .. Executable Statements .. * * Entry point, test IJOB IF (IJOB .eq. 1) THEN GOTO 1 ELSEIF (IJOB .eq. 2) THEN * here we do resumption handling IF (RLBL .eq. 2) GOTO 2 IF (RLBL .eq. 3) GOTO 3 IF (RLBL .eq. 4) GOTO 4 IF (RLBL .eq. 5) GOTO 5 IF (RLBL .eq. 6) GOTO 6 IF (RLBL .eq. 7) GOTO 7 * if neither of these, then error INFO = -6 GOTO 20 ENDIF * * ***************** 1 CONTINUE ***************** * INFO = 0 MAXIT = ITER TOL = RESID * * Alias workspace columns. * R = 1 RTLD = 2 P = 3 PHAT = 4 Q = 5 QHAT = 6 U = 6 UHAT = 7 VHAT = 7 * * Check if caller will need indexing info. * IF( NDX1.NE.-1 ) THEN IF( NDX1.EQ.1 ) THEN NEED1 = ((R - 1) * LDW) + 1 ELSEIF( NDX1.EQ.2 ) THEN NEED1 = ((RTLD - 1) * LDW) + 1 ELSEIF( NDX1.EQ.3 ) THEN NEED1 = ((P - 1) * LDW) + 1 ELSEIF( NDX1.EQ.4 ) THEN NEED1 = ((PHAT - 1) * LDW) + 1 ELSEIF( NDX1.EQ.5 ) THEN NEED1 = ((Q - 1) * LDW) + 1 ELSEIF( NDX1.EQ.6 ) THEN NEED1 = ((QHAT - 1) * LDW) + 1 ELSEIF( NDX1.EQ.7 ) THEN NEED1 = ((U - 1) * LDW) + 1 ELSEIF( NDX1.EQ.8 ) THEN NEED1 = ((UHAT - 1) * LDW) + 1 ELSEIF( NDX1.EQ.9 ) THEN NEED1 = ((VHAT - 1) * LDW) + 1 ELSE * report error INFO = -5 GO TO 20 ENDIF ELSE NEED1 = NDX1 ENDIF * IF( NDX2.NE.-1 ) THEN IF( NDX2.EQ.1 ) THEN NEED2 = ((R - 1) * LDW) + 1 ELSEIF( NDX2.EQ.2 ) THEN NEED2 = ((RTLD - 1) * LDW) + 1 ELSEIF( NDX2.EQ.3 ) THEN NEED2 = ((P - 1) * LDW) + 1 ELSEIF( NDX2.EQ.4 ) THEN NEED2 = ((PHAT - 1) * LDW) + 1 ELSEIF( NDX2.EQ.5 ) THEN NEED2 = ((Q - 1) * LDW) + 1 ELSEIF( NDX2.EQ.6 ) THEN NEED2 = ((QHAT - 1) * LDW) + 1 ELSEIF( NDX2.EQ.7 ) THEN NEED2 = ((U - 1) * LDW) + 1 ELSEIF( NDX2.EQ.8 ) THEN NEED2 = ((UHAT - 1) * LDW) + 1 ELSEIF( NDX2.EQ.9 ) THEN NEED2 = ((VHAT - 1) * LDW) + 1 ELSE * report error INFO = -5 GO TO 20 ENDIF ELSE NEED2 = NDX2 ENDIF * * Set breakdown tolerance parameter. * RHOTOL = GETBREAK() * * Set initial residual. * CALL DCOPY( N, B, 1, WORK(1,R), 1 ) IF ( DNRM2( N, X, 1 ).NE.ZERO ) THEN *********CALL MATVEC( -ONE, X, ONE, WORK(1,R) ) * Note: using RTLD[] as temp. storage. *********CALL DCOPY(N, X, 1, WORK(1,RTLD), 1) SCLR1 = -ONE SCLR2 = ONE NDX1 = -1 NDX2 = ((R - 1) * LDW) + 1 * * Prepare for resumption & return RLBL = 2 IJOB = 3 RETURN * ***************** 2 CONTINUE ***************** * IF ( DNRM2( N, WORK(1,R), 1 ).LE.TOL ) GO TO 30 ENDIF * BNRM2 = DNRM2( N, B, 1 ) IF ( BNRM2.EQ.ZERO ) BNRM2 = ONE * * Choose RTLD such that initially, (R,RTLD) = RHO is not equal to 0. * Here we choose RTLD = R. * CALL DCOPY( N, WORK(1,R), 1, WORK(1,RTLD), 1 ) * ITER = 0 * 10 CONTINUE * * Perform Conjugate Gradient Squared iteration. * ITER = ITER + 1 * RHO = DDOT( N, WORK(1,RTLD), 1, WORK(1,R), 1 ) IF ( ABS( RHO ).LT.RHOTOL ) GO TO 25 * * Compute direction vectors U and P. * IF ( ITER.GT.1 ) THEN * * Compute U. * BETA = RHO / RHO1 CALL DCOPY( N, WORK(1,R), 1, WORK(1,U), 1 ) CALL DAXPY( N, BETA, WORK(1,Q), 1, WORK(1,U), 1 ) * * Compute P. * CALL DSCAL( N, BETA**2, WORK(1,P), 1 ) CALL DAXPY( N, BETA, WORK(1,Q), 1, WORK(1,P), 1 ) CALL DAXPY( N, ONE, WORK(1,U), 1, WORK(1,P), 1 ) ELSE CALL DCOPY( N, WORK(1,R), 1, WORK(1,U), 1 ) CALL DCOPY( N, WORK(1,U), 1, WORK(1,P), 1 ) ENDIF * * Compute direction adjusting scalar ALPHA. * *********CALL PSOLVE( WORK(1,PHAT), WORK(1,P) ) * NDX1 = ((PHAT - 1) * LDW) + 1 NDX2 = ((P - 1) * LDW) + 1 * Prepare for return & return RLBL = 3 IJOB = 2 RETURN * ***************** 3 CONTINUE ***************** * *********CALL MATVEC( ONE, WORK(1,PHAT), ZERO, WORK(1,VHAT) ) * NDX1 = ((PHAT - 1) * LDW) + 1 NDX2 = ((VHAT - 1) * LDW) + 1 * Prepare for return & return SCLR1 = ONE SCLR2 = ZERO RLBL = 4 IJOB = 1 RETURN * ***************** 4 CONTINUE ***************** * ALPHA = RHO / DDOT( N, WORK(1,RTLD), 1, WORK(1,VHAT), 1 ) * CALL DCOPY( N, WORK(1,U), 1, WORK(1,Q), 1 ) CALL DAXPY( N, -ALPHA, WORK(1,VHAT), 1, WORK(1,Q), 1 ) * * Compute direction adjusting vectORT UHAT. * PHAT is being used as temporary storage here. * CALL DCOPY( N, WORK(1,Q), 1, WORK(1,PHAT), 1 ) CALL DAXPY( N, ONE, WORK(1,U), 1, WORK(1,PHAT), 1 ) *********CALL PSOLVE( WORK(1,UHAT), WORK(1,PHAT) ) * NDX1 = ((UHAT - 1) * LDW) + 1 NDX2 = ((PHAT - 1) * LDW) + 1 * Prepare for return & return RLBL = 5 IJOB = 2 RETURN * ***************** 5 CONTINUE ***************** * * Compute new solution approximation vector X. * CALL DAXPY( N, ALPHA, WORK(1,UHAT), 1, X, 1 ) * * Compute residual R and check for tolerance. * *********CALL MATVEC( ONE, WORK(1,UHAT), ZERO, WORK(1,QHAT) ) * NDX1 = ((UHAT - 1) * LDW) + 1 NDX2 = ((QHAT - 1) * LDW) + 1 * Prepare for return & return SCLR1 = ONE SCLR2 = ZERO RLBL = 6 IJOB = 1 RETURN * ***************** 6 CONTINUE ***************** * CALL DAXPY( N, -ALPHA, WORK(1,QHAT), 1, WORK(1,R), 1 ) * *********RESID = DNRM2( N, WORK(1,R), 1 ) / BNRM2 *********IF ( RESID.LE.TOL ) GO TO 30 * NDX1 = NEED1 NDX2 = NEED2 * Prepare for resumption & return RLBL = 7 IJOB = 4 RETURN * ***************** 7 CONTINUE ***************** IF( INFO.EQ.1 ) GO TO 30 * IF ( ITER.EQ.MAXIT ) THEN INFO = 1 GO TO 20 ENDIF * RHO1 = RHO * GO TO 10 * 20 CONTINUE * * Iteration fails. * RLBL = -1 IJOB = -1 RETURN * 25 CONTINUE * * Set breakdown flag. * IF ( ABS( RHO ).LT.RHOTOL ) INFO = -10 * 30 CONTINUE * * Iteration successful; return. * INFO = 0 RLBL = -1 IJOB = -1 RETURN * * End of CGSREVCOM * END
apache-2.0
wkramer/openda
core/native/external/lapack/cggrqf.f
1
7519
SUBROUTINE CGGRQF( M, P, N, A, LDA, TAUA, B, LDB, TAUB, WORK, $ LWORK, INFO ) * * -- LAPACK routine (version 3.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * June 30, 1999 * * .. Scalar Arguments .. INTEGER INFO, LDA, LDB, LWORK, M, N, P * .. * .. Array Arguments .. COMPLEX A( LDA, * ), B( LDB, * ), TAUA( * ), TAUB( * ), $ WORK( * ) * .. * * Purpose * ======= * * CGGRQF computes a generalized RQ factorization of an M-by-N matrix A * and a P-by-N matrix B: * * A = R*Q, B = Z*T*Q, * * where Q is an N-by-N unitary matrix, Z is a P-by-P unitary * matrix, and R and T assume one of the forms: * * if M <= N, R = ( 0 R12 ) M, or if M > N, R = ( R11 ) M-N, * N-M M ( R21 ) N * N * * where R12 or R21 is upper triangular, and * * if P >= N, T = ( T11 ) N , or if P < N, T = ( T11 T12 ) P, * ( 0 ) P-N P N-P * N * * where T11 is upper triangular. * * In particular, if B is square and nonsingular, the GRQ factorization * of A and B implicitly gives the RQ factorization of A*inv(B): * * A*inv(B) = (R*inv(T))*Z' * * where inv(B) denotes the inverse of the matrix B, and Z' denotes the * conjugate transpose of the matrix Z. * * Arguments * ========= * * M (input) INTEGER * The number of rows of the matrix A. M >= 0. * * P (input) INTEGER * The number of rows of the matrix B. P >= 0. * * N (input) INTEGER * The number of columns of the matrices A and B. N >= 0. * * A (input/output) COMPLEX array, dimension (LDA,N) * On entry, the M-by-N matrix A. * On exit, if M <= N, the upper triangle of the subarray * A(1:M,N-M+1:N) contains the M-by-M upper triangular matrix R; * if M > N, the elements on and above the (M-N)-th subdiagonal * contain the M-by-N upper trapezoidal matrix R; the remaining * elements, with the array TAUA, represent the unitary * matrix Q as a product of elementary reflectors (see Further * Details). * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,M). * * TAUA (output) COMPLEX array, dimension (min(M,N)) * The scalar factors of the elementary reflectors which * represent the unitary matrix Q (see Further Details). * * B (input/output) COMPLEX array, dimension (LDB,N) * On entry, the P-by-N matrix B. * On exit, the elements on and above the diagonal of the array * contain the min(P,N)-by-N upper trapezoidal matrix T (T is * upper triangular if P >= N); the elements below the diagonal, * with the array TAUB, represent the unitary matrix Z as a * product of elementary reflectors (see Further Details). * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,P). * * TAUB (output) COMPLEX array, dimension (min(P,N)) * The scalar factors of the elementary reflectors which * represent the unitary matrix Z (see Further Details). * * WORK (workspace/output) COMPLEX array, dimension (LWORK) * On exit, if INFO = 0, WORK(1) returns the optimal LWORK. * * LWORK (input) INTEGER * The dimension of the array WORK. LWORK >= max(1,N,M,P). * For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3), * where NB1 is the optimal blocksize for the RQ factorization * of an M-by-N matrix, NB2 is the optimal blocksize for the * QR factorization of a P-by-N matrix, and NB3 is the optimal * blocksize for a call of CUNMRQ. * * If LWORK = -1, then a workspace query is assumed; the routine * only calculates the optimal size of the WORK array, returns * this value as the first entry of the WORK array, and no error * message related to LWORK is issued by XERBLA. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO=-i, the i-th argument had an illegal value. * * Further Details * =============== * * The matrix Q is represented as a product of elementary reflectors * * Q = H(1) H(2) . . . H(k), where k = min(m,n). * * Each H(i) has the form * * H(i) = I - taua * v * v' * * where taua is a complex scalar, and v is a complex vector with * v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in * A(m-k+i,1:n-k+i-1), and taua in TAUA(i). * To form Q explicitly, use LAPACK subroutine CUNGRQ. * To use Q to update another matrix, use LAPACK subroutine CUNMRQ. * * The matrix Z is represented as a product of elementary reflectors * * Z = H(1) H(2) . . . H(k), where k = min(p,n). * * Each H(i) has the form * * H(i) = I - taub * v * v' * * where taub is a complex scalar, and v is a complex vector with * v(1:i-1) = 0 and v(i) = 1; v(i+1:p) is stored on exit in B(i+1:p,i), * and taub in TAUB(i). * To form Z explicitly, use LAPACK subroutine CUNGQR. * To use Z to update another matrix, use LAPACK subroutine CUNMQR. * * ===================================================================== * * .. Local Scalars .. LOGICAL LQUERY INTEGER LOPT, LWKOPT, NB, NB1, NB2, NB3 * .. * .. External Subroutines .. EXTERNAL CGEQRF, CGERQF, CUNMRQ, XERBLA * .. * .. External Functions .. INTEGER ILAENV EXTERNAL ILAENV * .. * .. Intrinsic Functions .. INTRINSIC INT, MAX, MIN * .. * .. Executable Statements .. * * Test the input parameters * INFO = 0 NB1 = ILAENV( 1, 'CGERQF', ' ', M, N, -1, -1 ) NB2 = ILAENV( 1, 'CGEQRF', ' ', P, N, -1, -1 ) NB3 = ILAENV( 1, 'CUNMRQ', ' ', M, N, P, -1 ) NB = MAX( NB1, NB2, NB3 ) LWKOPT = MAX( N, M, P)*NB WORK( 1 ) = LWKOPT LQUERY = ( LWORK.EQ.-1 ) IF( M.LT.0 ) THEN INFO = -1 ELSE IF( P.LT.0 ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -3 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -5 ELSE IF( LDB.LT.MAX( 1, P ) ) THEN INFO = -8 ELSE IF( LWORK.LT.MAX( 1, M, P, N ) .AND. .NOT.LQUERY ) THEN INFO = -11 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CGGRQF', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * RQ factorization of M-by-N matrix A: A = R*Q * CALL CGERQF( M, N, A, LDA, TAUA, WORK, LWORK, INFO ) LOPT = WORK( 1 ) * * Update B := B*Q' * CALL CUNMRQ( 'Right', 'Conjugate Transpose', P, N, MIN( M, N ), $ A( MAX( 1, M-N+1 ), 1 ), LDA, TAUA, B, LDB, WORK, $ LWORK, INFO ) LOPT = MAX( LOPT, INT( WORK( 1 ) ) ) * * QR factorization of P-by-N matrix B: B = Z*T * CALL CGEQRF( P, N, B, LDB, TAUB, WORK, LWORK, INFO ) WORK( 1 ) = MAX( LOPT, INT( WORK( 1 ) ) ) * RETURN * * End of CGGRQF * END
lgpl-3.0
geodynamics/specfem3d
src/generate_databases/finalize_databases.f90
1
4564
!===================================================================== ! ! S p e c f e m 3 D V e r s i o n 3 . 0 ! --------------------------------------- ! ! Main historical authors: Dimitri Komatitsch and Jeroen Tromp ! CNRS, France ! and Princeton University, USA ! (there are currently many more authors!) ! (c) October 2017 ! ! This program is free software; you can redistribute it and/or modify ! it under the terms of the GNU General Public License as published by ! the Free Software Foundation; either version 3 of the License, or ! (at your option) any later version. ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License along ! with this program; if not, write to the Free Software Foundation, Inc., ! 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. ! !===================================================================== ! subroutine finalize_databases() ! checks user input parameters use generate_databases_par use create_regions_mesh_ext_par, only: nspec_irregular implicit none ! local parameters integer :: nspec_total ! this can overflow if more than 2 Gigapoints in the whole mesh, thus replaced with double precision version integer(kind=8) :: nglob_total double precision :: nglob_l,nglob_total_db ! timing double precision, external :: wtime ! print number of points and elements in the mesh call sum_all_i(NSPEC_AB,nspec_total) ! this can overflow if more than 2 Gigapoints in the whole mesh, thus replaced with double precision version nglob_l = dble(NGLOB_AB) call sum_all_dp(nglob_l,nglob_total_db) ! user output if (myrank == 0) then ! converts to integer*8 ! note: only the main process has the total sum in nglob_total_db and a valid value; ! this conversion could lead to compiler errors if done by other processes. nglob_total = int(nglob_total_db,kind=8) write(IMAIN,*) write(IMAIN,*) 'Repartition of elements:' write(IMAIN,*) '-----------------------' write(IMAIN,*) write(IMAIN,*) 'total number of elements in mesh slice 0: ',NSPEC_AB write(IMAIN,*) 'total number of regular elements in mesh slice 0: ',NSPEC_AB - nspec_irregular write(IMAIN,*) 'total number of irregular elements in mesh slice 0: ',nspec_irregular write(IMAIN,*) 'total number of points in mesh slice 0: ',NGLOB_AB write(IMAIN,*) write(IMAIN,*) 'total number of elements in entire mesh: ',nspec_total write(IMAIN,*) 'approximate total number of points in entire mesh (with duplicates on MPI edges): ',nglob_total write(IMAIN,*) 'approximate total number of DOFs in entire mesh (with duplicates on MPI edges): ',nglob_total*NDIM write(IMAIN,*) write(IMAIN,*) 'total number of time steps in the solver will be: ',NSTEP write(IMAIN,*) ! write information about precision used for floating-point operations if (CUSTOM_REAL == SIZE_REAL) then write(IMAIN,*) 'using single precision for the calculations' else write(IMAIN,*) 'using double precision for the calculations' endif write(IMAIN,*) write(IMAIN,*) 'smallest and largest possible floating-point numbers are: ',tiny(1._CUSTOM_REAL),huge(1._CUSTOM_REAL) write(IMAIN,*) call flush_IMAIN() endif ! synchronizes processes call synchronize_all() ! copy number of elements and points in an include file for the solver if (myrank == 0) then call save_header_file(NSPEC_AB,NGLOB_AB,NPROC, & ATTENUATION,ANISOTROPY,NSTEP,DT,STACEY_INSTEAD_OF_FREE_SURFACE, & SIMULATION_TYPE,max_memory_size,nfaces_surface_glob_ext_mesh) endif ! elapsed time since beginning of mesh generation if (myrank == 0) then tCPU = wtime() - time_start write(IMAIN,*) write(IMAIN,*) 'Elapsed time for mesh generation and buffer creation in seconds = ',tCPU write(IMAIN,*) 'End of mesh generation' write(IMAIN,*) endif ! close main output file if (myrank == 0) then write(IMAIN,*) 'done' write(IMAIN,*) close(IMAIN) endif ! synchronize all the processes to make sure everybody has finished call synchronize_all() end subroutine finalize_databases
gpl-3.0
wkramer/openda
core/native/external/lapack/dorghr.f
1
4994
SUBROUTINE DORGHR( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO ) * * -- LAPACK routine (version 3.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * June 30, 1999 * * .. Scalar Arguments .. INTEGER IHI, ILO, INFO, LDA, LWORK, N * .. * .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * ) * .. * * Purpose * ======= * * DORGHR generates a real orthogonal matrix Q which is defined as the * product of IHI-ILO elementary reflectors of order N, as returned by * DGEHRD: * * Q = H(ilo) H(ilo+1) . . . H(ihi-1). * * Arguments * ========= * * N (input) INTEGER * The order of the matrix Q. N >= 0. * * ILO (input) INTEGER * IHI (input) INTEGER * ILO and IHI must have the same values as in the previous call * of DGEHRD. Q is equal to the unit matrix except in the * submatrix Q(ilo+1:ihi,ilo+1:ihi). * 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. * * A (input/output) DOUBLE PRECISION array, dimension (LDA,N) * On entry, the vectors which define the elementary reflectors, * as returned by DGEHRD. * On exit, the N-by-N orthogonal matrix Q. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * TAU (input) DOUBLE PRECISION array, dimension (N-1) * TAU(i) must contain the scalar factor of the elementary * reflector H(i), as returned by DGEHRD. * * WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK) * On exit, if INFO = 0, WORK(1) returns the optimal LWORK. * * LWORK (input) INTEGER * The dimension of the array WORK. LWORK >= IHI-ILO. * For optimum performance LWORK >= (IHI-ILO)*NB, where NB is * the optimal blocksize. * * If LWORK = -1, then a workspace query is assumed; the routine * only calculates the optimal size of the WORK array, returns * this value as the first entry of the WORK array, and no error * message related to LWORK is issued by XERBLA. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) * .. * .. Local Scalars .. LOGICAL LQUERY INTEGER I, IINFO, J, LWKOPT, NB, NH * .. * .. External Subroutines .. EXTERNAL DORGQR, XERBLA * .. * .. External Functions .. INTEGER ILAENV EXTERNAL ILAENV * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. Executable Statements .. * * Test the input arguments * INFO = 0 NH = IHI - ILO LQUERY = ( LWORK.EQ.-1 ) IF( N.LT.0 ) THEN INFO = -1 ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN INFO = -2 ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN INFO = -3 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -5 ELSE IF( LWORK.LT.MAX( 1, NH ) .AND. .NOT.LQUERY ) THEN INFO = -8 END IF * IF( INFO.EQ.0 ) THEN NB = ILAENV( 1, 'DORGQR', ' ', NH, NH, NH, -1 ) LWKOPT = MAX( 1, NH )*NB WORK( 1 ) = LWKOPT END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'DORGHR', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) THEN WORK( 1 ) = 1 RETURN END IF * * Shift the vectors which define the elementary reflectors one * column to the right, and set the first ilo and the last n-ihi * rows and columns to those of the unit matrix * DO 40 J = IHI, ILO + 1, -1 DO 10 I = 1, J - 1 A( I, J ) = ZERO 10 CONTINUE DO 20 I = J + 1, IHI A( I, J ) = A( I, J-1 ) 20 CONTINUE DO 30 I = IHI + 1, N A( I, J ) = ZERO 30 CONTINUE 40 CONTINUE DO 60 J = 1, ILO DO 50 I = 1, N A( I, J ) = ZERO 50 CONTINUE A( J, J ) = ONE 60 CONTINUE DO 80 J = IHI + 1, N DO 70 I = 1, N A( I, J ) = ZERO 70 CONTINUE A( J, J ) = ONE 80 CONTINUE * IF( NH.GT.0 ) THEN * * Generate Q(ilo+1:ihi,ilo+1:ihi) * CALL DORGQR( NH, NH, NH, A( ILO+1, ILO+1 ), LDA, TAU( ILO ), $ WORK, LWORK, IINFO ) END IF WORK( 1 ) = LWKOPT RETURN * * End of DORGHR * END
lgpl-3.0
villevoutilainen/gcc
gcc/testsuite/gfortran.dg/interface_35.f90
155
1731
! { dg-do compile } ! { dg-options "-std=f2003" } ! ! PR fortran/48112 (module_m) ! PR fortran/48279 (sidl_string_array, s_Hard) ! ! Contributed by mhp77@gmx.at (module_m) ! and Adrian Prantl (sidl_string_array, s_Hard) ! module module_m interface test function test1( ) result( test ) integer :: test end function test1 end interface test end module module_m ! ----- module sidl_string_array type sidl_string_1d end type sidl_string_1d interface set module procedure & setg1_p end interface contains subroutine setg1_p(array, index, val) type(sidl_string_1d), intent(inout) :: array end subroutine setg1_p end module sidl_string_array module s_Hard use sidl_string_array type :: s_Hard_t integer(8) :: dummy end type s_Hard_t interface set_d_interface end interface interface get_d_string module procedure get_d_string_p end interface contains ! Derived type member access functions type(sidl_string_1d) function get_d_string_p(s) type(s_Hard_t), intent(in) :: s end function get_d_string_p subroutine set_d_objectArray_p(s, d_objectArray) end subroutine set_d_objectArray_p end module s_Hard subroutine initHard(h, ex) use s_Hard type(s_Hard_t), intent(inout) :: h call set(get_d_string(h), 0, 'Three') ! { dg-error "There is no specific subroutine for the generic" } end subroutine initHard ! ----- interface get procedure get1 end interface integer :: h call set1 (get (h)) contains subroutine set1 (a) integer, intent(in) :: a end subroutine integer function get1 (s) ! { dg-error "Fortran 2008: Internal procedure .get1. in generic interface .get." } integer :: s end function end
gpl-2.0
wkramer/openda
core/native/external/lapack/cunmbr.f
1
9055
SUBROUTINE CUNMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, $ LDC, WORK, LWORK, INFO ) * * -- LAPACK routine (version 3.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * June 30, 1999 * * .. Scalar Arguments .. CHARACTER SIDE, TRANS, VECT INTEGER INFO, K, LDA, LDC, LWORK, M, N * .. * .. Array Arguments .. COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ), $ WORK( * ) * .. * * Purpose * ======= * * If VECT = 'Q', CUNMBR overwrites the general complex M-by-N matrix C * with * SIDE = 'L' SIDE = 'R' * TRANS = 'N': Q * C C * Q * TRANS = 'C': Q**H * C C * Q**H * * If VECT = 'P', CUNMBR overwrites the general complex M-by-N matrix C * with * SIDE = 'L' SIDE = 'R' * TRANS = 'N': P * C C * P * TRANS = 'C': P**H * C C * P**H * * Here Q and P**H are the unitary matrices determined by CGEBRD when * reducing a complex matrix A to bidiagonal form: A = Q * B * P**H. Q * and P**H are defined as products of elementary reflectors H(i) and * G(i) respectively. * * Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the * order of the unitary matrix Q or P**H that is applied. * * If VECT = 'Q', A is assumed to have been an NQ-by-K matrix: * if nq >= k, Q = H(1) H(2) . . . H(k); * if nq < k, Q = H(1) H(2) . . . H(nq-1). * * If VECT = 'P', A is assumed to have been a K-by-NQ matrix: * if k < nq, P = G(1) G(2) . . . G(k); * if k >= nq, P = G(1) G(2) . . . G(nq-1). * * Arguments * ========= * * VECT (input) CHARACTER*1 * = 'Q': apply Q or Q**H; * = 'P': apply P or P**H. * * SIDE (input) CHARACTER*1 * = 'L': apply Q, Q**H, P or P**H from the Left; * = 'R': apply Q, Q**H, P or P**H from the Right. * * TRANS (input) CHARACTER*1 * = 'N': No transpose, apply Q or P; * = 'C': Conjugate transpose, apply Q**H or P**H. * * M (input) INTEGER * The number of rows of the matrix C. M >= 0. * * N (input) INTEGER * The number of columns of the matrix C. N >= 0. * * K (input) INTEGER * If VECT = 'Q', the number of columns in the original * matrix reduced by CGEBRD. * If VECT = 'P', the number of rows in the original * matrix reduced by CGEBRD. * K >= 0. * * A (input) COMPLEX array, dimension * (LDA,min(nq,K)) if VECT = 'Q' * (LDA,nq) if VECT = 'P' * The vectors which define the elementary reflectors H(i) and * G(i), whose products determine the matrices Q and P, as * returned by CGEBRD. * * LDA (input) INTEGER * The leading dimension of the array A. * If VECT = 'Q', LDA >= max(1,nq); * if VECT = 'P', LDA >= max(1,min(nq,K)). * * TAU (input) COMPLEX array, dimension (min(nq,K)) * TAU(i) must contain the scalar factor of the elementary * reflector H(i) or G(i) which determines Q or P, as returned * by CGEBRD in the array argument TAUQ or TAUP. * * C (input/output) COMPLEX array, dimension (LDC,N) * On entry, the M-by-N matrix C. * On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q * or P*C or P**H*C or C*P or C*P**H. * * LDC (input) INTEGER * The leading dimension of the array C. LDC >= max(1,M). * * WORK (workspace/output) COMPLEX array, dimension (LWORK) * On exit, if INFO = 0, WORK(1) returns the optimal LWORK. * * LWORK (input) INTEGER * The dimension of the array WORK. * If SIDE = 'L', LWORK >= max(1,N); * if SIDE = 'R', LWORK >= max(1,M). * For optimum performance LWORK >= N*NB if SIDE = 'L', and * LWORK >= M*NB if SIDE = 'R', where NB is the optimal * blocksize. * * If LWORK = -1, then a workspace query is assumed; the routine * only calculates the optimal size of the WORK array, returns * this value as the first entry of the WORK array, and no error * message related to LWORK is issued by XERBLA. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * ===================================================================== * * .. Local Scalars .. LOGICAL APPLYQ, LEFT, LQUERY, NOTRAN CHARACTER TRANST INTEGER I1, I2, IINFO, LWKOPT, MI, NB, NI, NQ, NW * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV EXTERNAL ILAENV, LSAME * .. * .. External Subroutines .. EXTERNAL CUNMLQ, CUNMQR, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. Executable Statements .. * * Test the input arguments * INFO = 0 APPLYQ = LSAME( VECT, 'Q' ) LEFT = LSAME( SIDE, 'L' ) NOTRAN = LSAME( TRANS, 'N' ) LQUERY = ( LWORK.EQ.-1 ) * * NQ is the order of Q or P and NW is the minimum dimension of WORK * IF( LEFT ) THEN NQ = M NW = N ELSE NQ = N NW = M END IF IF( .NOT.APPLYQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN INFO = -1 ELSE IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN INFO = -2 ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN INFO = -3 ELSE IF( M.LT.0 ) THEN INFO = -4 ELSE IF( N.LT.0 ) THEN INFO = -5 ELSE IF( K.LT.0 ) THEN INFO = -6 ELSE IF( ( APPLYQ .AND. LDA.LT.MAX( 1, NQ ) ) .OR. $ ( .NOT.APPLYQ .AND. LDA.LT.MAX( 1, MIN( NQ, K ) ) ) ) $ THEN INFO = -8 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN INFO = -11 ELSE IF( LWORK.LT.MAX( 1, NW ) .AND. .NOT.LQUERY ) THEN INFO = -13 END IF * IF( INFO.EQ.0 ) THEN IF( APPLYQ ) THEN IF( LEFT ) THEN NB = ILAENV( 1, 'CUNMQR', SIDE // TRANS, M-1, N, M-1, $ -1 ) ELSE NB = ILAENV( 1, 'CUNMQR', SIDE // TRANS, M, N-1, N-1, $ -1 ) END IF ELSE IF( LEFT ) THEN NB = ILAENV( 1, 'CUNMLQ', SIDE // TRANS, M-1, N, M-1, $ -1 ) ELSE NB = ILAENV( 1, 'CUNMLQ', SIDE // TRANS, M, N-1, N-1, $ -1 ) END IF END IF LWKOPT = MAX( 1, NW )*NB WORK( 1 ) = LWKOPT END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'CUNMBR', -INFO ) RETURN ELSE IF( LQUERY ) THEN END IF * * Quick return if possible * WORK( 1 ) = 1 IF( M.EQ.0 .OR. N.EQ.0 ) $ RETURN * IF( APPLYQ ) THEN * * Apply Q * IF( NQ.GE.K ) THEN * * Q was determined by a call to CGEBRD with nq >= k * CALL CUNMQR( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, $ WORK, LWORK, IINFO ) ELSE IF( NQ.GT.1 ) THEN * * Q was determined by a call to CGEBRD with nq < k * IF( LEFT ) THEN MI = M - 1 NI = N I1 = 2 I2 = 1 ELSE MI = M NI = N - 1 I1 = 1 I2 = 2 END IF CALL CUNMQR( SIDE, TRANS, MI, NI, NQ-1, A( 2, 1 ), LDA, TAU, $ C( I1, I2 ), LDC, WORK, LWORK, IINFO ) END IF ELSE * * Apply P * IF( NOTRAN ) THEN TRANST = 'C' ELSE TRANST = 'N' END IF IF( NQ.GT.K ) THEN * * P was determined by a call to CGEBRD with nq > k * CALL CUNMLQ( SIDE, TRANST, M, N, K, A, LDA, TAU, C, LDC, $ WORK, LWORK, IINFO ) ELSE IF( NQ.GT.1 ) THEN * * P was determined by a call to CGEBRD with nq <= k * IF( LEFT ) THEN MI = M - 1 NI = N I1 = 2 I2 = 1 ELSE MI = M NI = N - 1 I1 = 1 I2 = 2 END IF CALL CUNMLQ( SIDE, TRANST, MI, NI, NQ-1, A( 1, 2 ), LDA, $ TAU, C( I1, I2 ), LDC, WORK, LWORK, IINFO ) END IF END IF WORK( 1 ) = LWKOPT RETURN * * End of CUNMBR * END
lgpl-3.0
justindomke/marbl
main_code/eigen322/blas/testing/cblat3.f
198
130271
PROGRAM CBLAT3 * * Test program for the COMPLEX Level 3 Blas. * * The program must be driven by a short data file. The first 14 records * of the file are read using list-directed input, the last 9 records * are read using the format ( A6, L2 ). An annotated example of a data * file can be obtained by deleting the first 3 characters from the * following 23 lines: * 'CBLAT3.SUMM' NAME OF SUMMARY OUTPUT FILE * 6 UNIT NUMBER OF SUMMARY FILE * 'CBLAT3.SNAP' NAME OF SNAPSHOT OUTPUT FILE * -1 UNIT NUMBER OF SNAPSHOT FILE (NOT USED IF .LT. 0) * F LOGICAL FLAG, T TO REWIND SNAPSHOT FILE AFTER EACH RECORD. * F LOGICAL FLAG, T TO STOP ON FAILURES. * T LOGICAL FLAG, T TO TEST ERROR EXITS. * 16.0 THRESHOLD VALUE OF TEST RATIO * 6 NUMBER OF VALUES OF N * 0 1 2 3 5 9 VALUES OF N * 3 NUMBER OF VALUES OF ALPHA * (0.0,0.0) (1.0,0.0) (0.7,-0.9) VALUES OF ALPHA * 3 NUMBER OF VALUES OF BETA * (0.0,0.0) (1.0,0.0) (1.3,-1.1) VALUES OF BETA * CGEMM T PUT F FOR NO TEST. SAME COLUMNS. * CHEMM T PUT F FOR NO TEST. SAME COLUMNS. * CSYMM T PUT F FOR NO TEST. SAME COLUMNS. * CTRMM T PUT F FOR NO TEST. SAME COLUMNS. * CTRSM T PUT F FOR NO TEST. SAME COLUMNS. * CHERK T PUT F FOR NO TEST. SAME COLUMNS. * CSYRK T PUT F FOR NO TEST. SAME COLUMNS. * CHER2K T PUT F FOR NO TEST. SAME COLUMNS. * CSYR2K T PUT F FOR NO TEST. SAME COLUMNS. * * See: * * Dongarra J. J., Du Croz J. J., Duff I. S. and Hammarling S. * A Set of Level 3 Basic Linear Algebra Subprograms. * * Technical Memorandum No.88 (Revision 1), Mathematics and * Computer Science Division, Argonne National Laboratory, 9700 * South Cass Avenue, Argonne, Illinois 60439, US. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. INTEGER NIN PARAMETER ( NIN = 5 ) INTEGER NSUBS PARAMETER ( NSUBS = 9 ) COMPLEX ZERO, ONE PARAMETER ( ZERO = ( 0.0, 0.0 ), ONE = ( 1.0, 0.0 ) ) REAL RZERO, RHALF, RONE PARAMETER ( RZERO = 0.0, RHALF = 0.5, RONE = 1.0 ) INTEGER NMAX PARAMETER ( NMAX = 65 ) INTEGER NIDMAX, NALMAX, NBEMAX PARAMETER ( NIDMAX = 9, NALMAX = 7, NBEMAX = 7 ) * .. Local Scalars .. REAL EPS, ERR, THRESH INTEGER I, ISNUM, J, N, NALF, NBET, NIDIM, NOUT, NTRA LOGICAL FATAL, LTESTT, REWI, SAME, SFATAL, TRACE, $ TSTERR CHARACTER*1 TRANSA, TRANSB CHARACTER*6 SNAMET CHARACTER*32 SNAPS, SUMMRY * .. Local Arrays .. COMPLEX AA( NMAX*NMAX ), AB( NMAX, 2*NMAX ), $ ALF( NALMAX ), AS( NMAX*NMAX ), $ BB( NMAX*NMAX ), BET( NBEMAX ), $ BS( NMAX*NMAX ), C( NMAX, NMAX ), $ CC( NMAX*NMAX ), CS( NMAX*NMAX ), CT( NMAX ), $ W( 2*NMAX ) REAL G( NMAX ) INTEGER IDIM( NIDMAX ) LOGICAL LTEST( NSUBS ) CHARACTER*6 SNAMES( NSUBS ) * .. External Functions .. REAL SDIFF LOGICAL LCE EXTERNAL SDIFF, LCE * .. External Subroutines .. EXTERNAL CCHK1, CCHK2, CCHK3, CCHK4, CCHK5, CCHKE, CMMCH * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK CHARACTER*6 SRNAMT * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR COMMON /SRNAMC/SRNAMT * .. Data statements .. DATA SNAMES/'CGEMM ', 'CHEMM ', 'CSYMM ', 'CTRMM ', $ 'CTRSM ', 'CHERK ', 'CSYRK ', 'CHER2K', $ 'CSYR2K'/ * .. Executable Statements .. * * Read name and unit number for summary output file and open file. * READ( NIN, FMT = * )SUMMRY READ( NIN, FMT = * )NOUT OPEN( NOUT, FILE = SUMMRY, STATUS = 'NEW' ) NOUTC = NOUT * * Read name and unit number for snapshot output file and open file. * READ( NIN, FMT = * )SNAPS READ( NIN, FMT = * )NTRA TRACE = NTRA.GE.0 IF( TRACE )THEN OPEN( NTRA, FILE = SNAPS, STATUS = 'NEW' ) END IF * Read the flag that directs rewinding of the snapshot file. READ( NIN, FMT = * )REWI REWI = REWI.AND.TRACE * Read the flag that directs stopping on any failure. READ( NIN, FMT = * )SFATAL * Read the flag that indicates whether error exits are to be tested. READ( NIN, FMT = * )TSTERR * Read the threshold value of the test ratio READ( NIN, FMT = * )THRESH * * Read and check the parameter values for the tests. * * Values of N READ( NIN, FMT = * )NIDIM IF( NIDIM.LT.1.OR.NIDIM.GT.NIDMAX )THEN WRITE( NOUT, FMT = 9997 )'N', NIDMAX GO TO 220 END IF READ( NIN, FMT = * )( IDIM( I ), I = 1, NIDIM ) DO 10 I = 1, NIDIM IF( IDIM( I ).LT.0.OR.IDIM( I ).GT.NMAX )THEN WRITE( NOUT, FMT = 9996 )NMAX GO TO 220 END IF 10 CONTINUE * Values of ALPHA READ( NIN, FMT = * )NALF IF( NALF.LT.1.OR.NALF.GT.NALMAX )THEN WRITE( NOUT, FMT = 9997 )'ALPHA', NALMAX GO TO 220 END IF READ( NIN, FMT = * )( ALF( I ), I = 1, NALF ) * Values of BETA READ( NIN, FMT = * )NBET IF( NBET.LT.1.OR.NBET.GT.NBEMAX )THEN WRITE( NOUT, FMT = 9997 )'BETA', NBEMAX GO TO 220 END IF READ( NIN, FMT = * )( BET( I ), I = 1, NBET ) * * Report values of parameters. * WRITE( NOUT, FMT = 9995 ) WRITE( NOUT, FMT = 9994 )( IDIM( I ), I = 1, NIDIM ) WRITE( NOUT, FMT = 9993 )( ALF( I ), I = 1, NALF ) WRITE( NOUT, FMT = 9992 )( BET( I ), I = 1, NBET ) IF( .NOT.TSTERR )THEN WRITE( NOUT, FMT = * ) WRITE( NOUT, FMT = 9984 ) END IF WRITE( NOUT, FMT = * ) WRITE( NOUT, FMT = 9999 )THRESH WRITE( NOUT, FMT = * ) * * Read names of subroutines and flags which indicate * whether they are to be tested. * DO 20 I = 1, NSUBS LTEST( I ) = .FALSE. 20 CONTINUE 30 READ( NIN, FMT = 9988, END = 60 )SNAMET, LTESTT DO 40 I = 1, NSUBS IF( SNAMET.EQ.SNAMES( I ) ) $ GO TO 50 40 CONTINUE WRITE( NOUT, FMT = 9990 )SNAMET STOP 50 LTEST( I ) = LTESTT GO TO 30 * 60 CONTINUE CLOSE ( NIN ) * * Compute EPS (the machine precision). * EPS = RONE 70 CONTINUE IF( SDIFF( RONE + EPS, RONE ).EQ.RZERO ) $ GO TO 80 EPS = RHALF*EPS GO TO 70 80 CONTINUE EPS = EPS + EPS WRITE( NOUT, FMT = 9998 )EPS * * Check the reliability of CMMCH using exact data. * N = MIN( 32, NMAX ) DO 100 J = 1, N DO 90 I = 1, N AB( I, J ) = MAX( I - J + 1, 0 ) 90 CONTINUE AB( J, NMAX + 1 ) = J AB( 1, NMAX + J ) = J C( J, 1 ) = ZERO 100 CONTINUE DO 110 J = 1, N CC( J ) = J*( ( J + 1 )*J )/2 - ( ( J + 1 )*J*( J - 1 ) )/3 110 CONTINUE * CC holds the exact result. On exit from CMMCH CT holds * the result computed by CMMCH. TRANSA = 'N' TRANSB = 'N' CALL CMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX, $ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC, $ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. ) SAME = LCE( CC, CT, N ) IF( .NOT.SAME.OR.ERR.NE.RZERO )THEN WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR STOP END IF TRANSB = 'C' CALL CMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX, $ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC, $ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. ) SAME = LCE( CC, CT, N ) IF( .NOT.SAME.OR.ERR.NE.RZERO )THEN WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR STOP END IF DO 120 J = 1, N AB( J, NMAX + 1 ) = N - J + 1 AB( 1, NMAX + J ) = N - J + 1 120 CONTINUE DO 130 J = 1, N CC( N - J + 1 ) = J*( ( J + 1 )*J )/2 - $ ( ( J + 1 )*J*( J - 1 ) )/3 130 CONTINUE TRANSA = 'C' TRANSB = 'N' CALL CMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX, $ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC, $ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. ) SAME = LCE( CC, CT, N ) IF( .NOT.SAME.OR.ERR.NE.RZERO )THEN WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR STOP END IF TRANSB = 'C' CALL CMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX, $ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC, $ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. ) SAME = LCE( CC, CT, N ) IF( .NOT.SAME.OR.ERR.NE.RZERO )THEN WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR STOP END IF * * Test each subroutine in turn. * DO 200 ISNUM = 1, NSUBS WRITE( NOUT, FMT = * ) IF( .NOT.LTEST( ISNUM ) )THEN * Subprogram is not to be tested. WRITE( NOUT, FMT = 9987 )SNAMES( ISNUM ) ELSE SRNAMT = SNAMES( ISNUM ) * Test error exits. IF( TSTERR )THEN CALL CCHKE( ISNUM, SNAMES( ISNUM ), NOUT ) WRITE( NOUT, FMT = * ) END IF * Test computations. INFOT = 0 OK = .TRUE. FATAL = .FALSE. GO TO ( 140, 150, 150, 160, 160, 170, 170, $ 180, 180 )ISNUM * Test CGEMM, 01. 140 CALL CCHK1( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, $ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C, $ CC, CS, CT, G ) GO TO 190 * Test CHEMM, 02, CSYMM, 03. 150 CALL CCHK2( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, $ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C, $ CC, CS, CT, G ) GO TO 190 * Test CTRMM, 04, CTRSM, 05. 160 CALL CCHK3( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NMAX, AB, $ AA, AS, AB( 1, NMAX + 1 ), BB, BS, CT, G, C ) GO TO 190 * Test CHERK, 06, CSYRK, 07. 170 CALL CCHK4( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, $ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C, $ CC, CS, CT, G ) GO TO 190 * Test CHER2K, 08, CSYR2K, 09. 180 CALL CCHK5( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, $ NMAX, AB, AA, AS, BB, BS, C, CC, CS, CT, G, W ) GO TO 190 * 190 IF( FATAL.AND.SFATAL ) $ GO TO 210 END IF 200 CONTINUE WRITE( NOUT, FMT = 9986 ) GO TO 230 * 210 CONTINUE WRITE( NOUT, FMT = 9985 ) GO TO 230 * 220 CONTINUE WRITE( NOUT, FMT = 9991 ) * 230 CONTINUE IF( TRACE ) $ CLOSE ( NTRA ) CLOSE ( NOUT ) STOP * 9999 FORMAT( ' ROUTINES PASS COMPUTATIONAL TESTS IF TEST RATIO IS LES', $ 'S THAN', F8.2 ) 9998 FORMAT( ' RELATIVE MACHINE PRECISION IS TAKEN TO BE', 1P, E9.1 ) 9997 FORMAT( ' NUMBER OF VALUES OF ', A, ' IS LESS THAN 1 OR GREATER ', $ 'THAN ', I2 ) 9996 FORMAT( ' VALUE OF N IS LESS THAN 0 OR GREATER THAN ', I2 ) 9995 FORMAT( ' TESTS OF THE COMPLEX LEVEL 3 BLAS', //' THE F', $ 'OLLOWING PARAMETER VALUES WILL BE USED:' ) 9994 FORMAT( ' FOR N ', 9I6 ) 9993 FORMAT( ' FOR ALPHA ', $ 7( '(', F4.1, ',', F4.1, ') ', : ) ) 9992 FORMAT( ' FOR BETA ', $ 7( '(', F4.1, ',', F4.1, ') ', : ) ) 9991 FORMAT( ' AMEND DATA FILE OR INCREASE ARRAY SIZES IN PROGRAM', $ /' ******* TESTS ABANDONED *******' ) 9990 FORMAT( ' SUBPROGRAM NAME ', A6, ' NOT RECOGNIZED', /' ******* T', $ 'ESTS ABANDONED *******' ) 9989 FORMAT( ' ERROR IN CMMCH - IN-LINE DOT PRODUCTS ARE BEING EVALU', $ 'ATED WRONGLY.', /' CMMCH WAS CALLED WITH TRANSA = ', A1, $ ' AND TRANSB = ', A1, /' AND RETURNED SAME = ', L1, ' AND ', $ 'ERR = ', F12.3, '.', /' THIS MAY BE DUE TO FAULTS IN THE ', $ 'ARITHMETIC OR THE COMPILER.', /' ******* TESTS ABANDONED ', $ '*******' ) 9988 FORMAT( A6, L2 ) 9987 FORMAT( 1X, A6, ' WAS NOT TESTED' ) 9986 FORMAT( /' END OF TESTS' ) 9985 FORMAT( /' ******* FATAL ERROR - TESTS ABANDONED *******' ) 9984 FORMAT( ' ERROR-EXITS WILL NOT BE TESTED' ) * * End of CBLAT3. * END SUBROUTINE CCHK1( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX, $ A, AA, AS, B, BB, BS, C, CC, CS, CT, G ) * * Tests CGEMM. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. COMPLEX ZERO PARAMETER ( ZERO = ( 0.0, 0.0 ) ) REAL RZERO PARAMETER ( RZERO = 0.0 ) * .. Scalar Arguments .. REAL EPS, THRESH INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. COMPLEX A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), B( NMAX, NMAX ), $ BB( NMAX*NMAX ), BET( NBET ), BS( NMAX*NMAX ), $ C( NMAX, NMAX ), CC( NMAX*NMAX ), $ CS( NMAX*NMAX ), CT( NMAX ) REAL G( NMAX ) INTEGER IDIM( NIDIM ) * .. Local Scalars .. COMPLEX ALPHA, ALS, BETA, BLS REAL ERR, ERRMAX INTEGER I, IA, IB, ICA, ICB, IK, IM, IN, K, KS, LAA, $ LBB, LCC, LDA, LDAS, LDB, LDBS, LDC, LDCS, M, $ MA, MB, MS, N, NA, NARGS, NB, NC, NS LOGICAL NULL, RESET, SAME, TRANA, TRANB CHARACTER*1 TRANAS, TRANBS, TRANSA, TRANSB CHARACTER*3 ICH * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LCE, LCERES EXTERNAL LCE, LCERES * .. External Subroutines .. EXTERNAL CGEMM, CMAKE, CMMCH * .. Intrinsic Functions .. INTRINSIC MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICH/'NTC'/ * .. Executable Statements .. * NARGS = 13 NC = 0 RESET = .TRUE. ERRMAX = RZERO * DO 110 IM = 1, NIDIM M = IDIM( IM ) * DO 100 IN = 1, NIDIM N = IDIM( IN ) * Set LDC to 1 more than minimum value if room. LDC = M IF( LDC.LT.NMAX ) $ LDC = LDC + 1 * Skip tests if not enough room. IF( LDC.GT.NMAX ) $ GO TO 100 LCC = LDC*N NULL = N.LE.0.OR.M.LE.0 * DO 90 IK = 1, NIDIM K = IDIM( IK ) * DO 80 ICA = 1, 3 TRANSA = ICH( ICA: ICA ) TRANA = TRANSA.EQ.'T'.OR.TRANSA.EQ.'C' * IF( TRANA )THEN MA = K NA = M ELSE MA = M NA = K END IF * Set LDA to 1 more than minimum value if room. LDA = MA IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 80 LAA = LDA*NA * * Generate the matrix A. * CALL CMAKE( 'GE', ' ', ' ', MA, NA, A, NMAX, AA, LDA, $ RESET, ZERO ) * DO 70 ICB = 1, 3 TRANSB = ICH( ICB: ICB ) TRANB = TRANSB.EQ.'T'.OR.TRANSB.EQ.'C' * IF( TRANB )THEN MB = N NB = K ELSE MB = K NB = N END IF * Set LDB to 1 more than minimum value if room. LDB = MB IF( LDB.LT.NMAX ) $ LDB = LDB + 1 * Skip tests if not enough room. IF( LDB.GT.NMAX ) $ GO TO 70 LBB = LDB*NB * * Generate the matrix B. * CALL CMAKE( 'GE', ' ', ' ', MB, NB, B, NMAX, BB, $ LDB, RESET, ZERO ) * DO 60 IA = 1, NALF ALPHA = ALF( IA ) * DO 50 IB = 1, NBET BETA = BET( IB ) * * Generate the matrix C. * CALL CMAKE( 'GE', ' ', ' ', M, N, C, NMAX, $ CC, LDC, RESET, ZERO ) * NC = NC + 1 * * Save every datum before calling the * subroutine. * TRANAS = TRANSA TRANBS = TRANSB MS = M NS = N KS = K ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LBB BS( I ) = BB( I ) 20 CONTINUE LDBS = LDB BLS = BETA DO 30 I = 1, LCC CS( I ) = CC( I ) 30 CONTINUE LDCS = LDC * * Call the subroutine. * IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, $ TRANSA, TRANSB, M, N, K, ALPHA, LDA, LDB, $ BETA, LDC IF( REWI ) $ REWIND NTRA CALL CGEMM( TRANSA, TRANSB, M, N, K, ALPHA, $ AA, LDA, BB, LDB, BETA, CC, LDC ) * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9994 ) FATAL = .TRUE. GO TO 120 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = TRANSA.EQ.TRANAS ISAME( 2 ) = TRANSB.EQ.TRANBS ISAME( 3 ) = MS.EQ.M ISAME( 4 ) = NS.EQ.N ISAME( 5 ) = KS.EQ.K ISAME( 6 ) = ALS.EQ.ALPHA ISAME( 7 ) = LCE( AS, AA, LAA ) ISAME( 8 ) = LDAS.EQ.LDA ISAME( 9 ) = LCE( BS, BB, LBB ) ISAME( 10 ) = LDBS.EQ.LDB ISAME( 11 ) = BLS.EQ.BETA IF( NULL )THEN ISAME( 12 ) = LCE( CS, CC, LCC ) ELSE ISAME( 12 ) = LCERES( 'GE', ' ', M, N, CS, $ CC, LDC ) END IF ISAME( 13 ) = LDCS.EQ.LDC * * If data was incorrectly changed, report * and return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 120 END IF * IF( .NOT.NULL )THEN * * Check the result. * CALL CMMCH( TRANSA, TRANSB, M, N, K, $ ALPHA, A, NMAX, B, NMAX, BETA, $ C, NMAX, CT, G, CC, LDC, EPS, $ ERR, FATAL, NOUT, .TRUE. ) ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 120 END IF * 50 CONTINUE * 60 CONTINUE * 70 CONTINUE * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * 110 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 130 * 120 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME WRITE( NOUT, FMT = 9995 )NC, SNAME, TRANSA, TRANSB, M, N, K, $ ALPHA, LDA, LDB, BETA, LDC * 130 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',''', A1, ''',', $ 3( I3, ',' ), '(', F4.1, ',', F4.1, '), A,', I3, ', B,', I3, $ ',(', F4.1, ',', F4.1, '), C,', I3, ').' ) 9994 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of CCHK1. * END SUBROUTINE CCHK2( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX, $ A, AA, AS, B, BB, BS, C, CC, CS, CT, G ) * * Tests CHEMM and CSYMM. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. COMPLEX ZERO PARAMETER ( ZERO = ( 0.0, 0.0 ) ) REAL RZERO PARAMETER ( RZERO = 0.0 ) * .. Scalar Arguments .. REAL EPS, THRESH INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. COMPLEX A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), B( NMAX, NMAX ), $ BB( NMAX*NMAX ), BET( NBET ), BS( NMAX*NMAX ), $ C( NMAX, NMAX ), CC( NMAX*NMAX ), $ CS( NMAX*NMAX ), CT( NMAX ) REAL G( NMAX ) INTEGER IDIM( NIDIM ) * .. Local Scalars .. COMPLEX ALPHA, ALS, BETA, BLS REAL ERR, ERRMAX INTEGER I, IA, IB, ICS, ICU, IM, IN, LAA, LBB, LCC, $ LDA, LDAS, LDB, LDBS, LDC, LDCS, M, MS, N, NA, $ NARGS, NC, NS LOGICAL CONJ, LEFT, NULL, RESET, SAME CHARACTER*1 SIDE, SIDES, UPLO, UPLOS CHARACTER*2 ICHS, ICHU * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LCE, LCERES EXTERNAL LCE, LCERES * .. External Subroutines .. EXTERNAL CHEMM, CMAKE, CMMCH, CSYMM * .. Intrinsic Functions .. INTRINSIC MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICHS/'LR'/, ICHU/'UL'/ * .. Executable Statements .. CONJ = SNAME( 2: 3 ).EQ.'HE' * NARGS = 12 NC = 0 RESET = .TRUE. ERRMAX = RZERO * DO 100 IM = 1, NIDIM M = IDIM( IM ) * DO 90 IN = 1, NIDIM N = IDIM( IN ) * Set LDC to 1 more than minimum value if room. LDC = M IF( LDC.LT.NMAX ) $ LDC = LDC + 1 * Skip tests if not enough room. IF( LDC.GT.NMAX ) $ GO TO 90 LCC = LDC*N NULL = N.LE.0.OR.M.LE.0 * Set LDB to 1 more than minimum value if room. LDB = M IF( LDB.LT.NMAX ) $ LDB = LDB + 1 * Skip tests if not enough room. IF( LDB.GT.NMAX ) $ GO TO 90 LBB = LDB*N * * Generate the matrix B. * CALL CMAKE( 'GE', ' ', ' ', M, N, B, NMAX, BB, LDB, RESET, $ ZERO ) * DO 80 ICS = 1, 2 SIDE = ICHS( ICS: ICS ) LEFT = SIDE.EQ.'L' * IF( LEFT )THEN NA = M ELSE NA = N END IF * Set LDA to 1 more than minimum value if room. LDA = NA IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 80 LAA = LDA*NA * DO 70 ICU = 1, 2 UPLO = ICHU( ICU: ICU ) * * Generate the hermitian or symmetric matrix A. * CALL CMAKE( SNAME( 2: 3 ), UPLO, ' ', NA, NA, A, NMAX, $ AA, LDA, RESET, ZERO ) * DO 60 IA = 1, NALF ALPHA = ALF( IA ) * DO 50 IB = 1, NBET BETA = BET( IB ) * * Generate the matrix C. * CALL CMAKE( 'GE', ' ', ' ', M, N, C, NMAX, CC, $ LDC, RESET, ZERO ) * NC = NC + 1 * * Save every datum before calling the * subroutine. * SIDES = SIDE UPLOS = UPLO MS = M NS = N ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LBB BS( I ) = BB( I ) 20 CONTINUE LDBS = LDB BLS = BETA DO 30 I = 1, LCC CS( I ) = CC( I ) 30 CONTINUE LDCS = LDC * * Call the subroutine. * IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, SIDE, $ UPLO, M, N, ALPHA, LDA, LDB, BETA, LDC IF( REWI ) $ REWIND NTRA IF( CONJ )THEN CALL CHEMM( SIDE, UPLO, M, N, ALPHA, AA, LDA, $ BB, LDB, BETA, CC, LDC ) ELSE CALL CSYMM( SIDE, UPLO, M, N, ALPHA, AA, LDA, $ BB, LDB, BETA, CC, LDC ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9994 ) FATAL = .TRUE. GO TO 110 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = SIDES.EQ.SIDE ISAME( 2 ) = UPLOS.EQ.UPLO ISAME( 3 ) = MS.EQ.M ISAME( 4 ) = NS.EQ.N ISAME( 5 ) = ALS.EQ.ALPHA ISAME( 6 ) = LCE( AS, AA, LAA ) ISAME( 7 ) = LDAS.EQ.LDA ISAME( 8 ) = LCE( BS, BB, LBB ) ISAME( 9 ) = LDBS.EQ.LDB ISAME( 10 ) = BLS.EQ.BETA IF( NULL )THEN ISAME( 11 ) = LCE( CS, CC, LCC ) ELSE ISAME( 11 ) = LCERES( 'GE', ' ', M, N, CS, $ CC, LDC ) END IF ISAME( 12 ) = LDCS.EQ.LDC * * If data was incorrectly changed, report and * return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 110 END IF * IF( .NOT.NULL )THEN * * Check the result. * IF( LEFT )THEN CALL CMMCH( 'N', 'N', M, N, M, ALPHA, A, $ NMAX, B, NMAX, BETA, C, NMAX, $ CT, G, CC, LDC, EPS, ERR, $ FATAL, NOUT, .TRUE. ) ELSE CALL CMMCH( 'N', 'N', M, N, N, ALPHA, B, $ NMAX, A, NMAX, BETA, C, NMAX, $ CT, G, CC, LDC, EPS, ERR, $ FATAL, NOUT, .TRUE. ) END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 110 END IF * 50 CONTINUE * 60 CONTINUE * 70 CONTINUE * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 120 * 110 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME WRITE( NOUT, FMT = 9995 )NC, SNAME, SIDE, UPLO, M, N, ALPHA, LDA, $ LDB, BETA, LDC * 120 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( 1X, I6, ': ', A6, '(', 2( '''', A1, ''',' ), 2( I3, ',' ), $ '(', F4.1, ',', F4.1, '), A,', I3, ', B,', I3, ',(', F4.1, $ ',', F4.1, '), C,', I3, ') .' ) 9994 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of CCHK2. * END SUBROUTINE CCHK3( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NMAX, A, AA, AS, $ B, BB, BS, CT, G, C ) * * Tests CTRMM and CTRSM. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. COMPLEX ZERO, ONE PARAMETER ( ZERO = ( 0.0, 0.0 ), ONE = ( 1.0, 0.0 ) ) REAL RZERO PARAMETER ( RZERO = 0.0 ) * .. Scalar Arguments .. REAL EPS, THRESH INTEGER NALF, NIDIM, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. COMPLEX A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), B( NMAX, NMAX ), $ BB( NMAX*NMAX ), BS( NMAX*NMAX ), $ C( NMAX, NMAX ), CT( NMAX ) REAL G( NMAX ) INTEGER IDIM( NIDIM ) * .. Local Scalars .. COMPLEX ALPHA, ALS REAL ERR, ERRMAX INTEGER I, IA, ICD, ICS, ICT, ICU, IM, IN, J, LAA, LBB, $ LDA, LDAS, LDB, LDBS, M, MS, N, NA, NARGS, NC, $ NS LOGICAL LEFT, NULL, RESET, SAME CHARACTER*1 DIAG, DIAGS, SIDE, SIDES, TRANAS, TRANSA, UPLO, $ UPLOS CHARACTER*2 ICHD, ICHS, ICHU CHARACTER*3 ICHT * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LCE, LCERES EXTERNAL LCE, LCERES * .. External Subroutines .. EXTERNAL CMAKE, CMMCH, CTRMM, CTRSM * .. Intrinsic Functions .. INTRINSIC MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICHU/'UL'/, ICHT/'NTC'/, ICHD/'UN'/, ICHS/'LR'/ * .. Executable Statements .. * NARGS = 11 NC = 0 RESET = .TRUE. ERRMAX = RZERO * Set up zero matrix for CMMCH. DO 20 J = 1, NMAX DO 10 I = 1, NMAX C( I, J ) = ZERO 10 CONTINUE 20 CONTINUE * DO 140 IM = 1, NIDIM M = IDIM( IM ) * DO 130 IN = 1, NIDIM N = IDIM( IN ) * Set LDB to 1 more than minimum value if room. LDB = M IF( LDB.LT.NMAX ) $ LDB = LDB + 1 * Skip tests if not enough room. IF( LDB.GT.NMAX ) $ GO TO 130 LBB = LDB*N NULL = M.LE.0.OR.N.LE.0 * DO 120 ICS = 1, 2 SIDE = ICHS( ICS: ICS ) LEFT = SIDE.EQ.'L' IF( LEFT )THEN NA = M ELSE NA = N END IF * Set LDA to 1 more than minimum value if room. LDA = NA IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 130 LAA = LDA*NA * DO 110 ICU = 1, 2 UPLO = ICHU( ICU: ICU ) * DO 100 ICT = 1, 3 TRANSA = ICHT( ICT: ICT ) * DO 90 ICD = 1, 2 DIAG = ICHD( ICD: ICD ) * DO 80 IA = 1, NALF ALPHA = ALF( IA ) * * Generate the matrix A. * CALL CMAKE( 'TR', UPLO, DIAG, NA, NA, A, $ NMAX, AA, LDA, RESET, ZERO ) * * Generate the matrix B. * CALL CMAKE( 'GE', ' ', ' ', M, N, B, NMAX, $ BB, LDB, RESET, ZERO ) * NC = NC + 1 * * Save every datum before calling the * subroutine. * SIDES = SIDE UPLOS = UPLO TRANAS = TRANSA DIAGS = DIAG MS = M NS = N ALS = ALPHA DO 30 I = 1, LAA AS( I ) = AA( I ) 30 CONTINUE LDAS = LDA DO 40 I = 1, LBB BS( I ) = BB( I ) 40 CONTINUE LDBS = LDB * * Call the subroutine. * IF( SNAME( 4: 5 ).EQ.'MM' )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, $ SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, $ LDA, LDB IF( REWI ) $ REWIND NTRA CALL CTRMM( SIDE, UPLO, TRANSA, DIAG, M, $ N, ALPHA, AA, LDA, BB, LDB ) ELSE IF( SNAME( 4: 5 ).EQ.'SM' )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, $ SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, $ LDA, LDB IF( REWI ) $ REWIND NTRA CALL CTRSM( SIDE, UPLO, TRANSA, DIAG, M, $ N, ALPHA, AA, LDA, BB, LDB ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9994 ) FATAL = .TRUE. GO TO 150 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = SIDES.EQ.SIDE ISAME( 2 ) = UPLOS.EQ.UPLO ISAME( 3 ) = TRANAS.EQ.TRANSA ISAME( 4 ) = DIAGS.EQ.DIAG ISAME( 5 ) = MS.EQ.M ISAME( 6 ) = NS.EQ.N ISAME( 7 ) = ALS.EQ.ALPHA ISAME( 8 ) = LCE( AS, AA, LAA ) ISAME( 9 ) = LDAS.EQ.LDA IF( NULL )THEN ISAME( 10 ) = LCE( BS, BB, LBB ) ELSE ISAME( 10 ) = LCERES( 'GE', ' ', M, N, BS, $ BB, LDB ) END IF ISAME( 11 ) = LDBS.EQ.LDB * * If data was incorrectly changed, report and * return. * SAME = .TRUE. DO 50 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 50 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 150 END IF * IF( .NOT.NULL )THEN IF( SNAME( 4: 5 ).EQ.'MM' )THEN * * Check the result. * IF( LEFT )THEN CALL CMMCH( TRANSA, 'N', M, N, M, $ ALPHA, A, NMAX, B, NMAX, $ ZERO, C, NMAX, CT, G, $ BB, LDB, EPS, ERR, $ FATAL, NOUT, .TRUE. ) ELSE CALL CMMCH( 'N', TRANSA, M, N, N, $ ALPHA, B, NMAX, A, NMAX, $ ZERO, C, NMAX, CT, G, $ BB, LDB, EPS, ERR, $ FATAL, NOUT, .TRUE. ) END IF ELSE IF( SNAME( 4: 5 ).EQ.'SM' )THEN * * Compute approximation to original * matrix. * DO 70 J = 1, N DO 60 I = 1, M C( I, J ) = BB( I + ( J - 1 )* $ LDB ) BB( I + ( J - 1 )*LDB ) = ALPHA* $ B( I, J ) 60 CONTINUE 70 CONTINUE * IF( LEFT )THEN CALL CMMCH( TRANSA, 'N', M, N, M, $ ONE, A, NMAX, C, NMAX, $ ZERO, B, NMAX, CT, G, $ BB, LDB, EPS, ERR, $ FATAL, NOUT, .FALSE. ) ELSE CALL CMMCH( 'N', TRANSA, M, N, N, $ ONE, C, NMAX, A, NMAX, $ ZERO, B, NMAX, CT, G, $ BB, LDB, EPS, ERR, $ FATAL, NOUT, .FALSE. ) END IF END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 150 END IF * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * 110 CONTINUE * 120 CONTINUE * 130 CONTINUE * 140 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 160 * 150 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME WRITE( NOUT, FMT = 9995 )NC, SNAME, SIDE, UPLO, TRANSA, DIAG, M, $ N, ALPHA, LDA, LDB * 160 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( 1X, I6, ': ', A6, '(', 4( '''', A1, ''',' ), 2( I3, ',' ), $ '(', F4.1, ',', F4.1, '), A,', I3, ', B,', I3, ') ', $ ' .' ) 9994 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of CCHK3. * END SUBROUTINE CCHK4( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX, $ A, AA, AS, B, BB, BS, C, CC, CS, CT, G ) * * Tests CHERK and CSYRK. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. COMPLEX ZERO PARAMETER ( ZERO = ( 0.0, 0.0 ) ) REAL RONE, RZERO PARAMETER ( RONE = 1.0, RZERO = 0.0 ) * .. Scalar Arguments .. REAL EPS, THRESH INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. COMPLEX A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), B( NMAX, NMAX ), $ BB( NMAX*NMAX ), BET( NBET ), BS( NMAX*NMAX ), $ C( NMAX, NMAX ), CC( NMAX*NMAX ), $ CS( NMAX*NMAX ), CT( NMAX ) REAL G( NMAX ) INTEGER IDIM( NIDIM ) * .. Local Scalars .. COMPLEX ALPHA, ALS, BETA, BETS REAL ERR, ERRMAX, RALPHA, RALS, RBETA, RBETS INTEGER I, IA, IB, ICT, ICU, IK, IN, J, JC, JJ, K, KS, $ LAA, LCC, LDA, LDAS, LDC, LDCS, LJ, MA, N, NA, $ NARGS, NC, NS LOGICAL CONJ, NULL, RESET, SAME, TRAN, UPPER CHARACTER*1 TRANS, TRANSS, TRANST, UPLO, UPLOS CHARACTER*2 ICHT, ICHU * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LCE, LCERES EXTERNAL LCE, LCERES * .. External Subroutines .. EXTERNAL CHERK, CMAKE, CMMCH, CSYRK * .. Intrinsic Functions .. INTRINSIC CMPLX, MAX, REAL * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICHT/'NC'/, ICHU/'UL'/ * .. Executable Statements .. CONJ = SNAME( 2: 3 ).EQ.'HE' * NARGS = 10 NC = 0 RESET = .TRUE. ERRMAX = RZERO * DO 100 IN = 1, NIDIM N = IDIM( IN ) * Set LDC to 1 more than minimum value if room. LDC = N IF( LDC.LT.NMAX ) $ LDC = LDC + 1 * Skip tests if not enough room. IF( LDC.GT.NMAX ) $ GO TO 100 LCC = LDC*N * DO 90 IK = 1, NIDIM K = IDIM( IK ) * DO 80 ICT = 1, 2 TRANS = ICHT( ICT: ICT ) TRAN = TRANS.EQ.'C' IF( TRAN.AND..NOT.CONJ ) $ TRANS = 'T' IF( TRAN )THEN MA = K NA = N ELSE MA = N NA = K END IF * Set LDA to 1 more than minimum value if room. LDA = MA IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 80 LAA = LDA*NA * * Generate the matrix A. * CALL CMAKE( 'GE', ' ', ' ', MA, NA, A, NMAX, AA, LDA, $ RESET, ZERO ) * DO 70 ICU = 1, 2 UPLO = ICHU( ICU: ICU ) UPPER = UPLO.EQ.'U' * DO 60 IA = 1, NALF ALPHA = ALF( IA ) IF( CONJ )THEN RALPHA = REAL( ALPHA ) ALPHA = CMPLX( RALPHA, RZERO ) END IF * DO 50 IB = 1, NBET BETA = BET( IB ) IF( CONJ )THEN RBETA = REAL( BETA ) BETA = CMPLX( RBETA, RZERO ) END IF NULL = N.LE.0 IF( CONJ ) $ NULL = NULL.OR.( ( K.LE.0.OR.RALPHA.EQ. $ RZERO ).AND.RBETA.EQ.RONE ) * * Generate the matrix C. * CALL CMAKE( SNAME( 2: 3 ), UPLO, ' ', N, N, C, $ NMAX, CC, LDC, RESET, ZERO ) * NC = NC + 1 * * Save every datum before calling the subroutine. * UPLOS = UPLO TRANSS = TRANS NS = N KS = K IF( CONJ )THEN RALS = RALPHA ELSE ALS = ALPHA END IF DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA IF( CONJ )THEN RBETS = RBETA ELSE BETS = BETA END IF DO 20 I = 1, LCC CS( I ) = CC( I ) 20 CONTINUE LDCS = LDC * * Call the subroutine. * IF( CONJ )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, UPLO, $ TRANS, N, K, RALPHA, LDA, RBETA, LDC IF( REWI ) $ REWIND NTRA CALL CHERK( UPLO, TRANS, N, K, RALPHA, AA, $ LDA, RBETA, CC, LDC ) ELSE IF( TRACE ) $ WRITE( NTRA, FMT = 9993 )NC, SNAME, UPLO, $ TRANS, N, K, ALPHA, LDA, BETA, LDC IF( REWI ) $ REWIND NTRA CALL CSYRK( UPLO, TRANS, N, K, ALPHA, AA, $ LDA, BETA, CC, LDC ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9992 ) FATAL = .TRUE. GO TO 120 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = UPLOS.EQ.UPLO ISAME( 2 ) = TRANSS.EQ.TRANS ISAME( 3 ) = NS.EQ.N ISAME( 4 ) = KS.EQ.K IF( CONJ )THEN ISAME( 5 ) = RALS.EQ.RALPHA ELSE ISAME( 5 ) = ALS.EQ.ALPHA END IF ISAME( 6 ) = LCE( AS, AA, LAA ) ISAME( 7 ) = LDAS.EQ.LDA IF( CONJ )THEN ISAME( 8 ) = RBETS.EQ.RBETA ELSE ISAME( 8 ) = BETS.EQ.BETA END IF IF( NULL )THEN ISAME( 9 ) = LCE( CS, CC, LCC ) ELSE ISAME( 9 ) = LCERES( SNAME( 2: 3 ), UPLO, N, $ N, CS, CC, LDC ) END IF ISAME( 10 ) = LDCS.EQ.LDC * * If data was incorrectly changed, report and * return. * SAME = .TRUE. DO 30 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 30 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 120 END IF * IF( .NOT.NULL )THEN * * Check the result column by column. * IF( CONJ )THEN TRANST = 'C' ELSE TRANST = 'T' END IF JC = 1 DO 40 J = 1, N IF( UPPER )THEN JJ = 1 LJ = J ELSE JJ = J LJ = N - J + 1 END IF IF( TRAN )THEN CALL CMMCH( TRANST, 'N', LJ, 1, K, $ ALPHA, A( 1, JJ ), NMAX, $ A( 1, J ), NMAX, BETA, $ C( JJ, J ), NMAX, CT, G, $ CC( JC ), LDC, EPS, ERR, $ FATAL, NOUT, .TRUE. ) ELSE CALL CMMCH( 'N', TRANST, LJ, 1, K, $ ALPHA, A( JJ, 1 ), NMAX, $ A( J, 1 ), NMAX, BETA, $ C( JJ, J ), NMAX, CT, G, $ CC( JC ), LDC, EPS, ERR, $ FATAL, NOUT, .TRUE. ) END IF IF( UPPER )THEN JC = JC + LDC ELSE JC = JC + LDC + 1 END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 110 40 CONTINUE END IF * 50 CONTINUE * 60 CONTINUE * 70 CONTINUE * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 130 * 110 CONTINUE IF( N.GT.1 ) $ WRITE( NOUT, FMT = 9995 )J * 120 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME IF( CONJ )THEN WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, TRANS, N, K, RALPHA, $ LDA, RBETA, LDC ELSE WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, TRANS, N, K, ALPHA, $ LDA, BETA, LDC END IF * 130 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 ) 9994 FORMAT( 1X, I6, ': ', A6, '(', 2( '''', A1, ''',' ), 2( I3, ',' ), $ F4.1, ', A,', I3, ',', F4.1, ', C,', I3, ') ', $ ' .' ) 9993 FORMAT( 1X, I6, ': ', A6, '(', 2( '''', A1, ''',' ), 2( I3, ',' ), $ '(', F4.1, ',', F4.1, ') , A,', I3, ',(', F4.1, ',', F4.1, $ '), C,', I3, ') .' ) 9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of CCHK4. * END SUBROUTINE CCHK5( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX, $ AB, AA, AS, BB, BS, C, CC, CS, CT, G, W ) * * Tests CHER2K and CSYR2K. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. COMPLEX ZERO, ONE PARAMETER ( ZERO = ( 0.0, 0.0 ), ONE = ( 1.0, 0.0 ) ) REAL RONE, RZERO PARAMETER ( RONE = 1.0, RZERO = 0.0 ) * .. Scalar Arguments .. REAL EPS, THRESH INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. COMPLEX AA( NMAX*NMAX ), AB( 2*NMAX*NMAX ), $ ALF( NALF ), AS( NMAX*NMAX ), BB( NMAX*NMAX ), $ BET( NBET ), BS( NMAX*NMAX ), C( NMAX, NMAX ), $ CC( NMAX*NMAX ), CS( NMAX*NMAX ), CT( NMAX ), $ W( 2*NMAX ) REAL G( NMAX ) INTEGER IDIM( NIDIM ) * .. Local Scalars .. COMPLEX ALPHA, ALS, BETA, BETS REAL ERR, ERRMAX, RBETA, RBETS INTEGER I, IA, IB, ICT, ICU, IK, IN, J, JC, JJ, JJAB, $ K, KS, LAA, LBB, LCC, LDA, LDAS, LDB, LDBS, $ LDC, LDCS, LJ, MA, N, NA, NARGS, NC, NS LOGICAL CONJ, NULL, RESET, SAME, TRAN, UPPER CHARACTER*1 TRANS, TRANSS, TRANST, UPLO, UPLOS CHARACTER*2 ICHT, ICHU * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LCE, LCERES EXTERNAL LCE, LCERES * .. External Subroutines .. EXTERNAL CHER2K, CMAKE, CMMCH, CSYR2K * .. Intrinsic Functions .. INTRINSIC CMPLX, CONJG, MAX, REAL * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICHT/'NC'/, ICHU/'UL'/ * .. Executable Statements .. CONJ = SNAME( 2: 3 ).EQ.'HE' * NARGS = 12 NC = 0 RESET = .TRUE. ERRMAX = RZERO * DO 130 IN = 1, NIDIM N = IDIM( IN ) * Set LDC to 1 more than minimum value if room. LDC = N IF( LDC.LT.NMAX ) $ LDC = LDC + 1 * Skip tests if not enough room. IF( LDC.GT.NMAX ) $ GO TO 130 LCC = LDC*N * DO 120 IK = 1, NIDIM K = IDIM( IK ) * DO 110 ICT = 1, 2 TRANS = ICHT( ICT: ICT ) TRAN = TRANS.EQ.'C' IF( TRAN.AND..NOT.CONJ ) $ TRANS = 'T' IF( TRAN )THEN MA = K NA = N ELSE MA = N NA = K END IF * Set LDA to 1 more than minimum value if room. LDA = MA IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 110 LAA = LDA*NA * * Generate the matrix A. * IF( TRAN )THEN CALL CMAKE( 'GE', ' ', ' ', MA, NA, AB, 2*NMAX, AA, $ LDA, RESET, ZERO ) ELSE CALL CMAKE( 'GE', ' ', ' ', MA, NA, AB, NMAX, AA, LDA, $ RESET, ZERO ) END IF * * Generate the matrix B. * LDB = LDA LBB = LAA IF( TRAN )THEN CALL CMAKE( 'GE', ' ', ' ', MA, NA, AB( K + 1 ), $ 2*NMAX, BB, LDB, RESET, ZERO ) ELSE CALL CMAKE( 'GE', ' ', ' ', MA, NA, AB( K*NMAX + 1 ), $ NMAX, BB, LDB, RESET, ZERO ) END IF * DO 100 ICU = 1, 2 UPLO = ICHU( ICU: ICU ) UPPER = UPLO.EQ.'U' * DO 90 IA = 1, NALF ALPHA = ALF( IA ) * DO 80 IB = 1, NBET BETA = BET( IB ) IF( CONJ )THEN RBETA = REAL( BETA ) BETA = CMPLX( RBETA, RZERO ) END IF NULL = N.LE.0 IF( CONJ ) $ NULL = NULL.OR.( ( K.LE.0.OR.ALPHA.EQ. $ ZERO ).AND.RBETA.EQ.RONE ) * * Generate the matrix C. * CALL CMAKE( SNAME( 2: 3 ), UPLO, ' ', N, N, C, $ NMAX, CC, LDC, RESET, ZERO ) * NC = NC + 1 * * Save every datum before calling the subroutine. * UPLOS = UPLO TRANSS = TRANS NS = N KS = K ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LBB BS( I ) = BB( I ) 20 CONTINUE LDBS = LDB IF( CONJ )THEN RBETS = RBETA ELSE BETS = BETA END IF DO 30 I = 1, LCC CS( I ) = CC( I ) 30 CONTINUE LDCS = LDC * * Call the subroutine. * IF( CONJ )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, UPLO, $ TRANS, N, K, ALPHA, LDA, LDB, RBETA, LDC IF( REWI ) $ REWIND NTRA CALL CHER2K( UPLO, TRANS, N, K, ALPHA, AA, $ LDA, BB, LDB, RBETA, CC, LDC ) ELSE IF( TRACE ) $ WRITE( NTRA, FMT = 9993 )NC, SNAME, UPLO, $ TRANS, N, K, ALPHA, LDA, LDB, BETA, LDC IF( REWI ) $ REWIND NTRA CALL CSYR2K( UPLO, TRANS, N, K, ALPHA, AA, $ LDA, BB, LDB, BETA, CC, LDC ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9992 ) FATAL = .TRUE. GO TO 150 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = UPLOS.EQ.UPLO ISAME( 2 ) = TRANSS.EQ.TRANS ISAME( 3 ) = NS.EQ.N ISAME( 4 ) = KS.EQ.K ISAME( 5 ) = ALS.EQ.ALPHA ISAME( 6 ) = LCE( AS, AA, LAA ) ISAME( 7 ) = LDAS.EQ.LDA ISAME( 8 ) = LCE( BS, BB, LBB ) ISAME( 9 ) = LDBS.EQ.LDB IF( CONJ )THEN ISAME( 10 ) = RBETS.EQ.RBETA ELSE ISAME( 10 ) = BETS.EQ.BETA END IF IF( NULL )THEN ISAME( 11 ) = LCE( CS, CC, LCC ) ELSE ISAME( 11 ) = LCERES( 'HE', UPLO, N, N, CS, $ CC, LDC ) END IF ISAME( 12 ) = LDCS.EQ.LDC * * If data was incorrectly changed, report and * return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 150 END IF * IF( .NOT.NULL )THEN * * Check the result column by column. * IF( CONJ )THEN TRANST = 'C' ELSE TRANST = 'T' END IF JJAB = 1 JC = 1 DO 70 J = 1, N IF( UPPER )THEN JJ = 1 LJ = J ELSE JJ = J LJ = N - J + 1 END IF IF( TRAN )THEN DO 50 I = 1, K W( I ) = ALPHA*AB( ( J - 1 )*2* $ NMAX + K + I ) IF( CONJ )THEN W( K + I ) = CONJG( ALPHA )* $ AB( ( J - 1 )*2* $ NMAX + I ) ELSE W( K + I ) = ALPHA* $ AB( ( J - 1 )*2* $ NMAX + I ) END IF 50 CONTINUE CALL CMMCH( TRANST, 'N', LJ, 1, 2*K, $ ONE, AB( JJAB ), 2*NMAX, W, $ 2*NMAX, BETA, C( JJ, J ), $ NMAX, CT, G, CC( JC ), LDC, $ EPS, ERR, FATAL, NOUT, $ .TRUE. ) ELSE DO 60 I = 1, K IF( CONJ )THEN W( I ) = ALPHA*CONJG( AB( ( K + $ I - 1 )*NMAX + J ) ) W( K + I ) = CONJG( ALPHA* $ AB( ( I - 1 )*NMAX + $ J ) ) ELSE W( I ) = ALPHA*AB( ( K + I - 1 )* $ NMAX + J ) W( K + I ) = ALPHA* $ AB( ( I - 1 )*NMAX + $ J ) END IF 60 CONTINUE CALL CMMCH( 'N', 'N', LJ, 1, 2*K, ONE, $ AB( JJ ), NMAX, W, 2*NMAX, $ BETA, C( JJ, J ), NMAX, CT, $ G, CC( JC ), LDC, EPS, ERR, $ FATAL, NOUT, .TRUE. ) END IF IF( UPPER )THEN JC = JC + LDC ELSE JC = JC + LDC + 1 IF( TRAN ) $ JJAB = JJAB + 2*NMAX END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 140 70 CONTINUE END IF * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * 110 CONTINUE * 120 CONTINUE * 130 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 160 * 140 CONTINUE IF( N.GT.1 ) $ WRITE( NOUT, FMT = 9995 )J * 150 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME IF( CONJ )THEN WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, TRANS, N, K, ALPHA, $ LDA, LDB, RBETA, LDC ELSE WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, TRANS, N, K, ALPHA, $ LDA, LDB, BETA, LDC END IF * 160 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 ) 9994 FORMAT( 1X, I6, ': ', A6, '(', 2( '''', A1, ''',' ), 2( I3, ',' ), $ '(', F4.1, ',', F4.1, '), A,', I3, ', B,', I3, ',', F4.1, $ ', C,', I3, ') .' ) 9993 FORMAT( 1X, I6, ': ', A6, '(', 2( '''', A1, ''',' ), 2( I3, ',' ), $ '(', F4.1, ',', F4.1, '), A,', I3, ', B,', I3, ',(', F4.1, $ ',', F4.1, '), C,', I3, ') .' ) 9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of CCHK5. * END SUBROUTINE CCHKE( ISNUM, SRNAMT, NOUT ) * * Tests the error exits from the Level 3 Blas. * Requires a special version of the error-handling routine XERBLA. * ALPHA, RALPHA, BETA, RBETA, A, B and C should not need to be defined. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. INTEGER ISNUM, NOUT CHARACTER*6 SRNAMT * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Local Scalars .. COMPLEX ALPHA, BETA REAL RALPHA, RBETA * .. Local Arrays .. COMPLEX A( 2, 1 ), B( 2, 1 ), C( 2, 1 ) * .. External Subroutines .. EXTERNAL CGEMM, CHEMM, CHER2K, CHERK, CHKXER, CSYMM, $ CSYR2K, CSYRK, CTRMM, CTRSM * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Executable Statements .. * OK is set to .FALSE. by the special version of XERBLA or by CHKXER * if anything is wrong. OK = .TRUE. * LERR is set to .TRUE. by the special version of XERBLA each time * it is called, and is then tested and re-set by CHKXER. LERR = .FALSE. GO TO ( 10, 20, 30, 40, 50, 60, 70, 80, $ 90 )ISNUM 10 INFOT = 1 CALL CGEMM( '/', 'N', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 1 CALL CGEMM( '/', 'C', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 1 CALL CGEMM( '/', 'T', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CGEMM( 'N', '/', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CGEMM( 'C', '/', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CGEMM( 'T', '/', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CGEMM( 'N', 'N', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CGEMM( 'N', 'C', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CGEMM( 'N', 'T', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CGEMM( 'C', 'N', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CGEMM( 'C', 'C', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CGEMM( 'C', 'T', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CGEMM( 'T', 'N', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CGEMM( 'T', 'C', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CGEMM( 'T', 'T', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CGEMM( 'N', 'N', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CGEMM( 'N', 'C', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CGEMM( 'N', 'T', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CGEMM( 'C', 'N', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CGEMM( 'C', 'C', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CGEMM( 'C', 'T', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CGEMM( 'T', 'N', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CGEMM( 'T', 'C', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CGEMM( 'T', 'T', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CGEMM( 'N', 'N', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CGEMM( 'N', 'C', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CGEMM( 'N', 'T', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CGEMM( 'C', 'N', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CGEMM( 'C', 'C', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CGEMM( 'C', 'T', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CGEMM( 'T', 'N', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CGEMM( 'T', 'C', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CGEMM( 'T', 'T', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CGEMM( 'N', 'N', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CGEMM( 'N', 'C', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CGEMM( 'N', 'T', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CGEMM( 'C', 'N', 0, 0, 2, ALPHA, A, 1, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CGEMM( 'C', 'C', 0, 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CGEMM( 'C', 'T', 0, 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CGEMM( 'T', 'N', 0, 0, 2, ALPHA, A, 1, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CGEMM( 'T', 'C', 0, 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CGEMM( 'T', 'T', 0, 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CGEMM( 'N', 'N', 0, 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CGEMM( 'C', 'N', 0, 0, 2, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CGEMM( 'T', 'N', 0, 0, 2, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CGEMM( 'N', 'C', 0, 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CGEMM( 'C', 'C', 0, 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CGEMM( 'T', 'C', 0, 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CGEMM( 'N', 'T', 0, 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CGEMM( 'C', 'T', 0, 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CGEMM( 'T', 'T', 0, 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL CGEMM( 'N', 'N', 2, 0, 0, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL CGEMM( 'N', 'C', 2, 0, 0, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL CGEMM( 'N', 'T', 2, 0, 0, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL CGEMM( 'C', 'N', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL CGEMM( 'C', 'C', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL CGEMM( 'C', 'T', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL CGEMM( 'T', 'N', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL CGEMM( 'T', 'C', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL CGEMM( 'T', 'T', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 100 20 INFOT = 1 CALL CHEMM( '/', 'U', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHEMM( 'L', '/', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHEMM( 'L', 'U', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHEMM( 'R', 'U', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHEMM( 'L', 'L', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHEMM( 'R', 'L', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHEMM( 'L', 'U', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHEMM( 'R', 'U', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHEMM( 'L', 'L', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHEMM( 'R', 'L', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHEMM( 'L', 'U', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHEMM( 'R', 'U', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHEMM( 'L', 'L', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHEMM( 'R', 'L', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CHEMM( 'L', 'U', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CHEMM( 'R', 'U', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CHEMM( 'L', 'L', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CHEMM( 'R', 'L', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CHEMM( 'L', 'U', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CHEMM( 'R', 'U', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CHEMM( 'L', 'L', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CHEMM( 'R', 'L', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 100 30 INFOT = 1 CALL CSYMM( '/', 'U', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYMM( 'L', '/', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CSYMM( 'L', 'U', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CSYMM( 'R', 'U', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CSYMM( 'L', 'L', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CSYMM( 'R', 'L', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYMM( 'L', 'U', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYMM( 'R', 'U', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYMM( 'L', 'L', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYMM( 'R', 'L', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CSYMM( 'L', 'U', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CSYMM( 'R', 'U', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CSYMM( 'L', 'L', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CSYMM( 'R', 'L', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CSYMM( 'L', 'U', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CSYMM( 'R', 'U', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CSYMM( 'L', 'L', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CSYMM( 'R', 'L', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CSYMM( 'L', 'U', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CSYMM( 'R', 'U', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CSYMM( 'L', 'L', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CSYMM( 'R', 'L', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 100 40 INFOT = 1 CALL CTRMM( '/', 'U', 'N', 'N', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CTRMM( 'L', '/', 'N', 'N', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CTRMM( 'L', 'U', '/', 'N', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CTRMM( 'L', 'U', 'N', '/', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRMM( 'L', 'U', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRMM( 'L', 'U', 'C', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRMM( 'L', 'U', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRMM( 'R', 'U', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRMM( 'R', 'U', 'C', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRMM( 'R', 'U', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRMM( 'L', 'L', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRMM( 'L', 'L', 'C', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRMM( 'L', 'L', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRMM( 'R', 'L', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRMM( 'R', 'L', 'C', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRMM( 'R', 'L', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRMM( 'L', 'U', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRMM( 'L', 'U', 'C', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRMM( 'L', 'U', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRMM( 'R', 'U', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRMM( 'R', 'U', 'C', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRMM( 'R', 'U', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRMM( 'L', 'L', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRMM( 'L', 'L', 'C', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRMM( 'L', 'L', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRMM( 'R', 'L', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRMM( 'R', 'L', 'C', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRMM( 'R', 'L', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRMM( 'L', 'U', 'N', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRMM( 'L', 'U', 'C', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRMM( 'L', 'U', 'T', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRMM( 'R', 'U', 'N', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRMM( 'R', 'U', 'C', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRMM( 'R', 'U', 'T', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRMM( 'L', 'L', 'N', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRMM( 'L', 'L', 'C', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRMM( 'L', 'L', 'T', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRMM( 'R', 'L', 'N', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRMM( 'R', 'L', 'C', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRMM( 'R', 'L', 'T', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRMM( 'L', 'U', 'N', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRMM( 'L', 'U', 'C', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRMM( 'L', 'U', 'T', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRMM( 'R', 'U', 'N', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRMM( 'R', 'U', 'C', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRMM( 'R', 'U', 'T', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRMM( 'L', 'L', 'N', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRMM( 'L', 'L', 'C', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRMM( 'L', 'L', 'T', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRMM( 'R', 'L', 'N', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRMM( 'R', 'L', 'C', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRMM( 'R', 'L', 'T', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 100 50 INFOT = 1 CALL CTRSM( '/', 'U', 'N', 'N', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CTRSM( 'L', '/', 'N', 'N', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CTRSM( 'L', 'U', '/', 'N', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CTRSM( 'L', 'U', 'N', '/', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRSM( 'L', 'U', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRSM( 'L', 'U', 'C', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRSM( 'L', 'U', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRSM( 'R', 'U', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRSM( 'R', 'U', 'C', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRSM( 'R', 'U', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRSM( 'L', 'L', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRSM( 'L', 'L', 'C', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRSM( 'L', 'L', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRSM( 'R', 'L', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRSM( 'R', 'L', 'C', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRSM( 'R', 'L', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRSM( 'L', 'U', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRSM( 'L', 'U', 'C', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRSM( 'L', 'U', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRSM( 'R', 'U', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRSM( 'R', 'U', 'C', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRSM( 'R', 'U', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRSM( 'L', 'L', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRSM( 'L', 'L', 'C', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRSM( 'L', 'L', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRSM( 'R', 'L', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRSM( 'R', 'L', 'C', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRSM( 'R', 'L', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRSM( 'L', 'U', 'N', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRSM( 'L', 'U', 'C', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRSM( 'L', 'U', 'T', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRSM( 'R', 'U', 'N', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRSM( 'R', 'U', 'C', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRSM( 'R', 'U', 'T', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRSM( 'L', 'L', 'N', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRSM( 'L', 'L', 'C', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRSM( 'L', 'L', 'T', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRSM( 'R', 'L', 'N', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRSM( 'R', 'L', 'C', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRSM( 'R', 'L', 'T', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRSM( 'L', 'U', 'N', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRSM( 'L', 'U', 'C', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRSM( 'L', 'U', 'T', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRSM( 'R', 'U', 'N', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRSM( 'R', 'U', 'C', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRSM( 'R', 'U', 'T', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRSM( 'L', 'L', 'N', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRSM( 'L', 'L', 'C', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRSM( 'L', 'L', 'T', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRSM( 'R', 'L', 'N', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRSM( 'R', 'L', 'C', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRSM( 'R', 'L', 'T', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 100 60 INFOT = 1 CALL CHERK( '/', 'N', 0, 0, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHERK( 'U', 'T', 0, 0, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHERK( 'U', 'N', -1, 0, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHERK( 'U', 'C', -1, 0, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHERK( 'L', 'N', -1, 0, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHERK( 'L', 'C', -1, 0, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHERK( 'U', 'N', 0, -1, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHERK( 'U', 'C', 0, -1, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHERK( 'L', 'N', 0, -1, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHERK( 'L', 'C', 0, -1, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHERK( 'U', 'N', 2, 0, RALPHA, A, 1, RBETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHERK( 'U', 'C', 0, 2, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHERK( 'L', 'N', 2, 0, RALPHA, A, 1, RBETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHERK( 'L', 'C', 0, 2, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CHERK( 'U', 'N', 2, 0, RALPHA, A, 2, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CHERK( 'U', 'C', 2, 0, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CHERK( 'L', 'N', 2, 0, RALPHA, A, 2, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CHERK( 'L', 'C', 2, 0, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 100 70 INFOT = 1 CALL CSYRK( '/', 'N', 0, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYRK( 'U', 'C', 0, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CSYRK( 'U', 'N', -1, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CSYRK( 'U', 'T', -1, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CSYRK( 'L', 'N', -1, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CSYRK( 'L', 'T', -1, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYRK( 'U', 'N', 0, -1, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYRK( 'U', 'T', 0, -1, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYRK( 'L', 'N', 0, -1, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYRK( 'L', 'T', 0, -1, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CSYRK( 'U', 'N', 2, 0, ALPHA, A, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CSYRK( 'U', 'T', 0, 2, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CSYRK( 'L', 'N', 2, 0, ALPHA, A, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CSYRK( 'L', 'T', 0, 2, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CSYRK( 'U', 'N', 2, 0, ALPHA, A, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CSYRK( 'U', 'T', 2, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CSYRK( 'L', 'N', 2, 0, ALPHA, A, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CSYRK( 'L', 'T', 2, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 100 80 INFOT = 1 CALL CHER2K( '/', 'N', 0, 0, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHER2K( 'U', 'T', 0, 0, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHER2K( 'U', 'N', -1, 0, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHER2K( 'U', 'C', -1, 0, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHER2K( 'L', 'N', -1, 0, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHER2K( 'L', 'C', -1, 0, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHER2K( 'U', 'N', 0, -1, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHER2K( 'U', 'C', 0, -1, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHER2K( 'L', 'N', 0, -1, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHER2K( 'L', 'C', 0, -1, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHER2K( 'U', 'N', 2, 0, ALPHA, A, 1, B, 1, RBETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHER2K( 'U', 'C', 0, 2, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHER2K( 'L', 'N', 2, 0, ALPHA, A, 1, B, 1, RBETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHER2K( 'L', 'C', 0, 2, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CHER2K( 'U', 'N', 2, 0, ALPHA, A, 2, B, 1, RBETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CHER2K( 'U', 'C', 0, 2, ALPHA, A, 2, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CHER2K( 'L', 'N', 2, 0, ALPHA, A, 2, B, 1, RBETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CHER2K( 'L', 'C', 0, 2, ALPHA, A, 2, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CHER2K( 'U', 'N', 2, 0, ALPHA, A, 2, B, 2, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CHER2K( 'U', 'C', 2, 0, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CHER2K( 'L', 'N', 2, 0, ALPHA, A, 2, B, 2, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CHER2K( 'L', 'C', 2, 0, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 100 90 INFOT = 1 CALL CSYR2K( '/', 'N', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYR2K( 'U', 'C', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CSYR2K( 'U', 'N', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CSYR2K( 'U', 'T', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CSYR2K( 'L', 'N', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CSYR2K( 'L', 'T', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYR2K( 'U', 'N', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYR2K( 'U', 'T', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYR2K( 'L', 'N', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYR2K( 'L', 'T', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CSYR2K( 'U', 'N', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CSYR2K( 'U', 'T', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CSYR2K( 'L', 'N', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CSYR2K( 'L', 'T', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CSYR2K( 'U', 'N', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CSYR2K( 'U', 'T', 0, 2, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CSYR2K( 'L', 'N', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CSYR2K( 'L', 'T', 0, 2, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CSYR2K( 'U', 'N', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CSYR2K( 'U', 'T', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CSYR2K( 'L', 'N', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CSYR2K( 'L', 'T', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) * 100 IF( OK )THEN WRITE( NOUT, FMT = 9999 )SRNAMT ELSE WRITE( NOUT, FMT = 9998 )SRNAMT END IF RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE TESTS OF ERROR-EXITS' ) 9998 FORMAT( ' ******* ', A6, ' FAILED THE TESTS OF ERROR-EXITS *****', $ '**' ) * * End of CCHKE. * END SUBROUTINE CMAKE( TYPE, UPLO, DIAG, M, N, A, NMAX, AA, LDA, RESET, $ TRANSL ) * * Generates values for an M by N matrix A. * Stores the values in the array AA in the data structure required * by the routine, with unwanted elements set to rogue value. * * TYPE is 'GE', 'HE', 'SY' or 'TR'. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. COMPLEX ZERO, ONE PARAMETER ( ZERO = ( 0.0, 0.0 ), ONE = ( 1.0, 0.0 ) ) COMPLEX ROGUE PARAMETER ( ROGUE = ( -1.0E10, 1.0E10 ) ) REAL RZERO PARAMETER ( RZERO = 0.0 ) REAL RROGUE PARAMETER ( RROGUE = -1.0E10 ) * .. Scalar Arguments .. COMPLEX TRANSL INTEGER LDA, M, N, NMAX LOGICAL RESET CHARACTER*1 DIAG, UPLO CHARACTER*2 TYPE * .. Array Arguments .. COMPLEX A( NMAX, * ), AA( * ) * .. Local Scalars .. INTEGER I, IBEG, IEND, J, JJ LOGICAL GEN, HER, LOWER, SYM, TRI, UNIT, UPPER * .. External Functions .. COMPLEX CBEG EXTERNAL CBEG * .. Intrinsic Functions .. INTRINSIC CMPLX, CONJG, REAL * .. Executable Statements .. GEN = TYPE.EQ.'GE' HER = TYPE.EQ.'HE' SYM = TYPE.EQ.'SY' TRI = TYPE.EQ.'TR' UPPER = ( HER.OR.SYM.OR.TRI ).AND.UPLO.EQ.'U' LOWER = ( HER.OR.SYM.OR.TRI ).AND.UPLO.EQ.'L' UNIT = TRI.AND.DIAG.EQ.'U' * * Generate data in array A. * DO 20 J = 1, N DO 10 I = 1, M IF( GEN.OR.( UPPER.AND.I.LE.J ).OR.( LOWER.AND.I.GE.J ) ) $ THEN A( I, J ) = CBEG( RESET ) + TRANSL IF( I.NE.J )THEN * Set some elements to zero IF( N.GT.3.AND.J.EQ.N/2 ) $ A( I, J ) = ZERO IF( HER )THEN A( J, I ) = CONJG( A( I, J ) ) ELSE IF( SYM )THEN A( J, I ) = A( I, J ) ELSE IF( TRI )THEN A( J, I ) = ZERO END IF END IF END IF 10 CONTINUE IF( HER ) $ A( J, J ) = CMPLX( REAL( A( J, J ) ), RZERO ) IF( TRI ) $ A( J, J ) = A( J, J ) + ONE IF( UNIT ) $ A( J, J ) = ONE 20 CONTINUE * * Store elements in array AS in data structure required by routine. * IF( TYPE.EQ.'GE' )THEN DO 50 J = 1, N DO 30 I = 1, M AA( I + ( J - 1 )*LDA ) = A( I, J ) 30 CONTINUE DO 40 I = M + 1, LDA AA( I + ( J - 1 )*LDA ) = ROGUE 40 CONTINUE 50 CONTINUE ELSE IF( TYPE.EQ.'HE'.OR.TYPE.EQ.'SY'.OR.TYPE.EQ.'TR' )THEN DO 90 J = 1, N IF( UPPER )THEN IBEG = 1 IF( UNIT )THEN IEND = J - 1 ELSE IEND = J END IF ELSE IF( UNIT )THEN IBEG = J + 1 ELSE IBEG = J END IF IEND = N END IF DO 60 I = 1, IBEG - 1 AA( I + ( J - 1 )*LDA ) = ROGUE 60 CONTINUE DO 70 I = IBEG, IEND AA( I + ( J - 1 )*LDA ) = A( I, J ) 70 CONTINUE DO 80 I = IEND + 1, LDA AA( I + ( J - 1 )*LDA ) = ROGUE 80 CONTINUE IF( HER )THEN JJ = J + ( J - 1 )*LDA AA( JJ ) = CMPLX( REAL( AA( JJ ) ), RROGUE ) END IF 90 CONTINUE END IF RETURN * * End of CMAKE. * END SUBROUTINE CMMCH( TRANSA, TRANSB, M, N, KK, ALPHA, A, LDA, B, LDB, $ BETA, C, LDC, CT, G, CC, LDCC, EPS, ERR, FATAL, $ NOUT, MV ) * * Checks the results of the computational tests. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. COMPLEX ZERO PARAMETER ( ZERO = ( 0.0, 0.0 ) ) REAL RZERO, RONE PARAMETER ( RZERO = 0.0, RONE = 1.0 ) * .. Scalar Arguments .. COMPLEX ALPHA, BETA REAL EPS, ERR INTEGER KK, LDA, LDB, LDC, LDCC, M, N, NOUT LOGICAL FATAL, MV CHARACTER*1 TRANSA, TRANSB * .. Array Arguments .. COMPLEX A( LDA, * ), B( LDB, * ), C( LDC, * ), $ CC( LDCC, * ), CT( * ) REAL G( * ) * .. Local Scalars .. COMPLEX CL REAL ERRI INTEGER I, J, K LOGICAL CTRANA, CTRANB, TRANA, TRANB * .. Intrinsic Functions .. INTRINSIC ABS, AIMAG, CONJG, MAX, REAL, SQRT * .. Statement Functions .. REAL ABS1 * .. Statement Function definitions .. ABS1( CL ) = ABS( REAL( CL ) ) + ABS( AIMAG( CL ) ) * .. Executable Statements .. TRANA = TRANSA.EQ.'T'.OR.TRANSA.EQ.'C' TRANB = TRANSB.EQ.'T'.OR.TRANSB.EQ.'C' CTRANA = TRANSA.EQ.'C' CTRANB = TRANSB.EQ.'C' * * Compute expected result, one column at a time, in CT using data * in A, B and C. * Compute gauges in G. * DO 220 J = 1, N * DO 10 I = 1, M CT( I ) = ZERO G( I ) = RZERO 10 CONTINUE IF( .NOT.TRANA.AND..NOT.TRANB )THEN DO 30 K = 1, KK DO 20 I = 1, M CT( I ) = CT( I ) + A( I, K )*B( K, J ) G( I ) = G( I ) + ABS1( A( I, K ) )*ABS1( B( K, J ) ) 20 CONTINUE 30 CONTINUE ELSE IF( TRANA.AND..NOT.TRANB )THEN IF( CTRANA )THEN DO 50 K = 1, KK DO 40 I = 1, M CT( I ) = CT( I ) + CONJG( A( K, I ) )*B( K, J ) G( I ) = G( I ) + ABS1( A( K, I ) )* $ ABS1( B( K, J ) ) 40 CONTINUE 50 CONTINUE ELSE DO 70 K = 1, KK DO 60 I = 1, M CT( I ) = CT( I ) + A( K, I )*B( K, J ) G( I ) = G( I ) + ABS1( A( K, I ) )* $ ABS1( B( K, J ) ) 60 CONTINUE 70 CONTINUE END IF ELSE IF( .NOT.TRANA.AND.TRANB )THEN IF( CTRANB )THEN DO 90 K = 1, KK DO 80 I = 1, M CT( I ) = CT( I ) + A( I, K )*CONJG( B( J, K ) ) G( I ) = G( I ) + ABS1( A( I, K ) )* $ ABS1( B( J, K ) ) 80 CONTINUE 90 CONTINUE ELSE DO 110 K = 1, KK DO 100 I = 1, M CT( I ) = CT( I ) + A( I, K )*B( J, K ) G( I ) = G( I ) + ABS1( A( I, K ) )* $ ABS1( B( J, K ) ) 100 CONTINUE 110 CONTINUE END IF ELSE IF( TRANA.AND.TRANB )THEN IF( CTRANA )THEN IF( CTRANB )THEN DO 130 K = 1, KK DO 120 I = 1, M CT( I ) = CT( I ) + CONJG( A( K, I ) )* $ CONJG( B( J, K ) ) G( I ) = G( I ) + ABS1( A( K, I ) )* $ ABS1( B( J, K ) ) 120 CONTINUE 130 CONTINUE ELSE DO 150 K = 1, KK DO 140 I = 1, M CT( I ) = CT( I ) + CONJG( A( K, I ) )*B( J, K ) G( I ) = G( I ) + ABS1( A( K, I ) )* $ ABS1( B( J, K ) ) 140 CONTINUE 150 CONTINUE END IF ELSE IF( CTRANB )THEN DO 170 K = 1, KK DO 160 I = 1, M CT( I ) = CT( I ) + A( K, I )*CONJG( B( J, K ) ) G( I ) = G( I ) + ABS1( A( K, I ) )* $ ABS1( B( J, K ) ) 160 CONTINUE 170 CONTINUE ELSE DO 190 K = 1, KK DO 180 I = 1, M CT( I ) = CT( I ) + A( K, I )*B( J, K ) G( I ) = G( I ) + ABS1( A( K, I ) )* $ ABS1( B( J, K ) ) 180 CONTINUE 190 CONTINUE END IF END IF END IF DO 200 I = 1, M CT( I ) = ALPHA*CT( I ) + BETA*C( I, J ) G( I ) = ABS1( ALPHA )*G( I ) + $ ABS1( BETA )*ABS1( C( I, J ) ) 200 CONTINUE * * Compute the error ratio for this result. * ERR = ZERO DO 210 I = 1, M ERRI = ABS1( CT( I ) - CC( I, J ) )/EPS IF( G( I ).NE.RZERO ) $ ERRI = ERRI/G( I ) ERR = MAX( ERR, ERRI ) IF( ERR*SQRT( EPS ).GE.RONE ) $ GO TO 230 210 CONTINUE * 220 CONTINUE * * If the loop completes, all results are at least half accurate. GO TO 250 * * Report fatal error. * 230 FATAL = .TRUE. WRITE( NOUT, FMT = 9999 ) DO 240 I = 1, M IF( MV )THEN WRITE( NOUT, FMT = 9998 )I, CT( I ), CC( I, J ) ELSE WRITE( NOUT, FMT = 9998 )I, CC( I, J ), CT( I ) END IF 240 CONTINUE IF( N.GT.1 ) $ WRITE( NOUT, FMT = 9997 )J * 250 CONTINUE RETURN * 9999 FORMAT( ' ******* FATAL ERROR - COMPUTED RESULT IS LESS THAN HAL', $ 'F ACCURATE *******', /' EXPECTED RE', $ 'SULT COMPUTED RESULT' ) 9998 FORMAT( 1X, I7, 2( ' (', G15.6, ',', G15.6, ')' ) ) 9997 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 ) * * End of CMMCH. * END LOGICAL FUNCTION LCE( RI, RJ, LR ) * * Tests if two arrays are identical. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. INTEGER LR * .. Array Arguments .. COMPLEX RI( * ), RJ( * ) * .. Local Scalars .. INTEGER I * .. Executable Statements .. DO 10 I = 1, LR IF( RI( I ).NE.RJ( I ) ) $ GO TO 20 10 CONTINUE LCE = .TRUE. GO TO 30 20 CONTINUE LCE = .FALSE. 30 RETURN * * End of LCE. * END LOGICAL FUNCTION LCERES( TYPE, UPLO, M, N, AA, AS, LDA ) * * Tests if selected elements in two arrays are equal. * * TYPE is 'GE' or 'HE' or 'SY'. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. INTEGER LDA, M, N CHARACTER*1 UPLO CHARACTER*2 TYPE * .. Array Arguments .. COMPLEX AA( LDA, * ), AS( LDA, * ) * .. Local Scalars .. INTEGER I, IBEG, IEND, J LOGICAL UPPER * .. Executable Statements .. UPPER = UPLO.EQ.'U' IF( TYPE.EQ.'GE' )THEN DO 20 J = 1, N DO 10 I = M + 1, LDA IF( AA( I, J ).NE.AS( I, J ) ) $ GO TO 70 10 CONTINUE 20 CONTINUE ELSE IF( TYPE.EQ.'HE'.OR.TYPE.EQ.'SY' )THEN DO 50 J = 1, N IF( UPPER )THEN IBEG = 1 IEND = J ELSE IBEG = J IEND = N END IF DO 30 I = 1, IBEG - 1 IF( AA( I, J ).NE.AS( I, J ) ) $ GO TO 70 30 CONTINUE DO 40 I = IEND + 1, LDA IF( AA( I, J ).NE.AS( I, J ) ) $ GO TO 70 40 CONTINUE 50 CONTINUE END IF * 60 CONTINUE LCERES = .TRUE. GO TO 80 70 CONTINUE LCERES = .FALSE. 80 RETURN * * End of LCERES. * END COMPLEX FUNCTION CBEG( RESET ) * * Generates complex numbers as pairs of random numbers uniformly * distributed between -0.5 and 0.5. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. LOGICAL RESET * .. Local Scalars .. INTEGER I, IC, J, MI, MJ * .. Save statement .. SAVE I, IC, J, MI, MJ * .. Intrinsic Functions .. INTRINSIC CMPLX * .. Executable Statements .. IF( RESET )THEN * Initialize local variables. MI = 891 MJ = 457 I = 7 J = 7 IC = 0 RESET = .FALSE. END IF * * The sequence of values of I or J is bounded between 1 and 999. * If initial I or J = 1,2,3,6,7 or 9, the period will be 50. * If initial I or J = 4 or 8, the period will be 25. * If initial I or J = 5, the period will be 10. * IC is used to break up the period by skipping 1 value of I or J * in 6. * IC = IC + 1 10 I = I*MI J = J*MJ I = I - 1000*( I/1000 ) J = J - 1000*( J/1000 ) IF( IC.GE.5 )THEN IC = 0 GO TO 10 END IF CBEG = CMPLX( ( I - 500 )/1001.0, ( J - 500 )/1001.0 ) RETURN * * End of CBEG. * END REAL FUNCTION SDIFF( X, Y ) * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. REAL X, Y * .. Executable Statements .. SDIFF = X - Y RETURN * * End of SDIFF. * END SUBROUTINE CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) * * Tests whether XERBLA has detected an error when it should. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. INTEGER INFOT, NOUT LOGICAL LERR, OK CHARACTER*6 SRNAMT * .. Executable Statements .. IF( .NOT.LERR )THEN WRITE( NOUT, FMT = 9999 )INFOT, SRNAMT OK = .FALSE. END IF LERR = .FALSE. RETURN * 9999 FORMAT( ' ***** ILLEGAL VALUE OF PARAMETER NUMBER ', I2, ' NOT D', $ 'ETECTED BY ', A6, ' *****' ) * * End of CHKXER. * END SUBROUTINE XERBLA( SRNAME, INFO ) * * This is a special version of XERBLA to be used only as part of * the test program for testing error exits from the Level 3 BLAS * routines. * * XERBLA is an error handler for the Level 3 BLAS routines. * * It is called by the Level 3 BLAS routines if an input parameter is * invalid. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. INTEGER INFO CHARACTER*6 SRNAME * .. Scalars in Common .. INTEGER INFOT, NOUT LOGICAL LERR, OK CHARACTER*6 SRNAMT * .. Common blocks .. COMMON /INFOC/INFOT, NOUT, OK, LERR COMMON /SRNAMC/SRNAMT * .. Executable Statements .. LERR = .TRUE. IF( INFO.NE.INFOT )THEN IF( INFOT.NE.0 )THEN WRITE( NOUT, FMT = 9999 )INFO, INFOT ELSE WRITE( NOUT, FMT = 9997 )INFO END IF OK = .FALSE. END IF IF( SRNAME.NE.SRNAMT )THEN WRITE( NOUT, FMT = 9998 )SRNAME, SRNAMT OK = .FALSE. END IF RETURN * 9999 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6, ' INSTEAD', $ ' OF ', I2, ' *******' ) 9998 FORMAT( ' ******* XERBLA WAS CALLED WITH SRNAME = ', A6, ' INSTE', $ 'AD OF ', A6, ' *******' ) 9997 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6, $ ' *******' ) * * End of XERBLA * END
mit
jonycgn/scipy
scipy/interpolate/fitpack/fppasu.f
148
13564
subroutine fppasu(iopt,ipar,idim,u,mu,v,mv,z,mz,s,nuest,nvest, * tol,maxit,nc,nu,tu,nv,tv,c,fp,fp0,fpold,reducu,reducv,fpintu, * fpintv,lastdi,nplusu,nplusv,nru,nrv,nrdatu,nrdatv,wrk,lwrk,ier) c .. c ..scalar arguments.. real*8 s,tol,fp,fp0,fpold,reducu,reducv integer iopt,idim,mu,mv,mz,nuest,nvest,maxit,nc,nu,nv,lastdi, * nplusu,nplusv,lwrk,ier c ..array arguments.. real*8 u(mu),v(mv),z(mz*idim),tu(nuest),tv(nvest),c(nc*idim), * fpintu(nuest),fpintv(nvest),wrk(lwrk) integer ipar(2),nrdatu(nuest),nrdatv(nvest),nru(mu),nrv(mv) c ..local scalars real*8 acc,fpms,f1,f2,f3,p,p1,p2,p3,rn,one,con1,con9,con4, * peru,perv,ub,ue,vb,ve integer i,ich1,ich3,ifbu,ifbv,ifsu,ifsv,iter,j,lau1,lav1,laa, * l,lau,lav,lbu,lbv,lq,lri,lsu,lsv,l1,l2,l3,l4,mm,mpm,mvnu,ncof, * nk1u,nk1v,nmaxu,nmaxv,nminu,nminv,nplu,nplv,npl1,nrintu, * nrintv,nue,nuk,nve,nuu,nvv c ..function references.. real*8 abs,fprati integer max0,min0 c ..subroutine references.. c fpgrpa,fpknot c .. c set constants one = 1 con1 = 0.1e0 con9 = 0.9e0 con4 = 0.4e-01 c set boundaries of the approximation domain ub = u(1) ue = u(mu) vb = v(1) ve = v(mv) c we partition the working space. lsu = 1 lsv = lsu+mu*4 lri = lsv+mv*4 mm = max0(nuest,mv) lq = lri+mm*idim mvnu = nuest*mv*idim lau = lq+mvnu nuk = nuest*5 lbu = lau+nuk lav = lbu+nuk nuk = nvest*5 lbv = lav+nuk laa = lbv+nuk lau1 = lau if(ipar(1).eq.0) go to 10 peru = ue-ub lau1 = laa laa = laa+4*nuest 10 lav1 = lav if(ipar(2).eq.0) go to 20 perv = ve-vb lav1 = laa cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc c part 1: determination of the number of knots and their position. c c **************************************************************** c c given a set of knots we compute the least-squares spline sinf(u,v), c c and the corresponding sum of squared residuals fp=f(p=inf). c c if iopt=-1 sinf(u,v) is the requested approximation. c c if iopt=0 or iopt=1 we check whether we can accept the knots: c c if fp <=s we will continue with the current set of knots. c c if fp > s we will increase the number of knots and compute the c c corresponding least-squares spline until finally fp<=s. c c the initial choice of knots depends on the value of s and iopt. c c if s=0 we have spline interpolation; in that case the number of c c knots equals nmaxu = mu+4+2*ipar(1) and nmaxv = mv+4+2*ipar(2) c c if s>0 and c c *iopt=0 we first compute the least-squares polynomial c c nu=nminu=8 and nv=nminv=8 c c *iopt=1 we start with the knots found at the last call of the c c routine, except for the case that s > fp0; then we can compute c c the least-squares polynomial directly. c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc c determine the number of knots for polynomial approximation. 20 nminu = 8 nminv = 8 if(iopt.lt.0) go to 100 c acc denotes the absolute tolerance for the root of f(p)=s. acc = tol*s c find nmaxu and nmaxv which denote the number of knots in u- and v- c direction in case of spline interpolation. nmaxu = mu+4+2*ipar(1) nmaxv = mv+4+2*ipar(2) c find nue and nve which denote the maximum number of knots c allowed in each direction nue = min0(nmaxu,nuest) nve = min0(nmaxv,nvest) if(s.gt.0.) go to 60 c if s = 0, s(u,v) is an interpolating spline. nu = nmaxu nv = nmaxv c test whether the required storage space exceeds the available one. if(nv.gt.nvest .or. nu.gt.nuest) go to 420 c find the position of the interior knots in case of interpolation. c the knots in the u-direction. nuu = nu-8 if(nuu.eq.0) go to 40 i = 5 j = 3-ipar(1) do 30 l=1,nuu tu(i) = u(j) i = i+1 j = j+1 30 continue c the knots in the v-direction. 40 nvv = nv-8 if(nvv.eq.0) go to 60 i = 5 j = 3-ipar(2) do 50 l=1,nvv tv(i) = v(j) i = i+1 j = j+1 50 continue go to 100 c if s > 0 our initial choice of knots depends on the value of iopt. 60 if(iopt.eq.0) go to 90 if(fp0.le.s) go to 90 c if iopt=1 and fp0 > s we start computing the least- squares spline c according to the set of knots found at the last call of the routine. c we determine the number of grid coordinates u(i) inside each knot c interval (tu(l),tu(l+1)). l = 5 j = 1 nrdatu(1) = 0 mpm = mu-1 do 70 i=2,mpm nrdatu(j) = nrdatu(j)+1 if(u(i).lt.tu(l)) go to 70 nrdatu(j) = nrdatu(j)-1 l = l+1 j = j+1 nrdatu(j) = 0 70 continue c we determine the number of grid coordinates v(i) inside each knot c interval (tv(l),tv(l+1)). l = 5 j = 1 nrdatv(1) = 0 mpm = mv-1 do 80 i=2,mpm nrdatv(j) = nrdatv(j)+1 if(v(i).lt.tv(l)) go to 80 nrdatv(j) = nrdatv(j)-1 l = l+1 j = j+1 nrdatv(j) = 0 80 continue go to 100 c if iopt=0 or iopt=1 and s>=fp0, we start computing the least-squares c polynomial (which is a spline without interior knots). 90 nu = nminu nv = nminv nrdatu(1) = mu-2 nrdatv(1) = mv-2 lastdi = 0 nplusu = 0 nplusv = 0 fp0 = 0. fpold = 0. reducu = 0. reducv = 0. 100 mpm = mu+mv ifsu = 0 ifsv = 0 ifbu = 0 ifbv = 0 p = -one c main loop for the different sets of knots.mpm=mu+mv is a save upper c bound for the number of trials. do 250 iter=1,mpm if(nu.eq.nminu .and. nv.eq.nminv) ier = -2 c find nrintu (nrintv) which is the number of knot intervals in the c u-direction (v-direction). nrintu = nu-nminu+1 nrintv = nv-nminv+1 c find ncof, the number of b-spline coefficients for the current set c of knots. nk1u = nu-4 nk1v = nv-4 ncof = nk1u*nk1v c find the position of the additional knots which are needed for the c b-spline representation of s(u,v). if(ipar(1).ne.0) go to 110 i = nu do 105 j=1,4 tu(j) = ub tu(i) = ue i = i-1 105 continue go to 120 110 l1 = 4 l2 = l1 l3 = nu-3 l4 = l3 tu(l2) = ub tu(l3) = ue do 115 j=1,3 l1 = l1+1 l2 = l2-1 l3 = l3+1 l4 = l4-1 tu(l2) = tu(l4)-peru tu(l3) = tu(l1)+peru 115 continue 120 if(ipar(2).ne.0) go to 130 i = nv do 125 j=1,4 tv(j) = vb tv(i) = ve i = i-1 125 continue go to 140 130 l1 = 4 l2 = l1 l3 = nv-3 l4 = l3 tv(l2) = vb tv(l3) = ve do 135 j=1,3 l1 = l1+1 l2 = l2-1 l3 = l3+1 l4 = l4-1 tv(l2) = tv(l4)-perv tv(l3) = tv(l1)+perv 135 continue c find the least-squares spline sinf(u,v) and calculate for each knot c interval tu(j+3)<=u<=tu(j+4) (tv(j+3)<=v<=tv(j+4)) the sum c of squared residuals fpintu(j),j=1,2,...,nu-7 (fpintv(j),j=1,2,... c ,nv-7) for the data points having their absciss (ordinate)-value c belonging to that interval. c fp gives the total sum of squared residuals. 140 call fpgrpa(ifsu,ifsv,ifbu,ifbv,idim,ipar,u,mu,v,mv,z,mz,tu, * nu,tv,nv,p,c,nc,fp,fpintu,fpintv,mm,mvnu,wrk(lsu),wrk(lsv), * wrk(lri),wrk(lq),wrk(lau),wrk(lau1),wrk(lav),wrk(lav1), * wrk(lbu),wrk(lbv),nru,nrv) if(ier.eq.(-2)) fp0 = fp c test whether the least-squares spline is an acceptable solution. if(iopt.lt.0) go to 440 fpms = fp-s if(abs(fpms) .lt. acc) go to 440 c if f(p=inf) < s, we accept the choice of knots. if(fpms.lt.0.) go to 300 c if nu=nmaxu and nv=nmaxv, sinf(u,v) is an interpolating spline. if(nu.eq.nmaxu .and. nv.eq.nmaxv) go to 430 c increase the number of knots. c if nu=nue and nv=nve we cannot further increase the number of knots c because of the storage capacity limitation. if(nu.eq.nue .and. nv.eq.nve) go to 420 ier = 0 c adjust the parameter reducu or reducv according to the direction c in which the last added knots were located. if (lastdi.lt.0) go to 150 if (lastdi.eq.0) go to 170 go to 160 150 reducu = fpold-fp go to 170 160 reducv = fpold-fp c store the sum of squared residuals for the current set of knots. 170 fpold = fp c find nplu, the number of knots we should add in the u-direction. nplu = 1 if(nu.eq.nminu) go to 180 npl1 = nplusu*2 rn = nplusu if(reducu.gt.acc) npl1 = rn*fpms/reducu nplu = min0(nplusu*2,max0(npl1,nplusu/2,1)) c find nplv, the number of knots we should add in the v-direction. 180 nplv = 1 if(nv.eq.nminv) go to 190 npl1 = nplusv*2 rn = nplusv if(reducv.gt.acc) npl1 = rn*fpms/reducv nplv = min0(nplusv*2,max0(npl1,nplusv/2,1)) 190 if (nplu.lt.nplv) go to 210 if (nplu.eq.nplv) go to 200 go to 230 200 if(lastdi.lt.0) go to 230 210 if(nu.eq.nue) go to 230 c addition in the u-direction. lastdi = -1 nplusu = nplu ifsu = 0 do 220 l=1,nplusu c add a new knot in the u-direction call fpknot(u,mu,tu,nu,fpintu,nrdatu,nrintu,nuest,1) c test whether we cannot further increase the number of knots in the c u-direction. if(nu.eq.nue) go to 250 220 continue go to 250 230 if(nv.eq.nve) go to 210 c addition in the v-direction. lastdi = 1 nplusv = nplv ifsv = 0 do 240 l=1,nplusv c add a new knot in the v-direction. call fpknot(v,mv,tv,nv,fpintv,nrdatv,nrintv,nvest,1) c test whether we cannot further increase the number of knots in the c v-direction. if(nv.eq.nve) go to 250 240 continue c restart the computations with the new set of knots. 250 continue c test whether the least-squares polynomial is a solution of our c approximation problem. 300 if(ier.eq.(-2)) go to 440 cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc c part 2: determination of the smoothing spline sp(u,v) c c ***************************************************** c c we have determined the number of knots and their position. we now c c compute the b-spline coefficients of the smoothing spline sp(u,v). c c this smoothing spline varies with the parameter p in such a way thatc c f(p)=suml=1,idim(sumi=1,mu(sumj=1,mv((z(i,j,l)-sp(u(i),v(j),l))**2) c c is a continuous, strictly decreasing function of p. moreover the c c least-squares polynomial corresponds to p=0 and the least-squares c c spline to p=infinity. iteratively we then have to determine the c c positive value of p such that f(p)=s. the process which is proposed c c here makes use of rational interpolation. f(p) is approximated by a c c rational function r(p)=(u*p+v)/(p+w); three values of p (p1,p2,p3) c c with corresponding values of f(p) (f1=f(p1)-s,f2=f(p2)-s,f3=f(p3)-s)c c are used to calculate the new value of p such that r(p)=s. c c convergence is guaranteed by taking f1 > 0 and f3 < 0. c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc c initial value for p. p1 = 0. f1 = fp0-s p3 = -one f3 = fpms p = one ich1 = 0 ich3 = 0 c iteration process to find the root of f(p)=s. do 350 iter = 1,maxit c find the smoothing spline sp(u,v) and the corresponding sum of c squared residuals fp. call fpgrpa(ifsu,ifsv,ifbu,ifbv,idim,ipar,u,mu,v,mv,z,mz,tu, * nu,tv,nv,p,c,nc,fp,fpintu,fpintv,mm,mvnu,wrk(lsu),wrk(lsv), * wrk(lri),wrk(lq),wrk(lau),wrk(lau1),wrk(lav),wrk(lav1), * wrk(lbu),wrk(lbv),nru,nrv) c test whether the approximation sp(u,v) is an acceptable solution. fpms = fp-s if(abs(fpms).lt.acc) go to 440 c test whether the maximum allowable number of iterations has been c reached. if(iter.eq.maxit) go to 400 c carry out one more step of the iteration process. p2 = p f2 = fpms if(ich3.ne.0) go to 320 if((f2-f3).gt.acc) go to 310 c our initial choice of p is too large. p3 = p2 f3 = f2 p = p*con4 if(p.le.p1) p = p1*con9 + p2*con1 go to 350 310 if(f2.lt.0.) ich3 = 1 320 if(ich1.ne.0) go to 340 if((f1-f2).gt.acc) go to 330 c our initial choice of p is too small p1 = p2 f1 = f2 p = p/con4 if(p3.lt.0.) go to 350 if(p.ge.p3) p = p2*con1 + p3*con9 go to 350 c test whether the iteration process proceeds as theoretically c expected. 330 if(f2.gt.0.) ich1 = 1 340 if(f2.ge.f1 .or. f2.le.f3) go to 410 c find the new value of p. p = fprati(p1,f1,p2,f2,p3,f3) 350 continue c error codes and messages. 400 ier = 3 go to 440 410 ier = 2 go to 440 420 ier = 1 go to 440 430 ier = -1 fp = 0. 440 return end
bsd-3-clause
wkramer/openda
core/native/src/sangoma/Fortran/diagnostics/examples/example_ComputeDes.F90
1
7349
! $Id: example_ComputeSensitivity.F90 305 2015-04-26 08:56:44Z pkirchge $ !BOP ! ! !Program: example_ComputeDer --- Compute derozier diagnostics ! ! !INTERFACE: PROGRAM example_computeDerozier ! !DESCRIPTION: ! This is an example showing how to use the routines ! sangoma_ComputeSensitivity and ! sangoma_Compute_sensitivity_op to compute the ! sensitivity of the posterior ensemble mean to the ! observations ! ! The ensemble is read in from simple ASCII files. ! ! !REVISION HISTORY: ! 2015-04 - P. Kirchgessner - Initial code ! !USES: IMPLICIT NONE !EOP ! Local variables CHARACTER(len=120) :: inpath, infile ! Path to and name stub of input files REAL, ALLOCATABLE :: state_true(:) REAL, ALLOCATABLE :: states(:, :) ! Array holding model states CHARACTER(len=2) :: ensstr ! String for ensemble member INTEGER :: nobs ! number of observations REAL, ALLOCATABLE :: obs(:) ! observations REAL, ALLOCATABLE :: weights(:) ! particle weights EXTERNAL :: diag_R ! Call-back routine for observation operator EXTERNAL :: obs_op ! Call-back routine for observation operator REAL, ALLOCATABLE :: Hens(:,:) INTEGER :: typeOut(4) INTEGER :: dim_ens, i,j, dim_obs, iter, dim_state REAL :: m_diff(4), m_quot(4) REAL,ALLOCATABLE :: diff1(:),diff2(:),diff3(:),diff4(:) REAL,ALLOCATABLE :: quot1(:),quot2(:),quot3(:),quot4(:) REAL,ALLOCATABLE :: out1(:),out2(:),out3(:),out4(:) REAL,ALLOCATABLE :: m_state(:) REAL, ALLOCATABLE :: innovation(:,:),residual(:,:), increment(:,:) REAL, ALLOCATABLE :: Hxa(:), Hxf(:) INTEGER :: flag ! ************************************************ ! *** Configuration *** ! ************************************************ WRITE (*,'(10x,a)') '*******************************************' WRITE (*,'(10x,a)') '* example_ComputeDerozier *' WRITE (*,'(10x,a)') '* *' WRITE (*,'(10x,a)') '* Compute Derozier statistics *' WRITE (*,'(10x,a/)') '******************************************' ! Number of state files to be read dim_ens = 5 ! State dimension dim_state = 4 ! Observation dimension dim_obs = 2 ! Path to and name of file holding model trajectory inpath = 'inputs/' infile = 'fieldA_' ! ALLOCATE Input data ALLOCATE(innovation(dim_obs,dim_ens)) ALLOCATE(increment(dim_obs,dim_ens)) ALLOCATE(residual(dim_obs,dim_ens)) ALLOCATE(obs(dim_obs)) ALLOCATE(Hxa(dim_obs)) ALLOCATE(Hxf(dim_obs)) ALLOCATE(m_state(dim_state)) ALLOCATE(Hens(dim_obs,dim_ens)) ALLOCATE(state_true(dim_state)) ! OUTPUT ALLOCATE(out1(dim_obs)) ALLOCATE(out2(dim_obs)) ALLOCATE(out3(dim_obs)) ALLOCATE(out4(dim_obs)) ALLOCATE(diff1(dim_obs)) ALLOCATE(diff2(dim_obs)) ALLOCATE(diff3(dim_obs)) ALLOCATE(diff4(dim_obs)) ALLOCATE(quot1(dim_obs)) ALLOCATE(quot2(dim_obs)) ALLOCATE(quot3(dim_obs)) ALLOCATE(quot4(dim_obs)) ! initialize true state state_true(1) = 2.1 state_true(2) = 2.3 state_true(3) = 4.0 state_true(4) = 1.3 ! ************************************************ ! *** Init *** ! ************************************************ ! initialize observations by perturbing the true state CALL obs_op(1,dim_state,dim_obs,state_true,obs) ! Generate some observations for this example ! add random error obs(1) = obs(1) + 0.1063 obs(2) = obs(2) - 0.4359 WRITE (*,'(10x,a)') '*******************************************' WRITE (*,'(10x,a)') '* example_ComputeDerozier *' WRITE (*,'(10x,a)') '* *' WRITE (*,'(10x,a)') '* Compute Derozier statistics *' WRITE (*,'(10x,a/)') '******************************************' ! ************************ ! *** Read state files *** ! ************************ WRITE (*,'(/1x,a)') '------- Read states -------------' WRITE (*,*) 'Read states from files: ',TRIM(inpath)//TRIM(infile),'*.txt' ALLOCATE(states(dim_state, dim_ens)) read_in: DO iter = 1, dim_ens WRITE (ensstr, '(i1)') iter OPEN(11, file = TRIM(inpath)//TRIM(infile)//TRIM(ensstr)//'.txt', status='old') DO i = 1, dim_state READ (11, *) states(i, iter) END DO CLOSE(11) END DO read_in m_state = 0 ! Compute mean state do i = 1,dim_ens do j = 1,dim_state m_state(j) = m_state(j) + states(j,i) enddo enddo m_state = m_state/real(dim_ens) ! Compute Hens do i = 1,dim_ens CALL obs_op(1,dim_state,dim_obs,states(:,i),Hens(:,i)) enddo ! Compute Hx^a and Hx^f ! Compute innovation/residual and increment do i = 1,dim_ens CALL obs_op(1,dim_state,dim_obs,states(:,i),Hxf) CALL obs_op(1,dim_state,dim_obs,states(:,i),Hxa) do j = 1,dim_obs Hxf(j) = Hxf(j)+0.07 enddo innovation(:,i) = obs- Hxf residual(:,i) = obs- Hxa increment(:,i) = Hxa- Hxf enddo ! ****************************************************** ! *** Call routine to compare derozier's statistics *** ! ****************************************************** WRITE (*,*) '------- Compute Deroziers statistics -------------' WRITE (*,*) '------- Test if: E[d^of (d^of)^T] = R + HP^fH^T -----------' WRITE (*,*) '------- Test if: E[d^af (d^of)^T] = HP^fH^T -----------' typeOut(1) = 1 typeOut(2) = 1 typeOut(3) = 0 typeOut(4) = 0 ! Compute left size of equation CALL sangoma_Desrozier(dim_obs,dim_ens,innovation, residual, increment, & typeOut,out1,out2,out3,out4) ! Compare with right side of equation CALL sangoma_CompareDes(dim_obs,dim_ens,out1,out2,out3,out4,typeOut, & Hens, diag_R,diff1,diff2,diff3,diff4,m_diff, & quot1,quot2,quot3,quot4,m_quot,flag) IF (flag== 1) THEN WRITE (*,*) '------- Result: -------------' WRITE (*,*) 'E[d^af (d^of)^T] - HP^fH^T =', m_diff(2) WRITE (*,*) 'E[d^of (d^of)^T] - R + HP^fH^T =', m_diff(1) WRITE (*,*) '------- Ratio: -------------' WRITE (*,*) 'E[d^of (d^of)^T] / R + HP^fH^T =', m_quot(1) WRITE (*,*) 'E[d^of (d^of)^T] / R + HP^fH^T =', m_quot(2) ENDIF typeOut(1) = 0 typeOut(2) = 0 typeOut(3) = 1 typeOut(4) = 1 ! Compute left size of equation CALL sangoma_Desrozier(dim_obs,dim_ens,innovation, residual, increment, & typeOut,out1,out2,out3,out4) ! Compare with right side of equation CALL sangoma_CompareDes(dim_obs,dim_state,out1,out2,out3,out4,typeOut, & Hens, diag_R,diff1,diff2,diff3,diff4,m_diff, & quot1,quot2,quot3,quot4,m_quot,flag) IF (flag == 1) THEN WRITE (*,*) '------- Result: -------------' WRITE (*,*) 'E[d^oa (d^of)^T] - R =' , m_diff(3) WRITE (*,*) 'E[d^af (d^oa)^T] - HP^aH^T =', m_diff(4) WRITE (*,*) '------- Result: -------------' WRITE (*,*) 'E[d^oa (d^of)^T] / R = ', m_quot(3) WRITE (*,*) 'E[d^of (d^oa)^T] / HP^aH^T =', m_quot(4) ELSE WRITE(*,*) 'There is an error in the computation' ENDIF ! **************** ! *** Clean up *** ! **************** WRITE (*,'(/1x,a/)') '------- END -------------' END PROGRAM example_computeDerozier
lgpl-3.0
PrasadG193/gcc_gimple_fe
gcc/testsuite/gfortran.dg/import.f90
136
1386
! { dg-do run } ! Test whether import works ! PR fortran/29601 subroutine test(x) type myType3 sequence integer :: i end type myType3 type(myType3) :: x if(x%i /= 7) call abort() x%i = 1 end subroutine test subroutine bar(x,y) type myType sequence integer :: i end type myType type(myType) :: x integer(8) :: y if(y /= 8) call abort() if(x%i /= 2) call abort() x%i = 5 y = 42 end subroutine bar module testmod implicit none integer, parameter :: kind = 8 type modType real :: rv end type modType interface subroutine other(x,y) import real(kind) :: x type(modType) :: y end subroutine end interface end module testmod program foo integer, parameter :: dp = 8 type myType sequence integer :: i end type myType type myType3 sequence integer :: i end type myType3 interface subroutine bar(x,y) import type(myType) :: x integer(dp) :: y end subroutine bar subroutine test(x) import :: myType3 import myType3 ! { dg-warning "already IMPORTed from" } type(myType3) :: x end subroutine test end interface type(myType) :: y type(myType3) :: z integer(8) :: i8 y%i = 2 i8 = 8 call bar(y,i8) if(y%i /= 5 .or. i8/= 42) call abort() z%i = 7 call test(z) if(z%i /= 1) call abort() end program foo
gpl-2.0
mads-bertelsen/McCode
support/common/pgplot/src/grmker.f
6
6236
C*GRMKER -- draw graph markers C+ SUBROUTINE GRMKER (SYMBOL,ABSXY,N,X,Y) C C GRPCKG: Draw a graph marker at a set of points in the current C window. Line attributes (color, intensity, and thickness) C apply to markers, but line-style is ignored. After the call to C GRMKER, the current pen position will be the center of the last C marker plotted. C C Arguments: C C SYMBOL (input, integer): the marker number to be drawn. Numbers C 0-31 are special marker symbols; numbers 32-127 are the C corresponding ASCII characters (in the current font). If the C number is >127, it is taken to be a Hershey symbol number. C If -ve, a regular polygon is drawn. C ABSXY (input, logical): if .TRUE., the input corrdinates (X,Y) are C taken to be absolute device coordinates; if .FALSE., they are C taken to be world coordinates. C N (input, integer): the number of points to be plotted. C X, Y (input, real arrays, dimensioned at least N): the (X,Y) C coordinates of the points to be plotted. C-- C (19-Mar-1983) C 20-Jun-1985 - revise to window markers whole [TJP]. C 5-Aug-1986 - add GREXEC support [AFT]. C 1-Aug-1988 - add direct use of Hershey number [TJP]. C 15-Dec-1988 - standardize [TJP]. C 17-Dec-1990 - add polygons [PAH/TJP]. C 12-Jun-1992 - [TJP] C 22-Sep-1992 - add support for hardware markers [TJP]. C 1-Sep-1994 - suppress driver call [TJP]. C 15-Feb-1994 - fix bug (expanding viewport!) [TJP]. C----------------------------------------------------------------------- INCLUDE 'grpckg1.inc' INTEGER SYMBOL INTEGER C LOGICAL ABSXY, UNUSED, VISBLE INTEGER I, K, LSTYLE, LX, LY, LXLAST, LYLAST, N, SYMNUM, NV INTEGER XYGRID(300) REAL ANGLE, COSA, SINA, FACTOR, RATIO, X(*), Y(*) REAL XCUR, YCUR, XORG, YORG REAL THETA, XOFF(40), YOFF(40), XP(40), YP(40) REAL XMIN, XMAX, YMIN, YMAX REAL XMINX, XMAXX, YMINX, YMAXX REAL RBUF(4) INTEGER NBUF,LCHR CHARACTER*32 CHR C C Check that there is something to be plotted. C IF (N.LE.0) RETURN C C Check that a device is selected. C IF (GRCIDE.LT.1) THEN CALL GRWARN('GRMKER - no graphics device is active.') RETURN END IF C XMIN = GRXMIN(GRCIDE) XMAX = GRXMAX(GRCIDE) YMIN = GRYMIN(GRCIDE) YMAX = GRYMAX(GRCIDE) XMINX = XMIN-0.01 XMAXX = XMAX+0.01 YMINX = YMIN-0.01 YMAXX = YMAX+0.01 C C Does the device driver do markers (only markers 0-31 at present)? C IF (GRGCAP(GRCIDE)(10:10).EQ.'M' .AND. : SYMBOL.GE.0 .AND. SYMBOL.LE.31) THEN IF (.NOT.GRPLTD(GRCIDE)) CALL GRBPIC C -- symbol number RBUF(1) = SYMBOL C -- scale factor RBUF(4) = GRCFAC(GRCIDE)/2.5 NBUF = 4 LCHR = 0 DO 10 K=1,N C -- convert to device coordinates CALL GRTXY0(ABSXY, X(K), Y(K), XORG, YORG) C -- is the marker visible? CALL GRCLIP(XORG, YORG, XMINX, XMAXX, YMINX, YMAXX, C) IF (C.EQ.0) THEN RBUF(2) = XORG RBUF(3) = YORG CALL GREXEC(GRGTYP,28,RBUF,NBUF,CHR,LCHR) END IF 10 CONTINUE RETURN END IF C C Otherwise, draw the markers here. C C Save current line-style, and set style "normal". C CALL GRQLS(LSTYLE) CALL GRSLS(1) C C Save current viewport, and open the viewport to include the full C view surface. C CALL GRAREA(GRCIDE, 0.0, 0.0, 0.0, 0.0) C C Compute scaling and orientation. C ANGLE = 0.0 FACTOR = GRCFAC(GRCIDE)/2.5 RATIO = GRPXPI(GRCIDE)/GRPYPI(GRCIDE) COSA = FACTOR * COS(ANGLE) SINA = FACTOR * SIN(ANGLE) C C Convert the supplied marker number SYMBOL to a symbol number and C obtain the digitization. C IF (SYMBOL.GE.0) THEN IF (SYMBOL.GT.127) THEN SYMNUM = SYMBOL ELSE CALL GRSYMK(SYMBOL,GRCFNT(GRCIDE),SYMNUM) END IF CALL GRSYXD(SYMNUM, XYGRID, UNUSED) C C Positive symbols. C DO 380 I=1,N CALL GRTXY0(ABSXY, X(I), Y(I), XORG, YORG) CALL GRCLIP(XORG, YORG, XMINX, XMAXX, YMINX, YMAXX, C) IF (C.NE.0) GOTO 380 VISBLE = .FALSE. K = 4 LXLAST = -64 LYLAST = -64 320 K = K+2 LX = XYGRID(K) LY = XYGRID(K+1) IF (LY.EQ.-64) GOTO 380 IF (LX.EQ.-64) THEN VISBLE = .FALSE. ELSE IF ((LX.NE.LXLAST) .OR. (LY.NE.LYLAST)) THEN XCUR = XORG + (COSA*LX - SINA*LY)*RATIO YCUR = YORG + (SINA*LX + COSA*LY) IF (VISBLE) THEN CALL GRLIN0(XCUR,YCUR) ELSE GRXPRE(GRCIDE) = XCUR GRYPRE(GRCIDE) = YCUR END IF END IF VISBLE = .TRUE. LXLAST = LX LYLAST = LY END IF GOTO 320 380 CONTINUE C C Negative symbols. C ELSE C ! negative symbol: filled polygon of radius 8 NV = MIN(31,MAX(3,ABS(SYMBOL))) DO 400 I=1,NV THETA = 3.14159265359*(REAL(2*(I-1))/REAL(NV)+0.5) - ANGLE XOFF(I) = COS(THETA)*FACTOR*RATIO/GRXSCL(GRCIDE)*8.0 YOFF(I) = SIN(THETA)*FACTOR/GRYSCL(GRCIDE)*8.0 400 CONTINUE DO 420 K=1,N CALL GRTXY0(ABSXY, X(K), Y(K), XORG, YORG) CALL GRCLIP(XORG, YORG, XMINX, XMAXX, YMINX, YMAXX, C) IF (C.EQ.0) THEN DO 410 I=1,NV XP(I) = X(K)+XOFF(I) YP(I) = Y(K)+YOFF(I) 410 CONTINUE CALL GRFA(NV, XP, YP) END IF 420 CONTINUE END IF C C Set current pen position. C GRXPRE(GRCIDE) = XORG GRYPRE(GRCIDE) = YORG C C Restore the viewport and line-style, and return. C GRXMIN(GRCIDE) = XMIN GRXMAX(GRCIDE) = XMAX GRYMIN(GRCIDE) = YMIN GRYMAX(GRCIDE) = YMAX CALL GRSLS(LSTYLE) C END
gpl-2.0
dwillcox/ode-openacc
first-order-urca-const/f_rhs.f90
3
2767
! For Example: ! The change in number density of C12 is ! d(n12)/dt = - 2 * 1/2 (n12)**2 <sigma v> ! ! where <sigma v> is the average of the relative velocity times the cross ! section for the reaction, and the factor accounting for the total number ! of particle pairs has a 1/2 because we are considering a reaction involving ! identical particles (see Clayton p. 293). Finally, the -2 means that for ! each reaction, we lose 2 carbon nuclei. ! ! The corresponding Mg24 change is ! d(n24)/dt = + 1/2 (n12)**2 <sigma v> ! ! note that no factor of 2 appears here, because we create only 1 Mg nuclei. ! ! Switching over to mass fractions, using n = rho X N_A/A, where N_A is ! Avagadro's number, and A is the mass number of the nucleon, we get ! ! d(X12)/dt = -2 *1/2 (X12)**2 rho N_A <sigma v> / A12 ! ! d(X24)/dt = + 1/2 (X12)**2 rho N_A <sigma v> (A24/A12**2) ! ! these are equal and opposite. ! ! The quantity [N_A <sigma v>] is what is tabulated in Caughlin and Fowler. ! we will always refer to the species by integer indices that come from ! the network module -- this makes things robust to a shuffling of the ! species ordering subroutine rhs(n, t, y, ydot, rpar, ipar) use bl_types use bl_constants_module use network use network_indices use rpar_indices implicit none !$acc routine seq !$acc routine(screenz) seq ! our convention is that y(1:nspec) are the species (in the same ! order as defined in network.f90, and y(nspec+1) is the temperature integer, intent(in ) :: n, ipar real(kind=dp_t), intent(in ) :: y(n), t real(kind=dp_t), intent( out) :: ydot(n) real(kind=dp_t), intent(inout) :: rpar(:) integer :: k ! real(kind=dp_t) :: ymass(nspec) !real(kind=dp_t) :: dens !real(kind=dp_t) :: temp, T9, T9a, dT9dt, dT9adt real(kind=dp_t) :: capture_rate, decay_rate real(kind=dp_t), PARAMETER :: & one_twelvth = 1.0d0/12.0d0, & five_sixths = 5.0d0/ 6.0d0, & one_third = 1.0d0/ 3.0d0, & two_thirds = 2.0d0/ 3.0d0 !dens = rpar(irp_dens) !temp = rpar(irp_temp) ! compute the molar fractions -- needed for the screening !ymass(ic12_) = y(1)/aion(ic12_) !ymass(io16_) = X_O16/aion(io16_) !ymass(img24_) = (ONE - y(1) - X_O16)/aion(img24_) ! compute some often used temperature constants !T9 = temp/1.e9_dp_t !dT9dt = ONE/1.e9_dp_t !T9a = T9/(1.0e0_dp_t + 0.0396e0_dp_t*T9) !dT9adt = (T9a / T9 - (T9a / (1.0e0_dp_t + 0.0396e0_dp_t*T9)) * 0.0396e0_dp_t) * dT9dt capture_rate = 0.1_dp_t decay_rate = 0.2_dp_t ydot(ine23_) = -decay_rate*y(ine23_) + capture_rate*y(ina23_) ydot(ina23_) = -capture_rate*y(ina23_) + decay_rate*y(ine23_) return end subroutine rhs
bsd-2-clause
PrasadG193/gcc_gimple_fe
gcc/testsuite/gfortran.dg/pr68864.f90
44
1129
! { dg-do compile } ! ! Contributed by Hossein Talebi <talebi.hossein@gmail.com> ! ! Module part_base2_class implicit none type :: ty_moc1 integer l end type ty_moc1 integer,parameter :: MAX_NUM_ELEMENT_TYPE=32 type :: ty_element_index2 class(ty_moc1),allocatable :: element class(ty_moc1),allocatable :: element_th(:) endtype ty_element_index2 type :: ty_part_base2 type(ty_element_index2)::element_index(MAX_NUM_ELEMENT_TYPE) end type ty_part_base2 class(ty_part_base2),allocatable :: part_tmp_obj End Module part_base2_class use part_base2_class allocate (part_tmp_obj) allocate (part_tmp_obj%element_index(1)%element, source = ty_moc1(1)) allocate (part_tmp_obj%element_index(1)%element_th(1), source = ty_moc1(99)) allocate (part_tmp_obj%element_index(32)%element_th(1), source = ty_moc1(999)) do i = 1, MAX_NUM_ELEMENT_TYPE if (allocated (part_tmp_obj%element_index(i)%element_th)) then print *, i, part_tmp_obj%element_index(i)%element_th(1)%l end if end do deallocate (part_tmp_obj) end
gpl-2.0
wkjeong/ITK
Modules/ThirdParty/Netlib/src/netlib/slatec/dgamma.f
60
6679
*DECK DGAMMA DOUBLE PRECISION FUNCTION DGAMMA (X) C***BEGIN PROLOGUE DGAMMA C***PURPOSE Compute the complete Gamma function. C***LIBRARY SLATEC (FNLIB) C***CATEGORY C7A C***TYPE DOUBLE PRECISION (GAMMA-S, DGAMMA-D, CGAMMA-C) C***KEYWORDS COMPLETE GAMMA FUNCTION, FNLIB, SPECIAL FUNCTIONS C***AUTHOR Fullerton, W., (LANL) C***DESCRIPTION C C DGAMMA(X) calculates the double precision complete Gamma function C for double precision argument X. C C Series for GAM on the interval 0. to 1.00000E+00 C with weighted error 5.79E-32 C log weighted error 31.24 C significant figures required 30.00 C decimal places required 32.05 C C***REFERENCES (NONE) C***ROUTINES CALLED D1MACH, D9LGMC, DCSEVL, DGAMLM, INITDS, XERMSG C***REVISION HISTORY (YYMMDD) C 770601 DATE WRITTEN C 890531 Changed all specific intrinsics to generic. (WRB) C 890911 Removed unnecessary intrinsics. (WRB) C 890911 REVISION DATE from Version 3.2 C 891214 Prologue converted to Version 4.0 format. (BAB) C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ) C 920618 Removed space from variable name. (RWC, WRB) C***END PROLOGUE DGAMMA DOUBLE PRECISION X, GAMCS(42), DXREL, PI, SINPIY, SQ2PIL, XMAX, 1 XMIN, Y, D9LGMC, DCSEVL, D1MACH LOGICAL FIRST C SAVE GAMCS, PI, SQ2PIL, NGAM, XMIN, XMAX, DXREL, FIRST DATA GAMCS( 1) / +.8571195590 9893314219 2006239994 2 D-2 / DATA GAMCS( 2) / +.4415381324 8410067571 9131577165 2 D-2 / DATA GAMCS( 3) / +.5685043681 5993633786 3266458878 9 D-1 / DATA GAMCS( 4) / -.4219835396 4185605010 1250018662 4 D-2 / DATA GAMCS( 5) / +.1326808181 2124602205 8400679635 2 D-2 / DATA GAMCS( 6) / -.1893024529 7988804325 2394702388 6 D-3 / DATA GAMCS( 7) / +.3606925327 4412452565 7808221722 5 D-4 / DATA GAMCS( 8) / -.6056761904 4608642184 8554829036 5 D-5 / DATA GAMCS( 9) / +.1055829546 3022833447 3182350909 3 D-5 / DATA GAMCS( 10) / -.1811967365 5423840482 9185589116 6 D-6 / DATA GAMCS( 11) / +.3117724964 7153222777 9025459316 9 D-7 / DATA GAMCS( 12) / -.5354219639 0196871408 7408102434 7 D-8 / DATA GAMCS( 13) / +.9193275519 8595889468 8778682594 0 D-9 / DATA GAMCS( 14) / -.1577941280 2883397617 6742327395 3 D-9 / DATA GAMCS( 15) / +.2707980622 9349545432 6654043308 9 D-10 / DATA GAMCS( 16) / -.4646818653 8257301440 8166105893 3 D-11 / DATA GAMCS( 17) / +.7973350192 0074196564 6076717535 9 D-12 / DATA GAMCS( 18) / -.1368078209 8309160257 9949917230 9 D-12 / DATA GAMCS( 19) / +.2347319486 5638006572 3347177168 8 D-13 / DATA GAMCS( 20) / -.4027432614 9490669327 6657053469 9 D-14 / DATA GAMCS( 21) / +.6910051747 3721009121 3833697525 7 D-15 / DATA GAMCS( 22) / -.1185584500 2219929070 5238712619 2 D-15 / DATA GAMCS( 23) / +.2034148542 4963739552 0102605193 2 D-16 / DATA GAMCS( 24) / -.3490054341 7174058492 7401294910 8 D-17 / DATA GAMCS( 25) / +.5987993856 4853055671 3505106602 6 D-18 / DATA GAMCS( 26) / -.1027378057 8722280744 9006977843 1 D-18 / DATA GAMCS( 27) / +.1762702816 0605298249 4275966074 8 D-19 / DATA GAMCS( 28) / -.3024320653 7353062609 5877211204 2 D-20 / DATA GAMCS( 29) / +.5188914660 2183978397 1783355050 6 D-21 / DATA GAMCS( 30) / -.8902770842 4565766924 4925160106 6 D-22 / DATA GAMCS( 31) / +.1527474068 4933426022 7459689130 6 D-22 / DATA GAMCS( 32) / -.2620731256 1873629002 5732833279 9 D-23 / DATA GAMCS( 33) / +.4496464047 8305386703 3104657066 6 D-24 / DATA GAMCS( 34) / -.7714712731 3368779117 0390152533 3 D-25 / DATA GAMCS( 35) / +.1323635453 1260440364 8657271466 6 D-25 / DATA GAMCS( 36) / -.2270999412 9429288167 0231381333 3 D-26 / DATA GAMCS( 37) / +.3896418998 0039914493 2081663999 9 D-27 / DATA GAMCS( 38) / -.6685198115 1259533277 9212799999 9 D-28 / DATA GAMCS( 39) / +.1146998663 1400243843 4761386666 6 D-28 / DATA GAMCS( 40) / -.1967938586 3451346772 9510399999 9 D-29 / DATA GAMCS( 41) / +.3376448816 5853380903 3489066666 6 D-30 / DATA GAMCS( 42) / -.5793070335 7821357846 2549333333 3 D-31 / DATA PI / 3.1415926535 8979323846 2643383279 50 D0 / DATA SQ2PIL / 0.9189385332 0467274178 0329736405 62 D0 / DATA FIRST /.TRUE./ C***FIRST EXECUTABLE STATEMENT DGAMMA IF (FIRST) THEN NGAM = INITDS (GAMCS, 42, 0.1*REAL(D1MACH(3)) ) C CALL DGAMLM (XMIN, XMAX) DXREL = SQRT(D1MACH(4)) ENDIF FIRST = .FALSE. C Y = ABS(X) IF (Y.GT.10.D0) GO TO 50 C C COMPUTE GAMMA(X) FOR -XBND .LE. X .LE. XBND. REDUCE INTERVAL AND FIND C GAMMA(1+Y) FOR 0.0 .LE. Y .LT. 1.0 FIRST OF ALL. C N = X IF (X.LT.0.D0) N = N - 1 Y = X - N N = N - 1 DGAMMA = 0.9375D0 + DCSEVL (2.D0*Y-1.D0, GAMCS, NGAM) IF (N.EQ.0) RETURN C IF (N.GT.0) GO TO 30 C C COMPUTE GAMMA(X) FOR X .LT. 1.0 C N = -N IF (X .EQ. 0.D0) CALL XERMSG ('SLATEC', 'DGAMMA', 'X IS 0', 4, 2) IF (X .LT. 0.0 .AND. X+N-2 .EQ. 0.D0) CALL XERMSG ('SLATEC', + 'DGAMMA', 'X IS A NEGATIVE INTEGER', 4, 2) IF (X .LT. (-0.5D0) .AND. ABS((X-AINT(X-0.5D0))/X) .LT. DXREL) + CALL XERMSG ('SLATEC', 'DGAMMA', + 'ANSWER LT HALF PRECISION BECAUSE X TOO NEAR NEGATIVE INTEGER', + 1, 1) C DO 20 I=1,N DGAMMA = DGAMMA/(X+I-1 ) 20 CONTINUE RETURN C C GAMMA(X) FOR X .GE. 2.0 AND X .LE. 10.0 C 30 DO 40 I=1,N DGAMMA = (Y+I) * DGAMMA 40 CONTINUE RETURN C C GAMMA(X) FOR ABS(X) .GT. 10.0. RECALL Y = ABS(X). C 50 IF (X .GT. XMAX) CALL XERMSG ('SLATEC', 'DGAMMA', + 'X SO BIG GAMMA OVERFLOWS', 3, 2) C DGAMMA = 0.D0 IF (X .LT. XMIN) CALL XERMSG ('SLATEC', 'DGAMMA', + 'X SO SMALL GAMMA UNDERFLOWS', 2, 1) IF (X.LT.XMIN) RETURN C DGAMMA = EXP ((Y-0.5D0)*LOG(Y) - Y + SQ2PIL + D9LGMC(Y) ) IF (X.GT.0.D0) RETURN C IF (ABS((X-AINT(X-0.5D0))/X) .LT. DXREL) CALL XERMSG ('SLATEC', + 'DGAMMA', + 'ANSWER LT HALF PRECISION, X TOO NEAR NEGATIVE INTEGER', 1, 1) C SINPIY = SIN (PI*Y) IF (SINPIY .EQ. 0.D0) CALL XERMSG ('SLATEC', 'DGAMMA', + 'X IS A NEGATIVE INTEGER', 4, 2) C DGAMMA = -PI/(Y*SINPIY*DGAMMA) C RETURN END
apache-2.0
wkramer/openda
core/native/external/lapack/slas2.f
2
3684
SUBROUTINE SLAS2( F, G, H, SSMIN, SSMAX ) * * -- LAPACK auxiliary routine (version 3.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * September 30, 1994 * * .. Scalar Arguments .. REAL F, G, H, SSMAX, SSMIN * .. * * Purpose * ======= * * SLAS2 computes the singular values of the 2-by-2 matrix * [ F G ] * [ 0 H ]. * On return, SSMIN is the smaller singular value and SSMAX is the * larger singular value. * * Arguments * ========= * * F (input) REAL * The (1,1) element of the 2-by-2 matrix. * * G (input) REAL * The (1,2) element of the 2-by-2 matrix. * * H (input) REAL * The (2,2) element of the 2-by-2 matrix. * * SSMIN (output) REAL * The smaller singular value. * * SSMAX (output) REAL * The larger singular value. * * Further Details * =============== * * Barring over/underflow, all output quantities are correct to within * a few units in the last place (ulps), even in the absence of a guard * digit in addition/subtraction. * * In IEEE arithmetic, the code works correctly if one matrix element is * infinite. * * Overflow will not occur unless the largest singular value itself * overflows, or is within a few ulps of overflow. (On machines with * partial overflow, like the Cray, overflow may occur if the largest * singular value is within a factor of 2 of overflow.) * * Underflow is harmless if underflow is gradual. Otherwise, results * may correspond to a matrix modified by perturbations of size near * the underflow threshold. * * ==================================================================== * * .. Parameters .. REAL ZERO PARAMETER ( ZERO = 0.0E0 ) REAL ONE PARAMETER ( ONE = 1.0E0 ) REAL TWO PARAMETER ( TWO = 2.0E0 ) * .. * .. Local Scalars .. REAL AS, AT, AU, C, FA, FHMN, FHMX, GA, HA * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN, SQRT * .. * .. Executable Statements .. * FA = ABS( F ) GA = ABS( G ) HA = ABS( H ) FHMN = MIN( FA, HA ) FHMX = MAX( FA, HA ) IF( FHMN.EQ.ZERO ) THEN SSMIN = ZERO IF( FHMX.EQ.ZERO ) THEN SSMAX = GA ELSE SSMAX = MAX( FHMX, GA )*SQRT( ONE+ $ ( MIN( FHMX, GA ) / MAX( FHMX, GA ) )**2 ) END IF ELSE IF( GA.LT.FHMX ) THEN AS = ONE + FHMN / FHMX AT = ( FHMX-FHMN ) / FHMX AU = ( GA / FHMX )**2 C = TWO / ( SQRT( AS*AS+AU )+SQRT( AT*AT+AU ) ) SSMIN = FHMN*C SSMAX = FHMX / C ELSE AU = FHMX / GA IF( AU.EQ.ZERO ) THEN * * Avoid possible harmful underflow if exponent range * asymmetric (true SSMIN may not underflow even if * AU underflows) * SSMIN = ( FHMN*FHMX ) / GA SSMAX = GA ELSE AS = ONE + FHMN / FHMX AT = ( FHMX-FHMN ) / FHMX C = ONE / ( SQRT( ONE+( AS*AU )**2 )+ $ SQRT( ONE+( AT*AU )**2 ) ) SSMIN = ( FHMN*C )*AU SSMIN = SSMIN + SSMIN SSMAX = GA / ( C+C ) END IF END IF END IF RETURN * * End of SLAS2 * END
lgpl-3.0
geodynamics/specfem3d
src/generate_databases/model_1d_cascadia.f90
1
3359
!===================================================================== ! ! S p e c f e m 3 D V e r s i o n 3 . 0 ! --------------------------------------- ! ! Main historical authors: Dimitri Komatitsch and Jeroen Tromp ! CNRS, France ! and Princeton University, USA ! (there are currently many more authors!) ! (c) October 2017 ! ! This program is free software; you can redistribute it and/or modify ! it under the terms of the GNU General Public License as published by ! the Free Software Foundation; either version 3 of the License, or ! (at your option) any later version. ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License along ! with this program; if not, write to the Free Software Foundation, Inc., ! 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. ! !===================================================================== !-------------------------------------------------------------------------------------------------- ! ! 1D model profile for Cascadia region ! ! by Gian Matharu !-------------------------------------------------------------------------------------------------- subroutine model_1D_cascadia(xmesh,ymesh,zmesh,rho,vp,vs,qmu_atten,qkappa_atten) ! given a GLL point, returns super-imposed velocity model values use generate_databases_par, only: nspec => NSPEC_AB,ibool,HUGEVAL use create_regions_mesh_ext_par implicit none ! GLL point location double precision, intent(in) :: xmesh,ymesh,zmesh ! density, Vp and Vs real(kind=CUSTOM_REAL),intent(inout) :: vp,vs,rho,qmu_atten,qkappa_atten ! local parameters real(kind=CUSTOM_REAL) :: x,y,z real(kind=CUSTOM_REAL) :: depth real(kind=CUSTOM_REAL) :: elevation,distmin ! converts GLL point location to real x = xmesh y = ymesh z = zmesh ! get approximate topography elevation at target coordinates distmin = HUGEVAL elevation = 0.0 call get_topo_elevation_free_closest(x,y,elevation,distmin, & nspec,nglob_unique,ibool,xstore_unique,ystore_unique,zstore_unique, & num_free_surface_faces,free_surface_ispec,free_surface_ijk) ! depth in Z-direction if (distmin < HUGEVAL) then depth = elevation - z else depth = - z endif ! depth in km depth = depth / 1000.0 ! 1D profile Cascadia ! super-imposes values if (depth < 1.0) then ! vp in m/s vp = 5000.0 ! vs in m/s vs = 2890.0 ! density in kg/m**3 rho = 2800.0 else if (depth < 6.0) then vp = 6000.0 vs = 3460.0 rho = 2800.0 else if (depth < 30.0) then vp = 6700.0 vs = 3870.0 rho = 3200.0 else if (depth < 45.0) then vp = 7100.0 vs = 4100.0 rho = 3200.0 else if (depth < 65.0) then vp = 7750.0 vs = 4470.0 rho = 3200.0 else vp = 8100.0 vs = 4670.0 rho = 3200.0 endif ! attenuation: PREM crust value qmu_atten = 600.0 qkappa_atten = 57827.0 end subroutine model_1D_cascadia
gpl-3.0